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Preface

Parallel computing has entered a new era. Multicore processors on desktop com-
puters make parallel computing a fundamental skill required for all computer
scientists. High-end systems have surpassed the Petaflop barrier, and significant
efforts are devoted to the development of the next generation of hardware and
software technologies toward Exascale systems. Processor architectures, high-
speed interconnects and programming models are bound to go through dramatic
changes. The Message Passing Interface (MPI) is today the most successful and
widespread programming model for parallel computing. An open question is
whether MPI will evolve to meet the performance and productivity demands of
Exascale systems.

EuroMPI is the successor of the EuroPVM/MPI series, and is a key con-
ference for this community, established as the premier international forum for
researchers, users and vendors to present their latest advances in MPI and
message passing systems in general. The 18th European MPI users’ group meet-
ing (EuroMPI 2011) was held in Santorini during September 18–21, 2011. The
conference was organized by the University of Athens and the Innovative
Computing Laboratory at the University of Tennessee. Previous conferences
were held in Stuttgart (2010), Espoo (2009), Dublin (2008), Paris (2007), Bonn
(2006), Sorrento (2005), Budapest (2004), Venice (2003), Linz (2002), Santorini
(2001), Balatonfured (2000), Barcelona (1999), Liverpool (1998), Krakow (1997),
Munich (1996), Lyon (1995) and Rome (1994).

The EuroMPI 2011 program provided a balanced and interesting view on
current developments and trends in message passing. The main topics were
communication, I/O, networking, and implementation issues and improvements;
algorithms and tools; interaction with hardware; applications and performance
evaluation; fault tolerance. We received 66 paper submissions out of which we se-
lected 28 papers for presentation, and 10 posters with short presentations. Each
paper had three or four reviews, contributing to the high quality of accepted
papers. Two papers were selected as best contributions and were presented at
plenary sessions: Tobias Hilbrich, Matthias S. Mueller, Martin Schulz and Bro-
nis R. de Supinski, “Order Preserving Event Aggregation in TBONs” and Adam
Moody, Dong Ahn and Bronis de Supinski, “Exascale Algorithms for General-
ized MPI Comm split.” The conference included the special session on Improving
MPI User and Developer Interaction (IMUDI 2011) organized by Dries Kimpe
and Jason Cope.

The Program Committee invited four outstanding researchers to present lec-
tures on aspects of high-performance computing and message passing systems:
Pete Beckman on “Exascale System Software Challenges – From Bare Metal to
Applications,” George Bosilca on “Will MPI Remain Relevant?,” Michael Resch
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on “Experience of a PRACE Center” and Sudip Dosanjh on “Achieving Exascale
Computing Through Hardware/Software Co-design.”

The Program and General Chairs would like to sincerely thank everybody
who contributed to EuroMPI 2011, the authors, the reviewers, the participants
and our sponsors Microsoft, ParTec, the Innovative Computing Laboratory at
the University of Tennessee, Mellanox and the University of Athens.

September 2011 Yiannis Cotronis
Anthony Danalis

Dimitris Nikolopoulos
Jack J. Dongarra



1st Special Session on Improving MPI User
and Developer Interaction IMUDI 2011

While for many researchers MPI itself remains an active research topic, for many
others it has become an invaluable tool to extract useful science from some
of the most powerful machines available. Unfortunately these MPI application
developers – and their highly valued experience and use cases – don’t always find
their way to the EuroMPI conference. The 1st Special Session on Improving MPI
User and Developer Interaction (IMUDI 2011) aims to improve the balance by
actively reaching out to the application developer communities. By evaluating
the MPI standard from the perspective of the MPI end-user (application and
library developers) we hope to provide application developers the opportunity
to highlight MPI issues that might not be immediately obvious to the developers
of the various MPI implementations, while at the same time enabling the MPI
developers to solicit feedback regarding future MPI development, such as the
MPI-3 standardization effort.

For this year’s session, we invited Torsten Hoefler (University of Illinois at
Urbana-Champaign) to give a keynote address on the software development chal-
lenges associated with parallel programming libraries using the MPI standard.
We peer-reviewed and selected three papers from the six papers submitted to
the IMUDI 2011 session. These papers cover several topics that address software
development challenges associated with the MPI standard: MPI interfaces for in-
terpreted languages, using C++ metaprogramming to simplify message-passing
programming, and group-collective MPI communicator creation. We believe that
the discussion of these topics in the IMUDI 2011 session will bring together MPI
developers and MPI end-users, and help MPI users and implementors under-
stand the challenges in developing MPI-based software and how to effectively
use MPI in parallel software products.

We are grateful for the support and help provided by our colleagues for
this event. While we cannot list them all, we especially thank the EuroMPI
2011 conference organizers, including Jack Dongarra (University of Tennessee -
Knoxville), Yiannis Cotronis (University of Athens), Anthony Danalis (Univer-
sity of Tennessee - Knoxville), and Dimitris Nikolopoulos (University of Crete),
for their invaluable feedback. We also thank the members of the IMUDI 2011
program committee for reviewing the session papers and their help in organiz-
ing the session. The program committee for this year’s session included George
Bosilca (The University of Tennessee - Knoxville), Christopher Carothers (Rens-
selaer Polytechnic Institute), Terry Jones (Oak Ridge National Laboratory),
Wei-Keng Liao (Northwestern University), Shawn Kim (Pennsylvania State Uni-
versity), Andreas Knüpfer (Technische Universität Dresden), Quincey Koziol
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(The HDF5 Group), Jeff Squyres (Cisco Systems, Inc.), Jesper Träff (University
of Vienna), and Venkatram Vishwanath (Argonne National Laboratory). We also
thank William Gropp (University of Illinois at Urbana-Champaign) and Rajeev
Thakur (Argonne National Laboratory) for their support.

September 2011 Dries Kimpe
Jason Cope
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Experience of a PRACE Center 

Michael Resch 

HLRS, Stuttgart, Germany 

Introduction 

High performance computing continues to reach higher levels of performance and 
will do so over the next 10 years. However, the costs of operating such large scale 
systems are also growing. This is mainly due to the fact that the power consumption 
has increased over time and keeps growing. While a top 10 system 15 years ago 
would be in the range of 100 KW the most recent list shows systems in the range of 1-
2 MW and more. This factor of 10 makes costs for power and cooling a significant 
issue. The second financial issue is the increase in investment cost for such systems. 
15 years ago a mere 10 Mio € was enough to be in the top 10 worldwide. Today about 
40-50 Mio € are necessary to achieve that same position. 

Bundling of resources has been the answer to this increase in costs. In the US 
national centers evolved very early. The US and Germany followed. In Japan national 
large scale projects were set up. The national efforts in Europe seemed to be not 
competitive enough for many. So an initiative was funded by the European 
Commission called PRACE (Partnership for Advanced Computing in Europe). Its aim 
is to create a common HPC environment in Europe and by doing so bundle all 
resources to make Europe a relevant player in HPC again. 

PRACE 

In order to compete with the US and Japan PRACE needs to create a distributed 
Research Infrastructure. No single site in Europe can host all the necessary systems 
because of floor space, power, and cooling demands. PRACE is therefore aiming to 
create a persistent pan-European High Performance Computing RI with all necessary 
related services. Four nations (France, Germany, Italy and Spain) have agreed to 
provide 400 million Euro to implement supercomputers with a combined computing 
power in the multi Petaflop/s range over the next 5 years. This funding is 
complemented by up to 70 million Euros from the European Commission which is 
supporting the preparation and implementation of this infrastructure.  

In order to support scientists all over Europe users will be supported by experts in 
porting, scaling, and optimizing applications. Training programs are supposed to 
accompany the PRACE offering teaching scientists and students how to best exploit 
the large scale systems. A scientific steering committee will control a peer review 
process through which access to the resources of PRACE will be granted based on 
scientific excellence. 
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Strategic Impact 

Any large scale HPC center in Europe is affected by PRACE. In order to be relevant 
also as a national center one has to make sure to become part of PRACE. Integration 
into PRACE would require a clear a common strategy though. This means that 
Europe would have to work out which fields re relevant in HPC, which user 
communities should be supported, how many large scale systems would be required, 
how these large scale systems could be integrated with medium sized systems in 
regional centers, and how all of this would translate to specific focuses in individual 
centers across Europe. In other words, one would have to leave the question of “big 
iron” aside and would have to answer the question “what do we want to achieve with 
HPC”. For a large scale center it is necessary to find its own role within such a pan-
European strategy. The better roles are defined within PRACE the easier it is going to 
be to optimize European HPC centers. 

Financial Impact 

PRACE was a reaction to the growing financial costs of high performance computing. 
So in the first place one would expect it to solve the financial problems of the 
community. However, the issue of funding is not an easy one. So far national 
governments have devised their own strategies for funding high performance 
computing. In some cases like in the UK funding was given by the national 
government alone putting high performance computing under the control of a national 
funding agency. In other cases like Germany a mixed funding model was employed 
that would integrate local state funding with federal funding schemes. European 
funding comes into such existing systems and will certainly in the long run change 
them. 

A positive scenario would put European funding on top of the existing funding. In 
case national centers would benefit and would see European money as a sound basis 
for medium term financial planning. A worst case scenario would see a reluctance of 
national governments to subsidize a European activity, pointing at the existing 
European funding and leaving national centers in a financial quagmire. As of today it 
is unclear which way the European commission and different national governments 
are headed and how this is going to work out for national centers. 

Organizational Impact 

As of today national centers are working based on national organizational strategies. 
There are established rules for accessing the systems. There are establishes rules for 
providing service to the users. Again we see different model. Some, like the UK, tend 
to separate services from cycle provisioning. Others, like Germany, keep expertise 
both for hardware and application support in single national centers. Access to 
systems is in most cases based on scientific merit. At the national level regional 
preferences have become widely irrelevant and animosities between different 
disciplines of science are reconciled by scientific committees that help keeping a well 
worked out balance. 
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With a European strategy a new level of organization is introduced. Committees 
have so far been set up in PRACE. It remains to be seen how rules and regulations 
work out. It is open how well the scientific decisions are accepted both with a national 
background and with competing scientific ambitions of the users.  

For a national European high performance computing center this opens another can 
of worms. New rules have to be integrated into existing governance. New users and 
ne reviewers have to be dealt with. This could be a fresh breeze for organizations that 
have been set up 15 to 20 years ago. It could also put some of the existing regional 
and national systems out of balance. It remains to be seen which way PRACE is 
headed and how this is going to work out for individual centers. 

The Special Case of Industrial Usage 

All over Europe there are some centers that not only supply CPU cycles and/or 
support to scientific users. These centers have well established concepts of how to 
support industrial users. The most well-known industrial co-operations are established 
in the center in Bologna (CINECA) Edinburgh (EPCC) and Stuttgart (HLRS).  

For these centers PRACE has created yet another challenge. Providing access to 
industry one usually has to focus on a variety of issues: 

- Security: Industry does have an issue with data security as well as with 
secure access to systems. 

- Reliability: Reliability and availability for industry is a highly relevant issue 
while science usually can accept downtimes as long as they are not close to a 
paper deadline. 

- Network access: The typical researcher has access to the internet through 
public research networks. The bandwidth usually is high enough to connect 
to any European HPC center. For industry network connectivity is much 
more difficult to get. And beyond bandwidth there is an issue again with 
network security. 

- License availability: For research licensed software usually comes at an 
acceptably low price. For industry licensing is a big issue and costs for 
licenses usually by far exceed costs for CPU cycles. Providing industry with 
access to HPC systems requires therefore a solution of the licensing problem 
that simply does not exist for researchers. 

Furthermore there are a number of financial issues: 

- Cost: While researches take system access for granted and do not ask for 
financial cost, prices are extremely sensitive for industrial customers. At the 
same time public funding agencies are not at all happy with tax payers’ 
money being used to subsidize industry. It is therefore mandatory to 
calculate the total cost of any CPU hour sold to industry in order to keep 
competing nations like the US or Japan from filing complaints against 
European funding agencies. 

- Tax: As long as HPC is kept in the realm of science and research tax usually 
is not an issue. It becomes an issue once industrial usage or even exchange of 
CPU cycles becomes the norm. German tax regulations have it that giving 
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away CPU cycles to a company – be it a non-profit or a profit organization – 
obliges the provider to pay tax for the assumed value of these CPU cycles. 
Tax regulations may change over time but should not be ignored when 
talking about system costs that are in the range of 100 Mio. €.

- Regulations: Funding for HPC is provided by research funding organizations 
based on the assumption that the money is spent for research purpose. If 
systems are used for industrial production simulation away has to be found 
to reimburse the funding agency. As an alternative the money earned can be 
reinvested to compensate for the loss of CPU time of scientists by industrial 
usage. 

Summary 

European large scale computing centers are headed for an interesting future. With 
China, Japan and the US competing for the fastest available computer system they 
might be left behind in terms of performance. The negative impact on their users 
could push them to seek access to systems in one of the countries mentioned. This 
would put European centers out of business within three to five years.  

European funding is a chance to counter these efforts. The European Commission 
has decided to make PRACE its method of choice to support high performance 
computing in Europe. This introduction of a new player in the field opens a variety of 
questions. These questions will have to be answered if Europe wants to be 
competitive in high performance computing in the future. 

For any national center it is vital to find a role within PRACE. At the same time it 
is necessary to carry over well established and worked out procedures to turn PRACE 
from a project into a stable funding and operational infrastructure that has a positive 
impact on an existing, well-established, and very successful HPC eco-system. 



Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 5–7, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Achieving Exascale Computing  
through Hardware/Software Co-design 

Sudip Dosanjh, Richard Barrett, Mike Heroux, and Arun Rodrigues 

Extreme Scale Computing 
Sandia National Laboratories 

Albuquerque, NM 87185 
Sudip@sandia.gov 

Several recent studies discuss potential Exascale architectures, identify key technical 
challenges and describe research that is beginning to address several of these 
challenges [1,2]. Co-design is a key element of the U.S. Department of Energy’s 
strategy to achieve Exascale computing [3]. Architectures research is needed but will 
not, by itself, meet the energy, memory, parallelism, locality and resilience hurdles 
facing the HPC community — system software and algorithmic innovation is needed 
as well. Since both architectures and software are expected to evolve significantly 
there is a potential to use the co-design methodology that has been developed by the 
embedded computing community. A new co-design methodology for high 
performance computing is needed. 

Hardware/software co-simulation efforts that will be central to co-design are 
underway [4-7]. One example is the Structural Simulation Toolkit (SST) which is 
being developed and employed by Sandia National Laboratories, Oak Ridge National 
Laboratory, the Georgia Institute of Technology, the University of Maryland, the 
University of Texas, New Mexico State University, Micron, Intel, Cray Inc., 
Advanced Micro Devices, Hewlett Packard and Mellanox [4,5]. SST is an enabling 
tool for several co-design centers being formed and is being applied to understand 
how current and future algorithms will perform on Exascale architectures and is being 
used to perform tradeoff studies to analyze the impact of architectural changes on 
application performance. Co-design requires that the benefit of these architectural 
changes be considered in relation to their cost (R&D investment, silicon area and 
energy). It will be critical to leverage existing industry roadmaps whenever possible. 
An example SST calculation is show in the figure below. 

Research is also assessing the potential use of mini-applications as a tool for 
enabling co-design [1]. The goal is to try to capture the key computational kernel in a 
mini-app that consists of approximately 1,000 lines of code. There has been 
tremendous interest in the use of mini-apps by both the research community and by 
computer companies. It is difficult for a microprocessor company to understand 
applications that consist of millions of lines of codes. There can also be export 
restrictions on the application code or key libraries, making it difficult to engage the 
worldwide research community. Mini-apps also need to evolve and can be a 
mechanism for code-teams to learn what will and will not work on Exascale systems. 
Research is focused on understanding how well mini-apps can represent a full 
application by comparing the performance of the application and the mini-app on 
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different microprocessors and scaling up the number of cores. Preliminary results 
indicate that mini-apps can be used to predict the relative performance of applications 
on different microprocessors and can also predict scalability (at least to tens of cores on 
a microprocessor as is shown in the table below). This is potentially an important result 
because it would represent an O(1,000) reduction in complexity for the co-design 
process. 

 

Fig. 1. Average memory latency in nanoseconds calculated by SST for a variety of mini-
applications on a current generation memory subsystem 

Table 1. Parallel efficiency for the linear solve in a electrical device code (Charon) compared 
to the results from a mini-application 

Cores Miniapp Charon – linear 
solve without 

preconditioning 

Charon – linear 
solve with 

preconditioning 
4 Ref Ref Ref 
8 89 87 89 
12 73 74 78 
16 61 66 66 
20 54 49 54 
24 45 40 45 
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Will MPI Remain Relevant? 

George Bosilca 

 

While the Message Passing Interface (MPI) is the ubiquitous standard used by parallel 
applications to satisfy their data movement and process control needs, the over-
arching domination of MPI is no longer a certainty. Drastic changes in computer 
architecture over the last several years, together with a decrease in overall reliability 
due to an increase in fault probability, will have a lasting effect on how we write 
portable and efficient parallel applications for future environments. The significant 
increase in the number of cores, memory hierarchies, relative cost of data transfers, 
and delocalization of computations to additional hardware, requires programming 
paradigms that are more dynamic and more portable than what we use today. The 
MPI 3.0 effort addresses some of these challenges, but other contenders with latent 
potential exist, quickly flattening the gaps between performance and portability. 
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Abstract. In the quest to build exascale supercomputers, designers are
increasing the number of hierarchical levels that exist among system
components. Software developed for these systems must account for the
various hierarchies to achieve maximum efficiency. The first step in this
work is to identify groups of processes that share common resources. We
develop, analyze, and test several algorithms that can split millions of
processes into groups based on arbitrary, user-defined data. We find that
bitonic sort and our new hash-based algorithm best suit the task.

Keywords: MPI, MPI Comm split, Sorting algorithms, Hashing algo-
rithms, Distributed group representation.

1 Introduction

Many of today’s clusters have a hierarchical design. For instance, typical multi-
core cluster systems have many nodes, each of which has multiple sockets, and
each socket has multiple compute cores. Memory and cache banks are distributed
among the sockets in various ways, and the nodes are interconnected through
hierarchical network topologies to transmit messages and file data.

Algorithmic optimizations often reflect the inherent topologies of these hierar-
chies. For example, many MPI implementations [1] [2] [3] use shared memory to
transfer data between processes that run within the same operating system im-
age, which typically corresponds to the set of processes that run on the same com-
pute node. This approach is considerably faster than sending messages through
the network, but the implementation must discover which processes coexist on
each node. Some collective algorithms consider the topology of the network to
optimize performance [4] [5]. As another example, fault-tolerance libraries must
consider which processes share components that act as single points of failure,
such as the set of processes running on the same compute node, the same network
switch, or the same power supply [6] [7].

The first step in these algorithms identifies the processes that share a common
resource. A process can often obtain information about the resource on which it
� This work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
(LLNL-CONF-484653).
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runs. However, obtaining information about the resources that other processes
in the job use is usually more difficult. We could issue a gather operation to
collect the resource information from all processes. However, this approach is
prohibitively expensive in both time and memory with millions of processes.

Alternatively, we can almost directly offload the problem to MPI Comm split
since each resource is often assigned a unique name. The challenge lies in mapping
the resource name, which may be arbitrary data like a URL string, into a unique
integer value that can be used as an MPI Comm split color value. We could hash
the resource name into an integer and then call MPI Comm split specifying the
hash value as the color. However, the hash function may produce collisions, in
which case, processes using different resources would be assigned to the same
group. We would need to refine this group, perhaps by applying a different hash
function and calling MPI Comm split again in a recursive manner. This process
is both cumbersome and inefficient.

We propose a cleaner, faster interface by extending MPI Comm split to enable
the user to provide arbitrary data for color and key values along with user-
defined functions that can be invoked to compare two values. MPI Comm split
allows one to split and to reorder processes. In our generalized interface, the
caller may specify special parameter values to disable either the split or re-
order functions. When the reorder function is disabled, processes are ordered in
their new group according to their rank in the initial group. The reorder func-
tion is often unnecessary and, by allowing the caller to disable it, we can split
processes in logarithmic time using a fixed amount of memory under certain con-
ditions. Our key contributions in this paper are: a generalized MPI Comm split
operation; a scalable representation for process groups; implementation of col-
lectives using that representation; implementation of several MPI Comm split
algorithms; and large-scale experiments of those algorithms. While existing al-
gorithms for MPI Comm split require O(N) memory and O(N logN) time in
a job using N processes, we present algorithms that require as little as O(1)
memory and O(logN) time.

The rest of this paper is organized as follows. Section 2 discusses the linked
list data structure that we use to represent groups and illustrates how to imple-
ment collectives using it. Section 3 presents several algorithms for a generalized
MPI Comm split, and Section 4 presents experimental results.

2 Groups as Chains

Each process in current MPI implementations typically stores group membership
information as an array that contains one entry for each process in the group.
This array maps a group rank ID to an MPI process address, such as a network
address, so that a message can be sent to the process that corresponds to a
given rank. Each process can quickly find the address for any process in the
group using this approach. However, it requires memory proportional to the
group size, which is significant at large scales.

To represent process groups in a scalable way, we store the group mapping as
a doubly-linked list that is distributed across the processes of the group. Each
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(a) Pseudo code (b) Example on 4-process chain

Fig. 1. Inclusive scan on a chain

process represents a node in the list, and each records a small, fixed-size portion
of the group mapping consisting of the number of processes in the group, its
rank within the group, its process address, and the addresses of the processes
with a rank one less and one more than its own. We develop our algorithms on
top of MPI, so we simply record MPI rank IDs as process addresses. We refer to
this doubly-linked list as a chain.

Conceptually, we align the chain horizontally with increasing ranks from left
to right. Given a particular process as a reference, the left neighbor is the process
with rank one less and the right neighbor is the process with rank one greater.
The first rank of the group stores a NULL value as the address of its left neighbor,
and the last rank of the group stores this NULL value for its right neighbor.

Although this chain data structure limits the destinations to which a process
can directly address messages, many collectives can be implemented in logarith-
mic time by forwarding process addresses along with the messages that contain
the data for the collective. For example, in Figure 1 we illustrate how to im-
plement a left-to-right inclusive scan operation. With N processes in the chain,
this collective executes in �logN� rounds, where in round i ∈ [0, �logN�), each
process exchanges messages with left and right partners with ranks 2i less and
2i greater than its own. Each process first sets its left and right partners to be
its left and right neighbors in the chain, and each process initializes its current
scan result to the value of its contribution to the scan. Then a process sends
its current scan result to its right partner and appends the address of its left
partner to the message. The process also sends the address of its right partner
to its left partner.
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Each process combines the scan data that it receives from its left partner
with its current scan result and sets its next left partner to the address included
with that message. Each process also receives the incoming message from its
right partner to obtain the address of its next right partner. If the address for
the process on either side is NULL, the process does not exchange messages
with a process on that side. However, it forwards the NULL address values as
appropriate. After �logN� rounds, the current scan value on each process is its
final scan value.

One could similarly implement a right-to-left scan, and we use this technique
to implement a double scan, which executes a left-to-right scan simultaneously
with a right-to-left scan. Our algorithms use double scans to implement inclusive
scans, exclusive scans, and associative reduction operations that require O(1)
memory and run in O(logN) time. Further, we can implement tree-based collec-
tives on a chain, including gather, scatter, broadcast, and reduction algorithms.
Our group representation does not directly support general point-to-point com-
munication, but it is sufficient for all of the algorithms that we present.

3 Algorithms

3.1 Serial Sort Algorithms

Many existing MPI implementations first gather all color/key/rank tuples into
a table at each process to implement MPI Comm split. Each process extracts the
entries in the table with its color value and places those entries into another list.
Finally, each process sorts this list by key and then by rank using a serial sort
such as qsort. If N is the number of MPI processes, each process uses O(N)
memory to store the table and O(N logN) time to execute the sort.

We implement two variants of this algorithm. Our first variant, Allgather-
Group, executes an allgather using the chain to collect data to each process. Our
second variant, AllgatherMPI, calls MPI Allgather. AllgatherMPI relies on the
optimized MPI library to collect the data to each process to show how much
we could optimize the communication in AllgatherGroup. Neither of these al-
gorithms will scale well to millions of processes in terms of memory or time.
However, we include them as a baselines since they emulate the algorithms used
in existing MPI implementations [1] [2] [3].

3.2 Parallel Sort Algorithms

Our second approach to split processes uses a parallel sort. Given a chain of
mixed colors and unordered keys, we can split and sort the chain into ordered
groups using a parallel sort, a double scan, and a few point-to-point messages.
First, each process constructs a data item that consists of its color value, its
key value, its rank within the input group, and its process address. We redis-
tribute these data among the processes using a parallel sort, such that the ith

process from the start of the chain has the data item with the ith lowest col-
or/key/rank tuple. Each process next exchanges its sorted data item with its left
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and right neighbors to determine group boundaries and neighbor processes. We
then use a double scan to determine rank IDs and the size of each group. A final
point-to-point message sends this information back to the process that originally
contributed the data item. Mellor-Crummey et al. proposed this approach for a
similar operation in Co-Array Fortran [8].

For this approach, we implement four different parallel sort algorithms. In our
first algorithm, GatherScatter, we use a tree communication pattern to gather
all data items to a root process. We sort items during each merge step of this
gather operation so that the items are sorted after the final merge at the root.
We then scatter the items from the root to the processes. Similar to our allgather
algorithms, GatherScatter uses O(N) memory at the root, but it executes the
sort in O(N) time instead of O(N logN).

In our second parallel sort, we implement an algorithm that is similar to
the one that Sack and Gropp describe [9]. In this scheme, we gather the col-
or/key/rank tuples to a subset of processes that then execute Cheng’s algorithm
to sort them [10]. We then scatter the data items back to the full process set. In
our tests, we set the maximum number of data items that a process may hold to
a fixed value, M . We use several different values ranging from 128 to 8192, and
we label each algorithm as ChengM . The number of processes, P , that perform
the sort is an important parameter this algorithm. These algorithms use O(N

P )
memory and O(P logN + log2N + N

P logP ) time.
Third, we implement Batcher’s bitonic sort [11], which we label Bitonc. This

algorithm uses O(logN) memory and O(log2N) time.
Finally, for standard MPI Comm split, in which the color and key values are

integers, we implement a divide-and-conquer form of radix sort. This algorithm,
Radix, splits chains into subchains based on the most significant bits of the key
values. We then recursively sort each subchain, and rejoin the sorted subchains
into a single, sorted chain. Radix uses O(1) memory and O(logN) time.

3.3 Hash-Based Algorithm

Our third method to split processes employs hashing. This method avoids sorting
processes when only a split is required. We first hash the color value of the calling
process to one of a small number of bins, ensuring that we assign the same color
value to the same bin on each process. Then, we execute a double exclusive scan
on the chain. For each direction, the scan operates on a table that includes an
entry for each bin. Each entry contains two values. The first value encodes the
address of the process that is assigned to that bin and is next in line along a
certain direction (left or right) from the calling process. The second value counts
the number of processes along a certain direction from the calling process that
belong to that bin.

Each process initializes all table entries to a NULL address and a zero count,
except for the entry corresponding to its bin, in which case it sets the address
field to its own address and sets the count field to one. We then perform the
double exclusive scan operation, after which the result of the left-to-right scan
lists the address of the next process to the left and the number of processes to
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Fig. 2. Splitting a 6-process chain using 4 bins

the left of the calling process for each bin. Similarly, the result of the right-to-
left scan lists the address of the next process to the right and the number of
processes to the right of the calling process for each bin.

We then create chains that consist only of the processes mapped to a given bin.
Each process uses the address and count fields from the table entry corresponding
to its bin and assigns the process address from the left-to-right scan to be its
left neighbor and the process address from the right-to-left scan to be its right
neighbor. It sets its rank to be the value of the count field from the the left-to-
right scan and it adds one to the sum of the count fields from the left-to-right and
right-to-left scans to compute the total number of processes in its chain. This
operation splits the input chain into a set of disjoint chains, potentially creating
a new chain for each bin. This new chain may contain processes with different
colors. However, the hash function guarantees that all processes with the same
color value are in the same chain. An example split operation is illustrated in
Figure 2 in which the hash function uses the first two bits of a 4-bit color value
to select one of four bins.

We then iteratively apply this split operation to the chains produced in the
prior step. Each iteration uses a new hash function so that processes that have
different colors eventually end up in separate chains. For this work, we pack
the color value into a contiguous buffer and then apply Jenkin’s one-at-a-time
hash [12] [13]. For different iterations, we apply the same hash function but
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rotate the bytes of the packed color value and mask different regions of the hash
value to obtain new bin numbers. If needed, we invoke a sort algorithm to finish
splitting and reordering the chains.

We implement two variants of this algorithm, Hash and Hash64. Hash repeat-
edly applies the hash operation until the initial chain is completely split. Hash64
iterates until the chain is completely split or its length falls below a threshold
of 64 processes, at which point, we invoke AllgatherGroup to finish the split.
Each version stops iterating if a single color value is detected throughout the
chain. We check for this condition using an allreduce whenever a split iteration
does not reduce the length of the chain. If we need to reorder the chain after
completing the hash iterations, we use Bitonic sort. When reordering is required,
these algorithms have the same time and memory complexity as Bitonic. When
only a split is required, these algorithms use O(1) memory. Due to the nature of
hash functions, one may only determine probabilistic upper time bounds. How-
ever, one can show strict lower time bounds of Ω(log2N) when the number of
groups equals the number of processes and Ω(logN) when the number of groups
is small and independent of the number of processes.

4 Results

We test each algorithm on two clusters at Lawrence Livermore National Labo-
ratory. We use Dawn, an IBM BlueGene/P system that has 128K cores on 32K
nodes. The second system, Sierra, has over 1,800 compute nodes, each with two
Intel Xeon 5660 hex-core chips for a total over 21,600 cores. The Sierra nodes
are connected with QLogic QDR Infiniband.

We first investigate the performance of the various sorting algorithms. Dis-
abling the split, and using an integer value as the key, we show the time required
to complete a reorder operation on each platform in Figure 3. The two platforms
produce significantly different results. The plots all follow clear, distinct trends



16 A. Moody, D.H. Ahn, and B.R. de Supinski

1400

1600
Bitonic color80
Bit i l 5

1200

1400 Bitonic color5
Hash color80
Hash color5

1000

1200

ds

Hash color5
Hash64 color80
Hash64 color5

800

os
ec
on

600M
ic
ro

400

200

0

256 512 1024 2048 4096 8192 16384 32768 65536
Processes

(a) One color per block of 16 processes

1400

1600
Bitonic color80
Bitonic color5

1200

1400 Bitonic color5
Hash color80
Hash color5

1000

1200

ds

Hash64 color80
Hash64 color5

800

os
ec
on

600M
ic
ro

400

200

0

256 512 1024 2048 4096 8192 16384 32768 65536
Processes

(b) Two colors total

Fig. 4. Time for split without reorder

on Dawn. However, on Sierra, the plots generally converge at higher process
counts, at which we conject that network contention limits performance. On
both machines, the serial sort algorithms are best at small scale, but more scal-
able algorithms soon outperform them. On Dawn, Radix and Bitonic sort show
the best scaling trends. As expected, Radix sort, with its O(logN) complexity,
scales the best. However for all scales tested, Bitonic always has better perfor-
mance. At 16 processes, Bitonic is 5.5 times faster than Radix. The difference is
reduced to 3.0 times at 64K processes, but the hidden constants associated with
the big-O notation are too high for Radix to surpass Bitonic. At 64K processes
on Dawn, Bitonic sort is 100 times faster than the serial sort algorithms and 4.4
times faster than the fastest Cheng sort. Bitonic is still fast on Sierra, although
the apparent contention limits its performance. Regardless, on both machines,
the best approach is to use a serial sort algorithm for small scale and to switch
to Bitonic sort at large scale.

We next focus on the task of just splitting processes. We compare Bitonic,
the fastest parallel sort algorithm, to Hash and Hash64. To see how different
color datatypes impact the algorithms, we use character strings of length 5 and
of length 80 for color values. Figure 4 shows the results for Dawn. When the
number of process groups (the number of distinct colors) is on the order of
the number of processes, we find that the hash-based algorithms perform on
par with Bitonic sort. However, when the number of groups is small, the hash-
based algorithms outperform Bitonic with speedups between 1.7 and 2.1 at 64K
processes, depending on the length of the color value. The size of the color
value affects the performance of Bitonic, but it has little impact on Hash and
only impacts Hash64 in cases where it must call AllgatherGroup. Since the hash
operation always maps the color to an integer, its communication costs are not
affected by the size of the color value. However, the sort algorithms send the
color value in each message, so the cost of these algorithms increases with the
size of the color value. Hash or Hash64 perform the best in all cases shown.
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Fig. 5. Time for split with reorder

We also tested Bitonic, Hash, and Hash64 for splitting and reordering pro-
cesses in the same operation. The results from Dawn are shown in Figure 5. We
used an integer value for the key and character strings of different lengths for
color values. As shown in Figure 5(a), with many groups, and when the groups
are roughly equal in size, the timing results look very similar to Figure 4(a).
However, with only a small number of groups, as shown in Figure 5(b), then
both hash algorithms require more time than Bitonic. In this case, we incur
overhead to execute the hash algorithm to split the initial chain, but since the
resulting subchains are relatively long, the split does not significantly reduce the
cost of sorting. Since we cannot know the size of the resulting groups a priori,
Bitonic is the best option whenever reordering is required. The peak for Hash64
at 1K processes in Figure 5(b) is an artifact from a bug that invoked Allgath-
erGroup instead of Bitonic even though the chain was longer than 64 processes
after the split. This bug only affected the data points for 512 and 1K processes
in Figure 5(b).

5 Conclusions

Developers will soon need scalable algorithms to split millions of processes into
groups based on arbitrary, user-defined data. In this work, we developed sev-
eral algorithms that represent groups as a doubly-linked list, and we investi-
gated their performance through large-scale experiments. We found that bitonic
sort and a new hash-based algorithm offer the best results. We find that the
hash-based algorithm is up to twice as fast as bitonic sort when only splitting
processes. Compared to algorithms used in current MPI implementations, these
new algorithms reduce memory complexity from O(N) to as little as O(1), and
they reduce run time complexity from O(N logN) to as little as O(logN).

Although we focus on algorithms for a generalized MPI Comm split interface,
our findings also apply to the simpler, standard MPI Comm split function. Thus,
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we expect MPI implementations to benefit from our results. Further, we can
implement these algorithms and group representations directly in applications
that need fast methods to identify sets of processes. With this approach, appli-
cations can create lightweight groups without the overhead of creating full MPI
communicators.
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Abstract. Runtime tools for MPI applications must gather information
from all processes to a tool front-end for presentation. Scalability requies
that tools aggregate and reduce this information so tool developers often
use a Tree Based Overlay Network (TBON). TBONs aggregate multi-
ple associated events through a hierarchical communication structure.
We present a novel algorithm to execute multiple aggregations while, at
the same time, preserving relevant event orders. We implement this al-
gorithm in our tool infrastructure that provides TBON functionality as
one of its services. We demonstrate that our approach provides scalability
with experiments for up to 2048 tasks.

1 Introduction

We need scalable tools to develop correct, high performance MPI applications.
Event based tools intercept application events, such as the issuing of an MPI
call, and analyze the intercepted data. Since MPI applications can use many
processes, scalability is critical for these tools. Tool developers often use Tree
Based Overlay Networks (TBONs), which provide scalable tree-based communi-
cation from the MPI processes to the tool front end, to overcome this challenge
through extra tool processes that offload analyses from the application tasks.

We target improved scalability for MPI correctness tools [5][12] with the
Generic Tool Infrastructure (GTI), a new modular, scalable infrastructure. GTI
provides a TBON as one of its components and uses event aggregation to achieve
scalability. Our approach supports (mostly) transparent aggregation that must
preserve the orders in which some events occur. For example, if a correctness
check analyzes an MPI Send event that uses a user defined datatype, we must
first process the events that create and commit the datatype. Otherwise, a cor-
rectness tool would report that using the datatype in the MPI Send call was
erroneous. Thus, GTI must aggregate multiple event types while preserving rel-
evant intraprocess orders. Existing TBON infrastructures do not provide this
mechanism, so we present a novel scalable algorithm that preserves relevant
event orders across multiple TBON aggregations. Our contributions include:

– A basic algorithm for order preserving aggregation;
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c© Springer-Verlag Berlin Heidelberg 2011



20 T. Hilbrich et al.

0 

1 

0 

1 

0 

1 

(a) A TBON for 4 tasks

P0 

P1 

P2 

P3 

(b) Event stream example

Fig. 1. TBON aggregtion example

– The concept of “channel IDs” as a scalable means to store which tasks could
have provided information to an event;

– A channel ID based queuing algorithm for order preserving aggregation.

Existing tools encounter scaling issues that are already visible at a scale below
1024 tasks. We demonstrate the scalability of our approach and show measure-
ments with up to 2048 tasks. The remainder of the paper is organized as follows.
Section 2 introduces TBON event aggregation and the difficulties in preserving
event ordering. In Section 3, we present a preliminary algorithm to overcome
those difficulties. Section 4 introduces our channel ID concept. We show this
concept allows us to overcome the scalability limitations of the preliminary al-
gorithm in Section 5.

2 TBON Aggregation

TBONs improve tool scalability by distributing complex analyses across a hier-
archy of processes. Figure 1(a) shows a TBON with four application processes
and three tool processes. Usually, the leaves generate events that TBON nodes
propagate towards the root. However, to improve scalability TBON tree nodes
must aggregate multiple events when propagating upwards in the tree.

Aggregations support hierarchical event processing in which an analysis on a
tree node forwards the intermediate result instead of the original events. Fig-
ure 1(b) shows an event aggregation example in which the four tasks in (a)
create different event types over time, with each shape and letter representing
a different type. In our example, we can aggregate the four events of type A,
which could for example be matching MPI Barrier calls.

Events arrive in some order on each TBON node and we must wait until all
events that participate in a given aggregation arrive, as Figure 2 illustrates for
the example node T1. Figure 2(a) shows an order in which the events could arrive.
The event A3 (the event of type A from process 3) arrives first, while A2 only
arrives after events B2 and C3 arrived. In order to maintain intraprocess event
order, we must not process and forward C3 until the aggregation finishes. Thus,
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(a) Input event stream (b) Output event stream

Fig. 2. Event processing on T1

if the event processing on T1 preserves order, only the stream in Figure 2(b) can
result as output, in which A2,3 is the aggregated result of A2 and A3.

3 Order Preserving Aggregation

Our basic algorithm aggregates events and preserves relevant event orders. It
first determines if an event should be processed based on the state of ongoing
aggregations. If so, an aggregation that processes the event reports which tasks
participated in a successful aggregation. Thus, when we process an event, we
return these three values:

wasSuspended Further input is required to complete the aggregation so
we suspend processing of events from this process;

finishedAggregation Aggregation completed successfully;
reopenedProcesses List all processes for which we suspended event process-

ing of a successfully completed aggregation.

These values allow us to determine which events to aggregate without requir-
ing an a priori distinction. For example, we can aggregate events of an MPI
collective while distinguishing communicators. An aggregation can evaluate the
communicator argument to distinguish events from different communicators.

The algorithm in Figure 3 sketches the order preserving aggregation that
forms the main loop on each TBON node. We denote an event of some type
that was created on task p as ep. When we aggregate events, we replace a set of
events ep1 , ep2 , . . . , epn by a new event that we denote as e(p1,p2,...,pn). Our algo-
rithm receives new events and determines whether it can process them without
violating event order. If not, it queues the event.

Each iteration of the main loop, which runs until the tool shuts down, first
determines if a queued event can be processed (lines 6-14). Our algorithm must
determine whether an event is part of an ongoing aggregation (suspended). We
also must determine if an event with information from a particular task is in
the list of queued events (blocked) and whether we can process events of each
task (open). The states vector tracks tasks that are currently suspended. The
tempStates vector tracks which tasks in states must be set to the blocked state.

Lines 15-17 copy the information on whether a task is in the blocked or open
state from the tempStates vector to the states vector. If the algorithm cannot
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Input: P Number of tasks
queue = newQueue()1

states[P ] = (open, open, . . .); // Process suspension states2

while running do3

eventToProcess = NULL4

tempStates[P ] = (open, open, . . .); // Used to update states5

// Can a queued event be processed ?

for each event e(p1....,pn) in queue do6

canBeProcessed = true7

for p ∈ {p1, . . . , pn} do8

if states[p] == suspended —— tempStates[p] == blocked then9

tempStates[p] = blocked10

canBeProcessed = false11

if canBeProcessed == true && toReceive == true then12

queue.erase(e(p1....,pn))13

eventToProcess = e(p1....,pn)14

// Update states

for i ∈ {0, . . . , P − 1} do15

if states[i] �= suspended then16

states[i] = tempStates[i]17

// Receive an event (if necessary)

if eventToProcess == NULL then18

e(p1....,pn) = receiveEvent()19

eventToProcess = e(p1....,pn)20

for p ∈ {p1, . . . , pn} do21

if states[p] �= open then22

eventToProcess = NULL23

queue.pushBack(e(p1....,pn))24

break25

// Process the selected event

if eventToProcess �= NULL then26

e(p1....,pn) = eventToProcess27

(wasSuspended, finishedAggregation, reopenedProcesses) =28

processEvent(e(p1....,pn))
if wasSuspended == true then29

for p ∈ {p1, . . . , pn} do30

states[p] = suspended31

if finishedAggregation == true then32

{q1, . . . , qm} = reopenedProcesses33

for p ∈ {q1, . . . , qm} do34

states[p] = open35

Fig. 3. Order preserving event suspension algorithm for multiple aggregations
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process a queued event, it receives a new one. Lines 18-25 check whether all tasks
for which the newly received event contains information are in the open state. If
so, the algorithm can process the event, otherwise it queues the event.

Lines 26-35 process the selected event, if any, and update the task states. As
described above, each aggregation returns wasSuspended, finishedAggregation,
and reopenedProcesses after processing an event. We change the states of tasks
in the states vector to or from suspended based on these values.

4 Scalability

Order preserving execution of aggregations must not impose excessive overhead.
The algorithm in Figure 3 must determine which tasks provided information to
a newly received event. At scale, storing this information is too expensive, as the
number of processes that an event can involve increases as the TBON propagates
events towards the root.

GTI extends the algorithm in Figure 3 with a coarse grained locking mech-
anism. A channel ID stores which processes provided information for an event.
This ID represents the path that was taken by an event through the TBON,
starting at the node that created the event and ending at the node that is cur-
rently processing it. The ID stores this path in terms of the channels through
which the current node of the TBON received the event. The example TBON in
Figure 1(a) shows the index for the individual input channels of each node (0 or
1). To illustrate channel IDs, consider the output event stream B2, A2,3, C3 of T1

from Figure 2(b). When these events arrive at node T2, the root of the TBON,
B2 has channel ID 1.0, which means that T2 received it from channel 1 and T1

received it from channel 0. Whereas A2,3 has the channel id 1, as T2 received it
from channel 1, which created the record.

We store the channel ID for each event instead of a list of tasks that provided
information to it. The size of the ID depends on the branching factor of the
TBON and its depth, which are both typically logarithmic in the number of
MPI processes. To cover also extreme cases, GTI stores the ID in a set of 64
bit values. However, a single value is normally sufficient. Consider a balanced
binary TBON, each ID requires one bit, where we need one additional state to
store whether or not a given entry in the ID is used. So we need two bits for each
level of the TBON to store from which channel the event was received. Thus, a
64 bit value provides storage for 32 levels; such a TBON would span 232 tasks,
which exceeds the size of any existing system.

Our scalable algorithm uses the event channel ID to compute whether it can
process the event without violating the order property. We use a channel tree to
store the suspension state for sets of tasks. We also store a queue of events for
each node that the algorithm cannot currently process. Each node in the channel
tree represents a certain channel ID. The algorithm can process an event if none
of its nodes ancestors or successors are suspended. This represents a worst-case
evaluation of the tasks that can provide information to an event. We sketch the
scalable algorithm as follows:
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– If we receive a new event, we search the channel tree for the node that
represents the channel ID of the event:
• We add the searched for node and any of its ancestors if it is not present

in the channel tree;
• If any node on the path from the root to the found node has a non-empty

queue, we queue the new event at the first such node on the path;
• If the found node, any of its descendants, or any of its ancestors is sus-

pended, we queue the new event at the found node;
• If any descendant of the found node has a queued event, we queue the

new event at the found node;
– When we process an event:

• If an aggregation determines that it needs further input, we suspend the
node to which the event belongs in the channel tree;

• If an aggregation finishes, we unsuspend all nodes related to events of
the successful aggregation.

– Before receiving a new event, we determine if we can process a queued one:
• We process events in the order in each queue;
• We can process a queued event of a node if its ancestors and descen-

dants are not suspended and its suspension tree descendants do not have
queued events;

• We rebalance a queue when we remove an event from it: we push each
event into the node corresponding to its channel ID until the first event in
the queue belongs to the current node in the channel tree or the queue is
empty; when a node with a non-empty queue is on the path from a node
that we rebalance to the node to which an events channel ID belongs,
we add the event to the node with non-empty queue instead.

We illustrate the scalable channel ID based algorithm with the example from
Figure 1. Assume that the output event stream of T1 arrives at T2, which runs
the extended algorithm. A possible output event stream of T0 is A0,1, C1, C0.
Figure 4 shows a possible input event stream for T2 along with the channel IDs
for each event. When T2 processes event B2, it adds the node 1.0 to the channel
tree. As this event is not part of any aggregation, the algorithm does not suspend
any nodes, which leads to the state in Figure 5(a). When T2 processes A0,1, an
aggregation starts and we suspend node 0 in the channel tree ((b), suspended
node in red). When the algorithm processes C1 and C0, we queue both events in
their respective nodes ((c) and (d), indirectly suspended nodes in yellow). In its
next step, the algorithm processes A2,3, which completes the ongoing aggregation
and unsuspends all nodes (e). Before the algorithm receives a new event, it must
process all queued events, which results in the state that (f) shows. Finally, when
the algorithm processes C3, the channel tree reaches the state in (g).

The algorithm initiates a queue rebalancing if events cannot be queued in the
nodes to which they belong. For example, starting from the configuration in (b),
if a further event X with channel id 0 arrives before C1 and C0, the algorithm
will queue X in node 0. Thus, it will also queue C0 and C1 on that node. In
that case the algorithm rebalances the queue of node 0 after it processes X , as
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1.0 0 0.1 1 0.0 1.1 Channel ID: 

Fig. 4. Input event stream for T2

(a) Processed B2 (b) Processed A0,1 (c) Queued C1 (d) Queued C0

(e) Processed A2,3 (f) Processed C0, C1 (g) Processed C3

Fig. 5. Channel ID based order preservation for the event stream from Figure 4

neither C0 nor C1 belong to that node. This action moves the events from the
queue in node 0 to the nodes to which these events belong.

This extension to the algorithm in Figure 3 removes its scalability limitations,
as each event only carries a channel ID instead of a list of processes. However,
it could produce cyclic wait-for situations in which no aggregation can complete
when aggregating multiple event types due to its coarser suspension granularity.
We have not encountered this issue. However, the GTI implementation of channel
ID based suspension includes a timeout mechanism that would abort sets of
aggregations to resolve these deadlocks if they ever do occur.

5 Performance Results

We demonstrate the scalability of our algorithm through results for two synthetic
test cases on a 16 cores per node Opteron Linux cluster with 864 nodes and
a QDR InfiniBand network. Figure 6(a) shows slowdowns for a benchmark in
which we aggregate a single type of event. The event is a no-op that does not
perform interprocess communication. We normalize the slowdown to the fastest
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(a) Normalized no-op aggregation (b) MPI Barrier aggregation

Fig. 6. Slowdowns for order preserving event aggregation

measured run for 32 tasks and use five different tree configurations. We use fan-
ins of p, 32, 16, 8 and 4 for the TBON nodes, where p is a single tool layer with
one tool process that receives events from all application tasks. Except for p,
the slowdown increases slowly with increasing process counts; it increases by a
factor of two from 32 to 2048 processes with a fan-in of 4. For 2048 tasks the GTI
based tool aggregates over 10, 000 events per task per second. Figure 6(b) shows
slowdowns for a test case that aggregates MPI Barrier events. The slowdown
is computed based on the uninstrumented version of the benchmark. As the
communication cost of the barrier events increases with scale, the tool overhead
actually decreases for all fan-ins other than p.

6 Related Work

GTI uses the TBON concept of infrastructures like MR-Net [8] or Lilith [3]
and extends it to provide order preserving aggregation. System monitoring tools
such as ganglia [7], performance monitoring and observation systems such as
EventSpace [2], and debuggers such as Ladebug [1] also use TBON aggregation.
Aggregation is also important in database design such as aggregation schemes [9]
and sensor networks such as directed diffusion [4]. None of these approaches
considers the preservation of order when aggregation introduces new events.
However, Teo et al. study the memory requirements for enforcing different types
of event ordering in parallel simulations [11].

Our algorithm operates on parallel event streams on each TBON node. The
input is a serialization of these streams, with some parallel events being ag-
gregated into new ones. The algorithm determines how to reorganize the input
stream without violating event order. As opposed to the ordering defined by
Lamport [6], we only maintain intraprocess order; aggregations require detailed
knowledge of the event semantics to maintain interprocess order. Stephens sum-
marizes the many approaches to process parallel streams and related theory [10].
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7 Conclusions

We present a novel algorithm for order preserving execution of aggregations in
TBONs. Our basic algorithm has limited scalability since it requires knowledge of
which processes contributed to each specific event. We use channel IDs to extend
the algorithm to a coarse grained locking approach. A channel ID stores which
TBON node created an event and what path it took from that node to its current
location. We use channel IDs to determine when evaluation of an event would
violate the order property. As the channel ID is a worst-case approximation of
which processes could have contributed to an event, it could cause unnecessary
event queuing, which is a topic that we will study more closely in future work.
Finally, our performance measurements for up to 2048 processes demonstrate
the scalability of our order preserving aggregation algorithm.
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Abstract. By way of example this paper examines the potential of MPI
user-defined datatypes for distributed datastructure manipulation in nu-
merical libraries. The three examples, namely gather/scatter of column-
wise distributed two dimensional matrices, matrix transposition, and
redistribution of doubly cyclically distributed matrices as used in the
Elemental dense matrix library, show that distributed data structures
can be conveniently expressed with the derived datatype mechanisms of
MPI, yielding at the same time worthwhile performance advantages over
straight-forward, handwritten implementations. Experiments have been
performed with on different systems with mpich2 and OpenMPI library
implementations. We report results for a SunFire X4100 system with the
mvapich2 library. We point out cases where the current MPI collective
interfaces do not provide sufficient functionality.

1 Introduction

The derived (or user-defined) datatype mechanism of MPI is a powerful and
concise mechanism for describing arbitrary, MPI process local layouts of data
in memory in a way that such (possibly) noncontiguous layouts can be used
in all MPI communication operations (point-to-point, one-sided and collective)
the same way that unstructured, contiguous data of primitive datatypes can
be communicated [5, Chapter 4]. The advantage of derived datatypes is to free
the application programmer from explicit packing and unpacking of noncontigu-
ous application datastructures before and after communication operations. By
describing such datastructures as MPI datatypes the MPI library can in a non-
trivial way take care of the necessary packing (if needed at all), exploit special
hardware support, and interact with the underlying (collective) communication
algorithms, relieving the user from tedious detail work and providing a potential
(and sometimes real and considerable) performance benefit, as well as saving
memory in the application.

Much research has been devoted in the MPI community to make the datatype
mechanism perform well and fulfill some of its promise [1,2,9,12,13]. Despite
much progress, the mechanism still seems not to be used to its full advantage,
partly because skepticism as to its efficiency still lingers, partly perhaps because
of ignorance of its power and potential.

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 29–38, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



30 E. Bajrović and J.L. Träff

In this paper we consider the use of derived datatypes in (dense) numerical
computations, where basic datastructures are vectors and two-dimensional ma-
trices. Extending on the intended usage of MPI derived datatypes to describe and
improve the handling of local datastructures, we use the mechanism for describ-
ing virtual, distributed datastructures and for accomplishing collective transfor-
mations on such structures. Particular examples of this are matrix transposition
(of column distributed matrices) and transformations between sequentially and
doubly cyclically block distributed matrices, as used in the Elemental dense ma-
trix library [6]. We show that somewhat complex transformations that would
have to be done locally can be accomplished as part of the communication by
using the datatype mechanism to determine in what order elements are sent and
received, thus shifting the actual restructuring work to the datatype mechanism.
This usage is somewhat analogous to the random permutation algorithm in [10],
where permutation is accomplished by communication with randomly selected
destinations. Other work on using derived datatypes, partly in the same direction
as described here include [3,4]. In [11] the intimate connection between collective
communication interfaces and datatypes was used to generalize the expressivity
of the collective interfaces to situations that currently cannot be handled well
by MPI. Such examples will also be seen in the following.

The MPI derived datatype mechanism makes it possible to describe arbitrar-
ily complex layouts of data in memory, often in a very concise way. However, the
mechanism can sometimes be tedious to use and require a deep understanding of
the functionality that is possibly not possessed by the application programmer.
Unfortunately, there is currently no way in MPI to utilize compiler support for
automatically generating datatype descriptions, and also no commonly accepted
tools for assisting in setting up the type constructor calls [7,8]. Having thus a
sometimes high conceptual overhead, and a high construction overhead, derived
datatypes are mostly useful for statically defined structures, where the overhead
can be amortized over many MPI communication operations with the same lay-
out. The mechanism is not well suited to sparse, dynamic structures, where
changes are frequent and has high sequential overhead e.g. involving traversal of
a linked structure. But for many dense numerical computations this should not
be an impediment to using derived datatypes.

In the rest of the paper we explain three increasingly complex situations where
derived datatypes provide both a conceptual as well as a potential performance
advantage along the lines explained above. We benchmark these example ap-
plications, and discuss the advantages. We take the stance of the application
programmer and use the datatypes at face value; this paper is not about the
datatype mechanism per se or any potential optimizations thereto.

2 Distributed Matrix Operations

We consider simple, but nevertheless relevant operations involving two-dimen-
sional n×n matrices that are distributed over p MPI processes in various ways.
Matrices are stored C-like in row-major order. We provide solutions for both
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MPI Type vector(n,n/p,n,MPI DOUBLE,subT)

MPI Type vector(ceil(n,p),ceil(n,p),n,MPI DOUBLE,submatT)

n

Fig. 1. An n × n matrix distributed as n × �n/p� and n × �n/p� submatrices over
p processes. Each submatrix is described by an MPI vector datatype like subT. Also
illustrated is the submatrix (block) movement for transposition of such matrices as
captured by the submatT datatype.

the easier case where p divides n, as well as the more involved case where p
does not divide n. This is particularly illustrative of certain shortcomings in
the MPI collective interfaces as discussed in more detail in [11]. In Section 3
we benchmark the implementations and compare the performance to straight-
forward, hand-coded implementations not using derived datatypes.

2.1 Gathering/Scattering Column-Wise Matrices

In the first example, we assume that the matrix is distributed roughly evenly,
column-wise over the p processes, such that each process stores either �n/p� or
�n/p� consecutive columns, that is either an n× �n/p� or an n× �n/p� matrix.
Assume that a root process has to collect the full matrix from the distributed
columns or, conversely, initially has the full matrix and has to distribute the
columns to the other processes. A natural approach is to describe the columns
corresponding to the submatrices by a derived datatype, and then use a gather
operation to collect the submatrices, automatically putting them in their correct
position in the full matrix (scattering the matrix is completely analogous).

We first assume that p|n (p divides n). An n×n/p submatrix can be described
as an MPI vector type with n blocks (corresponding to the n rows), a blocksize
of n/p elements (corresponding to each row of n/p elements), and a stride of
n units (corresponding to the columns of the full matrix). This is illustrated
in Figure 1. In order to get the ith submatrix into its right position by the
MPI Gather call, the extent of the vector datatype must be such that the ith
submatrix starts at displacement in/p (times the size of the element type). The
MPI Type vector constructor per definition assigns the vectortype an extent of
(n− 1)n+n/p (times the extent of the element type). This must be changed by
a resize operation. The full code for gathering the submatrices is thus
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MPI_Type_vector(n,n/p,n,MPI_DOUBLE,&colT); // all columns of submatrix

MPI_Type_create_resized(colT,0,n/p*sizeof(double),&subT);

MPI_Type_commit(&subT);

MPI_Gather(columns,n*n/p,MPI_DOUBLE,matrix,1,subT,root,comm);

Note that the submatrices that are sent to the root can be treated as contiguous
buffers. When p does not divide n this does not work. In this case, two re-
ceive datatypes would be needed (one for the �n/p� columns, one for the �n/p�
columns), but there is no version of MPI Gather or MPI Gatherv that allow for dif-
ferent datatypes. The analogon of MPI Alltoallw is currently missing from MPI
(and might not be desirable, either). A different solution is possible, though.
Define instead a datatype describing a single column of either of the matrices,
and send and receive single columns using the MPI Gatherv collective to set the
displacements right.

MPI_Type_vector(n,1,n,MPI_DOUBLE,&colT); // one column of full matrix

MPI_Type_create_resized(colT,0,sizeof(double),&subT);

MPI_Type_commit(&subT);

c = (rank<n%size) : n/p+1 : n/p; // number of columns for this rank

MPI_Type_vector(n,1,c,MPI_DOUBLE,&col1T); // one column of local matrix

MPI_Type_create_resized(col1T,0,sizeof(double),&sub1T);

MPI_Type_commit(&sub1T);

for (x=0,i=0; i<size; i++) {

displs[i] = i*n/p+x; if (i<n%size) x++; counts[i] = n/p+x;

}

MPI_Gatherv(columns,c,sub1T,matrix,counts,displs,subT,root,comm);

A further disadvantage of this solution compared to the p|n case is that both
the receiving root process as well as all sending processes now access data in
strides, which may be inefficient. Thus, there may be an unnecessary performance
difference from the regular case where p|n.

2.2 Matrix Transpose

The next example shows how datatypes and collective operations can jointly ac-
complish a matrix transpose without having to do any explicit, local reordering
of submatrices (Examples 4.14 and 4.15 in [5] use datatypes for process local
matrix transposition). Again, the matrix is distributed across the processes as
columns, and each process has either �n/p� or �n/p� columns, as shown in Fig-
ure 1. The transposed matrix is stored in the same way. We first consider the
case where p|n.

The transpose can accomplished by an MPI Alltoall operation. Each process
has to send n/p rows to each of the other processes, and these have to be trans-
posed. This transposition is accomplished directly if the n/p× n/p submatrix is
sent as n/p columns instead of as n/p rows, receiving these columns as rows. As
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in the previous example each column can easily be described by an MPI vector
type and put together to a datatype describing the whole submatrix in column
major oder. This is shown in the code below:

MPI_Type_vector(n/p,1,n/p,MPI_DOUBLE,&colT); // single column of submatrix

MPI_Type_create_resized(colT,0,sizeof(double),&colresT); // single element

MPI_Type_contiguous(n/p,colresT,&submT); // tile together

MPI_Type_create_resized(submT,0,n/p*n/p*sizeof(double),

&submatT); // resize again to full submatrix

MPI_Type_commit(&submatT);

MPI_Alltoall(localmatrix,1,submatT,

transposed,n/p*n/p,MPI_DOUBLE,MPI_COMM_WORLD);

When p does not divide n the irregular MPI Alltoallw function is called for,
since there are now four different sizes and types of the submatrices. Since the
submatrices differ in both number of rows and number of columns, the trick
of specifying only a single column of the submatrices to be sent (or received)
and using the possibly more efficient (and in any case less tedious) MPI Alltoallv
operation will not work. Other matrix operations where submatrices have dif-
ferent shapes and where other collective operations are required (e.g. allgather)
may thus be difficult to implement currently in MPI since only the all-to-all
operations have the fully general, type parameterized MPI Alltoallw variant.

2.3 Elemental Cyclically Distributed Matrices

Our last example is concerned with the matrix distribution employed in the
Elemental dense matrix library [6]. Elemental matrices are stored in a doubly
cyclic fashion inside blocks of size n/r×n/c, where the number of MPI processes
is factored into p = rc. Each process stores a submatrix block (αi+k′r,j+k′′c) for
0 ≤ k′ < n/r, 0 ≤ k′′ < n/c as shown in Figure 2. To make the points, it suffices
here to assume that p|n, implying that also both r|n and c|n. We will in fact
assume that both c2|n and r2|n, but these are not fundamental restrictions.

Process(0, 0) Process(0, 1) · · ·
(α0+k′r,0+k′′c)0≤k′<n/r,0≤k′′<n/c (α0+k′r,1+k′′c)0≤k′<n/r,0≤k′′<n/c · · ·

Process(1, 0) Process(1, 1) · · ·
(α1+k′r,0+k′′c)0≤k′<n/r,0≤k′′<n/c (α1+k′r,1+k′′c)0≤k′<n/r,0≤k′′<n/c · · ·

Process(2, 0) Process(2, 1) · · ·
(α2+k′r,0+k′′c)0≤k′<n/r,0≤k′′<n/c (α2+k′r,1+k′′c)0≤k′<n/r,0≤k′′<n/c · · ·

Process(3, 0) Process(3, 1) · · ·
(α3+k′r,0+k′′c)0≤k′<n/r,0≤k′′<n/c (α3+k′r,1+k′′c)0≤k′<n/r,0≤k′′<n/c · · ·

· · · · · · · · ·

Fig. 2. The doubly cyclical Elemental matrix distribution with p = rc



34 E. Bajrović and J.L. Träff

We here show how to convert between consecutively numbered, block dis-
tributed matrices and the doubly cyclical blocks of Elemental using MPI derived
datatypes. First the processes are identified by the coordinates in the Cartesian
grid as shown in Figure 2, for which the MPI Cartesian topology functionality
can be used [5, Chapter 7]. All processes store a block of the same size and each
process gets a contribution from each other process in the course of the transfor-
mation, so a regular MPI Alltoall call could ideally be used. However, the start
positions of both sent and received blocks are not uniformly strided, and there-
fore an irregular MPI Alltoallv must be used instead. This problem with lack of
MPI expressivity was discussed in more detail in [11]. The blocks to be sent and
received are described by datatypes. Each process sends a block of n/r2 × n/c2

elements to each other process, consisting of the elements (αi+k′r,j+k′′c) for
0 ≤ k′ < n/r2, 0 ≤ k′′ < n/c2 for process (i, j). The elements from process (i, j)
are received as a submatrix that can again be described by a vector datatype
and stored at row jn/r2 in column in/c2. In other words the c and r strided ele-
ments are picked via the send datatype, and received as contiguous submatrices
via the receive type.

// shape of Elemental submatrix

MPI_Type_vector(n/(c*c),1,c,MPI_DOUBLE,&ErowTvec);

MPI_Type_create_resized(ErowTvec,0,n/c*sizeof(double),&ErowT);

MPI_Type_vector(n/(r*r),1,r,ErowT,&EblockTfull);

MPI_Type_create_resize(EblockTfull,0,1*sizeof(double),&EblockT);

MPI_Type_commit(&EblockT);

// shape of sequentially numbered block

MPI_Type_vector(n/(r*r),n/(c*c),n/c,MPI_DOUBLE,&BlockTfull);

MPI_Type_create_resize(BlockTfull,0,n/(c*c)*sizeof(double),&BlockT);

MPI_Type_commit(&BlockT);

for (i=0; i<p; i++) {

sdipls[i] = (i/c)*(n/c)+i%c; rdispls[i] = (i/c)*(c*n)/(r*r)+i%c;

}

MPI_Alltoallv(matrixblock,1,sdispls,EblockT,

elementalblock,1,rdispls,BlockT,comm);

3 Experiments

The three examples have been implemented as outlined above. We now present
benchmark results of these implementations and compare to straight-forward,
manual solutions that do not use datatypes, but do all communication on con-
tiguous buffers and with the same collective operations. The basetype is MPI -
DOUBLE. Benchmarks have been run on a small shared-memory Sun system with
OpenMPI, a larger Sun SunFire X4100 cluster with mvapich2-1.4, and a small
AMD/InfiniBand cluster with mpich2. The qualitative results are similar (under
OpenMPI there were some problems with the larger matrix sizes), and we only
discuss the results from the SunFire cluster.
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Fig. 3. Performance of column-wise matrix gathering on a SunFire 4100 cluster under
mvapich2-1.4 with p = 100 as a function of matrix order n

3.1 Column Matrices

We implemented both gathering and scattering of the column distributed ma-
trices for any p and n. In the hand-written solution without datatypes, the
n/p×n column matrices are reordered into n consecutive chunks that are gath-
ered/scattered as consecutive blocks. This is compared with two versions using
datatypes. The first describes the column matrices by a single vector of n/p-
element blocks, and works only when p divides n, whereas the other version
communicates single columns and works for any p and n. We can thus com-
pare the manual version to single column vectors for any p and n, and for the
case where p|n to the single column vector and the n/p-column vector. For the
p|n case regular MPI Gather or MPI Scatter operations can be used, otherwise
MPI Gatherv and MPI Scatterv are needed.

Results for p = 100 are shown in Figure 3 which makes it possible to compare
the six implementation variants. For this instance there is no visible performance
difference between the variants with regular and irregular collective operations.
The single column implementation variant where both receiving and sending
processes have to handle a vector datatype describing a single matrix column is
more than a factor 4 slower than the hand-coded variant, where all communi-
cation is from contiguous buffers of MPI DOUBLE. The datatype implementation
with a vector describing all n/p columns is slightly better than the hand-coded
version, but works only when p|n. The results for the matrix scatter example
are similar, but are left out here.

3.2 Matrix Transposition

For the matrix transposition example we present results for six versions. A man-
ual implementation where a local transposition into a contiguous buffer is per-
formed is contrasted to the datatype version where the submatrices are described
by nested datatypes as described in Section 2.2, both for the p|n case that can
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Fig. 4. Performance of column-wise matrix transposition on a SunFire 4100 cluster
under mvapich2-1.4 with p = 100 as a function of matrix order n

be implemented with MPI Alltoall and the general case where MPI Alltoallw has
to be used. In addition a version where datatypes describe only a single column
has been implemented; this can be made to work, if one is willing to use n× n
space per process for the full matrix instead of just n× n/p.

The results for p = 100 are shown in Figure 4 for increasing matrix orders
n. The regular, p|n variant with submatrix datatypes is significantly, about
20%, faster than the hand-coded variant. Likewise, the general version with
MPI Alltoallw and datatypes is similarly faster than the hand-coded, general
version. For matrix orders between 1900 and 3200 the MPI Alltoall implementa-
tions are worse than the implementations with MPI Alltoallw, which is probably
due to a suboptimal switch point from an improved to a direct all-to-all algo-
rithm. The hand-coded variants are straight-forward and certainly not optimal;
the point with these experiments is that better performance can be achieved by
simply describing the problem with the appropriate datatypes. Getting similar,
or better performance by hand might easily require considerably more work, and
could be less performance portable.

3.3 Cyclically Distributed Matrices

The redistribution from sequentially stored, blocked matrices to the Elemental
format has been implemented for the p|n case. Matrix order n is chosen as kp2

for k = 1, . . . , 8. Results are shown in Figure 5, and indicate that for this instance
the version employing datatypes is about a factor of 1.2 faster than the hand-
written version. The hand-written implementation performs a tedious (multiple
nested loops) restructuring of the submatrices into contiguous buffers at both
sending and receiving sides, and employs MPI Alltoall for the communication. For
this transformation derived datatypes provide both conceptual and performance
benefits.
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Fig. 5. Performance of matrix redistribution into Elemental format on a SunFire 4100
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4 Concluding Remarks

This study exemplified use of MPI derived datatypes in connection with collec-
tive operations to describe and effect redistribution operations on distributed
two-dimensional data structures as sometimes found in numerical applications.
Some such data structures, submatrices in particular, can conveniently be de-
scribed with the MPI datatype constructors (including the convenience functions
for arrays that were not used here), and can thus in principle alleviate the user
from tedious, detailed hand-coding work. In all three examples we showed that
performance could, with a standard MPI library and no extra effort, be improved
over straight-forward hand-coded implementations, often considerably.

Acknowledgment. The second author thanks George Bosilca whose remarks
on an earlier version of [11] have also influenced the examples described in the
present paper.
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Abstract. Modern hardware architectures featuring multicores and a
complex memory hierarchy raise challenges that need to be addressed by
parallel applications programmers. It is therefore tempting to adapt an
application communication pattern to the characteristics of the under-
lying hardware. The MPI standard features several functions that allow
the ranks of MPI processes to be reordered according to a graph at-
tached to a newly created communicator. In this paper, we explain how
the MPICH2 implementation of the MPI Dist graph create function was
modified to reorder the MPI process ranks to create a match between the
application communication pattern and the hardware topology. The ex-
perimental results on a multicore cluster show that improvements can be
achieved as long as the application communication pattern is expressed
by a relevant metric.

Keywords: Message-Passing, multicore architectures, process placement,
rank reordering, communication pattern.

1 Introduction

Parallel programming is the prevalent paradigm for scientific applications. It is
widely considered as the sole mean to achieve the computing power sought after
by applications. Programming standards and their implementations play here a
pivotal role because their efficiency conditions the overall performance. Among
the parallel programming standards, the Message Programming Interface (MPI)
is very popular because of its rich interface. Also, the implementations available
manage to bridge the performance gap between the hardware and the applica-
tions. As for the hardware, the most widespread architecture to build parallel
computers is based on the cluster paradigm. This trend has gained a huge mo-
mentum since its inception more than a decade ago and is still very strong.
The machines used to build clusters have however changed from SMP-based
nodes to more complex multicore ones, altering the way applications should be
programmed. To harness such architectures is a difficult undertaking. NUMA
effects, memory hierarchies and cores/cpus physical location within a node force
the programmer to finely apprehend the hardware. The side effect is a decrease
of performance portability: whilst any MPI code will run on such machines, only
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those specifically tailored to fit the hardware will benefit from its full perfor-
mance. MPI being hardware-agnostic, no function in the interface can help the
programmer to retrieve information about the hardware and convey it up to
the application. Some workarounds do exist at best: process managers can en-
force the binding of MPI processes onto specific cores and the logical topology
mechanism can be used to communicate application-specific information (such
as a communication pattern for instance) to the implementation. Concerning
the latter point, implementations that go beyond a trivial work are not aplenty.
Only some vendors MPI implementations (such as the ones provided by HP [1]
or NEC [2]) are tailored for specific classes of hardware and propose topol-
ogy routines implementations taking advantage of the underlying specific fabric.
Generic MPI implementations addressing a wider spectrum of hardware however
manage to feature optimizations taking advantage of multicore nodes. Indeed,
collective communication operations are usually designed and implemented in a
hierarchical, two-levels, fashion so as to yield better performance [3]. But noth-
ing is done in the topology mechanisms department to allow the programmer
to map an application communication pattern onto the underlying hardware.
In this paper, we propose an enhanced implementation of one MPI function:
MPI Dist graph create. In our expanded version, the ranks of the MPI pro-
cesses calling this function are reordered to allow an application communication
pattern to match as best as possible the underlying physical topology of a multi-
core cluster. This paper is organized as follows: Section 2 will expose the issue of
mapping a communication pattern onto a hardware architecture and compares
different existing techniques. Technical details are discussed in Section 3 while
results are analyzed in Section 4. Section 5 will describe previous existing works
while Section 6 concludes this paper and discusses future directions.

2 Matching a Communication Pattern to the Hardware
Architecture: Issues and Techniques

2.1 General Overview of the Problem

During an MPI application, data are exchanged among the various participating
processes. The MPI programming paradigm is flat: each process may communi-
cate with any other in the application. However, depending on pairs of processes,
the amount of data sent and received (in either terms of bytes/volume or number
of messages) may be irregular. Hence, each MPI application possesses a so-called
communication pattern which can be considered as an intrisic characteristic [4]
of the affinity between processes (here, we assume that this pattern is determin-
istic and does not change between executions). On the other hand, the commu-
nication channels in a multicore, NUMA nodes-based cluster are heterogeneous.
Internode communication using a network is slower than intranode communi-
cation using shared memory. The novelty with multicore NUMA nodes is that
communication performance is also heterogeneous within the node itself. The
various levels of cache memory and the NUMA effects when accessing the main
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memory induce this. It is therefore rather intuitive to seek to adapt a potentially
irregular communication pattern to the also heterogeneous (performance-wise)
underlying hardware architecture.

2.2 Core Binding vs. Rank Reordering

There are two different methods to achieve this goal. The first one is called the
core binding technique [5]. A binding algorithm determines on which physical
core a specific MPI process should be located and pinned, so as to improve the
overall communication performance (e.g. MPI processes are mapped according
to the communication pattern and the hardware topology so as to minimize com-
munication cost). An MPI application does not need to be modified: this binding
information is provided by the user to the process manager which in turn en-
forces this user-defined binding policy at runtime. Legacy MPI applications can
thus take advantage of this technique, if sufficient information is provided to
the binding algorithm (which might imply an instrumentation of the application
code, for example to build the communication pattern). However, this approach
lacks transparency since the user has to use MPI implementation-specific com-
mand line options. Also, modifying, in a standard fashion, the binding during
the course of an application is difficult. With the second method, called rank
reordering, a new communicator is created with application-specific information
attached to it. Ranks of the MPI processes belonging to this communicator can
be reordered, meaning that they can be changed to fit some application con-
straints. Thus, the ranks of the MPI processes belonging to this newly created
communicator could be determined to match the communication pattern to the
underlying physical architecture. A reordering algorithm is necessary, playing a
similar role as the binding algorithm of the first method. Legacy MPI applica-
tions would have to be slightly modified to issue a call to the ranks reordering
MPI routine and use the newly produced communicator. Such reordering should
be performed before application data is loaded into the MPI processes, otherwise
data movements would be necessary. However, relying on a standard MPI call
ensures portability, transparency and dynamicity since it can be issued multiple
times during an application execution. These aspects aside, both methods yield
the same performance improvements.

