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Preface

Since 1993, cryptographic algorithm research has centered around the Fast Soft-
ware Encryption (FSE) workshop. First held at Cambridge University with 30
attendees, it has grown over the years and has achieved worldwide recognition
as a premiere conference. It has been held in Belgium, Israel, France, Italy, and,
most recently, New York.

FSE 2000 was the 7th international workshop, held in the United States for
the first time. Two hundred attendees gathered at the Hilton New York on Sixth
Avenue, to hear 21 papers presented over the course of three days: 10–12 April
2000. These proceedings constitute a collection of the papers presented during
those days.

FSE concerns itself with research on classical encryption algorithms and re-
lated primitives, such as hash functions. This branch of cryptography has never
been more in the public eye. Since 1997, NIST has been shepherding the Advan-
ced Encryption Standard (AES) process, trying to select a replacement algorithm
for DES. The first AES conference, held in California the week before Crypto 98,
had over 250 attendees. The second conference, held in Rome two days before
FSE 99, had just under 200 attendees. The third AES conference was held in
conjunction with FSE 2000, during the two days following it, at the same hotel.

It was a great pleasure for me to organize and chair FSE 2000. We received 53
submissions covering the broad spectrum of classical encryption research. Each of
those submissions was read by at least three committee members – more in some
cases. The committee chose 21 papers to be presented at the workshop. Those
papers were distributed to workshop attendees in a preproceedings volume. After
the workshop, authors were encouraged to further improve their papers based
on comments received. The final result is the proceedings volume you hold in
your hand.

To conclude, I would like to thank all the authors who submitted papers
to this conference, whether or not your papers were accepted. It is your conti-
nued research that makes this field a vibrant and interesting one. I would like
to thank the other program committee members: Ross Anderson (Cambridge),
Eli Biham (Technion), Don Coppersmith (IBM), Cunsheng Ding (Singapore),
Dieter Gollmann (Microsoft), Lars Knudsen (Bergen), James Massey (Lund),
Mitsuru Matsui (Mitsubishi), Bart Preneel (K.U.Leuven), and Serge Vaudenay
(EPFL). They performed the hard – and too often thankless – task of selec-
ting the program. I’d like to thank my assistant, Beth Friedman, who handled
administrative matters for the conference. And I would like to thank the atten-
dees for coming to listen, learn, share ideas, and participate in the community. I
believe that FSE represents the most interesting subgenre within cryptography,
and that this conference represents the best of what cryptography has to offer.

Enjoy the proceeedings, and I’ll see everyone next year in Japan.

August 2000 Bruce Schneier



Table of Contents

Specific Stream-Cipher Cryptanalysis

Real Time Cryptanalysis of A5/1 on a PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Alex Biryukov, Adi Shamir, and David Wagner

Statistical Analysis of the Alleged RC4 Keystream Generator . . . . . . . . . . . . 19
Scott R. Fluhrer and David A. McGrew

New Ciphers

The Software-Oriented Stream Cipher SSC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Muxiang Zhang, Christopher Carroll, and Agnes Chan

Mercy: A Fast Large Block Cipher for Disk Sector Encryption . . . . . . . . . . . 49
Paul Crowley

AES Cryptanalysis 1

A Statistical Attack on RC6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Henri Gilbert, Helena Handschuh, Antoine Joux, and Serge Vaudenay

Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent 75
John Kelsey, Tadayoshi Kohno, and Bruce Schneier

Correlations in RC6 with a Reduced Number of Rounds . . . . . . . . . . . . . . . . 94
Lars R. Knudsen and Willi Meier

Block-Cipher Cryptanalysis 1

On the Interpolation Attacks on Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . 109
A.M. Youssef and G. Gong

Stochastic Cryptanalysis of Crypton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Marine Minier and Henri Gilbert

Power Analysis

Bitslice Ciphers and Power Analysis Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Joan Daemen, Michael Peeters, and Gilles Van Assche

Securing the AES Finalists Against Power Analysis Attacks . . . . . . . . . . . . . 150
Thomas S. Messerges



VIII Table of Contents

General Stream-Cipher Cryptanalysis

Ciphertext Only Reconstruction of Stream Ciphers based on Combination
Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Anne Canteaut and Eric Filiol

A Simple Algorithm for Fast Correlation Attacks on Stream Ciphers . . . . . 181
Vladimor V. Chepyzhov, Thomas Johansson, and Ben Smeets

A Low-Complexity and High-Performance Algorithm for the Fast
Correlation Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
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Real Time Cryptanalysis of A5/1 on a PC

Alex Biryukov1, Adi Shamir1, and David Wagner2

1 Computer Science department, The Weizmann Institute, Rehovot 76100, Israel
2 Computer Science department, University of California, Berkeley CA 94720, USA.

Abstract. A5/1 is the strong version of the encryption algorithm used
by about 130 million GSM customers in Europe to protect the over-
the-air privacy of their cellular voice and data communication. The best
published attacks against it require between 240 and 245 steps. This le-
vel of security makes it vulnerable to hardware-based attacks by large
organizations, but not to software-based attacks on multiple targets by
hackers.
In this paper we describe new attacks on A5/1, which are based on subtle
flaws in the tap structure of the registers, their noninvertible clocking
mechanism, and their frequent resets. After a 248 parallelizable data
preparation stage (which has to be carried out only once), the actual
attacks can be carried out in real time on a single PC.
The first attack requires the output of the A5/1 algorithm during the
first two minutes of the conversation, and computes the key in about
one second. The second attack requires the output of the A5/1 algo-
rithm during about two seconds of the conversation, and computes the
key in several minutes. The two attacks are related, but use different
types of time-memory tradeoffs. The attacks were verified with actual
implementations, except for the preprocessing stage which was extensi-
vely sampled rather than completely executed.
REMARK: We based our attack on the version of the algorithm which
was derived by reverse engineering an actual GSM telephone and pu-
blished at http://www.scard.org. We would like to thank the GSM
organization for graciously confirming to us the correctness of this un-
official description. In addition, we would like to stress that this paper
considers the narrow issue of the cryptographic strength of A5/1, and
not the broader issue of the practical security of fielded GSM systems,
about which we make no claims.

1 Introduction

The over-the-air privacy of GSM telephone conversations is protected by the A5
stream cipher. This algorithm has two main variants: The stronger A5/1 version
is used by about 130 million customers in Europe, while the weaker A5/2 version
is used by another 100 million customers in other markets. The approximate
design of A5/1 was leaked in 1994, and the exact design of both A5/1 and A5/2
was reverse engineered by Briceno from an actual GSM telephone in 1999 (see
[3]).

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 1–18, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 A. Biryukov, A. Shamir, and D. Wagner

In this paper we develop two new cryptanalytic attacks on A5/1, in which
a single PC can extract the conversation key in real time from a small amount
of generated output. The attacks are related, but each one of them optimizes
a different parameter: The first attack (called the biased birthday attack)
requires two minutes of data and one second of processing time, whereas the
second attack (called the the random subgraph attack) requires two seconds
of data and several minutes of processing time. There are many possible choices
of tradeoff parameters in these attacks, and three of them are summarized in
Table 1.

Table 1. Three possible tradeoff points in the attacks on A5/1.

Attack Type Preprocessing Available Number of Attack time
steps data 73GB disks

Biased Birthday attack (1) 242 2 minutes 4 1 second
Biased Birthday attack (2) 248 2 minutes 2 1 second
Random Subgraph attack 248 2 seconds 4 minutes

Many of the ideas in these two new attacks are applicable to other stream
ciphers as well, and define new quantifiable measures of security.

The paper is organized in the following way: Section 2 contains a full descrip-
tion of the A5/1 algorithm. Previous attacks on A5/1 are surveyed in Section
3, and an informal description of the new attacks is contained in Section 4. Fi-
nally, Section 5 contains various implementation details and an analysis of the
expected success rate of the attacks, based on large scale sampling with actual
implementations.

2 Description of the A5/1 Stream Cipher

A GSM conversation is sent as a sequence of frames every 4.6 millisecond. Each
frame contains 114 bits representing the digitized A to B communication, and
114 bits representing the digitized B to A communication. Each conversation
can be encrypted by a new session key K. For each frame, K is mixed with a
publicly known frame counter Fn, and the result serves as the initial state of a
generator which produces 228 pseudo random bits. These bits are XOR’ed by
the two parties with the 114+114 bits of the plaintext to produce the 114+114
bits of the ciphertext.

A5/1 is built from three short linear feedback shift registers (LFSR) of lengths
19, 22, and 23 bits, which are denoted by R1, R2 and R3 respectively. The
rightmost bit in each register is labelled as bit zero. The taps of R1 are at bit
positions 13,16,17,18; the taps of R2 are at bit positions 20,21; and the taps of
R3 are at bit positions 7, 20,21,22 (see Figure 1). When a register is clocked,
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its taps are XORed together, and the result is stored in the rightmost bit of
the left-shifted register. The three registers are maximal length LFSR’s with
periods 219 − 1, 222 − 1, and 223 − 1, respectively. They are clocked in a stop/go
fashion using the following majority rule: Each register has a single “clocking”
tap (bit 8 for R1, bit 10 for R2, and bit 10 for for R3); each clock cycle, the
majority function of the clocking taps is calculated and only those registers whose
clocking taps agree with the majority bit are actually clocked. Note that at each
step either two or three registers are clocked, and that each register moves with
probability 3/4 and stops with probability 1/4.
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Fig. 1. The A5/1 stream cipher.

The process of generating pseudo random bits from the session key K and
the frame counter Fn is carried out in four steps:

– The three registers are zeroed, and then clocked for 64 cycles (ignoring the
stop/go clock control). During this period each bit of K (from lsb to msb)
is XOR’ed in parallel into the lsb’s of the three registers.

– The three registers are clocked for 22 additional cycles (ignoring the stop/go
clock control). During this period the successive bits of Fn (from lsb to msb)
are again XOR’ed in parallel into the lsb’s of the three registers. The contents
of the three registers at the end of this step is called the initial state of the
frame.
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– The three registers are clocked for 100 additional clock cycles with the
stop/go clock control but without producing any outputs.

– The three registers are clocked for 228 additional clock cycles with the
stop/go clock control in order to produce the 228 output bits. At each clock
cycle, one output bit is produced as the XOR of the msb’s of the three
registers.

3 Previous Attacks

The attacker is assumed to know some pseudo random bits generated by A5/1
in some of the frames. This is the standard assumption in the cryptanalysis of
stream ciphers, and we do not consider in this paper the crucial issue of how
one can obtain these bits in fielded GSM systems. For the sake of simplicity, we
assume that the attacker has complete knowledge of the outputs of the A5/1 al-
gorithm during some initial period of the conversation, and his goal is to find the
key in order to decrypt the remaining part of the conversation. Since GSM tele-
phones send a new frame every 4.6 milliseconds, each second of the conversation
contains about 28 frames.

At the rump session of Crypto 99, Ian Goldberg and David Wagner anno-
unced an attack on A5/2 which requires very few pseudo random bits and just
O(216) steps. This demonstrated that the “export version” A5/2 is totally inse-
cure.

The security of the A5/1 encryption algorithm was analyzed in several papers.
Some of them are based on the early imprecise description of this algorithm,
and thus their details have to be slightly modified. The known attacks can be
summarized in the following way:

– Briceno[3] found out that in all the deployed versions of the A5/1 algorithm,
the 10 least significant of the 64 key bits were always set to zero. The com-
plexity of exhaustive search is thus reduced to O(254). 1

– Anderson and Roe[1] proposed an attack based on guessing the 41 bits in
the shorter R1 and R2 registers, and deriving the 23 bits of the longer R3
register from the output. However, they occasionally have to guess additional
bits to determine the majority-based clocking sequence, and thus the total
complexity of the attack is about O(245). Assuming that a standard PC can
test ten million guesses per second, this attack needs more than a month to
find one key.

– Golic[4] described an improved attack which requires O(240) steps. However,
each operation in this attack is much more complicated, since it is based on
the solution of a system of linear equations. In practice, this algorithm is not
likely to be faster than the previous attack on a PC.

1 Our new attack is not based on this assumption, and is thus applicable to A5/1
implementations with full 64 bit keys. It is an interesting open problem whether we
can speed it up by assuming that 10 key bits are zero.
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– Golic[4] describes a general time-memory tradeoff attack on stream ciphers
(which was independently discovered by Babbage [2] two years earlier), and
concludes that it is possible to find the A5/1 key in 222 probes into random
locations in a precomputed table with 242 128 bit entries. Since such a table
requires a 64 terabyte hard disk, the space requirement is unrealistic. Al-
ternatively, it is possible to reduce the space requirement to 862 gigabytes,
but then the number of probes increases to O(228). Since random access to
the fastest commercially available PC disks requires about 6 milliseconds,
the total probing time is almost three weeks. In addition, this tradeoff point
can only be used to attack GSM phone conversations which last more than
3 hours, which again makes it unrealistic.

4 Informal Description of the New Attacks

We start with an executive summary of the key ideas of the two attacks. More
technical descriptions of the various steps will be provided in the next section.

Key idea 1: Use the Golic time-memory tradeoff. The starting point
for the new attacks is the time-memory tradeoff described in Golic[3], which is
applicable to any cryptosystem with a relatively small number of internal states.
A5/1 has this weakness, since it has n = 264 states defined by the 19+22+23 = 64
bits in its three shift registers. The basic idea of the Golic time-memory tradeoff
is to keep a large set A of precomputed states on a hard disk, and to consider the
large set B of states through which the algorithm progresses during the actual
generation of output bits. Any intersection between A and B will enable us to
identify an actual state of the algorithm from stored information.

Key idea 2: Identify states by prefixes of their output sequences.
Each state defines an infinite sequence of output bits produced when we start
clocking the algorithm from that state. In the other direction, states are usually
uniquely defined by the first log(n) bits in their output sequences, and thus
we can look for equality between unknown states by comparing such prefixes
of their output sequences. During precomputation, pick a subset A of states,
compute their output prefixes, and store the (prefix, state) pairs sorted into
increasing prefix values. Given actual outputs of the A5/1 algorithm, extract
all their (partially overlapping) prefixes, and define B as the set of their cor-
responding (unknown) states. Searching for common states in A and B can be
efficiently done by probing the sorted data A on the hard disk with prefix queries
from B.

Key idea 3: A5/1 can be efficiently inverted. As observed by Golic,
the state transition function of A5/1 is not uniquely invertible: The majority
clock control rule implies that up to 4 states can converge to a common state
in one clock cycle, and some states have no predecessors. We can run A5/1
backwards by exploring the tree of possible predecessor states, and backtracking
from dead ends. The average number of predecessors of each node is 1, and thus
the expected number of vertices in the first k levels of each tree grows only
linearly in k (see[3]). As a result, if we find a common state in the disk and data,
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we can obtain a small number of candidates for the initial state of the frame.
The weakness we exploit here is that due to the frequent reinitializations there
is a very short distance from intermediate states to initial states.

Key idea 4: The key can be extracted from the initial state of any
frame. Here we exploit the weakness of the A5/1 key setup routine. Assume that
we know the state of A5/1 immediately after the key and frame counter were
used, and before the 100 mixing steps. By running backwards, we can eliminate
the effect of the known frame counter in a unique way, and obtain 64 linear
combinations of the 64 key bits. Since the tree exploration may suggest several
keys, we can choose the correct one by mixing it with the next frame counter,
running A5/1 forward for more than 100 steps, and comparing the results with
the actual data in the next frame.

Key idea 5: The Golic attack on A5/1 is marginally impractical.
By the well known birthday paradox, A and B are likely to have a common
state when their sizes a and b satisfy a ∗ b ≈ n. We would like a to be bounded
by the size of commercially available PC hard disks, and b to be bounded by
the number of overlapping prefixes in a typical GSM telephone conversation.
Reasonable bounds on these values (justified later in this paper) are a ≈ 235 and
b ≈ 222. Their product is 257, which is about 100 times smaller than n = 264. To
make the intersection likely, we either have to increase the storage requirement
from 150 gigabytes to 15 terabytes, or to increase the length of the conversation
from two minutes to three hours. Neither approach seems to be practical, but the
gap is not huge and a relatively modest improvement by two orders of magnitude
is all we need to make it practical.

Key idea 6: Use special states. An important consideration in imple-
menting time-memory tradeoff attacks is that access to disk is about a million
times slower than a computational step, and thus it is crucial to minimize the
number of times we look for data on the hard disk. An old idea due to Ron
Rivest is to keep on the disk only special states which are guaranteed to produce
output bits starting with a particular pattern α of length k, and to access the
disk only when we encounter such a prefix in the data. This reduces the number
b of disk probes by a factor of about 2k. The number of points a we have to
memorize remains unchanged, since in the formula a ∗ b ≈ n both b and n are
reduced by the same factor 2k. The downside is that we have to work 2k times
harder during the preprocessing stage, since only 2−k of the random states we
try produce outputs with such a k bit prefix. If we try to reduce the number of
disk access steps in the time memory attack on A5/1 from 222 to 26, we have
to increase the preprocessing time by a factor of about 64,000, which makes it
impractically long.

Key idea 7: Special states can be efficiently sampled in A5/1. A
major weakness of A5/1 which we exploit in both attacks is that it is easy
to generate all the states which produce output sequences that start with a
particular k-bit pattern α with k = 16 without trying and discarding other states.
This is due to a poor choice of the clocking taps, which makes the register bits
that affect the clock control and the register bits that affect the output unrelated
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for about 16 clock cycles, so we can choose them independently. This easy access
to special states does not happen in good block ciphers, but can happen in stream
ciphers due to their simpler transition functions. In fact, the maximal value of
k for which special states can be sampled without trial and error can serve as a
new security measure for stream ciphers, which we call its sampling resistance.
As demonstrated in this paper, high values of k can have a big impact on the
efficiency of time-memory tradeoff attacks on such cryptosystems.

Key idea 8: Use biased birthday attacks. The main idea of the first
attack is to consider sets A and B which are not chosen with uniform probability
distribution among all the possible states. Assume that each state s is chosen
for A with probability PA(s), and is chosen for B with probability PB(s). If the
means of these probability distributions are a/n and b/n, respectively, then the
expected size of A is a, and the expected size of B is b.

The birthday threshold happens when
∑

s PA(s)PB(s) ≈ 1. For independent
uniform distributions, this evaluates to the standard condition a∗b ≈ n. However,
in the new attack we choose states for the disk and states in the data with
two non-uniform probability distributions which have strong positive correlation.
This makes our time memory tradeoff much more efficient than the one used by
Golic. This is made possible by the fact that in A5/1, the initial state of each
new frame is rerandomized very frequently with different frame counters.

Key idea 9: Use Hellman’s time-memory tradeoff on a subgraph of
special states. The main idea of the second attack (called the random subgraph
attack) is to make most of the special states accessible by simple computations
from the subset of special states which are actually stored in the hard disk. The
first occurrence of a special state in the data is likely to happen in the first two
seconds of the conversation, and this single occurrence suffices in order to locate
a related special state in the disk even though we are well below the threshold
of either the normal or the biased birthday attack. The attack is based on a new
function f which maps one special state into another special state in an easily
computable way. This f can be viewed as a random function over the subspace
of 248 special states, and thus we can use Hellman’s time-memory tradeoff[4] in
order to invert it efficiently. The inverse function enables us to compute special
states from output prefixes even when they are not actually stored on the hard
disk, with various combinations of time T and memory M satisfying M

√
T = 248.

If we choose M = 236, we get T = 224, and thus we can carry out the attack
in a few minutes, after a 248 preprocessing stage which explores the structure of
this function f .

Key idea 10: A5/1 is very efficient on a PC. The A5/1 algorithm was
designed to be efficient in hardware, and its straightforward software implemen-
tation is quite slow. To execute the preprocessing stage, we have to run it on
a distributed network of PC’s up to 248 times, and thus we need an extremely
efficient way to compute the effect of one clock cycle on the three registers.

We exploit the following weakness in the design of A5/1: Each one of the
three shift registers is so small that we can precompute all its possible states,
and keep them in RAM as three cyclic arrays, where successive locations in each
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array represent successive states of the corresponding shift register. In fact, we
don’t have to keep the full states in the arrays, since the only information we
have to know about a state is its clocking tap and its output tap. A state can
thus be viewed as a triplet of indices (i, j, k) into three large single bit arrays
(see Figure 2). A1(i), A2(j), A3(k) are the clocking taps of the current state, and
A1(i− 11), A2(j − 12), A3(k − 13) are the output taps of the current state (since
these are the corresponding delays in the movement of clocking taps to output
taps when each one of the three registers is clocked). Since there is no mixing of
the values of the three registers, their only interaction is in determining which
of the three indices should be incremented by 1. This can be determined by a
precomputed table with three input bits (the clocking taps) and three output
bits (the increments of the three registers). When we clock A5/1 in our software
implementation, we don’t shift registers or compute feedbacks - we just add a
0/1 vector to the current triplet of indices. A typical two dimensional variant
of such movement vectors in triplet space is described in Figure 3. Note the
local tree structure determined by the deterministic forward evaluation and the
nondeterministic backward exploration in this triplet representation.

Since the increment table is so small, we can expand the A tables from bits to
bytes, and use a larger precomputed table with 224 entries, whose inputs are the
three bytes to the right of the clocking taps in the three registers, and outputs
are the three increments to the indices which allow us to jump directly to the
state which is 8 clock cycles away. The total amount of RAM needed for the
state arrays and precomputed movement tables is less than 128 MB, and the
total cost of advancing the three registers for 8 clock cycles is one table lookup
and three integer additions! A similar table lookup technique can be used to
compute in a single step output bytes instead of output bits, and to speed up
the process of running A5/1 backwards.

Size   2   -1
23

R1

i

R2

j

R3

k

j

k

i Size  2   -1

Size 2   -1

 22

 19

101

011

110

111

Fig. 2. Triplet representation of a state.
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(i+1,j+1,k+1)

( i, j+1, k+1)

(i+1,  j, k+1)

(i+1, k+1,  j)

Fig. 3. The state-transition graph in the triplet representation of A5/1.

5 Detailed Description of the Attacks

In this section we fill in the missing details, and analyse the success rate of the
new attacks.

5.1 Efficient Sampling of Special States

Let α be any 16 bit pattern of bits. To simplify the analysis, we prefer to use an
α which does not coincide with shifted versions of itself (such as α = 1000...0)
since this makes it very unlikely that a single 228-bit frame contains more than
one occurrence of α.

The total number of states which generate an output prefix of α is about
264 ∗ 2−16 = 248. We would like to generate all of them in a (barely doable)
248 preprocessing stage, without trying all the 264 possible states and discarding
the vast majority which fail the test. The low sampling resistance of A5/1 is
made possible by several flaws in its design, which are exploited in the following
algorithm:

– Pick an arbitrary 19-bit value for the shortest register R1. Pick arbitrary
values for the rightmost 11 bits in R2 and R3 which will enter the clock
control taps in the next few cycles. We can thus define 219+11+11 = 241

partial states.
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– For each partial state we can uniquely determine the clock control of the
three registers for the next few cycles, and thus determine the identity of the
bits that enter their msb’s and affect the output.

– Due to the majority clock control, at least one of R2 and R3 shifts a new
(still unspecified) bit into its msb at each clock cycle, and thus we can make
sure that the computed output bit has the desired value. Note that about
half the time only one new bit is shifted (and then its choice is forced), and
about half the time two new bits are shifted (and then we can choose them in
two possible ways). We can keep this process alive without time consuming
trial and error as long as the clock control taps contain only known bits
whereas the output taps contain at least one unknown bit. A5/1 makes this
very easy, by using a single clocking tap and placing it in the middle of each
register: We can place in R2 and R3 11 specified bits to the right of the clock
control tap, and 11-12 unspecified bits to the right of the output tap. Since
each register moves only 3/4 of the time, we can keep this process alive for
about 16 clock cycles, as desired.

– This process generates only special states, and cannot miss any special state
(if we start the process with its partial specification, we cannot get into
an early contradiction). We can similarly generate any number c < 248 of
randomly chosen special states in time proportional to c. As explained later
in the paper, this can make the preprocessing faster, at the expense of other
parameters in our attack.

5.2 Efficient Disk Probing

To leave room for a sufficiently long identifying prefix of 35 bits after the 16-bit α,
we allow it to start only at bit positions 1 to 177 in each one of the given frames
(i.e., at a distance of 101 to 277 from the initial state). The expected number of
occurrences of α in the data produced by A5/1 during a two minute conversation
is thus 2−16 ∗ 177 ∗ 120 ∗ 1000/4.6 ≈ 71. This is the expected number of times
b we access the hard disk. Since each random access takes about 6 milliseconds,
the total disk access time becomes negligible (about 0.4 seconds).

5.3 Efficient Disk Storage

The data items we store on the disk are (prefix, state) pairs. The state of A5/1
contains 64 bits, but we keep only special states and thus we can encode them
efficiently with shorter 48 bit names, by specifying the 41 bits of the partial state
and the ≈ 7 choice bits in the sampling procedure. We can further reduce the
state to less than 40 bits (5 bytes) by leaving some of the 48 bits unspecified. This
saves a considerable fraction of the disk space prepared during preprocessing,
and the only penalty is that we have to try a small number of candidate states
instead of one candidate state for each one of the 71 relevant frames. Since this
part is so fast, even in its slowed down version it takes less than a second.

The output prefix produced from each special state is nominally of length
16+35=51 bits. However, the first 16 bits are always the constant α, and the
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next 35 bits are stored in sorted order on the disk. We can thus store the full
value of these 35 bits only once per sector, and encode on the disk only their
small increments (with a default value of 1). Other possible implementations are
to use the top parts of the prefixes as direct sector addresses or as file names.
With these optimizations, we can store each one of the sorted (prefix, state)
pairs in just 5 bytes. The largest commercially available PC hard disks (such as
IBM Ultrastar 72 ZX or Seagate Cheetah 73) have 73 gigabytes. By using two
such disks, we can store 146 ∗ 230/5 ≈ 235 pairs during the preprocessing stage,
and characterize each one of them by the (usually unique) 35-bit output prefix
which follows α.

5.4 Efficient Tree Exploration

The forward state-transition function of A5/1 is deterministic, but in the reverse
direction we have to consider four possible predecessors. About 3/8 of the states
have no predecessors, 13/32 of the states have one predecessor, 3/32 of the states
have two predecessors, 3/32 of the states have three predecessors, and 1/32 of
the states have four predecessors.

Since the average number of predecessors is 1, Golic assumed that a good
statistical model for the generated trees of predecessors is the critical branching
process (see [3]). We were surprised to discover that in the case of A5/1, there
was a very significant difference between the predictions of this model and our
experimental data. For example, the theory predicted that only 2% of the sta-
tes would have some predecessor at depth 100, whereas in a large sample of
100,000,000 trees we generated from random A5/1 states the percentage was
close to 15%. Another major difference was found in the tail distributions of the
number of sons at depth 100: Theory predicted that in our sample we should see
some cases with close to 1000 sons, whereas in our sample we never saw trees
with more than 120 sons at depth 100.

Green
belt

Red Roots

Green Green

100 steps

177 steps

Fig. 4. Trees of different sizes.

5.5 The Biased Birthday Attack

To analyse the performance of our biased birthday attack, we introduce the
following notation:
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Definition 1 A state s is coloured red, if the sequence of output bits produced
from state s starts with α (i.e., it is a special state). The subspace of all the red
states is denoted by R.

Definition 2 A state is coloured green, if the sequence of output bits produced
from state s contains an occurrence of α which starts somewhere between bit
positions 101 and 277. The subspace of all the green states is denoted by G.

The red states are the states that we keep in the disk, look for in the data,
and try to collide by comparing their prefixes. The green states are all the states
that could serve as initial states in frames that contain α. Non-green initial states
are of no interest to us, since we discard the frames they generate from the actual
data.

The size of R is approximately 248, since there are 264 possible states, and the
probability that α occurs right at the beginning of the output sequence is 2−16.
Since the redness of a state is not directly related to its separate coordinates i,
j, k in the triplet space, the red states can be viewed as randomly and sparsely
located in this representation. The size of G is approximately 177 ∗ 248 (which is
still a small fraction of the state space) since α has 177 opportunities to occur
along the output sequence.

Since a short path of length 277 in the output sequence is very unlikely to
contain two occurrences of α, the relationship between green and red states is
essentially many to one: The set of all the relevant states we consider can be
viewed as a collection of disjoint trees of various sizes, where each tree has a red
state as its root and a “belt” of green states at levels 101 to 277 below it (see
Figure 4). The weight W (s) of a tree whose root is the red state s is defined as
the number of green states in its belt, and s is called k-heavy if W (s) ≥ k.

The crucial observation which makes our biased birthday attack efficient is
that in A5/1 there is a huge variance in the weights of the various red states. We
ran the tree exploration algorithm on 100,000,000 random states and computed
their weights. We found out that the weight of about 85% of the states was zero,
because their trees died out before reaching depth 100. Other weights ranged all
the way from 1 to more than 26,000.

The leftmost graph of Figure 5 describes for each x which is a multiple of 100
the value y which is the total weight of all the trees whose weights were between
x and x + 100. The total area under the graph to the right of x = k represents
the total number of green states in all the k-heavy trees in our sample.

The initial mixing of the key and frame number, which ignores the usual clock
control and flips the least significant bits of the registers about half the time
before shifting them, can be viewed as random jumps with uniform probability
distribution into new initial states: even a pair of frame counters with Hamming
distance 1 can lead to far away initial states in the triplet space. When we
restrict our attention to the frames that contain α, we get a uniform probability
distribution over the green states, since only green states can serve as initial
states in such frames.
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The red states, on the other hand, are not encountered with uniform proba-
bility distribution in the actual data. For example, a red state whose tree has
no green belt will never be seen in the data. On the other hand, a red state
with a huge green belt has a huge number of chances to be reached when the
green initial state is chosen with uniform probability distribution. In fact the
probability of encountering a particular red state s in a particular frame which
is known to contain α is the ratio of its weight W (s) and the total number of
green states 177 ∗ 248, and the probability of encountering it in one of the 71
relevant frames is PB(s) = 71 ∗ W (s)/(177 ∗ 248).

Since PB(s) has a huge variance, we can maximize the expected number of
collisions

∑
s PA(s) ∗ PB(s) by choosing red points for the hard disk not with

uniform probability distribution, but with a biased probability PA(s) which ma-
ximizes the correlation between these distributions, while minimizing the expec-
ted size of A. The best way to do this is to keep on the disk only the heaviest
trees. In other words, we choose a threshold number k, and define PA(s) = 0 if
W (s) < k, and PA(s) = 1 if W (s) ≥ k. We can now easily compute the expected
number of collisions by the formula:

∑

s

PA(s) ∗ PB(s) =
∑

s|W (s)≥k

71 ∗ W (s)/(177 ∗ 248)

which is just the number of red states we keep on the disk, times the average
weight of their trees, times 71/(177 ∗ 248).

In our actual attack, we keep 235 red states on the disk. This is a 2−13 fraction
of the 248 red states. With such a tiny fraction, we can choose particularly heavy
trees with an average weight of 12,500. The expected number of colliding red
states in the disk and the actual data is 235 ∗12, 500∗71/(177∗248) ≈ 0.61. This
expected value makes it quite likely that a collision will actually exist. 2

The intuition behind the biased time memory tradeoff attack is very simple.
We store red states, but what we really want to collide are the green states in
their belts (which are accessible from the red roots by an easy computation).
The 71 green states in the actual data are uniformly distributed, and thus we
want to cover about 1% of the green area under the curve in the right side of
Figure 5. Standard time memory tradeoff attacks store random red states, but
each stored state increases the coverage by just 177 green states on average. With
our optimized choice in the preprocessing stage, each stored state increases the
coverage by 12,500 green states on average, which improves the efficiency of the
attack by almost two orders of magnitude.

5.6 Efficient Determination of Initial States

One possible disadvantage of storing heavy trees is that once we find a collision,
we have to try a large number of candidate states in the green belt of the colliding
2 Note that in time memory tradeoff attacks, it becomes increasingly expensive to push

this probability towards 1, since the only way to guarantee success is to memorize
the whole state space.
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red state. Since each green state is only partially specified in our compact 5-byte
representation, the total number of candidate green states can be hundreds of
thousands, and the real time part of the attack can be relatively slow.

However, this simple estimate is misleading. The parasitic red states obtai-
ned from the partial specification can be quickly discarded by evaluating their
outputs beyond the guaranteed occurrence of α and comparing it to the bits in
the given frame. In addition, we know the exact location of α in this frame, and
thus we know the exact depth of the initial state we are interested in within the
green belt. As a result, we have to try only about 70 states in a cut through the
green belt, and not the 12,500 states in the full belt.

5.7 Reducing the Preprocessing Time of the Biased Birthday
Attack

The 248 complexity of the preprocessing stage of this attack can make it too
time consuming for a small network of PC’s. In this section we show how to
reduce this complexity by any factor of up to 1000, by slightly increasing either
the space complexity or the length of the attacked conversation.

The efficient sampling procedure makes it possible to generate any number
c < 248 of random red states in time proportional to c. To store the same number
of states in the disk, we have to choose a larger fraction of the tested trees, which
have a lower average weight, and thus a less efficient coverage of the green states.
Table 2 describes the average weight of the heaviest trees for various fractions of
the red states, which was experimentally derived from our sample of 100,000,000
A5/1 trees. This table can be used to choose the appropriate value of k in the

Table 2. The average weight of the heaviest trees for various fractions of R.

Average Weights
2−4 2432 2−5 3624 2−6 4719 2−7 5813
2−8 6910 2−9 7991 2−10 9181 2−11 10277

2−12 11369 2−13 12456 2−14 13471 2−15 14581
2−16 15686 2−17 16839 2−18 17925 2−19 19012
2−20 20152 2−21 21227 2−22 22209 2−23 23515
2−24 24597 2−25 25690 2−26 26234

definition the k-heavy trees for various choices of c. The implied tradeoff is
very favorable: If we increase the fraction from 2−13 to 2−7, we can reduce the
preprocessing time by a factor of 64 (from 248 to 242), and compensate by either
doubling the length of the attacked conversation from 2 minutes to 4 minutes,
or doubling the number of hard disks from 2 to 4. The extreme point in this
tradeoff is to store in the disk all the sampled red states with nonzero weights
(the other sampled red states are just a waste of space, since they will never
be seen in the actual data). In A5/1 about 15% of the red states have nonzero
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weights, and thus we have to sample about 238 red states in the preprocessing
stage in order to find the 15% among them (about 235 states) which we want
to store, with an average tree weight of 1180. To keep the same probability of
success, we have to attack conversations which last about half an hour.

A further reduction in the complexity of the preprocessing stage can be ob-
tained by the early abort strategy: Explore each red state to a shallow depth,
and continue to explore only the most promising candidates which have a large
number of sons at that depth. This heuristic does not guarantee the existence
of a large belt, but there is a clear correlation between these events.

To check whether the efficiency of our biased birthday attack depends on the
details of the stream cipher, we ran several experiments with modified variants
of A5/1. In particular, we concentrated on the effect of the clock control rule,
which determines the noninvertibility of the model. For example, we hashed the
full state of the three registers and used the result to choose among the four
possible majority-like movements (+1,+1,+1), (+1,+1,0), (+1,0,+1), (0,+1,+1)
in the triplet space. The results were very different from the real majority rule.
We then replaced the majority rule by a minority rule (if all the clocking taps
agree, all the registers move, otherwise only the minority register moves). The
results of this minority rule were very similar to the majority-like hashing case,
and very different from the real majority case (see Figure 5). It turns out that
in this sense A5/1 is actually stronger than its modified versions, but we do
not currently understand the reason for this strikingly different behavior. We
believe that the type of data in Table 2, which we call the tail coverage of
the cryptosystem, can serve as a new security measure for stream ciphers with
noninvertible state transition functions.

5.8 Extracting the Key from a Single Red State

The biased birthday attack was based on a direct collision between a state in
the disk and a state in the data, and required ≈ 71 red states from a relatively
long (≈ 2 minute) prefix of the conversation. In the random subgraph attack we
use indirect collisions, which make it possible to find the key with reasonable
probability from the very first red state we encounter in the data, even though
it is unlikely to be stored in the disk. This makes it possible to attack A5/1
with less than two seconds of available data. The actual attack requires several
minutes instead of one second, but this is still a real time attack on normal
telephone conversations.

The attack is based on Hellman’s original time-memory tradeoff for block
ciphers, described in [4]. Let E be an arbitrary block cipher, and let P be some
fixed plaintext. Define the function f from keys K to ciphertexts C by f(K) =
EK(P ). Assuming that all the plaintexts, ciphertexts and keys have the same
binary size, we can consider f as a random function (which is not necessarily
one-to-one) over a common space U . This function is easy to evaluate and to
iterate but difficult to invert, since computing the key K from the ciphertext
f(K) = EK(P ) is essentially the problem of chosen message cryptanalysis.
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Hellman’s idea was to perform a precomputation in which we choose a large
number m of random start points in U , and iterate f on each one of them t
times. We store the m (start point, end point) pairs on a large disk, sorted into
increasing endpoint order. If we are given f(K) for some unknown K which is
located somewhere along one of the covered paths, we can recover K by repea-
tedly applying f in the easy forward direction until we hit a stored end point,
jump to its corresponding start point, and continue to apply f from there. The
last point before we hit f(K) again is likely to be the key K which corresponds
to the given ciphertext f(K).

Since it is difficult to cover a random graph with random paths in an effi-
cient way, Hellman proposed a rerandomization technique which creates multiple
variants of f (e.g., by permuting the order of the output bits of f). We use t
variants fi, and iterate each one of them t times on m random start points to
get m corresponding end points. If the parameters m and t satisfy mt2 = |U |,
then each state is likely to be covered by one of the variants of f . Since we have
to handle each variant separately (both in the preprocessing and in the actual
attack), the total memory becomes M = mt and the total running time becomes
T = t2, where M and T can be anywhere along the tradeoff curve M

√
T = |U |.

In particular, Hellman suggests using M = T = |U |2/3.

A straightforward application of this M
√

T = |U | tradeoff to the |U | = 264

states of A5/1 with the maximal memory M = 236 requires time T = 256, which
is much worse than previously known attacks. The basic idea of the new random
subgraph attack is to apply the time-memory tradeoff to the subspace R of 248

red states, which is made possible by the fact that it can be efficiently sampled.
Since T occurs in the tradeoff formula M

√
T = |U | with a square root, reducing

the size of the graph by a modest 216 (from |U | = 264 to |R| = 248) and using
the same memory (M = 236), reduces the time by a huge factor of 232 (from
T = 256 to just T = 224). This number of steps can be carried out in several
minutes on a fast PC.

What is left is to design a random function f over R whose output-permuted
variants are easy to evaluate, and for which the inversion of any variant yields
the desired key. Each state has a “full name” of 64 bits which describes the
contents of its three registers. However, our efficient sampling technique enables
us to give each red state a “short name” of 48 bits (which consists of the partial
contents of the registers and the random choices made during the sampling
process), and to quickly translate short names to full names. In addition, red
states are characterized (almost uniquely) by their “output names” defined as
the 48 bits which occur after α in their output sequences. We can now define
the desired function f over 48-bit strings as the mapping from short names to
output names of red states: Given a 48-bit short name x, we expand it to the
full name of a red state, clock this state 64 times, delete the initial 16-bit α,
and define f(x) as the remaining 48 output bits. The computation of f(x) from
x can be efficiently done by using the previously described precomputed tables,
but the computation of x from f(x) is exactly the problem of computing the
(short) name of an unknown red state from the 48 output bits it produces after
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α. When we consider some output-permuted variant fi of f , we obviously have
to apply the same permutation to the given output sequence before we try to
invert fi over it.

The recommended preprocessing stage stores 212 tables on the hard disk.
Each table is defined by iterating one of the variants fi 212 times on 224 randomly
chosen 48-bit strings. Each table contains 224 (start point, end point) pairs, but
implicitly covers about 236 intermediate states. The collection of all the 212 tables
requires 236 disk space, but implicitly covers about 248 red states.

The simplest implementation of the actual attack iterates each one of the
212 variants of f separately 212 times on appropriately permuted versions of the
single red state we expect to find in the 2 seconds of data. After each step we
have to check whether the result is recorded as an end point in the corresponding
table, and thus we need T = 224 probes to random disk locations. At 6 ms
per probe, this requires more than a day. However, we can again use Rivest’s
idea of special points: We say that a red state is bright if the first 28 bits of
its output sequence contain the 16-bit α extended by 12 additional zero bits.
During preprocessing, we pick a random red start point, and use fi to quickly
jump from one red state to another. After approximately 212 jumps, we expect
to encounter another bright red state, at which we stop and store the pair of
(start point, end point) in the hard disk. In fact, each end point consists of a
28 bit fixed prefix followed by 36 additional bits. As explained in the previous
attack, we do not have to store either the prefix (which is predictable) or the
suffix (which is used as an index) on the hard disk, and thus we need only half
the expected storage. We can further reduce the required storage by using the
fact that the bright red states have even shorter short names than red states (36
instead of 48 bits), and thus we can save 25% of the space by using bright red
instead of red start points in the table. 3 During the actual attack, we find the
first red state in the data, iterate each one of the 212 variants of f over it until
we encounter a bright red state, and only then search this state among the pairs
stored in the disk. We thus have to probe the disk only once in each one of the
t = 212 tables, and the total probing time is reduced to 24 seconds.

There are many additional improvement ideas and implementation details
which will be described in the final version of this paper.

Acknowledgements. We would like to thank Ross Anderson, Mike Roe, Jovan
Golic, Marc Briceno, and Ian Goldberg for their pioneering contributions to the
analysis of A5/1, which made this paper possible. We would like to thank Marc
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useful comments on the early version of this paper.

3 Note that we do not know how to jump in a direct way from one bright red state
to another, since we do not know how to sample them in an efficient way. We have
to try about 212 red states in order to find one bright red start point, but the total
time needed to find the 236 bright red start points in all the tables is less than the
248 complexity of the path evaluations during the preprocessing stage.
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Fig. 5. Weight distributions. The graph on the left shows weight distribution for the
majority function; the graph on the right compares the weight distributions of several
clock-control functions.
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Abstract. The alleged RC4 keystream generator is examined, and a
method of explicitly computing digraph probabilities is given. Using this
method, we demonstrate a method for distinguishing 8-bit RC4 from
randomness. Our method requires less keystream output than currently
published attacks, requiring only 230.6 bytes of output. In addition, we
observe that an attacker can, on occasion, determine portions of the in-
ternal state with nontrivial probability. However, we are currently unable
to extend this observation to a full attack.

1 Introduction

We show an algorithm for deriving the exact probability of a digraph in the
output of the alleged RC4 stream cipher. This algorithm has a running time
of approximately 26n, where n is the number of bits in a single output. Using
the computed probabilities of each digraph for the case that n = 5, we discern
which digraphs have probabilities furthest from the value expected from a uni-
form random distribution of digraphs. Extrapolating this knowledge, we show
how to distinguish the output of the alleged RC4 cipher with n = 8 from ran-
domness with 230.6 outputs. This result improves on the best known method
of distinguishing that cipher from a truly random source. In addition, heuristic
arguments about the cause of the observed anomalies in the digraph distribution
are offered.

The irregularities in the digraph distribution that we observed allow the
recovery of n and i parameters (defined in Section 2) if the attacker happens not
to know them. Also, an attacker can use this information in a ciphertext-only
attack, to reduce the uncertainty in a highly redundant unknown plaintext.

We also observe how an attacker can learn, with nontrivial probability, the
value of some internal variables at certain points by observing large portions of
the keystream. We are unable to derive the entire state from this observation,
though with more study, this insight might lead to an exploitable weakness in
the cipher.

This paper is structured as follows. In Section 2, the alleged RC4 cipher is
described, and previous analysis and results are summarized. Section 3 presents
our analysis of that cipher, and Section 4 investigates the mechanisms behind the
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statistical anomalies that we observe in that cipher. Section 5 examines fortuitous
states, which allow the attacker to deduce parts of the internal state. In Section
6, extensions of our analysis and directions for future work are discussed. Section
7 summarizes our conclusions. Lastly, the Appendix summarizes the results from
information theory that are needed to put a strong bound the effectiveness of
tests based on the statistical anomalies, and presents those bounds for our work
and for previous work.

2 Description of the Alleged RC4 Cipher and Other
Work

The alleged RC4 keystream generator is an algorithm for generating an arbitra-
rily long pseudorandom sequence based on a variable length key. The pseudoran-
dom sequence is conjectured to be cryptographically secure for use in a stream
cipher. The algorithm is parameterized by the number of bits n within a per-
mutation element, which is also the number of bits that are output by a single
iteration of the next state function of the cipher. The value of n = 8 is of greatest
interest, as this is the value used by all known RC4 applications.

The RC4 keystream generator was created by RSA Data Security, Inc. [6].
An anonymous source claimed to have reverse-engineered this algorithm, and
published an alleged specification of it in 1994 [8]. Although public confirmation
of the validity of this specification is still lacking, we abbreviate the name ‘alleged
RC4’ to ‘RC4’ in the remainder of this paper. We also denote n-bit RC4 as
RC4/n.

A summary of the RC4 operations is given in Table 1. Note that in this table,
and throughout this paper, all additions and increments are done modulo 2n.

Table 1. The RC4 next state function. i and j are elements of ZZ/2n, and S is a
permutation of integers between zero and 2n − 1. All increments and sums are modulo
2n.

1. Increment i by 1
2. Increment j by S[i]
3. Swap S[i] and S[j]
4. Output S[S[i] + S[j]]

2.1 Previous Analysis of RC4

The best previously known result for distinguishing the output of RC4 from
that of a truly random source was found by Golić [3,2], who presents a stati-
stical defect that he estimates will allow an attacker to distinguish RC4/8 from
randomness with approximately 240 successive outputs. However, this result ap-
pears to be somewhat optimistic. We use the information theoretic lower bound
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on the number of bytes needed to distinguish RC4 from randomness, for a given
statistical anomaly, and use this to measure the effectiveness of Golić’s anomaly
and our own anomalies (see the Appendix). The number of bytes of RC4/8 ou-
tput needed to reduce the false positive and false negative rates to 10% is 244.7,
using Golić’s anomaly, while the irregularities in the digraph distribution that
we found require just 230.6 bytes to achieve the same result.

Mister and Tavares analyzed the cycle structure of RC4 [5]. They observe
that the state of the permutation can be recovered, given a significant fraction
of the full keystream. In addition, they also present a backtracking algorithm
that can recover the permutation from a short keystream output. Their analyses
are supported by experimental results on RC4/n for n < 6, and show that an
RC4/5 secret key can be recovered after only 242 steps, though the nominal key
size is about 160 bits.

Knudsen et. al. presented attacks on weakened versions of RC4 [4]. The wea-
kened RC4 variants that they studied change their internal state less often than
does RC4, though they change it in a similar way. Their basic attack backtracks
through the internal state, guessing values of table entries that have not yet been
observed, and backtracking upon contradictions. They present several variants
of their attack, and analyze its runtime. They estimate that the complexity of
their attack is less than the square root of the number of possible RC4 states.

3 Analysis of Digraph Probabilities

The probability with which each digraph (that is, each successive pair of n-bit
outputs) will appear in the output of RC4 is directly computable, given some
reasonable assumptions. The probability of each digraph for each value of the i
index is also computable. By taking advantage of the information on i, rather
than averaging over all values of i and allowing some of the detail about the
statistical anomalies to wash away, it is possible to more effectively distinguish
RC4 from randomness.

To simplify analysis, we idealize the key set up phase. We assume that the
key setup will generate each possible permutation with equal probability, and
will assign all possible values to j with equal probability. Then, after any fixed
N steps, all states of j and the permutation will still have equally probability,
because the next state function is invertible. This is an idealization; the actual
RC4 key setup will initialize j to zero. Also, the RC4 key setup routine generates
only 2nk different permutations, where nk is the number of bits in the key, while
there are 2n! possible permutations. Intuitively, our idealization becomes a close
approximation of the internal state after RC4 runs for a short period of time.

However, we leave in the assumption that the i pointer is initially zero after
the key setup phase. Note that, since each step changes i in a predictable manner,
the attacker can assume knowledge of the i pointer for each output.

We compute the exact digraph probabilities, under the assumptions given
above, by counting the number of internal states consistent with each digraph.
This approach works with RC4 because only a limited amount of the unknown
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internal state actually affects each output, though the total amount of internal
state is quite large.

Starting at step 4 of Table 1, we look at what controls the two successive
outputs. The exhaustive list of everything on which those two outputs depend
on is given in Table 2.

Table 2. The variables that control two successive outputs of RC4 and the cryptana-
lyst’s knowledge of them.

Variable Cryptanalyst’s knowledge
i known (increments regularly)
j unknown
S[i] unknown
S[j] unknown
S[S[i] + S[j]] known (first output)
S[i + 1] unknown
S[j + S[i + 1]] unknown
S[j + S[i + 1]] if i + 1 = S[i + 1] + S[j + S[i + 1]] known (second output)
S[i + 1] if j + S[i + 1] = S[i + 1] + S[j + S[i + 1]]
S[S[i + 1] + S[j + S[i + 1]]] otherwise

As the next-state algorithm progresses, for each successive unknown value,
any value that is consistent with the previously seen states is equally probable.
Thus the probability of a digraph (a, b) for a particular value of i can be found
by stepping through all possible values of all other variables, and counting the
number of times that each output is consistent with the fixed values of i, a,
and b. The consistency of a set of values is determined by the fact that S is
a permutation. Because the start states were considered equally probable, this
immediately gives us the exact value of the probability of i, (a, b). This approach
requires about 25n operations to compute the probability of a single digraph, for
a given value of i, as there are five n-bit unknowns in Table 2. Approximately 28n

operations are required to compute the probabilities of a digraph for all values
of i. This puts the most interesting case of n = 8 out of immediate reach, with a
computational cost of 264 operations. However, we circumvented this difficulty
by computing the exact n = 3, 4, 5 digraph distributions for all i, observing
which digraphs have anomalous probabilities, and estimating the probabilities
of the anomalous digraphs for RC4/8. This method is described in the next two
subsections.

3.1 Anomalous RC4 Outputs

The full digraph distributions for n = 3, 4, and 5 are computable with about 240

operations. We computed these, and found that the distributions were signifi-
cantly different from a uniform distribution. In addition, there is a consistency
(across different values of n) to the irregularities in the digraph probabilities. In
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particular, one type of digraph is more probable than expected by a factor of
approximately 1 + 2−n+1, seven types of digraphs are more probable than ex-
pected by approximately 1 + 2−n, and three types of digraphs are less probable
than expected by approximately 1+2−n. These results are summarized in Table
3.

Table 3. Positive and negative events. Here, i is the value of the index when the first
symbol of the digraph the output. The top eight digraphs are in the set of positive
events, and the bottom three digraphs are in the set of negative events, as defined in
Section 3.1. The probabilities are approximate.

Digraph Value(s) of i Probability
(0, 0) i = 1 2−2n(1 + 2−n+1)
(0, 0) i 6= 1, 2n − 1 2−2n(1 + 2−n)
(0, 1) i 6= 0, 1 2−2n(1 + 2−n)
(i + 1, 2n − 1) i 6= 2n − 2 2−2n(1 + 2−n)
(2n − 1, i + 1) i 6= 1, 2n − 2 2−2n(1 + 2−n)
(2n − 1, i + 2) i 6= 0, 2n − 1, 2n − 2, 2n − 3 2−2n(1 + 2−n)
(2n − 1, 0) i = 2n − 2 2−2n(1 + 2−n)
(2n − 1, 1) i = 2n − 1 2−2n(1 + 2−n)
(2n − 1, 2) i = 0, 1 2−2n(1 + 2−n)
(2n−1 + 1, 2n−1 + 1) i = 2 2−2n(1 + 2−n)
(2n − 1, 2n − 1) i 6= 2n − 2 2−2n(1 − 2−n)
(0, i + 1) i 6= 0, 2n − 1 2−2n(1 − 2−n)

We call the event that a digraph appears in the RC4 output at a given value
of i a positive event when it is significantly more probable than expected. A
negative event is similarly defined to be the appearance of a digraph at a given
i that is significantly less probable than expected. An exhaustive list of positive
and negative events is provided in Table 3.

In Section 4, we examine these particular digraphs to see why they are more
or less likely than expected. Most of the positive events correspond to length
2 fortuitous states, which will be defined in Section 5. For the (0, 1) and (0, 0)
positive events, and the negative events, a more complicated mechanism occurs,
which is discussed in the next section.

3.2 Extrapolating to Higher Values of n

To apply our attack to higher values of n without directly computing the di-
graph probabilities, we computed the probabilities of positive events and nega-
tive events by running RC4/8 with several randomly selected keys and counting
the occurances of those events in the RC4 output. The observed probabilities
(derived using RC4/8 with 10 starting keys for a length of 238 for each key),
along with the computed expected probability from a truly random sequence,
are given in Table 4. It is possible to distinguish between these two probability
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distributions with a 10% false positive and false negative rate by observing 230.6

successive outputs using the data in Table 3 (see the Appendix).

Table 4. Comparison of event probabilities between RC4/8 and a random keystream.
The listed probabilities are the probability that two successive outputs are the specified
event

Positive Events Negative Events
RC4/8 0.00007630 0.00003022
Random 0.00007600 0.00003034

In order to evaluate the effectiveness of our ‘extrapolation’ approach, we
compute the amount of keystream needed using a test based on our observed
positive and negative events, and compare that to the best possible test using
the exact probabilities. For RC4/5 our selected positive/negative events require
218.76 keystream outputs, while the optimal test using the exact probabilities of
all digraphs requires 218.62 keystream outputs. These numbers agree to within a
small factor, suggesting that the extrapolation approach is close to optimal.

4 Understanding the Statistical Anomalies

In this section we analyze the next state function of RC4 and show mechanisms
that cause the increased (or decreased) likelihood of some of the anomalous
digraphs. The figures below show the internal state of RC4 immediately before
state 4 in Table 1 of the first output of the digraph. The bottom line shows
the state of the permutation. Those permutation elements with a specific value
are labeled with that value. Elements that are of unspecified value are labeled
with the ‘wildcard’ symbol ∗. Ellipsis indicate unspecified numbers of unspecified
elements, and elements separated by ellipsis may actually be in opposite order
within the permutation. The elements pointed to by i and j are indicated by the
i and j symbols appearing above them.

The mechanism that leads to the (0, 1) digraph starts in the state
i j

∗, . . ., ∗, 1, 0, ∗, . . ., ∗, AA, ∗, . . . where AA = i.
Following through the steps in the next-state function, the first output will

be 0, and at the following step 4, be in the state
i j

∗, . . ., ∗, 1, AA, ∗, . . ., ∗, 0, ∗, . . .

and output an 1. This mechanism occurs approximately 2−3n of the time, and
since other mechanisms output a (0, 1) 2−2n of the time, this accounts for the
observed increase over expected.

For the (0, 0) positive events, the additional mechanism starts with the fol-
lowing state:

i j
∗, . . ., ∗, AA, 0, ∗, . . ., ∗, BB, ∗, . . . where AA = i + 1 − j and BB = j.
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The negative events, on the other hand, correspond to mechanisms that normally
contribute to the expected output which do not work in those particular cases.
For example, a normal method of producing a repeated digraph (AA, AA) is1:

i j
∗, . . ., ∗, BB, -1, ∗, . . ., ∗, AA, ∗, . . .
Here the value AA occurs at location BB − 1. This outputs an AA, and steps
into the state:

j i
∗, . . ., ∗, -1, BB, ∗, . . ., ∗, AA, ∗, . . .
This will output another AA, unless AA happens to be either BB or −1. In either
case, this will output a BB. Since normal (AA, AA) pairs rely on this to achieve a
near-expected rate, the lack of this mechanism for (−1,−1) prevents the output
once every approximately 2−3n outputs, which accounts for the reduction of
approximately a factor of 2−n that we observe.

These mechanisms do not depend on the value of n, and so can be expected
to operate in the n = 8 case. This supports our extrapolation approach, which
assumes that the positive and negative events to still apply in that case.

5 Analysis of Fortuitous States

There are RC4 states in which only N elements of the permutation S are involved
in the next N successive outputs. We call these states fortuitous states2. Since the
variable i sweeps through the array regularly, it will always index N different
array elements on N successive outputs (for N ≤ 2n). So, the necessary and
sufficient condition for a fortuitous state is that the elements pointed to by j
and pointed to by S[i]+S[j] must come from the set of N array elements indexed
by i.

An example of an N = 3 fortuitous state follows:
i j
∗, 255, 2, 1, ∗, ∗, . . .,
1. advance i to 1
2. advance j to 2
3. swap S[1] and S[2]
4. output S[1] = 2

i j
∗, 2, 255, 1, ∗, ∗, . . .,
1. advance i to 2
2. advance j to 1
3. swap S[2] and S[1]
4. output S[1] = 255

1 The symbol -1 is used as shorthand for 2n − 1 here and throughout the paper.
2 Observing such a state is fortuitous for a cryptanalyst.
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j i
∗, 255, 2, 1, ∗, ∗, . . .,
1. advance i to 3
2. advance j to 2
3. swap S[3] and S[2]
4. output S[3] = 2

j i
∗, 255, 1, 2, ∗, ∗, . . .,

If i = 0 at the first step, and assuming that all permutations and settings for j
are equally probable, then the above initial conditions will hold with probability
1/(256 · 256 · 255 · 254). When the initial conditions hold, the output sequence
will always be (2, 255, 2). If RC4 outputs all trigraphs with equal probability
(the results in our previous section imply that it doesn’t, but we will use that as
an approximation), the sequence (2, 255, 2) will occur at i = 0 with probability
1/(256 · 256 · 256). This implies that, when the output is the sequence (2, 255, 2)
when i = 0, then this scenario caused that output approximately 1/253 of the
time. In other words, if the attacker sees, at offset 0, the sequence (2, 255, 2), he
can guess that j was initially 3, and S[1], S[2], S[3] was initially 255, 2 and 1,
and be right a nontrivial portion of the time.

The number of fortuitous states can be found using a state-counting algo-
rithm similar to that given above. The numbers of such states, for small N , are
given in Table 5. The table lists, for each N , the number of fortuitous states
that exist of that length, the logarithm (base 2) of the expected time between
occurrances of any fortuitous state of that length, and the expected number wit-
hin that length of false hits. By false hit, we mean those output patterns that
have identical patterns as a fortuitous state, but are not caused by a fortuitous
state. For example, an attacker can expect to see, in a keystream of length 235.2,
one fortuitous state of length 4 and 250 output patterns that look like fortuitous
states.

Table 5. The number of fortuitous states for RC4/8, their expected occurrance rates,
and their expected false hit rates.

Length Number Lg(Expected) Expected False Hits
2 516 22.9 255
3 290 31.8 253
4 6540 35.2 250
5 25,419 41.3 246
6 101,819 47.2 241

It is not immediately clear how an attacker can use this information. What
saves RC4 from an immediate break is that the state space is so huge that an
attacker who directly guess 56 bits (which is approximately what you get with
a length 6 fortuitous pattern) still has so many bits unguessed that there is
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no obvious way to proceed. However, it does appear to be a weakness that the
attacker can guess significant portions of internal state at times with nontrivial
probability.

It may be possible to improve the backtracking approaches to deriving RC4
state [5,4] using fortuitous states. For example, a backtracking algorithm can
be started at the keystream location immediately after a fortuitous state, using
the values of the internal state that are suggested by that state. This approach
extends slightly the attack using ‘special streams’ presented in Section 4.3 of [4].

6 Directions for Future Work

Some extensions of our current work are possible. One direct extension is to
compute the exact digraph probabilities for the case that n = 8, and other
cases for n > 5. Since RC4/n is actually a complex combinatorial object, it
may happen that the results for these cases are significantly different than what
might be expected.

Another worthwhile direction is to investigate the statistics of trigraphs (that
is, the three consecutive output symbols). The exact trigraph probabilities can
be computed using an algorithm similar to that outlined in Section 3. The com-
putational cost to compute the complete trigraph distribution, for all i, is 211n.
We have computed this for RC4/4, and found that the length of outputs required
to distinguish that cipher from randomness using trigraphs is about one-seventh
that required when using digraphs. This result is encouraging, though it does
not guarantee that trigraph statistics will be equally as effective for larger values
of n. It must be considered that with n = 4, there are only 24 = 16 entries in
the table S, and that three consecutive output symbols typically uses half of the
state in this cipher.

The computational cost of computing the complete trigraph distribution mo-
tivates the consideration of lagged digraphs, that is, two symbols of fixed value
separated by some symbols of non-fixed value. We call the number of interve-
ning symbols of non-fixed value the lag. For example, adapting the notation used
above, (1, ∗, 2) is a lag one digraph with initial value 1 and final value 2. Here
we use the ‘wildcard’ symbol ∗ to indicate that the middle symbol can take on
any possible value. Lagged digraphs are far easier to compute than trigraphs,
because it is not necessary to individually count the states that are used only
to determine the middle symbols. In general, the computational effort to com-
pute the distribution of RC4/n lag L digraphs, for all i, requires about 2(8+L)n

operations.
Another approach to computing a digraph probability is to list the possible

situations that can occur within the RC4 cipher when producing that digraph,
generate the equations that must hold among the internal elements, and use
algebraic means to enumerate the solutions to those equations. The number of
solutions corresponds to the number of states that lead to that digraph. This
approach could lead to a method to compute the exact digraph probability in a
time independent of n.
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Another direction would be to eliminate some of the assumptions made in our
analysis. For example, the assumption that S and j are uniformly random is false,
and it is especially wrong immediately after key setup. In particular, j is initially
set to zero during the key setup. We venture that an analysis of fortuitous states
that takes the key setup into consideration may lead to a method for deriving
some information about the secret key.

7 Conclusions

We presented a method for computing exact digraph probabilities for RC4/n un-
der reasonable assumptions, used this method to compute the exact distributions
for small n, observed consistency in the digraph statistics across all values of n,
and presented a simple method to extrapolate our knowledge to higher values of
n. The minimum amount of RC4 output needed to distinguish that cipher from
randomness was derived using information theoretic bounds, and this method
was used to compare the effectiveness of our attack to those in the literature.
Our methods provide the best known way to distinguish RC4/8, requiring only
230.6 bytes of output.

While we cannot extend either attack to find the original key or the ent-
ire internal state of the cipher, further research may be able to extend these
observations into an attack that is more efficient than exhaustive search.

Appendix: Information Theoretic Bounds on
Distinguishing RC4 from Randomness

Information theory provides a lower bound on the number of outputs that are
needed to distinguish RC4 output from a truly random sequence. We derive this
bound for the case that with false positive and false negative rates of 10%, for
our results and for those in the literature.

Following [1], we define the discrimination L(p, q) between two probability
distributions p and q as L(p, q) =

∑
s p(s) lg p(s)

q(s) , where the sum is over all
of the states in the distributions. The discrimination is the expected value of
the log-likelihood ratio (with respect to the distribution p), and can be used to
provide bounds on the effectiveness of hypothesis testing. A useful fact about
discrimination is that in the case that l independent observations are made
from the same set of states, the total discrimination is equal to l times the
discrimination of a single observation.

We consider a test T that predicts (with some likelihood of success) whether
or not a particular input string of l symbols, each of which is in ZZ/2n, was
generated by n-bit RC4 or by a truly random process. If the input string was
generated by RC4, the test T returns a ‘yes’ with probability 1 − β. If the
input string was generated by a truly random process, then T returns ‘no’ with
probability 1 − α. In other words, α is the false positive rate, and β is the
false negative rate. These rates can be related to the discrimination between
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the probability distribution pr generated by a truly random process and the
distribution pRC4 generated by n-bit RC4 (with a randomly selected key), where
the distributions are over all possible input strings. From [1], the discrimination
is related to α and β by the inequality

L(pr, pRC4) ≥ β lg
β

1 − α
+ (1 − β) lg

1 − β

α
. (1)

Equality can be met by using an information-theoretic optimal test, such as
a Neyman-Pearson test [1]. We expect our cryptanalyst to use such a test, and
we regard Equation 1 as an equality, though the implementation of such tests
are outside the scope of this paper.

Applying this result to use the RC4 digraph distribution ρ from the uniform
random distribution φ,

L(φ, ρ) = l
∑

d∈D
2−2n lg

1
22nρ(d)

= β lg
β

1 − α
+ (1 − β) lg

1 − β

α
, (2)

where D is the set of digraphs, and ρ(d) is the probability of digraph d with
respect to the distribution ρ. Solving this equation for l, we get the number of
RC4 outputs needed to distinguish that cipher.

To distinguish RC4 from randomness in the case that we only know the pro-
babilities of the positive and negative events defined in Section 3.1, we consider
only the states N, P and Q, where N is the occurrance of negative event, P
is the occurrance of a positive event, and Q is the occurrance of any digraph
that is neither a positive nor negative event. Then the discrimination is given
by Equation 1, where the sum is over these three states. Solving this equation
for the number l of outputs ,with α = β = 0.1 and the data from Table 4 gives
230.6.

The linear model of RC4 derived by Golić demonstrates a bias in RC4/8 with
correlation coefficient 3.05×10−7 [3,2]. In other words, an event that occurs after
each symbol output with probability 0.5 + 1.52 · 10−7 in a keystream generated
by RC4, and with probability 0.5 in a keystream generated by a truly random
source. Using Equation 1 with α = β = 0.1, we find that at least 244.7 bytes are
required.
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Abstract. SSC2 is a fast software stream cipher designed for wireless
handsets with limited computational capabilities. It supports various pri-
vate key sizes from 4 bytes to 16 bytes. All operations in SSC2 are word-
oriented, no complex operations such as multiplication, division, and ex-
ponentiation are involved. SSC2 has a very compact structure that makes
it easy to implement on 8-,16-, and 32-bit processors. Theoretical analy-
sis demonstrates that the keystream sequences generated by SSC2 have
long period, large linear complexity, and good statistical distribution.

1 Introduction

For several reasons, encryption algorithms have been constrained in cellular and
personal communications. First, the lack of computing power in mobile stations
limits the use of computationally intensive encryption algorithms such as public
key cryptography. Second, due to the high bit error rate of wireless channels,
encryption algorithms which produce error propagation deteriorate the quality
of data transmission, and hence are not well suited to applications where high
bit error rates are common place. Third, the shortage of bandwidth at uplink
channels (from mobile station to base station) makes encryption algorithms at
low encryption (or decryption) rates unacceptable, and random delays in encryp-
tion or decryption algorithms are not desirable either. To handle these issues,
the European Group Special Mobile (GSM) adopted a hardware implemented
stream cipher known as alleged A5 [13]. This stream cipher has two main vari-
ants: the stronger A5/1 version and the weaker A5/2 version. Recent analysis
by Biryukov and Shamir [16] has shown that the A5/1 version can be broken
in less than one second on a single PC. Other than this weakness, the hardware
implementation of the alleged A5 also incurs additional cost. In addition, the
cost of modifying the encryption algorithm in every handset would be exorbitant
when such a need is called for. For this reason, a software implemented stream
cipher which is fast and secure would be preferable.

To this end, we designed SSC2, a software-oriented stream cipher which is
easy to implement on 8-, 16-, and 32-bit processors. SSC2 belongs to the stream
cipher family of combination generators. It combines a filtered linear feedback
shift register (LFSR) and a lagged-Fibonacci generator. All operations involved
in SSC2 are word-oriented, where a word consists of 4 bytes. The word sequence
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generated by SSC2 is added modulo-2 to the words of data frames in the manner
of a Vernam cipher. SSC2 supports various private key sizes from 4 bytes to 16
bytes. It has a key scheduling scheme that stretches a private key to a master
key of 21 words. The master key is loaded as the initial states of the LFSR
and the lagged-Fibonacci generator. To cope with the synchronization problem,
SSC2 also supplies an efficient frame key generation scheme that generates an
individual key for each data frame. Theoretical analysis indicates that the key-
stream sequences generated by SSC2 have long period, large linear complexity,
and good statistical distribution.

2 Specification of SSC2

The keystream generator of SSC2, as depicted in Figure 1, consists of a filter
generator and a lagged-Fibonacci generator. In the filter generator, the LFSR
is a word-oriented linear feedback shift register. The word-oriented LFSR has 4
stages with each stage containing a word. It generates a new word and shifts out
an old word at every clock. The nonlinear filter compresses the 4-word content
of the LFSR to a word. The lagged-Fibonacci generator has 17 stages and is
also word-oriented. The word shifted out by the lagged-Fibonacci generator is
left-rotated 16 bits and then added to another word selected from the 17 stages.
The sum is XOR-ed with the word produced by the filter generator.

<<31 >>1

1 2 3 4

F: {0,1}               {0,1}
128 32

1 2 3 4 5 17

>>28           MULTIPLEXER

ROTATION
 16-bit

Fig. 1. The keystream generator of SSC2

2.1 The Word-Oriented Linear Feedback Shift Register

For software implementation, there are two major problems for LFSR-based
keystream generators. First, the speed of a software implemented LFSR is much
slower than that of a hardware implemented one. To update the state of a LFSR,
a byte-oriented or word-oriented processor needs to spend many clock cycles
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to perform the bit-shifting and bit-extraction operations. Second, LFSR-based
keystream generators usually produce one bit at every clock, which again makes
the software implementation inefficient. To make the software implementation
efficient, we designed a word-oriented LFSR in SSC2 by exploiting the fact that
each word of a linear feedback shift register sequence can be represented as a
linear transformation of the previous words of the sequence.

Fig. 2. The LFSR with characteristic polynomial p(x) = x(x127 + x63 + 1)

The LFSR used in SSC2, as depicted in Figure 4.2, has the characteristic
polynomial

p(x) = x(x127 + x63 + 1),

where the factor x127 + x63 + 1 of p(x) is a primitive polynomial over GF (2).
After discarding s0, the LFSR sequence, s1, s2, . . ., is periodic and has the least
period 2127−1. The state Sn = (sn+127, sn+126, . . . , sn) at time n can be divided
into 4 blocks with each block being a word, that is,

Sn = (xn+3, xn+2, xn+1, xn).

After running the LFSR 32 times, the LFSR has the state

Sn+32 = (xn+4, xn+3, xn+2, xn+1).

It can be shown that

xn+4 = xn+2 ⊕ (sn+32, 0, 0, . . . , 0)⊕ (0, sn+31, sn+30, . . . , sn+1). (1)

Let � denote the zero-fill left-shift operation. By x�j , it means that the word
x is shifted left j bits and a zero is filled to the right-most bit every time when
x is shifted left 1 bit. Similarly, let � denote the zero-fill right-shift operation.
With these notations, we can rewrite equation (1) as follows

xn+4 = xn+2 ⊕ xn+1 �31 ⊕xn �1, (2)

which describes the operation of the word-oriented LFSR in Figure 1. It is in-
teresting to note that the feedback connections of the word-oriented LFSR are
not sparse even though the bit-oriented LFSR described by p(x) has very sparse
feedback connections.

In the bit-oriented LFSR described by Figure 2, the stage 0 is not involved
in the computation of the feedback and hence is redundant. It is left there just
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to make the length of the LFSR to be a multiple of 32. For this reason, the
content of stage 0 will be excluded from the state of the LFSR. Let S′

n denote
the bit-oriented LFSR state consisting of the contents of stage 1 through stage
127, namely,

S′
n = (sn+127, sn+126, . . . , sn+1).

Correspondingly, let S′′
n denote the state of the word-oriented LFSR, where S′′

n

is made up of the contents of stage 1 through stage 127 of the word-oriented
LFSR at time n. Thus,

S′′
n = S′

32n, n ≥ 0. (3)

Proposition 1. Assume that the initial state S′′
0 of the word-oriented LFSR

described by (2) is not zero. Then the state sequence S′′
0 , S′′

1 , . . . is periodic and
has the least period 2127−1. Furthermore, for any 0 ≤ i < j < 2127−1, S′′

i 6= S′′
j .

Proof. Since x127+x63+1 is a primitive polynomial oner GF (2), and S′
0 = S′′

0 6=
0, the state sequence S′

0, S
′
1, . . . of the bit-oriented LFSR is periodic and has the

least period 2127 − 1. Thus, by (3), S′′
n+2127−1 = S′

32(n+2127−1) = S′′
n. Hence, the

sequence S′′
0 , S′′

1 , . . . is periodic and has a period of 2127 − 1. The least period
of the sequence should be a divisor of 2127 − 1. On the other hand, 2127 − 1 is
a prime number (divided by 1 and itself). So the least period of S′′

0 , S′′
1 , . . . is

2127 − 1.
Next, assume that S′′

i = S′′
j for i and j with 0 ≤ i < j < 2127 − 1. Then

S′
32i = S′

32j , which implies that 32(j − i) is a multiple of 2127 − 1. Since 2127 − 1
is prime to 32, j − i is a multiple of 2127 − 1, which contradicts the assumption.

2.2 The Nonlinear Filter

The nonlinear filter is a memoryless function, that is, its output at time n only
depends on the content of the word-oriented LFSR at time n. Let (xn+3, xn+2,
xn+1, xn) denote the content of the word-oriented LFSR at time n. The output
at time n, denoted by z′

n, is described by the following pseudo-code:

Nonlinear-Function F (xn+3, xn+2, xn+1, xn)
1 A← xn+3 + (xn ∨ 1) mod 232

2 c← carry
3 cyclic shift A left 16 bits
4 if (c = 0) then
5 A← A + xn+2 mod 232

6 else
7 A← A + (xn+2 ⊕ (xn ∨ 1)) mod 232

8 c← carry
9 return A + (xn+1 ⊕ xn+2) + c mod 232
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Let c1 and c2 denote the first (line 2) and second (line 8) carry bits in the
pseudo-code. For a 32-bit integer A, let 〈A〉16 denote the result of cyclicly shifting
A left 16 bits. Then the function F has the following compact form:

z′
n = 〈xn+3 + (xn ∨ 1)〉16 + xn+2 ⊕ c1(xn ∨ 1) + xn+1 ⊕ xn+2 + c2 mod 232, (4)

where ∨ denotes bitwise “OR” operation. The priority of ⊕ is assumed to be
higher than that of +. Note that the least significant bit of xn is always masked
by 1 in order to get rid of the effect of stage 0 of the LFSR in Figure 2.

2.3 The Lagged-Fibonacci Generator

Lagged-Fibonacci generators, also called additive generators, have been widely
used as random number generators in Monte Carlo simulation [4,6]. Mathe-
matically, a lagged Fibonacci generator can be characterized by the following
recursion:

yn = yn−s + yn−r mod M, n ≥ r. (5)

The generator is defined by the modulus M , the register length r, and the lag s,
where r > s. When M is prime, periods as large as Mr − 1 can be achieved for
the generated sequences. However it is more common to use lagged-Fibonacci
generators with M = 2m, m ≥ 1. These generators with power-of-two moduli are
much easier to implement than prime moduli. The following lemma was proved
by Brent [1].

Lemma 1. Assume that M = 2m, m ≥ 1, r > 2, and the polynomial xr +xs +1
is primitive over GF (2). Then the sequence y0, y1, . . . of the lagged-Fibonacci
generator described by (5) has the least period 2m−1(2r − 1) if y0, y1, . . .,yr−1
are not all even.

In SSC2, the lagged-Fibonacci generator with s = 5, r = 17, and M = 232

was adopted. We implemented this generator with a 17-stage circular buffer,
B, and two pointers, s, and, r. Initially B[17], B[16], . . . ,B[1] are loaded with
y0, y1, . . . , y16, and s and r are set to 5 and 17, respectively. At every clock, a
new word is produced by taking the sum of B[r] and B[s] mod232, the word B[r]
is then replaced by the new word, and the pointers s and r are decreased by
1. In this way, the buffer B produces the lagged-Fibonacci sequence. We use a
multiplexer to generate the output sequence z′′

n, n ≥ 0 The output word z′′
n is

computed from the replaced word yn and another word selected from the buffer
B. The selection is based on the most significant 4 bits of the newly produced
word yn+17. The output word at time n, denoted by z′′

n, is given by

z′′
n = 〈yn〉16 + B[1 + ((yn+17 �28) + sn+1 mod 16)] mod 232, (6)

where sn+1 denotes the value of s at time n+1. The pseudo-code for z′′
n is listed

as follows:
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1 A← B[r]
2 D ← B[s] + B[r] mod 232

3 B[r]← D
2 r← r − 1
3 s← s− 1
4 if (r = 0) then r← 17
5 if (s = 0) then s← 17
6 cyclicly shift A left 16 bits
7 output A + B[1 + (s + D �28 mod16)] mod 232

Proposition 2. Assume that the initial state y0, y1, . . ., y16 of the lagged-Fibo-
nacci generator are not all even. Then the sequence z̃′′ = z′′

0 , z′′
1 , . . . is periodic

and its least period is a divisor of 17(217 − 1)231.

Proof. Let rn and sn denote the values of r and s at time n. It is easy to verify
that

rn = 17− (n mod 17),

and
sn = 17− (n + 12 mod 17).

Hence, the two sequences r̃ = r0, r1, . . . and s̃ = s0, s1, . . . are periodic and have
the period 17. Since y0, y1, . . . , y16 are not all even, by Lemma 5.1, the lagged-
Fibonacci sequence ỹ = y0, y1, . . . is periodic and has the period (217 − 1)231.
Let Tỹ denote the period of ỹ. For any 1 ≤ i ≤ 17, at time n = 17Tỹ − i, the
pointer r has value rn = 17− (n mod 17) = i, thus, the content of B[i] is replaced
by yn+17 = y17Tỹ−i+17 = y17−i. Hence, at time n = 17Tỹ − 17, the word in B[17]
is replaced by y0, at time n = 17Tỹ − 16, the word in B[16] is replaced by y1,
. . ., at time n = 17Tỹ− 1, the word in B[1] is replaced by y16. Therefore, at time
17Tỹ, the content of B is the same as its content at time n = 0. Similarly, it can
be proved that the content of B at time n + 17Tỹ is the same as its content at
time n. By (6), z′′

n can be expressed by

z′′
n = 〈yn〉16 + B[1 + ((yn+17 � 28) + sn+1 mod 16)].

Let in denote the index in B in the above equation, namely,

in = 1 + ((yn+17 � 28) + sn+1 mod 16).

Then

in+17Tỹ
= 1 + ((yn+17Tỹ+17 � 28) + sn+17Tỹ+1 mod 16 = in).

Consequently,

z′′
n+17Tỹ

= 〈yn+17Tỹ
〉16 + B[in+17Tỹ

] mod 232 = z′′
n,

which implies that the period of z̃′′ divides 17Tỹ.
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3 Cryptographic Properties of SSC2

Period, linear complexity, and statistical distribution are three fundamental mea-
sures of security for keystream generators. Unfortunately, these measures are dif-
ficult to analyze for most of the proposed keystream generators. In this section,
an assessment of the strength of SSC2 will be carried out with respect to these
measures.

In the following, we will use z̃ = z0, z1, . . . to denote the keystream sequence
generated by SSC2. It is the sum of the two sequences z̃′ = z′

0, z
′
1, . . . of the filter

generator, and z̃′′ = z′′
0 , z′′

1 , . . . of the lagged-Fibonacci generator.

Theorem 1. Assume that the initial state S′′
0 of the word-oriented LFSR is not

zero, and the the initial state y0, y1, . . . , y16 of the lagged-Fibonacci generator
are not all even. Then the least period of the keystream sequence generated by
SSC2 is greater than or equal to 2128 − 2.

Proof. Let Tz̃, Tz̃′ , and Tz̃′′ denote the least periods of z̃, z̃′, and z̃′′, respectively.
By Proposition 1 and Proposition 2, Tz̃′ = 2127 − 1, and Tz̃′′ is a factor of
17(217 − 1)231. Since 2127 − 1 and 17(217 − 1)231, are relatively prime, Tz̃′ and
Tz̃′′ are also relatively prime. Hence Tz̃ = Tz̃′Tz̃′′ . Therefore Tz̃ ≥ 2Tz̃′ = 2128−2.

Let Λ(z̃′) and Λ(z̃′′) denote the linear complexity of z̃′ and z̃′′. According to
[11], the linear complexity of z̃ = z̃′ ⊕ z̃′′ is bounded by

Λ(z̃′) + Λ(z̃′′)− 2 gcd(Tz̃′ , Tz̃′′) ≤ Λ(z̃) ≤ Λ(z̃′) + Λ(z̃′′). (7)

Thus, if we have lower bounds on the linear complexity of either z̃′ or z̃′′, we
can achieve lower bounds on the linear complexity of z̃. In the following, we will
analyze the linear complexity of z̃′.

We can treat the sequence z̃′ = z′
0, z

′
1, . . . in three different forms. First, it is

a sequence of words with z′
n = (z′

31,n, z′
30,n, . . . , z′

0,n); second, it is a sequence of
bits; and third, it can be considered as a collection of 32 component sequences,
z̃′

i = z′
i,0, z

′
i,1, . . . , 0 ≤ i ≤ 31. For any 0 ≤ i ≤ 31, z′

i,n can be described by

z′
i,n = fi(s′′

127,n, s′′
126,n, . . . , s′′

1,n), n ≥ 0, (8)

where (s′′
127,n, s′′

126,n, . . . , s′′
1,n) is the state of the word-oriented LFSR at time n,

and fi is the i-th component of the nonlinear filter F . Assume that the nonlinear
order, ord(fi), of fi is `i. From Key’s analysis [5], the linear complexity of z̃′

i is
bounded by

Λ(z̃′
i) ≤ L`i

=
`i∑

j=1

(
127
j

)
. (9)

The upper bound L`i
is usually satisfied with equality. But, there are also few

exceptions that the actual linear complexity is deviated from the expected value
given by the upper bound. Rueppel [12] proved that, for a LFSR with primitive
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connection polynomial of prime degree L, the fraction of Boolean functions of
nonlinear order ` that produce sequences of linear complexity L` is

Pd ≈ exp(−L`/(L · 2L)) > e−1/L. (10)

For the filter generator of SSC2, we have Pd > e− 1
127 . Hence, the linear comple-

xity of z̃′
i is virtually certain to be L`i

.To determine the nonlinear order of fi,
we will study the nonlinear order of integer addition.

Let x = (x31, x30, . . . , x0) and y = (y31, y30, . . . , y0) denote the binary repre-
sentation of two 32-bit integers, where x0 and y0 are the least significant bits of x
and y. The sum, x+y mod 232, defines a new 32-bit integer z = (z31, z30, . . . , z0).
The binary digits zi, 0 ≤ i ≤ 31, are recursively computed by

zi = xi ⊕ yi ⊕ ci−1, (11)

ci = xiyi ⊕ (xi ⊕ yi)ci−1, (12)

where ci−1 denotes the carry bit, and c−1 = 0. The 31st carry bit c31 is also
called the carry bit of x+ y. In (13) and (14), zi and ci are Boolean functions of
xi and yi, 0 ≤ i ≤ 31. In the following, we will use ord(zi) and ord(ci) to denote
the nonlinear order of the Boolean functions represented by zi and ci.

Lemma 2. Assume that x = (x31, x30, . . . , x0), y = (y31, y30, . . . y0) are two 32-
bit integers, and x0 = 1. Let z = (z31, z30, . . . , z0) denote the sum of x + y, and
c = (c31, c30, . . . , c0) denote the carry bits produced by the summation. Then
ord(ci) = i + 1, 0 ≤ i ≤ 31. Furthermore, ord((xi⊕ yi)c31) = 32, 1 ≤ i ≤ 31, and
ord(c15c31) = 33.

Proof. By (14), c0 = y0, and c1 = x1y1 ⊕ (x1 ⊕ y1)y0. So ord(c0) = 1 and
ord(c1) = 2. Assume that ord(ci) = i+1, i ≥ 2. Since xi+1 and yi+1 do not appear
in the Boolean function represented by ci, ord(xi+1yi+1) ≤ ord((xi+1 ⊕ yi+1)ci)
for i ≥ 2,

ord(ci+1) = ord(xi+1yi+1 ⊕ (xi+1 ⊕ yi+1)ci)
= ord((xi+1 ⊕ yi+1)ci)
= i + 2

By induction, ord(ci) = i + 1, 0 ≤ i ≤ 31. Using similar techniques, it can be
proved that ord((xi ⊕ yi)c31) = 32 and ord(c15c31) = 33.

Lemma 3. Let z = F (x3, x2, x1, x0) denote the nonlinear function described by
(4), where z = (z31, z30, . . . , z0), and xi = (xi,31, xi,30, . . . , xi,0), 0 ≤ i ≤ 3. For
any 0 ≤ i ≤ 31, let zi = fi(x3, x2, x1, x0), then ord(fi) ≥ 64 + i.

Proof. Recall that F is a mapping of GF (2)128 to GF (2)32 given by

z = 〈x3 + (x0 ∨ 1)〉16 + x2 ⊕ c1(x0 ∨ 1) + x1 ⊕ x2 + c2 mod 232,

where c1 and c2 are the carry bits produced by the first two additions.
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Let Z1 = (z1,31, z1,30, . . . , z1,0) denote the sum of x3 and x0 ∨ 1. The carry
bits produced by the summation is denoted by c1,31, c1,30, . . . , c1,0. It is clear
that c1 = c1,31. By Lemma 2, ord(c1) = 32, and ord(z1,i) = ord(c1,i−1) = i, 1 ≤
i ≤ 31.

Let Z ′
1 = (z′

1,31, z
′
1,30, . . . , z

′
1,0) denote 〈Z1〉16, that is, z′

1,i = z1,16+i, for
0 ≤ i ≤ 15, and z′

1,i = z1,i−16, for 16 ≤ i ≤ 31. Let Z2 = (z2,31, z2,30, . . . , z2,0)
denote the sum of Z ′

1 and x2 ⊕ c1(x0 ∨ 1), and c2,31, c2,30, . . . , c2,0 denote the
carry bits produced by the summation with c2,−1 = c1. By (13) and (14),

z2,i = z′
1,i ⊕ x2,i ⊕ c1x0,i ⊕ c2,i−1 (13)

c2,i = z′
1,i(x2,i ⊕ c1x0,i)⊕ (z′

1,i ⊕ x2,i ⊕ c1x0,i)c2,i−1, (14)

where c2,−1 = 0 and x0,0 = 1. Rewriting (16), we have

c2,i = (z′
1,i ⊕ c2,i−1)x2,i ⊕ z′

1,ic1x0,i ⊕ (z′
1,i ⊕ c1x0,i)c2,i−1.

Since x2,i does not appear in z′
1,ic1x0,i ⊕ (z′

1,i ⊕ c1x0,i)c2,i−1, we have

ord(c2,i) ≥ ord((z′
1,i ⊕ c2,i−1)x2,i). (15)

The carry bit c2,0 has the following expression,

c2,0 = z′
1,0(x2,0 ⊕ c1x0,0)

= z1,16(x2,0 ⊕ c1,31)
= (x3,16 ⊕ x0,16 ⊕ c1,15)x2,0 ⊕ (x3,16 ⊕ x0,16)c1,31 ⊕ c1,15c1,31

By Lemma 2, ord((x3,16 ⊕ x0,16)c1,31) = 32, and ord(c1,15c1,31) = 33. The order
of (x3,16⊕x0,16⊕ c1,15)x2,0 is equal to 17. So the order of c2,0 equals 33. On the
other hand, ord(z1,i) ≤ i, 0 ≤ i ≤ 31. Hence, ord(c2,0) > ord(z′

1,1) = ord(z1,17).
By (17), ord(c2,1) ≥ ord(c2,0x2,1) > 33. By induction, it can be proved that
ord(c2,i) ≥ 33, 0 ≤ i ≤ 31. Thus ord(c2,i) ≥ ord(c2,i−1) + 1. Hence ord(c2,31) ≥
64.

Let Z3 = (z3,31, z3,30, . . . , z3,0) denote the sum of Z2 +x1⊕x2 +c2. The carry
bits produced by the summation is denoted by c3,31, c3,30, . . . , c3,0. It is obvious
that c2 = c2,31, and z = Z3. By (13) and (14), we have the following expressions
for zi and c3,i,

zi = z2,i ⊕ x1,i ⊕ x2,i ⊕ c3,i−1 (16)

c3,i = z2,i(x1,i ⊕ x2,i)⊕ (z2,i ⊕ x1,i ⊕ x2,i)c3,i−1, (17)

where c3,−1 = c2,31. By (15), ord(z2,0) = ord(c1) = 32. Thus, ord(z0) =
ord(c3,−1) ≥ 64. Rewriting (19), we have the following expression for c3,i,

c3,i = (z2,i ⊕ c3,i−1)x1,i ⊕ z2,ix2,i ⊕ (z2,i ⊕ x2,i)c3,i−1. (18)

Substituting (20) into (18),

zi = z2,i⊕x1,i⊕x2,i⊕(z2,i−1⊕c3,i−2)x1,i−1⊕z2,i−1x2,i−1⊕(z2,i−1⊕x2,i−1)c3,i−2.
(19)
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Since x1,i−1 only appears in (z2,i−1 ⊕ c3,i−2)x1,i−1, it is clear that

ord(zi) ≥ ord(z2,i−1 ⊕ c3,i−2) + 1. (20)

By (20), z2,i ⊕ c3,i−1 is described by

z2,i⊕ c3,i−1 = z2,i⊕ (z2,i−1⊕ c3,i−2)x1,i−1⊕z2,i−1x2.i−1⊕ (z2,i−1⊕x2,i−1)c3,i−2.
(21)

Since x1,i−1 appears only in the second term (z2,i−1 ⊕ c3,i−2)x1,i−1, ord(z2,i ⊕
c3,i−1) ≥ ord(z2,i−1 ⊕ c3,i−2) + 1. Let di = ord(z2,i ⊕ c3,i−1), 0 ≤ i ≤ 31. Then
di ≥ di−1 + 1. On the other hand,

d0 = ord(z2,0 ⊕ c3,−1)
= ord(z2,0 ⊕ c2,31)
≥ 64.

Hence, di ≥ 64 + i, 1 ≤ i ≤ 31. By (22), ord(zi) ≥ 64 + i, which proves the
lemma.

Theorem 2. Let z̃ = z0, z1, . . . denote the word sequence generated by SSC2.
For any n ≥ 0, let zn = (z31,n, z30,n, . . . , z0,n). Let S′′

0 be the initial state of
the word-oriented LFSR and y0, y1, . . . , y16 be the initial state of the lagged-
Fibonacci generator. Assume that S′′

0 is not zero and y0, y1, . . . , y16 are not all
even. Then, with a probability greater than e− 1

127 , the binary sequences z̃i =
zi,0zi,1 . . . , 0 ≤ i ≤ 31, have linear complexity

Λ(z̃i) ≥
64+i∑

j=1

(
127
j

)
− 2 ≥ 2126.

Proof. Similar to the decomposition of z̃ = z0, z1, . . ., we can decompose the
word sequence z̃′ = z′

0, z
′
1, . . . generated by the filter generator into 32 component

sequences, z̃′
i = z′

i,0, z
′
i,1, . . . , 0 ≤ i ≤ 31. Similarly, let z̃′′

i = z′′
i,0, z

′′
i,1, . . . , 0 ≤ i ≤

31 denote the component sequences of z̃′′ = z′′
0 , z′′

1 , . . . generated by the lagged-
Fibonacci generator. Then z̃i = z̃′

i ⊕ z′′
i . Let Tz̃i ,Tz̃′

i
, and Tz̃′′

i
denote the least

period of z̃i, z̃′
i, and z̃′′

i . By Proposition 1, the word sequence z̃′ = z′
0, z

′
1, . . .

has the least period 2127 − 1. Hence, the component sequence z̃′
i has a period

of (2127 − 1). By Proposition 2, it is easy to verify that the sequence z̃′′
i has a

period of 17(217 − 1)231. Therefore, gcd(Tz̃′
i
, Tz̃′′

i
) = 1. By (7), we have

Λ(z̃i) ≥ Λ(z̃′
i)− 2

By Lemma 3, with a probability no less than e− 1
127 , the linear complexity of z̃′

i

is at least L64+i, which proves the theorem.

Theorem 2 implies that the linear complexity of the component sequences
z̃i, 0 ≤ i ≤ 31, is exponential to the length of the LFSR and is therefore, resilient
to the Berlekamp-Massey attack.
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We next study the question concerning how close a SSC2 sequence resembles
a truly random sequence. Mathematically, a truly random sequence can be mo-
deled as a sequence of independent and uniformly distributed random variables.
To measure the randomness of the keystream sequences generated by SSC2, let’s
consider the distribution of every 32-bit word in a period.

Proposition 3. Let X3, X2, X1, and X0 be independent and uniformly random
variables over GF (2)32 and Z = F (X3, X2, X1, X0) be the output of the filter
generator in SSC2. Then Z is uniformly distributed over GF (2)32.

Proof. Let Z ′ = 〈X3 + (X0 ∨ 1)〉16 + X2 ⊕ c1(X0 ∨ 1) + c2 mod 232. Then
Z = X1 ⊕ X2 + Z ′ mod 232. By the chain rule [2], we can express the joint
entropy H(Z, Z ′, X1 ⊕X2) as

H(Z, Z ′, X1 ⊕X2) = H(Z ′) + H(Z|Z ′) + H(X1 ⊕X2|Z, Z ′)
= H(Z ′) + H(X1 ⊕X2|Z ′) + H(Z|X1 ⊕X2, Z

′).

Since X1 ⊕ X2 is uniquely determined by Z and Z ′, H(X1 ⊕ X2|Z, Z ′) = 0.
Similarly, H(Z|X1 ⊕X2, Z

′) = 0. Hence, H(Z|Z ′) = H(X1 ⊕X2|Z ′).
Since X1 does not appear in the expression represented by Z ′, X1 and Z ′ are

statistically independent. For any a, b ∈ GF (2)32,

p(X1 ⊕X2 = a|Z′=b) =
p(X1 ⊕X2 = a, Z ′ = b)

p(Z ′ = b)

=

∑
c∈GF (2)32 p(X1 ⊕X2 = a|Z′=b,X2=c)p(Z ′ = b, X2 = c)

p(Z ′ = b)

=

∑
c∈GF (2)32 p(X1 = a⊕ c|Z′=b,X2=c)p(Z ′ = b, X2 = c)

p(Z ′ = b)
.

Since X1 and (Z ′, X2) are independent, p(X1 = c⊕ a|Z′=b,X2=c) = 2−32. Thus,

p(X1 ⊕X2 = a|Z′=b) =
2−32 ∑

c∈GF (2)32 p(Z ′ = b, X2 = c)

p(Z ′ = b)
= 2−32.

Hence, H(Z|Z ′) = H(X1 ⊕ X2|Z ′) = 32. Therefore, H(Z) ≥ H(Z|Z ′) = 32,
which implies that H(Z) = 32, or equivalently, Z is uniformly distributed over
GF (2)32.

Recall that the state sequence S′′
0 , S′′

1 , . . . of the word-oriented LFSR has
the least period 2127 − 1 and all states are distinct in the period if the initial
state S′′

0 is non-zero. Hence every non-zero state appears exactly once in the
least period. For this reason, we model the state S′′

n as a uniformly distributed
random variable over GF (2)127. Proposition 3 indicates that we can model the
filter generator sequence as a sequence of uniformly distributed random variables
when the initial state of the filter generator is non-zero.
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Theorem 3. Let S′′
0 and Y0 = (y0, y1, . . . , y16) be the initial states of the LFSR

and the lagged-Fibonacci generator respectively. Assume that S′′
0 and Y0 are

random variables, and S′′
0 6= 0. Let Zn denote the word generated by SSC2 at

time n. Then
32− I(S′′

0 ; Y0) ≤ H(Zn) ≤ 32,

where I(S′′
0 ; Y0) denotes the mutual information between S′′

0 and Y0, given by

I(S′′
0 ; Y0) = H(S′′

0 )−H(S′′
0 |Y0).

Proof. Since Zn is a random variable over GF (2)32, it is obvious that H(Zn) ≤
32. Let Z ′

n and Z ′′
n denote the respective output of the filter generator and the

lagged-Fibonacci generator at time n. Then Zn = Z ′
n + Z ′′

n mod 232. Moreover,
H(Zn|Z ′′

n) = H(Z ′
n|Z ′′

n). According to the data processing inequality [2],

I(Z ′
n; Z ′′

n) ≤ I(Z ′
n; Y0) ≤ I(S′′

0 ; Y0).

Since S′′
0 6= 0, H(Z ′

n) ≈ 32. Consequently,

H(Zn) ≥ H(Zn|Z ′′
n)

= H(Z ′
n|Z ′′

n)
= H(Z ′

n)− I(Z ′
n; Z ′′

n)
≥ 32− I(S′′

0 ; Y0).

By Theorem 3, we can conclude that the keystream sequence of SSC2 is a
sequence of uniformly distributed random variables if the initial states of the
word-oriented LFSR is non-zero and statistically independent of the initial state
of the lagged-Fibonacci generator. However, the problem of determining whether
the keystream sequence of SSC2 is a sequence of independent random variables
or not remains open.

4 Correlation Analysis of SSC2

SSC2 is a very complex mathematical system in which several different types
of operations, such as exclusive-or, integer addition, shift, and multiplexing, are
applied to data iteratively. If we analyze the keystream generator in Figure 1
as a whole, it would be difficult to get information about the internal states
of the word-oriented LFSR and the lagged-Fibonacci generator. However, if the
keystream sequence leaks information about the filter generator sequence or
the lagged-Fibonacci sequence, this information might be exploited to attack
the filter generator or the lagged-Fibonacci generator separately. This kind of
attack is called divide-and-conquer correlation attack which has been successfully
applied to over a dozen keystream generators [3,8,10,11,14,15]. For the moment,
let’s assume that the key of SSC2 consists of the initial states S′′

0 and Y0 of the
word-oriented LFSR and the lagged-Fibonacci generator respectively.
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Theorem 4. Assume that the initial states S′′
0 and Y0 of the filter generator

and the lagged-Fibonacci generator of SSC2 are random variables, S′′
0 6= 0. Then

the outputs Z ′
n and Z ′′

n of the filter generator and the lagged-Fibonacci generator
at time n are also random variables. Let Zn denote the output of SSC2 at time
n. Then

I(Zn; Y0) ≤ 32−H(Z ′
n) + I(S′′

0 ; Y0),
I(Zn; S′′

0 ) ≤ 32−H(Z ′′
n) + I(S′′

0 ; Y0).

Proof. By the chain rule [2], the joint entropy H(Z ′
n, Y0, Zn) can be represented

as follows:

H(Z ′
n, Y0, Zn) = H(Y0) + H(Zn|Y0) + H(Z ′

n|Zn, Y0)
= H(Y0) + H(Z ′

n|Y0) + H(Zn|Z ′
n, Y0).

Since Z ′
n can be uniquely determined by Zn and Y0, H(Z ′

n|Zn, Y0) = 0. Similarly,
H(Zn|Z ′

n, Y0) = 0. Thus, H(Zn|Y0) = H(Z ′
n|Y0). Therefore,

I(Zn; Y0) = H(Zn)−H(Zn|Y0)
= H(Zn)−H(Z ′

n|Y0)
= H(Zn)−H(Z ′

n) + I(Z ′
n; Y0)

According to the data processing inequality [2], I(Z ′
n; Y0) ≤ I(S′′

0 ; Y0). Hence, it
follows that

I(Zn; Y0) ≤ H(Zn)−H(Z ′
n) + I(S′′

0 ; Y0).

On the other hand, H(Zn) ≤ 32,

I(Zn; Y0) ≤ 32−H(Z ′
n) + I(S′′

0 ; Y0).

Similarly, it can be proved that

I(Zn; S′′
0 ) ≤ 32−H(Z ′′

n) + I(S′′
0 ; Y0).

According to the empirical test in [7], we assume that the sequence ỹ =
y0, y1, . . . of the lagged-Fibonacci generator is a sequence of pairwise independent
and uniformly distributed random variables. By (6), Z ′′

n = 〈yn〉16 + y′
n mod 232,

where y′
n is uniformly selected from yn+1, yn+2, . . . , yn+17. If y′

n 6= yn+17, it is
obvious that Z ′′

n is uniformly distributed. If y′
n = yn+17, then Z ′′

n = 〈yn〉16 +
yn + yn+12 mod 232, which is also uniformly distributed since yn+12 and yn are
independent. Thus, for any n ≥ 0, Zn is not correlated to either S′′

0 or Y0 if S′′
0

and Y0 are statistically independent. So we can not get any information about S′′
0

or Y0 from each Zn. However, this does not mean that we can not get information
about S′′

0 and Y0 from a segment Z0, Z1, . . . , Zm of the keystream sequence. The
question is how to get information about S′′

0 and Y0 from a segment of the
keystream sequence, which remains open.



44 M. Zhang, C. Carroll, and A. Chan

5 Scalability of SSC2

The security level of SSC2 can be enhanced by increasing the length of the
lagged-Fibonacci generator. Let ỹ = y0, y1, . . . be the word sequence generated
by a lagged-Fibonacci generator of length L. As described in Section 2.3, we can
implement the lagged-Fibonacci generator with a buffer B of length L and two
pointers r and s. Let h = blog Lc. The output word z′′

n of the lagged-Fibonacci
generator can be described by

z′′
n = yn + B[1 + ((yn+L � (32− h)) + sn+1 mod 2h)] mod 232, (22)

where sn+1 is the value of the pointer s at time n + 1. We define the number
Lh = Lblog Lc as the effective key length of the keystream generator as described
by Figure 1, where the lagged-Fibonacci generator has length L. The effective
key length gives us a rough estimation of the strength of the keystream generator.
We believe that the actual strength might be much larger than that described by
the effective length. Corresponding to private keys of 128 bits, lagged-Fibonacci
generators with length between 17 and 33 are recommended.

6 Key Scheduling Scheme

SSC2 supports private keys of various sizes, from 4 bytes to 16 bytes. To stretch
a private key less than or equal to 4 words to 21 words, a key scheduling scheme
is required. By Theorem 3 and Theorem 4, the initial states of the word-oriented
LFSR and the lagged-Fibonacci generator should be independent. With a hash
function such as SHA-1[9], it is not difficult to generate such 21 words. When
a good hash function is not available, we designed the following scheme which
generates 21 words (called the master key) from the private key K.

Master-Key-Generation Kmaster(K)
1 load K into the LFSR S, repeat K when necessary
2 for i← 0 to 127 do
3 run the linear feedback shift register once
4 S[1]← S[1] + F (S) mod 232

5 i← i + 1
6 for i← 1 to 17 do
7 run the linear feedback shift register once
8 B[i]← S[4]
9 i← i + 1
10 A← S[1]
11 for i← 1 to 34 do
12 run the linear feedback shift register once
13 run the lagged Fibonacci generator once
14 index← 1 + A� 28
15 A← B[index]
16 B[index]← A⊕ S[1]
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17 S[1]← A + S[1] mod 232

18 i← i + 1
19 B[17]← B[17] ∨ 1
20 return S and B

In the above pseudo-code, the LFSR is denoted by S, which is an array of
4 words. Every time when the LFSR runs, the word in S[4] moves out, the
array shifts right one word, and the newly computed word moves in S[1]. The
lagged-Fibonacci generator is denoted by B as usual. The master key generation
experiences 5 stages. In stage 1, the private key is loaded into the LFSR. In stage
2 (line 2 - line 5) , the private key is processed. We run the LFSR (actually the
filter generator) 128 times in order that approximately half of the bits in S will
be 1 even if there is only one 1 in K. In stage 3 (line 6 - line 9), 17 words are
generated for the lagged-Fibonacci generator. In stage 4 (line 10 - line 18) , the
LFSR and the lagged-Fibonacci generator interact with each other for 34 times.
A major goal for the interaction is to make it difficult to gain information about
the state of the LFSR from the state of the lagged-Fibonacci generator and vice
versa. For this purpose, an index register A is introduced, which has S[1] as
the initial value. At the end of each run of the LFSR and the lagged-Fibonacci
generator run, a pointer index is computed according to the most significant 4
bits of A, and then A is updated by the word B[index]. Following the update of A,
B[index] is updated by A⊕S[1] and S[1] is updated by A+S[1] mod 232. Through
the register A, the states of the LFSR and the lagged-Fibonacci generator are
not only related to each other but are also related to their previous states. For
example, assume that the state of the LFSR is known at the end of stage 4. To
obtain the previous state of the LFSR, we have to know the content of A, which
is derived from the previous state of the lagged-Fibonacci generator. In stage 5,
the least significant bit of B[17] is set to 1 in order to ensure that not all of the
17 words of B are even. At the end of the computation, the states of the LFSR
and the lagged-Fibonacci generator are output as the master key.

In addition to the master key generation, SSC2 supplies an optional service
of generating a key for every frame. The key for a frame is used to re-load the
LFSR and the lagged-Fibonacci generator when the frame is encrypted. The
purpose of frame-key generation is to cope with the synchronization problem.
In wireless communications, there is a high probability that packets may be lost
due to noise, or synchronization between the mobile station and the base station
may be lost due to signal reflection, or a call might be handed off to a different
base station as the mobile station roams. When frames are encrypted with their
individual keys, the loss of a frame will not affect the decryption of subsequent
frames.

Assume that each frame is labeled by a 32-bit frame number that is not
encrypted. Let Kn denote the frame key of the n-th frame. The frame key gene-
ration should satisfy two fundamental requirements: (1) it is fast; and (2) it is
difficult to gain information about Ki from Kj when i 6= j. Taking into conside-
ration of the two requirements, we design a scheme that generates Kn from the
master key Kmaster and the frame number n. To generate different keys for dif-
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ferent frames, we divide the 32-bit frame number into 8 consecutive blocks and
have each block involve in the frame key generation. Let n0, n1, . . . , n7 denote
the 8 blocks of n, where n0 is the least significant 4 bits of n and n7 is the most
significant 4 bits of n. The frame key generation is illustrated by the following
pseudo-code:

Frame-Key-Generation Kn(Kmaster)
1 load Kmaster into S and B
2 for j ← 0 to 3 do
3 for i← 0 to 7 do
4 S[1]← S[1] + B[1 + (i + ni mod 16)] mod 232

5 S[2]← S[2] + B[1 + (8 + i + ni mod 16)] mod 232

6 run the linear feedback shift register once
7 B[17− (i + 8j mod 16)]← S[1]⊕ B[17− (i + 8j mod 16)]
8 i← i + 1
9 j ← j + 1
10 B[17]← B[17] ∨ 1
11 return S and B

The frame key generation consists of two loops. Corresponding to each ni, 0 ≤
i ≤ 7, the inner-loop (line 4 - line 8) selects two words from the buffer B to update
the contents of S[1] and S[2]. Then the LFSR in executed and the output word
is used to update one word of B. The outer-loop executes the inner-loop 4 times.
Assume that n and n′ are two different frame numbers. After the first run of
the inner-loop, some words in S and B will be different for n and n′. Subsequent
runs are used to produce more distinct words in S and B.

Table 1. Throughput of SSC2

Machine Size Clock rate Memory OS Compiler Throughput
(MHz) (Mbyte) (Mbits/s)

Sun SPARC2 32 40 30 Sun OS gcc -O3 22
Sun Ultra 1 32 143 126 Sun Solaris gcc -O3 143

PC 16 233 96 Linux gcc -O3 118

7 Performance

We have run SSC2 on various platforms. Table 4.1 illustrates the experimental
results derived from running the ANSI C code listed in Appendix 1. Key setup
times are not included in Table 1. On a 16-bit processor (233MHz cpu), the time
for the master key generation is approximately equal to the encryption time
for one CDMA frame (384 bits in 20 ms duration), and the time for the frame
key generation is about one-twentieth of the encryption time for one CDMA
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frame. Suppose that the CDMA phones have the 16-bit processor and the average
conversion takes 3 minutes. Then the total time for frame key generations is
about 2 ms. Hence, the overhead introduced by key setup is nearly negligible.

8 Conclusion

SSC2 is a fast software stream cipher portable on 8-, 16-, and 32-bit processors.
All operations in SSC2 are word-oriented, no complex operations such as mul-
tiplication, division, and exponentiation are involved. SSC2 has a very compact
structure, it can be easily remembered. SSC2 does not use any look-up tables
and does not need any pre-computations. Its software implementation requires
very small memory usage. SSC2 supports variable private key sizes, it has an
efficient key scheduling scheme and an optional frame key scheduling scheme. Its
keystream sequence has large period, large linear complexity and small correla-
tion to the component sequences. SSC2 is one of the few software stream ciphers
whose major cryptographic properties have been established.
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Appendix 1

The following is the ANSI C code for the keystream generator of SSC2. The
code for key setup is not included.

unsigned long int R1, R2, R3, R4, B[18], output, temp1, temp2;
int c, s=5, r=17;

temp1 = R2 ∧ (R3<<31) ∧ (R4>>1);
R4 = R3;
R3 = R2;
R2 = R1;
R1 = temp1;

temp1 = B[r];
temp2 = B[s] + temp1;
B[r] = temp2;
if (--r == 0) r = 17;
if (--s == 0) s = 17;
output = ((temp1>>16) ∧ (temp1<<16))+B[(((temp2>>28)+s) & 0xf)+1];

temp1 = (R4 | 0x1) + R1;
c = (temp1 < R1);
temp2 = (temp1<<16) ∧ (temp1>>16);
if (c) {

temp1 = (R2 ∧ (R4 | 0x1)) + temp2;
} else {

temp1 = R2 + temp2; }
c = (temp1 < temp2);
output = (c + (R3 ∧ R2) + temp1) ∧ output;
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Abstract. We discuss the special requirements imposed on the under-
lying cipher of systems which encrypt each sector of a disk partition in-
dependently, and demonstrate a certificational weakness in some existing
block ciphers including Bellare and Rogaway’s 1999 proposal, proposing
a new quantitative measure of avalanche. To address these needs, we pre-
sent Mercy, a new block cipher accepting large (4096-bit) blocks, which
uses a key-dependent state machine to build a bijective F function for
a Feistel cipher. Mercy achieves 9 cycles/byte on a Pentium compatible
processor.
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1 Introduction

Disk sector encryption is an attractive approach to filesystem confidentiality. Fi-
lesystems access hard drive partitions at the granularity of the sector (or block)
where a sector is typically 4096 bits: read and write requests are expressed in
sector numbers, and data is read and modified a sector at at a time. Disk sector
encryption systems present a “virtual partition” to the filesystem, mapping each
sector of the virtual partition to the corresponding sector, through an encrypting
transformation, on a physical disk partition with the same disk geometry. The
performance is typically better than file-level encryption schemes, since every
logical sector read or write results in exactly one physical sector read or write,
and confidentiality is also better: not only are file contents obscured, but also
filenames, file sizes, directory structure and modification dates. These schemes
are also flexible since they make no special assumptions about the way the file-
system stores the file data; they work equally well with raw database partitions
as with filesystems, and can be transparently layered underneath disk caching
and disk compression schemes. Linux provides some support for such filesystems
through the “/dev/loop0” filesystem device.

The stream cipher SEAL [17] is well suited to this need. SEAL provides a
strong cryptographic PRNG (CPRNG) whose output is seekable. Thus the entire
disk can be treated as a single contiguous array of bytes and XORred with the
output from the CPRNG; when making reads or writes of specific sectors the
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appropriate portion of the output can be generated without the need to generate
the preceding bytes. The same effect can be achieved, somewhat less efficiently,
by keying a CPRNG such as ARCFOUR [10] with a (key, sector number) pair
and generating 512 bytes with which to encrypt the sector. These schemes are
highly efficient and provide good security against an attacker who seizes an
encrypted hard drive and attempts to gain information about its contents.

However, this is not strong against attackers with other channels open to
them. They may have user privileges on the system they’re trying to attack, and
be able to access the ciphertext stored on the hard drive at times when it’s shut
down. Or they may try to modify sectors with known contents while carrying a
drive from place to place. They may even be able to place hardware probes on
the drive chain while logged in as a normal user, and sniff or modify ciphertext.
Against these attacks, SEAL and ARCFOUR (used as described) are ineffective.
For example, an attacker can write a large file of all zeroes and thereby find the
fixed encryption stream associated with many sectors; once the file is deleted,
the sectors might be re-used by other users with secure data to write, and this
data is easily decrypted by XORing with the known stream. Or, if attackers can
make a guess of the plaintext in a given sector, they can modify this to another
plaintext of their choosing while they have access to the drive by XORing the
ciphertext with the XOR difference between the two plaintexts.

File-based encryption schemes defeat these attacks by using a new random
IV for each new plaintext and authenticating with a MAC. However, applying
these techniques directly to sector encryption would require that the ciphertext
for each sector be larger than the plaintext, typically by at least 64 bytes. Thus
either the plaintext sectors would need to be slightly smaller than the natural
hardware sector size, harming performance when mapping files into memory
(and necessitating a thorough re-engineering of the filesystem code) or auxiliary
information would have to be stored in other sectors, potentially adding a seek
to each read and write. In either case the size overhead will be about 1.5 - 3.1%.
It’s worth investigating what can be achieved without incurring these penalties.

SFS [9] uses a keyless mixing transformation on the plaintext before applying
a block chaining stream cipher. This greatly reduces the practical usefulness
of many such attacks, but it falls short of the highest security that pure disk
sector encryption systems can aspire to: that the mapping between each virtual
and physical disk sector appears to be an independent random permutation to
an attacker who expends insufficient computation to exhaustively search the
keyspace. In other words, the theoretical best solution under these constraints
is a strong randomised large block cipher.

Several proposals exist for building large block ciphers from standard crypto-
graphic components such as hash functions and stream ciphers [1,11,2]; however,
these are not randomised ciphers, and as Section 2 shows, they have certificatio-
nal weaknesses. More seriously, no proposal comes close to offering the perfor-
mance needed: bit rates equal to or better than disk transfer rates. Since small
improvements in disk access efficiency can mean big improvements to every part
of the user experience, and since performance considerations are one of the main
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reasons why filesystem encryption is not more widely used, it seems worthwhile
to develop a new cipher designed specifically to meet this need.

The rest of this paper is organised as follows. Section 2 describes a certifica-
tional weakness applicable to several existing classes of large block cipher, and
proposes a quantitiative measure of avalanche based on the attack. Section 3
lays out the design goals for the solution here, a new block cipher Mercy with a
native block size of 4096 bits, and Section 4 describes the cipher itself. Section
5 discusses the design of the cipher in detail with reference to the performance
and security goals of Section 3. Finally Section 6 discusses some of the lessons
learned in the design of Mercy.

2 Avalanche and Certificational Weaknesses

[14] presents an attack on bidirectional MACs based on inducing collisions in
the internal state of the MAC. This attack can be extended to show a certifica-
tional weakness in some large block cipher proposals. Note that neither keys nor
plaintext can be recovered using this attack; it merely serves to distinguish the
cipher from a random permutation.

In general form, the attack proceeds as follows. The bits in the plaintext
are divided into two categories, “fixed” and “changing”; a selection of the bits
of the ciphertext are chosen as “target” bits. A number of chosen plaintexts
are encrypted, all with the same fixed bits and with changing bits chosen at
random; the attack is a success if a collision in the target bits of the ciphertext
is generated. Let wk be the length of the key, wt the number of target bits, and
2wp be the number of different plaintexts encrypted: if the following conditions
are met:

– the result is statistically significant, ie the probability of seeing such a
collision under these circumstances from a genuine PRP (approximately
22wp−wt−1) is small; and

– wp < wk − 1, ie the work factor for the attack is less than that for a key
guessing attack against the cipher

then a certificational weakness has been demonstrated. The attack works by
inducing an internal collision in the data path from the changing bits to the
fixed bits; the width of this path determines the number of plaintexts needed and
thus the smallest wp for which the attack can work provides a useful quantitative
measure of avalanche. This attack can easily be converted to use the memory-
efficient parallel collision finding techniques of [20], so memory usage does not
present a serious obstacle to the practicality of the attack if 2wp adaptive chosen
plaintexts can be encrypted.

This attack may be applied to [2] by choosing the first two blocks of the
plaintext as the “changing” bits, and all of the output except the second two
blocks as the “target” bits. If the blocksize of the underlying cipher is 64 bits,
then 233 chosen plaintexts should be sufficient to induce a collision in σ, resulting
in a collision in all the target bits as desired; if it is 128 bits, 265 will be needed.
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This attack also extends to bidirectional chaining systems, in which the plain-
text is encrypted first forwards and then backwards using a standard block cipher
in a standard chaining mode; in this case, the first two blocks are the changing
bits, all of the ciphertext except the first two blocks are the target bits, and
the number of plaintexts required are as before; the collision is induced in the
chaining state after the first two blocks. If the chaining mode is CBC or CFB,
all of the output except the first block will be target bits, since a collision in the
internal state after the second block means that the second block of ciphertext
is identical.

Note that this attack is not applicable to any of the proposals in [1]; neither
BEAR nor LION claim to be resistant to any kind of chosen plaintext attack,
while LIONESS carries 256 or 320 bits of data between the two halves (depen-
ding on the underlying hash function), which would require 2129 or 2161 chosen
plaintexts; this is outside the security goals of the cipher. However, it can be
applied to BEAST from [11] by inducing a collision in the SHA-1 hash of R∗∗

with 281 chosen plaintexts; the changing bits are the first 160 bits of R∗∗, and the
target bits are all of the ciphertext except the first 160 bits of T ∗∗. This attack
is clearly impractical at the moment but it violates our expectation that the
cheapest way to distinguish a block cipher from a random permutation should
be a brute force key guessing attack.

3 Mercy Design Goals

Mercy is a new randomised block cipher accepting a 4096-bit block, designed
specifically for the needs of disk sector encryption; it achieves significantly higher
performance than any large block cipher built using another cipher as a primitive,
or indeed than any block cipher that I know of large or small.

It accepts a 128-bit randomiser; it is expected that the sector number will
be used directly for this purpose, and therefore that most of the randomiser
bits will usually be zero. This is also known as a “diversification parameter”
in the terminology of [6], or “spice” in that of [19]. This last term avoids the
misleading suggestion that this parameter might be random and is convenient
for constructions such as “spice scheduling” and “spice material” and is used
henceforth.

Mercy’s keyschedule is based on a CPRNG; the sample implementation uses
[10]. Though [10] takes a variable length key, Mercy does not aspire to better
security than a cipher with a fixed 128-bit key size, so it’s convenient for the
purposes of specifying these goals to assume that the key is always exactly 128
bits.

– Security: Any procedure for distinguishing Mercy encryption from a se-
quence of 2128 independent random permutations (for the 2128 possible spi-
ces) should show no more bias towards correctness than a key guessing attack
with the same work factor. However, we do not claim that ignorance of the
spice used would make any attack harder; it’s not intended that the spice
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be hidden from attackers. For this reason, Mercy is not intended to be a
K-secure or hermetic cipher in the terminology of [7].

– Resistance to specific attacks: Mercy is designed to be resistant in parti-
cular to linear and differential attacks, as well as to avoid the certificational
weakness of Section 2.

– Speed: Encryption and decryption should be much faster than disk transfer
rates, even with fast disks and slow processors. Specifically, they should be
faster than 20 Mbytes/sec on a relatively modest modern machine such as
the author’s Cyrix 6x86MX/266 (which has a clock frequency of 233 MHz).
This translates as under 11.7 cycles/byte, within the range of stream ciphers
but well outside even the fastest traditional block cipher rates. The current C
implementation of Mercy achieves 9 cycles/byte; it is likely that an assembly
implementation would do rather better.

– Memory: The cipher should refer to as little memory as possible, and cer-
tainly less than 4kbytes. In many environments, Mercy’s keytables will be
stored in unswappable kernel memory; more important however is to mini-
mise the amount of Level 1 cache that will be cleared when the cipher is
used. 1536 bytes of storage are used.

– Simplicity: Mercy is designed to be simple to implement and to analyse.
– Decryption: Decryption will be much more frequent than encryption and

should be favoured where there is a choice.

4 Description of Mercy

Since most of Mercy’s operations are based around 32-bit words, we define Zw =
Z232 . Vectors are indexed from zero, so a vector P ∈ Z128

w of 128 32-bit numbers
will be indexed as (P0, P1, . . . , P127). The symbol ⊕ represents bitwise exclusive
OR; where + appears in the figures with a square box around it, it represents
addition in the ring Zw. Least significant and lowest indexed bytes and words
appear leftmost and uppermost in the figures.

Note that some details that would be needed to build a specification of Mercy-
based file encryption sufficient for interoperability, such as byte ordering within
words, are omitted since they are irrelevant for cryptanalytic purposes.

4.1 T Box

The T box (T : Z256 → Zw, Figure 1) is a key-dependent mapping of bytes onto
words. N represents multiplicative inverses in GF (28) with polynomial base
x8 + x4 + x3 + x + 1 except that N(0) = 0. d0 . . . d7 are key dependent bijective
affine mappings on GF (2)8.

T (x) =
3∑

i=0

28id2i+1[N(d2i[x])]
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T

N N N N

d0 d2 d4 d6

d1 d3 d5 d7

8 bits

T

M

8 bits

M

Q32 bits

Fig. 1. T box, Operation M, Q state machine

4.2 Operation M

M : Zw → Zw (Figure 1) is drawn from David Wheeler’s stream cipher WAKE
[21]; it’s a simple, key-dependent mapping on 32-bit words. The most significant
byte of the input word is looked up in the T box, and the output XORred with
the other three bytes shifted up eight bits; the construction of the T box ensures
that this mapping is bijective.

M(x) = 28x ⊕ T
(⌊

x/224⌋)

4.3 Q State Machine

The Q state machine (Figure 1) maps a four-word initial state and one word input
onto a four-word final state and one word output (Q : Z4

w × Zw → Z4
w × Zw)

using taps from a linear feedback shift register and a nonlinear mixing function.

Q(S, x) = ((S3 ⊕ y, S0, S1, S2), y) where y = S2 + M(S0 + x) (1)

4.4 F Function

The Fn function (n ≥ 8; Figure 2) accepts a 128-bit spice G ∈ Z4
w and a 32n-bit

input A ∈ Zn
w and generates a 32n-bit output B ∈ Zn

w (Fn : Zn
w ×Z4

w → Zn
w). F64

(usually just F ) is the F function for the Feistel rounds. Here S0...n+4 represents
successive 128-bit states of a state machine; U0...n+3 ∈ Zw are the successive
32-bit inputs to the state machine, and V0...n+3 ∈ Zw are the outputs.
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Fn(A, G) = B where
S0 = (An−4, An−3, An−2, An−1)

(Si+1, Vi) = Q(Si, Ui) (0 ≤ i < n + 4)

Ui =






Gi (0 ≤ i < 4)
Ai+n−12 (4 ≤ i < 8)
Ai−8 (8 ≤ i < n)

Bi =
{

Vi+8 (i < n − 4)
Sn+4,i+4−n (n − 4 ≤ i < n)

F

Q

Q

Q
Q

Q
Q

Q
Q
Q
Q
Q

Q

Q
Q
Q
Q
Q
Q

output input 

spice
32 bits

Fig. 2. F function

4.5 Round Structure

Mercy uses a six round Feistel structure (Figure 3) with partial pre- and post-
whitening; unusually, the final swap is not omitted. The spice G ∈ Z4

w (usually
the sector number) goes through a “spice scheduling” procedure, analogous with
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W1

F

W0

F

F

spice

F H

ciphertext

plaintext

rounds
3 more

Fig. 3. Round structure (decryption illustrated)

key scheduling, through which the “spice material” G′ ∈ Z24
w is generated based

on the input spice, using the F24 variant of the F function; this forms six 128-
bit “round spices”. Spice scheduling uses a dummy input to the F function; for
this a vector of incrementing bytes H ∈ Z24

w is used. P ∈ Z128
w represents the

plaintext, C ∈ Z128
w the ciphertext, and W0, W1 ∈ Z64

w the whitening values.
We describe decryption below; since Mercy is a straightforward Feistel cipher
encryption follows in the straightforward way.

Hi =
3∑

j=0

28j(4i + j)

G′ = F24(H, G)
(L0, R0) = (C0...63, C64...127 ⊕ W1)

(Li+1, Ri+1) = (Ri, Li ⊕ F64(Ri, G
′
4i...4i+3)) (0 ≤ i < 6)

(P0...63, P64...127) = (L6 ⊕ W0, R6)

4.6 Key Schedule

The key is used to seed a CPRNG from which key material is drawn; [10] is
used in the sample implementation (after discarding 256 bytes of output), and
is convenient since it’s small and byte oriented, but any strong CPRNG will
serve. Then the procedure in Figure 4 generates the substitutions d0...7 and the
2048-bit whitening values W0, W1.
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for i← 0 . . . 7 do
di[0]← random byte()
for j ← 0 . . . 7 do

do
r ← random byte()

while r ∈ di[0 . . . 2j − 1]
for k ← 0 . . . 2j − 1 do

di[k + 2j ]← di[k]⊕ r ⊕ di[0]
for i← 0 . . . 1 do

for j ← 0 . . . 64 do
Wi,j ← 0
for k ← 0 . . . 3 do

Wi,j ←Wi,j + 28krandom byte()

Fig. 4. Key schedule pseudocode

An expected 10.6 random bytes will be drawn for each d. Once d0...7 have
been determined, a 1k table representing the T box can be generated. During
normal use 1536 bytes of key-dependent tables are used.

5 Design of Mercy

Existing approaches to large block ciphers use a few strong rounds based on
existing cryptographic primitives. These ciphers cannot achieve speeds better
than half that of the fastest block ciphers [2] or a third of the fastest stream
ciphers [1]. Current block cipher speeds don’t approach the needs of the design
goals even before the extra penalties for doubling up, while those solutions based
on stream ciphers pay a heavy penalty in key scheduling overhead that puts their
speeds well below those needed.

Mercy addresses this by using more rounds of a weaker function. This makes
more efficient use of the work done in earlier rounds to introduce confusion in
later rounds, and is closer to a traditional block cipher approach drawn across
a larger block. It also draws more state between disparate parts of the block,
protecting against the certificational weaknesses identified in Section 2.

5.1 Balanced Feistel Network

Balanced Feistel networks are certainly the best studied frameworks from which
to build a block cipher, although I know of no prior work applying them to
such large block sizes. They allow the design of the non-linear transformations
to disregard efficiency of reversal and provide a familiar framework by which
to analyse mixing. Balanced networks seem better suited to large block ciphers
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than unbalanced networks, since an unbalanced network is likely to have to do
work proportional to the larger of the input and output data width.

Feistel ciphers normally omit the final swap, so that decryption has the same
structure as encryption. However, Mercy implementations will typically encrypt
blocks in-place, and the cost of having an odd number of swaps (forcing a real
swap) would be high, so the last swap is not omitted.

Mercy’s round function, while weaker than those used in [1], is considerably
stronger than that of traditional Feistel ciphers, necessitating many fewer rounds.
The larger block size allows more absolute work to be done in each round, while
keeping the work per byte small.

5.2 Key Schedule and S-Boxes d0...7

The function N used in building the T box is that used for nonlinear subsitution
in [7]; it is bijective and has known good properties against linear and differential
cryptanalysis, such as low LCmax and DCmax in the terminology of [13]. We use
this function to build known good key-dependent bijective substitutions using
an extension of the technique outlined in [4]; however, rather than a simple
XOR, the d mappings before and after N are drawn at random from the entire
space of bijective affine functions on GF (2)8, of which there are approximately
270.2, by determining first the constant term d[0] and then drawing candidate
basis values from the CPRNG to find a linearly independent set. Because the d
functions are affine, the LCmax and DCmax of the composite function d1◦N ◦d0
(and siblings) will be the same as those of N itself. The composite functions will
also be bijective since each of the components are, and hence all the bytes in
each column of the T table will be distinct.

However, there are fewer possible composite functions than there are pairs
d0, d1. In fact for each possible composite function, there are 255 × 8 = 2040
pairs d0, d1 which generate it. This follows from the following two properties of
N :

∀a ∈ GF (28) − {0} : ∀x ∈ GF (28) : aN(ax) = N(x)

∀b ∈ 0 . . . 7 : ∀x ∈ GF (28) : N(x2j

) = N(x)2
j

Since both multiplication and squaring in GF (28) are linear (and hence affine) in
GF (2)8 (squaring because in a field of characteristic 2, (x+y)2 = x2 +xy+yx+
y2 = x2 + y2), both of these properties provide independent ways of mapping
from any pair d0, d1 to pairs which will generate the same composite function,
distinct in every case except (a, b) = (1, 0). Taking this into account, the number
of distinct composite functions possible is approximately 2129.4, and there are
24613.7 functionally distinct keys in total (considering W0, W1 as well as T ).

Little attention has been paid to either the time or memory requirements
of the key schedule, since key scheduling will be very infrequent and typically
carried out in user space.
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5.3 Operation M

As with [21], this operation is bijective, since from the least significant byte
of the output the input to the T box can be inferred. We differ from [21] in
using the most significant byte for the lookup rather than the least; this slightly
improves the mixing gained from addition and seems to be very slightly faster
on the author’s machine.

5.4 Q State Machine

A key-dependent state machine is an efficient way to bring about strong depen-
dencies between widely separated parts of the block; since the state machine is
reversible, changing a given input word guarantees that every subsequent state
will be different and makes it slightly more likely than chance that every output
word will be different.

The basis of the state machine is 32 parallel four-stage LFSRs based on the
polynomial x4+x3+1. The input to each LFSR is provided by a nonlinear mixing
chain based on carry bits from other LFSRs and taps into the state which are
then fed into Operation M after addition-based mixing with the input. The use
of an LFSR ensures that any pair of distinct inputs of the same length which
leave the LFSR in the same state must be at least 5 words long.

Every T box lookup depends on the previous lookup, even across rounds. This
goes against the design principles outlined in [18,5] which suggest that ciphers
should be designed to make best use of the parallelism that modern processors
can achieve, and to be wary of the memory latency of table lookups. A variant
on Q which allows several T box lookups to take place in parallel by taking
taps from later in the LFSR is easy to construct, but surprisingly did not result
in any speed improvements on the target platform. Ciphers similar to Mercy
which use this technique to improve parallelism may be appropriate for other
architectures.

Since the Feistel rounds use XOR mixing, Q is also designed such that the
first operation on the input is addition, as is the last operation on the output.
This improves operation mixing, helping to frustrate attacks which model the
cipher using a single algebraic group. XOR is also used within Q for the same
reason.

The output is chosen for the property that, where Q(S, x) = (S′, y), if either
of S or S′ is known and either of x or y is known, the two unknowns can be
inferred. We prove this in four cases below:

1. S, x known, S′, y unknown: use Q directly.
2. S′, x known, S, y unknown: from Equation 1 we infer y = S′

3 + M(S′
1 + x)

and S = (S′
1, S

′
2, S

′
3, S

′
0 ⊕ y).

3. S, y known, S′, x unknown: x = M−1(y − S2) − S0 (defined since M is
bijective), then apply Q as normal.

4. S′, y known, S, x unknown: find S as in 2 and x as in 3.
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5.5 F Function

These properties of Q are used to build a fast, bijective F function. A bijec-
tive F function lends resistance to a number of attacks, making 2 round iterative
differential characteristics impossible and frustrating truncated differential cryp-
tanalysis, as well as lending confidence that the input is being used efficiently.
For a fixed spice G, we infer F ’s input A given the output B as follows: the
final state of the state machine is simply the last four words of the output:
Sn+4 = Bn−4...n−1; from this, we can run the state machine backwards up to S8
as with point 4 of Section 5.4 above, inferring A0...n−5 as we do so. We then use
An−8...n−5 (which we just inferred) and G to infer S0 using point 2 of Section
5.4 above, which gives us our last four inputs An−4...n−1.

5.6 Avalanche

This F function does not provide full avalanche between input and output. I see
no secure way to build a balanced full-avalanche F function for large blocks that
isn’t so much slower than Mercy’s F function that the time cost would not be
better spent on more rounds with the weaker F function.

Instead of providing full avalanche, the F function makes two weaker gua-
rantees that together are almost as effective:

– A change to any bit of the input will on average change half the bits of the
last 128 bits of the output

– A change to any bit of the last 128 bits of the input will on average change
half the bits of the output

A full avalanche F function achieves avalanche across the whole block after three
rounds. This construction does so after four rounds. In addition, in encryption
and decryption every keytable lookup depends on the result from the previous
lookup.

The partial collision attack from Section 2 will demonstrate that after six
rounds Mercy’s avalanche is imperfect, since only 384 bits of state are carried
between some parts of the block, but such an attack would require that 2193

chosen plaintexts be encrypted, and is thus outside the security goals of the
cipher. This suggests a distinction between perfect avalanche, and avalanche
sufficient to defeat cryptanalysis; this distinction is useful since mechanisms for
providing perfect avalanche, such as networks based on Fourier transforms (used
in SAFER [12] and proposed by [16] for large block ciphers), can carry a heavy
performance penalty on large blocks. This distinction is not useful on small
blocks: if this attack is possible against a cipher with a 64-bit block, it will not
require more than 233 chosen plaintexts.

5.7 Whitening

Mercy only whitens one half of the input and output, since the cost both in time
and storage of whitening both halves would be significant, and since the primary
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function of whitening is to hide the input of the F function from attackers. On
large block ciphers, whitening also serves to frustrate attacks based on creating
inputs with special structures, such as attempts to induce a repeating state in
the state machine of F .

5.8 Linear and Differential Cryptanalysis

We do not prove Mercy resistant to either linear or differential cryptanalysis; a
large block cipher meeting the performance goals that could be proven resistant
would be a worthy goal. However, four features of the cipher lend resistance to
these classes of attack.

First, the key dependent subsitutions are optimised against linear and diffe-
rential cryptanalysis as described in Section 5.2.

Second, the LFSR-based construction of the Q state machine forces any input
to the F function with active substitutions (in the terminology of [7]) to make at
least three substitutions active. In practice, the intent of the F function design is
that any difference in the input causing a difference in a T box substitution will
cause all subsequent T box subsitution to be uncorrelated; avoiding this effect
will be very hard for attackers. Most F functions cannot afford the luxury of 68
chained non-linear substitutions.

Third, the initial and final whitening should force attackers to look for diffe-
rence propagations or linear correlations over at least four rounds.

Fourth, the ways in which key material is introduced in the F function should
mean that inferring a suggested key from a given plaintext-ciphertext pair should
be extremely difficult.

6 Conclusions

Large blocks are useful in any application where random access to data is de-
sirable, of which sector encryption is a prime example. Mercy is intended to
demonstrate the possibility of building an efficient block cipher for large blocks.
Mercy’s design was inspired by two beliefs:

– Large block sizes can lend useful advantages in security and speed
– Avalanche across large blocks need not be perfect before a cryptanalyst with

limited computing resources cannot distinguish it from perfect, as explained
in Section 5.6.

However, the primary motivation for the design of Mercy is not that the cipher
be directly used for this application; it is to inspire further work where it is
badly needed. Disk encryption suffers none of the barriers to adoption from
interoperability suffered by (for example) email encryption. But it is very rarely
used, and the main barrier to adoption among security conscious users is the high
performance penalties it currently exacts. I hope that Mercy demonstrates that
fast, secure large block ciphers are possible, and inspires better cryptographers
to propose better designs.
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Abstract. This paper details the attack on RC6 which was announced
in a report published in the proceedings of the second AES candidate
conference (March 1999). Based on an observation on the RC6 statistics,
we show how to distinguish RC6 from a random permutation and to
recover the secret extended key for a fair number of rounds.

1 Introduction

RC6 is one of the 15 candidate algorithms that were presented at the first Advan-
ced Encryption Standard candidate conference in August 1998. It was submitted
by RSA laboratories [9] and has been selected as one of the five finalists for the
second round of the AES contest organized by NIST [1].

In this paper, we first show the existence of a statistical weakness in RC6 which
allows to mount a distinguisher attack on a reduced number of rounds. This me-
ans that given a certain number of plaintext-ciphertext pairs, an attacker is able
to distinguish RC6 from a random permutation. A distinguisher for the r-round
version of a cipher may often be converted into a key-recovery attack on r + 1
or even more rounds. Matsui’s linear cryptanalysis of DES provides a typical
example of such a situation [7]. This also holds for RC6 : we show that we can
gain one round as compared with our distinguisher to recover the extended keys
of RC6 reduced to 14 rounds (or equivalently 15 RC6 inner rounds).

The paper is organised as follows : in the next Section we give the outlines
of RC6 and in Section 3 we present the probabilistic event which leaks informa-
tion. In Section 4 we explicitely construct the distinguisher and in Section 5 we
adapt the latter to recover the extended secret key. Finally, we shortly discuss
the case of RC5 and conclude.

2 RC6 Outlines

RC6 is characterized by three parameters (w, r, b). It is dedicated to w-bit micro-
processors and encrypts 4w-bit blocks by using four registers. (We assume that w
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is an integral power of 2.) It has r rounds and uses a b-byte secret key. The nomi-
nal parameters for AES are (32, 20, 16), (32, 20, 24) and (32, 20, 32), respectively
for a 128, 196 and 256-bit user key. There is a key scheduling algorithm which
extends the original b-byte key into an 2r + 4-word array S = (S0, . . . , S2r+3).
In this paper, we will only use the w and r parameters, so we consider that the
encryption is performed by using an arbitrary 2r + 4-word array S which plays
the role of the secret key.

The encryption is performed by using four registers A, B, C, D. The algorithm
is described by the following pseudo-code.

Input: (A, B, C, D)
1. B ← B + S0, D ← D + S1
2. for i = 1 to r do

A← ((A⊕ f(B))� f(D)) + S2i

C ← ((C ⊕ f(D))� f(B)) + S2i+1

(A, B, C, D)← (B, C, D, A)
3. A← A + S2r+2, C ← C + S2r+3

Output: (A, B, C, D)

Here the f function plays the role of a pseudo-random generator defined by

f(x) = g(x) mod 2w � log2w = x(2x + 1) mod 2w � log2w .

A picture of the RC6 encryption algorithm is given hereafter.
RC6 is very similar to RC5 in that it uses only simple operations such as

binary addition, exclusive or and circular rotations. In addition, RC6 performs
a simple modular multiplication.

Our results show that a reduced number of rounds of RC6 may be distinguished
from a random permutation, which in turn enables an attacker to recover the
secret keys of RC6 with one more round. This analysis also partly transposes
to RC5. We would like to mention that an outline of our attack was introduced
for the first time at the second AES conference in Rome in March 1999 [2], and
that another paper dealing with the same kind of RC6 statistics [6] appears in
these proceedings. However, the work reported in [6] and the work reported here
are quite independent, both approaches for handling the RC6 statistics differ
to some extent, and we feel it is important to present the attack announced in
[2] in details here. Interestingly, both papers show that we can distinguish RC6
from a random permutation in polynomial time for a fair number of rounds, alt-
hough it has been made clear [4,8] that the RC6 frame provides a pseudorandom
permutation after five rounds once the data-dependent rotations are removed.

3 A Probabilistic Event on RC6 Encryption

For 1 ≤ i ≤ r and 0 ≤ j < 4, we let Ri,j(S, a, b, c, d) denote the value of the
register with index j (considering that index 0 is for A, index 1 is for B, ...) after
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Fig. 1. Encryption with RC6-w/r/b where g(x) = x× (2x + 1).

the ith round when the input of the encryption is (a, b, c, d) and the key is S.
We can extend the above notation to i = 0 letting R0,j(S, a, b, c, d) denote the
input words to the first round. We will omit (S, a, b, c, d) in most cases. In the
sequel we implicitely assume that the j index is taken modulo 4. We start with
the following simple fact.

Lemma 1. For any i and any (S, a, b, c, d), we have

f(Ri−1,1) ≡ 0 (mod w)
f(Ri−1,3) ≡ 0 (mod w)

}
=⇒

{
Ri,3 −Ri−1,0 ≡ S2i (mod w)
Ri,1 −Ri−1,2 ≡ S2i+1 (mod w)

and in addition, Ri,0 = Ri−1,1 and Ri,2 = Ri−1,3.
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This comes from the fact that if the mod w part of f(B) and f(D) are both zero
in the ith round, then nothing is XORed onto the mod w part of A and C, and
none are rotated.

This fact extends into the following

Lemma 2. If we have f(Ri−1,1) ≡ f(Ri−1,3) ≡ 0 (mod w) for i = k, k +
2, . . . , k + 2`, then Rk+2`,−2`−1−Rk−1,0 mod w and Rk+2`,1−2`−Rk−1,2 mod w
are constants which only depend on S.

Assuming that the outputs of f mod w behave like random numbers, this event
holds with probability w−2`. We thus have the following heuristic result which
has been confirmed by statistical experiments for w = 32 and small values of r.

Theorem 1. Under heuristic assumptions, there exists some functions c1(S)
and c2(S) such that for random (R0,0, . . . , R0,3) and a random S we have

Pr
[

Rr,1−r(S)−R0,1(S) mod w = c1(S)
Rr,3−r(S)−R0,3(S) mod w = c2(S)

]
≈ w−2

(
1 + w−2b r

2c
)

.

4 On Distinguishing RC6 from a Random Permutation

We can construct a distinguisher between RC6 and a random permutation by
using the above theorem through a known plaintext attack.

1. The distinguisher first gets n random samples (xi, Enc(xi)) where

xi = (xi,0, xi,1, xi,2, xi,3)

and
Enci = (yi,0, yi,1, yi,2, yi,3).

2. Then it hashes the samples onto

hi = (yi,1−r − xi,1 mod w, yi,3−r − xi,3 mod w).

3. It then creates w2 counters which correspond to possible hi values and counts
the number n(u,v) of i indices such that hi = (u, v).

4. If the maximum of all n(u,v) is greater than a given threshold t, output 1,
otherwise, output 0.

We let ε ≈ w−2b r
2c denote the probability that the event of Theorem 1 occurs

for RC6. We need to compute the advantage in terms of n, t, ε of this attack for
distinguishing RC6 from a random permutation.

Let us choose t = n.w−2 + δ. (nw−2 is the expected value of one counter for
random hashes so δ measures the deviation from the ideal expected case.)

The probability p that the distinguisher outputs 1 for RC6 is greater than
the probability that the counter which corresponds to the constant values in
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Theorem 1 is greater than t. When n is large, this counter tends towards a
normal law with expected value n(w−2(1 − ε) + ε) (which we approximate by
nw−2 + nε) and variance approximately nw−2. We let

ϕ(x) =
1√
2π

∫ x

−∞
e− t2

2 dt.

We have

p ≈ ϕ

(
− t− nw−2 − nε√

nw−1

)
+

(
1− ϕ

(
t− nw−2
√

nw−1

)w2−1
)

which is

p ≥ ϕ

(
− t− nw−2 − nε√

nw−1

)
.

This means

p ≥ ϕ
(
−δwn− 1

2 + wε
√

n
)

. (1)

Now the probability p∗ that the distinguisher outputs 1 for a random permu-
tation is less that w2 times the probability that one given counter is greater then
t. This counter tends to behave like a normal law with expected value nw−2 and
variance nw−2. We thus have

p∗ ≤ w2ϕ

(
− t− nw−2
√

nw−1

)

which means

p∗ ≤ w2ϕ
(
−δwn− 1

2

)
. (2)

Therefore the advantage for distinguishing RC6 from a random permutation
is

Adv ≥ ϕ
(
−δwn− 1

2 + wε
√

n
)
− w2ϕ

(
−δwn− 1

2

)
.

If we derive this function with respect to δ, we obtain the maximum when the
derivative is equal to zero. The choice of δ which maximizes this right hand term
is

δ =
2 log w

εw2 +
εn

2

for which

Adv ≥ ϕ

(
−2 log w

εw
√

n
+

εw
√

n

2

)
− w2ϕ

(
−2 log w

εw
√

n
− εw

√
n

2

)
.

This analysis leads to the following result.
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Theorem 2. Let α = εw
√

n

2
√

log w
. Under heuristic assumptions, the above distin-

guisher, when used with

t =
n

w2 +
2 log w

εw2 +
εn

2
and n ≥ 4α2w4b r

2c−2 log w

has an advantage greater than

Adv ≥ ϕ
(√

log w(−α−1 + α)
)
− w2ϕ

(√
log w(−α−1 − α)

)
.

Considering α = 5 we have

Adv ≥ ϕ

(
24
5

√
log w

)
− w2ϕ

(
−26

5

√
log w

)

with a complexity of
n ≥ 100w4b r

2c−2 log w.

We have to be concerned that the total number of samples cannot be greater
than 24w, which is the total number of possible plaintexts. Hence the above
attack is significant for

r ≤ 2
⌊

4w − 7− log2 log w

4 log2 w
+

1
2

⌋
+ 1 .

As an application, with the nominal choice w = 32 we obtain an advantage
greater than 1− 2−60 with a complexity of n ≈ 220b r

2c−2. Thus we can break up
to r = 13 rounds (with n = 2118).

5 On Recovering the Secret Key

5.1 A Simplified Approach for Recovering S0 and S1

Let us focus on nominal RC6 reduced to r = 14 rounds for a moment. Then a
way of adapting the distinguisher to recover the whole secret key for RC6 redu-
ced to 14 rounds is by a known plaintext attack which proceeds in the following
way.

Suppose we black box encrypt a multiple m of the n plaintexts required by
the previously described distinguisher on 13 rounds, thus obtaining m (xi, yi)
plaintext-ciphertext pairs for the 14-round RC6. Let ∆A = Aout−Ain (mod w)
where Aout = yi,−14 and Ain = xi,0 denote the input-output difference of
the log2 w least significant bits of the input word A and similarly let ∆C =
Cout − Cin (mod w) where Cout = yi,2−14 and Cin = xi,2 denote the diffe-
rence modulo w on input word C. For those (xi, yi) pairs such that the A and
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C input words are not rotated at the first round, ∆A and ∆C are equal, up
to the unknown constants S2 (mod w) and S3 (mod w), to the hi differences
considered in the 13-rounds distinguisher of Section 4.

The exhaustive trial of all the S0 and S1 keys, i.e. the computation for each
(S0, S1) key assumption, of the (∆A, ∆C) frequencies distribution on the subset
of plaintext-ciphertext pairs such that no A and C rotations occur at the first
round, followed by the 13-round distinguisher test of Section 4, can be performed
in an efficient way which avoids processing each plaintext individually for each
key assumption.

• First we generate a table of 22w+2 log2 w (e.g. 274 for nominal RC6) elements,
where each entry is the frequency observed for the plaintext-ciphertext pairs
according to the value of the B and D input words as well as the ∆A and ∆C

input-output differences modulo w (i.e. a potential value of the constant diffe-
rences if all the rotations were zero as in our model).

• Now for approximately 2w−log2 w (e.g. 227) “good” B values, we obtain that
f(B +S0) ≡ 0 (mod w) in the first round. Therefore for each possible choice of
the first subkey S0, we may add together the frequencies of the 2w−log2 w corre-
sponding good B values. This requires a work load of about 2w−log2 w+w+2 log2 w =
22w+log2 w (e.g. 269) operations per S0 guess. We are left with a table of 2w+2 log2 w

- e.g. 242 - (D, ∆A, ∆C) frequencies.

• Next, for every possible S1 value, we can do the same. For a given guess, we
select the 2w−log2 w possible values for D which achieve f(D+S1) ≡ 0 (mod w)
in the first round, and add their frequencies together. We are left with a table
of w2 (∆A, ∆C) frequencies, the maximum of which corresponds to the sum of
some key bits when the two subkeys are correctly guessed. This step requires an
effort of 2w+log2 w operations for all (S0, S1) subkey guesses.

• Once such a table of frequencies of the (∆A, ∆C) values has been obtained,
the distinguisher of Section 4 may be applied quite naturally to it. If (S0, S1)
is the correct subkey guess, one of the frequencies is expected to pass the test,
whereas the test is expected to fail when wrong values have been picked. Thus
this procedure allows us to recover the first two subkeys using a memory of less
than 2 · 22w+2 log2 w words (e.g. 275) and a workload

C = 2w
(
2 · 22w+log2 w

)
= 23w+log2 w+1 ,

(e.g. 2102), which is far less than the number of encryptions needed for the
distinguisher anyway. However, using this technique, we filter out about w2
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plaintext-ciphertext pairs, therefore we have to start off with far more pairs at
the beginning of the attack in order to make sure the distinguisher gets enough
information after the filtering phase. This leads to a required number of known
plaintexts :

m ≥ 100w4b r−1
2 c log w.

Note that for w = 32 and r = 14, m is about equal to the 2128 limit.

5.2 Improved Approach Without Filtering

As we saw in the last section the fact that we filter pairs for which the first two
rotations are zero “costs” a factor w2 in the number of plaintext-ciphertext pairs.
We want to avoid this and use only the n pairs required by the distinguisher.
We actually guess the first two rotations at the cost of some more memory.

• Let β = f(B) (mod w) and δ = f(D) (mod w) be the two rotations of
the first round. For each of the w2 potential values of (β, δ), we generate a hash
table for the frequencies of the tuples

(
B, D, (Ain � δ) mod w, Aout mod w, (Cin � β) mod w, Cout mod w

)

Thus we have w2 tables of size 22w+4 log2 w (e.g. 284) each, giving all the
frequencies for the various potential (β, δ) couples of rotations. Note that the
generation of such tables may be optimized (avoiding an extra work factor of w2

for each plaintext-ciphertext pair) in a way which will be discussed below.

• Now for every guess of S0, for each of the w possible β values, we may select the
2w−log2 w (e.g. 227) B values such that f(B+S0) = β mod w and, for each of the
w potential δ values, add together, in the (β, δ) table, the frequencies of those t-
uples for which the values of D, ∆A = (Aout−((Ain⊕f(B+S0))� δ)) mod w,
Cin � β mod w and Cout mod w are the same. We thus obtain w2 tables pro-
viding (D, ∆A, Cin � β mod w, Cout mod w) frequencies, at the expense of a
22w+5 log2 w (e.g. 289) work load per S0 assumption.

• Next, for each guess of S1, for each of the w possible δ values, we may select
the 2w−log2 w (e.g. 227) D values such that f(D+S1) = δ mod w and, for each of
the w potential β values, add together, in the (β, δ) table derived at the former
step, the frequencies of those (D, ∆A, Cin � β mod w, Cout mod w) tuples for
which the values of ∆A and ∆C = (Cout − ((Cin ⊕ f(D + S1)) � β)) mod w

are the same. By adding up all the (∆A, ∆C) frequencies obtained for all the
(β, δ) pairs, we are left with a table of w2 (∆A, ∆C) frequencies which can be
used as an input to the distinguisher of Section 4. The distinguisher is expected
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to succeed only when the two subkeys S0 and S1 are correctly guessed. Thus the
above procedure provides the first two subkeys. The work load for this step is
about 2w+4 log2 w for each (S0,S1) assumption.

Discussion. In order to optimize the generation of the w2 (β, δ) tables of the (B,
D, Ain � δ mod w, Aout mod w, Cin � β mod w, Cout mod w) frequencies, we
suggest the following technique. We denote by AL and CL (resp AH and CH) the
w/2+b log2 w

2 c (e.g. 18) lowest (resp highest) weight bits of Ain and Cin. From the
n plaintext-ciphertext pairs used in the attack, we first derive the four tables con-
taining the (B, D, AL, Aout mod w, CL, Cout mod w), (B, D, AL, Aout mod w,
CH , Cout mod w), (B, D, AH , Aout mod w, CL, Cout mod w), and (B, D, AH ,
Aout mod w, CH , Cout mod w) frequencies. Each of the w2 (β, δ) tables of (B,
D, Ain � δ mod w, Aout mod w, Cin � β mod w, Cout mod w) frequencies
can then be deduced from one of the four above tables. This way, we process the
n samples only once, and the additional complexity factor of w2 corresponding
to all possible choices for (β, δ) will apply essentially to the number of entries
in each table, which is about 23w+2b log2 w

2 c+2 log2 w For example, for w = 32 and
n = 2118, this complexity is about 210 · 2110 instead of 210 · 2118.

The complexity of the entire procedure for recovering the first two subkeys S0

and S1 is less than 2 · 23w+5 log2 w (e.g. 2122).

Once the first two subkeys are found, we can decrypt one round using the data
in the previously described tables and may apply the same technique on the
next two subkeys. As we go on recovering the extended key piece by piece, the
required number of plaintext-ciphertext pairs to make the distinguisher work
decreases very fast. Thus the overall complexity of this attack stays well below
the effort of an exhaustive search for the key.

6 On the Existence of Similar RC5 Statistics

RC6 is an enhancement of the RC5 encryption algorithm. RC5 is characterized
by three parameters w (word size ; note that the RC5 block size is 2w), r (num-
ber of rounds ; unlike an RC6 round, an RC5 round consists of two half rounds)
and b (number of key bytes).

The following statistical property of RC5 is closely related to the RC6 properties
summarised in Section 3 above : if, in ρ consecutive RC5 half rounds, the rota-
tion amounts applied at each second half round are all equal to zero, then after ρ

half rounds the log2 w lowest weight bits of one of the two plaintext halfes A and
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B has been simply added (modulo w) with a constant value derived from the key.

The analysis of Section 4 is easy to transpose, to show that ρ half rounds of
RC5 can be distinguished from a random permutation using a number n of
known plaintexts which stays within a small factor of w2b ρ

2c−1. For sufficiently
low r values, this distinguisher can be used to guess the RC5-w/r/b expanded
key, using a number n of known plaintexts which stays within a small factor
of w2(r−1)−1. However, for usual RC5 parameter choices such as r = 12 and a
64-bit block size, the number of available plaintexts is far too low to mount such
an attack.

There are some connections beween the above outlined RC5 attack and the
RC5 linear attacks mentioned in [5], which require about 4w2(r−1) known plain-
texts. Both approaches are based related RC5 properties, and the main difference
consists in handling log2w-bit statistics versus binary statistics. We conjecture
- but are not fully sure, since we did not check the RC5 key derivation details
- that the treatment of log2w-bit statistics might provide a slight performance
improvement over the linear cryptanalysis approach.

7 Conclusion

Extending the work presented at the second AES conference, we have shown the
existence of a special statistical phenomenon on RC6 which enables to mount a
distinguisher attack on up to 13 rounds. As usual, this kind of attack is shown to
be convertible into a known plaintext attack which can break up to 14 rounds of
RC6 (or equivalently 15 inner rounds with or without post-whitening), requiring
about 2118 known plaintexts, 2112 memory and a work load of 2122 operations.
Of course this attack is not anywhere near practical, but still leads us to the
conclusion that due to the existence of a slight but iterative statistical weakness
in its round function, RC6 does not have a very conservative number of rounds.
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Abstract. We introduce a new cryptanalytic technique based on Wag-
ner’s boomerang and inside-out attacks. We first describe this new attack
in terms of the original boomerang attack, and then demonstrate its use
on reduced-round variants of the MARS core and Serpent. Our attack
breaks eleven rounds of the MARS core with 265 chosen plaintexts, 270

memory, and 2229 partial decryptions. Our attack breaks eight rounds
of Serpent with 2114 chosen plaintexts, 2119 memory, and 2179 partial
decryptions.

1 Introduction

MARS [BCD+98] and Serpent [ABK98] are block ciphers that have been pro-
posed as AES candidates [NIST97a,NIST97b]. More recently, both were chosen
as AES finalists. We have spent considerable time in the last few months crypt-
analyzing both ciphers, with the bulk of our results appearing in [KS00,KKS00].
During our work on MARS, we developed a new class of attack based on David
Wagner’s boomerang and inside-out attacks [Wag99]. In this paper, we present
this new class of attack, first in the abstract sense, and then in terms of specific
attacks on reduced-round variants of the MARS core and of Serpent.

The MARS core provides an excellent target for these attacks. We know
of no good iterative differential characteristics, nor of any good differentials of
any useful length. However, there is a three-round characteristic and a three-
round truncated differential each with probability one. Since these attacks allow
concatenation of short differentials that don’t connect in the normal sense of dif-
ferential attacks, they are quite useful against the MARS core. Similarly, Serpent
provides an excellent target for these attacks, because the main problem in mo-
unting a differential attack on Serpent is keeping the differential characteristics
used from spreading out to large numbers of active S-boxes; using boomerangs,
amplified boomerangs, and related ideas, we can make use of differentials with
relatively few active S-boxes, and connect them using the boomerang construc-
tion.
? Part of this work was done while working for Counterpane Internet Security, Inc.
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The underlying “trick” of the boomerang attack is to mount a differential
attack with first-order differentials that don’t normally connect through the ci-
pher; these first-order differentials are connected by a second-order differential re-
lationship in the middle of the cipher, by way of some adaptive-chosen-ciphertext
queries. The underlying “trick” of the boomerang-amplifier attack is to use large
numbers of chosen plaintext pairs to get that second-order differential relations-
hip to appear in the middle of the cipher by chance. Extensions allow us to use
structures of structures to get the second-order differential relationship in the
middle for many pairs of texts at once.

1.1 Impact of the Results

The most important impact of our results is the introduction of a new cryp-
tanalytic technique. This technique belongs to the same general class as the
boomerang and miss-in-the-middle attacks; the attacker builds structures of a
certain kind from right pairs for differentials through part of the cipher. Other
members of this class of attacks are known to us, and research is ongoing into
their uses and limitations.

Additionally, we provide the best known attack on the MARS core, breaking
up to eleven rounds faster then brute-force search. This attack does not threaten
full MARS; even if the cryptographic core had only eleven rounds, we know of
no way to mount an attack on the core through the key addition/subtraction
and unkeyed mixing layers present in the full MARS.

We also demonstrate this powerful new attack on a reduced-round variant of
Serpent. Again, this attack does not threaten the full 32-round Serpent.

The attacks described in this paper are summarized below. However, these
specific attacks are not the focus of the paper; instead, the focus is the new
cryptanalytic technique.

Summary of Results
Cipher Texts Memory Work
(rounds) (chosen plaintexts) (bytes) (decryptions)

MARS Core (11) 265 269 2229 partial
Serpent (8) 2114 2119 2179 8-round

2 Boomerangs, Inside-Out Attacks, and the
Boomerang-Amplifier

2.1 Preliminaries

In [Wag99], Wagner introduces two new attacks: the boomerang attack and the
inside-out attack. An understanding of both attacks is necessary to understand
our new attack. In order to build on these concepts later, we briefly review the
concepts from [Wag99].
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Most of the attacks in this section make use of a block cipher E composed of
two halves, e0, e1. That is, E(X) = e0(e1(X)). We also use the following notation
to describe plaintext i as it is encrypted under E:

Xi ← plaintext
Yi ← e0(Xi)
Zi ← e1(Yi) (ciphertext)

An important side-note: A normal differential always has the same probabi-
lity through a cipher (or subset of cipher rounds) going forward and backward;
by contrast a truncated differential can have different probabilities going forward
and backward.

2.2 The Inside-Out Attack

Consider a situation in which we have probability one truncated differentials
through both e1 and through e−1

0 , both with the same starting difference. That
is, we have

∆0 → ∆1 through e1

∆0 → ∆2 through e−1
0

In this case, we can mount an attack to distinguish E from a random per-
mutation as follows:

1. Observe enough known plaintext/ciphertexts pairs that we expect R pairs
of texts with the required difference in the middle. That is, we expect about
R pairs (i, j) for which Yi ⊕ Yj = ∆0.

2. Identify the pairs of inputs where Xi ⊕Xj = ∆2.
3. Identify the pairs of outputs where Zi ⊕ Zj = ∆1.
4. Count the number of pairs that overlap (that is, the pairs that are right pairs

in both input and output); if this count is substantially higher than would
be expected from a random permutation, we distinguish E from a random
permutation.