3 A Non-trivial Implementation of MPI Dist graph create

This paper focuses on the rank reordering technique. Several MPI functions
can reorder processes ranks. It is the case of MPI Dist graph create, part of
the standard since MPI 2.2 [6]. This function is meant to replace the non-
scalable MPI Graph map function. MPI Dist graph create takes as arguments
a set of pointers (sources, destinations, degrees and weights) that char-
acterize a graph. Hence, random application communication patterns can be
passed to the implementation using these pointers. We modified the current
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MPI Dist graph create implementation available in MPICH2 [7] in order to
allow the given input graph to be mapped onto another graph we build and
that describes the underlying architecture. Such a problem is known as a graph
embedding problem. In our case, the optimization criterion is the minimization
of communication costs. Our approach is three-fold: first we gather informa-
tion about the hardware topology, then we access the application communica-
tion pattern and at last we solve our graph embedding problem with a tailored
algorithm.

3.1 Gathering the Hardware Information

To gather hardware information raises portability issues because we need to ad-
dress the largest possible spectrum of architectures. No standard tool currently
exist to perform this task. Our version of MPI Dist graph create uses to the
Hwloc library (version 1.1.1) [8] that offers a generic and portable interface to
retrieve hardware information. Thanks to Hwloc, we manage to gain insights
of a NUMA node structure (e.g cache hierarchies, number of processors, location
of processing units within sockets, etc.). On each multicore node, one process
extracts the hardware information, then a global root process gathers all these
data. That is, our current implementation is centralized, which might impact
scalability. Hwloc being currently unable to provide us information about the
network topology, we consider it as flat, as in the MPI model. Now, this infor-
mation has to be represented in a convenient way. Since multicore nodes are
organized hierarchically, a relevant data structure is a tree, where leaves repre-
sent processing units. To create the data structure that represents a cluster of
multicore nodes is a straightforward process: we add a new level encompassing
all the subtrees representing the various NUMA nodes at the top level of the
structure. This corresponds to our vision of a flat network topology.

3.2 Communication Pattern Information and Metrics

There are two cases to consider for an application communication pattern, First,
newly developed MPI applications can directly use MPI Dist graph create. In
this case, the programmer has to provide the pattern information thanks to
the function arguments. Indeed, the programmer is supposed to possess some
knowledge of the organization of communication. But it is not always the case,
especially when using collective communication, because the pattern will depend
on algorithms known only by the designers of the MPI implementation. Hence,
switching from one MPI implementation to another is likely to influence the ap-
plication pattern. In the case of applications for which the pattern is unknown
to the user, some information can be gathered by the means of instrumentation.
Therefore, we introduced a lightweigt trace system in MPICH2 to retrieve the
pattern information. We trace the data exchanged at the MPI application level
to obtain the most implementation-independent data. Of course, a prior execu-
tion of the application is mandatory to generate a pattern data file. It contains
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information for each pair of processes.We actually use two different metrics to
assign weights to the edges of the pattern graph. The first metric is the global
amount of data (a.k.a Data Size) while the second one is the number of ex-
changed messages (a.k.a Number of Messages). We also implemented a helper
routine that directly reads the pattern file output by our trace system in order
to fill the arguments of MPI Dist graph create according to the chosen metric.

3.3 The TreeMatch Matching Algorithm

In order to solve our graph embedding problem, we implemented a new algo-
rithm called TreeMatch [9]. The TreeMatch algorithm is a graph algorithm
which takes into account the affinity of the processes expressed as a communi-
cation matrix to bind these processes to the topology. It works recursively on
each level of the memory hierarchy (following a bottom-up approach) and groups
processes in such a way that the cost of remaining communications is minimized.
TreeMatch extracts a tree from the communication matrix representing a com-
munication pattern and matches this tree to the hardware topology tree. Finally,
the algorithm outputs a permutation of the processes σ such that process rank
i (in the original communicator) is mapped on core σi. This algorithm is called
by the global root process that possesses both the hardware information and the
pattern information: indeed, the implementation is currently fully centralized.

4 Performance Improvements Evaluation

We carried out a series of experiments to assess the performance improvements
induced by the use of our enhanced MPI Dist graph create function. All tests
are executed on a cluster composed of 68 nodes linked with an Infiniband in-
terconnect (HCA: Mellanox Technologies, MT26428 ConnectX IB QDR). Each
node is composed of two Intel Xeon Nehalem X5550 cpus featuring 4 2.66
GHz cores each. The 8 Mbytes of L3 cache are shared between the four cores
of a CPU. There are 24 GB of DDR3 RAM at 1.33 GHz on each node. As for
the software, the operating system is SLES 11 and the MPI implementation
is MVAPICH2 1.7 (alpha 1) [10]. All of the benchmarks involve 64 processes
(8 nodes connected to the same Infiniband switch are used) and each process
is bound to its dedicated core. The baseline chosen to compare the process
placement policies is the Serial Ranking policy where the process rank num-
ber n (in MPI COMM WORLD) is placed on the node number m with m = n/8
(n ∈ [0, 63] in our case). Such a policy is enforced by default by most resource
schedulers when providing a machine file to the user after reserving nodes (e.g
PBS/Torque). Also, the execution times do not take into account the time spent
in the MPI Dist graph create function called at the begining of each bench-
mark (less than 140 milliseconds in our experiments with 64 processes). The
tests are run several times in a row: the Serial Ranking case (without reorder-
ing) is followed by the reordered cases, using the two metrics listed in Sec. 3.2.
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Fig. 1. Ring pattern execution times

This first execution actually creates the communication pattern file we need to
initialize the pointer arrays of the MPI Dist graph create function called in the
following runs.

4.1 The Ring Pattern Benchmark

The first benchmark is purposely designed to showcase the benefits of the re-
ordering technique. The communication pattern features several rings of pro-
cesses of equal sizes. A token is exchanged in each ring, that stops circulating
when received back by the process that initially sent it (a.k.a the ring leader).
Then, all ring leaders exchange the token with a call to MPI Allgather. The test
is run with 8 rings composed of 8 processes each. For this test, we make exper-
iments with two non-reordered cases: the first one is when the Serial Ranking
policy (as described above) is used and the second one is when a so-called Round
Robin policy is used. With this policy, core number i of node number j executes
process rank n (in MPI COMM WORLD), where: n = (8 ∗ i) + j and (i, j) ∈ [0, 7]2

(cores and nodes are numbered linearly). The process-to-core binding policy
within nodes is the same for both policies. We use the Round Robin case in or-
der to show that a suboptimal process mapping/binding policy can be effectively
corrected by reordering. In our example, since 8 nodes of the cluster are used and
given the communication pattern, most of the traffic goes through the network
in the Round Robin case. In the reordered cases, most of communication uses
shared memory, much faster than the network. Indeed, Figure 1 shows that our
algorithm is able to compute a relevant reordering and that we are able to exploit
the nodes internal structure more finely since the execution times achieved by
either the Data Size or Number of Messages cases are 10% to 20% faster than in
the Serial Ranking case. Since the amount of data and the number of messages
grow proportionaly, both metrics yield the same results.
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Fig. 2. ZEUS-MP Execution times

4.2 ZEUS-MP

The second set of experiments involve a real application called ZEUS-MP. It is a
computational fluid dynamics code for the simulation of astrophysical phenom-
ena that solves magnetohydrodynamics equations. The three-dimensional com-
putational domain is organized in tiles where the boundary data is exchanged
with MPI messages between neighbours. We used the 2.1.2 [11] version of ZEUS-
MP. Originally, this application uses the MPI cartesian topology mechanism, but
without reordering. Also, ZEUS-MP is not able to take into account the underly-
ing physical architecture thanks to options or arguments passed to the program
for instance. We ran ZEUS-MP for various iteration counts and measured the
execution times. Figure 2 shows the benefits of using reordering. Since our mod-
ified version of MPI Dist graph create allow the application to better exploit
the underlying multicore architecture, the cost of communication is reduced. The
overall execution times are decreased by more than 15%. Both metrics yield the
same results. This results shows that our approach is relevant and allows the
user to better exploit the nodes internal structure, without possessing a prior
knowledge of their physical topology. To manage to get equivalent results, the
programmer would have to: 1– understand the application behaviour, leading to
the use the Serial Ranking policy and 2– provide an adequate process-to-core
binding when running it.

4.3 RSA-768 – The Block Wiedemann Algorithm

The 768-bits, 232-digits number RSA-768 is factorized since December 12, 2009
[12]. Several algorithms and applications were used to achieve this result and
one particular step consists to find dependencies between the rows of a sparse
matrix using a Block Wiedemann algorithm. We benchmarked a simplified ver-
sion of this Block Wiedemann step provided by one of the authors of [12]. It is
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Fig. 3. Block Wiedemann step – RSA-768 Execution times

a relevant target for our work because it is a communication bound application.
This application takes into account the underlying physical architecture thanks
to parameters passed to the program (i.e the number and layout of the cores).
This is a difference with our previous application case (ZEUS-MP). This version
of Block Wiedemann is designed to be used with the Serial Ranking placement
policy. Figure 3 shows the results obtained. Out of the two metrics, only Number
of Messages manages to slightly improve the results obtained with Serial Rank-
ing. The execution times are decreased by less than 2%. This results demonstrate
that some room for improvement exists even for applications that are tuned to
exploit the underlying architecture. All these results therefore advocate for re-
ordering, and demonstrate how this technique can alleviate some of the burden
of tuning an MPI application to an underlying multicore system. Thanks to
MPI Dist graph create, this tuning is performed transparently, automatically
and in a portable fashion.

5 Related Works

The placement of MPI processes on processors in order to match the commu-
nication pattern to the underlying hardware architecture has been previously
examined. The problem is introduced in [1] and an algorithm, based on the
Kernighan-Lin heuristic [13], is described as well as results for some benchmarks.
However, this work is tailored for a specific vendor hardware and is thus not suit-
able for a generic case. Also, the author optimizes some of the routines creating
cartesian topologies but left unaddressed the more generic graph topology case.
The experiments show dramatic improvements, but are restricted to benchmarks
only communicating but not doing any computation. In particular, the Jacobi
method for a Poisson problem solver test results are consistent with of our own
ring test results. Topology mechanisms implementation issues are also discussed
in [2]. Both cartesian and graph topologies are addressed by this work, and the
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algorithm is based on the same Kernighan-Lin heuristic. The optimization cri-
terion considered is either the total communication cost (as in the TreeMatch
algorithm) or the optimal load balance. But here again, it is a work designed for
a specific vendor hardware. The approach is thus less generic than our. Besides
the Kernighan-Lin and TreeMatch, there are other algorithms that can solve
the graph embedding problem. Scotch [14] is a graph coupling framework but
not optimized for our case where we work only on trees (see Sec. 3.3). A previous
version of our work, which concerned the core binding technique, did in fact use
Scotch [5]. TreeMatch, however, outperforms Scotch in terms of execution
times and is therefore better suited for runtime optimizations. MPIPP [15] is
another framework aiming at optimizing an application execution on the un-
derlying hardware. MPIPP relies on an external tool to generate the hardware
information while we manage to perform this at runtime. A comparison between
TreeMatch and MPIPP can be found in [9]. Also, the MPIPP framework
uses the core binding technique, as well as a couple of vendors such as Cray [16],
HP [17] and probably IBM [18].

6 Conclusion and Future Works

In this paper, we showed that using rank reordering can allow MPI applications
to transparently exploit clusters of multicore nodes. The application communi-
cation pattern is matched to the underlying hardware, thus reducing the cost
of application communication. The communication pattern is usually expressed
as the overall amount of bytes exchanged among processes but we experienced
that other metrics are more relevant in our particular environment, that is using
MVAPICH2 as the MPI implementation and TreeMatch as the algorithm
to solve the graph embedding problem. Indeed, using the number of messages to
characterize the communication pattern yields better results than the amount of
bytes. We plan to understand why the Number of Messages metric outperforms
in some cases the Data Size one. Also, our MPI Dist graph create implementa-
tion is currently centralized, which is not scalable. We would like to implement
a distributed version, but this might imply to distribute the TreeMatch algo-
rithm itself. This algorithm could also integrate new optimization criteria such
as the ones listed in [6]. Currently, we do not take into account the physical
topology of the network. We only exploit the nodes internal structure. There
are plans to expand Hwloc in order to provide such information, we are hence
looking forward to take advantage of it. Also, we currently lack some quantita-
tive information about NUMA effects. Indeed, a more recent release of Hwloc
(1.2) features latency matrices in order to assess performance between cores. It
is another piece of information that we want to exploit. At last, we plan to work
on the extraction of the communication pattern information without relying on
a previous run of the complete application. A static analysis of the MPI code
could be performed at compile time to generate the needed information.
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Abstract. MPI standard offers a set of topology-aware interfaces that can be 
used to construct graph and Cartesian topologies for MPI applications. These 
interfaces have been mostly used for topology construction and not for 
performance improvement. To optimize the performance, in this paper we use 
graph embedding and node/network architecture discovery modules to match 
the communication topology of the applications to the physical topology of 
multi-core clusters with multi-level networks. Micro-benchmark results show 
considerable improvement in communication performance when using 
weighted and network-aware mapping. We also show that the implementation 
can improve communication and execution time of the applications.  

Keywords: MPI, virtual topology, physical topology, multi-core, network. 

1   Introduction 

With the emerging many-core architectures and high performance interconnects 
offering more parallelism and performance, clusters are expected to move towards 
exascales in the next few years [1]. Such systems are becoming increasingly 
hierarchical in their node architecture and interconnection network. Communication 
at various hierarchies demonstrate different performance levels. It is therefore critical 
for the communication libraries to efficiently handle the communication demands of 
High Performance Computing (HPC) applications on such hierarchical systems. 

Message Passing Interface (MPI) [2] is the predominant messaging standard for 
HPC applications. MPI provides a set of interfaces that are designed to assist the 
library to construct a virtual topology out of the application’s communication pattern, 
and to support remapping (reordering) the processes to the available cores in a way that 
optimizes performance. However, most MPI libraries merely provide a trivial 
implementation of these functions and lack the support for the remapping feature. In 
this work, we have designed the MPI non-distributed topology functions 
(MPI_Graph_create and MPI_Cart_create) for efficient process remapping over 
hierarchical clusters. We have integrated the node physical topology with network 
architecture and used graph embedding tools inside MPI library to override the current 
trivial implementation of the topology functions and efficiently reorder the initial 
process mapping. We have evaluated our implementation on two different InfiniBand 
[3] clusters using micro-benchmarks and MPI applications. Micro-benchmark results 
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show up to 60% communication time improvement for Cartesian topologies with data 
exchange between the neighbors. The application results show up to 48% 
communication time improvement, and up to 26% runtime improvement. 

The rest of this paper is organized as follows. We briefly describe the MPI 
topology functions and the motivation behind this work in Section 2. Related work is 
covered in Section 3. Section 4 discusses our design and implementation. Section 5 
presents the experimental results, and Section 6 concludes the paper. 

2   Background and Motivation 

MPI defines a set of virtual-topology definition functions for graph and Cartesian 
structures [2]. MPI_Graph_create and MPI_Cart_create are collective calls that accept 
a virtual topology and return a new MPI communicator enclosing the desired 
topology. If the user opts for reordering, the function may reorder the process ranks 
for an efficient process-to-core mapping. The topology accepted by these functions is 
in a non-distributed form, meaning that all nodes have a full view of the entire 
structure and pass the whole information to the function. Recently, distributed graph 
topology functionality has been added to the MPI standard [2] to support large-scale 
systems. In these functions, each node has a limited neighborhood view of the graph, 
and all processes collectively construct the virtual topology in a distributed fashion. 

Although process topology functionality is not new to the MPI standard, HPC 
applications that utilize such functionality use them mainly for the constructed virtual 
topology (e.g., a Cartesian topology). Thus, the ability of this interface to support 
process reordering for better communication performance has widely remained 
unutilized, mostly because MPI implementations merely construct the virtual topology, 
and have no process remapping for performance improvement. In this paper, we focus 
on the design and implementation of MPI non-distributed topology functions to 
improve the performance of the applications. We will cover the distributed topology 
functions in a future work. 

3   Related Work 

There has been some past research on topology-aware communication in MPI. The 
authors in [4] look at the algorithms for mapping virtual topology to physical topology 
in MPI using a hierarchical tree structure to represent the hardware topology. This 
work defines a cost function that is the sum of the communication costs over the links. 
This paper presents an implementation for a specific machine (an HP server), with 
architecture similar to multi-core machines. 

The work in [5] presents a set of graph embedding algorithms with hardware 
topology represented using a hierarchical tree similar to [4], but with a more 
comprehensive mathematical analysis for different architectures. A major contribution 
is the optimization of two different cost functions. The first function is the sum of the 
communication costs over the interconnection links, and the second is a load balancing 
function that minimizes the number of expensive communications by any one process. 
This work experiments with a set of NEC SX-6 machines, each with up to eight 
shared-memory vector processors, connected through a proprietary network. 
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The author in [6] argues that the MPI topology-aware functionality at the time 
lacks precision and accuracy. The paper suggests an extension to MPI where weighted 
communication graphs can be used in order to produce a better solution when using 
the topology functionality. The paper also suggests extensions to allow dynamic 
process reordering. No implementation of the suggested functionality is attempted. 

The authors in [7] summarize the work in [5] and [6], suggesting some additional 
changes to MPI as in [6]. The paper also shows that a non-trivial implementation of 
the MPI topology functions can provide great performance gains on SMP systems.  

In [8], functionality is implemented to map weighted communication graphs to 
weighted node architecture graphs using Scotch graph partitioning software [9]. The 
communication graph weights are chosen based on the total communication volume. 
Unlike our work in this paper, the work in [8] does not use or implement MPI 
topology functions. It rather calculates the mapping outside MPI, before the 
application is started. It also does not consider network hierarchy.  

In [10], the authors propose TreeMatch algorithm to calculate a near-optimal 
mapping of processes to resources on a NUMA cluster. Similar to the work in [8], this 
paper is concentrated on node architecture and does not consider network hierarchy. It 
does not use or implement MPI topology functions either. It rather calculates the 
mapping using MPICH2 process manager and hwloc [14]. The paper presents MPI 
results using simulation and NAS benchmarks on a 4 NUMA-node 96-core machine. 

Recently, the authors in [11] have explained the distributed topology functions in 
MPI 2.2 and discussed possible methods for implementing them in the future. In [12] 
the authors propose an automated framework to detect regular communication patterns 
in applications. The framework finds the dimensions of a possibly regular pattern and 
maps it to mesh/torus processor topologies. 

4   Design and Implementation of MPI Topology Functions 

4.1   Design of the Graph Topology Function 

Our design of both MPI graph and Cartesian topology functions is based on an 
underlying graph structure. We also use graphs to represent both virtual and physical 
topologies inside the MPI implementation. Using graphs at the underlying layer, we 
can use static mapping of virtual to physical topology graphs in order to find the sub-
optimal mapping of processes to processor cores.  

Virtual topology is constructed as a graph in which vertices represent processes and 
links represent the existence (or significance) of the inter-process communications. We 
use the normalized total communication volume between two processes as the metric 
for communication significance. MPI_Cart_create and MPI_Graph_create functions do 
not support weighted edges, meaning there is no differentiation among edges of the 
virtual topology. This is a critical shortcoming, since it is usual that the communication 
between some pairs is more significant than others. To realize how supporting 
weighted graphs can increase the effectiveness of process reordering, we use edge 
replication in MPI_Graph_create input to account for weighted edges. This approach, 
although not much scalable, can support realistic non-uniform communication patterns.  
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The graph representation for the cluster’s physical topology consists of two distinct 
but integrated parts: node architecture and network architecture. The node architecture 
graph includes weighted edges that represent the communication performance 
between any two cores. We assume higher communication performance between the 
cores with closer proximity. Our representation of the network comprises network 
distances between any two cores. The network architecture includes weighted graph 
edges that represent the communication performance of the network path between the 
nodes on which the cores reside. 

4.2   Implementation of Topology Functions 

In this section, we present details about the implementation of the MPI_Graph_create 
and MPI_Cart_create functions inside MVAPICH2 [13]. We use the Scotch graph 
processing library [9] to map virtual to physical topology graphs in MPI_Graph_create. 
The library defines an undirected source graph, which can represent the virtual 
topology. Each vertex and edge of the source graph is weighted, to account for the 
computation and communication weight of the corresponding process and link, 
respectively. Similarly, the target machine architecture is represented by an undirected 
architecture target graph with weights for vertices and edges representing the 
processing power of the processor and communication performance of the link, 
respectively [9]. 

The hardware locality (hwloc) library [14] provides a portable abstraction of the 
underlying machine architecture. It detects architectural components of the nodes 
such as processor sockets, cores, caches, memory, SMT and NUMA architecture. The 
architecture is represented as a tree, with nodes at the top level and logical cores at the 
leaves. This library can assist MPI to construct the physical topology of the machine.  

To have a complete view of the cluster’s physical architecture and go beyond a flat 
network assumption, we add a network discovery part in our physical architecture 
discovery. This module extracts the network distance between any two nodes in the 
cluster and merges that information with the node architecture extracted by hwloc. In 
this paper, our network discovery module uses InfiniBand subnet manager [3] tools 
(i.e., ibtracert utility) to discover the network distance between Infiniband nodes. 

4.2.1   Implementation of Graph Topology Function 
To supply MPI with the application virtual topology, we extract the exact amounts of 
data transfer between processes by profiling the applications using probes inside the 
MPI library. We give the highest weight to the maximum pairwise communication 
volume. The normalized weights range from 1 to 10. We use edge replication to 
represent edge weights. MPI_Graph_create calls the Scotch library if the user opts for 
reordering. Scotch builds a weighted graph out of the user-supplied graph. The 
topology table of a server node is also created using hwloc at each process. The 
communication performance between two logical cores on a node is calculated based 
on the depth of their common ancestor in the node topology tree. For example, if two 
cores reside on different sockets, their common ancestor will be the node itself, with 
the lowest depth in the tree, translating into the lowest communication performance. 

The process with rank zero (in MPI_COMM_WORLD) will perform a network 
discovery operation using ibtracert to extract the distance between any two InfiniBand 
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nodes. This information is then scattered to other processes to be integrated into the 
node architecture to have the full physical topology architecture. Topology graph edge 
loads (input to Scotch) represent the performance of the communication path between 
the connecting vertices. Network distance, defined as the number of hops between two 
nodes, is used to calculate the physical topology edge loads. The farthest nodes get the 
load of 1 on their graph edge. The closest nodes get the maximum network hop count 
as their edge load. The intra-node graph loads are calculated in a way that are always 
larger than the closest network distance, indicating the fact that intra-node 
communication is cheaper than inter-node communication. 

Fig. 1 shows an example of how graph loads are assigned based on the system and 
network architecture. N1-N4 are multi-core (here, 2-way quad-core) nodes, connected 
through three switches (S1-S3) in a tree-like network. In this architecture, d1 (the path 
between two cores of the same socket) will have the highest load value in the graph, 
while the path between N2 and N3 (d4) will have the lowest load value, indicating the 
lowest performance path in the network. Thus we have: d1 > d2 > d3 > d4 = 1. 

4.2.2   Cartesian Topology Implementation 
Since the Scotch library does not support Cartesian topology, we internally convert 
the MPI_Cart_create topology to a graph and use MPI_Graph_create for reordering. 
In this conversion, the user view of the Cartesian topology remains intact. Cartesian 
topologies do not specify weights for graphs. Therefore, the converted topology will 
be a non-weighted graph.  

 

Fig. 1. An example of physical topology distances  

5   Experimental Results 

We have conducted our experiments on two clusters. The first cluster has four servers, 
each with two quad-core 2GHz AMD Opteron 2350 processors (a total of 32 cores). 
The servers have 512KB L2 cache per core, 2MB shared L3 cache per processor and 
8GB memory. They are interconnected through Mellanox ConnectX InfiniBand cards 
[15] via three Mellanox InfiniBand switches, similar to Fig. 1. The nodes run Linux 
Fedora 12 kernel version 2.6.31. The machines use OFED 1.5.2 to access the 
InfiniBand network. For the second cluster, we have 16 servers, each with two hexa-
core 3GHz Intel Xeon X5670 processors (a total of 192 cores). There is a 12MB 
multi-level cache per processor, and 24GB memory per machine. The servers use 
Mellanox ConnectX2 InfiniBand cards. Eight servers are connected to a Mellanox 
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InfiniBand switch, and the remaining servers are connected to another switch. Each of 
these switches is connected to two upper layer InfiniBand switches. The machines run 
Redhat Enterprise Linux 5 with kernel version 2.6.18-194. The nodes use OFED 
version 1.5.2. On both clusters, we use MVAPICH2 1.5 [13] as our code-base. 

5.1   Micro-benchmark Results 

We start our evaluation with two micro-benchmarks that put processes in Cartesian 
arrangements such as Torus and Hypercube. The tests are run on the first (32-core) 
cluster. The first micro-benchmark (Cartesian-model exchange) constructs a 2D/3D 
torus or a 5D hypercube. Each process runs 1000 iterations, each with a computation 
followed by exchanging messages with the neighbors in all dimensions. We report the 
average iteration time. We find the virtual-topology graph of each test by profiling it 
in an initial run. The graph is then supplied to the same program as input for 
MPI_Graph_create. To evaluate the effect of graph weights, we carry significantly 
heavier communication on one of the dimensions.  

    

   

Fig. 2. Runtime improvement of topology-aware mapping over block mapping for 2D-torus, 
3D-torus and 5D-hypercube in the Cartesian-model exchange micro-benchmark 

Fig. 2 shows the improvement of the topology-aware mapping compared to block 
mapping for an 8×4 2D-torus, a 4×4×2 3D-torus and a 5D-hypercube. The processes 
communicate more heavily on one dimension (the longer dimension for torus). For 
the micro-benchmarks, to particularly show the effect of network-aware mapping, we 
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put two subsequent nodes on different switches. As shown in Fig. 2, for all topologies 
the weighted graph shows significant improvement compared to the block mapping. It 
is because with a weighted graph the library differentiates between heavier and lighter 
dimensions and will try to map the processes of the heavier dimension on one node to 
take advantage of shared-memory performance. On the other hand, the non-weighted 
Cartesian topology does not make any differentiation between different dimensions. 
Consequently, it may map the heavier dimension across the network leading to worse 
performance. The other observation is the improvement when using network-aware 
mapping, especially for larger message. It shows that even when the difference in 
network distance is as little as two switches we can observe some improvement. 

The second micro-benchmark (dimensional collectives) examines the case where 
processes form a Cartesian arrangement and perform collective communications on 
one dimension of the topology. We arrange 32 processes in an 8×4 2D-torus and 
engage them in MPI_Alltoall collective operations on the longer dimension. Fig. 3 
clearly shows the improvement when using topology-aware mapping. The reason for 
on par performance between weighted graph and non-weighted graph is that the 
communication is done only on one dimension; therefore both graphs result in the 
same mapping. The network-aware mapping also shows similar improvement, 
because all eight processes of the collective dimension are mapped to the same node.  

Fig. 3 also shows the results for a 16×2 2D-torus. These results are reported since 
the longer dimension (on which collectives are performed) has the length of 16, which 
does not fit into one node, therefore network communication is inevitable even after 
topology-aware remapping. As the results suggest, network-aware mapping shows 
improvement compared to other graph mappings, especially for larger message sizes. 

   

Fig. 3. Runtime improvement of topology-aware mapping over block mapping for 2D-torus in 
the dimensional collective (Alltoal) micro-benchmark 

5.2   Evaluation Results for MPI Applications 

To see the effect of our implementation on MPI applications, we have adapted some 
MPI application benchmarks (NAS and LAMMPS) to use MPI graph topology 
function. We profiled the original applications to discover their virtual topology graph 
in order to supply them to MPI_Graph_create function. In LAMMPS, processes 
communicate in a 2D-torus. Processes in CG.32 also form a logical 8×4 2D-torus, 
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however they do not always follow the torus links for communication. Processes in 
MG.32 communicate in the form of a reordered 5D-hypercube. To be consistent, 
regardless of application’s logical structure, we always use a graph topology function. 

Fig. 4 shows the improvement of the topology-aware mapping for these applications 
compared to block and cyclic mappings on the 32-core cluster. This excludes the time 
in MPI_Graph_create to create the communicator. For most applications, the benefit 
over cyclic mapping is considerable while there is less benefit over block mapping. 
This is because processes mostly communicate with their adjacent ranks, thus the ideal 
mapping is close to block mapping. In LAMMPS (especially the friction workload), 
where the communication volume is not equal on different links, we can see more 
improvement with weighted and network-aware graphs, compared to non-weighted 
graph where sometimes it is even worse than the block mapping. We are currently 
investigating the reasons behind the poor performance of the weighted graph results for 
LAMMPS-Couple. 

   

   

Fig. 4. Application communication time and runtime improvement of topology-aware mapping 
over block and cyclic mappings on the 32-core cluster 

To show the benefits of our design on a larger test bed, we have also evaluated our 
work on a second cluster with 16 nodes (using 8 cores per node, for a total of 128-
cores) using some of the application workloads. The results are presented in Fig. 5. 

In Fig. 5 we observe more improvement for most of the workloads, which indicates 
the performance scalability with the machine size. Higher improvement in the 128-core 
case for some workloads such as LAMMPS-friction is partially because some of the 
neighbors that would fall on the same node in block mapping in 32-core case fall on 
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different nodes in 128-core case. Therefore reordering is more effective for the latter 
case. LAMMPS-couple shows a considerable difference in communication pattern 
between 32-core and 128-core cases. While for 32 cores, processes communicate to 
their neighbors almost symmetrically, the pattern becomes asymmetric in 128-core 
case (a process mostly communicates with two partners). Thus we see higher 
difference between non-weighted and weighted/network-aware results for 128 cores. 
Such behavior is also observed for pour workload to some extent, leading to more 
improvement compared to block mapping.  

   

   

Fig. 5. Application communication time and runtime improvement of topology-aware mapping 
over block and cyclic mappings on the 128-core cluster 

5.3   Implementation Overhead 

Our implementation of MPI_Graph_create imposes an overhead compared to the 
trivial implementation. Table 1 shows the approximate overhead and its scalability in 
LAMMPS application. This one-time overhead is amortized in application runtime. 

Table 1. Time to create the communicator in MPI_Graph_create for LAMMPS 

System Job size 
(#processes) 

Trivial 
(ms) 

Non-weighted 
Graph (ms) 

Weighted 
Graph (ms) 

Network-aware 
Graph (ms) 

 8 0.3 7.3 7.3 7.9 
Cluster 1 16  0.3 7.6 7.7 8.1 

 32 0.5 8.6 8.7 9 
Cluster 2 128 5.1 31.3 31.7 31.7 
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6   Conclusions and Future Work 

In this paper, we presented design and implementation of MPI non-distributed graph 
and Cartesian functions in MVAPICH2 for multi-core nodes connected through 
multi-level InfiniBand networks. The Cartesian-model micro-benchmarks show that 
the effect of reordering process ranks can be significant, and when the communication 
is heavier on one dimension the benefits of using weighted and network-aware graphs 
(instead of non-weighted graph / Cartesian functions) are considerable. We also 
modified some MPI applications with MPI_Graph_create. The evaluation results 
show that MPI applications can benefit from topology-aware MPI_Graph_create.  

As for the future work, we intend to evaluate the effect of topology awareness on 
other MPI applications, design a more general communication cost/weight model for 
graph mapping, and design and implement MPI distributed topology functions for 
more scalability. 
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Abstract. MPI application performance can vary based on the sched-
uler’s placing of ranks, whether between nodes or on cores in the same
multi-core chip. MPI applications, by default, are at the mercy of the
application placement software decision that assigns nodes to a job. We
describe herein the general approach of node ordering for allocation in a
3D torus, how it improved MPI application performance, even in the face
of an anisotropic interconnect. We demonstrate, quantitatively, that our
topologically-based ordering results in improved performance for several
MPI applications running on a Top10 supercomputer.
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1 Introduction

“Mapping tasks of a parallel application onto physical processors of a
parallel system is one of the very essential issues in parallel computing.
It is critical for today’s supercomputing system to deliver sustainable
and scalable performance.” - Hao Yu, et al. [14]

Large scientific parallel applications may use thousands or tens of thousands
of cores when they run, but even so such jobs are only a fraction of the to-
tal machine size on today’s largest HPC systems. Maintaining high utilization
is important for these very large (i.e., costly) machines. While allocations of
contiguous blocks of nodes seems intuitive, utilization can suffer. This leads to
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assignment of individual, non- contiguous nodes. This, in turn, introduces per-
formance variabilities as a job may get a very different set of nodes and have
different neighboring applications each time it is run.

Improved performance of MPI applications can be achieved through applica-
tion placement in massively parallel 3D-torus supercomputers using allocation
strategies based on an ordered, one-dimensional sequence of nodes. We are able
to compute these new orderings with minimal overhead at system startup and
thus the system software that is responsible for placement incurs no run-time
penalty in its placement decisions and no user action is required to see this
benefit.

The effects were significant enough [4] that they have been incorporated into
product features for Cray’s Application Level Placement Scheduler (ALPS). The
effects may vary enough by machine size and typical job types that the feature
was made configurable on a per system basis.

We had devised what we hoped would be a general solution benefiting most
applications. We began from the simple approach of assigning nodes in order
from a list of available, unassigned nodes (a “free list”). We ordered that list
according to dimensions of the torus. Our work has shown that application per-
formance was improved over random placement or other orderings. The amount
of that effect depended on both the application and the “size” (dimensions) of
the underlying torus. We devised an improved placement approach which dou-
bled the bisection bandwidth of collections of nodes, described below. We used
this solution successfully on several Cray installations.

We encountered a new system which performed well with our node ordering
at small scale. When we enlarged the system to a petaFLOPS scale system,
the previous mix of applications performed poorly. This was investigated and
we came to understand that the problem grew from system scale in combina-
tion with our placement approach. The situation was further complicated by an
anisotropic interconnect. Anisotropic interconnects exhibit transfer rates which
differ depending on the direction traversed. In a 3D torus this means network
traffic will travel at different speeds in each of the dimensions: x, y, and z. After
analysis, discussion and prototyping, we devised a new ordering for the nodes
on the free list to address the scaling issues. With our new ordering we re-ran
the benchmarks to find restored or improved performance.

This paper makes the following contributions: we describe the general ap-
proach of node ordering for allocation and placement, our attempt at an ordering
to improve bisection bandwidth, how this succeeds at small scale but how it fails
at larger scale; we describe the design and implementation of a new ordering for
dealing with a 3D torus at large scale; we describe how we balance the trade-offs
between large and small jobs, considering intra-job communication while seeking
to minimize job-to-job interaction to provide a broadly useful if sub-optimal so-
lution; we describe the adjustment we made for the anisotropic interconnect; we
demonstrate that this topologically-based ordering results in improved scaling
for a variety of parallel applications running on a Top10 supercomputer.
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The rest of the paper is organized as follows: Section 2 gives brief explana-
tion of various techniques that have been used for the placement of applica-
tions within a torus with a discussion of their limitations; Section 3 presents
our approach to balance the various trade-offs for optimal placement; Section 4
describes issues related to the anisotropisms for Cray XE systems; Section 5
presents a comparison of run times on real MPI applications to demonstrate
the effectiveness of our new topology node ordering in placement scheduling;
finally, Section 6 concludes the paper with a summary of our results and future
directions of our investigations.

2 Related Work

There are some similarities between application placement and memory alloca-
tion schemes. The classic First Fit and Best Fit algorithms [12,6] are reasonable
approaches for both [5]. However, node allocation differs significantly in the
topologies from which it allocates; memory is a linear resource whereas nodes in
parallel systems are typically multi-dimensional (e.g. 3D torus, hypercube).

Laxmikant Kalé and others make the argument that earlier work done for
clusters of tens or hundreds of processors is insufficient to cover peta–scale and
exa–scale systems. In 2009 Bhatele and Kalé presented “... a study showing that
with the emergence of very large supercomputers, typically connected as a 3D
torus or mesh, topology effects have become important again.” [8]

Some researchers have approached the problem of node selection, or place-
ment, from the application’s point of view, attempting to place each particular
application in a space best suited to the topology of the application’s algorithms
[3,7]. Such an approach may involve exposing application topology (by the de-
veloper or discovered by the compiler or other tools) to a user, who may not
want to know or specify such arcane details, or it may involve prior runs of the
application to detect communication patterns. It also involves attempting to fit
the application as an arbitrary, fixed 3D shape onto the available resources.

Focusing on the BlueGene/L system, Krevat, et al. [9], have defined the
problem away by assuming that the only way to assign nodes for a toroidal
system “must be rectangular and contiguous”. Systems that implement such ap-
proaches then either suffer potentially low utilization or pay the high cost of pro-
cess migration between nodes in order to rearrange work in contiguous blocks.
Lo et al. [11] demonstrate that better throughput can be achieved with non–
contiguous allocation. They make their placements, though, in 2n size blocks,
trying to allocate the largest block possible. For them the allocation of single
nodes is the degenerate case of 20 size blocks.

Leung et al. [10] theorized that one-dimensional allocation strategies could be
effective for massively parallel supercomputers. They proposed Hilbert curves
in two dimensions for assigning node ordering. (Hilbert curves are continuous
space-filling curves [1] described by German mathematician David Hilbert, and
have properties of locality that make them useful in this and other spacial ap-
plications.) We have seen limitations to the Hilbert curve ordering both because
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of the shape of the curve itself and because it is defined for squares (in 2D) and
cubes (in 3D) whereas we need to apply it in systems of unequal dimensions.

That an improved ordering was needed for Cray XT torus systems was demon-
strated in the work of Weisser et al. [13]. They, too, used a linear ordering, specific
to the shape of their particular system.

Yu et al., [14] use embedding techniques like folding to map from one topol-
ogy (the application’s virtual topology) onto the other (the underlying hardware
topology). They do this so that at the application level a mapping (using MPI
calls) can be made onto the allocated hardware nodes. Our approach could be
described as attempting to do the mapping without knowing the application’s
(virtual) topology. Such knowledge, after all, may not be available to the ap-
plication user. Moreover, our approach requires no changes to the application’s
source code and even provides a certain amount of hardware independence.

3 Our Approach

Whereas “first fit” algorithms require a block of contiguous resource at least
as large as the requested resource, we do not require contiguity of nodes in
an allocation. We simply assign nodes from a free list in order, skipping nodes
allocated to other jobs, until the request is filled. The “in order” initially meant in
numerical order by node id (nid). The nid numbers were assigned by lower level
software based on physical position within the machine. This did not necessarily
correspond to the network topology.

Cray XT and XE networks use a “folded torus” where cabinets are interleaved
in the x dimension. Thus cabinets that were physically adjacent would have nid
numbers in adjacent ranges, but their locations in the torus would be antipodal.
The extra hops required to reach the nodes in these cabinets lead to increased
latencies. Moreover, since an allocation of sequential nodes could involve “gaps”
in the torus locations, there was an increase in jobs whose communications trav-
eled between and among other jobs. This job-job interaction meant that one job
could affect the performance of other jobs and any job’s performance could vary
from run to run depending on what other jobs were running at the same time.

3.1 First Attempt - MDF

Our first attempt at improving job placement was targeted at reducing the
“jumps” in the network locations due to the nid numbering. We changed the
order of the free list, building it not in numerical order but based on (x, y, z)
location. We ordered the nodes along the shortest axis first, calling this the
Minimum Dimension First (MDF) ordering. This increases the number of jobs
that could use “wraparound” in the torus, reducing their latencies. MDF showed
improvement over a few other orderings as well as the original numerical order-
ing [4].

On larger systems where no dimension was much smaller than any other, much
of this benefit was lost. Consider a job that uses 8192 cores. On a quad–core XT4
system such a job needs 2048 nodes. Even on a very large system (for its time)
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these 8192 cores would be spread across 22 cabinets or four yz planes in the
torus. By contrast, on the newer XE6 system with 24-core nodes that same job
uses only 342 nodes, less than four cabinets, all in a single plane.

Increasing the number of cores per node results in a decreasing number of
nodes per job. The newer, higher density nodes result in a placement with fewer
planes in the torus for a given job. The previous example shows how the three-
dimensional allocation (4 full planes of nodes) is reduced to a single 2D plane.
Smaller jobs, less than 3000 cores, can be reduced to a one dimensional allocation.

3.2 Increasing Bisection Bandwidth

With such “flattening” of the placement, the bisection bandwidth of the job is
reduced. We tried a different ordering of the nodes on the free list to try to
“thicken” our allocations. To get even the smallest jobs into the third dimension
we ordered the nodes so that allocations would occur along 2x2x2 blocks of nodes.
We did not allocate block–size units of nodes, but rather the ordering followed a
sequence that traced out a 2x2x2 block then another and so on. Within the 2x2x2
shape we follow a Gray code ordering which allows a contiguous enumeration
from one block to the next along the first filled dimension. See Fig. 1.

Fig. 1. Node ordering in 2x2x2 blocks

We used this “thicker” ordering on a new Cray XE6 system installation. We
ran the benchmarks described below in Sect. 5 and found our baseline perfor-
mance. Then the installation was expanded three fold, to over 6000 nodes or
more than 150,000 cores. The same benchmarks, run on this new larger system,
showed degraded performance. See Sect. 5.

This new system was using the new XE6 (“Gemini”) interconnect. A few
words about its features are needed at this point. The XE6 supports two nodes
per router chip. The x and z dimensions have double links, one corresponding
to each node; the y dimension has a single link to the neighboring router chip
since the two nodes within the router can be considered connected across the
y axis. See Fig. 2. Therefore in our node ordering for XE6 systems we always
ordered y last, even if it was the smallest dimension, since it would have the
least bandwidth to a neighbor. Later, below, we will discuss the anisotropic
considerations of the XE6.

What we found with the additional cabinets and the new ordering was that
the x dimension had grown so large as to eliminate the torus wrap around for
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Fig. 2. Comparison of XT SeaStar(left) and XE Gemini(right) interconnects - notice
the effective doubling of connections in X,Z dimensions for Gemini

our applications. We could have adjusted our block sizes or choice of axis to
increase the chances of wrap around, but that would only be a fix until the next
size increase left us with a more planar or non-toroidal placement. We decided
to rethink our ordering.

3.3 Towards Optimal Placement

How does one define optimal placement? The objective measure for optimal
placement is best performance, measured as least runtime. But what arrange-
ment of the nodes of the job will provide that performance? That will vary from
job to job. It is also affected by neighboring jobs. We are looking for a generic
solution that will fit most jobs through most job mixes most of the time. Further
refinements may be done within the application through mechanisms like MPI’s
rank reordering, but that is beyond our scope.

We submit that a truly optimal placement algorithm will consist of compet-
ing trade-offs: a) minimize job-job interactions, b) minimize intra-job latency, c)
maximize bisection bandwidth for both large and small jobs, d) provide consis-
tent job run times, all while e) providing high utilization.

To see why satisfying all these may be impossible, consider the trade-offs. We
could maximize bisection bandwidth by spreading the nodes of the job across the
machine. Place them far enough apart so they can make use of the torus’ wrap-
around effect, thereby using additional routes for inter-node traffic and increasing
bisection bandwidth. However, with this arrangement latency is made worse by
the larger distance to travel and job-job interaction is maximized.

We could minimize job-job interaction by allocating nodes in planes (like MDF
ordering). All intra-job communication would stay within the plane, avoiding job-
job interaction except on the edges of an allocation. Yet such a planar allocation
gives poor bisection bandwidth.

We can minimize intra-job latency with tight placement — the shortest dis-
tance between every node in a job. In a 3D torus, this is equivalent to the shortest
distance between a set of points in 3-space. The optimal (minimal) theoretical
placing would be a ball. The shape of the “ball” will depend on the metric used,
in this case, a [weighted] 1-metric, known as Manhattan distance. This means
that the containing ball is geometrically octahedral. While that may be fine for
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minimal distance (and its implication for all-to-all communication), that may not
be optimal for applications that do nearest neighbor computation. The nodes
farthest out on the octahedron can be further from neighbors. Such a shape may
provide the optimal theoretical bisection bandwidth for a single application, but
with multiple applications on a system, it is worth noting that octahedrons do
not pack well.

Moreover, a 3D torus is neither ball nor octahedral. The nearest approxima-
tion would be a cube. Within the cube, a Hilbert curve provides good space-filling
density — but only for perfect cubes. Even then, the curve sometimes produces
multiple hops in the same dimension which we wish to avoid as that represents
reduced bisection bandwidth between those nodes in the sequence. We attempt
to illustrate this in the diagrams, below. (Our work was with a 3D torus but the
figures show the easier–to–draw 2D Hilbert curve and an alternative ordering.
The intent here is to motivate the ideas behind our ordering while not specifi-
cally enumerating the ordering we chose.) In Fig. 3, note the run of: (1,2), (1,3),
(1,4) on the left hand side of the diagram. Placing an application along such a
run would result in reduced bisection bandwidth.

1 2 3 4

1

2

3

4

Fig. 3. Hilbert curve on 4x4 grid
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3

4

Fig. 4. Alternate Weave with toroidal
wrap

These orderings certainly reach all the nodes but may result in job-job inter-
action as nodes “talk across” each other to get to nodes within their respective
jobs. For example, in Fig. 3, the nodes at (2,2) and (4,2) might be part of the
same job, but if (3,2) is the start of another job, then there will be job-job
interaction.

Our compromise on these trade-offs was to emphasize latency improvements
by ordering the nodes to keep them close together in the torus, but also to
consider bisection bandwidth on how those nodes are ordered to avoid planar
layouts. We arrived at our overall solution by dividing the ordering into two
sub-problems. First we attempted to define a compact ordering for a subset of
nodes. We then used this subset as a template for ordering the entire machine.

Our experience has shown us that most user applications typically use 12000
cores or less. That represents 512 nodes on a 24-core/node system. We took
that size, which is a cube of 8x8x8 nodes, as a starting point. By ordering the
nodes within that cube for closeness and bisection bandwidth we could make
placement along that ordering result in good performance locally, that is, for
individual jobs. Our approach was to turn in the path whenever possible. This
increases connectivity and bisection bandwidth and lowers hop counts.
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We chose our first and last nodes in that cube to be directly above and below
each other in the cube. We could use that cube then as a basic building block
(BBB), connecting one to the next with no large discontinuities (but see Sect. 4,
below).The order of the entire torus could then be planned in terms of the layout
of those building blocks. Since our XE6 routers support two nodes per location
in the torus, this would be 8x4x8 in terms of (x, y, z) coordinates. For any size
system we fill it with BBB units ordering them along the z then y then x axis.

4 Some Issues

But now the anisotropic considerations need to be considered. The y dimension
is best at only 4 nodes across (staying on board). Each XE6 Gemini supports
two nodes per network interface, only two (x, y, z) locations across. In torus
coordinates, this leaves us an 8x2x8 building block. With higher speed in the z
dimension there is less distance we can travel in the x dimension in the same
time, so to keep it balanced or “cubical”, we used 4x2x8 as our BBB size. Since
x is the only odd dimension in Cray systems, we may use a BBB with 3 or 5
as the x dimension. This avoids being left with a single 1x2x8 “slice”, a planar
arrangement with lower bisection bandwidth.

The building blocks allow us to connect from one to another in a single hop
except at the point where we have filled a dimension. These locations involve a
move to the start of the next block in an adjacent column, adding an additional
hop in network flow for jobs that span these discontinuities. A small application
placed astride such a spot will experience larger latencies.

5 Placing Real Applications

To measure the effectiveness of our topology node ordering in placement schedul-
ing the following applications from a variety of scientific disciplines were used:
CAM, GAMESS, GTC, IMPACT-T, MAESTRO, MILC, and PARATEC. Ex-
cept for GAMESS, all the others are pure MPI applications. Gamess is a hybrid
MPI application. It uses MPI for collectives, but uses a onesided messaging li-
brary called DDI for PUT/GET/ACC/FADD operation. More details about all
of these codes can be found online [2].

We ran these benchmarks on a 28-cabinet system using our 2x2x2 ordering.
After expanding the system to 68 cabinets we ran the benchmarks again. The
third run is with a slightly modified ordering of 3x2x2 to avoid a planar ordering
on the odd dimension. Finally we ran with the newer BBB ordering. That order-
ing was a mix of BBB sizes of 4x4x8 and 5x4x8. (We use the node count for each
dimension here rather than the xyz dimension to match the 2x2x2 terminology.)
The results are shown in Table 1.

The initial run times on the smaller 28 cabinet system are the baseline to
which we compared the larger runs. The initial run on the 68 cabinet system
showed fractionally better runtime on CAM and GTC, slightly worse runtime
on ImpactT and PARATEC, but significantly worse runtime for GAMESS and
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Table 1. Wall clock run times, in seconds

28 cab 68 cab 68 cab 68 cab
Benchmark 2x2x2 2x2x2 3x2x2 4|5x4x8

CAM 346 338 340 338

GAMESS 1386 1858 1572 1478

GTC 1234 1226 1226 1226

ImpacT 604 629 600 597

MAESTRO 1969 2233 2105 1982

MILC 909 1355 1237 919

PARATEC 386 413 395 383

MAESTRO and MILC. By enlarging the initial thicker ordering to a 3x2x2 block
those latter codes only improved slightly. Not until we use the larger BBB with
its internal weave ordering do we see performance return to the baseline for most
codes.

The GAMESS code is still slightly worse (6.6%) though much better with the
newer ordering than without at the larger scale. This is the quantum chemistry
package used for atomic and molecular electronic structure calculations. For the
benchmark in question (MP2 gradient), the dominant communication motif is
independent one-to-all one-sided accumulate operations. Each process accumu-
lates approximately the same amount of data to each and every other rank.
All of the accumulate operations are independent, i.e. there are no synchroniza-
tions. The performance is directly related to the total aggregate bandwidth of
each rank to every other rank. We suspect that the lower performance in the
larger torus regardless of ordering may be due to the effect of additional bisection
bandwidth in the smaller torus because of toroidal wrap around.

6 Summary of Results and Future Directions

Our general approach of node ordering for placement and working from a free
list provides us with a zero-cost-at-run-time approach that keeps utilization high.
We needed an ordering to improve bisection bandwidth and our first attempts
succeed on smaller scale systems but failed at larger scale. The expansion of
the system to more cabinets was the immediate cause but we could see that
increasing core counts per node will have a similar effect — the average job size
as a percentage of the torus dimension will decrease, with a corresponding loss
of bisection bandwidth. We needed to revise our ordering further.

By balancing the trade-offs between large and small jobs, considering intra-
job communication while seeking to minimize job-to-job interaction we came up
with an ordering that was broadly useful if less than perfect. We used this two-
part compromise ordering and saw our performance on the large scale return to
the same speed as the original system.

We continue to investigate ordering trade-offs; we would like to know which
is the better size block to use for odd-length dimensions. We have a simulation
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underway to see how long the effects of the ordering can be sustained. We also
plan to combine these effects with rank reordering to measure relative contribu-
tions of each. We hope to extend this work to other interconnect topologies.
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Abstract. In collective I/O, MPI processes exchange requests so that
the rearranged requests can result in the shortest file system access time.
Scheduling the exchange sequence determines the response time of par-
ticipating processes. Existing implementations that simply follow the
increasing order of file offsets do not necessary produce the best perfor-
mance. To minimize the average response time, we propose three schedul-
ing algorithms that consider the number of processes per file stripe and
the number of accesses per process. Our experimental results demon-
strate improvements of up to 50% in the average response time using
two synthetic benchmarks and a high-resolution climate application.

1 Introduction

Parallel I/O systems have always faced challenges to efficiently store and retrieve
the ever-growing amount of data. Over the past two decades, researchers have
proposed different solutions, such as MPI I/O, to improve the performance. MPI
collective I/O requires the participation of all processes that open a shared file.
This requirement provides a collective I/O implementation an opportunity to
exchange access information and reorganize I/O requests among the processes.
Several process-collaboration strategies have been proposed, such as two-phase
I/O [1], disk directed I/O [2], and server-directed I/O [3].

Two-phase I/O is a representative collaborative I/O technique that runs in
the user space. Its idea is to reorganize the requests among processes, so that
the rearranged requests incur the minimal overhead from the underlying file
system. The request reorganization is referred to as the communication phase
while the read/write system calls constitute the I/O phase. ROMIO, a popular
MPI-IO implementation [4], adopts the two-phase I/O strategy [5], which first
identifies the aggregate access region and picks a subset of MPI processes as the
I/O aggregators, the only processes making I/O calls to the file system. The
aggregate access region is a minimum contiguous file region covering all the I/O
requests. The region is partitioned into disjointed sub-regions denoted as file
domains, and each is assigned to a unique I/O aggregator.

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 71–80, 2011.
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MPI collective operations only require the participation of all processes, which
should not be confused with the process synchronization. Essentially, once a pro-
cess participates in a collective operation, it can return from the call without
waiting for the completion of other processes. Hence, an optimal request schedul-
ing method for a collective operation should minimize the average response time
of all processes. The I/O request scheduling is a key component of the com-
munication phase in the collective I/O implementation. Let us take ROMIO’s
implementation for the Lustre file system as an example to examine the impor-
tance of a scheduling strategy. At the file open, the Lustre driver chooses an
equal number of I/O aggregators as the number of the file servers, referred to as
Object Storage Targets (OSTs) in Lustre. All stripes of a file are assigned to the
aggregators’ file domains in a round-robin fashion in order to produce a one-to-
one mapping between the aggregators and file servers [6]. Because Lustre adopts
an extent-based locking protocol, such assignment can optimally minimize the
lock request from each aggregator to the file system [7,8].
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Fig. 1. (a) Collective I/O example with 4
MPI processes and 3 OSTs. (b) Average re-
sponse time is 4.25t when P3’s requests are
served last. (c) Average response time is 4t
when P3’s requests are served first.

In the current ROMIO implemen-
tation, each aggregator handles the
requests exchange for all the stripes
in its file domain. That is, it sched-
ules one stripe at a time in the in-
creasing file offset order of the stripes.
We argue that such service scheduling
strategy does not necessarily result in
the best response time for the non-
aggregators. The example in Figure
1(a) shows a collective write from 4
MPI processes to 3 aggregators. The
service scheduling using the increas-
ing file offset order is shown in Figure
1(b), where the requests from P3 are
served last as they have the highest
offsets. In this case, the average re-
sponse time is (4t× 3 + 5t)/4 = 4.25t.
In Figure 1(c) where P3’s requests are
served first, the average response time
is reduced to (t + 5t× 3)/4 = 4t. The
faster response time means the processes can return earlier from the call and
proceed to the successive tasks. This example shows that a different request
scheduling order can result in a different average response time and serves as the
motivation of our work.

We propose three alternative algorithms for request scheduling: Most Degree
First (MDF), Locally Weighted MDF (LW-MDF), and Globally Weighted MDF
(GW-MDF). These algorithms prioritize the file stripes based on their access
degree, the number of accessing processes. The MDF schedules the stripe with
the highest degree to be served first. The LW-MDF assigns a weight to each
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process using its total number of requests to individual aggregators. The GW-
MDF assigns the weight based on all the local weights of a process across the
aggregators. The weighted schemes are used to calculate the priority scores for
the stripes. Our experiments on the Cray XT4 parallel machine and Lustre file
system at the National Energy Research Scientific Computing Center show that
the average response time is reduced by 30% for a fixed uneven workload, 50%
for a random workload, and 20% for a large-scale climate simulation application.

2 Design and Implementation

Our objective for developing the three alternative scheduling algorithms is to
minimize the average service response time, Tc, of all the MPI processes in a
collective I/O. We take into consideration the accessing degree of a file stripe,
which is defined as the number of processes accessing it. The proposed algorithms
do not change the I/O amount on the aggregators and if the cost of I/O phase
dominates the collective I/O, then the time on the aggregators will not change
significantly. What the proposed algorithms intend to improve is the response
time mainly on the non-aggregators. We assume the same cost for the I/O phase
irrespective of the stripe permutations carried out to the file system. The request
size per aggregator is same as the stripe size, which is between 1MB and 4MB.
The stripe size is a multiple of the disk sector size (512 bytes), hence, it will
not affect the disk seek time. Based on our experiments on Lustre, the I/O
for different stripe permutations costs approximately the same, as long as each
aggregator only accesses the same server.

Most Degree First (MDF). Among all the stripes in an aggregator’s file
domain, the MDF method schedules the stripe with the highest degree first.
Intuitively, if the stripes with larger degree stripes are serviced first, then more
non-aggregator processes will complete their collective I/O earlier. In ROMIO, at
the beginning of a collective I/O, the request information of all processes is made
available to all the aggregators. Hence, with MDF each aggregator can calculate
and sort the stripes in its file domain independently from other aggregators.
Once the scheduling is determined, the two phases are carried out alternatively,
one stripe at a time.
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Fig. 2. An example access pattern and the
weight score assignment by the LW-MDF
method

Solely utilizing the access degree
may not always give the minimal Tc.
For example, the first three stripes of
a file are written by P0 and each of the
successive 12 stripes is written by P1,
P2 and P3, in an interleaving manner.
If there are three aggregators, then
each has a file domain consisting of
5 stripes in which the access degree is
1 for the first stripe, and 3 for the re-
maining four stripes, as illustrated in
Figure 2(a). In the MDF algorithm,
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P0’s requests are served last and Tc = (5t + 3 × 4t)/4 = 4.25t. However, if P0’s
requests are served first then Tc = (t + 3 × 5t)/4 = 4t. Hence, solely depending
on the stripe’s degree is not sufficient to achieve the best response time. We
propose two additional algorithms with weighted schemes.

Locally Weighted Most Degree First (LW-MDF). As the assumption in
the MDF method that each process has equal contribution to the stripe schedul-
ing priority may not produce the best result, the LW-MDF method is designed
to assign a weight to each process based on its number of requests in an aggrega-
tor’s file domain. In each aggregator, the weight of a process is set to the inverse
of the number of stripes accessed on that aggregator. For example, in Figure 2,
the weight is 1 for P0, and 0.25 for the others. The priority score of a stripe is
then calculated as the sum of all process weights on that stripe. Note that the
scores only depend on the local data access pattern on the aggregators. As a
result, the LW-MDF method assigns the higher priority to stripe S0 than other
stripes.

In the LW-MDF method, the weights are calculated using only the local in-
formation on each aggregator. Consider a case that process P0 accesses only
two aggregators, for instance two stripes on aggregator A0 and six stripes on
aggregator A1. The weights assigned to P0 on both aggregators will be 1

2 and
1
6 , respectively. If A0 schedules P0’s stripes first but A1 schedules P0’s stripes
later, then P0’s collective I/O will not complete until the six stripe requests on
A1 are processed. In order to deal with this problem, we propose another variant
of MDF algorithm that considers the weights of a process across all aggregators.

Fig. 3. An example access pattern and the
weight score assignment by the GW-MDF
method

Globally Weighted Most De-
gree First (GW-MDF). When
a process has a higher number
of accesses to an aggregator, it
makes little sense to schedule its
requests first on other aggrega-
tors, as the response time of a
process is determined by the slow-
est aggregator that serves its re-
quests. The GW-MDF method
selects the minimum of local
weights of a process across all the
aggregators to calculate the prior-
ity scores for stripes.

Consider the example case presented in Figure 3. Process P0 accesses two
stripes on aggregator A0, and six on aggregator A1, the weight of P0 on A0 is 1

2
according to LW-MDF and 1

6 according to GW-MDF. There is another process
P1 that only accesses 4 stripes on aggregator A0, the weight of P1 on A0 is 1

4 . In
GW-MDF, the weight of P1 is higher than P0’s weight (1

6 ), thus, P1’s requests
are served first. The average response time Tc = (6t + 4t)/2 = 5t. However, in
LW-MDF, P0 and P1 will complete at the same time, and Tc = (6t+6t)/2 = 6t.



Improving the Average Response Time in Collective I/O 75

Therefore, GW-MDF achieves the optimal scheduling in this case. One thing to
note, if the processor doesn’t have any stripe to access, its score is assigned to
zero rather than infinity. Our score algorithm only needs to consider the positive
values to exclude the processes with zero score. For highly irregular or unbalanced
data access patterns, it is anticipated that GW-MDF can outperform the other
two MDF methods. However, in order to find the global minimums, there is an
extra communication for gathering the local weights of all processes on every
aggregator. This global communication among aggregators adds an overhead to
the overall performance.

3 Performance Evaluation

All the proposed scheduling algorithms are implemented in the ROMIO library
released along with MPICH version 1.3.2p1. By using two artificial benchmarks
and a climate simulation application, our evaluation was carried out on Franklin,
a Cray XT4 supercomputer at NERSC. Franklin consists of 9572 computer
nodes, each of which runs a 2.3 GHz quad-core AMD Opteron processor and
8 GB memory. The parallel file system is Lustre version 2.2.48 with total of
48 OSTs. In our experiments, the stripe size was configured to 1 MB and the
numbers of OSTs are set to 8 and 40 for the artificial benchmarks and GCRM
evaluation, respectively. The performance results of MPI collective write opera-
tions are presented in this work.

Fixed Uneven Workload. We assign the first half of the processes twice the
write amount as the other half. The access pattern is illustrated as an example
shown in Figure 4(a), where the first half of the 128 processes write 40 MB of
data each, and the second half writes 20 MB. The write amount on each process
is further partitioned into 160 smaller pieces whose offsets are interleaved among
all processes. For each piece in the first 64 processes, the size is 1

4 MB, and for
each piece in the second 64 processes is 1

8 MB. This setting produces multiple
noncontiguous file regions for each process to access and each stripe is accessed
by more than one process. In addition, each process accesses the same number
of stripes on each aggregator. This pattern implies that all MDF methods have
the same weights and should have similar performance. The results presented
in Figure 4(b) clearly demonstrate that the proposed scheduling methods out-
perform the traditional scheduling of the increasing file offset order. With the
experiments running on up to 1024 processes, we observe that all four scheduling
methods have the same wall time for the slowest processes. The slowest process is
one of the aggregators whose file domain has the most stripes. All MDF methods
show the similar improvement as the weights of a process, which contribute to
the priority are the same for all stripes. In this case, the priorities are determined
by the local access degrees. A reduction of up to 30% in average response time
is obtained.

Random workload. Given a fixed file size, the random workload partitions the
entire file into pieces with arbitrary lengths which are then assigned to processes
based on the Gaussian distribution. Figure 5(a) shows the random workload
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Fig. 4. Access pattern and performance results for the fixed uneven workload

distribution among 128 processes, and Figure 5(b) shows the corresponding his-
togram. Each process has a random amount of data to write and the processes
with ranks close to the median are assigned more workload. Figure 5(c) and (d)
illustrate the number of stripes per process and stripe access degree per process,
respectively. Each piece of write segment is randomly assigned to a process such
that the number of stripes accessed by a process obeys the Gaussian distribution.
The stripe degree is also random because the size of each piece is arbitrary. The
results in Figure 5(e) indicate that both LW-MDF and GW-MDF perform better
than MDF by up to 50%. MDF does not have a noticeable improvement over
the original scheduling as the number of stripe accesses in this random pattern
varies significantly with the number of processes.

Global Cloud Resolving Model (GCRM). The GCRM is a climate ap-
plication framework designed to simulate the circulations associated with large
convective clouds [9]. Its I/O uses Geodesic Parallel I/O (GIO) library [10], which
interfaces parallel netCDF (PnetCDF) [11]. In our experiments, we enable the
PnetCDF non-blocking I/O option to aggregate multiple grid data variables into
large-sized collective writes. Non-grid variables are excluded from our evaluation,
as they are written individually, which does generate uneven file access degrees.
There are 11 grid variables and each variable is approximately evenly partitioned
among all the processes. We collected results for 3 cases: 640 processes with res-
olution level 9, 1280 processes with level 10, and 2560 processes with level 11.
Resolution levels 9, 10, and 11 correspond to the geodesic grid refinement at
about 15.6, 7.8, and 3.9 km, respectively. Figure 6(a) and (b) show the I/O pat-
tern for the 1280-process case and indicates about 80% of the processes access
13 file stripes. The majority of the processes have the same request length, and
only a few processes have smaller request lengths. There are two peaks of stripe
access degree in Figure 6(c) at stripe ID 0 and 1441 because a few small sized
grid variables (40 MB each) are written at these file offsets. Since each variable
is evenly partitioned among 1280 processes, there are 32 processes accessing the
same stripe, as shown by the right-most bar in the histogram chart, Figure 6(d).
The histogram also shows that more than half of the stripes are accessed by 6
distinct processes, while others have even higher degrees.

Both MDF and LW-MDF yield similar performance in Figure 6(e) because
more than 80% of the processes have the same request count and hence share
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Fig. 5. Access pattern and performance results for the random workload

the same weights. Improvement in the average response time is approximately
20%. Compared with the random workload distribution, GCRM’s access pat-
tern is relatively regular. As described earlier, GW-MDF requires an additional
global communication for finding the minimal weights. However, the benefit of
using the global weights is not significant enough to outperform the communi-
cation overhead. The similar results between the MDF and the original methods
attribute to the balanced I/O workload in the GCRM.

4 Related Work

Scheduling parallel I/O operations has been studied by many researchers to ad-
dress the speed gap between the CPU and I/O systems. Three off-line heuristics
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Fig. 6. Access pattern and performance results of GCRM

based on graph coloring algorithms are developed to formalize the simultaneous
resource scheduling problem [12]. Based on this work, a distributed randomized
version using edge coloring method is proposed in [13]. Distributed I/O schedul-
ing in the presence of data replication is presented in [14]. Decentralized I/O
scheduling strategies between computer nodes and I/O servers for parallel file
systems are developed in [15]. [16] has proposed three different techniques to
increase the write bandwidth for collective I/O. The first technique is similar to
two-phase collective I/O which aggregate I/O requests from participating pro-
cesses such that the number of I/O operations provided to the underlying par-
allel file systems can be minimized. The second technique is to use a designated
root process gathering data from all the processes, thus, the communication
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parallelization can be better utilized in some degree. In the third method, each
process writes out data independently. However, there is no I/O scheduling al-
gorithm employed in any of the proposed methods.

5 Conclusion

In collective I/O operations, different I/O request scheduling strategies can give
different response time. We use the stripe access degree and request count per
process on the I/O aggregators to develop algorithms that improve the average
response time of collective I/O operations. Reducing the average response time in
collective I/O operations equivalently increases the computational resource uti-
lization in high-performance computing systems. Our performance results show
significant improvement in average response time for various data access patterns
in collective write operations. In the future, we plan to apply similar approaches
for read operations and develop different scheduling methods for different parallel
file systems.
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Abstract. I/O is probably the most limiting factor on high-end ma-
chines for large scale parallel applications as of today. This paper intro-
duces OMPIO, a new parallel I/O architecture for OpenMPI. OMPIO
provides a highly modular approach to parallel I/O by separating I/O
functionality into smaller units (frameworks) and an arbitrary number
of modules in each framework. Furthermore, each framework has a cus-
tomized selection criteria that determines which module to use depending
on the functionality of the framework as well as external parameters.

1 Introduction and Motivation

Amdahl’s law stipulates that the scalability of a parallel application is limited
by its least scalable section. For many scientific applications, the scalability lim-
itation comes from the performance of I/O operations. MPI [12], the most pop-
ular parallel programming paradigm on clusters today introduced the notion of
parallel I/O in version two of the specification. Although its adoption by the
end-users has been modest, it has been shown, that in combination with par-
allel file systems, MPI I/O can significantly improve the performance of I/O
operations [7, 14] compared to sequential I/O.

Switching from the sequential Fortran or C I/O routines to MPI I/O poten-
tially requires significant work by application developers, due to the fact that
many MPI I/O features do not have counterparts in other I/O specifications.
However, application developers are more willing to make drastic investment in
rewriting substantial part of the application if the direct effect of the investment
is a significant reduction in the application execution time, or a more robust
scalability. This is however not always the case. The reasons for the limited per-
formance often observed with MPI I/O is the diversity of existing I/O solutions
which make each I/O environment (almost) unique. The performance of parallel
I/O operations is influenced by the file system utilized, as well as by the number

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 81–89, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



82 M. Chaarawi et al.

of storage servers, the I/O bandwidth of each storage server, the network con-
nectivity in-between the storage servers as well as between the storage servers
and compute nodes, and the network interconnect and its OS-level parameters
used for the MPI level communication. Additionally, application characteristics
such as frequency and volume of I/O operations as well as the algorithm utilized
to implement the functionality (e.g., the collective I/O operations), will greatly
contribute towards the I/O performance observed by the end-user.

In this paper, we present a new parallel I/O architecture for Open MPI called
OMPIO. The goal of OMPIO is to provide the infrastructure that allows to deal
with the challenges of parallel I/O in a flexible manner, and consequently allows
to optimize the performance of I/O operation for different applications and hard-
ware configurations. At the core of the architecture is the separation of parallel
I/O functionality into frameworks. This allows to encapsulate various aspects of
parallel I/O into smaller functional units, such as dealing with file system specific
operations, individual I/O, collective I/O, or shared file pointer operations. Each
framework has typically multiple modules providing the required functionality,
each module being designed for different scenarios. We argue, that the selec-
tion criteria that determines which module is being used is highly dependent on
the functionality provided by a framework and on external parameters such as
the file system utilized, hardware configuration, process placement by the batch
scheduler or application characteristics.

The remainder of the paper is organized as follows: Section 2 discusses the
related work in the area and makes the case why currently existing approaches,
provided by most popular MPI I/O libraries, do not offer the required flexibility
to deal with the diversity of the available I/O subsystems. Section 3 describes
the design of the new OMPIO module and its associated set of frameworks. In
section 4 we present a case study where we evaluate two different benchmarks
on two different platforms using a PVFS2 and a Lustre file system. The re-
sults demonstrates a the available functionality in OMPIO and exposes some
of the advantages of the new architecture for collective I/O operations. Finally,
section 5 summarizes the paper and presents the ongoing work in this area.

2 Related Work

The most widely used implementation of MPI I/O as of today is ROMIO [16].
ROMIO is part of the MPICH [8] distribution and is the basis for many I/O
libraries used in other public domain MPI libraries such as Open MPI and com-
mercial MPI implementations. ROMIO abstracts file systems specific operations
using the Abstract-Device Interface for Parallel I/O, called ADIO [15], which
reduces the number of routines that have to be implemented in order to support
a new file system. ROMIO also has the ability to support multiple file systems
simultaneously, e.g., in case an application opens a file on two different file sys-
tems. However, the selection criteria which ADIO module shall be used as of
today is based on the file system only. Krimpe et al. [9] allowed for non-file sys-
tem specific selection of some modules by prepending a keyword to the name of
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the file. The solution presented in this paper has two main advantages compared
to ROMIO. First, the usage of different frameworks allows a more fine grained
separation of functionality than the approach used in ROMIO. Second, OMPIO
introduces the ability to make non-file system specific module selection that do
not require any modifications of the end-user application.

In [4], the authors introduced the ability to easily modify parameters of collec-
tive I/O operations. However, the work focused entirely on collective I/O, leaving
other aspects of parallel I/O unmodified. Furthermore, it is our understanding
that the framework described in this paper does not allow for easy deployment
of new collective I/O algorithms, but is restricted to modifying parameters of
the provided collective read/write operations.

The Adaptable IO System (ADIOS) [11] is an I/O library designed to allow
end users to select the best I/O method based on the application’s access pat-
tern and the underlying file system and hardware at hand. The access pattern
of the application is described in a separate input file, providing some of the
functionality that the file view provides in MPI I/O. Thus, the ADIOS library
has the ability to utilize POSIX style I/O operations, MPI I/O or any other
supported API without having to change the application itself. ADIOS also in-
troduces a file format called BP, which serves as an intermediate format that is
easily converted to other standard file formats such as HDF5.

3 The OMPIO Set of Frameworks

The Open MPI Project [5] is an open source implementation of the MPI specifi-
cation that is developed and maintained by a consortium of academic, research,
and industry partners. The internal architecture of OpenMPI is built around
the Modular Component Architecture (MCA) [1], which allows for compile or
run time selection of the components used by the MPI library. A component
framework in Open MPI is dedicated to a single task, such as providing parallel
job control or performing MPI collective operations. Modules are self-contained
software units that can configure, build, and install themselves. Modules adhere
to the interface prescribed by the component framework that they belong to,
and provide requested services to higher-level tiers and other parts of MPI. This
mechanism allows a single OpenMPI installation to simultaneously support var-
ious network interconnects. The new OMPIO module is a module of the IO
framework of OpenMPI, and is designed to co-exist with ROMIO, the parallel
I/O library used in all released versions of Open MPI. Generally speaking, when
a file is being opened, both OMPIO and ROMIO are being queried, and the
module returning the higher priority value is used to for the subsequent I/O
operations.

The main goals of OMPIO are three fold. First, it increases the modularity of
the parallel I/O library by separating functionality into distinct sub-frameworks.
Second, it allows frameworks to utilize different run-time decision algorithms to
determine which module to use in a particular scenario, enabling non-file system
specific decisions. Third, it improves the integration of parallel I/O functions



84 M. Chaarawi et al.

Fig. 1. Overview of the OMPIO component and its frameworks

with other components of Open MPI, most notably the derived data type engine
and the progress engine. The integration with the Open MPI progress engine
allows for seamless progress of non-blocking I/O operations. The integration
with the derived data type engine has multiple advantages, most notably faster
decoding of derived data types and the usage of optimized data type to data type
copy operations. Furthermore, OMPIO has the ability to use the data conversion
functionality of the data type engine, without having to provide the according
(fairly complex) functions.