Suppose we had the following probabilities for a random i, j pair:

Pr[Xi ⊕Xj = ∆2] = p0

Pr[Zi ⊕ Zj = ∆1] = p1

That is, the probability of a randomly selected pair fitting the truncated diffe-
rence ∆2 is p0, and its probability of fitting ∆1 is p1. In this case, we have:

N = Number of total plaintext/ciphertext pairs.
N0 = N ∗ p0 = Expected number of counted right input pairs for random perm.
N1 = N ∗ p0 ∗ p1 = Expected number of those right input pairs

counted as right output pairs.
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The number of pairs that are right pairs for both input and output is then
binomially distributed, and can be approximated with a normal distribution
with µ = N1 and σ ≈ √N1. When we have a right pair in the middle (that is,
when Yi ⊕ Yj = ∆0), then i, j must be a right pair for both inputs and outputs.
We expect R right pairs in the middle; that means that for E, we expect about
N1 + R right pairs for both input and output, while for a random permutation,
we expect only about N1. When R is much larger than

√
N1, this becomes

detectable with reasonably high probability. (For very low probabilities, we can
use R > 16

√
N1, which has an astronomically low probability.)

This gives us a way to attack a cipher even when there are no good differen-
tials through the whole cipher, by waiting for the required difference to occur
at random in the middle of the cipher. This idea can be extended to deal with
differentials with lower probabilities; see [Wag99] for details.

2.3 Boomerangs

Another fundamental idea required to understand the boomerang-amplifier at-
tack is the boomerang attack. Consider the same cipher E(X) = e1(e0(X)), but
now suppose that there are excellent differentials through e0, e−1

0 , and e−1
1 . For

this discussion, we assume that these are normal differentials and that they have
probability one. The attack works with lower-probability differentials, and with
truncated differentials; for a full discussion of the additional complexities these
raise, see [Wag99].

We thus have the following differentials:

∆0 → ∆1 through e0 and e1

with probability one. Now, despite the fact that ∆1 6= ∆0 and despite a lack
of any high-probability differential through E, we can still distinguish E from a
random permutation as follows:

1. Request a right pair for e0 as input, X0, X1, s.t. X0 ⊕X1 = ∆0.
2. After e0, these have been encrypted to Y0, Y1, and have the relationship Y0⊕

Y1 = ∆1. After e1, these have been encrypted to Z0, Z1, with no predictable
differential relationship.

3. We make two right pairs for e−1
1 from this pair, by requesting the decryption

of Z2 = Z0 ⊕∆1 and Z3 = Z1 ⊕∆1.
4. Z2, Z3 are decrypted to Y2, Y3, with the relationships Y2 ⊕ Y0 = ∆0 and

Y3 ⊕ Y1 = ∆0.
5. This determines the differential relationship between Y2 and Y3.

Y0 ⊕ Y1 = ∆1; Y0 ⊕ Y2 = ∆0; Y1 ⊕ Y3 = ∆0

thus: Y2 ⊕ Y3 = ∆1

6. Because Y2⊕Y3 = ∆1, we have a right output pair for e0. Since we’re dealing
with a normal differential, we know that the differential must go the other
direction, so that X2 ⊕X3 = ∆0.
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Fig. 1. The Boomerang Attack

7. A single instance of this working for a random permutation has probabi-
lity 2−128 for a 128-bit block cipher, so this can be used very effectively to
distinguish E from a random permutation.

Note that the really powerful thing about this attack is that it allows a
differential type attack to work against a cipher for which there is no good
differential through the whole cipher.

2.4 Turning the Boomerang into a Chosen-Plaintext Attack

We can combine the ideas of the inside-out and boomerang attacks to turn
the boomerang attack into an attack that requires only chosen plaintext que-
ries; unlike the boomerang attack, this new attack does not require adaptive-
chosen-ciphertext queries. Note that we’re dealing with the same cipher E(X) =
e1(e0(X)).

Suppose we are dealing with a 128-bit block cipher, and are thus dealing with
128-bit differences. We request 265 random chosen plaintext pairs X2i, X2i+1 such
that X2i ⊕X2i+1 = ∆0. Since we are dealing with probability one differentials,
this gives us 265 pairs Y2i, Y2i+1 such that Y2i ⊕ Y2i+1 = ∆1. We expect about
two pairs (i, j) for which Y2i ⊕ Y2j = ∆0. When we have an i, j pair of this kind
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Fig. 2. The Boomerang-Amplifier Attack

we have the boomerang property:

Y2i ⊕ Y2i+1 = ∆1; Y2j ⊕ Y2j+1 = ∆1; Y2i ⊕ Y2j = ∆0

thus: Y2i+1 ⊕ Y2j+1 = ∆0

and so: Z2i ⊕ Z2j = ∆1; Z2i+1 ⊕ Z2j+1 = ∆1

There are about 2129 possible i, j pairs. The probability that any given pair
will satisfy the last two equations is 2−256. We can thus use the above technique
to distinguish E from a random permutation.

We call this attack a boomerang-amplifier attack, because the boomerang
structure “amplifies” the effect of a low-probability event (Y2i⊕Y2j = ∆0) enough
that it can be easily detected. By contrast, the inside-out attack amplifies such
a low-probability event by detecting a signal from both input and output of the
cipher.

2.5 Comparing Boomerangs and Boomerang Amplifiers

It is worthwhile to compare boomerang-amplifiers with the original boomerangs,
in terms of attacks made possible. All else being equal, boomerangs require far
fewer total queries than boomerang amplifiers, because in a boomerang-amplifier
attack, we have to request enough right input pairs to expect the internal collision
property that allows us to get the desired relationship between the pairs. Thus,
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in the example above, we’re trading off 265 chosen plaintext queries for two
adaptive chosen ciphertext queries.

Fig. 3. Comparing Boomerangs and Boomerang-Amplifiers; Note Direction of Arrows

This might not look all that useful. However, there are three things that
make this useful in many attacks:

1. When mounting an attack, we often need to guess key material on one
end or the other of the cipher. With a chosen-plaintext/adaptive chosen-
ciphertext attack model, we must increase our number of requested plain-
texts/ciphertexts when we have to guess key material on either end. With
a chosen-plaintext only attack, we can guess key material at the end of the
cipher, and not have to increase our number of chosen plaintexts requested.

2. We can use the boomerang-amplifier, not just on pairs, but on k-tuples of
texts.

3. We can use the boomerang-amplifier to get pairs (or k-tuples) of texts though
part of the cipher, and then cover the remaining rounds of the cipher with
truncated differentials or differential-linear characteristics. In this way, we
can use truncated differentials that specify only a small part of the block,
and couldn’t be used with a standard boomerang attack.
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2.6 Boomerang-Amplifiers with 3-Tuples

Consider a method to send 3-tuples of texts through e0 with the property that
when X0,1,2 are chosen properly, Yi, Y

∗
i , Y ∗∗

i have some simple xor relationship,
such as Y ∗

i = Yi⊕t∗ and Y ∗∗
i = Yi⊕t∗∗. We can carry out a boomerang-amplifier

attack using these 3-tuples. Consider:

Fig. 4. A Boomerang-Amplifier with 3-Tuples

1. Request 265 such 3-tuples, Xi, X
∗
i , X∗∗

i .
2. We expect about one instance where Yi⊕Yj = ∆0, by the birthday paradox.
3. For that instance, we get three right pairs through the cipher:

(Zi, Zj); (Z∗
i , Z∗

j ); (Z∗∗
i , Z∗∗

j )

This happens because:

Yi ⊕ Yj = ∆0; Y ∗
i = Yi ⊕ t∗; Y ∗

j = Yj ⊕ t∗

Thus: Y ∗
i ⊕ Y ∗

j = Yi ⊕ Yj ⊕ t∗ ⊕ t∗ = Yi ⊕ Yj = ∆0



Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent 83

The same idea works in a boomerang attack, but is of no apparent use. However,
in a boomerang-amplifier attack, we are able to use this trick to get through more
rounds. Because we’re doing a chosen-plaintext attack, we can look for patterns
that are apparent from k-tuples of right pairs, even through several more rounds
of the cipher. Conceptually, we can use this to increase the “amplification” on
the attack.

2.7 Detecting the Effects of the Boomerang-Amplifiers

A boomerang 4-tuple (Xi,j,k,l, Zi,j,k,l) has the property that Xi,j and Xk,l are
right input pairs, and Zi,k and Zj,l are right output pairs. When we mount a
boomerang-amplifier attack, we know that Xi,j and Xk,l are right pairs, because
we have chosen them to be right pairs. We thus detect a right pair of pairs by
noting that Zi,k and Zj,l are right output pairs.

There is a straightforward trick for speeding up searches for these right pairs
of pairs among large sets of pairs. It is easy to see that

Zi ⊕ Zk = ∆2

Zj ⊕ Zl = ∆2

Zi ⊕ Zj = Zi ⊕ Zl ⊕∆2

= Zk ⊕ Zl

This means that we can build a sorted list of the output pairs from a large set of
input pairs, in which each entry in the list contains the xor of the ciphertexts
from one pair. When both Zi,k and Zj,l are right output pairs, then Zi ⊕ Zj =
Zk ⊕Zl. A variant of this technique works even when the output differences are
truncated differences; in that case, the differential relationship works only in the
fixed bits of the difference.

When we apply boomerang-amplifiers to larger blocks of texts, we must find
other ways to detect them. For example, below we describe an attack in which
we concatenate a differential-linear characteristic with probability one to the
differences after several rounds resulting from right pairs in the middle. This
means that each right pair in the middle gives us one bit that has to take on
a certain value; we request batches of over 256 entries, and look for right pairs
of batches. Each batch of N texts results, as ciphertext, in an N-bit string. We
build a sorted list of these strings, and find the matches, which must come from
right pairs of batches.

Alternatively, we can simply build sorted lists of all the Zi and all the Zi⊕∆1,
and then look for matches.

3 Amplified Boomerangs and the MARS Core

3.1 The MARS Core

MARS [BCD+98] is a heterogenous, target-heavy, unbalanced Feistel network
(to use the nomenclature from [SK96]). At the center are 16 core rounds: eight
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forward core rounds and eight backward core rounds. Surrounding those rounds
are 16 keyless mixing rounds: eight forward mixing rounds before the core, and
eight backward mixing rounds after the core. Surrounding that are two whitening
rounds: one at the beginning of the cipher and another at the end.

The design of MARS is fundamentally new; the whitening and unkeyed mi-
xing rounds jacket the cryptographic core rounds, making any attacks on the core
rounds more difficult. The core rounds, by contrast, must provide the underly-
ing cryptographic strength, by giving a reasonable approximation of a random
permutation family. This can be seen by considering the fact that if the cryp-
tographic core is replaced by a known random permutation, there is a trivial
meet-in-the-middle attack. Related results can be found in [KS00]. It thus ma-
kes sense to consider the strength of the MARS core rounds alone, in order to
try to evaluate the ultimate strength of MARS against various kinds of attack.

Both forward and backward core rounds use the same E function, which
takes one 32-bit input and two subkey words, and provides three 32-bit words.
The only difference between forward and backward rounds is the order in which
the outputs are combined with the words. For more details of the MARS core
rounds, see [BCD+98,KS00].

Notation and Conventions. The notation we use here for considering the
MARS core rounds differs from the notation used in [BCD+98]. One forward
core round may be represented as follows:

1. (Ai−1, Bi−1, Ci−1, Di−1) are the four 32-bit words input into round i.
2. (Ai, Bi, Ci, Di) are the four 32-bit output words from round i.
3. The two round keys are K+

i and K×
i .

4. K+
i has 32 bits of entropy; K×

i has just under 30 bits of entropy, because it
is always forced to be congruent to 3 modulo 4. The full round thus has 62
bits of key material.

5. One forward core round may be expressed as:

F×
i = ((Ai−1 ≪ 13)×K×

i ) ≪ 10
F+

i = (Ai−1 + K+
i ) ≪ (F×

i ≫ 5)
F s

i = (S[low nine bits (Ai−1 + K+
i )]⊕ (F×

i ≪ 5)⊕ F×
i ) ≪ F×

i

Di = Ai−1 ≪ 13
Ai = Bi−1 + F s

i

Bi = Ci−1 + F+
i

Ci = Di−1 ⊕ F×
i

We find this notation easier to follow than the original MARS paper’s not-
ation, and so will use it for the remainder of this paper. On pages 12–13 of the
original MARS submission document, these values are referred to as follows:

– F s is referred to as either out1 or L.
– F+ is referred to as either out2 or M .
– F× is referred to as either out3 or R.
– K+ is referred to as K.
– K× is referred to as K ′.
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Useful Properties. The MARS core function is difficult to attack for many
rounds. However, there are a number of useful properties which we have been
able to use to good effect in analyzing the cipher. These include:

1. For A = 0, F× is always zero, F s is S[low nine bits of K+], and F+ is always
K+.

2. There is a three-round truncated differential (0, 0, 0, δ0) → (δ1, 0, 0, 0) with
probability one.

3. The multiply operation can only propagate changes in its input toward its
higher-order bits. This leads to a number of probability one linear characte-
ristics for small numbers of rounds, one of which we will use in an attack,
below.

Showing Differentials and Truncated Differentials. In the remainder of
this section, we will represent differentials as 4-tuples of 32-bit words, such as
(0, 0, 0, 231). We will represent truncated differentials in the same way, but with
variables replacing differences that are allowed to take on many different values,
as in (0, 0, 0, x), which represents the a difference of zero in the first three words
of the block, and an unknown but nonzero difference in the last word of the
block. Differences within a word will be shown as sequences of known zero or
one bits, “dont care” bits, or variables. Thus, to show a word whose high 15
bits are zeros, whose 16th bit may take on either value, and whose low 16 bits
we don’t care about, we would use (015, a, ?16). If we have a difference in which
the first three words are zero, and the last word has its high 15 bits zero, its
16th bit able to take on either value, and with all other bits unimportant for the
difference, we would show this as (0, 0, 0, (015, a, ?16)).

Sending a Counter Through Three Rounds of the MARS Core. Here is
one additional property of the MARS core that turns out to be very useful: We
can send a counter through three rounds of MARS core by choosing our inputs
correctly.

Consider a set of inputs (0, t, u, i), where t, u are random 32-bit words, and
i is a counter that takes on all 232 possible values. After three rounds, this goes
to (i + v, w, x, y), where v, w, x, y are all 32-bit functions of t, u.

When t, u are held constant, we get a set of 232 texts whose A3 values run
through all possible values in sequence. We don’t know the specific values, but
for any additive difference, δ, we can identify 232 pairs with that difference after
three rounds.

Similarly, we can choose a restricted set of i values. For example, if we run i
through all values between 0 and 255, we get 128 different pairs with a difference
of 128. This will prove useful in later attacks.

In 3.3, the property described here will be exploited to mount a far more
powerful attack on the MARS core.
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3.2 Attacking MARS with a Simple Amplified Boomerang

The MARS core has a three-round differential characteristic with probability
one: (0, 0, 0, 231)→ (231, 0, 0, 0). It also has a three-round truncated differential
with probability one: (0, 0, 0, α) → (β, 0, 0, 0). We can use these two characteri-
stics to mount a boomerang-amplifier attack through six rounds of the cipher.

We request about 248 input pairs X2i, X2i+1, such that X2i ⊕ X2i+1 =
(0, 0, 0, 231). As we described above, these pairs are encrypted to pairs Y2i, Y2i+1
such that Y2i ⊕ Y2i+1 = (231, 0, 0, 0).

After we have about 248 such pairs, we expect to have one pair (i, j) such that
Y2i⊕Y2j = (0, 0, 0, α) for any α 6= 0. For this pair, we can solve for Y2i+1⊕Y2j+1;
we get (0, 0, 0, α) in that difference as well.

We thus get two right input pairs after round three, and two right output
pairs from round six. Among 248 right input pairs, we have about 295 pairs of
right input pairs. Since the probability of randomly getting an output pair with
difference (β, 0, 0, 0) for any β 6= 0 is 2−96, and since we expect one 4-tuple with
two such output pairs, we will easily distinguish six rounds of MARS core from
a random permutation.

3.3 A Boomerang-Amplified Differential-Linear Attack on Eleven
Rounds

We can combine the above idea with two other properties of the MARS core
to build a much more powerful attack, which is properly classified as either a
boomerang-amplified differential-linear attack, or a boomerang-amplified trun-
cated-differential attack. Our attack consists of the following:

1. We choose inputs so that we get batches of 280 texts following the pattern

(s, t, u, v), (s + 1, t, u, v), (s + 2, t, u, v), ..., (s + 279, t, u, v)

We use the technique described in section 3.1 to do this.
2. We request 257 such batches, so that we can expect a pair of batches with

a truncated difference δ = (0, 0, 0, (?13, 017, ?2)) between each corresponding
pair of texts in the batch. That is, after round three, the first elements of
one pair of batches have the following relationship:

v∗ − v = δ

s∗ − s = t∗ − t = u∗ − u = 0

It follows by simple arithmetic that the ith elements of the pair of batches
have difference (0, 0, 0, δ). Note that this is an additive difference.

3. When we get this right pair of batches, we get 280 pairs with this additive
difference into the output of round three. This means we get 280 right pairs
in the output of round six.

4. We are then able to cover two more rounds with a linear characteristic with
p ≈ 1.
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5. We guess our way past the last two full rounds, and past part of the third
round from the end. This gives us a part of the output from the eighth round.
This requires 62 bits for each full round, and 39 bits for the partial guess,
thus a total of 163 bits guessed.

6. For each of the 257 batches, we extract the linear characteristic from the
output of the eighth round of each of the 280 texts. We thus get a 280-bit
string from each batch, for each partial key guess.

7. For each key guess, we build a sorted list of these 280-bit strings, and find
the match. The probability of finding a match of a 280-bit string in 257 texts
is about 2−167; we are trying to find a match for 2163 different key guesses.
Thus, we expect to have no false matches, and we are vanishingly unlikely
to have more than a small number of false matches.

Getting the Right Difference Between the Batches. Consider only the
first element in each batch. There are 257 such elements. We need one pair such
that after round three, it has a truncated difference of (0, 0, 0, (?13, 017, ?2)); that
is, with all but 15 of its bits zeros. The probability of a random pair of texts
having this difference is 2−113. There are about 2113 pairs of these texts, and so
we expect this difference to happen about once.

When this difference happens between the first elements of a pair of batches,
it is easy to see that it must also occur between the second elements, and the
third, and so on. We thus get a right pair of batches, yielding 280 right pairs in
the output from round three.

The Linear Characteristic/Truncated Differential. Consider a single pair
of texts with the difference (0, 0, 0, (?12, a, 017, ?2)) at the output of round three,
where a is a single unknown bit. We care only about bit a in our attack. When
we originally developed this attack, we thought in terms of a differential-linear
characteristic with probability one. In this case, this is equivalent to a truncated
differential with only one bit specified. Here, we describe this in terms of the
truncated differential attack.

First, we note that with probability of very nearly one (1 − 2−17), a will
be unchanged for any given pair of corresponding texts after round six, in
the output truncated difference ((?12, a, ?19), 0, 0, 0). The probability that this
doesn’t change for any corresponding pair of texts in the right pair of batches
is about 0.998. (The number of times a changes is binomially distributed, with
n = 280, p = 2−17.)

In the seventh round, bit a is rotated to the low-order bit input into the
multiply operation; this means that bit ten of F×

7 is a. This is a “backward” core
round, so the output from the seventh round leaves us with truncated difference
((?21, a, ?10), ?, ?, ?). In the next round, the leftmost word is changed only by
being rotated. We thus get the following truncated difference in the output from
the eighth round: (?, ?, ?, (?7, a, ?23)).

This single bit appears as a constant in the differences for all 280 correspon-
ding pairs of the right pair of batches.
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Guessing Key Material. We guess the low nine bits of K+
9 , and the full 30-bit

K×
9 . This allows us to backtrack through fs

9 , and thus to recover bit a for all the
texts. We then guess our way past rounds ten and eleven by guessing 62 bits for
each round.

Required Resources for the Attack. We attack eleven rounds of MARS
core; five forward and six backward.

We request 257 batches of 280 texts each, and thus must request a total of
about 265 chosen plaintexts. We get a batch of 265 ciphertexts back out, which
we must store and then examine to mount our attack.

We must guess our way past two full MARS core rounds (at a cost of 62 bits
each), plus part of a third MARS core round (at a cost of 39 bits). We thus must
guess a total of 163 bits. We must try 2163 times to find a match, once per key
guess.

For each key guess, we have to do the following steps:

1. Do the partial decryption on about 265 ciphertexts, and extract one bit per
ciphertext, at a cost of about 265 partial decryptions.

2. Arrange the resulting bits as 257 280-bit strings.
3. Sort the 280-bit strings, at a cost of about 57×257 ≈ 263 swapping operations’

work.

To simplify our analysis, we assume that the work of doing the 265 partial
decryptions dominates the work of sorting the 280-bit strings; we thus require
about 2163 × 265 = 2228 partial decryptions’ work to mount the attack.

The total memory required for the attack is 270 bytes, sufficient for 266 ci-
phertexts.

4 Boomerang-Amplifiers and Serpent

Serpent is a 32-round AES-candidate block cipher proposed by Ross Anderson,
Eli Biham, and Lars Knudsen [ABK98]. In this section we show how one can
apply the amplified boomerang technique to reduced-round Serpent variants.
Additional attacks against reduced-round Serpent can be found in [KKS00].
Unlike those used in MARS, the differentials used in our attacks on Serpent do
not have probability one.

4.1 Description of Serpent

Serpent is a 32-round block cipher operating on 128-bit blocks. The Serpent
design documentation describes two versions of Serpent: a bitsliced version and
a non-bitsliced version. Both versions are functionally equivalent. The difference
between the bitsliced and non-bitsliced versions of Serpent is the way in which
the data is represented internally. In this document we shall only consider the
bitsliced version of Serpent.

Let Bi represent Serpent’s intermediate state prior to the ith round of en-
cryption; B0 is the plaintext and B32 is the ciphertext. Let Ki represent the 128
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bit ith round subkey and let Si represent the application of the ith round S-box.
Let L represent Serpent’s linear transformation (see [ABK98] for details). Then
the Serpent round function is defined as:

Xi ← Bi ⊕Ki

Yi ← Si(Xi)
Bi+1 ← L(Yi) i = 0, . . . , 30
Bi+1 ← Yi ⊕Ki+1 i = 31

In the bitsliced version of Serpent, one can consider each 128-bit block Xi

as the concatenation of four 32-bit words x0, x1, x2, and x3. Pictorially, one
can represent Serpent’s internal state Xi using diagrams such as the following:
Serpent uses eight S-boxes Si where the indices i are reduced modulo 8; e.g.,

S0 = S8 = S16 = S24. Each S-box takes four input bits and produces four output
bits. The input and output nibbles of the S-boxes correspond to the columns in
the preceding diagram (where the most significant bits of the nibbles are the
bits in the word x3).

We use X ′ to represent an xor difference between two values X and X∗.

4.2 Distinguishing Seven Rounds of Serpent

Let us consider a seven-round Serpent variant E1 ◦E0 where E0 corresponds to
rounds one through four of Serpent and E1 corresponds to rounds five through
seven of Serpent.

There are several relatively high-probability characteristics through both hal-
ves of this seven round Serpent variant. Let us consider two such characteristics
B′

1 → Y ′
4

and B′
5 → Y ′

7

where B′
1 → Y ′

4 is a four-round characteristic through E0 with probability 2−31

and B′
5 → Y ′

7 is a three-round characteristic through E1 with probability 2−16.
Additional information on these characteristics can be found in [KKS00].

We can immediately combine these two characteristics to form a seven round
boomerang distinguishing attack requiring 295 chosen plaintext queries and 295

adaptive chosen ciphertext queries. Using the amplified boomerang technique,
however, we can construct a chosen-plaintext only distinguishing attack requiring
2113 chosen plaintext queries.
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The details of the attack are as follows. We request 2112 plaintext pairs
with our input difference B′

1. After encrypting with the first half of the cipher
E0, we expect roughly 281 pairs to satisfy the first characteristic B′

1 → Y ′
4 .

There are approximately 2161 ways to form quartets using these 281 pairs. We
expect there to be approximately 233 quartets (Y 0

4 , Y 1
4 ) and (Y 2

4 , Y 3
4 ) such that

Y 0
4 ⊕Y 2

4 = L−1(B′
5). However, because (Y 0

4 , Y 1
4 ) and (Y 2

4 , Y 3
4 ) are right pairs for

the first half of the cipher, and Y 0
4 ⊕Y 1

4 = Y 2
4 ⊕Y 3

4 = Y ′
4 , we have that Y 1

4 ⊕Y 3
4

must also equal L−1(B′
5). In effect, the randomly occurring difference between

Y 0
4 and Y 2

4 has been “amplified” to include Y 1
4 and Y 3

4 .
At the input to E1 we expect approximately 233 quartets with a difference

of (B′
5, B

′
5) between the pairs. This gives us approximately two quartets after

the seventh round with an output difference of (Y ′
7 , Y ′

7) across the pairs. We can
identify these quartets by intelligently hashing our original ciphertext pairs with
our ciphertext pairs xored with (Y ′

7 , Y ′
7) and noting those pairs that collide. In

a random distribution, the probability of observing a single occurrence of the
cross-pair difference (Y ′

7 , Y ′
7) is approximately 2−33.

4.3 Eight-Round Serpent Key Recovery Attack

We can extend the previous distinguishing attack to an eight-round key-recovery
attack requiring 2113 chosen plaintext pairs, 2119 bytes of memory, and work
equivalent to approximately 2179 eight-round Serpent encryptions. This attack
covers rounds one through eight of Serpent. If we apply the linear transformation
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L to Y ′
7 we get the difference:

Given 2113 chosen plaintext pairs with our input difference B′
1, we expect

approximately eight pairs of pairs with cross-pair difference (Y ′
7 , Y ′

7) after the
seventh round. This corresponds to eight pairs of pairs with difference (B′

8, B
′
8)

entering the eighth round. By guessing 68 bits of Serpent’s last round subkey K9,
we can peel off the last round and perform our previous distinguishing attack.

5 Conclusions

In this paper, we have introduced a new kind of attack that is closely related
to the boomerang attack of Wagner [Wag99]. We have applied this attack to
reduced-round versions of both the MARS core and of Serpent.

5.1 Related Attacks

There is a set of related attacks, including the miss-in-the-middle, boomerang,
and amplified boomerang attacks, which deal with pairs of differentials that reach
to the same point in the intermediate state of the cipher, but which don’t connect
as needed for conventional attacks. A miss-in-the-middle attack gives us three
texts in the middle that can’t fit a certain second-order differential relationship.
A boomerang or amplified boomerang gives us a 4-tuple that does fit a certain
second-order differential relationship. However, these are different from standard
higher-order differential attacks in that the second-order differential relationship
doesn’t continue to exist through multiple rounds. Instead, this relationship
serves only to connect pairs of texts with a first-order differential relationship in
the middle of the cipher.

In some sense, this is similar to the way structures are used with higher-order
differential relationships, in order to use first-order differentials more efficiently.
Thus, we might have two good differentials through the first round that will get
us to our desired input difference:

∆0 → ∆1

∆2 → ∆1

It’s a common trick to request X, X ⊕∆0, X ⊕∆2, X ⊕∆0 ⊕∆2, which will
give us four right pairs, two for each differential, for the price of only four texts.
We’re requesting a 4-tuple of texts with a second-order differential relationship,
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but it doesn’t propagate past the first round. This is a second-order differential
attack in exactly the same sense as the boomerang and amplified boomerang
attacks are second-order differential attacks.

The boomerang and boomerang-amplifier attacks are, in some sense, a new
way of building structures of texts inside the middle of the cipher. These struc-
tures have a second order relationship, which allows the four texts to take part
in four right pairs. However, in the boomerang and boomerang-amplifier attacks,
two of the right pairs go through the first half of the cipher, and two go through
the second half of the cipher.

5.2 Applying the Attack to Other Algorithms

We have not yet applied this attack to other algorithms besides MARS and
Serpent. However, there is a common thread to situations in which the attack
works: We need to be able to get through many rounds with some differential
that has reasonably high probability. In the case of the MARS core, there are
probability one differentials for three rounds, simply due to the structure of the
cipher. In the case of Serpent, the probability of a differential characteristic is
primarily a function of the number of S-boxes in which the difference is active
across all rounds of the characteristic. Differences spread out, so that it is possible
to find reasonably good characteristics for three or four rounds at a time, but
not for larger numbers of rounds, since by then the differences have spread to
include nearly all the S-boxes.

Applying this general class of attack to other ciphers will be the subject of
ongoing research.

It is worth repeating, however, that this technique does not endanger either
Serpent or MARS. In the case of MARS, the cryptographic core is jacketed with
additional unkeyed mixing and key addition/subtraction layers, which would
make chosen-plaintext attacks like this one enormously more expensive (more
expensive than exhaustive search), even if our attack worked against the full
cryptographic core. In the case of Serpent, the large number of rounds prevents
our attack from working against the full cipher.
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Abstract. In this paper the block cipher RC6 is analysed. RC6 is sub-
mitted as a candidate for the Advanced Encryption Standard, and is one
of five finalists. It has 128-bit blocks and supports keys of 128, 192 and
256 bits, and is an iterated 20-round block cipher. Here it is shown that
versions of RC6 with 128-bit blocks can be distinguished from a random
permutation with up to 15 rounds; for some weak keys up to 17 rounds.
Moreover, with an increased effort key-recovery attacks faster than ex-
haustive key search can be mounted on RC6 with up to 12 rounds for
128 bit keys, on 14 rounds for 192 bit keys and on 15 rounds for 256 bit
keys.
Keywords. Cryptanalysis. Block Cipher. Advanced Encryption Stan-
dard. RC6.

1 Introduction

RC6 is a candidate block cipher submitted to NIST for consideration as the
Advanced Encryption Standard (AES). RC6 (see [12]) is an evolutionary deve-
lopment of RC5. Like RC5, RC6 makes essential use of data-dependent rotations.
New features of RC6 include the use of four working registers instead of two,
and the inclusion of integer multiplication as an additional primitive operation.
RC6 is a parameterized family of encryption algorithms, where RC6-w/r/b is
the version with word size w in bits, with r rounds and with an encryption key
of b bytes.

The AES submission is the version with w = 32, r = 20, and RC6 is a
shorthand notation for this version, whereby the key length can be b = 16, 24,
and 32 bytes, respectively. In [4,5] the security of RC6 has been evaluated with
respect to differential and linear cryptanalysis. It was concluded that RC6 is
secure with respect to differential cryptanalysis for 12 or more rounds. For linear
cryptanalysis, some variants are considered in [4]. It was found that a two-round
iterative linear approximation leads to the most effective basic linear attack
applicable up to 13 rounds. However, no specific method for key-recovery was
given. Furthermore, in [4] some potential enhancements of linear attacks using
multiple approximations and linear hulls are sketched, and it is estimated that
16 rounds of RC6 can be attacked using about 2119 known plaintexts. These
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Input: Plaintext stored in four w-bit registers A, B, C, D
Number r of rounds
w-bit round keys S[0], ..., S[2r + 3]

Output: Ciphertext stored in A, B, C, D

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do
{

t = (B × (2B + 1)) << lg w
u = (D × (2D + 1)) << lg w
A = ((A⊕ t) << u) + S[2i]
C = ((C ⊕ u) << t) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)

}
A = A + S[2r + 2]
C = C + S[2r + 3]

Fig. 1. Encryption with RC6-w/r/b.

additional considerations on linear cryptanalysis were used to set a suitable
number of rounds for RC6 to be r = 20.

In this paper we investigate two-round iterations which are quite different
from those considered in [4]. Instead of tracing bitwise linear approximations,
we consider input-output dependencies by fixing the least significant five bits
in the first and third words of the input block. The correlations of the corre-
sponding two 5-bit integer values at the output are caused by specific rotation
amounts in the data dependent rotations and can be effectively measured by χ2

tests. As confirmed by extensive experiments, this leads to an efficient statistical
analysis which considerably improves over the basic linear attack. Estimates of
the complexity of our analysis imply that reduced round versions of RC6 with
up to 15 rounds are not random.

The linear attacks in [4] deal with correlations between input and output
bits, but they do not involve key bits, whereas our statistical analysis can be
used to develop a method to find all round subkeys.

This attack is faster than an exhautive key search for the 128-bit version of
RC6 with up to 12 rounds, and for the 192-bit and 256-bit versions of RC6 with
up to 14 and 15 rounds.

After completion of the first report of this work [9], our attention was drawn
to an earlier result by Baudron et al in [1] where an attack similar to ours is
outlined. (See also [6].) These results have since been written up in [2].

In the following we briefly recall the description of RC6, see Figure 1.
For a detailed description we refer to [12]. The user-key has length b bytes

and the 4w-bit plaintext block is loaded into words A, B, C, D. These four w-bit
words also contain the ciphertext at the end. The key-schedule (see [12]) expands
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the user-key into subkeys S[0], S[1], ..., S[2r + 3]. In our considerations we shall
not make use of the detailed description of the key-schedule, but we assume the
subkeys to be uniformly random. To describe the encryption algorithm the follo-
wing notation is used: (A, B, C, D) = (B, C, D, A) means the parallel assignment
of values on the right to registers on the left. Moreover, a × b denotes integer
multiplication modulo 2w, a << lg w means fixed rotation of the w-bit word a
by lg w, the base-two logarithm of w, and a << b denotes rotation of a to the
left by the amount given by the least significant lg w bits of b.
This paper is organized as follows: In section 2 we review χ2 tests as a useful tool
to detect nonuniformness in probability distributions. In Section 3 the relations-
hip between small rotation amounts and correlation in RC6 is investigated and
a class of weak keys is identified. In Section 4 distinguishing and key-recovery
attacks are developed, and in Section 5 we draw some conclusions.

2 χ2 Tests

In this section we recall how to distinguish a random source with unknown
probability distribution pX from a random source with uniform distribution pU .
A common tool for this task is the χ2 test, which is briefly recalled together
with some useful facts (see e.g., [7], [8], [10], [13]). We shall later use χ2 tests to
detect correlation between specific input and output subblocks of r-round RC6.

Let X = X0, X1, ..., Xn−1 be independent and identically distributed random
variables taking values in the set {a0, a1, ..., am−1} with unknown probability
distribution. Then the χ2 test is used to decide if an observation X0, X1, ..., Xn−1
is consistent with the hypothesis Pr{X = aj} = p(j) for 0 ≤ j < m, where
pX = {p(j)} is a (discrete) probability distribution on a set of m elements. Let
Naj

(X) denote the number of times the observation X takes on the value aj .
Then obviously

∑
i Naj (X) = n. The χ2 statistic is the random variable defined

by

χ2 =
m∑

j=1

(Naj (X) − np(j))2/np(j) (1)

For the uniform distribution pU , the χ2 statistic is just m/n
∑

i(Naj (X)−n/m)2.
In a χ2 test, the observed χ2 statistic is compared to χ2

a,m−1, the threshold for
the χ2 test with m − 1 degrees of freedom and with significance level a. In our
investigation of RC6, we shall specifically need the threshold values for 1023
degrees of freedom, as shown in Tables 1 and 2. For example, the entry 1131 for
0.99 in Table 1 says that the expression m/n

∑
i(Naj (X) − n/m)2 for large n

will exceed 1131 only in 1% of the time, provided the underlying distribution of
the observation X is indeed uniform.
For practical experiments the question arises how large the size n of the observa-
tion should be in order to detect that a distribution pX is nonuniform. In order
to estimate n, consider the bias of a probability distribution pX defined by the
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Table 1. Selected threshold values of the χ2 distribution with 1023 degrees of freedom.

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999 0.9999

χ2 1022 1033 1046 1060 1081 1098 1131 1168 1200

Table 2. Selected threshold values of the χ2 distribution with 1023 degrees of freedom.

Level 1− 2−16 1− 2−24 1− 2−32 1− 2−48 1− 2−64

χ2 1222 1280 1330 1414 1474

distance measure
||pX − pU || =

∑

j

(pX(j) − pU (j))2 (2)

From [7] we quote the expected value of the χ2 statistic (1) of a distribution pX ,
as well as some useful conclusions:

EXχ2 = nm||pX − pU || + m − m||pX || (3)

For the case of the uniform distribution this implies EUχ2 = m− 1. Moreover it
follows that for n = c/||pX −pU || the expected value is EXχ2 = cm+m−m||pX ||.
Since in practical cases often ||pX || ≈ ||pU ||, this simplifies to EXχ2 ≈ (c+1)m−
1. Thus EXχ2 differs from EUχ2 significantly, if c = Ω(1). As a conclusion, the
size n = c/||pX − pU || of the observation suffices to distinguish a source with
distribution pX from a source with uniform distribution. Clearly, the constant c
needs to be larger for higher significance level a.

3 Correlations in RC6

In [4], under the title of Type I Approximations, a two-round linear approxi-
mation has been studied which is based on small rotation amounts in the data
dependent rotations. This linear approximation is described by (A·et)⊕(C ·es) =
(A′′ · eu) ⊕ (C ′′ · ev). Here A and C are the first and third words of some inter-
mediate data, A′′ and C ′′ are the first and third words of the intermediate data
after a further two rounds of encryption in RC6, and et denotes the 32-bit word
with a single one in the tth least significant bit position. It has been noticed that
for t = s = u = v = 0 the case where both rotation amounts are zero in the first
of the two rounds leads to a bias of 2−11. This is derived by using the piling-up
lemma and the fact that the second and fourth words remain unchanged in the
second round. If t, s, u, v are nonzero but less than 5, there is a smaller bias,
which depends on the values of t, s, u, v. Note that no key bits are involved in
the approximation.

In our approach we do not consider the XOR of single bits in the first and
third words. Instead we fix each of the least significant five bits in words A and
C of the input and investigate the statistics of the 10-bit integer obtained by
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concatenating each of the least significant five bits in words A′′ and C ′′ every
two rounds later. This is motivated by the fact that the least significant five bits
in A and C altogether are not changed by the xor and data dependent rotation if
both rotation amounts are zero. More generally, we can expect a bias for amounts
smaller than five. As we shall demonstrate, this leads to much stronger biases
which can be iterated over many rounds, just as linear approximations. In this
way we can consider small rotation amounts as a single event, in which amounts
near zero from the negative, like 30 or 31, prove to be useful as well.

3.1 Small Rotation Amounts

To see the effect of small rotation amounts on the values of the least significant
five bits in the first and third words in RC6, we implemented the following tests
with 4 rounds:

Let us denote by (a, b) the two amounts in the data dependent rotations in
the first round. To measure the effect on the distribution of the target bits, we
forced the values of a and b by taking appropriate plaintexts and we computed
the χ2-value of the 10-bit integers after 4 rounds. For each experiment we took
218 texts to get a big χ2-value to clearly measure the effect.

Table 3. Statistical effect of small rotation amounts

a, b χ2

0,0 2775

0,31 2107

0,1 1998

31,31 1715

1,1 1643

0,30 1633

0,2 1572

30,31 1388

1,2 1326

0,3 1306

0,4 1145

0,5 1053

By the symmetry in the design of RC6, it can be expected that (a, b) gives the
same χ2-value as (b, a).

We observe that the χ2-values for all pairs (a, b) with |a| < 5 and |b| < 5
are significantly higher than the expected value 1023 for uniform 10-bit integers.
Note that these tests suggest that we get similar χ2-values for constant values of
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the “distance” |a − 32| + |b − 32| (mod32): The pairs (0,31) and (0,1) both have
distance 1 and similar χ2-values, and the pairs (1,1),(0,2), (31,31), and (0,30) all
have distance 2 and have similar χ2-values.

Let us take a closer look at how the above observations lead to a nonuniform
distribution. Assume that the least significant five bits of plaintext words A and
C are fixed, e.g., to zero bits. Let us denote by X the concatenation of the
least significant five bits of the ciphertext words A and C after two rounds of
encryption. In this example, for illustration, we will ignore the addition of the
subkeys in the output transformation, and also we will assume that the least
significant five bits of both round keys S[2] and S[3] are zero. Denote by t5 and
u5 the least significant five bits of t and u, see Figure 1. Then in the first round,
if t5 = u5 = 0, then X will be zero. Since the function f is a permutation,
t5 and u5 will be zero with a probability of 2−5 each. If we assume that for
|t5| ≥ 5 and |u5| ≥ 5, the values of X are distributed uniformly at random, the
probability that X is zero is at least 2−10+(23/32·1/32)2 ' 2−10+2−10.95. With
rotations t5 = 1, u5 = 0, X will take the possible values (in bits) 0000b00001,
where ‘b’ is a random bit. With rotations t5 = 0, u5 = 1, X will take the possible
values (in bits) 000010000b. Thus, X = 0000100001 with probabilty at least
2 · 2−11 + (23/32 · 1/32)2. Note that both these estimates are lower bounds.
E.g., in the case where t5 = u5 = 4, X will take the possible values (in bits)
0b1b2b3b40b5b6b7b8, and in the case where t5 = 1, u5 = 16, X will take the
possible values (in bits) b1b2b3b4b50000b6, where the bis are random bits. Thus,
X can take both the values 0000000000 and 0000100001 also in these cases.

It has been clearly demonstrated that the distribution of X is nonuniform.
Note that although it was assumed that the involved subkey bits were zero, it
follows easily that the nonuniformity remains when these key bits are randomly
chosen.

3.2 χ2 Statistic of RC6

Here, we investigate the nonrandomness of r-round versions of RC6. This analysis
is based on systematic experiments on increasing numbers of rounds of RC6 with
varying word length w. Our method is used to demonstrate that detecting and
quantifying nonrandomness is experimentally feasible up to 6 rounds of RC6.

For this purpose, the least significant lg w bits in words A and C of the input
are fixed to zero. Depending on the experiment and the number of rounds, the
remaining input bits are either chosen randomly, or more of the remaining input
bits are suitably fixed so that one (or both) of the data dependent rotations are
zero. In our tests, we persue the χ2 statistic of the integer of size twice lg w bits
as obtained by concatenating the least significant lg w bits in words A′′ and C ′′

every two rounds later.
In the experiments, we consider versions of RC6 with word size w = 8, 16

and 32 bits, respectively (w = 32 corresponding to the AES candidate RC6).
It is instructive to see that the general behaviour of the χ2 test for increasing
numbers of rounds in all three cases is very similar. To judge the outcome of
these χ2 tests note that for the word sizes w as considered, 6-bit, 8-bit and 10-bit
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integers are tested at the output. Hence the numbers of freedom are 63, 255 and
1023 respectively, and these numbers coincide with the expected value of the χ2

statistic, provided the distribution to be tested is uniform.
Subsequently we discuss the results of implemented tests in more detail,

where the keys are chosen at random.

32-bit RC6. First consider a version of RC6 with block length of 32 bit. This
corresponds to the case w = 8, which is shown in Table 4. For r = 2 and r = 4
rounds more than one entry is given. The first entry shows a number of texts,
measured in powers of two, which is necessary to detect that the mean of the
χ2 values over 20 tests is higher than the expected value 63 if the distribution
would be random. The other entries show a significant increase of this mean if
the number of plaintexts is doubled, thus a strong deviation from the uniform
distribution. For 28, 217 and 226 texts and correspondingly for 2, 4 and 6 rounds,
the χ2 values are approximately the same. Thus we have to increase the number
of plaintexts by the same factor 29 for every two more rounds to get a comparable
statistical deviation as measured by the χ2 test. For this small version of RC6
we cannot go beyond 6 rounds, as we have to fix 6 input bits, and for 6 rounds
we already need 226 random texts.

Table 4. RC6 with 32-bit blocks and r rounds. Expected χ2 for a random function is
63.

r #Texts χ2 #Tests

2 28 77 20

2 29 107 20

4 216 68 20

4 217 73 20

4 218 83 20

6 226 78 20

64-bit RC6. Next consider the version of RC6 with word size w = 16, i.e. RC6
with 64-bit blocks. The results are shown in Table 5. Here the expected value
of the χ2 statistic is 255. Again a substantial increase is observed in the mean
for χ2-values if the number of texts is doubled. We notice that passing from 2
to 4 to 6 rounds, the averaged χ2-values increase slightly if the corresponding
number of plaintexts is increased by a constant factor of 213.

128-bit RC6. Consider now r-round versions of RC6 with word size 32 bits,
i.e. with round function as in the AES proposal. Table 6 shows the results of
implemented tests for r = 2 and r = 4 rounds. Recall that for 10-bit integers
the expected value of the χ2 statistic is 1023, and according to Table 1 the 95%
significance level is 1098 and the 99% significance level is 1131. Thus all tests as
reported in Table 6 are very unlikely to be produced by uniformly distributed
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Table 5. RC6 with 64-bit blocks and r rounds. Expected χ2 for a random function is
255.

r #Texts χ2 #Tests

2 210 283 100

2 211 308 100

2 212 364 100

4 223 286 100

4 224 318 100

6 236 298 10

10-bit integers. In fact for 4 rounds and 233 texts almost twice the expected value
for a uniform distribution is achieved.

Table 6. RC6 with 128-bit blocks and r rounds. Expected χ2 for a random function
is 1023.

r #Texts χ2 #Tests

2 213 1096 20

2 214 1196 20

2 215 1332 20

2 216 1649 20

2 217 2208 20

4 229 1096 20

4 230 1163 20

4 231 1314 20

4 232 1527 20

4 233 2054 20

Table 7 shows the results of tests with up to 6 rounds but with one or both data
dependent rotations in the first round to be fixed to zero. The last entry is the
result of a test run on eight processors of a Cray Origin 2000 computer. Both,
the experiments in Table 6 and in Table 7 demonstrate that for up to 6 rounds
each additional two rounds require roughly 216 times as many texts to get about
the same χ2-value on average. The first two entries of Table 7 again show an
increase of the χ2-values if the number of texts is doubled.
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Table 7. RC6 with 128-bit blocks and r rounds. Expected χ2 for a random function
is 1023.

r #Texts χ2 #Tests Comments

4 222 1124 20 zero rotation in 1. round at word D

4 223 1228 20 zero rotation in 1. round at word D

6 238 1106 1 zero rotation in 1. round at word D

3.3 A Possible Analytical Explanation

In this subsection we make an attempt to analytically predict the complexities
of the χ2 tests on RC6.

In the following, let X be the random variable representing the 10 bits as
considered in the ciphertexts after 2 rounds of encryption with RC6 in the tests
from the preceding section. Also, let Y and Z be the random variables represen-
ting these 10 bits in the ciphertexts after 4 respectively 6 rounds of encryption.
It follows from the description of RC6, that the 10 bits in the ciphertexts after
six rounds are not the exclusive-or of 10 biased bits from the first two rounds
and 10 biased bits from the next two rounds. This is due to the fact that the
data-dependent rotations in RC6 are performed after the exclusive-or with the
data from the previous rounds. Thus, a parallel to the Piling-Up Lemma used
by Matsui [11] does not seem to be applicable.

With the test results of the preceding section and the estimate from Sec. 2,
that with n = c/||pX − pU || texts one can expect a χ2-value of (c + 1)m, it is
possible to compute estimates of ||pX − pU ||, ||pY − pU ||, and ||pZ − pU ||.

64-bit RC6. The results of the tests in Table 5 yield the following estimates
for the distances:
||pX − pU || = 2−13.25, ||pY − pU || = 2−26.03, ||pZ − pU || = 2−38.57. Thus,
this is a clear indication that ||pY − pU || > ||pX − pU ||2, and that ||pZ − pU || >
||pX − pU || · ||pY − pU ||.

This gives perhaps more convincing evidence, that passing from s to s + 2
rounds in the tests of the preceding section, requires an increase in the texts
needed of a factor of a little less than 213.

128-bit RC6. The results of the tests in Table 6 with a χ2-value greater
than 1300 yield the following estimates for the distances:
2−16.79 ≤ ||pX − pU || ≤ 2−16.71, 2−33.02 ≤ ||pY − pU || ≤ 2−32.81. Again with a
clear indication that ||pY − pU || > ||pX − pU ||2.

This confirms the estimate from the preceding section that passing from s to
s + 2 rounds in the χ2-tests, requires an increase in the texts needed of a factor
of a little more than 216. Later, we will use the factor 216.2.

3.4 Weak Keys

The test results from the previous sections were given as an average over tests
using randomly chosen keys. There was some deviation of the single results, e.g.,
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the χ2-values of the tests for RC6 with 128-bit blocks and 4 rounds using 233

texts varied from 1731 to 2595 with an average of 2044. Thus, for some keys the
deviation is bigger than expected, for other keys it is lower than expected. In
this section we report on some weak keys, which perform better than the average
key. In Sec. 3.1 it was explained why there is a nonuniform distribution of the
10 target bits, and why for two rounds the involved key bits have no influence
on the nonuniformity of the target bits in the χ2-tests. However, when iterating
the tests to several rounds, the modular additions of round-key bits introduce
carry bits which affect the nonuniformity. For 4 rounds, the key bits that may
affect the nonuniformity are the five least significant bits of the round keys S[2]
and S[3]. When these bits are set to zeros, the χ2-value increases. Similarly, for
6 rounds the least significant five bits of the subkeys 2,3,6, and 7 may influence
the nonuniformity.

This is illustrated by a series of tests, the results of which are shown in
Table 8.

Table 8. RC6 with 128-bit blocks and r rounds for weak keys.

r #Texts χ2 #Tests Comments

4 230 1398 20 1 in 210 keys

6 230 1093 10 zero rotation in 1.round at B and D

6 230 1368 10 same, for 1 in 220 keys

For 4 rounds the “distance” to a uniform distribution is about 2−31.5 which
is more than a factor of two higher than for the results averaged over all keys.
For 6 rounds the distance to the uniform distribution is about 2−33.87 for the
second test of Table 8, and about 2−31.57 for the third test using weak keys.
Thus, a factor of more than 4.

4 Attacks on RC6

4.1 Distinguishing Attacks

It is possible to exploit the findings in the previous sections to distinguish RC6
with a certain number of rounds from a permutation randomly chosen from the
set of all permutations. In the previous sections we fixed bits in the first and third
plaintext words. As we shall see in the next section this makes good sense when
implementing key-recovery attacks. In a distinguishing attack it is advantageous
to fix the least significant five bits in the second and fourth words instead. It
follows that after one round of encryption the least significant five bits in the
first and third words of the ciphertext are constant. Table 9 lists the result of
tests implemented for RC6 with 128-bit blocks with 3 and 5 rounds. It follows
that 213.8 texts are sufficient to distinguish the 3-round encryption permutation



104 L.R. Knudsen and W. Meier

from a randomly chosen permutation in 90% of the cases. We estimate that for
RC6 with 3 + 2r rounds similar results will hold using 213.8+r×16.2 texts, which
is confirmed by tests implemented on RC6 with 5 rounds.

Note that the χ2 numbers of Table 9 for 3 rounds are slightly lower than
the numbers of Table 6 for 2 rounds. This stems from the fact that in the latter
tests, the least significant five bits of the first and third words of the plaintexts
were fixed to zeros. In a distinguising attack, one gets the first round “for free”,
by fixing totally 10 bits of the second and fourth words. However, as these
words are added modular 232 to subkeys in the input transformation, the least
significant five bits of the first and third words in the inputs to the second round
are nonzero, but constant, and there is an effect of carry bits by the addition of
subkeys after the second-round approximation.

We estimate that for keys where the least significant five bits of each of the
two subkeys in every second round are zeros, the attack improves with more
than a factor of two for each 2 rounds. This leads to the estimate that for one
in 280 keys, 17 rounds of RC6 with 128-bit blocks can be distinguished from a
randomly chosen permutation.

Table 9. Complexities for distinguishing RC6 with 128-bit blocks and r rounds from
a random function.

r #Texts χ2 Comments

3 213 1079 Implemented, average 20 tests

3 213.8 1100 Implemented, average 20 tests

3 214 1141 Implemented, average 20 tests

5 229 1054 Implemented, average 20 tests

5 230 1099 Implemented, average 20 tests

7 246.2 Estimated.

9 262.4 Estimated.

11 278.6 Estimated.

13 294.8 Estimated.

15 2111.0 Estimated.

17 ≤ 2118 Estimated. For 1 in every 280 keys.

4.2 Key-Recovery

As confirmed by several experiments, the χ2-value is significantly higher if inputs
are suitably fixed so that one (or both) of the data dependent rotations in the
first round of RC6 are zero. Clearly, the choice of the right input depends on
knowledge of the subkey S[0] (or S[1], respecively). We now describe how the
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considerations and experimental results of previous sections can be exploited for
key recovery. Thereby we restrict to 128-bit RC6 with word size 32 bits.

In the following we will assume that to get similar values in a χ2-test on s+2
rounds compared to s rounds requires a factor of 216.2 additional plaintexts.
Recall that we always fix the least significant five bits in words A and C. In
addition suppose we fix inputs so that the data dependent rotation is zero in
the first round at word D. Then with a factor of about 28.1 less plaintexts we
achieve a similar χ2-value as for random inputs at word D (e.g. compare row 7
in Table 6 with the first row in Table 7). For symmetry reasons, the same holds
if inputs at word B are fixed.

With regard to inputs at word D (or B), some comments related to the
multiplication in RC6 are in order. The data dependent rotation amounts are
determined by the five leading bits of the output of the permutation as given
by the multiplication D × (2D + 1) (see Figure 1). The permutation function
restricted to these five output bits is therefore balanced. Rather than fixing
inputs we can restrict to inputs leading to these five bits being zero, resulting in
more freedom for choosing plaintexts. For efficiency we can prepare a table T of
the 227 inputs to the permutation giving zero rotation. Thus for the correct key
S[1] we can choose 227 different inputs at word D, all leading to zero rotation
in the right half of the first round. (Alternatively, we can enlarge the table, and
also accept inputs giving rotation amount 1 or -1, which still lead to increased
χ2-values.) To test a fixed trial key S[1] we thus can roughly choose amongst
2113 plaintexts at random.

The attack goes as follows, choose plaintexts such that the least significant
five bits of the first and third words are zeros. Prepare an array with 210 entries
for each value of the subkey S[1]. For each plaintext use the table T as prepared,
to determine the values of S[1] which lead to a zero rotation at word D. For
each such value, update each array by incrementing the entry corresponding
to the value obtained from the 10 target bits of the ciphertext. Each array is
used to find the probability distribution of the 10 target bits. Repeat the attack
sufficiently many times, until one array has a significantly higher value in the
χ2-test.

For an estimate of the complexity to recover subkey S[1], consider r-round
versions of RC6 with r even. For each trial key S[1] we perform a χ2 test with

213 × (216.2)
r−2
2 × 2−8.1 (4)

plaintexts as described. Then for the correct choice of S[1] the χ2-value is expec-
ted to be around 1100, that is, significantly higher than 1023. For each key which
produces an expected χ2-value, repeat the attack with additional plaintexts.

To rule out all false values of the key, we increase the number of texts by
up to a factor of 23. Enlarging the amount of plaintexts by this factor has the
effect of a substantial increase of the χ2-value, as observed in our experiments
(see the tables in Section 3). Thus, to single out the correct key out of suggested
key values we would need about 216 × (216.2)

r−2
2 × 2−8.1 texts. And since only
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one in every 25 texts gives the desired zero rotation at word D, the total number
of plaintexts needed is

25 × 216 × (216.2)
r−2
2 × 2−8.1 = 2r×8.1−3.3.

The amount of work is estimated as follows. For each plaintext in the attack,
we update the counters of at most 227 keys. If we assume that after the first two
iterations of the attack, the number of remaining keys are reduced by a factor
of 4 or more, we obtain a complexity of

227+r×8.1−5.3 = 221.7+r×8.1,

where one unit is the time to update one entry of one array of size 210 of totally
232 arrays.

After S[1] is correctly found, subkey S[0] can be determined with a reduced
amount of texts and work. Knowing S[0] and S[1], the data dependent rotations
in the first round can be fixed to zero without effort. Thus the χ2 tests can
now be applied by controlling inputs to the second round. This enables finding
subkeys S[2] and S[3] in much the same way as we did for S[0] and S[1]. After
this we peel of the first round and proceed to determine the other subkeys.

This attack is faster than an exhaustive key search for the 128-bit key version
of RC6 with up to 12 rounds, and for the 192-bit and 256-bit versions of RC6
with up to 14 rounds. Table 10 lists the complexity for 12, and 14 rounds of
RC6. For 16 rounds the number of texts needed is 2126.3 and thus exceeds the
number of available texts of 2118.

For key sizes 192 bits and 256 bits the computational effort for searching
subkeys can be larger. Thus for a 192-bit key we can do a simultaneous search
over S[0] and S[1], thereby improving the χ2 statistic by two rounds. In addition,
we increase the factor 23 to 24 in order to single out the correct pair S[0],
S[1] among the remaining pairs. Here only one in every 210 plaintexts give zero
rotations at words B and D. The number of plaintexts needed for this version
of the attack is

210 × 217 × (216.2)
r−2
2 −1 = 2r×8.1−5.4,

and the time complexity is

254+r×8.1−7.4 = 246.6+r×8.1,

where one unit is the time to update one entry of one array of size 210 of totally
264 arrays. Table 10 lists the complexities of this attack for 14 rounds of RC6.
The number of texts needed in the attack on 16 rounds is about 2124 and thus
still exceeds 2118. However, as reported earlier there are keys for which the
complexities improve. We estimate that the attack is possible for at least one in
260 keys with the complexity as stated in the table.

Finally, for the 256-bit key version of RC6 it is possible to further extend the
attack. In a 15-round version, one can search over the keys S[0], S[1], S[32], and
S[33]. The latter two keys are used to decrypt the ciphertexts one round. In the
updating of the probability-arrays, one only uses ciphertexts for which there are
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Table 10. Complexities for key-recovery attacks on RC6 with 128-bit blocks and r
rounds. One unit in “Work” is the time to increment one counter. The χ2 value is the
expected value for the correct key.

r #Texts Work χ2 Memory Comment

12 294 2119 1500 242

14 2110 2135 1500 242

14 2108 2160 2000 274

16 2118 2171 2000 274 1 in 260 keys

15 2119 2215 > 2000 2138

zero rotations in the last round. The number of texts needed is approximately
210 times that of 14 rounds, and the time complexity increases with a factor of
about 254. To rule out all false values of the keys, we estimate that the number
of plaintexts needed increases by yet a factor of 2.

Note that in the above attacks the number of available texts is bounded by
2118, since we need to fix 10 bits of each plaintext. The probability distributions
for each such fixed 10-bit value will be different, but their distance to the uniform
distribution can be expected to be similar. As an extension of the above attacks
consider the following. Run the attack with x texts for one fixed value of the 10
bits in the plaintexts. Record the χ2-value for each key in the attack, and rank
the keys. Reset the arrays. Repeat the attack x texts for another fixed value of
the 10 bits. Record again the χ2-value for each key in the attack, and rank the
keys. Repeat this a number of times. If the χ2-values for the correctly guessed
keys will be larger than for random values, one can expect that the correct
key will be high in the rankings, and it can be detected after sufficiently many
iterations. Thus this variant would make available all 2128 texts. We conjecture
that this attack is applicable to 15 rounds of RC6 with a complexity as given in
the last entry of Table 10.

We leave it as an open question whether the attack and its variants can be
used to attack RC6 with 16 or more rounds.

Finally, note that the reported attacks are chosen plaintext attacks. However,
it follows that the basic attack reported earlier can be easily transformed into
a known plaintext attack with an increase in the needed texts of a factor of at
most 210, leaving the total time complexity unaltered.

5 Conclusion

In this paper we have presented an attack on RC6 which is based on a strong
relationship between the effects of data dependent rotations in the round function
and statistical input-output dependencies.

Estimates which are based on systematic experimental results show that
versions of RC6 with up to 15 rounds can be distinguished from a random per-
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mutation. A class of weak keys has been identified for which this nonrandomness
is estimated to persist up to 17 rounds. Finally, we have derived a method for
key-recovery for RC6 with up to 15 rounds which is faster than exhautive key
search. We do not know whether our analysis can be used to attack RC6 with
16 or more rounds.

We remark that similar attacks are applicable to reduced-round versions of
RC5. However, it seems such attacks are not better than existing (differential)
attacks on RC5 [3].

Acknowledgments. The authors would like to thank Vincent Rijmen for hel-
pful comments and discussions.
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Abstract. The complexity of interpolation attacks on block ciphers de-
pends on the degree of the polynomial approximation and/or on the
number of terms in the polynomial approximation expression. In some
situations, the round function or the S-boxes of the block cipher are
expressed explicitly in terms of algebraic function, yet in many other
occasions the S-boxes are expressed in terms of their Boolean function
representation. In this case, the cryptanalyst has to evaluate the algebraic
description of the S-boxes or the round function using the Lagrange in-
terpolation formula. A natural question is what is the e�ect of the choice
of the irreducible polynomial used to construct the �nite �eld on the
degree of the resulting polynomial. Another question is whether or not
there exists a simple linear transformation on the input or output bits of
the S-boxes (or the round function) such that the resulting polynomial
has a less degree or smaller number of non-zero coe�cients. In this paper
we give an answer to these questions. We also present an explicit relation
between the Lagrange interpolation formula and the Galois Field Fourier
Transform.

Keywords: Block cipher, cryptanalysis, interpolation attack, �nite �elds, Ga-
lois Field Fourier Transform

1 Introduction

Gong and Golomb [7] introduced a new criterion for the S-box design. Because
many block ciphers can be viewed as a Non Linear Feedback Shift Register
(NLFSR) with input then the S-boxes should not be approximated by a mono-
mial. The reason is that the trace functions Tr(�jXd) and Tr(�X) have the
same linear span. From the view point of m-sequences [10], both of the sequences
fTr(��id)gi�0 and fTr(��i)gi�0 are m-sequences of period 2n � 1. The former
can be obtained from the later by decimation d. Gong and Golomb showed that
the distance of DES S-boxes approximated by monomial functions has the same
distribution as for the S-boxes approximated by linear functions.

In [3] Jakobsen and Knudsen introduced a new attack on block ciphers. This
attack is useful for attacking ciphers using simple algebraic functions as S-boxes.
The attack is based on the well known Lagrange interpolation formula. Let R be

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 109−120, 2001.
 Springer-Verlag Berlin Heidelberg 2001



a �eld. Given 2n elements x1; : : : ; xn; y1; : : : ; yn 2 R; where the xis are distinct.
De�ne

f(x) =
nX

i=1

yi
Y

1�j�n;j 6=i

x� xj
xi � xj

: (1)

Then f(x) is the only polynomial over R of degree at most n � 1 such that
f(xi) = yi for i = 1; : : : ; n. The main result in [3] is that for an iterated block
cipher with block size m, if the cipher-text is expressed as a polynomial with
n � 2m coe�cients of the plain-text, then there exists an interpolation attack
of time complexity n requiring n known plain-texts encrypted with a secret key
K, which �nds an algorithm equivalent to encryption (or decryption) with K.
This attack can also be extended to a key recovery attack.

In [4] Jakobsen extended this cryptanalysis method to attack block ciphers
with probabilistic nonlinear relation of low degree. Using recent results from
coding theory (Sudan's algorithm for decoding Reed-Solomon codes beyond the
error correction parameter[6]), Jakobsen showed how to break ciphers where the
cipher-text is expressible as evaluations of unknown univariate polynomial of low
degree m with a typically low probability �. The known plain-text attack requires
n = 2m=�2 plain-text/cipher-text pairs. In the same paper, Jakobsen also pre-
sented a second attack that needs access to n = (2m=�)2 plain-text/cipher-text
pairs and its running time is polynomial in n.

It is clear that the complexity of such cryptanalytic attacks depends on the
degree of the polynomial approximation or on the number of terms in the poly-
nomial approximation expression. In some situations, the round function or the
S-boxes of the block cipher are expressed explicitly in terms of algebraic function
(For example see [8] ), yet in many other occasions the S-boxes are expressed in
terms of their Boolean function representation. In this case, the cryptanalyst has
to evaluate the algebraic description of the S-boxes or the round function using
the Lagrange interpolation formula.A natural question is what is the e�ect of the
choice of the irreducible polynomial used to construct the �nite �eld on the de-
gree of the resulting polynomial. Another question is whether or not there exists
a simple linear transformation on the input or output bits of the S-boxes (or the
round function) such that the resulting polynomial has a less degree or smaller
number of coe�cients. In this paper we give explicit answer to these questions.
To illustrate the idea, consider the binary mapping from GF (2)4 to GF (2)4

given in the Table 1. If the Lagrange interpolation formula is applied to GF (24)
where GF (24) is de�ned by the irreducible polynomialX4+X3+1 then we have
F (X) = X+X2+7X3+15X4+5X5+14X6+14X8+2X9+7X10+9X12; X 2

GF (24). However, if we use the irreducible polynomial X4 + X + 1 to de�ne
GF (24) then we have F (X) = X3; X 2 GF (24) which is obviously a simpler
description.

An interesting observation follows when applying the Lagrange interpolation
formula to the DES S-boxes. In this case we consider the DES S-boxes output
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(x) 0 1 8 15 12 10 1 1 10 15 15 12 8 10 8 12

Table 1.

coordinates as a mapping from GF (26) to GF (2). Let f be the Boolean function
resulting from XORing all the output coordinates of the DES S-box number
four. When we de�ne GF (26) using the irreducible polynomial X6 + X5 + 1,
the polynomial resulting from applying the Lagrange interpolation formula to
f has only 39 nonzero coe�cient. The Hamming weight of all the exponents
corresponding to the nonzero coe�cients was � 3. It should be noted that the
expected value of the number of nonzero coe�cients for a randomly selected
function over GF (26) is 63. While this observation doesn't have a cryptanalytic
signi�cance, it shows the e�ect of changing the irreducible polynomial when
trying to search for a polynomial representation for cipher functions.

2 Mathematical background and de�nitions

For a background about the general theory of �nite �elds, the reader is referred
to [1] and for a background about �nite �elds of charachteristic 2, the reader is
referred to [2].

Most of the results in this paper can be extended in a straightforward way
fromGF (2n) to GF (qn). Throughout this paper, we use integer labels to present

�nite �eld elements. I.e., for any element X 2 GF (24), X =
Pn�1

i=0
xi+1�

i; xi 2
GF (2) where � is a root of the irreducible polynomial which de�nes GF (2n), we

represent X by
P

n�1

i=0
xi+12i as an integer in the range [0; 2n�1]. The associated

addition and multiplication operations of these labels are de�ned by the �nite
�eld structure and have no resemblance to modular integer arithmetic.

De�nition1. A polynomial having the special form

L(X) =
tX

i=0

�iX
2
i

(2)

with coe�cients �i from GF (2n) is called a linearized polynomial over GF (2n).

De�nition2. A cyclotomic coset mod N that contains an integer s is the set

Cs = fs; sq; : : : ; sqm�1g (mod N ) (3)

where m is the smallest positive integer such that sqm � s (mod N ).
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Lemma3. Let A be a linear mapping over GF (2n), then A(X); X 2 GF (2n)
can be expressed in terms of a linearized polynomial over GF (2n). I.e., we can

express A(X) as

A(X) =
n�1X

i=0

�iX
2
i

(4)

Lemma4. Let �1; �2; : : : ; �t be elements in GF (2n). Then

(�1 + �2 + : : :+ �t)
2
k

= �2
k

1
+ �2

k

2
+ : : :+ �2

k

t (5)

Lemma5. The number of ways of choosing a basis of GF (2n) over GF (2) is

n�1Y

i=0

(2n � 2i) (6)

3 Lagrange coe�cients, Galois Field Fourier Transform

and Boolean functions

3.1 Relation between the Galois Field Fourier Transform and the

Lagrange coe�cients

In this section we give an explicit formula for the relation between the Lagrange
Interpolation of F and the Galois Field Fourier Transform of its corresponding
sequence. Besides its theoretical interest, the cryptographic signi�cance of this
relation stems from the view point of Gong and Golomb [7] where they model
many block ciphers as a Non Linear Feedback Shift Register (NLFSR) with
input.

Let v = (v0; v1; : : : ; vl�1) be a vector over GF (q) whose length l divides
qm � 1 for some integer positive m. Let � be an element of order l in GF (qm).
The Galois �eld Fourier transform (GFFT) [11] of v is the vector F(v) = V

= (V0; V1; : : : ; Vl�1) where fVjg are computed as follows.

Vj =
l�1X

i=0

��ijvi; j = 0; 1; : : : ; l � 1: (7)

The inverse transform is given by

vi =
1

l

l�1X

j=0

�ijVj; i = 0; 1; : : : ; l � 1: (8)

In the literature, � and ��1 are swapped in the equations above. Since � and
��1 have the same order, we may use the form presented here. We use this form
in order to make it easy to compare with the polynomial representation. For the
purpose of our discussion, we will consider the case with q = 2n, m = 1 and
l = 2n � 1. For a detailed discussion of the general case relation between the
Lagrange Interpolation formula and the GFFT, the reader is referred to [13].
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Theorem6. Let F (X) =
P2n�1

i=0 biX
i be a function in GF (2n) with the corre-

sponding sequence v = (v0; v1; : : : ; v2n�2) where vi = F (�i); i = 0; 1; : : : ; 2n � 2
and � 2 GF (2n) has order 2n � 1. If F (0) = 0 then we have

bi =

8<
:
0 if i = 0
Vi if 0 < i � 2n � 2;
V0 if i = 2n � 1;

(9)

Proof: For functions in GF (2n), the Lagrange interpolation formula can be
rewritten as

F (X) =
2n�1X
i=0

biX
i =

X
�2GF (2n)

F (�)(1 + (X + �)2
n

�1); (10)

where

bi =

�
F (0) if i = 0;P

�2GF (2n) F (�)��i if 1 � i � 2n � 1
(11)

Equation (7) can be written as

Vi =
2n�2X
j=0

��ijvj =
2n�2X
j=0

��ijF (�j) =
X

�2GF�

��iF (�); (12)

where GF � = GF (2n) � f0g. With the convention 0t = 1 for any integer t, if
F (0) = 0, then X

�2GF�

��iF (�) =
X

�2GF (2n)

��iF (�): (13)

From Equation (11) and (12) we get

bi = Vi; 0 < i � 2n � 2: (14)

The result for i = 2n � 1 follows by noting that

V0 =
X

�2GF�

F (�); (15)

and
b2n�1 =

X
�2GF (2n)

F (�)��(2
n

�1) =
X

�2GF (2n)

F (�) = V0 (16)

which completes the proof.
If F (0) 6= 0, then we can compute its polynomial representation by �rst

computing the polynomial representation of the function G, where G(X) = 0

for X = 0 and G(X) = F (X) otherwise. If we assume that F (X) =
P2n�1

i=0 diX
i

and G(X) =
P2n�1

i=0 biX
i and by noting that we can express F (X) as

F (X) = G(X) + F (0)(1 +X2n�1); (17)

then we have

di =

8<
:
F (0) if i = 0;
bi if 0 < i < 2n � 1;
b2n�1 + F (0) if i = 2n � 1;

(18)
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3.2 Relation between Boolean functions and its Galois �led

polynomial representation

Let F2 = GF (2) and F
(n)
2 = fx1; : : : ; xnjxi 2 F2g. Let f(x1; : : : ; xn) be a func-

tion from Fn
2 to F

(n)
2 . Then f(x1; : : : ; xn) can be written as f(x1; : : : ; xn) =

(y1; : : : ; yn), where yj is a Boolean function in n variables, i.e., yj = yj(x1; : : : ; xn).

Since F
(n)
2 is isomorphic to GF (2n), then f(x1; : : : ; xn) can be regarded as a

function F from GF (2n) to GF (2n).
It is well known that applying a linear transformation to a function f doesn't

change its nonlinear degree. It is also known that the nonlinear degree of the
function f(X) = Xd is wt(d). The following theorem illustrates the e�ect of
applying a linear transformation to the output coordinates of f on the coe�cients
of its corresponding polynomial.

Theorem7. Let F (X) = Xd be a function of GF (2n) which corresponds to

the Boolean mapping f(x1; : : : ; xn) = (f1(x); : : : ; fn(x)) over F
(n)
2 . Then the

function G(X) corresponding to the Boolean mapping obtained by applying a

linear transformation to the output coordinates of f(x1; : : : ; xn) can be expressed

as G(X) =
P2n�1

i=0 biX
i, where bi = 08i 62 Cd and Cd is the cyclotomic coset

(mod 2n � 1) .

Proof: Using Lemma 3, G(X) can be expressed as

G(X) =
n�1X

i=0

(aiF (X))2
i

=
n�1X

i=0

(aiX
d)2

i

=
n�1X

i=0

a2
i

i X
d2i : (19)

The Theorem follows directly by noting that Xd2i = X(d2i)mod(2n�1) for X 2
GF (2n).

Similarly, one can show that if F (X) =
P

i2I aiX
i, then G(X) =

P
j2J bjX

j

where J is the set of cyclotomic cosets modulo 2n � 1 corresponding to the set
I.

Example 1. Consider the Boolean mapping f(x) in the Table 2. AssumingGF (24)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f(x) 0 1 4 5 9 8 13 12 15 14 11 10 6 7 2 3
g(x) 0 2 4 6 10 8 14 12 15 13 11 9 5 7 1 3

Table 2.

is constructed using the irreducible polynomialX4+X3+1, we have F (X) = X2.
Let g(x) be the function obtained from f(x) by swapping the least signi�cant
bits of the output. I.e., g(x1; x2; x3; x4) = (f1(x); f2(x); f4(x); f3(x)), then we
have G(X) = 2X + 10X2 + 6X4 + 12X8.
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The following theorem illustrates the e�ect of applying a linear transforma-
tion to the input coordinates of a given Boolean function on the coe�cients of
its corresponding polynomial.

Theorem8. Let F (X) = Xd be a function of GF (2n) which corresponds to the

Boolean mapping f(x1; : : : ; xn) = (f1(x); : : : ; fn(x)) over F
(n)
2 . Let G(x) be the

function which corresponds to the Boolean mapping obtained by applying a linear

transformation to the input coordinates of x1; : : : ; xn while �xing f(x1; : : : ; xn).

Then G(X) can be expressed as G(X) =
P2n�1

i=0 biX
i, bi = 0 for wt(i) > wt(d),

where wt(d) denotes the Hamming weight of d.

Proof: Using Lemma 3, G(X) can be expressed as

G(X) = (
n�1X

i=0

ciX
2i)d (20)

Let d =
Pn�1

j=0 dj2
j and let J denote the set fj1; : : : ; jsg; s = wt(d), for which

dj = 1. Then we have

G(X) =
Y

j2J

(
n�1X

i=0

ciX
2i+j

) (21)

= (
n�1X

i1=0

ci1X
2i1+j1

)(
n�1X

i2=0

ci2X
2i2+j2

) : : : (
n�1X

i1=0

cisX
2i1+js

) (22)

=
X

i1;i2;:::;is

ci1ci2 : : : cisX
2i1+j1+2i2+j2+:::+2is+js

(23)

The Theorem follows by noting that wt(2i1+j1 + : : :+ 2is+js) = s � wt(d).
Let W = maxi2I wt(i). Then one can show that if F (X) =

P
i2I aiX

i, then
G(X) =

P
j2J bjX

j where J is the set of elements with Hamming weight � W .

The following theorem illustrates the e�ect of changing the irreducible poly-
nomial used to construct the �nite �eld on the coe�cients resulting polynomial.

Theorem9. Let F (X) be a function of GF (2n) which corresponds to the Boolean

mapping f(x1; : : : ; xn) = (f1(x); : : : ; fn(x)) over F
(n)
2 using irreducible R1. Then

the function G(x) which corresponds to the boolean mapping f(x1; : : : ; xn) and

constructed using a di�erent irreducible polynomial R2 6= R1 can be expressed as

G(X) = L(F (L�1(X))); (24)

where L is an invertible linear transformation over GF (2n).
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Proof: Consider the �nite �eld generated by an irreducible polynomialR1(X). In

this case, GF (2n) = F2[X]=(R1(X)) = f
Pn�1

i=0 ciX
ijci 2 F2g where the multipli-

cation is performed by modulus R1(X). Then every element in the �eld can be

expressed as
Pn�1

i=0 ai�
i where ai 2 GF (2) and � is a root of R1(X). Similarly,

if the �eld was generated using an irreducible polynomial R2(X). In this case,

GF (2n) = F2[X]=(R2(X)) = f
Pn�1

i=0 ciX
ijci 2 F2g where the multiplication is

performed by modulus R2(X). In this case, every element in the �eld can be

expressed as
Pn�1

i=0 bi�
i; bi 2 GF (2) where � is a root of R2(x). However, we can

express �i as

�i =
n�1X
j=0

aj�
j; aj 2 GF (2); 0 � i < n: (25)

This means that we can write G(X) = L(F (L�1(X)) where L(:) is the linear
transformation used to convert between the � and the � basis.

From the theorem above changing the irreducible polynomial is equivalent to
applying a linear transformation to both the input and the output coordinates,
and hence we have the following corollary

Corollary 10. Let F (X) =
P

i2I
aiX

i be a function of GF (2n) which corre-

sponds to the Boolean mapping f(x1; : : : ; xn) = (f1(x); : : : ; fn(x)) over F
(n)
2

using irreducible R1. Let the W = maxi2I wt(i). Then the function G(x) cor-

responds to the boolean mapping f(x1; : : : ; xn) and constructed using a di�erent

irreducible polynomial R2 6= R1 can be expressed as

G(X) =
X
j2J

bjX
j ; (26)

where J is the set of elements with Hamming weight � W .

Example 2. Consider the Boolean function described in Table 3.

x 0 1 2 3 4 5 6 7

f(x) 0 1 3 4 5 6 7 2

Table 3.

Using the irreducible polynomialX3 +X2 +1 with root �, we have F (X) =
2X + 2X2 + 3X3 + 4X4 +X5 + 7X6. Now, consider the irreducible polynomial
X3+X +1 with root �. One can prove that � = �3. Thus we have the following
linear transformation

0
@

1
�
�2

1
A =

2
4
1 0 0
1 1 0
1 0 1

3
5
0
@

1
�
�2

1
A (27)
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Applying this linear transformation to both the input and the output of the truth
table we get L�1(x)andL(f(x)) in Table 4. Interpolating the relation between
L�1(x) and L(f(x)), we get L(F (X)) = (L�1(X))3.

x 0 1 2 3 4 5 6 7
L�1(x) 0 1 3 2 5 4 6 7

f(x) 0 1 3 4 5 6 7 2
L(f(x)) 0 1 2 5 4 6 7 3

Table 4.

To summarize the results in this section, a linear transformation on the out-
put coordinates a�ects only the coe�cients of the exponents that belong to the
same cyclotomic cosets of the exponent in the original function representation.
A linear transformation on the input coordinates or changing the irreducible
polynomial a�ect only the coe�cients of the exponents with Hamming weight
less than or equal to the maximumHamming weight of the exponents in original
function representation.

4 Checking algebraic expressions for trap doors

In [5] the authors presented a method to construct trap door block ciphers which
contains some hidden structures known only to the cipher designers. The sam-
ple trapdoor cipher in [5] was broken [12] and designing practical trape door
S-boxes is still an intersting topic. In this section we discuss how to check if the
S-boxes or the round function has a simple algebraic structure. In particular, we
consider the case where we can represent the round function or the S-boxes by a
monomial. The number of invertible linear transformations grows exponentially
with n. Using exhaustive search to check if applying an invertible linear trans-
formation to the output and/or the input coordinates of the Boolean function
f(x1; : : : ; xn) = (f1(x); : : : ; fn(x)) leads to a simpler polynomial representation
becomes computationally infeasible even for small values of n. In this section we
show how to check for the existence of such simple description. Note that we only
consider the case of polynomials over GF (2n). S-boxes with a complex algebraic
expression over GF (2n) may have a simpler description over other �elds.

4.1 Undoing the e�ect of a linear transformation on the output

coordinates

First, we will consider the case of a function G(X) obtained by applying a
linear transformation of the output coordinates of a monomial function Xd. The
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algebraic description of such a function will have nonzero coe�cients only for
exponents 2 Cd (mod 2n � 1). Thus G(X) is expressed as

G(X) =
2n�1X
i=0

biX
2id; (28)

bi = 0 if i =2 Cd. A linear transformation of the output coordinates of G(X) can
be expressed as

L(G(X)) =
n�1X
j=0

aj(
2n�1X
i=0

biX
2id)2

j

(29)

=
n�1X
j=0

aj

2n�1X
i=0

bi
2jX(2i+j )d (30)

By equating the coe�cients of Xi to zero except for i = d, the above equation
forms a system of n� n linear equations (with unknowns a0

is 2 GF (2n) ) which
can be checked for the existence of a solution using simple linear algebra.

Example 3. Let G(X) = 2X + 10X2 + 6X4 + 12X8; X 2 GF (24) constructed
using the irreducible polynomialX4+X3+1, Suppose we want to check if there
exists a linear transformation on the output coordinates of G(X); L(G(X)) such
that the resulting polynomial has only one term with degree 2. Using the theorem
above, form the set of 4� 4 linear equations over GF (24) we get:

2
664
b0 b

2
3 b

4
2 b

8
1

b1 b
2
0 b

4
3 b

8
2

b2 b
2
1 b

4
0 b

8
3

b3 b
2
2 b

4
1 b

8
0

3
775

0
BB@
a0
a1
a2
a3

1
CCA =

0
BB@
0
1
0
0

1
CCA ; (31)

For G(X) above we have b0 = 2; b1 = 10; b2 = 6; b3 = 12. Thus

2
664

2 6 7 11
10 4 13 12
6 11 9 7
12 13 10 14

3
775

0
BB@
a0
a1
a2
a3

1
CCA =

0
BB@
0
1
0
0

1
CCA (32)

Solving for ai's we get

0
BB@
a0
a1
a2
a3

1
CCA =

0
BB@
10
6
12
2

1
CCA (33)

and L(G(X)) = 10G(X) + 6G(X)2 + 12G(X)4 + 2G(X)8 = X2
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4.2 Undoing the e�ect of a linear transformation on the input

coordinates

Consider a function G(X) obtained by applying a linear transformation to the
input coordinates of a monomial function Xd. The algebraic description of such
a function will have zero coe�cients for all exponents with Hammingweight > d.
Thus G(X) is expressed as

G(X) =
2
n

�1X

i=0

biX
i; (34)

bi = 0 if wt(i) > d

A linear transformation of the input coordinates of G(X) can be expressed
as

L(G(X)) =
2
n

�1X

i=0

bi

n�1X

j=0

(ajX
2
j

)i (35)

If one tries to evaluate the above expression and equate the coe�cients to the
coe�cients of a monomial, then one has to solve a set of non linear equations
with unknowns aj ; j = 0; 1; : : : ; n� 1.

To overcome this problem, we will reduce the problem of undoing the e�ect
of a linear transformation on the input coordinates to undoing the e�ect of a
linear transformation on the output coordinates.

Consider G(X) obtained by a linear transformation on the input coordinates
of F (X). Then G(X) = F (L(X)). Thus we have G�1(X) = L�1(F�1(X)). If
F (X) is a monomial, then F�1(X) is also a monomial and our problem is reduced
to �nding the linear transformation L�1 on the output coordinates of F�1(X)
which is equivalent to solving a system of linear equations in n variables.

Example 4. Consider the function G(X) = 8X2 + 9X3 +X4 + 11X5 + 14X6 +
X7 + 12X8 + 2X9 + 9X10 + 4X11 + 11X12 + 14X13 + 14X14

2 GF (24) where
GF (24) is constructed using the irreducible polynomial X4 + X3 + 1. In this
case, we have G(X)�1 = 5X7 + 5X11 + 11X13 + 15X14. In this case, we have
60 linear transformations on the output coordinates of G�1(X) that will map
it to a monomial of exponent with weight 3. Out of these 60 transformations,
we have 15 linear transformations such that L(G�1(X)) = aX13; a 2 GF (24).
In particular, the linear mapping L(X) = X + 14X2 + 9X4 + 14X8 on the
output bits of G�1(X) reduces G�1(X) to X13, i.e., L(G�1(X)) = X13 and
hence G(X) = (L(X))7.

Undoing the e�ect of changing the irreducible polynomial corresponds to undoing
the e�ect of a linear transformation on both the input and the output coordinates
which seems to be a hard problem. The number of irreducible polynomials of
degree n over a �nite �eld with q elements is given by

In =
1

n

X

djn

�(d)qn=d; (36)
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where �(d) is de�ned by

�(d) =

8<
:

1 if d = 1;

(�1)
k
if d is the product of k distinct primes;

0 if d is divisible by the square of a prime:
(37)

Since the dominant term in In occurs for d = 1, we get the estimate

In �
qn

n
(38)

Thus for typical S-box sizes, exhaustive search through all the set of (2n=n)
irreducible polynomials seems to be a feasible task.
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38-40, rue du Général Leclerc
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Abstract. Crypton is a 12-round blockcipher proposed as an AES can-
didate by C.H. Lim in 1998. In this paper, we show how to exploit some
statistical deficiencies of the Crypton round function to mount stocha-
stic attacks on round-reduced versions of Crypton. Though more efficient
than the best differential and linear attacks, our attacks do not endanger
the practical security offered by Crypton.

1 Introduction

Crypton [Li98] is a 12-round blockcipher which was submitted by C.H. Lim as
one of the 15 candidates at the first Advanced Encryption Standard conference
in August 1998. Crypton offers several interesting features. The encryption and
decryption processes are strictly identical up to the key schedule (a quite re-
markable property given the substitution/permutation structure of the cipher).
Crypton is highly parallelizable and flexible, and thus well suited for efficient im-
plementation on nearly any hardware or software platform. Moreover, Crypton
provides some provable resistance against linear and differential cryptanalysis.

The main cryptanalytic results obtained on Crypton so far are the analysis
of the best differential and linear attacks by the algorithm designer [Li98], a
transposition of the square attack to the 6-round Crypton by C. D’Halluin et
al. [Hal99], the discovery of some weak keys by Vaudenay [Ba99], and statistical
observations contained in an annex of [Ba99].

C.H. Lim introduced in 1999 [Li99] a modified Crypton (denoted by Crypton
v1.0) with a new keyschedule and new S-boxes designed as to lower the number
of high probability differential and linear characteristics. Though most of this
paper is dedicated to the analysis of the initial version of Crypton, the impact
of the Crypton v1.0 S-box modifications is also discussed in the last Section.

We present here two attacks of round reduced versions of Crypton (up to 8
rounds) which are based on iterative statistical properties of the round function.
A short outline of preliminary (unquantified) versions of these attacks has been
already published in a paper presented at the second AES conference [Ba99].
Based on extra analysis and computer experiments, we provide here more precise
assessments of the statistical biases and the performance of these attacks.

Both attacks can be broadly described as stochastic attacks. The block values
(or a subset of the difference values if the attack uses differential statistics) are

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 121–133, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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partitioned into a small number of classes, and any k-round partial encryption
is modeled as a stochastic process (i.e. a sequence of random variables providing
the class values at the boundaries of the various rounds). Each round is characte-
rized by one matrix of key dependent or key-independent transition probabilities
between input and output classes. Under the heuristic assumption that the above
process is nearly markovian, the behaviour of such a k-rounds partial encryption
is well approximated by the product of the k one-round transition probabilities
matrices 1.

We do not claim that the idea of that kind of generalization of more traditio-
nal ”characteristics-based” attacks is new : Murphy et al.’ likehood estimation
[Mu], Vaudenay’s χ2 cryptanalysis[Va95], Lai and Massey’s modeling of marko-
vian ciphers [LM91], Harpes and Massey’s partition cryptanalysis [HM97]provide
frameworks which describe similar generalizations. However, there are not yet
numerous examples of ciphers where such approaches bring some real added va-
lue. We believe Crypton is a good example of an algorithm for which this is the
case.

A stochastic attack is feasible if there exists a partition of the blocks (or of the
considered subset of difference values) such that for each key value, the transition
probabilities among classes differ substantially from the transition probabilities
a random permutation of the block or difference values would provide. The key
cryptanalytic issue consists in finding such a suitable partition. In the case of
Crypton, the partitions of the block values and of difference values we are using
are based upon some invariance properties of the linear part of the round function
which involve only four ”active” bytes of the inputs or outputs to the non linear
part.

The rest of this paper is organized as follows : Section 2 briefly summarizes
the Crypton cipher. Section 3 presents the iterative statistical properties which
form the starting point for our attacks. Section 4 presents a stochastic attack
based upon a partition of difference values into 257 classes. Section 5 presents
a stochastic attack based upon a partition of blocks into 16 classes. Section

1 Stochastic attacks represent a generalization of ”Characteristics-based attacks”, such
as linear attacks, differential attacks, or truncated differential attacks. As a matter
of fact, characteristics based attacks are based upon a partition of block or difference
values at each round into only two classes. For instance, in linear attacks, blocks are
partitioned according to the binary value of a fixed linear combination of the key
bits. In differential attacks one considers the unbalanced partition of the differences
between one single difference value on one hand and the complementary set of all
other difference values on the other hand. In truncated differential attacks, one
considers a partition of difference values according to the characteristic function of
a set of difference values satisfying certain constraints, etc. In characteristics based
attacks of blockciphers, one single transition probability, namely the probability of
the considered characteristic, entirely determines the (2x2) transition probabilities
matrix associated with a partial encryption. The stochastic attacks considered in
this paper are not ”characteristics-based” because they involve partitions in strictly
more than two classes.
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6 investigates the (quite positive) impact of the modifications introduced in
Crypton v1.0 and Section 7 concludes the paper.

2 An Outline of Crypton

Crypton encrypts 128-bit blocks under the control a key of length up to 256 bits.
The nominal value of the r number of rounds is 12. The algorithm consists of the
encryption function itself and a keyschedule that derives (r +1) 128-bit subkeys
from the key and an encryption function. Since the attacks presented here do
not rely at all upon the properties of the key schedule, we do not describe it
here.

The encryption function consists of r rounds surrounded by an input trans-
formation (defined by an XOR between the plaintext block and the first subkey)
and an output transformation (defined as a fixed modulo 2 linear mapping).

Let us represent a 128-bit block A by :

A =





a0,3 a0,2 a0,1 a0,0
a1,3 a1,2 a1,1 a1,0
a2,3 a2,2 a2,1 a2,0
a3,3 a3,2 a3,1 a3,0





A[0]
A[1]
A[2]
A[3]

where each ai,j is a byte.
One round consists of a byte substitution γ, followed by a bit permutation π, a
bytes transposition τ and a subkey addition σ. γ (γo for odd round, γe for even
round) uses two S-boxes S0 and S1. We only describe of γo ; to obtain γe one
just needs to exchange S0 and S1.





b0,3 b0,2 b0,1 b0,0
b1,3 b1,2 b1,1 b1,0
b2,3 b2,2 b2,1 b2,0
b3,3 b3,2 b3,1 b3,0




γo←





S1(a0,3) S0(a0,2) S1(a0,1) S0(a0,0)
S0(a1,3) S1(a1,2) S0(a1,1) S1(a1,0)
S1(a2,3) S0(a2,2) S1(a2,1) S0(a2,0)
S0(a3,3) S1(a3,2) S0(a3,1) S1(a3,0)





π (πo for odd rounds, πe for even rounds) is a bit permutation. We only describe
effects of πo for odd rounds, effects of πe are similar. πo is given by

T = A[0]⊕A[1]⊕A[2]⊕A[3],
B[0]← (A[0] ∧MI0)⊕ (A[1] ∧MI1)⊕ (A[2] ∧MI2)⊕ (A[3] ∧MI3)⊕ T,

B[1]← (A[0] ∧MI1)⊕ (A[1] ∧MI2)⊕ (A[2] ∧MI3)⊕ (A[3] ∧MI0)⊕ T,

B[2]← (A[0] ∧MI2)⊕ (A[1] ∧MI3)⊕ (A[2] ∧MI0)⊕ (A[3] ∧MI1)⊕ T,

B[3]← (A[0] ∧MI3)⊕ (A[1] ∧MI0)⊕ (A[2] ∧MI1)⊕ (A[3] ∧MI2)⊕ T,

where MI0 = c0300c03, MI1 = 03c0300c, MI2 = 0c03c030, MI3 = 300c03c0 (in
hexadecimal). We can notice that if we omit the addition with T , π results in
permutations of 4 2-bit words in each of the 16 2-bit words columns of the A
matrix.

The bytes transposition τ just consists in exchanging all ai,j and aj,i pairs of
bytes in the A matrix, and the key addition σK just consists of an exclusive-or
between A and a 128-bit subkey K.
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3 Statistical Properties of the Round Function

In this Section we introduce two iterative properties of the τ ◦ π linear part
of the Crypton round function which involve only four bytes of the inputs or
outputs to the non linear part - and thus represent limitations in the diffusion
achieved by τ ◦ π. These two properties, which are outlined in [Ba99] are to
some extent dual of each other, and can be summarized as follows : (1) some
τ ◦ π input values equal to zero except on at most four bytes are transformed
into output values equal to zero except for at most four other bytes ; (2) for
certain sets of 4 of the 16 τ ◦ π input bytes and certain associated sets of 4 of
the 16 τ ◦ π output bytes, there exist a (linear) four bytes to 4 bits function Φ
such that the images by Φ of the four input bytes and the four output bytes are
equal. Property (1), as applied to difference values in the encryption of pairs of
plaintexts, can be seen as an iterative truncated differential whereas property
(2) can be to a certain extent compared to a set of iterative linear characteristics.

We introduce some additional notation to split each ai,j byte of an A block
into four 2-bit words : ai,j = (a3,i,j , a2,i,j , a1,i,j , a0,i,j) where i is the line index
and j the column index. i ∈ [0, 3] and j ∈ [0, 3]. ak,i,j will be the 2-bits word
of line i, column j and position k. We define the ”square” associated with the
(k, i, j) triplet as the ((ak,i,j , ak,i+2,j , ak,i,j+2, ak,i+2,j+2)) quartet of 2-bit words.
Note that indexes are implicitly taken modulo 4. Under some conditions, squares
are preserved (up to a modification of the associated (k, i, j) indexes) by the γo,
γe, πo, πe and τ functions.

3.1 Property (1)

One can see that if we omit T, πo and πe just permute the ak,i,j 2-bit words (more
precisely, they only permute the j indexes), and thus they transform any square
associated to a (k, i, j) triplet into the same square associated with another
(k, i′, j′) triplet. This stays valid for the real πo and πe functions under the
two additional conditions (i) ak,i,j = ak,i+2,j and (ii) ak,i,j+2 = ak,i+2,j+2.
Squares are also preserved by the τ function (up to a modification of the i and
j indexes). Moreover, under conditions (i) and (ii), ”twin squares” associated
with two (k, i, j) and (k + 2, i, j) triplets of indexes are transformed into two
other ”twin squares” associated with two (k, i′, j′) and (k + 2, i′, j′) triplets of
indexes.

In order to cryptanalytically exploit property (1), we can consider special
difference values equal to zero except on two ”twin squares” (k, i, j) and (k +
2, i, j) and such that the (i) and (ii) conditions are satisfied for both squares. For
instance, squares of difference values of the following form stay entirely invariant
under the πo mapping :





0 0 0 0
0 00x1x200y1y2 0 00x′

1x
′
200y′

1y
′
2

0 0 0 0
0 00x1x200y1y2 0 00x′

1x
′
200y′

1y
′
2



 =





0 0 0 0
0 a 0 b
0 0 0 0
0 a 0 b
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Moreover, for the above example, τ just modifies location of squares :

a b

a b

τ⇒
b b

a a

In the sequel we will keep using a representation of twin squares at the byte
level (as in the above representation of τ) to more compactly depict the effects
of πo, πe and τ .

3.2 Property(2)

Let us consider any two twin squares with a (k, i, j) triplet and a (k + 2, i, j)
triplet of indexes. As seen before, if there was no T term in the π definition, these
two twin squares would be just displaced by the τ ◦ π linear function (without
any change in the quartet values) to two twin squares associated with (k, i′, j′)
and (k + 2, i′, j′) triplets of indexes. Now if we take the T term into account, we
can see that the φk,i′,j′ 2-bit XOR of the four 2-bit words of the (k, i′, j′) output
square is still equal to the φk,i,j XOR of the four 2-bit words of the (k, i, j) input
square (just because the additional terms introduced by T twowise compensate).
The same property obviously holds for the squares associated with the (k+2, i, j)
input triplet and the (k + 2, i′, j′) output triplet : φk+2,i,j = φk+2,i′,j′ . Thus, if
we denote by Φk,i,j the 4-bit word φk,i,j ⊕ 4.φk+2,i,j , we can summarize the
obtained invariance property by the equality Φk,i,j = Φk,i′,j′ . In other words,
the 4-bit linear combination Φk,i,j of the four bytes involved in two twin squares
is kept invariant by the linear part of Crypton (up to a change of considered four
bytes positions).

In Section 5, we will mount an attack based upon partitioning block values
in 16 classes according to the value of such a 4-bit Φ values.

In summary, we have identified in properties (1) and (2) some correlations
between the input and the output of the τ ◦ π part of the round function which
involve only 4 ”active” input and output bytes. It remains to study how much
correlation is left on entire rounds if one also takes the non linear part of the
Crypton round function into account.

4 Stochastic Attack Using Differential Properties

4.1 Computing Transition Probabilities

The cryptanalysis is based upon property (1) and uses differences of the form
described in part 3.1. That’s why, in order to describe elements which stay
invariant by π and τ , we introduce two sets of possible difference values at the
byte level :
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D1 = {0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51}
D2 = {0,4,8,12,64,68,72,76,128,132,136,140,192,196,200,204}

We include zero in both sets although in practice this difference value can’t
appear in an attack. D1 corresponds to all possible choices of the 00xx00xx
byte and D2 to all possible choices of the xx00xx00 byte. Those sets permit us
to create ”twin square” invariant under the linear part. We denote by (δ1, δ2)
differences of the form

∆1 =





0 0 0 0
0 δ1 0 δ2
0 0 0 0
0 δ1 0 δ2





where ∆1 is represented by a 4×4 matrix of bytes with δ1 ∈ D1 and δ2 ∈ D1
or of the form

∆2 =





0 δ1 0 δ2
0 0 0 0
0 δ1 0 δ2
0 0 0 0





with δ1 ∈ D2 and δ2 ∈ D2. The above ∆1 and ∆2 difference matrices are just
examples of all possible difference values that can be taken. As a matter of fact,
(δ1, δ2)can be any ”twin square” difference satisfying conditions (i) and (ii) of
Section 2.
We can say by the invariance properties seen above that there exist δ′

1 and δ′
2 in

D1 such that

τ(πi(∆1)) =





δ′
2 0 δ′

2 0
0 0 0 0
δ′
1 0 δ′

1 0
0 0 0 0





So we can deduce that with a certain probability p, the ”twin squares” repre-
sented by the (δ′

1, δ′
2) pair could result, after being passed through S-boxes, into

a (δ3, δ4) pair such that

γi(τ(πi(∆1))) =





δ3 0 δ4 0
0 0 0 0
δ3 0 δ4 0
0 0 0 0





An S-box output with this form permits us to use another time the invariance
property of γi(τ(πi(∆1))) into πi and τ on an other ”twin square”. We obtain,
with a certain probability p’, the invariance of ∆1 on one entire round. With the
same construction, we can establish the invariance of ∆2 on one round with a
certain probability p”.
For all (δ1, δ2) pairs of D1 and all (δ3, δ4) pairs of D1, we can compute the proba-
bility of getting a (δ3, δ4) output difference from a (δ1, δ2) input difference after
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one round. All probabilities are key independent and only depend on differential
properties of S-boxes.

Pr[∆′ = (δ3, δ4)|∆ = (δ1, δ2)] = Pr[δ1 → δ3].P r[δ2 → δ3]
.P r[δ1 → δ4].P r[δ2 → δ4]

=
dδ1δ3

256
.
dδ2δ3

256
.
dδ1δ4

256
.
dδ2δ4

256

where dδiδj
is the number of bytes such that : δj = S(x) ⊕ S(x ⊕ δi), S re-

presents the appropriate S-box of Crypton. We obtain a 256×256 matrix M of
transition probabilities over one round by computing p for 256 couples of pos-
sible input values (δ1, δ2) and for 256 couples of possible output values (δ3, δ4)
with δ1, δ2, δ3, δ4 ∈ D1. Columns of M represent all probabilities of transition
between input (δ1, δ2) and output (δ3, δ4).We use the same method to compute
probabilities of transition associated with D2.

Now let us consider differentials over two rounds, i.e. transition between
an input value (δ1, δ2) and an output value (δ3, δ4). A lower bound on the
probabilities of such differentials is provided by summing up the probabilities of
all intermediate values which belong to D1 :

pi,j =
255∑

i=0

255∑

j=0

pi,kpk,j

where pi,j represent coefficients of M . With this relation, we consider all the
possible intermediate values. There exists a stochastic dependence between the
difference values at the various rounds. We make the heuristic assumption that
the sequence of difference values over several rounds satisfies the ”Markov pro-
perty”, i.e. the distribution of probabilities of the differences at the output of
any round only depend on the distribution of probabilities of the differences at
the input of the same round. So, we can compute Mn, which represents key-
independent transition probabilities between input and output differences on an
n-rounds scheme. For example, to compute transition probabilities for 6 rounds,
we compute M6. One cryptanalytically meaningful measure of the unbalancen-
ess of the obtain matrix M consists of computing the sums of the probabilities
in each column. The performance of the attack hereafter depends upon the value
obtained for the ”best column”, i.e. the best pair of input difference values (δ1,
δ2).

4.2 Attack Procedure

We present here an attack on a complete eight-round Crypton (i.e. taking into
account the first addition of subkey K0 and the final transformation). Under
the heuristic assumptions summarized above, we can compute probabilities of
best couples of difference on several rounds. In particular we obtain the follo-
wing figures for 6 inner rounds of Crypton : if the input difference is the (18,
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18) pair of ∆1 values, the probability that the output be a (δ1, δ2) pair with
(δ1,δ2)∈D1×D1 is 2−120.72. In the same way, if input is the (128, 128) pair of D2
values, probability that the output be a (δ1, δ2) pair of D2 values is 2−112.62.

This result on six inner rounds can be used to attack an eight inner rounds
attack. Due to the late occurrence of the σ key addition in the first inner round,
we can control differences at the output of the first occurrence of γ, and thus the
first round can be treated just as a keyless ”initial permutation”. A 1R-attack
permits to also gain the eighth round. So, we can exploit the a priori known 6-
rounds properties in a chosen plaintext attack to obtain some bits of information
on the last round key K8.

In order to efficiently generate pairs of chosen plaintexts which difference is
equal to the ∆2 = (128, 128) value at the output of the first occurrence of γ, we
group plaintexts in structures. Two 128-bits elements belong to the same struc-
ture if and only their images by γ are equal except for some of the 16 bits of
∆2. Each structure has 216 elements. We know that, if two X and X ′ plaintexts
belong to the same structure, then with probability 2−112.62, the correponding
inputs to the the eighth round are of the form Y and Y ⊕ ∆2 (where ∆2 is of
D2 values). We only consider those (X, X ′) pairs such that the C⊕C’ cipher-
text difference is null everywhere except at most on the four non zero bytes of
the ∆2 Y differences. For those pairs which pass that filtering condition, we go
up the last round starting from C and C’ and checking whether the resulting
Y ⊕ Y ′ has the right form. Some couples are ”false” alarms, i.e. pass the fil-
tering condition but don’t belong to our set (this happens with a probability
equal to 2−96). Once selected ”good” couples, we test the possible values of four
bytes of key in going up at the end of eighth round. The candidate value which
appears most often is the right one. We obtain four bytes of information on K8

2.

We can go up through the final transformation Φe because it does not change
output values of eighth round. Taking into account the first key-addition σ0 just
increases the number of ”false” alarms. The number of plaintexts to cipher is
N = 2112.62. But we must take a security for ”false” alarms. We claim that taking
N = 2114.62 is enough. So we can obtain 32 bits of information of K8 by ciphe-
ring 2114.62 couples X and X⊕∆ in a complete eight-rounds version of Crypton.
Complexity of this attack is 2114.62 encryptions and 296 additional computations.

This attack is faster than an exhaustive search and than all differential
attacks. As a matter of fact, it can be shown that the probability of the best
characteristic for an eigth-round attack is 2−120.

2 The same procedure can be repeated with other square locations (at the expanse of
a slight increase of the N number of chosen plantexts) to entirely derive K8. Once
the last subkey has been entirely derived, the same procedure can be repeated (with
the same plaintexts) to derive the entire expanded key.



Stochastic Cryptanalysis of Crypton 129

5 Stochastic Cryptanalysis of Crypton Using a Partition
of Blocks in 16 Classes

5.1 Computation of Transition Probabilities

The cryptanalysis presented in this Section is based on Property (2) of Section
2. Let us consider inside an intermediate block

A =





∗ ∗ ∗ ∗
∗ X ∗ Y
∗ ∗ ∗ ∗
∗ Z ∗ T





encountered in the Crypton encryption process, a (X, Y, Z, W ) quartet of bytes
associated with a given (i, j) pair of indices. We can partition the blocks space
into 16 classes according to the 4-bit value Φ0[X, Y, Z, W ] = Φ0,i,j (or alternati-
vely into 16 other classes according to the 4-bit value Φ1[X, Y, Z, W ] = Φ1,i,j).

Property (2) states that the linear part of Crypton leaves Φ0 and Φ1 values
unchanged (provided that the final Φ0 or Φ1 value is computed from four ap-
propriately selected bytes associated with a (i′, j′) pair of indices deduced from
(i, j)).

It is easy to see that the σ key addition transformation just results in XORing
the Φ0[X, Y, Z, W ] (resp Φ1[X, Y, Z, W ]) value associated with a (X, Y, Z, W )
quartet of bytes with a Φ0[KX , KY , KZ , KW ] (resp Φ1[KX , KY , KZ , KW ]) 4-bit
constant which depends on four subkey bytes.

We now investigate the effect of the S0 and S1 S-boxes of the γ non linear
part of the Crypton round function on the Φ0[X, Y, Z, W ] (resp Φ1[X, Y, Z, W ])
class values. For that purpose, for each of the S0 and S1 S-boxes, we compute
the values

#{X,Y,Z,W∈[0,255]4 /Φ0 [X,Y,Z,T]=a
and Φ0 [Sε(X),Sε(Y),Sε(Z),Sε(T)]=b}-(256)3

and
#{X,Y,Z,W∈[0,255]4 /Φ1 [X,Y,Z,T]=a

and Φ1 [Sε(X),Sε(Y),Sε(Z),Sε(T)]=b}-(256)3

where ε takes values 0 or 1, and a and b are in [0,15].These values represent
biases with respect to the average value (256)3. We obtain four 16×16 matrices
(one for Φ0 and S1 (see appendix A), one for Φ0 and S0, one for Φ1 and S1,
one for Φ1 and S0). The columns of such matrices are indexed by a and their
lines by b, and the value associated with column a and line b represents (up
to a multiplicative factor of (256)4) the bias of the transition probability from
the class associated with the Φ input value a to the class associated with the Φ
output value b.

Now it clearly results from the above properties of γ, τ ◦ π, and σ that the
way one entire round of Crypton affects the Φ0 or Φ1 values can be represented
by a 16×16 matrix of transition probabilities (or equivalently of biases) obtai-
ned by multiplying one of the four above matrices by the 16×16 key-dependent
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permutation matrix which entry associated with the a column and the b line is
equal to 1 if b = a⊕ Φ0[KX , KY , KZ , KW ].

Under the heuristic assumption that the behaviour of the cipher is nearly
markovian, we can multiply those matrices to represent transitions of Crypton
on n rounds. Of course the obtained matrix is key dependent (it depends upon 4
linear combinations of the key bits per round). However the orders of magnitude
of the biases encountered in the product matrix are the same for most values of
the keybits (they are larger than average for a few special values, e.g. when all
4-bit key words are equal to zero).

5.2 Attack Procedure

We present here a chosen plaintext of 8 inner rounds of Crypton (i.e. without the
first key-addition and without the final transformation) which can be extended
to an attack of the full 8-rounds version of Crypton (including the initial and
the final transformation), with very similar performance. This basic attack is a
1-R attack based upon the above described computations of 6-rounds transition
matrices (given by the product of 6 one-round transition matrices).

We select a (i, j) pair of first-round indexes and bit ε (0 or 1) and encrypt
N chosen plaintext blocks such at the input to the first occurrence of the σ
transformation (at the end of the first round), the Φ = Φ(b, i, j) is equal to a
constant 4-bit value α. We can expect the resulting Φ value associated with the
input to the last round to be distributed according to unbalanced probabilities
(or equivalently biases) given by the α column of the 6-rounds transition matrix.

We are using the χ2 test in the same way as described in [HG97] to test four
key bytes derived from the last round subkeys (i.e. those linear combinations of
the last round subkey bits enabling to recover the four bytes involved in the Φ
value of the input to the last round). For each of the 232 key assumptions, we
can partially decrypt the last round and compute (in at most 232 operations,
provided that ciphertext blocks have been first partitioned according to the value
of a suitable 4-bytes word) the distribution of the Φ values at the input to the
last round and the χ2 indicator associated with the obtained distribution of
16 empiric frequencies. The obtained indicator is expected to be substantially
higher for the right assumption on the four key bytes.

The N number of plaintexts required by the attack is inversely proportional
to the sum of the squares of the a priori expected biases. Thus the required
number of plaintexts can be deduced from the biases in the above introduced
6-round matrices. The best result are obtained with Φ1 computations (instead
of Φ2 computations. For average values on the 6-uples of 4-bit key words, the
obtained N value is close to 2112. For the best 6-uple values (e.g. the null 6-uple),
about 2104 suffice to recover the 32 last round key bits.

So in summary we obtain 32 bits of information about the last round keybit
using 2112 chosen plaintexts. Therefore we can recover the entire last round sub-
key (and then, once having decrypted the last round, derive the other subkeys,
using the same method) with say 2116 chosen plaintexts.
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6 Results Concerning Crypton v1.0

Crypton v1.0 was introduced by Chae Hoon Lim in [Li99] to modify the initial
key schedule and improve the S-boxes.

Instead of using two S-boxes like the initial version, Crypton v1.0 uses four
S-boxes S0, S1, S2, S3 which verify S−1

0 = S2 and S−1
1 = S3. The γo and γe

transformations are redefined as follows :

B = γo(A)⇔ bi,j = Si+j mod 4(ai,j)
B = γe(A)⇔ bi,j = Si+j+2 mod 4(ai,j)

We still have : γ−1
o = γe and γ−1

e = γo and thus the encryption and decryption
processes are still identical.

The new S-boxes S0, S1, S2, S3 are all designed from an 8x8 involutive S-box
S, chosen for its good diffusion properties. The purpose of the replacement of
the Crypton S-boxes was to lower the number of the most probable low weight
differential and linear characteristics, and thus to speed up the diffusion achieved
by Crypton.

According to our computer experiments, these S-box modifications very sig-
nificantly improve the resistance of Crypton against the stochastic attacks pre-
sented in Sections 4 and 5.

Let us first consider stochastic cryptanalysis using differential properties on
6 rounds of Crypton v1.0. We found that if input difference is the (49, 49)
pair of ∆1 values, then the probability that the output be a (δ1, δ2) pair with
(δ1, δ2) ∈ D1 ×D1 is 2−151.23, taking into account all intermediate values with
an alternation of elements of ∆1 and ∆2. The 2−151,23 value represents the best
probability associated with 6 rounds of Crypton v1.0. It is significantly lower
than the 2−112.62 best probability associated with 6 rounds of Crypton.

For stochastic cryptanalysis using a partition of blocks in 16 classes, the
number of plaintexts required for a 1-R attack is at least 2135. This figure was
derived from Φ1, and corresponds to the most favorable values of the 6-uple
of 4-bit key words involved in the computations. It is significantly higher than
the N = 2104 minimal number of required plaintexts obtained for the initial
Crypton, and higher than the number of distinct plaintexts (2128).

Thus in summary Crypton v1.0 resists the stochastic attacks of Sections
4 and 5 much better than the initial version of Crypton. This seems to be a
direct consequence of the design criteria of the new Crypton S-boxes. Because
of the decrease of the number of low weight highest probability differential and
linear characteristics at each round, the number of ”high probability paths” that
together form the transition probabilities considered in our stochastic attacks is
decreased and the performance of the attacks is significantly affected. Changes
in S-boxes proposed in Crypton v1.0 were very discerning.
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7 Conclusion

We have described two stochastic attacks on the eight-round version of the Cryp-
ton block cipher which are faster than an exhaustive search and more efficient
than the best attacks discovered so far.

The first of these two attacks is close to a truncated differential attack, but we
believe that probability matrices computations are more precise than truncated
differentials probabilities computations would be. It seems to us that an analysis
based on truncated-differential probabilities would have led to an overestimate
of the performance of the attack.

Our attacks do not threaten the security of Crypton in a full version, but
nevertheless put the highlight on a (slight) diffusion weakness in the linear part
of the Crypton round function. Even if finding the most relevant cryptographic
criteria on the linear part of substitution-permutation blockciphers is still to a
large extent an open issue, diffusion criteria related to the number of ”active”
S-boxes (e.g. MDS properties) offer some clues. Our attacks exploit the existence
of low weigh (and iterative) relations between the input and the output of the
linear part of Crypton, which lead to statistics involving only 4 active S-boxes
per round.

Finally, the comparison between the results obtained on the initial Crypton
and Crypton v1.0 confirms that the S-box modifications introduced in Crypton
v1.0 significantly improve its resistance against some classes of attacks.
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A Matrix of Transition Biases for the Φ Value

0 1 2 3 4 5 6 7
0 204800 -36864 124928 -28672 -53248 77824 -18432 69632
1 -28672 -83968 -4096 -94208 -94208 63488 -118784 36864
2 -55296 53248 -28672 45056 112640 -94208 53248 -86016
3 -69632 102400 -94208 75776 28672 -45056 53248 -51200
4 -114688 53248 -112640 45056 -36864 -94208 6144 -86016
5 -20480 67584 -12288 110592 143360 -47104 135168 -53248
6 34816 -36864 77824 -28672 -92160 77824 -102400 69632
7 86016 -86016 77824 -92160 -45056 28672 -36864 67584
8 28672 -135168 14336 -126976 -57344 12288 -71680 4096
9 102400 -2048 94208 -12288 -61440 145408 -53248 118784
10 -55296 36864 -61440 28672 112640 -77824 86016 -69632
11 -86016 102400 -77824 75776 45056 -45056 36864 -51200
12 -77824 118784 -59392 110592 106496 4096 116736 12288
13 -53248 -14336 -77824 28672 12288 -129024 36864 -135168
14 34816 -53248 45056 -45056 -92160 94208 -69632 86016
15 69632 -86016 94208 -92160 -28672 28672 -53248 67584

8 9 10 11 12 13 14 15
0 4096 -77824 -30720 -86016 -114688 36864 -116736 45056
1 143360 -47104 151552 -36864 -20480 100352 -28672 61440
2 -75776 94208 -69632 102400 51200 -53248 12288 -61440
3 -45056 61440 -53248 22528 86016 -86016 94208 -79872
4 4096 94208 -14336 102400 106496 -53248 161792 -61440
5 -126976 30720 -102400 53248 4096 -83968 -20480 -77824
6 63488 -77824 118784 -86016 -38912 36864 -61440 45056
7 61440 -45056 36864 -38912 -102400 69632 -77824 96256
8 90112 -12288 88064 -20480 -36864 135168 -55296 143360
9 45056 -129024 20480 -118784 -86016 18432 -61440 -20480
10 -75776 77824 -102400 86016 51200 -36864 45056 -45056
11 -61440 61440 -36864 22528 102400 -86016 77824 -79872
12 -73728 -4096 -75776 4096 20480 -118784 43008 -126976
13 -61440 112640 -69632 135168 102400 -2048 110592 4096
14 63488 -94208 86016 -102400 -38912 53248 -28672 61440
15 45056 -45056 53248 -38912 -86016 69632 -94208 96256

Table 1. Matrix of distribution for S1 and Φ0
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Abstract. In this paper, we present techniques to protect bitslice block
ciphers against power analysis attacks. We analyze and extend a techni-
que proposed in [12]. We apply the technique to BaseKing, a variant of
3-Way[9] that was published in [7]. We introduce an alternative method
to protect against power analysis specific for BaseKing. Finally, we dis-
cuss the applicability of the methods to the other known bitslice ciphers
3-Way and Serpent [1].

1 Introduction

The inherent security offered by a block cipher is best evaluated by investigating
the cipher’s resistance against the set of known cryptanalytic attacks. It is gene-
rally agreed that a cipher for which there are attacks that are more efficient than
exhaustive key search have an inherent weakness. In our opinion, the absence of
this kind of attacks is rightfully the primary criterion for comparison of ciphers.

Although interesting, in many cases the relevance of these cryptanalytic
attacks is mostly academic: in practical applications of the cipher they turn
out to be irrelevant for several reasons. The attacks might require an unreali-
stic amount of plaintext/ciphertext pairs, such as differential cryptanalysis and
linear cryptanalysis of DES [2,15]. In other cases, the theoretical weakness only
manifests itself in very rare cases. This is the case for weak keys such as in IDEA
[10]. In still other cases there is an easy way to protect against the weaknesses.
Weak keys of DES and related-key attacks [11] can be avoided by generating
keys independently or by deriving them using one-way functions.

In the model for theoretical cryptanalysis, the key is considered to be un-
known and an attacker has access only to plaintext and ciphertext, and can
possibly manipulate the key in certain ways. He has no access to intermediate
computation results. In practical implementations the secrecy of the key, that
is considered to be a given in cryptanalysis, must be accomplished by effec-
tive physical and logical protection. This is invariably the most expensive and
problematic aspect of any serious application using cryptography. Particularly
challenging are distributed applications, where smart cards used by consumers,
and terminals used by merchants and service providers, use cryptography to se-
cure fund transfers or the conditional access to services (e.g., GSM). As has been

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 134–149, 2001.
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shown recently in several publications [14,5], implementing cryptographic algo-
rithms on these platforms is not trivial. One of the reasons for these problems
is that a combination of hardware characteristics and algorithm coding or the
presence of (induced) errors might give away information on intermediate com-
putation results. By using statistical techniques, this information is then used
to find the key.

In the long term, this problem can best be dealt with by incorporating on
the smartcards and terminal security modules dedicated cryptographic hardware
that performs integrity checks and minimises the leakage of information. Such
components are not available yet and use must be made from existing compo-
nents. In this paper, we discuss techniques to protect implementations of bitslice
ciphers on state-of-the-art smartcards against power analysis attacks.

2 Implementation Attacks

2.1 Timing Attacks and Simple Power Analysis

In timing attacks, the dependence of the execution time of the cipher on plain-
text or key bits is exploited to derive key or plaintext information. An effective
protection against timing attacks is writing the code in such a way that the
number of cycles taken by an execution is independent of the value of key or
plaintext bits (preferably a constant).

In so-called simple power analysis attacks, the attacker makes use of some
quantity, measurable at the outside of a cryptographic device, to detect instruc-
tions being executed inside it. Typically, this measurable quantity is the power
consumption or radiation. This may leak information on key or plaintext bits if
the instructions that are executed depend on the values of data that are being
processed. An effective way to protect against this type of information leak is
to program the cipher as a fixed sequence of instructions. This also implies a
constant execution time, effectively sealing up the timing leak.

2.2 Differential Power Analysis

In more advanced power analysis attacks, e.g., differential power analysis (DPA)
[14] the correlation between the power consumption (or radiation, . . . ) and the
values of the operands of the instructions is exploited. Usually, this correlation
is weak with respect to the noise on the power consumption. Even if no special
measures are taken, several (tens to thousands, depending on the type of in-
struction and quality of the processor) cipher executions are required to exploit
these correlations in an attack.

The basic principle of differential power analysis is that the probability dis-
tribution of the power consumption, given that a certain event occurs, can be
distinguished from the average probability distribution. The attack is mounted
as follows:
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– The first step of the attack is to instruct the cryptographic device to per-
form a number of cipher computations. For each of these computations
the power consumption pattern Pi is measured and stored together with
the known parameters of the computation, that is, ai the plaintext or the
ciphertext. This is the data acquisition phase which produces a data set
D = {(ai, Pi) | i = 1 . . . z}.

– Then, an event is specified whose occurrence depends on the value of a
number of plaintext (or ciphertext) bits and key bits we wish to determine.
Such an event can be, for instance, that the result of an intermediate cipher
calculation gives a certain result (which must be at some time present in a
CPU register, ALU, bus, or memory cell). We call the target subkey the key
bits the specified event depends on.

– For each of the possible values of the target subkey, the following check is
performed. In the hypothesis that the target subkey s∗ is correct, the set
of power consumption patterns are divided into two groups: those for which
the event occurs D1 = {(ai, Pi) | f(s∗, ai) = 1} and the complementary set
D0 = {(ai, Pi) | f(s∗, ai) = 0}. (As suggested by these formulas, f indicates
whether the event occurs given the known and hypothesis values.)
It is assumed that the two subsets D1 and D0 can be statistically distinguis-
hed for the correct hypothesis. We therefore define some distance between
the two distributions. The subkey value for which this distance is maximized,
is taken as the correct value. In general, a wrong target subkey value will
divide the power consumption patterns in two sets in which the event occurs
an average number of times. (However, if the round function has certain al-
gebraic properties, several subkey values, among which the correct one, may
be suggested.)

2.3 Higher-Order DPA

Depending on the usage of the power consumption pattern we can distinguish
differential power attacks of different orders. Generally speaking, N -th order
DPA makes use of N different intermediate values calculated at N different
times during the execution of the cipher algorithm.

– In first-order DPA as described by Kocher [14], the event mentioned above
is typically the fact that a particular bit (or set of bits) in a CPU register,
bus, or memory has the value 1 (or 0). It is usually sufficient to distinguish
the two data sets D0 and D1 by their average.

– In second-order DPA, the event is typically the fact that two bits of operands
occurring at different times during the computation, are equal (or different).
This situation occurs when one can group a set of samples according to the
value of the exor of two operand bits rather than an absolute value of an
operand bit.
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Protection against DPA can take different forms. Here are two examples:

– The alignment of the power consumption patterns can be made harder by
building in random time differences in the cipher execution. This reduces
the effectiveness of the attack described above by requiring more power con-
sumption patterns.

– Theoretically, first-order DPA can be made impossible by programming the
cipher in such a way that the operands bear no correlation with interme-
diate block cipher states or key bits. The techniques proposed in this paper
attempt to do exactly that, through the introduction of random biases and
state/key splitting. This can be generalized to resistance against N -th order
DPA, where it is required that no set of N operands has a correlation with
state or key. These techniques were already proposed in [4].

In practice, a second-order attack is more difficult to mount than a first-order
one. The reasons for this are:

– A more complex layout. In first-order DPA, the probability distributi-
ons are one-dimensional, e.g., they represent the power consumption at a
given stage in the cipher computation. Usually, for any given stage a sub-
key hypothesis can be tested by taking the average for the two subsets and
use the difference between them as distance. In the second order DPA, the
equality (or inequality) of two bits is of interest. Here, a subkey hypothesis
has to be tested by determining whether it divides the power samples in
two groups with the following properties: in one group, the two power con-
sumption samples have a tendency to increase or decrease together, in the
other group they fluctuate in opposite directions. Computing the distance
between the two distributions takes more computations than just taking the
difference between the averages. More complex processing is thus required.

– Increased memory and processing requirements. Especially when a
cipher implementation uses random delays, the exact location of the cycles
where a certain operand is processed in the power consumption samples is
unknown a priori. Hypothesis testing has to be performed for all possible
locations. If n samples are of interest for a first order attack, one gets n2

pairs of samples for a second order attack, thus greatly increasing the demand
of data storage and processing.

– Increased number of power consumption patterns. To distinguish two
distributions from each other, one needs enough samples before a statistically
significant result appears. For the same amount of noise, bi-dimensional dis-
tributions are harder to distinguish than their equivalent 1D distributions.
This is detailed in appendix A. Typically, if z power consumption patterns
are needed in the 1D case, about 2z2 patterns are necessary in the 2D case.
Furthermore, the use of random delay spreads the effect of the event in a
single dimension, decreasing the signal-to-noise ratio linearly. In second-order
DPA, this effect is spread in two dimensions, decreasing the signal-to-noise
ratio quadratically.
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Before discussing the different protection methods, we discuss correlation and
decorrelation. For the sake of brievety, no proofs are given in this version of the
paper.

2.4 On Correlation and Decorrelation

The correlation between two binary variables (bits) f and g is given by C(f, g) =
2 Pr(f = g) − 1. If f and g can be expressed in terms of a word a of n bits
(a1, a2, . . . , an), i.e., f(a), g(a), this can be computed as [7,8]:

C(x, y) = 2−n
∑

a

(−1)f(a)⊕g(a).

Consider a bit f that can be expressed as a function of two words a and b, i.e.,
f(a, b). This bit is said to be decorrelated from a if for any linear combination of
bits of a, denoted by uta (with u a selection vector [8]), we have C(f, uta) = 0.

A word d that is a function of two words a and b is said to be decorrelated
from a if for all linear combinations of bits of d, denoted by wtd, and all linear
combinations of bits of a, denoted by uta, we have C(wtd, uta) = 0. Clearly, this
implies that all bits of d are also decorrelated from a.

In words, knowledge of a bit f (or word d) gives no information whatsoever
on the word a if the word b is unknown.

Consider an operand a′(a, δ) that is defined by a′ = a if δ = 0 and a′ = ā
otherwise. Using techniques introduced in [8] it can easily be verified that all bits
of a′ are decorrelated from a. The complete word a′ is however not decorrelated
from a. δ is called the masking bit.

For an operand a′(a, a′′) that is defined by a′ = a ⊕ a′′ it can easily be
shown that it is decorrelated from a. Obviously, thanks to symmetry, the operand
a′′ = a⊕ a′ is also decorrelated from a. a′′ is called the masking word.

It can be shown that a word b that is the result of the computation of two
operands a′

1(a1, a
′′
1) and a′

2(a2, a
′′
2) is decorrelated from both a1 and a2 if a′′

1 and
a′′
2 are mutually decorrelated (or equivalently, independent).

Moreover, all bits of a word b that is the result of a bitwise logical computation
of two operands a′

1 = a1 ⊕ a′′
1 and a′

2 = a2 ⊕ a′′
2 are decorrelated from both a1

and a2 if the bits at corresponding positions of masking variables a′′
1 and a′′

2 are
mutually decorrelated (or equivalently, independent).

Finally, for a state a = a′ ⊕ a′′, any computation involving only terms of a′

(or only a′′), will have only operands that are decorrelated from a.

3 The Duplication Method

Louis Goubin and Jacques Patarin [12] propose the Duplication Method: a me-
thod for increasing DPA-resistance based on secret sharing. It aims to remove all
correlation between operands and intermediate state or key, thus making first-
order DPA impossible. In this section, we discuss the limitations of the methods
as proposed in [12].
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The basic principle of the Duplication Method is to split any variable V of
a given cipher computation into a set of k other variables V1, V2, . . . Vk such
that the variable can be reconstructed through the use of a function f : V =
f(V1, . . . Vk). The cipher computations are performed on the variables Vi such
that the relation V = f(V1, . . . Vk) holds at all times and without having to
calculate V explicitly. Furthermore, the knowledge of k − 1 of the variables Vi

does not give any information on V itself.
In the practical methods they propose, the Duplication Method is applied to

DES and the variables V are split in two parts V1 and V2 with V = V1 ⊕ V2.
For the linear operations in DES (expansion, bit permutation, exor of output of
f-function), the computation can be done on V1 and V2 separately and indepen-
dently (for a linear function L, we have L(V1) ⊕ L(V2) = L(V1 ⊕ V2) = L(V )).
For the key addition it is sufficient to add it to one of the two variables.

For the S-box evaluation however, the computations involving V1 and V2
cannot be kept separated due to the nonlinearity of the S-boxes. Goubin and
Patarin [12] propose the use of 12-bit to 8-bit lookup tables Ti(v1, v2) satisfying

(v′
1, v

′
2) = T (v1, v2) = (A(v1, v2), S(v1 ⊕ v2)⊕A(v1, v2)) (1)

where A is a randomly-chosen secret transformation and S is the original 6-bit
or 4-bit S-box. Clearly, v′

1 ⊕ v′
2 = S(v1 ⊕ v2), so that the table-lookup preserves

the condition v = v1⊕ v2. The computation of v′
1, v

′
2 is performed as a lookup in

a table of 4096 bytes. Unfortunately, the size of these tables that replace the S-
boxes makes this method prohibitively expensive for current smartcards, where
memory is a scarce resource.

For this reason, they propose a variant of their method that uses more com-
pact lookup tables. The S-box computation is performed in the following two
steps:

v0 = ϕ(v1 ⊕ v2), (2)

and

(v′
1, v

′
2) = S′(v1, v2) = (A(v0), S(ϕ−1(v0))⊕A(v0)) (3)

with ϕ a secret bijective function.
Although ϕ can be chosen such that v0 can be calculated by combining in-

dividual computations (e.g., if ϕ is linear, it reads v0 = ϕ(v1) ⊕ ϕ(v2)), the
intermediate state value v is fully determined by a single operand: v0. The ina-
bility to exploit v0 for hypothesis testing is only based on on the secrecy of ϕ.
Apart from disclosure by a manufacturer, an attacker can learn more about ϕ if
he or she has access to a sample card where the cipher can be run with a known
key. The problem can thus be factored in two sub-problems, namely, learning
more about ϕ and mounting a first-order DPA attack focusing on the v0 values
rather than v. Moreover, the linearity of ϕ (or the fact that it is quadratic) may
really help a lot in determining it.
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From an academic point of view, both variants of the method face the problem
that they do not guarantee decorrelation between operands and intermediate
state values.

For the first variant of the Duplication Method, the lookup-table output
(v′

1, v
′
2) can be expressed in terms of (v1, v) using an equivalent table T ′ by

including the linear transformation (v1, v2) = (v1, v⊕ v1). To have decorrelation
of the bits of v′

1, v
′
2 from v, it is a requirement that C(b, utv) = 0 for all 8 bits b

of v′
1 or v′

2 and for all 64 possible selections u. If A is chosen randomly it is very
unlikely that this is the case.

For the second variant of the Duplication Method, bits of operand v0 are
correlated to linear combinations of bits of v. As a matter of fact, we have:

∑

u

C2(b, utv) = 1

for any of the output bits. In the case that ϕ is linear (as proposed in [12]), every
bit of v0 is correlated to a linear combination of bits of v with correlation 1.

4 Bitslice Ciphers

Bitslice ciphers can be implemented using only bitwise logical instructions and
(cyclic) shifts. The term bitslice cipher was introduced by Eli Biham referring
to the AES candidate Serpent [1] designed by Eli Biham, Ross Anderson and
Lars Knudsen. Older examples of bitslice ciphers are 3-Way[9] published in 1993
and BaseKing. BaseKing is a variant of 3-Way that was described in [7] but
never presented at a conference.

4.1 BaseKing

BaseKing has a block and key length of 192 bits (24 bytes). It is an iterated
block cipher with a round transformation composed of a number of steps, each
with its own function. These steps treat the intermediate encryption result, called
the state, in a uniform way. The state, denoted by a consists of 12 16-bit words
denoted by a0 to a11. The round transformation has 5 steps:

– key addition: the cipher key and a round constant is added to the state.

a← a⊕ k ⊕ Crj

– diffusion: the words are transformed with a linear transformation with high
diffusion (branch number 8):

ai ← ai ⊕ ai+2 ⊕ ai+6 ⊕ ai+7 ⊕ ai+9 ⊕ ai+10 ⊕ ai+11

– early shift: the words are cyclically shifted over 12 different offsets:

ai ← ai � ri
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– S-box: the words are transformed with a nonlinear transformation operating
in parallel on sets of 3 bits:

ai ← ai ⊕ (ai+4 ∨ ai+8)

– late shift: the words are cyclically shifted over 12 different offsets:

ai ← ai � r11−i

The vector of rotation constants used in the shift operations is

r = (0, 8, 1, 15, 5, 10, 7, 6, 13, 14, 2, 3).

The round constants are given by:

Crj = (0, 0, qj , qj , 0, 0, 0, 0, qj , qj , 0, 0)

with qj given by the following pseudo-c program:
q[0] = 0x000B;
if ((q[j+1] = q[j]<<1) & 0x0100) q[j+1]ˆ= 0x0111;

BaseKing has 11 rounds and a final output transformation. The final out-
put transformation consists of a key addition and a diffusion step (as described
above) followed by a transformation that inverts the order of the words:

ai ← a11−i

Thanks to the arrangement of the steps and the algebraic properties of the
operations, the inverse cipher is exactly the same as the cipher itself, with the
exception of the round constants. For a detailed treatment of these aspects, we
refer to [7].

4.2 Cryptanalysis

The design of BaseKing aims at providing strong resistance against differential
and linear cryptanalysis and the absence of symmetry properties. We refer to [7]
for a development of this point.

For 3-Way, it has been shown that the lack of a real key schedule allows
mounting of a related-key attack [13]. This attack is also applicable to the cipher
BaseKing. However, in applications requiring only encryption, MACing and
key derivation, related-key attacks can be easily prevented by the application of
sound key management principles, i.e., by avoiding key variants.

5 Protecting Bitslice Ciphers against DPA

This section describes our methods of protecting bitslice ciphers against first
order DPA attacks.
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Before executing the cipher, the initial value of the state a, i.e., the plaintext,
is split into two state shares a′ and a′′ with a = a′⊕a′′. All computations will be
performed on the state shares in such a way that the relation a = a′ ⊕ a′′ holds
at all times. The linear steps (early shift, diffusion, late shift) can be applied
to the state shares a′ and a′′ independently and therefore provide decorrelation
from state words.

5.1 Key Addition

The key addition can be applied by adding the round key to one of the two split
states: a′ ← a′ ⊕ k. In the assumption that the attacker has no information on
a′, a first-order DPA cannot be used to gain information on the key k.

However, in [3], Eli Biham and Adi Shamir describe an attack that uses Ham-
ming weight information on round key words to retrieve the key. The Hamming
weight information is obtained by taking the average consumption over multiple
cipher computations with the same key. The ability to use this Hamming weight
information to derive the key strongly depends on the key schedule. For DES
(or Triple-DES) the complete key can be found using ”standard techniques from
error correcting codes”.

Ironically, its lack of a key schedule gives BaseKing an excellent protection
against this attack. The cipher key is applied at the end of every round by just
exoring it with the state. The subkey words are the same for every round. In the
case of 8-bit words, this attack gives on the average 2.54 bits of information per
byte, leaving still 24 ∗ (8− 2.54) = 131 bits to guess. In the case of 32-bit words,
this becomes 3.55 bits per word, leaving still 6 ∗ (32− 3.55) = 171 bits to guess.

Anyway, the knowledge of key information might be exploited to further
attack the cipher. A simple way to protect against the key schedule attack is
to apply secret sharing on the key. The key k is split into two parts k′ and
k′′. The exor with k is then executed by a word-by-word exor of the state with
k′ followed by a word-by-word exor of the state with k′′. The addition of two
subkeys per round can even be done with some linear steps in between, if one of
the two subkeys undergoes a linear transformation: L(a + k) = L(a) + k1 with
k1 = L(k).

In combination with the state secret sharing method, the key secret sharing
method can make key addition really symmetric: a′ ← a′⊕k′ and a′′ ← a′′⊕k′′.

5.2 Full State Splitting

Similar to the duplication method of Goubin and Patarin, the state a is split in a′

and a′′ with a′ generated randomly before the computation and only recombined
at the end of the cipher computation.

The BaseKing S-box operates on sets of three words of the state (e.g., a0,
a4 and a8), and transforms them by

ai ← ai ⊕ (ai+4 ⊕ 1)ai+8 ⊕ 1, (4)
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with index additions modulo 12. Applying secret sharing gives rise to ai = a′
i⊕a′′

i ,
i = 0, 1, . . . 11. We must determine functions f ′ and f ′′:

a′
i ← f ′(a′

i, a
′
i+4, a

′
i+8, a

′′
i , a′′

i+4, a
′′
i+8) and (5)

a′′
i ← f ′′(a′

i, a
′
i+4, a

′
i+8, a

′′
i , a′′

i+4, a
′′
i+8) (6)

that preserve the relation a = a′ ⊕ a′′:

f ′ ⊕ f ′′ = a′
i ⊕ a′′

i ⊕ (a′
i+4 ⊕ a′′

i+4 ⊕ 1)(a′
i+8 ⊕ a′′

i+8)⊕ 1, i = 0, 1, . . . 11. (7)

The restriction on f ′ and f ′′ is that during their computation there are no
operands that bear correlation with a. Using the distribution rule of F2, we get:

f ′ ⊕ f ′′ = a′
i ⊕ a′′

i ⊕ a′
i+8 ⊕ a′′

i+8

⊕ a′
i+4a

′
i+8 ⊕ a′

i+4a
′′
i+8 ⊕ a′′

i+4a
′
i+8 ⊕ a′′

i+4a
′′
i+8 ⊕ 1. (8)

A computation involving only components of a′ or a′′ cannot involve operands
that have a correlation with a. However, due to the presence of the mixed terms,
i.e., with components of a′ and a′′, the computation of f ′ will necessarily involve
terms of a′′ or vice versa. For instance, one gets:

f ′ = a′
i ⊕ a′

i+8 ⊕ a′
i+4a

′
i+8 ⊕ a′

i+4a
′′
i+8

f ′′ = a′′
i ⊕ a′′

i+8 ⊕ a′′
i+4a

′
i+8 ⊕ a′′

i+4a
′′
i+8 ⊕ 1.

To guarantee decorrelation of all operands, the order in which these functions
are computed is important. Consider the expression for f ′ given above. If it is
evaluated from right to left, after the addition of the two rightmost terms, the
following operand occurs: a′

i+4a
′′
i+8 ⊕ a′

i+4a
′
i+8 = a′

i+4ai+8. Clearly each bit of
this operand has a correlation of 1/2 with the corresponding bit of state word
ai+8. Since a′ is random and independent of a, we have:

a′
i+4ai+8 =

{
ai+8 when a′

i+4 = 1,

0 when a′
i+4 = 0, and thus

(9)

C
(
a′

i+4ai+8, ai+8
)

=
1
2
. (10)

If the expression for f ′ is evaluated from left to right, it can be shown that
no operands occur that have a correlation with the state. The computations of
all terms except the last one involve only words of a′, hence here decorrelation
from a is automatic. For the addition of the last term to the intermediate result
of the computation, the presence of a′

i in the first term implies that the masking
words of two terms are decorrelated.

The state splitting method can be generalized to provide protection against
second and higher order DPA attacks. In principle, this enables the smartcard
designer to adjust the level of security by making DPA attacks arbitrarily diffi-
cult. For instance, protecting against second-order DPA requires the state a to
be split into three parts, namely a = a′ ⊕ a′′ ⊕ a′′′. The evaluation of the S-box
requires care when deciding in which order the operations must be performed.
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5.3 The Bias Vector Method

In the bias vector method one of the two split states is in a particular sub-class
that can be kept invariant under the cipher computations. For BaseKing this
is the class of states where each 16-bit word is either all-0 (0) or all-1 (0̄). These
particular split states are called bias states. A bias state can be represented by
a 12-bit vector, called a bias vector.

A bias state is invariant under the shift operations. The diffusion operation
maps every bias state to another bias state, since it operates in parallel on the
bits of the words. Thanks to the linearity of the diffusion operation, computing
the bias vector at the output of a diffusion step from the bias vector at its input
can be done with some table-lookups and exors. For example: 3 table lookups in
tables with 16 (24) entries and two exors. Thanks to their compactness, input-
output bias vector pairs can be computed beforehand and stored in memory for
later usage.

The cipher computation operates on a biased state A equal to a ⊕ d. The
bias vector corresponding with d is denoted by δ.

For the linear steps including the key addition, the computation is performed
on A. The evolution of the bias vector in the linear steps is computed using the
table-lookups described above. For each round a new random 12-bit bias vector
is introduced.

We explain the computation of the first word of the output of the nonlinear
transformation corresponding with:

a′
0 = a0 ⊕ (a4 ∨ a8)

All other words are computed in the same way. The computation of A′
0 is done

as follows:

1. Computation of required values: Compute A4 ⊕ A8 and store it in a
register. Store 0 in a register (A4 and A8 are already assumed to be in
registers);

2. Nonlinear computation: We compute A4 ∨A8 and store it as G.
3. Computation of correction term: depending on the bias vector bits

δ4, δ8, one of the four registers containing 0, A4, A8 or A4 ⊕ A8 is selec-
ted and its complement is stored. The selected register or the one containing
its complement (depending on γ) is exored to G:
– δ4 = 0, δ8 = 0: complement 0 and store as H. If γ = 0 add 0 to G, else

add H to G;
– δ4 = 0, δ8 = 1: complement A4 and store as H. If γ = 0 add H to G,

else add A4 to G;
– δ4 = 1, δ8 = 0: complement A8 and store as H. If γ = 0 add H to G,

else add A8 to G;
– δ4 = 1, δ8 = 1: complement A4⊕A8 and store as H. If γ = 0 add A4⊕A8

to G, else add H to G;
This is programmed such that the sequence of instructions is independent of
the branch that is taken, the only difference are the source/target registers.
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4. Computation of A′
0 and δ′

0: A′
0 = A0 ⊕G and δ′

0 = δ0 ⊕ γ.

This computation can be repeated for all state words. The bits of all operands
in the computation are decorrelated from state words:

– Bits of A4 and A8 are decorrelated independently (via d4 and d8) from state
words, hence the results of A4 ⊕A8 and A4 ∨A8 are also decorrelated.

– Depending on the values of δ4 and δ8 the operand is 0, A4, A8 or A4⊕A8. The
bits of individual operands are all decorrelated, except 0 that is obviously
constant.

– In the subsequent computations of G and A′
0 the bits of all operands are

decorrelated.

The advantage of the bias vector method is that second order DPA will be
more difficult to accomplish than in the case of full state splitting thanks to the
compact (and possible delocalized) processing of the bias vector. Unfortunately,
the bias vector method has the disadvantage that decorrelation is only reached
at bit-level and not at word level (e.g., if in a word ai of the state the two LSB
bits are equal, the two LSB bits of Ai will be equal). In cyclic shift operations,
this might give away information via second-order effects.

5.4 Coding Results

To evaluate the implementability and cost of the methods described above, se-
veral versions of BaseKing were programmed on the ARM7 RISC processor (see
www.arm.com for technical and other information). This processor is well know
for its very high computation power vs. consumption ratio, and hence is ideal for
smartcards. Special care has been taken to guarantee immunity against timing
(for instance, handling of pipeline clearing) and SPA attacks. The following table
summarizes the code size and execution time for the different versions.

version cycles code size
timing and SPA resistant 1949 776
full state splitting 4593 1148
bias vector 4505 2804
bias vector, guarded instr. 3845 1844

Clearly, the application of the anti-DPA methods has a considerable cost in
execution time and code size. In the case of the bias vector method, most of
the overhead comes from the computation of the S-box (2119 cycles, 1216 bytes
code size).

We did not conduct actual power measurements and therefore were unable to
verify whether the use of guarded instructions endangers the immunity against
DPA attacks, and hence the last line of the table is only included for information.

More detailed information on the coding and updates will be made available
at http://www.protonworld.com/research.
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5.5 Applicability to 3-Way and Serpent

The bias vector method makes use of particular symmetry properties of the
cipher BaseKing and cannot be extended to 3-Way or Serpent. The full state
splitting method however can be extended to any bitslice cipher. For 3-Way,
both the linear steps and the S-box evaluation can be done in exactly the same
way as described for BaseKing.

In Serpent, the linear steps of the round function pose no problem. However,
we do not expect that implementing the method for the Serpent S-boxes will be
trivial. The BaseKing S-box mapping is very simple, containing only a single
nonlinear term with only two factors per output word computation. Moreover,
the expression is the same for all output words, only the input words differ. In
Serpent, there are 8 different S-boxes, and the expressions of the output bits
contain more terms with degrees up to 3. This is likely to give more mixed terms
in the expressions of Serpent’s equivalents of the f ′ and f ′′ functions and a
relatively more important reduction in performance. Special care must be taken
in the order of evaluation of these functions to guarantee correlation immunity
(if possible). Moreover, due to the lack of symmetry in the Serpent S-boxes, this
may give rise to an important overhead in code size.

Acknowledgments. We would like to thank Mr. Philip Theunissen for proof-
reading the final version of this paper.

6 Conclusions

We have applied and extended techniques to protect block ciphers against power
analysis attacks to the bitslice block cipher BaseKing. These techniques have
been validated by actual coding in assembly language on an ARM processor.

One of the techniques described generalises readily to the block cipher 3-
Way. We have shown that this technique can be applied to Serpent, but more
analysis and research is required to see what is the performance penalty in this
case.

Finally, in the appendix we show the difference in power between first-order
and second-order DPA with information-theoretical arguments.
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A First Order vs. Second Order DPA

Using a simple statistical model we compare the distinguishing power of second
order DPA and first order DPA, i.e., we compute the required number of samples
for both methods under identical noise levels.

Assume an emitter has chosen one of the two random process (with x a
continuous variable, e.g., the power consumption at a given stage):

– Process f , probability density f(x);
– Process g, probability density g(x).

The observer receives a sequence of xi and wants to determine whether it comes
from f or from g. From the observer’s point of view, the probability that values
in [xi, xi + dxi] come from f is:

P (f | x1x2 . . . xz) dx1 . . . dxz =
P (x1x2 . . . xz | f)P (f)

P (x1x2 . . . xz)
dx1 . . . dxz

= P (f)
∏

i

P (xi | f)
P (xi)

dxi,
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and similarly for g,

P (g | x1x2 . . . xz) dx1 . . . dxz = P (g)
∏

i

P (xi | g)
P (xi)

dxi.

For simplicity, we now assume that P (f) = P (g), and thus one gets

P (f | x1x2 . . . xz)
P (g | x1x2 . . . xz)

=
∏

i

P (xi | f)
P (xi | g)

=
∏

i

f(xi)
g(xi)

In order to detect f over g, we must reach the situation where

P (f | x1x2 . . . xz) ≥ λP (g | x1x2 . . . xz).

For simplicity, let λ = e. Taking the logarithm on both sides, it reads:
∑

i

(log(f(xi))− log(g(xi)) ≥ 1 (11)

The main question we address is how many samples (parameter z) are required
to reach this condition. Assuming that the emitter chose the random process f ,
i.e., distribution f(x) applies, each new xi will on average contribute to the sum
in (11) as much as:

D(f‖g) =
∫

f(x)(log(f(x))− log(g(x))dx,

where D(f‖g) happens to be the relative entropy of f and g (see [6]).
Therefore, the average number of samples required to clearly distinguish f

from g is z ∼ 1/D(f‖g).

Fig. 1. First order vs. second order DPA distributions. The 2D distributions clearly
have more overlap than 1D distributions.

The above result does not depend on a particular form of f(x) or g(x). We
will now illustrate this with normal distributions:
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– First order DPA: One has to distinguish between two noisy sets with slightly
different averages. We thus create two classes, one for logical zero f ∼ N(0, σ)
and one for logical one g ∼ N(1, σ). See Figure 1 (left).

– Second order DPA: The same individual distributions are used. However,
one is interested in the exor of two independent bits. Therefore, we create
two 2D distributions. See Figure 1 (right).
– Since 0 = 0⊕0 = 1⊕1, f consists of a balanced mix of N(0, σ)×N(0, σ)

and N(1, σ)×N(1, σ).
– Since 1 = 0⊕1 = 1⊕0, g consists of a balanced mix of N(0, σ)×N(1, σ)

and N(1, σ)×N(0, σ).

Notice that symmetry implies D(f‖g) = D(g‖f) in this case. We numerically
evaluate D(f‖g) with varying σ for both first order and second order DPA. The
results are listed in the table below. It appears that the number of samples
necessary for second order DPA is much higher than that of first order DPA
with the approximate relationship z2ndODPA ≈ 2z2

1stODPA.

σ z1stODPA z2ndODPA
4 8 143
5.7 16 543
8 32 2111
11.3 64 8319
16 128 33023
22.6 256 131586
32 512 525326
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Abstract. Techniques to protect software implementations of the AES candidate
algorithms from power analysis attacks are investigated. New countermeasures
that employ random masks are developed and the performance characteristics of
these countermeasures are analyzed. Implementations in a 32-bit, ARM-based
smartcard are considered.

1 Introduction

The field of candidates for the final round of the Advanced Encryption Standard (AES)
selection process has been narrowed from fifteen down to five finalists: Mars [1],
RC6 [2], Rijndael [3], Serpent [4], and Twofish [5]. The cryptographic strength of the
remaining AES candidates is currently being evaluated and the winning algorithm will
soon be selected. One would expect that a cryptosystem using the AES winning algo-
rithm would be unbreakable. However, history has proven that otherwise secure cryp-
tographic algorithms can often succumb to weaknesses in their implementations [6].
Attackers of the AES algorithm may try to exploit such weaknesses.

Attacks on implementations are of particular concern to issuers and users of smart-
cards. Smartcards are becoming a preferred way of securely managing applications in
industries such as telecommunications [7], health care [8], transportation [9], pay-TV
[10] and internet commerce [11]. Smartcards have also been suggested for use in secu-
rity applications such as network access [12] and physical access to locations such as
automobiles, homes, and businesses [13]. Smartcards, however are potentially vulner-
able to implementation attacks. These attacks include power analysis attacks [14,15],
timing attacks [16,17], fault insertion attacks [18,19], and electromagnetic emission
attacks [20]. All of these attacks exploit the fact that a hardware device can sometimes
leak information when running a cryptographic algorithm. Kelsey et al. [21] use the
term “side-channel” to describe this unintended leakage of information.

In a power analysis attack the side-channel information is the device’s power con-
sumption. The power consumption of a vulnerable device, such as a smartcard, can leak
information about the secrets contained inside the device. Kocher et al. first described
power analysis attacks against the DES algorithm in a 1998 technical report [22] and
later followed up with a paper presented at CRYPTO ‘99 [14]. Researchers have also
begun to study the vulnerabilities of public-key cryptosystems to these attacks [23, 24].
Power analysis attacks against the AES algorithms have also been studied [25-27]. The
purpose of this paper is to introduce and describe new implementations of the AES can-
didate algorithms that are secure against power analysis attacks. I present masking tech-

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 150−164, 2001.
 Springer-Verlag Berlin Heidelberg 2001



niques that are used to randomize the fundamental operations used by the AES
algorithms. I also provide results showing the performance and memory requirements
for these implementations in a 32-bit, ARM-based smartcard.

1.1  Research Motivation

Tamper-resistant devices, such as smartcards, can be used to store and apply secret keys
in symmetric-key cryptosystems. In a simple transaction, the smartcard might prove its
authenticity through a basic challenge-and-response protocol. In such a protocol, an
external device, called a reader, will challenge the smartcard to encrypt a random nonce.
The smartcard will then use its secret key to encrypt this nonce and produce a response.
Since the reader and smartcard share the same secret key, the reader can examine the
response and verify whether the smartcard is authentic.

Honest readers possess a copy of the smartcard’s secret key, thus these readers will
be able to verify the result of a challenge. However, dishonest readers will not know the
value of the smartcard’s secret key. Nevertheless, when the power consumption leaks
information from a smartcard, a dishonest reader might be able to ascertain the value of
the secret key. Successful attacks against a smartcard’s secret key might enable fraud-
ulent behavior such as the counterfeiting of smartcards. Thus, smartcard issuers and
users will want to ensure that the power consumption information cannot reveal the
value of a secret key.

Future smartcard cryptosystems will likely use the AES algorithm. Thus, it is vital
to begin understanding the issues involved in protecting smartcard AES implementa-
tions from attack.

1.2  Previous Work

The topic of power analysis attacks against the AES algorithms was discussed in March
1999 during the second AES Candidate Conference. At this conference, Biham and
Shamir [25] submitted a paper that describes ways to attack many of the AES algo-
rithms’ key scheduling routines. In their paper, Biham and Shamir use the fact that a
power consumption signal may leak the Hamming weight of the data being processed.
They show how knowledge of the Hamming weights can enable attacks. In another
paper, Chari et al. [26] look at attacks against the encrypt and decrypt routines of the
AES candidate algorithms. Chari et al. assess each of the AES algorithm’s vulnerabili-
ties and, as an example, give results from an actual power analysis attack against a naive
implementation of the Twofish algorithm. Daemen and Rijmen [27] also look at power
analysis attacks against the AES algorithms. In their paper, Daemen and Rijmen exam-
ine the fundamental operations used by the AES algorithms and comment on possible
vulnerabilities. Daemen and Rijmen also propose some possible countermeasures
against these attacks.

All three of these papers recommend that comparisons of smartcard AES implemen-
tations consider the performance of versions that are secured against power analysis
attacks rather than merely naive implementations.
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1.3  Paper Overview

A smartcard microprocessor has a minimal amount of computing power and memory.
Unfortunately, as pointed out by Chari et al. [26], software countermeasures against
power analysis attacks can result in significant memory and execution time overhead.
The amount of overhead seems to depend on the type and arrangement of the fundamen-
tal operations used by an algorithm. In this paper I examine the fundamental operations
used by each of the AES finalist algorithms. I then develop techniques that use random
masks to make software implementations of these operations resistant to power analysis
attacks. Finally, I use these new countermeasures to implement masked versions of each
of the remaining AES algorithms. The performance and implementation characteristics
of these countermeasures in a 32-bit, ARM-based smartcard are analyzed.

The organization of this paper is as follows; first in Section 2, the fundamental oper-
ations used by each of the AES finalist algorithms are described. Next in Section 3, the
basic principles of power analysis attacks are reviewed and previously suggested coun-
termeasures are discussed. Then in Sections 4 and 5, my specific countermeasures for
the AES finalist algorithms are described and implementation details are provided.
Finally, the results for secure implementations of each of the algorithms are reported in
Section 6.

2  Fundamental Operations in the AES Algorithms

The fundamental operations used by the AES algorithms were previously summarized
by Daemen and Rijmen [27]. I review these fundamental operations and make the cau-
tious assumption that each of these operations is potentially vulnerable to some form of
power analysis attack. I then convert these vulnerable operations into secured opera-
tions using a strategy that employs random masks. Finally, I use these secured opera-
tions as the building blocks for the AES algorithms. Daemen and Rijmen [27] also
proposed countermeasures, however their countermeasures are different from the
masking strategies described in this paper. Daemen and Rijmen suggest software coun-
termeasures such as data balancing and instruction sequence scrambling, whereas my
countermeasures involve masking all intermediate data with random masks.

The AES candidate algorithms share many of the same fundamental operations.
These operations include table lookups, bitwise AND, OR and XOR functions, shift and
rotate operations, multiplication and addition modulo 232 operations, permutations,
polynomial multiplications over GF(28), and other various types of linear transforma-
tions. In this paper, I consider only the fundamental operations that are needed for
implementations in a smartcard. Smartcards have a severely limited amount of memory,
especially RAM, so some operations that could make the algorithms run more effi-
ciently in a memory-rich environment are not considered in this paper.

A detailed description of the fundamental operations used in smartcard implemen-
tations of the AES algorithms is now given. A summary of these fundamental opera-
tions is also provided in Table 1.
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2.1  Table Lookup Operations

All of the AES finalist algorithms, except the RC6 algorithm and a bitslice implemen-
tation of the Serpent algorithm, require table lookup operations. A table lookup opera-
tion operates on n input bits and produces m output bits. The n input bits specify an
address into a table and the data at this address is the m-bit output. The size of the table
grows exponentially with n, thus for smartcard implementations n must be kept fairly
small. A table lookup operation T that has x as input and y as output is symbolically
denoted as . The countermeasures that I will propose in Section 4 require the
table be randomly masked prior to running the algorithm. This means that the table will
need to be copied into RAM. Thus, table size is critical when considering secure imple-
mentations in smartcards with a minimal amount of RAM.

Mars. The Mars algorithm requires the largest table size out of all the AES algorithms.
For Mars, n = 9 and m = 32 resulting in a table size of 2,048 bytes. During the forward
and backwards mixing stages of Mars, this large table is viewed as two smaller tables
each with n = 8 and m = 32.

Rijndael. The Rijndael algorithm actually does not need a table lookup operation
because the table can be described arithmetically. However, this approach would result
in a very inefficient implementation. Thus, for efficiency, Rijndael uses a table lookup
operation where n = 8 and m = 8. The resulting table size is 256 bytes. More tables
could be used for more efficient implementations, but these implementations are less
suitable for low-memory smartcards.

Serpent. The Serpent algorithm can be implemented in either standard mode or in a
more efficient bitslice mode. Only the standard mode requires table lookups. In this
case, there are eight tables where n = m = 4. Thus, for standard mode Serpent, there is
a need for 64 bytes of table memory.

Twofish. The Twofish algorithm can have its tables represented in a variety of forms.
The tables are all originally derived from eight small permutation tables that have a
combined memory requirement of 64 bytes. Implementations using these small tables
would be inefficient, so more optimized implementations represent these small tables
using two larger tables requiring a total of 512 bytes. More efficient implementations
have been described that use key dependent tables [5], but these implementations are
not suitable for low-memory smartcards.

2.2  Bitwise Boolean Functions

Bitwise Boolean functions include the AND, OR, and XOR functions. All of the AES
algorithms use the XOR function. A bitslice implementation of the Serpent lookup
tables and a routine to “fix” Mars subkeys are the only two places where the AND and
OR functions are used. The logical operators ⊕, ∧, and ∨ are used to denote the bitwise
XOR, AND and OR functions, respectively. Smartcards can efficiently perform these
operations, but if countermeasures are not taken, information regarding the operands
and results may leak.

y T x[ ]=
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2.3  Shift and Rotate Operations

There are two types of shift and rotate operations, fixed and data dependent. All of the
AES candidates use a fixed rotate or shift operation. Mars and RC6 also use data depen-
dent rotate operations. Data dependent rotate operations can be very difficult to mask
in smartcard implementations, especially if the smartcard microprocessor can only
rotate by one bit at a time. Shift operations are denoted using the >> or the << operator
and rotate operations are denoted using the <<<  or the >>>  operator.

2.4  Addition and Multiplication Modulo 232

Mars, RC6, and Twofish extensively use addition modulo 232. The Mars and RC6 algo-
rithms also require a modular multiplication operation. In RC6, multiplication is used
twice during each round. In Mars, multiplication is used once during each of the sixteen
keyed transformation rounds.

2.5  Bitwise Permutations

A bitwise permutation is a rearrangement of the bits within a sequence of bits. The only
AES algorithm that uses a bitwise permutation is the Serpent algorithm, and Serpent
only uses the bitwise permutation if it is implemented in standard mode. A permutation
operation P that has x as input and y as output is symbolically denoted as .

2.6  Polynomial Multiplications over GF(28)

The Rijndael and Twofish algorithm are the only AES finalists that use polynomial
multiplications over GF(28). Polynomial multiplication can be implemented either
directly or through the use of table lookup operations. When implemented directly, the
multiplication decomposes into a series of conditional bitwise XOR operations and
shifts. Conditional operations, however may allow for timing attacks. Therefore, smart-
card implementations may instead use a combination of table lookups, XOR operations
and shifts.

2.7  Linear Transformations

Serpent uses a linear transformation during each round and a recursive linear transfor-
mation during the key scheduling. Mars also uses a recursive linear transformation
during the key schedule. Linear transformations can be implemented using shift and
XOR operations, so techniques to protect these operations can also apply to linear trans-
formations. A linear transform is symbolically denoted as y = LT[x], where x is the input
to the transform and y is the output.

3  Review of Power Analysis Attacks and Countermeasures

Before looking at ways to securely implement the AES fundamental operations, it is
useful to review the basic concepts of power analysis attacks. Kocher et al. [14] have
described two types of attacks, a Simple Power Analysis (SPA) attack and a Differential
Power Analysis (DPA) attack. An SPA attack is described as an attack where the adver-

y πP x[ ]=
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sary can directly use a single power consumption signal to break a cryptosystem.
Attacks where an adversary can learn the Hamming weight of data that was processed
or can learn how branch instructions were executed are examples of SPA attacks. The
information in the power signal is usually quite small; thus steps such as executing
random dummy code or avoiding memory accesses by processing data in registers can
often help to protect against SPA attacks.