Similarly to the selection logic in other Open MPI frameworks, each sub-
framework of the OMPIO component determines in MPI Init the list of available
modules and opens them. Upon opening a file using MPI File open, the OM-
PIO module initializes each sub-framework for that particular file. A framework
will query each available module which in return responds with a priority value
indicating its readiness to be used for the given file. As an example, a module
providing a POSIX style interface might return a low priority value for most files,
indicating that it could be used for the according operations. However, a specific
module optimized for the given file system or installation will typically return
a higher priority and will be chosen for the subsequent I/O operations. Each
sub-framework or module will typically have different rules on when to return
a high priority. Conditions include the file systems type, location of participat-
ing processes, network parameters or user specified settings. In the following we
present briefly each sub-framework and the currently available modules.

3.1 The file system Framework (fs)

The fs framework abstracts out file manipulation operations such as opening,
closing, and deleting a file. The semantics of most of the operations are collective.
Furthermore, file system specific info objects have to be interpreted and applied
within this module. The fs framework has as of today a module providing generic
POSIX interface, and separate modules for Lustre and a PVFS2 which allow to
modify stripe size and stripe depth when creating a new file.
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3.2 The file byte-transfer layer Framework (fbtl)

The fbtl framework provides the abstraction for all individual read and write
operations. A module implementing the fbtl interfaces has to provide, as of to-
day, blocking and non-blocking read and write operations, as well as a progress
function that will be registered with the Open MPI progress engine in order to
enforce the progress of pending I/O calls. The interfaces of the read and write
operations currently take a list containing tuples of <memory address, length in
bytes, file offset>. Currently available are fbtl modules which provides POSIX
semantics, and a module utilizing native PVFS2 read/write operations. Note
however, that the current OMPIO implementation only supports blocking oper-
ations for both fbtl. Support for non-blocking individual operations are expected
to be available in the near future.

3.3 The collective I/O Framework (fcoll)

This framework provides interfaces for collective file I/O operations. In contrary
to the other frameworks which are part of the OMPIO set, the fcoll framework
triggers the selection logic not upon opening a file, but every time the file view
is being set.

Collective I/O operations are a very good example for the necessity to have
non-file system specific selection logic. As an example, the Lustre file system
serving the Jaguar system at Oak Ridge National Laboratory and the Lustre
file system at our development cluster at the University of Houston have fun-
damentally different characteristics, such as number of Object Storage Targets
(OSTs), bandwidth of each OST, and network characteristics between compute
nodes and OSTs. Despite the fact that both installations utilize the same file sys-
tem, different algorithms for collective I/O operations have to be used on these
two installations in order to maximize the I/O performance of an application,
since some optimizations only make sense for certain hardware configurations.

The fcoll framework has five different modules to choose from, one module for
each of the following algorithms: two-phase I/O, static segmentation, dynamic
segmentation, individual algorithm and an algorithm where each I/O node is
only receiving requests by a single aggregator process. The first three algorithms
have been extended to include a heuristic which automatically determines the
number of aggregator processes to be used [2].

The current selection logic is based on an extensive set of tests that has been
executed on various platforms and file systems. Among the factors that influence
which module is being used is the average contiguous data chunk accessed by
each process, gaps size in the file view between processes, and file system char-
acteristics, such as the stripe size and the minimal data required to saturate the
read/write bandwidth of one process. We omit here details of this selection logic
due to space limitations, more details may be found in [2].

3.4 The file cache Framework (fcache)

The fcache framework provides the ability to set and retrieve information related
to the file layout, such as the number of storage servers used, list of storage



86 M. Chaarawi et al.

servers, and stripe depth for each file separately. The main functionality of the
fcache is to provide a mapping of <offset into file, length in bytes> to a list of
<storage server id, local offset on that storage server, local length>. This allows
for various optimizations for example for collective I/O operations. As of today,
only a trivial module is available for UFS style file systems which provides only
basic information.

3.5 The shared file pointer Framework (sharedfp)

The sharedfp framework provides the functionality required to manage the shared
file pointer, allowing for generic and architecture specific optimizations. Al-
though shared file pointer operations have been sparingly used in the community,
due to the fact that in the most general case an implementation of shared file
pointer operations will be slow, it is well understood that, for particular archi-
tectures or settings, efficient implementations do exist. As an example, if the
shared file pointer is utilized by processes in a communicator that spans a sin-
gle physical node, the shared file pointer can be efficiently implemented using a
small shared memory segment. Alternatively, some of the strict requirements of
a shared file pointer can be relaxed for certain usage scenarios, allowing the uti-
lization of individual files per process. In doing so, the consolidation to a single
output file may be delayed to the post-processing step [10].

We have explored a number of shared file pointer algorithms in [10], which
are currently being converted into modules in the near future along with the
selection logic, which will include process placements as one of the key criteria
to determine which module to use.

4 Experimental Results

Two application benchmarks are used for evaluation on two different platforms.
The Shark cluster at the University of Houston consists all-in-all of 29 nodes,
with a PVFS2 file system consisting of 22 server nodes where each server uses
its local disk space as the back-end storage. The stripe size of the file system is
64 kB. The file system uses GE as the network interconnect.

The Deimos PC Farm at TU Dresden has 724 compute nodes with a Lustre file
system exported by 11 I/O servers via a separate 4x SDR InfiniBand network.
The file system is organized in 48 OSTs with a stripe size of 1 MB.

The first benchmark used is MPI-TILE-IO [13], a test application that imple-
ments tile access to a two dimensional dense dataset. This type of workload is
seen in tiled displays (for small numbers of tiles) and in some numerical applica-
tions. Several parameters that control the file access and 2D distribution of the
processes can be modified at runtime. The results shown report two tile sizes of
64 Bytes (2048 x 1600 elements) and 1 MB (20 x 15 elements), which represents
a non-contiguous and contiguous access respectively. We report the maximum
bandwidth achieved across five executions of every test case.
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Table 1. Performance comparison between OMPIO’s and ROMIO’s default setting
using MPI-TILE-IO

Platform/Number of Processes/Tile Size ROMIO OMPIO

Shark/81(9x9)/64B 303.8 MB/s 591.1 MB/s

Shark/81(9x9)/1MB 290.1 MB/s 625.4 MB/s

Deimos/256(16x16)/64B 411.6 MB/s 2167.1 MB/s

Deimos/256(16x16)/1MB 517.7 MB/s 2491.2 MB/s

The results shown in table 1 show the results using the MPI-TILE-IO bench-
mark over Shark with PVFS2 and Deimos with Lustre. ROMIO has been ex-
ecuted with default parameters, i.e. without passing any additional hints or
parameters to the library in order to have a base-line number from the perfor-
mance perspective. In OMPIO we set the optimal cycle buffer size determined
for the according file system. OMPIO chooses the two-phase I/O module for the
64 Byte tile size and the dynamic segmentation module for the 1 MB tile size.
The heuristic determining the number of aggregators automatically leads to 81
aggregator processes on Shark and 256 aggregators on Deimos in these test cases.
Collective I/O operations in ROMIO use the two-phase I/O algorithm with one
aggregator per node as the default setting. The results show that OMPIO leads
to a performance benefit in these test cases which can be attributed mostly to
the different number of aggregators used by OMPIO and the different algorithm
used in the first case. However, the main message of this result is not the perfor-
mance benefit observed due to the different number of aggregators, instead the
flexibility to switch seamlessly between different collective I/O module for the
same application due to the component architecture of OMPIO.

In the second scenario, we demonstrate the flexibility and modularity of
the OMPIO architecture by using the Open Tool for Parameter Optimizations
(OTPO) [3] to tune collective I/O operations and parameters for a given test
case. OTPO is a tool which can be used to optimize runtime parameters of
Open MPI. The tool takes in an input file which contains the names of pa-
rameters to be explored along with the according rules on how to modify the
parameters, and the name of the benchmark/application to be executed when
exploring the parameter space. After the optimization, OTPO reports the set
of parameter combination(s) which lead to the lowest execution time. In this
particular scenario, we used the Latency-IO micro-benchmark developed as part
of the latency test suite [6].

The parameter file that is passed to OTPO contains the different collective
I/O algorithms that are available in OMPIO and a some parameters of these
modules. Thus, the parameters to be optimized and according values are:

– fcoll module: static, dynamic, individual, two-phase
– number of aggregators: 5, 10, 20, 40
– cycle buffer size: 2 MB, 20 MB, 32 MB, 64 MB, 128 MB
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In this case 65 different parameter combinations were generated from the input
file, the winning combination was (dynamic, 20, 32 MB). While there were other
parameter combinations that provided performance close to the wining combi-
nation, only two out of 65 parameter combinations were within 10% of the best
performance value. Those combinations were (dynamic, 20, 20 MB) and (static,
20, 32 MB). Overall, 23 out of 65 parameter combinations were within 25% of
the best performance.

This type of tuning of collective I/O parameters is possible because of the
OMPIO architecture and allows end-users and system administrators to pre-tune
a module for a particular application or scenario without having to recompile
the MPI library.

5 Conclusion

This paper introduces OMPIO, a newly developed parallel I/O architecture de-
signed for Open MPI. OMPIO introduces a modular architecture for parallel I/O
that separates functionality into different sub-frameworks and allows for a highly
flexible composition of modules in order to provide MPI I/O functionality, and
reduces the barriers to develop new, site-specific modules and configurations.
We demonstrate the usability of OMPIO by executing various benchmarks on
a PVFS2 and Lustre file system on two different clusters. OMPIO is currently
being evaluated by the Open MPI group and should be publicly available by the
end of the summer, with the initial intent of serving as a research vehicle into
parallel I/O.

The ongoing work includes multiple areas. First and foremost, we are working
on implementing the non-blocking I/O operations within the OMPIO framework.
This will support most of the operations defined in the MPI-2.2 specification
and will open the door for further optimizations for collective I/O operations.
Second, we are continuing to improve our collective I/O algorithms, most notably
by exploring new grouping strategies for the dynamic and static segmentation
algorithms.
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Abstract. Nonblocking operations have successfully been used to hide
network latencies in large scale parallel applications. This paper presents
the challenges associated with developing nonblocking collective I/O op-
erations, in order to help hiding the costs of I/O operations. We also
present an implementation based on the libNBC library, and evaluate
the benefits of nonblocking collective I/O over a PVFS2 file system for
a micro-benchmark and a parallel image processing application. Our re-
sults indicate the potential benefit of our approach, but also highlight
the challenges to achieve appropriate overlap between I/O and compute
operations.

1 Introduction

Overlapping computation and communication is a standard technique to op-
timize the performance of parallel applications. This technique allows to hide
latencies and improve bandwidth of data transfers to remote processes. This
functionality is offered to the user through a special nonblocking interface, which
allows to start operations and check for completions later. Benefits of nonblock-
ing operations have been demonstrated for point-to-point [1,2] and nonblocking
collective [3,4] operations. The Message Passing Interface (MPI) standard speci-
fies so called “immediate” versions of some operations. MPI-2.2 offers immediate
versions of all point-to-point communication calls and MPI-3.0 will add imme-
diate versions of all collective communication functions. Those special functions
return with a handle before the operation is completed. The handle can be used
to test and wait for completion of the associated operations.

With the advent of data-intensive computing [5], the input/output from/to
disk (I/O) of application data can become a significant bottleneck. This does
not only include reading the dataset initially and saving it at the end but also
periodic application-level checkpoints and out-of-core processing. In addition to
this, while the compute and network power of parallel HPC systems is growing
steadily, the performance of the I/O subsystem can often not keep up with this
growth. Thus, nonblocking I/O interfaces are important to improve application
performance.
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In this work, we propose a new interface that is similar to the newly intro-
duced nonblocking collective communication operations and show an optimized
implementation of this interface. In particular, the contributions of this paper
are as follows:

1. We propose a simple extension to the MPI-2.2 standard to enable the user
to specify overlap of I/O operations with other computation and communi-
cation operations conveniently.

2. We describe a framework to efficiently implement nonblocking collective I/O
routines.

3. We demonstrate an implementation of this framework and performance re-
sults on a parallel file system.

The outline of the paper is as follows: section 2 presents the technical challenges
associated with nonblocking collective I/O operations. Section 3 evaluates the
benefits of nonblocking collective I/O operations, followed by a general discus-
sion on nonblocking collective I/O interfaces in section 4. Finally, section 5 sum-
marizes the contributions of the paper and presents the ongoing work in this
domain.

2 Challenges of Nonblocking Collective I/O Operations

In the following, we detail the challenges of providing nonblocking collective I/O
operations. For this, we describe first the collective I/O algorithm used and then
elaborate the extensions introduced in libNBC.

2.1 Collective I/O Algorithm

The collective I/O algorithm used for the prototype implementation of nonblock-
ing collective I/O operations is based on the dynamic segmentation algorithm [6].
This algorithm is an extension of the classical two-phase collective I/O algorithm.
Similar to two-phase I/O, the main goal of this algorithm is to combine data
from multiple processes in order to minimize the number of discontiguous I/O
requests. In contrast to two-phase I/O however, the dynamic segmentation algo-
rithm does not create a globally sorted data array based on the offsets in the file.
Instead, each aggregator is assigned a group of processes and performs the data
gathering/scattering and sorting only within its group. This allows to execute
the shuffle step including the sorting and data gathering/scattering more effi-
ciently, since the Alltoall(v) type communication in the two-phase I/O algorithm
is replaced by a number of independent Allgather(v) operations in the dynamic
segmentation algorithm.

For very large collective operations, the dynamic segmentation algorithm is
split into multiple cycles. This allows to keep the amount of temporary buffer
required on the aggregator processes within constant, reasonable limits. Note,
that depending on the offsets into the file a process might have to contribute
different amounts of data to its aggregator in each cycle.
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2.2 A Framework for Nonblocking Collective I/O Operations

A similar problem, the implementation of nonblocking collective operations, has
been discussed in [4]. The framework for nonblocking collectives is implemented
in the open-source library libNBC. We utilize and extend libNBC in conjunc-
tion with Open MPI’s OMPIO framework [7] to handle nonblocking collective
I/O operations. The central concept in libNBC’s design is the collective oper-
ation schedule. During initialization of the operation, each process records its
part of the collective operation in a local schedule. A schedule contains, among
others, send and recv operations and a so called “barrier” which acts as local
synchronization object. A barrier in a schedule has the semantics that all oper-
ations before the barrier have to be finished before any of the operations after
the barrier can be started. The execution of a schedule is nonblocking and the
state of the operation is simply kept as a pointer to a position in the schedule.
With send, recv, and barrier, one can express many collective communication
algorithms; see [4] for further details.

A major difference between collective communication and collective I/O op-
erations stems from the fact, that each process is allowed to provide different
volumes of data to a collective read or write operation, without having knowledge
on the data volumes provided by other processes. This is not the case for collec-
tive communication operations, where either each process provides exactly the
same amount of data (e.g. Bcast, Reduce, Allreduce, Gather, Scatter, Allgather,
Alltoall etc.) or in case of the vector version of the operations a process knows
the communication volumes of all processes communicating with him (Gatherv,
Scatterv, Allgatherv, Alltoallv, Alltoallw). This information is, however, essen-
tial to determine how much data a process has to contribute within a cycle of
the collective I/O operation.

Thus, the first step in most collective I/O algorithms is an Allgather(v) step
which determines the overall amount of data each process is contributing along
with the according offsets into the file. In the case of the dynamic segmentation
algorithm, this communication operation is within each group of an aggregator.
This allows every process to determine how much data it has to contribute in
every cycle of the algorithm. For nonblocking operations, the challenge is, that
upon calling MPI File iwrite all the according Allgather(v) operations can
not be finished, since this would result in a blocking communication operation
when initiating the nonblocking write-all. This is however not possible, since it
could lead to a deadlocks.

Thus, the solution developed here consists of a two-step approach: while initi-
ating the nonblocking collective read/write operation, we generate first a sched-
ule which executes the nonblocking Allgather(v) communication step1 The last
step of the Allgather(v) schedule will be executed when the Allgather(v) opera-
tion is finished, and creates a new schedule which executes the actual collective

1 Note, that the operation is not exactly an MPI Allgatherv, but consists of mul-
tiple Gather(v) operations executed on disjoint groups of processes in the same
communicator.
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I/O operations. This second schedule contains the data gathering at the aggrega-
tor processes, the sorting based on the offsets into the file, and the asynchronous
writing to the file.

Associated with that are two further challenges: first, no temporary buffers
used within the collective I/O algorithm can be allocated upfront when posting
the operation, since the overall amount of data and many of the according buffers
are only known at the end of the Allgather(v) step. Therefore, we extended the
set of operations supported by the progress engine of libNBC in addition to
nonblocking read and write by dynamic memory management functions, which
allow to allocate and free buffers as part of the libNBC schedule. Second, due to
the fact that the asynchronous I/O operation are implemented using aio read
and aio write operations which have their own data structure to identify pend-
ing operations, the libNBC progress engine has been extended with the ability
to progress multiple, different handles simultaneously, e.g. MPI Requests for
communication operations and the internal aio-handles for asynchronous I/O
operations.

2.3 Schedule Caching

One of the distinct features of libNBC is its ability to cache a schedule of a
collective operation. This allows to speed up execution of operations which are
posted repeatedly by an application. I/O operations generally fit the repetitive
pattern required for caching a schedule, e.g. in case an application writes periodic
checkpoint files. In this scenario an application has two options. The first option
is to append the most recent data that has to be written to the end of an
existing file. The second option would use a different file for every checkpoint.
Both approaches post unique challenges for caching a schedule.

For the first option, the challenge comes from the fact that every collective
I/O operation which appends data to an already existing file will lead to new
offset values into the file. Moreover, the MPI standard also allows for a process
to mix individual and collective I/O calls, which makes predicting the current
position of the file pointer of a process impossible. Since the order in which data
has to be written to the file depends on the file view and the current position
of the individual file pointer, the actual amount of data that a process has to
contribute to a particular cycle of the collective I/O is not necessarily repetitive,
even if the arguments passed to the MPI function are identical to the previous
instance. Thus, caching the schedule would not help in this scenario.

The second scenario where a separate file is used for every checkpoint is equally
challenging, due to the fact the schedules would be cached on a per file handle
basis. This is in equivalence to the collective communication operations, where
the caching is being done on a per communicator basis, although the MPI speci-
fication does not providing attribute caching functions on files as of today. Trans-
ferring a schedule from one file handle to another file handle can theoretically
be done, the challenge being however how to keep a file handle around once a
file has been closed, without creating an unnecessary memory overhead.
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3 Performance Evaluation

In the following section we evaluate the impact of the nonblocking collective I/O
operations. We first describe the execution environment followed by the results
obtained with a micro-benchmark and a parallel image processing application.

3.1 Experimental Setting

The system used in these tests is the crill-cluster at the University of Houston,
which consists of 16 nodes with four 12-core AMD Opteron (Magny Cours)
processor cores each (48 cores per node, 768 cores total), 64 GB of main memory
and two dual-port InfiniBand HCAs per node. The parallel file system used is
PVFS2 with 16 I/O servers and a stripe size of 64 KB. The file system is mounted
onto the compute nodes over the Gigabit Ethernet network interconnect of the
cluster. The current implementation of nonblocking I/O collective operations is
tied to Open MPI and its new parallel I/O framework (OMPIO), mostly for
retrieving and maintaining file handle related aspects and for decoding derived
data types and the file view. The version of Open MPI executed is equivalent to
the Open MPI trunk revision 24640. In the following analysis we focus, for the
sake of simplicity, on write operations.

The first test executed is using the Latency-IO micro-benchmark developed
as part of the latency test suite [8], which is a micro-benchmark executing either
individual or collective I/O operations. Initially, we compare the performance
obtained with the blocking version of the dynamic segmentation algorithm vs.
a sequence of NBC File iwrite all followed by NBC Wait. Table 1 presents the
bandwidth achieved in both scenarios for 64 and 128 MPI processes when using
32 aggregator processes and a 4 MB cycle buffer size. The overall file size written
were 63 GB and 125 GB respectively (1000MB per process). All tests have
been executed three times, and we present the average bandwidth obtained over
all three runs. Note that the variation in the individual performance numbers
between different runs very fairly small. The results indicate a small overhead
for the 64 processes test case of the nonblocking implementation, which achieved
94% of the bandwidth obtained with the blocking version. For 128 processes
the nonblocking version slightly outperformed the blocking version, which we
attribute however to measurement jitter. All-in-all, the conclusion drawn from
this analysis is that nonblocking implementation does not impose a significant,
fundamental overhead compared to the blocking version.

In the second test we evaluate the ability to overlap collective I/O operations
with compute operations. For this, the same benchmark is executing a compute

Table 1. Performance comparison of blocking vs. nonblocking collective I/O algorithm

No. of processes Blocking Bandwidth Nonblocking Bandwidth

64 703 MB/s 660 MB/s
128 574 MB/s 577 MB/s
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Table 2. Evaluating the overlap potential of nonblocking collective I/O operations

No. of processes I/O only time Overlapping time Time spent in computation

64 85.69 sec 85.80 sec 85.69 sec
128 205.39 sec 205.91 sec 205.39 sec

function after posting the nonblocking collective write operation. The compute
operation is configured to take the equal amount of time as the I/O operation.
Thus, we expect to observe an overall execution time equal or larger than the
time required to perform the I/O operation only for the according scenario, with
the upper bound being twice the amount of time required for the same test with-
out the compute operation in case I/O and computation cannot be overlapped.
Table 2 presents the results achieved for the same test cases as outlined above,
the first column being the time spent in the I/O test without overlap, the second
column representing the time spent in writing the same amount of data and per-
forming an equally expensive compute operation, and the third column showing
the time spent in the compute operation for the overlap test.

The results in this section indicate the ability to entirely hide the I/O opera-
tion under optimal circumstances. These optimal circumstances are represented
by the ability of libNBC to progress the operation either through a progress
thread or through inserting regularly NBC Test function calls into the compute
operation. Within the context of this analysis, we choose the second approach.
Moreover, we also identified that the frequency and number of calls to NBC Test
have a tremendous influence on the overlap performance: calling it too often will
introduce an additional overhead, if there are to few calls to this function, the
library will not be able to progress the function. In our experimental results we
identified the time required to execute one cycle in the dynamic segmentation
algorithm as the optimal interval between two subsequent calls to NBC Test.

3.2 An Application Scenario

Further tests have been executed with a parallel image processing application.
This application is used to analyze smear sample from fine needle aspiration
cytology, with the overall goal being to assist medical doctors in identifying
cancer cells [9]. The challenge imposed by this application is due to the high
resolution of the microscopes and the fact that images are captured at various
wave-length to identify different chemical properties of the cells. For a 1cm×1cm
sample with 31 spectral channels the image can contain overall up to 50GB of
raw data. The MPI version of the code has furthermore the option to write the
texture data into output files to facilitate future processing steps in realizing a
complete computer aided diagnosis (CAD) solution. This makes the application
compute and I/O intensive.

For the following tests, we focus on the code section which writes the tex-
ture data into files. This code sequence contains a loop in which texture data
for each of the twelve Gabor filters is calculated and then written to a separate
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file. The computational part within this loop consists of two parallel fast-fourier
transforms (FFTs), which are implemented using the FFTW library [10] version
2.1.5, and a convolution operation. For the version using the non-blocking collec-
tive I/O functions, writing the texture data in one iteration is overlapped with
the execution of the FFTs and the convolution of the next iteration. Progress
of the non-blocking collective I/O operation is implemented in two ways. The
first one uses NBC Test function calls in-between each FFT and the convolution
operation. The second code version uses a patched version of the FFTW library
which contains further function calls to NBC Test. Note, that the initial reading
of the image and final writing of the cluster assignments have not been modified
and still use the blocking collective MPI I/O version.

For evaluation purposes we used two separate images. The first image has
8192 × 8192 pixels and 21 spectral channels, writing 12 times 256 MB of texture
data (3 GB total) . The second image has 12281 × 12281 pixels and also 21
spectral channels, writing 12 times 576 MB of data (6.75 GB total). Tests have
been executed with 64 and 96 processes on the same cluster and file system as in
the previous section. Figure 1 show the times spent in I/O operations for each
test case. We present again the average obtained over three separate runs. Note,
that we ensured that both blocking and non-blocking collective I/O operation
use the same algorithm, with the same number of aggregator processes and the
same cycle buffer size.

The results indicate that the version of the code which uses the FFTW library
as a ’black box’, i.e. without any NBC Test function calls inserted, offers only
little benefit compared to the original version of the code which uses blocking,
collective MPI I/O operation. The main problem is the limited ability to progress
the non-blocking operations without a progress thread and with a very small
number of calls to NBC Test. On the other hand, using the patched version of
the FFTW library ensures more progress and demonstrates significant benefits
of the non-blocking collective I/O operations. The benefit is more obvious for
the 64 processes test cases compared to the 96 processes test cases due to the
increased execution time of the FFTs and the convolution for the 64 process test
cases, which offer therefore more potential for overlapping computation and I/O

Fig. 1. Comparison of I/O times for 8k × 8k image (left) and 12k × 12k image (right)
for 64 and 96 MPI processes
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operations. Hiding the entire costs of the I/O operations for a real application
is however very difficult, since i) the application has to have compute intensive
sections that can be used for overlapping computation and I/O operations and ii)
the timespan between two subsequent calls to NBC Test can not be controlled in
the similar manner as for the micro-benchmark. Nevertheless, with some efforts
we were able to reduce the time spent in I/O operation by up to 35% – which
can be highly significant for large scale applications.

4 Discussion

To mitigate potential performance bottlenecks, MPI added support for nonblock-
ing file routines. However, collective MPI file operations can only be expressed
with the limited split collective interface. The main limitations are that (1) there
must only be a single split collective active on a file handle at any time and (2)
no other collective file I/O operations can be issued on a file handle when a split
collective is active. The first limitation prevents optimization techniques such as
pipelined communications for communication/communication overlap [11] and
the second limitation reduces programmability. The MPI-2.2 standard also al-
lows to perform a global synchronization in the begin call of a split collective.
This limits certain usage patterns.

Our nonblocking collective I/O framework allows to offer two additional fea-
tures: (1) explicit progress and (2) multiple outstanding operations.

Thus, we propose to extend the MPI standard similar to nonblocking collective
operations, i.e., to add immediate versions of all split collective operations, e.g.,
MPI File iread all(..., MPI Request req) and adding a request as last parameter.
For file operations, the file pointer is advanced within the immediate function
call, so that following calls operate on the right offset. We omit a list of all
functions for space reasons.

The new functions can be used like nonblocking point-to-point and collective
operations and the returned requests can be tested and waited on for completion
with the usual functions (e.g., MPI Test). Implicit progress can be problematic
under certain circumstances while explicit progress puts a higher burden on the
user [12]. Our interface proposal allows the implementation to offer both choices
to the user. In addition, having multiple outstanding operations allows to employ
pipelining techniques for overlapping communication and computation.

5 Conclusion

In this paper we discussed the challenges associated with non-blocking collective
I/O operations. We present a framework which provides non-blocking versions
of the collective read and write operations by extending the libNBC library. The
performance of write operation has been evaluated using a micro benchmark
and parallel image processing application. The results indicate the potential to
actually overlap computation and I/O operations using these functions. However,
the main challenge is how to ensure progress of the non-blocking collective I/O
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operations in the absence of a progress thread. The currently ongoing work
includes multiple domains. First, we plan to extend the analysis to collective read
operations. Second, we plan to perform a similar set of analysis as shown in this
paper on different file systems, specifically on a large scale Lustre installation.
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Abstract. The Message Passing Interface (MPI) has been very popular for pro-
gramming parallel scientific applications. As the multi-core architectures have
become prevalent, a major question that has emerged is about the use of MPI
within a compute node and its impact on communication costs. The one-sided
communication interface in MPI provides a mechanism to reduce communication
costs by removing matching requirements of the send/receive model. The MPI
standard provides the flexibility to allocate memory windows backed by shared
memory. However, state-of-the-art open-source MPI libraries do not leverage
this optimization opportunity for commodity clusters. In this paper, we present
a design and implementation of intra-node MPI one-sided interface using shared
memory backed windows on multi-core clusters. We use MVAPICH2 MPI li-
brary for design, implementation and evaluation. Micro-benchmark evaluation
shows that the new design can bring up to 85% improvement in Put, Get and
Accumulate latencies, with passive synchronization mode. The bandwidth per-
formance of Put and Get improves by 64% and 42%, respectively. Splash LU
benchmark shows an improvement of up to 55% with the new design on 32 core
Magny-cours node. It shows similar improvement on a 12 core Westmere node.
The mean BFS time in Graph500 reduces by 39% and 77% on Magny-cours and
Westmere nodes, respectively.

Keywords: MPI, shared memory, one-sided communication.

1 Introduction

Message Passing has been the most popular model for developing parallel scientific
applications. However, with the advent of multi-core processors, researchers have ques-
tioned the use of message passing for intra-node communication, since the sender-
receiver interaction and tag matching pose a significant overhead. MPI One Sided
Communication provides a better alternative by avoiding these overheads. In this model,
the origin process can independently initiate and complete transfers from remote mem-
ory without requiring any involvement from the process owning it. Traditionally, many
MPI libraries have implemented intra-node one sided communication calls over the
two-sided model. This prevents them from achieving the true potential of one-sided
communication within a node.
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1.1 Motivation

The one sided communication model provides the flexibility to create windows in
shared memory, thus providing true one sided intra-node transfers with minimal over-
heads. MPI implementations on shared memory machines and on platforms with the
SHM protocol [4,13] have taken advantage of this to achieve good performance. How-
ever, their usage is limited to the particular platforms or a single node. MVAPICH2
supports the use of kernel modules to implement one sided communication [6]. The us-
ability of kernel-assisted methods are in general limited due to the requirement for ker-
nel compatibility, system administrator support in installation, and overheads for small
messages. This has motivated the work in this paper to design shared memory backed
windows in MVAPICH2 for use on multi-core InfiniBand clusters. Figure 1 depicts the
design choice presented in this paper.

1.2 Contributions

In this paper, we make the following key contributions:

1. We design and implement shared memory backed windows in MVAPICH2.
2. We discuss the interactions of this design with the existing designs for inter-node

communication on InfiniBand clusters.
3. Using micro-benchmarks and application-level benchmarks, we show the improved

performance with our new design.

Micro-benchmark evaluation shows that the design using shared memory backed win-
dows can achieve up to 85% improvment in latency for Put, Get and Accumulate, in
passive mode. Bandwidth for Put and Get improves up to 64% and 42%, respectively.
Splash LU benchmark, and Graph 500 benchmark can get up to 55%, and 39% im-
provement, respectively, on a 32 core AMD Magny-Cours node. They show 55% and
77% improvement respectively, on a 12 core Intel Westmere node.

MPI 
Communication 

Two Sided 
Message Passing 

Shared Memory Kernel Assisted 

One Sided 
Communication 

Over Two Sided 
Message Passing 

True One Sided 
Communication 

Kernel Assisted Shared Memory 
Backed Windows 

Fig. 1. MPI Intra-Node Communication Design (design choice in this paper is colored)
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2 Background and Related Work

In this section, we provide an overview of the one-sided interface in MPI-2 and the
extensions in MPI-3 Draft [2] that are relevant to our work. We also discuss the existing
implementations for one-sided communication within a node.

2.1 MPI One-Sided Communication Model

MPI one-sided interface enables direct remote memory access through the concept of a
“window”. Window is a region in memory that each process exposes to others through
a collective operation: MPI Win create. After that, each process can directly read or
update data in the windows at all other processes in the communicator. Semantically,
this differs from two-sided communication in that, the origin specifies all the parame-
ters required for a communication (including remote address and datatype). In MPI-2,
the user has to allocate the buffer and pass it onto the MPI Win create function. The
standard suggests the use of MPI Alloc mem to allocate window memory as this al-
lows the MPI libraries to allocate memory in way to achieve high performance. The
MPI-3 draft introduces a new function: MPI Win allocate which lets the library to both
allocate a buffer and create the window in one call. MPI-2 provides three communi-
cation operations all of which are non-blocking: MPI Put (write), MPI Get (read) and
MPI Accumulate (update). Access to windows and start/completion of communication
operations is managed through synchronization calls. Synchronization modes provided
by MPI-2 RMA can be classified into passive (no explicit participation from the tar-
get) and active (involves both origin and target). In the passive mode, an epoch (pe-
riod in which a window can be accessed) is bounded by calls to MPI Win lock and
MPI Win unlock. As the name suggests, this does not require any participation from
the remote process. MPI-2 one-sided interface provides two modes of active synchro-
nization: a) a collective synchronization on the communicator: MPI Win fence; and
b) a group based synchronization: MPI Win Post-MPI Win Wait and MPI Win start-
MPI Win complete. In the later mode, the origin process uses MPI Win start and MPI
Win complete to specify access epoch for a group of target processes, and a target
process calls MPI Win post and MPI Win wait to specify exposure epoch for a group
of origin processes to access its window. The communication operations issued by an
origin can execute only after the target has called post, and the target can complete an
epoch only when all the origins in the post group have called complete on the window.
Normally multiple RMA operations are issued in an epoch to amortize the synchro-
nization overhead. The Draft MPI-3 standard adds several new calls for communication
and synchronization. However, we focus our discussions in this paper to the functions
discussed above.

2.2 Existing Implementation for Intra-node MPI One-sided Communication

One-sided communication within a node can be designed in several ways. Most libraries
implement them over Send/Receive calls using shared memory buffers. The origin pro-
cess copies the data in and the destination process copies it out. It cannot provide asyn-
chronous progress that is desired in one-sided communication. Also, for large messages,
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the copies into and out of shared memory buffers become a huge overhead. Some kernel
assisted techniques like LIMIC2 [5] and KNEM [3] have been proposed to avoid these
extra copies. The source and destination buffers are mapped onto the kernel’s address
space and the data is copied directly between the two buffers, through a kernel module.
However, this still does not solve the problem of asynchronous progress. More recent
work [6] has proposed designs for direct implementation of one-sided communication
using kernel assistance. This is supported in MVAPICH2 from version 1.6. The window
buffers are mapped into the kernel address space which enables zero-copy transfers.
The usability of kernel-assisted methods are in general limited due to the requirement
for kernel compatibility, system administrator support in installation, and overheads
for small messages. One-sided communication has been efficiently implemented over
shared memory systems [13,4] where memory is globally accessible. However these de-
signs are platform dependent or are restricted to a single node. In this paper we propose
the use of shared memory backed windows for intra-node one-sided communication on
modern multi-core clusters.

3 Design and Implementation

In this section, we describe in detail, the design of the One Sided Communication and
Synchronization semantics using shared memory backed windows. We also discuss the
interaction of the proposed intra-node design with existing implementations of inter-
node communication.

3.1 Window Creation

In this section, we present the design of shared memory backed windows in the context
of two window creation mechanisms: MPI Win create (MPI-2 and draft MPI-3) and
MPI Win allocate (draft MPI-3).

Using MPI Alloc mem: In our design, memory regions created using MPI Alloc mem
are allocated as shared memory files. They are mapped and maintained as a list sorted
by their starting addresses. When the application calls MPI Win create with a buffer,
we parse the shared memory file list to check if it was allocated in shared memory or
not. If window memory at all the processes on a given node was not allocated in shared
memory, the processes fall-back to the default implementation that uses Send/Receive
calls. Otherwise, each process checks if it has already mapped the corresponding shared
memory file. This check is required as two or more windows can be created from mem-
ory in the same file/buffer. If not, the process maps the shared memory files onto its
virtual address space and generates the base addresses.

Using MPI Win allocate: Window allocation in shared memory becomes easier with
the new semantics. Each buffer will have only one window associated with it. The steps
of window creation are similar to the earlier case except that the information about the
shared memory files can associated with and stored within the window structure. No
external data structure is required.
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3.2 Communication

Implementation of communication operations over shared memory backed windows
requires two simple steps. The process initiating the call calculates the target address
using the base address of the window (mapped from the shared memory file) and the
displacement specified in the operation. It can then directly copy or compute on the data
at the target address.

3.3 Synchronization

Lock-Unlock: MPI Win lock and MPI Win unlock can be implemented over Send/Re-
ceive using lock request and lock grant messages. In the case when there is just one
communication operation between the lock and unlock calls, the sequence of lock-op-
unlock operations can be accomplished through just one message. This implementation
applies for both inter-node and intra-node scenarios, in the current implementation of
MVAPICH2.

In the new design, each intra-node lock is implemented as two shared memory coun-
ters allocated during window creation. One counter has the information about the kind
(exclusive/shared) of lock any process holds on the window. The second counter con-
tains the number of processes holding the lock when the type is shared. When a process
is handling a request it received from an off-node process, it checks the shared memory
lock counters for any existing conflicting locks. While granting a lock, it sets its shared
memory lock counters appropriately so that no intra-node peer can acquire a conflicting
lock.

Locks can be implemented using InfiniBand RDMA atomics as described in [9,7].
However, InfiniBand does not provide atomicity between CPU initiated lock operations
and network-initiated atomic operations. Therefore, we implement locks between intra-
node processes using loop-back network atomic operations as suggested in [9].

Post-Wait/Start-Complete: In a Send/Receive based implementation of Post-Wait/
Start-Complete, an MPI Win Post call at the target converts to a message being sent
to each process in the specified group. On the other end, an origin process calling
MPI Win start will wait for post messages to arrive from all the processes in the spec-
ified group, before issuing communication calls. A similar interaction happens in the
opposite direction when MPI Win complete and MPI Win wait calls are called. When
communication operations are deferred until the second set of synchronization calls,
complete messages can be piggybacked onto the last data message being sent from a
source to a target.

We implement Post-Wait/Start-complete synchronization within a node using shared
memory counters. Each process has a Post and a Complete flag per window for every
other process on the same node. Processes can directly set these counters to signal Post
and Complete operations instead of sending messages. The processes calling Start and
Complete poll on these counters. A similar intra-node design works in conjunction with
RDMA-based implementation where the signaling happens through RDMA writes to
pre-allocated counters.
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Fence: MPI Win Fence is a collective operation. In one call, it marks the end of the
previous epoch, ensuring the completion of all the operations issued before it and also
marks the beginning of the next epoch. In Send/Receive based implementations, each
process gets the count of operations that were issued in the epoch with its window as
the target. MPI Reduce Scatter is used for this exchange. Then each process waits for
the expected number of messages to arrive from every other process. An MPI Barrier
is called to ensure completion at all the processes before starting the next epoch. In
our design, intra-node communication operations are blocking and can be considered
complete when they return. So no additional handling is required during the Fence call.
The existing Barrier ensures the required synchronization.

Several design choices exist for implementing Fence using RDMA operations. One
can use counters like in the case of Post-Wait/Start-Complete, maintaining Post and
Complete counters for all the processes in the communicator. More optimized schemes
can be designed using RDMA Write with Immediate Data as described in [11]. In either
case, the intra-node synchronization can still be handled by calling a Barrier on the
shared memory (intra-node) communicator.

4 Experimental Results

In this section we describe our experiments and give an in-depth analysis of the results.
We have carried out all micro-benchmark experiments on the Intel Westmere platform.
Each node has 8 cores (4 per socket) running at 2.67GHz with 12GB of DDR3 RAM.
The operating system is RHEL Server 5.4. We use MVAPICH2 1.6 version and LIMIC2
0.5.4 kernel module. We have evaluated the designs with application benchmarks on
two platforms. One is Trestles at San Diego Supercomputing Center. Each node con-
tains four sockets, each with a 8-core AMD Magny-Cours processor, and 64 GB mem-
ory per node. The other is Lonestar at Texas Advance Computing Center. Each node
has two sockets, each with a 6-core Intel Westmere processor, and 24GB memory per
node. Both use CentOS 5.5.

4.1 Micro-Benchmark Evaluation

In order to avoid effects of compiler and system optimizations on the memory to mem-
ory copies, we have modified OSU Micro Benchmark (OMB) [8] to use a different
buffer in each transfer of a given message size and we modify the contents of the buffers
after each message size. All point-to-point experiments were run across cores on dif-
ferent sockets with no shared cache. “MV2” refers to the version that uses Send/Recv
based implementation of One Sided Communication. “MV2-LIMIC” refers to the de-
signs using LIMIC2 discussed in [6]. “MV2-SWIN” represents the designs presented
in this paper, using shared memory backed windows.

Latency: Figure 2 shows latency performance for MPI Put, MPI Get and MPI
Accumulate. These benchmarks use Post-Wait/Start-Complete mode of synchroniza-
tion. MVAPICH2 enables LIMIC2 in one sided communication for message sizes greater
than 4Kbytes. For smaller messages, the overhead from LIMIC2 is greater than the
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Fig. 2. Latency Performance

benefits it gives. The slight improvement in “MV2-LIMIC” over “MV2” for small mes-
sages is from a shared-memory based synchronization. Compared with “MV2-LIMIC”,
“MV2-SWIN” does not have the overhead of the kernel module and can be used for
all message sizes. It performs consistently better than “MV2-LIMIC” for small mes-
sages. For larger messages, the overhead from the kernel module becomes negligible, so
“MV2-SWIN” and “MV2-LIMIC” converge as the message size increases. At 16 KB,
“MV2-SWIN” performs 16% better than “MV2-LIMIC” and 59% better than “MV2”.
MPI Accumulate does not use the kernel assisted design. Hence we see similar per-
formance for “MV2” and ”MV2-LIMIC”. We see 53% improvement in Accumulate
latency with “MV2-SWIN” for 8Kbyte messages.

Bandwidth: The bandwidth performance is shown in Figure 3. “MV2-SWIN” clearly
out-performs the existing techniques and achieves close to system peak performance.
We see up to 64% improvement in bandwidth for Put and 42% for Get compared with
“MV2-LIMIC”. “MV2-LIMIC” and “MV2” designs queue operations until the syn-
chronization phase. These queuing overheads are removed in “MV2-SWIN” where op-
erations are executed as soon as they are issued.
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Fig. 4. Performance with Off-cache data, Passive synchronization and Busy target

Latency Performance with Off-Cache Data: In Figure 4(a), we have modified Put
latency benchmark to ensure the data is off-cache, by accessing data from a different
page in each iteration and by flushing the cache after each message size. We believe
this experiment will show the performance behavior of the designs in real-world ap-
plications. For 4Kbyte messages “MV2-SWIN” shows 43% improvement compared to
“MV2-LIMIC”.

Latency with Passive Synchronization: Figure 4(b) shows Put latency with passive
mode of synchronization. One Sided Communication in this mode has not been
optimized with LIMIC2 kernel module. Hence we observe similar performance for
“MV2” and “MV2-LIMIC” up to 16K. We see more than 85% improvement using
“MV2-SWIN”.

Passive Latency with Busy Target: This experiment shows the asynchronous progress
that can be achieved using the shared memory backed windows. We measure the latency
of Lock-Put-Unlock when the remote process is busy in computation for an increasing
amount of time. The results are shown in Figure 4(c). For “MV2-SWIN”, where the
completion of passive operations does not require any remote process intervention, we
see that the time remains constant.

Multi-pair Bandwidth and Message Rate: We use all 8 cores on the Westmere node
with 4 pairs of MPI processes. Figure 5(a) shows the multi-pair bandwidth performance
using MPI Put. “MV2-SWIN” gives 69% better bandwidth than “MV2-LIMIC” for
4Kbyte messages. For messages beyond 4Kbytes, the two designs perform similarly.
Figure 5(b) shows the multi-pair message rate performance of the different designs.
“MV2-SWIN” achieves nearly 4.5 times improvement in message rate compared to
other designs for 4byte messages.

4.2 Application Benchmark Evaluation

In this section we evaluate our new design with application benchmarks. The appli-
cation benchmarks use communication paths (passive synchronization and accumulate
operations) that were not optimized using LIMIC2. So we present results comparing
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“MV2-SWIN” with the default design “MV2”. All the experiments were run on a sin-
gle node i.e. with 32 cores on Trestles and 12 cores on Lonestar.

Splash LU: We use Splash LU benchmark [12] modified to use MPI-2 communication
calls. The design of this benchmark is outlined in [10] and uses the passive synchroniza-
tion and MPI Get calls. We run the test on a matrix of size 16Kx16K matrix of doubles
and a block size of 128x128. From results shown in 6(a), the new design “MV2-SWIN”
shows a 55% improvement compared to “MV2” on Trestles. It shows a similar improve-
ment on Lonestar.

Graph500: Now, we compare the performance of the Breadth First Search(BFS) ker-
nel from the Graph500 [1] benchmark suite using “MV2” and “MV2-SWIN”. This
kernel uses Fence synchronization and Accumulate operations. Graphs of size 2ˆ18 and
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2ˆ16 nodes were used on Trestles and Lonestar respectively. Results in 6(b) show that
“MV2-SWIN” achieves 39% lower mean BFS time compared to “MV2”, on Trestles.
It achieves a 77% improvement on Lonestar.

5 Conclusion

Two-sided message passing leads to significant overhead for intra-node communication
due to requirement for sender-receiver interactions and tag matching. The one-sided
communication interface in MPI provides a better alternative. In this paper, we design
one-sided communication using shared memory backed windows for use on multi-core
InfiniBand clusters. Experimental evaluation using micro-benchmarks and application
benchmarks has shown that our design performs significantly better than the existing
kernel-assisted and send/receive-based options. We have implemented our design in
MVAPICH2 and will make it publicly available through a release in the near future.
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Abstract. Recent versions of MPICH2 have featured Nemesis – a scalable, high-
performance, multi-network communication subsystem. Nemesis provides a
framework for developing Network Modules (Netmods) for interfacing the Neme-
sis subsystem to various high speed network protocols. Cray has developed a
user-level Generic Network Interface (uGNI) for interfacing MPI implementa-
tions to the internal high speed network of Cray XE and follow-on computer
systems. This paper describes the design of a uGNI Netmod for the MPICH2
nemesis subsystem. MPICH2 performance data on the Cray XE are presented.

1 Introduction

The Cray XE represents a fundamental change in network architecture from its prede-
cessor XT systems [1]. The Cray XE Gemini network provides user-space applications
with a low-overhead, programmed I/O (PIO) mechanism for accessing memory on re-
mote nodes in a true one-sided fashion. Termed Fast Memory Access (FMA), this hard-
ware supports remote direct memory access (RDMA) read, write, and atomic memory
operations (AMOs) to memory at remote nodes. The Gemini also has a Block Transfer
Engine (BTE) to offload RDMA read and write operations from the host processor. In
addition, Gemini was designed with fault-tolerance related features that allow software
to recover from various network errors more reliably than on the predecessor systems.

In this paper, we present the design and implementation of the MPICH2 uGNI
network module along with a brief overview of the Cray XE network’s Generic Net-
work Interface (GNI) API. We also present performance evaluation of the new network
module.

The paper is organized as follows. A summary of the Generic Network Interface
(GNI) is given in Section 2. An overview of MPICH2 Nemesis and its Network Mod-
ule framework follows in Section 3. Details of the uGNI Network Module and related
support software are presented in Section 4. Some basic performance results on Cray
XE are presented in Section 5. The paper concludes with a discussion of future work in
Section 6.
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2 Generic Network Interface

The Generic Network Interface (GNI) [3] provides a low-level API for network middle-
ware to efficiently utilize the Cray XE network. GNI is primarily intended for user-space
and kernel-space network applications whose communication patterns are message-
based in nature, and where the ability to recover from network faults is of importance.
The API is not intended to be used to develop end-user applications, but rather to be
used by library developers to develop message passing libraries, such as MPI.

A layered approach was taken in designing GNI. A lowest level Generic Hardware
Abstraction Layer (GHAL) is used to interface to particular implementations of Gemini.
This layer is used to mask implementation details, such as specific details on hardware
registers, from the upper level components. Other components of the GNI stack include
kGNI - the device driver which also implements the kernel level API and a uGNI library
which implements the API for user-space applications. Figure 1 depicts the layered
view of the software stack with two sample clients: the MPICH2 MPI implementation
in user-space, and Luster’s LNET layer, (GNILND) in kernel space. Elements of the
API and characteristics of RDMA transactions and messaging are briefly described
below.

Fig. 1. GNI Software Stack with MPICH2 and LNET(GNILND) example clients

2.1 Elements of the API

The GNI API uses a number of software constructs to leverage the underlying Gem-
ini hardware in a way that provides flexibility to developers using the API, while at
the same time providing sufficient abstraction to map efficiently to future instantiations
of Gemini. Details of the API can be found in [3]. Important concepts of the API in-
clude Communication Domains (CDM), End Points (EP), Completion Queues (CQ)
and Memory Handles (MH). A CDM is a group of processes (i.e., peers) that form a
hardware protection domain within the network. An EP is a software construct used to
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manage data exchange between peers within a CDM. A MH is a handle to a region of
memory used for RDMA operations. A CQ delivers Completion Queue Events (CQEs)
that provide a light weight notification mechanism for tracking network transactions.
CQEs provide indication of global completion of network transactions, including any
associated errors, and can be used to provide notification that messages have arrived
within a memory region associated with a MH.

2.2 Remote Direct Memory Access Transactions and Messaging

GNI provides an interface for initiating RDMA transactions using either the BTE or
FMA units. RDMA writes, reads and AMOs are supported. An application typically re-
quests a global CQE for every RDMA or messaging transaction. The Gemini provides
a specialized RDMA Write with remote notification operation which is used by GNI
to support two messaging methods. The GNI Short Message (SMSG) facility provides
the highest performance in terms of latency and short messages rates, but comes at the
expense of memory usage, which grows linearly with the number of peer-to-peer con-
nections. A Message Queue (MSGQ) facility is also available and is much more scalable
in terms of memory usage than SMSG channels, but has some additional performance
overhead. MSGQ memory usage scales with the number of nodes in the job rather than
peers. Both facilities provide reliable, in-order message delivery by exploiting features
of the Gemini write-with-remote-notification hardware.

3 MPICH2 Nemesis

MPICH2 is a widely used, open-source implementation of MPI developed and main-
tained by Argonne National Laboratory (ANL) [6]. Vendors have several options for
porting MPICH2 to their custom interconnect. The vendor can choose to create a device,
channel or Nemesis network module (netmod), depending on their need for flexibility
vs. implementation effort. Figure 2 shows the different layers of MPICH2.

Network hardware vendors can choose to port MPICH2 to a custom interconnect by
implementing device to the ADI3 interface. This option, which gives the greatest flexi-
bility in implementation, was used for the port of MPICH2 to the Cray XT. However, de-
veloping and maintaining a complete, custom ADI3 device can be quite expensive and
frequently leads to redundant development that contributes little in the way of differen-
tiation of a custom interconnect. Additionally, the pace of development of MPICH2 at
Argonne has accelerated recently, partially driven by the desire to implement proposed
MPI-3 extensions to MPI.

An alternative to developing a full ADI3 device is to implement a CH3 channel.
MPICH2 includes a default device implementation called CH3. CH3 provides the CH3
interface to allow vendors to implement channels. In principle this interface requires
significantly less development effort to code to, while still delivering reasonable perfor-
mance. However, as the availability of commodity RDMA capable networks increased,
and thus the interest in porting MPICH2 to networks using protocols other than TCP
sockets, deficiencies with the channel API became apparent. Vendors and other organi-
zations more often than not just reworked the CH3 ADI3 device for a particular network,
rather than using the channel interface.
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Fig. 2. MPICH2 and Nemesis CH3 channel software stack with sample Network Modules

This was one of the motivations for the introduction of a new Nemesis channel to
the CH3 ADI3 device. The goals of the Nemesis channel, as stated by the authors, are
scalability, high performance intranode communication, high performance internode
communication, and multi-network internode communication [2]. Although the ulti-
mate goal is to make Nemesis a self-standing ADI3 device, it was found sufficient at
the time to make modifications to the CH3 device itself to better support the Nemesis
package as a channel. Note that although the figure shows multiple software layers, the
layers do not add significant overhead due to the use of function pointers and up-calls
directly to the upper layers.

The major components of Nemesis are a highly optimized on-node messaging
system and a multi-method capable framework for implementing network modules
(Netmods) within Nemesis. The framework is flexible and can be used for a variety
of interconnects as evidenced by existing modules such as Myrinet MX and GM and
a recent IB module available in the MVAPICH2 version of MPICH2 [8]. The basic
function of a Netmod is to move control messages, which can be application messages,
and data across a network. The upper components of Nemesis implement the MPI por-
tion, e.g. message matching, handling of unexpected messages, etc. There are hooks
in Nemesis to support Netmods that have MPI-awareness such as hardware message
matching in their networks.

Nemesis features a Long Message Transfer (LMT) protocol that facilitates imple-
mentation of zero-copy transfers for Netmods interfacing to networks that support these
types of operations. When the LMT path is used, only short control messages actually
move through the Nemesis stack itself. The bulk message data can be transferred in
a zero-copy fashion from the application’s send buffer into the application’s receiver
buffer. Note there are some exceptions to when the LMT is used, even when the message
size is greater than the eager message size. Ready send messages do not use the LMT
path. Messages generated from MPI-2 RMA functions do not currently use this path.
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4 The uGNI Netmod

An important goal in the design of the uGNI Netmod was to exploit features of Gemini
specifically designed to improve MPI performance, such as the FMA hardware. This
hardware enables the MPICH2 implementation on the Cray XE to realize much lower
latencies and significantly higher message rates than with the predecessor XT systems.
Other factors which significantly influenced the design of the uGNI Netmod were the
requirement to be able to handle transient network faults, interoperability with other
program models, reuse of as much of the existing infrastructure in MPICH2 as possi-
ble, and extensibility to support at least some of the proposed MPI-3 Fault Tolerance
features [4].

4.1 Initialization and Connection Setup

The uGNI Netmod’s initialization method is invoked by Nemesis as part of the over-
all MPI initialization procedure that takes place when an application calls MPI Init or
MPI Init thread. A CDM is created using the ptag value supplied by the ALPS pro-
cess manager. The Netmod then attaches the CDM to all available Gemini NICs. The
Netmod next initializes a registration cache (see Section 4.4), CQs are created using
the NIC handles, DMA buffers are registered with the NIC handles, and a freelist of
transaction management structures is created. An initial block of SMSG mailboxes is
created and registered with the NIC handles. A set of EPs are created in order to post
wildcard session management datagrams [3] with each of the NIC handles.

By default, SMSG channels are only established when a given rank in the job needs
to send a message to another rank. If a channel has not been established yet, the sender
allocates an SMSG mailbox, and prepares a channel establishment message describing
the mailbox location within the pool of registered memory from which the mailbox was
allocated. The GNI session managment protocol is used to set up the SMSG channel.
The sender then delivers the original application message using the SMSG channel.

4.2 Eager Message Path

Owing to the relatively short messages that can be delivered by GNI SMSG, the eager
path in the GNI Netmod actually uses two paths. If the application message data and
internal MPICH2 CH3 header is under the maximum size message possible for the
SMSG mailbox, then the message is delivered using this path alone. If the message is
larger than can be delivered using GNI SMSG, an RDMA read path is used. Owing to
semantics of Nemesis, arbitrarily large messages may actually be sent using this RDMA
read path.

On the receive side, dequeuing of incoming messages is driven by the CQ associated
with the SMSG mailboxes (see Section 4.1). The receiver polls the CQ to determine
which SMSG mailboxes have messages to dequeue. As messages are received off the
network, either directly via SMSG, or via completion of RDMA reads, they are handed
off in the order received to Nemesis using the MPID nem handle pkt function. The
fact that Nemesis can handle processing of partial packets of a message significantly
simplified this push/pull model for handling eager messages.
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Table 1. SMSG Maximum Message and Mailbox Size

Job Size Max. Msg. Size Mailbox Size (bytes)
including CH3 hdr per channel

≤ 1024 1024 4672
> 1024 512 2624
≤ 16384

> 16384 256 1088

The maximum size message that can be sent using SMSG varies with the job size,
with smaller mailboxes being used as the job size increases (see Table 1). An upcoming
release of MPICH2 for Cray XE will be able to optionally use the MSGQ facility. For
MSGQs the memory requirements are typically about 50 KB/node for each inter-node
connection. Thus for a job spanning 10,000 nodes, about 500 MB is required on each
node for the MSGQ.

4.3 Rendezvous Message Path

The Nemesis LMT path is used for delivering messages exceeding the eager message
size threshold. As described on the Nemesis API wiki [7], the LMT path supports read,
write, and cooperative data transfer mechanisms. The uGNI Netmod employs a read
method for smaller LMT transfers and a cooperative, RDMA write-based method for
longer transfers. The short control messages Nemesis uses for steering an application’s
MPI messages through the LMT procedure all use the SMSG path for eager messages
described above in Section 4.2.

This path utilizes a memory registration cache (see Section 4.4). The bandwidth
achieved using the LMT path is sensitive to the efficiency with which the registration
cache is being utilized. The efficiency of the RDMA read path is also sensitive to the
alignment of the send and receive buffers. RDMA writes are much less sensitive to
alignment.

4.4 uDREG Library and Memory Registration

A registration cache library (uDREG) was implemented to reduce the overhead of mem-
ory registration for large message transfers. There are well known pitfalls to using a
user-space memory registration cache in the context of the GNU/Linux environment [9].
To avoid these problems, a device driver was developed which utilizes the Linux MMU
Notifier facility to inform uDREG when virtual memory (VM) activity by a process has
resulted in invalidation of entries in the registration cache. VM issues attributable to
fork operations are handled by kGNI.

4.5 Network Fault Tolerance

As discussed in Section 2.2, the GNI SMSG and MSGQ facilities guarantee reliable
delivery of messages between two EPs. However, GNI does not deal with failed FMA
or BTE initiated RDMA transactions. The Netmod implements fault tolerance with
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respect to transient network errors by using replayable RDMA transactions for bulk
data delivery. The error code in the CQE associated with a transaction is used to de-
termine whether it should be replayed. Notification messages go exclusively over the
reliable channels made available by SMSG. The Netmod is only one component of
the Cray XE network fault tolerance/fault recovery strategy. A complete description of
the mechanism is beyond the scope of this paper.

5 Basic Performance Characteristics

The intent of this section is to provide basic performance data relevant to the uGNI
Netmod and to explain how the data relates to both to the internal operation of the Net-
mod as well as the Gemini NIC and the Cray XE node architecture. A basic knowledge
of the node architecture is assumed in these discussions. For reference, a depiction of
the Cray XE node using AMD Magny Cours 12-core sockets is shown in Figure 3. All
performance results were obtained on a Cray XE with Magny Cours 12-core socket
nodes running at 2.0 GHz. The operating system was Cray Linux Env. (CLE) 3.1.61
and the MPICH2 packaged in MPT 5.3.0.5. Large pages were not used in any of the
tests. Unless explicitly mentioned, default MPICH2 environment variables were used.

5.1 Message Rate and Latency

The OSU 3.3 MPI latency test was used to measure the latency for MPICH2. The 8-
byte message latency between processes pinned to CPU 0 (Die 0) on nodes connected
by adjacent Geminis for these test conditions was measured to be a little over 1.3 µsecs.

Fig. 3. Basic diagram of a Cray XE compute
node with AMD Magny-Cours 12 core sock-
ets. A separate memory controller is attached
to each die.
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The cost of a network hop for an MPI message is about 150–200 nsecs. The one-way
cost of the intra-node hop from one of the cores not adjacent to the Gemini NIC was
measured to be about 90 nsecs.

Although the MPI latency for a single sender/receiver pair is useful to know, a more
important metric for applications which are typically run using multiple MPI ranks per
node is the latency when multiple sender/receivers are trying to exchange messages
across a network interface. Figure 4 shows the results from the OSU 3.3 multi-latency
(mult lat) test. The test was run between two adjacent Gemini NICs. To improve the
throughput for medium size messages, the MPICH GNI RDMA THRESHOLD envi-
ronment variable was set to 16 KiB for this test. The MPICH GNI MBOX PLACEMENT
environment variable was set to specify NIC placement for the SMSG mailboxes and
CQs. This results in the GNI Netmod placing the SMSG mailboxes and CQs on the
memory of Die 0 (see Figure 3). This gives much better performance than if the mail-
boxes and CQs are placed local to the MPI ranks. One observes that very good latency
is observed for small messages even when there are 24 ranks per node up to 1024 bytes.
It is at this point that the MPICH2 switches to the RMDA read eager protocol. At the
largest message lengths shown in the figure, the latency is beginning to be dominated
by the serializing effect of the BTE.

The aggregate message rate for short and medium size MPI messages is shown in
Figure 5. These measurements were made also made with the MPICH GNI MBOX
PLACEMENT environment variable set to specify NIC placement. The MPICH GNI
RDMA THRESHOLD environment variable was not set for these measurements. The
maximum message rate realized with this placement option, and using 2.0 GHz proces-
sors, is about 8 million MPI messages/sec. Rates of 9.8 MM/sec can be attained with
2.4 GHz processors. The drop off in message rate at 1024 bytes is due to the switch to
the RDMA read eager protocol (Section 4.2).
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5.2 Bandwidth

Bandwidth measurements were made using the IMB 3.2.2 PingPong test and various
OSU 3.3 bandwidth tests. Unless otherwise mentioned, all tests were run between ad-
jacent Gemini NICs.

Results of the IMB PingPong test are shown in Figure 6 for various ways of handling
large messages. As shown in the figure, the best bandwidth is obtained when using the
LMT path described in Section 4.3 and also using lazy memory deregistration for the
registration cache. The bandwidth drops significantly if the lazy memory registration
policy is not used. Disabling the LMT path at all has a similar effect on the bandwidth
for large messages. The drop in bandwidth between 512 and 1024 bytes is again due to
the switch to the RDMA read protocol in the eager path. The differences in bandwidth
for the longer transfers methods only appear at 8 KiB and above because that is the
default threshold for switching from the eager to the rendezvous protocol.

Since many MPI applications are typically run with multiple processes per node,
bandwidth results when using multiple MPI send/receive pairs are shown in Figure 7.
For this test, the MPICH GNI RDMA THRESHOLD environment variable was again
set to 16 KiB. The bandwidths are derived from the latencies obtained using the OSU
3.3 multi lat test. These are the results in bandwidth rather than latency, for mes-
sages longer than those shown in Figure 4. At transfer sizes beyond 16 KiB bytes, the
available bandwidth per rank is dominated by the effects of sharing the BTE between
the ranks for transferring the message data.

Figure 8 is included to show effects of the MPICH2 Nemesis design on the band-
width realized using different MPI methods and page sizes for transferring data, and
also to show results of the OSU bidirectional bandwidth test. Significantly better
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bandwidth is obtained when using large pages. The Nemesis device currently does not
use the LMT path for MPI-2 RMA transfers. Thus, the realized bandwidth for MPI
RMA operations is similar to that for long MPI Send messages with the LMT path
disabled (Figure 6).

6 Future Work

A main area for enhancement of the uGNI Netmod is providing better support for in-
dependent progress of the state-engine, thus allowing for better overlap of computation
with communication. Approaches being investigated include enhancing of the exist-
ing asynchronous-thread infrastructure within MPICH2, as well as more complex ap-
proaches (e.g. [5]). Longer-term, work on the Netmod will include adding support for
MPI-3 features such Fault Tolerance and extended MPI-3 RMA functionality.
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Abstract. Historically, MPI implementations have had to choose be-
tween eager messaging protocols that require buffering and rendezvous
protocols that sacrifice overlap and strong independent progress in some
scenarios. The typical choice is to use an eager protocol for short mes-
sages and switch to a rendezvous protocol for long messages. If overlap
and progress are desired, some implementations offer the option of using
a thread. We propose an approach that leverages triggered operations
to implement a long message rendezvous protocol that provides strong
progress guarantees. The results indicate that a triggered operation based
rendezvous can achieve better overlap than a traditional rendezvous im-
plementation and less wasted bandwidth than an eager long protocol.

1 Introduction

Many MPI-based science and engineering applications use large messages for
bulk data transfer. As the increases in processor performance rapidly outstrips
the performance improvement of the network, it becomes increasingly impor-
tant to maximize the overlap of these messages with computation to improve
network efficiency. It is critical for the MPI implementation to provide support
for overlapping long message transfers with computation.

MPI implementations traditionally implement one of two protocols for deliv-
erying large messages: the message may be sent eagerly [2], which presumes that
the receive for the message has already been posted, or the message may be
transferred as part of a rendezvous protocol [6], sending a header followed by a
bulk transfer of the body after matching. Because eager-long messages require
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a retransmit of the message body when the message is unexpected [3], large
messages are typically sent with a rendezvous protocol of some kind.

Traditional rendezvous protocols require the application to enter the MPI
library to progress communication for expected long messages. For unexpected
messages, the transfer can be initiated with an RDMA get issued by the target
when the receive is posted [15]. However, supporting overlap usually implies
that the receive is posted before the “work” begins. In these cases, the message
often arrives after the receive and the MPI library cannot initiate the bulk data
transfer until the application work completes and the MPI Wait() is called.

We propose a rendezvous protocol leveraging the triggered operations recently
introduced in Portals 4. Using these simple building blocks, we are able to pro-
vide a rendezvous implementation that can achieve overlap without requiring
a host level thread or the use of eager sends for long messages. Furthermore,
the implementation of these constructs is more straight-forward than a full NIC
based rendezvous protocol.

2 Related Work

Most MPI implementations employ some form of a rendezvous protocol for trans-
ferring large messages. Many strategies have been explored for optimizing the
transfer of data, overlapping communication with computation, and progressing
communication independently of the application. Rendezvous protocol optimiza-
tions generally fall into two categories: host-based and network-based.

Host-based rendezvous optimizations include performing the rendezvous solely
inside the MPI library. In this case, message delivery is only progressed when
the application makes MPI library calls and the internal progress engine is en-
gaged. Many have attempted to optimize rendezvous inside the MPI library
using remote DMA (RDMA) operations [8,11,12,15]. The effectiveness of this
approach in enabling overlap for large messages is limited by the rate at which
the application makes MPI library calls.

Another host-based approach dedicates a user-level thread to running the
MPI progress engine. Most current MPI implementations support this option,
and some HPC networks [4,9] use this approach inside their own communication
library to provide progress to MPI. Using a progress thread avoids depending
on the application to make frequent MPI library calls, but can add significant
complexity in terms of scheduling and coordination.

Timer- and network-based interrupts have been used to provide progress [5],
but this approach has given way to using threads. Finally, we previously explored
the use of eager long messages followed by remote read in the case when the long
message was unexpected [1,3]. This approach provides independent progress and
overlap for expected messages, but retransmits the entire message buffer when
a long message is unexpected.

Network-based approaches for providing progress and overlap for large MPI
messages have also been explored. The Quadrics [10] network supported running
a user-level thread directly on the network interface hardware. This thread per-
formed MPI matching and could issue remote read requests directly from the
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network interface without any interaction with the host. This approach adds
significant complexity to the hardware design of the network interface, but max-
imizes the ability to overlap computation and communication and provides a
very elegant solution to ensuring independent progress.

Our strategy using triggered operations described in this paper has the ad-
vantage of providing simple building blocks on the network interface that can be
used to implement a rendezvous protocol for point-to-point messages, but can
also be used for other capabilities, such as MPI collective operations [7]. These
building blocks are less complex from a network interface hardware and software
standpoint when compared to the infrastructure needed to provide the ability
to run a user-level thread on the network interface. Using triggered operations
provides the same desired round-trip delay reduction by offloading the remote
read operation to the network, but it does so with a relatively simple and flexible
mechanism.

3 Triggered Operations in Portals 4

Triggered operations and counting events were introduced into Portals 4 [13] as
semantic building blocks for collective communication offload. Triggered opera-
tions provide a mechanism through which an application can schedule message
operations that initiate when a counting event reaches a threshold. Triggered
versions of each of the Portals data movement operations were added (e.g.,
PtlTriggeredPut(), PtlTriggeredGet(), and PtlTriggeredAtomic()) by ex-
tending the argument list to include a counting event on which the operation
will trigger and a threshold at which it triggers. In turn, counting events are the
lightweight semantic provided to track the completion of network operations.
Counting events are opaque objects containing an integer that can be allocated,
set to a value, or incremented by a value through the Portals API. In addition,
they can be attached to various Portals structures and configured to count a va-
riety of network operations, such as the local or remote completion of a message
as well as the completion of incoming operations on a buffer (e.g., the completion
of a PtlPut() or PtlAtomic() to a local buffer).

Through careful use of counting events and triggered operations, an almost ar-
bitrary sequence of network operations can be setup by the application and then
allowed to progress asynchronously. A discussion of how collective operations
can be implemented using triggered operations is presented in [7].

4 Evaluation Methodology

The Structural Simulation Toolkit (SST) v2.0 [14] was used to simulate a NIC
offload implementation of Portals 4. SST provides both cycle-accurate and event-
based simulation capabilities, and these simulations utilized a cycle-approximate
router model combined with an event driven model of the network interface
and the host. Message injection rates, data copy delays to and within the NIC,
and memory copy delays were modeled as interrelated occupancies in a queuing
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model. The timings used are described in [7]. The timings model a 1 µs back-
to-back zero-byte latency; routing and data copy overheads result in a 1.4 µs
latency for 1-byte messages. Additionally, the simulated network achieves 2.7
GB/s peak payload bandwidth after network overheads.

Three long message protocols were examined in the simulator: an eager long
protocol [2], a host-based rendezvous protocol, and a triggered rendezvous pro-
tocol. In all three cases, the same eager protocol is used for short messages,
which are either delivered directly into the user’s receive buffer or delivered into
a bounce buffer and copied when the receiver posts a matching receive.

4.1 Eager Protocol

The eager protocol sends messages of all sizes eagerly (Fig. 1). If a message
matches a pre-posted receive, it is delivered directly into the user’s receive buffer
and an ack is automatically generated to notify the sender the message was
successfully delivered. If the message is unexpected, the payload is discarded with
only header data kept by the receiver. Before a long message transfer is initiated,
a match list entry covering the send buffer is created and matching information
included in the message allows the receiver to issue a get request to retrieve
the data if the initial message is discarded. The protocol ensures asynchronous
progress in both cases: the receive is either posted before incoming data and the
message is asynchronously delivered in the user buffer or the receive is posted
after the incoming data begins arriving and the get request is issued before
the receive call returns. However, the protocol results in wasted bandwidth for
unexpected messages, which may result in further unexpected messages.

4.2 Host-Based Rendezvous Protocol

The host-based rendezvous protocol only sends a piece of the message, up to
the threshold between eager and rendezvous messages, as shown in Fig. 2. The

PtlEQWait

PtlMEAppendPtlPut

PtlEQWait

(a) Expected

PtlMEAppend

PtlPut

PtlEQWaitPtlEQWait

PtlGet

(b) Unexpected

Fig. 1. Communication pattern for eager message protocol with both expected and
unexpected messages
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Fig. 2. Communication pattern for host-based rendezvous protocol with both expected
and unexpected messages

message includes both the size of the message and sufficient information in the
header to allow the receiver to issue a get to retrieve the message when the receive
is posted. If the message is expected, the first part of the message is delivered
directly into the receive buffer, otherwise it is delivered into bounce buffers. The
protocol ensures asynchronous progress for unexpected messages, as the header
data is immediately available when the receive is posted. However, the protocol
does not ensure asynchronous progress for expected messages, as the receiver
must enter the library after the header arrives to issue the get request.

4.3 Triggered Rendezvous Protocol

The triggered rendezvous protocol utilizes Portals triggered operations to issue
the receiver-side get request without involving the host application (Fig. 3). The
first eager limit+ 1 bytes of the message are sent to the receiver when the send
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PtlEQWait PtlEQWait

PtlPut

PtlTriggeredGet
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Fig. 3. Communication pattern for triggered rendezvous protocol
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is posted. If the message is expected, the first part of the message is delivered
directly into the receive buffer, otherwise it is delivered into bounce buffers. A
counting event which counts bytes delivered is attached to the receive buffer,
and a triggered get is scheduled to execute when a message larger than the eager
limit arrives. The counting event is modified whether the message is expected or
unexpected, so the protocol provides asynchronous progress in either case.

Portals triggered operations require all arguments to be set when the triggered
operation is scheduled, including target, match information, and message size.
MPI_ANY_SOURCE complicates the protocol, as the sender (the target of the get
operation) is not known until the matching message header arrives. When a long
receive with MPI_ANY_SOURCE is posted, the triggered rendezvous protocol falls
back to the host-based rendezvous protocol. When MPI_ANY_SOURCE receives
have completed, the triggered rendezvous protocol resumes.

Matching information for the get must also be pre-calculated, rather than
retrieved from the header data as in the other protocols. Each rank maintains
two sets of counters: the number of messages it has sent to each peer and the
number of messages it has received from each peer. The matching information
for the get is the current message count between the peers. While the array of
counters is non-scalable, a 16 bit counter should be sufficient, leading to memory
usage of only 4 MiB per process for a million rank application.

The triggered get operation assumes the message being transferred is the same
size as the posted receive. The MPI standard allows the send size to be smaller
than the receive size and defines an error class for the case of a message larger
than the posted receive buffer. The larger receive buffer case presents an issue for
the triggered get operation, as the get request will be larger than the send buffer.
Portals includes the ability to truncate any data transfer request (put or get)
to the size of the target-side match list entry, allowing the get to be truncated
by the sender. Sends that are larger than the posted receive are handled during
event completion, by comparing the size of the send request included in the initial
send meta data with the size of the posted receive. The message is delivered up
to the posted receive size and an error is raised.

5 Results

An eager long protocol has several advantages, but it also has one significant
disadvantage, as illustrated in Fig. 4. The six lines presented represent the band-
width of an eager long protocol when various percentages of the messages are
unexpected. After crossing from an eager short protocol to an eager long pro-
tocol, the bandwidth is reduced in direct proportion to the fraction of unex-
pected messages. When all of the messages are unexpected, all of the messages
are transmitted eagerly, dropped, and retransmitted when the receive is posted.
This yields only 50% of the networks potential bandwidth. While the results are
simulated, a similar result was seen in practice with early software releases on
the Cray XT3 platform.
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blocking receives and work proportional to total message transfer time inserted between
posting receive and waiting for message completion

With blocking receives and expected messages, the eager long protocol has a
slight edge over the rendezvous protocols because it does not incur the round-trip
delay to perform the rendezvous (Fig. 5). It is also important to note that the
triggered rendezvous protocol has a slight edge over the host based rendezvous
protocol, because the round-trip delay is reduced by having the triggered ren-
dezvous get request released by the counting operation on the NIC rather than
using the host processor. The real advantage of the triggered rendezvous pro-
tocol relative to the host based rendezvous protocol is seen in Fig 6. In this
case, a non-blocking receive is posted before the send arrives and the applica-
tion enters a work loop that is proportional to the size of the message (i.e. the
work delay equals the communication time delay) before re-entering the MPI
library. This means that the host based long message rendezvous cannot achieve
overlap; however, the triggered based rendezvous still achieves full overlap and
nearly matches the performance of a pure eager protocol.