DPA attacks, on the other hand, can be much harder to protect against. A DPA
attack uses statistical analysis to extract information from a power signal. Information
that might be imperceptible by using SPA can often be extracted using DPA. In its min-
imal form, DPA reduces to the analysis of the probability distributions of points in the
power consumption signal. For example, in the original DPA attack described by
Kocher et al., the means of the probability distributions are analyzed.

Let f(p) be the probability distribution function of a point in the power consumption
signal that is vulnerable to attack. The underlying mechanism that enables a DPA attack
is the fact that f(p) can be dependent on the data input to the algorithm, the data output
from the algorithm, and the secret key used by the algorithm. Most operations per-
formed by an algorithm have this property, thus most operations are potentially vulner-
able to a DPA attack.

Daemen and Rijmen [27] suggested software countermeasures against DPA attacks.
These countermeasures include the insertion of dummy code, power consumption ran-
domization, and the balancing of data. These methods will degrade the strength of a DPA
attack, but may not be enough to prevent an attack. Chari et al. [28] suggest that ad hoc
countermeasures will not suffice since attackers can theoretically use signal processing
techniques to remove dummy code and can analyze more data to overcome the effects of
randomization and data balancing. They suggest a better approach is to split all interme-
diate data results using a secret sharing scheme, thereby forcing attackers to analyze joint
distribution functions on multiple points in the power signal. Goubin et al. [29] proposed
a similar strategy, called the duplication method, to protect the DES algorithm from DPA

Mars RC6 Rijndael Serpent Twofish

Table-Lookup

(Table Size)

two 8 to 32, or
one 9 to 32

(2,048 bytes)

none

(0 bytes)

one 8 to 8

(256 bytes)

none, or
eight 4 to 4

(64 bytes)

eight 4 to 4, or
two 8 to 8

(64 or 512 bytes)

Bitwise Boolean XOR XOR XOR XOR, AND, OR XOR

Shift or Rotate Operation Variable Variable Fixed Fixed

Multiplication mod 232 X X

Addition mod 232 X X X

Multiplication GF(28) X X

Bitwise Permutation standard mode

Linear Transformation X X

Table 1. Summary of the Fundamental Operations in the AES Finalist Algorithms
The fundamental operations used by the AES finalist algorithms are given in the above table.
The memory requirements are also provided for the table lookup operations. These memory
requirements are given assuming a typical smartcard implementation.
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attacks. The countermeasures I propose for the AES algorithms mask all intermediate data
results and are similar to those suggested by Chari et al. and Goubin et al.

Chari et al. [28] suggested that not all intermediate data in all rounds of an algorithm
need to be masked. For example, they suggest that only the first and last four rounds of
DES need to use their scheme. On the other hand, Fahn et al. [30] developed an Infer-
ential Power Analysis (IPA) method that can even attack the middle rounds of an algo-
rithm. My implementations take a conservative approach and mask all data for all
rounds.

4  Secure Implementations of the AES Fundamental Operations

My implementations resist SPA attacks by avoiding branch instructions. Other steps to
prevent SPA attacks can be taken as deemed necessary, but the main focus of my atten-
tion was on resisting DPA attacks. The DPA countermeasures that I implement use
random masks to obscure the calculations made by the fundamental operations. The
random masks force the power consumption signals to be uncorrelated with the secret
key and the input and output data; thus DPA attacks will require analysis of joint prob-
ability distributions.

In this paper I work exclusively with 32-bit words and use two types of masking
operations. One type, that I refer to as Boolean masking, uses the bitwise XOR opera-
tion as the mask operator. The other type, that I refer to as arithmetic masking, uses
addition and subtraction modulo 232 as the mask operator. As an example of each type
of masking strategy consider the masking of a word x with a random mask rx. The
results of masking x using each strategy give the following masked values :

Boolean mask:  or arithmetic mask:

My overall strategy is to randomly mask the input data and key data prior to execut-
ing the algorithm. The algorithm is then executed using the masked data so all interme-
diate results of the algorithm are also masked. Since new masks are randomly chosen
for each new run of the algorithm, simple statistical analysis of the algorithm’s power
consumption is inadequate for a successful attack. The only way attackers will be able
to mount a statistical attack will be to look at joint probability distributions of multiple
points in the power signal. Such an attack is referred to as a higher-order DPA [14]
attack and is much more formidable to execute than a normal DPA attack.

The above masking strategy is possible if all of the fundamental operations of the
AES algorithms can work with masked input data and produce masked output data. All
operations, except addition and multiplication, can readily work with Boolean masked
data. For addition and multiplication, arithmetic masking will be used. Many of the
AES algorithms combine Boolean and arithmetic functions, thus a way to convert back
and forth between Boolean masking and arithmetic masking is needed.

The conversion from one type of masking to another needs to be done in such a way
to avoid vulnerabilities to DPA attacks. The algorithm shown in Fig. 1 gives one possi-
ble approach. In this approach, the unmasked data is x, the masked data is , and the
mask is rx. The algorithm works by unmasking x using the XOR operation and then by
arithmetically remasking x using modular subtraction. Of course, an unmasked x may

x'

x' x rx⊕= x' x rx–( ) mod 2
32

=

x'
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be vulnerable to power analysis attack. Thus, a random value C is used to randomly
select whether x or is unmasked. A DPA attack using statistical analysis of the means
will not work against this algorithm because the attacker does not know whether D or

is being processed at the circled statement in the algorithm. Attackers that can deter-
mine the value of C will be able to run a DPA attack, but finding out the value of C is
an SPA attack and SPA attacks are protected against using other means. A similar algo-
rithm to that given in Fig. 1 can be used to convert from arithmetic masking back to
Boolean masking.

The following sections now describe how each of the fundamental operations can
work with masked data.

4.1  Table Lookup Operations

Recall that a table lookup operation takes an input x and produces an output y such that
. In order to mask a table lookup operation, the table itself needs to be

masked. The easiest way to mask a table is to use an input mask rin and an output mask
rout. A Boolean masked table  can then be defined in terms of T, rin, and rout where

The masked table takes inputs that are masked with rin and produces outputs that are
masked with rout. Thus, the table lookup operation has been converted to an operation
that takes masked data for inputs and produces masked data as outputs.

For practical implementations in a smartcard, the random values for rin and rout can
be chosen at the beginning of the algorithm. These values can then be used to construct
the masked table that will be stored in RAM. Now, anytime a table lookup operation
needs to be performed, the input data can be masked with rin and the masked table can
be used. The output of the masked table will be masked with rout, so it can either be
unmasked to reveal the true output or reused in another secure operation.

Fortunately, most of the AES algorithms use tables that are small enough to fit into
the RAM available in a smartcard. Mars is the only algorithm where this solution is
likely to pose a problem.

Fig. 1. Algorithm to convert from Boolean to Arithmetic Mask
This algorithm takes masked data and mask rx as input, and returns a masked value such
that ( + rx) is equal to ( ⊕ rx). The circled statement is where x or is unmasked, depending
on the value of C.

x' A
A x' x

BooleanToArithmetic( , ){

randomly select: C = 0 or C = -1
B = C ⊕ ; /*  or */

A = B ⊕ ; /*  or */

A = A - B; /*  or */

A = A + C; /*  or */

A = A ⊕ C; /* */

return(A);}

x' rx

rx B rx= B rx=
x' A x= A x=

A x rx–= A x rx–=
A x rx–= A x rx– 1–=
A x rx–=

x

D

y T x[ ]=

T '

T ' x[ ] T x rin⊕[ ] rout⊕=

T '
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4.2  Bitwise Boolean Functions

The bitwise XOR operation trivially works with Boolean masked data. To compute the
XOR of two masked operands, simply compute the XOR of the masked operands and
then the XOR of their corresponding masks. Thus, if the masked operands and are
masked with rx and ry, respectively, then the masked output is and the new
mask is .

The bitwise AND operator can also be masked, but the calculation of the mask is a
little more complicated. Again, the operands and are assumed to be Boolean
masked with rx and ry, respectively. The masked output of the AND operation is

and the mask can be shown to be .
A similar expression can be derived for the bitwise OR operator.

A straightforward implementation of the above expression for rz will first calculate
and then use the XOR operation to combine this with or . Unfor-

tunately, the intermediate result of this operation will cause some data of x or y to
become unmasked. A simple fix is to use an intermediate random mask during these
calculations.

4.3  Shift and Rotate Operations

Fixed rotate or shift operations can easily be performed on Boolean masked data. The
masks simply rotate or shift along with the data. Thus, if the masked operand is and
the mask is rx, then the output of a right rotate by n is >>> n and the new mask is
rx >>> n.

For data dependent rotate operations, the rotation amount also needs to be masked.
This rotation amount, however, needs to be masked with an arithmetic mask rather than
a Boolean mask. Thus, the data to be rotated is still represented as masked operand
and Boolean mask rx, but the rotation amount is now represented as masked operand
and arithmetic mask rn. A masked data dependent rotate operation can now be per-
formed using two double rotations. The masked output of the right rotate operation is
( >>> ) >>> rn and the corresponding mask is (rx >>> ) >>> rn.

4.4  Addition and Multiplication Modulo 232

The arithmetic operations of addition and multiplication are more compatible with
arithmetic masking than with Boolean masking. The addition operation trivially works
with arithmetic masked data. Given masked operands and , which are masked with
rx and ry, respectively, the masked output of the addition operation is simply

 and the new mask is .
Multiplication of masked data is more involved. The masked result for multiplying

masked operands and is and the corresponding mask can be
shown to be .

4.5  Bitwise Permutations

Bitwise permutations work very nicely with Boolean masked data. If the masked oper-
and is and the mask is rx, then the masked output is and the correspond-
ing mask is .

x' y'
z' x' y'⊕=

rz rx ry⊕=

x' y'

z' x' y'∧= rz rx y'∧( ) ry x'∧( ) rx ry∧( )⊕ ⊕=

rx y'∧ ry x'∧ rx ry∧

x'
x'

x'
n'

x' n' n'

x' y'

z' x' y'+( ) mod 232= rz rx ry+( ) mod 232=

x' y' z' x'y'( ) mod 232=
rz rxy' ryx' rxry+ +( ) mod 232=

x' z' πP x'[ ]=
rz πP rx[ ]=
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4.6  Polynomial Multiplications over GF(28)

There are various ways that polynomial multiplications can work with Boolean masked
data. If the multiplications are performed using table lookups, shift and XOR opera-
tions, then the corresponding methods to protect these operations can be used. Also, a
data byte g that is Boolean masked with rg using the XOR operation is equivalent to
polynomial g(x) being arithmetically masked with polynomial rg(x) using polynomial
addition. Therefore, polynomial multiplication can be secured using an approach simi-
lar to that used for multiplication modulo 232.

4.7  Linear Transformations

Non-recursive linear transformations work nicely with masked data. Given a masked
operand which is Boolean masked with rx, the masked output is and the
corresponding mask is . Recursive linear transformations can be repre-
sented as a series of shift and XOR operations, so the corresponding methods to protect
shift and XOR operations can be used.

5  Implementation Details

The previously described masking techniques were used to implement secure versions
of the five remaining AES candidates. Naive versions of the algorithms, without the use
of masking, were also implemented as a baseline. It was very difficult to determine the
best implementation methods from some of the algorithm specifications, so the details
provided by the algorithm authors to NIST [31] proved to be useful references.

Each of the secured algorithms begin with an initialization step where random
masks are generated and used to mask the input and key data. If needed, randomized
tables are also constructed. The algorithms are then executed normally, except the
masked data is processed with secure versions of the fundamental operations. The effi-
ciency is reduced because the number of computations is increased and extra memory
is required for the masks and the masked table data. Many operations need to be com-
puted twice, once for the masked data and once for the masks. The table lookup opera-
tions also require extra overhead because the input data needs to be remasked using the
mask that was originally used to construct the table. Some algorithms also require a sig-
nificant amount of overhead to convert between Boolean and arithmetic masking.

5.1  Implementations for a Specific Processor

I chose to use a 32-bit, ARM-based processor as an evaluation platform for my AES
implementations. The ARM processor, manufactured by ARM Ltd., is a RISC machine
with fourteen general use registers. A smartcard containing an ARM processor typically
has 4K bytes of RAM and 48K bytes of ROM. The ARM processor also has a barrel
shifter and a 32-bit multiply instruction, both of which proved useful for my AES
implementations. I wrote the code for the ARM processor completely in C and com-
piled the code using the C compiler that comes with the “ARM Software Development
Kit” available from ARM Ltd. The code was compiled using the “-Otime” compiler
flag, so the resulting machine code is optimized for time rather than size. More optimal

x' z' LT x'[ ]=
rz LT rx[ ]=
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code would likely be possible if some of the routines were written in assembly, but the
intent of my experiment was to determine the relative costs of implementing secure
code rather than producing the most efficient code possible.

I chose to implement my masking technique in a newer 32-bit smartcard processor,
but could also have chosen an 8-bit processor. My software implementations required
more than 256 bytes of RAM so low-memory 8-bit processors with only 256 bytes of
RAM would not be suitable. However, newer 8-bit processors, such as the ST19 micro-
processor manufactured by ST Microelectronics, would be sufficient for my implemen-
tations. An ST19 smartcard processor typically has 1K bytes of RAM and 32K bytes of
ROM.

For information on 8-bit versus 32-bit implementations one could look at the work
by Hachez et al. [32]. They examine implementations in both types of processors, so
their results are useful for comparing 32-bit to 8-bit implementations. Comparisons of
the Hachez et al. implementations to my implementations, however, should consider
that the implementations by Hachez et al. were optimized to maximize performance,
rather than to prevent power analysis attacks.

5.2  Algorithm Specific Issues

Masking the operations of the AES algorithms can be a very costly undertaking. The
simplest approach to masking assigns each variable in the algorithm its own unique
mask. Both the masks and the masked data need to be processed, thus both the amount
of processing and the memory requirements double. In addition, there is also the cost
associated with initializing the masks and storing and initializing masked lookup tables.
Fortunately, there are a few techniques that can be used to reduce these costs.

One technique to save memory is to reuse the masks. In my implementations, two
variables that are never directly combined are allowed to share the same mask, thus con-
serving valuable memory. Masks are also sometimes reused between rounds. For exam-
ple, all the subkeys can often be masked with the same mask.

One technique to save processing is to start each round of the algorithm with a fixed
set of masks. As the data for a round is manipulated, the masks will also change. In
some cases, the changes to the masks are independent of the data being masked. Thus,
in these cases the changes to the masks are predictable. A preprocessing step can calcu-
late the intermediate mask values based on the initial masks and these values can be
reused for every round. This technique reduces the need to continuously recalculate
new masks during each round.

These techniques and other previously described masking techniques were used to
implement the AES candidates. The main goal of these implementations was to keep
the RAM memory requirements relatively low (less than 1K bytes) and the processing
speed as fast as possible. The performance and memory requirements depend on the
type of operations used in an algorithm and also the order of these operations. Com-
ments on each of the AES implementations are now provided.

Mars. Mars was the most difficult algorithm to mask. The lookup table for Mars is
2K bytes, thus is unreasonably large to be masked and stored in RAM. As an alterna-
tive, two versions of the table were store in ROM. One table contained the normal
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unmasked data and the other table contained the complement data in reverse order. A
random bit was used to determine which table to use. Other issues with Mars are that
the multiplications are time consuming to mask and converting between Boolean and
arithmetic masking is often required.

RC6. The RC6 algorithm, due to its simple design, was very easy to mask, but again
multiplications and the need for repeatedly changing from Boolean to arithmetic mask-
ing caused a good deal of overhead. In general, the calculation of a mask for a multipli-
cation operation requires three multiplies and two add operations, thus causing much
overhead. Also, masks used in multiplications are dependent on the data being masked,
thus these mask values cannot be precalculated. This prevents the use of the speedup
technique based on precalculating the mask values.

Rijndael. The structure of the Rijndael algorithm made masking very efficient. There
was no extra overhead for arithmetic operations and the lookup table was small enough
to be masked and stored in RAM. During a Rijndael round, all operations on the masks
proved to be independent of the data. Thus, the technique of precalculating mask values
was used extensively in this implementation.

Serpent. The Serpent algorithm was only implemented in bitslice mode. An implemen-
tation in standard mode seemed too inefficient and potentially more vulnerable to a
power analysis attack because individual bits would need to be processed during the
permutation operation. The main source of overhead in the Serpent implementation is
due to the bitwise AND and OR operations. Calculating the masks for one AND oper-
ation requires three AND operations and four XOR operations. The OR operation also
requires two additional complement operations. Also, my technique to precalculate the
mask values could not be used with the AND and OR operations. Thus, even though
Serpent does not use costly arithmetic operations, the overhead was still relatively high.

Twofish. The Twofish algorithm uses arithmetic operations, but does not use multi-
plies. Thus, the masks can be precalculated. Also, the order of operations allowed for
many masks to be shared. Overall, these properties led to a more efficient implementa-
tion. The main source of overhead in Twofish is the 512 bytes of RAM that is needed
to store the masked lookup table.

6  Performance Measurements

Implementations of the encrypt mode of the AES algorithms were tested. The cycle
counts and memory requirements for masked and unmasked implementations on the
32-bit ARM processor are given in Table 2. The security cost for each algorithm is also
given in Table 2. The security cost was calculated by dividing the masked implementa-
tion result by the unmasked result.

It is clear that when the countermeasures described in this paper were used, some of
the algorithms fared better than others. As expected, algorithms that used multiplication
operations, such as Mars and RC6, showed the worst degradation in performance. Ser-
pent is also not ideally suited for masking countermeasures, but its performance is a
little more acceptable. Rijndael and Twofish are the best suited algorithms for random
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masking. The overall results show that masking countermeasures can be implemented
in smartcards. The performance is degraded, but in some applications, security against
power analysis attacks is more important than efficiency.

7  Conclusions

This paper has introduced various strategies for randomly masking the operations used
by the AES finalists. These strategies were used in implementations of the AES algo-
rithms and the performance of these implementations was reported. The results provide
a useful means for comparing the efficiency of secure smartcard AES implementations.
Perhaps future researchers can continue searching for more efficient secure implemen-
tation techniques. The efficiency of masking arithmetic operations especially needs to
be addressed and secure implementations in hardware also need to be studied. Another
approach may be to mask only critical operations, such as the first and last few rounds
of an algorithm. Hopefully, the results of this paper can provide some initial guidance
towards the selection of the winning AES algorithm and also assist in the future devel-
opment of more secure software cryptosystems.
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Table 2. Implementation Results for an ARM-based Processor
The implementation results above show the cycle count and memory requirements for the
masked and unmasked versions of the AES algorithms. The security cost is calculated by
dividing the masked implementation requirement by the unmasked requirement.

Cycle Count Mars RC6 Rijndael Serpent Twofish

Unmasked 9,425 5,964 7,086 15,687 19,274

Masked 72,327 46,282 13,867 49,495 36,694

Security Cost 7.67 7.76 1.96 3.16 1.90

RAM (bytes) Mars RC6 Rijndael Serpent Twofish

Unmasked 116 232 52 176 60

Masked 232 284 326 340 696

Security Cost 2.00 1.22 6.27 1.93 11.60

ROM (bytes) Mars RC6 Rijndael Serpent Twofish

Unmasked 2,984 464 1,756 2,676 1,544

Masked 7,404 1,376 2,393 9,572 2,656

Security Cost 2.48 2.97 1.36 3.58 1.72
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Abstract. This paper presents an operational reconstruction technique
of most stream ciphers. We primarily expose it for key-stream genera-
tors which consist of several linear feedback shift registers combined by
a nonlinear Boolean function. It is shown how to completely recover the
different feedback polynomials and the combining function, when the
algorithm is totally unknown. This attack only requires the knowledge
of some ciphertexts, which may be generated from different secret keys.
Estimates of necessary ciphertext length and experimental results are
detailed.

Keywords: stream cipher, Boolean function, correlation, linear feedback
shift register, ciphertext only reconstruction

1 Introduction

Stream ciphers are an important class of cipher systems. They are widely used by
the world’s militaries and governmental offices. They also are very often used in
industrial encryption products. The success of stream ciphers comes from the fact
that they are very easy to build: they need only few logic gates in VLSI circuitry.
They are therefore particularly appropriate to embedded systems (satellites for
example) or to the systems for which maintenance is either impossible or very
difficult. Moreover, their use is particularly well-suited when errors may occur
during the transmission because they avoid error propagation.

In a binary additive stream cipher, the ciphertext is obtained by adding
bitwise the plaintext to a pseudo-random sequence called the running-key (or the
key-stream). The running-key is produced by a pseudo-random generator whose
initialization is the secret key shared by the users. Most practical designs of
pseudo-random generators center around linear feedback shift registers (LFSRs)
combined by a nonlinear Boolean function. Different variants can actually be
found: clock-controlled systems, filter generators, multiplexed systems...[13]. We
here focus on the most common class of combination generators depicted in
Figure 1.
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Fig. 1. Additive stream cipher using a combination generator

The other very important aspect is that the designs are often secret and
contrary to block ciphers, generally no public evaluation is possible. Although
such stream ciphers may be vulnerable to some attacks [11,7,6], cryptanalysis
becomes much harder when the algorithm is unknown. During World War II,
US cryptanalysts had to face this problem with the Japanese PURPLE ma-
chine [8]: they reconstructed it before cryptanalysing it. This paper presents
a similar approach and a reconstruction technique of stream ciphers allowing,
from ciphertexts only, complete recovering of the unknown algorithm. By al-
gebraic and statistical results, all the cryptographic primitives constituting the
system (the LFSR characteristics and the combining function) can be recovered.
After this reconstruction step, the LFSR initializations can be found by classical
correlation attacks [11,7,6,1].

The reconstruction has been conducted on the following basis and assump-
tions:

– The system is a combination generator. Most practical designs use combining
functions with up to 5 or 7 variables (i.e., registers). In this paper we will
only consider additive stream ciphers but generalization to other combining
functions can be envisaged with suitable modifications.

– We use only ciphertexts, possibly generated from different secret keys. Each
of them, however, must be of a realistic length.

– We know the plaintext encoding (or at least some of its statistical parame-
ters) and the linguistic group of the plaintext language.

– We accept very long computing time since work is done only once (and for
all) and as long as it remains far lower than the life of the algorithm itself.

This paper is organized as follows. Section 2 presents the theoretical tools we use
in the reconstruction. In Section 3, we show how to recover the LFSRs and we
give some simulation results. We precisely analyze the complexity of this attack
and we estimate the number of required ciphertext bits. Section 4 focuses on the
combining function recovering.
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2 Theoretical Background

2.1 Linear Feedback Shift Register Sequences

A linear feedback shift register of length L is characterized by a univariate
polynomial P over F2 of degree L, called the feedback polynomial, P (x) =
1 +

∑L
i=1 piX

i. It associates to any L-bit initialization (st)1≤t≤L a sequence
(st)t>0 defined by the L-th order linear recurrence relation.

st+L =
L∑

i=1

pist+L−i, t ≥ 0 .

Most applications use a primitive feedback polynomial since this ensures that
the periods of all sequences produced by the LFSR are maximal.

We now recall some well-known properties on LFSR sequences. In the follo-
wing, S(P ) denotes the set of all sequences produced by the LFSR with feedback
polynomial P .

Proposition 1. [15,5,14] Let P and Q be two non constant polynomials over F2.
Then we have

– {(ut + vt)t>0, u ∈ S(P ), v ∈ S(Q)} = S(R) where R is the least common
multiple of P and Q.

– {(utvt)t>0, u ∈ S(P ), v ∈ S(Q)} = S(R) where deg(R) ≤ deg(P )deg(Q).
Equality holds if and only if at least one of the polynomials P and Q has
only simple roots and all products αβ are distinct for all α and β such that
P (α) = 0 and Q(β) = 0 in a common splitting field. This condition is notably
satisfied if P and Q have coprime orders.

Proposition 2. [9, Th. 8.53] Let P and Q be two non constant polynomials
over F2. Then S(P ) is a subset of S(Q) if and only if P divides Q.

This proposition implies that if a sequence s is generated by a LFSR with feed-
back polynomial P , then it satisfies the recurrence relations (or parity-check
equations) corresponding to PQ for any Q ∈ F2[X].

For a given feedback polynomial P of degree L, we focus on all recurrence
relations corresponding to the multiples of P of weight d, where d is small.
A similar approach is used in fast correlation attacks [11,1,7]. The following
formula (see e.g. [1]) provides an approximation of the average number m(d)
of multiples Q of P which have weight d and degree at most D, Q(X) = 1 +∑d−1

j=1 Xij :

m(d) ' Dd−1

(d− 1)!2L
. (1)
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2.2 Boolean Functions for Stream Ciphers

A Boolean function with n variables is a function from the set of n-bit words,
Fn

2 , into F2. Such a function can be expressed as a unique polynomial in x1, . . . ,
xn, called its Algebraic Normal Form (ANF):

f(x1, . . . , xn) =
∑

u∈Fn
2

auxu, au ∈ F2

where u = (u1, . . . , un) and xu = xu1
1 xu2

2 . . . xun
n . The coefficients au of the ANF

can be obtained from the Möbius transform of f [10]:

au =
⊕

x�u

f(x) (2)

where ⊕ denotes the addition over F2 and α � β describes the partial ordering
on the Boolean lattice. This means that α � β if and only if αi ≤ βi for all
1 ≤ i ≤ n.

The Walsh-Hadamard transform of a Boolean function f refers to the Fourier
transform of the corresponding sign function, x 7→ (−1)f(x):

∀u ∈ Fn
2 , χ̂f (u) =

∑

x∈Fn
2

(−1)f(x)(−1)u·x

where u · x denotes the usual scalar product. The Walsh coefficient χ̂f (u) then
estimates the Hamming distance between f and the affine function u · x + ε,
ε ∈ F2, both seen as Reed-Muller codewords [10].

A Boolean function is obviously completely characterized by its Walsh spec-
trum. The coefficients of the algebraic normal form of f can then be computed
from its Walsh coefficients as follows.

Proposition 3. Let f be a Boolean function with n variables and let (au)u∈Fn
2

denote the coefficients of its algebraic normal form, i.e.,

f(x1, . . . , xn) =
∑

u∈Fn
2

auxu .

Then we have, for all u ∈ Fn
2 , au = 2wt(u)−1

(
1− 1

2n

∑
v�ū χ̂f (v)

)
mod 2 where

ū denotes the bitwise completion to 1 and wt(u) is the Hamming weight of u,
i.e., the number of its non-zero components.

Proof. From Equation (2) we have for any u ∈ Fn
2

au =
∑

x�u

f(x) mod 2 =
∑

x�u

1
2

(
1− (−1)f(x)

)
mod 2

= 2wt(u)−1 − 1
2

∑

x�u

(−1)f(x) mod 2
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Since the normalized Fourier transform is involutive, we have

∀x ∈ Fn
2 , (−1)f(x) = 2−n

∑

v∈Fn
2

χ̂f (v)(−1)v·x .

By combining these relations, we deduce that

au = 2wt(u)−1 − 2−n−1
∑

x�u

∑

v∈Fn
2

χ̂f (v)(−1)v·x mod 2

= 2wt(u)−1 − 2−n−1
∑

v∈Fn
2

χ̂f (v)




∑

x�u

(−1)v·x



 mod 2 .

The set Eu = {x ∈ Fn
2 , x � u} is a linear subspace of Fn

2 of dimension wt(u).
Its orthogonal, E⊥

u , satisfies E⊥
u = Eū. It follows that

∑

x�u

(−1)v·x =
{

2wt(u) if v ∈ Eū,
0 otherwise.

We then obtain that, for all u ∈ Fn
2 ,

au = 2wt(u)−1 − 2−n−1+wt(u)
∑

v�ū

χ̂f (v) mod 2 .

This proposition will be used in the attack for recovering the algebraic normal
form of the combining function.

It is well-known that a combining function must fulfill some criteria to yield
a cryptographically secure combination generator (see e.g. [3]). Most notably,
combination generators are vulnerable to “divide-and-conquer” attacks, called
correlation attacks [17]. These techniques fail when the combining function has
a high correlation-immunity order [16].

Definition 1. A Boolean function is t-th order correlation-immune if the pro-
bability distribution of its output is unaltered when any t input variables are
fixed.

This property equivalently asserts that the output of f is statistically indepen-
dent of any linear combination of t input variables. Correlation-immunity can
be characterized by the Walsh spectrum of the function [18]: f is t-th order
correlation-immune if and only if

∀u ∈ Fn
2 , 1 ≤ wt(u) ≤ t, χ̂f (u) = 0 .

Since any t-th order correlation-immune function is k-th order correlation-im-
mune for any k ≤ t, we call correlation-immunity order of a function f the highest
integer t such that f is t-th order correlation-immune. Note that the correlation-
immunity order of a function with n variables can not exceed (n−1). This comes
from Parseval’s relation: ∑

u∈Fn
2

(χ̂f (u))2 = 22n .
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This equality also points out the existence of a trade-off between the correlation-
immunity order and the nonlinearity of a function.

3 Recovering the LFSRs

We now show how the key-stream generator depicted in Figure 1 can be recon-
structed from the knowledge of some ciphertext bits.

In the rest of the paper we use the following notation. n denotes the number
of constituent LFSRs. Li and Pi denote the length and the feedback polynomial
of the i-th LFSR and si refers to the generated sequence. The sequences y, m
and c respectively correspond to the key-stream, to the plaintext and to the
ciphertext. When dealing bitwise, we use t as index time.

The plaintext is assumed to be the output of a binary memoryless source
with P [mt = 0] = p0 6= 1

2 . All commonly used coding scheme (ASCII, Murray,
CCITTx . . . ) satisfy this hypothesis. Moreover, the value of p0 is supposed to
be known. Practical values of p0 are usually greater than 0.6.

The first step of the reconstruction consists in recovering the feedback poly-
nomials of the constituent LFSRs.

3.1 Statistical Model

We first point out that the knowledge of a sequence s which is correlated with
the ciphertext sequence provides some information on the feedback polynomials
of the constituent LFSRs.

Proposition 4. Let s be a binary sequence. If P [ct = st] 6= 1/2 then there exists
a Boolean function g with n variables such that s = g(s1, . . . , sn). Moreover, we
have P [ct = st] = 1−p0−pg+2p0pg where pg = P [f(x1, . . . , xn) = g(x1, . . . , xn)].

Proof. We obviously have

P [ct = st] = P [yt = st]P [mt = 0] + P [yt = st ⊕ 1]P [mt = 1]

= 1− p0 − P [yt = st] + 2p0P [yt = st] .

By hypothesis, p0 6= 1/2. Thus P [ct = st] 6= 1/2 implies that P [yt = st] 6= 1/2.
Since y = f(s1, . . . , sn), the sequences y and s are statistically independent if
s is statistically independent of (s1, . . . , sn). It follows that P [yt = st] = 1/2
unless s = g(s1, . . . , sn) for some Boolean function g. In this case, we have

P [yt = ct] = P [f(x1, . . . , xn) = g(x1, . . . , xn)] .

Note that some variables may not appear in the algebraic normal form of g.
If s is such that P [ct = st] 6= 1/2 we deduce from the previous proposition and

from Proposition 1 that the feedback polynomial of s is related to the feedback
polynomials P1,. . . ,Pn.



Ciphertext only Reconstruction of Stream Ciphers 171

Corollary 1. Let S(Q) denote the set of all sequences generated by Q ∈ F2[X].
If there exists s ∈ S(Q) such that P [ct = st] 6= 1/2, then there exists a divisor Q′

of Q and a Boolean function g such that Q′ is derived from P1,. . . ,Pn and from
g as described in Proposition 1.

This result leads to the following algorithm for recovering some information on
P1, . . . ,Pn. Let Q be a subset of F2[X]. For each Q ∈ Q, we determine whether
S(Q) contains a sequence which is correlated with the ciphertext. If such a
sequence exists, Q provides some information on P1,. . . ,Pn. We here choose for
Q the set of all polynomials of F2[X] of weight d and of degree at most D having
the following form Q(X) = 1+

∑d−1
j=1 Xij . Recall that the degree of the feedback

polynomial of the product of two sequences si and sj is usually much higher than
the degree of the feedback polynomial of si + sj . If the upper-bound D on the
degree of the examined polynomials is well-chosen, the polynomials Q detected
by the algorithm then correspond to the case where the combining function g is
linear. For g(x) = u·x, any feedback polynomial of s = g(s1, . . . , sn) is a multiple
of lcmi∈supp(u)Pi where supp(u) = {i, ui = 1}. Since all feedback polynomials
are usually primitive, we have lcmi∈supp(u)Pi =

∏
i∈supp(u) Pi in most practical

situations. Moreover, we have

P [ct = st] =
1
2

+
(2p0 − 1)

2n+1 χ̂f (u) . (3)

Example 1. We consider the combination generator described by Geffe [4]. It
consists of three LFSRs combined by the Boolean function f(x1, x2, x3) = x1x2+
x2x3 + x1. Assume that the feedback polynomials of the constituent LFSRs are
randomly chosen primitive polynomials and that their lengths are respectively
L1 = 15, L2 = 17 and L3 = 23. Let c be the ciphertext sequence obtained by
adding the output of Geffe generator to a plaintext with p0 6= 0.5. Let Q be the
set of all polynomials of weight 4 and of degree at most 10000. For all Q ∈ Q,
we determine whether S(Q) contains a sequence which is correlated with c. We
deduce from Formula (1) that, for a randomly chosen polynomial P of degree L,
Q contains a multiple of P of weight 4 if L ≤ 37. Our algorithm is then expected
to detect multiples of P1, P2, P3 and P1P2. Note that P2 can not be detected by
the algorithm since the Walsh coefficient χ̂f (0, 1, 0) vanishes.

A simple method for determining whether S(Q) contains a sequence which is
correlated with c consists in computing the parity-check equation corresponding
to Q for the ciphertext bits. The efficiency of this procedure strongly depends
on the weight of Q.

Theorem 1. Let Q be a polynomial in F2[X] of weight d having the following
form Q(X) = 1 +

∑d−1
j=1 Xij with i1 < i2 < . . . < id−1 . For a given ciphertext

subsequence (ct)t<N we consider the binary sequence (zt)id−1≤t<N defined by

zt = ct ⊕
d−1⊕

j=1

ct−ij
.
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Then the random variable Z =
∑N−1

t=id−1
(−1)zt has a Gaussian distribution with

mean value M = ±(N−id−1)(2ε)d and with variance σ2 = (N−id−1)(1−(2ε)2d)
where ε = maxs∈S(Q) |P [ct = st]− 1

2 |.
Proof. Let s ∈ S(Q) be such that |P [ct = st]− 1

2 | is maximal. Let p = P [ct = st].
For all t, we decompose ct as ct = st⊕ et where P [et = 1] = 1−p. Then we have

P [zt = 1] = P [ct ⊕
d−1⊕

j=1

ct−ij
= 1] = P [et ⊕

d−1⊕

j=1

et−ij
= 1]

since s satisfies the recurrence relation because s ∈ S(Q). This implies that
zt = 1 if and only if the number of indexes i ∈ {t, t− i1, . . . , t− id−1} such that
ei = 1 is odd. Therefore we have

P [zt = 1] =
d∑

`=0,` odd

(
d

`

)
(1− p)`pd−`

=
1
2

[
d∑

`=0

(
d

`

)
(1− p)`pd−` −

d∑

`=0

(
d

`

)
(p− 1)`pd−`

]

=
1
2
[
1− (2p− 1)d

]
.

The random variable Z can now be expressed as Z = (N − id−1)−2
∑N

t=id−1
zt .

All random variables zt are independent and identically distributed. Due to the
central limit theorem [2], the random variable

∑N
t=id−1

zt for large values of
(N − id−1) can be assumed to have a Gaussian distribution with mean value
(N − id−1)P [zt = 1] and variance (N − id−1)P [zt = 1]P [zt = 0]. It follows that
Z has a Gaussian distribution with mean value

M = (N − id−1)(1− 2P [zt = 1]) = (N − id−1)(2p− 1)d

and with variance

σ2 = 4(N − id−1)P [zt = 1]P [zt = 0] = (N − id−1)(1− (2p− 1)d)(1 + (2p− 1)d)

= (N − id−1)(1− (2p− 1)2d) .

If all sequences in S(Q) are statistically independent of c, Z has Gaussian dis-
tribution with mean value 0 and variance (N − id−1) since ε = 0 in this case.

We now want to distinguish between two hypotheses:

– H0: for all s ∈ S(Q), P [ct = st] = 1
2 .

– H1: there exists s ∈ S(Q) such that P [st = ct] 6= 1
2 .

We use a decision threshold T , T > 0, for discriminating hypotheses H0 and
H1. If |Z| < T , H0 is kept; if |Z| ≥ T , H1 is accepted. The minimum number
of required ciphertext bits, N , depends on the number of wrong decisions that
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we allow. This number corresponds to the probability for a false alarm, Pf =
P [|Z| ≥ T | H0]. The decision threshold is determined by the probability for
a non-detection, Pn = P [|Z| < T | H1]. Let Φ denotes the normal distribution
function,

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−x2

2

)
dx .

Then we have

Pf = P [|Z| ≥ T | H0] = 2Φ

(
−T√

N − id−1

)
.

Similarly the probability for a non-detection is given by

Pn = P [|Z| < T | H1] =
1√
2π

∫ T −M
σ

−T −M
σ

exp
(
−x2

2

)
dx

= Φ

(
T −M

σ

)
− Φ

(−T −M

σ

)
= Φ

(
T − |M |

σ

)
− Φ

(−T − |M |
σ

)

since M is not necessarily positive. In most cases, Φ(−T−|M |
σ ) is much smaller

than Pn and than Φ(T−|M |
σ ). Then this latter will approximate Pn. The prede-

termined value of Pn fixes the choice for the threshold:

T = |M |+ Φ−1(Pn)σ = (N − id−1)(2ε)d + Φ−1(Pn)
√

(N − id−1)(1− (2ε)2d) .

Similarly, the predetermined probability for a false alarm gives the minimum
value of (N − id−1):

N − id−1 =

(
T

Φ−1(1− Pf

2 )

)2

.

After different attempts to tune up the best values for Pf and Pn, we choose
Pf = 2−20 and Pn = 10−3. In practical situations the known ciphertext sequence
does not consist of a large number of consecutive bits. The attacker has access
to some ciphertext blocks of reasonable lengths. These ciphertexts may be pro-
duced with different keys, i.e., with different LFSR initializations. Theorem 1
can nevertheless be adapted to this more realistic situation.

Corollary 2. Let Q be a polynomial in F2[X] of weight d having the following
form Q(X) = 1 +

∑d−1
j=1 Xij with i1 < i2 < . . . < id−1 . For nc ciphertexts

ck, 1 ≤ k ≤ nc, of respective lengths LC(k), we consider the binary sequence
(zk

t )id−1≤t<LC(k),1≤k≤nc
defined by

zk
t = ck

t ⊕
d−1⊕

j=1

ck
t−ij

.
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Then the random variable

Z =
nc∑

k=1

LC(k)−1∑

t=id−1

(−1)zk
t

has a Gaussian distribution with mean value

M = ±(2ε)d
nc∑

k=1

(LC(k)− id−1)

and with variance

σ2 = (1− (2ε)2d)
nc∑

k=1

(LC(k)− id−1)

where ε = maxs∈S(Q) |P [ct = st]− 1
2 |.

The following algorithm then examines all polynomials of degree at most D and
of weight d, and it detects all polynomials Q in this set such that there exists
s ∈ S(Q) with |P [st = ct]− 1/2| ≥ εmin.

Algorithm
For each (d− 1)-tuples (i1, . . . , id−1) such that 0 < i1 < . . . < id−1 < D

N ←∑nc

k=1(LC(k)− id−1).
T ← N(2εmin)d − 3

√
N(1− (2εmin)2d).

Z ← 0.
For each ciphertext block (ck

t )0≤t<LC(k) where LC(k) > id−1

for each t from id−1 to LC(k)− 1
z ← ck

t ⊕
⊕d−1

j=1 ck
t−ij

.
Z ← Z + (−1)z.

If |Z| ≥ T , store 1 +
∑d−1

j=1 Xij and the value of Z.

Some gcd computations on the obtained polynomials provide the primitive
factors which are detected several times. These primitive factors are expected to
be the feedback polynomials of the constituent LFSRs.

3.2 Complexity Analysis

We now discuss the choice of the input parameters d, D and εmin.
Recall that we aim at recovering multiples of polynomials

∏
i∈T Pi, T ⊂

{1, . . . , n} such that |P [ct =
⊕

i∈T si
t]− 1/2| ≥ εmin. According to Formula (3),

these subsets T are characterized by

|2p0 − 1|
2n+1 |χ̂f (1T )| ≥ εmin
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where the i-th component of 1T equals 1 if and only if i ∈ T . It is well-known
that all Walsh coefficients of a Boolean function f with n variables are divisible
by 4, unless f has degree n. This case is here dismissed since such a function
cannot be balanced. Choosing

εmin =
|2p0 − 1|

2n−1 (4)

then ensures to detect all polynomials
∏

i∈T Pi such that χ̂f (1T ) 6= 0. In most
practical situations, the number of variables n does not exceed 7.

We now assume that our search can be restricted to all products
∏

i∈T Pi of
degree at most Lmax. This means that we suppose that all feedback polynomials
P1,. . . ,Pn can be recovered from all products

∏
i∈T Pi such that χ̂f (1T ) 6= 0

and
∑

i∈T Li ≤ Lmax. Note that Lmax should obviously be greater than the
maximum length of all constituent LFSRs. A polynomial of degree Lmax is then
recovered by our algorithm if it divides at least one polynomial of weight d and
of degree at most D. We deduce from Formula (1) that the minimum possible
value for D is approximatively

D = (d− 1)!
1

d−1 2
Lmax
d−1 . (5)

This also implies that the attack can only use ciphertext blocks of length at
least LC with

LC ≥ (d− 1)!
1

d−1 2
Lmax
d−1 . (6)

Moreover, we want the probability for a false alarm in the algorithm to be less
than 2−20. This implies that (

∑nc

k=1 LC(k))− ncD ≥
(

T
5

)2
. By replacing T by

its value, we obtain the following condition

Nt − ncD ≥ 1
25

(
(Nt − ncD)(2εmin)d − 3

√
(Nt − ncD)(1− (2εmin)2d)

)2

where Nt =
∑nc

k=1 LC(k) is the total ciphertext length. We deduce that

Nt − ncD ≥
(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d
. (7)

It finally follows that the total ciphertext length should satisfy

Nt ≥ nc(d− 1)!
1

d−1 2
Lmax
d−1 +

(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d
. (8)

This value is minimal if nc = 1, i.e., if all known ciphertext bits are consecutive.
In this case, the minimum length of the ciphertext sequence required by the
reconstruction is

Nt = min
d



(d− 1)!
1

d−1 2
Lmax
d−1 +

(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d



 . (9)
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This formula points out that the optimal value of d increases with Lmax. Figure 2
shows how Nt and the optimal value of d vary with εmin, for Lmax = 70.

1

1e+10

1e+20

1e+30

0.02 0.04 0.06 0.08

Nt

εmin

Lmax = 70

d = 3
d = 4
d = 5

Fig. 2. Minimum ciphertext length required for Lmax = 70

In most practical situations, all ciphertext blocks have roughly the same
length LC. The number nc of such ciphertext blocks required by the reconstruc-
tion is then

nc ≥
(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d(LC − (d− 1)!
1

d−1 2
Lmax
d−1 )

. (10)

We then use the algorithm with the value of d which minimizes this formula.
The number of operations performed by the algorithm is roughly

Dd−1

(d− 1)!
d(Nt − ncD) .

Using equations (5) and (8), we obtain the following complexity

d2Lmax

(
5 + 3

√
1− (2εmin)2d

)2

(2εmin)2d
.

Another method for recovering the feedback polynomials of the LFSRs con-
sists in examining all polynomials of degree at most Lmax and in computing the
corresponding parity-check equations on the ciphertext sequence. A similar ana-
lysis applies to this attack. We here have to choose D = Lmax and d ' Lmax/2
since the average weight of a polynomial of degree Lmax is roughly Lmax/2. With
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these parameters, Formula (7) provides the minimum ciphertext length required
by this second attack:

N ′
t = Lmax +

(
5 + 3

√
1− (2εmin)Lmax

)2

(2εmin)Lmax
.

We easily see that this number is much larger that the number of ciphertext bits
required by our attack (see Formula (8)). Moreover, the number of operations
performed by this second attack is roughly

d2Lmax

(
5 + 3

√
1− (2εmin)Lmax

)2

2(2εmin)Lmax
.

Our attack is then much more efficient than the enumeration of all polynomials
of degree Lmax.

3.3 Simulation Results

We consider the following toy example of combination generator. Three LFSRs
are combined by the majority function f(x1, x2, x3) = x1x2 + x1x3 + x2x3 . The
feedback polynomials are respectively

P1(x) = 1 + x2 + x4 + x5 + x6 + x8 + x9 + x10 + x11 + x13 + x15

P2(x) = 1 + x2 + x4 + x5 + x6 + x8 + x9 + x10 + x11 + x13 + x14 + x15 + x17

P3(x) = 1 + x + x7 + x8 + x10 + x12 + x15 + x16 + x17 + x20 + x21 + x22 + x23

The output of this combination generator is used for encrypting a plaintext
with p0 = 0.70. We take εmin = 0.1; this value corresponds to Formula (4)
with n = 3. We applied our algorithm with parameters D = 3, 620 and d = 3
(which is the optimal value for these parameters). We used 170 ciphertext blocks
of length 10,000 (i.e., around 1,200 ASCII characters). Note that Formula (10)
gives nc = 157. Exactly 263 trinomials have been detected by our algorithm. All
of these trinomials are divisible by one of the feedback polynomials. This means
that the effective probability for a false alarm is zero. Moreover, all multiples
of P1, P2 and P3 of degree at most 3,620 have been detected (see Table 1). This

Table 1. Detected polynomials for the toy example

d P1 P2 P3 Total
Nb. of detected polynomials 3 208 53 2 263

Exact nb. of multiples 3 208 53 2 263

simulation required roughly one week on a DEC alpha workstation at 433 MHz.
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We also checked our attack on the same example where P1 was replaced by

1+x+x3+x6+x7+x8+x13+x16+x19+x20+x25+x26+x27+x28+x29+x31+x33 .

We here used 6,109 ciphertext blocks of length 10,000. The optimal parameters
are here D = 5, 910 and d = 4. For these values, all multiples of P1, P2 and P3,
of weight 4 and degree at most D have been detected.

4 Recovering of the Combining Function

A method for recovering the combining function was developed in [12] but it
requires the knowledge of all LFSR initializations. Moreover, this technique relies
on Siegenthaler’s correlation attack; its complexity is then exponential in the
lengths of the constituent LFSRs. We now show how to bypass these limitations
and to practically reconstruct the combining function.

The number of variables of the combining function is derived from the pre-
vious step of our attack. Moreover, the previous analysis also provides an esti-
mation of some Walsh coefficients of the combining function. Suppose that some
multiples of weight d of

∏
i∈T Pi, T ⊂ {1, . . . , n}, have been detected by our

algorithm. For any such multiple, the mean value of the estimator Z equals
N(2p− 1)d, where p = P [ct = st] with s = g(s1, . . . , sn) and g(x) = 1T · x. The
values of Z obtained for all detected multiples of

∏
i∈T Pi therefore provides an

estimation of probability p. Using Formula (3), we can then compute the value
of the corresponding Walsh coefficient, χ̂f (1T ). This value is rounded to the clo-
sest multiple of 4, since all the Walsh coefficients are divisible by 4 for balanced
functions.

If
∏

i∈T Pi has degree L greater than Lmax, no multiple was detected by the
algorithm. We then choose a higher value of d satisfying

(d− 1)!
1

d−1 2
L

d−1 ≤ LC .

We then compute all multiples of
∏

i∈T Pi of weight d and degree at most LC,
and the corresponding values of Z. We deduce the involved Walsh coefficient as
previously seen.

Example 2. In the toy example, the values of the estimator Z obtained for each
multiple of weight 3 of P1 provide

P [ct = st] = 0.6003 .

Formula (3) gives the approximation: χ̂f (1, 0, 0) = 4.01. Similarly, we obtain the
following information during the first step:

χ̂f (0, 1, 0) = χ̂f (1, 0, 0) = 4 χ̂f (0, 0, 0) = 0 .
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For each detected Pi we compute some multiples of weight 5 and of degree at
most 10,000 for each product PiPj . Although all of these products were poten-
tially detectable, no one was detected; we then deduce that

χ̂f (1, 1, 0) = χ̂f (1, 0, 1) = χ̂f (0, 1, 1) = 0 .

Similar simulations for d = 7 allow to find the remaining coefficient:

χ̂f (1, 1, 1) = −4 .
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Abstract. A new simple algorithm for fast correlation attacks on stream
ciphers is presented. The advantages of the new approach are at least
two. Firstly, the new algorithm significantly reduces the memory requi-
rements compared with some recent proposals [2,3]. This allows more
powerful attacks than previously. Secondly, the simplicity of the algo-
rithm allows us to derive theoretical results. We determine the relation
between the number of observed symbols, the correlation probability, and
the allowed computational complexity, required for a successful attack.
Hence, we can get theoretical estimates on the required computational
complexity in cases when simulation is not possible.

Keywords. Stream ciphers, correlation attacks, cryptanalysis.

1 Introduction

A good stream cipher should be resistant against a known-plaintext attack. Here
the cryptanalyst is given a plaintext and the corresponding ciphertext, and the
task is to determine a key k. This is usually equivalent to the problem of finding
the key k that produced a given running key z1, z2, . . . , zN .

The problem of cryptanalysis often involves recovering (restoring) the initial
states of some linear feedback shift registers, LFSRs. As usual it is assumed that
the structure of the key generator is known to the cryptanalyst.

It was noticed by Siegenthaler in [1] that it can happen that the observed
output sequence (running key) is correlated to the output of a particular (target)
LFSR in the generator. Thus it is reasonable to try to apply a so called divide-
and-conquer attack, i.e., try to restore the initial state of the target LFSR inde-
pendently of the other unknown key bits. In such a setting, one may consider the
output of the target LFSR to have passed through an observation channel. The
nature of such a channel may vary, but here we model the channel by the Binary
(Memoryless) Symmetric Channel, BSC, with some error probability p < 1/2.

If p = 1/2−ε then usually ε is small. In this setting an LFSR output sequence
having some fixed length N can be regarded as a binary linear [N, l]-code, where
l is the degree of the feedback polynomial of the target LFSR. The number

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 181–195, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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of codewords equals the number of initial states of LFSR, that is 2l. Thus,
the cryptanalyst’s problem can be reformulated as a decoding problem of this
particular code in the presence of a BSC with strong noise. The problem is how
to decode this linear [N, l]-code with as low decoding complexity as possible.

Meier and Staffelbach presented in [4] how this could be done in a very effi-
cient way if the feedback polynomial has low weight. Essentially, they made use
of iterative decoding techniques. Several minor improvements then followed [5,
6,10]. In [2,3], Johansson and Jönsson presented new ideas involving convolutio-
nal codes that improved Meier and Staffelbach’s results in the case of a general
feedback polynomial.

Although we are influenced by [2,3], this paper proceeds in another direction
and uses the following idea. Associate with the target LFSR another binary linear
(n2, k)-code with k < l. The k information symbols of this code may coincide
with the first k symbols of the initial state of the LFSR we want to recover.
The codeword of this second code is considered to have passed through another
BSC with a ”double“ noise level p2 = 2p(1 − p) > p, or p2 = 1/2 − 2ε2. As
will be shown in the paper, if the length of the new code can be chosen at least
n2 = �k/C(p2)�, then the decoding of this code leads to the recovery of the first
k symbols in the initial state of the LFSR. Since the new code has dimension k,
the decoding complexity is decreased from O(2l × l/C(p)) to O(2k × k/C(p2)).

To make our method work, we need to calculate proper parity checks for
construction of the second code. This is done in a precomputation step, and
the result is stored on disk. In the decoding step, the symbols of the observed
sequence are combined according to the parity checks, and the probability of
each codeword in the code is calculated, i.e., ML-decoding. Hence, there are no
memory requirements in the decoding part (as opposite to [2,3]), and thus it can
be performed very efficiently.

The algorithm is most efficient when the observed output sequence is long (as
for all other algorithms for fast correlation attacks), and a theoretical treatment
determining the relation between the number of observed symbols, the correla-
tion probability, and the allowed computational complexity, is given. Hence, we
can get theoretical estimates of the required computational complexity in cases
when simulation is not possible.

In the next section we give the model and problem definition, and in Section
3 we give some arguments on ML-decoding of linear block codes. In Section 4
and 5, the algorithm is described and a theoretical treatment is given. Section 6
contains simulation results.

2 The Cryptanalyst’s Problem and Definitions

As most other authors [1]-[6], we use the approach of viewing the problem as a
decoding problem. Let the target LFSR have length l and let the set of possible
LFSR sequences be denoted by L. Clearly, |L| = 2l and for a fixed length N
the truncated sequences from L form a linear [N, l] block code [9], referred to as
C. Furthermore, the observed keystream sequence z = z1, z2, . . . , zN is regarded
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Fig. 1. The correlation attack model for initial state recovery problem.

as the received channel output and the LFSR sequence x = x1, x2, . . . , xN is
regarded as a codeword from an [N, l] linear block code. Due to the correlation
between xi and zi, we can describe each zi as the output of the binary symmetric
channel, BSC, when xi was transmitted. The correlation probability 1−p, defined
by

P (xi = zi) = 1 − p = 1/2 + ε,

gives p as the crossover probability (error probability) in the BSC. W.l.o.g we
can assume p < 0.5. This is all shown in Figure 1. The cryptanalyst’s problem
can now be formulated as follows:

Statement of the problem: Let p = 1/2 − ε < 0.5 and let the feedback
polynomial of the LFSR, denoted by g(D), be of degree l. The problem is to
restore the linear feedback shift register’s initial state (x1, x2, . . . , xl) from the
observed output sequence z = (z1, z2, . . . , zN ).

In order to derive theoretical results we use the following conjecture. The
linear code under consideration is ”random” enough to meet the main coding
theorem: If the rate R = k/n of a code is less than the capacity C(p) = 1−H(p)
of the BSC then, in the ensemble of random linear (n, k) codes, the decoding
error probability approaches zero. Here H(x) is the binary entropy function
H(x) = −x log2 x − (1 − x) log2(1 − x). This is further described in Section 3.

Siegenthaler in [1] considered an exhaustive search through all the codewords
of the above [N, l]-code as the decoding procedure. This algorithm is optimal
because it is a maximum likelihood (ML) decoding. In [1,6] it is demonstrated
that the probability of success is more than 1/2 if N > n0, where n0 is the
critical length

n0 = �l/C(p)� .
The complexity of this algorithm is about O

(
2l · l/C(p)

)
. The idea of fast cor-

relation attacks is to avoid the factor 2l and derive algorithms with complexity
of order O(2αl) with respect to some α < 1.

Let us briefly recall some results from coding theory. Since each symbol xi is
a linear combination of the l initial values we see that the set of words

(x1, x2, . . . , xN )

forms the linear code C and we call these words codewords. The word

(x1, x2, . . . , xl)
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is called the information word and the symbols x1, x2, . . . , xl are called informa-
tion symbols. We have that




clx1 + cl−1x2 + . . .+ c1xl + c0xl+1 = 0
clx2 + cl−1x3 + . . .+ c1xl+1 + c0xl+2 = 0
. . .
clxN−l + cl−1xN−l+1 + . . .+ c1xN−1 + c0xN = 0

, (1)

where ci are coefficients of the generator polynomial g(D) = c0 + c1D + . . . +
clD

l (c0 = cl = 1). We define the (N − l) × N matrix

H =




cl cl−1 cl−2 · · · c0 0 · · · 0

0 cl cl−1 · · · c1 c0 · · · ...

0 0
. . . . . . . . . . . . . . . 0

0 0 · · · cl cl−1 · · · c1 c0


 .

Thus, our code consists of all codewords such that H (x1, x2, . . . , xN )T = 0. The
matrix H is called the parity check matrix of the LFSR code. It follows from (1)
that 



xl+1 = h1l+1x1 + h2l+1x2 + . . .+ hl
l+1xl

xl+2 = h1l+2x1 + h2l+2x2 + . . .+ hl
l+2xl

...
xi = h1ix1 + h2ix2 + . . .+ hl

ixl

...
xN = h1Nx1 + h2Nx2 + . . .+ hl

Nxl

. (2)

If we denote hi(D) = h1i + h2iD + . . .+ hl
iD

l−1, then clearly

hi(D) = Di−1mod g(D) for i = 1, 2, . . . , N.

Therefore the code C has the (l × N)-generator matrix

G =




h11 h
1
2 · · · h1N

h21 h
2
2 · · · h2N

... · · ·
hl
1 h

l
2 · · · hl

N


 . (3)

The observed output sequence, which we call the received word and denote

z = (z1, z2, . . . , zN ),

is regarded as a very noisy version of the unknown codeword (x1, x2, . . . , xN ).
The initial problem can now be reformulated as a decoding problem:

Restatement of the problem: Let p < 0.5 and let the generator polyno-
mial, denoted by g(D), be of degree l. Consider the corresponding [N, l] code C.
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The problem is to determine the transmitted codeword from the received word
z.

Remark. In the theory of LFSR’s and stream ciphers, the typical values
for p are closed to 1/2, say, p = 0.25, 0.3, 0.4, 0.45. However in the theory of
error-correcting codes the typical values of p are much smaller, say, for example,
p = 0.1, 0.05. So we have to cope with a much stronger noise than is usual in
coding theory. On the other hand, unlike in error-correcting codes, it is sufficient
to demonstrate that our algorithm is able to recover the initial state with some
nonzero probability, say 1/2. Thus, a much higher error-rate in decoding can be
accepted.

3 ML-Decoding of Linear Codes

In this section we review ML-decoding for binary linear codes and their error-
correcting capability. The best selection for the information word is obtained
by

Maximum Likelihood decoding (ML-decoding):
Let C = {x} be an (n, k)-code and let x̄ be the transmitted codeword and let z
be the received word. Now put

x̂0
def
= argmin

x∈C
dist(x, z).

Here dist(x,y) denotes the Hamming distance between x and y, i.e., the num-
ber of ones in the binary vector x+ y. Notice that the previously described
exhaustive search algorithm is exactly ML-decoding. Furthermore, let

Pe(p)
def
= Pr(x̂0 �= x̄) -error probability of ML-decoding.

Note that Pe(p) does not depend on x̄ because the code C is linear. It is known
that ML-decoding has the smallest error probability among all decoding algo-
rithms. So it is optimal. Using a random coding argument, Gallager, Berlekamp
and Shannon proved the following.

Theorem 1 ([8]). Let C = 1 − H(p) denote the capacity of the transmission
(observation) channel and let the transmission rate R = k/n satisfy R < C.
Then

E [Pe(p)] ≤ 2−τ(R)n, τ(R) = τ(R, p),

where E [Pe(p)] is the mathematical expectation of the random value Pe(p) in
the ensemble of random linear (n, k)-codes. τ(R) is called the random coding
exponent, and τ(R) > 0 for all R < C.

Thus we can apply the ML-decoding to the code C with length N satisfying the
inequality l/N < C(p), that is N > l/C(p).

Recall that p = 1/2 − ε. A useful approximation of C(p) is

C(p) ≈ ε2 · 2/ (ln 2) . (4)
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Simulations show that the critical length N = n0 ≈ 0.35 · l · ε−2 provides the
probability of successful decoding close to 1/2, while for N = 2n0 the probability
is close to 1 (see [1]). Recall that the complexity of this algorithm has order
O(2l · l · ε−2), so it is very time consuming. Yet we can turn this into something
useful as we will see in the next section.

4 Description of a New Fast Correlation Attack

Let k < l be fixed. We shall describe a procedure that recovers the symbols
x1, x2, . . . , xk when observing z1, z2, . . . , zN . In the system (2) we look for pairs
of equations such that,

hk+1
i = hk+1

j , hk+2
i = hk+2

j , . . . , hl
i = hl

j , 1 ≤ i �= j ≤ N. (5)

We find all such pairs of equations. Let the number of such distinct pairs be n2.
Denote the indices of all such pairs as {i1, j1}, {i2, j2}, . . . , {in2 , jn2}.

If i and j satisfies (5), then the sum xi + xj is a linear combination of
information symbols x1, x2, . . . , xk only, and is independent of the remaining
information symbols xk+1, xk+2, . . . , xl,

xi + xj =
(
h1i + h1j

)
x1 +

(
h2i + h2j

)
x2 + . . .+

(
hk

i + hk
j

)
xk. (6)

This means that the sequence

(X1, X2, . . . Xn2) = (xi1 + xj1 , xi2 + xj2 , . . . , xin2
+ xjn2

)

forms an (n2, k)-code, referred to as C2, whose information symbols are (x1, x2,
. . . , xk), i.e., it has dimension k. The generator matrix of the (n2, k)-code C2 is

G2 =




h1i1 + h1j1 h1i2 + h1j2 · · · h1in2
+ h1jn2

h2i1 + h2j1 h2i2 + h2j2 · · · h2in2
+ h2jn2

... · · ·
hk

i1
+ hk

j1
hk

i2
+ hk

j2
· · · hk

in2
+ hk

jn2


 . (7)

We denote

Z1 = zi1 + zj1 , Z2 = zi2 + zj2 , . . . , Zn = zin2
+ zjn2

. (8)

Since we observe the output symbols (zi1 , zj1 , zi2 , zj2 , . . . , zin2
, zjn2

) we can cal-
culate also (Z1, Z2, . . . , Zn2), that is, a word acting as a received word for C2. If
(e1, e2, . . . , eN ) is the noise sequence of the code C, (ei = xi + yi), then clearly
the noise sequence (E1, E2, . . . , En2) for C2 is

E1 = ei1 + ej1 , E2 = ei2 + ej2 , . . . , En2 = ein2
+ ejn2

.

Since our model is the BSC, all the ei’s are independent random binary random
variables with error probability p. It is then clear that Em = eim

+ ejm
for
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im �= jm are also independent binary random variables for all 1 ≤ m ≤ n2 with
error probability

p2 = Pr(eim + ejm = 1) = 2p(1 − p) = 1/2 − 2ε2.

Thus, we have created a new code C2 with smaller dimension but the BSC
over which the codeword is transmitted has a stronger noise p2, i.e., p2 > p. To
restore the symbols x1, x2, . . . , xk we have to decode the [n2, k]-code C2 in the
BSC with the stronger noise p2. However, as long as the length of the new code
C2 guarantees unique decoding, this new code will be decoded significantly faster
than the LFSR code C.

As before, we apply a simple ML-decoding procedure when decoding C2. By
Theorem 1 we need a code length larger than the critical length n0, in this case

n2 > k/C(p2), (9)

to get the reliable recovery of the information word. We now are ready to describe
the algorithm for the recovery of the initial state.
Algorithm A1.

Data: the length l of target LFSR, and the generator polynomial g(D).

Precomputation.
Fix a computational complexity level by choosing a k < l (for example.

k = l/2). Construct the generator matrix G (see (3)). Using a sorting algorithm,
sort the columns of G with respect to(

hk+1
i , hk+2

i , . . . , hl
i

)
, i = 1, 2, . . . , N.

Find all pairs {i, j} that satisfy (5). For each pair, store the indices i, j together
with the value of

(
h1i + h1j , h

2
i + h2j , . . . , h

k
i + hk

j

)
. Hence, we have constructed

the code C2 with generator matrix G2 (see (7)).

Decoding.

Input: The received (observed) vector (z1, z2, . . . , zN ).
Step 1. Compute (Z1, Z2, . . . , Zn2) (see (8)).
Step 2. Decode the code C2 with the generator matrix (7) using exhaustive

search through all the 2k codewords of C2, and select the information word
(x1, x2, . . . , xk) with highest probability.

Remark 1. After having restored (x1, x2, . . . , xk) we need to restore the remai-
ning part of the initial state, (xk+1, xk+2, . . . , xl). An obvious way would be to
repeat the proposed procedure for some other information bits, say (xk+1, xk+2,
. . . , x2k). We can use the same parity checks, since the code is cyclic.

However, with knowledge of the first k information symbols, the remaining
problem is much simplified compared to the original problem. Hence we can
discard the complexity and the error probability of this step. (E.g. if we restore
the 20 first information bits of a length 80 LFSR, we use the obtained values of
these 20 first information bits and get a new decoding problem but now only for
a length 60 LFSR.)
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It is clear that we do not have to restrict ourselves to finding pairs of parity
check equations of the form (6), but can consider triples, etc. We describe the
general form of the algorithm, that uses sets of t parity check equations whose
sums only include the information symbols (x1, x2, . . . , xk).
Algorithm A2.

Data: the length l of target LFSR and the generator polynomial g(D).

Precomputation.
Fix a computational complexity level by choosing a k < l and a t ≥ 2.

Construct the generator matrix G (see (3)). Sort all columns of G with respect
to
(
hk+1

i , hk+2
i , . . . , hl

i

)
, i = 1, . . . , N .

Then find all sets of t indices {i(1), i(2), . . . , i(t)} that satisfy

t∑
j=1

hm
i(j) = 0, for m = k + 1, k + 2, . . . , l.

Let the number of such sets be nt. For each set, store the indices i(1), i(2), . . . , i(t)
together with the value of

 t∑
j=1

h1i(j),

t∑
j=1

h2i(j), . . . ,

t∑
j=1

hk
i(j)


 .

Hence, we have constructed an (nt, k)-code Ct.

Decoding.

Input: The received (observed) vector (z1, z2, . . . , zN ).
Step 1. Compute

(Z1 =
t∑

j=1

zi1(j), Z2 =
t∑

j=1

zi2(j), . . . , Zn =
t∑

j=1

zin(j)).

Step 2. Decode the code Ct using exhaustive search through the all 2k code
words of Ct and output (x1, x2, . . . , xk).

Using our model of a BSC and assuming that all the ei’s are the independent
random binary values with probability p = 1/2 − ε, it can be shown that

Em =
t∑

j=1

eim(j)

are independent random binary variables with error probability

pt = Pr(
t∑

j=1

eim(j) = 1) = 1/2 − 2t−1εt.

We will study this algorithm further in the next section.
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5 A Theoretical Analysis of the Proposed Algorithm

We consider theoretical results for algorithm A1 in more detail. We later transfer
the results to algorithm A2.

The following lemma shows how many pairs of indices i and j, 1 ≤ i, j ≤ N ,
satisfying the conditions (5), we can expect to find, and how this expectation
number n2 depends on N and k.

Lemma 1 (Birthday paradox). Let ξ1, ξ2, . . . , ξN be random variable that are
uniformly distributed on the set of L values. We assume that all this variables are
pairwise independent. Denote by ψ the number of pairs {i, j} such that ξi = ξj .
Then

E(ψ) =
N(N − 1)

2L
,

where E(ψ) is the mathematical expectation of ψ.

Proof. For every pair {i, j}, i < j we denote the random value

πi,j =
{
1 if ξi = ξj

0 otherwise

The number of these values is N(N−1)
2 . Since the values ξi and ξj are independent

it follows easily that Pr(πi,j = 1) = L−1. Hence E (πi,j) = L−1. It is clear that

ψ =
∑
{i,j}

πi,j

and therefore

E(ψ) =
∑
{i,j}

E (πi,j) =
N(N − 1)

2
L−1.

��
To apply this lemma we set

ξi =
(
hk+1

i , hk+2
i , . . . , hl

i

)
, i = l + 1, . . . , l +N.

Therefore L = 2l−k. From the theory of LFSRs it follows that ξi is a good
generator of quasi random values with uniform distribution that are pairwise
independent.

Corollary 1. The number n2 of pairs {i, j} that satisfy (5) has expectation

E(n2) =
N(N − 1)

2
2−(l−k). (10)

Simulations show that for particular LFSRs the number n2 is closed to E(n2)
in the formula (10) (see the next section).

Combining (9) and (10) we obtain the length N of the output of the LFSR
generator that we have to observe in order to recover the symbols (x1, x2, . . . , xk)
with high probability (close to 1/2).
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Theorem 2. With given k, l, ε, the required length N of the observed sequence
z for algorithm A1 to succeed is

N ≈ 1/2 ·
√

k · (ln 2) · ε−2 · 2 l−k
2 . (11)

Proof. (Sketch) By Corollary 1 we can expect the length n2 of the code C2 to be
roughly N(N−1)

2 2−(l−k). We know from (9) that it is sufficient for n2 to be at least
k/C(p2) for a high probability of successful decoding. Using the approximation

C(p2) ≈ (2ε2)2 · 2
ln 2

,

and the approximation N(N − 1) ≈ N2 we end up with the expression (11). ��

Theorem 2 characterizes the proposed algorithm in a theoretical way. It describes
the relation between the number of observed symbols, the correlation probability,
and the allowed computational complexity, required for a successful attack. We
have described k as the level of computational complexity. Let us now look closer
at the exact complexity for a given value of k.

The computational complexity is divided into two parts, one precomputation
part and one decoding part. In precomputation, the calculation of all parity
checks for the C2 code is of order O(N logN). We also need to store the generator
matrix G2 together with the two index positions creating each column in G2.
The storage requirement is at most n2(k + 2 log2N) bits.

The complexity of the decoding step is given as follows.

Corollary 2. The decoding complexity in algorithm A1 is of the order

2k · k · log2 2
8ε4

.

Proof. We run through 2k codewords with length n2, where n2 ≈ k · log2 28ε4 .

So by taking a small k, we reduce the 2k factor but pay in the growth of n2 and
thus also in the length of the observed sequence N .

Important to note is that the decoding part has essentially no memory re-
quirements, since we only keep the most probable information word in memory
(however, using some memory can speed up the decoding further). This is in
contrast to the algorithms in [2,3], where an extensive amount of memory is
used in the decoding part. In fact, it is stated in [3] that the main bottleneck
is the memory requirements, and reducing it enables more powerful attacks by
the fact that higher computational complexity can be allowed (in [2] they could
in some particular cases only use a few hours of computing time, since trying to
use more time required too much memory).

Let us now consider algorithm A2. A similar reasoning as above will provide
us with the following theorem, similar to Theorem 2.
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Theorem 3. With given k, l, ε, t, the required length N of the observed sequence
z for algorithm A2 to succeed is

N ≈ 1/4 · (2kt! ln 2)1/t · ε−2 · 2 l−k
t , (12)

assuming N >> nt.

Proof. (Sketch) We can expect the length of the code Ct to be approximately
Nt

t! 2
−(l−k). The length should be at least k/C(pt) for a high probability of suc-

cessful decoding. Using the approximation

C(pt) ≈ (2t−1εt)2 · 2
ln 2

,

we end up with the expression (12).

The complexity of the decoding step is easily calculated.

Corollary 3. The decoding complexity for algorithm A2 is of the order

2k · k · 2 log2 2
(2ε)2t

.

Proof. We run through 2k codewords with length nt, where nt ≈ k · 2 log2 2(2ε)2t .

As will be apparent from calculated examples, algorithm A2 is in general more
powerful than A1, i.e., using not pairs but sums of three or four columns is more
powerful. However, the complexity and storage requirements in the precomputa-
tion part is increasing. The calculation of all parity checks for the Ct code is now
of order O(N2) or higher. The length nt of Gt in algorithm A2 has increased
compared to n2 in A1. The storage is now in the order of nt(k + t log2N) bits.

Finally, we must note that for algorithm A2, it can happened that N >> nt

is not true. This will mean that some column positions of G will be used se-
veral times when constructing Ct. Hence, the assumption of independence bet-
ween positions in Ct is no longer true. The algorithm still performs well but
the performance will be slightly worse than stated in Theorem 3 (due to the
dependence).

6 Simulations Results

To check the performance as well as the correctness of our assumptions/conjec-
tures, we have made extensive simulations. The simulations were done on a Sun
Sparc Ultra-80 computer running under Solaris.

First, we compare the length of the code C2 with the expected value E(n2).
We consider a random primitive polynomial g(D) of the degree l = 60. We set
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k = 20. The following table reflects the precomputation for algorithm A1.

N E(n2) n2 (we found) p0
3 · 107 409 445 0.25
5 · 107 1137 1138 0.3
108 4547 4567 0.35

2 · 108 18190 18404 0.4
3.5 · 108 55707 56142 0.43

Here p0 is the critical value of the error probability of BSC such that k/n2 =
C(2p0(1− p0)) when k = 20. Notice that the actual values of n2 are close to the
theoretical expected values E(n2).

The next table shows the probability of decoding error for algorithm A1,
depending on the error probability p. This can be compared with the theoretical
results in Theorem 2.

(i) N = 5 · 107, n2 = 1138, p0 = 0.3

p 0.29 0.3 0.31 0.33
Pe(A1) 0.2 0.3 0.5 0.8

(ii) N = 3.5 · 108, n2 = 56142, p0 = 0.43

p 0.41 0.42 0.43 0.44
Pe(A1) 0.01 0.1 0.6 0.9

The following tables show how the parameter k influences the required length
N of the observed sequence as well as the time complexity of the decoding
algorithm for different p. As before, we choose l = 60 and t = 2.

(i) p = 0.3
k N n2 Pe(A1) Decoding time
20 5 · 107 1138 0.3 1.5 sec
23 1.85 · 107 1281 0.4 12 sec
25 9.7 · 106 1472 0.3 1 min
30 2 · 106 1800 0.1 30 min

(ii) p = 0.4

k N n2 Pe(A1) Decoding time
20 2 · 108 18404 0.4 20 sec
23 7.38 · 107 19561 0.5 3 min
25 3.86 · 107 21329 0.6 14 min
30 7.45 · 106 25980 0.5 9 h

Notice that all the precomputation, i.e., finding all the corresponding pairs of
checks for all k and N in the above table, was completed in approximately 2
hours.

We now consider simulation results for the same polynomial of degree l = 60
but with t = 3. Here n3 stands for the number of triples of checks we found
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for the corresponding parameters k and N. The values of n3 are close to their
theoretical expectations.

(i) p = 0.3

k N n3 Pe(A2) Decoding time
20 3.55 · 105 6670 0.4 8 sec
23 1.86 · 105 7633 0.4 1 min 20 sec
25 1.21 · 105 8433 0.3 5 min
28 6.3 · 104 9466 0.6 1 h

(ii) p = 0.4

k N n3 Pe(A2) Decoding time
20 1.42 · 106 433451 0.5 10 min
23 7.44 · 105 512108 0.3 1 h 30 min
24 6 · 105 523734 0.6 4 h
28 2.5 · 105

In the last table, the result for k = 28 is missing because for N = 2.5 · 105 the
expected number of checks n3 ≈ 6 · 105 is larger than N . In this case the sums
of the corresponding triples of the received sequence are no longer independent
and the model of the memoryless BSC does not apply (See the condition of
Theorem 3). If we use parameters k for which n3(N, k) > N, we can not expect
the performance to follow Theorem 3, although it can still be good.

It is worth also to note that the precomputation time for t = 3 grows as N2.
For example, for k = 20 and N = 1.42 · 106 the computer worked 4 days to find
all 433451 triples of checks. This means that the precomputation becomes more
time consuming when increasing t from t = 2 to t = 3.

It is interesting to compare the results for t = 2 and for t = 3. We can see
that for equal decoding complexities, the length N can be reduced significantly
for t = 3. Compare, for example, for p = 0.3 the row k = 23 (t = 2) and the row
k = 20 (t = 3). The reduction factor is 50. The factor is 30 for p = 0.4; see the
row k = 25 (t = 2) and the row k = 20 (t = 3). The price for this reduction is
the increase in precomputation complexity.

Finally, we have simulated a set of attacks on LFSRs with l = 70 and p = 0.35
for different lengths N , and measured the total CPU time for the attacks. The
tables below show the result when the parameter k is varying.

(i) t = 2, p = 0.35

k N n2 Pe(A1) Decoding time
25 5.48 · 108 4270 0.4 3 min
27 2.85 · 108 4631 0.5 13 min
28 2.05 · 108 4944 0.3 30 min
30 1.06 · 108 5144 0.5 2 h 20 min
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(ii) t = 3, p = 0.35

k N n3 Pe(A2) Decoding time
25 2.16 · 106 47716 0.5 40 min
26 1.74 · 106 49860 0.4 1 h 30 min
28 1.12 · 106 53482 0.4 6 h 20 min

For t = 2 the largest precomputation complexity (k = 25) is 6 hours. For t = 3
the largest precomputation complexity (k = 25) is 12 days. Moreover, we were
able to reach the value p = 0.4 for t = 2 observing 4.61·108 symbols (k = 28, n2 =
24160). The decoding time is 2 hours. The precomputation time is 10 hours. The
same can be done for t = 3 observing 4.85·106 symbols (k = 25, E(n2) = 540414).
The decoding time is 5 hours. The precomputation time will be 2 months.

It should finally be noted that it is easy to get very good estimates on the
complexity in other cases by using the derived theoretical results and the simu-
lated values above.

We believe that with a set of parallel PC:s and a few weeks of computation
one could use 30 ≤ k ≤ 35 and restore LFSRs of length 80-100 using algorithm
A2 with t = 3, 4.

7 Conclusions

We have demonstrated a new algorithm for fast correlation attacks on stream ci-
phers. The new algorithm significantly reduces the memory requirements compa-
red with some recent proposals [2,3]. Also, we could derive the relation between
the number of observed symbols, the correlation probability, and the allowed
computational complexity, required for a successful attack.

Since the algorithm can be very efficiently implemented, the performance
(highest error probability for given computational complexity) is better than the
algorithms in [2,3]. The performance depends on the computational complexity,
and it is not always easy to do a fair comparison between two different algorithms.
But the actual simulations that we have done have proved this algorithm to be
the fastest.

In conclusion, we think that the simplicity of the proposed algorithm is a
great advantage and that this can contribute further progress in the area.
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Abstract. An algorithm for cryptanalysis of certain keystream gene-
rators is proposed. The developed algorithm has the following two ad-
vantages over other reported ones: (i) it is more powerful and (ii) it
provides a high-speed software implementation, as well as a simple hard-
ware one, suitable for high parallel architectures. The novel algorithm is
a method for the fast correlation attack with significantly better perfor-
mance than other reported methods, assuming a lower complexity and
the same inputs. The algorithm is based on decoding procedures of the
corresponding binary block code with novel constructions of the parity-
checks, and the following two decoding approaches are employed: the
a posterior probability based threshold decoding and the belief propa-
gation based bit-flipping iterative decoding. These decoding procedures
offer good trade-offs between the required sample length, overall com-
plexity and performance. The novel algorithm is compared with recently
proposed improved fast correlation attacks based on convolutional codes
and turbo decoding. The underlying principles, performance and com-
plexity are compared, and the gain obtained with the novel approach is
pointed out.
Keywords: stream ciphers, keystream generators, linear feedback shift
registers, fast correlation attack, decoding.

1 Introduction

An important method for attack or security examination of certain stream ci-
phers based on nonlinear combination keystream generators composed of several
linear feedback shift registers (LFSR’s) (see [11], for example) are: basic corre-
lation attack [18], and particularly the fast correlation attacks considered in a
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number of papers, including [12], [20], [13], [14], [2], [3], [8], [9] and [6].
Developing or improving techniques for realization of the fast correlation attack
is a standard cryptologycal problem.

The basic ideas of all reported fast correlation attacks include the following
two main steps:
- Transform the cryptographic problem into a suitable decoding one;
- Apply (devise) an appropriate decoding algorithm.
There are two main approaches for realization of the fast correlation attack. The
first one is based on decoding techniques for block codes (introduced in [12] and
[19]), and the second one is based on decoding techniques for convolutional codes
(recently proposed in [8] and [9]).
The main underlying ideas for the fast correlation attacks based on linear binary
block codes decoding is the iterative decoding principle introduced in [4]. For
example, all the fast correlation attacks reported in [12], [19], [13], [20], [14],
[2], and [3], could be considered as variants of iterative decoding based on sim-
ple bit-flipping (BF) [4] or iterative extensions of a posterior probability (APP)
decoding [10]. Most of these methods (practically all except the method from
[13]) are restricted on the LFSR feedback polynomials of low weight. Due to the
established advantages of belief propagation (BP) based iterative decoding over
iterative APP (see [5], for example), the application of BP based iterative deco-
ding for realization of the fast correlation attack has been recently reported in
[6]. The main goal of [6] was to report the potential gain and its origins when BP
based iterative decoding is employed instead of APP based decoding, assuming
the same construction method of the parity-checks and the same overall struc-
ture of the algorithm for fast correlation attack. A comparison of the iterative
decoding approaches based on simple, APP and BP based decodings for the fast
correlation attack is reported in [15].
New methods for fast correlation attack based on the theory of convolutional
codes are given in [8]-[9]. They can be applied to arbitrary LFSR feedback po-
lynomials, in opposite to the previous methods, which mainly focus on feedback
polynomials of low weight. The proposed algorithm transforms a part of the
code C steaming from the LFSR sequence into a convolutional code, based on
finding suitable parity check equations for C. The approach considers a deco-
ding algorithm that includes memory, but still has a low decoding complexity.
With respect to the previous methods, this allows looser restrictions on the pa-
rity check equations that can be used, leading to many more equations. As the
final decoding method, the Viterbi algorithm with memory orders of 10-15 was
used. The results reported in [8] improve significantly the few previous results
for high weight feedback polynomials, and are in many cases comparable with
that corresponding to low weight feedback polynomials. Further developments
of the idea for fast correlation attack based on decoding of certain convolutional
codes are presented in [9] where new methods employing the techniques used for
constructing and decoding turbo codes are proposed. The most powerful techni-
que presented in [9] is based on the turbo decoding approach with M component
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convolutional codes and iterative APP decoding employing the BCJR algorithm
[1] (see also [7]).

Recent interests and the advances in developing algorithms for the fast cor-
relation attack have raised a natural question of further improvements of the
fast correlation attack, especially in the light of fast implementations.

The main goal of this paper is to propose an algorithm for the fast correlation
attack suitable for a high-speed software implementation, as well as for a simple
hardware one. Most existing algorithms can be considered as inappropriate ones
for this goal assuming an LFSR feedback polynomial of arbitrary weight. Accor-
dingly, our intention was to develop an algorithm which employs mod2 additions
and simple logical operations for processing, so that it is suitable for highly par-
allel architectures and high speed software or hardware implementations. Also,
our goal is to propose an algorithm which yields possibility for trade-offs between
length of the required sample, overall complexity and performance.

In this paper, a more powerful algorithm for the fast correlation attack with
significantly better performance (which does not depend on the LFSR feedback
polynomial), assuming the same inputs and lower complexity than other repor-
ted methods, is proposed. The proposed algorithm is based on a novel method
for constructing the parity-checks, motivated by the approach of [8] and [9], and
two decoding approaches of the corresponding binary block code, APP thres-
hold decoding [10] and iterative decoding employing BP-like BF (see [4]). The
construction of the parity-checks is based on searching for certain parity-check
equations and theirs linear combinations employing the finite-state machine mo-
del of an LFSR with primitive characteristic polynomial. The expected num-
bers of parity-checks per parity bit are derived, showing that a large number
of appropriate parity-checks can be constructed. An analysis of the algorithm
performance and complexity is presented. The novel algorithm is compared with
recently proposed improved fast correlation attacks based on convolutional codes
and turbo decoding. The underlying principles, performances and complexities
are compared, and the gains obtained with the novel approach are pointed out.
It is shown that assuming the same input, the novel algorithm yields better
performance and lower complexity than the best algorithm reported up-to-now.

The paper is organized as follows. Section 2 presents preliminaries. Section 3
points out the main underlying results for the construction of a novel algorithm
for the fast correlation attack. Complete specification of the proposed algorithm
is given in Section 4. Experimental analysis of the performance is presented in
Section 5, as well as a discussion of the complexity issue. Comparisons between
the recently reported improved fast correlation attacks, and the proposed algo-
rithm are given in Section 6. Finally, the results of this paper are summarized
in Section 7.

2 Decoding Concept for the Fast Correlation Attack

Recall that, the correlation means that the mod 2 sum of corresponding outputs
of the LFSR and the generator can be considered as a realization of a binary
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random variable which takes value 0 and 1 with the probabilities 1 − p and p,
respectively, p 6= 0.5.

The fast correlation attack on a particular LFSR, with primitive feedback po-
lynomial, in a nonlinear combining generator given the segment of the generator
output can be considered as follows:

– The n-bit segment of the output sequence from the length-k LSFR is a
codeword of an (n, k) punctured simplex code;

– The corresponding n-bit segment of the nonlinear combination generator
output is the corresponding noisy codeword obtained through a BSC with
crossover probability p;

– The problem of the LFSR initial state reconstruction, assuming known cha-
racteristic polynomial, is equivalent to the problem of decoding after trans-
mission over a BSC with crossover probability p.

The decoding approach employed in this paper is based on combination of a
restricted exhaustive search over a set of hypotheses and a one-step or an itera-
tive decoding technique. The exhaustive search is employed in order to provide
a possibility for construction of suitable parity-check equations relevant for high
performance of complete decoding. This approach could be considered as a par-
ticular combination of the minimum distance decoding and another decoding
technique.

Recall that a parity-check equation which involves a smaller number of bits
is more powerful than a higher weight one. Also note that performance associa-
ted with a set of the parity-checks depends on its cardinality as well as on the
parity-check weight distribution. Finally, the overall complexity of a decoding
procedure depends on the number and weights of the employed parity-checks.
Accordingly, from performance and complexity point of views, a favorable situa-
tion corresponds to the availability of a large number of low-weight parity-checks.

In the following, xn, n = 1, 2, ..., N , denotes an LFSR output sequence which
is a codeword x of a binary (N, L) punctured simplex code C where N is co-
deword length and L is number of information bits. x0 = [x1, x2, ..., xL] is the
vector of information bits identical to the LFSR initial state; {zn} denotes the
degraded sequence {xn} after transmission over a BSC with crossover proba-
bility p. Accordingly, zn = xn ⊕ en , n = 1, 2, ..., N , where the effect
of the BSC with error probability p is modeled by an N -dimensional binary
random variable E defined over {0, 1}N with independent coordinates En such
that Pr(En = 1) = p, n = 1, 2, . . . , N , and en is a realization of En. Applying
a codeword x = [xn]Nn=1 ∈ C, to the input of the BSC, we obtain the random
variable Z = E ⊕ x as a received codeword at its output. Let z = [zn]Nn=1 and
e = [en]Nn=1 denote particular values of the random vector variables Z and E,
respectively.
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3 Novel Appropriate Parity-Check Sets

This section points out novel sets of the parity-check equations relevant for con-
struction of an algorithm for the fast correlation attack which will be proposed
in the next section. Also, this section points out the expected cardinalities of
these sets.

3.1 Preliminaries

An LFSR can be considered as a linear finite state machine. Recall that a li-
near finite state machine is a realization or an implementation of certain linear
operator. Accordingly, a state of a length-L LFSR after t clocks is given by the
following matrix-vector product over GF(2):

xt = Atx0 , t = 1, 2, ... ,
where xt is an L dimensional binary vector representing the LFSR state after t
clocks, x0 is an L dimensional binary vector representing the initial LFSR state
(in notation that it has index L at the top and index 1 at the bottom), and
At is the t-th power over GF(2) of the state transition L × L binary matrix A.
Assuming the LFSR characteristic polynomial f(u) = 1+

∑L
i=1 biu

i, the matrix
A is given by:

A =





b1 b2 b3 ... bL

1 0 0 ... 0
0 1 0 ... .
· · · ... ·
0 ... 1 0




=





A1
A2
A3
·

AL




, (1)

where each Ai, i = 1, 2, ..., L, represents a 1 × L binary matrix (a row-vector).
Powers of the matrix A determine algebraic replica of the LFSR initial state

bits, i.e. linear equations satisfied by the bits of the codewords from the dual
code. Accordingly, they directly specify the parity-checks.

Since our approach assumes an exhaustive search, over the first B information
bits, the parity checks are obtained:
- directly from the powers of the matrix A corresponding to an arbitrary subset
of the first B bits of the LFSR initial state and no more than three bits from
the remaining L − B bits of the initial state and the bit of the LFSR output
sequence;
- as the mod2 sum of any two parity checks determined from the powers of the
matrix A when this sum includes an arbitrary number of the first B bits of the
LFSR initial state, at most one bit from the remaining L − B bits of the initial
state, and the two bits of the LFSR output sequence.
- as the mod2 sum of any three parity checks determined by the powers of matrix
A when this sum includes an arbitrary number of the first B bits of the LFSR
initial state, no bit from the remaining L − B bits of the initial state, and the
three corresponding bits of the LFSR output sequence.

As pointed out in Section 2, a desirable situation is that corresponding to
as many low-weight parity-checks as possible. Following this fact and due to the
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comparison purposes with recently reported improved fast correlation attacks
[8] - [9], we focus our intention mainly to parity-checks of effective weight three
(i.e. without considering the first B bits), but also employ some of parity-checks
of effective weight four as well. Note finally that parity-checks of an arbitrary
weight could be considered as a development of certain reported results, for
example [13] and [16].

3.2 Methods for Construction and Specification of the Parity-Check
Sets

This section presents two methods for obtaining appropriate sets of parity-
checks. The developed methods are related to the information bits (Method
A) and to the parity bits (Method B) of the underlying punctured simplex code.

Method A: Parity-check sets related to the information bits of the underlying
punctured simplex codeword.

Note that
xL+n = An

1x0 , n = 1, 2, ..., N − L , (2)

where An
1 is the first row of the n-th power of the state transition matrix A.

Accordingly, the basic parity-check equations (defined on the noisy sequence)
are given by:

cL+n = zL+n ⊕ An
1z0 , n = 1, 2, ..., N − L , (3)

where z0 = [z1, z2, ..., zL].
Assuming that the first B information bits are known, appropriate parity-

check equations for the i-th information bit, i = B+1, B+2, ..., L can constructed
according to the following definition.

Definition 1. The set Ωi of parity-check equations associated with information
bit-i is composed of:

– All parity-check equations corresponding to the vectors An
1 such that each

An
1 has arbitrary values in the first B coordinates, has value one at the i-th

coordinate, and has two ones in all other information bit coordinates;
– All parity-check equations obtained as the mod2 sum of two other basic

parity-check equations,

(zm ⊕ Am
1 z0) ⊕ (zn ⊕ An

1z0) ,

where m and n have arbitrary values providing that the vector sum Am
1 ⊕

An
1 has arbitrary values in the first B coordinates, value one at the i-th

coordinate, and value zero in the all other coordinates.

Note that for given parameters N , L, and B, the sets Ωi, i = B +1, B +2, ..., L,
can be constructed in advance through a search procedure in a preprocessing
phase, and later used for any particular application with these given parameters.
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Method B: Parity-check sets related to the parity bits of the underlying pun-
ctured simplex codeword.

First, an appropriate form of the parity check matrix of a punctured simplex code
is pointed out. Then a method for constructing the parity checks is given and
the parity checks to be employed by the algorithm are specified by Definition 2.

Recall, that in Section 2, the fast correlation attack has been modeled by the
decoding of an (N, L) punctured simplex code used over a BSC. Accordingly,
the following statement points out an appropriate form of the code parity-check
matrix. This particular form has a one-to-one correspondence with the finite-
state machine model of an LFSR with primitive characteristic polynomial.

Proposition 1. The parity-check matrix H = [ PT , IN−L ] of a punctured
simplex code (N, L) with corresponding polynomial f(u) = 1+

∑L
i=1 biu

i, where
the binary matrix P is the L × (N − L) matrix of parity checks, PT is its
transpose, and IN−L is the identity matrix of dimension (N − L) × (N − L), is
specified by the following:

PT =





P1
P2
·
·

PN−L




=





A(1)
1

A(2)
1
·
·

A(N−L)
1




, (4)

where the m-th row of the matrix PT , is an L-dimensional row vector A(m)
1

equal to the first row of the m-th power, Am, of the matrix A given in (1).

The construction of the parity-checks is based on searching for certain linear
combinations of rows in an appropriate form of the parity-check matrix given
by Proposition 1. Accordingly, the preprocessing phase of the algorithm includes
the construction of the parity-checks according to the following algorithm which
generates a set of parity checks for each parity bit. Each parity check includes
certain B information bits, and no more than W + 1 other arbitrary check bits.

Note that W + 1 is used here instead three to illustrate that a straight-
forward generalization is possible where not only the parity-checks of effective
weight equal to three are considered.

Algorithm for the construction of the parity checks

– Input: The parity check matrix H = [ PT , IN−L ] .
– Processing Steps: For each parity bit, generate a set of parity check equations

employing the following procedure.
– For n = L + 1, L + 2, ..., N and each w, 1 ≤ w ≤ W , proceed as follows:

• Calculate the mod2-sum of the n-th row of the parity-check matrix
H = [PT , IN−L] and any possible w other rows.
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• If the values at positions i = B + 1, B + 2, ..., L, are all zeros, where
B < L, is a predetermined parameter, record the considered combi-
nation into the set Ω∗

n.
– Output: The sets of parity check equations Ω∗

n, n = L + 1, L + 2, ..., N .

Definition 2: The set Ω∗
n generated by the above algorithm is the set of all

considered parity-check equations related to the n-th parity bit of codewords in
the punctured (N, L) simplex code.

Note that each parity-check in Ω∗
n consists of α of the first B information

bits with 0 < α ≤ B, none of the remaining last L − B information bits and at
most W + 1 of the N − L parity check bits, including bit-n.

3.3 Expected Cardinalities of the Parity-Check Sets

Lemma 1. In any set Ωi, specified by the Definition 1, i = B +1, B +2, ..., L, a
tight approximation about the expected number ¯|Ω| of the parity-checks is given
by the following:

¯|Ω| = 2B−L[(N − L)
(

L − B − 1
2

)
+

(
N − L

2

)
] . (5)

Note that Lemma 1 motivates the construction of Ωi given in Definition 1. For
each type of check sums in Ωi, that corresponding to minimum weight with non
negligible contribution to ¯|Ω| is chosen.
As an illustration, note that for N = 40000, L = 40 and B = 18, 19, 20, 21, 22,
Lemma 1 yields that the expected cardinality, ¯|Ω| is equal to 192, 384, 768, 1534,
3066, respectively.

Lemma 2: In any set Ω∗
n, specified by the Definition 2, n = L + 1, L + 2, ..., N ,

a tight approximation about the expected number ¯|Ω∗| of the parity-checks is
given by the following:

¯|Ω∗| = 2−L+B
2∑

w=1

(
N − L − 1

w

)
. (6)

As an illustration, note that for L = 40, and (N, B) = (1024,26), (4096,22),
(8192,20), and (16384,18), Lemma 2 yields that the expected cardinalities, ¯|Ω∗|
are equal to 29.5, 31.4, 31.7, and 31.9, respectively.

Note that Lemmas 1 and 2 show that Definitions 1 and 2 yield large numbers of
the parity-checks relevant for an error-correction procedure.

Also, note that Lemmas 1 and 2 imply that the expected cardinalities of the
parity-check sets specified by Definitions 1 and 2 do not depend on the LFSR
characteristic polynomial, and particularly on its weight.
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4 Novel Algorithm for Fast Correlation Attack

The main underlying principles for construction of the novel fast correlation
attack include the following:

– General concepts of linear block codes decoding, and particularly:
– decoding of information bits only, employing an APP based threshold

decoding;
– iterative decoding of the parity bits employing a reduced complexity BP

based iterative decoding.
– A novel method for constructing parity checks of a punctured simplex code

based on linear finite state machine model of an LFSR (see [13]);
– The idea (implicitly given in [8]) of employing a partial (restricted) exhau-

stive search in order to enhance performance of the fast correlation attack.
The developed algorithm assumes exhaustive search over the first B infor-
mation bits in conjunction with appropriate decoding approaches.

According to these principles a novel algorithm for the fast correlation attack
(based on a linear block code decoding approach) is proposed. The algorithm
is based on the novel methods for constructing the appropriate parity-checks
presented in the Section 3, and its processing phase includes the following three
techniques: (i) hypothesis testing, (ii) decoding of a punctured simplex code and
(iii) correlation check. The algorithm employs two different decoding procedures
in order to provide desired trade-offs between necessary length of the sample,
i.e. the rate of underlying code, performance and overall complexity.

Algorithm for the Fast Correlation Attack

INPUT:

– values of the parameters N , L, B, and the threshold T ;
– the noisy received bits z1, z2, ..., zN ;
– for each information bit i, i = B + 1, B + 2, ..., L, the set Ωi of correspon-

ding parity-check equations (constructed in the preprocessing phase based
on Definition 1), and for each parity bit n, n = L+1, L+2, ..., N∗, N∗ ≤ N ,
the set Ωn of corresponding parity-check equations (constructed in the pre-
processing phase based on Definition 2).

PROCESSING STEPS:

1. setting the hypothesis
From the set of all possible 2B binary patterns, select a not previously consi-
dered pattern x̂1, x̂2, ..., x̂B , for the first B information bits. If no new pattern
is available, go to the Output (b).

2. decoding
Employ one of the following two decoding algorithms for estimating a can-
didate for the information bits (i.e. LFSR initial state):
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– One-Step Decoding Algorithm (OSDA) using parity-checks specified by
Definition 1;

– Iterative Decoding Algorithm (IDA) using parity-checks specified by De-
finition 2.

3. correlation check
Check if the current estimation of the information bits (obtained from the
decoding step) x̂0 = [x̂1, x̂2, ..., x̂L], is the true one, according to the follo-
wing:
For x̂0, generate the corresponding sequence x̂1, x̂2, ..., x̂N , and calculate
S =

∑N
n=1 x̂n ⊕ zn .

If S ≤ T go to Output (a), otherwise go to Step 1.

OUTPUT:
(a) the considered vector x̂0 of information bits is the true one;
(b) the true vector of information bits is not found.

The threshold scalar T is used for checking a hypothesis over all the information
bits. For given N, L, B, p, the threshold T is calculated based on the method
presented in [18].

The specifications of the employed decoding algorithms OSDA and IDA are
given in the following.

4.1 One-Step Decoding Algorithm - OSDA

OSDA decodes the noisy received sequence [z1, z2, ..., zN ] for the (N, L) truncated
simplex code employing an APP threshold decoding and the sets Ωi of parity-
check equations, specified by Definition 1, i = B + 1, B + 2, ..., L according to
the following.

– parity-checks calculation
For each information bit position i, i = B + 1, B + 2, ..., L, calculate the
parity-check values employing the parity check equations from the set Ωi.

– error-correction
For each i, i = B + 1, B + 2, ..., L do the following:
– if the number of satisfied parity-check equations for the considered infor-

mation bit is smaller than the threshold T1(i) set x̂i = zi ⊕ 1, otherwise
set x̂i = zi.

The algorithm employs a vector threshold T1 = [T1(i)]Li=B+1 which contains
values for the APP threshold decoding of certain information bits.
Elements of the threshold vector T1 are determined based on the posterior error
probabilities computed by using the parity-checks specified by Definition 1. We
assume that for each codeword bit, the parity-checks used are orthogonal on
that bit, meaning that except for that bit, every other involved unknown bit
appears in exactly one of the parity-checks. Finally, assuming as an appropriate
approximation, that all the parity-check equations involve exactly two unknown
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bits beside the considered one, for any i = B +1, B +2, ..., L, the threshold T1(i)
is equal to the smallest integer such that the following inequality holds:

p

1 − p

(
1 + (1 − 2p)2

1 − (1 − 2p)2

)|Ωi|−2T1(i)

≤ 1 , (7)

where |Ωi| denotes the number of parity-check equations related to the i-th
information bit [10].

4.2 Iterative Decoding Algorithm - IDA

For a given N∗ ≤ N , IDA decodes the received sequence [z1, z2, ..., zN∗ ] for
the (N∗, L) punctured simplex code employing a BP based bit-flipping (BP-
BF) iterative decoding and the sets Ω∗

n of parity-check equations, specified by
Definition 2, n = L + 1, L + 2, ..., N∗.

BP-BF based iterative decoding (see [4], for example) includes the following
main difference in comparison with simple BF.

– For each bit n, and each combination of |Ω∗
n| − 1 parity-checks out of the

|Ω∗
n| parity checks associated with bit-n, make |Ω∗

n| estimate of the nth bit
value associated with these combinations.

Accordingly, we employ the following iterative BP-BF based decoding algorithm.

– Initialization: x̂n = zn and x̂nm = zn.
– Iterative Processing

1. Step 1:
(a) For each n and for each m ∈ Ω∗

n, evaluate:
σn(m) =

∑
n′∈ω(m) x̂n′m [mod2].

(b) If all σn(m) = 0 go to Step 3 (a). If some maximum number of
iterations (e.g. 30) is exceeded go to Step 3 (b).

2. Step 2: For each n, do the following:
(a) If

∑|Ω∗
n|

m σn(m) ≥ |Ω∗
n|/2, then x̂n = x̂n ⊕ 1.

(b) If
∑|Ω∗

n\m|
m′ σn(m′) ≥ |Ω∗

n \ m|/2, then x̂nm = x̂nm ⊕ 1.
If no complementation was performed go to Step 3 (b); otherwise go to
Step 1.

3. Step 3:
(a) x̂ = [x̂n] is the decoding result.
(b) Algorithm halts and a warning is declared that a valid decoding is
not reached.

5 Performance and Complexity

5.1 Performance

The performance of the novel algorithm is experimentally considered when the
LFSR characteristic polynomial is chosen as 1+u+u3+u5+u9+u11+u12+u17+
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Table 1. Performance of the novel algorithm - experimental analysis: Error-rate of the
LFSR initial state reconstruction, as a function of the correlation noise p when the
LFSR length is L = 40, the characteristic polynomial weight is 17, and the length of
the sequence available for processing is N = 40000 bits.

p Error rate of LFSR initial state reconstruction

OSDA OSDA OSDA OSDA OSDA IDA
B = 18 B = 19 B = 20 B = 21 B = 22 N∗ = 4096, B = 22

0.25 0.009 0.000 0.000 0.000 0.000 0.000
0.26 0.015 0.000 0.000 0.000 0.000 0.000
0.27 0.024 0.000 0.000 0.000 0.000 0.000
0.28 0.081 0.000 0.000 0.000 0.000 0.000
0.29 0.159 0.006 0.000 0.000 0.000 0.000
0.30 0.254 0.023 0.000 0.000 0.000 0.000
0.31 0.384 0.041 0.002 0.000 0.000 0.000
0.32 0.569 0.098 0.002 0.000 0.000 0.000
0.33 0.696 0.226 0.020 0.000 0.000 0.000
0.34 0.838 0.356 0.053 0.001 0.000 0.000
0.35 0.915 0.542 0.114 0.002 0.001 0.000
0.36 0.955 0.743 0.225 0.019 0.022 0.000
0.37 0.983 0.865 0.450 0.080 0.062 0.001
0.38 0.990 0.932 0.652 0.210 0.208 0.023
0.39 0.997 0.980 0.850 0.445 0.399 0.052
0.40 1.000 0.988 0.935 0.663 0.651 0.267

u19+u21+u25+u27+u29+u32+u33+u38+u40 and N = 40000 (i.e. assuming the
same example as was considered in [8]-[9]). Note that the proposed algorithm can
be applied for values of L significantly longer than L = 40, but this value was
employed in all numerical and experimental illustrations for comparison with
previously reported results.

Results of the performance analysis are presented in Table 1. This table dis-
plays the error-rate of the LFSR initial state reconstruction as a function of the
correlation noise p when the algorithm employs:
(i) OSDA with B = 18, 19, 20, 21, 22,
(ii) IDA with N∗ = 4096, B = 22, and at most 20 iterations.

Each error-rate given in the table is obtained by calculation over a correspon-
ding, randomly selected, set of 1000 samples. Recall that ”error-rate” indicates
the fraction of trials for which we obtain incorrect decoding (and accordingly
incorrect reconstruction of the secret key).
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5.2 Complexity

Recall that the overall complexity assumes time and space complexity requi-
rements. The complexity analysis yields that according to the structure of the
proposed algorithm:
- The algorithm requires a space for the input. Space requirements for the deco-
ding process are as follows: when OSDA is employed, decoding processing does
not require memory; IDA requires a memory proportional to the parameter N∗;
- Time complexity is specified by the following corollaries.

Corollary 1. Assuming that OSDA is employed, that |Ω| denotes the average
cardinality of the parity-check sets |Ωi|, that ω denotes the average number of
bits in a parity-check, and that w denotes the weight of the LFSR characteristic
polynomial, the implementation complexity of the proposed algorithm is pro-
portional to 2B [ (L − B)|Ω|ω + (N − L)w ] mod2 additions.

Corollary 2. Assuming that IDA is employed, that |Ω∗| denotes the average
cardinality of the parity-check sets |Ωn|, that ω∗ denotes the average number
of bits in a parity-check, that I denotes the number of iterations, and that w
denotes the weight of the LFSR characteristic polynomial, the implementation
complexity of the proposed algorithm is proportional to 2B [ I(N∗−L)|Ω∗|(|Ω∗|−
1)ω∗ + (N − L)w ] mod2 additions.

Note also that from the structure of the proposed algorithms, it is readily seen
that the proposed algorithms are suitable for fast software implementation, as
well as for simple hardware implementation: the algorithms employ only simple
arithmetic operations (mod2 addition) and simple logical operations.

Also, since the decoding process is mainly memoryless, note that a reduction
of the time complexity specified by the previous corollaries can be obtained by
an appropriate time-memory complexity trade-off.

Finally note that in the presented experiments, the decoding step has em-
ployed the underlying codeword lengths N = 40000 and N∗ = 4096 for OSDA
and IDA, respectively. This is an illustration that OSDA and IDA yield a trade-
off between the length of the required sample (i.e. the code rate) and the decoding
complexity.

6 Comparison of the Novel Algorithm with Recently
Proposed Improved Fast Correlation Attacks

This section presents an arguably comparative analysis of the underlying princi-
ples, performance and complexity of recently proposed improved fast correlation
attacks [9] and the novel algorithm, assuming the same input.
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6.1 Comparison of the Underlying Principles

Comparison of the underlying principles employed in [8]-[9] and in the novel al-
gorithm for the fast correlation attack can be summarized as follows.

– The approaches of [8]-[9] are based on decoding of convolutional codes and
turbo codes with convolutional codes as the component codes constructed
over the LFSR sequence. The novel approach is based on decoding punctured
simplex block codes corresponding to the LFSR sequence.

– The algorithms [8]-[9] and the novel algorithm employ different parity-checks.
The parity-checks employed in [9]-[8] are constructed by searching for these
parity checks which include the following bits: currently considered bit, bits
from a subset of B previous bits, and no more than two other bits.
The parity-checks employed in the novel algorithm are constructed by sear-
ching for these parity checks which include the following bits:
(i) currently considered information bit, bits from a subset of B first informa-
tion bits, and two other information bits with the corresponding parity-bit,
or two arbitrary parity bits only, or
(ii) currently considered parity bit, bits from a subset of B first information
bits, and no more than two other parity bits.
Note that these different approaches in the parity-check constructions imply
different number of parity-checks per bit, as well.

– The decoding techniques employed in [8]-[9] are Viterbi decoding, BCJR de-
codings, and MAP turbo decoding (see [7] and [1]). On the other hand the
novel algorithm employs the following two low-complexity decoding techni-
ques: (i) APP threshold decoding, and (ii) BP based BF iterative decoding.

– The fast correlation attacks from [8]-[9] implicitly include an exhaustive se-
arch over a set of dimension 2B through employment of the Viterbi or BCJR
decodings due to the trellis search. The novel algorithm employs an explicit
search over all 2B possible patterns corresponding to the first B information
bits.

– A decoding process based on the Viterbi or BCJR algorithm requires a me-
mory of dimension proportional to 2B . On the other hand, OSDA does not
require memory, and IDA requires a memory proportional to the parameter
N∗.

6.2 Comparison of the Performance and Complexity

For the performance comparison of the novel and turbo based fast correlation
attacks [9] the same inputs are employed and relevant parameters are selected so
that the novel algorithm always has significantly lower overall implementation
complexity than the algorithm [9].

According to [9], the time complexity of the turbo decoding is proportional
to 2BIMJm real multiplications where I denotes the number of the iterations,
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Table 2. Comparison of the algorithms performance, assuming the same inputs, and
lower complexity of the novel algorithm in comparison to the turbo algorithm [9]: Limit
noise for which the algorithms yield, with probability close to 1, correct reconstruction
of the initial LFSR state, when the LFSR characteristic polynomial is 1 + u + u3 +
u5 + u9 + u11 + u12 + u17 + u19 + u21 + u25 + u27 + u29 + u32 + u33 + u38 + u40, and
the available sample is 40000 bits.

ALGORITHM Limit Noise

turbo algorithm [9]: B = 15, M = 2 0.27
novel algorithm with OSDA: B = 19 0.28
turbo algorithm [9]: B = 15, M = 4 0.29
novel algorithm with OSDA: B = 21 0.33
turbo algorithm [9]: B = 15, M = 16 0.30
novel algorithm with OSDA: B = 22 0.34

novel algorithm with IDA: N∗ = 4096, B = 22 0.36

M the number of the component codes, J the number of processed bits, and m
the number of employed parity-checks per bit. The time complexity of the novel
algorithm is given in Corollaries 1 and 2.

Also note that the space complexity of the approach from [9] is proportional
to 2B due to employment of the BCJR algorithm. If OSDA is employed no space
complexity is required, and if IDA is employed it is usually significantly smaller
than 2B due to its linear rather than exponential nature.

An illustrative performance comparison is presented in the Table 2.
Note that, in each case, the complexity of the proposed algorithm could be con-
sidered as significantly lower than complexity of the turbo decoding [9] although
the proposed algorithm assumes search over a much larger set of hypotheses,
since: (i) [9] employs iterative processing with M component codes and (ii)
the dominant arithmetic operation in the proposed algorithm is mod2 addition
against real multiplication for the turbo based decoding of [9].

Finally, note that the actual time for performing the attack by the novel al-
gorithm strongly depends on the implementation constraints so that a straight-
forward comparison is not appropriate. Also, the approaches of [8]-[9] can be
modified to involve mod2 additions, but at the expense of performance degra-
dation.

7 Conclusions

A novel algorithm for the fast correlation attack has been proposed. The algo-
rithm is based on decoding procedures of the corresponding binary block code
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with novel constructions of the parity-checks, independent of the LFSR feedback
polynomial weight, and the following two decoding approaches are employed: an
APP based threshold decoding and a BP based BF iterative decoding . The con-
structions of the parity-checks are based on searching for certain parity-check
equations and their linear combinations employing the finite-state machine mo-
del of an LFSR with primitive characteristic polynomial. The expected numbers
of the parity-checks per parity bit have been derived, showing that a large num-
ber of appropriate parity-checks can be constructed.

The performance of the proposed algorithm has been analyzed experimentally
showing that the algorithm is a powerful one.

The overall implementation complexity has been specified. As dominant ope-
rations the algorithm employs mod2 additions and simple logical operations, so
that it is very suitable for high-speed software implementation as well as for
simple hardware implementation.

The algorithm offers good trade-offs between required sample length (i.e. rate
of the underlying code), overall complexity and performance. The one-step thres-
hold decoding approach yields high performance assuming long enough sample,
and the iterative decoding approach can reach the same performance using a
significantly shorter sample but at the expense of increased complexity.

The novel algorithm has been compared with recently reported improved
fast correlation attacks based on convolutional codes and turbo decoding. The
underlying principles, performance and complexity have been compared, and the
essential gain obtained with the novel approach is pointed out. The developed
algorithm has the following two main advantages over other reported ones:
(a) Assuming a lower overall complexity, and the same inputs, the proposed
algorithm yields significantly better performance.
(b) It is suitable for high-speed software implementation as well as for simple
hardware implementation and highly parallel architectures.
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Abstract. We improve the best attack on Rijndael reduced to 6 rounds
from complexity 272 to 244. We also present the first known attacks on
7- and 8-round Rijndael. The attacks on 8-round Rijndael work for 192-
bit and 256-bit keys. Finally, we discuss the key schedule of Rijndael
and describe a related-key attack that can break 9-round Rijndael with
256-bit keys.

1 Introduction

Rijndael is one of the five AES candidate ciphers that made it to the second round
[DR98]. Rijndael has 10, 12, or 14 rounds, depending on the key size. Previously
it was known how to break up to 6 rounds of Rijndael [DR98]. Independently
from our work, Gilbert and Minier [GM00] presented an attack on 7 rounds of
Rijndael.

In section 2, we describe a new partial sum technique that can dramatically
reduce the complexity of the 6-round attacks. We also show how to use these
ideas to attack 7 and 8 rounds of Rijndael, in some cases using additional known
texts (where available) to reduce the workfactor. The attacks against 7-round
Rijndael with 128-bit keys and 8-round Rijndael with 192-bit and 256-bit keys
require nearly the entire Rijndael codebook (2128 −2119 chosen plaintexts); they
are therefore not very practical even for an adversary with sufficient computing
power. All of these attacks use extensions of the dedicated Square attack, as
described in [DKR97,DR98,DBRP99].

In section 3, we turn our attention to the key schedule. We show several
unexpected properties of the key schedule that seem to violate the published
design criteria. Although we do not know of any attacks that critically depend
on these properties, we consider them unsettling. Finally, in section 4, we exploit
the slow diffusion of the Rijndael key schedule to develop a related-key attack
that can be mounted on 9 rounds of Rijndael with a 256-bit key.

A summary of these attacks, including time and data complexities, is descri-
bed in table 1. We also refer the reader to appendix A for a detailed listing of
notation used to refer to intermediate values in the cipher.
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Table 1. Summary of Attacks on Rijndael.

Cipher Key Complexity Comments
size [Data] [Time]

Rijndael-6 (all) 232 CP 272 [DR98] (previously known)
Rijndael-6 (all) 6 · 232 CP 244 partial sums (new)
Rijndael-7 (192) 19 · 232 CP 2155 partial sums (new)
Rijndael-7 (256) 21 · 232 CP 2172 partial sums (new)
Rijndael-7 (all) 2128 − 2119 CP 2120 partial sums (new)
Rijndael-8 (192) 2128 − 2119 CP 2188 partial sums (new)
Rijndael-8 (256) 2128 − 2119 CP 2204 partial sums (new)
Rijndael-9 (256) 285 RK-CP 2224 related-key attack (new)

CP – chosen plaintext, RK-CP – related-key chosen plaintext.

2 The Square Attack

2.1 The Original 6-Round Attack

We start by describing the 6-Round attack in the original proposal [DR98], which
uses a technique first introduced to attack the block cipher Square [DKR97]. This
is an attack that works against all block sizes and key sizes.

We use m(r), b(r), and t(r) to refer to intermediate text values used in round
r after the MixColumn, key addition, and ShiftRow operations, respectively. We
write k(r) for the subkey in round r, and k(r)′

for an equivalent subkey value that
may be xored into the state before instead of after the MixColumn operation
in round r. Please refer to appendix A for a more detailed explanation of our
notation.

The attack starts by obtaining 256 encryptions that only differ in a single
byte of m(1), and that take on all values for that particular byte. One byte of
m(1) depends on four bytes of the plaintext and four bytes of k(0). We first choose
232 plaintexts by taking a fixed starting point and varying those four bytes over
all 232 possible values. We then guess the four key bytes that are involved. For
each possible value of the key bytes, we can find 224 groups of 256 plaintexts
such that within each group the encryptions differ in a specific byte of m(1); as
the plaintexts are different, this one byte of m(1) must take on all 256 possible
values.

Tracking these changes through the cipher, we find that each of the bytes of
t(4) takes on all possible values. For each of these bytes, if we sum the values
it takes on in the 256 encryptions, we get zero. This property is preserved by a
linear function, so each of the bytes of m(4), and of b(4), also sums to zero over
our 256 encryptions.

We now look at a particular byte of b(4), and how that relates to the cipher-
text. For our analysis we rewrite the cipher slightly, and put the AddRoundKey
before the MixColumn in round 5. Instead of applying MixColumn and then
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adding in k(5), we first add in k(5)′
and then apply MixColumn. In this confi-

guration it is easy to see that any byte of b(4) depends on the ciphertext, four
bytes from k(6), and one byte from k(5)′

. We guess these five key bytes, compute
the value of our b(4) byte for our 256 encryptions and check whether the sum is
zero.

For each group of 256 plaintexts, this filter rejects 255/256 of all wrong key
guesses. As we guess a total of nine key bytes, we will need 10 or so groups of
256 encryptions to find the key. (Note that these groups depend on the first four
key bytes that we guessed, but not on the last five.)

Overall, this attack requires 232 chosen plaintexts, 232 memory to store those
plaintext/ciphertext pairs, and 272 steps in guessing the nine key bytes. Each
step involves a partial decryption of 256 ciphertexts, but a proper ordering of
these computations can make that very fast. This seems to be comparable to
doing a single encryption, and agrees with the complexity estimate given in
[DR98]. The overall complexity is thus comparable to 272 encryptions.

2.2 A 7-Round Extension

This attack can be extended to 7 rounds for 192- and 256-bit keys. One simply
guesses the 16 bytes of the last round key. When used naively, this adds 128
bits to the key guessing, for a total workload of 2200; the plaintext and memory
requirements are not changed, although we do need to use more groups to verify
the potential keys.1

This can be further improved. The key schedule ensures that there are depen-
dencies between the expanded key bytes, and we can exploit them in this attack.
For a 192-bit key, guessing the last round key k(7) gives us two of the four bytes
from k(6)′

that we would otherwise have to guess plus the byte from k(5)′
that

we would guess. This saves us 24 bits of key guessing, and results in an overall
complexity of 2176. For 256-bit keys, the bytes in the key schedule are aligned
differently. Guessing all of k(7) provides no information about k(6)′

but does give
us the one byte from k(5)′

that we need. For this key length, the complexity of
the attack thus becomes 2192. All the details can be found in [Luc00].2

2.3 An Improvement

The attack of section 2.1 on 6 rounds of Rijndael can be improved. Instead of
guessing four bytes of k(0) we simply use all 232 plaintexts. For any value of the
first round key, these encryptions consist of 224 groups of 28 encryptions that
vary only in a single byte of m(1). All we have to do is to guess the five key bytes
1 For this attack we use the alternate round representation for both rounds 5 and 6,

and thus add k(6)′
before the MixColumn in round 6.

2 Note that the attack complexities in [Luc00] are given in S-box lookups, whereas
we roughly approximate the complexity of a single encryption by 28 S-box lookups
and use encryptions as our unit. The result is that all our complexity numbers are
a factor of 28 lower.
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at the end of the cipher, do a partial decrypt to a single byte of b(4), sum this
value over all the 232 encryptions, and check for a zero result. Compared to the
original version, we guess only 40 bits of key instead of 72. On the other hand,
we have to do 224 times as much work for each guess. All in all, this improvement
reduces the workload by a factor of 28, although it needs about 6 · 232 plaintexts
to provide enough sets of 232 plaintexts to uniquely identify the proper value for
the five key bytes.

We will now look at this attack in more detail. We have 232 ciphertexts. We
guess five key bytes, do a partial decryption from each of the ciphertexts to a
single byte in b(4), and sum this byte over all ciphertexts. Consider this partial
decryption. From any ciphertext, we use four ciphertext bytes. Each of these
is xored with a key byte. We then apply the inverse S-box to each byte, and
multiply each with an appropriate factor from the inverse MDS matrix. The
four bytes are then xored together, a fifth key byte is xored into the result, the
inverse S-box is applied, and the resulting value is summed over all ciphertexts.

Let ci,j be the jth byte of the ith ciphertext. (We leave out the i subscript
if we are not talking about any particular ciphertext.) For simplicity we will
number the four bytes of each ciphertext that we use from 0 to 3. Let k0, . . . , k4
denote the five key bytes that we are guessing. We want to compute

∑

i

S−1[S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1] ⊕ S2[ci,2 ⊕ k2] ⊕ S3[ci,3 ⊕ k3] ⊕ k4] (1)

where S0, . . . , S3 are bijective S-boxes, each of which consists of an inverse Rijn-
dael S-box followed by a multiplication by a field element from the inverse MDS
matrix. Given 232 ciphertexts and 240 possible key guesses, we have to sum 272

different values, which corresponds roughly in amount of work to doing about
264 trial encryptions.

We can organize this more efficiently in the following manner. For each k, we
associate a “partial sum” xk to each ciphertext c, defined as follows:

xk :=
k∑

j=0

Sj [cj ⊕ kj ]

This gives us a map (c0, c1, c2, c3) 7→ (xk, ck+1, . . . , c3) that we can apply to each
ciphertext if we know k0, . . . , kk.

We start out with a list of 232 ciphertexts. We guess k0 and k1 and compute
how often each triple (x1, c2, c3) occurs in the list. That is, for each i, we compute
the three-byte value (S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1], ci,2, ci,3) as a function of the
ith ciphertext and the guessed key material, and we count how many times each
three-byte value appears during this computation. As there are only 224 possible
values for three bytes, we do not have to list all (x1, c2, c3) values; rather, we
count how often each triple occurs. We then guess k2 and compute how often
each tuple (x2, c3) occurs; and guess k3 and compute how often each value of x3
occurs. Finally, we guess k4 and compute the desired sum.
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Because all sums are taken using the xor operation, and because z ⊕ z = 0
for all z, it suffices to only count modulo two. Thus, a single bit suffices for each
count, and so the space requirement for the 224 counters is just 224 bits.

How much work has this been? In the first phase we guessed 16 bits and
processed 232 ciphertexts, so this phase costs 248 overall. In the next phase,
we guessed a total of 24 bits but we only had to process 224 triples, so this
costs 248 as well. This holds similarly for each of the phases. In total, the entire
computation requires the equivalent of about 248 evaluations of equation 1, or
about 250 S-box applications.

This is the amount of work required for a single structure of 232 ciphertexts.
The first structure already weeds out the overwhelming majority of the wrong
key guesses, but we still have to do the first steps of our partial sum computation
for each of the six structures that we use. The total number of S-box lookups is
thus about 252.

Using our earlier rough equivalence of 28 S-box applications to a trial en-
cryption with a new key, the 252 S-box applications are comparable to 244 trial
encryptions. This is a significant improvement over the earlier 272 workfactor.

2.4 Extension to 7 Rounds

We can apply this our improvement to the 7-round attack of section 2.2. To
express a single byte of b(4) in the key and the ciphertext, we get a formula
similar to equation 1 but with three levels, 16 ciphertext bytes, and 21 key bytes.
The partial sum technique is only helpful during the last part of the computation
as it only saves work if there are more ciphertexts than possible values for the
intermediate result. With 232 plaintext/ciphertext pairs in a structure, these
techniques will not help until the very last part of the computation.

For 192-bit keys we first guess the 128 bits of the last round key. These
guesses also define two of the four key bytes in round 6 that we are interested
in, and the one key byte in round 5 that we need. Thus, after guessing the last
round key we can reduce each structure to 224 counters with our partial sum
technique. Using some precomputed tables, we can do this for each of the 2128

key guesses in about 232 memory lookups. The next phase guesses one byte more
and requires 224 steps to reduce the partial sum to 216 counters, and the last
phase guesses the last remaining byte and produces the final result. Each of
these phases has a cost of 2160 lookups. We have three phases, each of which
costs 2160, and we need to process three structures before we start eliminating
guesses for the last round key, so the overall cost of this attack is on the order
of 2163 S-box lookups or about 2155 trial encryptions.

For 256-bit keys the alignment in the key schedule is different. Guessing the
last round key does not give us any information about the round key of round 6,
but it provides most of the round key for round 5. Working in a similar fashion as
before, we guess 128 bits of the last round key and compute the four bytes we are
interested in after round 6 for each of the 232 texts for a total cost of 2160 lookups.
The next phase guesses 16 more key bits and results in 224 one-bit counters for
a total cost of 2176 lookups. The remaining phases have a similar cost. The cost
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per structure is thus about 2178 lookups or about 2170 trial encryptions. We need
five structures before we start cutting into the guesses of the last round key, so
the overall complexity of this attack is about 2172.

2.5 A Second Improvement

It is possible to push these attacks even further, if we are willing to trade texts
for time and increase the data complexity to save on the workfactor.

We first show that 7 rounds of Rijndael may be broken with 2128 known
texts (the entire codebook!) and workfactor equivalent to approximately 2120

trial encryptions. These encryptions consist of 296 packs of 232 encryptions that
vary only in four bytes of m(1). Those four bytes are in a proper position to apply
the attack of section 2.3: specifically, each pack of 232 encryptions consists of 224

groups of 28 encryptions that vary only in a single byte of m(2). Equivalently,
we may view the entire set of 2128 encryptions as consisting of 2120 groups of
28 encryptions that vary only in one byte of m(2). This ensures that summing
a single byte in b(5) over the 28 encryptions in a group yields zero, and thus
summing over all 2128 encryptions also yields zero in this byte. This simple
property is the basis for several attacks, as described below.

A naive way that one might try to exploit this property is to guess five key
bytes at the end of the cipher, partially decrypt each ciphertext to a single byte
of b(5), sum over all 2128 ciphertexts, and check for zero. However, the naive
approach does not actually work. Even the wrong keys will yield zero when
summing the byte in b(5) over all 2128 encryptions, because for any bijective 128-
bit block cipher, b(5) (or any other intermediate value) will take on all possible
128-bit values as you cycle through all 2128 encryptions. Consequently, we will
need to modify the attack slightly.

Instead, we use the following technique. Focus our attention on a fifth byte
in m(1) (different from the four bytes selected earlier), say, m

(1)
a,b. Fixing a value

x for this byte gives us a set of 2120 encryptions where m
(1)
a,b = x; this gives us

a list of 288 packs, where each pack contains 224 groups of 28 encryptions that
vary only in a single byte of m(2). We call this structure of 2120 encryptions a
herd. Now we obtain 2128 known texts (28 herds), guess four key bytes at the
beginning of the cipher, calculate m

(1)
a,b for each encryption using our guessed

key material, and separate the texts into herds. Examining a single such herd,
we find that summing a byte in b(5) over all the encryptions in the herd yields
zero, and moreover this property is unlikely to hold if our guesses at the key
were incorrect. This yields a working attack against 7 rounds of Rijndael, but
the complexity is very high (2128 × 272 steps of computation or so).

One can do much better. Note that the byte in b(5) depends only on four
bytes of the ciphertext (for simplicity, call them c0, . . . , c3) and the byte m

(1)
a,b

depends on only four bytes of the plaintext (p4, . . . , p7, say). We use a three-
phase attack; the first phase uses 264 counters (the my’s), the second phase uses
232 counters (the nz’s), and the third phase provides the filtering information
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for key guesses. As usual, all counters may be taken modulo 2, so we need just
one bit for each counter.

The attack goes as follows. In the first phase, we increment the counter
my corresponding to the 64-bit quantity y = (c0, . . . , c3, p4, . . . , p7) as we see
each known text (p, c). The second phase guesses four key bytes from the first
round, separates the counters into herds (by computing m

(1)
a,b for each counter

position using (p4, . . . , p7) and the guessed key material), selects a single herd,
and updates the counter nz by adding my to it for each y that is in the correct
herd and that agrees with z = (c0, . . . , c3). Afterwards, in the third phase, we
guess five key bytes at the end of the cipher, partially decrypt each z to a single
byte in b(5), sum this byte over all 232 values of z (with multiplicities as given
by the nz), and check for zero. The third phase must be repeated for each guess
of the four key bytes in the first round.

What is the complexity of this attack? The first phase requires us to update a
counter for each ciphertext, so using our rough equivalence of 28 memory lookups
to a trial encryption, the counting should take time comparable to 2120 trial
encryptions. Compared to the first phase, the rest of the attack has negligible
workfactor (equivalent to 296 encryptions); there is no need to compute partial
sums, an exhaustive key search will suffice.

This shows that one may break 7 rounds of Rijndael using 2128 known texts,
2120 work, and 264 bits of memory. This 7-round attack trades texts for time:
it uses a huge number of known texts, but it has better workfactor and overall
complexity than the 7-round attack of section 2.3; and moreover, it applies to
all key sizes (including the 128-bit keys).

There are a few more small improvements. We used a single byte of m(1) to
define our herds, but the four plaintext bytes that we use in our attack and the
four key bytes of the first round key that we guess define four bytes of m(1).
We can create more (but smaller) herds by fixing three bytes of m(1) for each
herd. This gives us 224 herds of 2104 texts each.3 We can even choose which
of the four bytes will take on every value, and thus create 226 herds of 2104

texts each, in which case each text is used in four different herds. Furthermore,
we do not need all the plaintext/ciphertext pairs. If the four plaintext bytes
take on 232 − 223 of the 232 possible values (and for each of these values the
other 12 bytes take on all possible values), then about half of our herds will
have missing plaintext/ciphertext pairs while the other half are complete and
undamaged. We can use the undamaged herds in our attack. This reduces the
plaintext requirements to 2128 − 2119 texts. These changes do not change the
complexity of the attack, but give us a slight reduction in the text requirements.

2.6 Extension to 8 Rounds

We can further extend the idea to break 8 rounds of Rijndael, though apparently
not for 128-bit keys. As before, we obtain 2128−2119 texts (about 223 undamaged
3 Note that we cannot use all four bytes, as at least one of the four bytes has to vary

within the pack.
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herds), focus attention on a single herd, and use the fact that a single byte in
b(5) will yield zero when summed over all 2104 encryptions in the herd. However,
the byte in b(5) now depends on the entire ciphertext and on 21 subkey bytes
at the end of the cipher, so now we must apply the partial sum techniques of
section 2.4. Guessing the four key bytes of the first round first to define our
herds and computing the partial sums xk one at a time allows one to calculate
the desired sum with 2104 bits of storage and work equivalent to about 2202 trial
encryptions. We need to do this for about four herds before we start to cut our
search tree. (We will need about 26 herds in total to get a unique solution, but
the workload is dominated by the first four herds.) The overall attack complexity
comes out at 2204 encryptions, and thus faster than exhaustive key search for
256-bit keys.

As this attack needs the equivalent of more than 2192 encryptions, it seems to
be useless for 192-bit keys. But the 192-bit key schedule allows a 216-fold speed-
up for the 8-round attack, which thus requires the equivalent of about 2204−16 =
2188 encryptions. We stress that the time complexity of 2188 encryptions only
holds for 192-bit keys, not for 256-bit keys.

Each byte of b(5) depends on 21 subkey bytes, namely: all the 16 bytes from
k(8), 4 bytes from k(7)′

and one byte from k(6)′
. Similar to Section 2.2, fixing the

last round key k(8) determines two of the four bytes from k(7)′
and, depending

on which byte of b(5) we target, possibly also the relevant subkey byte from k(6)′
.

More precisely, by choosing three columns (12 bytes) of k(8) one can learn two
columns of k(7)′

, and the fourth column of k(8) also determines one column of
k(6)′

. In each column of k(7)′
we find one subkey byte we need for the attack. In

other words, fixing k(8)′
(or even only three columns of k(8)′

) gives us two useful
key bytes of k(7)′

. (This holds for the 192-bit key schedule. See [Luc00], where
the Rijndael key schedule and this weakness are explained in more detail.)

To describe the attack, we look at the partial sums technique from a slightly
different point of view. To attack 8-round Rijndael, we check the sum of the
values taken on by one byte from b(5) in the 2104 encryptions of a herd. For
this, we evaluate equation 1 five times: four times on the “bottom level”, and,
using these four results, a last time taking these four values instead of the ci-
phertexts ci,0, . . . , ci,3. Each evaluation of equation 1 starts with counters for
(c0, c1, c2, c3, 〈other〉), where the bytes ci and the corresponding keys are aligned
in the same column. It can be described by the following substeps:

1. Guess two key bytes, w.l.o.g. k0 and k1, and compute the counters (mod 2)
for (x0,1, c2, c3, 〈other〉).

2. Guess one key byte, w.l.o.g. k2, and count (x0,1,2, c3, 〈other〉).
3. Guess one key byte (k3), and count (x0,... ,3, 〈other〉).

(Note that we just introduced a slightly different notation for the x〈some〉. The
reason will become obvious below.)

To attack 8-round Rijndael with 192-bit keys, we obtain 2128 − 2119 texts,
guess four first-round subkey bytes to obtain our herds, concentrate on a single
herd, and target a single byte in b(5). We continue with guessing three columns of
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k8 and evaluating equation 1 for each column. This gives us gives us 256 counters
(mod 2) for

(x0,... ,3, x4,... ,7, x8,... ,11, c12, c13, c14, c15).

Note that the values x0,... ,3, x4,... ,7, and x8,... ,11 correspond to the bytes c0, c1,
and c2 we use within equation 1 to get the final count for the byte of b(5). Now we
evaluate (not guess!)4 two key bytes of k(7) and execute the first substep of the
partial sums technique. Essentially for free, we reduce the number of counters
from 256 to 248, and we get counters (mod 2) for

(x0,... ,7, x8,... ,11, c12, c13, c14, c15).

By guessing the last column of k(8) and get 224 counters for

(x0,... ,7, x8,... ,11, x12,... ,15).

Guessing another two bytes of k(7) we get 28 counters for x15. We can evaluate
one byte of k(6), which allows us to check the balancedness of one byte of b(5).

Note that the order in which things are done is crucial for the time complexity.
If we first guessed all 16 bytes from k(8) and only then evaluated the two key
bytes from k(7)′

which we get for free, the speed-up would only be 28 compared to
the running time for attacking Rijndael with 256-bit keys. In this case, the time
complexity would be 2196 for 192-bit keys, i.e. slower than exhaustive search.

2.7 Summary

The Square attack can be improved so that it requires 244 work to attack 6
rounds of Rijndael. The extension to 7 rounds has complexity 2155 for 192-bit
keys and complexity 2172 for 256-bit keys. There is also an alternative extension
to 7 rounds that can break all key sizes with lower overall complexity (2120 work)
but which requires virtually the entire codebook of texts (2128 − 2119 texts).
Another result of our analysis is that, for the 256-bit and 192-bit key sizes, one
may break 8 rounds of Rijndael faster than by exhaustive search, again with
2128 − 2119 texts. The 256-bit key size requires 2204 work, the 192-bit key size
2188.

3 The Key Schedule

Compared to the cipher itself, the Rijndael key schedule appears to be more of
an ad hoc design. It has a much slower diffusion structure than the cipher, and
contains relatively few non-linear elements.

4 This is where the 216-fold speed-up for 192-bit keys comes from.
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3.1 Partial Key Guessing

The Rijndael submission document states that the key schedule was designed
with the requirement that “Knowledge of a part of the Cipher Key or Round Key
bits shall not allow to calculate many other Round Key bits” [DR98, section 7.5].
The key schedule does not seem to achieve that goal.

Let us look at the case of a 128-bit block size and 256-bit key in more detail.
The key schedule consists of 8 cycles, which produces a total of 15 round keys
(the last half of the last cycle is never used). The key schedule can be seen as
four separate rows that only have a limited interaction. We will concentrate on a
particular row; say, number i. We guess the values K

(s)
i,7 for s = 0, . . . , 6. (There

is no point in guessing it for s = 7, as that byte is not used in an expanded key.)
Using the recurrent computation rule of the key schedule, we can now compute
K

(s)
i,6 for s = 1, . . . , 6, K

(s)
i,5 for s = 2, . . . , 6, etc. (Please refer to appendix A for

definitions of our notation, if it is not clear.) All in all, we learn 28 bytes of the
expanded key for the cost of having guessed only seven bytes.

The bytes that we guessed in row i are exactly those bytes that affect row
i− 1 mod 4. Thus, if we now guess the first eight bytes of row i− 1, then we can
compute the rest of that row for a total of 60 bytes, and if we guess a total of
15 bytes, we learn 88 bytes of the expanded key.

We can extend this with further rows, and get 148 bytes of the expanded key
by guessing 23 bytes, and 208 bytes by guessing 31 bytes. There are of course
many other ways in which guessing some bytes results in knowledge of many
more. On a smaller scale, several of our attacks in section 2 used dependencies
between round key bytes to reduce the complexity of the attack.

3.2 Key Splitting

Another interesting property is that the key can be “split” into two halves. The
two topmost rows interact with the two bottommost rows through only 14 bytes
(in the case of 128-bit block size and 256-bit key). If we guess (or know) those 14
bytes, then the rest of the key has been split into two independent halves, each
of which controls half of the expanded key bytes. There are many ways to split
the key. By rows is the easiest way, but it is also possible to split it by column
(at least for a few cycles).

This immediately suggests some kind of meet-in-the-middle attack to a cryp-
tanalyst. However, as the expanded key bytes of the two halves are mixed very
thoroughly in the non-linear cipher, we have not found a way to exploit this
property. Note that the DES key schedule allows the key bits to be split into 56
independent parts, but no attack is known that uses this property.

3.3 Summary

The fact that these properties are present in spite of the stated design goal is
unsettling. Some of our attacks make use of the relations between expanded key
bytes and would have a higher complexity if these relations did not exist. The
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attack on 8-round Rijndael with 192-bit keys would be slower than exhaustive
key search without these relations. Our attack in the next section also makes
extensive use of the properties of the key schedule.

4 A 9-Round Related-Key Attack

Related-key attacks were first introduced by Biham in [Bih93] and later extended
in [KSW96,KSW97]. We assume that the reader is familiar with the basics of
related-key cryptanalysis.

The submission states that “The key schedule of Rijndael, with its high
diffusion and non-linearity, makes it very improbable that [related-key attacks]
can be successful for Rijndael” [DR98, section 8.7], and also lists resistance to
related-key attacks as one of the requirements for the Rijndael key schedule
[DR98, section 7.5]. We do not feel that the Rijndael key schedule has a very
high level of diffusion. It can take many cycles before a low-weight difference
starts to affect a significant number of other bytes. This can best be seen if
we run the key schedule backwards; each byte affects two other bytes that are
(almost) a full cycle further back.

We show how a related-key attack can be mounted on 9 rounds of Rijndael
with a 256-bit key. This is basically a variant of the Square attack; we use 256
related keys that differ in a single byte in the fourth round key. We use plaintext
differences to cancel out the earlier round key differences, and get three bytes
at the end of round 6 that sum to zero when taken over the 256 encryptions.
We guess key bytes of the last three rounds to compute backwards from the
ciphertext and detect this property.

4.1 The Key Difference Pattern

Starting with an unknown base key L, we derive a set of 256 related keys
L0, . . . , L255. The difference La ⊕ L takes on the value a in bytes 21 and 25,
and is zero elsewhere. The diffusion in the key schedule is slow enough that we
can track all the differences in the round keys. Figure 1 shows the difference pat-
tern. The key schedule for the 9-round cipher needs to generate 10 round keys.
With a 128-bit block size and a 256-bit key, this requires five cycles of the key
schedule, which are shown in the figure. Each of the cycles provides two round
keys.

The dark gray bytes are the bytes of L that we guess. The light gray bytes
are bytes that we can deduce from the guesses that we have made using the
recurrence relationship between the expanded key bytes. We guess a total of
27 bytes of the key, and this allows us to compute a total of 66 bytes of the
expanded key. We will use all of our guesses in the attack, but for the moment
we concentrate on tracking the differences through the key schedule.

In the first cycle we have a difference a in K
(0)
1,5 and K

(0)
1,6 . In the next cycle

we get a difference a in K
(1)
1,5 . In the third cycle we have difference a in K

(2)
1,5 ,
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Fig. 1. Difference and guessing pattern in the key of the 9-round attack.

K
(2)
1,6 , and K

(2)
1,7 . At this point the difference is first confronted with a non-linear

S-box. To track the difference, we need to know K
(2)
1,7 of key L; this allows us

to compute the output difference b of the S-box given the input difference a. As
the shading shows, this key byte can be deduced from the guesses that we have
made. In the fourth cycle we get the difference b in K

(3)
0,i for i = 0, . . . , 3. Again

we encounter an S-box, and therefore we need to know K
(3)
0,3 of L. This gives

us the output difference c of that S-box given input difference b. We thus get a
difference c in K

(3)
0,i for i = 4, . . . , 7. The differences from the previous cycle also

come through as a difference a in K
(3)
1,5 and K

(3)
1,7 . We can track the rest of the

difference propagation in a similar way as is shown in the figure. All in all, it
turns out that we have guessed more than enough bytes of L to be able to track
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all of the changes. That is, for each value of a, we know the exact value of b, c,
d, e, f , and g. Although we are guessing a very large number of bytes that we
will use in our attack, we would only need to guess six bytes in order to track
the difference pattern through the key schedule.

4.2 The Encryptions

Having guessed the dark-gray bytes shown in figure 1, we encrypt one plaintext
under each key. These plaintexts are chosen such that all encryptions end up in
the same state after the first round (i.e., after adding the second round key).
We know the differences in the second round key k(1) and the key bytes that we
guessed allow us to introduce appropriate differences in the plaintexts to ensure
the same state after round 1. We now get a single byte difference introduced at
the end of round 3; if we look at all our 256 encryptions, this one byte takes on
each value exactly once. This propagates to ensure that each byte of m(5) runs
over all possible values when taken over the 256 encryptions.

The next few steps are shown in figure 2. The round keys for round 5 and
6 are on the left, with their differences marked. On the right are some of the
state differences. The bytes marked O are bytes that take on every possible value
exactly once. Bytes marked X can behave in any manner. Bytes marked σ have
the property that if you sum them over all 256 encryptions, the sum is zero. The
important item to note is that we have three σ bytes in b(6).

We are going to compute b
(6)
1,3 from the ciphertext, our known key bytes, and

some additional guessed key bytes. This is shown in the figure with the gray color.
Note that we are using an equivalent representation for round 8, where we have
swapped the order of the MixColumn and AddRoundKey, and add k(8)′

instead
of k(8). We know the ciphertext and the last round key, so we can compute
backwards up to the AddRoundKey of round 8. We now guess the four marked
bytes in k(8)′

. (We know several bytes of k(8), but that provides no information
about these bytes of k(8)′

. However, as each column of k(8)′
is the result of an

inverse MixColumn operation on k(8), we can propagate our knowledge of the
differences from k(8) to k(8)′

.) We can now compute the marked bytes in t(8),
s(8), and t(7), and finally we can compute b

(6)
1,3. We check whether this value sums

to zero when taken over all 256 encryptions. If this is not the case, we have made
a wrong guess somewhere. As before, we can generate enough sets of plaintexts
to uniquely identify the correct key guesses that we have made.

All in all, we have guessed 31 bytes of key material, and for each guess we
perform an amount of work comparable to a single encryption. This puts the
overall complexity of the attack at 2248.

Looking at the plaintext requirements, we do not have to perform 256 en-
cryptions for each of the key byte guesses that we have made. The eight bytes of
plaintext that we use to cancel the differences can take on only 264 values, so we
can encrypt 264 plaintexts with each of the 256 related keys for a total chosen
plaintext requirement of 272.
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Fig. 2. Rounds 6–9 of the attack.
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4.3 An Improvement

We can now use the techniques of section 2.3 to improve this attack. Instead of
guessing the eight bytes of the first round key, we use all 264 plaintexts for each
of the keys, and sum over all 272 encryptions. We will need about 32 structures
of 272 texts overall to uniquely identify the correct key guess, so our plaintext
requirement grows to 277. We now guess the 19 dark gray bytes (152 bits) of K(4)

in figure 1. (This also provides the required information to track the differences
between the 256 keys.) We decrypt each of the 272 ciphertexts of one structure
for one round, and count how often each of the possible values for the four
remaining interesting bytes occurs. We are now left with something very similar
to equation 1, which requires 248 elementary steps. It is clear that this process
is dominated by the work of decrypting the last round. This reduces the attack
complexity to 5·2224. (The factor 5 comes from the fact that we need five of these
structures before we start cutting into the guesses that dominate the workload.)

4.4 Further Work

There are many ways in which variations on this attack can be made, such as
using a different key difference pattern, or possibly applying the partial-sum
technique further to reduce the workload. We have not investigated these in any
detail. This remains an area for further study.

4.5 Summary

There is a related-key attack on 9 rounds of Rijndael with 256-bit keys that uses
277 plaintexts under 256 related keys, and requires 2224 steps to complete.

5 Conclusions

We examined the security of the AES candidate Rijndael, and described several
new attacks and unexpected properties of the cipher. Up to now we have only
looked at the Rijndael versions with a 128-bit block size. Although similar in
structure, Rijndael with larger block sizes is different enough—the byte align-
ments that are so crucial to some of our attacks are different—that it will have
to be analyzed separately.

We introduced the “partial sum” technique, which substantially reduces the
workfactor of the dedicated Square attack. We also showed how one may trade
texts for time, to penetrate through more rounds of Rijndael when many known
texts are available. These techniques allowed us to find attacks that break as
many as 7 (of 10) rounds for 128-bit keys, 8 (of 12) rounds for 192-bit keys, and
8 (of 14) rounds for 256-bit keys. Many of these attacks require virtually the
entire codebook of texts and hence are not very practical.

The key schedule does not achieve its stated design goals, especially for 192-
bit and 256-bit keys. Although we have not found a large-scale exploit of the key
schedule properties described in section 3, we find them worrisome.
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The 9-round related-key attack has a complexity of 2224, which is of course
completely impractical; but it is faster than an exhaustive key search, which is the
standard measure to compare against. Our results have no practical significance
for anyone using the full Rijndael.
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to intermediate values in an encryption. To help resolve this problem, we define
some extra terminology and symbols for various values in the cipher. We have
tried to retain as many of the symbols of [DR98] as possible. For completeness,
we have named every intermediate value that seemed of use to us. Many of these
definitions are not used in this paper but are included for completeness. All our
explanations of the symbols refer to the description in [DR98].

3a The byte 3a16 (and similarly for all other byte values). This can either be
a direct byte value, or it can be interpreted as an element of GF(28).

a
(r)
i,j The byte at position (i, j) at the beginning of round r.

b
(r)
i,j The byte at position (i, j) at the output of round r (just after the key

addition).
c(x) The polynomial 03x3 + 01x2 + 01x + 02 that is used to define the MDS

matrix.
ci The bytes of the ciphertext, where i ∈ {0, . . . , 4Nb − 1}.
Ci The number of positions that row i is shifted left in the ShiftRow function.
k

(r)
i,j The expanded key byte in round r at position (i, j) where r ∈ {0, . . . , Nr},

i ∈ {0, . . . , 3} and j ∈ {0, . . . , Nb − 1}. For r = 0, it is the key that is
xored into the state before the first round. The entire round key is referred
to as k(r).

k
(r)′

i,j This is a simple linear function of the round key k(r). xoring k(r)′
into the

state before the MixColumn operation is equivalent to xoring k(r) into
the state after the MixColumn operation (when looking at encryption).

Ki The bytes of the expanded key in their canonical order, where i ∈ {0, . . . ,
4Nb(Nr + 1) − 1}. Note that the bytes K0, . . . , K4Nk−1 form the key of
the cipher itself.

K
(s)
i,j The expanded key bytes in cycle s at position (i, j), where s ∈ {0, . . . , Ns−

1}, i ∈ {0, . . . , 3}, and j ∈ {0, . . . , Nk − 1}.
m

(r)
i,j The byte at position (i, j) at the output of the MixColumn operation in

round r.
M The MDS matrix.
Nb The block size (in bits) divided by 32.
Nk The number of key bits divided by 32.
Nr The number of rounds.
Ns The number of cycles in the key expansion; Ns = d(Nr + 1)Nb/Nke.
pi The bytes of the plaintext, where i ∈ {0, . . . , 4Nb − 1}.
r The round number. The rounds are numbered 1, . . . , Nr, and the value 0

is sometimes used to refer to the initial AddRoundKey operation.
R

(s)
i The round constant used at position (i, 0) in cycle s.

s The cycle number in the key expansion. Each cycle produces 4Nk expan-
ded key bytes. The cycles are numbered from 0 to Ns − 1.

s
(r)
i,j The byte at position (i, j) at the output of the S-boxes in round r.

S The S-box. Entry x is written as S[x]. The inverse S-box is written as
S−1.
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t
(r)
i,j The byte at position (i, j) at the output of the ShiftRow operation in

round r.

Note that the key schedule operates in what we call “cycles.” This is to distin-
guish it from the rounds of the cipher itself. If the block size and key size are the
same, then a cycle corresponds to a round, but this is not the case in general.

We can now give the various formulae through which these values are tied
together. This provides a complete specification of the cipher, although not one
that is easy to understand. Note that Nb and Nk are the cipher parameters that
can each take on the values 4, 6, and 8. The multiplication of two bytes is defined
as multiplication in GF(2)[x]/(x8 +x4 +x3 +x+1) and the byte value

∑7
i=0 ai2i

with ai ∈ GF(2) is identified with the field element
∑7

i=0 aix
i.

a
(1)
i,j = p4j+i ⊕ k

(0)
i,j Initial key addition

s
(r)
i,j = S[a(r)

i,j ] ByteSub

t
(r)
i,j = s

(r)
i,(j+Ci)modNb

ShiftRow

[m(r)
0,j , . . . , m

(r)
3,j ]

T = M [t(r)0,j , . . . , t
(r)
3,j ]

T MixColumn

b
(r)
i,j = m

(r)
i,j ⊕ k

(r)
i,j AddRoundKey

a
(r)
i,j = b

(r−1)
i,j for r = 2, . . . , Nr

c4j+i = t
(Nr)
i,j ⊕ k

(Nr)
i,j Final round

k
(r)
i,j = K4rNb+4j+i Round keys

K4sNk+4j+i = K
(s)
i,j

K
(s)
i,0 = K

(s−1)
i,0 ⊕ R

(s)
i ⊕

S[K(s−1)
(i+1)mod4,Nk−1] for s = 1, . . . , Ns − 1

K
(s)
i,4 = S[K(s)

i,3 ] ⊕ K
(s−1)
i,j if Nk = 8

K
(s)
i,j = K

(s)
i,j−1 ⊕ K

(s−1)
i,j if j > 0 and (j 6= 4 ∨ Nk 6= 8)

Ci = i + bi/2c · bNb/8c for i = 0, . . . , 3

Nr = max(Nb, Nk) + 6 Number of rounds

R
(s)
i = 0 for i > 0

R
(s)
0 = field element xs−1

M =





02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02
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Abstract. Luby and Rackoff idealized DES by replacing each round
function with one large random function. In this paper, we introduce
a primitive-wise idealization in which some of the primitive operations
of the round function are left untouched and some of them are repla-
ced with small random functions or permutations. We then prove that
a four round primitive-wise idealized RC6 is not a pseudorandom per-
mutation and a three round primitive-wise idealized Serpent is a super-
pseudorandom permutation.

1 Introduction

There are five AES finalists, RC6, Serpent, MARS, Twofish and Rijndael. RC6
was proposed by Rivest et.al. [6] as a successor of RC5. RC6 makes essential
use of data-dependent rotations in the new structure. It also includes the use of
four working registers and the inclusion of integer multiplication as an additional
primitive operation. Serpent was proposed by Anderson et.al. [1]. Each round
of Serpent has 32 parallel S-boxes and a following linear transformation of 128
bits. MARS was proposed by Burwick et.al. [2]. It uses a so called type-3 Feistel
structure. Twofish was proposed by Schneier et.al. [7]. It has a 16 round Feistel
structure. Rijndael was proposed by Daemen et.al. [3]. Its round transformation
consists of three distinct invertible uniform transformations.

We consider the security of block ciphers in two ways, pseudorandomness
and super-pseudorandomness.

– Pseudorandomness means that no attacker with polynomially many encryp-
tion queries can distinguish between the block cipher and a truly random
permutation. This security corresponds to a chosen plaintext attack.

– Super-pseudorandomness means that no attacker with polynomially many
encryption and decryption queries can distinguish between the block cipher
and a truly random permutation. This security corresponds to a chosen
plaintext and ciphertext attack.

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 231–243, 2001.
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Note that super-pseudorandomness implies pseudorandomness.
Luby and Rackoff idealized DES by replacing each round function with one

large random function. Then they showed that the idealized three round DES
yields a pseudorandom permutation and the idealized four round DES yields
a super-pseudorandom permutation [4]. Maurer gave a simpler proof for non-
adaptive adversaries [5].

For this kind of idealization, the three round idealized Twofish is a pseudoran-
dom permutation and the four round idealized Twofish is a super-pseudorandom
permutation because Twofish has the same Feistel structure as DES. MARS has
a so called type-3 Feistel structure. At the rump session of AES2, Vaudenay and
Moriai claimed that the five round idealized MARS is a pseudorandom permu-
tation [8].

In this paper, we introduce a primitive-wise idealization in which some of
the primitive operations of the round function (e.g., linear transformations and
etc.) are left untouched and some of them (e.g., S-boxes and etc.) are replaced
with small random functions or permutations. It is not known whether such a
primitive-wise idealized DES is pseudorandom (or super-pseudorandom). Simi-
larly, the same problem is open for all the AES candidates.

We solve this problem for RC6 partially, and solve for Serpent. We first
idealize RC6 by replacing only an “x× (2x+1)”operation with a pseudorandom
function. The data-dependent rotation parts and the connections among the four
registers are left untouched because they are the main properties of RC6. We then
prove that the four round primitive-wise idealized RC6 is not a pseudorandom
permutation for non-adaptive adversaries.

Serpent is idealized similarly. The linear transformation parts are left untou-
ched and only the S-boxes are replaced with small pseudorandom permutations.
We then prove that the two round primitive-wise idealized Serpent is not a pseu-
dorandom permutation and the three round primitive-wise idealized Serpent is
a super-pseudorandom permutation for non-adaptive adversaries.

A similar analysis for Rijndael, MARS, and Twofish is now in progress. Our
results are stronger than the previous results for DES, Twofish [4] and MARS
[8] because our idealization assumes weaker and smaller modifications of the
ciphers.

This paper is organized as follows. In Section 2, we review the security model
and the pseudorandomness of Twofish and MARS. The primitive-wise idealized
RC6 is studied in Section 3 and the primitive-wise idealized Serpent is studied
in Section 4.

2 Preliminaries

2.1 Security Model

Let us consider a computationally unbounded distinguisher A with an oracle O.
The oracle O chooses a permutation π randomly from the set of all permuta-
tions C∗ over {0, 1}n or from a subset of permutations C ⊂ C∗ (For a block
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cipher, C is the set of permutations obtained from all the keys). The aim of the
distinguisher A is to distinguish if the oracle O implements C∗ or C. Let pC∗

denote the probability that A outputs 1 when O implements C∗ and pC denote
the probability that A outputs 1 when O implements C. That is,

pC∗
4
= Pr(A outputs 1 | O ← C∗) and pC

4
= Pr(A outputs 1 | O ← C) .

Then the advantage AdvA of the distinguisher A is defined as

AdvA
4
= |pC − pC∗ | .

Suppose that A is limited to make at most poly(n) queries to O, where
poly(n) is some polynomial in n. We say that A is a pseudorandom distinguisher
if it queries x and the oracle answers y = π(x), where π is a randomly chosen
permutation by O. We say that A is a super-pseudorandom distinguisher if it is
also allowed to query y and receives x = π−1(y) from the oracle.

Finally, C is called a pseudorandom permutation ensemble if AdvA is negli-
gible for any pseudorandom distinguisher (A pseudorandom function ensemble
is defined similarly). C is called a super-pseudorandom permutation ensemble
if AdvA is negligible for any super-pseudorandom distinguisher. On the other
hand, C∗ is called the truly random permutation ensemble.

In this paper, we consider a non-adaptive distinguisher, i.e., a distinguisher
that sends all the queries to the oracle at the same time.

2.2 Pseudorandomness of Idealized Twofish

Twofish has the same Feistel structure as DES shown in Fig. 1.

fi

?m+ r��

? ?

Fig. 1. The i-th round of the idealized Twofish

Assume that each round functions fi is an independent pseudorandom function
from {0, 1}n/2 to {0, 1}n/2. Then the following propositions are derived from the
result of Luby and Rackoff [4].

Proposition 1. The four round idealized Twofish is a super-pseudorandom per-
mutation.

Proposition 2. The three round idealized Twofish is a pseudorandom permu-
tation.
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2.3 Pseudorandomness of Idealized MARS

MARS has a structure as shown in Fig. 2.

fi

?
?

?

m+
m+

m+
r-

-

-
-

? ? ? ?

Fig. 2. The i-th round of the idealized MARS

Assume that each round function fi is an independent pseudorandom function
from {0, 1}n/4 to {0, 1}3n/4. Then Vaudenay and Moriai claimed the following
proposition [8].

Proposition 3. The five round idealized MARS is a pseudorandom permuta-
tion.

3 Pseudorandomness of Primitive-Wise Idealized RC6

3.1 Primitive-Wise Idealization of RC6

RC6 is specified as RC6-w/r/b, where w denotes the number of bits of a word,
r denotes the number of rounds, and b denotes the length of the encryption key
in bytes. RC6 works with four w bits registers, A, B, C, and D. The i-th round
of RC6 is defined as follows.

t = (B × (2B + 1)) <<< lg w
u = (D × (2D + 1)) <<< lg w
A = ((A⊕ t) <<< u) + S[2i]
C = ((C ⊕ u) <<< t) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)

Definition of the i-th round of RC6

In the above definition, a+b is an addition modulo 2w, a⊕b is a bitwise exclusive-
or of two w bits words, a× b is a multiplication modulo 2w and a <<< b denotes
to rotate a w bits word a to the left by x, where x is the number given by the
least significant lg w bits of b and lg w denotes the base-two logarithm of w.
Finally, S[2i] and S[2i + 1] denote the i-th round key.
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Let n denote the length of a plaintext. Then n = 4w. In other words, each of
A, B, C, D takes an element of {0, 1}n/4.

Now we idealize RC6 as shown below, where each fj is an independent pseu-
dorandom function from {0, 1}n/4 to {0, 1}n/4.

t = f2i(B)
u = f2i+1(D)
A = ((A⊕ t) <<< u)
C = ((C ⊕ u) <<< t)
(A, B, C, D) = (B, C, D, A)

The i-th round of the primitive-wise idealized RC6

Note that

1. We replace t and S[2i] with f2i, and u and S[2i + 1] with f2i+1.
2. However, we leave the data-dependent rotations <<< t, <<< u and the connec-

tions among the four registers untouched because they are the main pro-
perties of RC6.

3.2 Pseudorandomness of Primitive-Wise Idealized RC6

The primitive-wise idealized RC6 is illustrated in Fig. 3, where x = (x0, x1, x2,
x3) denotes a plaintext, z = (z0, z1, z2, z3) and w = (w0, w1, w2, w3) denote ci-
phertexts of the three and four round primitive-wise idealized RC6, respectively.
Each of xi, zi, and wi is n/4 bits long.

Theorem 1. The four round primitive-wise idealized RC6 is not a pseudoran-
dom permutation.

Proof. Let C be the set of permutations over {0, 1}n obtained from the four ro-
und primitive-wise idealized RC6. We consider a distinguisher A such as follows.

1. A randomly chooses two plaintexts x(1) = (x(1)
0 , x

(1)
1 , x

(1)
2 , x

(1)
3 ) and x(2) =

(x(2)
0 , x

(2)
1 , x

(2)
2 , x

(2)
3 ) such that

x
(1)
0 6= x

(2)
0 and x

(1)
1 = x

(2)
1 , x

(1)
2 = x

(2)
2 , x

(1)
3 = x

(2)
3 . (1)

2. A sends them to the oracle and receives the ciphertexts w(1) = (w(1)
0 , w

(1)
1 ,

w
(1)
2 , w

(1)
3 ) and w(2) = (w(2)

0 , w
(2)
1 , w

(2)
2 , w

(2)
3 ) from the oracle.