6 Conclusions

This paper demonstrates how triggered operations can be leveraged to implement
a rendezvous protocol under host software control. Because triggered operations
are a relatively simple building block (simply defer an outgoing message until a
condition is met), they are an easier target for NIC offload than a full rendezvous
protocol. Nonetheless, they still offer many of the performance advantages of
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offloading a rendezvous protocol: reduced latency of issuing the rendezvous get
and full overlap through independent progress. Simulation results are used to
illustrate both of these advantages.
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Abstract. As distributed memory systems have become common, the
de facto standard for communication is still the Message Passing In-
terface (MPI). pupyMPI is a pure Python implementation of a broad
subset of the MPI 1.3 specifications that allows Python programmers
to utilize multiple CPUs with datatypes and memory handled transpar-
ently. pupyMPI also implements a few non-standard extensions such as
non-blocking collectives and the option of suspending, migrating and re-
suming the distributed computation of a pupyMPI program. This paper
introduces pupyMPI and presents benchmarks against C implementa-
tions of MPI, which show acceptable performance.

Keywords: MPI, Python, scientific computing, parallel computing, high-
level languages.

1 Introduction

The Message Passing Interface (MPI) is a widely used model for expressing
parallelism. The success of MPI has many causes, chief among these are its
portability, completeness and performance. Supplanting a variety of incompati-
ble options in parallel communication libraries, MPI as a standard has greatly
improved the portability of HPC applications. However, MPI is generally not
considered simple, nor easy to program which is a problem since many potential
users are not skilled programmers, but rather researchers who are not expert at
expressing their algorithms efficiently in a deterministic logical framework.

Traditionally HPC applications are written in C/C++ or Fortran, both of
which are statically typed, compiled, low-level languages with excellent per-
formance characteristics. In more recent years high-level interpreted languages,
most notably MATLAB and Python, have gained popularity. Both MATLAB
and Python are easily extended which means that performance critical parts
of the code can be written in eg. C or Fortran resulting in much faster execu-
tion. By using the correct libraries and datastructures Python, mixed with C
and Fortran, has been shown to be on par with pure C for scientific computing
including message passing [3]. With the increasing maturity of libraries for scien-
tific computing, such as NumPy and SciPy, Python is now often used to do the
computationally heavy brunt work, e.g. GPAW [2] a large quantum mechanics
code that has been shown to scale to thousands of CPUs [12].
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1.1 MPI with Python

Several projects have taken advantage of the relative ease with which you can
wrap C code in Python, to provide MPI functionality in the form of bindings
to existing MPI implementations, such as Open MPI or MPICH. Using Python
bindings on top of a mature MPI implementation in C has the advantages that
the communication layer can be assumed to perform very well and of course that
a great deal of MPI internal functionality can be reused as is. The drawbacks are
that the bindings need to conform to the specific MPI implementations supported
and change with them. And of course - from an system administrator’s point
of view - the C MPI library used and any dependencies need to be maintained
alongside the Python bindings. Another problem is portability, since Python
bindings need compilation and linking against the MPI library, this requires the
appropriate toolchain and significant effort for every installation needed.

An important reason for a Python version of MPI is to have a “pythonic”
API , i.e. remove the information on datatypes from the users perspective. This
paper describes pupyMPI (pure Python MPI) which is a fully functional imple-
mentation of a large subset of the MPI 1.3 specification in Python. Implementing
MPI in pure Python instead of merely layering bindings on top of an MPI imple-
mentation in C has several advantages, one is portability; Python is available for
many platforms, indeed it is included with most common operating systems (Mi-
crosoft Windows being the exception). By relying only on Python we eliminate a
host of dependencies and greatly simplify the task of maintaining pupyMPI. The
second major advantage is that developing in a high level language is efficient in
terms of developer resources. As a case in point using Python has meant that in
around 1.5 man-years we have produced a fully functional MPI implementation
and still have had time for experimentation with MPI internals and different
design strategies.

1.2 Related Work

The project Numerical Python (NumPy) provides a library written in C for
numerical operations to minimize the overhead associated with standard inter-
preted Python code.

Projects such as Pypar, pyMPI, myMPI and MPI for Python (mpi4py) offer
MPI functionality in Python through bindings with various degrees of complete-
ness. The best developed of these is mpi4py [4] with both excellent coverage of
the MPI-2 specification and a sensible Pythonic MPI syntax. mpi4py had auto-
matic datatype discovery added in late 2009. However users are still required to
distinguish between sending objects that expose the buffer interface and those
that do not.

MPI has been implemented in languages besides C, such as Java and OCaml.
To the best of our knowledge no other Python implementation than pupyMPI
is available.
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2 Overview of pupyMPI

A detailed description of pupyMPI is beyond the scope of this text. Instead we
describe selected details of the design and implementation in the following.

The goal of message passing is low latency and high throughput, so that time
can be spent on the user’s computations. In addition we strive to make pupyMPI
easy and intuitive to use. Ease of use means that we embrace the dynamic nature
of Python where type and memory management are handled for the user, as well
as the programming paradigms - most notably object orientation - supported by
Python. The target for pupyMPI are scientists who are not experts at MPI or
C and we have struck a balance between the expectations of veteran MPI users
and new users unfamiliar with the syntax laid out in the MPI specifications.

2.1 Concurrency in Python

High performance MPI programs require that communication takes place simul-
taneously with computation. pupyMPI has a threaded architecture with a thread
doing raw network input or output and a thread doing internal command and
control (the MPI thread) along with the user’s thread executing the pupyMPI
program. The threading is transparant to the user although the user is not pro-
hibited from calling the same pupyMPI instance from multiple threads since
pupyMPI is in effect thread-safe.

True concurrency exploiting multiple cores in the standard version of Python
(ie. the CPython interpreter) is hindered by the existence of the Global Inter-
preter Lock (GIL). A running thread must generally hold the GIL which in effect
serializes the execution of multiple threads. However in many situations the GIL
will be released while a thread is still executing valuable work. This is the case
for I/O, most Numpy operations, and some built-in Python operations that are
implemented in C. The thread-architecture of pupyMPI means that multiple
cores can be utilized in most cases, and ideally the only competition for the GIL
is between the user thread and the MPI thread when the user thread is not doing
heavy computations that would release the GIL.

In practice the overhead of GIL contention manifests itself when all cores on a
node are mapped to a pupyMPI process. This is a problem since pupyMPI need
to be able to restrict itself to running on one core to be performance competitive
with regular MPI libraries. It is important to recognize that the problems are not
caused by only having one core available but rather how vulnerable threading in
Python is to contention for the GIL.

The CPython community have to some degree adressed the problems of GIL
contention in Python 3.2 [7] [1] which we hope to be able to test in the future. At
the same time we are working on different ways of architecting the concurrency
in pupyMPI to minimize the overhead of the library.

2.2 Supporting Numpy

Numpy arrays expose the buffer interface which allows direct access to the mem-
ory segment that contains the array. Thus it is possible to send the bytestream
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directly to another process avoiding serialization which would create an extra
copy of the array contents and waste CPU resources. The header of a mes-
sage that contains Numpy data allows the receiving process to reconstruct the
bytestream into a Numpy array with proper type and dimensions instead of
resorting to Python’s standard deserialization. When reductions are performed
on Numpy arrays optimized Numpy functions replace the reduce operation if
possible.

2.3 Caching Socket Connections

Establishing connections between all processes in an MPI program on initializa-
tion incurs considerable overhead, strain limited OS resources for large systems
and is often unneccessary due to sparse communication patterns. Instead every
pupyMPI process has a socketpool caching connections to other processes as
they are established. To guard against a proliferation of open connections there
is a default maximum size of the socketpool that can be changed by the user.
A second chance FIFO cache algorithm decides which connections to throw out
if the socketpool has run out of space.

It is of course possible to set the size of the socket pool to the size of
MPI_COMM_WORLD in which case no connection will ever be thrown out. The user
can also specify that connections between all processes should be made during
start up.

3 pupyMPI API

The interface differs from traditional MPI in two ways: most calls are methods
on a communicator object and type management is eliminated. pupyMPI ex-
poses almost all the operations from MPI 1.3 that make sense in an dynamically
typed and non-memory managed language. That is operations like MPI_Bsend,
MPI_Sendrecv_replace, MPI_Type_* are left out. The collective v-operations
are also left out since handling varying datasizes is easily done with the general
collective operations.

3.1 General Operations

pupyMPI is initialized by importing the module and instantiating the MPI class.
Hereafter the default world communicator is available as MPI_COMM_WORLD sup-
porting the usual communicator operations. pupyMPI is finalized by invoking
finalize on the MPI object:

from mpi import MPI
pupy = MPI()
world = pupy.MPI_COMM_WORLD
print "I am rank %i of %i processes" % (world.rank(), world.size())
pupy.finalize()
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3.2 Point-to-Point Operations

For point-to-point operations tags can be used but if none are specified pupyMPI
defaults to MPI_TAG_ANY for both send and receive operations. A send operation to
a receiving process with rank 1 is as simple as: world.send(1, "Test message").
A non-blocking receive operation using a tag:

MY_RED_TAG = 9
handle = world.irecv(1, MY_RED_TAG)
msg = handle.wait()

3.3 Collective Operations

The collective operations default to root=0, so gather to rank 0 is simply:

res = world.gather(my_part) # if not root res will be None

Operations that work on vectors (sequences in Python) will partition based on
the size of the communicator:

# for NP=4 root will get the string "ab"
part = world.scatter("abcdefgh")
# for a sequence reduction is elementwise
res = world.allreduce([1,2,3,4], MPI_sum)

3.4 Other Operations on Communicators

The group operations are supported and can be used to e.g. split a communicator
into even ranks and odd ranks

size = world.size()
world_g = world.group() # First a world group
even_g = world_g.incl(range(0,size,2)) # Two target groups
odd_g = world_g.incl(range(1,size,2)) # called even and odd
even_comm = world.comm_create(even_g) # Split communicators
odd_comm = world.comm_create(odd_g) # from world

3.5 A Working Example

The following Python function is the main part of a 2D stencil solver using
pupyMPI and Numpy. Initialization of MPI and obvious variables such as rank
along with distribution and reassembly of global state happen outside the func-
tion:

def stencil_solver(local,epsilon):
W, H = local.shape
maxrank = np - 1
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work = numpy.zeros((W-2,H-2)) # temp workspace

cells = local[1:-1, 1:-1] # interior
left = local[1:-1, 0:-2]
up = local[0:-2, 1:-1]
down = local[2: , 1:-1]
right = local[1:-1, 2: ]

delta = epsilon+1
while epsilon<delta:

if rank != 0:
local[0,:] = world.sendrecv(local[1,:], dest=rank-1)

if rank != maxrank:
local[-1,:] = world.sendrecv(local[-2,:], dest=rank+1)

work[:] = (cells+up+left+right+down)*0.2
delta = world.allreduce(numpy.sum(numpy.abs(cells-work)),

MPI_sum)
cells[:] = work

4 Collective Operations

Collective operations are useful abstractions and their implementations are vital
for performance. The framework supporting collective operations in pupyMPI is
too complex to examine here but three areas bear mentioning.

4.1 Topology Reordering

The MPI specification defines both Cartesian and Graph topologies even through
a Cartesion is a subset of the very general Graph toplogy. This is done since a
Cartesian grid is a very common partitioning and easier specified directly than
via its corresponding graph. pupyMPI extends virtual topologies with another
subset of Graph namely Tree. We consider trees a very practical communica-
tion structure and provide easy topology creation and an API with expected
functionality like parent(), children() and descendants(). Also internally
pupyMPI defaults to a Tree topology (normally a binomial tree) for distribut-
ing communication during most collective operations.

Whenever this topology is created1 the ranks mapping to tree nodes are log-
ically reordered so that processes close to each other in the physical network
are mapped to nodes in the tree that are expected to communicate heavily. For
instance a scatter operation will have the root sending the greatest amount of
data to the child that is itself root in the biggest subtree since all data to any
leaf in this subtree will have to go through that child.
1 Any topology created by the collective operations is cached so the creation penalty

will only occur once.
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Many reordering schemes exist to take advantage of various physical network
topologies [6,11]. We currently only reorder to place processes on the same net-
work node but are working on extending this to topology-hierarchies of levels
deeper than 2. To suit the audience for pupyMPI this should be done trans-
parently requiring little or no knowledge of the underlying network architecture
from the user.

4.2 Algorithm Selection

Based on the information that is avilable when the collective operation starts, a
suitable algorithm is chosen. The information currently used to select an algo-
rithm is data size and communicator size. As a special case several situations can
use the same algorithm but change the topology based on information about the
input data. Further optimizations are possible by extending the selection logic
[5,14] and by using portfolio algorithms [13].

4.3 Non-blocking Collective Operations

Regular collective operations are blocking which can limit performance. A com-
mon way to avoid this is to create a seperate user thread that performs the
collective operation [9].

Instead we support non-blocking collective operations as proposed in [8] using
the same syntax as for point to point operations. The proposal have already been
voted in for the MPI-3 standard, so we consider this as part of covering the MPI
standard.

data = world.allreduce(42, sum) # A blocking allreduce
handle = world.iallreduce(42, sum) # A non blocking call
# (overlap calculations here)
data = handle.wait()

5 pupyMPI User’s Toolset

pupyMPI comes with a set of experimental user tools that allows users to ac-
complish tasks including profiling of pupyMPI programs with visualization of
communication/computation patterns and inspection of the state of running
programs.

A special feature worth mentioning allows the entire distributed state of a
running pupyMPI program to be packed into a file. The program can be resumed
on another (or the same) set of hosts or even copied and rerun several times.
The user specifies desired checkpoints with @checkpoint decorators in the code.

6 Benchmarks

We have ported a large part of the IMB [10] testsuite to pupyMPI for bench-
marking along with a few non-synthetic benchmark applications. The pupyMark
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benchmarking tools are included with the pupyMPI library for easy reproduction
of our results.

Shown here are a few results of benchmarking the latest stable version of
pupyMPI versus Open MPI version 1.5.3. The platform used was Linux 2.6.28,
with Python 2.6.2 and Numpy 1.2.1. Benchmarks were run on a cluster of 8 nodes
with Intel Q9400 processors (4 cores) and Intel 82567LM-3 Gigabit Ethernet NIC
connected via a D-Link DGS-1016D 16 port Gigabit Switch.

It is evident from the PingPing and PingPong (Fig 1 and 2) results that while
pupyMPI can almost keep up with Open MPI in raw throughput there is an order
of magnitude difference in latency. This is most likely due to threading issues
where the GIL inhibits a fast hand-off from user thread via MPI thread to I/O
thread. Surprisingly the test of allgather in Fig. 3 shows almost no performance
difference - other collective operations show a much greater advantage in Open
MPIs favor. This we attribute to a less optimized implementation in Open MPI
whereas pupyMPI uses a dissemination allgather algorithm.
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7 Conclusion and Future Work

pupyMPI provides a pythonic MPI for parallel computing without management
of types or memory. Performance is as should be expected for an interpreted
language since the network is the worst bottle-neck. A young project and still
under intense development, pupyMPI has already seen succesful use in an aca-
demic setting at Copenhagen University. It has been used by students at a class
in cluster computing 3 times and for parallel computations in an research project
on text recognition. The appr. 1.5 man-years of development that has gone into
pupyMPI is testament to the efficiency of programming in Python.

For the near future we plan to focus especially on the collective operations
where performance gains are still be had. The current solution for selecting
the fastest collective operation is based solely on static information available
at startup of the operation. A smarter solution is be to introduce dynamically
adaptive operations [15]. We also plan to introduce a utility script that would run
several tests on a given network and determine the optimal settings for collective
operations.
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Abstract. One of the factors that can limit the scalability of MPI to ex-
ascale is the amount of memory consumed by the MPI implementation.
In fact, some researchers believe that existing MPI implementations, if
used unchanged, will themselves consume a large fraction of the avail-
able system memory at exascale. To investigate and address this issue,
we undertook a study of the memory consumed by the MPICH2 imple-
mentation of MPI, with a focus on identifying parts of the code where
the memory consumed per process scales linearly with the total num-
ber of processes. We report on the findings of this study and discuss
ways to avoid the linear growth in memory consumption. We also de-
scribe specific optimizations that we implemented in MPICH2 to avoid
this linear growth and present experimental results demonstrating the
memory savings achieved and the impact on performance.

1 Introduction

We have already reached an era where the largest parallel machines in the world
have a few hundred thousand cores and are soon approaching an era of million-
core systems. For example, an IBM Blue Gene/Q system (Sequoia) to be de-
ployed at Lawrence Livermore National Laboratory in 2012 will have more than
1.5 million cores and a peak speed of 20 petaflops. Roadmaps for future systems
indicate that we can expect systems with many millions of cores over the next
5–10 years. For example, a DOE technology and architecture roadmap for ex-
ascale envisions a 1 exaflop/s machine by 2018 with 1 billion cores [8]. Another
significant trend is that although the number of cores is increasing rapidly, the
amount of memory available per core is not increasing.

As systems grow to these sizes, many researchers and users wonder whether
MPI will scale to such large systems. Scalability of performance is not the only
concern; an often-cited concern is the potential memory consumption of MPI
at scale. It is generally believed that as the system size grows, the memory
consumed by MPI on each process also grows linearly. Given the limited amount
of memory per core, it is believed that, unless steps are taken, MPI itself will
consume a large fraction of available memory on exascale systems.

Anecdotal evidence exists of isolated examples indicating memory consump-
tion issues in some functions in some MPI implementations, often reflecting a

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 140–149, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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bug in the code or oversight on the part of the developers. At small scale, de-
velopers tend to make assumptions or take shortcuts that need to be fixed at
scales several orders of magnitude higher. However, quantitative data on MPI
memory consumption at scale is hard to find. Particularly lacking is information
about what aspects are merely bugs that need to be fixed and what are more
intrinsic problems that require a redesign or rethinking of conventional ways of
implementing MPI, including changes that may incur a performance penalty at
small scale but are necessary for the code to even run at large scale.

To investigate these aspects and address potential problems, we undertook a
study of the memory consumed by MPICH2 [7], an MPI implementation that is
widely used on many of the largest machines in the Top500 list. We focused par-
ticularly on parts of the code where the memory consumption increases linearly
with system size. We report on the findings of this study and discuss ways in
which such linear growth in memory can be avoided. We also designed and imple-
mented specific optimizations in MPICH2 to avoid this linear memory growth.
We describe these optimizations and present experimental results demonstrating
the memory savings achieved and the negligible impact on performance.

Related Work. Balaji et al. [3] discuss issues related to scaling MPI to millions
of cores, in terms of what is needed both in the MPI specification and in MPI
implementations. The authors consider implementation issues in general, not
specific to any particular MPI implementation. In this paper, on the other hand,
we focus on identifying and fixing memory scalability issues in the MPICH2
implementation of MPI. Other researchers have also explored memory-space
related optimizations for MPI implementations, such as the memory required
for storing communicators and groups [5,6,9].

2 Apparent Nonscalable Memory Use in MPI

At first glance, MPI appears to have a number of areas where it must store
O(p) data on each MPI process, where p is the number of processes in the
MPI program. In this section, we discuss some of these areas and comment on
what MPI really requires for them. For simplicity and to match the behavior of
most MPI implementations on large systems, we assume that all processes are
in MPI_COMM_WORLD (e.g., no dynamic processes).

Group Representation. An MPI group describes a collection of processes.
The obvious implementation is an enumeration of processes by some iden-
tifier, such as rank in MPI_COMM_WORLD or an IP address and process ID.
However, MPI only requires that this information be available, not the form
in which it is stored. Lossless compression of the data is permitted; for ex-
ample, for MPI_COMM_WORLD, the group can be represented as simply 0:p-1
(all ranks from 0 to p − 1, requiring only a few words of storage).

Connections and Message Buffers. MPI allows a process to communicate
directly with all other processes. It is sometimes alleged that this feature
requires MPI to maintain O(p) data for such connections and to allocate
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significant buffer space to each possible connection. For example, providing
only 16 KB for each connection for eager message delivery would require
16 GB on each process for a million-process MPI program (a total of 16
petabytes of memory). However, MPI does not specify when connections
are established or how buffer memory is allocated and associated with con-
nections; in fact, MPI does not even define “connections.” For example, an
MPI implementation may instantiate a connection only when needed and
dynamically associate buffer memory to active connections. For a scalable
application (which by definition cannot communicate with O(p) other pro-
cesses), only a small number of such connections can be active.

RMA Windows. Each MPI RMA window is created with its own displace-
ment value, start address, size, and info object for hints. Because RMA is
for one-sided operations, it is natural to store information about the remote
windows locally, where the information can be quickly accessed. However,
locally storing the information for all ranks is not required by MPI. Other
options include using a cache strategy for such data, acquiring it on first use,
or even fully distributing the data and using one-sided operations to acquire
the data.

Nonscalable Arguments. Some MPI routines have array parameters of size
p. These are nonscalable routines and simply cannot be used in a scalable
application. They do not reflect a problem in an MPI implementation.

In all of these cases, allocating memory for each of the O(p) items both sim-
plifies the implementation and may be (slightly) faster. However, O(p) memory
is not required, and we argue that the performance cost is often negligible.

3 Memory Usage in MPICH2

MPICH2 has been carefully designed and developed to be adaptable to environ-
ments with a paucity of memory resources. The current design is parsimonious
with memory in certain areas, such as the usage and representation of MPI
groups. In other areas of the code, decisions were consciously made to trade
increased memory consumption to obtain decreased algorithmic running times.
In a severely memory-constrained environment, some of these decisions could be
revisited and potentially altered when such a change would be beneficial. Yet
unsurprisingly, several memory inefficiencies remain in the current code. We dis-
cuss these strengths and weaknesses of the current stable version of MPICH2 in
this section.

3.1 Link-Time Program Text Size Savings

MPICH2 was designed from the beginning to be highly modular. Less-used code
is organized so that the code and the associated data structures are included (by
the linker) only when actually used by the application. For example, the buffered
send code is included only if the user references one of the buffered send routines.
The code for each of the MPI collectives is another example. This reduces the
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size of the executable code, which is good for both very large systems and ones
where use of dynamically loaded code from shared libraries may stress the I/O
system, such as nodes without local or nearby disks.

3.2 One-Sided Communication

The current implementation of MPICH2 stores a copy of the window start ad-
dress, size, and displacement unit of all processes locally on each process for easy
lookup. This clearly requires O(p) space on each process, which is nonscalable.
Possible approaches to fix this problem are outlined in Section 2, and we will
consider them as part of our future work.

3.3 MPI Groups

Within every MPI process, the process assigns to each other process to which
it is connected1 a local process ID, or LPID, in the range [0, p), where p is the
number of connected processes. Note that LPIDs are not unique across processes;
they exist as a purely local concept to simplify process-related bookkeeping op-
erations.

An MPI group is a totally ordered set of processes in which each process is
indexed by an integer rank in the range [0, pg), where pg is the size of the group.
This set is currently stored as a dense int array of LPIDs, where element i in the
array stores the LPID of the process corresponding to rank i in the group. This
information is sufficient, though nonoptimal, to be able to correctly implement
all local MPI_Group_ operations.

As a performance optimization, a list of indices sorted by increasing LPID or-
der can also be constructed and stored in the group object, which significantly im-
proves the performance of MPI_Group_translate_ranks, MPI_Group_compare,
and MPI_Group_union. In order to conserve memory (and list construction time)
in codes that do not use these routines, this sorted LPID list is constructed lazily
only when these routines are first invoked. Constructing this list requires an
O(pg log pg) time sorting step and roughly doubles the size of the group object
for nontrivial values of pg.

3.4 Virtual Connections

In most practical MPI implementations, each process must maintain at least
a modicum of state for each other process with which it is communicating. In
MPICH2, this state is kept in a virtual connection object (or VC ) associated
with the remote process. MPICH2’s current implementation creates one of these
objects for each other process in the system, on every process. That is, across
an entire MPI application these VC objects consume O(

p2
)

memory.
This obvious scalability issue is addressed in Section 4. However, even the cur-

rent design is more scalable than a naïve implementation. Many buffers that are
1 See MPI-2.2, § 10.5.4, for a formal definition of “connected” in this context.
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attached to the VC object are not created until communication actually occurs
with the process corresponding to that VC. For connection-oriented communi-
cation substrates such as TCP, these connections are not created until commu-
nication actually occurs, thereby conserving operating system resources.

The VC implementation provides another example of a location where addi-
tional space is consumed in exchange for reduced access time. Each VC contains
a “scratch pad” area that may be used by lower-level code to store per-VC infor-
mation. In order to decouple lower layers from the upper layers of MPICH2, such
storage space must exist. However, it would also be sufficient for this space to be
just large enough to hold a pointer, such that the lower-level code could allocate
a separate object and store a pointer to it in this minimal scratch pad region.
This approach would require an additional pointer dereference for the lower-level
code to access its own VC-specific data. Instead, by making the scratch pad re-
gion larger, this additional pointer dereference is saved for latency-sensitive data
accesses that can be fit into the scratch pad. Of course, tuning the size of this
scratch pad becomes critical for large p.

3.5 Communicator and Topology Information

Among many responsibilities, MPI communicators are responsible for storing
enough data in order determine which underlying process corresponds to a given
rank in that communicator. For example, when the user calls MPI_Send(...,
5,...,comm), the implementation must be able to determine that rank 5 in
comm will result in communication with a particular process on a particular
network host. More concretely in the case of MPICH2, this means that given a
communicator and a rank, the implementation must be able to produce a VC
object. This translation is currently supported by a virtual connection reference
table (or VCRT ).

VCRTs consist of a dense array of VC references (or VCRs), indexed by comm-
unicator rank. The VCR is an opaque type, but because of practical details of
the interface, it must typically be implemented as a pointer to the underlying
VC. Each communicator stores a pointer to its VCRT and manipulates reference
counts inside that VCRT. This reference counting permits shallow copies of the
VCRT for the common case of MPI_Comm_dup, reducing memory consumption.
However, besides sharing a VCRT between two communicators, VCRTs them-
selves have only O(p) per communicator space scalability in the general case.

MPICH2 stores additional information on a per process and per communic-
ator basis in order to support hierarchical collective communication algorithms.
For each connected process a node ID is stored, consuming O(p) memory on each
process. This approach enables creating two internal subcommunicators for each
user-created communicator: one that contains only “node leaders” and another
that contains only processes on the same node. For a top-level communicator of
size p that is spread evenly over k nodes, the node-leaders communicator will
contain k members, while the node-local communicator will contain p/k mem-
bers. Every process will be a member of a node-local communicator, but only
the node leaders will be a member of the leader communicator. In MPICH2’s
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current implementation these communicators will consume O(
p2/k + pk

) ⇒
O(

p2
)

memory across the whole system (assuming constant k).

4 Steps to Reduce MPICH2 Memory Consumption

The current deficiencies in MPICH2 memory usage mentioned above can be
addressed in several ways. We detail here solutions we have implemented in an
experimental version of MPICH2, and we outline several additional solutions we
intend to implement in the near future.

4.1 Implemented Solutions

The most serious scalability problem discussed earlier is the O(
p2

)
memory con-

sumption by VCs (across the whole system) even when communication takes
place with zero or few partners. To rectify this issue, we have developed a proto-
type version of MPICH2 that substantially overhauls the way VCs are managed.

Under the new scheme, entire VC objects are created lazily only as needed
instead of statically at MPI_Init time. This change required a fundamental shift
in the way VCs are stored and accessed. The per communicator VCRTs discussed
in Section 3.5 have been eliminated and replaced with a similar, yet more efficient
concept: the LPID mapping (or LPM ). These objects perform a similar role; but
rather than mapping communicator ranks to VCs directly and always via a dense
array mechanism, the LPM maps communicator ranks to LPIDs. This mapping
decouples the upper-level code, for example MPI collective routines, from any
notion of VCs that exist only at the lower level.

Unlike VCRTs, LPMs are truly opaque objects that are accessed only via func-
tion calls and macros. This design provides the opportunity to encode the comm-
unicator representation in the most succinct, memory-efficient manner possible.
Examples include using compression techniques that take advantage of domain-
specific knowledge [9] or more general compression methods [4]. Another ex-
ample of domain-specific compression is supporting identity mappings, wherein
the LPID is always equal to the communicator rank. Implementing this identity
mapping is trivial, given the new interface, and reduces per process memory con-
sumption from O(p) to O(1) for communicators for which this mapping holds
(such as MPI_COMM_WORLD).

Conveniently, the LPM concept and interface also permitted us to unify the
representation of groups and the representation of communicator VC contents.
Future improvements to this common LPM facility will yield dividends in both
the group and communicator subsystems of MPICH2.

At a lower level, VCs are obtained only via APIs that refer to them by their
LPIDs. This design permits true lazy instantiation and storage of VC objects,
such as in a hash table, since upper-level code no longer holds pointers to all
VCs. This hash-based approach is exactly what we implemented, with a run-
time environment variable to select between the hash table and a dense, fully
populated array.
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For convenience and robustness, we used the open source uthash package [10].
Additional constant factor time and memory savings may be possible with an
alternative implementation.

4.2 Proposed Solutions

Though we implemented several space-saving techniques in our experimental
version of MPICH2, there remain many that we did not have time to implement.
For example, data on the same SMP node can be shared, such as information
about MPI_Win objects. Data-caching strategies can be employed, particularly if
efficient remote memory access is available. We leave these approaches to future
work.

5 Results

In this section we provide experimental evidence that an MPI implementa-
tion can limit the use of memory for scalable applications without a signifi-
cant performance impact. We first look at some simple benchmarks, including
ping-pong performance microbenchmarks, and then evaluate several application-
based benchmarks.

All results were gathered on the “Fusion” cluster at ANL. Each node consists
of two Intel Xeon X5550 quad-core processors, and the nodes are connected by
QDR Infiniband. MPICH2 was configured as --with-device=ch3:nemesis:tcp
and --enable-fast.

5.1 Scalable Memory Use

To validate the expected memory consumption of the prototype, we crafted three
microbenchmarks that isolate basic communication behavior from more sophis-
ticated application MPI usage. These microbenchmarks respectively perform no
communication, scalable communication (a single MPI_Allreduce), and non-
scalable communication (pairwise communication between all processes). Fur-
thermore, the MPI library was instrumented to permit memory consumption
measurements to be taken. The results from running these simple programs re-
spectively provide minimum, modest, and maximum memory consumption base-
lines that are harder to observe as clearly in applications with more sophisticated
communication patterns.

Figure 1 shows the results of running these experiments with the lazy ini-
tialization prototype code enabled. As expected, the “no communication” and
“allreduce” benchmarks consumed essentially no additional memory per process
as the job size was increased, while the “all communication” benchmark showed
per process memory consumption increasing linearly with job size. This increase
indicates an O(

p2
)

systemwide memory consumption scalability problem, one
that our technique has addressed for programs with a scalable communication
pattern.
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Fig. 1. Per process memory consumption in the prototype for three microbenchmarks
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Fig. 2. Netpipe ping-pong performance results (log-log plot for relevant message sizes)

5.2 Performance Impact

The techniques discussed in Section 4 are expected to at least slightly impact
performance. Figure 2 shows MPI-level bandwidth and one-way latency numbers
for the stable (“Trunk”) version of MPICH2 as a reliable baseline, as well as the
prototype configured to use an eagerly constructed dense array (“Eager”) or lazily
constructed sparse hash table (“Lazy”) for VC storage. Both a slight decrease
in large-message bandwidth and a slight increase in small-message latency can
be seen. We emphasize, however, that the prototype code has not been tuned
to any noteworthy extent; we expect to eliminate most of this performance gap
with further effort.

5.3 Application Impact

We measured the impact of our changes on scalable applications by examin-
ing the performance and memory consumption behavior of certain NAS Parallel
Benchmarks [2] and the Sequoia AMG benchmark that are representative of
application behavior. All of these benchmarks exhibit fairly scalable commu-
nication patterns; that is, the number of communication partners remains flat
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Table 1. Performance of selected NAS Parallel Benchmarks, version 3.3 run with 512
processes

Benchmark MPI Time (s) Memory/Process (kiB)

cg.D.512
Trunk 536.77 5,149.2
Eager 520.55 (−3.02%) 5,144.7 (−0.09%)
Lazy 556.82 (+3.74%) 4,588.2 (−10.89%)

mg.D.512
Trunk 18.69 5,154.2
Eager 19.19 (+2.68%) 5,154.3 (+0.00%)
Lazy 19.49 (+4.28%) 4,602.3 (−10.71%)

 4000

 4500

 5000

 5500

 6000

 6500

 27 64 125  216  343  512  729  1000

M
ea

n 
by

te
s 

/ p
ro

ce
ss

 (
K

iB
)

size of MPI_COMM_WORLD

eager / linear
 lazy / linear

eager / cubic
 lazy / cubic

Fig. 3. Per process memory consumption in the prototype for the Sequoia AMG bench-
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or increases slowly as job size increases. These codes are also well known and
commonly used to represent the behavior of many real-world MPI numerical
applications.

Table 1 lists the performance impact and average per-process memory con-
sumption of our techniques when applied to the CG and MG class D NAS Parallel
Benchmark. The benchmarks were run with the same three configurations from
Figure 2. At this modest scale MPI memory consumption is reduced in the Lazy
approach by approximately 550 bytes per process (≈11%), at a cost of less than
5% in performance. We did observe variability in the run times, despite great
consistency in the memory consumption numbers, which we attribute to noise
from the shared Infiniband network on this system.

Figure 3 shows per process memory consumption versus job size when running
the Sequoia AMG benchmark [1] on the prototype with both the eager and lazy
VC initialization strategies. The benchmark was configured to solve a Laplace-
type problem2 with two different three-dimensional processor layouts. The first
layout was cubic (e.g., 36 processes organized as Px ×Py ×Pz = 6× 6× 6). The

2 AMG was run with the following options: -laplace -n 25 25 25 -solver 4.
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plot clearly shows a substantially slower-growing memory consumption curve
for this case when lazy VC initialization is used. The second layout was entirely
linear (e.g., 36 × 1 × 1). Although unrealistic as a choice of typical application
parameters, this layout has far fewer communication partners, which yields the
expected almost entirely flat per-process memory consumption curve.

6 Conclusions

We have shown that an MPI implementation can be constructed so that memory
use grows slowly as the number of processes increase and that the performance
cost for a real application is low.
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Abstract. MPI’s derived datatypes provide a powerful mechanism for
concisely describing arbitrary, noncontiguous layouts of user data for
use in MPI communication. This paper formulates self-consistent
performance guidelines for derived datatypes. Such guidelines make per-
formance expectations for derived datatypes explicit and suggest rele-
vant optimizations to MPI implementers. We also identify self-consistent
guidelines that are too strict to enforce, because they entail NP-hard op-
timization problems. Enforced self-consistent guidelines assure the user
that certain manual datatype optimizations cannot lead to performance
improvements, which in turn contributes to performance portability be-
tween MPI implementations that behave in accordance with the guide-
lines. We present results of tests with several MPI implementations,
which indicate that many of them violate the guidelines.

1 Introduction

Self-consistent performance requirements for MPI are an invitation to MPI im-
plementers to ensure consistent performance among interrelated functionalities.
In addition to guarding against unpleasant performance surprises, such guide-
lines can support performance portability among MPI implementations: They
avoid the need for hand optimizations to compensate for unsatisfactory per-
formance of specific functions in specific contexts, systems, or MPI implementa-
tions, which could also be counterproductive on other systems, implementations,
or circumstances. Self-consistent MPI performance guidelines can be construed
as performance expectations for application programmers, recommendations for
MPI implementers, or even requirements that would be desirable to fulfill.

Performance expectations for MPI communication functions were formulated
in [11] and for MPI-IO in [3]. This paper proposes performance expectations and
guidelines for the derived datatype mechanism in MPI. We identify a number of
guidelines for the performance of the MPI datatype mechanism that an MPI im-
plementation should meet so as to enable and encourage performance-portable
programming. We also present the results of simple experiments to validate MPI

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 150–159, 2011.
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implementations. Our measurement results for several implementations indicate
that many of them violate the performance guidelines, which can lead to un-
pleasant surprises for users. This result should serve as an encouragement for
further research and implementation work on improving the handling of MPI
derived datatypes.

1.1 Related Work

The derived datatype mechanism is one of the central concepts of the MPI stan-
dard. It separates communication operations from the structure of data being
communicated [7, Chapter 4] and is vital for the MPI-IO specification for dis-
tributed file structures [7, Chapter 13]. The generality and expressive power
of the derived datatype mechanism is one feature that sets MPI apart from
other interfaces with similar intentions and scope. Describing complex, local
data layouts by derived datatypes makes it possible for the MPI implementa-
tion to handle such structures by efficient packing and unpacking mechanisms
that interact closely with (pipelined) communication algorithms or by exploiting
available hardware support for noncontiguous data communication. Achieving
similar or better effects by hand is tedious and in many cases non-portable per-
formance wise. The ultimate goal of an efficient MPI implementation of the
datatype mechanism is, in some loose sense, never to be worse than what the
application programmer can achieve by hand packing/unpacking and commu-
nicating the packed buffers. This paper is an attempt toward defining this goal
more precisely.

Providing efficient implementations of MPI datatypes has therefore been the
focus of several groups [2,4,9,10,12], and much progress has been achieved, al-
though there are still situations where datatype performance is less satisfactory
as we discuss in Section 7. The use of MPI datatypes to provide better per-
formance within applications has been explored in several studies, e.g., [1,5,6].
Benchmarks for datatypes focusing on the complexity of the different construc-
tors were defined in [8]. We are not aware of any work directly addressing per-
formance expectations and guidelines for MPI datatypes.

2 Derived Datatype Constructors

MPI derived datatypes can be thought of as concise descriptions of layouts of
data in process memory. MPI derived datatypes are described in [7, Chapter
4], which the reader should consult for precise definitions (constructors, type
signatures and maps). There are five main MPI functions for constructing new
datatypes out of old ones. Let n be the value of the count argument supplied to
the constructors. We omit all arguments that are not essential for the discussion.

1. MPI Type contiguous(n,T ): n successive blocks of type T , denoted as
contig(n, T )

2. MPI Type vector(n,m,T ): n strided blocks of m instances of type T , denoted
as vector(n,m, T )
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3. MPI Type create indexed block(n,m,T ): n blocks of m instances of type T
each with own displacement, denoted as index block(n,m, T )

4. MPI Type indexed(n,mn,T ): n blocks of type T each with own count mi

(0 ≤ i < n) and displacement, denoted as index(n,mn, T ). The total number
of blocks is

∑n
i=0mi.

5. MPI Type create struct(n, mn, Tn): n blocks of types Ti each with own count
mi (0 ≤ i < n) and displacement, denoted as struct(n,mn, Tn)

The constructors can be applied recursively, so T can be a primitive, basic data-
type or a previously constructed, derived datatype. In addition, there are conve-
nience functions for creating datatypes representing subarrays and distributed
arrays. Another special constructor makes it possible to change the extent of a
(derived) datatype, which is important when using nested type constructors, see
for instance [1].

A first benchmark measures the basic communication performance for strided
layouts described by each of the five constructors. The benchmark can be pa-
rameterized in type T (here we use only the basic MPI DOUBLE type), stride s and
number of blocks n. Communication performance is measured by point-to-point
ping-pong communication in order to be able to focus as far as possible on the
datatype component.

Benchmark 1. The same strided layout of a n repetitions of type T with stride
s described by the five different type constructors. Communication time for the
five types as a function of number of repetitions n.

On a given architecture the layout of the data elements in memory eventually
determines the performance of communication operations involving the derived
datatype. Alignment of the basic datatypes might be good or bad, the basic
datatypes may be blocked, or strided or otherwise regularly spaced which might
be advantageous for some architectures, there might be special hardware that can
exploit certain structures in the layout, etc. For these reasons it is not possible to
pose absolute performance requirements on MPI operations involving datatypes.
A natural user expectation, however, would be that hardware support, e.g., for
strided memory access or communication, bulk transfers etc. be utilized wherever
possible by the MPI library.

However, what can be done, and this is the key point, is to relate the many
different ways that a given type map can be described by the derived datatype
mechanism (e.g., as in Benchmark 1). A self-consistent MPI performance guide-
line for datatypes would state that the performance of an MPI communication
operation with some datatype T describing the given (non-contiguous) layout
should be no worse than the same operation with any other datatype T ′ that
describes the same layout. Otherwise, the user could improve performance by
possibly tedious and non-portable redefinitions of the datatype description of
the application data.

Another user expectation which we discuss in more detail in Section 5 is that
MPI operations with datatypes perform at least as well as manually packing the
data into a contiguous buffer before the MPI operation.
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Each of the type constructors describes a sequence of n blocks. The contiguous
and vector types do so with constant extra information, the indexed block re-
quires one array for the displacements, the indexed one extra array for the block
lengths, and the structure yet one more array for the datatypes of the blocks.
We formalize this by associating the penalties 0, 0, 1n, 2n, 3n, plus some constant
O(1) overhead, with the five constructors, accordingly. The total penalty of a
datatype is defined recursively as the penalty of the top-level constructor times
the penalty of the subtype, or, for the struct constructor, the sum of the penalties
of the subtypes. The intuition is that in order to process a layout described by a
datatype with some total penalty h, Ω(h) operations are required just to parse
the type map. The strictest, self-consistent performance guideline then says that
the performance of an MPI function with datatype T should be no worse than
the performance with a datatype T ′ that has minimal total (considering possibly
recursive type specifications) penalty.

3 Trivial Expectations

We will use the following notation to express performance expectations and
guidelines: MPI A(n, TA′) � MPI B(n, TB′) shall mean that MPI function A op-
erating on n elements as described by datatype TA′ is not slower than MPI
function B with type TB′ for almost all n, all other things, including in particu-
lar the type map of the datatypes TA′ and TB′ , being equal.

Expectation (1) comes directly from the MPI standard which states that a
call to a communication function with a count and a datatype argument is func-
tionally equivalent to the same call where the count and the datatype have been
encapsulated in a contiguous datatype [7, Section 4.1.11]. It would be sensible
to expect that these two equivalent call forms would also perform similarly:

MPI A(1, contig(n, T )) ≈ MPI A(n, T ) (1)

This should hold for any type T . Exhaustive verification is of course not possible,
but a simple benchmark will indicate whether the expectation is reasonably
fulfilled.

Benchmark 2. Six basetypes T0 = T , T1 = contig(k, T ), T2 = vector(k, T ),
T3 = index block(k, T ), T4 = index(k, T ), and T5 = struct(k, T ) with repetition
count n, versus T0, . . . , T5 encapsulated in a contiguous type with count n; for
T0 repetition count is kn so as to have the same number of element in all six
cases. Communication performance with the two versions for the six types.

This benchmark measures both sides of Equation 1. It should be extended with
more irregular layouts, e.g., from the following benchmarks.

The five constructors are able to express more and more irregular layouts
of data in memory, but at an increasing penalty (more parameters for dis-
placements/indices, block lengths, and datatypes). For a given, regularly strided
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layout that can be expressed with all five constructors, it is therefore natural to
expect, for any function f(n) ≤ n (e.g., constant), that

MPI A(n, contig(f(n), T )) � MPI A(n, vector(f(n), T ))
� MPI A(n, index block(f(n), T ))
� MPI A(n, index(f(n), T ))
� MPI A(n, struct(f(n), T )) (2)

Guideline (2) says that if a given layout can be expressed with fewer parameters
(less penalty), then for any MPI function A this should perform no worse, ide-
ally better, than expressing this layout with a datatype constructor with higher
penalty. It is a (trivial) self-consistent performance requirement: if the higher
penalty datatype constructor would perform better in some context, the user
could obtain this performance by manually rewriting his code to use the better
performing constructor. With Benchmark 1 Expectation (2) can be checked for
non-nested instances of the five constructors, and we discuss this in Section 7.

4 Non-trivial Guidelines

Non-trivial guidelines either constrain or impose requirements on an MPI imple-
mentation. Not all MPI libraries may fulfill them, but for performance portability
reasons it is beneficial for implementations to adhere to them. This saves the user
from the temptation to look for the best performing constructor, and let him
focus instead on the most convenient, close-to-the-application-logic description.

The self-consistent principle would seem to require that MPI libraries do type
normalization of any user-defined datatype to the “most efficient” representation
that could be expressed by other datatype constructors. The MPI Type commit
function is the point where MPI libraries can do such normalization. For in-
stance, a struct(n,mn, T ) where all n blocks have the same basetype could
trivially be converted into an indexed type which has penalty 2n instead of
3n. Or an index(n,mn, T ) where all blocks have the same size could be con-
verted into an index block(n,m, T ), again with less penalty. If in addition the
indices are regularly strided the index block(n,m, T ) could be converted into
a vector(n,m, T ), now with constant penalty, and if the stride is equal to the
block length, this could also be expressed as a contig(n, T ). This is stated as
guidelines/requirements of the form

MPI A(n, struct(n′,mn′ , Tn′)) ≈ MPI A(n, index(n′,mn′ , T )) (3)

for indexed layouts where all indexed elements have the same basetype Ti = T .
From such requirements it would follow that communication with a datatype T
whose type map consists of consecutive, basic datatypes in increasing offset order
should be no worse than communication with a basic datatype alone, that is

MPI A(n) ≈ MPI A(n, T ) (4)
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In general, self-consistency would require MPI implementations to solve the fol-
lowing problem.

Definition 1. The datatype normalization problem is the problem of finding,
for given layout, the derived datatype with the lowest penalty describing the same
layout.

At the top level use of a constructor, type normalization is easy and looks sen-
sible. A simple scan through index, blocksize and type lists can easily discover
whether a type constructor with high penalty can be expressed in terms of a
more regular constructor with lower penalty. However, for nested types, nor-
malization is not trivial. A datatype layout described by the MPI constructors
can be described by a tree with repetition counts and displacement/type lists
at the nodes, and there are many trees describing the same layout. Finding the
one with least penalty is similar to hard optimization problems on trees, and
the presence of repetition counts makes the problem particularly difficult. We
conjecture that the type normalization problem is NP-hard. If this conjecture
is true, it is not reasonable to require that an MPI implementation performs
optimum type normalization in all cases.

The next benchmark is intended to test whether slightly non-trivial normal-
izations are performed. It is parameterized in a type T .

Benchmark 3. a) A strided layout where the ith element is placed at posi-
tion is+(i mod 2) described with the MPI Type create indexed block constructor
(cannot be normalized to a one level vector type) versus a two level vector of
n/2 blocks of a two element vector with stride s + 1 and extent 2s. The first
description has penalty n, the second penalty O(1).

b) A layout of two elements, a stride, three elements, a stride, and a single
element is repeated n/6 times. This layout described with the MPI Type indexed
constructor versus description as two elements followed by a vector of n/3 − 1
blocks of three elements, followed by a single element. The latter description has
penalty O(1), the former penalty 2n.

Communication performance with the two versions of the layouts.

5 Packing

MPI provides functionality for packing any layout described by a derived data-
type into a contiguous buffer. It is reasonable to expect that in communication
functions this is done internally as necessary, such that first packing and then
communicating the consecutive buffer does not make sense, performance wise.
This is an example of a self-consistent performance requirement in which an
MPI functionality (namely, any communication function with a non-contiguous
layout) is implemented (by the application programmer) in terms of other MPI
functionality [11].

MPI A(n, T ) � MPI Pack(n, T,B) + MPI A(B) (5)

where B is the intermediate packed buffer.
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Benchmark 4. The previous benchmarks in two versions: communication with
datatypes directly in the communication functions, and with a pack/unpack to/-
from contiguous buffers before/after communication. Also pack time is measured
stand alone.

As n grows large, a reasonable MPI implementation should be able to do pipelin-
ing to overlap any internal packing that may be necessary with other operations.
For very small data, explicit packing with MPI Pack could make sense, but should
make no difference.

Again, by self-consistency recursive application of pack should not lead to an
improvement [11]. Pack for basetypes should be comparable to memcpy; other-
wise, the user would be tempted to do this optimization by hand. This implies
that packing by hand in the sequence implied by the datatype constructors will
not make sense. Hand-packing can lead only to an improvement if non-trivial
tricks or domain knowledge is exploited. This can be expressed as

MPI Pack(n, T,B) � Userpack(n, T,B) (6)

Note that user-provided code for pack and unpack operations range from very
simple loops to complex, memory-hierarchy-aware codes using deep application
knowledge. A natural user expectation is that the MPI operations perform at
least as well as “simple” user code implemented by straightforward loops over
and recursive decomposition of the datatype T .

Benchmark 5. Packing time versus user packing time with a simple pack loop
for the datatypes of the previous benchmarks.

6 Datatype Preprocessing and Commit

It appears difficult to pose self-consistent or absolute performance requirements
for the type constructors and the MPI Type commit function. For the construc-
tors at least all parameter lists must be read (and unfortunately copied, because
the user may change the buffers after the creation call), so the time is Ω(n) where
n is the total size of parameters in the call, and possibly Ω(m) where m is the
penalty of the constituent datatypes (here it probably suffices to go through the
normalized subtypes). The MPI Type commit function may for trivial library im-
plementations do nothing and take constant time otherwise an expectation may
be that no more than linear time (in either penalty or total size of parameters)
be taken.

Benchmark 6. Type construction and commit times are measured for the data-
types of previous benchmarks.

7 Initial Experimental Results

We have implemented a first datatype expectation benchmark program incorpo-
rating some of Benchmarks 1-6. The benchmark creates datatypes for describing
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Table 1. Results for Stride-1 in µs, n = 32768. Bold entries indicate violation of a
performance guideline.

Library Phase User Contig Resized Vector BIdx Idx Struct

MPICH2 Pack 74 65 65 65 94 180 262

MPICH2 Send 486 459 463 544 480 460 457

Open MPI Pack 74 66 66 66 375 370 279

Open MPI Send 428 428 428 428 428 428 428

BG/P Pack 386 148 148 409 149 149 149

BG/P Send 238 238 238 238 238 238 238

POE Pack 224 195 196 196 195 197 198

POE Send 368 362 363 362 351 361 373

strided layouts of single basetype elements by means of the five basic construc-
tors. A basic experiment compares the performance with a ping-pong benchmark.
Likewise, packing by MPI Pack can be performed. The benchmark also measures
the construction time and the commit time.

We here present some of the benchmark results for communicating n MPI -
DOUBLE values with stride 1 (contiguous) and stride 16 (vector) for different
MPI implementations communicating in shared memory . We used Open MPI
1.4.3 and MPICH2 1.3.2p1 on a 1GHz Quad Core Opteron 270 HE system at
Indiana University, IBM’s BG/P MPI on Intrepid at Argonne National Labo-
ratory, and POE MPI 5.1 on a 16 core POWER5+ system at the University of
Illinois at Urbana-Champaign (we also have results for POE on POWER7 under
Linux; they are qualitatively similar to the POWER5+ results and are omitted).

We compare a simple pack loop (User) with types constructed with MPI -
Type contiguous (Contig, only stride 1), MPI Type create resized (Resized, the
extent of the type is used to generate the correct stride), MPI Type vector (Vec-
tor), MPI Type indexed block (BIdx), MPI Type indexed (Idx), and MPI Type -
struct (Struct). The combination Send/User means that the data is sent directly
from the user buffer (this is only possible in the contiguous stride-1 case).

Table 1 shows the results for different specifications of stride-1 data access.
This can be considered the simplest case (a Benchmark 0), and provides both a
basis for comparing non-unit strides in Table 2 and for identifying which dataty-
pes the MPI implementation simplifies to a more efficient internal representation.
Our experiments show that, for stride-1 data, MPI Pack is generally faster than a
pack loop. We also observed that sending datatypes directly was generally faster
than combining packing and sending manually. Our results show that almost
all libraries fail to detect the contiguous data pattern reliably. Bold entries in
Table 1 show where the self-consistency requirements are violated because the
requirement of Equation (3) is not met. Note that these timing results have some
uncertainty and small differences are not significant.

Table 2 shows the results for different specifications of stride-16 data access.
Our experiments show that, for stride-16 data, MPI Pack is often slower than
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Table 2. Results for Stride-16 in µs, n = 32768. Bold entries indicate violation of a
performance guideline.

Library Phase User Resized Vector BIdx Idx Struct

MPICH2 Pack 592 1035 1034 843 704 797

MPICH2 Send - 2917 3045 3015 3013 3036

Open MPI Pack 600 1494 1490 2773 2769 2717

Open MPI Send - 3086 3060 5281 5279 5269

BG/P Pack 2049 2116 2115 2218 2292 2368

BG/P Send - 6402 6402 6414 6414 6412

POE Pack 563 631 623 2056 2064 2072

POE Send - 1658 1694 6203 6263 6296

a pack loop. One notable exception is MPICH2 where the pack performance is
slightly better. We also observed that sending datatypes directly was generally
faster than combining packing and sending manually. Our results show that
almost all libraries fail to detect the vector pattern reliably. Bold entries in
Table 2 show where the self-consistency requirements are violated because the
requirement of Equation (3) is not met.

8 Conclusion

By identifying self-consistently motivated performance guidelines and perfor-
mance expectations for the MPI derived datatype mechanism first steps were
taken toward a benchmark for testing aspects of datatype performance. The
datatype normalization problem was formalized in terms of penalties, and we
conjecture that this problem is NP-hard. This limits the amount of type nor-
malization that an MPI library can be expected to do, and therefore the user
still needs to be careful how data layouts are described. Our experiments on a se-
lection of platforms and MPI libraries showed unpleasant performance surprises,
indicating for instance that very little type normalization is performed, even for
cases where this would be trivially possible. The experiments also clearly showed
large performance differences depending on the way a given layout is described,
thus more normalization could well make sense in MPI implementations.
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Abstract. The article discusses MPI-2 tools for benchmarking and ex-
tracting information on features of interconnect in HPC clusters. Au-
thors develop a toolkit named “network tests2”. This toolkit highlights
hidden cluster’s topology, illuminates the so-called “jump points” in la-
tency during message transfer, allows user to search defective cluster
nodes and so on. The toolkit consists of several programs. The first one
is an MPI-program that performs message transfer in several modes to
provide certain communication activity or benchmarking of a chosen
MPI-function and collects some statistics. The output of this program
is a set of communicative matrices which are stored as a NetCDF file.
The toolkit includes programs that perform data clustering and provide
GUI for visualisation and comparison of results obtained from different
clusters. This article touches some results obtained from Russian super-
computers such as Lomonosov T500 system. We also present data on
Infiniband Mellanox and Blue Gene/P interconnect technologies.

1 Introduction

Nowadays, there is significant amount of cluster systems with number of proces-
sors greater than 1000. Some examples of such systems in Russia are MVS-100K
(JSSC RAS), Chebyshev MSU , BlueGene/P (CMC department of MSU) and
Lomonosov MSU. The developer uses functions from one of the library imple-
mentation of MPI standard (Message Passing Interface). Message passing delays
during MPI-messages transfer over the cluster interconnect is a substantial prob-
lem for writing parallel applications. Experiments show that the observed delays
become more and more varied with increase of the number of processors in clus-
ter. This situation is caused by dramatical complexity growth of communication
subsystem in High Performance Computational (HPC) cluster with increase of
the number of processor units.

Often vendors provide information about communication environment in mul-
tiprocessor system, specifying its topology. The modern popular topologies are
2-dimensional torus, 3-dimensional torus, grid or 3-dimensional cube. For these
topologies it is possible to divide the cluster nodes into a set of ”neighbour nodes”
and a set of other nodes. Physically, several neighbour nodes can be located in
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different server racks what is reasoning for differences in messages passing delays.
It is entirely possible that full specification of the actual architecture of HPC
cluster’s interconnect isn’t available for end user. This makes solving problem
of apriory delay prediction in communications during messages passing between
processors extremely difficult.

Nowadays, in the World some teams are actively developing a set of MPI-
programs which performs artificial communication activity by functions of the
MPI library (so called “synthetic tests”). Such tests are intended for revealing
features of communications behaviour and estimating performance of compu-
tational clusters. The results of cluster testing with such MPI-programs are
available for usage by system administrators for detecting over all problems in
cluster, for example to locate problematic nodes in cluster. The authors have
developed the software (toolkit) of such type. The software is intended for test-
ing and analysing communicational environment in computational clusters by
means of the set of certain “synthetic tests” and data visualisation.

There are several tools which perform testing of communications based on
sending messages: MPIbenchsuit1, NetPIPE[2], SKaMPI[6], MPIBlib[4], Intel
MPI Benchmarks2. Also, we found some works where people concentrate on
comparison of communications of different cluster system using MPI, for example
article [5].

Most of these tools have following shortcomings

– Often they lack a complex modes of measurement delays, which suggest
a given behaviour not just measured MPI-processes, but also others MPI-
processes which are not involved in the measurement. These modes are im-
portant for acquiring holistic information about features of communicational
environment in HPC cluster.

– It is possible, that visualising and analysing tools aren’t included into testing
software. Availability of such instruments becomes essentially important if
we are testing computational clusters with a large number of processors,
where amount of generated by tools data doesn’t allow possibility of manual
analysis, and requires special software for processing it.

In order to diminish these shortcomings, as a part of PARUS[7] project, we have
developing our own toolkit for analyzing communication bandwidth of computa-
tional cluster. This toolkit is called network tests2 and is available for download
in source codes from the SourceForge site http://parus.sf.net.

Some group of authors in USA “Sandia National Laboratories” maintain free
software project “Cbench”3. The goal of the Cbench project is uniting already
existing testing tools into a uniform system which makes possible to extract
additional information about computational cluster as a whole. However, un-
like network tests2 in PARUS project, Cbench isn’t concentrated on features of

1 MPIbenchsuit is available for download from http://parallel.ru/testmpi
2 Description of the Intel MPI Benchmarks is available at
http://software.intel.com/en-us/articles/intel-mpi-benchmarks

3 Project Cbench website: http://sourceforge.net/apps/trac/cbench

http://parus.sf.net
http://parallel.ru/testmpi
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://sourceforge.net/apps/trac/cbench


162 A. Salnikov, D. Andreev, and R. Lebedev

communication environment, and it seems that Cbench doesn’t have its own
visualising tools. It is wise to integrate network tests2 into the Cbench as one of
its component in the future. Let us look closer to the network tests2 software.

2 The Components Description

The network tests2 toolkit consists of several components.

– The network test is a testing application which supports many testing modes.
– Useful converters, that perform transformation of testing results into three

formats: “plain text representation”, “non-clustered NetCDF representa-
tion”, “clustered NetCDF representation”.

– The implementation of clustering algorithm which performs a data compres-
sion.

– Programs for visualizing the testing results. There are two programs, first
one is written in Java, and the second one in C++ using Qt4.5 framework.

2.1 Description of the Method for Cluster Interconnect Testing

Authors have developed program the network test, which uses functions of MPI-
2 standard [3] to perform data transmission between single processor units of
computational cluster. Bandwidth of communication environment is computed
by multiple repeated measurements of delay values. Values of delay are measured
for one of the MPI functions. The name of MPI function is determined by the
testing mode its name is given in the parameters of network test program. On
the basis of performed repeated measurements the software determines such
characteristics as minimum latency, average latency, median latency and the
standard deviation of the delay values.

The application starts working by setting length of message to begin, then
increases this length by step after each iteration, and stops when limit end is
reached. The application consider all possible pairs of MPI-processes. Measure-
ments of delays in MPI-functions are performed for each pair (i, j) independently
from other pairs of MPI-processes, but according to the testing mode. Measure-
ments are performed for one fixed length of message. The result is a matrix of
measured delays.

Thus, vector of matrices of delay values is created during the each step of
current length. This vector length is determined by number of iterations for
each step by message length. Statistical characteristics are computed for each
such vector and their values are stored to the files which collect results. Thus,
statistical characteristics are stored in file. Characteristics stored as elements of
three-dimensional space with coordinates (i, j, current length), where
begin ≤ current length ≤ end.

We design NetCDF file format for storing testing results. The following text
describes CDL-header for this format:
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netcdf info {

dimensions:

x = <number of processors> ;

y = <number of processors> ;

n = UNLIMITED ;

variables:

int proc_num ; /*

int test_type ; * information about test

int data_type ; * and its parameters

int begin_mes_length ; */

int end_mes_length ;

int step_length ;

int noise_mes_length ;

int num_noise_mes ;

int num_noise_proc ;

int num_repeates ;

double data(n, x, y) ;

//data { matrices containing test results

}
Now, let’s concentrate on testing modes which network test application provides.

2.2 Modes of Communications Testing Provided by network test

There are nine different modes of cluster’s communication testing available in
the present network test application. All of them are aimed either for finding out
properties of behaviour of communications with different load levels (including
peak levels), or examination of effectiveness of implementation of certain MPI-
function. Load to the cluster’s communications is created artificially due to a
special way of organizing call to the certain MPI-functions. Special situation in
communications of a computational cluster also can be modelled by special order
of calling MPI-function. By comparing results from different testing modes, it is
possible to make certain conclusions, for example: what kind of MPI-functions
in each situation are advantageous.

Let’s give short descriptions of these modes.

– one to one mode. A pair of MPI-processes (i, j) is chosen here. Message
passing is initiated between them using blocking call MPI Send from process
i and receiving of the message using blocking call MPI Recv from process j.
It is guaranteed that other MPI-processes are “silent” at this moment. This
process is repeated for all pairs of MPI-processing according to the method
described above. This mode shows maximum bandwidth of connection chan-
nels in communication environment. In case of pairs of the form (i, i) size of
delay is assumed to be 0.

– async one to one mode. Basically, this mode is analogous to one to one,
but processes use MPI Isend and MPI Irecv in such a way, that two opposite
directed streams are organized in communications. If significant difference
in time compared to one to one, then it is possible that channel between
2 processors, on which MPI-processes work, isn’t full duplex. This may be
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on evidence of both incorrect design communication environment and some
problems related to malfunction of hardware.

– all to all mode. Unlike described in the previous modes, when all processes
except the fixed chosen pair were “silent”, this mode all processes start to
communicate simultaneously. This is achieved in following way. Every MPI-
process runs non-blocking MPI Isend to all other MPI-processes (including
itself), and then it runs MPI Irecv from all MPI-processes, including itself.
After that MPI Waitany is run in the loop over the number of MPI processes,
MPI Waitany signalizes about completion of (i, j) interchange pair. Delay
size is determined by time between initialization of first MPI Isend and exit
from MPI Waitany after finishing corresponding to it MPI Irecv. This mode
may be used for determining of communications behaviour during “stress”
(see figure 5), because large amount of data appears in communications
transferred in all directions simultaneously.

– test noise and test noise blocking modes. These modes are combinations
of all to all and one to one modes. MPI-process with ordinal number 0 on
communication MPI COMM WORLD splits all processes into three non-
intersection groups: “target processes”, “silent processes” and “noisy pro-
cesses”. All MPI-processes receive information about their roles with the
MPI Bcast function usage. For each pair of “target processes” delay for
call MPI Recv is computed (for test noise blocking), similarly to one to one
mode. “Noisy processes” are chosen randomly. They imitate background
load of network, sending “noise” messages using interaction scheme similar
to all to all.

– put one to one and get one to one modes. These modes test ability to
directly access memory of a remote process, which was included in MPI-2
standard. Process can put its data using function MPI put in defined place
in memory of remote MPI-process in such a way, that another MPI-process
produces no actions, and even don’t know how many such operations were
performed. Pair operation for MPI Put is operation MPI Get, which makes
able to “see” memory of another MPI-process. Both discussed modes are
organized in similar to one to one mode way.

– bcast mode. This mode is intended for determining efficiency of MPI
collective operations. All MPI-processes call MPI Bcast. Position (i, j) of
result matrix contains delay value counted after MPI-process return from
MPI Bcast. There i process is stated as root in the MPI communicator in
such way it becomes source for transmitting data and j process becomes the
receiver of data. The work time of function MPI Bcast for root process in
communicator is written into position (i, i) of matrix.

After finishing network test program a data appears and then we need to analyze
this data. Let’s discuss the visualisation system.

2.3 Description of Testing Results Visualisation System

Visualization tool displays delays in communications as grayscale images, where
growth in the delay of message transfer implies the growth in the intensity of
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black. When GUI calculates a correspondence between maximal black and white
color to the delay values in results of testing, user could select one of the normal-
ization modes: either to minimal and maximal values with fixed message length,
or to global minimum and maximum for the whole data in window of messages
length. Also, user can change levels of black and white colors on user’s own.
Among other things user can change the range of messages length which is in
correspondence to this window.

There are design of view where user could see simultaneously two values for
one (i, j) position from different matrices. The intensity of red shows the ratio
between the deviation and the test result. The closer the dot to the red, the
closer the measured value to the deviation.

User can optionally in the form shades of red superpose the values of devia-
tions to “signal” ( graduation in gray) that were obtained during the process of
communications testing. The more dot is red, the close measured value to mean
value.

Visualisation tools provide several modes for displaying data.

– Mode of displaying matrix of delays with fixed message length. (Fig. 2)
– Mode of displaying column or row for each message length. This mode can be

used for analysis of how one varies the time of transfer from one MPI-process
to the other processes. (Fig. 4)

– Mode of displaying (i, j) position from all communicative matrices. Each
matrix is corresponding to one of messages length. (Fig. 1)

Fig. 1. An example of displaying of data by visualisation system written using QT4.5
framework. Testing mode is async one to one for IBM pSeries 690 computer with 16
processors.
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Fig. 2. Displayed variation value for
one to one testing mode on Lomonosov
MSU supercomputer. Image is created
basing on message size equaling to 9600
bytes.

Fig. 3. Communication is BlueGene/P
supercomputer. Data was acquired in
one to one mode, Matrix is given for
message size equaling 1075 bytes.

Fig. 4. Row number 176 is chosen and
showed for each length of message. Mes-
sage length is increased from top to
bottom. Heterogeneity of cluster is in-
creased with message length growth.
Data is give for Lomonosov MSU super-
computer. Range of length is from 0 to
3600.

Fig. 5. In all to all mode “stress” for
communication environment is orga-
nized. Figure shows significant difference
between sending and receiving for one
of the nodes. Data is acquired for MVS-
100K computer when message length is
300 bytes.
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2.4 Description of Testing Results Clustering Method

Developed clustering tool is aimed to following: automatically determine regu-
larities in testing results and data compression with preserving fast access to
individual values. During visual analysis of testing results it was noticed that
sizes of delays are grouped into some, usually rectangular, regions. And these
regions are stable with the change of message length in test. This fact leaded to
development of described clustering algorithm.

Algorithm itself is quite complicated, and its description is somewhat bulky,
so the description won’t be discussed in this article, but you can find it out from
the article [8].

Automatic selection of threshold values for determining closeness of values
falling into one cluster, and algorithm of choosing minimal size of cluster is the
subject for further investigation and research.

3 Results and Conclusion

The network test2 has ran on computational clusters such as MVS-100K,
Chebyshev-MSU, Lomonosov-MSU, BlueGene/P (BGP). Due to the inability
to present all results in this article, we present only typical moments or most
interesting features in communications of such systems.

First we’ll discuss topological features. Figure 3 shows topological structure of
BGP supercomputer. Such type of architecture has likenesses to other systems as
well as differences. For example “cellular” structure is universal, and defined by
number of neighbours of cluster node and by number of transits while passing.
On the other hand, size and mutual arrangement of this cells are unique. Unique
feature of BGP, comparing to other systems, is presence of strips, parallel to main
diagonal. These strips are defined by 3D-torus topology, which helps avoiding
degradation of transmission rate for distantly located processors. For another
popular topology “fat tree”(Lomonosov-MSU, Chebyshev-MSU, MVS-100K are
based on it), there is a trend of increase of delay size while moving off the main
diagonal.

It seems that topological structure is well-known for the public, however there
are some nuances, which are illustrated on the figure 4. This figure shows thresh-
old changes of delay size depending on message length. These data are often
provided by developers of testing systems, but usually only for individual pairs
of MPI-processes, as it showed in the figures 4, 6, 7, 8, 9. However, the fact of
increase of heterogeneity in communications and characteristics of this hetero-
geneity isn’t given. As it follows from the figure 4, we have different topologies of
computational system for different message lengths. This can greatly affect com-
putational speed. Figures 2 and 5 show some topological features, that doesn’t
directly follow from the way of processors connected to each other. Figure 5
illustrates presence of “fail node” in the system. The figure shows cluster node,
which transfers messages significantly slower than others. There are several pos-
sible explanations for this: temporary state like running service daemon or as
permanent state like wire defect.
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Fig. 6. Delay values obtained from sev-
eral HPC clusters during the transmis-
sion of messages between neighboring
nodes

Fig. 7. Data transmission between
process pairs on BlueGene/P system.
256 processors in mode 1 process on 4
cores.

Fig. 8. Data transmission between pro-
cess pairs on BlueGene/P system. 256
processors in virtual computational node
mode. (One process on one core).

Fig. 9. Data transmission between pairs
of processors on BlueGene/P system. 512
processors in mode 1 process on 4 cores.

A comparison of transmission delay was done for BGP system. The BGP in-
stalled in CMC MSU faculty has minimum partition size is 128 processors. The
type of topology that will be available for a MPI-program on BGP extremely de-
pends on the number of requested processors for user’s task. Chart on the fig. 9
shows, that delays of data transmission between far and near processors have
similar values, however figure 7 shows that transmission time is depending on
closeness of processors. 512 processors were used in the first case, and 256 proces-
sors in the second case. The difference between the delay values are explained by
the fact of usage 3D-tor topology, unlike mesh topology which is used for 128 and
256 processors. Now let’s discuss features, related to threshold value. Staircase
structure on the figures: 7 and 9 are connected with change of routing algorithm
in MPI implementation with change of message length. Chart 8 demonstrates,
that routing algorithms affect message passing speed even between cores of one
processors.

Developed tools are usable for comparison of different HPC clusters. For
example, the figure 6 shows values of delays between neighbour nodes. Maxi-
mum bandwidth is reached for Lomonosov-MSU, however the least variation in
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delays is observed for the BGP system. Developed tools can be useful for system
administration to provide stability in communication environment. Program-
mers can estimate total parallel runtime using information about delay values
for data transmission through communication environment. Unfortunately, ex-
haustive tests of large systems are quite difficult. It is due to a whole set of
problems. E.g., poor MPI implementations behaviour on more than 4000 pro-
cessors, as it is shown in the article [1]. Another problem is large testing time
and huge amount of data acquired from systems with such amount of processors.
(Lomonosov-MSU has 8892 processors today).

This article results show importance of testing and studying features of com-
munications in HPC clusters by means of the messages passings and visualising
of delays. It should allow to extract and understand information about intercon-
nect in clusters that consist of more than 20 thousands of processors.
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Abstract. For reasons of efficiency, parallel methods are normally used
to work with as many elements as possible. Contrary to this preferred
situation, some applications need the opposite. This paper presents three
parallel sorting algorithms suited for the extreme case where every pro-
cess contributes only a single element. Scalable solutions for this case are
needed for the communicator constructor MPI Comm split. Compared to
previous approaches requiring O(p) memory, we introduce two new par-
allel sorting algorithms working with a minimum of O(1) memory. One
method is simple to implement and achieves a running time of O(p). Our
scalable algorithm solves this sorting problem in O(log2 p) time.

Keywords: MPI, Scalability, Sorting, Algorithms, Limited memory.

1 Introduction

Sorting is often considered to be the most fundamental problem in computer
science. Since the 1960s, computer manufacturers estimate that more than 25
percent of the processor time is spent on sorting [6, p. 3]. Many applications use
sorting algorithms as a key subroutine either because they inherently need to
sort some information, or because sorting is a prerequisite for efficiently solving
other problems such as searching or matching. Formally, the sequential sorting
problem can be defined as follows:1

Input: A sequence of n items (x1, x2, . . . , xn), and a relational operator
≤ that specifies an order on these items.

Output: A permutation (reordering) (y1, y2, . . . , yn) of the input sequence
such that y1 ≤ y2 ≤ · · · ≤ yn.

This problem has been studied extensively in the literature for more than sixty
years. As a result, many practical solutions exist, including sorting algorithms
such as Merge sort (1945), Quicksort (1960), Smoothsort (1981), and Introsort
(1997). Since there can be n! different input permutations, a correct sorting
algorithm requires Ω(n logn) comparisons. Some of the previously mentioned
solutions achieve a worst-case running time of O(n log n), which makes them
therefore asymptotically optimal.
1 To avoid any restrictions, this paper focuses on comparison-based sorting algorithms.
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Single-core performance has been stagnant since 2002 and with the trend to
have exponentially growing parallelism in hardware due to Moore’s law, appli-
cations naturally demand a parallel sorting solution, involving p processes. We
assume that each process can be identified by a unique rank number between 0
and p−1. A necessary condition for an optimal parallel solution is that the n data
items are fully distributed over all processes. This means that process i holds
a distinct subset of ni data items, so that n =

∑p−1
i=0 ni. Usually neglected, our

paper investigates the extreme case where every process holds exactly one data
item, thus ni is always 1 and n = p. This parallel sorting problem with minimal
data can be formulated as an extension to the sequential sorting problem:

Input: A sequence of items distributed over p processes (x0, x1, . . . , xp−1)
so that process i holds item xi, and a relational operator ≤.

Output: A distributed permutation (y0, y1, . . . , yp−1) of the input sequence
such that process i holds item yi and y0 ≤ y1 ≤ · · · ≤ yp−1.

The communicator creator MPI Comm split in the Message Passing Interface
requires an efficient solution for the parallel sorting problem with minimal data.
Existing implementations as in MPICH [5] and Open MPI [4] need O(p) memory
and O(p log p) time just to accomplish this sorting task. This paper offers three
novel parallel sorting algorithms as suitable alternatives:

1. An algorithm similar to Sack and Gropp’s approach [7] in terms of linear
resource complexity. Its advantage is simplicity, making it an ideal candidate
to implement MPI Comm split efficiently for up to 100, 000 processes.

2. A modification of the first algorithm to reduce its O(p) memory complexity
down to O(1), eliminating this bottleneck at the expense of running time.

3. A scalable algorithm which also achieves this minimal memory complex-
ity, and additionally reduces the time complexity to O(log2 p). Experiments
prove this method to be the fastest known beyond 100, 000 processes.

These algorithms represent self-contained parallel sorting solutions for our case.
In combination, they resolve all scalability problems for MPI Comm split.

2 Communicator Construction

MPI is an established standard for programming parallel applications, and is
especially suited for distributed-memory supercomputers at large scale. Every
communication in MPI is associated with a communicator. This is a special con-
text where a group of processes belonging to this communicator can exchange
messages separated from communication in other contexts. MPI provides two
predefined communicators: MPI COMM WORLD and MPI COMM SELF. Further com-
municators can be created from a group of MPI processes, which itself can be
extracted from existing communicators and modified by set operations such as
inclusion, union, and intersection. All participating processes must perform this
procedure and provide the same full (i.e., global) information, independently
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of whether a process is finally included in the new context or not. This way
of creating a single communicator is not suited for parallel applications target-
ing large supercomputers because the resource consumption (i.e., memory and
computation) scales linearly with the number of processes in the original group.

The convenience function MPI Comm split (MPI-2.2 p. 205f) provides an al-
ternative way to create new communicators and circumvents the MPI group
concept. It is based on a color and key input and enables the simultaneous
creation of multiple communicators, precisely one new communicator per color.
The key argument is used to influence the order of the new ranks. However,
such an abundant functionality comes at a cost: any correct implementation of
MPI Comm split must sort these <color, key> pairs in a distributed fashion.
Every process provides both integers separately. Internally, they can however be
combined into a single double-wide value, such as in value=(color<<32)+key
for architectures with 32 bit integers, before executing the parallel sorting ker-
nel. The output value together with the original rank number is sufficient for
subsequent processing in MPI Comm Split, as segmented prefix sums (e.g., ex-
emplified in MPI-2.2 p. 182f) can efficiently compute an identifier offset for the
new communicator and the new rank number in O(log p) time and O(1) space.

The open question is: Can MPI Comm split be implemented in a scalable way,
in particular with a memory complexity significantly smaller than O(p)?

3 Related Work

Parallelizing sorting algorithms has shown to be nontrivial. Although a lot of se-
quential approaches look promising, turning them into scalable parallel solutions
is often complex and typically only feasible on shared-memory architectures [2].

Many popular parallel sorting approaches for distributed memory are based
on Samplesort (1970) [3]. This algorithm selects (for example at random) a
subset of O(p2) input items called “samples”, which need to be sorted for further
processing. Unfortunately, methods using this approach do not work for n < p2,
and offer as such no solution for our special case with 1 item per process. Even
today these samples are still sorted sequentially [8] causing this to be the main
bottleneck at large scale. In fact, a scalable solution to the sorting problem with
minimal data might even help to eliminate this bottleneck in Samplesort.

Current implementations of MPI Comm split based on Open MPI as well as
MPICH do not sort the <color, key> arguments in parallel. Instead, they sim-
ply collect all arguments on all processes using MPI Allgather, then apply a
sequential sorting algorithm, and finally pick the resulting value that belongs to
the corresponding process. The ANSI C standard library function qsort is used
if available, which has an average running time of O(n log n) but can exhibit
the O(n2) worst case for unfavorable inputs. Both implementations fall back to
a slow O(n2) Bubblesort algorithm if Quicksort is not provided by the system.
This naive approach results in a memory consumption that scales poorly with
O(p) and a running time of O(p log p) or even O(p2), which is to be avoided.
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Sack and Gropp (2010) identified and analyzed this scalability problem for
MPI Comm split in foresight of the exascale era [7]. Asking for a parallel sorting
solution, they proposed to utilize the exact splitting method of Cheng and col-
leagues (2007) [1] to improve upon the scalability of MPI Comm split. Instead
of a single sorting process, they propose to partially gather the input items on
multiple sorting roots. The exact splitting method is used to partition the gath-
ered data equally for these roots, which then sort the resulting smaller data sets
sequentially. The authors evaluated this intricate approach for up to 64 sorting
processes and projected an expected speedup of up to 16, representing commu-
nicators for 128 million MPI processes. This limited scaling in the order of logn
already reduces the complexities of MPI Comm split by a factor of log p down to
O(p) in terms of time and O(p/ log p) in terms of memory. We propose further
solutions to this problem in Section 4 to improve upon both complexity terms.

4 Algorithm Designs

All algorithms discussed in this section can be used for the implementation of
MPI Comm split. They expect one input value per process, sort all values in
parallel, and return one output value per process, according to the definition of
the parallel sorting problem with minimal data in Section 1.

4.1 Sequential Algorithm

Existing implementations of MPI Comm split simply collect all input values on
all processes and do the actual sorting work in a redundant sequential fashion.

MPI_Comm_rank (comm, &rank ) ;
tmparray = malloc ( s izeof ( type )∗p ) ;
MPI_Allgather ( input , 1 , type , tmparray , 1 , type , comm) ;
qsort ( tmparray , p , s izeof ( type ) , cmpfunc ) ;
output = tmparray [ rank ] ;
free ( tmparray ) ;
return output ;

Listing 1.1. Sequential implementation

The MPI Allgather operation has a time complexity of O(p), but the sequen-
tial sorting functionality encapsulated in qsort uses O(p log p) comparisons on
average. Therefore the latter becomes the dominating factor in Listing 1.1, lead-
ing to an overall time complexity of O(p log p). A temporary array capable of
holding all p input values is needed, resulting in a memory complexity of O(p).

4.2 Counting Algorithm

An interesting observation helps us to remove the redundant executions of qsort:
It is sufficient to count how many values are smaller or equal than a process’ own
value as the destination for the input value arises directly from this information.
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tmparray = malloc ( s izeof ( type )∗p ) ;
MPI_Allgather ( input , 1 , type , tmparray , 1 , type , comm) ;
dest = −1;
for ( i = 0 ; i < p ; i++) { i f ( tmparray [ i ] <= input ) dest++; }
free ( tmparray ) ;
MPI_Sendrecv ( input , 1 , type , dest , tag , output , 1 , type ,

MPI ANY SOURCE, tag , comm, s t a tu s ) ;
return output ;

Listing 1.2. Counting implementation

This parallel sorting algorithm can be made stable by splitting the loop into
two parts and using different comparators. To ignore a process’ own value,
Listing 1.2 initializes dest to −1 instead of 0. After counting, each process knows
the corresponding process it has to send its value to. The for loop over p values
reduces the total time complexity by a factor of log p down to O(p). Since this not
only makes MPI Comm split much faster but also simplifies its implementation
by removing the dependencies to external functions such as qsort and own
Bubblesort implementations, we recommend immediate integration into MPI
libraries. The memory requirements do not change and therefore stay O(p).

4.3 Ring Algorithm with O(1) Memory

When memory requirements become a concern (e.g., with huge number of cores),
our counting algorithm can be adapted to avoid additional memory. The idea is
to mix the gathering and visiting of all values, so that this can be done in smaller
chunks—in the extreme case with only a single value. We created a virtual ring
of processes by using MPI Cart create to embed a one-dimensional and peri-
odic Cartesian topology into the underlying network topology. The convenience
function MPI Cart shift identifies the left and right neighbor in the ring.

dest = 0 ;
prev = input ;
for ( i = 1 ; i < p ; i++) {
MPI_Sendrecv ( prev , 1 , type , l e f t , tag , next , 1 , type ,
r i ght , tag , ring comm , s t a tu s ) ;
i f ( next <= input ) dest++;
prev = next ;
}
MPI_Sendrecv ( input , 1 , type , dest , tag , output , 1 , type ,
MPI ANY SOURCE, tag , comm, s t a tu s ) ;
return output ;

Listing 1.3. Ring implementation with O(1) memory
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We utilize p− 1 iterations in Listing 1.3 to ignore a process’ own value. The
time complexity remainsO(p), although the hidden constant2 is potentially much
higher than in Listing 1.2. Fortunately, only a fixed number of variables are
needed, reducing the memory complexity down to the minimum of O(1).

4.4 Scalable Algorithm

While the previous algorithms are simple to understand, we sketch now a more
sophisticated approach to solve the parallel sorting problem with minimal data.
It is based on the divide-and-conquer concept underlying Quicksort :

1. globally select a pivot value (preferably close to the median of all elements)
2. divide: partition all distributed values into the three sets consisting of (i)

values that are less than pivot, (ii) values that are equal to pivot (important
for duplicates and stability), and (iii) values that are greater than pivot

3. conquer : recursively proceed with the set the process belongs to

Assume an O(log p) time collective communication operation that returns an
element close to the median of all provided values. Each process invokes this
functionality with its own input value to get a suitable pivot value in return.

��vi =

⎧
⎪⎨

⎪⎩

(1 0 0) if xi < pivot,

(0 1 0) if xi = pivot,

(0 0 1) if xi > pivot.
��w = GlobalSum( ��vi)

��yi = PrefixSum( ��vi)
di = ��vi ·

⎛

⎝

⎛

⎝
0 0 0
1 0 0
1 1 0

⎞

⎠ · ��wT + ��yi
T

⎞

⎠

Fig. 1. Calculating the new location in the divide step

The partitioning can be accomplished by utilizing parallel reduction opera-
tions. Each process compares its own value xi with the ascertained pivot value.
Depending on the outcome, it will initialize an array ��vi as specified in Figure 1.
This information is then processed in a prefix summation (cf. MPI Exscan) and
a global summation (cf. MPI Allreduce) to enable a calculation of the new lo-
cation di (i.e., recipient) of each process’ value. A data shuffle via MPI Sendrecv
concludes a single partitioning round with an overall time complexity of O(log p).

In the conquer step, a process compares its received value against the pivot
to decide where to proceed. This will divide the number of values in roughly two
halves, causing O(log p) divide-and-conquer rounds. To avoid the use of O(log p)
stack space, we implemented this tail-recursive conquer step iteratively. Alto-
gether, the memory complexity is O(1) and the running time becomes O(log2 p).

Implementation Details. Partitioning leads to subgroups of processes con-
tinuing independently in subsequent rounds. Since the algorithm uses collective
operations, we could create new communicators. However, existing communica-
tor creation is, with a complexity of Ω(p), too expensive. Instead, we designed
special collective implementations that work on a sub-range of all processes in
2 The counting solution employs only one Allgather which can be implemented to

induce O(log p) network latencies as opposed to O(p) for individual communications.
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MPI COMM WORLD. In contrast to the hardware-tuned Blue Gene/P collectives,
these range collectives slow down our scalable sorting method by a factor of
roughly 28, but in exchange achieve the required time complexity of O(log p).

We use an efficient median-of-3 reduction scheme within a complete ternary
tree topology to find an approximate median of all values. Each process provides
its input value as one of the leaves. Inner nodes receive three values, determine
their median, and forward the result to the next level. This procedure is repeat-
edly applied in O(log p) levels until the root gets the result. This single value
delivers a good approximation of the median because the 2log3 p − 1 smallest as
well as 2log3 p −1 largest values out of p = 3k values will never be selected. Anal-
ysis reveals that a value close to the median is picked with very high probability.

5 Experimental Evaluation

All measurements were carried out on the full Jugene system located at the Jülich
Supercomputing Centre in Germany. It consists of 73, 728 compute nodes, each
equipped with 2 GiB of memory and a 4-way SMP PowerPC processor running
at 850 MHz. Executables were linked against the BG/P MPI library 1.4.2.
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Fig. 2. Performance comparison of the presented algorithms

Figure 2 depicts the runtime of all presented methods for a varying num-
ber of cores. Except for the MPI Comm split operation which used color=1 and
key=rank as input, all sorting algorithms started with a randomly chosen 64-bit
value per process. Compared to the extracted sorting kernel, the MPI Comm split
operation shows some overhead up to 2048 processes, after which both perfor-
mance curves converge. Our counting solution is up to 687% faster than all other
methods to the point of 98, 304 cores. As expected, the ring algorithm is the
slowest candidate for larger communicators, but will never run out of memory.
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Contrary to the other approaches where the running time increases proportion-
ally to the number of cores, the curve of our scalable algorithm flattens. This
makes it the fastest method beyond 100k cores, outperforming the current im-
plementation by a factor of 92.2 at full scale. Its performance can be modelled
by t(p) = 17.5 · (log2 p)2 μs, giving a predicted running time of 12.7 ms for 128
million processes. As such it is a factor of 29.2 faster than Sack and Gropp’s best
proposed solution while requiring a million times less memory.

6 Conclusion

This paper approaches the problem of parallel sorting with minimal data. Be-
ing able to handle a single element per process in a scalable way is crucial for
an efficient implementation of the MPI communicator creator MPI Comm split.
Extending the work of Sack and Gropp, we introduced three novel algorithms
to solve this problem. Our first approach is similar to their proposed method
in terms of resource complexity, but is much simpler to implement and more
efficient in practice, making it an ideal candidate for MPI libraries. In prospect
to future systems, we reduced the O(p) memory complexity down to the mini-
mum of O(1) at the expense of performance in our second algorithm. Finally, we
sketched a scalable algorithm that solves the parallel sorting problem with min-
imal data. Measurements on the largest Blue Gene/P installation today showed
that this method eventually outperforms all other methods, making it 92.2 times
faster than current implementations and a hundred thousand times more mem-
ory efficient on 294, 912 cores. Since the algorithm’s time complexity of O(log2 p)
yields excellent scalability without any additional memory, it provides a suitable
solution to the tackled problem, at and beyond exascale—closing the open ques-
tion of a scalable MPI Comm split implementation with a positive answer.
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Abstract. The Scalasca toolset has successfully demonstrated measure-
ment and analysis scalability on the largest computer systems, however,
applications have growing complexity and increasing demands on perfor-
mance tools. One such application is the PFLOTRAN code for simulating
multiphase subsurface flow and reactive transport. While PFLOTRAN
itself and Scalasca runtime summarization both scale well, MPI communi-
cator management becomes critical for trace collection with tens of thou-
sands of processes. Re-design and re-engineering of key components of the
Scalasca measurement system are presented which encompass the repre-
sentation of communicators, communicator definition tracking and unifi-
cation, and translation of ranks recorded in event traces.

Keywords: MPI communicators, performance measurement tools, scal-
ability.

1 Introduction

Scalasca is an open-source toolset for analyzing the execution behavior of ap-
plications based on the MPI and/or OpenMP parallel programming interfaces
supporting a wide range of current HPC platforms [7,9]. It combines compact
runtime summaries, that are particularly suited for obtaining an overview of
execution performance, with in-depth analysis of concurrency inefficiencies via
event tracing and parallel replay. With its highly scalable design, Scalasca has
facilitated performance analysis and tuning of a range of applications and con-
sisting of unprecedented numbers of processes [17].

Experience with a growing number of HPC applications on leadership IBM
Blue Gene and Cray XT systems has shown that they often scale surprisingly
well to effectively exploit hundreds of thousands of processor cores [11]. Many
codes explicitly use MPI for communication and synchronization, whereas oth-
ers make extensive use of libraries that encapsulate MPI usage. An example of
the latter, the PFLOTRAN three-dimensional reservoir simulator [2] has fea-
tured prominently in the US Department of Energy SciDAC program, where it
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Fig. 1. Average simulation timestep durations reported by PFLOTRAN for Scalasca
trace experiments on IBM BG/P, with breakdown into ‘flow’ and ‘tran’(sport) phases,
compared to reference uninstrumented executions. Distortion in the trace with event
communication ranks translated to global ranks (G-trace) is avoided in the trace that
records the local ranks (L-trace).

has been used to simulate geologic CO2 sequestration and migration of radio-
nucleide contaminants in groundwater [8]. Recent measurement and analysis of
PFLOTRAN execution performance with a ‘petascale’ dataset on IBM BG/P
and Cray XT5 systems with Scalasca [16] identified significant performance op-
portunities in the application, but also several serious scalability issues with the
Scalasca measurement approach that needed to be resolved to produce viable
performance analyses. Figure 1 shows the strong scaling of PFLOTRAN sim-
ulation timesteps on the Jugene BG/P at Jülich Supercomputing Centre along
with corresponding time for Scalasca summary and trace experiments, including
breakdown of ‘flow’ and ‘tran’(sport) execution phases.

With the provided ‘2B’ test case, PFLOTRAN (via the HDF5 and PETSc
libraries) was found to create 18 copies of the MPI_COMM_WORLD global commu-
nicator and 4 copies of MPI_COMM_SELF on each process. For Scalasca runtime
summarization experiments, MPI communicators are ignored, however, for par-
allel trace analysis it is necessary to record communicator definitions and their
usage in MPI communication and synchronization event records (to allow com-
municators to be reconstructed and used in replaying trace events). The prior im-
plementation of communicator management proved to be inadequate, requiring
storage space and processing time that grew linearly or worse with the number
of processes, such that collection and analysis of large-scale PFLOTRAN traces
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was not possible.1 Furthermore, dilation of application execution time during
trace collection was found to be severe for the ‘flow’ phase (as shown in Fig. 1)
due to the cost of translating local to global ranks.

To address these issues, we re-designed and re-engineered communicator man-
agement and representation for the Scalasca measurement system as described
in the remainder of this paper. We start our discussion in Sect. 2 with a review
of related work, followed by a description and analysis of the original commu-
nicator handling in Sect. 3. Section 4 then discusses the improved data layout
and algorithms in detail. Next, in Sect. 5, we show an experimental evaluation
of our approach with respect to various key metrics, before concluding the paper
in Sect. 6.

2 Related Work

The data that a measurement tool needs to collect and store depends on the
analyses that are intended. Even for tools serving similar purposes, communi-
cator management and rank translation can be done very differently, as demon-
strated by a brief survey of current open-source software releases. mpiP-3.3 [10]
doesn’t use communicator recording or rank translation since it doesn’t dis-
tinguish these in its profile analysis. Periscope-1.3.2 [13] similarly doesn’t need
to store communicators or translate ranks for its on-line communication anal-
ysis. FPMPI-2.1g [3] profiles do provide a matrix of point-to-point communi-
cation sources and destinations, however, only in terms of local ranks without
distinguishing communicators. For its communication matrix TAU-2.20.2 [15]
translates point-to-point source and destination ranks to global ranks during
measurement, and it can also distinguish by communicator. Translated ranks also
appear in TAU traces of point-to-point communications, but not for the roots
of collective communications, which is also the approach adopted by Extrae-
2.1.1 [5]. While communicators are distinguished, the communicator composi-
tion is neither recorded nor part of their analysis. VampirTrace-5.11 [12], like
the Scalasca predecessor from which it derives, translates ranks of both point-
to-point and collective communication events. These tools convert local to global
ranks using the standard provided MPI_Group_translate_ranks routine as com-
munication events are handled during measurement, with shortcuts to avoid un-
necessary rank translation for communicators that are identical or congruent to
MPI_COMM_WORLD. In comparison, the MPE logger provided with MPICH2-1.4 [4]
writes traces entirely with local (untranslated) ranks, which are translated when
traces are read using communicator rank mappings recorded separately for each
communicator and rank.

3 Original Scalasca Scheme

In the original scheme used by Scalasca, each MPI group and communicator
was represented by a bitstring where bit i indicates whether the global rank i

1 Notably the amount of trace event data collected, which is often an impediment,
was not a limitation for Scalasca in this case.
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is part of the group or communicator (=1) or not (=0). Additional fields in the
record distinguished between the two types (i.e., group or communicator) and
assigned a process-local numerical identifier used by communication events to
refer to this definition. As such, multiple distinct communicators required the
storage of the full bitstring, even if they comprise the same group of processes.
Each PMPI wrapper function creating a new group or communicator deter-
mined this bitstring by calling MPI_Group_translate_ranks to map the group
or the group of the newly created communicator, respectively, onto the group of
MPI_COMM_WORLD and then setting the corresponding bits. Since in this scheme
communicators are defined in terms of global ranks, all events generated for MPI
communication operations need to use global rank information as well to allow
for a proper determination of sender, receiver or collective root processes. This
required another call to MPI_Group_translate_ranks in the PMPI wrapper of
each communication function to convert the local rank in the communicator pro-
vided as arguments into the corresponding global rank, unless the communicator
is MPI_COMM_WORLD (i.e., the ranks are already global).

To establish a global view, these per-process communicator definitions were
“unified” at the end of measurement. That is, communicator definitions from
different processes were merged to create a unique set of global communicator
definitions, requiring some complicated logic to correctly distinguish between
multiple copies of a communicator. Moreover, a per-process mapping from local
to global communicator identifiers was created, which could be applied to the
corresponding identifiers stored in the communication events while reading the
trace data.

Although this solution works reasonably well for small scale measurements,
its drawbacks became evident at scale. The O(p) storage requirements for each
local definition mean that a significant amount of memory is already required at
measurement time. In particular, the bitstring representation is extremely bad
for MPI_COMM_SELF and duplicates since only a single bit is set. Moreover, the
amount of data to be processed during unification is O(p2). While algorithmic
improvements in the unification process using a hierarchical scheme [6] success-
fully parallelized the work, the reduction of the overall workload needed further
attention. Since the bitstring for MPI_COMM_SELF is different on every process,
no merging is possible during unification, leading to O(p2) storage requirements
for their global definitions. And finally, the bitstring records are also created for
every duplicate of a communicator, leading to a lot of redundancy for applica-
tion codes such as PFLOTRAN, quickly resulting in gigabytes of communicator
definition records, such that trace analysis was not possible for more than 48k
processes. Along with the quadratic growth in size, unification times of the orig-
inal implementation were also unacceptable as seen in Fig. 2.

Times reported by PFLOTRAN for summary and trace collections employing
runtime filters on Jugene IBM BG/P compared with reference times from the
uninstrumented executions in Fig. 1 show that measurement dilation is gener-
ally acceptably small, apart from trace collection with larger configurations of
processes. Whereas on Jaguar Cray XT5 the dilation is only significant for ‘flow’
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Fig. 2. Time to unify PFLOTRAN identifier definitions (and write them to disk with
associated mappings for each process) on Jugene IBM BG/P and Jaguar Cray XT5,
comparing original and revised Scalasca implementations

at 128k processes (not shown), it is much more pronounced in measurements
on Jugene IBM BG/P for even 16k processes and for 128k processes grows to a
factor of seven! This difference can be attributed to translations of communica-
tion partner/root process ranks (from the local rank in the MPI communicator
to the global rank in MPI_COMM_WORLD) in every communication operation event
recorded, and the relative speeds of computation and communication on both
systems.

The cost of the MPI standard routine MPI_Group_translate_ranks pro-
vided for this conversion increases with the size of the communicator, however,
it also depends on the rank(s) being translated with the worst-case cost that
for the largest rank. On Jugene BG/P with 128k processes, translation of the
largest rank in MPI_COMM_WORLD takes 3.0ms on average.2 While this is small
compared to the time for collective operations like MPI_Comm_dup (84ms for
MPI_COMM_WORLD at this scale), it is much larger than typical point-to-point
communication operations. Even more insidious, the variable cost according to
the partner rank results in severe distortion of the measurement.

4 Communicator Management During Trace Collection

To address the scalability limitations described in the previous section, commu-
nicator management in Scalasca was completely re-designed. In the following,
2 On Jaguar Cray XT5 with 128k processes the average translation time is 1.0 ms.
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we present the solutions we have implemented with respect to scalable commu-
nicator tracking, unification and representation.

4.1 Distributed Communicator Tracking

Instead of determining and storing the whole group information on communica-
tor creation on each process at measurement time, we developed a distributed
communicator tracking scheme requiring very little memory and allowing the
efficient reconstruction of the global communicator information at the end of
measurement.

In the distributed tracking scheme, each process stores a record with a globally
unique pair of integers as a key, the process-local identifier of this communica-
tor used by the event records referring to it, the process’ local rank within the
communicator, and its size. The 2-tuple used as key is the foundation for the
efficient reconstruction of the global communicator structure. It needs to be glob-
ally unique to detect which distributed partial definition records build a global
communicator record. The local identifier alone cannot provide this, as it merely
represents the information that this record belongs to the ith locally defined
communicator. However, different processes can define different communicators,
giving this identifier a purely local meaning.

To build these unique keys, each process keeps a state variable during mea-
surement to count the number of communicators where this process was rank
0. For improved readability, we will henceforth write that a process p defines a
communicator record when it is the process with rank 0 in the corresponding
communicator. As the value of this counter is strictly increasing on each rank,
and the global rank of the defining process is unique, the combination of those
two values forms a unique key for each communicator. Also, both values can be
determined during measurement at very low cost.

In principle, each process participating in a newly created communicator can
determine the global rank of the defining process by mapping local rank zero
onto the group of MPI_COMM_WORLD using MPI_Group_translate_ranks. How-
ever, the local state variable of this process is unknown to all but the defin-
ing process and needs to be distributed. For simplicity, we avoid the call to
MPI_Group_translate_ranks and use a broadcast on the new communicator
with the defining process as the root, sending its global rank as well as the afore-
mentioned count. The defining process increments its counter after the broadcast,
as its counter value has now been used for the new entry. Since communicator
creation is a collective operation – and we are not aware of any MPI imple-
mentation not synchronizing all of the participating processes – the additional
overhead for this communication operation is negligible.

4.2 Unification of Definition Identifiers

As mentioned before, each process assigns a local numerical identifier to each
communicator it is part of. This identifier is used in event records referencing
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communicators (such as sending or receiving a message), later being translated
into a global identifier using a per-process mapping table during analysis.

In the final communicator definition record stored with the trace, the dis-
tributed entries created during measurement have to be combined. During this
stage the unique 2-tuple key needs to be transformed into the global identifier of
the communicator. Here, we need special handling for MPI_COMM_SELF-like (i.e.,
single-process) communicators, which get added to the global list of communica-
tors after applying the unification algorithm presented below. In the remainder
of this section, we therefore only refer to multi-process communicators.

For those, we assign strictly increasing values to the communicator records,
starting from 0 with the first communicator defined by rank 0, which in any case
will be that of MPI COMM WORLD. All communicators defined by rank 0 will get
assigned to the next available identifiers, until the same process is performed
with all other communicators and ranks. To facilitate the unique numbering, we
use a single exclusive prefix reduction where each process provides the number of
communicators it defined. The resulting value on any process k then denotes the
number of communicators defined by processes with a rank lower than k. This
information is then distributed to every process using MPI_Allgather. With
this knowledge, local counter values initially used in the tuple can be shifted by
the offset of the corresponding defining process, making them globally unique.
The resulting record therefore already enables the mapping of local to global
communicator identifiers.

The next step assembles the list of global ranks for each process participating
in a communicator. First, the total number of multi-process communicators c
is broadcast to every process. This value is a by-product of the earlier prefix
sum, requiring only one addition on the process with the highest rank number.
Finally, we perform c gather operations, where each process provides either its
local rank, if it was part of the specific communicator, or −1 to denote that it
was not. The root can then assemble the list of processes by extracting them
from the gathered values.

In total, our new distributed communicator tracking scheme has a local mem-
ory requirement of O(1) per communicator per process during measurement,
and can be unified and consolidated with O(c · log p) communications.

4.3 Representation of Communicators

To eliminate the inherent redundancy of the original communicator storage
scheme for duplicates, we adopted the approach taken by the MPI standard
of separating groups and communicators. In the revised scheme each group is
therefore stored only once, potentially being referenced by multiple communica-
tor definition records. These now only consist of two integers, a global commu-
nicator identifier and the global identifier of the associated group definition.

Moreover, we no longer represent groups as bitstrings, but rather as an or-
dered list of integers where the entry at position i stores the rank in the group of
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MPI_COMM_WORLD of rank i in the local group. The global rank of a process can
then always be reconstructed by a simple table lookup at the corresponding entry
in the communicator’s group. Also, the memory representation of this rank list
is much more compact than the bitstring for sparsely populated communicators.

Special flags are also included in the group record for groups corresponding to
the standard MPI communicators, MPI_COMM_SELF and MPI_COMM_WORLD. This
provides an obvious space saving for the ubiquitous world-group record, but
more importantly the generic self-group record avoids proliferation of distinct
records for each rank. Compact representations for other MPI groups have been
investigated by others (e.g., [14]) and may be considered in future work.

4.4 Rank Translation

Since PFLOTRAN only uses duplicates of the MPI standard communicators,
for which rank determination is trivial, it would be straightforward to incorpo-
rate special handling for this case. Unfortunately, applications using general MPI
communicators would not benefit. However, the new storage scheme of groups
and communicators allowed us to use local ranks in communication events (as
the global rank can always be reconstructed, if necessary). Although it required
changing the trace file format, this unnecessary translation overhead during mea-
surement has therefore been eliminated. Trace reading also needed to be adapted,
however, parallel event replay required untranslated ranks in communicators in
any case, so analysis performance is not degraded.

5 Evaluation

The effectiveness of avoiding rank translation for every communication event
during Scalasca trace measurement is evident in Fig. 1, which compares the
PFLOTRAN ‘flow’ and ‘tran’ phase execution times on BG/P when ranks are
globalized (G-trace) versus when they remain local ranks (L-trace). With the
new communicator management traces are now collected with minimal dilation
as formerly only possible for runtime summarization experiments.

Although communicator definitions are now much more compact, total trace
sizes, and the associated storage for buffering event records during measurement,
remain essentially unchanged with the new scheme. For the 4.0TB event trace
from 128k processes, unification now takes only 6.7 seconds to produce 10.4MB
of global definitions and 242.9MB of mappings. Focusing on communicator def-
inition records only, the records for 48k processes executing PFLOTRAN orig-
inally exceeded 1.4GB, and were consequently too large for the Scalasca trace
analyzer to handle, whereas the new records for 128k processes present no such
problem. Figure 3 shows the trace analysis for an execution with 64k processes
revealing the distribution of MPI communication and synchronization waiting
times that complement the application’s inherent computational imbalance [16].
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Fig. 3. Scalasca analysis report explorer showing timestep loop extract of PFLOTRAN
trace experiment with 64k processes on BG/P. MPI communication and synchroniza-
tion waiting time metrics selected in the left pane correspond to over 10% of the total
time. The central pane shows PETSc SNESSolve LS line search solver calls employed in
the flow and transport phases are responsible for 99% of this, whereas the distribution
of waiting times for the 64k processes in the right pane reveals that it complements
the application’s inherent computational load imbalance.

6 Conclusion

For trace collection and analysis of the PFLOTRAN application at large scale,
Scalasca management of MPI communicators needed to be comprehensively re-
engineered. Eliminating the translation to global ranks of communicator ranks
of partner and root processes in communication operations to avoid associated
measurement dilation also motivated more efficient tracking and storage of com-
municator specifications required for message replay during analysis. With the
revised implementation, formerly impossible trace analysis with 128k and more
processes has now been achieved. Small extensions are under investigation for
the rare applications using MPI inter-communicators. The new communicator
management scheme has also been contributed to the open-source Score-P mea-
surement system [1] being developed for the next generation of the Scalasca,
Periscope, TAU and Vampir performance tools.
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viankou, P., Schmidl, D., Shende, S.S., Wagner, M., Wesarg, B., Wolf, F.: Score-P–A
unified performance measurement system for petascale applications. In: Proc. Com-
petence in High Performance Computing, HPC Status Konferenz der Gauß-Allianz
e.V., CiHPC, Schwetzingen, Germany. Springer, Heidelberg (2010) (to appear)

2. ANL/LANL/ORNL/PNNL/UIUC: PFLOTRAN, http://ees.lanl.gov/pflotran/
3. Argonne National Laboratory, USA: FPMPI-2.1g (August 2010),

http://www.mcs.anl.gov/research/projects/fpmpi/
4. Argonne National Laboratory, USA: MPICH2-1.4 MPE (June 2011),

http://www.mcs.anl.gov/research/projects/mpich2/
5. Barcelona Supercomputing Centre, Spain: Extrae-2.1.1 (March 2011),

http://www.bsc.es/ssl/apps/performanceTools/
6. Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Fur-

ther improving the scalability of the Scalasca toolset. In: Proc. PARA 2010, Reyk-
jav́ık, Iceland. LNCS. Springer, Heidelberg (2010)

7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
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Abstract. With the increase in the peak performance of modern com-
puting platforms, their energy consumption grows as well, which may
lead to overwhelming operating costs and failure rates. Techniques, such
as Dynamic Voltage and Frequency Scaling (called DVFS) and CPU
Clock Modulation (called throttling) are often used to reduce the power
consumption of the compute nodes. However, these techniques should
be used judiciously during the application execution to avoid significant
performance losses. In this work, two implementations of the all-to-all
collective operations are studied as to their augmentation with energy
saving strategies on the per-call basis. Experiments were performed on
the OSU MPI benchmarks as well as on a few real-world problems from
the CPMD and NAS suits, in which energy consumption was reduced by
up to 10% and 15.7%, respectively, with little performance degradation.

Keywords: Collective Communications, MPI, DVFS, CPU Throttling.

1 Introduction

Power consumption is rapidly becoming one of the critical design constraints in
modern high-end computing systems. While the focus of the high-performance
computing (HPC) community has been to maximize the performance, the system
operating costs and failure rates can reach a prohibitive level.

The Message Passing Interface1 has become a de facto standard for the design
of parallel applications. It defines both point-to-point and collective communi-
cation primitives widely used in parallel applications. This work examines the
nature of all-to-all communications because they are among the most intensive
� This work was supported in part by Iowa State University under the contract DE-

AC02-07CH11358 with the U.S. Department of Energy, by the Director, Office of
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and time consuming collective operations while being wide-spread in parallel ap-
plications. By definition, a collective operation requires the participation of all
the processes in a given communicator. Hence, such operations incur a significant
amount of the network phase during which there exist excellent opportunities
for applying energy saving techniques, such as DVFS and CPU throttling. As
a rule of thumb, the latter complements well the DVFS although larger energy
savings are generally obtained with DVFS than with throttling when each is
used separately. The experiments presented in this work emphasize the benefi-
cial effect of throttling to augment the savings provided by the DVFS and are
in line with the earlier experiments [11] — done by the authors with realis-
tic electronic structure calculations in the GAMESS [9] package — that judged
the DVFS gains by the resulting power consumption of the entire node as op-
posed to processor-only energy savings. The all-to-all operation is studied here
on the per-call (fine-grain) basis as opposed to the “black-box” approach that
treats communication phase as indivisible operation contributing to the parallel
overhead. In this work, the energy saving strategies are incorporated within the
existing all-to-all algorithms.

CPU Throttling and DVFS in Intel Architectures. The current generation of
Intel processors provides various P-states for DVFS and T-states for throttling.
In particular, the Intel “Core” microarchitecture, which provides four P-states
and eight T-states from T0 to T7, where state Tj refers to introducing j idle
cycles per eight cycles in CPU execution. The delay of switching from one P-
state to another can depend on the current and desired P-state and is discussed
in [8]. The user may write a specific value to Model Specific Registers (MSR) to
change the P- and T-states of the system.

Infiniband has become one of most popular interconnect standard marking its
presence in more that 43% of the systems in the TOP 5002 list. Several network
protocols are offloaded to the Host Channel Adapters (HCA) in an Infiniband3

network. Here, MVAPICH4 implementation of MPI, which is designed for Infini-
band networks, is considered. MVAPICH2 uses “polling” communication mode
by default since a lower communication overhead is incurred with polling when
an MPI process constantly samples for the arrival of a new message rather than
the with “blocking”, which causes CPU to wait for an incoming message.

1.1 Effect of CPU Throttling on Communication

Since synchronous point-to-point communication operations underlie collectives,
it is reasonable to analyze the CPU throttling effects on them first. Fig. 1(a)
shows the point-to-point internode communication times for the communicating
processes at T-states T0 and T5. Similarly, Fig. 1(b) depicts the change in in-
tranode communication time for the states T0 and T1. It can be observed that
2 http://www.top500.org/
3 http://www.infinibandta.org/
4 http://mvapich.cse.ohio-state.edu/

http://www.top500.org/
http://www.infinibandta.org/
http://mvapich.cse.ohio-state.edu/
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the effect of throttling on internode communication is minimal. In fact, the av-
erage performance loss was just 5% at state T5 for various message sizes. Also,
the performance loss observed was inversely proportional to the message size.
However, introducing just one idle cycle per eight cycles degrades the intranode
communication considerably (about 25%). This is expected since intranode com-
munication uses more CPU cycles for a message transfer whereas in internode
transfers RDMA offloads a large part of the communication processing to the
NICs [6].

The difference between the intra- and inter-node message transfer types with
respect to CPU throttling becomes the basis for the energy saving strategy pro-
posed in this work. The Intel Xeon processor, which is used in this work, supports
CPU throttling on the core level of granularity. Hence, the appropriate T-state
for a core is selected depending on the communication type it is involved in. The
lowest T-state T0 is chosen when a core communicates intranode. Conversely,
a higher throttling state T5 is selected when the core performs internode com-
munication. In the experiments, a throttling state higher than T5 resulted in a
significant performance loss, which is not desirable since the aim is to minimize
the energy consumption without sacrificing the performance. However, if a core
is idle during the collective operation, then it can be throttled at the highest
state T7. To summarize,

◦ Core communicates intranode → T0;
◦ Core communicates internode → T5;
◦ Core does not participate in communication → T7.

The rest of the paper is organized as follows. Section 2 describes the proposed
energy savings in the all-to-all operation. Section 3 shows experimental results
while Sections 4 and 5 provide related work and conclusions, respectively.

Fig. 1. MPI ping-pong test to determine the effect of CPU throttling on (a) internode
communication (b) intranode communication
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2 All-to-All Energy Aware Algorithm

MVAPICH2 implementations of all-to-all are considered in this work. They are
based on three algorithms: 1) Bruck Index, used for small — less than 8KB —
messages with at least eight participating processes; 2) Pairwise Exchange, used
for large messages and when the number of processes is a power of two; 3) Send
To rank i + k and Receive From rank i − k, used for all the other processor
numbers and large messages. These algorithms are referred further in text as
BIA, PEA, and STRF, respectively. In this work, they are implemented using
all the available cores on a node, while having the number of MPI ranks smaller
than the number of cores may be considered in the future.

Bruck Index first does a local copy with the upward shift of the data blocks from
the input to output buffer. Specifically, a process with the rank i rotates its data
up by i blocks. The communication starts such that, for all the p communicating
processes in each communication step k (0 ≤ k < �log2 p�), process i, (i =
0, . . . , p − 1), sends to (i + 2k) mod p (with wrap-around) all those data blocks
whose kth bit is 1 and who receive from (i − 2k) mod p. The incoming data is
stored into the blocks whose kth bit is 1. Finally, the local data blocks are shifted
downward to place them in the right order. Fig. 2 shows N = 3 nodes with c = 8
cores — placed on two sockets — each and the total number of p = 8N processors
performing the first four steps of the BIA. The rank placement is performed in
block manner using consecutive core ordering. Note that, until the kth step
where 2k < c, the communication is still intranode for any core in the cluster.
However, after the kth step, the communication becomes purely internode for
all the participating cores. Thus, from this step on, the throttling level T5 may
be applied to all the cores without incurring a significant performance loss.

“Send-To Receive-From” and Pairwise Exchange. For the block placement of
ranks, in each step k (1 ≤ k < p) of STRF, a process with rank i sends data to
(i + k) mod p and receives from (i− k + p) mod p. Therefore, for the initial and
the final c−1 steps, the communications are not purely internode. The PEA uses
exclusive-or operation to determine the rank of processes for data exchange. It
is similar to the BIA in terms of communication phase since after step k where
k = c, the communication operation remains internode until the end.

Energy Saving Strategy. Because all three algorithms exhibit purely internode
communications at a certain step k, the following energy saving strategy may
be applied in stages to each of them.

Stage 1 At the start of all-to-all, scale down the frequency of all the cores
involved in the communication to the minimum.

Stage 2 During the communication phase, throttle all the cores to the state T5

in step k if
◦ BIA: 2k ≥ c,
◦ STRF: c ≤ k < p − c.
◦ PEA: k > c.
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Step 0 Step 1

Step 2 Step 3

Fig. 2. The first four communication steps of the Bruck Index all-to-all algorithm
on three nodes with two sockets (shown as rectangles) and eight cores (ovals) each.
Internode communications are shown as straight lines across the node boundaries.

Stage 3 For STRF: throttle to state T0 at the communication step k = p − c.
Stage 4 At the end of all-to-all, throttle all the cores to state T0 (if needed)

and restore their operating frequency to the maximum.

Following [7], the DVFS and CPU throttling policies are defined by the specific
points within an algorithm where these techniques are applied and by a set
of conditions indicating when to apply them. In the proposed energy saving
strategy, Stages 1 and 4 are the points of the DVFS unconditional application
while Stages 2, 3, and 4 state the conditions on throttling along with specifying
its application points within all-to-all.

Rank Placement Consideration. MVAPICH2 provides two formats of rank place-
ments on multicores, namely block and cyclic. In the block strategy, ranks are
placed such that any node j (j = 0, 1, . . . , N − 1) contains ranks from c × j to
c×(j+1)−1. In the cyclic strategy, all the ranks i belong to j if (i mod N) equals
j. The block rank placement calls for only two DVFS and throttling switches
in the proposed energy saving strategy, and thus minimizes the switching over-
head. In the cyclic rank placement, however, after a fixed number of steps the
communication would oscillate between intra- and inter-node, requiring a throt-
tling switch at every such step. Therefore, the block rank placement has been
considered for the energy savings application.
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2.1 Power Consumption Estimates

Let a multicore compute node has frequencies fi, (i = 1, . . . , m), such that
f1 < . . . < fm, and throttling states Tj , (j = 0, 1 . . . , n). When all the c cores
of the node execute an application at frequency fi, each core consumes the
dynamic power Pi proportional to f3

i . Let Pij be the power consumed by the
entire node at the frequency fi and throttling state Tj, Ps be the total static
power consumption, and Pd be the dynamic power consumption of the compute
node components, such as memory, disk, and NIC, which are different from the
processor. Then, the power consumption with no idle cycles (at T0) may be
assumed as Pi0 = c × Pi + Ps + Pd, so, at Tj, it is

Pij =
j × (Ps + Pd) + (n − j)(Pi0)

n
. (1)

The Pi0 expression serves just to give an idea of the effect of frequency scaling
on power consumption. It may vary with the application characteristics since
each application may have a different power consumption pattern depending its
utilization of the compute node components.

The BIA power consumption for the first 2k < c steps is P10 in each node,
since the execution is at the minimum frequency and no throttling is applied.
After this step, the power consumption is equal to P15 since T5 is applied. As the
number of nodes increase, the internode communication becomes dominant and
hence, the power consumption starts to approximate P15. Similar to the BIA
in the STRF, the prevailing portion of the execution falls on the intermediate
c ≤ k < p − c steps with the increase in node numbers. Thus, the all-to-all
power consumption nears P15, on average. For more details on the modeling and
verification of the same, see [10].

3 Experimental Results

The experiments were performed on the computing platform Dynamo5, which
comprises ten Infiniband DDR-connected compute nodes, each of which has 16
GB of main memory and two Intel Xeon E5450 Quad core processors arranged as
two sockets with the operating frequency ranging from 2 GHz to 3 GHz and the
eight levels of throttling from T0 to T7. For measuring the node power and energy
consumption, a Wattsup6 power meter is used with a sampling rate of 1 Hz. Due
to such a low measuring resolution, a large number of all-to-all operations have
to be performed. For determining the average power consumption at a particular
message size, 100 samples are taken for that message size followed by averaging.
Specifically, at first the time spent in the all-to-all operation is measured for
a given message size then the number of iterations is determined, so that the
all-to-all executes for 100 seconds on Dynamo. A higher resolution meter will be
considered in the future.
5 funded and operated jointly by Iowa State University and Ames Laboratory.
6 https://www.wattsupmeters.com

https://www.wattsupmeters.com


194 V. Sundriyal and M. Sosonkina

Fig. 3. The all-to-all execution time on 80 processes (left) and the power consumption
across a compute node (right) for the three cases: Executing at the highest frequency
and no throttling (Full power); only frequency scaling without throttling (DVFS only);
and using the proposed energy saving strategies (Proposed)

OSU MPI Benchmarks. This set of benchmarks7 are used here to determine
the change in execution time and power consumption of “stand alone” all-to-all
operations. From Fig. 3(right), it can be observed that the execution time for
all-to-all has very low performance penalty when the proposed energy savings
are used. The average performance loss observed for various message sizes was
just 0.97% of that for the Full power case. While somewhat higher than in the
DVFS only case, which was 0.5%, it is quite acceptable taking into the consider-
ation large reductions in the power consumption achieved (Fig. 3(left)) with the
Proposed strategy. Note, however that, in all the cases, the power consumption
increases with the message size since the memory dynamic power consumption
increases because of message copying [6]. Similar power reductions have been
obtained for the all-to-all vector operation.

Application Testing CPMD (CarParrinello Molecular Dynamics)8 is a ab-initio
quantum mechanical molecular dynamics real-world application using pseudopo-
tentials and a plane wave basis set. Eleven input sets from the CPMD application
are used here. MPI Alltoall is the key collective operation in CPMD. Since most
messages have the sizes in the range of 128 B to 8 KB, the BIA is used. From the
NAS benchmarks [1], FT and IS Class C benchmarks are chosen because they use
the all-to-all operation. Fig. 4 shows the execution time and energy consumption
of CPMD inputs and NAS benchmarks on 80 and 64 processes, respectively, nor-
malized to the Full power case. For the CPMD with the Proposed strategies,
the performance loss ranges from 0.4% to 4.3% averaging 2.78% leading to the
energy savings in the range of 9.8% to 15.7% (13.4% on average). For the NAS,
the performance loss ranges from 1.1% to 4.5% and the average energy savings
7 OSU MPI Benchmarks: http://mvapich.cse.ohio-state.edu
8 CPMD Consortium: http://www.cpmd.org

http://mvapich.cse.ohio-state.edu
http://www.cpmd.org
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Fig. 4. Execution time (top) and energy consumption (bottom) of 11 CPMD inputs on
80 processors and of NAS benchmarks on 64 processes for the DVFS only and Proposed

cases normalized to the Full power

are about 10%. Hence, the applications tested suffer from little performance loss
and have significant energy savings.

4 Related Work

The energy efficiency delivered by the modern interconnects in high performance
clusters is discussed in [12]. The communication phase characterization to obtain
energy savings by using DVFS is studied in, e.g., in [5] and [2].In [3], authors have
developed a tool which estimates power consumption characteristics of a paral-
lel application in terms of various CPU components. In [4], algorithms to save
energy in the collectives, such MPI Alltoall and MPI Bcast, are proposed. They
differ significantly with the approach presented in this paper. Specifically, [4] as-
sumes that throttling has a negative effect on the internode communication and
thus, redesigns the all-to-all operation, such that a certain set of sockets does not
participate in the communication at some point of time in order to be throttled.
However, since the number of cores within a node continues to increase, forcing
the sockets to remain idle during the communication, can introduce significant
performance overheads. The power savings achieved in [4] are equivalent to op-
erating two sockets at the minimum frequency and throttling state T4, whereas
the approach proposed here achieves power saving by keeping both sockets at the
minimum frequency while throttling them to a higher state T5. An experimental
comparison of the two algorithms is left as future work.

5 Conclusions and Future Work

Energy-saving strategies are proposed for the all-to-all operation and imple-
mented as the MPI Alltoall collective in MVAPICH2 without modifying existing
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algorithms. The sensitivity of inter- and intra-node message transfers to CPU
throttling has been assessed. It was observed that throttling has almost no neg-
ative effect on the performance of internode communications. Thus, both DVFS
and CPU throttling were applied in the purely internode communication steps
within three different all-to-all implementations in MVAPICH2. The experiments
demonstrate that the proposed strategies can deliver up to 15.7% of energy sav-
ings without introducing significant performance penalty for the CPMD appli-
cation inputs and NAS application benchmarks, which is representative of the
potential benefits to scientific applications in general.

Similar energy saving strategies may be extended to other collectives includ-
ing reduction operations. Furthermore, as the number of cores within a node
keeps increasing, the opportunity of applying throttling in intranode communi-
cation, on a per-core level, must be also explored leading to the consideration
of the point-to-point operations. As the interconnect technology becomes more
efficient, the DVFS and throttling switching overheads may become significant
relatively to the actual communication time. Therefore, the energy saving strate-
gies need to be made aware of the message size transferred in certain types of
collective operations.

References

1. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel benchmarks–summary
and preliminary results. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, pp. 158–165 (1991)

2. Freeh, V.W., Lowenthal, D.K.: Using multiple energy gears in MPI programs on a
power-scalable cluster. In: Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 164–173 (2005)

3. Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron, K.W.: PowerPack:
Energy profiling and analysis of high-performance systems and applications. IEEE
Transactions on Parallel and Distributed Systems 21, 658–671 (2010)

4. Kandalla, K., Mancini, E.P., Sur, S., Panda, D.K.: Designing power-aware collec-
tive communication algorithms for InfiniBand clusters. In: 2010 39th International
Conference on Parallel Processing, ICPP 2010, pp. 218–227 (2010)

5. Lim, M.Y., Freeh, V.W., Lowenthal, D.K.: Adaptive, transparent frequency and
voltage scaling of communication phases in MPI programs. In: Proceedings of the
2006 ACM/IEEE conference on Supercomputing (2006)

6. Liu, J., Poff, D., Abali, B.: Evaluating high performance communication: a power
perspective. In: Proceedings of the 23rd International Conference on Supercom-
puting, pp. 326–337 (2009)

7. Martonosi, M., Malik, S., Xie, F.: Efficient behavior-driven runtime dynamic volt-
age scaling policies. In: Third IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES+ISSS 2005, September
2005, pp. 105–110 (2005)



Per-call Energy Saving Strategies in All-to-All Communications 197

8. Park, J., Shin, D., Chang, N., Pedram, M.: Accurate modeling and calculation of
delay and energy overheads of dynamic voltage scaling in modern high-performance
microprocessors. In: 2010 International Symposium on Low-Power Electronics and
Design (ISLPED), pp. 419–424 (2010)

9. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen,
J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M.,
Montgomery Jr., J.A.: General atomic and molecular electronic structure system.
J. Comput. Chem. 14, 1347–1363 (1993)

10. Sundriyal, V., Sosonkina, M.: Percall energy saving strategies in all-to-all com-
munications. Technical Report 11-05, Computer Science Department, Iowa State
University, Ames, IA, 5011 (May 2011)

11. Sundriyal, V., Sosonkina, M., Liu, F., Schmidt, M.: Dynamic frequency scaling and
energy saving in quantum chemistry applications. In: Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2011), May 16-20
(2011)

12. Zamani, R., Afsahi, A., Qian, Y., Hamacher, C.: A feasibility analysis of power-
awareness and energy minimization in modern interconnects for high-performance
computing. In: Proceedings of the 2007 International Conference on Cluster Com-
puting, pp. 118–128 (2007)



Data Redistribution Using One-sided Transfers

to In-Memory HDF5 Files

Jerome Soumagne1,2, John Biddiscombe1, and Aurélien Esnard2
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Abstract. Outputs of simulation codes making use of the HDF5 file
format are usually and mainly composed of several different attributes
and datasets, storing either lightweight pieces of information or contain-
ing heavy parts of data. These objects, when written or read through the
HDF5 layer, create metadata and data IO operations of different block
sizes, which depend on the precision and dimension of the arrays that are
being manipulated. By making use of simple block redistribution strate-
gies, we present in this paper a case study showing HDF5 IO performance
improvements for “in-memory” files stored in a distributed shared mem-
ory buffer using one-sided communications through the HDF5 API.

Keywords: Data Redistribution, Distributed Shared Memory, HDF5,
One-sided Communication.

1 Introduction

HDF5 [11], the Hierarchical Data Format, allows users to write data output in
a very flexible manner. One file can be composed of different datasets, usually
containing a large amount of data, and of attributes, storing small pieces of
information. Datasets can be simple scalars or N-dimensional vectors written
in parallel using hyperslab selections – these selections depend entirely on the
code implementation. Parallel writes or reads can be issued in a uniform manner
or can follow a totally random pattern. Concurrent with these data IO opera-
tions, HDF5 metadata is written and can be accessed several times if objects
are opened, created or closed or if the metadata has not been previously cached.
Therefore a complete HDF5 file write or read in parallel may consist of a large
number of accesses in a complex pattern.

The HDF5 architecture allows the creation of customized IO methods called
drivers, one well-known parallel driver is the MPI-IO driver, discussed in section
2. Disk IO being a significant and now commonplace bottleneck in simulations,
we developed a parallel virtual file driver called the DSM driver which allows
one to redirect HDF5 IO operations in parallel to a distributed shared memory
(DSM) buffer (the reader is referred to [9] and [8] for a more complete introduc-
tion to the DSM driver and communicators). Simulation processes may write
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in-memory HDF5 files using various types of communication, the principal in-
tended use of these in-memory files being code-coupling of parallel applications.
The original implementation made use of two-sided communication only; we re-
cently extended it to make use of one-sided communication – we focus in this
paper only on one-sided transfers and consider the case where the nodes host-
ing the DSM are different from the nodes hosting the simulation processes, i.e.
where traffic between them must traverse the network. We present in section 3
the MPI one-sided communicator used for this study, along with an additional
communicator specially designed for the Cray XE6.

In the original implementation, HDF5 files are written using a linear address
space where the file grows in size by extending upwardly the address range used.
The addresses are spread (evenly by default) across a series of DSM host pro-
cesses so that as the file grows in size and data is written into higher addresses
more network links are utilized and the higher the transfer bandwidth should be.
In practice, most data reads/writes for datasets or hyperslabs are significantly
smaller than the entire file and thus use only a small number of memory parti-
tions – and hence network links, at any given time, which limits the bandwidth
reached. We extend this strategy in section 4 by remapping the address space
nonlinearly using varying block sizes among DSM host processes (thereby dis-
tributing traffic more evenly). We present a case study showing the performance
obtained in section 5 and compare it to related studies in section 6.

2 HDF5 File IOs

HDF5 IOs can be produced in very different ways. As mentioned above, drivers
allow users to select a suitable IO mechanism for the system. One frequently
used driver is the MPI-IO driver, best suited for parallel file systems, since it uses
MPI-IO underneath. Whilst MPI-IO and implementations such as ROMIO [10]
have been optimized for various types of accesses depending on the file system
used, HDF5 also provides its own ways of tuning and writing data in parallel.
For instance, the chunking mechanism allows files and particularly datasets to
be stored in a non-contiguous form, i.e. in equally sized chunks, which can be
helpful for parallel file systems, over which datasets can therefore be striped.
Additional optimizations have also been made in the MPI-IO driver and HDF5
library itself for specific file systems such as the Lustre file system [6].

These enhancements are particularly useful in a traditional pipeline model
where data is archived and post-processed from file systems, however bandwidth
offered by file systems is limited. Introducing the DSM driver in the pipeline
allows us to couple two different applications in parallel through the network
by using the HDF5 interface. This offers an additional exchange method before
saving post-processed data to disk for archiving purposes. Parallel optimizations
implemented in the HDF5 library can be re-used by the DSM driver, such as the
chunking mechanism, but other types of accesses specific to file systems need to
be adapted and re-optimized within the driver itself.
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3 DSM Driver and Communicators

As opposed to the MPI-IO driver, where the application is effectively coupled
to the file-system, when using the DSM driver, two applications – parallel simu-
lation and DSM host (integrating post processing code) – are coupled together
through a communication layer, referred to as an inter-communicator. The DSM
architecture being modular, permits different inter-communicator types to be
implemented, which can follow one-sided or two-sided communication patterns.
For this case study, two different one-sided inter-communicators are considered:
one based on MPI RMA and one specific to Cray systems, based on an API
called DMAPP.

MPI RMA Inter-communicator. The MPI RMA communicator makes use
of the passive MPI RMA communication mechanism [5]. When the DSM is
allocated, MPI_Alloc_mem is called and the window is defined as the size of the
requested HDF5 file. MPI_Put can then be issued in a one sided manner using
MPI_Win_lock and MPI_Win_unlock between transactions.

The communicator can be dynamically created (using the dynamic process
management set of functions) but due to the numerous restrictions imposed by
MPI implementations, on large systems (e.g. on Cray systems), the communica-
tor has to be defined using an MPI_Intercomm_create call within an MPMD job
(where the global communicator has been previously split between applications).

DMAPP Inter-communicator. The DMAPP communicator is derived from
the aforementioned MPI RMA communicator. On Cray machines that support
the latest generation of interconnect, Gemini [3], Cray defines the Distributed
Memory Application API, referred as DMAPP [4]. This API is used on these
systems to implement one-sided libraries such as Cray SHMEM and is also used
by PGAS compilers (Co-array Fortran and UPC). We have implemented a com-
municator taking direct advantage of this lower level one-sided communication
library. On the simulation side, to avoid memory overheads created by symmetric
memory usage, we make use of non-symmetric memory, allocated and registered
to the DMAPP API on the DSM hosts only. This registration step provides
memory segment information which is then exchanged with the simulation (only
once at initialization time, assuming that the DSM size is fixed between time
steps). dmapp_put calls can then be issued to transfer data into the DSM.

4 Redistribution Strategies

In our implementation the DSM is distributed among p processes, each process
allocating l bytes of data, which gives a total DSM length of L = l × p. Using
linear addressing, the DSM is contiguously filled from process rank 0 to process
rank (p−1). If a simulation writes a file of size S, the actual number of processes
used to receive data will thus be

⌈
S
l

⌉
with S ≤ L. Whilst this method can provide

relatively good performance when S � L, if the file written is composed of
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several different datasets (i.e. each much smaller than L), which are contiguously
(and sequentially) mapped onto the DSM, individual simulation processes will
waste bandwidth by using only a small partition of the network links available
– particularly so when datasets are divided between simulation processes and
written using hyperslab selections. We therefore sought better strategies which
could be enabled on demand.

4.1 Mask Redistribution

When S � L, a first simple strategy is to automatically re-size the DSM window
to the requested file size without any concrete memory reallocation. This can
effectively improve the overall bandwidth by making S � L but this brings two
main drawbacks: the most evident one is that it wastes memory allocated on
the DSM, the second one is that it does not solve the multiple dataset problem
mentioned above.

4.2 Block Cyclic Redistribution

The second strategy to be considered in this case study is a block cyclic redistri-
bution [13]. It is a simple strategy and it potentially allows a good load balance
between DSM processes. A block size s being fixed, the DSM address mapping
is decomposed into L

s blocks. For convenience, the DSM length L is adapted so
that it becomes a multiple of s. Blocks are distributed in a round-robin fash-
ion, the Bth block is sent to the process rank (B mod P ) or (B mod Bc) (if Bc,
the number of blocks in a cycle is not equal to P , the number of processes).
Hence every address a is associated to the following triplet (p, o, i) which can be
written as:

a �→
(

B mod P,

⌊
B

P

⌋
, a mod s

)
(1)

the first term p being the process index within the DSM, o the local block offset
in a process and i the local address offset within a block.

This method presents two obvious advantages: bandwidth is not wasted even
if S � L; data chunks are load balanced, which is especially beneficial when
multiple datasets are written. However this method can potentially create a
huge number of data transactions, depending on the block size chosen, which
could result in a performance drop.

4.3 Random Block Redistribution

The third strategy tested consists in re-using the algorithm previously described,
scattering the DSM address space into pieces of size s. Another step is then added
to the redistribution pipeline, shuffling the blocks in a randomized but constant
manner (so that blocks can be retrieved).

This method can present another advantage compared to the previous solution
(but keeps the same main drawback), it may avoid a possible network congestion
if two simulation processes were sending data to the same DSM process using
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the block cyclic redistribution algorithm – which may occur with a periodic
frequency introduced by certain communication patterns and data distributions
in the file.

5 Performance Evaluation

For these tests, we use two systems: an InfiniBand QDR 4X cluster with MVA-
PICH2 [2] composed of 15 nodes (180 cores) and a Cray XE6 system composed
of two racks, i.e. 176 compute nodes (4224 cores), with Cray MPT (derived
from MPICH2 [1] [7]). To be able to evaluate the performance obtained using
the previously defined strategies, we first run micro-benchmarks on these two
machines.

5.1 Internode Micro-Benchmark

The micro-benchmarks are derived from the OSU test suite [2] and identify the
bandwidth performance on the different systems for different sizes of packets
between two different nodes. Only put operations are tested here. Results are
shown below in figure 1.

A careful examination of these charts shows a performance drop point with
MVAPICH2 for packets of 16KB, though the overall bandwidth reflects Infini-
Band QDR 4X performance. For the XE6, theoretical unidirectional performance
is estimated at 5GB/s. Here the DMAPP interface performs better than the
MPI one-sided interface. Two main drop points can however be noticed, 4KB
for DMAPP and 1KB for MPI – these points correspond to the standard offload
thresholds, making use of the RDMA engine for large messages.

5.2 Single Dataset Benchmark

For the following benchmarks, write bandwidth tests can be seen as basic client-
server tests: a first set of processes (servers) hosts the DSM and waits for in-
coming data, a second set of processes (clients) writes HDF5 data in parallel to
the DSM using the HDF5 DSM driver. The measured bandwidth corresponds to
the average time of a complete file write (HDF5 create, write and close opera-
tions). The first benchmark writes one file composed of one single dataset using
hyperslab selections.

Contiguous/Linear Distribution. The DSM is distributed among 8 nodes
(32 processes, 4 per node) on the InfiniBand cluster and among 88 nodes (176
processes, 2 per node) on the XE6. To keep a certain consistency between the
systems, the local buffer size allocated per node is kept to 512MB, which creates
a DSM of 8×512 = 4GB on the InfiniBand cluster and a DSM of 88×512 = 44GB
on the XE6. Given this fixed DSM (file) size, a single dataset of the matching size
is written from the combined send nodes (smaller pieces per process as number
of processes increases).
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Fig. 1. Internode bandwidth micro-benchmark – (Left) InfiniBand QDR 4X cluster
with MVAPICH2 – (Right) Cray XE6 with Cray MPT and DMAPP
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Fig. 2. Write transfer rate of an (in-memory) HDF5 file composed of one single dataset
using contiguous distribution – (Left) InfiniBand QDR 4X cluster – (Right) Cray XE6

For writing, on the XE6, the number of processes is 4 per send node until
88 nodes are reached (352 processes) at which point, processes per send node
are increased up to 24 – giving 2112 processes writing data in total. On the
Infiniband cluster, 7 send nodes are available and 4 processes per node are used
initially and then incremented to 12 per send node giving a maximum of 84 send
processes. (Note that 4 processes per send node were selected as the starting
point, because with fewer processes injecting data, we are unable to fully utilize
the individual network links). Therefore, as shown in figure 2: on the InfiniBand
cluster, a peak bandwidth is observed at 12.5GB/s with 32 processes (8 receive
and 7 send links active); on the XE6, at 40.5GB/s with 352 processes (88 send
and receive links active). Note that the XE6 system used for the tests has a 2D
torus (1 × 6 × 16), and the resulting bandwidth is lower than that achievable
using a 3D torus.

Block Cyclic and Random Block Redistributions. For different block
sizes, we run the same benchmark as above, using a single dataset. This test
allows us to evaluate block redistribution advantages as opposed to a simple
contiguous distribution. Results are presented in figures 3 and 4.
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Fig. 3. Write transfer rate on InfiniBand QDR 4X cluster of an (in-memory) HDF5
file composed of one single dataset using block cyclic redistribution
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(a) MPI RMA communicator.

16 32 64 128 256 352 70414082112

256
1K

4K
16K

64K
256K

1M
4M

0
10
20
30
40
50
60

T
ra

ns
fe

r 
R

at
e 

(G
B

yt
es

/s
)

Number of processes
Size of blocks (Bytes)

T
ra

ns
fe

r 
R

at
e 

(G
B

yt
es

/s
)

0
5
10
15
20
25
30
35
40
45

16 32 64 128 256 352 70414082112

256
1K

4K
16K

64K
256K

1M
4M

0
5

10
15
20
25

T
ra

ns
fe

r 
R

at
e 

(G
B

yt
es

/s
)

Number of processes
Size of blocks (Bytes)

T
ra

ns
fe

r 
R

at
e 

(G
B

yt
es

/s
)

0
2
4
6
8
10
12
14
16

(b) DMAPP communicator.

Fig. 4. Write transfer rate on Cray XE6 of an (in-memory) HDF5 file composed of one
single dataset – (Left) Block cyclic redistribution – (Right) Performance comparison
(difference) between block cyclic and contiguous distributions

On both systems, the bandwidth drop points of section 5.1 can be observed.
While these drop points had a small effect on the micro-benchmark, they lead
to a significant slow-down in the HDF5 write operations when those block sizes
are used repeatedly. On the XE6 system, a significant improvement compared
to the contiguous write is evident for block sizes belonging to the [16KB; 64KB]
interval with the MPI RMA communicator and for block sizes below 4KB for the
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DMAPP communicator. Since metadata operations are usually very small trans-
fers, being able to use this communicator in combination with the MPI RMA
communicator is an advantage for this system. However one can also notice in
figure 3 that there is no improvement at all on the InfiniBand cluster when using
a block cyclic method if only a single dataset is written into the file (compare
the peak transfer rate to that of the left of figure 2). The transfer rates for the
full DSM sized dataset are in general slower using the block/random redistri-
bution on the InfiniBand system and this is because breaking the data writes
into many smaller blocks does not improve performance as can be seen from the
micro-benchmark result of figure 1.

Random block results are not shown here – for brevity – but globally in-
crease the bandwidth as one may see in the next benchmark, and avoid possible
congestion issues in the DSM.

5.3 Multiple Dataset Benchmark

To reflect the behaviour of a common simulation code, the previous benchmark
is reused here, this time creating a file composed of 10 datasets instead of a single
one. The same configuration is used as the previous tests, each of the datasets
has the same fixed size and their sum is the size of the allocated DSM, i.e. 4GB
for the InfiniBand cluster and 44GB for the XE6. Results are shown in figure 5.

It is evident from this figure that writing using block redistribution is much
more efficient than linear mapping. Since each dataset in the linear HDF5 mem-
ory space is contiguous, writing 10 datasets in parallel but sequentially in time,
causes only one tenth of the links to become active for each individual dataset.
By redistributing blocks for each of the much smaller datasets across all pro-
cesses, we make use of all of the links for all of the transfers. For block cyclic
redistribution, providing each dataset is at least s × P in size, the data will be
well distributed.

It is perhaps surprising that the graph of figure 5 (left) shows a significant
drop in transfer rate as the number of send processes increases. The drop is
smaller for random distribution than for cyclic and this can be explained by
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Fig. 5. Write transfer rate using MPI RMA communicator of an (in-memory) HDF5
file composed of 10 datasets – (Left) InfiniBand QDR 4X cluster – (Right) Cray XE6
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noting that we have used 4 processes per listening node, so in fact the cyclic
redistribution hits the same link 4 times in succession, which will not generally
happen for the random distribution. We therefore see a more gradual fall off in
line with figure 2 (left) for the random mode, the overall drop being caused by
the increase in individual number of transfers as the effect of latency and lower
performance for smaller packets dominates.

6 Related Work and Discussion

The results presented here appear to be typical for the kinds of system tested,
but can however be affected by the network topology and capabilities, system
configuration, number of nodes used, number of processes per node, and so on.
The space of potential combinations of parameters for plots is beyond what can
be presented in a short paper so certain decisions as the number of processes
to use per node were made to try to maximize the data injection and network
saturation to give representative results. Note that the implementation of MPI
RMA for the XE6 is not yet optimized and the measured performance for large
messages (above 1KB) should be improved in the future [7]. Absolute bandwidths
may not therefore be indicative of all installations – though this does not affect
our results.

The improvements in transfer rates found when using redistribution are broadly
in line with expectations. In fact the advantages of data redistribution are well
known and date back to the origins of message passing [13]. Many projects have
made use of block cyclic distribution as a means of improving performance for
scattered data, in particular PGAS languages (such as UPC [12]) provide options
for shared array allocation using block cyclic layouts, which can improve algorith-
mic performance. In fact our flexible communicator design opens up the possibil-
ity that a PGAS based layer could be used directly instead of MPI or DMAPP
as we have presented here and we shall pursue this in future work.

The observation that certain packet sizes are handled better by different APIs
also allows the possibility of further fine tuning transfers. IO operations from
HDF5 applications typically consist of many small metadata and larger heavy
data requests and these different needs can be served by switching communi-
cators on the fly to use DMAPP for metadata and MPI RMA for heavy data
decomposed into blocks.

7 Conclusion

We presented in this paper a case study where HDF5 files are sent to a DSM
using one-sided transfers and found that implementing redistribution strate-
gies significantly improves the performance of data writes for typical use cases
where multiple datasets are written into a much larger file. By choosing block
sizes that are optimal for the underlying hardware and matching the number of
send/receive nodes, we are able to improve the data bandwidth. Codes coupled
using the DSM driver are now able to communicate at speeds approaching the
maximum possible on the systems tested.
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Abstract. The Single-chip Cloud Computer (SCC) is an experimental processor 
created by Intel Labs. It is a distributed memory architecture that provides 
shared memory possibilities and an on die Message Passing Buffer (MPB). This 
paper presents an MPI implementation (RCKMPI) that uses an efficient mix of 
MPB and DDR3 shared memory for low level communication. The on die 
buffer found in the SCC provides higher bandwidth and lower latency than the 
available shared memory. In spite of this, message passing can be faster through 
DDR3, due to protocol overheads related to the small size of the MPB and the 
necessity to split and reassemble large packages, together with the possibility 
that the data is not available in the cache. These overheads take over after 
certain message sizes, requiring run time decisions with regards to which type 
of buffers to use, in order to achieve higher performance. In the current 
implementation, the decision is based on remaining bytes to transfer from in 
transit packets. MPI benchmarks are shown to demonstrate that the use of both 
types of buffers results in equal or lower transmission times than when 
communicating through the on die buffer alone. 

Keywords: Many-Core Processors, Message Passing, MPI, RCKMPI. 

1   Introduction 

The Single-chip Cloud Computer (SCC) experimental processor [4] is a 48-core 
‘concept vehicle’ created by Intel Labs as a platform for many-core software research. 
Its memory organization is distributed, in the sense that the computing elements have 
private memory. Certain amounts of the DDR3 memory pool can be configured as 
shared, although lacking cache coherency. To allow for low latency communication, 
on chip buffers are also present. These are called Message Passing Buffers (MPBs), 
and amount to 8KB per core. They differ from caches in that they are directly 
controlled by software. 

For distributed memory systems, message passing is the most common parallel 
programming model. The Message Passing Interface (MPI) is the de facto standard 
for message passing implementations. MPI applications can run on the SCC [3], with 
unmodified MPI libraries configured to use TCP/IP sockets. A network driver, called 
rckmb, is available for SCC Linux. The driver provides a network device that can be 
used for communication between the cores, as if they were nodes in a cluster. Other 
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message passing libraries are available for the SCC. The RCCE [1] library and 
community supplied extensions for it, support collective operations as well as non-
blocking communication [2]. RCCE, and similar solutions, have been shown to 
clearly outperform MPI libraries configured to use the rckmb network driver [3]. 
However, the available software and tools for these programming models are limited 
when compared to MPI.  

It is clear that an MPI compliant library, with performance similar to the low 
weight message passing solutions, is desirable. RCKMPI is such a library, and in 
contrast to other solutions, it exploits both possible forms of communication: Shared 
Memory and MPB. It works with both types of buffers at the same time and makes 
run time decisions with regards to how to reach the target process more efficiently.  

This paper introduces the memory organization of the SCC, explains how 
RCKMPI makes use of it, and finally presents performance results. In section 2, the 
SCC’s general architecture, details about its memory organization and the Message 
Passing Buffer (MPB) are introduced. Section 3 describes the MPI library’s design as 
well as the multi buffer type operation. Performance results are shown in section 4, 
followed by a summary. 

2   SCC Hardware Architecture 

The Single-chip Cloud Computer is a distributed memory architecture. It has the 
possibility of setting up 16MB chunks of shared memory, although without cache 
coherency. The chip contains dedicated message passing hardware in the form of on 
die memory that can be used for synchronization. This opens up a window for research 
on programming models that scale on non-coherent hardware. Furthermore, the system 
offers fine grain power management features for DVFS research.  

2.1   General Overview 

The IA core is based on the P54C Pentium® processor and therefore operates in-
order, and is two-way superscalar. Each core has 16KB of separate code and 
instruction level 1 cache, as well as 256KB of level 2 cache. The core has moderate 
performance and its small footprint allows the integration of a relatively high core 
count, which is desirable to support research on many core programming models. 
Two cores form a tile and the chip is organized in a 6×4 2D mesh of such tiles. Mesh 
connections are established through high speed routers.  

Each of the routers is connected to a tile as well as the neighboring mesh nodes. 
These neighbor nodes may be routers or periphery devices (e.g. the memory controller 
on the west port of the lower left router in figure 1). Each tile also contains the 
Message Passing Buffer which is on die memory that, as it name suggests, can be used 
to perform message passing. The system I/F connects to the System Interface FPGA 
(SIF-FPGA) which works as a reconfigurable chipset. This chipset allows the 
connection to external devices through different channels, including (but not limited 
to) a 4× PCIe connection, Gigabit Ethernet and a SATA interface. The PCIe port can 
be connected to a Management Console PC (MCPC) and exposes the mesh protocol to 
it, so that it is possible to access all registers and memory locations (DDR3 as well as 
MPBs) from the PC. This provides powerful debugging capabilities to the developer. 
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Fig. 1. SCC Architecture Overview 

2.2   SCC Memory Architecture 

SCC has access to a maximum of 64 GB external DDR3 memory through four on-die 
memory controllers, each addressing up to 16GB of external memory. This results in 
a 34 bit global address space for the memory controllers while each of the cores only 
has a 32 bit physical address space. In order to address all available memory, a new 
address translation layer has been introduced: the Look Up Tables (LUTs). There is 
one LUT per core, each with 256 entries.  