3. Finally, A outputs 1 if and only if

((w(1)
0 ⊕ w

(2)
0 ) <<< l) = x

(1)
0 ⊕ x

(2)
0 (2)

for some 0 ≤ l < n/4.



236 T. Iwata and K. Kurosawa

x0 x1 x2 x3

? ? ? ?
w0 w1 w2 w3

? ? ? ?
z0 z1 z2 z3

f0 f1

f2 f3

f4 f5

f6 f7

? ?l+ � r � r l+ � r � r
?

-
?

�l<<<

l<<<

? ?l+ � r � r l+ � r � r
?

-
?

�l<<<

l<<<

? ?l+ � r � r l+ � r � r
?

-
?

�l<<<

l<<<

? ?l+ � r � r l+ � r � r
?

-
?

�l<<<

l<<<

Fig. 3. The primitive-wise idealized RC6
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Suppose that the oracle implements the truly random permutation ensemble
C∗. Then for any fixed x(1) and x(2) satisfying (1),

Pr(A outputs 1) =
#{(w(1)

0 , w
(2)
0 ) | eq.(2) holds for some l}
#{(w(1)

0 , w
(2)
0 )}

.

It is clear that
#{(w(1)

0 , w
(2)
0 )} = (2n/4)2 = 2n/2 .

For each w
(1)
0 and l, there exists a unique w

(2)
0 which satisfies eq.(2). Therefore,

#{(w(1)
0 , w

(2)
0 ) | eq.(2) holds for some l} ≤ n

4
× 2n/4 .

Hence,

Pr(A outputs 1) ≤ n/4× 2n/4

2n/2 =
n

4× 2n/4 .

Consequently,

pC∗ = Ex(1),x(2)(Pr(A outputs 1)) ≤ n

4× 2n/4 .

Next suppose that the oracle implements the four round primitive-wise ide-
alized RC6. We first assume that each fi is a truly random function. Define α1,
β1, δ1 and γ1 as shown in Fig. 4,

?

?

?

��

?
- m<<<

m+ f5

z1

γ1

δ1

α1

β1

Fig. 4. 3-rd branch in the 3-rd round

Fix x(1) = (x(1)
0 , x

(1)
1 , x

(1)
2 , x

(1)
3 ) and x(2) = (x(2)

0 , x
(2)
1 , x

(2)
2 , x

(2)
3 ) such that x

(1)
0 6=

x
(2)
0 , x

(1)
1 = x

(2)
1 , x

(1)
2 = x

(2)
2 and x

(1)
3 = x

(2)
3 arbitrarily. Then

γ
(1)
1 ⊕ γ

(2)
1 = ((x(1)

0 ⊕ x
(2)
0 ) <<< l′)

for some l′ since x
(1)
1 = x

(2)
1 , x

(1)
2 = x

(2)
2 and x

(1)
3 = x

(2)
3 . If β

(1)
1 = β

(2)
1 , then

α
(1)
1 ⊕ α

(2)
1 = γ

(1)
1 ⊕ γ

(2)
1 . Thus,

α
(1)
1 ⊕ α

(2)
1 = ((x(1)

0 ⊕ x
(2)
0 ) <<< l′) .
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Further if δ
(1)
1 = δ

(2)
1 , then

z
(1)
1 ⊕ z

(2)
1 = ((α(1)

1 ⊕ α
(2)
1 ) <<< l′′)

for some l′′. Therefore,

z
(1)
1 ⊕ z

(2)
1 = ((x(1)

0 ⊕ x
(2)
0 ) <<< l′′′)

for some l′′′. Hence, if both β
(1)
1 = β

(2)
1 and δ

(1)
1 = δ

(2)
1 occur, then

((w(1)
0 ⊕ w

(2)
0 ) <<< l) = x

(1)
0 ⊕ x

(2)
0

holds for some l because z
(1)
1 = w

(1)
0 and z

(2)
1 = w

(2)
0 . Therefore,

pC ≥ Pr(β(1)
1 = β

(2)
1 and δ

(1)
1 = δ

(2)
1 ) .

Since 0 ≤ l < n/4 and f4 is a truly random function, it is easy to see that

Pr(δ(1)
1 = δ

(2)
1 ) ≥ 1

n/4
.

Since x
(1)
1 = x

(2)
1 and the output of f2 for x(1) is equal to that for x(2),

Pr(β(1)
1 = β

(2)
1 ) ≥ 1

n/4
.

Further, β1 and δ1 are independent because f4 is a truly random function. Con-
sequently,

pC ≥ Pr(β(1)
1 = β

(2)
1 )× Pr(δ(1)

1 = δ
(2)
1 )

≥ 1
n/4
× 1

n/4

=
16
n2 .

Therefore, we obtain that

AdvA = |pC − pC∗ | ≥ 16
n2 −

n

4× 2n/4 ,

which is non-negligible. Finally, we can show that AdvA is non-negligible even if
each fi is a pseudorandom function. The proof is almost the same as the proof
of [4, Theorem 1]. Hence, the four round primitive-wise idealized RC6 is not a
pseudorandom permutation. ut

The above theorem implies that the four round primitive-wise idealized RC6
is not a super-pseudorandom permutation.
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4 Pseudorandomness of Primitive-Wise Idealized Serpent

4.1 Primitive-Wise Idealization of Serpent

Serpent consists of 32 rounds. The plaintext becomes the first intermediate data
B0, after which the 32 rounds are applied, where each round i consists of three
operations:

1. Key Mixing: At each round, a 128 bits subkey Ki is exclusive or’ed with the
current intermediate data Bi.

2. S-Boxes: The 128 bits combination of input and key is considered as four 32
bits words. The S-box is applied to these four words, and the result is four
output words. The CPU is employed to execute the 32 copies of the S-box
simultaneously, resulting with Si(Bi, Ki). Each S-box is a permutation over
{0, 1}4.

3. Linear Transformation: The 32-bit in each of the output words are linearly
mixed, by

X0, X1, X2, X3 := Si(Bi, Ki)
X0 := X0 <<< 13
X2 := X2 <<< 3
X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 << 3)
X1 := X1 <<< 1
X3 := X3 <<< 7
X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 << 7)
X0 := X0 <<< 5
X2 := X2 <<< 22

Bi+1 := X0, X1, X2, X3 ,

where <<< denotes rotation, and << denotes shift.

The effect of the linear transformation is that each plaintext bit affects all
the data bits after three rounds. This can be detailed as follows. 4 output bits
of some S-box in the first round are expanded by the linear transformation, so
that they are input bits to m S-boxes in the second round. Then the 4m output
bits of these m S-boxes are expanded so that they become input bits to the 32
S-boxes in the third round. The maximum value of m is 19, and the minimum
is 17.

We idealize Serpent as shown in Fig. 5 and:

1. Let n = 128× k denote the length of a plaintext.
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f32i f32i+1 · · · f32i+31

? ? ?

? ? ?

? ? ?

LT

Fig. 5. The i-th round of the primitive-wise idealized Serpent

2. We assume that each fi is an independent pseudorandom permutation over
{0, 1}4k.

3. In the linear transformation, a <<< b is replaced with a <<< bk, and a << b is
replaced with a << bk.

Note that we leave the linear transformation part untouched except the above
modification.

4.2 Pseudorandomness of Primitive-Wise Idealized Serpent

The three round primitive-wise idealized Serpent is illustrated in Fig. 6. Let
x = (x0, . . . , x31) denote a plaintext, z = (z0, . . . , z31) and y = (y0, . . . , y31)
denote ciphertexts of the two round and the three round primitive-wise idealized
Serpent, respectively. Each of xi, zi, and yi is 4k bits long.

We first prove the following theorem.

Theorem 2. The two round primitive-wise idealized Serpent is not a pseudoran-
dom permutation.

Proof. Let C be the set of permutations over {0, 1}n obtained from the two
round primitive-wise idealized Serpent. We consider a distinguisher A such as
follows.

1. A chooses two plaintexts, x(1) = (x(1)
0 , . . . , x

(1)
31 ) and x(2) = (x(2)

0 , . . . , x
(2)
31 )

such that x
(1)
0 6= x

(2)
0 and x

(1)
1 = x

(2)
1 , . . . , x

(1)
31 = x

(2)
31 .

2. A sends them to the oracle and receives the ciphertexts z(1) = (z(1)
0 , . . . , z

(1)
31 )

and z(2) = (z(2)
0 , . . . , z

(2)
31 ) from the oracle.

3. A computes v(1) = LT−1(z(1)) and v(2) = LT−1(z(2)).
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x0 x1 · · · x31

f0 f1 · · · f31

f32 f33 · · · f63

f64 f65 · · · f95

y0 y1 · · · y31

z0 z1 · · · z31

w0 w1 · · · w31

? ? ?

? ? ?

? ? ?
LT

? ? ?

? ? ?
LT

LT
? ? ?

? ? ?

? ? ?

? ? ?

LT

Fig. 6. The primitive-wise idealized Serpent

4. A outputs 1 if and only if v
(1)
1 = v

(2)
1 .

Suppose that the oracle implements the truly random permutation ensemble
C∗. Then it is clear that pC∗ = 1/24k.

Next suppose that the oracle implements the two round primitive-wise idea-
lized Serpent. The input to f33 includes no output of f0. Therefore, v

(1)
1 = v

(2)
1

because x
(1)
1 = x

(2)
1 , . . . , x

(1)
31 = x

(2)
31 . Hence pC = 1.

Therefore
AdvA = |pC − pC∗ | = 1− 1

24k
.

Consequently, AdvA is non-negligible. Hence, the two round primitive-wise ide-
alized Serpent is not a pseudorandom permutation. ut

The above theorem implies that the two round primitive-wise idealized Ser-
pent is not a super-pseudorandom permutation.

We next prove the following theorem.

Theorem 3. The three round primitive-wise idealized Serpent is a pseudoran-
dom permutation for non-adaptive adversaries.

Proof. Let C be the set of permutations over {0, 1}n obtained from the three
round primitive-wise idealized Serpent. First, assume that each fi is a truly
random permutation.
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Suppose that A makes p oracle calls. In the i-th oracle call, A sends a
plaintext x(i) = (x(i)

0 , . . . , x
(i)
31 ) to the oracle and receives the ciphertext y(i) =

(y(i)
0 , . . . , y

(i)
31 ) from the oracle. In Fig. 6, let w(i) = (w(i)

0 , . . . , w
(i)
31 ) denote the

inputs to f32, . . . , f63 and z(i) = (z(i)
0 , . . . , z

(i)
31 ) denote the inputs to f64, . . . , f95.

Without loss of generality, we can assume that x(1), . . . , x(p) are all distinct.
Let Ezt

be the event that z
(1)
t , . . . , z

(p)
t are all distinct for t = 0, . . . , 31, and let

Ez be the event that all Ez0 , . . . , Ez31 occur. If Ez occurs, then, y(1), . . . , y(p) are
completely random since f64, . . . , f95 are truly random permutations. Therefore,
AdvA is upper bounded by

AdvA = |pC − pC∗ | ≤ 1− Pr(Ez) .

Further, it is easy to see that

1− Pr(Ez) ≤
∑

1≤i<j≤p

Pr(z(i)
0 = z

(j)
0 ) + · · ·+

∑

1≤i<j≤p

Pr(z(i)
31 = z

(j)
31 ) . (3)

Fix i 6= j arbitrarily. We show that all Pr(z(i)
0 = z

(j)
0 ), . . . ,Pr(z(i)

31 = z
(j)
31 ) are

sufficiently small. Since x(i) 6= x(j), we have x
(i)
s 6= x

(j)
s for some 0 ≤ s ≤ 31. For

this s, fs has 4k output bits. From the property of LT, the output bits of fs are
distributed among m wt’s, say t = t0, . . . , tm−1, where m depends of s. Each wt

contains at least k bits of those from our modification of LT. Therefore,

Pr(w(i)
t = w

(j)
t ) ≤ 1

2k

for t = t0, . . . , tm−1 because fs is a truly random permutation.
Next each wt becomes the input to f32+t. The output bits of f32+t0 , . . . ,

f32+tm−1 are distributed among all of z0, . . . , z31 from the property of LT. Each
zu contains at least k bits of those from our modification of LT.

Let Ew be the event that w
(i)
t 6= w

(j)
t for t = t0, . . . , tm−1. Then we have

Pr(z(i)
u = z(j)

u ) ≤ 1
2k

Pr(Ew) + (1− Pr(Ew))

≤ 1
2k

+ Pr(w(i)
t0 = w

(j)
t0 ) + · · ·+ Pr(w(i)

tm−1
= w

(j)
tm−1

)

≤ 1
2k

+
m

2k

for u = 0, . . . , 31. Therefore, the right side of (3) is upper bounded as follows.

∑

1≤i<j≤p

Pr(z(i)
0 = z

(j)
0 ) + · · ·+

∑

1≤i<j≤p

Pr(z(i)
31 = z

(j)
31 ) ≤ 16(m + 1)p2

2k

≤ 320× p2

2n/128 ,

because m ≤ 19 and n = 128× k.
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Since p = poly(n), AdvA is negligible for any A. Finally, we can show that
AdvA is negligible even if each fi is a pseudorandom permutation as the proof
of [4, Theorem 1]. ut

We can prove the following corollary similarly.

Corollary 1. The three round primitive-wise idealized Serpent is a super-
pseudorandom permutation for non-adaptive adversaries.
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Linear Cryptanalysis of Reduced-Round
Versions of the SAFER Block Cipher Family
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Abstract. This paper presents a linear cryptanalytic attack against re-
duced round variants of the SAFER family of block ciphers. Compared
with the 1.5 round linear relations by Harpes et al., the following new
linear relations were found: a 3.75-round non-homomorphic linear rela-
tion for both SAFER-K and SAFER-SK with bias ε = 2−29; a 2.75 round
relation for SAFER+ with bias ε = 2−49. For a 32-bit block mini-version
of SAFER a 4.75-round relation with bias ε = 2−16 has been identified.
These linear relations apply only to certain weak key classes. The results
show that by considering non-homomorphic linear relations, more rounds
of the SAFER block cipher family can be attacked. The new attacks pose
no threat to any member of the SAFER family.

1 Introduction

SAFER (Secure And Fast Encryption Routine) is a family of block ciphers,
designed by Massey, which comprises 64-bit block ciphers like SAFER-K64 [11],
SAFER-K128 [12], SAFER-SK40, SAFER-SK64 and SAFER-SK128 [13]. The num-
ber that follows each cipher name indicates the key size. The newest member of
this family is the AES candidate SAFER+ [10] designed jointly with Khachatrian
and Kuregian; SAFER+ has a 128-bit block size and variable key size versions
of 128, 192 and 256 bits. We will also analyze a 32-bit block mini-version, called
SAFER-K32.

The more widespread, easy-to-deploy and better-understood an encryption
algorithm is, the more attractive it becomes as a target for cryptanalysts. All
SAFER family members have publicly available descriptions, are unpatented,
royalty-free, with plenty of flexibility for different key sizes and block sizes, and
are designed to be efficiently implementable in software [13]. These are key fea-
tures to make SAFER+ widely deployed. An example is the inclusion of SA-
FER+ for authentication purposes in Bluetooth [1, p. 149]; this is the codename
for a technology specification for low-cost, short range radio links between mobile
PC’s, mobile phones and other portable devices.

? F.W.O. research associate, sponsored by the Fund for Scientific Research, Flanders
(Belgium).
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Several theoretical attacks have been published on the ciphers of the SAFER
family (in most cases versions were considered with a reduced number of rounds):
differential cryptanalysis by Massey [12], truncated differentials by Knudsen and
Berson [17], later improved by Wu et al. [7], an algebraic attack by Murphy [20],
key schedule attacks by Knudsen [15] and by Kelsey et al. [9], and observations on
the PHT design by Vaudenay [21] and Brincat et al. [2]. Linear cryptanalysis has
been considered by Harpes et al. in [4] (see also [3]); they show that a generalized
linear attack becomes infeasible for three or more rounds of SAFER-K64. This
paper proposes an improved linear analysis by considering a wider class of linear
relations; it also identifies certain classes of keys that are ‘weak’ w.r.t. linear
cryptanalysis.

This paper is organized as follows. Section 2 describes the structure of SAF-
ER-K64 and its key-schedule algorithm. Section 3 describes a 32-bit-block mini-
version of SAFER-K. Section 4 introduces principles of linear cryptanalysis and
some terminology for our attack. Section 5 gives particular features of a new
type of linear relation for SAFER ciphers. Section 6 contains our results for
the SAFER cipher family; their further use in an attack is described in Sect. 7.
Section 8 discusses the methodology used to obtain the new linear relations
and Sect. 9 summarizes the analysis results. Annex A presents a ciphertext-only
attack.

2 Description of SAFER-K64

SAFER-K64 is a 64-bit-block iterated cipher with r = 6 rounds and a 64-bit
user-selected key K. The key K is expanded into 2r + 1 subkeys, that is, two
subkeys per round plus one subkey for an output transformation. The following
description of the round structure of SAFER-K64 also applies to SAFER-SK40,
SAFER-SK64 and SAFER-SK128, because their ciphers only differ in the key
schedule. Therefore, SAFER-K/-SK will be used as a notation when the analysis
applies to both ciphers.

2.1 The Round Structure

In each encryption round, the input block B is first split into 8 bytes: B =
(b1, b2, b3, b4, b5, b6, b7, b8), bi ∈ ZZ256, 1 ≤ i ≤ 8. Each byte bj is combined with
the first round-subkey K2i: Y = B + K2i = (b1 ⊕ K1

2i, b2 � K2
2i, b3 � K3

2i, b4 ⊕
K4

2i, b5⊕K5
2i, b6�K6

2i, b7�K7
2i, b8⊕K8

2i) where ⊕ denotes bitwise XOR and � re-
presents ADD(ITION) modulo 256. Each byte of Y = (y1, y2, y3, y4, y5, y6, y7, y8)
is input to an S-box: Z = (X(y1), L(y2), L(y3), X(y4), X(y5), L(y6), L(y7), X(y8)),
where X(.) is an eXponentiation S-box and L(.) a Logarithm S-box, described la-
ter. This S-box layer will be referred to as the non-linear or NL layer. Subsequently,
Z = (z1, z2, z3, z4, z5, z6, z7, z8) is combined with the second round-subkey K2i+1:
T = Z +K2i+1 = (z1 �K1

2i+1, z2 ⊕K2
2i+1, z3 ⊕K3

2i+1, z4 �K4
2i+1, z5 �K5

2i+1, z6 ⊕
K6

2i+1, z7 ⊕ K7
2i+1, z8 � K8

2i+1). Finally, the bytes of T are input to a linear
transformation called Pseudo-Hadamard Transform or PHT layer.
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The alternating XOR/ADD layer of input data with the first subkey bytes,
together with the NL layer will be referred to as the NL half-round; similarly,
the alternating ADD/XOR layer of intermediate data with the second subkey,
together with the PHT layer will be called the PHT half-round.

There are two S-boxes: an eXponentiation X(a) = (45a mod 257) mod 256
(X-box, for short), and a Logarithm L(a) = log45(a) mod 257 (or L-box, for
short) for a 6= 0, with the special case L(0) = 128. They are each other’s inverses,
that is, X(L(a)) = L(X(a)) = a,∀a ∈ ZZ256.

The PHT layer denotes a network of twelve 2-PHT boxes, where the latter
is defined as 2-PHT(a, b) = (2 · a � b, a � b), for a, b ∈ ZZ256. Denoting the
input to a PHT layer by Y = (y1, y2, y3, y4, y5, y6, y7, y8) and its output by Z =
(z1, z2, z3, z4, z5, z6, z7, z8), where yi, zi ∈ ZZ256, 1 ≤ i ≤ 8, this transformation
can be described by Z = Y T · M , where M is called the PHT matrix:

M =





8 4 4 2 4 2 2 1
4 2 4 2 2 1 2 1
4 2 2 1 4 2 2 1
2 1 2 1 2 1 2 1
4 4 2 2 2 2 1 1
2 2 2 2 1 1 1 1
2 2 1 1 2 2 1 1
1 1 1 1 1 1 1 1





.

Let T = (t1, t2, t3, t4, t5, t6, t7, t8) be the output after r rounds. There is an
output transformation which mixes T with the last subkey, giving the ciphertext:
C = T +K2r+1 = (t1 ⊕K1

2r+1, t2 �K2
2r+1, t3 �K3

2r+1, t4 ⊕K4
2r+1, t5 ⊕K5

2r+1, t6 �
K6

2r+1, t7�K7
2r+1, t8⊕K8

2r+1). Decryption involves the application of the inverse
of each round with reverse order for the subkeys. More details can be found in
[11,12].

The round structure of SAFER+ uses the same S-boxes and 2-PHT primi-
tives found in 64-bit block members, but the former uses a different PHT layer
composed of four 2-PHT layers, and a particular fixed permutation between
2-PHT layers, called Armenian Shuffle (see Fig. 1).

2.2 The Key Schedule

The key schedule of SAFER-K64 accepts a 64-bit user-selected key K and ge-
nerates 64-bit subkeys Ki, 1 ≤ i ≤ 2r + 1, that is, two subkeys per round plus
one subkey for the output transformation. K itself is used (unchanged) as the
first subkey K1. Subsequently, K is split into eight bytes, (K1, K2, K3, K4, K5,
K6, K7, K8), and each byte is left rotated by three bits. Next, fixed byte values
called key bias B1

2 , . . . , B8
2 are added to bytes K1, . . . , K8 respectively, where

Bj
i = (45459i+j mod 257 mod 257) mod 256 , 2 ≤ i ≤ 2r + 1 , 1 ≤ j ≤ 8 .

The result is the second subkey K2 = (ROL3(K1) � B1
2 , . . . , ROL3(K8) � B8

2).
The other subkeys are generated by following the same steps using the previous
subkey as input: rotate each input byte left by 3 bits and add the next key bias.
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Fig. 1. One round of SAFER+

Key schedule weaknesses in SAFER-K64 were demonstrated by Knudsen [15],
resulting in the improved key schedule of SAFER-SK64 [12]. Kelsey et al. have
pointed out a weakness in the key schedule of SAFER+ for long keys [9]. Key
schedule weaknesses will not be considered in this paper, but our analysis will
point out that some keys are weak w.r.t. linear cryptanalysis.

3 A Mini-Version of SAFER-K64

Some block ciphers allows all of their individual components to be reduced to
a half, a quarter or even smaller sizes, while the security level relative to the
block size remains similar. This is also the case for the SAFER cipher family.
This paper analyzes one such reduced version which will be called SAFER-K32.
This is a 32-bit block cipher with a 32-bit user key, r = 8 rounds, and with
S-boxes defined as X(a) = (ga mod 17) mod 16, and L(a) = logg a mod 17, for
a 6= 0 and L(0) = 8. There are eight degrees of freedom in choosing g such
that GF (17) =< g >, namely g ∈ {3, 5, 6, 7, 10, 11, 13, 14} (see [17]). The value
g = 11 was chosen arbitrarily for this mini-version.
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The emphasis of the current analysis is not to attack the key schedule but the
cipher itself; therefore it will be assumed that the key schedule for SAFER-K32
has a structure similar to that of SAFER-K64. The scale is reduced: the key
schedule generates (2r + 1) 32-bit subkeys and it uses the same generator as the
cipher.

The main reasons to consider reduced versions of ciphers are:

– the reduced dimensions allow a more comprehensive (exhaustive) analysis,
to be carried out which is not always possible in the original cipher;

– it is hoped that weaknesses found in the mini-version can be extended to
the larger cipher, or at least that they may provide some insight in potential
weaknesses in the original cipher.

4 Linear Cryptanalysis of SAFER

4.1 Linear Cryptanalysis

Linear cryptanalysis is a statistical, known-plaintext attack introduced by Mat-
sui and Yamagishi in 1992 in an attack against FEAL [19]. It was extended to
DES in 1993 [18]. The attack explores (approximate) linear relations between
plaintext, ciphertext and subkey bits. Linear approximations for an iterated ci-
pher are usually made by combining approximations for each round.

If Xi = (xn, xn−1, . . . , x2, x1) is an n-bit input to a round, R(Xi) is its
output, and Ki the round subkey, then a linear relation can be expressed as

Xi · ΓI ⊕ R(Xi) · ΓO = Ki · ΓKi , (1)

where ΓI, ΓO and ΓKi are n-bit masks which specify the bits of Xi, R(Xi) and
Ki involved in the linear relation. For example, Xi ·ΓI = X · 45x = x1 ⊕x3 ⊕x7
(the subscript ‘x’ indicates hexadecimal values).

The left-hand side of equation (1) provides an estimate for the xor of the
subkey bits on the right-hand side. Without loss of generality, the following
simplified equation is employed

Xi · ΓI ⊕ R(Xi) · ΓO = 0 . (2)

Two numerical values can be associated with (2). First, a probability p =
Pr(Xi·ΓI = R(Xi)·ΓO)/2n that expresses the frequency with which equation (2)
holds (relation (2) is also called a linear approximation). Second, the deviation of
parity of (2) from a random relation, or p′ = p − 1

2 . It is clear that −1
2 ≤ p′ ≤ 1

2
and the approximation is useful only if p′ 6= 0. The absolute value ε = |p′| is called
bias [8]. The larger the bias the more useful the linear relation is, that is, the
more unbalanced the parity of (2) from a random distribution the less plaintext
is needed to estimate the value of Ki ·ΓKi (with high degree of assurance). The
number N of known plaintexts required for an attack using a linear relation with
bias ε equals N = c · ε−2, where c is a small constant, which depends on the
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algorithm used for the estimation [8,18]. In case p′ < 0, the value obtained for
Ki · ΓKi is actually Ki · ΓKi = (Ki · ΓKi) ⊕ 1.

The following notation will be used to represent a binary-valued linear rela-
tion for one round of an iterated (n-bit block) cipher:

Γ = (ΓI, ΓO, ε) . (3)

One-round linear relations can be concatenated or stacked in order to ap-
proximate more rounds. If Γ1 = (ΓX1, ΓY1, ε1), Γ2 = (ΓX2, ΓY2, ε2) are r1-
round and r2-round independent linear relations, respectively and ΓY1 = ΓX2,
then it is possible to combine them to form an (r1 + r2)-round linear relation
Γ3 = (ΓX1, ΓY2, ε) with bias ε = 2 · ε1 · ε2 (Matsui’s Piling-Up lemma [18]).
Note however that this assumes that the subkeys are mutually independent and
uniformly distributed which is not the case for any member of the SAFER cipher
family, when the key schedule algorithms are used. Nonetheless, practical expe-
riments show that the subkeys generated through the respective key schedules of
each cipher are adequately randomized in order for the approximations to hold.

As an example of linked relation, a one-round linear relation for SAFER-
K64 can be viewed as the concatenation of two half-round linear relations: ΓNL =
(ΓX, ΓM, ε1), and ΓPHT = (ΓM, ΓY, ε2), where ΓM denotes a bit-mask applied
to the intermediate value in the middle of a round, between the output of the
NL and the input to the PHT layers.

4.2 Homomorphic Linear Relations

Definition 1. Let G1 and G2 be groups with operations ⊗ and �, respectively.
A mapping M from G1 into G2 is called a homomorphism if

M(y ⊗ z) = M(y) � M(z) , ∀y, z ∈ G1 . (4)

Definition 2. A binary-valued function f is balanced if it outputs the value 0
for exactly half of its inputs.

Definition 3 (Harpes-Kramer-Massey [3,4]). An I/O sum S(i) for a round
is a modulo-two sum of a balanced binary-valued function fi of the round input
Y (i−1) and a balanced binary-valued function gi of the round output Y (i), namely

S(i) = fi(Y (i−1)) ⊕ gi(Y (i)) . (5)

The functions fi and gi are called input function and output function, respec-
tively, of the I/O sum S(i). I/O sums for successive rounds will be called linked if
the output function of each I/O sum except the last coincides with the input fun-
ction of the following I/O sum: gi = fi+1. When S(1), S(2), . . . , S(r) are linked,
then their sum is also an I/O sum:

S(1...r) =
r⊕

i=1

S(i) = f0(Y (0)) ⊕ gr(Y (r)) . (6)

which will be called an r-round I/O sum.
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Harpes et al. report in [3,4] that SAFER-K64 is immune to a generalization
of linear cryptanalysis [18] which involves only homomorphic I/O sums after 1.5
rounds. Namely, the best homomorphic I/O sum is stated as the concatenation
of the following NL-PHT-NL half-rounds:

(000000zz000000zzx , 0000000100000001x , 2 · ( 28
256 )2) (NL half-round) (7)

(0000000100000001x , 0001000000000000x , 2−1) (PHT half-round)
(0001000000000000x , 00zz000000000000x , 28

256 ) (NL half-round) ,

where zz ∈ {cdx, ffx}, and the overall bias (using Matsui’s Piling Up Lemma)
is ε = 22 · ( 28

256 )3 ≈ 2−7.58. Using homomorphic linear relations, the bit-masks
which are used to approximate one round of SAFER-K64 take into account the
group operations used to mix subkey bits in each round. In this way the effect
of carry bits is avoided when the group operation is addition modulo 256.

The homomorphicity of the masking function is important for the appro-
ximation of subkey bits mixed in a round, or more specifically, for the group
operations used to mix subkey bits in a round. For example, let G1 = (ZZ256,�)
and G2 = (ZZ256,⊕) be groups. The only homomorphic masking function in this
setting is M1(y) = Γ · y = 01x · y, that is, the mask which takes only the least
significant bit (LSB). In [3] it is stated that (7) is the best homomorphic linear
relation achievable for SAFER-K/-SK. In the next sections, it will be shown
that approximations using non-homomorphic bit-masks result in improved linear
relations.

4.3 Non-homomorphic Linear Relations

Let M2(y) = 02x · y be a masking function and K be a subkey byte. The M2
mapping is non-homomorphic, because

M2(y � K) = 02x · (y � K) 6= M2(y) ⊕ M2(K) = 02x · y ⊕ 02x · K .

This happens because of a possible carry bit that can propagate from the LSB to
the second LSB. Assuming that the intermediate data values in a round and the
subkey bits are uniformly distributed, this carry bit only exists with probability
1/4. Therefore, a bias penalty of 2−2 is to be accounted for.

If one considers the bit-masks for the subkey bytes applied only to a fraction
of a round, like a subkey-mixing layer, then one can split a one round appro-
ximation into quarters of a round. Therefore, the bit-masks that make up the
approximation only of the mixing layer of subkey bits in a round, or only of
the NL layer, or only of the PHT layer will be called quarter-round approximati-
ons. As an example, (0002020100000201x, 0001010200000102x, 2−16) is an NL
quarter-round approximation of the S-box layer in a round of SAFER-K64. Such
partial approximations will be used later for (fractional) linear attacks.
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5 Key-Dependent Linear Relations

The non-homomorphicity of some bit-masks has two important consequences for
the corresponding linear relations:

(1) Let X, S, Ki ∈ ZZ256 be the input, the output and the subkey bytes in a
subkey addition operation in a round of SAFER-K/-SK, that is, S = X�Ki.
An approximation for the addition operation, using bit-masks 02x, take the
form S · 02x = X · 02x � Ki · 02x. This approximation is non-homomorphic.
Besides, it assumes that there is no carry bit into the second LSB position,
otherwise the approximation would be void. This carry bit can be avoided if
the least significant bit of subkey Ki is zero. Other non-homomorphic masks
present similar dependencies on the subkey bits.

(2) If the carry bit restrictions are satisfied for the non-homomorphic bit-masks
as in the item (1) above, then the masks become homomorphic. In this
way, the overall bias of the corresponding linear relation is increased, as
there is no more bias penalty to account for. Therefore, one cannot only
control the carry propagation (assuring the approximations for the addition
of subkey bytes) but also improve the overall bias. The restricted validity
of the approximation to subkeys which possess a certain bit-pattern is only
apparent. By specifying bit-masks for each key class according to the different
approximations of the two LSBs in the addition, all keys in the key space can
be attacked. For example, let X = (xn−1, . . . , x1, x0) and K be the input
and S = (sn−1, . . . , s1, s0) = X �K, and ΓK be the key bit-mask. Then, for
the bit-masks which explore only the two LSBs of addition of subkey bytes,
there are the following possibilities:

(a) Let the approximation be S ·02x = X ·02x⊕K ·ΓK or s1 = x1⊕K ·ΓK.
As the expression of addition is s1 = x1 ⊕ k1 ⊕ x0 · k0, it follows that
k0 = 0 and ΓK = 02x.

(b) Let the approximation be S · 02x = X · 03x ⊕ K · ΓK or s1 = x1 ⊕ x0 ⊕
K · ΓK. As the expression of addition is s1 = x1 ⊕ k1 ⊕ x0 · k0, it follows
that k0 = 1 and ΓK = 02x.

(c) Let the approximation be S ·03x = X ·02x⊕K ·ΓK or s1 ⊕s0 = x1 ⊕K ·
ΓK. As the expression of addition is s1 ⊕s0 = x1 ⊕k1 ⊕x0 ·k0 ⊕x0 ⊕k0,
it follows that k0 = 1 and ΓK = 03x.

(d) Let the approximation be S ·03x = X ·03x⊕K ·ΓK or s1⊕s0 = x1⊕x0⊕
K ·ΓK. As the expression of addition is s1⊕s0 = x1⊕k1⊕x0 ·k0⊕x0⊕k0,
it follows that k0 = 0 and ΓK = 03x.

Therefore, each bit-mask imposes a different restriction on the key bit pattern
but also includes all possibilities for the LSB of the key. For the bit-masks in
(a) and (d) the key bit k0 might be 0, and for the bit-masks in (b) and (c),
k0 is required to be 1. Although the bit masks in the linear relations in the
next section are valid for certain specific key bit patterns, they can easily be
changed to cover each different key class in the key space.
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6 Search Results

We now present the results of our search for non-homomorphic linear relations
for the different members of the SAFER family.

Definition 4. In a linear approximation, an S-box is said to be active if the
approximation applies a non-zero output bit-mask to that S-box. The number of
active S-boxes in a linear relation will be denoted with S.

A search for linear relations of SAFER-K/-SK resulted in a 3.75-round linear
relation with S = 7 and theoretical bias ε1 = 2−39:

(0102010201020102x , 0000000000020000x , 2−5) (PHT half-round) (8)
(0000000000020000x , 0100000001000000x , 2−5) (one round)
(0100000001000000x , 0002000200020003x , 2−11) (one round)
(0002000200020003x , 0002000100000000x , 2−18) (one round)
(0002000100000000x , 0002000100000000x , 2−2) (subkey quarter-round) .

Recalling the key dependency discussed in Sect. 5, item (1), the following re-
strictions on subkey bits are necessary for the approximation of subkey addition
in a 1.25R attack on five rounds SAFER-K/-SK to hold:

LSB(K4
2 , K8

2 , K6
3 , K1

6 , K5
6 , K2

7 , K6
7 , K4

8 , K8
8 , K2

9 ) = 0 (9)

where the notation LSB(·, . . . , ·) = 0 means that the least significant bit of each
argument is zero. Therefore, the actual bias of relation (8) is ε∗

1 = 2−29. These
keys are called weak keys w.r.t. relation (8). Incidentally, these ten key bits in
(9) map to exactly ten different user key bits, according to the key schedule of
SAFER-K64 [11] which means that one in 1024 user keys is weak. For the key
schedule of SAFER-SK64 (see [13]), these ten key bits imply conditions on 16
different user key bits.

Recalling the discussion in Sect. 5, item (2), the bit-masks in (8) can be
adapted accordingly to satisfy the other 1023 subkey classes. For example,

(0102010301020102x , 0000000000020000x , 2−5) (PHT half-round) (10)
(0000000000020000x , 0100000001000000x , 2−5) (one round)
(0100000001000000x , 0002000200020003x , 2−11) (one round)
(0002000200020003x , 0002000100000000x , 2−18) (one round)
(0002000100000000x , 0002000100000000x , 2−2) (subkey quarter-round)

has the same theoretical bias as (8), but the weak key restrictions are:

LSB(K4
2 , K8

2 , K6
3 , K1

6 , K5
6 , K2

7 , K6
7 , K4

8 , K8
8 , K2

9 ) = 0 , (11)

which imply a different weak key class. The actual bias though, is the same as
before, ε = 2−29. Similarly, changing each bit-mask in the addition of subkey bytes,
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in each round, one can get relations which hold for each key in the key space.
The same observation holds for the linear relations of SAFER+ and SAFER-K32
below.

For SAFER+ the following linear relation with S = 12 and 2.75 rounds was
found:

(00020102010000020002000202000100x , α , 2−11) (PHT half-round) (12)
(α , β , 2−29) (one round)
(β , γ , 2−27) (one round)
(γ , γ , 2−5 (subkey quarter round)

with theoretical bias ε3 = 2−69, α = 00000200000202000002020000020200x, β =
00000001010000000100000001000001x, γ = 02000002000203010203020102000100x.
The following key bit conditions are necessary for the approximation of subkey
addition in a 1.25R attack on four rounds of SAFER+ to hold:

LSB(K4
2 , K8

2 , K12
2 , K13

2 , K3
3 , K6

3 , K7
3 , K10

3 , K11
3 , K14

3 ) = 0 , (13)
LSB(K15

3 , K4
6 , K5

6 , K9
6 , K13

6 , K16
6 , K6

7 , K7
7 , K10

7 , K11
7 ) = 0 .

Therefore, the actual bias of (12) is ε∗
3 = 2−49.

Linear cryptanalysis of SAFER-K32 resulted in a 4.75 round linear relation
with S = 9:

(12121212x , 00000200x , 2−5) (PHT half-round) (14)
(00000200x , 10001000x , 2−3) (one round)
(10001000x , 02020203x , 2−7) (one round)
(02020203x , 02010000x , 2−8) (one round)
(02010000x , 32110000x , 2−6) (one round)
(32110000x , 32110000x , 2−2) (subkey quarter-round)

with theoretical bias ε4 = 2−28. The following restrictions are needed for the
approximation of subkey addition in a 1.25R attack on six rounds of SAFER-
K32 to hold:

LSB(K4
2 , K8

2 , K6
3 , K1

6 , K5
6 , K2

7 , K6
7 , K4

8 , K8
8 , K2

9 , K4
10, K

2
11) = 0 (15)

and the actual bias of (14) is ε∗
4 = 2−16.

7 Fractional Linear Attacks

In Sect. 4.3 linear approximations were described that covered only part of a
SAFER-K/-SK round, for example, a half- or a quarter-round. Linear attacks
using such fractional linear relations include fractions of a round only at the
beginning and end of the cipher, and will be denoted fractional attacks. In the
following the subscript x will sometimes be omitted from bit masks to simplify
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notation, for example, 02 instead of 02x; the interpretation should be clear from
the context.

As an example of fractional attack, relation (8) can be used in a 1.25R attack.
This is an analogy with the usual 1R or 2R attacks which only discard full rounds
[6,18]. This 1.25R attack does not include the first half of the first round neither
the last three quarters of the last round in the approximation, that is, the linear
relation (8) does not cover 1.25 rounds (see Fig. 2). The idea for our attacks
is to place the linear relations between two subkey layers, such that subkeys at
both ends of the cipher are identified. A similar description applies for other
fractional values.

This attack covers five rounds of SAFER-K/-SK, without the output trans-
formation, and identifies 81 subkey bits as follows, assuming the weak-key con-
ditions (9) are satisfied:

– let P1, . . . , P8 be plaintext bytes, D1, . . . , D8 be the result of applying the
inverse of the PHT layer (which is unkeyed) to the ciphertext bytes, and
X(.) and L(.) the S-boxes. The following linear relation, derived from (8),
can be used:

X(P1 ⊕ K1
1 ) · 01 ⊕ L(P2 � K2

1 ) · 02 ⊕ L(P3 � K3
1 ) · 01 ⊕ (16)

X(P4 ⊕ K4
1 ) · 02 ⊕ X(P5 ⊕ K5

1 ) · 01 ⊕ L(P6 � K6
1 ) · 02 ⊕

L(P7 � K7
1 ) · 01 ⊕ X(P8 ⊕ K8

1 ) · 02 ⊕ X(D2 � K2
8 ) · 02 ⊕

L(D4 � K4
8 ) · 01 = Ki · ΓKi ,

where � denotes subtraction in ZZ256.
– the Ki · ΓKi bit is the following: (K2

2 ⊕ K4
2 ⊕ K6

2 ⊕ K8
2 ⊕ K6

3 ⊕ K1
6 ⊕ K5

6 ⊕
K2

7 ⊕ K4
7 ⊕ K4

8 ⊕ K8
8 ⊕ K2

9 ) · 02⊕ (K1
2 ⊕ K3

2 ⊕ K5
2 ⊕ K7

2 ⊕ K6
4 ⊕ K1

5 ⊕ K5
5 ⊕

K2
8 ⊕ K6

8 ⊕ K4
9 ) · 01 ⊕ K8

7 · 03, and
– the other 80 subkey bits are K1

1 · ff, K2
1 · ff, K3

1 · ff, K4
1 · ff, K5

1 · ff,
K6

1 · ff, K7
1 · ff, K8

1 · ff, K2
9 · ff, K4

9 · ff. They can be identified with about
N ≈ (2−29)−2 = 258 known plaintext blocks using the maximum likelihood
methods from [18].

Similarly, (12) can be used in a 1.25R-attack on four rounds of SAFER+, assu-
ming weak key conditions (13) hold, as follows:

– let P1, . . . , P16 be plaintext bytes, D1, . . . , D16 be the result of applying the
inverse of the PHT layer (which is unkeyed) to the ciphertext bytes, and
X(.) and L(.) the S-boxes. The linear relation has the form:

L(P2 � K2
1 ) · 02 ⊕ L(P3 � K3

1 ) · 01 ⊕ X(P4 ⊕ K4
1 ) · 02 ⊕ (17)

X(P5 ⊕ K5
1 ) · 01 ⊕ X(P8 ⊕ K8

1 ) · 02 ⊕ L(P10 � K10
1 ) · 02 ⊕

X(P12 ⊕ K12
1 ) · 02 ⊕ X(P13 ⊕ K13

1 ) · 02 ⊕ L(P15 � K15
1 ) · 01 ⊕

L(D1 � K1
8 ) · 02 ⊕ L(D4 � K4

8 ) · 02 ⊕ X(D6 ⊕ K6
8 ) · 02 ⊕

X(D7 ⊕ K7
8 ) · 03 ⊕ L(D8 � K8

8 ) · 01 ⊕ L(D9 � K9
8 ) · 02 ⊕

X(D10 ⊕ K10
8 ) · 03 ⊕ X(D11 ⊕ K11

8 ) · 02 ⊕ L(D12 � K12
8 ) · 01 ⊕

L(D13 � K13
8 ) · 02 ⊕ X(D15 ⊕ K15

8 ) · 01 = Ki · ΓKi .
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Fig. 2. A 1.25R attack on five rounds of SAFER-K/-SK (only non-zero bit-masks are
shown)
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– the Ki · ΓKi bit is: (K2
2 ⊕ K4

2 ⊕ K8
2 ⊕ K10

2 ⊕ K12
2 ⊕ K13

2 ⊕ K3
3 ⊕ K6

3 ⊕ K7
3 ⊕

K10
3 ⊕K11

3 ⊕K14
3 ⊕K15

3 ⊕K4
6 ⊕K5

6 ⊕K9
6 ⊕K13

6 ⊕K13
6 ⊕K16

6 ⊕K1
7 ⊕K4

7 ⊕K6
7 ⊕

K9
7 ⊕K11

7 ⊕K13
7 ) ·02⊕ (K7

7 ⊕K10
7 ) ·03⊕ (K3

2 ⊕K5
2 ⊕K15

2 ⊕K3
4 ⊕K6

4 ⊕K7
4 ⊕

K10
4 ⊕K11

4 ⊕K14
4 ⊕K15

4 ⊕K4
5 ⊕K5

5 ⊕K9
5 ⊕K13

5 ⊕K16
5 ⊕K8

7 ⊕K12
7 ⊕k15

7 ) ·01
and

– the other 160 subkey bits are: K2
1 ·ff, K3

1 ·ff, K4
1 ·ff, K5

1 ·ff, K8
1 ·ff, K10

1 ·ff,
K12

1 ·ff, K13
1 ·ff, K15

1 ·ff, K1
8 ·ff, K4

8 ·ff, K6
8 ·ff, K7

8 ·ff, K8
8 ·ff, K9

8 ·ff,
K10

8 · ff, K11
8 · ff, K12

8 · ff, K13
8 · ff, K15

8 · ff. They can be identified using
maximum likelihood techniques with about N ≈ (2−49)−2 = 298 known
plaintext blocks.

Finally, (14) leads to the following 1.25R attack on six rounds of SAFER-K32
(using weak keys) without the output transformation:

– let P1, . . . , P8 be plaintext nibbles (4 bits), D1, . . . , D8 be the result of ap-
plying the inverse of the PHT layer (which is unkeyed) to the ciphertext
nibbles, and X(.) and L(.) the S-boxes. The linear relation has the form:

X(P1 ⊕ K1
1 ) · 1 ⊕ L(P2 � K2

1 ) · 2 ⊕ L(P3 � K3
1 ) · 1 ⊕ (18)

X(P4 ⊕ K4
1 ) · 2 ⊕ X(P5 ⊕ K5

1 ) · 1 ⊕ L(P6 � K6
1 ) · 2 ⊕

L(P7 � K7
1 ) · 1 ⊕ X(P8 ⊕ K8

1 ) · 2 ⊕ L(D1 � K1
8 ) · 3 ⊕

X(D2 ⊕ K2
8 ) · 2 ⊕ X(D3 ⊕ K3

8 ) · 1 ⊕ L(D4 � K4
8 ) · 1 = Ki · ΓKi .

– the Ki · ΓKi bit is: (K1
2 ⊕ K3

2 ⊕ K5
2 ⊕ K7

2 ⊕ K6
4 ⊕ K1

5 ⊕ K5
5 ⊕ K2

8 ⊕ K6
8 ⊕

K4
9 ⊕ K2

10 ⊕ K3
11 ⊕ K4

11) · 1⊕ (K8
7 ⊕ K1

11) · 3⊕ (K2
2 ⊕ K4

2 ⊕ K6
2 ⊕ K8

2 ⊕ K6
3 ⊕

K1
6 ⊕ K5

6 ⊕ K2
7 ⊕ K4

7 ⊕ K6
7 ⊕ K4

8 ⊕ K8
8 ⊕ K2

9 ⊕ K4
10 ⊕ K2

11) · 2 and then
– the other 48 subkey bits to be found are: K1

1 · f, K2
1 · f, K3

1 · f, K4
1 · f, K5

1 · f,
K6

1 ·f, K7
1 ·f, K8

1 ·f, K1
12 ·f, K2

12 ·f, K3
12 ·f, K4

12 ·f using maximum likelihood
methods with N ≈ (2−16)−2 = 232 known plaintext blocks.

8 Methodology

The following procedure was used in order to obtain relations (8), (12) and (14):

– Initially, a Linear Approximation Table (LAT) for the S-boxes X and L was
generated, containing for all possible input and output bit-masks the corre-
sponding deviation value. Denoting by ΓI and ΓO general input and output
bit-masks, and by S(.) an S-box, each entry in the LAT contains

LAT[ΓI, ΓO] = Pr(I · ΓI = S(I) · ΓO) − 1
2

(19)

for all possible inputs I ∈ ZZ256. Only one table is actually needed, because
the X-box is the inverse of the L-box, and for the latter one can swap the
input and output masks to obtain the corresponding linear approximations.
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– The approximation of subkey addition and xor was made separately and then
evaluated together with the approximations for the S-boxes, confirming the
key dependency (for addition). Indeed, the bias decreases if the subkeys do
not exhibit a pattern that allows the expected bit-mask approximation. For
example, the mask M2(x) = 02x · x, in the output of an addition operation
with odd-valued key bytes gives zero bias; otherwise, the overall bias is the
one provided by the xor of subkey and the X-box approximations.

– The approach taken for generating linear relations for the PHT layer was
not exhaustive as was done for the S-boxes. Due to the addition operation
performed in the 2-PHT boxes, it was observed that the most biased linear
relations through the PHT layers would explore preferably the LSB(s) of the
2-PHT because they are least affected by carry bits. Besides, exploring few
LSBs would require less weak-key restrictions. It was decided, arbitrarily,
to concentrate efforts in the two LSBs only of each 2-PHT. A linear hull
approximation was made for the PHT layer, because it was observed that
linking together local (non-zero bias) approximations for the 2-PHT boxes
could sometimes result in linear approximations for the PHT layer with zero
bias. Indeed, some component relations of the linear hull have positive and
others negative deviation with the same absolute value, which can cancel the
effect of each other.
Note that a (basic) linear relation tracks a single (approximation) path bet-
ween input and output bits of a round component. A linear hull [14] corre-
sponds to a set of linear relations all of which share the same input and output
bit-masks, but each relation takes different paths across the component.

– The next step consisted in combining linear hulls for the (NL+subkey) lay-
ers with others for the PHT layer, in order to generate one-round linear
approximations (hulls). Further, these one-round relations were combined
either on top or at the bottom end of each other, in order to get as long
a linear relation as possible. Such stacking strategy of combining one-round
approximations was based on the idea of the inside-out attack of Wagner
[5]. While constructing the final linear hull an important restriction was
to try to keep the number of active S-boxes as small as possible from one
round to the next, both in order to control the overall bias as well as to
avoid attacking too many subkey bits at both ends of the cipher. For a li-
near relation of bias ε, the known-plaintext requirements for an effective
(high success rate) linear attack on 2n-bit block ciphers is N ≥ (ε)−2, that
is, ε ≥ (

√
22n)−1 = 2−n. Therefore, an immediate restriction for 64-bit-

block cipher versions is ε ≥ 2−32. Similarly, for SAFER+, ε ≥ 2−64, and for
SAFER-K32, ε ≥ 2−16.

9 Conclusion

In this paper, SAFER-K32, SAFER-K/-SK and SAFER+ ciphers were analyzed
using non-homomorphic linear cryptanalysis. Table 1 summarizes our results.

The algorithm used for our attack uses Matsui’s idea of keeping only the
highest parity counter(s) (say, for the best ten key candidates). The advantage
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Table 1. Linear relations found for the SAFER cipher family

Cipher
SAFER-K32 SAFER-K/-SK SAFER+

# rounds lin. rel. 4.75 3.75 2.75
Bias (weak keys) 2−16 2−29 2−49

Attack type 1.25R 1.25R 1.25R
# subkey bits 48+1 † 80+1 † 160+1 †

Time complexity
(parity computation) 248+2·16 280+2·29 2160+2·49

Space complexity ≈ 232 ≈ 258 ≈ 298

† That is the worst case, i.e. assuming all the subkeys are independent.

is that we do not need to keep separate counters for each key candidate. But, on
the other hand, we need to store all the plaintext samples (therefore our space
requirement: N ≈ ε−2).

The 3.75 round linear relation (8) found for SAFER-K/-SK does not cont-
radict the results in [3] (the 1.5 round relation (7)) because the former is non-
homomorphic. Besides, the non-homomorphicity of linear relations (8)–(14) cau-
sed them to be key-dependent for the bit-mask approximations to hold, while (7)
is key-independent. Another interesting observation is that relation (8) actually
holds for any of the 128 possible S-box generators (of GF(257)), not only for 45
as used in SAFER-K/-SK and SAFER+. That is because, only few approxima-
tions are actually used, namely, the ones which explore the two LSB’s in both
the input and output masks. Therefore, changing the S-boxes’ generator would
not help protect these ciphers against our particular linear attack.

Nonetheless, our relation (14) is only valid for SAFER-K32 with generator
g = 11. For the other seven possible generators of GF (17) the linear relation
(14) does not hold.

Table 2 compares the current analysis to other attacks on SAFER-K64. We
conclude that the attack based on truncated differentials by Wu et al. [7] (which
improves the original attack by Knudsen and Berson [17]) is still the best shortcut
attack on SAFER-K64. Moreover, while differential attacks are typically chosen
plaintext attacks, they can be converted to known plaintext attacks (see Biham
and Shamir [6, p. 31]).

Theoretically it was predicted that for five rounds one key in 1024 is ‘weak’
(restrictions (9)), which means that the relation (8) with theoretical bias 2−37 can
actually be used, restricted to weak keys, with bias 2−29. Nonetheless, practical
implementations of the attack show that only one out of eight keys is actually
weak (only three of the subkey bits K4

2 , K8
2 , K2

9 , at the beginning and end of the
linear hull need to have a certain bit-pattern). This may be another consequence
of the linear-hull effect.
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Table 2. Plaintext requirements of DC attacks by Knudsen–Berson (KB) and Wu,
Boa, Deng and Ye (WBDY) and LC attacks on SAFER-K64

Differential (chosen/known texts) Linear (known texts)
#rounds KB [17] WBDY [7] Harpes [3] this paper

chosen chosen known (weak keys)
2 — — — ≈ 215.2 ≈ 28 †
3 — — — (> 264) ≈ 212 ‡
4 — — — — ≈ 228 §
5 ≈ 245 ≈ 238 ≈ 251 — ≈ 258

6 (> 264) ≈ 253 ≈ 259 — (> 264)
7 — (> 264) (> 264) — —

† Any homomorphic-only approximation can be used here
‡ This approximation comes from the first 1.75 rounds of relation (8)
§ This approximation comes from the first 2.75 rounds of relation (8)

The main conclusion however is that, while the analysis of Harpes et al.
could be improved, linear cryptanalysis does not seem a serious threat, even to
SAFER-K64 with its nominal number of rounds.

The main contribution of this paper towards better block cipher design is the
issue of key-dependency in linear cryptanalysis, through non-homomorphic bit-
masks. This improved on previous linear attacks on all SAFER family members
by specifying linear relations valid for particular key classes; this analysis can
have the same effect on other similar designs.
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A A Ciphertext-Only Attack

In all previous linear attacks we did not make any assumption on the plaintext
distribution. In many cases the plaintext consists (mostly) of printable ASCII
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characters, that is, characters with values between 20x and 7Ex. Matsui deve-
loped for this case a ciphertext only attack on DES with a reduced number of
rounds [18]. For SAFER-K/SK, there exist linear hulls which allow for a 3-round
ciphertext-only attack when the most significant bit of all plaintext bytes are
equal to zero. One such hull with 2.25 rounds and S = 2 is

(0000000000000080x , 0200000000000000x , 2−6) (one-round) (20)
(0200000000000000x , 0202020202020202x , 2−9) (one round)
(0202020202020202x , 0202020202020202x , 2−5) (subkey quarter-round)

which has bias ε∗
4 = 2−18. The key dependency conditions for the validity of (20)

in a 0.75R attack on three rounds of SAFER-K/-SK are

LSB(K1
4 , K2

5 , K3
5 , K6

5 , K7
5 ) = 0 , (21)

The actual bias of (20) is therefore ε4 = 2−13.
Let P1, . . . , P8 denote the plaintext bytes, D1, . . . , D8 the result of applying

the inverse of the (unkeyed) PHT layer to the ciphertext bytes, and X(.) and
L(.) the S-boxes. We use the following linear relation based on (20):

P8 · 80 ⊕ L(D1 � K1
6 ) · 02 ⊕ X(D2 ⊕ K2

6 ) · 02⊕ (22)
X(D3 ⊕ K3

6 ) · 02 ⊕ L(D4 � K4
6 ) · 02⊕

L(D5 � K5
6 ) · 02 ⊕ X(D6 ⊕ K6

6 ) · 02 ⊕
X(D7 ⊕ K7

6 ) · 02 ⊕ L(D8 � K8
6 ) · 02⊕ = Ki · ΓKi .

If the plaintext is composed mostly of ASCII characters then equation (22)
reduces to

L(D1 � K1
6 ) · 02 ⊕ X(D2 ⊕ K2

6 ) · 02⊕ (23)
X(D3 ⊕ K3

6 ) · 02 ⊕ L(D4 � K4
6 ) · 02⊕

L(D5 � K5
6 ) · 02 ⊕ X(D6 ⊕ K6

6 ) · 02 ⊕
X(D7 ⊕ K7

6 ) · 02 ⊕ L(D8 � K8
6 ) · 02⊕ = Ki · ΓKi .

keeping the same bias ε4 = 2−13 because P8 · 80 = 0 has bias ε5 = 2−1.
The actual plaintext does not need to be composed of ASCII only characters,

like in .HTML files. Some experiments show that even .JPG, .MP3, and .WAV
files contain some small bias in the most significant bit of each byte, like ε5 =
2−10; combined with the bias of (20) this results in a linear hull with bias ε4 =
2−22 requiring about N = 244 ciphertext (only) blocks. Note that some popular
(UNIX) file compression utilities like “compress” and “gzip” can destroy the
redundancy of the MSB byte in ASCII files, but apparently they cannot destroy
the bias of .JPG, .MP3 or .WAV files. Other possible biased distributions of
(combinations of) plaintext bits can also be explored, that is, there is no need
to consider only the most significant bit.
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Abstract. In this paper we consider a chosen-plaintext variant of the
linear attack on DES introduced by Matsui. By choosing plaintexts in a
clever way one can reduce the number of plaintexts required in a succes-
sful linear attack. This reduces the amount of plaintexts to find key bits
to a factor of more than four compared to Matsui’s attack. To estimate
the probabilities of success in the attack we did extensive experiments
on DES reduced to 8 and 12 rounds. We believe that the results in this
paper contain the fastest attack on the DES reported so far in the open
literature. As an example, one attack needs about 242 chosen texts, finds
12 bits of key information and succeeds with a probability of about 86%.
An additional 12 key bits can be found by similar methods. For compa-
rison, Matsui’s attack on the DES needs about 244 known texts, finds 13
bits of the key and succeeds with a probability of 78%. Of independent
interest is a new approach searching for “pseudo-keys”, which are secret
key bits added an unknown but fixed value. These bits can be used to
find the secret key bits at a later stage in the analysis.

1 Introduction

The DES is one of the most important cryptosystems that has been around in the
open literature. Although it has seen the end of its days, this is mainly because of
the short keys in the algorithm and not because any damaging intrinsic properties
have been detected. In fact, today, about 25 years after the development of the
DES, the most realistic attack is still an exhaustive search for the key. Several
attacks have been developed which can find a DES-key faster than this, but all
attacks reported require a huge amount of known or chosen plaintext-ciphertext
pairs.

In 1992 Matsui introduced the linear cryptanalytic attack by applying it to
FEAL [6] and one year later to the DES [3]. His attack on the DES using 244

known texts, finds 13 bits of the key and succeeds with a probability of 78%.
An additional 13 key bits can be found by a similar method. Subsequently, the
remaining 30 bits can be found by exhaustive search. In [4] Matsui also considers
“key-ranking”, where one considers the attack successful if the correct key is
amongst the q most likely keys. Clearly, with key-ranking the success rates will
be higher or the text requirements decrease for the same success probability.
If we assume that the number of key bits found by the attack is k, one does
an exhaustive search for the remaining 56 − k bits for each of the q candidates

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 262–272, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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of the first k bits. Thus, key-ranking can be used to decrease the number of
texts needed but wil increase the computational effort in the final key search.
Matsui implemented this attack in January 1994 and successfully recovered one
DES-key after the encryption of 243 plaintext blocks.

In this paper, if not stated otherwise, all the reported success rates are mea-
sured as the number of times the correct value of the key is the most likely
candidate suggested by the attack. Clearly, with key-ranking the success rates
will be higher.

In the year following Matsui’s publications, several reports were publicised
which modify and improve on his results e.g., [1,2,7,8]. However until now these
approaches have led to only small improvements for attacks on the DES. One
exception is the chosen-plaintext differential-linear attack which led to a big
reduction in the number of texts needed, however the attack as reported is
applicable to only up to 8 rounds of the DES.

In this paper another chosen-plaintext variant of the linear attack on the DES
is studied. It is shown that in this scenario it is possible to reduce the number
of required texts (the main obstacle in the attack) to a factor of more than four
less than that required by Matsui’s attack. We use what we believe is a new
idea in cryptanalytic attacks, namely in a first-phase of the attack we search for
“pseudo-keys”, which are the secret keys added some unknown, but fixed value.
In a later stage these pseudo-key bits can be used to reduce an exhaustive key
search.

In § 2 we introduce the most important concepts and results of the linear
attack on the DES. In § 3 we outline three possible chosen-plaintext variants.
All but the second variant can be used to attack the DES up to 16 rounds. The
second one is limited to attack DES up to 12 rounds.

2 Linear Cryptanalysis on DES

In linear cryptanalysis one tries to find probabilistic linear relations between the
plaintext P , the ciphertext C, and the key K. The easiest way to obtain this is
to look for one-round linear relations and use these iteratively to obtain relations
over more rounds. First we consider one-round relations. In the following let Ci

denote the ciphertext after i rounds of encryption. Then a linear expression in
the ith round has the following form.

(Ci · α)⊕ (Ci+1 · β) = (Ki · γ), (1)

where α, β and γ are bit-masks and ‘·’ is a bit-wise dot product operator. The
masks are used to select the bits of a word used in the linear relation. The bit
masks (α, β) are often called one-round linear characteristics. Since the key Ki is
a constant, one looks at the probability pi that the left side of (1) equals 0 or 1.
We denote by the bias, the quantity |pi− 1

2 |. For the DES one can easily calculate
all linear relations for the S-boxes, combine these and get all possible linear
relations for one round of the cipher. Subsequently, one can combine the one-
round relations to get linear relations for several rounds under the assumption of
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independent rounds. To calculate the probabilities one usually uses the Piling-up
Lemma:

Lemma 1. Let Zi, 1 ≤ i ≤ n be independent random variables in {0, 1}. If
Zi = 0 with probability pi we have

Pr(Z1 ⊕ Z2 ⊕ . . .⊕ Zn = 0) =
1
2

+ 2n−1
n∏

i=1

(pi − 1
2
) (2)

For most ciphers the one-round linear relations involved in a multi-round
relation are not independent. For the DES the relations are dependent, but our
experiments, as well as Matsui’s experiments [3,4], show that Piling-up Lemma
gives a good approximation for the DES.

For the DES, Matsui has provided evidence [5] that the best linear characte-
ristics over 14 rounds or more are obtained by iterating 4-round characteristics.

Four-round iterative characteristics. The four-round characteristic used in
Matsui’s attack on the DES is shown in Fig. 1. Let Xi denote the input to the
F-function in the ith round. For convenience we shall write F (Xi) instead of
F (Xi, Ki). The masks A, D and B are chosen to maximise the probabilities of
following linear relations.

F (X1) ·A = X1 ·D with prob. p1,

F (X3) ·B = X3 ·D with prob. p3, and
F (X2) ·D = X2 · (A⊕B) with prob. p2.

Then it follows from the Piling-Up Lemma and by easy calculations that the
relation (X0 ·A)⊕ (X4 ·B) = 0 holds with probability

PL =
1
2
− 4(p1 − 1

2
)(p2 − 1

2
)(p3 − 1

2
).

This 4-round characteristic can be iterated to a 14-round characteristic, which
in a short, space-consuming notation is

2: - - -
3: A← D
4: D← A⊕B
5: B ← D
6: - - -
7: B ← D
8: D← A⊕B
9: A← D

10: - - -
11: A← D
12: D← A⊕B
13: B ← D
14: - - -
15: B ← D
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Fig. 1. 4-round linear characteristic of DES.

Here ‘n:’ denotes that the expression occurs in round no. n and ‘- - -’ means
that no approximation is made in the round. Notice that A and B are inter-
changed for every 4-round iteration. This leads to the equation for 16-round
DES:

(PL ·A)⊕ (F (PR, K∗
1 ) ·A)⊕ (CL ·D)⊕ (F (CR, K∗

16) ·D)⊕ (CR ·B) = 0 (3)

The probability for this equation is

P 15
L =

1
2

+ 214−1
15∏

i=2

(pi − 1
2
) (4)

where

pi = 1, i ∈ {2, 6, 10, 14},
pi = 42/64, i ∈ {3, 9, 11},
pi = 30/64, i ∈ {4, 8, 12},
pi = 12/64, i ∈ {5, 7, 13, 15}

For the correct guesses of K∗
1 and K∗

16 the equation (3) will have probability P 15
L .

For other keys, the equation will look random. In the attack one keeps a counter
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Table 1. Complexities of Matsui’s linear attack on 8-round DES and full DES, where
13 key bits are found.

8-round DES 16-round DES
Plaintexts 218 219 220 243 244 245

Success rate 49.4% 93.2% 100% 32.5% 77.7% 99.4%

for each value of the secret key (K
′
1, K

′
16) which keeps track of the number of

times the left side of the equation is 0. With N (P, C)-pairs, the key (K
′
1, K

′
16)

with counter value T farthest from N
2 is taken as the correct value of the key.

The sum of the key bits involved in the approximation can also be found [3].
The probability of success can be calculated by a normal approximation of the
binomial distribution. Under the assumptions that |PL − 1

2 | is small, it can be
shown that if one chooses N = (PL − 1

2 )−2, one gets a probability of 97.72%
that the value T of the counter for the correct value of key is more than N/2
when PL > 1

2 and less otherwise. However, there will be noise from the wrong
keys also which have to be considered. It has been conjectured and confirmed
by computer experiments that the left side of (3) will look random when wrong
values of the keys are used [3]. It was also estimated by experiments that the
complexity Np for the attack on DES is

Np ≈ c|pL − 1
2
|−2

where c ≤ 8. To confirm the theory we implemented tests on DES reduced to 8
rounds. The equation (3) for 8 rounds is the same as for 16 rounds except for
the index of the key in the last round. For 8 rounds Np = c × 0.95 × 216. Our
experimental results for 8-rounds DES can be found in Table 1.

This attack finds 13 bits of the key. It is possible to find a total of 26 key
bits by using the same linear characteristic on the decryption operation. In this
case the probabilities in Table 1 must be squared.

The complexity of the attack on the DES can be estimated from the comple-
xity of the attack on 8-round DES. If one lets the complexity for the attack on
8-round DES be Np8, the expected complexity Np16 for 16-round DES can be
calculated such that the success probabilities are approximately the same. The
formula is [4]

Np8 = Np16|PL16 − 1/2|2/|PL8 − 1/2|2.
With Np16 = 245 one gets

Np8 = 245 × |1.19× 2−21|2/|1.95× 2−9|2 = 1.49× 219.

Thus, the success probability of the attack on 8-round DES with N = 1.5× 219

will be the same as the attack on 16-round DES with N = 245. The estimates
of the complexity of the linear attack by Matsui, where 13 key bits are found,
can be found in Table 1.



A Chosen-Plaintext Linear Attack on DES 267

Table 2. Complexities of the first chosen-plaintext variant of the linear attack on
8-round and 12-round DES finding 7 key bits.

8-round DES 12-round DES
Plaintexts 218 219 220 228 229 230

Success rate 68% 99% 100% 46% 72% 94%

3 Chosen-Plaintext Attacks

In this section we consider chosen-plaintext variants of the linear attack on the
DES. The time complexity of the reported attacks is always less than the data
complexity, that is, the number of needed texts, and is therefore ignored in the
following.

3.1 First Attack

A first chosen-plaintext extension is an attack where one does not search for the
key in the first round, merely for six bits of the key in the last round, but the
bias for the equation remains the same. Since the noise of 63 wrong keys is less
than of 4095 wrong keys, the attack is expected to be of lower complexity than
that of Matsui. The trick is that we fix the six input bits to the active S-box in
the first round. Then any output mask of that function is a constant 0 or 1 with
bias 1

2 . One then considers the following equation:

(PL ·A)⊕ (CL ·D)⊕ (F (CR, K∗
n) ·D)⊕ (CR ·B) = 0 (5)

For all guesses of the key Kn one counts the number of times the left side of
the equation equals zero. Hopefully for the correct value one gets a counter with
a value that differs from the mean value N

2 more than for all other counters.
With a sufficient number of texts (N) this will work. Also, one can determine
a seventh key bit from the bias of the equation, when searching for the rest of
the key bits. The estimated number of plaintexts required, Np, is less, although
only slightly less, than for Matsui’s attack. The complexities of the attack on
8-round and 12-round DES are given in Table 2.

3.2 Second Attack

In addition to fixing the six bits of the input to the active S-box (no. 5) in the
first round, one can try to do the same for a possible active S-box in the second
round. For the 14-round characteristic used by Matsui there is no active S-box in
the second round. However, if one takes the first 13 rounds of this characteristic
and uses these in the rounds 3 to 15 one gets a single active S-box in both the
first and second rounds. The we get the following picture.
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3: - - -
4: A← D
5: D← A⊕B
6: B ← D
7: - - -
8: B ← D
9: D← A⊕B

10: A← D
11: - - -
12: A← D
13: D← A⊕B
14: B ← D
15: - - -

Now we can fix the inputs to all S-boxes in the first round which output bits
are input to the active S-box in the second round. To achieve this we need to fix
the inputs to six S-boxes in the first round, totally 28 bits, and to fix six bits of
the left half of the plaintext. Thus one needs to fix 34 bits of all plaintexts which
is illustrated in Figure 2. This also means that an attacker only has 30 bits to
his disposal in an attack. However, it also means that there is one round less to
approximate and one would expect higher success rates.

Fig. 2. The first two rounds in the linear characteristic. The bits in the striped blocks
vary under the control of the attack. The bits in the white blocks are fixed.

The equation to solve in the key search is the following.

(PR ·A)⊕ (CL ·B)⊕ (F (CR, K∗
n) ·B) = 0 (6)

In this case we are able to find only six bits in the last-round key Kn, plus one
key-bit from the sign of the counter T minus N

2 . The probability calculation for
the attack on 16-round DES is

PL =
1
2

+ 213−1
15∏

i=3

(pi − 1
2
). (7)
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Table 3. Complexities of the second chosen-plaintext variant of the linear attack on
8-round DES, where we found 7 key bits.

Plaintexts 216 217 218

Success rate 78% 98% 100%
Success rate 2 90% 100% 100%

The number of chosen plaintexts needed is Np = c|PL − 1
2 |−2. This is a factor

of ( 8
5 )2 ≈ 2.6 less than in the previous attack. By interchanging the rounds in

the characteristic one can also solve for the equation

(PR ·B)⊕ (CL ·A)⊕ (F (CR, K∗
16) ·A) = 0, (8)

where we just flip the characteristic. Note that the involved active S-boxes and
key bits are the same as for the first characteristic. This increases the success
rate because for the correct key Kn we have the same sign of the bias in the two
expressions. Our test results on 8-round DES of the success rate where we use
one equation is shown in the first line of Table 3 and the second line is the case
where we use both equations (6) and (8).

3.3 Third Attack

One problem with the previous variant is that there is a limit of 230 possible
texts to be used in an attack, and the attack will not be applicable to 16-round
DES. In the following it is shown how more texts can be made available. This
variant attack is based on two methods that we will introduce.
Pseudo-keys: In the first method we fix the same 28 bits in the right halves of
the plaintexts as before. This gives a constant output for the six desirable bits
which is output from the first round function and which affect the input to the
active S-box in the second round. Let us denote these six bits by y1. But where
before we fixed also the six bits of the left halves of the plaintext that affect
the active S-box in the second round we will now allow these to change. If we
denote by K2 the key affecting the active S-box in the second round, we define
a “pseudo key” K

′
2 = K2 ⊕ y1. This allows us to search for and find six bits of

K
′
2 in addition to the six bits of Kn. At this point we are able to generate 236

different plaintexts with the desired property. We then try to solve the following
equation:

(PR ·A)⊕ (F (PL, K
′∗
2 ) ·B)⊕ (CL ·B)⊕ (F (CR, K∗

n) ·B) = 0 (9)

When the attack terminates, the correct key K2 can be determined from K
′
2 by

simply adding y1 = F (PR, K1) when searching exhaustively for the remaining
key bits of the key K and thereby K1. There is also some overlap between the
key bits of K1 and the six bits of K2. This must be taken into consideration
when searching for the key.
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Additional plaintexts: Here we show how to be able to control an additional
six bits of the plaintexts. These must be bits in the right halves of the plaintexts,
since all bits in the left halves are assumed to be under control of the attack
already. However, this creates two problems. First, if we are going to vary some
of the input bits to an S-box in round one, we also change the output bits of
the round function, which were assumed to be fixed above. Second, changing
the input bits to one S-box might affect the neighboring S-boxes, as these have
overlapping, common input bits. However, the S-boxes 5 and 7 are not assumed
to have a fixed input in the above attacks. (This allowed us to control and vary
the middle two input bits to both S-boxes in the above attack.) Thus, if we vary
the six bits input to S-box 6 in the first round, the second problem is overcome.
Totally this gives the attack control over 242 plaintexts. The first problem can
be overcome by searching also for the affected six key bits entering S-box 6 in
the first round. Note that when we vary the inputs to this S-box one of the bits
of y1 will vary. For each guess of the key to S-box 6 in the first round, we take
this one bit into account when searching for K ′

2. Fig. 3 illustrates which bits are
fixed in the attack and which bits are not. The equation for this attack is

Fig. 3. The first two rounds in the third attack. The inputs to the S-boxes 1,2,3,4, and
8 in the first round are fixed.

(PR ·A)⊕ (CL ·B) = (F (PL, F (PR, K∗
1 )⊕K∗

2 ) ·A)⊕ (F (CR, K∗
n) ·B) (10)

which has the same bias as (6). For the correct values of the three keys K∗
1 , K∗

2
and K∗

n observe that the equation will have probability PL (of (7)). For wrong
values the equation will look random. There are three bits in Kn and one in K2
which overlap with key bits in K1. Potentially the attack could find 15 key bits.

However, after implementing this attack we found that it is difficult to de-
termine the correct value of two bits of the key K1. The reason for this is than
on the average in 50% of the cases, if the one bit of F (PR, K∗

1 ) that is input to
S-box 5 in the second round is wrong, the masked output from S-box 5 in round
2 will still be correct. This has the effect that determining the two bits of K1
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Table 4. Complexities of the third chosen-plaintext variant of the linear attack on
8-round and 12-round DES. Here we found 12 key bits.

8-round DES 12-round DES
Plaintexts 216 217 228 229

Success rate 51% 94% 28% 76%

Table 5. Complexities of the known-plaintext and chosen-plaintext linear attacks on
the DES. Matsui finds 13 key bits and we find 12 key bits.

Matsui’s attack Our attack
Plaintexts 243 244 245 240 241 242

Success rate 32% 78% 99% 6% 32% 86%

which do not overlap with bits in K2 and K16 requires much effort. Because of
this it is equally difficult to determine the third least significant bit in K2. The
attack finds eleven key bits much faster than all fourteen key bits. The attack
can also find a 12th key bit in the similar way as in the previous attack. Simply
look at the sign of the bias |PL − 1

2 | and compare with the bias of the key gues-
sed. We implemented 100 tests with randomly chosen keys for 8-round DES and
50 similar tests for 12-round DES. The results can be found in Table 4. Thus,
this variant of the attack has a poorer performance than in the previous attack,
the advantage is that more plaintexts are available and a potential attack on
16-round DES is emerging.

We may estimate the success rate for 16-round DES as follows. One can
calculate the expected number of plaintexts for 8-round DES, Np8, and for 16-
round DES, Np16, which will have the same success rate. The ratio is the same
as for Matsui’s attack, because in these two attacks the bias differ with the same
factor for both 8 and 16 rounds. E.g., we have that the success rate for 16-round
DES using 242 texts is the same as for the attack on 8-round DES with

Np8 = 242 × |1.91× 2−21|2/|1.56× 2−8|2 = 1.49× 216

texts. Similar, one gets from the attack on 12-round DES that with

Np12 = 242 × |1.91× 2−21|2/|1.21× 2−14|2 = 1.25× 229

texts the success rate is the same as for the attack on 16-round DES with 242

texts. From the experiments on 8-round and 12-round DES one gets the com-
plexities of the chosen-plaintext linear attack on the DES of Table 5.

In total the attack finds 12 bits of key information. By repeating the attack
on the decryption operation of DES an additional 12 bits of key information can
be found. Subsequently, it is easy to find the remaining 32 bits by an exhaustive
search. Using key-ranking the reported rates of success will be even higher. As
an example, in the tests of Table 4 on 8-round DES using 216 texts, the correct
key appeared as one of the 8 highest ranked keys in 90 of the 100 tests, and
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using 217 texts, the correct key was ranked 2,2,2,3,3, and 4 in the tests where it
was not the first.

4 Conclusion

In this paper we presented what we believe is the fastest attack reported on the
DES. The attack requires 242 chosen plaintexts and finds 12 bits of the secret
key with a probability of success of 86%. This should be compared to Matsui’s
attack, which finds one more key bit using a factor of four more plaintexts.
Subsequently, in our attack, the remaining 44 bits of a DES key can be found by
an exhaustive search or alternatively, an additional 12 key bits can be found by
repeating the attack on the decryption routine. A new approach in our attacks
is the search for “pseudo-key bits”, which are secret key bits added with some
unknown but fixed value. In a subsequent key search these pseudo-keys can be
used to find real key bits. This approach might be applicable to similar attacks
on other ciphers.
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Abstract. In the SPN (Substitution-Permutation Network) structure,
it is very important to design a diffusion layer to construct a secure
block cipher against differential cryptanalysis and linear cryptanalysis.
The purpose of this work is to prove that the SPN structure with a
maximal diffusion layer provides a provable security against differential
cryptanalysis and linear cryptanalysis in the sense that the probability of
each differential (respectively linear hull) is bounded by pn (respectively
qn), where p (respectively q) is the maximum differential (respectively
liner hull) probability of n S-boxes used in the substitution layer. We will
also give a provable security for the SPN structure with a semi-maximal
diffusion layer against differential cryptanalysis and linear cryptanalysis.

1 Introduction and Motivation

The Feistel structure has been used widely in the iterated block cipher. In this
structure, the input to each round is divided into two halves. The right half is
transformed by some nonlinear function and then xored to the left half and the
two halves are swapped except for the last round. On the other hand, the SPN
structure is designed using round function on the whole data block. Nowadays,
the SPN structure is also attracting interest because it is highly parallelizable
and easy to analyze the security against differential cryptanalysis(DC) and linear
cryptanalysis(LC).

The most well known attacks on block ciphers are DC[1,2,3] and LC[6,7]. In
DC, one uses characteristic which describes the behavior of input and output
differences for some number of consecutive rounds. But it may not be necessary
to fix the values of input and output differences for the intermediate rounds in
a characteristic, so naturally the notion of differential was introduced[15]. The
same statements can be applied to LC, so that of linear hull was introduced[11].
However it seems computationally infeasible to compute the maximum probabi-
lities of differential and linear hull if the number of rounds increases.
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In [9], K. Nyberg and L.R. Knudsen showed that the r-round differential
probability is bounded by 2p2 if the maximal differential probability of round
function is p and r ≥ 4. Furthermore, the probability can be reduced to p2

if the round function is bijective. These results provide a provable security for
the Feistel structure against DC. M. Matsui proposed a new block cipher of
a Feistel network, MISTY[8] for which security can be shown by the existing
results for Feistel structures. The round function of MISTY is itself a Feistel
network which is proven secure. From this round function with small S-boxes,
he provided sufficiently large and strong S-boxes with proven security.

Fig. 1. One round of a SPN structure

In the SPN structure the diffusion layer provides an avalanche effect, both
in the contexts of differences and linear approximation, so the notion of branch
number was introduced[16]. The branch number of a diffusion layer has been
determined to be very important. A cipher with the low branch number may have
a fatal weakness even though a substitution layer consists of S-boxes resistant
against DC and LC. In this paper we will give a provable security for the SPN
structure with a maximal branch number by theorem 1.

This paper proceeds as follows; In section 2 we will introduce some notations
and definitions. In section 3 a provable security for the SPN structure with a
maximal diffusion layer against DC will be given. Provable security against LC
will be given in section 4. Other results will be described in section 5.

2 Preliminaries

In this section we define some notations and definitions. Throughout this paper
we consider an SPN structure with mn-bit round function. Let Si be an m×m
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bijective S-box, i.e.,
Si : Z

m
2 → Z

m
2 (1 ≤ i ≤ n).