The LUTs allow mapping 16MB chunks of the core’s address space (physical 
address) to any SCC system address. System addresses can be memory locations on 
the DDR3 memory as well as memory mapped registers in the tiles themselves. 
Memory mapped registers are also used to modify the state of each core (e.g. for 
resets and IRQs) which give developers great flexibility to influence system behavior. 
It is possible for each core to modify the registers of any other core (including its 
own), in order to modify voltages and frequencies or to map the SCC system memory 
to their liking by modifying the LUTs themselves. The latter possibility opens the 
door to dynamic mappings of the DDR3 memory. This flexibility makes SCC an 
interesting research vehicle for distributed shared memory applications. Applications 
that are running on the cores can simply map selected windows of the shared memory 
to their physical address space. This method is also used by the shared memory 
implementation that is discussed in section 3.2. LUT consistency is the responsibility 
of the programmer. 

2.3   Hardware Support for Message Passing 

Each tile contains 16KB (8KB per core) of on die SRAM memory that is dedicated to 
message passing and is called the Message Passing Buffer (MPB). As each MPB can 
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also be addressed via the LUT address translation, each core has access to all 24 
MPBs. Messages passed through the MPBs see a large performance improvement 
over messages sent through DDR3. The latency to the MPBs is 15 times lower when 
compared to DDR3 [4]. 

When cores access the MPB, locality matters latency wise. As the P54C core has 
an in-order architecture, it means that memory read transactions are blocking while 
write access is not because of the superscalar implementation. So programming 
models should make use of local read and remote write to transfer messages from one 
core to another. 

3   RCKMPI Architecture 

The RCKMPI library consists of the addition of SCC specific channels to MPICH2 
[6]. There are three new channels: one MPB based, one shared memory based and one 
that operates with both types of memory to handle MPI traffic. The general 
architecture of MPICH2 [5] and its CH3 device are left intact. All other channels were 
removed, due to incompatibilities with the SCC. The only exception is the TCP/IP 
sockets channel, since it works flawlessly with the rckmb network driver. 

In this section, the general design of the channels, the shared memory strategy 
developed for message passing and the multiple buffer type operation present in one 
of the channels, are presented.  

3.1   RCKMPI Channels Design 

All new channels in RCKMPI share the same core design: exclusive write address 
ranges per remote process (receive buffers) and a progress engine based on busy 
polling. The latter is a design characteristic that is shared with other channel 
implementations in the MPICH2 library (e.g. Nemesis [5]). The address ranges are 
called Exclusive Write Sections (EWS) in the library, and only the owner remote 
process is allowed to write in them.  

The use of EWSs is the main characteristic of the RCKMPI channel 
implementations. This approach allows for writes to happen concurrently without a 
global blocking mechanism, since the consistency of a buffer depends only on the 
sender and receiver process pair. The EWSs can be of MPB or Shared Memory type, 
and a combination of both is possible. 

 

Fig. 2. Exclusive Write Section containing payload and metadata 

To ensure consistency, a channel needs to control message sequence, multiple 
message packets, message size, etc. This requirement is enforced by the 
communication protocol, which is based on polling of metadata contained in the 
receive buffers. The polling is done in round robin fashion.  
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As per MPICH2’s CH3 device design, send operations can be done entirely in a 
send function, if the channel can handle the full transfer immediately after the call. 
Otherwise, a send request is queued to be handled by the progress engine later. 
Message reception is done exclusively by the progress engine (i.e. there are no receive 
operations in the channels). 

3.2   Shared Memory Communication 

As mentioned in section 2, the SCC lacks any form of cache coherency. There are no 
DMA controllers available, so data movement has to be done by the cores. This 
means that zero copy memory transfers and overlapping of memory movement and 
computation are not possible. Fortunately, due to the existence of the LUTs, and the 
possibility that each core has to modify them, single copy transfers are possible. 

RCKMPI is designed to work with SCC Linux. In this mode of operation, one 
Linux image per SCC core is loaded at initialization. Shared memory was previously 
available by means of 4 predefined LUT entries (64MB total). This shared memory is 
used by existing tools and is relatively small and fragmented. To achieve more 
flexibility and a large (not fragmented) shared memory pool, extra functionality was 
developed in the form of a Linux kernel patch and a user space library. 

The Linux kernel patch allows the cores to allocate and pin contiguous chunks of 
16MB of private RAM (16MB aligned, therefore corresponding to LUT entries). The 
location of the first LUT and the total number of chunks per core are then written to a 
predetermined location in the fixed shared memory area. 

The library reads the first LUT per SCC core, and the total number of pages each 
core provides. With this information, it builds a page list and provides a memcpy like 
interface. The library modifies a single LUT entry at the local core, allowing it to 
have a 16MB memory window to the desired location. The corresponding 16MBs of 
that LUT entry are mapped into the address space of the MPI process. 

With this functionality, when an MPI process wants to send a message through 
DDR3, it copies the contents to the remote shared memory EWS, and then signals the 
remote core. The remote core then handles the MPICH2 packet in place, and when 
done, signals the availability of the buffer for the next message. 

The default size for the shared memory areas is 16MBs per core (for a total of 
768MB visible to all cores). This can be adjusted to 80MBs per core (3.84GB total). 
The library will detect the number of pages at initialization, and adjust the size of the 
DDR3 EWSs accordingly (from 341KB to 1.66MB in the 48 process case). 

3.3   Multiple Buffer Type Operation 

While low overhead communication was already achieved with the use of the 
message passing buffer by RCKMPI, extra efforts were made to exploit the flexibility 
of the SCC memory organization. The MPB size of 8KB per core (which is divided in 
EWSs of equal size) results in the necessity to split and rebuild, relatively small, 
MPICH2 packets when they do not fit in a target receive buffer.  

In spite of the lower latency and higher bandwidth, depending of the message size, 
the protocol overhead of using the MPB can make operations longer than using the 
larger receive buffers located in shared memory. This means that for RCKMPI, the 
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decision of how to send a packet needs to be done at runtime, since it is not always 
clear which medium is faster. Fig. 3 shows a concrete scenario where this happens, 
with core clocks set at 533MHz. 

 

Fig. 3. Transmission time for 8KB MPICH2 packets (48 processes, 160 byte MPB EWSs) 

Switching from MPB to DDR3 based messaging is done strictly based on pending 
bytes to send of in transit MPICH2 packets. The byte value where the switch is done 
is set statically at MPI job startup, and depends on the MPI job size (i.e. number of 
processes) and the size of the level 2 cache. The number of processes correlates 
directly to the size of the EWSs (from 8KB for 2 processes, to 160 bytes for 48 
processes). The time to transfer a message is deterministic and depends on the number 
of round trips the protocol needs to complete the packet transfer. Taking into account 
the size of the L2 cache is based on the assumption that communication with each 
additional remote process increases the probability of a cache miss when the sender 
starts communication. Strategies such as this one, that depend on a single computation 
at startup, are effective on the SCC due to the limited performance of the P54C cores 
in relation to the bandwidth available on the on chip mesh and the DDR3 memory 
(i.e. the architecture is compute bound). Other strategies were evaluated as part of 
exploratory research, which proved detrimental to overall performance due to their 
added computational overhead. For the specific 48 process case, the switch to DDR3 
is done at 5.6KB (the effectiveness of this value can be observed in the next section). 

4   Performance Results 

To explore the performance characteristics of RCKMPI, tests with the three different 
channels are done: MPB, shared memory and dual buffer type operation. Benchmarks 
are done on a Rocky Lake SCC system running at 800MHz for the cores, 800MHz for 
the routers and 800MHz for the DDR3 RAM. An experimental 2.6.38.2 SCC Linux 
image is loaded in each core. RCKMPI was configured with the MPD process 
manager and all optimizations enabled. The GCC compiler version 4.5.2 was used to 
compile the library, the applications and the Linux kernel. All benchmarks are run 
with 48 processes and specified settings, unless stated. 

The following figure illustrates the effectiveness of the switching criteria for a 
simple case of ping-pong with MPI_Send and MPI_Recv. The operations are run 
1000 times per each process pair (47 pairs in this case) and then averaged. The results 
show that for these point to point operations, the switch is done optimally. This is also 
the case for MPI_Sendrecv and other point to point operations, as well as for one 
sided communication, with MPI jobs from 2 to 48 processes.  
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Fig. 4. Roundtrip latency for RCKMPI channels (48 process case) 

The collective operations on RCKMPI are not SCC optimized. They are the default 
algorithms found in the 1.2.1p1 release of MPICH2, which rely on the non-blocking 
point to point functionality provided by the channel implementations. MPICH2 uses 
several algorithms for each collective operation [7,8]. These are selected based on 
MPI job size and the particular buffer size. No attempt was made to optimize the 
selection criteria for the SCC. A short description of the algorithms and how they are 
selected is found in the MPICH2 source code, at the beginning of each 
implementation file under src/mpi/coll/. 

 

Fig. 5. MPI_Alltoall (left) and MPI_Allgather (right) performance for 256KB buffers 
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Figure 5 shows the results for MPI_Allgather and MPI_Alltoall with 256KB 
buffers, when going from 2 to 4 processes. Similarly to point to point operations, for 
smaller buffers, both the MPB and MPB + DDR3 channels perform nearly identical, 
while the DDR3 only channel is significantly slower. In general for all collective 
operations, as message sizes and process counts are increased, the MPB only channel 
falls behind both the DDR3 only and DDR3 + MPB channels. In the 256KB case, 
MPICH2 selects a ring based algorithm with wrap-around for MPI_Allgather, and a 
pair-wise exchange algorithm for MPI_Alltoall. 

Barrier operations involve minimal size transfers when compared to other 
collectives, and benefit from the lower latency of the MPB [4]. The default 
implementation of MPI_Barrier uses a dissemination algorithm [9]. In figure 6, results 
for MPI_Barrier operations are shown for different MPI process counts. 

 

Fig. 6. MPI_Barrier scaling with the number of participating processes 

 

Fig. 7. NAS 3.3 benchmarks: FT size W, A and B (left), BT and LU size A (right) 

Comparisons with the RCCE and derived solutions are limited to applications that 
have been ported to these tools. The NAS 3.3[10] BT and LU benchmarks have been 
ported in the case of problem size A. Figure 8 presents 2 bar charts. On the right, it is 
shown how the C ports running on RCCE compare to the unmodified FORTRAN 
originals from NASA. On the left, a performance comparison of the MPB and the 
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MPB + DDR3 channels is presented, when running the FT (1D fast Fourier 
transform) benchmark. In general for the NAS suite (BT, LU, CG, FT, MG and SP 
were tested), the MPB only operation slightly outperforms the MPB+DDR3 scheme 
until problems of size B or greater are run. Further examination of the source code for 
these benchmarks, shows that larger message sizes are used when the problem size is 
increased. For these benchmarks, the stable Linux 2.6.16 image was used, as well as a 
core clock of 533MHz, to ensure compatibility and stability with the latest RCCE 
snapshot. The BT benchmarks are run with 36 processes, while the FT and LU are run 
with 32, since these are the largest possible below 48. 

5   Concluding Remarks 

RCKMPI reached comparable performance, with respect to the specialized but non 
standard message passing solutions available for the SCC, through the introduction of 
an SCC specific MPICH2 channel. This channel did away with the TCP/IP overhead 
introduced by the use of a network device, and took advantage of the higher 
bandwidth and lower latency of the on die buffer of the architecture. Efforts were 
made to further exploit the possibilities found in the SCC’s unique architecture. These 
further improvements provided significantly lower latencies for larger MPI messages. 

The combination of on die buffers and shared memory present in the SCC, results 
in unique opportunities for message passing algorithms. It is safe to assume that on 
die buffers will be relatively small in relationship to last level caches and especially 
off chip RAM, in future architectures. The superiority in latency and bandwidth of on 
die buffers provide excellent message passing performance for small messages. After 
certain message sizes, shared memory strategies can prove more effective, due to the 
reduced protocol overhead and higher probabilities of data not being present in the 
caches. For optimal performance in MPI applications, effective use of these resources 
is necessary, and involves run time decisions depending on the kind of operations and 
the amount of bytes to transfer. In this work, we showed that a strategy based on 
remaining bytes to transfer of in transit packets was effective for the SCC’s 
architecture. Performance results show the benefit of on chip and addressable SRAM, 
in combination with traditional external memory, particularly for improving message 
passing performance. 
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1 School of Aeronautics, Universidad Politécnica de Madrid, 280040 Madrid, Spain
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Abstract. A hybrid OpenMP-MPI code has been developed and opti-
mized for Blue Gene/P in order to perform a direct numerical simulation
of a zero-pressure-gradient turbulent boundary layer at high Reynolds
numbers. OpenMP is becoming the standard application programming
interface for shared memory platforms, offering simplicity and portabil-
ity. For architectures with limiting memory as Blue Gene/P, the use of
OpenMP is especially well suited. MPI communications overhead are
also improved due to the decreasing number of processes involved. Two
boundary layers are simultaneously run due to physical considerations,
represented by two different MPI groups. Different node mappings lay-
outs have been investigated reducing communication times in a factor of
two. The present hybrid code shows approximately linear weak scaling
up to 32k cores.

Keywords: OpenMP, MPI, data locality, blocking, node topology.

1 Introduction

Modern parallel programming paradigms are now often used in clusters, combin-
ing Message Passing Interface (MPI) paradigm [2] for across the nodes with Open
Multi-Processing (OpenMP) [1] within the nodes, known as hybrid OpenMP-
MPI. The use of a hybrid methodology has some important advantages with
respect to the traditional use of MPI: it is easy to implement through the use of
directives, has low latency, high bandwidth, fine granularity, implicit communi-
cations versus explicit communications at node level, etc.

Previous TBL codes by our group were developed using MPI [6]. This choice
was justified because of the computer architecture and the relatively low number
of cores used. Nevertheless, using tens of thousands of cores with only MPI
may degrade the code scalability and thus, its performance. This is one of the
reasons to modify the original TBL code to a new hybrid OpenMP-MPI. Despite
that, the main reason to port the code is the available memory per core. In
order to simulate smooth Reθ ≈ 6650 and rough Reθ ≈ 4200 TBLs, allocation
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time in Intrepid at Argonne National Laboratory (USA) and Jugene at Jülich
Forschungszentrum (Germany) have been granted through an INCITE award
and a PRACE project respectively. Both codes are similar, and, from now on,
we will just describe the smooth-wall one. The available memory per core is
in both cases 512 Mb, instead of 2 GB as is the case of Mare Nostrum (MN,
Barcelona). The previous Reθ ≈ 2000 TBL was run on MN facility under the
RES (Red Española de Supercomputación) project. With this available memory
and the current TBL problem size, the use of OpenMP has naturally arisen as
the simpler solution to overcome this issue. With the usage of OpenMP, some
of the extra communication overhead associated with the use of MPI within
the node is avoided as well. Nevertheless, other problems such as locality, false
sharing, data placement [4] can arise from its usage.

2 The Numerical Code

The boundary layer is simulated in a parallelepiped over a smooth wall, spatially
periodic spanwise, but with nonperiodic inflow and outflow in the streamwise di-
rection. The code uses a relatively classical fractional-step method [7,8] to solve
the incompressible Navier-Stokes equations expressed in primitive variables, us-
ing spectral expansions in the spanwise direction, and compact finite differences
in the other two. A three sub-step, semi-implicit low storage Runge-Kutta scheme
is used to evolve the equations in time.

For the problem here considered, both spectral methods and compact finite
differences are tightly coupled operations. Our code is constructed in such way
that only single data lines, along one of the coordinate directions, have to be
accessed globally. However, the three directions have to be treated in every sub-
step.

The code uses single precision in the I/O operations and communications and
double precision in the differentiation and interpolation operations where the
implicit part of the compact finite differences can cause loss of significance.

Compared to other highly scalable DNS/LES codes like FrontTier, Nek5000
or PHASTA, this code is specifically designed an tuned for a single purpose: to
solve a zero-pressure-gradient turbulent boundary layer over a flat plate.

2.1 Computational Setup

The simulation is split in two concatenated domains with different boundary
conditions as showed in figure 1. The planes πi and π′

i are given inflow boundary
conditions, and outflow boundary conditions are assigned to πe and π′

e. The
boundary conditions in πt and π′

t impose a zero pressure gradient on the domain.
Finally, the spanwise direction is considered periodic. The mission of the first
boundary layer (BL1) is to provide accurate inflow boundary conditions to the
second one (BL2). The inflow of BL1 is obtained from its own plane π1 that is
rescaled using a method based on the one proposed by Lund, Wu and Squires[5].
The physical length of BL1 is chosen to be long enough to let the large scales
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recover from an unrealistic initial condition and, once this asymptotic state has
been reached, the plane π2 is used to give BL2 its inflow boundary condition.
As a consequence, a small portion of the BL1 simulation is thrown away.

Given that the goal ofBL1 is to allow the large scales to reach their asymptotic
state and, given that the smaller scales take much shorter to reach a similar
condition, BL1 is run at a coarser resolution than BL2. This setup permits
computing a single boundary layer with significantly less computational work.

Fig. 1. Scheme of the computational domain and boundary conditions

Each of these two boundary layers is mapped to an MPI group. The first group
runs the auxiliary simulation at coarse resolution and it consists of 512 nodes
while the second MPI group comprises 7680 nodes and runs the main one in high
resolution. The first MPI group is only about 8.5% of the total computational
cost. This information is shown in table 1.

Table 1. Computational setup for the auxiliary BL1 and main BL2 boundary layers:
Nt is the total number of degree of freedoms in giga points; Time/DoF is the amount
of total CPU (core) time spent to compute a degree of freedom for every step

Case Reθ Nodes Nx × Ny × Nz Nt (Gp) Time/DoF

BL1 1100-3000 512 3585 × 315 × 2560 2.89 13.98 μs
BL2 2800-6650 7680 15361 × 535 × 4096 33.66 18.01 μs

MPI groups communicate each other only twice per sub-step by means of the
MPI COMM WORLD communicator, while communications within each group
occur via a local communicator defined at the beginning of the program. The
first global operation is a SEND/RECEIVE of the π2 plane, from BL1 to BL2.
The second global operation is an MPI ALL REDUCE to set the time step for
the temporal Runge-Kutta integrator, thus synchronizing both groups. The work
done by each group must be balanced since each MPI group must wait for the
other one in global operations, otherwise one group will slow down the second
one that must remain idle during that time. The worst case scenario is when the
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auxiliary simulation slows down the main one. The time employed in communi-
cations for the auxiliary simulation has been improved using a customized node
topology described in section 3.

2.2 Domain Decomposition

The parallelization distributes the simulation space over the different nodes, and
to avoid global operations across nodes, it does a global transpose of the whole
flow field twice every time sub-step (back and forth). The domain decomposition
is sketched in figure 3 and can be classified as a plane to pencil domain decompo-
sition. This strategy is motivated by the limited amount of memory in the Blue
Gene/P nodes. Only transverse planes ΠZY can fit in a node, and longitudinal
planes ΠXY must be decomposed in X lines, i.e, pencils PX . According with
the values presented in table 1, transverse planes are 25 Mb, longitudinal planes
94 Mb and pencils 120 Kbytes. Sixteen double precision buffers are need, and
3ΠZY planes per node are used in the main simulation. Hence, the memory node
occupation is close to 60%.

Fig. 2. Partition of the computational domain for OpenMP-MPI for N nodes and four
threads. Top, ΠZY planes; bottom, PX pencil.

Each node contains Nx/N cross-flow planes, where Nx is the number of grid
points in streamwise direction and N the total number of nodes. Each node is an
MPI process, and OpenMP is applied within the node, splitting the sub-domain
in a number of pieces equal to the available number of threads, four in Blue
Gene/P.

The variables are allocated in memory as ψ(Kz, Ny, Nx/N ), where Kz is the
number of modes in spanwise direction (2/3Nz) and Ny the number of Y grid
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points. Each thread works in the same memory region of the shared variables
using a first-touch data placement policy [3], maximizing data locality and di-
minishing cache missed [4], thus improving performance. The most common
configuration that a team of threads can find is presented in figure 3, in which
each thread works over a portion of Ny with static scheduling. This scheduling
is defined manually through thread private indexes, which maximizes memory
reuse. In that way, each thread always works in the same portion of the array.
Nevertheless, when loop dependencies in Y direction are found (i.e, LU decom-
position) threads work over portions of Kz. For such loops, blocking techniques
are used, putting the innermost loop index to the outermost part, thus maxi-
mizing data locality since strips of the arrays fit into the cache at the same time
that threads can efficiently share the work load. The block size has been tuned
for Blue Gene/P architecture comparing the performance of several runs.

In this configuration, operations in Y and Z are then performed. For operations
in X direction global transposes are used to change variables memory layout to
ψ(Nx,KzNy/N ). Now, each node contains a number of KzNy/N pencils. Each
OpenMP thread works over a packet of (KzNy/N )/Nthread, where Nthread is the
total number of threads. As in the previous configuration, workload is statically
distributed among threads using thread private indexes.

2.3 Global Transposes and Collective Communications

Roughly 45% of the overall execution time is spent transposing the variables
from planes to pencils and back, therefore it was mandatory to optimize the
global transpose as much as possible. Preliminary tests revealed that the most
suitable communication strategy was to use the alltoallv routine and the BG/P
torus network, twice as fast than our previous custom transpose routine based
on point to point communication over the same network.

The global transpose is split into three sub-steps. The first one changes the
alignment of the buffer containing a variable and casts the data from double to
single precision to reduce the amount of data to be communicated. If more than
one ΠZY plane is stored in every node then, the buffer comprises the portion of
contiguous data belonging to that node in order to keep message sizes as big as
possible.

The second sub-step is a call to the MPI ALLTOALLV routine. It was decided
not to use MPI derived types because the transpose operations that change the
data alignment and the double to float casting are parallelized with OpenMP.

The third and last sub-step transpose the resulting buffer aligning the data
PX -wise. This last transpose has been optimized using a blocking strategy be-
cause the array to be transposed has many times more rows than columns.
The whole array is split into smaller and squarer arrays that are transposed
separately. The aspect ratio of those smaller arrays is optimized for cache per-
formance using collected data from a series of tests. Finally the data is cast to
double precision again.

The procedure to transpose from PX pencils to ΠZY planes is similar and is
split in three sub-steps too.
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3 Blue Gene/P Mapping

Mapping virtual processes onto physical processors is one of the essential issues
in parallel computing, being a field of intense study in the last decade. Proper
mapping is critical to achieve sustainable and scalable performance in modern
supercomputing systems.

Blue Gene/P has a torus network topology, except for allocations smaller than
512 nodes, in which the torus degenerates to a mesh. Therefore, each node is
connected to six nodes by a direct link. The location of a node within the torus
can be described by three coordinates [X,Y, Z].

Fig. 3. Predefined (left) and custom (right) node mapping for a 8192 node partition in a
[8, 32, 32] topology. The predefined mapping assigns to BL1 the nodes in a [8, 32, 2] sub-
domain. Custom mapping assigns the nodes to a [8, 8, 8] sub-domain. BL2 is mapped
to the rest of the domain till complete the partition.

Different physical layouts of MPI tasks onto physical processors are predefined
depending of the number of nodes to be allocated. The predefined mapping for
a 512 node partition is a [8, 8, 8] topology, while for 8192 nodes it is [8, 32, 32] as
it is shown in figure 3. Users can specify their desired node topology by using
the environment variable BG MAPPING and specifying the topology in a text
file.

Changing the node topology completely changes the graph embedding prob-
lem and the path in which the MPI message travels. This can increase or decrease
the number of hops needed to connect one node to another, and as a result, alter
the communication time to send a message. Fine tuning for specific problems can
considerably improve the time spent in communications. Table 2 shows different
mappings that have been evaluated for our specific problem size. The custom
mapping reduces the communication time for BL1 by a factor of two. The work
load for BL1 is projected using this new communication time while the load for
BL2 is fixed. Balance is achieved minimising the time in which BL1 or BL2 are
idle in the global communications.

The choice of a user-defined mapping is motivated due to the particular
distribution of nodes and MPI groups. The first boundary layer BL1 runs in
512 MPI processes mapped onto the first 512 nodes, while BL2 runs in 7680
MPI processes mapped on the nodes ranging form 513 to 8192. Note that at
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Table 2. Time spent in communication during global transposes. Different node topolo-
gies are presented for 10 time steps and for each boundary layer. Times are given in
seconds.

Topology Nodes Comm BL1 Comm BL2

Predefined [8, 8, 8] 512 27.77 —
Custom [32, 32, 8] 8192 79.59 86.09
Predefined [32, 32, 8] 8192 160.22 85.44

the moment the communicator is split such that CommBL1 ∪ CommBL2 =
MPI COMM WORLD, neither CommBL1 nor CommBL2 can be on a 3D
torus network. The communications will drop down to a 2D mesh with
sub-optimal performance. Therefore, the optimum topology for our particular
problem would be the one in which the number of hops for each MPI group
is minimum, since collective communications occur locally for each group. For
a single 512 node partitions the optimum is the use of a [8, 8, 8] topology, in
which messages travel within a single communication switch. We have found the
optimum mapping for BL1 to be a [8, 8, 8] sub-domain within the predefined
[8, 32, 32], as shown in the right side of figure 3. BL2 is mapped to the remaining
nodes using the predefined topology and no other mappings have been further
investigated. Although a [8, 8, 8] topology is used for BL1 by analogy with the
single 512 node partition, communication time is nevertheless greater. This is
due to the sub-optimal performance of using a 2D mesh instead of a 3D torus
network, as already discussed. Ultimately, the reason can be found in the new
hardware connection, since the 512 nodes and 8192 nodes of the 3-Dimensional
torus network are physically connected in a different way. This leads to the in-
crease in the number of hops for BL1 collective communications, since messages
cannot travel within a single communication switch anymore.

The methodology to optimize communications for another size partitions
would be similar to the one just described: mapping virtual processes to nodes
that are physically as close as possible so the number of hops is minimized.

4 Scalability Results in Blue Gene/P

4.1 OpenMP Scalability

It is important to state that the reason to mix concurrency and parallelism was
not driven by the need for more performance but because the small memory
capacity of the Blue Gene/P node, which does not allow a physically-significant
block of data to be allocated to each core.

Some tests were run in a 512 node configuration after porting the code to
OpenMP. The results are shown in table 3. These samples suggest that almost
no penalty is paid when the computations are parallelized with OpenMP. In
addition, the problem size per node and the MPI message size can be increased
by a factor of four while using all the node’s resources.
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Table 3. OpenMP scalability test performed on 512 nodes. Two efficiencies (η) given:
one based on the computation time (Comp. T ) and one based on the total time
(Total T.). Times are given in seconds.

Nthreads Comp. T η Total T. η

1 60.820 1 70.528 1
2 30.895 0.984 38.951 0.905
4 16.470 0.923 24.438 0.721

4.2 MPI Scalability

Extensive data about MPI scalability was collected during the test runs in a
BG/P system. The most relevant cases are listed in the table 4.

Table 4. Data collected from the profiled test cases. Time/DoF is the amount of total
CPU (core) time spent to compute a degree of freedom for every step; Nt is the size in
GiB of a buffer of size Nx ×Ny ×Nz; Comm, Transp and Comp are the percentage of
the communication, transpose and computation time respect to the total.

Nodes Nx × Ny × Nz Nt Time/DoF Comm. Transp. Comp. Symbol

512 1297 × 331 × 768 0.33 10.6 μs 17.9% 8.29% 73.8% �
1024 3457 × 646 × 1536 3.43 17.6 μs 44.7% 7.52% 47.8% �
2048 6145 × 646 × 1536 6.10 17.4 μs 46.0% 5.31% 48.8% �
4096 8193 × 711 × 1536 8.94 17.6 μs 44.6% 5.23% 53.2% �
8192 8193 × 711 × 2048 11.93 19.4 μs 37.4% 8.30% 57.6% �
8192 16385 × 801 × 4608 60.47 19.3 μs 39.7% 8.41% 51.9% �

All the simulations run show a linear weak scaling up to 8192 nodes (32768
cores). The same code is expected to scale further without modifications, al-
though at this time, higher node partitions have been not tested.

Figure 4(b) shows that the communications time is typically 40% of the total
run time, and that both computation and communications are scaling as ex-
pected. The global transpose implementation shows an excellent scalability in
all the test cases as shown in figure 4(a). It is important to mention that in
the BG/P supercomputer architecture, the linear scaling is kept even when the
estimated message size is about 1 kB in size. All our previous implementations
of the global transpose broke the scalability near the 3 kB estimated message
size limit.

5 Parallel I/O

Intermediate stages of the simulation in the form of flow fields (velocities and
pressure) are an important result and are saved even more often than what
checkpointing would require. Another mandatory feature to maintain the scala-
bility with a high node count is the support for parallel collective I/O operations



226 J. Sillero et al.

Fig. 4. Latency analysis (a) and scalability of the total and communication time for
different test cases (b). Solid lines are linear regressions computed before taking loga-
rithms of both axis.

when a parallel file system is available. A handful of alternatives have been
tested, mainly upon GPFS, like raw posix calls enforcing the file system block
size, sionlib (developed at JFZ) and parallel hdf5.

Hdf5 is a more convenient choice for storing and distributing scientific data
than the alternatives tested because, despite having better performance, they
require to translate the resulting files to a more useful format. Unfortunately
sufficient performance could not be acheived without tuning the I/O process.
Hdf5 performance depends on the availability of a cache in the file system. The
observed behaviour in the BG/P systems was that writing was one, and some-
times two, orders of magnitude slower than reading because in the GPFS used
the write cache was turned off. To overcome this issue, when the MPI I/O driver
for hdf5 is used, the sieve buffer size parameter of hdf5 can be set to the file sys-
tem block size. As a result, the write bandwidth for 8192 nodes was increased up
to 16GiB/s, similar to the read bandwidth 22GiB/s and closer to the estimated
maximum.

6 Conclusions

A hybrid OpenMP-MPI code has been developed from its original MPI version to
perform direct numerical simulations of smooth and rough turbulent boundary
layers at high Reynolds numbers. The code has been tested in a Blue Gene/P
computer using up to 8192 nodes for MPI processes, and four threads per process
for OpenMP, showing good scalability for both MPI and OpenMP. Two different
domain decompositions are used to perform global operations in each of the 3-
dimensional directions, employing collective communications to perform global
transposes. Customized mappings of processes onto physical processors has been
used for each of the two MPI groups, representing the auxiliary low resolution
and the main high resolution simulation, speeding communications up by a factor
of two.
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Abstract. We investigate how to use coarrays in Fortran (CAF) for
parallelizing a flow solver and the capabilities of current compilers with
coarray support. Usability and performance of CAF in mesh-based ap-
plications is examined and compared to traditional MPI strategies. We
analyze the influence of the memory layout, the usage of communication
buffers against direct access to the data used in the computation and dif-
ferent methods of the communication itself. Our objective is to provide
insights on how common communication patterns have to be formulated
when using coarrays.

Keywords: PGAS, Coarray Fortran, MPI, Performance Comparison.

1 Introduction

Attempts to exploit parallelism in computing devices automatically have always
been made, and it was successfully done by compilers in a restricted form such
as vector operations. For more general parallelization concepts with multiple
instructions on multiple data (MIMD), the automation was less successful and
programmers had to support the compiler by directives such as in OpenMP.
The Message Passing Interface (MPI) offers a rich set of functionality for MIMD
applications on distributed systems and high-level parallelization is supplied by
APIs from libraries. The parallelization however, has to be elaborated in detail
by the programmer. Recently, an increasing effort in language-inherent paral-
lelism is made to leave parallel implementation details to the compiler. A con-
cept developed in detail is the partitioned global address space (PGAS), which
was brought into the Fortran 2008 standard with the notion of coarrays. Paral-
lel features are turned into intrinsic language properties and allow a high-level
formulation of parallelism in the language itself [10]. Coarrays minimally extend
Fortran to allow the creation of parallel programs with minor modifications to
the sequential code. The optimistic goal is to obtain a language which inherits
parallelism and allows the compiler to concurrently consider serial aspects and
communication for code optimization.

In CAF, shared data objects are indicated by an additional index in square
brackets, for which the remote location in terms of the process number of the
shared variable is defined. Contrary to MPI, there are no collective operations
defined in the current standard. These have been shown to constitute a large part
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of nowadays’ total communication on supercomputers [9]. thus posing a severe
limitation to a pure coarray parallelization, which is a major point of criticism
by Mellor-Crummey et al. [8]. Only few publications actually give advice on how
to use coarrays in order to obtain a fast and scalable parallel code. Ashby & Reid
[1] ported an MPI flow solver to coarrays and Barrett [2] uses a finite difference
scheme to assess the performance of several coarray implementations.

The goal of this paper is to compare several parallelization implementations
with coarrays and MPI. We compare these approaches in terms of performance,
flexibility and ease of programming. Speedup studies on two machines with a
different network interface are performed. The work concentrates on the imple-
mentation provided by Cray.

2 Numerical Method

We use a lattice Boltzmann method (LBM) fluid solver as a testbed. This explicit
numerical scheme uses direct neighbor stencils and a homogeneous, Cartesian
grid. The numerical algorithm consists of streaming and collision performed at
each time step (Listing 1.1). The cell-local collision mimics particle interactions
and streaming represents the free motion of particles, consisting of pure memory
copy operations from nearest neighbor cells. Neighbors are directly accessed on a
cubic grid, which is subdivided into rectangular sub-blocks for parallel execution.

do k=1,nz; do j=1,ny; do i=1,nx
ftmp(:)=fIn(:,i-cx(:),j-cy(:),k-cz(:)) ! advection from offsets cx, cy, cz
... ! Double buffering: Read values from fIn, work on ftmp and write to fOut
fOut(:) = ftmp(:) - (1-omega)*(ftmp(:) -feq(:)) ! collide

enddo; enddo; enddo

Listing 1.1. Serial stream collide routine

2.1 Alignment in Memory

The Cartesian grid structure naturally maps to a four-dimensional array, where
the indices {i, j, k} represent the fluid cells’ spatial coordinates. Each cell holds
nnod=19 density values. It is represented by the index l and its position in the
array can be chosen. Communication then involves strided data access, where
the strides depend on the direction and memory layout. There are two main
arrays fIn and fOut which by turns hold the state of the current time step.
These arrays are of the size {nnod, nx, ny, nz}, depending on the position of l.
In Fortran the first index is aligned successively in memory yielding a stride one
access. With the density-first lijk, the smallest data chunk for communication
has at least nnod consecutive memory entries. The smallest memory chunks of
nnod entries for communication occur in the x-direction. Communication in y-
direction involves chunks of nnod ·nx and in z-direction nnod ·nx ·ny. When the
density is saved last ijkl, the x-direction again involves the smallest data chunks,
but only of a single memory entry with strides of nstride = nx ·ny ·nz.
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2.2 Traditional Parallelization Approach

A time-dependent mesh-based flow solver is usually parallelized following a
SPMD (single program multiple data) approach. All p processes execute the
same program but work on different data. In LBM, each fluid cell induces the
same computing effort per time step. For an ideal load-balancing, the work is
equally distributed among the processes and a simple domain decomposition can
be performed, splitting the regular Cartesian mesh into p equal sub-domains. An
update of a given cell requires the information from the neighboring cells and
itself from the previous iteration. At the border between sub-domains it is then
necessary to exchange data in each iteration. A common approach is to use halo
cells, which are not updated by the scheme itself but provide valid data from
the remote processes. This allows the actual update procedure to act just like in
the serial algorithm. With MPI, data is exchanged before the update of the local
cells at each time step, usually with a non-blocking point-to-point exchange.

2.3 Strategy Following the Coarray Concept

Using coarrays, data can be directly accessed in the neighbor’s memory without
using halos. Coarray data objects must have the same size and shape on each pro-
cess. The cells on remote images can then be accessed from within the algorithm
like local ones, but with the additional process address (nbp) appended. Syn-
chronization is required between time steps to ensure data consistency across all
processes, but no further communication statements are necessary. We present
different approaches to coarray implementations.

In the Naive Coarray Approach every streaming operation, i.e. copy from
neighbor to the local cell, is done by a coarray access, even for values which
are found locally. This requires either the calculation of the address for the
requested value, or a lookup table for this information. Both approaches result
in additional run time costs and the calculation of the neighbor process number
and the position there obscure the kernel code.

do k=1,nz; do j=1,ny; do i=1,nx
! streaming step (get values from neighbors)
do l=1,nnod ! loop over densities in each cell
xpos = mod(crd(1)*bnd(1)+i-cx(l,1)-1,bnd(1))+1
xp(1)= (crd(1)*bnd(1)+i-cx(l,1)-1)/bnd(1)+1
... ! analoguous for the other directions
if(xp(1) .lt. 1) then ... ! correct physical boundaries
nbp=image_index( caf_cart_comm,xp(1:3) ) ! get image num
ftmp( l)=fIn( l,xpos,ypos,zpos )[nbp] ! coarray get

enddo
... ! collision

enddo; enddo; enddo

Listing 1.2. Naive streaming step with coarrays

The copy itself is easy to implement, but the logic for getting the remote data
address requires quite some effort (Listing 1.2). Significant overhead is generated
by the coarray access itself and repetitive address calculations. If the position of
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each neighbor is determined in advance and saved, memory demand and, more
important, memory access increases. As the LBM is a memory bandwidth-bound
algorithm, this puts even more pressure on the memory interface.

With the Segmented Coarray Approach, the inner nodes of each partition are
treated as in the serial version. Coarray access is only used where necessary,
i.e. on the interface cells. Separate subroutines are defined for the coarray and
non-coarray streaming access, which are called according to the current position
in the fluid domain (Listing 1.3). With this approach, there are two kernels, one
with additional coarray access as above and additionally the loop for determining
the kernel. This raises the required lines of code again.

call stream_collide_caf(fOut,fIn,1,nx,1,ny,1,1)
do k=2,nz-1

call stream_collide_caf(fOut,fIn,1,nx,1,1,k,k)
do j=2,ny-1

call stream_collide_caf(fOut,fIn,1,1,j,j,k,k)
call stream_collide_sub(fOut,fIn,j,k)
call stream_collide_caf(fOut,fIn,nx,nx,j,j,k,k)

end do
call stream_collide_caf(fOut,fIn,1,nx,ny,ny,k,k)

end do
call stream_collide_caf(fOut,fIn,1,nx,1,ny,nz,nz)

Listing 1.3. Segmented stream collide with coarrays

3 Tested Communication Schemes

3.1 Data Structures

Message passing based parallelization requires data structures for collecting,
sending and receiving the data. MPI types or regular arrays can be used in MPI,
whereas with CAF, regular arrays or derived types with arrays can be employed.
With Regular Global Arrays and the same-size restriction for coarrays, separate
data objects for each neighbor buffer are required. This applies both for send
and receive, which increases implementation complexity. The usage of Derived
Types provides the programmer with flexibility, as the arrays inside the coarray
derived types do not have to be of the same size. Before each communication or
alternatively at every array (de)allocation, information about the array size of
every globally accessible data object has to be made visible to all processes.

! Regular global arrays as coarrays
real,dimension(:,:,:,:)[:],allocatable :: caf_snd1,..
! Derived types
type caf_dt ! Coarray derived type with regular array

real,dimension(:,:,:,:),allocatable :: send
end type caf_dt
type(caf_dt) :: buffer[*] !< Coarrray definition
type reg_dt ! Regular derived type with coarray inside

real,dimension(:,:,:,:)[:],allocatable :: snd1,.. snd19
end type reg_dt
type(reg_dt) :: buffer !< Regular array definition

Listing 1.4. Derived type and regular global coarrays
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Table 1. Machine setup

CPU Rev Cores GHz L2(KB) L3(MB) Memory ASIC CCE MPI

XT5m Shanghai 23C2 4 2,4 512 6 16GB Seastar2 7.2.4 MPT 5.0.0
XE6 MagnyCours 6128 8 2,0 512 12 32GB Gemini 7.3.0 MPT 5.1.1

3.2 Buffered and Direct Communication

The usage of explicit buffers, i.e. using halos, requires separate send/receive
buffers with potentially different sizes. The communication is done in an explicit,
dedicated routine, and before its start, the required data is collected and placed
into the halo buffer, from where it is put back into the main array after the
communication. One-sided communication models allow direct remote memory
access to locations, which are not available to the local process, but where access
is routed through the network. This allows the construction of either explicit
message passing of buffers or access to remote data within the kernel itself, here
referred to as implicit access.

4 Experimental Results

We performed investigations on Cray XT and XE systems (see Table 1), as they
are among the few supporting PGAS both by hardware and compiler. These
architectures mainly differ in the application-specific integrated circuits (ASIC)
[4], which connect the processors to the system network and offloads communi-
cation functions from the processor. The Cray XT5m nodes use SeaStar ASICs,
which contain among other a direct memory access engine to move data on the
local memory, a router connecting with the system network and a remote access
memory engine [3]. The XE6 nodes are equipped with the Gemini ASIC [5],
which supports a global address space and is optimized for efficient one-sided
point-to-point communication with a high throughput for small messages. We
used the Cray Fortran compiler from the Cray Compiling Environment (CCE).
We first evaluate the single core performance for various domain sizes and mem-
ory layouts, from which we choose a suited method for parallel scaling. Coarray
and MPI are then compared on both machines. We perform a three-dimensional
domain decomposition, for p > 8 with an equal amount of subdivisions in all
three directions. For p≤8, the domain is split in z-direction only.

4.1 Influence of the Memory Layout in Serial and Parallel

The serial performance is measured with the physics-independent quantity mil-
lion lattice updates per second (MLUPs), as a function of the total fluid cells
ntot. Performance studies of the LBM by Donath [6] have revealed a signifi-
cant influence of memory layout and domain size. With density-first lijk, the
performance decreases with increasing domain size. In Fig. 1 (left), the cache
hierarchy is clearly visible in terms of different MLUPs levels, especially for lijk.
For density-later iljk,ijlk,ijkl, the performance is relatively constant with cache-
thrashing occurring for ijkl.
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Fig. 1. Impact of memory layout in serial (XT5m) and parallel (direct CAF)

The memory layout not only plays a large role for serial execution, but also
when data for communication is collected. Depending on data alignment in mem-
ory, the compiler has to collect data with varying strides resulting in a large time
discrepancy of communication in different directions.

In figure 1 on the right, all layouts scale linearly for a one-dimensional do-
main decomposition for p≤ 8 and a domain size of ntot = 2003. Invoking more
directions leads to a strong degradation of performance on the XT5m for the ijkl
layout, probably due to the heavily fragmented memory, that needs to be com-
municated. The smallest chunks in lijk remains 19, as all densities are needed
for communication and stored consecutively in memory. On the XE6 with the
new programming environment, this seems to be resolved.

4.2 Derived Type and Regular Coarray Buffers
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Fig. 2. Derived type coarrays

On the XT5m there is an obvious difference
between the two implementations. The reg-
ular array implementation scales in a nearly
linear fashion. The derived type version even
increases linearly in the run time when using
more processes inside a single node. When
using the network, it scales nearly linear for
p ≥ 16. This issue also seems to be resolved
on the new XE6 architecture. Within a sin-
gle node, there are virtually no differences between the two variants. However,
the derived type variant seems to scale a little worse beyond a single node.

4.3 MPI Compared to Coarray Communications

Here we compare various coarray schemes to regular non-blocking, buffered MPI
communication. We start with a typical explicit MPI scheme and work our way to
an implicit communication scheme with coarrays. The MPI and MPI-style CAF
schemes handle the communication in a separate routine. The implicit coarray
schemes perform the access to remote data during the streaming step. We use
the lijk memory layout, where all values of one cell are saved contiguously, which
results in a minimal data pack of 19 values. Strong and weak scaling experiments
are performed for the following communication schemes:
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1. Explicit MPI: buffered isend-irecv
2. Explicit CAF buffered: same as MPI but with coarray GET to fill buffers
3. Explicit CAF direct access: no buffers but direct remote data access
4. Implicit CAF segmented loops: coarray access on border nodes only
5. Implicit CAF naive: coarray access on all nodes

Strong scaling. A fluid domain with a total of 2003 grid cells is employed for
all process counts. In Fig. 3 the total execution time of the main loop is shown
as a function of the number of processes. Increasing the number of processes
decreases domain sizes per process, by which the execution time decreases. Ideal
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Fig. 3. Strong scaling comparison of MPI and CAF with lijk layout and ntot =2003

scaling is plotted for comparison. The MPI implementation is fastest and scales
close to ideal on both machines, but scaling scaling stalls for p > 2000. The
coarray implementations show, that there was a huge progress made from the
XT5m to the XE6. Implicit coarray access schemes shows a much slower serial
runtime. The naive coarray implementation is slower than explicit ones even by
a factor of 30, due to coarray accesses to local data, although it scales perfectly
on the XE6. On the XE6, for p>10000, all schemes tend to converge against the
naive implementation, which is expected, as this approach pretends all neighbors
to be remote, essentially resulting in 1 cell partitions. However this results in
a very low parallel efficiency with respect to the fastest serial implementation.
Due to an unexplainable loss of scaling in the MPI implementation beyond 2000
processes, coarrays mimicking the MPI communication pattern get even slightly
faster in this range.

Weak scaling. The increasingly high parallelism due to power and clock fre-
quency limitation [7] combined with limited memory resources lead to extremely
distributed systems. Small computational domains of n = 93 fluid cells, which
fit completely in cache are used to anticipate this trend in our analysis (Fig. 4).
With such domain sizes, latency effects prevail. The MPI parallelization scales
similar on both machines, and yields the best run time among the tested schemes.
Both explicit buffers in coarray scale nearly perfect for p>64. Whereas implicit
coarray addressing within the algorithm clearly looses in all respects.
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Fig. 4. Weak scaling in three directions with n=93 cells per process (latency area)

5 Conclusion

We presented different approaches on how to parallelize a fluid solver using
coarrays in Fortran. We compared the ease of programming and performance
to traditional parallelization schemes with MPI. The code complexity for simple
and slow CAF implementations is low, but quickly increases with the constraint
of a high performance. We showed that the achievable performance of applica-
tions using coarrays depends on the definition of data structures. The analysis
indicates, that it might get beneficial to use coarrays for very large numbers of
processes, however on the systems available today, MPI communication provides
highest performance and needs to be mimicked in coarray implementations.
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Abstract. Future exascale systems are expected to have significantly
reduced network bandwidth relative to computational performance than
current systems. Clearly, this will impact bandwidth-intensive applica-
tions, so it is important to gain insight into the magnitude of the negative
impact on performance and scalability to help identify mitigation strate-
gies. In this paper, we show how current systems can be configured to
emulate the expected imbalance of future systems. We demonstrate this
approach by reducing the network injection bandwidth performance of a
160-node, 1920-core Cray XT5 system and analyze the performance and
scalability of a suite of MPI benchmarks and applications.

Keywords: bandwidth configurability, benchmarking, exascale co-design.

1 Introduction

An individual compute node’s network injection bandwidth to computational
performance ratio is an important metric used when designing and comparing
large-scale parallel computers. The ratio must be high enough to support the
breadth of applications intended to run on a system, but not so high that band-
width, which is expensive, both in terms of dollars and power, goes unused and
is wasted. Determining the right design point is a significant challenge.

Historically, a rule of thumb has been that a “balanced” system should support
one byte per second of network I/O injection bandwidth for each floating point
operation per second (FLOPS) computed. Such a system would be generally
applicable and support a broad range of applications. Unfortunately, a variety
of factors has resulted in system balance ratios decreasing over time and the
trend is predicted to accelerate. A recent DARPA-sponsored study [10] concluded
that even with optimistic technology scaling assumptions, realizing the next
milestone of exa-FLOPS capable parallel computers will require that system
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balance targets be reduced by more than an order of magnitude from what is
considered acceptable today. As a point of comparison, Table 1 lists the network
injection to compute balance ratios of two prior-generation systems along side
the hypothetical exascale system forecast in the report.

Table 1. Comparison of system balance over time

System ASCI Red Jaguar-PF
Exascale

Prediction

Year 1997 2009 2015
System Peak TFLOPS 3.15 2,332 1,029,901

Node Inj. Bandwidth (GB/s) 0.400 2.2 3.68
Node Peak GFLOPS 0.666 124.8 4,600
Net/Compute Balance Ratio 0.6 0.018 0.0008

With this hardware prediction in view, it is important to gain more insight
into how this change in system balance will affect existing application software,
the design of future applications, and, ultimately, provide feedback to influence
the design requirements of future exascale computers as part of the co-design
process [2]. The approach we are currently pursuing is to leverage the extensive
configurability of existing supercomputer platforms, specifically the Cray XT
and XE architectures, to emulate the expected behavior of future systems. The
resulting experimental platform is then used to run important production appli-
cations with realistic input problems to observe how they respond to the change
in system balance. Our initial efforts have focused on application sensitivity to
network injection bandwidth, since it plays a critical role in determining how
the processor and network interface are connected and the level of integration
required. It is one of the earliest hardware design decisions that has arisen.

The remainder of this paper is organized as follows. Section 2 describes the
relevant aspects of our test platform. Our approach is then described in Sect. 3,
followed by results in Sect. 4. Section 5 discusses work that is related to our
experimental approach. Finally, conclusions are given in Sect. 6.

2 Test Platform

All of our injection bandwidth experiments to date have been performed on the
“XTP” Cray XT5 system at Sandia. This system consists of 160 12-core compute
nodes, each with 32 GB of memory and a Cray SeaStar [4] network interface.
Each node connects to its SeaStar via a point-to-point HyperTransport link, and
each SeaStar then connects to the node’s six nearest neighbors via proprietary
Cray point-to-point network links. The overall network topology forms a 3-D
torus.

The XTP system is considerably smaller than the systems we ultimately seek
to target, but is enlightening nonetheless. Our work on XTP has validated the
soundness of our approach and produced a set of baseline scaling results for our
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target applications. Moving on to larger-scale Cray XT and XE systems can
leverage the XTP work directly, and is expected to be straightforward.

3 Approach

In order to reduce a compute node’s network injection bandwidth, we are leverag-
ing source-level access to the Cray XT and XE coldstart boostrap infrastructure,
which serves the same purpose as a traditional BIOS. A separate instance of cold-
start runs on each compute node, but all instances are the same and configure
each of the compute nodes identically.

Very early in the power-on sequence, coldstart initializes the HyperTransport
(HT) point-to-point link that connects the Opteron host processor to the SeaStar
network interface. The speed of this link determines a compute node’s injection
bandwidth capability into the network fabric. The Opteron processor supports
several HT links, but we only degrade the single link that connects to the SeaStar.
All other HT links continue to operate at full speed.

By default, coldstart configures the Opteron-to-SeaStar HT link for the max-
imum speed supported by both the Opteron and SeaStar. We modify this ne-
gotiation process to select one of the alternative speeds listed in Table 2, which
is the cross-product of the settings supported by the Opteron and the settings
supported by the SeaStar. The basic configuration parameters for the HT link
are width, either 8-bits or 16-bits wide, and operating frequency, 200 MHz, 400
MHz, or 800 MHz. This results in the theoretical peak uni-directional HT link
bandwidths listed in the table. However, HT and SeaStar protocol overheads
limit the achievable injection bandwidth to far less than the theoretical peak.

Table 2. Possible Opteron-to-SeaStar HT link bandwidth configurations

Link Frequency & Width 8-bit 16-bit

200 MHz 400 MB/s 800 MB/s
400 MHz 800 MB/s 1600 MB/s
800 MHz 1600 MB/s 3200 MB/s

3.1 Benchmarks and Applications

Our analysis includes several benchmarks and applications. We briefly describe
them here.

Communication Micro-Benchmarks: We use a standard MPI ping-pong
micro-benchmark to measure latency and bandwidth between two nodes over
the network and an MPI streaming bandwidth benchmark to measure an entire
node’s injection bandwidth using all cores simultaneously. The ping-pong band-
width benchmark is part of the Intel MPI Benchmark Suite and the streaming
bandwidth test is from Ohio State University. These benchmarks are primarily
used to verify that the injection bandwidth degradation performs as expected.
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HPC Challenge (HPCC) Benchmarks: The HPC Challenge [12] bench-
marks are commonly used to evaluate the performance of supercomputers. Al-
though they are not production applications, they have been constructed to
represent a disjoint set of application characteristics common in scientific com-
puting. We selected four of these benchmarks: HPL, RandomAccess, PTRANS,
and FFT. The High Performance Linpack (HPL) benchmark measures the float-
ing point performance obtained when solving a dense linear system of equations.
RandomAccess measures the rate of random updates to a large pool of 64-byte
integer values. The RA SANDIA NOPT version of the algorithm was used, which re-
sults in communication between processes consisting primarily of 8 KB messages.
The PTRANS benchmark performs a parallel matrix transpose and is network
bandwidth intensive. FFT measures the floating-point performance obtained for
a double-precision, complex, one-dimensional discrete Fourier transform (DFT).

Applications: Four applications were evaluated for their sensitivity to net-
work injection bandwidth: CTH, Sage, xNOBEL, and Charon. These codes were
selected due to their importance to the Advanced Simulation and Computing
(ASC) program within the U.S. Department of Energy and because of their
ability to scale to very large-scale machines. The combination of these partic-
ular applications also comprise a disjoint set of communication patterns that
are representative of a large majority of other ASC applications. Realistic input
problems were used in a weak scaling fashion, resulting in computational work
per core being held roughly constant regardless of scale. We briefly describe each
of these application below.

CTH [5] is a multi-material, large deformation, strong shock wave, solid me-
chanics code. The test problem used for this study was a 3D shaped charge
simulation discretized to a rectangular mesh. In this configuration, inter-process
communication consists primarily of large, multi-megabyte sized messages com-
municated among neighboring nodes. CTH is therefore limited primarily by
point-to-point network bandwidth.

SAGE [14] is a multidimensional, multi-material Eulerian hydrodynamics code.
SAGE inter-process communication consists primarily of a bulk-synchronous
gather/scatter abstraction, which aggregates messages into large doubly-indexed
arrays. Message sizes are generally in the hundreds of kilobytes to one megabyte
range.

xNOBEL [7] is a one-,two-,or three-dimensional, multi-material Eulerian hy-
drodynamics code. It was developed for solving a variety of high-deformation
flow of materials problems, with the distinguishing characteristic of being able to
model high explosives. The problem used for this study was a shape charge sim-
ulation in two dimensions. Network communication consists of relatively small
messages in the tens of bytes to hundreds of kilobytes.

Charon [11] is a semiconductor device simulation code. The problem used for
this study is a 2D steady-state drift-diffusion simulation for a bipolar junction
transistor. Charon is sensitive to small message latency for point-to-point and
global reduction operations.
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4 Results

Measured network bandwidth between two adjacent nodes is plotted in Fig. 1
for varying levels of injection bandwidth degradation. The labels in this figure
and all others in this paper use the following convention: None = (800 MHz, 16
bit), Half = (400 MHz, 16 bit), Quarter = (200 MHz, 16 bit), and Eighth =
(200 MHz, 8 bit). The bandwidth curves for the streaming test (Fig. 1b) ramp
up much more quickly and reach slightly higher asymptotic levels than the ping-
pong test (Fig. 1a). Applications that send few message at a time will behave
more like what is observed for the ping-pong test, while applications that send
many messages at a time will behave more like the streaming test. Small message
latency was also measured for each configuration and found to be approximately
the same as with no degradation (< 1.0 µs).
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Fig. 1. MPI micro-benchmark uni-directional bandwidth measurements

The resulting network injection bandwidth to compute balance ratios achieved
using our test system are listed in Table 3. These ratios were calculated using
the asymptotic maximum node-level bandwidths measured in Fig. 1b (in GB/s)
divided by the peak 115.2 GFLOPS capability of each compute node. The lowest
achieved balance ratio of 0.0030 is a factor of five worse than the full-speed
baseline, but still a factor of 3.75 higher than the exascale system prediction
listed in Table 1. Nevertheless, the test system exhibits a significant decrease in
network-to-compute balance that can be leveraged to characterize application
sensitivity to injection bandwidth.

Table 3. Achieved network injection bandwidth to compute balance ratios using ex-
perimental platform

Inj. BW Degradation Net/Compute Balance Ratio Factor Worse

None 0.0151 –
Half 0.0094 1.6

Quarter 0.0056 2.7
Eighth 0.0030 5.0
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HPCC and application results are presented as performance degradation rel-
ative to full injection bandwidth, and are therefore unit-less. For example, a
value of 1.5 indicates that the performance measured with the degraded injec-
tion bandwidth configuration was 1.5 times slower than with no degradation.
In order to obtain the highest level of imbalance possible in practice, we used
all twelve processor cores per compute node, running one MPI process per core.
Therefore, the number of nodes used for each data-point in Figures 2 and 3 is
obtained by dividing the x-axis label by twelve and rounding up to the nearest
integer.

Results for the HPCC benchmarks are shown in Fig. 2. While network per-
formance is important, its impact on HPL performance is secondary compared
to computational capability, which we do not modify. As shown in Fig. 2a, our
experimental results confirm this, showing relatively little performance degrada-
tion for HPL (note the reduced y-axis range compared to the other plots).

The results shown in Fig. 2b for RandomAccess were surprising to us. Half
and quarter configurations result in almost no performance penalty, while eighth
results in much larger penalties that appear to grow with scale. Our current the-
ory is that 8 KB MPI Sendrecv operations are at a point on the bandwidth curve
that has roughly the same bandwidth for none, half, and quarter configurations,
and much less for eighth. Such an effect can be seen for 4 KB messages in Fig. 1b,
and we hypothesize that something similar is happening here for 8 KB messages.
Further investigation at larger-scale is required.

As expected for a network bandwidth bound benchmark like PTRANS, the
effect of injection bandwidth degradation shown in Fig. 2c is dramatic. The
degradation factors relative to full injection bandwidth for half, quarter, and
eighth configurations are approximately 1.25, 2, and 3.8, respectively, and the
penalties do not appear to grow with scale. These degradation factors are rea-
sonably close to the theoretical maximums listed in Table 3. FFT demonstrates
behavior similar to PTRANS, but with lower degradation magnitudes.

Results for the applications evaluated are shown in Fig. 3. CTH is observed
to be relatively insensitive to half injection bandwidth, moderately sensitive to
quarter bandwidth, and significantly sensitive to eighth bandwidth (Fig. 3a).
The performance degradation appears to be increasing with scale, but we be-
lieve this is an artifact of the communication to computation ratio increasing
logarithmically with scale, as observed for CTH in [6]. Larger-scale experiments
are needed to confirm this.

SAGE demonstrates a performance degradation profile similar to CTH, but
of a lesser degree (Fig. 3b). SAGE’s message sizes are generally not as large as
CTH’s, and are likely falling at a point on the message size vs. bandwidth curve
where the differences between the injection bandwidth configurations are not as
pronounced. As with CTH, larger-scale experiments are required to determine
if performance degradation continues to increase.

xNOBEL demonstrates different scaling behavior than was observed for CTH
and SAGE (Fig. 3c). Half and quarter injection bandwidth configurations have
very little impact on performance. However, with one-eighth speed injection
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Fig. 2. HPCC Results

bandwidth, significant performance degradation is observed but only at the
largest scales tested. We believe this to be caused by xNOBEL suddenly los-
ing the ability to significantly overlap communication and computation due to
the severely degraded injection bandwidth. If true, this demonstrates the impor-
tance of providing sufficient network performance so that well-designed applica-
tions can maximize their ability to overlap communication and computation.

As expected for a latency bound application, Charon is unaffected by injec-
tion bandwidth degradation (Fig. 3d). For the test problem used, the average
message size is less than 1 kilobyte, which, according to Fig. 1, results in essen-
tially identical performance no matter what injection bandwidth configuration
is used. Given Charon’s insensitivity to injection bandwidth, it would clearly be
advantageous to save power by using a low-bandwidth, low-latency interconnect.

5 Related Work

Parameterized analytic performance models have been developed for a number of
large-scale parallel applications [1,9] and been shown to closely track experimen-
tal measurements. While clearly worthwhile, a downside to analytic modeling is
that it is time consuming, requiring expert-level knowledge of a given application,
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Fig. 3. Application Results

and is necessarily application specific. Our in-situ experimental-based approach
can be complementary to analytic modeling by accelerating the application un-
derstanding process and by assisting in model validation.

Simulation-based approaches are highly configurable and flexible. The down-
side of this approach is often performance – slowdowns of 1000x or more are
common, and increase with the simulation’s fidelity. Model-based simulators can
be much faster, but make simplifying assumptions. In contrast, our approach al-
lows full applications to be evaluated in real-time. However, a drawback of our
approach is that it can generally only slow-down the performance parameter
being studied. The Structural Simulation Toolkit (SST) [13] is an example of a
simulation platform targeted at simulating large-scale parallel computers. Our
approach could be used to assist in validating SST component models and other
simulation tools.

Finally, experimental methods such as our approach use existing systems and
real applications to evaluate the impact of the parameter under study. Software-
based de-tuning was used in [6] to characterize the performance penalty with
scale of various levels of operating system interference. Recently, results from
this study were reproduced via simulation [8], demonstrating the important re-
lationship between simulation and experiment. Another software-based exper-
imental approach is described in [3], where a special MPI library was used to
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degrade network performance. Our approach is similar, but uses direct hardware
manipulation instead of software techniques. This eliminates the potential of
introducing artificial software-induced overhead.

6 Conclusions and Future Work

Future exascale computing systems are expected to have significantly reduced
network and memory bandwidth relative to computational performance than
current systems. In this paper, we have demonstrated how existing large-scale
parallel computers can be used to more closely emulate the expected imbalance
of future systems. The resulting experimental platform can then be used for
evaluating application sensitivity to the parameters under study. Our specific
focus has been on network injection bandwidth, but many other hardware pa-
rameters can be examined as well. Results from our application scaling studies
on a 160-node, 1920-core Cray XT5 system indicate that some applications ex-
perience sudden drops in performance at certain network injection bandwidth
thresholds. Our ongoing work involves performing much larger-scale experiments
to determine if the trends observed continue at higher core counts. We hope to
leverage the empirical results obtained to assist in the development and valida-
tion of application models and simulation tools. Ultimately, we seek to gather
information on the system balance requirements of existing highly-scalable par-
allel applications and leverage this insight to guide the design of future exascale
supercomputers.
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Abstract. Collective communication is one of the most powerful mes-
sage passing concepts, enabling parallel applications to express complex
communication patterns while allowing the underlying MPI to provide
efficient implementations to minimize the cost of the data movements.
However, with the increase in the heterogeneity inside the nodes, more
specifically the memory hierarchies, harnessing the maximum compute
capabilities becomes increasingly difficult. This paper investigates the
impact of kernel-assisted MPI communication, over two scientific applica-
tions: 1) Car-Parrinello molecular dynamics(CPMD), a chemical molec-
ular dynamics application, and 2) FFTW, a Discrete Fourier Transform
(DFT). By focusing on the usage of Message Passing Interface (MPI),
we found the communication characteristics and patterns of each appli-
cation. Our experiments indicate that the quality of the collective com-
munication implementation on a specific machine plays a critical role on
the overall application performance.

1 Introduction

Enhanced by multi-core and many-core nodes, clusters of workstations are widely
used for scientific computing, where MPI has been the de facto programming
paradigm for scientific computing parallel applications. To fully exploit the
potential of multi-core nodes, domain users can adopt different programming
models, prominently a pure MPI approach, but also hybrid programming (e.g.
MPI+OpenMP or MPI+multithreading), virtual shared memory systems (e.g.
OpenMP only), HPF (high performance FORTRAN) and etc. Compared with
other approaches, the pure MPI approach has the benefit of the portability, al-
lowing application developers to implement the code once, and then run it every-
where. However, the overhead of MPI intra-node communications from excessive
memory copy is a major concern. In the pure MPI approach, each MPI process
is bound to a core for performance reasons. The most common approach for de-
livering messages between MPI processes, running on shared memory multi-core
nodes, has been to establish a shared memory between the two processes. The
sender copies a message into the shared memory zone and the receiver copies
it out to the target buffer, resulting in a double copy for each point-to-point
communication. This copy-in/copy-out approach wastes, not only CPU cycles,
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but also memory bandwidth, especially for large messages and collective com-
munication. With more cores and deeper memory hierarchies, it becomes more
difficult, for a shared memory approach, to deliver optimal performance in a
generic way.

Kernel-assisted memory copy can alleviate this issue by using system calls
to offload the copy to the kernel. Because the kernel has a physical view of
the memory space for both processes (the source and the destination), it can
perform memory copies directly from the source memory to destination mem-
ory without an intermediate buffer. KNEM is a Linux kernel module that en-
ables high-performance, inter-process, single-copy memory copies. It offers sup-
port for asynchronous and vector data transfers. MPI communities have realized
the importance of integrating kernel assisted memory copy to MPI intra-node
communications. Open MPI, since version 1.5, includes KNEM support in its
shared memory point-to-point communications component. MPICH2, since ver-
sion 1.1.1, uses KNEM in the DMA LMT to improve large message perfor-
mance within a single node. The work in [1,2] has shown that KNEM-enabled
MPI communication significantly improves the performance of some micro- and
macro-benchmarks. However, the performance of real scientific applications using
KNEM-enabled MPI communication has yet to be asserted. This paper focuses
on the impact of KNEM-enabled MPI communication on scientific applications.

We selected two applications: CPMD [3] and FFTW [4]. These applications
come from different scientific areas: from molecular dynamics to signal process-
ing. They are widely known and used in the engineering and scientific com-
puting communities. The CPMD code is a parallel plane wave/pseudo-potential
implementation of density functional theory, particularly designed for ab-initio
molecular dynamics [3]. FFTW, ”Fastest Fourier Transform in the West”, is one
of the most popular libraries for computing discrete Fourier transforms (DFTs),
developed by Matteo Frigo and Steven G. Johnson [4]. Both applications are
developed around a core, involving both point-to-point and collective communi-
cations, and can be considered as lightly communication-intensive applications.
Using a lightweight MPI profiling software (mpiP), we investigate the commu-
nication overhead distribution in each application, including the percentage of
MPI runtime in the application runtime, the percentage of each MPI call runtime
in the whole communication time, and the message size distribution.

The remainder of this paper is organized as follows: Section 2 introduces
the related work about the shared memory and the kernel assisted approach.
Section 3 depicts the two parallel applications used in this paper, followed by
Section 4 where the experimental results of CPMD and FFTW are presented.

2 Related Work

With the increasing complexity of the node architecture, shared memory per-
formance remains a critical corner-stone in MPI application performance. As
such, significant efforts have been deployed to improve the MPI intra-node com-
munication performance. Darius Buntinas et al. proposed single-copy commu-
nication to speed up large message point-to-point communication for MPICH2
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(based on vmsplice and KNEM [1]). The KNEM assisted approach outperforms
the standard transfer method in the MPICH2 implementation when no cache
is shared between the processing cores, or when very large messages are being
transferred. Even simply using KNEM assisted point-to-point communication
underneath collective communication achieved a significant improvement [1,2].
Within Open MPI, a similar approach was implemented, with further emphasis
on auto-tuning and performance portability [5]. KNEM based memory opera-
tion (with features such as persistent memory registration and copy direction
control) has been leveraged from within the collective algorithm itself, allowing
for most copies to happen in parallel in ‘rooted’ communications (e.g. one-to-all
or all-to-one). Furthermore, the hardware features and the collective communi-
cation topology are mapped in order to minimize the volume of data transiting
between distant memory hierarchies. Overall these improvements demonstrated
substantial speedups of the communication operations on multicore systems [6].
However, the evaluation of the benefits of these approaches has been mostly
centered around synthetic benchmarks.

From another perspective, several works have focused on determining the
properties of parallel applications in the context of hierarchical systems [7,8].
Recent works have investigated the benefits of hybrid programming in the con-
text of multicore nodes [9]. However, the conclusions of these studies are chal-
lenged by the performance now permitted by kernel assisted copies within MPI.
Our present work focuses specifically on investigating the behavior of prominent
application, taking into account this novelty.

3 Applications

Car-Parrinello Molecular Dynamics(CPMD) is a plane wave/pseudo-potential
implementation of density functional theory, particularly designed for ab-initio
molecular dynamic [3]. CPMD simulations use the most fundamental approaches
to model condensed phases. Dynamic equations of motion are solved for the ions
with the inter-ionic forces computed from the valence electron density, which
is solved for at each time step using density functional theory. In the case of
methane, a CPMD simulation consists of one C and four H ions and eight va-
lence electrons per molecules. The ground state electron density is computed at
each time step. And polarization and other short range forces are also taken into
account in the CPMD [3]. CPMD provides several standard simulations, such as
C-120, Si-64, water-32, etc. We selected the methan-fd-nosymm test in our ex-
periments, that uses the finite-difference (FD) method, based on a discretization
of the differential operator [10], without molecular symmetry.

FFTW, “Fastest Fourier Transform in the West”, is one of the most popu-
lar libraries to compute discrete Fourier transforms (DFTs). FFTW can handle
inputs with one or more dimensions, arbitrary size, and both real and complex
data [4]. FFTW also features a MPI-based distributed implementation. To com-
pute the FFT of a multi-dimensional array, each processor first transforms all
the dimensions of the data that are completely local to it (rows). Then, the pro-
cessors perform a transpose of the data in order to get the remaining dimension
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local to a processor (columns). This dimension is then Fourier transformed, and
then the dataset is transposed, back to its original order.

4 Experiments

4.1 Experimental Conditions

Our experimental platform (named IG) is a 48 core AMD NUMA machine with
128GB of memory. The system is composed of 8 sockets with a six-core 2.8 GHz
AMD Opteron 8439 SE, 5 MB L3 caches and 16 GB memory per NUMA node.
The sockets are further divided as two sets of 4 sockets on two separate boards
connected by a low performance interlink.

The Linux Red Hat 4.1.2 (2.6.35.7 kernel) operating system is used on the ma-
chine, with the KNEM (version 0.9.5) kernel memory copy module. The MPI im-
plementation is Open MPI (trunk r24549), with mpiP (version 3.2.1) [11] to pro-
file and record MPI usage. Inside Open MPI, two different setups are compared:
the SM setup uses the tuned collective module [12] and the SM point-to-point
Byte Transfer Layer (BTL); the KNEM setup uses the KNEM collective module
and the SM/KNEM BTL [6] and is hence benefiting from kernel assisted memory
copies for messages larger than 4KB. Because KNEM collective module imple-
mented a subset of MPI collective operations: Broadcast, Gather(v), Scatter(v),
Allgather(v), and Alltoall(v), operations not implemented in KNEM collective
module such as Reduce, Allreduce, and etc. will use Open MPI’s Basic collective
module. The mapping between physical cores and MPI processes is identical for
both setups, regardless of the underlying communication components.

The CPMD software (version 3.13.2) [3] is configured as ‘LINUXMPI’ with
the BLAS/LAPACK libraries (LAPACK 3.3.0). We selected one simulation from
CPMD’s vibrational analysis tests: methan-fd-nosymm.inp. FFTW-3.2.alpha [4]
is configured with MPI support. Our input for the FFT mpi-bench is [1500×1500
20 20] with the verification(-y), which stands for a 1500× 1500 complex DFT, a
20 complex DFT, and a 20 complex DFT.

4.2 CPMD

Table 1 compares the execution time breakdown, into compute time and com-
munication time, of the CPMD application on a large multicore node, between
the two communication modes (KNEM and SM, differing in their use of kernel
assisted memory copies). As expected, the computation execution time remains
generally constant when changing the communication mode (201s versus 194s).
The major performance difference between the two setups lies in the commu-
nication overhead (MPI time), which occupies 26.9% of the overall application
runtime for the KNEM-enabled mode, while it rises to 54.1% when using the
regular SM communication mode. The CPMD application makes extensive use
of all-to-all collective communications, which enjoy a threefold speedup when
using the KNEM-enabled approach, translating into a 1.5× application speedup
in the methan-fd-nosymm test case.
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Table 1. Total application time and MPI time for CPMD’s methan-fd-nosymm test
between Open MPI’s KNEM mode and SM mode, with 48 MPI processes on IG’s 48
cores

Total Application time(sec) MPI time(sec)

KNEM-enabled 276 74.4

SM-enabled 423 229

Table 2. Sum of all processes’ execution time for the 5 most used MPI functions in
CPMD’s methan-fd-nosymm using shared memory and KNEM (48 processes on IG’s
48 cores)

KNEM-enabled SM-enabled

Call Time(millisec) MPI% Call Time(millisec) MPI%

Alltoall 2.88e+06 90.32 Alltoall 1.02e+07 97.71

Bcast 1.15e+05 3.59 Bcast 1.08e+05 1.03

Allreduce 1.12e+05 3.52 Allreduce 1.05e+05 1.00

Barrier 7.01e+04 2.20 Allreduce 8.6e+03 0.08

Allreduce 7.49e+03 0.23 Recv 6.17e+03 0.06

Table 2 presents the accumulated time, over all processes, spent in the five
most time consuming MPI functions. In both cases, using KNEM or SM, the
AlltoAll operation takes more than 90% of the MPI execution time. However,
compared with SM-based communication, the KNEM version reduces the All-
toall cost from 10, 000s to about 2, 900s. Based on the statistics gathered using
mpiP, the average message size for each AlltoAll operation is 24KBytes, a size in
the range where KNEM is beneficial to collective operation performance (bigger
than 4KB). Here, Allreduce in the KNEM-enabled setup is worse than in the SM-
enabled setup(1.12e5 vs 1.05e5), because allreduce in the KNEM setup actually
triggers Open MPI’s Basic collective module, which is a simple and basic imple-
mentation of collective operations without any optimization. It’s not a surprise
for a Tuned collective operation to outperform a Basic collective operation.

Figure 1 shows a strong scaling performance of CPMD’s methan-fd-nosymm
tests, using the KNEM-enabled and SM communication modes. In this experi-
ment, the process i is bound to core i, for all modes. The KNEM-enabled MPI
communication outperforms the SM MPI communications, regardless of pro-
cesses in use and the number of NUMA nodes. The CPMD application benefits
from a better scalability, when increasing the number of cores, with the KNEM-
enabled MPI operations. The SM communications do not permit the application
to scale to more than 24 processes (the limit where all processors are on the same
system board, in this machine), because the SM communications are oblivious
to the underlying hardware topology. On the other hand, the KNEM-enabled
operations enable the application to benefit from the expected scalability for the
CPMD application, even though the NUMA topology is extremely challenging
on this platform.
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Fig. 1. Strong Scaling for CPMD’s methan-fd-nosymm test over KNEM and shared
memory. Processes are bound to IG’s cores in a compact way (rank i is bound to core i).

4.3 FFTW

The next application is the Discrete Fourier Transform library, from FFTW. A
detailed view of the contribution to the cumulative communication time of the
5 most used MPI functions of this application is presented in the table 3. One
can notice that the most time consuming MPI call (the broadcast communica-
tion) enjoys nearly an order of magnitude improvement when using the KNEM
collective component (from 6070s down to 959s). Even point-to-point communi-
cations see their performance improve, but less significantly. As an example, the
sendrecv based on KNEM is 1.37× faster than the one based on shared memory.
Similarly with the previous application, the average message size (see table 4) is
larger than the message size where KNEM enabled communications become bene-
ficial. For the broadcast collective, the average size is 14MB, and the average size
for the sendrecv point-to-point communication is 16KB. The execution time of
KNEM Scatterv is a little more than Tuned Scatterv here, because messages in

Table 3. Cumulative time of the five most used MPI calls in a 48 processes FFTW
(1500x1500, 20, 20, with verification), running with KNEM or SM components, on the
48 cores of IG

KNEM-enabled Mode SM-enabled Mode

Call Time (millisec) MPI% Call Time (millisec) MPI%

Bcast 9.59e+05 61.98 Bcast 6.07e+06 88.9

Sendrecv 3.52e+05 22.78 Sendrecv 4.82e+05 7.07

Scatterv 1.65e+05 10.69 Gatherv 1.39e+05 2.03

Gatherv 5.86e+04 3.79 Scatterv 1.33e+05 1.95

Comm dup 4.33e+03 0.28 Comm dup 1.81e+03 0.03
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Table 4. Aggregate Sent Message Size for each MPI calls in FFTW. 48 processes on
IG, one rank per core.

Call Count Total (bytes) Avrg (bytes) Sent%

Bcast 19488 2.8e+11 1.44e+07 94.20

Sendrecv 710888 1.14e+10 1.61e+04 3.84

Gatherv 19488 5.83e+09 2.99e+05 1.96

Bcast 288 1.47e+05 512 0.00

Bcast 288 1.47e+05 512 0.00

the FFTW’s scatterv operation is smaller than KBytes and the overhead of trap-
ping into kernel and distributing cookies offset the benefits of KNEM kernel copy.

Finally, the table 5 presents the total execution time, and the MPI contri-
bution to that total, for both KNEM-enabled and SM communication modes.
Thanks to the benefits on the broadcast operations, the KNEM-enabled com-
munications induce a dramatic threefold reduction of the time spent communi-
cating, from 143s to 38s. As FFTW is a communication intensive application,
the decrease of the communication contribution to the execution time translates
into a major improvement of the overall execution time (doubled performance).
The last row of Table 5 indicates the performance of the OpenMP version of
this same application. Although this version cannot run on distributed memory
clusters, it is indicative of the performance attained by a tailored approach on
this shared memory architecture. The introduction of KNEM-enabled communi-
cations have greatly reduced the efficiency gap between the OpenMP approach
and the MPI approach on shared memory machines. However, the OpenMP code
is still twice as fast; but it lacks the capability to span over multicore cluster.

Table 5. Total application time for the FFTW’s application when using OpenMP(48
threads) or pure MPI over different communications: the KNEM-enabled or the shared
memory-enabled communication with 48 processes (rank i bound to core i).

Total Application time(sec) MPI time(sec)

KNEM-enabled mode 107 38.1

SM-enabled mode 216 143

OpenMP mode 49.5 N/A

5 Conclusion

A lot of MPI users spend significant time porting their pure MPI applications to
a hybrid model (usually MPI+OpenMP) to exploit the full potential of multi-
core architectures. Inefficient shared memory-based communications are an im-
portant factor forcing domain users to look for alternative solutions inside the
nodes. From the experiments presented in the previous Section, classical shared
memory communications have certain difficulties to provide good point-to-point
and collective performance, when the number of cores and consequently the com-
plexity of the memory hierarchy increase. However, kernel-assisted single-copy
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approaches have the potential to alleviate this issue by offloading the memory
copies into the kernel, reducing the number as well as their impact on the memory
bus by a factor of two. Experiments show the KNEM-enabled MPI communica-
tion can increase application performance, and expose a better scalability than
the classical shared memory approach when integrating more resources inside
computing nodes. With more cores, increased core heterogeneity, and deeper
memory hierarchies, kernel assisted MPI communication provides dependable
performance, and offers a better alternative to hybrid approaches, while still
retaining the simplicity of a single programming model.
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Abstract. The lack of fault tolerance is becoming a limiting factor
for application scalability in HPC systems. The MPI does not provide
standardized fault tolerance interfaces and semantics. The MPI Forum’s
Fault Tolerance Working Group is proposing a collective fault tolerant
agreement algorithm for the next MPI standard. Such algorithms play
a central role in many fault tolerant applications. This paper combines
a log-scaling two-phase commit agreement algorithm with a reduction
operation to provide the necessary functionality for the new collective
without any additional messages. Error handling mechanisms are de-
scribed that preserve the fault tolerance properties while maintaining
overall scalability.

Keywords: MPI, Fault Tolerance, Agreement Protocol, Run-through
Stabilization, Algorithm Based Fault Tolerance.

1 Introduction

The lack of fault tolerance will soon become a limiting factor for application
scalability in High Performance Computing (HPC) systems, in particular exas-
cale systems. It is projected that the mean time to failure (MTTF), a measure
of system reliability, will drop from days to hours or minutes in such HPC sys-
tems [2]. This indicates that process failure will be a normal event that the
application must be prepared to handle to fully utilize next generation HPC
systems. As a result, applications are looking to augment (or replace) their ex-
isting checkpoint/restart fault tolerance techniques with Algorithm Based Fault
Tolerance (ABFT) techniques to improve the efficiency of application recovery.

Unfortunately, application developers are hindered by the lack of any, let alone
scalable, resilience models necessary for ABFT in fundamental support libraries
like the Message Passing Interface (MPI) [13]. The current MPI standard does
not provide standard semantics in the presence of process failure except in the
default, abort case (i.e., MPI ERRORS ARE FATAL). Such semantics are left to
be optionally defined by individual implementations.

The MPI Forum created the Fault Tolerance Working Group (FTWG) in re-
sponse to the growing need for portable, scalable fault tolerant semantics and
interfaces in the MPI standard. Fault tolerant agreement algorithms serve as a
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fundamental building block for most fault tolerant applications and libraries [1].
These algorithms provide uniform agreement of a value (or set of values) even
in the presence of process failure during the execution of the algorithm. The
FTWG’s run-through stabilization (RTS) proposal provides an interface to such
an algorithm in the MPI Comm validate all collective operation over communica-
tors. A similar collective interface is also available for windows and file handles.

The MPI Comm validate all collective operation must be able to be imple-
mented in a scalable manner if it is to be relied upon in highly scalable, fault
tolerant HPC applications. Most fault tolerant agreement algorithms struggle
to scale well to large numbers of processes, while others propose overly complex
algorithms that are difficult to implement in practice. These algorithms focus on
the agreement of a single state (namely COMMIT or ABORT) after the execution
of the transaction body. The MPI Comm validate all collective operation must
agree upon a set of failed processes constructed by the group. Using the existing
agreement protocols would require a separate fault-aware reduction operation
followed by a separate agreement protocol.

The presented algorithms combine the reduction operation with a two-phase
agreement operation to construct the list of known failures during the voting
phase and uniformly agree upon a single list during the commit phase. This pa-
per describes algorithmic adjustments made to the two-phase commit agreement
algorithm, for both linear-scaling and log-scaling variations, to provide this func-
tionality. The log-scaling algorithm variation sustains a point-to-point message
complexity of O(2log(n)). This paper describes the error handling mechanisms
that preserve the fault tolerance guarantee of uniform agreement even in the
presence of process failure, in addition to an optimization to the termination
protocol.

2 Related Work

Applications are experimenting with the integration of fault tolerance techniques
into their code to improve the efficiency of application recovery. ABFT tech-
niques require specialized algorithms that are able to adapt to and recover from
process loss [10]. ABFT techniques typically rely upon data encoding, algo-
rithm redesign, and diskless checkpointing in addition to a fault tolerant message
passing environment (e.g., MPI). Related to ABFT are natural fault tolerance
techniques [5]. Natural fault tolerance techniques focus on algorithms that can
withstand the loss of a process and still get an approximately correct answer,
usually without the use of data encoding or checkpointing.

The FTWG’s RTS proposal defines semantics and interfaces for the handling
of fail-stop process failure [7]. Fail-stop (a.k.a. crash fault) process failures are
failures in which a process is permanently stopped often due to a component
crash event in the system [1]. For the detection of such failures, the proposal
provides the application with a perfect failure detector. A perfect failure detector
is both strongly accurate and strongly complete [4]. Strong accuracy means that
no process is reported as failed before it actually fails. Strong completeness means
that eventually every failed process will be known by all other processes.
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Fault tolerant agreement algorithms play a central role in many fault tol-
erant applications, libraries, and distributed transaction processing services for
database systems [1]. These collective algorithms provide uniform agreement
of a state even in the presence of process failure during the execution of the
algorithm. There are three often cited fault tolerant agreement algorithms: two-
phase commit, three-phase commit, and Paxos. Agreement algorithms can be
either blocking or non-blocking. A blocking algorithm may block, in some failure
scenarios, in an undecided state until a peer process is restored and makes a
decision from a write-ahead log file. A non-blocking algorithm does not require
the restart of failed processes for the collective group to decide.

The two-phase commit algorithm is a blocking algorithm built from two lin-
ear reliable broadcast operations and one linear reliable gather operation [9]. An
optional, termination detection algorithm can be used to reduce the opportu-
nity for blocking when the coordinator fails. The linear nature of the reliable
broadcast and gather operations allow for relative simplicity in the handling of
process failures, but at the cost of poor scalability to large numbers of processes.

Multi-level, tree structured two-phase agreement algorithms have been ex-
plored in, and proven correct for transaction processing systems [14,15]. The
algorithm presented in this paper combines the multi-level communication topol-
ogy with the construction of the global list of failed processes. Combining oper-
ations reduces the message complexity required to do both consecutively.

The three-phase commit algorithm extends the two-phase commit algorithm
by adding another round of messages to eliminate the need for blocking [17].
Since this algorithm adds another round of operations (one additional broadcast
and gather) it further adds to the message complexity.

The Paxos algorithm is a non-blocking algorithm that uses replicas instead of
a single coordinator to reach agreement [12]. This algorithm scales as well as the
two-phase commit algorithm while still being a non-blocking algorithm. However,
this algorithm has proven challenging to implement correctly in practice [3].

The FT-MPI project provided a first attempt at extending the semantics and
interface of the MPI-1 standard to support ABFT [6]. FT-MPI extended the
MPI communicator states and modified the MPI communicator construction
functions. The FT-MPI project provided inspiration for the FTWG’s RTS and
Process Recovery proposals. The RTS proposal provides semantics similar to
FT-MPI’s blank communicator mode, where failed processes are replaced by
MPI PROC NULL. Both projects have complementary semantics regarding point-
to-point and collective operations. The main difference between these projects is
in the handling of communicator and group objects. Upon process failure, FT-
MPI destroys all MPI objects with non-local information (e.g., communicators
and groups), except MPI COMM WORLD, requiring the application to manually
recreate these objects after every failure. In contrast, the RTS proposal preserves
all communicators and groups. Instead of providing a fault tolerant agreement
protocol to the application (i.e., MPI Comm validate all), the FT-MPI project
provides it as a transparent component of the runtime environment which is
used to determine the group membership for MPI COMM WORLD after each
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process failure. As such, FT-MPI requires that every process failure be recognized
globally by all alive processes. In the RTS proposal, process failures can be
recognized locally, and on a per-communicator basis. These differences allow the
RTS proposal to more flexibly support libraries, and, by allowing for localized
failure recognition, open the door to more scalable fault tolerance solutions.

3 Two-Phase Commit Algorithm

This section briefly describes the structure and fault management properties
of the linear scaling two-phase commit algorithm [9]. The two-phase commit
algorithm is discussed in terms of how it was implemented in Open MPI to
support the MPI Comm validate all collective operation.

The two-phase commit algorithm relies upon linear-scaling reliable broadcast
and gather operations, in addition to an optional linear termination detection
algorithm upon coordinator failure. The coordinator initiates the algorithm by
broadcasting a vote request to all of the participants, skipping failed processes.
Since the MPI Comm validate all is a collective operation, all alive processes will
eventually enter the operation, so the vote request round can be eliminated from
the MPI implementation reducing the message complexity, called the unsolicited
vote optimization [18]. The algorithm will decide either DECIDED or UNDECIDED
(a.k.a, COMMIT, ABORT) along with a globally constructed list of process failures.

Upon entering the MPI Comm validate all operation, the participants send
their vote to the coordinator. In the Open MPI implementation, the vote is a bit-
field of locally known failed processes at that rank. If the coordinator fails before
a participant sends its vote, then the participant can safely decide UNDECIDED
and exit the algorithm since the coordinator could not have made a decision
without their contribution.

The coordinator gathers the contributions of each participant (skipping failed
processes), and creates a decision – represented as list of globally known failed
processes constructed from the local list at each process. The coordinator then
broadcasts the decision to all alive participants.

If the coordinator fails after a participant sent its vote, but before the par-
ticipant receives the decision message then the participant is in an uncertain
state since it does not know if a decision was made before the coordinator failed.
Without the optional termination detection algorithm, the uncertain participant
would block and wait for the coordinator to be recovered. With the termination
detection algorithm, the uncertain participant linearly asks all other participants
if they have decided or not. If a peer participant has decided (either DECIDED or
UNDECIDED), then the uncertain participant decides with them. Otherwise, if no
other alive participant has decided, then this process blocks waiting for recovery.

The algorithm must keep at least two log entries in the volatile memory of
each local process. A log entry contains the list being decided upon, the state of
the agreement, and a monotonically increasing sequence number to distinguish
rounds. One entry stores the last decision made by the group used to catchup
a process in the termination protocol. The other entry maintains that state for
the current round of the operation.
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Recv(Vote)

ChildA

ChildB

ParentA
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CoordA

CoordB

ParentD

ParentC

Fig. 1. Illustration of the three participants in the log-scaling two-phase commit algo-
rithm. Error handling annotations highlighted in red italics (e.g., {ParentC,ChildB}).

The RTS proposal does not provide the capability to restart processes, so if
a process blocks it must call MPI Abort. Progressing forward from an uncertain
state may cause consistency issues with other communication contexts. In the
Open MPI implementation, a runtime option is provided to allow the user to
promote the uncertain state to an UNDECIDED decision, for the case where this
semantic protection is not desired.

Ideally the MPI implementation would provide a non-blocking, fault tolerant
agreement algorithm (e.g., three-phase commit), to avoid the uncertainty prob-
lem described above. This paper focuses on augmenting the two-phase algorithm
for the sake of simplicity in explanation, and leaves the non-blocking algorithm
extension to future work.

4 Log Scaling Two-Phase Commit Algorithm

The log-scaling two-phase commit algorithm uses a tree structure for both the
broadcast and gather operations similar in communication structure to multi-
level variations [14,15]. In practice, the gather is replaced by a reduce, but re-
ferred to in this section as a gather for consistency with Section 3.

The log-scaling two-phase commit algorithm differentiates between two types
of participants: those that are not leaf elements, called parent participants; and
those that are leaf elements, called child participants. The coordinator (at the
root of the tree) is still ultimately responsible for making the final decision -
construction of the final list of failed processes. The dependencies in the tree
structure require additional error handling mechanisms to maintain the consis-
tency of the algorithm and data in the presence of fail-stop process failures.

Figure 1 illustrates the three kinds of participants in the algorithm along with
the basic communication pattern and error handling annotations (highlighted in
red italics). This algorithm can be used with a tree of any depth, even though
this figure shows only one level of parent participants.
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In Figure 1, the primary error handlers of the coordinator and parents for the
reliable gather operation are {CoordA,ParentA} and for the broadcast operation
are {CoordB ,ParentD}. During the reliable gather and broadcast operations,
parent participants of a failed child must recursively adopt the grandchildren.
This ensures that all alive processes in the collective group have the opportunity
to vote and decide uniformly with the remaining portion of the group.

Upon detection of parent participant failure, the dependent children are either
in the {ParentB,ChildA} or {ParentC,ChildB} error handlers. The dependent
children search for the nearest grandparent participant (which could be the co-
ordinator). If an alive grandparent is found, the dependent child posts a query
message to the new parent asking how it should continue participating in the
algorithm. If the dependent child has not yet voted (in {ParentB,ChildA}) then
the new parent tells it to participate in the gather phase. If the child has voted
(in {ParentC ,ChildB}), the new parent tells it to either participate in the gather
phase (if the old parent failed before propagating the message up the tree), or
the decision phase (if the old parent failed after propagating the message up the
tree). If the new parent had successfully completed the collective operation, then
it replies with the decision value and the child decides with the new parent. If
the new parent also fails, the child queries the next alive parent.

If the coordinator fails, the termination detection algorithm is activated in
each of the uncertain dependent parent participants of the coordinator, which
may involve a parent at a lower level in the tree for cases where a first level parent
failed. If a dependent parent participant has not voted (in {ParentB,ChildA})
then it can decide UNDECIDED. If a dependent parent participant has voted (in
{ParentC,ChildB}) it becomes uncertain and enters the termination protocol.
When a parent participant makes a decision, it must propagate that decision
down the tree using the reliable broadcast operation.

As an optimization to the termination algorithm, instead of asking all par-
ticipants in the collective group for a decision (as with the original two-phase
algorithm), the uncertain participant only asks the parent participants depen-
dent upon the coordinator. Notice that if the coordinator made a decision then
the directly dependent parent participants of the coordinator would be the first
to know, since they are in the broadcast group of the coordinator. Further, since
children in the sub-tree below the parent only decide with their direct ancestors
in the tree, those dependent children do not need to be queried since they cannot
make a different decision than that of their parent.

The tree structure remains static between successful completions of the al-
gorithm. Upon successful completion, the agreed upon list of failed processes is
used to rebalance the tree structure. Rebalancing has been shown to improve
the performance of collective operations after fail-stop process failure [11].

Even with the tree structured algorithm, there is still a possibility for blocking
if the coordinator fails after the gather and before the broadcast operation. As
mentioned in Section 3, in this one scenario the uncertain processes are aborted,
by default, to protect the user.
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Fig. 2. Performance of fault tolerant log-scaling two-phase commit algorithm

5 Results

The following analysis used a prototype of the FTWG’s RTS proposal based
on the development trunk of the Open MPI implementation of the MPI stan-
dard [8]. Fault aware collectives are provided in the ftbasic component of the
coll framework [11]. Three variations of the MPI Comm validate all collective op-
eration were implemented: a linear two-phase, a log-scaling two-phase, and a
non-fault tolerant log-scaling allreduce. The allreduce algorithm is similar in
form to the two-phase commit algorithm so it serves as an appropriate baseline
for performance comparison. Though any tree topology can be used with the
presented algorithm, a binomial tree is used in this implementation.

These tests used 32 nodes with each node containing four quad-core 2.0 GHz
AMD Opteron processors. The Ethernet (tcp) and shared memory (sm) network
drivers in Open MPI were used for these tests since they are the only fully
supported interconnects provided by the prototype at this time. In the failure-
full tests specific ranks are forcibly terminated before the performance testing by
sending them the SIGKILL signal. This paper assumes fail-stop process failures,
and once a process fails it is never restored. After a warmup phase, each data
point is the average of 20 sets of an inner timing loop of 200 operations.

Figure 2(a) shows the failure-free performance of the three implementations.
This figure illustrates the expected log-scaling performance of the algorithm
presented in this paper. At 512 processes, the log-scaling algorithm shows a
significant improvement over the linear-scaling algorithm, while staying within
3% of the baseline performance.

Figure 2(b) explores the performance impact on the log-scaling two-phase
commit algorithm as the number of failures increases for a fixed sized job of
512 processes. The baseline performance in this figure is a failure-free run of the
allreduce algorithm on a reduced sized communicator. As the number of fail-
ures increases the need to rebalance the validation tree upon successful agree-
ment becomes readily apparent (2.6 times slower at 256 failures). The rebalanced



262 J. Hursey et al.

performance is at worst 6% slower (at 64 failures) than the baseline allreduce
algorithm. This difference indicates that there may be further room for improve-
ment in the implementation.

6 Conclusion

Fault tolerant agreement algorithms play a foundational role in many fault toler-
ant applications, but existing algorithms often struggle with scalability to large
numbers of processes. The MPI Forum’s FTWG proposed, as part of the RTS
proposal, a MPI Comm validate all collective operation to encapsulate such al-
gorithms. This operation provides uniform agreement of the set of known failed
processes in the specified communicator (variations are also available for windows
and file handles) even in the presence of process failures during the algorithm.

This paper explores an enhancement to the well established two-phase commit
algorithm. By replacing the linear broadcast and gather operations with tree-
based, log-scaling operations the point-to-point message complexity was reduced
from O(2N) to O(2log(N)). Further by combining the list construction opera-
tion with the two-phase commit protocol, no additional messages were added
to fully support the MPI Comm validate all collective operation. This paper de-
scribes the additional error handling mechanisms required to maintain the fault
tolerance guarantees of uniform agreement even in the presence of failures. Using
a prototype implementation in Open MPI, performance results showed scaling
performance comparable to an MPI Allreduce operation.

Since the two-phase commit algorithm is blocking in some situations, we are
extending this design to non-blocking algorithms. Concurrently, we are exploring
other methods for implementing this collective algorithm to further improve
scalability and performance. Finally, we will consider dynamically constructed
trees, instead of statically rebalanced trees, which may help manage the effects
of process skew [16].
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Abstract. Seismic processing applications are used to identify geolog-
ical structures where reservoirs of oil and gas may be found. With oil
companies seeking better precision over larger geographical regions, these
applications require larger clusters to keep execution times reasonable.
The combination of longer run times and clusters with greater numbers
of components increases the probability of faults during the execution.
To address this issue, this paper describes an application-level fault tol-
erance mechanism that considers node crashes and communication link
failures. For this industrial application, experiments show that continued
execution with the remaining resources is both feasible and efficient.

Keywords: fault tolerance, multicore clusters, RTM application.

1 Introduction

With a better cost-performance benefit than other parallel systems, computing
clusters dominate the HPC market. But even in state-of-the-art environments,
many applications require days or even months to run. Given that these systems
are composed of thousands of components, any of which can fail, one of the key
issues is the continued execution of applications in the face of hardware failures.

Applications designed for high-performance clusters generally use the MPI
library. Although the MPI standard does not define provisions for fault toler-
ance, a number of academic implementations such as FT-MPI [6], MPI/FT [1]
e MPICH-V [2] do offer this functionality. Nevertheless, it is hard to design
applications that are portable across MPI implementations due to the need to
conform to the specific requirements of each one.

In the case of many commercial MPI products, such as the Intel MPI li-
brary [8] that focuses on maximising performance, programmers must resort
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to implementing application-level fault tolerance, where an application specific
strategy can be adopted with the intent of minimising the adverse impact on
fault-free performance. In this work, our target is an industrial application in
seismic processing that determines the properties and position of various layers
of subterranean rocks, with objective of identifying geological structures where
reservoirs of oil and gas may potentially be found.

One of the standard data processing techniques used to create accurate geo-
logical images of subsurface rock strata is seismic surveying through geophysical
depth migration. Shock waves generated at the surface travel at different speeds
depending on rock types and patterns and thus are reflected at distinct angles
and refracted differently as they meet new strata. Changes in the wave energy
recorded at the surface by geophones are geometrically relocated in space to
the location that the event occurred beneath the surface. The application tack-
led here employs the Reverse Time Migration (RTM) method [11] to solve the
wave propagation equation, forward in time from the source and backward in
time from the receiver. The RTM algorithm analyses a three-dimensional domain
space that is partitioned amongst the available processors, with one process per
core. Each iteration of the main loop calculates the energy at each point in the
domain to the 10th order in space and 2nd order in time. Given that the solution
for a point in 3D space depends not only on previous energy values at that point
but also on the values of neighbouring points in the three dimensions, at the end
of each loop, the energy values associated with data points in different processes
are exchanged via messages.

This MPI application can require months of computational time even on a
cluster with hundreds of processing cores and thus it would be prudent to take
measures to protect it from failures. This paper describes the mechanisms for
failure detection and recovery that have been aggregated to the RTM application
and evaluates their impact on performance while using the Intel MPI library.

2 Fault Tolerance

MPI applications are not resilient to failures since the standard provides develop-
ers with only two options: either the execution is aborted or control is returned
to the application without further assurance that new communications can occur.
However, there are several approaches that address this issue and a few are sum-
marised in Table 1, which highlights, whether faults are considered at the level of
nodes or individual processes; the manner of fault detection; how the remaining
processes are notified of faults; how the state is saved; and how failed processes
are restored, for example, by creating new processes or using spare ones.

In production, the target application executes using Intel MPI and so was
modified to incorporate the proposed application-level fault tolerant procedures.
Monitor processes are distributed across servers to detect remote node or link
failures, while application processes periodically save their state and are noti-
fied of faults by their local monitors through interrupts that initiate recovery
procedures, as described in the rest of this section.
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This work is based on a partially synchronous distributed system model [3]
where an application is defined as a set of processes that communicate through
messages. The target environment consists of a multicore computing cluster. The
execution model considers a single application process, pj , per core. We assume
that multiple unrecoverable failures on nodes or communication links may occur,
but only one fault at a time, and that the system is fully interconnected so that
a link failure will not partition the network. After a failure, the application will
use the remaining resources to continue its execution since maintaining spare
resources idle would be inefficient in the case of long running applications.

Table 1. Fault Tolerance Services Available. C = checkpointing; ML = Message-
logging; CC = Coordinated checkpointing; AC = Application-level checkpointing;

Implementation Granularity Detection
Fault

Notification
Saving

technique
Recovery

MPI-FT [10] Node Centralized By message. ML New process

MPI/FT [1] Process Centralized By message. CC New process

MPICH-V [2] Process Centralized None ML or CC New process

FT-MPI [6] Process
Not

informed
By error code
from MPI calls

AC User defined

RADICMPI [5] Node Distributed None C + ML New process

EasyGrid AMS [12] Process Distributed None AC + ML New process

2.1 The Fault Monitoring Mechanism

In order to detect faults, application processes and a single monitor process mi

coexist in each node. The multicore node to which pj and mi are allocated to is
denoted by n(pj) and n(mi), respectively. Each monitor mi creates four threads:
Inspection(), Propagation(), Detection() and Heartbeat() and coordinates the ter-
mination of the application. It manipulates the following lists that are shared
among the threads: LSi is a list of monitors that have supposedly failed; faulty
application processes in LFPi; and LFMi with all monitor processes (and conse-
quently, their nodes) that have failed during execution. Semaphores coordinate
threads and enforce thread safe MPI behaviour.

Although perhaps particular to Intel MPI, the behaviour of blocking collective
MPI operations had to be modified to allow the execution to continue with fewer
processes, in case of a failure. Some MPI functions were re-implemented using
the following techniques: the Dissemination algorithm [7] for MPI Barrier; the
Binomial Tree for MPI Bcast and MPI Reduce. The monitors assume the role
of MPI Finalize and detect the termination of the active MPI processes.

In asynchronous systems it is impossible to distinguish whether a processor is
running very slowly or has stopped all together due to a crash failure [3]. There are
different classes of failure detectors but none in the asynchronous model is imple-
mentable without making some synchrony assumptions. Based on the class �Q,
the threads in Algorithms 1 and 2 [9] were implemented to identify faulty nodes.
The monitors are arranged so that succ(mi) and pred(mi) represent, respectively,
the successor and predecessor of monitor mi in the ring of active monitors.
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Algorithm 1. Detection()
1 targeti ← succ(mi);
2 LSi ← ∅; ∀mj : �i,j ← timeout;
3 loop
4 wait(mutexi);
5 send(“Are you alive?”, targeti);
6 received← false;
7 signal(mutexi);
8 sleep(�i,targeti);
9 wait(mutexi);

10 if not received then
11 �i,targeti ←�i,targeti + 1;
12 LSi ← LSi

⋃{targeti};
13 targeti ← succ(targeti);

14 signal(mutexi)

Algorithm 2. Heartbeat()
1 loop
2 recv(msg, mj);
3 wait(mutexi);
4 if msg = “Are you alive?” then
5 send(“I am alive.”, mj);
6 if mj ∈ LSi then
7 LSi ← LSi − {mj , ..., pred(targeti)};
8 targeti ← mj ; received← true;

9 else if msg = “I am alive.” then
10 if mj = targeti then
11 received← true;
12 else if mj ∈ LSi then
13 LSi ← LSi − {mj , ..., pred(targeti)};
14 targeti ← mj ; received← true;

15 signal(mutexi);

Detection() in Algorithm 1 sends, after at least �i,targeti time steps, a heart-
beat request message to its neighbouring monitor, targeti, to discover if that
node has failed. If after a further �i,targeti time units, mi has not received an
answer from targeti (via Heartbeat()), targeti will be placed under suspicion of
having failed and included in LSi. Since a lack of response may be due to the
round trip latency of the messages being longer than �i,targeti , the timeout is
incremented to reduce the possibility of future incorrect presumptions.

Upon receiving a message msg from monitor mj , Heartbeat() in Algorithm 2
either replies to the sender with a heartbeat or records the receipt of such a mes-
sage. If the sender mj is in LSi, all the monitors between mj and pred(targeti)
are removed, since mj is in fact alive and the other monitors will be tested by
mj and/or its successors. This mechanism can therefore correct false positives
made by unreliable failure detectors. On the other hand, if a monitor in this
path has actually failed, this will eventually be detected again.
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In Algorithm 3, Inspection(), at every inspection timeout time units, mi

checks for a new failed monitor (that is, a node) and, if a failure occurred,
updates LFMi and broadcasts this information to synchronise and update the
remaining monitors. If Propagation() (Algorithm 4) receives a new list of faulty
monitors from another monitor, mi updates its own LFMi and LFPi. An inter-
rupt signal and LFPi are sent to all application processes present on n(mi). In
turn, an acknowledgement message, sent by each pj on n(mi) should be received
by mi to confirm the receipt of the failure information.

Algorithm 3. Inspection()
1 loop
2 sleep(inspection timeout); wait(mutex2i); wait(mutexi);
3 if LSi �= ∅ then
4 if LFMi = ∅ then
5 LFM auxi ← LSi; LFMi ← LSi;
6 else
7 LFM auxi ← (LSi − LFMi); LFMi ← LFMi ∪ LFM auxi;

8 signal(mutexi);
9 if LFM auxi �= ∅ then

10 ∀mj , if mj /∈ LFMi then send(LFMi, mj);
11 signal(mutex2i);

Algorithm 4. Propagation()
1 loop
2 recv(LFMk, mk); wait(mutex2i);
3 LFMi ← LFMi ∪ (LFMk − LFMi);
4 ∀pj , if n(pj) = n(mi) then sendInterruptionSignal(pj);
5 LFPi ← IdentifyFaultyApplicationProcesses(LFMi);
6 ∀pj, if n(pj) = n(mi) then send(LFPi, pj);
7 ∀pj , if n(pj) = n(mi) then recv(END PROPAGATION,pj);
8 signal(mutex2i);

2.2 Failure Recovery

In this work, crash faults are tackled with checkpoints and rollback recovery
techniques within the algorithm. The recovery process consists of restoring the
application to a consistent global state prior to the failure. A global checkpoint
is a set of local checkpoints, one from each process of the application and it is
consistent if, for the given p local checkpoints, there are no messages (or a causal
chain of messages) sent by pi after its local checkpoint that must be received by
pj before its corresponding checkpoint.

In RTM, application processes execute a loop where during each iteration,
messages are exchanged with its neighbours (determined by the domain decom-
position), before moving on to the next iteration. Thus, recording checkpoints
at the end of each iteration guarantees that the local checkpoints form a consis-
tent global state. The checkpoints contain information relating to 16 matrixes:
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2 three dimensional matrixes representing wave fields and 14 bi-dimensional en-
ergy matrixes. To create a checkpoint, all of these matrixes are copied into a
unique three dimensional matrix and then compressed using zlib [4]. Initial tests
showed that application runtime increases in the order of two to three times
when uncompressed matrix is used. In our experiments, each local checkpoint
is saved in a different file in a common repository managed by NFS. Only the
most recent checkpoint needs to be kept for each process. Since the remaining
active processes divide the original domain space amongst themselves, each pro-
cess must load the matrixes that correspond to the new size and position of the
local domain space. Fault recovery requires the remaining application processes
to read and uncompress the checkpoint files necessary to obtain the wave field
and energy data of their newly assigned subdomain.

3 Experimental Results

The original application and the fault tolerance procedures were implemented
in C++ and Fortran together with the Intel MPI library. The experiments were
run on a 40 nodes cluster, each node containing two Intel Xeon E5430 2.66GHz
Quad core processors with 12MB L2 cache each and 16GB RAM memory per
node, running RHEL 5.3 and NFS, and interconnected by a Gigabit Ethernet
network. Tests were run over a real problem instance, with each process initially
receiving a 210× 210× 832 wave field matrix.

Table 2. The overhead of the fault tolerance mechanisms with checkpoint intervals of
250 and 500 iterations (ET250 and ET500)

N (nx ∗ ny) Matrix Dimension ET (s) ET250 (s) O250 (%) ET500 (s) O500 (%)

24 (8× 3) 1600 × 600× 800 3609.35 3648.37 1.08 3627.35 0.50

32 (8× 4) 1600 × 800× 800 3560.65 3627.33 1.87 3595.32 0.97

64 (8× 8) 1600 × 1600 × 800 3812.89 3987.31 4.57 3915.06 2.68

128 (8× 16) 1600 × 3200 × 800 3956.72 4165.27 5.27 4063.90 2.71

256 (8× 32) 1600 × 6400 × 800 4074.69 4365.47 7.14 4221.26 3.60

Table 2 shows the number of processes N where nx and ny are the number
of cores per node and of nodes, the total dimension of the problem and ET , the
average of five executions of the original code without any fault tolerance mech-
anisms. The first set of tests analyse the monitoring and checkpointing overhead
in a scenario without failures. The following parameters were used: timeout =
60 seconds; inspection timeout = 180 seconds; and checkpoints at two different
intervals, every 250 and 500 iterations, respectively. In all tests, RTM executed
3.077 iterations, resulting in 12 checkpoints for the 250 iteration interval and 6,
for 500. As expected, the application’s runtime and the overheads of the fault
tolerance procedures grew with the number of processes and such overheads
were smaller for a checkpoint interval of 500 than for 250 iterations. From these
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results, it is seen that the performance degradation caused by monitoring and
checkpointing was not substantial, ranging from about 1% and 0.5 % with 24
processes up to 7.14% and 3.6% with 256 processes, for 250 and 500 iterations,
respectively. Overheads increased only slightly when more than 64 processes were
employed, indicating that the proposed approach may be scalable.

The next experiment considers the occurrence and recovery from a single fault
at three different points during the execution of the RTM application: (i) at the
beginning, immediately after the first checkpoint; (ii) in the middle of the execu-
tion, after the sixth and third checkpoint, for 250 and 500 iterations, respectively,
and (iii) at the end after the last checkpoint. Let ETm and ETm−1 be the fault
free runtimes of the application on m and m − 1 nodes, respectively, and let nt

be the total number of checkpoints and nc be the number of checkpoints prior to
the single failure, respectively, taken by fault tolerant version (FT-RTM). Then,
MET = nc

nt+1ETm + nt+1−nc

nt+1 ETm−1 is a lower bound for the minimum execu-
tion time of FT-RTM with a single failure. The results in Table 3 are again the
average time, in seconds, of five executions, that showed a standard deviation
of less than 1%. The results for 500 iterations presented similar behaviour but
with smaller overheads and were omitted due to space limitations. In all cases,
the overhead for a single failure was less than 18% and the detection overhead
was about 3,8% of 1-failure runtime, thus showing that the proposed approach
is feasible and more attractive than restarting the application.

Table 3. Average execution times (in seconds) with and without failure for scenarios
(i), (ii) and (iii) with checkpoint intervals of 250 iterations and their overheads

N 24 32 64 128 256

Scenario (i)
MET 4935.68 4521.16 4245.92 4497.13 4254.16

1 failure 5390.90 4894.97 4639.15 4953.95 4993.33
Overhead (%) 9.22 8.27 9.26 10.16 17.38

Scenario (ii)
MET 4383.04 4120.95 4065.49 4271.96 4179.38

1 failure 4731.40 4441.49 4509.76 4743.41 4786.03
Overhead (%) 7.95 7.78 10.93 11.04 14.52

Scenario (iii)
MET 3719.88 3640.69 3848.97 4001.76 4089.64

1 failure 4001.30 3957.74 4324.22 4559.41 4773.69
Overhead (%) 7.57 8.71 12.35 13.94 16.73

During the experimental evaluation, it was observed that when a failure oc-
curred, TCP would continuously re-transmit an undelivered message, previously
sent by an MPI process to one that has failed, up to a maximum number of
tries, given by the variable tcp retries2. After that, the error would propagate
from TCP to MPI, causing the application to abort with no chance of recovery.
In order to adopt the proposed fault tolerance procedures, it was necessary to
change the value of tcp retries2, the default being 15, to a larger value, to allow
enough time to detect and recover from the fault.
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4 Conclusion and Future Work

The fault tolerance techniques presented here can be employed in a variety
of scientific areas that require domain decomposition simulation. Through an
extensive experimental analysis, the proposed approach showed to be applicable
in practical terms due to its small impact, since the overheads are reasonably
low and the mechanisms appear to be scalable. However, further analysis will be
carried out with an increasing number of nodes. In this situation, recording all
checkpoints in a common repository may become a bottleneck particularly when
the number of processes is high and/or checkpointing becomes more frequent. In
order to address this problem, all processes of a node could send their compressed
checkpoints to a local leader process that would assume the role of writing them
to disk. A preliminary evaluation concluded that the scheme is advantageous for
128 and 256 processes, thus indicating that for large systems such a procedure
might reduce the bottleneck of using a common fault free repository.
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Abstract. Concern is beginning to grow in the high-performance com-
puting (HPC) community regarding the reliability guarantees of future
large-scale systems. Disk-based coordinated checkpoint/restart has been
the dominant fault tolerance mechanism in HPC systems for the last
30 years. Checkpoint performance is so fundamental to scalability that
nearly all capability applications have custom checkpoint strategies to
minimize state and reduce checkpoint time. One well-known optimiza-
tion to traditional checkpoint/restart is incremental checkpointing, which
has a number of known limitations. To address these limitations, we in-
troduce libhashckpt; a hybrid incremental checkpointing solution that
uses both page protection and hashing on GPUs to determine changes
in application data with very low overhead. Using real capability work-
loads, we show the merit of this technique for a certain class of HPC
applications.

1 Introduction

Disk-based coordinated checkpoint/restart has been the dominant fault tolerance
mechanism in high performance computing (HPC) systems for at least the last 30
years. In current large distributed-memory HPC systems, this approach generally
works as follows: periodically all nodes quiesce activity, write all application and
system state to stable storage, and then continue with the computation. In the
event of a failure, the stored checkpoints are read from stable storage to return
the application to a known-good state.
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Checkpoint performance impacts scalability of large-scale applications to such
a degree that many capability applications have their own custom application-
specific checkpoint mechanism to minimize the saved checkpoint state and there-
fore the time to checkpoint (this time is also referred to checkpoint commit time).
While this approach minimizes the application state that must be written to
disk, it requires intimate knowledge of the application’s computation and data
structures, and is typically difficult to generalize to other applications.

One well-known and generalized optimization of traditional checkpoint/re-
start is incremental checkpointing. Incremental checkpointing [6,8,17] attempts
to reduce the size of a checkpoint, and therefore the time to write a checkpoint,
by saving only differences in state from the last checkpoint.

Current incremental methods have failed to achieve dramatic decreases in
checkpoint size because of a reliance on page protection mechanisms to deter-
mine which address ranges have been written, or dirtied, during the checkpoint
interval [8]. Relying solely on page-based mechanisms forces such an approach to
work at a granularity of the operating systems page size. Even if only one byte
in a page is written, the entire page is marked as dirty and must be saved. Fur-
thermore, if identical values are written to a location, that page is still marked
as dirty. These problems are also compounded by the increasing maximum page
sizes of modern processors and the increased performance for HPC applications
on these larger page sizes.

To address these limitations, we introduce libhashckpt: a hybrid incremental
checkpointing approach that uses page protection mechanisms, a hashing mecha-
nism, and MPI hooks to determine the locations within a page that have changed.
To reduce the overhead of the hash calculation, libhashckpt also uses graphics
processing units (GPU) to offload the hash calculation. Using real HPC work-
loads, we compare the performance of this technique against page protection-
based incremental systems and highly optimized, application-specific checkpoint
techniques. Our results show that our approach is able to dramatically reduce
system checkpoint sizes compared to previous incremental checkpointing sys-
tems, in some cases approaching the checkpoint sizes of hand-tuned application-
specific checkpointing systems.

2 Approach

2.1 Overview

The hash-based incremental checkpointing mechanism in libhashckpt works as
follows. While the application is running, the library uses the page-protection
mechanism to mark those virtual memory pages that have been written in the
checkpoint interval as potentially dirty. To support MPI applications, the library
also intercepts receive calls and marks message buffers as dirty, identifying them
as candidates to be checked by the hashing mechanism. These message buffers
require marking because changes in memory from user-level network hardware
is not subject to the processor’s page protection mechanisms.
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When a checkpoint is requested, the library hashes all blocks corresponding
to potentially dirty pages, comparing the key with previously stored values, if
they exist. If no key exists, or if the key has changed, the block is marked to be
included in the checkpoint and excluded otherwise. If the node contains a GPU,
potentially dirty blocks are copied down to the GPU and the computed keys are
copied up to host memory. Finally, once the hash calculation has completed, all
blocks that have been marked as changed by the library are then saved to stable
storage for later retrieval, if needed.

2.2 Library Implementation Details

libhashckpt is based on the libckpt library [17], now referred to as clubs [2].
Clubs is a transparent, user-level, checkpoint library for Unix based systems. It
contains a number of optimizations including:

– Virtual memory page-protection based incremental checkpointing;
– Forked checkpointing; and,
– User-directed checkpointing which allows the user to include or exclude por-

tions of the processes address space in the checkpoint.

We added the following functionality to this library. Firstly, we added a frame-
work for calculating and storing hash keys of arbitrary block size. The block size
can be adjusted to be larger or smaller than the native page size. We also modi-
fied the library to intercept MPI receive calls using the MPI profiling layer found
in most modern MPI libraries. Finally, we added an engine for offloading this
hash calculation to graphics processing units, if any are present.

2.3 Applications and Platform

To evaluate the merit of our hash-based checkpointing library, we present results
from two key HPC applications; CTH [9] and LAMMPS [18,19]. These applica-
tions represent important HPC modeling and simulation workloads. They use
different computational techniques, are frequently run at very large scale for
weeks at a time, and are key simulation applications for the US Department of
Energy. Also, each of these applications contain highly-optimized application-
specific checkpoint mechanisms that will be used for comparison with the meth-
ods outlined in this paper.

These application tests were conducted on the Cray Red Storm system at
Sandia National Laboratories. For these application runs, the hashing was per-
formed by a spare on-node CPU core as Red Storm system does not contain
GPUs. For the GPU results in this paper, we compare the performance of the
Opteron processor on Red Storm [5] against that of a NVIDIA Tesla C1060
GPU.

3 Results

In this section, we outline the performance of libhashckpt. First, we examine
the results of hashing versus page-based protection mechanisms for determining
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the percentage of application memory that has actually changed. Following
this, we examine the performance of this library with the two aforementioned
simulation workloads, comparing this hash-based approach with both standard
page protection-based incremental checkpointing and each application’s specific
checkpoint mechanism. Finally, we examine the performance advantage of com-
puting the MD5 [12] hash used by libhashckpt using a GPU versus a CPU and
use a simple model to outline the viability of this method.

With this hash-based approach aliasing is a concern. Aliasing, also referred
to as collisions, comes about when modifications to a block are just such that
the key values are identical. The danger with aliasing is the library will not save
modified application data, thereby corrupting the application in the event of a
restart. Previous studies have shown the likelihood of aliasing to be higher in
practice then expected theoretically for a number of hash functions. Specifically,
with the hash signature functions CRC32 and XOR, the probability of collision
has been shown to be too high to be considered safe [7]. Secure hash signatures
like MD5 and SHA1, however, have been shown to behave in practice as ex-
pected theoretically, and therefore reliable enough to be used in a hash-based
approach [13].

3.1 Hash-Based Dirty Data Detection

The key feature that libhashckpt hopes to exploit is finer-grained detection of
dirtied blocks than is currently possible using mechanisms based solely on page
protection mechanisms. To examine the overall potential of such a hash-based
approach, we first used libhashckpt to examine what portion of an application’s
memory actually changed (using fine-grained hashing) versus the percentage that
a pure page protection-based mechanism would indicate was changed.

Figure 1 shows the percentage of memory that our hash-based mechanism
indicates actually changed at each 15 minute checkpoint interval versus the per-
centage that a page protection mechanism indicates may have changed. For each
of these tests, we use a 512 byte block size on an operating system with 4KB
pages. Therefore each machine page contains 8 hash blocks. In Figure 1(a), we
see that, while nearly all the allocated memory is written in a checkpoint interval,
a very small percentage of that memory actually changes. This small percentage
of change is an artifact of the simulation problem. The application uses thresh-
olding such that, in a small simulation-time interval, sections of the simulation
do not change. In contrast, for LAMMPS in Figure 1(b), the amount of data
changed is nearly identical to the data written. This is because the largest data
structure in LAMMPS is the neighbor structure, which continuously changes as
atoms move around.

These results demonstrate the potential accuracy advantage a hash-based in-
cremental checkpointing approach can provide over a purely page protection-
based mechanism. On the other hand, these results also show that the potential
benefits are also highly application-dependent.
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Fig. 1. Average percent of allocated memory changed detected using a hash-based
incremental checkpointing mechanism for the CTH and LAMMPS. The shaded region
represents the average percent of memory written to using a page-protection based
mechanisms. Errorbars are shown for CTH but omitted for LAMMPS as the per-
process variation is ±0.5%.
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3.2 Checkpoint File Size Comparison

Based on the results in the previous section, we then examined the resulting
difference in checkpoint sizes between the two incremental checkpointing ap-
proaches (pure page protection vs. libhashckpt’s hybrid page protection/hash-
ing scheme). We also compared the size of these checkpoints with those generated
by the application-specific mechanisms. These application specific methods are
highly optimized, and, for the purpose of this work, we view these checkpoint
sizes as a file size optimum.

Table 1. Per-process checkpoint size for CTH and LAMMPS. This table contains the
size of the checkpoint using standard page protection-based system-level incremen-
tal checkpointing (VM CKPT), libhashckpt’s hybrid approach, and an application-
specific checkpointing approach (App CKPT). For the latter two columns the number
in parenthesis is the percent reduction in size when compared to a system-based incre-
mental checkpoint. The VM CKPT and Hash CKPT checkpoints contains data from
both the application as well as other libraries linked with the application, for example
MPI library data and its associated buffers.

Application VM CKPT Hash CKPT App CKPT
(MB) (MB) (MB)

CTH 513 35 (93%) 26 (95%)
LAMMPS 2735 2670 (2.3%) 608 (78%)

Table 1 shows a comparison in per-process checkpoint sizes for our two ap-
plications. We see that for CTH, libhashckpt’s hash-based method dramati-
cally reduces the size of system-based incremental checkpoints based solely on a
page protection mechanism. Custom application-specific checkpointing mecha-
nism does better still, but our hybrid scheme results in checkpoints that are only
35% larger than this highly-optimized approach. One reason our hash-based li-
brary is larger than the application-specific method has to do with the fact that
the application checkpoint contains only application data, while the other meth-
ods shown save state from the application as well as the libraries linked with the
application, most notably the MPI library and its associated data and buffers.

In contrast to CTH, the hash- and page-based schemes are nearly identi-
cal in size for LAMMPS, with application-specific checkpointing routines of-
fering a 75% reduction in checkpoint sizes. This is because the application-
specific checkpointing mechanism in LAMMPS can completely avoid writing
neighbor structures to checkpoints because they can be reconstructed at appli-
cation restart, while system-based methods do not have the application-specific
knowledge needed to do this.

3.3 GPU Performance

Figure 2 compares GPU vs CPU performance of an MD5 calculation for varying
block sizes. The GPU numbers presented in this plot represent the best measured
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for a block size varying the number of threads and the size of the overlap of the
concurrent copy down to the card and computation. Also, these GPU numbers
include the time to copy data down to the GPU as well as the time to copy
computed keys to host memory. The CPU numbers use the Libgcrypt MD5
implementation. From this figure, we see that the GPU greatly outperforms the
CPU implementation.
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Fig. 2. A comparison of MD5 hashing rates for CPU and GPU. Note, the GPU rate
includes both the copying of data to be checksummed down to the cards local memory
as well as the copying of the computed keys from the card to host memory. The GPU
data is the best recorded for a block size varying the number of threads and the amount
of overlap in copy and computation. The CPU numbers are using the Libgcrypt [1] MD5
hashing algorithm.

In addition, with a per-process rate between 600 and 2600 MB/sec, the GPU-
based data rates greatly exceed the per-process rate to stable storage for many
large scale systems. In the next section we construct a simple model to further
illustrate the viability of this approach.

3.4 Viability of Hash-Based Incremental Checkpointing

To evaluate the viability of this method we will compare the performance of this
hash-based mechanism with that of a strictly page-based approach. This hash-
based approach will outperform the page-based approach when the reduction in
the checkpoint size for the hash method outweighs the cost of computing the
hashes of the modified pages. More specifically, this approach is viable when:1

1 Plank et al pose a similar concept [16].
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|checkpoint|
βhash

+
(1 − compression) × |checkpoint|

βckpt
<

|checkpoint|
βckpt

(1)

where |checkpoint| is the size of page-based checkpoint, compression is the per-
cent reduction of hash-based approach in comparison to the page-based method,
βhash is the hashing rate, and βckpt is the rate of checkpoint commit. This equa-
tion can be reduced to:

βckpt

βhash
< compression (2)

Using the CTH data presented previously in this paper, compression is 83%
and the βhash mean is around 2.0GB/s. Therefore, if a machine has a per-
process checkpoint commit speed is less then 1.66GB/s then the hash-based
approach will have a lower overhead than the strictly page-based approach. Even
with many optimizations and high performance parallel file systems that stripe
large writes simultaneously across many disks and file servers, it is difficult to
achieve per-process disk commit bandwidth of this magnitude for many large
scale systems. A per-process commit rate greater than this 1.66GB/sec value
and the page based approach will have lower overheads. For LAMMPS, the
compression is 2.4%, therefore the per-process checkpoint commit breakpoint
speed is much lower at 48MB/sec; a value more easily reached by current parallel
I/O systems.

4 Related Works

Checkpoint/restart is a well-known method for application fault-tolerance for
large-scale distributed and parallel systems that has been studied extensively
for over thirty years [8]. A number of optimizations has been suggested includ-
ing; forked or copy-on-write checkpointing [10], checkpointing to remote nodes
[20], communication-induced checkpointing [15], compiler-assisted checkpointing
[4], incremental checkpointing [6,11], and probabilistic or hash-based checkpoint-
ing [14,3]. However, none of these methods have yet matched the performance
of application-specific methods and are therefore not widely accepted by most
capability workloads.

Most closely related to this work, Agarwal et al. [3] investigated the per-
formance characteristics of a hash-based adaptive incremental checkpointing li-
brary. Similar to this work, the authors use an MD5 hash to determine the por-
tions of an application address space that have changed in a checkpoint interval.
In contrast to this work, we evaluate the merit of this hash-based technique on
actual HPC capability workloads. In addition, we show how GPUs can be used
to significantly reduce the overhead of the hash computations. This overhead is
important as the computation overhead must be kept significantly lower than
the rate to save to stable storage. Also, we compare the merit of this technique
with an optimal application-specific checkpoint mechanism. Finally, our work
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varies from this previous work as we show that, while this technique may be ap-
propriate for some applications, there are classes of HPC applications for which
this method is clearly not appropriate.

5 Conclusions and Future Work

In this paper, we introduced libhashckpt, an incremental checkpointing library
that uses hashing to save only the changed state of an application in a check-
point interval. To significantly decrease the overhead of the hash calculation,
libhashckpt can utilize GPUs. Using this library, we compare the checkpoint
file sizes of this hash-based method with that of a standard page-protection
mechanism and a highly optimized application-specific mechanism. Using real
capability HPC workloads we show that, for a certain class of applications, this
hash-based method can reduce the checkpoint file size to be around 15% of that
of a page-based approach. In addition, this method can create checkpoint files
which are only 35% larger than that of a manually-coded, application-specific
method. Finally, we introduced a simple model to illustrate this proposed tech-
niques viability for real-world HPC workloads.

There are several avenues of future work related to this research. First, we
would like to analyze more applications in order to evaluate the merit of this
technique to a broader set of large-scale applications. In addition, we would like
to investigate other hash and checksum algorithms. For this study we used a
cryptographically secure hash (MD5), but this algorithm may be overkill for
determining block changes and other collision resistant, yet less computationally
intense, hash signatures may have lower overheads. Lastly, we need to compare
this method with other checkpoint optimization techniques, such as compiler-
assisted incremental checkpoint methods.
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Abstract. MPI communicators abstract communication operations across appli-
cation modules, facilitating seamless composition of different libraries. In addi-
tion, communicators provide the ability to form groups of processes and establish
multiple levels of parallelism. Traditionally, communicators have been collec-
tively created in the context of the parent communicator. The recent thrust toward
systems at petascale and beyond has brought forth new application use cases, in-
cluding fault tolerance and load balancing, that highlight the ability to construct
an MPI communicator in the context of its new process group as a key capability.
However, it has long been believed that MPI is not capable of allowing the user to
form a new communicator in this way. We present a new algorithm that allows the
user to create such flexible process groups using only the functionality given in
the current MPI standard. We explore performance implications of this technique
and demonstrate its utility for load balancing in the context of a Markov chain
Monte Carlo computation. In comparison with a traditional collective approach,
noncollective communicator creation enables a 30% improvement in execution
time through asynchronous load balancing.

1 Introduction

MPI communicators [6] provide communication contexts that differentiate both point-
to-point and collective operations. This functionality enables the programmer to isolate
communication between application modules by effectively sandboxing communica-
tion in different communicators. This has enabled the development of large applica-
tions composed of independently developed modules and libraries. In addition to this
primary function, communicators also provide the ability to form groups of MPI pro-
cesses and perform communication, especially collective communication, within these
groups. Such process groups enable the programmer to express multiple levels of par-
allelism within MPI applications, a capability that has been shown to be increasingly
important as computing system size increases.
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At the MPI implementation level, the key ingredient in a communicator is a context
id. All processes participating in a communication operation identify the communica-
tor using its context id, often an integer. The context id essentially serves as another
tag, in addition to any user-provided communication tag, in matching communication
operations. As such, consensus on the context id is required in order to correctly match
communication operations.

MPI supports collective creation of communicators, where all processes in the par-
ent communicator participate in the creation of the child communicator. However, the
recent push towards petascale and beyond has brought forth new application architec-
ture idioms and programming model use cases that highlight the need for noncollec-
tive creation of communicators. For example, in applications where a small subset of
processes dynamically cooperate to make progress on a work component, this subset
of processes might want to create a communicator without synchronizing with the re-
maining processes in the system. Similarly, when a process fails, recreating the com-
municator should be possible without involving the failed process. However, current
MPI communicator creation operations such as MPI Comm dup, MPI Comm split, and
MPI Comm create do not allow for such flexibility.

This collective mode of creation is so widely taught and practiced that noncollec-
tive creation of communicators was considered impossible within the MPI standard. In
this paper, we present a new communicator creation algorithm that constructs a com-
municator collectively only on the group of processes that will be members in the new
communicator. This algorithm is portable and uses only functionality provided by the
current MPI standard. In short, our algorithm works around the MPI API’s limitation by
hierarchically constructing and merging intercommunicators into intracommunicators.

We present key use cases from a variety of domains that motivate the need for com-
municator creation that is not collective on a parent communicator. In addition, we
evaluate the overhead of this implementation as compared with the traditional collec-
tive creation directly supported in the MPI API. We evaluate the benefits of this ap-
proach to asynchronous dynamic load balancing through a Markov chain Monte Carlo
benchmark kernel. Compared with a traditional collective approach to load balancing,
noncollective communicator formation enables a 30% improvement in execution time.

This paper is organized as follows. In Section 2 we present the current state of MPI
communicators and motivate the need for noncollective communication creation. In
Section 3 we present our noncollective communicator creation algorithm. In Section 4
we present an empirical evaluation of the overhead and performance impact of noncol-
lective communicator creation. Section 5 contains a discussion of how this functionality
can be incorporated into the MPI standard to improve performance. We summarize our
conclusions in Section 6.

2 Need for Noncollective Communicator Creation

The processes cooperating in a subcomputation of a program are said to form a process
group. In MPI, such groups can be conveniently specified using MPI Group objects.
These objects, created using local operations, specify the participation and ordering of
processes in a group. While MPI groups allow querying for membership, they are not
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sufficient for communication operations. Such operations require the creation of an MPI
communicator, which backs the group information with one or more context ids.

The widely used interfaces for MPI communicator creation are MPI Comm create,
MPI Comm dup, and MPI Comm split. MPI Comm dup and MPI Comm split result in
valid communicator handles on all processes in the parent group and hence are naturally
collective on all member processes in the parent communicator. MPI Comm create, on
the other hand, takes an MPI Group object and creates a communicator on the subset
of processes specified by the group. While the outcome is useful only for the processes
participating in the subcommunicator, it is specified to be collective on the parent com-
municator. This has resulted in the common belief that MPI communicator creation
requires full cooperation of all processes in the parent communicator. In the remainder
of this section, we present several case studies where a communicator creation operation
that is not collective over the parent communicator is required to enable a certain capa-
bility (e.g., collective communication after one or more process failures) or is helpful
to improve performance.

2.1 Fault Tolerance

Several solutions have been proposed to provide fault tolerance for MPI programs. All
approaches must address the reconstruction of a communicator that can be used for
continued program execution. Proposed approaches include the use of explicit inter-
communicators [4] and an MPI extension to introduce dynamic communicators that
support grow and shrink operations [3]. The MPI standard leaves the behavior of an
MPI implementation following process or network failures undefined, and several im-
plementations allow for specific communication operations to proceed in such cases.
For example, if a process has failed, point-to-point communication between remaining
processes is not affected; all communication with a failed process would return an error.

Supporting collective operations after a failure has occurred is more challenging, as
all communicators that contain a failed process can no longer be used. A collective op-
eration on such a communicator can return an error. Furthermore, since all operations
to create new communicators are collective, the application cannot create a new com-
municator that excludes the failed process, thus making collective operations unusable
after a process failure has occurred.

With the algorithm we present in this work, a new communicator can be rebuilt
by the application after a failure without introducing the complexity associated with
intercommunicators or an extension to the MPI standard. Our approach relies on the
observation that MPI COMM SELF is well defined on all live processes, irrespective of
the state of any other communicators.

2.2 Global Arrays

Global Arrays [9] is a global address space programming model that provides a
global view of multidimensional, shared arrays distributed across the memory of multi-
ple processes. Much of GA’s functionality is implemented on top of the remote memory



Noncollective Communicator Creation in MPI 285

operations provided by the Aggregate Remote Memory Copy Interface (ARMCI) [7].
Global Arrays and ARMCI were designed to be fully interoperable with MPI and em-
ploy MPI for process management, message passing, and collective operations.

Support for process groups in GA was initially built using MPI communicators.
Subsequent application use cases motivated GA to support process groups that are
collectively constructed only on the processes that are members of the new group.
The implementation of these alternative process groups was not backed by an MPI
communicator. The lack of an MPI communicator for each process group necessitated
alternative pathways for functionality in the implementation that did not rely on com-
municators, primarily in supporting two-sided and collective communication. This de-
sign was based on the widely held assumption that MPI cannot support the needed mode
of communicator creation. While efficient and practical, this broke the interoperability
between ARMCI and MPI. GA has henceforth supported both functionalities, letting
the user trade MPI interoperability for increased flexibility. The work presented in this
paper resolves this dichotomy.

2.3 Dynamic Load Balancing and Multilevel Parallelism

Several applications have stressed the need for flexible management of process groups.
Flexible process groups have been used in mixed quantum-mechanical and molecular
mechanical calculations (QM/MM) [5] that couple classical force calculations for long-
range interactions with short-range quantum mechanical corrections. The work per task
performing a quantum mechanical calculation can vary widely and can only be ap-
proximately estimated a priori, making static load balancing difficult. One approach [8]
employed a dynamic load balancing scheme in which the each QM task specified the
number of processes that form a group to execute that task. Idle processes are identified
and batched into a group to execute the next available task. This approach required idle
processes to form a group while other processes are actively executing other tasks.

Dynamical nucleation theory Monte Carlo (DNTMC) [10,11] simulations are used
for determining molecular nucleation rate constants and chemical properties. One of
the main components of these algorithms involves many parallel Markov chain walkers
to accelerate the exploration of the potential energy surface of interest. The walkers,
each of which is executed in parallel on a subgroup, are all periodically synchronized
to collect statistics and restart information, determine convergence, and steer for the
simulation. One of the major concerns of this model was the load imbalance that can
occur between the individual Markov chains. The reason behind this imbalance is the
variable time for individual energy evaluations, which depends on the overall molecular
cluster configuration and method being used for the evaluation. An alternative method
currently under development allows a group that has completed its assigned work to
help another group. The two groups merge to form a larger group and accelerate the
lagging Markov chain calculation. This approach requires localized creation of groups
with participation from only processes contributing to the particular work of interest.

Nonequilibrium umbrella sampling (NEUS) [2] is a technique for obtaining tran-
sition rates for rare events. Its computational profile is similar to DNTMC, although
load imbalance can emerge from many different sources, as the walkers evaluate mul-
tistep dynamic trajectories rather than an energy evaluation. Because of the scalability
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of the underlying molecular dynamics simulations and the possibility of large variation
in the execution time of each trajectory (the termination criteria depend greatly on the
physics), NEUS can and should dynamically adjust the number of nodes assigned to
each task.

3 Noncollective Formation of MPI Communicators

As discussed in Section 2, the routines provided by MPI for communicator creation
(e.g., MPI Comm create) are collective over an existing parent communicator. In this
section, we define a new group-collective communicator creation model where commu-
nicator creation is collective over only the processes that will be members in the result-
ing communicator. In addition, this algorithm does not require a parent communicator
that is valid for collective communication. This is useful when a parent communicator
(e.g., MPI COMM WORLD) has become invalid for collective communication because
of a failure, when all processes in the parent communicator cannot be recruited to par-
ticipate in communicator creation, and for performance when the output communicator
is much smaller than the parent communicator.

The group-collective communicator creation algorithm is given in Algorithm 1. This
algorithm accepts as input the MPI group corresponding to the new communicator, an
existing communicator that contains all ranks in group, and a tag that can be safely
used by this operation for communication on comm. The algorithm is collective only
on processes that are members of group, and group must be identical on all ranks. If
desired, a check for grp rank = MPI UNDEFINED can be used to filter out callers
that are not in group, returning MPI COMM NULL on these processes. As output, a new
communicator is produced where the ranks are ordered according to group’s ordering.
The algorithm performs log |group| intercommunicator creation and merge steps to
form the final intracommunicator.

The first step in this algorithm is to translate group’s ranks, {0..|group| − 1}, to
the corresponding ranks in comm. In most MPI implementations, this step requires
O(|group| · |comm|) steps except when translating to MPI COMM WORLD, whose
translation table is cached, yielding a complexity of O(|group|).

The output communicator, comm′, is initially assigned MPI COMM SELF. This
communicator is then recursively merged between pairs of adjacent groups until a sin-
gle communicator remains. If the current group identity is even, the group attempts to
create an intercommunicator with the group to its right. This operation requires a tag
that MPI can use internally to create the intercommunicator. The tag argument to the
group-collective communicator creation algorithm is particularly important when mul-
tiple threads invoke this routine concurrently; the user must supply tags such that each
operation can be uniquely identified. If no right neighbor group exists (i.e., size is not
a power of two), the group skips this round and will participate as a right neighbor in a
future round. If an intercommunicator is created, it is then merged into an intracommu-
nicator and stored in comm′. A high/low argument to MPI Intercomm merge is used to
ensure that the rank ordering given in pids is preserved.
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Algorithm 1. Group-collective communicator creation algorithm.
INPUT: group, comm, tag
OUTPUT: comm′

REQUIRE: group is ordered by desired rank in comm′ and is identical on all callers
LET: grp pids[0..|group| − 1] = N and pids[ ] be arrays of length |group|

MPI Comm rank(comm, &rank)
MPI Group rank(group, &grp rank), MPI Group size(group, &grp size)
MPI Comm dup(MPI COMM SELF, &comm′)

MPI Comm group(comm, &parent grp)
MPI Group translate ranks(group, grp size, grp pids, parent grp, pids)
MPI Group free(&parent grp)

for (merge sz ← 1; merge sz < grp size; merge sz ← merge sz · 2) do
gid← grp rank/merge sz, comm old← comm′

if gid mod 2 = 0 then
if ((gid + 1) ·merge sz < grp size then

MPI Intercomm create(comm′, 0, comm, pids[(gid + 1) ·merge sz], tag, &ic)
MPI Intercomm merge(ic, 0 /* LOW */, &comm′)

end if
else

MPI Intercomm create(comm′, 0, comm, pids[(gid− 1) ·merge sz], tag, &ic)
MPI Intercomm merge(ic, 1 /* HIGH */, &comm′)

end if
if comm′ �= comm old then

MPI Comm free(&ic)
MPI Comm free(&comm old)

end if
end for

4 Experimental Evaluation

We have evaluated the cost of our group-collective communicator creation method rel-
ative to the cost of the parent-collective MPI Comm create routine. In addition, we
present a Markov chain Monte Carlo benchmark kernel to explore the performance im-
plications of group-collective communicator creation to load balancing. Experiments
were conducted on a Blue Gene/P system using IBM MPI, which is a derivative of
MPICH2. A node in this system contains a 4-core 850 MHz PowerPC 450 processor
with 2 GB of memory. Racks consist of 1024 nodes and the total number of racks is 40,
yielding 163,840 total processing cores. Because of a bug in the MPI implementation’s
intercommunicator creation routine, we have been forced to limit our experimentation
to two racks, or 8,192 cores.

4.1 Group Creation Cost

In Figure 1 we present the costs of group- and parent-collective communicator cre-
ation over a range of output group sizes. All experiments in this figure were run on
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Fig. 1. Communicator creation cost for group-collective versus MPI Comm create

8,192 cores. In the case of MPI Comm create, collective communication was performed
across all ranks in the parent group (MPI COMM WORLD for this experiment) regard-
less of the output group size. This explains the flat cost of MPI Comm create relative to
the output group size.

In comparison, the group-collective communicator creation must perform
log |group| collective communication steps; the size of the groups involved in this col-
lective communication increases exponentially at each step because of the recursive
merging nature of the algorithm. For small groups, we see that this approach is sig-
nificantly faster than MPI Comm create. The cost increases well beyond the cost of
MPI Comm create; however, as we demonstrate in the next section, this cost can be
amortized by potential benefits to the application.

4.2 MCMC Load-Balancing Example

Markov chain Monte Carlo (MCMC) simulations are typically composed of walkers
that explore a state space with sequential state transitions. The Monte Carlo transition
from one state to the next is tested to determine whether the state is valid; if it is not, it is
rejected, and another transition attempt is made. In addition, the amount of computation
involved in calculating acceptance can vary across states with respect to the input data.
Because of these factors, load balancing MCMC applications is extremely challenging.
Often, the work performed by a walker can be parallelized and executed on a group of
processes. In our current work with the DNTMC application [11], we have developed a
load-balancing solution that reassigns idle processes to active walker groups in order to
accelerate that walker.

For this work, we have developed a benchmark kernel that is representative of such
MCMC simulations. This benchmark creates a set of initial walker groups of size G
and assigns each group a workload. The workload is composed of S work items, cor-
responding to S state transitions in the Markov chain; processing of each item requires
T/group size milliseconds; for simplicity, all state transitions are accepted. When a
group finishes processing its S work items, it merges with the group to its right. Like-
wise, groups must periodically check for incoming merge requests; when one arrives,
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Fig. 2. Markov chain Monte Carlo benchmark
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chronous, and collective load balancing

Ld. Bal. i Avg. St. Dev. Min Max
None 0.00 0.00 0 0
Async. 14.38 3.54 5 26
Collect. 1 5.38 2.12 2 8
Collect. 2 5.38 2.12 2 8
Collect. 4 5.38 2.12 2 8
Collect. 8 5.38 2.12 2 8
Collect. 16 5.38 2.12 2 8
Collect. 32 5.38 2.12 2 8
Collect. 64 3.75 1.20 2 5
Collect. 128 2.62 0.48 2 3

Table 1. Average number of regrouping
operations performed per process for the
experiment in Figure 2 on 8,192 cores

the old group is freed, and a new group is created. We have implemented this algorithm
using both group- and parent-collective communicator creation. In the group-collective
case, point-to-point merge requests are sent and result in a merge operation that involves
only the merging processes. In the parent-collective case, all processes must perform pe-
riodic collective exchange of load information followed by regrouping. This collective
load balancing is performed every i work units.

In Figure 2 we present data for a weak scaling experiment with the MCMC bench-
mark kernel. In this experiment G was four processes, T was 100 ms, and S was 10 ·R
mod 32, where R is the group leader’s rank. This resulted in a cyclic work distribution
of 0, 40, 80, 120, 160, 200, 240, 280, 0, . . . . In the baseline case, regrouping is disabled,
and the execution time is bounded by the time required to process the longest Markov
chain: S · T/G or 280 · 100ms/4 = 7sec. The ideal execution time is also shown; this
is the calculated execution time with perfect load balancing. Because we have chosen a
cyclic, triangular workload, the ideal time is half of the baseline execution time.

Collective load balancing with load balancing intervals of i = 1, 16, 128 steps are
shown and result in a roughly 15% improvement in execution time compared with no
load balancing. Asynchronous group-collective load balancing yields over a 40% im-
provement in execution time compared with the baseline and over a 30% improvement
compared with collective load balancing. The gap between ideal and asynchronous
load balancing is due to the interval at which load balancing is performed. Polling
for load balancing requests is performed once after each step in the Markov chain.
The time between polling operations is the step execution time, T/group size. For
the cyclic work distribution with period P = 8, this results in an overhead of up to
(P − 1) · T/group size for each group.

Table 1 shows the number of regroupings that occurred for each load-balancing con-
figuration on 8,192 cores. We can see from this data that the collective scheme results
in a regular load-balancing pattern. In contrast, the asynchronous scheme takes advan-
tage of more fine-grained load-balancing opportunities, leading to a significantly higher
average number of regroupings over all processes.
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5 Discussion

Intercommunication creation and merge steps perform an all-reduce operation which
requires O(log p) communication steps. In the group-collective communicator creation
algorithm, intercommunicator creation and merge steps are repeated log p times, yield-
ing a time complexity of O(log2 p). In comparison, the standard MPI communicator
creation routine performs a single all-reduce step and has time complexity O(log p).
The additional log p cost associated with group-collective communicator creation can
be eliminated by extending MPI to provide a direct method for group-collective com-
municator formation.

5.1 Group-Collective Communicator Creation

The simplest method by which MPI can provide more efficient support for group-
collective communicator creation is to include a group-collective communicator cre-
ation routine in the MPI standard. This would allow MPI implementors to provide a
direct method for backing the provided group with a context ID, for example via a
point-to-point all-reduce. Such a routine would take the form:

int MPIX Group comm create(MPI Comm in, MPI Group grp, int tag, MPI Comm *out)

In this routine, the input intracommunicator and tag are used to create the output in-
tracommunicator. A communicator and tag are necessary to provide MPI with a safe
conduit for noncollective communication; this is similar to the mechanism used by
MPI’s intercommunicator creation routines. The tag plays an important role in ensuring
safety of this routine in the presence of threads. Creation of the new communicator is
collective over members of the input group, and the input group must be a subset of
the input communicator’s group. We have included an implementation of this routine
using the portable algorithm presented in this paper as an extension in version 1.4 of
the MPICH2[1] MPI distribution. We are working toward an integrated implementation
that uses MPICH2’s internal API to eliminate the overheads identified in this algorithm.

5.2 Generalized Multicommunicators

An alternative to group-collective communicator creation would be to accomplish
communicator creation with a single multicommunicator creation and merging step,
eliminating a factor of log p from the creation cost. We present the concept of a
multicommunicator as generalization of the current MPI communicator. In the cur-
rent standard, an MPI intracommunicator is defined to contain a single MPI group.
An intercommunicator is defined to contain two nonoverlapping MPI groups. A multi-
communicator would be capable of containing an arbitrary number of nonoverlapping
groups.