Definition 1. For any given ∆x,∆y, Γx, Γy ∈ Z
m
2 , the differential and linear

probability of each Si are defined as follows;

DPSi(∆x → ∆y) =
#{x ∈ Z

m
2 |Si(x) ⊕ Si(x⊕∆x) = ∆y}

2m

LPSi(Γx → Γy) =
(

#{x ∈ Z
m
2 |Γx · x = Γy · Si(x)}

2m−1 − 1
)2

where Γx · x denotes the parity of bitwise xor of Γx and x.

Definition 2. The maximal differential and linear probability of Si are defined
by

DPSi
max = max

∆x �=0,∆y
DPSi(∆x → ∆y)

and
LPSi

max = max
Γx,Γy �=0

LPSi(Γx → Γy),

respectively.

In general, Si is called strong if DPSi
max and LPSi

max are small enough and a
substitution layer is called strong if DPSi

max and LPSi
max are small enough for all

1 ≤ i ≤ n. Let us denote by p and q the maximal value of DPSi
max and LPSi

max

for 1 ≤ i ≤ n, respectively. That is,

p = max
1≤i≤n

DPSi
max, q = max

1≤i≤n
LPSi

max.

Even though p and q are small enough, this does not guarantee a secure SPN
structure against DC and LC. Hence the role of the diffusion layer is very impor-
tant. The purpose of the diffusion layer is to provide an avalanche effect, both
in the contexts of differences and linear approximations.

Definition 3. Differentially active S-box is defined as an S-box given a non-zero
input difference and linearly active S-box as an S-box given a non-zero output
mask value[5].

The number of differentially active S-boxes has an effect on probabilities of dif-
ferential characteristics or differentials. Hence the concept of active S-box plays
an important role in giving a provable security for the SPN structure. Conversely
differentially(resp. linearly) inactive S-boxes have a zero input xor(resp. output
mask value). Consequently they have always a zero output xor(resp. input mask
value) with probability 1.

Let x = (x1, · · · , xn)t ∈ GF (2m)n then the Hamming weight of x is denoted
by

Hw(x) = #{i|xi �= 0}.
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Note “Hamming weight of X” does not count the number of nonzero bits but
count the number of non-zero m-bit characters.

Throughout this paper we assume that the round keys, which are xored
with the input data at each round, are independent and uniformly random. By
assumption on round keys, key addition layer in Fig.1 has no influence on the
number of active S-boxes. Now we define a SDS function with three layer of
substitution-diffusion-substitution as depicted in Fig.2.

Fig. 2. SDS function

Denote diffusion layer of this SDS function by D, input difference by ∆x =
x⊕x∗, output difference by ∆y = y⊕y∗ = D(x)⊕D(x∗), and finally input mask
value and output mask values by Γx and Γy, respectively. The minimum number
of differentially and linearly active S-boxes of the SDS function are defined as
follows;

nd(D) = min
∆x �=0

Hw(∆x) +Hw(∆y)

and
nl(D) = min

Γy �=0
Hw(Γx) +Hw(Γy),

respectively[12]. nd(D) and nl(D) are lower bounds for the number of active S-
boxes in two consecutive rounds of a differential characteristic and linear appro-
ximation, respectively. A diffusion layer is called maximal if the nd(D)(equiva-
lently nl(D)) is n+ 1.
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3 Provable Security against DC

In this section we will give a provable security for the SPN structure with a
maximal diffusion layer against DC. Throughout this paper we assume that the
diffusion layer D of the SDS function can be represented by an n × n matrix
M = (mij)n×n, where mij ∈ GF (2m). That is,

M =



m11 · · · m1n

...
. . .

...
mn1 · · · mnn


 .

J. Daemen et. al [4] showed that, for the diffusion layer D, the relation between
input difference(resp. output mask value) and output difference(resp. input mask
value) is represented by the matrix M(resp.M t). That is to say,

∆y = M∆x (resp. Γx = M tΓy).

So we can redefine nd(D) and nl(D) as follows;

nd(D) = min
∆x �=0

{Hw(∆x) +Hw(M∆x)},

nl(D) = min
Γy �=0

{Hw(Γy) +Hw(M tΓy)}.

Hence we only need to investigate the matrix M to analyze the role of the
diffusion layer D. Let us call M ′ an s×k submatrix of M if M ′ is of the following
form;

M ′ =



mi1j1 mi1j2 · · · mi1jk

mi2j1 mi2j2 · · · mi2jk

...
...

. . .
...

misj1 misj2 · · · misjk




Then we say that M contains M ′ as an s× k submatrix.
The following lemma shows the necessary and sufficient condition for a dif-

fusion layer to be maximal.

Lemma 1. Let M be the n × n matrix representing a diffusion layer D. Then
nd(D) = n+ 1 if and only if the rank of each k × k submatrix of M is k for all
1 ≤ k ≤ n.

Proof Assume that nd = n+ 1 and there exists a k × k submatrix Mk of M
such that the rank of Mk is less than k for some 1 ≤ k ≤ n. Without loss of
generality we may assume that

Mk =



m11 · · · m1k

...
. . .

...
mk1 · · · mkk


 .
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By assumption there exists (x1, · · · , xk) �= (0, · · · , 0) such that


m11 · · · m1k

...
. . .

...
mk1 · · · mkk





x1
...
xk


 =




0
...
0


 . (1)

Let x = (x1, · · · , xk, 0, · · · , 0)t. By equation (1),

Mx =




m11 · · · m1k mik+1 · · · m1n

...
...

...
...

...
...

mk1 · · · mkk mkk+1 · · · mkn

mk+11 · · · mk+1k mk+1k+1 · · · mk+1n

...
...

...
...

...
...

mn1 · · · mnk mnk+1 · · · mnn







x1
...
xk

0
...
0




=




0
...
0

δk+1
...
δn



. (2)

By the definition of nd(D),

nd(D) ≤ Hw(x) +Hw(Mx) ≤ k + n− k = n.

This is a contradiction to nd = n+1. Therefore we obtained a sufficient condition.
Assume that the rank of each k × k submatrix of M is k for all 1 ≤ k ≤ n

and nd < n + 1. Since nd < n + 1, there exists x = (x1, · · · , xn)t ∈ GF (2m)n

such that
Hw(x) +Hw(Mx) ≤ n.

Without loss of generality we may assume that x1, · · · , xs are all nonzero and
xj = 0 for all j > s. Let y = Mx, then Hw(y) ≤ n − s. In other words, the
number of zero components in y is greater than or equal to s, so we can assume
yi1 = · · · = yis = 0. We can easily check equation (3).



mi11 · · · mi1s

...
. . .

...
mis1 · · · miss





x1
...
xs


 =



yi1
...
yis


 =




0
...
0


 . (3)

Hence we can get an s×s submatrix of M with rank less than s. It is a contradic-
tion to the fact that the rank of each k×k submatix of M is k for all 1 ≤ k ≤ n.
�

In [12], it was shown how a maximal diffusion layer over GF (2m)n can be
constructed from a maximum distance separable code. If Ge = [In×nBn×n] is
the echelon form of the generator matrix of (2n, n, n+ 1) RS-code, then

D : GF (2m)n → GF (2m)n

x → Bx

is a maximal diffusion layer by lemma 1.
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Fig. 3. Differential of SDS function

Consider the differential with input difference ∆α = (∆α1, · · · , ∆αn) and
output difference ∆β = (∆β1, · · · , ∆βn) as depicted in Fig.3.

Then the probability of this differential is like that;

DP (∆α → ∆β)

=
∑

∆δ1,···,∆δn

(
n∏

i=1

DPSi(∆αi → ∆δi)
n∏

i=1

DPSi(∆γi → ∆βi|∆α)

)
(4)

Lemma 2. Let M be the n × n matrix representing a diffusion layer D and
nd(D) = n + 1. In Fig.3, if Hw(∆α) = k and Hw(∆β) = n − s + 1(s ≤
k), there is a index set {i1, · · · , is−1} so that ∆αi1 �= 0, · · · , ∆αis−1 �= 0 and
{∆δi1 , · · · , ∆δis−1} are determined by the other ∆δi’s.

Note Since nd(D) = n + 1, s must be less than or equal to k. A index set
{i1, · · · , is−1} depends on the location of the nonzero ∆α and ∆β.
Proof Without loss of generality we may assume

∆β1 = 0, · · · , ∆βs−1 = 0 (or equivalently∆γ1 = 0, · · · , ∆γs−1 = 0).

Let ∆δ′ = (∆δi1 · · · , ∆δik
)t be the collection of all non-zero components in ∆δ =

(∆δ1, · · · , ∆δn)t. That is, ∆δij �= 0 for all 1 ≤ j ≤ k and ∆δt = 0 if t /∈
{i1, · · · , ik}. Let

M ′ =




m1i1 · · · m1is−1 m1is
· · · m1ik

...
. . .

...
...

. . .
...

ms−1i1 · · · ms−1is−1 ms−1is · · · ms−1ik


 .
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By the definitions of M ′ and ∆δ′ and the assumption on ∆β, M ′∆δ′ equals 0.
Let’s divide ∆δ′ into two parts, ∆δI and ∆δII , and M ′ into MI and MII as
followings;

∆δI = (∆δi1 · · · , ∆δis−1)t, ∆δII = (∆δis
· · · , ∆δik

)t,

MI =




m1i1 · · · m1is−1

...
. . .

...
ms−1i1 · · · ms−1is−1


 and MII =




m1is · · · m1ik

...
. . .

...
ms−1is · · · ms−1ik


 .

From M ′∆δ′ = 0, we get the equation

MI∆δI +MII∆δII = 0(or equivalently MI∆δI = MII∆δII).

Since MI is an invertible matrix by lemma 1, we have the equation

∆δI = M−1
I MIIδII .

Hence {∆δi1 · · · , ∆δis−1} are determined by {∆δis · · · , ∆δik
} �

Lemma 2 means that the summation in (4) is not taken for all ∆δi1 , · · · , ∆δik

but taken for all ∆δj1 , · · · , ∆δjk−s+1 for some index set {j1, · · · jk−s+1} ⊂ {i1, · · · ,
ik}. Now, we are ready to prove our main theorem.

Theorem 1. Assume that the round keys, which are xored to the input data at
each round, are independent and uniformly random. If nd = n+1, the probability
of each differential of SDS function is bounded by pn.

Proof Consider the differential as depicted in Fig.3. Let Hw(∆α) = k and
Hw(∆β) = n− s+ 1 (s ≤ k), then without loss of generality we may assume

∆α1 �= 0, · · · , ∆αk �= 0 (5)

(equivalently, ∆δ1 �= 0, · · · , ∆δk �= 0) and

∆βj1 �= 0, · · · , ∆βjn−s+1 �= 0. (6)

( equivalently, ∆γj1 �= 0, · · · , ∆γjn−s+1 �= 0). Then,

DP (∆α → ∆β)

=
∑

∆δ1,···,∆δn

(
n∏

i=1

DPSi(∆αi → ∆δi)
n∏

i=1

DPSi(∆γi → ∆βi|∆α)

)

=
∑

∆δ1,···,∆δn

(
n∏

i=1

DPSi(∆αi → ∆δi)
n∏

i=1

DPSi(∆γi → ∆βi)

)
(7)

=
∑

∆δ1,···,∆δk

(
k∏

i=1

DPSi(∆αi → ∆δi)
n−s+1∏

i=1

DPSji (∆γji → ∆βji)

)
(8)
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=
∑

∆δi1 �=0,··,∆δik−s+1 �=0

(
k∏

i=1

DPSi(∆αi → ∆δi)
n−s+1∏

i=1

DPSji (∆γji → ∆βji)

)
(9)

≤
∑

∆δi1 �=0,···,∆δik−s+1 �=0

(
k−s+1∏

t=1

DPSit (∆αit → ∆δit)p
s−1pn−s+1

)
(10)

= pn
∑

∆δi1 �=0,···,∆δik−s+1 �=0

(
k−s+1∏

t=1

DPSit (∆αit → ∆δit)

)

≤ pn

Equation (7) follows from the assumption on round keys; equation (8) follows
from assumptions (5) and (6); equation (9) follows from lemma 2; and equation
(10) follows from the definition of p. �

This theorem gives a provable security for the SPN structure.
For example, consider a 128-bit SPN structure with 16 substitution boxes,

S1, · · ·S16, and a maximal diffusion layer. If we let

Si : GF (28) → GF (28) (1 ≤ i ≤ n)
x → x−1

we can take p = 2−6, so that the maximum differential probability of this SDS
function is bounded by p16 = (2−6)16 = 2−96. Hence one gets a SPN structure
which gives proven resistance of order 2−96 against DC.

4 Provable Security against LC

In this section we will give a provable security for the SPN structure with a
maximal diffusion layer against LC. We know that the rank of M equals that of
M t for any matrix M and so applying lemma 1 and 2 gives the following result;
If nd(D) is equal to n+ 1, nl(D) is also n+ 1 and vice versa. Therefore we have
the following theorem.

Theorem 2. If nl(D) = n + 1(or equivalently nd(D) = n + 1), the probability
of each linear hull of SDS function is bounded by qn.

5 Provable Security against DC and LC with a
Semi-maximal Diffusion Layer

In this section we will show that the probability of each differential is bounded
by pn−1 when nd(D) is equal to n. A diffusion layer is called semi-maximal with
respect to DC(resp. LC) when nd(D)(resp. nl(D)) equals n. In general nd(D)
is not equal to nl(D) but there are sufficient conditions that nl(D) is equal to
nd(D)[14]. A diffusion layer is called semi − maximal if nd(D) and nl(D) are
equal to n.
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Lemma 3. If nd(D) = n, the rank of each k×k submatrix of M is greater than
or equal to k − 1 for all 1 ≤ k ≤ n and there exists at least one s× s submatrix
with rank s− 1 for some 1 ≤ s ≤ n.

Proof Let nd(D) = n and suppose that there exists a k × k submatrix Mk of
M whose rank is less than k − 1. That is, there exist at least two independent
vectors v, w ∈ GF (2m)k so that Mkv = Mkw = 0. We can make a vector
x ∈ GF (2m)k with Hw(x) ≤ k − 1 and Mkx = 0 by a linear combination of v
and w over GF (2m). From x and Mk we can get a vector X ∈ GF (2m)n such
that Hw(X) ≤ k − 1 and Hw(MX) ≤ n − k. This is contradiction to the fact
that nd(D) is equal to n. Hence the rank of each k×k submatrix of M is greater
than or equal to k − 1 for all 1 ≤ k ≤ n. By lemma 1 there exists at least one
s× s submatrix with rank s− 1. �

We also state a statement similar to lemma 2; Let M be the n × n ma-
trix representing a diffusion layer D and nd(D) = n. In Fig.3, if Hw(∆α) =
k and Hw(∆β) = n − s(s ≤ k), there is a index set {ii, · · · , is−1} so that
{∆δi1 , · · · , ∆δis−1} are represented by the other ∆δi’s. The proof of this state-
ment is similar to that of the lemma 2.

Theorem 3. Assume that the round keys, which are xored to the input data at
each round, are independent and uniformly random. If nd = n, the probability of
each differential of SDS function is bounded by pn−1.

Proof We use the same notations as used in the proof of theorem 1. There
is only one difference between the proof of theorem 3 and that of this theorem;
Hw(∆β) is not n−s+ 1 but n−s. Thus DP (∆α → ∆β) goes up by p−1. Hence
we have

DP (∆α → ∆β) ≤ pn−1 �

We can easily check that if nl(D) = n, the probability of linear hull of SDS
function is bounded by qn−1.

6 Conclusion

In the SPN structure, it is very important to design a diffusion layer with good
properties as well as a substitution layer. Even though a substitution layer is
strong against DC and LC, this does not guarantee a secure SPN structure
against DC and LC if a diffusion layer does not provide an avalanche effect,
both in the context of differences and linear approximations.

In this paper we give the necessary and sufficient condition for diffusion layer
to be maximal or semi-maximal. Also we proved that the probability of each
differential(resp. linear hull) of the SDS function with a maximal diffusion layer is
bounded by pn(resp. qn) and that of each differential(resp. linear hull) of the SDS
function with a semi-maximal diffusion layer is bounded by pn−1(resp. qn−1).
These results give a provable security for the SPN structure against DC and LC
with a maximal diffusion layer or a semi-maximal diffusion layer. Therefore we
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expect to obtain a SPN structure with a higher resistance against DC and LC
and a smaller number of rounds.
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Abstract. We find certain neglected issues in the study of private-key
encryption schemes. For one, private-key encryption is generally held to
the same standard of security as public-key encryption (i.e., indistinguis-
hability) even though usage of the two is very different. Secondly, though
the importance of secure encryption of single blocks is well known, the
security of modes of encryption (used to encrypt multiple blocks) is often
ignored. With this in mind, we present definitions of a new notion of se-
curity for private-key encryption called encryption unforgeability which
captures an adversary’s inability to generate valid ciphertexts. We show
applications of this definition to authentication protocols and adaptive
chosen ciphertext security.
Additionally, we present and analyze a new mode of encryption, RPC (for
Related Plaintext Chaining), which is unforgeable in the strongest sense
of the above definition. This gives the first mode provably secure against
chosen ciphertext attacks. Although RPC is slightly less efficient than,
say, CBC mode (requiring about 33% more block cipher applications
and having ciphertext expansion of the same amount when using a block
cipher with 128-bit blocksize), it has highly parallelizable encryption and
decryption operations.

1 Introduction

1.1 Motivation

Much work has been devoted to developing precise definitions of security for
encryption schemes [2,3,16] and to constructing cryptosystems meeting these
enhanced notions of security. Currently, the same notions of security are used to
analyze both public-key and private-key encryption. In the public-key setting,
however, encryption is available to everyone; in this case, therefore, one need only
worry about the possibility of an adversary decrypting an encrypted message.
This is in contrast to the private-key setting where one must also worry about
the potential harm an adversary can cause by generating the encryption of some
message (an action which a protocol designer may not expect to occur). So,
while one can “borrow” security notions from the public-key to the private-key
setting, one has to recognize that the security goals of the latter may be different.

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 284–299, 2001.
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Additionally, private-key cryptography is used to transmit large amounts of data
(in particular, more than one block at a time using some mode of operation),
while public-key cryptography is generally used to send short messages (typically,
session keys). Finally, private-key encryption is the basis of many authentication
and security handshake protocols [14].

For these reasons, we introduce here a higher standard of security for private-
key encryption called encryption unforgeability (simply unforgeability in the se-
quel), which characterizes an adversary’s inability to generate valid ciphertexts.
This notion turns out to be quite useful: it guarantees security for certain aut-
hentication protocols, provides message integrity without additional computa-
tion or cryptographic primitives, and offers some level of security under chosen
ciphertext attacks.

Unforgeability is particularly interesting in the context of modes of encryp-
tion. The encryption of single blocks, both in theory and in practice, is well
understood; however, we believe that the security of modes of encryption has
been (comparatively) neglected. To remedy this, we present a new mode of en-
cryption which is unforgeable in the strongest sense of the definition. We then
show, using a concrete security analysis [2], that this mode is secure against the
strongest form of chosen plaintext/ciphertext attacks, and is non-malleable as
well.

1.2 Applicability

Unforgeability seeks to capture the following intuition: an adversary, after in-
tercepting various ciphertext messages, should not be able to generate a new
ciphertext corresponding to any valid plaintext. As an application of this, say
Alice and Bob carry out a handshaking protocol using a shared private key K.
Alice sends Bob EK(timestamp), and Bob must reply with EK(timestamp + 1)
(this is similar to the protocol implemented in Kerberos V4 [14]). This is meant
to prove to Alice that Bob knows the secret key K. However, if an adversary can
somehow “forge” an encryption of timestamp+1, he can authenticate himself to
Alice without knowledge of the key. Note that this differs from a non-malleability
attack; in the case of non-malleability, the adversary does not know the plaintext
corresponding to the “challenge” ciphertext. In this case, however, the current
time is known to all participants, so Bob does know the plaintext corresponding
to Alice’s encrypted message.

Extending this further, if Alice and Bob are communicating over an insecure
channel by encrypting messages using a shared key, it is clearly undesirable for an
adversary to be able to insert ciphertext into the channel which will be decrypted
by one of the parties and interpreted as a valid (potentially malicious) message.
This threat can be reduced by using message authentication, but most schemes
for integrating encryption and authentication are either inefficient or are not
provably secure. In fact, efficient integration of encryption, authentication, and
message integrity using a single shared key is an important and intensely studied
problem in network security [14,23] which is solved by the use of an unforgeable
encryption scheme.
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1.3 Importance of a Single-Key Solution

A trivial solution to the problem of unforgeability is to share two keys—one
for encryption and one for authentication (e.g., using a MAC). Also, various
constructions (requiring multiple shared keys) are known to exist which allow for
chosen-ciphertext secure encryption of large (i.e., many block) messages [20,5,8].
However, we have in mind applications such as integrated public-key/private-
key encryption (e.g., PGP for e-mail encryption) in which it is advantageous
to share only one key. One public-key encryption of a session key followed by
(slow) private-key encryption of the message is still faster than two public-key
encryptions and (fast) private-key encryption, for “short” messages. Hardware
implementations of encryption may also benefit from the single-key requirement.
Furthermore, it may be required to integrate a new mode of encryption into
existing software which already calls for encryption of only one session key.

1.4 Previous Work

Notions of Security. Beginning with the paper by Goldwasser and Mi-
cali [10], which first provided a rigorous definition of “semantic security”, the
cryptography community has progressed to the currently accepted definitions
of indistinguishability (polynomially equivalent to semantic security) and non-
malleability (introduced by Dolev, Dwork, and Naor [9]; later reformulated by
Bellare, et al. [3]). Indistinguishability describes an adversary’s inability to de-
rive any information from a ciphertext about the corresponding plaintext. Non-
malleability characterizes an adversary’s inability, given access to a challenge
ciphertext, to generate a different ciphertext meaningfully related to the chal-
lenge ciphertext. We refer the reader elsewhere [3,16] for formal definitions.

Unforgeability. Previous work dealing with concurrent encryption plus mes-
sage authentication implicitly uses many of the ideas of unforgeability [13,23].
However, the formal definition presented here is new.

Unforgeability is distinct from non-malleability. In the latter, the adversary’s
goal is to generate one ciphertext meaningfully related to another. In the former
(depending on the type of attack, see below), the adversary may succeed by ge-
nerating any valid ciphertext. Furthermore, in a non-malleability-based attack,
the adversary does not know the plaintext corresponding to the challenge ci-
phertext. This is in contrast to an unforgeability-based attack, in which queries
are made to an encryption oracle and therefore the adversary may know the
underlying decryption of some ciphertexts. Thus, the level of security considered
here is much stronger.

Chosen Ciphertext Security. Chosen ciphertext [21] and adaptive chosen
ciphertext [25] attacks are very powerful attacks in which the adversary can
obtain decryptions of her choice (in the case of adaptive attacks, even after
seeing the challenge ciphertext). As it is not our intention to survey the literature
on chosen ciphertext security, we merely point out that most research thus far
has focused on public-key encryption. Little attention has been paid to chosen
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ciphertext security for private-key encryption (an exception is [9]), and even less
to chosen ciphertext secure modes of encryption.

Modes of Encryption. The commonly-used modes of encryption include those
defined as part of the DES [1,11,22], an XOR mode suggested by Bellare, et al.
[2], and the PCBC mode [19] used in Kerberos V4. The security of these modes
of encryption lags behind the security of available block encryption algorithms.
None of the above modes are non-malleable, and all are vulnerable to an ad-
aptive chosen ciphertext attack. This has been recognized in the cryptographic
literature for some time [19], but the previously-mentioned modes continue to
be used even though potentially serious security flaws may result [15].

Security analyses of modes of encryption have focused on chosen plaintext
attacks. Examples include a concrete analysis of the CBC and XOR modes [2],
Biham’s and Knudsen’s analyses of modes of operation of DES and triple-DES
[6,7], and others [13,24].

A mode of encryption as secure as a pseudorandom permutation is given
by Bellare and Rogaway [5]. The only other examples of (potentially) chosen-
ciphertext-secure modes of encryption of which we are aware [20,8] study a
slightly different problem, and are therefore not provably chosen-ciphertext se-
cure. Our suggestion (RPC) lends itself to simpler analysis and has certain prac-
tical advantages over these other constructions; we refer the reader to the Dis-
cussion in Section 5.

1.5 Summary of Results

We begin in Section 2 with a review of some notation. In Section 3 we present
definitions for three levels of unforgeability for private-key encryption; this sec-
tion concludes with a theorem formalizing the relation between security in the
sense of unforgeability and security under chosen ciphertext attacks. Section 4
describes two simple modes of encryption which are unforgeable under the stron-
gest definition. We conclude with a discussion of the practicality of these modes,
and a comparison with previously suggested modes which are potentially chosen
ciphertext secure.

The unforgeable modes we present are actually quite straightforward. The
intuition is as follows: to prevent an adversary from “splicing” together blocks
from different ciphertexts, we “tag” each ciphertext block with a sequence num-
ber. To prevent an adversary from shortening a ciphertext to generate a new,
valid one, we “mark” the beginning and end of each ciphertext with special start
and end tokens. Encryption of x1, . . . , xn is simply given by:

E(start, i), E(x1, i + 1), . . . , E(xn, i + n), E(end, i + n + 1),

where the nature of i depends on the details of the mode.
It follows from the properties of RPC that it can provide a single-key, one-

pass, provably secure mechanism for “concurrent encryption, authentication, and
message integrity” using a single shared key (an open question [14,23]). The
encryption and decryption operations are parallelizable, and the mode works
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better with larger blocksizes (i.e., it is better suited for AES than for DES).
Because of these properties and its simplicity, we suggest RPC as a practical
addition to (or substitute for) the modes of encryption currently in use.

2 Notation

Indistinguishability. We follow the standard notation for private-key encryp-
tion [16], but note that we consider both probabilistic and stateful encryption
schemes. We use the notion of indistinguishability as our measure of security.
The definition below is similar to those given elsewhere [2,16]; we rephrase it
to allow for a concrete security analysis. Also, since we deal explicitly with the
security of modes of encryption, we parameterize the adversary’s advantage by
the length of the submitted plaintexts. The notation for notions of security fol-
lows [16]; thus, IND-PX-CY means an indistinguishability-based attack, with
encryption oracle access at level X and decryption oracle access at level Y . Le-
vel 0 denotes no oracle access, level 1 denotes access before being presented with
the challenge ciphertext (non-adaptive access), and level 2 denotes access both
before and after the challenge ciphertext is revealed (adaptive access). Of course,
different levels of access can be chosen separately for each oracle. The definition
below corresponds to security under an IND-P2-C2 attack.

Definition 1. Let Π = (K, E ,D) be an encryption scheme accepting variable
length messages, and let A = (A1, A2) be an adversary. Let AdvIND−P2−C2

A,Π
def=

2 · Pr
[
sk ← K; (x0, x1, s)← A

Esk(·),Dsk(·)
1 ; b← {0, 1}; y ← Esk(xb) :

A
Esk(·),Dsk(·)
2 (x0, x1, s, y) = b

]
− 1.

We insist that |x0| = |x1| = `. Furthermore, all queries to the encryption oracle
consist of an integral number of blocks (the size of which depends on the under-
lying block cipher algorithm); thus, no “padding” is ever required.

We say that Π is (t, qe, be, qd; `, ε)-secure in the sense of IND-P2-C2 if for
any adversary A distinguishing between plaintexts of length ` which runs in time
at most t, submits at most qe queries to the encryption oracle (these totaling at
most be bits), and submits at most qd queries to the decryption oracle we have
AdvIND−P2−C2

A,Π ≤ ε.

Note that IND-P2-C2 security implies security under all other notions of
indistinguishability and non-malleability [16].

Super Pseudorandom Permutations (following [2]). A permutation family
is a set F of permutations all having the same domain and range. We assume the
permutations are indexed by some key k ∈ K, such that Fk specifies a particular
permutation in F . Usually, K is the set of all strings of some fixed length. We
write f ← F to denote selection of a permutation at random from F according
to the distribution given by picking a random k and setting f = Fk. Let Pn be
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the permutation family consisting of all permutations on {0, 1}n. Thus, f ← Pn

means selection of a random permutation on n-bit strings.
Let F, G be function families with the same domain and range. Consider a

distinguisher D, given oracle access to a function f and its inverse f−1, that
attempts to distinguish between the case where f is chosen randomly from F
and the case where f is chosen randomly from G. Let

DistD(F, G) = Pr
[
f ← F : Df(·),f−1(·) = 1

]
− Pr

[
f ← G : Df(·),f−1(·) = 1

]
.

A super pseudorandom permutation (super-PRP) [18] family F on {0, 1}n has
the property that the input-output behavior of f, f−1 “looks random” to so-
meone who does not know the randomly selected key k. Accordingly, define the
advantage of the distinguisher by:

AdvSPRP
D (F ) = DistD(F, Pn).

Definition 2. We say that super-PRP family F is (t, q1, q2; ε)-secure if for any
distinguisher D which makes at most q1 oracle queries of f , q2 oracle queries of
f−1, and runs in time at most t it is the case that AdvSPRP

D (F ) ≤ ε.

Note the distinction from a pseudorandom permutation (PRP); in the latter
case, the distinguisher is only given access to the function f (not its inverse f−1).
However, any family of PRPs can be converted to a family of super-PRPs [18].

3 Unforgeability

3.1 Definitions

We define three levels of unforgeability for encryption, progressing from the
weakest to the strongest. In the following definitions, we assume that the set of
valid encryption oracle queries is exactly the same as the valid message space;
this eliminates technical problems arising from having to randomly pad short
messages. Note that in all cases our definitions do not restrict the length of
the forged ciphertext or the length of the plaintext queries submitted to the
encryption oracle. Thus, our definitions include cases where an adversary might
try to extend previous ciphertexts, paste two ciphertexts together, or delete
blocks from a valid ciphertext in an attempt to forge a message.

Our definitions focus on the settings with maximum access to an encryp-
tion oracle. Weaker definitions, with non-adaptive access or no access, are also
possible.

Random Plaintext Unforgeability. The framework of the attack is as
follows: a challenge plaintext x is chosen at random from the message space
M . The adversary succeeds if he can output a ciphertext y such that x is the
decryption of y. This essentially means that the adversary has “broken” one
direction of the encryption, since he can forge ciphertext for just about any
message he chooses.
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Definition 3. Let Π = (K, E ,D) be a private-key encryption scheme, and let A
be an adversary. Define:

Advrandom
A,Π

def= Pr
[
sk ← K; x←M ; y ← AEsk(·)(x) : Dsk(y) = x

]
.

We insist that A does not ask the oracle to encrypt x. We say that Π is (t, q, b; ε)-
secure in the sense of random plaintext unforgeability if for any adversary A
which runs in time at most t and asks at most q queries, these totaling at most
b bits, we have Advrandom

A,Π ≤ ε.

Chosen Plaintext Unforgeability. In this attack, the goal of the adversary
is simpler. Instead of having to find the encryption of a “challenge” plaintext, the
adversary is free to output the encryption of any plaintext he chooses. But, the
adversary must know the plaintext message to which this ciphertext corresponds.
This is similar to the valid pair creation attack defined previously [12].

Definition 4. Let Π = (K, E ,D) be a private-key encryption scheme, and let A
be an adversary. Define:

Advchosen
A,Π

def= Pr
[
sk ← K; (x, y)← AEsk(·) : Dsk(y) = x

]
.

We insist, above, that A has never received ciphertext y in return from its encryp-
tion oracle. We say that Π is (t, q, b; ε)-secure in the sense of chosen plaintext
unforgeability if for any adversary A which runs in time at most t and asks at
most q queries, these totaling at most b bits, we have Advchosen

A,Π ≤ ε.

Existential Unforgeability. This represents the strongest notion of unfor-
geability, as it corresponds to the simplest attack for an adversary. The adversary
succeeds by producing any new valid ciphertext, even without knowing the cor-
responding plaintext.

Definition 5. Let Π = (K, E ,D) be a private-key encryption scheme, and let A
be an adversary. Define:

Advexist
A,Π

def= Pr
[
sk ← K; y ← AEsk(·) : Dsk(y) 6=⊥

]
.

We insist, above, that A has never received ciphertext y in return from its en-
cryption oracle. We say that Π is (t, q, b; ε)-secure in the sense of existential
unforgeability if for any adversary A which runs in time at most t and asks at
most q queries, these totaling at most b bits, we have Advexist

A,Π ≤ ε.
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3.2 Unforgeability and Chosen Ciphertext Security

The notion of existential unforgeability is a strong one; as such, we expect some
relation between existential unforgeability and chosen ciphertext security. The
intuition is clear: since any (new) ciphertexts generated by an adversary are
likely to be invalid, the adversary cannot gain much by submitting them to
the decryption oracle. Thus, if a scheme cannot be broken with no access to a
decryption oracle, it cannot be broken much more often even when access to a
decryption oracle is given. This is formalized by the following theorem, which
shows that unforgeability (along with chosen plaintext security) implies adaptive
chosen plaintext/ciphertext security.

Theorem 1. Let Π be an encryption scheme which is (t1, q, b; ε1)-secure in the
sense of existential unforgeability, and (t2, qe, be; `, ε2)-secure in the sense of IND-
PX-C0 (for X ∈ {0, 1, 2}). Then Π is (t′, q′

e, b
′
e, qd; `, ε′)-secure in the sense of

IND-PX-C2, where t′ = min{t1, t2}; q′
e = min{q−1, qe}; b′

e = min{b−`, be}; and
ε′ = ε2 + qdε1.

Sketch of Proof Say adversary A attacks Π in the sense of IND-PX-C2,
running in time t′, making at most q′

e encryption oracle queries totaling at most
b′
e bits, and making qd decryption oracle queries. We assume without loss of

generality that A never queries the decryption oracle on a ciphertext which it
received in return from the encryption oracle (in fact, there is no reason for A
to do so). We can construct the following adversaries:

1. Adversaries {Bi} (for i = 1, . . . , qd) attacking Π in the sense of existential
unforgeability. Bi runs A as a subroutine, and answers the first i−1 decryp-
tion oracle queries made by A with ⊥, then returns as its output the ith

decryption oracle query made by A.
2. Adversary C attacking Π in the sense of IND-PX-C0, which runs A as a

subroutine but answers all decryption oracle queries made by A with ⊥.

Define Validi to be the event that the ith decryption oracle query submitted by
A was the first one to be valid. Extending this notation, let Valid∞ be the event
that none of the decryption oracle queries submitted by A are valid. Let Succ be
(informally) the event that A succeeds in distinguishing the challenge ciphertext
it is given. We have:

AdvIND−PX−C2
A,Π =

Pr [Succ|Validqd
∨ · · · ∨ Valid1] Pr [Validqd

∨ · · · ∨ Valid1]
+ Pr [Succ|Valid∞] Pr [Valid∞]

≤
qd∑

i=1

Pr [Validi] + Pr [Succ|Valid∞] Pr [Valid∞]

≤
qd∑

i=1

Advexist
Bi,Π + AdvIND−PX−C0

C,Π .
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Since the advantages of adversaries {Bi} and C are bounded by ε1 and ε2 res-
pectively, we have:

AdvIND−PX−C2
A,Π ≤ qdε1 + ε2.

This gives the stated result. ut

3.3 The Forgeability of Previous Modes

It is instructive to demonstrate attacks on the original DES modes of encryption
[1,11,22]. It is clear that all of these modes are susceptible to an existential
unforgeability attack (even a passive attack, with no encryption oracle access),
since any ciphertext string of appropriate length decrypts to a valid plaintext.
Some modes are even weaker. ECB mode is susceptible to a random plaintext
unforgeability attack (with adaptive encryption oracle access) as follows: to find
the encryption of M1, M2, . . . , Ml simply submit to the encryption oracle the
two queries M1 and M2, . . . , Ml and paste the responses together. OFB has
even worse characteristics—it is susceptible to a random plaintext unforgeability
attack with non-adaptive encryption oracle access. Simply have the adversary
submit 0n` to the encryption oracle and receive ciphertext C0, C1, . . . , C`. To
forge encryption of M1, . . . , M`, compute C ′

i = Ci⊕Mi and return C0, C
′
1, . . . , C

′
`.

Attacks in the sense of chosen plaintext unforgeability exist for CBC and CFB
modes as well [15,19]. These examples indicate the weaknesses of these modes;
this further implies that these modes are not adaptive-chosen-ciphertext secure.

4 Unforgeable Modes of Operation

We present two modes of encryption (one stateful, one probabilistic) which are
secure under the strongest definition of unforgeability and are additionally secure
under adaptive chosen plaintext/ciphertext attack. The encryption (decryption)
algorithms use underlying block cipher (using secret key sk) Fsk. The mode is
parameterized by n and r, where the underlying block cipher operates on n-bit
blocks and r is the length of the padding.

4.1 A Stateful Mode

We begin by describing the stateful mode of encryption. The variable ctr is an
r-bit binary number; it is initialized to 0, and addition is modulo 2r. (We assume
that the start and end symbols do not represent valid message blocks.)
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Algorithm E-RPCn,r(ctr, M)
parse M as M1, . . . , M`,
where |Mi| = n− r

C0 = Fsk(start, ctr)
for i = 1, . . . , ` do

Ci = Fsk(Mi, ctr + i)
C`+1 = Fsk(end, ctr + ` + 1)
ctr := ctr + ` + 1
return (ctr, C = C0, . . . , C`+1)

Algorithm D-RPCn,r(C)
parse C as C0, . . . , C`+1,
where |Ci| = n

if ` + 1 < 3 return ⊥
for i = 0, . . . , ` + 1 do

(Mi, ctri) = F−1
sk (Ci)

if (M0 6= start) ∨ (M`+1 6= end) return ⊥
for i = 1, . . . , ` do

if ctri 6= ctr0 + i return ⊥
if (Mi = start) ∨ (Mi = end) return ⊥

if ctr`+1 6= ctr0 + ` + 1 return ⊥
return M = M1, . . . , M`

Theorems 2 and 3 quantify the security of RPC mode when instantiated with
a fully random permutation:

Theorem 2. Let Π be an encryption scheme using RPCn,r mode instantiated
with a block cipher chosen randomly from Pn. Then Π is (t, q, b(n− r); ε)-secure
in the sense of existential unforgeability (for b + q ≤ 2r), where:

ε ≤ 2n−r−1

2n − b− 2q
.

Sketch of Proof Recall the technical assumption that the adversary submits
oracle queries whose lengths are integer multiples of n− r bits (i.e., no padding
is required). Without this assumption, it is unclear how to define a notion of
unforgeability. Thus, the adversary submits b blocks of plaintext to the oracle.

Due to the construction of the mode, the adversary will have to introduce
at least one new (previously-unseen) ciphertext block in the output ciphertext.
The ctr variable derived from this block must “match up” with the remainder of
the message. There are at most 2n−r−1 blocks whose ctr will match up properly
(there are n − r data bits, and these cannot take on the values start or end).
Furthermore, there is a pool of at least 2n − b− 2q ciphertext blocks to choose
from after eliminating those blocks which the adversary has already received in
return from the encryption oracle (b blocks of data and 2q blocks to account
for encryption of start and end tokens). Since we are dealing with a random
permutation, this gives the stated result. ut

This bound is tight, as an adversary can submit one plaintext block to its
encryption oracle, receive in return ciphertext C = C0, C1, C2, and then output
C ′ = C0, C

′
1, C2 as an attempted forgery. Clearly, C ′ is valid iff the ctr variable

derived from C ′
1 “matches up” with the remainder of the ciphertext, and this

occurs with the probability specified in the theorem.
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Theorem 3. Let Π be an encryption scheme using RPCn,r mode instantiated
with a block cipher chosen randomly from Pn. Then Π is (t, qe, be(n−r), qd; `, ε)-
secure in the sense of IND-P2-C2 (for be + qe + ` + 2 ≤ 2r), where:

ε =
qd2n−r−1

2n − be − 2qe
.

Proof Due to the stateful mode of operation and the fact it uses a random
permutation, the advantage of any adversary attacking Π in the sense of IND-
P2-C0 is 0. Application of Theorem 1 gives the desired result. ut

These results translate into the following “real-world” security:

Theorem 4. Suppose F is a (t, q1, q2; ε)-secure super-PRP family (q2 ≥ 2). Let
Π be an encryption scheme using RPCn,r mode instantiated with a block cipher
chosen randomly from F . Then Π is (O(t− b log b), q, b(n− r); ε′)-secure in the
sense of existential unforgeability (for b + q ≤ 2r and b + 2q ≤ q1), where:

ε′ = ε +
2n−r−1

2n − b− 2q
.

Sketch of Proof Assume adversary A attacks Π in the sense of existential
unforgeability. Without loss of generality, we may assume that A does not ou-
tput a ciphertext which it has obtained in response from its encryption oracle.
Construct a distinguisher D for F which will use A as a subroutine. D simu-
lates A’s encryption oracle by maintaining an internal ctr variable, “padding”
A’s oracle queries according to the definition of RPCn,r, and submitting the
resulting blocks to its own oracle for f . When A returns a (supposedly forged)
ciphertext, D finds a block in this ciphertext which it did not previously receive
from f and submits that block (and an adjacent block, if that too has never been
received from f) to its oracle for f−1. (Note that submitting the entire cipher-
text is unnecessary, since our analysis in Theorem 2 bounds the probability of
forging even one block.) If the ctr variables “match up”, D outputs 1 (guessing
that f was chosen from F ); otherwise, D outputs 0.

This requires D to submit b + 2q queries to its oracle for f , and 2 queries
to its oracle for f−1. Running time includes time to update the counter and to
sort and search through the submissions/responses from oracle f . The theorem
follows. ut

Theorem 5. Suppose F is a (t, q1, q2; ε)-secure super-PRP family. Let Π be an
encryption scheme using RPCn,r mode instantiated with a block cipher chosen
randomly from F . Then Π is (O(t− be log be), qe, be(n− r), qd; `, ε′)-secure in the
sense of IND-P2-C2 (for be + qe + ` + 2 ≤ 2r and 2qd ≤ q2), where:

ε′ = ε +
qd2n−r−1

2n − be − 2qe
.
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Sketch of Proof The proof is similar to that of Theorem 4. Construct
distinguisher D from adversary A. For each ciphertext submitted by A to the
decryption oracle, D finds a block in the ciphertext which was not previously
received from its oracle for f . D submits that block (and an adjacent block, if
that too has never been received from f) to its oracle for f−1. If the ctr variables
“match up”, D outputs 1 (guessing that f was chosen from F ); otherwise, D
returns ⊥ to A. D also outputs 1 if A successfully distinguishes the ciphertext
even though all its decryption oracle queries were answered by ⊥. The proof
follows. ut

4.2 A Probabilistic Mode

The probabilistic mode is a straightforward extension of the stateful mode. We
present it here for completeness (rand represents an r-bit binary number, and
addition is done modulo 2r):

Algorithm E-RPC$n,r(M)
parse M as M1, . . . , M`,
where |Mi| = n− r

rand← {0, 1}r
C0 = Fsk(start, rand)
for i = 1, . . . , ` do

Ci = Fsk(Mi, rand + i)
C`+1 = Fsk(end, rand + ` + 1)
return C = C0, . . . , C`+1

Algorithm D-RPC$n,r(C)
parse C as C0, . . . , C`+1,
where |Ci| = n

if ` + 1 < 3 return ⊥
for i = 0, . . . , ` + 1 do

(Mi, randi) = F−1
sk (Ci)

if (M0 6= start) ∨ (M`+1 6= end) return ⊥
for i = 1, . . . , ` do

if randi 6= rand0 + i return ⊥
if (Mi = start) ∨ (Mi = end) return ⊥

if rand`+1 6= rand0 + ` + 1 return ⊥
return M = M1, . . . , M`

The following theorems quantify the security of RPC$ mode with respect to
existential unforgeability and chosen ciphertext attacks.

Theorem 6. Let Π be an encryption scheme using RPC$n,r mode instantiated
with a block cipher chosen randomly from Pn. Then Π is (t, q, b(n − r); εunf)-
secure in the sense of existential unforgeability, where:

εunf =
(b + q)(q − 1)

2r
+

2n−r−1

2n − b− 2q
.

Sketch of Proof Let A be an adversary attacking Π in the sense of existential
unforgeability. Let randi be the nonce associated with query i, for i = 1, . . . , q,
and let bi be the number of plaintext blocks in the ith query. Let Overlap be the
event that randi + k = randj + k′ for some i 6= j and 0 ≤ k ≤ bi, 0 ≤ k′ ≤ bj .
In other words, Overlap is the event that there is an overlapping sequence in the
random padding used.
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The success probability of A is given by:

Pr [Success] = Pr [Success|Overlap] Pr [Overlap]
+ Pr

[
Success|Overlap

]
Pr

[
Overlap

]

≤ Pr [Overlap] + Pr
[
Success|Overlap

]
.

Now, in the case of Overlap, the advantage of A is the same as in the stateful
version of RPC (Theorem 2). Furthermore, we have (following [2]):

Pr [Overlap] <
(b + q)(q − 1)

2r
.

This gives the stated result. ut
To see that this bound is essentially tight, consider an adversary A making

q = 2 queries, totaling b blocks, achieving success probability approximately
2n−r−1

2n−b−2q + b−2
2r , which operates as follows: A submits to the encryption oracle

the plaintext 0(b/2)(n−r) twice. If any of the ciphertext blocks received in return
from the oracle are equal (except in the case that the two ciphertexts received
are entirely equal), A can cut-and-paste the ciphertexts to form a new ciphertext
decrypting to a (longer or shorter) valid plaintext consisting of all zeros. The
probability of this occurring is precisely b−2

2r . If this does not happen, A guesses
a value for a ciphertext block and submits this (as before).

Theorem 7. Let Π be an encryption scheme using RPC$n,r mode instantiated
with a block cipher chosen randomly from Pn. Then Π is (t, qe, be(n−r), qd; k, ε)-
secure in the sense of IND-P2-C2, where:

ε =
(k − 1)qe + be

2r
+ qdεunf .

Sketch of Proof We first analyze the success probability of an adversary A
when attacking Π in the sense of IND-P2-C0. Let randi be the nonce associated
with query i, for i = 1, . . . , qe, and let bi be the number of plaintext blocks in
the ith query. Let rand∗ be the nonce associated with the challenge ciphertext.
It is clear that the adversary can succeed only when randi + r = rand∗ + r′,
with 1 ≤ r ≤ bi, 1 ≤ r′ ≤ k (indeed, an adversary can submit the plaintexts
0k(n−r), 1k(n−r) and then query the encryption oracle repeatedly at 0k′(n−r) for
various values of k′ to try for a repeated block). The chance of such a collision is
maximized if all nonce sequences generated by encryption oracle queries are no
less than k − 1 blocks apart. Then, a collision occurs if rand∗ is k − 1 or fewer
blocks before any previous sequence or in a block occupied by some previous
sequence. So:

AdvIND−P2−C0
A,Π ≤ (k − 1)qe + be

2r
.

Application of Theorems 6 and 1 gives the final result. ut
Bounds for RPC$ instantiated with a super-PRP block cipher are straight-

forward extensions of the above (as in Theorems 4 and 5), and are omitted.
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4.3 Forthcoming: An Incremental Mode

The present results have led us to develop a chosen-ciphertext-secure incremental
encryption mode [4]; details will appear in a forthcoming manuscript [17]. An in-
cremental mode of encryption is one in which updating the encryption of a docu-
ment (for instance, when a document is edited) is much faster than re-encryption
of the entire document. An incremental version of the modes presented above
partially offsets their relative inefficiency (depending on the application).

5 Discussion

It is instructive to compare RPC mode to other modes of encryption which might
potentially achieve security under chosen ciphertext attacks. Note, however, that
previous work in this area has concentrated on extending super-PRPs on n bits
to super-PRPs on kn bits, and not on chosen ciphertext security. While a super-
PRP on kn bits is desirable, it does not necessarily imply security when the
adversary is allowed to submit ciphertexts of varying lengths. We note that
RPC is not intended to be a super-PRP; instead, it is meant to give chosen
ciphertext security via unforgeability.

One mode of encryption was suggested by Naor and Reingold [20]. They
provide a construction which extends a block cipher on n-bits to a super-PRP on
2in bits, for any i ≥ 1. However, it is unclear how to extend their construction to
handle variable input lengths. Furthermore, the construction requires shared keys
for both the underlying block cipher and two additional hash functions. Finally,
since the construction requires two applications of a hash function to strings as
long as the plaintext message, the construction is not inherently parallelizable.

A different mode of encryption was suggested by Bleichenbacher and Desai
[8]. Their construction gives a super-PRP on messages of arbitrary length, and
requires the parties to share keys to three underlying block ciphers. However, it
is not clear (and we were unable to prove) that their mode is secure under chosen
ciphertext attacks when the adversary is allowed to submit ciphertexts of varying
lengths. Also, the scheme is relatively inefficient, as it requires three applications
of the underlying block cipher for every block of the plaintext message, and the
required computation is not parallelizable.

RPC mode is simple and leads to a straightforward security analysis. The
drawback of the mode is the ciphertext expansion and resulting slowdown: for
practical security one would want r ≥ 32 which gives impractical expansion
when using a 64-bit block cipher. When using block ciphers with 128-bit or
larger block-sizes (e.g., AES), this is less of a concern (only 33% expansion).
Advantages of RPC include the fact that the parties need share only one key and
that the scheme is completely parallelizable. In contrast, authentication using
a MAC requires an additional key and another cryptographic computation per
block (which in many cases requires highly sequential computation). Minimizing
shared key lengths is important in any integration of public-key and private-
key encryption (such as e-mail encryption software). We further note that the
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ciphertext expansion in the current state of increased communication and storage
bandwidth does not seem like a real limitation.

As an open research direction, we note that the mode presented here has the
ciphertext a (constant) multiplicative factor longer than the plaintext. Can this
be improved to obtain a provably secure, single-key mode in which the ciphertext
is longer than the plaintext by only an additive constant?
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Abstract. One of the five AES finalists, MARS, makes use of a 9x32
s-box with very specific combinatorial, differential and linear correlation
properties. The s-box used in the cipher was selected as the best from
a large sample of pseudo randomly generated tables, in a process that
took IBM about a week to compute. This paper provides a faster and
more effective alternative generation method using heuristic techniques
to produce 9x32 s-boxes with cryptographic properties that are clearly
superior to those of the MARS s-box, and typically take less than two
hours to produce on a single PC.

1 Introduction

The Data Encryption Standard [7] has, for the past 25 years, been the US stan-
dard for symmetric (shared-key) encryption. In recent years, however, its block
and key length have proved to be incapable of providing the levels of security
required for applications which utilise shared key encryption. The call for a new
standard to replace the Data Encryption Standard for shared-key encryption has
been a controversial issue within the cryptographic community for the past two
years. The new standard to be known as the Advanced Encryption Standard
(AES) [8] has currently been narrowed down to five candidates out of the fifteen
initial submissions to the call for AES algorithms in 1997.

The security of a block cipher rests almost entirely on the strength of the
components of which it is comprised. These components must not only be se-
cure individually, but must also achieve a much higher level of security when
organised together as a cipher system. Substitution boxes (s-boxes) are one of
the most important components of a block cipher. They contribute a variety
of strengthening properties to the cipher as a whole. Their basic mechanism of
allowing bits coming in to an s-box to be replaced with bits going out of an s-box
makes them an obvious (and often the only) means of providing nonlinearity to
a cipher.

One of the five final candidates for the AES is the MARS cipher [3]. IBM,
the designers of the MARS symmetric block cipher, have generated a 9x32 s-box
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which is used in various stages of its computations, both as a 9x32 s-box and
as two 8x32 s-boxes. A large effort was undertaken on the part of the designers
to generate an s-box which satisfied the very specific properties outlined in the
MARS documentation. This required an approximate program execution time
of ”about a week”. However, as will be shown in Section 3, the MARS s-box
does not satisfy all the required properties.

In this paper we present an alternative approach to the generation of MARS-
like s-boxes using a heuristic technique known as hill climbing. We discuss the
cryptographic properties achieved by hill climbing, and in particular give a com-
parison between these and the property requirements of the MARS s-box. We
show that in order for our hill climbing application to satisfy the requirements of
the MARS s-box, the program execution time for generation of an s-box was at
most 3.3 hours. The average generation time for a 9x32 MARS-like s-box using
our approach was approximately 2 hours. Apart from speed, hill climbing provi-
des individual output functions that have cryptographic properties superior to
those of the MARS s-box output functions.

The remainder of this paper is set out as follows: In Section 2 we outline
some important fundamentals in s-box theory. In Section 3 we comment on the
cryptographic property requirements of the MARS s-box. Section 4 discusses the
techniques used by the designers of MARS to generate the 9x32 s-box used in
their computations. We also describe our alternative technique for generating
MARS-like s-boxes which satisfy the same requirements imposed by the MARS
designers. In Section 5 we discuss some possible variations to our generation
technique and relationships between requirements for the MARS s-box and our
s-box. Some concluding points are put forward in Section 6, together with some
directions for future research in this area.

2 S-Box Fundamentals

An MxN substitution box (s-box) is a mapping from M input bits to N output
bits. There are 2M inputs and 2N possible outputs for an MxN s-box. A 9x32
s-box, such as the MARS s-box, has 9 input bits and thus 29 = 512 possible
inputs. Each input maps to a 32-bit output word.

S-boxes can also be considered as an ordered set of single output boolean
functions. The truth table of a boolean function f(x) is a vector containing 2M

elements, each element ∈ {0,1}. The polarity truth table of a boolean function,
denoted f̂(x), is a simple translation from the truth table where every element
0 in the truth table is replaced by the element 1 in the polarity truth table and
every element 1 in the truth table is replaced by the element -1 in the polarity
truth table. The relationship can be defined as f̂(x) = 1 - 2f(x).

The hamming distance between two boolean functions f(x) and g(x) is the
number of truth table positions in which they are different. The Walsh Hada-
mard Transform (WHT) of a boolean function, denoted F (ω), is defined as
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F (ω) =
∑

x f(x)Lω(x) where Lω(x) is the linear function selected by ω

and gives a measure of the correlation between a boolean function and the set
of all linear functions and their complements. Note that a linear function, L(x)
=
∑

aixi with ai ∈ {0, 1}.
Boolean functions (and therefore s-boxes) are required to exhibit crypto-

graphic properties in order for them to effectively resist certain cryptanalytic
attacks. We briefly describe below some of these properties.

A boolean function of M input variables which contains 2M−1 ones in its
truth table is said to be balanced. This property ensures that there is no bias
in the truth table. The advantage of using balanced boolean functions is that
they cannot be approximated by a constant function. Thus balance is a desirable
property to achieve in boolean functions.

The nonlinearity of a boolean function f(x) of M variables is given by

Nf = 1
2 x (2M − WHmax)

where WHmax represents the maximum absolute value of the Walsh Hadamard
Transform. The nonlinearity of a boolean function is the minimum Hamming
distance to the set of all affine (linear) boolean functions. By this definition a
boolean function with high nonlinearity cannot be well approximated by a linear
function, thus making the function more resistant to linear cryptanalysis. For
this reason, nonlinearity is considered to be one of the most important crypto-
graphic properties of boolean functions.

The autocorrelation function, denoted r̂f (s), of f̂(x), the polarity truth table
of f(x), can be expressed as

r̂f (s) =
∑

x f̂(x)f̂(x ⊕ s).

This cryptographic property provides a measure of the imbalance of all first
order derivatives of the boolean function f(x). A boolean function with low auto-
correlation makes it more resistant to differential cryptanalysis in that the lower
the autocorrelation value, the more difficult it is to approximate the function’s
first order derivatives.

An M -variable function f(x) is said to be kth order correlation immune,
denoted CI(k), if it is statistically independent of the subset xi1 , xi2 , ..., xik

of
input variables where 1 ≤ k ≤ M . In terms of security, the output of a correlation
immune boolean function, reveals no information about small subsets of input
values.

As boolean functions are the building blocks of s-boxes, it is typical to require
the same cryptographic properties to be present in s-boxes to improve their
strength and ability to resist existing cryptanalytic attacks as well as possible
future attacks.
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3 MARS Property Requirements

3.1 MARS Differential Requirements

The designers of the MARS cipher, in designing their 9x32 s-box, placed par-
ticular emphasis on ensuring that their s-box satisfied a number of property
requirements. In this subsection, we discuss these requirements with respect to
the combinatorial/differential properties of the s-box and also point out where
the s-box does not satisfy one of the stated properties.

Note that they have referred to their 9x32 s-box as S[i], 0 ≤ i ≤ 511. This
s-box may be divided into two 8x32 s-boxes, S0[j] and S1[j], where 0 ≤ j ≤ 255.
For ease, we will adopt this notation here also.

Differential Requirements from [3]

1. S does not contain either the word 0x00000000 (all zeros word) or the word
0xffffffff (all ones word).

2. Every pair of distinct entries in each of the two 8x32 s-boxes, S0 and S1,
differs in at least three out of four bytes. Equivalently, a pair of words from the
same 8x32 s-box may have no more than one byte the same, in the same position.

3. The 9x32 s-box, S, does not contain two entries S[i] and S[j] (i 6= j) such
that:

i) S[i] = S[j];
ii) S[i] = ¬ S[j]; or
iii) S[i] = -S[j].

In other words, there are no two entries in S which are (i) identical; (ii) are
complements of each other; and (iii) sum modulo 232 to give zero.

4. (i) The xor difference of each distinct pair of entries in S is unique and (ii)
the subtraction difference of each distinct pair of entries in S is unique.

5. Each distinct pair of entries in S differs by at least four bits.

An examination of the way the s-box entries of MARS are incorporated into
the cipher reveals why requirements 1 - 5 are important. An input value selects
an s-box entry and this entry is either xored with, added modulo 232 to, or
subtracted modulo 232 from an intermediate value. By excluding the all zero
subblock, any xor operation involving an s-box entry and an intermediate value
changes the intermediate value. In addition, exclusion of the all one subblock
ensures that not all bits of an intermediate value are altered. Requirements 2
and 5 ensure that any two distinct entries in S are somewhat different at both
the byte and bit level. Requirement 3 ensures that the effect of one s-box entry
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cannot be cancelled by another entry from the s-box. Requirement 4 ensures that
each possible output ”difference” of the s-box is equiprobable, i.e. the Difference
Distribution Table is flat.

3.2 MARS Linear Requirements

In this subsection, we discuss the linear requirements imposed by the designers
of MARS for their 9x32 s-box.

We note that the linear correlation properties of any MxN s-box can be con-
sidered as a (2M )x(2N -1) matrix where the columns are the Walsh-Hadamard
transform vectors of the boolean functions formed by xoring all non-empty sub-
sets of the output functions. Thus the linear requirements can be restated as
bounds on the values taken in this linear correlation matrix [2]. Since M is
large, even calculating this matrix is very expensive, however we may calculate
any individual column we like. The MARS linear requirements are all bounds
on particular column subsets of this matrix, which can be calculated easily. It
should be noted that the vast majority of the s-box linear correlation columns
are not considered in any way by the MARS linear correlation requirements.

In addition, there are strict limitations on the values that can be taken for
the correlations between boolean functions, and hence also for the values of bias
that can occur. The bias values for an M -input boolean function can only take
rational values that are a multiple of 2−M . Thus the choice of bias values 1

30 and
1
22 in the property requirements needs explanation.

Linear Requirements from [3]

1. Parity Bias:

The parity bias of S given by |Prx[parity(S[x]) = 0] - 1
2 | is to be at most

1
32 = 0.03125.

This requirement is a bound on the magnitude of the imbalance of the boo-
lean function formed by xoring all output functions. This property thus affects
only one column of the linear correlation matrix, that column being the xor sum
of all 32 output boolean functions.

2. Single-bit Bias:

The single-bit bias of S given by |Prx[S[x]i = 0] - 1
2 | ∀ i is to be at most

1
30 ≈ 0.03333.

This requirement places a bound on the magnitude of the imbalance for all
of the individual output functions. Thus 32 columns of the linear correlation
matrix are affected.
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3. Two Consecutive Bits Bias:

The two consecutive bits bias of S given by |Prx[S[x]i ⊕ S[x]i+1 = 0] - 1
2 |

∀ i is to be at most 1
30 ≈ 0.03333.

This requirement places a bound on the magnitude of the imbalance of boo-
lean functions formed by the xor of two adjacent outputs. There are 31 of these
pairs, hence 31 matrix columns are affected.

4. Single-bit Correlation

The single-bit correlation of S given by |Prx[S[x]i = xj ] - 1
2 | ∀ i,j is to be minimi-

sed. The single-bit correlation bias for the MARS s-box is less than 1
22 ≈ 0.04545.

This requirement seeks to minimise the correlation that all output functions
have with the individual input bits. This requirement affects 32 x 9 = 288 matrix
columns.

In all, only a maximum of 352 matrix columns out of 232 - 1 are considered
by the MARS linear requirements. With these same requirements, we are able
to show that our heuristic processes are able to generate better properties, much
quicker.

3.3 Satisfaction of MARS Properties

We shall now discuss the extent to which the MARS s-box was able to achieve
the above properties.

MARS S-Box, S comprised of S0 and S1

S satisfies differential conditions 1, 3 and 5. S0 and S1 both satisfy differential
condition 2. S does not satisfy differential condition 4. In [3], the authors state
that S has 130816 distinct xor-differences and 2 x 130816 distinct subtraction-
differences. This is not the case. S has 130813 distinct xor-differences and 2
x 130808 distinct subtraction-differences as evidenced below. In each equation,
the xor/subtraction difference of the indexed words on the left is equal to the
xor/subtraction difference of the indexed words on the right.

S[27] ⊕ S[292] = S[101] ⊕ S[360]
S[27] ⊕ S[101] = S[292] ⊕ S[360]
S[27] ⊕ S[360] = S[101] ⊕ S[292]
S[13] - S[138] = S[364] - S[297]
S[13] - S[364] = S[138] - S[297]
S[19] - S[168] = S[509] - S[335]
S[19] - S[509] = S[168] - S[335]
S[49] - S[142] = S[97] - S[392]
S[49] - S[97] = S[142] - S[392]
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S[333] - S[131] = S[211] - S[348]
S[333] - S[211] = S[131] - S[348]

The parity bias of S is 2−7, as stated in the MARS paper, which is less than
the threshold value of 1

32 . The single-bit bias of S is at most ≈ 0.033203 which is
slightly less than the limit of 1

30 ≈ 0.033333. The two consecutive bits bias of S is
at most ≈ 0.032290 which is less than the bound of ≈ 0.033333. The maximum
single-bit correlation bias of S is about 0.044922 < 0.0454545, as stated in the
MARS paper. Thus all linear conditions imposed by the designers of the MARS
s-box are satisfied by S.

4 S-Box Generation Techniques

4.1 Summary of MARS S-Box Generation Techniques

As mentioned earlier, the MARS s-box is a 9x32 s-box containing 512 32-bit
entries. The approach taken by the designers of the s-box was to generate the
9x32 s-box by using the well known SHA-1 (Secure Hash Algorithm-1) [9]. SHA-
1 produces a 160-bit digest comprised of the concatenation of five 32-bit words.
The input used for SHA-1 is the value 5i|c1|c2|c3 where i = 0..102, cj (j ∈ 1,2)
are the fixed constants

c1 = 0xb7e15162
c2 = 0x243f6a88

and c3 is allowed to vary until the first eight property requirements are satis-
fied. The value for c3 which minimises requirement nine is then the one chosen.
Therefore, each entry of the 9x32 s-box, S is computed as follows:

S[5i+k] = SHA-1(5i|c1|c2|c3)k

denoting the kth word of the output of SHA-1 (k = 0..4, i = 0..102).

The designers started the computational process with c3 = 0, increasing its
value until the resulting s-box was found. Each value of c3 resulted in a 9x32
s-box which was divided into two 8x32 s-boxes. For each value of c3, the xor
sum of distinct pairs in S0 and S1 was checked to see if it contained more than
one zero byte. If this was the case, then S[i] was replaced by 3 · S[i] for one of
the words S[i] in the pair. The new s-box was again tested for the 5 differential
requirements and first 3 linear requirements. If this test was passed then the
single-bit correlation was calculated. The final fixed constant value of c3 was
0x02917d59. This value was found to best minimize the single-bit correlation.

As stated in [3], the program for generating S ran for about a week, with the
value of c3 increasing to 0x02917459 = 43 086 93710 < 226. The MARS s-box
can be found in [3].
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4.2 Summary of our Techniques for Generating MARS-like S-Boxes

Our approach to generating MARS-like s-boxes is a flexible one which allows
for much variation in parameters and heuristic methods used. The particular
technique we chose was a heuristic method known as hill climbing [6].

4.2.1 Hill Climbing

Making small changes to the truth table of a boolean function produces one
of three effects on the WHT of the function - the WHT values can decrease,
remain unchanged or increase. In terms of properties such as nonlinearity, this
means that the nonlinearity measure of the new boolean function resulting from
the change can either become smaller, remain the same or become larger. Hill
climbing takes advantage of this effect to optimise cryptographic properties of
boolean functions (and thus s-boxes) by retaining a change which has brought
about an improvement in a property value, such as nonlinearity. Such an im-
provement is incremental and consequently explains the analogy with climbing
a hill.

Essentially, hill climbing involves the following steps:

1. Measure the property of concern for the original function.
2. Select a pair of elements to complement ensuring that the pair chosen
consists of a zero and a one. (This ensures balance is maintained).
3. Measure the property of concern for the new function.
4. If the measure of the property in 3 is ‘better’ than the measure of the
property of the original function, then accept this new function as the original
function. If the measure of the property in 3 is worse, then retain the original
function.
5. Repeat steps 2, 3 and 4 until a predetermined stopping criteria has been
reached.

4.2.2 General Procedure

The technique we used to create our s-boxes began with the generation of random
single-output balanced boolean functions. Each boolean function was hill climbed
to reach a minimum nonlinearity value, a parameter allowed to vary for optimum
results. The goal of this approach was to generate a set of 32 balanced boolean
functions which not only each achieved the minimum nonlinearity value set by
the user, but was also constrained by a maximum imbalance limit between pairs
of boolean functions and was further constrained by a maximum deviation limit
from CI(1).

A set of 32 boolean functions achieving these limits comprise a 8x32 s-box
containing 256 words. Pairs of s-boxes of this size were combined to form a
9x32 s-box. It seemed less complicated to generate 9x32 s-boxes in this way
due to the necessity of satisfying certain requirements placed on the 8x32 s-
boxes individually. The s-box was then checked for the differential and linear
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requirements placed on the MARS s-box. In order to satisfy differential condition
2, it was necessary to modify a small number of bytes in each of the 8x32 s-
boxes, typically in less than half a dozen entries, and re-checking that condition,
particularly for previous pairs of entries. Similarly, the satisfaction of differential
requirement 4 involved replacing a small number of entries in the 9x32 s-box.
Subsequently, the new s-box was tested for all 9 conditions again. We ensured
that the introduction of any replacement entries in the s-box did not destroy the
balance property achieved by the initial functions.

4.3 Experimental Results

We stated in Section 3 the differential and linear requirements, together with
threshold values set by the designers of MARS for their s-box. We shall now
discuss the extent to which our s-box was able to achieve these properties.

Our S-Box, SB comprised of Sb1 and Sb2

Note that SB[i] where i = 0..511 is a 9x32 s-box, and Sb1[j], Sb2[j] where j
= 0..255 are both 8x32 s-boxes. SB can be found in APPENDIX A and also
at http://www.isrc.qut.edu.au/papers/2000/AppendixA.txt.

SB satisfies differential conditions 1, 3, 4 and 5. Sb1 and Sb2 both satisfy
differential condition 2 of the MARS s-box requirements.

The parity bias of SB is 0.019531 which is less than the threshold value of 1
32

= 0.03125. The single-bit bias of SB is zero. The absence of any single-bit bias
in SB is due to the balance in each of the 32 boolean functions which comprise
the s-box. The two consecutive bits bias of SB is at most ≈ 0.024462 which is
less than the bound of ≈ 0.033333. The maximum single-bit correlation bias of
SB is 0.03125 < 0.0454545. Consequently, all linear conditions imposed by the
designers of the MARS s-box are satisfied by our example 9x32 s-box, SB.

The achievement of these results depended largely on the three parameters
used in our s-box generation program. For our experiments, we typically genera-
ted sets of 32 boolean functions with a minimum nonlinearity of 110, although
we experimented with parameters above and below this value. A parameter value
for minimum nonlinearity at around 108 produced 8x32 s-boxes in less than 10
minutes, while minimum nonlinearities of 112 for an 8x32 s-box took about 3 to 4
hours to generate. Our second parameter was a limit on the maximum imbalance
between distinct pairs of boolean functions in the set. A typical parameter value
for this limit used in our computations was 10. It was desirable to have a low
imbalance between pairs of boolean functions which consequently had the effect
of reducing the two consecutive bits bias condition imposed by the MARS s-box
designers. We also placed a large degree of importance on our third parameter,
the maximum deviation from CI(1). By minimizing this parameter value over all
boolean functions, we were easily able to produce a single-bit correlation value
below the given bound. Typically, we used parameter values such as 16 or 24
to be the maximum allowable deviation from CI(1) for the 32 boolean functions
comprising the 8x32 s-boxes.



Efficient Methods for Generating MARS-Like S-Boxes 309

A combination of hill climbing and appropriate setting of the parameters
discussed above allowed us to produce good 8x32 s-boxes, pairs of which gave
us 9x32 s-boxes. Most of the s-boxes generated by our technique were very close
to satisfying the MARS s-box requirements. In fact, for those s-boxes which we
successfully generated, bias values, when exceeded, were so by only extremely
small margins. The remaining s-boxes which we generated were easily able to
satisfy the same conditions that the MARS s-box satisfies.

Based on a heuristic technique approach, we were able to generate a number
of MARS-like s-boxes with little effort. In addition, the program execution time,
depending on the parameters chosen, varied from approximately 16 minutes to
around 3 hours and 20 minutes on a single Pentium II 300 MHz PC. This time
frame is a huge improvement on the program running time for the MARS s-box
of about a week.

5 Property Relationships and Technique Variation

5.1 Property Relationships

An s-box comprised of balanced boolean functions clearly possesses no single-bit
bias since the number of ones and zeros in the truth table of balanced boolean
functions is the same. Our s-box generation procedure began with the generation
of a set of 32 balanced boolean functions. In order to satisfy differential requi-
rements 2 and 4 it was necessary to replace a small number of bytes and entries
respectively. However, at all times throughout our computations we retained ba-
lance in the boolean functions. None of the boolean functions comprising the
MARS s-box are balanced. However, their deviation from balance is not large
enough to violate the single-bit bias requirement.

Nonlinearity is a very important cryptographic property of single output
boolean functions and s-boxes. Higher nonlinearity indicates a reduction in the
magnitude of statistical correlations between sets of input bits and sets of output
bits. The nonlinearity of an s-box is measured by the magnitude of the largest
Walsh Hadamard Transform (WHT) value in the linear correlation matrix. The
linear requirements in [3] are concerned solely with balance properties and no
requirements on nonlinearity values are given. The nonlinearity of the individual
boolean functions in Sb1 and Sb2 ranges from 108 to 112 inclusive, with an
average nonlinearity of 110. The boolean functions comprising the MARS s-
boxes, S0 and S1, have nonlinearity values ranging from 92 to 109, the most
frequent nonlinearity value being 102.

Although in our s-box generation procedure we have not directly sought
to optimise the autocorrelation property, the boolean functions comprising our
s-boxes have, in general, displayed low autocorrelation values. A low autocorre-
lation distribution for an s-box serves to improve its differential properties, in
particular, by flattening the Difference Distribution Table. The range of auto-
correlation values for the individual boolean functions in our 8x32 s-boxes, Sb1
and Sb2, was between 48 and 88, averaging around 56. We note that the boolean
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functions comprising the MARS s-boxes, S0 and S1, displayed autocorrelation
values of between 52 and 88, averaging 64.

One of the three important parameters set by our code was a limit for the
maximum imbalance of the xor sum of distinct pairs of boolean functions. The
purpose of this restriction on boolean function possibilities was to reduce the
imbalance between pairs. A low level of imbalance between pairs of boolean
functions includes the effect of reducing the two consecutive bits bias i.e. the
bias between adjacent output boolean functions.

Our requirement for setting a maximum deviation from CI(1) for the indi-
vidual boolean functions is identical to the single-bit correlation requirement
placed on the MARS s-box. Minimising this measure reduces the magnitude of
correlations which exist between individual input and individual output bits of
the s-box.

5.2 Possible Variations on our Techniques

A great number of variations to our technique for generating MARS-like s-boxes
may be adopted as alternative approaches to this task. An obvious generation
method would be to apply another useful heuristic technique called the gene-
tic algorithm to randomly generated boolean functions in order to ”build” a
cryptographically strong 9x32 s-box. Genetic algorithm applications have been
very successful in improving cryptographic properties of boolean functions and
s-boxes. Indeed, in [5] it was found that a combined genetic algorithm with hill
climbing proved to be even more successful in generating boolean functions with
good cryptographic properties such as nonlinearity and autocorrelation.

Additional parameters may be included in the code for the generation of a
stronger s-box, for example, criteria for strict avalanche and propagation. Vary-
ing the parameters used in the generation process allows for a different strength
emphasis in the resulting s-box, although the reader should note the existence
of conflicting properties which affect each other in a negative way.

Further, it should be noted that only a small subset of the linear correlation
matrix is utilised by the linear requirements imposed by the designers of the
MARS s-box. However, as a consequence of our parameter choices a larger subset
of the linear correlation matrix is utilised in the generation of our s-boxes, thus
making greater use of the information contained in this matrix. We believe that
an even stronger s-box can be generated if more information from this matrix is
incorporated into s-box design. However, it should be noted that to generate the
complete linear correlation matrix and analyse it in its entirety is not practical
due to the computational effort required for this task.

6 Conclusions and Future Research

The designers of the MARS s-box have successfully generated a 9x32 s-box which
satisfies all but one of the requirements placed on it relating to differential and
linear properties. Their s-box failed to satisfy differential condition 4, despite
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claims that it did in fact do so. A long search running through values for c3
caused the program to take about a week to produce the final MARS s-box.
In this paper we have presented an alternative approach to the generation of
MARS-like s-boxes providing satisfaction of all of the requirements which were
placed on the MARS s-box. Further, we have shown that by using a combination
of random boolean functions, heuristic techniques and appropriate parameters
we have gained additional properties such as higher nonlinearity and balance.
This approach requires far less effort and compares very favourably to the MARS
approach particularly in terms of computation time and ease of generating not
only one but a number of MARS-like s-boxes.

Much work is needed to be done in this area in order to conduct an indepth
investigation into the ways in which s-boxes with good cryptographic properties
may be generated. The desirable properties are not only limited to those of the
differential and linear type, even though their importance, stemming from targets
of powerful cryptanalytic attacks, is by no means trivial. In the previous section
we have endeavoured to outline a few of the variations on our techniques which
could be investigated. Work directed towards other optimisation techniques for
improving the cryptographic properties of s-boxes may be another worthwhile
path for future research in this area. We believe that the strongest s-box will be
one which achieves the correct balance between cryptographic properties. It is
an open problem to find this balance.
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APPENDIX A

An example S-box generated by our techniques using heuristic methods is SB[i]
below where i = 0..511:

0x657ce571 0xb2c0a31b 0xeaaacac0 0xd4d49175 0x4794396c 0xada63322
0xb6476df8 0x5d8b1bdb 0x3216bd0c 0x87810f0e 0x8928aab6 0x309926d6
0x86ed7cda 0x7ce28025 0xab91f5e5 0xa0559c17 0x03b7fcc1 0xc635a7c2
0xb12e7967 0xf3c464ce 0x1c8815d1 0x12fa97fb 0x6937c3b8 0xd8f7406d
0x581a310f 0xf60add94 0x3e297a67 0x61ecf4be 0x4abcb39d 0x3fbf5af2
0xb01c48c9 0x01193559 0xae0d8259 0xd1229472 0x2a1c3b84 0xd3b54059
0xd1557eb8 0x6d1f101c 0xee7fd7ab 0x3ac220a1 0x03e23430 0xd6746be1
0x5e026256 0x57f98f80 0x8b09cf06 0xe503ea7f 0xa3268b2a 0x192bb9e3
0xc28a5f35 0x54c8ceef 0x0ee5da73 0x4d3154a7 0x8eda0ab3 0xe5e18c07
0x9e923d96 0xf94dc633 0xb02e60bc 0x1b6acf89 0xb8c718a2 0xad77b720
0x2444c1d0 0x9d64bd69 0x6c7ea648 0xc6b3f1be 0x85fbf907 0xb62ab1a0
0x105349ff 0x0c0d7808 0xb9af64fd 0x81f3c534 0x1a450da2 0xf5d20e38
0xd8ea00da 0xd149c90a 0x2b69526e 0x9d7d7598 0xefe96d87 0x7f55539a
0x819c2b62 0x7f85c4ff 0x6c8d1bb8 0xcf7b529d 0x664294e4 0x7eb2d2cc
0x6fd7ade7 0x4ee6b926 0xb858f38d 0xc2c47b42 0xbeb2006e 0x75003971
0x1eb2eb50 0x02eff63d 0x05dbe8ce 0x4d0ccac2 0x502fc81f 0x25724c59
0x9852165f 0xa9bd3bb2 0x40308156 0x319ebb09 0x3bb1370f 0x18718f78
0x751ed38a 0xe74acd36 0x59745744 0xda8f3b85 0xf4771cfe 0x6510184d
0xc36d332b 0xbfb8d681 0xe95e9ec7 0xc0332dec 0xcb24e5f4 0x6a746cbb
0xe9a5b509 0x0fbc5c93 0x8b138d45 0x8f6a906e 0xde78fe6b 0x131faa01
0xe79f8558 0x64b15239 0x255e0943 0x7be2d50a 0x6d28a6bc 0xba53449d
0x8cc7e39a 0xd29d82f2 0xd940cab8 0xe0d39beb 0xb079da15 0xdc1d313e
0xcb032e98 0x9e3ff5f0 0x77da39db 0x06cc4b3c 0x6d7323c6 0xc880d552
0x63fd8825 0x98e0d78d 0x6861c1cb 0x710fd4e5 0x79b69e4e 0x00061be5
0x623125bb 0xa54b082c 0xcdc97ce2 0x99f71a6f 0xd1443f73 0xb406ff77
0x04a2f4b4 0x67698cd3 0xaa3d5731 0x59c12151 0x5a9f8068 0xe29e555c
0xefacd992 0x418f3f8f 0xb3233fd9 0xe8c97421 0xe673f889 0x2fd7f4d8
0x5e838793 0x654e53b7 0x20fad86e 0x0729f2ce 0xf788004f 0xbcce24e0
0x1f27ab52 0x49ff2416 0xe6afc9b1 0x09995df5 0x834c7268 0x17daa0cf
0xacc21c23 0xb4f41552 0xf018c993 0xe247cf88 0x11caef8d 0xcab5a62f
0x41bf4a29 0x68147ece 0x16396c17 0x707d2204 0x74b40fac 0xde046da6
0xf2e39b32 0xafa3025d 0x18d2f854 0x1cb5d9ec 0x9fdb4066 0xd755650c
0xe178476e 0x81b6dadb 0x871587fe 0x0e4bfb09 0x7aad28c5 0xf32a077b
0xd3ee8184 0x7db97e78 0x77e03897 0x02d05ec4 0xe4daa729 0x94cedc15
0xc6a41eab 0x1499c20a 0x3f20e0d8 0xf22df536 0x2b2e1c53 0x104dac0e
0xc23faec3 0xacca64e3 0xaaf70012 0x3a498f24 0x21353c82 0x19a00a08
0x8d1016ed 0xa61b6b33 0x3743e626 0x5050a261 0x5dcb8660 0x7338f3a9
0x4e070f37 0xe9b2e637 0x779110a2 0x12792697 0x14457cbb 0x3884e0af
0x3e5a7cb8 0xf0b1a844 0xa4a05227 0x62637655 0x07e4e409 0xad8d8f5c
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