Multiple groups within a single communicator present a significant programmabil-
ity challenge and significant difficulty in mapping multicommunicators to existing MPI
routines. For the purpose of incorporating these generalized communicators with ex-
isting MPI functionality, the multicommunicator can be flattened into an intercommu-
nicator. This flattening would merge all nonlocal groups into a single remote group



Noncollective Communicator Creation in MPI 291

and produce a new intercommunicator. Thus, group-collective communicator forma-
tion could be achieved in three steps: multicommunicator creation, flattening into an
intercommunicator, and merging of the intercommunicator into an intracommunicator.

6 Conclusion

We have presented an algorithm for MPI communicator creation that is collective over
the output group and utilizes only functionality in the current MPI standard. This type
of group-collective communicator creation is a key capability for fault tolerance, multi-
level parallelism, and load balancing. We have measured the overhead of our technique
and demonstrated its effectiveness on a Markov chain Monte Carlo benchmark kernel.
Compared with a traditional collective approach, group-collective communicator cre-
ation yields a 30% improvement in execution time to the MCMC benchmark through
improved load balance.
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Abstract. High performance computing (HPC) seems to be one of the
last monopolies of low-level languages like C and FORTRAN. The de-
facto standard for HPC, the Message Passing Interface (MPI), defines
APIs for C, FORTRAN and C++ only. This paper evaluates current
alternatives among interpreted languages, specifically Python and C#.
MPI library wrappers for both languages are examined and their perfor-
mance is compared to native (C) OpenMPI using two benchmarks. Both
languages compare favorably in code and performance effectiveness.

1 Introduction

Current parallel computing frameworks such as the Message Passing Interface
(MPI) or OpenMP only offer language bindings for C, C++ and FORTRAN.
To use object oriented principles in today’s high-performance world, one is left
with C++ as the only choice, which is non-satisfactory wrt modern features and
consequently productivity gain present in languages like Python or C#.

In addition, unmanaged languages like C or C++ do not cater to “rapid
prototyping”, the ability to quickly implement and test an algorithm, enabling
programmers to explore possible solutions and to come up with a sound solu-
tion faster than using a language like C with its known deficiencies, e.g., manual
resource management and cumbersome string handling. After an initial solution
is found, the program can be refined and adapted to changing needs. If perfor-
mance is of concern, the program or parts of it can be ported to lower languages
like C.

The benefits of interpreted languages have led to various integration attempts
with the de-facto standard for intra-cluster communication, the Message Passing
Interface (MPI), targeting languages like Ruby1, Python2, or Perl3.

However, some of these projects have not been touched in years, lack support
for the MPI-2.1[10] standard or are hardly documented.

Section 2 summarizes the current state, maturity and recent activity of ex-
isting MPI language bindings. Despite the advantages of interpreted languages,
1 http://www.mcs.anl.gov/research/projects/mpi/mpi_ruby/
2 http://www.boost.org/doc/libs/1_39_0/doc/html/mpi/python.html
3 http://search.cpan.org/~josh/Parallel-MPI-0.03/MPI.pm

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 292–301, 2011.
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their nature suggests a performance penalty. While others have already provided
an estimation for this penalty from synthetic benchmarks (Section 3), we com-
plement their findings with an evaluation of a real-world application (Section 4).

# from http://tat.wright.name/game−of−life/
def iterate():

global board # need to reassign to board
# find number of neighbours each square has
neighbour count = numpy.zeros like(board)
neighbour count[1:, 1:] += board[:−1, :−1]
neighbour count[1:, :−1] += board[:−1, 1:]
neighbour count[:−1, 1:] += board[1:, :−1]
neighbour count[:−1, :−1] += board[1:, 1:]
neighbour count[:−1, :] += board[1:, :]
neighbour count[1:, :] += board[:−1, :]
neighbour count[:, :−1] += board[:, 1:]
neighbour count[:, 1:] += board[:, :−1]

# a live cell is killed if it has fewer than 2
# or more than 3 neighbours.
part1 = ((board == 1) & (neighbour count < 4) & (neighbour count > 1))

# a new cell forms if a square has exactly three members
part2 = ((board == 0) & (neighbour count == 3))

# convert to integer from boolean
board = numpy.cast[numpy.int8](part1 | part2)
return board

Fig. 1. Python code to implement the update function for Conway’s Game of Life.
Array slicing is used to calculate the neighbourhood of all cells at once without utilizing
explicit (for-)loops.

2 MPI Language Bindings

The Message Passing Interface is a specification produced by the MPI Forum
and is under continuous development. In September 2009, version 2.2 of the
standard was released to the public. The MPI standard is extensively covered in
the literature, for example in [11], [5] and [7] and explained function by function
in [9] for MPI-1 and [4] for MPI-2, respectively.

There are two major free implementations available today: Open MPI and
MPICH. All of the findings in this report are based on Open MPI but are appli-
cable to MPICH and any other conforming MPI implementation as well.

Research on MPI continues in many areas, including interoperability with
OpenMP, performance optimizations at various message sizes and with various
physical node layouts. With regard to language bindings, the MPI forum moved
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to deprecate4 the C++ API specification from the current MPI-2.2 standard and
might remove it completely in MPI-3.0. The forum argued that “better C++
MPI bindings have emerged elsewhere (e.g., Boost.MPI), which explicitly accepts
language binding work outside of the standard. This might indicate little or no
desire to work on additional and maybe more complex bindings in the future.

Nevertheless, several MPI bindings for interpreted languages exist. Exam-
ples include mpi-ruby [6], initially developed by Emil Ong, mpi.net5 or Paral-
lel::MPI [12] for Perl. However, most of these bindings are orphaned. They have
not been in (public) active development for years, miss documentation or an ac-
tive community. The mpi.net project’s last release was 1.0.0 in 2008, and patches
sent in February 2009 to the mailing list to fix its Linux support with Open MPI
have not been merged into a new release. The Perl script used by this project
to build a glue layer between Open MPI and C# appears to be failing with re-
cent Open MPI releases (version 1.3 and newer). The Parallel::MPI project last
released in 2002 and no updates have been made to the CPAN site ever since.

A notable exception to this list of potentially discontinued projects is mpi4py
project6, which released a new version (1.2.2) in September 2010 (making it the
only studied project with code changes in 2009 or later) and continues to receive
updates. It also features an active Usenet group and mailing list.

The package itself is written in a C library wrapping language, Cython, a
dialect of Python. It is a sub-project of Scientific Python (SciPy), which “is open-
source software for mathematics, science, and engineering” (from the SciPy site).
Thus, it’s a sister project to NumPy, a package for fast multi-dimensional array
operations, including Fourier transforms, linear algebra and random number
generation. In fact, mpi4py integrates seamlessly with NumPy, using its array
class with minimal overhead compared to C (see Section 4).

C# was created by Microsoft Corporation in 2000 and named ISO/EIC Stan-
dard 23270 in 2003. In 2006, the language’s standards body Ecma has released
version 3.0 of the language specificationDue to its support by Microsoft, Hewlett-
Packard, Intel and Novell, C# has become a widely used programming language,
currently ranking 4th in the TIOBE index as of May 2011.

Mpi.net was written by the authors of Boost.MPI and originally targeted the
Microsoft MPI implementation. In its current version, it uses a Perl script to
build a wrapper around the most common MPI implementations. Most of the
work went into object serialization and providing a C#-like interface. So instead
of explicitly calling MPI Init() in the program, the MPI part may be wrapped
in a using directive, automatically ensuring proper setup and deconstruction of
the MPI environment. Thus, MPI programs might start like this:

using (new MPI. Environment ( ref args ) ) {
Intracommunicator c = Communicator . world ;
int wor ldS ize = c . S iz e ;
int myRank = c . Rank ;

4 https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/150
5 http://www.osl.iu.edu/research/mpi.net
6 http://mpi4py.scipy.org

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/150
http://www.osl.iu.edu/research/mpi.net
http://mpi4py.scipy.org
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ReceiveRequest r =
c . ImmediateReceive<Obj>(1 , 0 ) ;

r . Wait ( ) ;
}

3 Related Work

After looking at the state of various MPI library wrappers for interpreted lan-
guages in Section 2, mpi4py and mpi.net are studied in more detail. The avail-
ability of documentation and recent scientific work on them was indeed a key
component in the decision to choose these specific two libraries for comparison.
Hence, this section will point out issues raised in [1] and [3], as well as compare
their performance testing results to those presented in this work in Section 4.

One issue highlighted by Gregor and Lumsdaine [3] is serialized data (i.e. class
objects). They state:

MPI.NETs protocol for transmitting messages of arbitrary length via
the native MPI interface introduces significant overhead to the already
expensive point-to-point operations for serialized data, due to the higher
message volume and the use of synchronous-mode communication. How-
ever, the native MPIs inability to receive messages of unknown size leaves
few alternatives. We hope to address this shortcoming in a future revision
of the MPI standard.

A similar quote can be found regarding mpi4py. Work on the mentioned “future
revision”, MPI-3, has already been started. In 2008, Gregor et al. posted a paper7

to the MPI mailing list, highlighting several areas where the MPI standard could
be improved to benefit interpreted languages. As a consequence, MPI MPROBE was
proposed in 2009 [2] and formally accepted in April 20118 as part of MPI-3.0.

Gregor and Lumsdaine ported an MPI benchmark, NetPIPE, to C# to mea-
sure the runtime difference between C (the original implementation choice) and
C#, the result stating the abstraction penalty, which “includes the costs associ-
ated with the .NET virtual machine, garbage collector, and interaction between
managed and unmanaged code.”9 They report a “generally very small (1−2%)”
penalty for small message sizes, with the difference increasing with message size.
Interestingly, they notice the penalty sometimes turns into a benefit, noting that
“for larger messages [the results] are less obvious, with C# varying from 15%
slower to 10% faster.”

The results of Gregor and Lumsdaine are interestingly close to our own, despite
using a completely changed software stack. The mpi.net authors obtained their
test results on a 9-node cluster with each node containing a dual-core 2.13GHz
Intel Xeon 3050 processor and 2GB of RAM. The paper does not contain infor-
mation on the network interface cards except that the nodes were “connected by
7 http://lists.mpi-forum.org/mpi-22/2008/10/0177.php
8 http://svn.mpi-forum.org/trac2/mpi-forum-web/ticket/38
9 All following citation can be found at [3, p. 8].

http://lists.mpi-forum.org/mpi-22/2008/10/0177.php
http://svn.mpi-forum.org/trac2/mpi-forum-web/ticket/38
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Gigabit Ethernet over a private network”. Their cluster was operated using a
Microsoft software stack, including Microsoft Windows Compute Cluster Server
2003, containing Microsoft’s MPI implementation, MS-MPI. In contrast to our
tests, Gregor and Lumsdaine used Microsoft Visual Studio .NET 2005 with
full optimization to compile all tests and version 2.0.50727 of Microsoft’s .NET
framework to run the C# tests.

In comparison to the language issues faced by Gregor and Lumsdaine, namely
the strict border between managed and unmanaged code, mpi4py benefited from
the close integration of Python with C. For example, Dalcin et al. note:

MPI for Python was improved to support direct communication of any
object exporting single-segment buffer interface. This interface is a stan-
dard Python mechanism provided by some type of objects (e.g. strings
and numeric arrays), allowing access in the C side to a contiguous mem-
ory buffer (i.e. address and length) containing the relevant data. [1, p. 7]

They also mention some interesting performance improvements, like persistent
communication:

Often a communication with the same argument list is repeatedly exe-
cuted within an inner loop. In such a case, communication can be further
optimized by using persistent communication, a particular case of non-
blocking communication allowing the reduction of the overhead between
processes and communication controllers. [1, p. 8]

They, too, measured the performance of their implementation with a setup very
similar to ours, utilizing a Linux Beowulf cluster with Intel Pentium 4 Prescott
processors with 2GB RAM, connected to a 3Com SuperStack 3 Switch and 3Com
network interface cards. The software versions in their tests include GCC 3.4.4
with Python 2.4.4 and MPICH2 1.0.4p1. They also used NumPy 1.0 for their
numeric array tests.

In [1, chapter 4] they find, quite in agreement with the results in this paper,
that the overhead imposed by Python is negligible with direct buffers as men-
tioned above and significant (minimum 20%) when data needs to be serialized
(“pickled”).

4 Performance Evaluation

In this section, we measure and compare the performance of C#’s and Python’s
MPI library wrappers, that is, the additional overhead caused by interfacing
between the high-level language and the underlying native MPI C-binding. To
test the performance, we implemented a simple ping-pong benchmark and a
slightly more complex cellular automaton in both interpreted languages and C
for comparison. All measurements were taken on a local test cluster consisting
of 12 nodes. Only two of them were allocated for the ping-pong test and 12 for
the cellular automaton benchmark.
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All involved nodes were running Linux 2.6.26 on a single Pentium 4 proces-
sor with 3GHz clock frequency and 2GB of RAM. The job scheduling was done
using SGE with a shared home file system on a NFS mount. The nodes were con-
nected via Broadcom BCM5704 Gigabit Ethernet adapters to a Netgear ProSafe
GS724T switch.

The runtime software consisted of mono-2.4 system with mpi.net-1.0.0 for
the C# tests and a Python-2.5.4 installation with mpi4py-1.2.1 for the Python
tests. GCC 4.3.4 and openmpi-1.4.1 were used to compile the C version of the
benchmarks.

First, the ping-pong benchmark was used to measure the abstraction penalty
as referred to by [1]. This describes the overhead imposed by using an interpreted
language — which includes garbage collection and dynamic memory allocation,
setting up the interpreter if needed, just in time compiling, etc. In the first test,
we were only interested in the overhead imposed by MPI library wrappers. We
hence only measured the runtime of send and receive functions, providing a lower
bound on the abstraction penalty. It can be argued that especially the runtime
of scientific applications is highly dependent on the speed of other functions,
like math and memory management. To get an idea of how big the impact on
computation is, the second test deliberately includes the time taken to compute
the the result. However, it should be mentioned that both C# and Python can
delegate performance critical tasks to extensions written in C or even assembler,
if needed.

In the first test, a byte array was created and exchanged with another node.
The measured time is the average over 1000 iterations, consisting of one (buffered)
send and one receive operation. In advance, 100 iterations were run without

Table 1. Runtime evaluation of Conway’s Game of Life and a simple Ping-Pong. All
timings in seconds. For the Ping-Pong benchmark, Size refers to the message size in
bytes. For the Game Of Life test, Size refers to

√
boardsize in bytes.

Game Of Life runtime Ping-Pong runtime
Size C C# Python Size C C# Python

3 0.00004 0.00023 0.00047 8 0.000058 0.000064 0.000074
4 0.00004 0.00020 0.00047 16 0.000059 0.000064 0.000074
8 0.00005 0.00021 0.00047 32 0.000060 0.000066 0.000075

16 0.00006 0.00023 0.00049 64 0.000062 0.000067 0.000077
32 0.00009 0.00029 0.00057 128 0.000066 0.000071 0.000081
64 0.00024 0.00051 0.00080 256 0.000075 0.000080 0.000090

128 0.00079 0.00136 0.00176 512 0.000092 0.000096 0.000107
256 0.00307 0.00622 0.00718 1024 0.000121 0.000126 0.000136
512 0.01242 0.01764 0.03165 2048 0.000175 0.000179 0.000191

1024 0.05044 0.07028 0.09399 4096 0.000223 0.000228 0.000238
2048 0.20199 0.27731 0.37373 16384 0.000607 0.000617 0.000627
4096 1.27811 1.08183 1.49061 32768 0.001085 0.001105 0.001106
8192 3.27760 4.32236 5.94661 65536 0.002169 0.002225 0.002215

16384 13.12326 17.31616 24.68614 262144 0.008034 0.008223 0.008116
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int sum(cellState ∗area, size t fieldSize, int oX, int oY) {
unsigned sum = 0;
for (int y = oY − 1; y < oY + 1; ++y) {

for (int x = oX − 1; x < oX + 1; ++x) {
if (y < 0 || y > fieldSize − 1 || x < 0 || x > fieldSize − 1) {

continue;
}
sum += area[y∗fieldSize + x];

}
}
return sum;

}

void iterate(cellState ∗field, size t fieldSize) {
cellState ∗new = calloc(fieldSize ∗ fieldSize, sizeof(cellState));
for (int oY = 0; oY < fieldSize; ++oY) {

for (int oX = 0; oX < fieldSize; ++oX) {
switch (sum(field, fieldSize, oX, oY)) {

case ’2’:
new[oY∗fieldSize + oX] = (1 == field[oY∗fieldSize + oX]) ? 1 : 0;
break;

case ’3’:
new[oY∗fieldSize + oX] = 1;
break;

default:
new[oY∗fieldSize + oX] = 0;

}
}

}
field = memcpy(field, new, fieldSize∗fieldSize);
free(new);

}

Fig. 2. C version to implement the update process for Conway’s Game of Life. To
reduce the nesting depth, two inner for-loops and a non-trivial if -statement have been
refactored into the sum function.

timing to prime pipelines and caches. All three programs used heap alloca-
tion (C via malloc(), Python via NumPy’s arrays and C# via array objects).
Timings were obtained via MPI Wtime() (C), MPI.Environment.Time (C#) or
MPI.Wtime() (Python) after each run and averaged over all iterations.

The ranking with regard to transmission time was C first, then C#, then
Python. Both, Python and C# compile source code into their own bytecode
format and interpret it at runtime. The only difference is that C# requires this
compilation to be done in a separate step. So the effectiveness of compile-time
optimization as well as library instantiation time factor into the results. The
mpi.net library has the advantage of building and keeping a dictionary of data
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types in use. For types known to the underlying C MPI library (as it is the case
here), it just passes the underlying library a pointer to the data when calling send
or receive functions. Mpi4py, on the other hand, has to go through an extensive
function determining which datatype to pass to the C library.

The obtained timings for the first test are shown in Table 1. The actual results
match the expectations. However, for message sizes larger than 212 Byte, the
difference between the tested libraries is insignificant. Even for small sizes, the
distance between fastest and slowest is near insignificance (mind the exponential
y-axis).

The second test was designed to measure one possible “real-world” situation
for the use of MPI. It consisted of a cellular automaton simulation according to
Conway’s Game of Life with 1000 rounds. Comparable simulations are applied in
natural sciences [8] to various problems and hence represent a common workload
for HPC clusters. All programs used Conway’s original rules: a cell (represented
as an entry in a two-dimensional array) is set to live in an iteration iff three
or four cells in its full neighbourhood (i.e. all 8 squares around a cell) were
previously in the live state, otherwise the cell’s status is set to dead, represented
as 1 and 0. The basic steps of each program are:

1. Each node allocates a square “field” of the given size and initializes all cells
with a random 0 or 1 value.

2. Communication is done to and from two “shadow” rows that represent the
state of the last iteration of nodes with rank one less and one greater than
the node’s own. In other words, the “playing field” is vertically split among
the nodes, with each node communicating its borders to its immediate neigh-
bours.

3. Each node allocates a temporary array, computes the live or dead state of
all cells and replaces the original array with the results from the temporary
array.

This requires at most two send and receive operations of a single line, a
one-dimensional array. The nodes with minimum and maximum rank do not
exchange information directly and thus have to communicate with only one
neighbour.

Table 1 shows the runtime of steps two and three for each board size. Note
that the board size is the square root of the size of the array that is held by each
node, not the size of the resulting “Game of Life playing field”. Step one was also
measured but not included, because setup time is constant and does not differ
much among the tested languages. It is clearly dominated by the allocation of
the two-dimensional array. In the case of C#, jagged arrays (arrays of arrays)
were used instead of the more natural two-dimensional arrays, because mpi.net
was not able to handle them. The C test program used a single array with
continuously stored rows, so virtual 2D-array access is mapped to

new [ Y o f f s e t ∗ f i e l d S i z e + X o f f s e t ] = 1 ;

Only Python was able to handle “real” two-dimensional arrays, which resulted
in a quick neighbourhood test utilizing array slicing (see Figure 1) instead of the
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loops the other programs had to use (Figure 2). The ability to slice arrays also
allowed the more concise notation when transmitting the “shadow” row of the
array:

MPI .COMMWORLD. I r e cv ( [ board [ −1 , : ] , MPI .CHAR] , rank+1)

Here board[-1,:] denotes the complete (with all columns) last row of the board
array consisting of char objects. In the C version, it is not immediately clear
that this statement receives a row of a two-dimensional array:

MPI Irecv (
&f i e l d [ rowSize ∗( rowSize − 1 ) ] ,
rowSize , MPI CHAR, myRank + 1 ,
0 , MPICOMMWORLD, &req s [ 2 ] ) ;

Obviously, languages like Python are more expressive. To confirm the conjecture
that interpreted languages are more effective to write, the time to write the
tests may be considered anecdotal evidence: while the Python version required
only five hours to be written (including repeated debugging), the C version was
plagued by a memory corruption, leading to 14 hours of total development time.

However, as already stated for the first test, interpreted languages do incur
an abstraction overhead. When more than the MPI library performance is mea-
sured, the C test version still is the fastest, with a more distinctive difference
to C#. The Python version is the slowest of the programs tested, using almost
twice the time of the C program. All three programs exhibit a runtime contin-
uously growing with the board size. The gap between C# and Python widens
(note the exponential y-axis).

5 Conclusions

We gave an overview of various MPI library wrappers. All of those studied,
with the exception of mpi4py, must be considered inactive. The last update to
libraries like Perl’s Parallel::MPI is as late as 2002, leading to build problems
and hence making the wrapper unusable.

We reported the results of our experiments, a comparison between (the C
interface of) Open MPI, and two of its wrappers - mpi4py and mpi.net. They
were tested in a simple ping-pong benchmark and in a more complex Game
of Life simulation. The results show (native C-) Open MPI leading in terms of
performance with a small difference to both, mpi4py and mpi.net (C#). We
also show examples from the test code to substantiate the claim that interpreted
languages, their MPI adapters and Python’s mpi4py in particular lower the entry
barrier for users new to MPI and make general MPI programming more effective
in terms of code size and development time.

As a result of our work, we strongly recommend the adoption of either mpi4py
or mpi.net in cases where rapid development and early success is more important
than best performance, which is still reserved for native C implementations,
although (the tested) interpreted solutions came surprisingly close. Mpi4py’s
tight integration with the NumPy project and its clear and very readable syntax
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make it a good beginner’s choice, while the C derived syntax and integration with
the rest of the .NET environment may make mpi.net appealing to programmers
with a C/C++ background.

With more user-friendly languages available, a broader audience of prospective
C-illiterate MPI users will benefit from high performance computing.
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Abstract. Message passing is the primary programming model utilized
for distributed memory systems. Because it aims at performance, the
level of abstraction is low, making distributed memory programming of-
ten difficult and error-prone. In this paper, we leverage the expressivity
and meta-programming capabilities of the C++ language to raise the
abstraction level and simplify message passing programming. We rede-
fine the semantics of the assignment operator to work in a distributed
memory fashion and leave to the compiler the burden of generating the
required communication operations. By enforcing more severe checks at
compile-time we are able to statically capture common programming
errors without causing runtime overhead.

Keywords: Message passing, C++, Meta-programming, PGAS.

1 Introduction

The message passing paradigm is frequently used in High Performance Comput-
ing (HPC) for programming computer clusters and supercomputers. Compared
to other existing parallel programming models such as OpenMP, message passing
offers two basic primitives: send and receive. The burden of managing almost ev-
ery aspect of the program execution including data partitioning, communication,
and synchronisation between processes is left to the programmer. A low-level of
abstraction is helpful in writing highly optimised programs, however, it makes
distributed memory programming very difficult and error-prone.

Recently, new programming models are increasingly being used aiming at
simplifying distributed programming. An example is the Partitioned Global Ad-
dress Space (PGAS) model, which provides the programmer with a logically
global memory address space where variables may be directly read and written
by any process. Below the logical view, each variable is physically associated
to a single process. Any attempt to read or write memory locations physically
allocated on a different process results in a communication operation generated
either by a runtime environment in the Global Array library [7]) or during the
compilation process in the Co-array Fortran and UPC [8,3]. However, because
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of the increased level of abstraction, the programmer loses control over the gen-
eration of communication and synchronisation operations resulting in important
performance losses compared to manually written message passing applications.

The motivation for the research presented in this paper is based on the obser-
vation that sending a message from a process A to a process B is semantically
equivalent to an assignment operation. The content of the memory cell owned
by process B is overwritten with data residing on process A’s memory space. We
use the C++ operator overloading mechanism and template meta-programming
techniques [4] to enable the automatic generation of low-level communication
primitives by the standard C++ compiler. For example, whenever an assignment
operator involving memory cells residing on different processes is encountered,
the compiler generates the required communication statements. Additionally, we
generate for each process rank a separate executable containing only those op-
erations involving the assigned memory cells, which eliminates the control flow
overhead incurred by the Single Program Multiple Data (SPMD) nature of the
input program. The main advantage of our approach is the fact that it achieves
a level of abstraction similar to PGAS-based languages by only exploiting fea-
tures of the standard C++ language and compiler. Furthermore, because the
underlying programming model is based on message passing, the programmer
still retains full control over the resulting performance.

In Section 2, we provide an overview of our new approach of writing message
passing parallel programs. In Section 3 we discuss the implementation details of
the mem wrap object that is the main abstraction behind our method. Section 4
compares our method with a UPC-based implementation for a Jacobi relaxation
algorithm. Section 5 concludes the paper and highlights the future work.

2 Overview

This section gives a brief overview of our technique while further details will be
given in Section 3 and 4 of the paper. Let us consider in Listing 1.1 a simple
message passing program written in MPI [2], which is the de-facto standard for
programming HPC applications. Two processes are involved in this example:
process 0 computes the value of the π constant (pi) and sends it to process rank
1. The computed value is then used by both processes for further computation.
One of the first characteristics of the program is the use of the SPMD technique,
which generates a single executable that is spawned on multiple processors. To
customize the program behaviour for a specific process rank, the programmer
needs to continuously use control statements to guide the specific process flow
of execution (lines 2 and 5). The use of control flow statements is in general
the source of many inefficiencies and limits compiler analysis and optimizations.
Additionally, miss-predicted branches cause significant performance penalties on
modern pipelined CPU architectures. Because the generated executable contains
code which is never executed on a particular process rank, the L1 instruction
cache may be not optimally used too.
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Listing 1.1. Simple message passing program in MPI

1 float pi;

2 if ( rank == 0 ) {
3 pi = calc pi();

4 MPI Send(&pi, 1, MPI FLOAT, 1, 0, MPI COMM WORLD);

5 } else if (rank == 1)

6 MPI Recv(&pi, 1, MPI FLOAT, 0, 0, MPI COMM WORLD, MPI STATUS IGNORE);

7 use(pi);

A second observation is that message passing programs are often complex to
read and, more importantly, to analyse. Because the programmer is forced by
the programming model to describe the low-level operations (i.e. the “how”),
the semantics of the program (i.e. the “what”) is mostly hidden. For example,
although a connection between the send and receive operations in lines 4 and 6
exists, it is implicitly in the mind of the programmer and not made explicit in
the code. This hidden knowledge could be used by the compiler to improve error
checking and program performance, but it is unfortunately very complex to be
captured by static analysis [5,9]. For example, the compiler could enforce the
amount of received data to be not less than the amount of data sent, or use con-
stant propagation to remove communication statements in case the transmitted
value is constant (detected by compiler dataflow analysis).

Listing 1.2. Overload of assignment operator in C++

1 mem wrap<float> pi; // manages memory allocation in the distributed env.

2 pi[r0] = calc pi(); // Rank 0 executes calc pi() and writes the returned value

3 // into its own copy of pi

4 pi[r1] = pi[r0]; // Copies the value of pi owned by process rank 0 onto the

5 // memory cell owned by process rank 1 (by using send/recv)

6 use(∗pi);

In this paper, we propose a different approach which lets the programmer fo-
cus on the program semantics (the “what”) and lets the compiler deal with the
generation of the required communication operations. The idea is not entirely
new [3], however, instead of introducing a new programming model (e.g. PGAS)
and an underlying language support (e.g. UPC), we exploit the capabilities of
the standard C++ language and compiler. Listing 1.2 shows a simple C++ pro-
gram semantically equivalent to the previous example. The first aspect is the
lack of any control flow statements, which is achieved by offloading all mem-
ory operations to a new data type, i.e. mem wrap, acting as a memory wrapper
for distributed memory environments. The input program is compiled multiple
times, each time for a different process rank. Keeping the value of the process
rank constant at compile-time allows meta-programming techniques to be used
for specializing the semantics of operations involving mem wrap instances. For
example, the initialisation of a memory cell owned by the process rank 0 results
in a no-operation (NOP) when the program is compiled for process rank 1 (line 2).
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Assignment operations involving memory cells residing on different address spaces
are replaced by communication statements (line 4). Table 1 shows the codes gen-
erated at compile-time by our approach for the processes with rank 0 and 1 from
program code in Listing 1.2. The SPMD input program is compiled into multi-
ple executables (as many as the number of processes) and successively executed
using the Multiple Program Multiple Data (MPMD) paradigm.

Table 1. Compiler generated codes for process rank 0 and 1

Rank 0 Rank 1

1 float pi;
2 pi = calc pi();
3 MPI Send(&pi,1,MPI FLOAT,1,0,...);
4 use(pi);

1 float pi;
2 MPI Recv(&pi,1,MPI FLOAT,0,0,...);
3 use(pi);

Running the MPMD program generated by our technique produces very
promising results. We executed both the SPMD and MPMD executables on
an Intel Xeon X5570 CPU and an AMD Opteron 2435, both compiled with
GCC 4.5.3 and optimization enabled (-O3). We repeated the code snippet one
thousand million times and used shared memory communication (SM module of
Open MPI’s Modular Component Architecture) to reduce the communication
overhead. The main program loop has been executed 10 times, the average value
of execution time and standard deviation are depicted in Table 2. A considerable
performance improvement, of around 30%, is observed for the Intel architecture,
while on the AMD CPU, the improvement was of around 5%. Because the two
processors have a similar L1 cache size (i.e. 64KB), we believe that the main
source of performance improvement comes from the simplification of the control
flow.

Table 2. Execution time for each process of the program in Listing 1.3 using SPMD
and MPMD models

SPMD MPMD

Exec. time
[milisec.]

Standard
deviation

Exec. time
[milisec.]

Standard
deviation

Speedup

Intel Xeon 8180 440 6162 129 1.32

AMD Opteron 9638 166 9296 177 1.04

In order to explain the performance improvement we executed the code snip-
pet enabling performance counters on the Intel CPU by using the PAPI li-
brary [1]. The measured values for three performance counters are depicted in
Table 3. We measured the instruction cache misses for both level 1 and 2 and
the total amount of conditional branch instructions. The code snippet is small to
easily fit on the L2 cache, therefore no differences in terms of L2 cache misses are
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Table 3. Performance counter values for the Intel architecture

Hardware counter SPMD MPMD
L1 Instruction Cache misses 4253718 4246317
L2 Instruction Cache misses 681689158 681689158
Conditional branch instructions 4260166 4254384

visible. However, the utilization of the L1 cache is improved for the MPMD code
as we were able to reduce the amount of cache misses by a 0.5%. This is because,
by removing unreachable branches, code locality is improved. Additionally, also
the amount of conditional branch instructions is reduced by the same amount.
This alone cannot however explain the 32% speedup which we believe to be the
result of optimizations (e.g. loop unrolling and constant propagation) performed
by the compiler on the MPMD code. As a matter of fact, thanks to the simpli-
fication to the control flow obtained with our meta-programming technique, we
enable the compiler analysis to perform more aggressive optimizations which are
not applicable on the SPMD version.

3 The mem wrap Object

Meta-programming is the practice of writing a computer program that writes or
manipulates other programs (or themselves) as their data. Meta-programming
can be used to perform part of the computation at compile-time instead of run-
time. By combining templates and meta-programming, it is possible in C++ to
specialize the implementation of generic functions based on particular properties
of the input parameters. For example, a generic function can have two imple-
mentations depending on whether the input parameter is a pointer or a value
type. Because these checks are conducted at compile-time, it is necessary that
the expressions used to select a particular implementation involve compile-time
constants only.

Listing 1.3. mem wrap object interface

1 template <class T, template <class> class Sel, class R>
2 struct mem wrap {
3 T& operator∗(); // Access to managed memory
4

5 mem wrap<T,Sel,R>& operator=(const T&);
6 template <template <class> class Sel2, class R2>
7 mem wrap<T,Sel,R>& operator=(const mem wrap<T,Sel2,R2>&);
8

9 template <class R2> mem wrap<T,Sel,R2> operator[ ](const R2&);
10 };
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Our approach is based on a similar mechanism. The objective is to introduce
an enhanced assignment operator which, depending on the type of the left and
right hand side expressions, is specialized to implement different semantics. We
introduce a new data type called mem wrap illustrated in Listing 1.3 that man-
ages the allocation and accesses to memory locations in the distributed memory
environment. The first template parameter T represents the wrapped type which
allows the management of single elements (e.g. mem wrap<float>) or of more
complex data types such as arrays (e.g. mem wrap<vector<float>>). The sec-
ond parameter Sel is the selector, which decides whether the wrapped object
(of type T) has to be allocated on a particular process rank for which the input
program is being compiled. For example, by using the expression Rank%2==0 as
a selector, we enforce only even process ranks to allocate the memory to host
the object of type T. We refer to these instances of mem wrap as active. Odd
ranks for which the selector is not satisfied allocate an empty wrapper instance
called shadow. A shadow wrapper acts as a pointer to a memory location on a
different machine and can be used to read data from it. To note that mem wrap
does not perform any data partitioning, the programmer is still responsible to
divide the memory space among the processes. Because a mem wrap instance can
refer to memory locations on multiple address spaces, the R parameter is used to
address the copy owned by a specific process rank. The mem wrap also provides
three basic methods among several others: a dereferencing operator * used to
directly access the memory managed by the wrapper (line 3), an assignment
operator = overloaded to work with data type instances of type T (line 5) or
mem wrap instances (line 7), and a subscript operator [] used to select a copy of
the wrapped data which belongs to a particular address space.

Listing 1.4. Example of using selectors

1 template <class RR = mpl::int <MY RANK>>
2 struct even {
3 template <class Rank>
4 struct apply : public mpl::bool <Rank::value%2==0> { };
5 };
6 mem wrap<std::vector<float>, even> vect(100);
7 for (unsigned int i=0; i<100; ++i) { vect(i) = MY RANK; }
8 vect[r0] = vect[r2];

There are two specializations of the mem wrap class: one for active and the
other for shadow wrapper instances. We define a pre-processor directive called
MY RANK as the rank of the process for which code is being generated. During the
compilation process, for every instantiation of a mem wrap, the selector is applied
to the value of MY RANK. Depending on the result, one of the two specializations is
used. Furthermore, methods of the mem wrap class have multiple specializations
depending on the type of the input parameters.

To better understand how selectors work, we illustrate in Listing 1.4 a slightly
more complex example of a program that allocates a vector (vect) of 100
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floating point numbers on every even process rank, initialises it, and then copies
its value from rank 2 to rank 0. We define the class even as a selector for even
rank values. For simplicity, we use utilities (i.e. types and meta-functions) from
the Boost Meta-Programming Library (MPL) [6], on which also the implemen-
tation of mem wrap heavily relies. The selector is applied to a rank value using
the apply generic inner class defined in line 2. We follow the naming convention
used in MPL which enables us using existing meta-programming utilities from
the MPL library. In line 4, the allocation of the variable vect is managed by our
memory wrapper which enables the compiler to select the type of wrapper to
instantiate (i.e. active or shadow) depending on the rank for which code is being
generated. Accessing array elements from a wrapper instance is allowed using
the () operator which, instead of returning directly the indexed value, instanti-
ates a wrapper containing the addressed memory cell. For shadow wrappers, an
assignment operator of a value of type T resolves to a NOP (e.g. loop iteration
in line 5 compiled for odd processors) that compiler optimizations can easily
detect and safely remove as dead code. Finally, the assignment operator in line
6 involving the two wrappers is rewritten by through send/receive, as previously
shown. For odd ranks, the operation results again in a NOP. The rn constants,
where n is an integer value representing the rank, are defined to easily refer to
a process rank. The [] operator is used to specialize a generic wrapper to refer
to a particular memory address space, method signature is shown in line 9 of
Listing 1.3.

4 Jacobi Relaxation

In this section we show how an important class of HPC stencil operations can be
expressed in our framework. We use as example the Jacobi relaxation method
based on the nearest neighbour communication. A two-dimensional matrix is
distributed among the processes, each process having a dependency to the mem-
ory cells owned by its direct neighbours. When the data is distributed in a
row-wise manner, each process needs to access the memory allocated in the top
MY RANK+1 and bottom MY RANK-1 neighbours. Every process allocates an equal
portion N/NPROCS+2 the matrix rows, where N is the matrix size. The two addi-
tional rows are used to store the first and last row received from the top and the
bottom neighbors.

Listing 1.5 shows the Jacobi relaxation algorithm expressed using our method.
In lines 6 and 7, two shadow wrappers are generated referring to the top and
bottom neighbours. The top processor selector top neigh is defined in lines 1-3.
The selector for the bottom processor bottom neigh (not shown because of space
limit reasons) is similar with the difference that the expression RR::value-1 ==
Rank::value is used as a selector. Both top and bottom are instantiated as
shadow wrappers on every processor rank because the selector expressions al-
ways evaluate to false when applied to the current rank (MY RANK). Lines 10
and 11 implement the neighbor communication. In line 10, a receive opera-
tion is generated for the incoming data from the top neighbor process. Unlike
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Listing 1.5. C++ Jacobi relaxation

1 template <class RR = mpl::int <MY RANK>>
2 struct top neigh {
3 template <class Rank>
4 struct apply : mpl::bool <RR::value+1 == Rank::value> { };
5 };
6 const size t size = N/NUM PROCS+2;
7 mem wrap<carray<float>> u(size,N), tmp(size−2,N); // Active wrapper
8 mem wrap<carray<float>, top neigh> top( u ); // Shadow wraper
9 mem wrap<carray<float>, bottom neigh> bottom( u ); // Shadow wrapper

10 // Initialize matrix u...
11 for(unsigned int it=0; it<MAX ITER; ++it) {
12 u[ slice(size−1, size, 0, N) ] = top[ slice(1, 2, 0, N) ];
13 u[ slice(0, 1, 0, N) ] = bottom[ slice(size−2, size−1, 0, N) ];
14 for (unsigned int i=1; i<size−1; ++i)
15 for (unsigned int j=1; j < N−1; ++j)
16 tmp(i−1,j−1) = 1/4 ∗ ( ∗u(i−1,j) + ∗u(i,j+1) + ∗u(i,j−1) + ∗u(i+1,j) );
17 }

previous examples, the rank is not statically specified and the source rank of
the message is automatically computed at compile-time in order to avoid any
runtime overhead. This is done with the following procedure. The selector of the
right hand side expression top neigh is applied to a list of process ranks PL gen-
erated at compile-time as follows PL: {0,1,...,MY RANK-1, MY RANK+1,...,
NUM PROCS-1}, where NUM PROCS is the total number of processes defined via a
pre-processor directive, and RR (i.e. RefRank) is set to be MY RANK. The selector
is invoked several times as follows: top neigh<MY RANK>::apply<R>, ∀R ∈ PL.
The receive operation is generated using, as a source rank, the value R which
satisfies the selector, (i.e. MY RANK+1). Speculatively, a send operation is gener-
ated towards the bottom neighbor. This requires to invert the top neigh selector
previously used to generate the receive operation. We achieve this by invoking
the selector in the following way: top neigh<R>::apply<MY RANK>, ∀R ∈ PL.
The semantics is the following, find the processes for which the top neigh selec-
tor is satisfied when applied to the current rank value (i.e. MY RANK). For rank
values which satisfy the selector, a send operation is generated using as target
rank the value of R (i.e. MY RANK-1). The communication statements for line 11
are generated similarly but using bottom neigh as selector. The slice function
indicates the start and end rows and columns of a matrix partition which has to
be either transmitted or overwritten by the incoming data.

We compared our Jacoby relaxation implementation with an UPC-based ver-
sion on a shared memory machine with 10 AMD Opteron cores. The UPC im-
plementation of Jacobi (from [10]) utilized in our experiments is depicted in
Listing 1.6. The code uses a memory layout specifier (i.e. [...]) which allow
the UPC runtime to distribute the u and tmp matrices assigning an equal amount
of rows to each UPC thread (similar to the MPMD code). For a fair com-
parison, we forced UPC to use MPI as the underlying communication library
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Listing 1.6. UPC based Jacobi relaxation method

1 shared [N∗N/THREADS] float u[N][N];
2 shared [N∗N/THREADS] float tmp[N][N];
3 // Initialize matrix u...
4 for( unsigned int it=0; it < MAX ITER; ++it)
5 upc forall(unsigned int i=1; i<N−1; i++; &tmp[i][0]) {
6 for (unsigned int j=1; j < N−1; ++j)
7 tmp[i][j] = 1/4 ∗ ( u[i−1][j] + u[i][j+1] + u[i][j−1] + u[i+1][j] );
8 }

(-network=mpi). Furthermore, we utilized the -T flag which enables the UPC
compiler to create an executable which runs with a fixed number of threads
(i.e. -T=10). The Berkley UPC compiler version 2.12.2 with experimental opti-
mization enabled (-opt) has been utilized. GCC version 4.5.3, with optimization
flag -O3, has been used to compile the MPMD version of the Jacobi in Listing 1.5.

Table 4 shows that UPC performs slightly better for very small matrix sizes
but, as the problem size increases, the MPMD version significantly outperforms
UPC. Unfortunately we could not compile the UPC code for larger matrix sizes
as the UPC compiler does not support, in the layout specifier, a block size which
is greater than 1MB. We believe that the main source of inefficiency in UPC
is the fact that the compiler is not able to vectorize the accesses to neighbor
memory cells. Therefore every access to remote memory locations results in a
separate communication operation. It is also worth noticing that compared to an
SPMD-based MPI implementation of the Jacobi, the MPMD version presented
here only marginally improve performance. The main advantage is indeed in the
simplified programming model which, as the experiments show, do not cause any
performance penalty.

Table 4. Jacobi relaxation execution time (in seconds) and speedup comparison

Matrix size MPMD UPC Speedup
10x10 0.0129 0.0022 0.14
100x100 0.018 0.023 1.28
500x500 0.098 0.205 1.84
1000x1000 0.20 0.74 3.7
2000x2000 0.61 2.98 4.9

5 Conclusions and Future Work

In this paper we demonstrated with concrete examples how using advanced
meta-programming capabilities of the C++ language can simplify the use of
message passing and, at the same time, improve readability and performance of
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applications. Our approach offers three main advantages compared to traditional
message passing-based programs: send/receive operations are expressed using in-
tuitive variable assignments, it allows compile-time checking of message sizes and
element types, and it facilitates compiler optimizations by generating MPMD
code that eliminates harmful control flow statements.

The main drawback of our approach is the generation of a separate executable
for every process, which may be not always feasible for large-scale applica-
tions. However, this is a limitation of our prototype implementation and not
of the approach itself. In the future we will focus on improving the use of meta-
programming techniques to statically determine groups of process with the same
behavior (e.g. even and odd ranks) that reduce the number of generated exe-
cutables to one per group.
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Abstract. While the I/O functions described in the MPI standard in-
cluded shared file pointer support from the beginning, the performance
and portability of these functions have been subpar at best. ROMIO [1],
which provides the MPI-IO functionality for most MPI libraries, to this
day uses a separate file to manage the shared file pointer. This file pro-
vides the shared location that holds the current value of the shared file
pointer. Unfortunately, each access to the shared file pointer involves file
lock management and updates to the file contents. Furthermore, support
for shared file pointers is not universally available because few file sys-
tems support native shared file pointers [5] and a few file systems do not
support file locks [3].

Application developers rarely use shared file pointers, even though
many applications can benefit from this file I/O capability. These appli-
cations are typically loosely coupled and rarely exhibit application-wide
synchronization. Examples include application tracing toolkits [8,4] and
many-task computing applications [10]. Other approaches to the shared
file pointer I/O models frequently used by these application classes in-
clude file-per-process, file-per-thread, and file-per-rank approaches. While
these approaches work relatively well at smaller scales, they fail to scale
to leadership-class computing systems because of the intense metadata
loads generated they generate. Recent research identified significant im-
provements from using shared-file I/O instead of multifile I/O patterns
on leadership-class systems [6].

In this paper, we propose integrating shared file support into the I/O
forwarding layer commonly found on leadership-class computing sys-
tems. I/O forwarding middleware, such as the I/O Forwarding Scala-
bility Layer (IOFSL) [9,2], bridges the compute and I/O subsystems of
leadership-class computing systems. This middleware layer captures all
file I/O requests generated by applications executing on compute nodes
and forwards them to dedicated I/O nodes. These I/O nodes, a common
hardware feature of leadership-class computing systems, execute the I/O
requests on behalf of the application. The I/O forwarding layer on these
system is best suited to provide and manage shared file pointers because
it has access to all application I/O requests and can provide enhanced
file I/O capabilities independent of the system and I/O software stack.
By embedding this capability into the I/O forwarding layer, applications
developers can utilize shared file pointers for a variety of file I/O APIs
(MPI-IO, POSIX, and ZOIDFS), synchronization levels (collective and
independent I/O), and computing systems (IBM Blue Gene and Cray
XT systems).
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We are adding several features to IOFSL and ROMIO to enable
portable MPI-IO shared file pointer access. In prior work, we extended
the ZOIDFS API [2] to provide a distributed atomic append capabil-
ity. Our current work extends and generalizes this capability to provide
shared file pointers as defined by the MPI standard. First, we created a
per file shared (key,value) storage space. This capability allows users of
the API to instantiate an instance of a ZOIDFS file handle and associate
file state with the handle (such as the current position of a file pointer).
Since a ZOIDFS file handle is a persistent, globally unique identifier
linked to a specific file, this does not result in extra state for the client.
To limit the amount of state stored within the I/O node and to enable
recovery from faults, we are integrating purge policies for the key value
store. Example policies include flushing data to other IOFSL servers or
persistently storing this data in extended attribute fields of the target
file.

In prior work, we implemented a distributed atomic append by es-
sentially implementing a per file, system wide shared file pointer. In our
current work, we instead require a shared file pointer per MPI file handle.
This is easily implemented by storing the current value of the shared file
pointer in a key uniquely derived from the MPI file handle. We modi-
fied ROMIO to generate this unique key. When a file is first opened, a
sufficiently large, random identifier is generated. This identifier is sub-
sequently used to retrieve or update the current value of the shared file
pointer. To avoid collisions, we rely on the fact that the key space pro-
vided by IOFSL supports an exclusive create operation. In the unlikely
event that the generated identifier already exists for the file, ROMIO
simply generates another one.

By providing set, get, and atomic increment operations, the IOFSL
server is responsible for shared file pointer synchronization. This pre-
cludes the need for explicit file lock management for shared file pointer
support. Overall, few modifications to ROMIO were required. Before
executing a shared read or write, ROMIO uses the key store to atomi-
cally increment and retrieve the shared file pointer. It then subsequently
accesses the file using an ordinary independent I/O operation. To sim-
plify fault tolerance, we plan to combine the I/O access and the key
update into one operation. ROMIO’s MPI_File_close method removes
the shared file pointer key in order to limit the amount of state held by
the I/O nodes. For systems such as the Cray XT series, where I/O nodes
are shared among multiple jobs, we automatically purge any keys left
by applications that failed to clean up the shared file pointer, for exam-
ple because of unclean application termination. On systems employing
a dedicated I/O node, no cleanup is necessary, since the I/O node (and
the IOFSL server) is restarted between jobs.

These modifications provide a low-overhead, file-system-independent,
shared file pointer implementation for MPI-IO on those systems sup-
ported by IOFSL. Unlike other solutions, our implementation does not
require a progress thread or hardware-supported remote memory access
functionality [7].
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Abstract. We perform a set of communication experiments spanning multiple 
sites on the heterogeneous Grid’5000 infrastructure in France. The backbone 
widely employs high-bandwidth optical fiber. Experiments with point-to-point 
MPI communications across sites show much lower bandwidth than expected 
for the optical fiber connections. This work proposes and tests an alternative 
implementation of cross-site point-to-point communication, exploiting the 
observation that a higher bandwidth can be reached when transferring TCP 
messages in parallel. It spawns additional MPI processes for point-to-point 
communication and significantly improves the bandwidth for large messages. 
The approach comes closer to the maximum bandwidth measured without 
using MPI. 

Keywords: Heterogeneous Communications, Optical fiber, Point-to-point, MPI. 

1   Introduction and Related Work 

Grid infrastructures such as Grid’5000 can have very complex communication 
networks involving local area networks as well as optical fiber connections between 
sites.  

We observed that for this infrastructure several TCP connections across sites can 
be used in parallel with significant increase of bandwidth. We tested the bandwidth of 
the cross site optical fiber connection without MPI by varying the number of parallel 
TCP connections. We observed that the bandwidth is better when using 4 or 8 parallel 
connections and comes close to 1 Gbps. This observation was important for the 
proposed modification in point-to-point communication. 

For MPI point-to-point benchmarks spanning two sites we use NetPIPE with MPI. 
Since MPI is used for connecting different sites, the underlying communication uses 
the TCP protocol. The results show a peak bandwidth of around 70 Mbps, which is a 
much lower bandwidth than any of the TCP benchmarks. 

To improve the low bandwidth, we propose a modified MPI point-to-point 
communication with parallel transfer of different fragments of the same message from 
the sender to the receiver. Research in this direction has been done in distributed 
computing. In [1], a similar approach is followed by GridFTP to transfer large data 
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volumes in parallel over the internet by using a number of TCP data streams. The idea 
is less popular in the high-performance computing domain. Multi-railing is one such 
example, but it is mostly used for a different setting - when a number of network 
interfaces are available for the communicating processes at each node [2]. 

2   Modified MPI Point-to-Point Algorithm  

We experiment with two methods of parallel transfer of different message fragments. 
Both cases are implemented on top of the MPI library without internal modifications. 

In the first proposed implementation, we use a number of different OpenMP 
threads, each of which is responsible for submitting a different fragment of a message 
through MPI point-to-point calls. We used 2 or 4 threads per node and compared this 
with the original point-to-point calls. The results show no advantage of the multi-
threaded implementation. We believe this is due to the internal serialization of point-
to-point calls in the MPI library, which prevents true parallelization of the different 
communicating threads. 

We then implement the same idea with MPI processes instead. At the start, a fixed 
number of extra MPI processes are spawned on each node (Fig. 1a). Any point-to-
point communication between processes e.g. P0 and P1 is then divided into two 
phases – a scatter phase and a gather phase (Fig. 1b and 1c). Each phase is 
implemented as a linear sequence of point-to-point calls for the different message 
chunks of the original message. To exploit the parallelism of point-to-point calls, the 
scatter/gather implementation is a linear sequence of non-blocking sends and receives 
in MPI.  

 

 
(a) 

 

  
(b)     (c) 

Fig. 1. Diagram of spawning extra processes at the initialization (a), and transferring a message 
through two-phases of point-to-point calls on the message chunks – a linear scatter (b) and a 
linear gather (c) 

We present results of experiments with the proposed implementation for message 
sizes range from 100 KB to 1 MB (Fig. 2a) and from 1 MB to 10 MB (Fig. 2b). In the 
experiments with the proposed algorithm, we spawn 4 / 8 additional MPI processes 
per node and involve all of them in the modified point-to-point communication.  

The runs with additional processes demonstrate increased bandwidth compared to 
the original runtime for all message sizes larger than 200 KB, and the improvement is 
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relatively constant for this range. For example, for messages of 10 MB, the MPI 
point-to-point implementation only reaches around 80 Mbps, while the two-phase 
version using 16 additional processes (8 at receiver/sender) achieves 498 Mbps, 
which is more than 6 times increase in bandwidth. This bandwidth is still far from the 
peak bandwidth we could achieve with a TCP connection (nearly 1 Gbps), but is 
much closer to it. 

The improvements are related to the optical fiber cross-site connection since for a 
local site run the modified algorithm does not improve the point-to-point bandwidth. 
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Fig. 2. Comparison of MPI point-to-point communication and the modified version for messages 
in the range 100 Kbytes-1 MB (a) and 1 MB-10MB (b) 
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Abstract. The Single-Chip Cloud Computer (SCC) experimental pro-
cessor is a 48-core concept vehicle created by Intel Labs as a platform for
many-core software research. Intel provides a customized programming
library for the SCC, called RCCE, that allows for fast message-passing
between the cores. For that purpose, RCCE offers an application pro-
gramming interface (API) with a semantics that is derived from the
well-established MPI standard. However, while the MPI standard of-
fers a very broad range of functions, the RCCE API is consciously kept
small and far from implementing all the features of the MPI standard.
For this reason, we have implemented an SCC-customized MPI library,
called SCC-MPICH, which in turn is based upon an extension to the
SCC-native RCCE communication library. In this contribution, we will
present SCC-MPICH and we will show how performance analysis as well
as performance tuning for this library can be conducted by means of a
prototype of the proposed MPI-3.0 tool information interface.

Keywords: Single-Chip Cloud Computer, SCC, MPI 3.0, Tools Sup-
port.

1 Introduction and Overview

The Single-Chip Cloud Computer (SCC) experimental processor [1] is a 48-
core concept vehicle created by Intel Labs as a platform for many-core software
research. The cores of the SCC are arranged in a 6x4 on-die mesh with two cores
per network node. By means of this network, all cores can access a global shared-
memory space of up to 64GByte via four on-die memory controllers. In addition
to this global off-die shared memory, each core provides a chunk of 8kByte fast
on-die memory that is also accessible to all other cores. These additional on-
die shared-memory chunks are intended to pass messages directly between the
cores, and this is why they are referred to as Message-Passing Buffers (MPBs).
In contrast to common multi-core processors, the SCC does not provide any
cache-coherency between the cores. For that reason, the global shared-memory
is logically distributed in such a way that each core can boot its own Linux image.
Therefore, the architecture of the SCC can be regarded as a Cluster on the Chip
where message-passing is the programming paradigm of choice. Intel provides a
customized message-passing library for the SCC, called RCCE [2], that utilizes
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the fast on-die MPBs. In doing so, RCCE offers an application programming
interface (API) with a semantics that is derived from the well-established MPI
standard [3]. However, while the MPI standard offers a very broad range of
functions, the RCCE API is intentionally kept very small [4] and far from offering
all the features of the MPI standard. For this reason, we have implemented an
SCC-customized MPI library, called SCC-MPICH, which in turn is based upon
an extension to the SCC-native RCCE communication library. Although also
Intel has recently released an MPI library for the SCC, called RCKMPI [6], we
have by now applied a lot of performance tuning and additional improvements to
SCC-MPICH, as for example SCC-optimized collectives. In this contribution, we
will present SCC-MPICH and we will show how performance analysis as well as
performance tuning can be conducted by means of a prototype of the proposed
MPI-3.0 tool information interface [9]. Since this is still work in progress (effective
June 2011), we will present our findings in the course of the poster session of the
18th European MPI Users’ Group Meeting in September 2011.

2 A Customized MPI Library for the Intel SCC

SCC-MPICH is based on MP-MPICH [7], a multi-platform message-passing li-
brary that in turn is derived from the original MPICH [8]. In doing so, we
have extended MP-MPICH by a new communication device that utilizes the
fast on-die MPBs as well as the off-die shared-memory for the core-to-core com-
munication. In turn, this new SCC-related communication device provides four
different communication protocols: Short, Eager, Rendezvous and SHM-Eager.
The Short protocol is low latency optimized and used for exchanging message
headers as well as header-embedded short payload messages via the MPBs. Big-
ger messages must be sent either via one of the two Eager protocols or via the
Rendezvous protocol. The main difference between Eager and Rendezvous mode
is that Eager messages must be accepted on the receiver side even if the cor-
responding receive requests are not yet posted by the application. Therefore, a
message sent via Eager mode can implicate an additional overhead by copying
the message temporarily into an intermediate buffer. However, when using the
SHM-Eager protocol, the off-die shared-memory is used to pass the messages
between the cores. That means that this protocol does not require the receiver
to copy unexpected messages into additional private intermediate buffers unless
there is no longer enough shared off-die memory. The decision which of these
protocols is to be used depends on the message length as well as on the ratio of
expected to unexpected messages.

3 A Prototype of the MPI-3.0 Tool Information Interface

Currently, the working groups of the MPI-Forum are fostering the development
of the upcoming MPI 3.0 standard. In doing so, the so-called Tools Working
Group deals with the definition of additional information interfaces that should
help to enhance the interaction between MPI implementations and additional
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tools like debuggers, profilers and performance tuners [9]. Although the draft
for these new interfaces is still under active development and not yet mature
for standardization, we have already prototyped a major part of the proposed
functions on top of MP-MPICH for a use case evaluation [10]. Since SCC-MPICH
is based on MP-MPICH, we can already use the new information interface to
query and to tune performance and configuration parameters of the SCC-related
communication device. That way, we are able, for example, to determine optimal
threshold values between the above mentioned communication protocols.

Acknowledgments. We are not part of the MPI 3.0 Tools Working Group,
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Abstract. As part of the MPI-3 effort, Remote Memory Access (RMA) working
group has proposed several extensions to the one-sided communication interface.
These extensions promise to address several of its existing limitations. However,
their performance advantages need to be clearly highlighted for widespread ac-
ceptance of the new interface. In this paper, we present design and implementa-
tion of some of the key one-sided semantics proposed for MPI-3 over InfiniBand,
using the MVAPICH2 library. Our evaluation shows that the newly proposed
Flush semantics allow for more efficient handling of completions and the request-
based operations can help achieve close to optimal overlap in a Get-Compute-Put
model.

1 Introduction and Overview

High-end computing systems have seen a tremendous growth in recent years, driven
by advances in processor, network and accelerator technologies. As the capabilities of
different components in a system increase, it is important for scientific applications to
utilize all these components concurrently to achieve maximum performance. Program-
ming models hold the key in enabling such usage. In the past, non-blocking message
passing and one-sided communication semantics have been introduced to enable over-
lap between computation and communication. Earlier work has shown how one-sided
communication semantics can achieve superior performance in applications than the
message passing semantics [3]. However, their adaptation has been limited because of
the overheads imposed by synchronization operations in MPI-2 and a mismatch with
real-world use cases for one-sided communication. As part of MPI-3 effort, the Remote
Memory Access(RMA) group has proposed several extensions to the existing model
that promise to address many of these limitations [1].

The additions to one-sided interface include dynamic window creation, light weight
synchronization (local and remote) and variety of other communication operations.
However, in order for wide spread acceptance of this proposed interface, its perfor-
mance advantages need to be clearly highlighted. We believe that this is a strong motiva-
tion for designing and implementing some of the key MPI-3 interfaces on a widely used
commodity platform. In this work, we present the design of a key subset of the proposed
MPI-3 extensions over InfiniBand. Through experimental evaluation we establish that
they efficiently solve several issues faced by the MPI-2 standard. Our design of the pro-
posed semantics is integrated into the MVAPICH2 library [2], to demonstrate a working
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prototype in an open-source production MPI library. To the best of our knowledge, this
is the first design and implementation of the proposed MPI-3 one-sided interface. The
semantics implemented in this work are highlighted in Figure 1.

MPI 3 One Sided Communication 

Accumulate Ordering Undefined Conflicting Accesses Separate and Unified Windows 

Window Creation 

• Win_allocate 
• Win_create_dynamic, Win_attach, 
Win_detach 

Synchronization 

• Lock_all, Unlock_all 
• Win_flush, Win_flush_local,  
Win_flush_all, Win_flush_local_all 

• Win_sync  

Communication 

• Get_accumulate 
• Rput, Rget, 
Raccumulate,Rget_accumulate 

• Fetch_and_op, Compare_and_swap 

Fig. 1. Proposed MPI-3 One-Sided Communication Standard Extensions

2 Design and Evaluation

In this section, we provide a brief overview of each of the semantics addressed in this
work and their implementation highlights. A detailed description about the implemen-
tation and evaluation can be found in our technical report [4].

Dynamic Windows: A window defines the memory to be used for communication in
the one-sided model. In MPI-2, the location and size of memory attached to a window is
specified during window creation and cannot be changed at a later point of time. This is
a misfit in the case of applications and programming models with dynamic memory re-
quirements. MPI-3 allows “dynamic” windows where each process can asynchronously
attach or detach memory from a window. Implementation of one-sided communication
operations over RDMA requires exchange of buffer registration information. For MPI-
2, this is usually done during the window creation phase. In the case of dynamic win-
dows, such an exchange is required each time an access happens to a newly attached
buffer. However, as multiple accesses happen to each buffer, this cost can be amortized
efficiently. Through micro benchmark evaluation, we show that the performance of dy-
namic windows is as good as that of static windows. The performance comparison of
Put latency is shown in Figure 3(a). A complete set of results can be found in [4].

Flush Operations: All communication operations in MPI one-sided interface are non-
blocking. In MPI-2, their completions (both local and remote) are bound to synchro-
nization operations. This is heavy-weight. MPI-3 addresses this issue through flush
operations, separating local completion from remote completion. Ensuring local and
remote completions of different operations (writes, reads and atomics) in InfiniBand
have different requirements and costs. The flush semantics provide flexibility to match
the completion of different one-sided communication operations to the completion re-
quirements in InfiniBand and hence provide better efficiency. A comparison of Put com-
pletion times using Lock/Unlock and Flush semantics is shown in Figure 3(b).

Request-based Operations: Request-based operations provide an easy mechanism to
wait for completion of specific operations. This allows for finer grained overlap. Fig-
ure 2 presents pseudo-code for three versions of a Get-Compute-Put benchmark which
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fetches, computes and writes back N blocks of data in remote memory. Figure 2(a)
shows a version without any overlap. The three phases: get, compute and put can be
pipelined to overlap computation and communication. Figures 2(b) and (c) show over-
lapped versions using MPI-2 passive semantics and using Request-based operations re-
spectively. The performance results are shown in Figure 3(c). We see that request-based
operations provide close to optimal overlap.

MPI Win lock
for i in 1, N
MPI Get

end for
MPI Win unlock

Compute

MPI Win lock
for i in 1, N
MPI Put

end for
MPI Win unlock

(a) No Overlap

MPI Win lock
for i in 1, N
MPI Get

end for
MPI Win unlock

MPI Win lock
for i in 1, N
Compute
MPI Put

end for
MPI Win unlock

(b) Overlap w/ Lock-Unlock

MPI Win lock
for i in 1, N

MPI Rget
end for

MPI Wait any (gets)
while a get completes
Compute
MPI Rput
MPI Wait any (gets)

end while
MPI Wait all (puts)
MPI Win unlock

(c) Overlap w/ Request Ops

Fig. 2. Get-Compute-Put on N Blocks of Data
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3 Conclusion

In this paper, we presented design, implementation and evaluation of a key subset of
newly proposed one-sided interface. Through micro-benchmark evaluation, we have
shown that the newly proposed interfaces can provide improved performance over the
MPI-2 interfaces.
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Scalable Distributed Consensus

to Support MPI Fault Tolerance�

Darius Buntinas
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Abstract. As system sizes increase, the amount of time in which an
application can run without experiencing a failure decreases. Exascale
applications will need to address fault tolerance. In order to support
algorithm-based fault tolerance, communication libraries will need to
provide fault-tolerance features to the application. One important fault-
tolerance operation is distributed consensus. This is used, for example, to
collectively decide on a set of failed processes. This paper describes a scal-
able, distributed consensus algorithm that is used to support new MPI
fault-tolerance features proposed by the MPI 3 Forum’s fault-tolerance
working group. The algorithm was implemented and evaluated on a
4,096-core Blue Gene/P. The implementation was able to perform a full-
scale distributed consensus in 305 µs and scaled logarithmically.

1 Introduction

As process counts in applications grow toward exascale, the length of time an
application can run without experiencing a failure, known as the mean time
between failures (MTBF), decreases. Applications will need to be fault tolerant in
order to be useful on future exascale machines. Checkpointing can provide fault
tolerance to an application without the need to modify it As the failure frequency
increases, however, checkpoints will need to be taken more often, decreasing the
amount of useful work the application can perform between failures.

Whereas checkpointing provides fault tolerance to an application in a trans-
parent manner, when using algorithm-based fault tolerance (ABFT) [1][3][4], the
application is aware of faults and handles them explicitly. The fault-tolerance
working group of the MPI 3 Forum has been working on a proposal [5], that
adds fault-tolerance features to MPI in order to support ABFT applications.
The proposal defines the behavior of an MPI library if processes fail. For ex-
ample, existing operations such as MPI Comm split are now required to either
succeed at every process or return an error at every process, even if processes
fail before or during the operation. The proposal also introduces new functions,
such as MPI Comm validate all, that require all processes to return the same list
of failed processes. A distributed consensus algorithm is needed to implement
these operations.
� This work was supported in part by the Office of Advanced Scientific Computing

Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.
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This paper presents a scalable, fault tolerant, distributed consensus algorithm
used to implement the MPI Comm validate all function. The MPI Comm validate
all implementation is evaluated on a 4,096-core IBM Blue Gene/P machine and
shows O(log n) scaling.

2 Algorithm

We present the distributed consensus algorithm as it would be used in the
MPI Comm validate all operation. However, the algorithm could also be used
in other operations requiring distributed consensus, such as MPI Comm split. In
this section, we give a brief overview of the algorithm at a high level. A detailed
description of the algorithm can be found in [2].

The MPI Comm validate all function uses distributed consensus to decide on
a set of failed processes, which must contain every failed process known by any
participating process at the time the function is called. The same set of failed
processes must be returned by the function at every process. If a process fails
during the MPI Comm validate all operation (i.e., after the first process calls the
function and before the first process returns), the set of failed processes returned
may or may not contain the failed processes.

The algorithm is similar to the three-phase commit algorithm except that,
rather than sending and receiving individual messages, a reliable broadcast al-
gorithm is used to send and collect messages. In the BALLOTING phase, after
the root is chosen, the root creates a ballot containing the set of failed pro-
cesses and broadcasts it to the rest of the processes. Once the processes receive
the ballot, the responses to the ballot are collected back up the tree. If all the
processes have accepted the ballot, the algorithm enters the COMMIT phase;
otherwise a new ballot is generated, and the BALLOTING phase is repeated. In
the COMMIT phase the root broadcasts a commit message. Once all processes
receive the commit message, acknowledgments are collected back up to the root.
The last phase is the ALL COMMIT phase. In this phase the root broadcasts
the all-commit message. Once a process receives the all-commit message, it can
return from the MPI Comm validate all function.

3 Performance Evaluation

To evaluate the validate-all operation, we implemented it as an MPI program.
This allowed us to evaluate the operation at a large scale on a Blue Gene/P
without modifying the MPI implementation. We expect the performance of the
operation implemented this way to be an upper bound on the performance of
the operation if it were integrated into an MPI implementation. The evaluation
was performed at Argonne National Laboratory on Surveyor, a Blue Gene/P
with 1,024 quad-core nodes.

Figure 1 shows the results of the evaluation. As expected, the operation
scales logarithmically. For comparison, we evaluated the time taken to perform a
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communication pattern similar to that of the validate-all operation using broad-
cast and reduction operations. The figure shows the results with optimized col-
lectives using the Blue Gene/P collective tree network and with unoptimized
collectives using the same torus network that the validate-all operation uses. At
full scale, the validate-all implementation took 305 µs to perform the operation,
which is 1.66 times slower than performing a similar communication pattern with
unoptimized collectives. We expect the performance of the validate-all algorithm
to improve when the operation is integrated into the MPI implementation, mak-
ing the algorithm more responsive to incoming messages.

We also evaluated the performance of the operation with loose semantics,
as described in the proposal [5]. Figure 2 shows the comparison. The loose
implementation performs the operation 133 µs faster at full scale than does
the strict implementation (which is 1.78 times as fast). Depending on the re-
quirements of the application and the frequency at which the application calls
validate-all, using the loose implementation can provide some performance im-
provement.

4 Conclusion

This paper presented a scalable distributed consensus algorithm used to imple-
ment the MPI Comm validate all operation proposed by the MPI 3 fault-tolerance
working group. The algorithm was evaluated on a 4,096-core Blue Gene/P ma-
chine and was shown to be extremely scalable. The implementation was able to
perform a full-scale validate-all operation in 305 µs and scaled logarithmically.

Using the loose implementation saved only 133 µs over the strict implemen-
tation. Therefore, unless the application performs many validate-all operations,
relaxing the semantics is unlikely to improve the overall performance of the
application significantly.
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Abstract. The MPI standard lacks semantics and interfaces for sus-
tained application execution in the presence of process failures. Exascale
HPC systems may require scalable, fault resilient MPI applications. The
mission of the MPI Forum’s Fault Tolerance Working Group is to en-
hance the standard to enable the development of scalable, fault tolerant
HPC applications. This paper presents an overview of the Run-Through
Stabilization proposal. This proposal allows an application to continue
execution even if MPI processes fail during execution. The discussion
introduces the implications on point-to-point and collective operations
over communicators, though the full proposal addresses all aspects of the
MPI standard.

Keywords: MPI, Fault Tolerance, Run-throughStabilization, Algorithm
Based Fault Tolerance, Fail-Stop Process Failure.
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1 Introduction

High Performance Computing (HPC) applications, particularly those running
in fault-prone environments, use fault tolerance techniques to ensure success-
ful completion of their computational objectives. As HPC systems push toward
exascale, projections indicate that these large-scale systems will become more
fault-prone, posing a greater threat to the existing HPC applications [2]. In
preparation for such fault-prone computing environments, applications are in-
vestigating Algorithm Based Fault Tolerance (ABFT) [5] techniques to improve
the efficiency of application recovery after process failure beyond that which
checkpoint/restart solutions alone can provide.

The lack of standardized fault tolerance semantics and interfaces prevents
HPC applications from portably exploring ABFT techniques using the MPI stan-
dard. The MPI Forum created the Fault Tolerance Working Group in response
to the growing need for portable, fault tolerant semantics and interfaces in the
MPI standard to support application level fault tolerance development.

The Fault Tolerance Working Group (FTWG)’s run-through stabilization
(RTS) proposal enables an MPI application to continue execution even if one
or more MPI processes fail. The discussion focuses on the central themes of the
proposal in the context of a communicator though all aspects of MPI are ad-
dressed in the proposal under consideration for the MPI-3.0 version of the MPI
standard [4]. Various MPI implementations are currently exploring implemen-
tations of the RTS proposal. The complementary process recovery proposal is
being actively developed by the FTWG.

2 Process Fault Tolerance Model

Under the RTS proposal, the primary role of the MPI implementation is to
(i) inform the application of process failures, and (ii) allow the application to
continue running and communicating with unaffected processes. The application
is guaranteed to be eventually informed, via error handlers, of all process failures
and that no process will be reported as failed before it actually fails. Therefore
the MPI implementation must provide a perfect failure detector for fail-stop
process failure (i.e., a process is permanently stopped, often due to a crash) [3].

From the perspective of one process, other processes can be in one of the
following states (prefixed with MPI RANK STATE ): OK, FAILED or NULL. Pro-
cesses with state OK are executing normally. Processes with state FAILED have
been detected by MPI as failed-stop. Processes with state NULL are failed pro-
cesses treated as if their ranks are MPI PROC NULL.

2.1 Validation of Process State

The RTS proposal focuses on high scalability by treating process failures dif-
ferently from the perspective of point-to-point and collective communication.
This is because point-to-point communication between a given pair of processes
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MPI Comm validate{ all}(MPI Comm c, int ∗newfailures)

MPI Comm validate get num state{ all}(MPI Comm c, int type, int ∗count)

MPI Comm validate get state{ all}(MPI Comm c, int type, int incount,

int ∗outcount, MPI Rank info rank infos[])

MPI Comm validate get state rank{ all}(MPI Comm c, int rank,

MPI Rank info ∗rank info)

MPI Comm validate set state null(MPI Comm c, int incount,

MPI Rank info rank infos[])

Fig. 1. Validation Interfaces for Communications (C interface shown)

is rarely affected by the failure of another process, while collective communica-
tion implies dependance upon the participation of the entire group. As such, the
proposal provides two scopes of application fault recognition: local and global.

A process uses the validation functions in Figure 1 to update, access, and
modify the known state of a process in a communicator. Local recognition is im-
plemented by the variants of the MPI Comm validate operation, and are designed
to support point-to-point communication. Global recognition is implemented by
variants of the MPI Comm validate all operation, and are designed to support
collective communication.

A fault tolerant agreement algorithm is provided by the MPI Comm validate all
collective operation [1]. This operation synchronizes the fault detectors, re-
enables collective operations, globally recognizes known failed processes, and
provides a uniform return value across the collective group.

The failure of a process must be recognized on each communicator of which
it is a member. This allows libraries, that create their own communicators, to
be able to receive notification of the failure even if another library or the main
application has already recognized the failure on another communicator.

2.2 Semantic Modifications

Point-to-Point. Communication between two active processes is unaffected by
the failure of other non-participating processes. For example, if process A
fails, process B can still send messages to process C, and vice versa. Com-
munication with process A returns an error (MPI ERR RANK FAIL STOP)
until process B recognizes the failed process.

Collectives. Collective operations must be fault-aware, meaning that they will
not hang in the presence of failures. To preserve failure-free performance,
collective operations are not required to provide uniform return codes. For
example, using MPI Bcast it is possible for a process to fail inside the col-
lective such that those processes that left early returned success while the
remainder will return an error. When a process fails, all collective opera-
tions are disabled in communicators that contain that process. Collective
communication can be re-enabled by calling MPI Comm validate all.
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Communicator Management. All failed processes must be globally recog-
nized in the participating communicator(s) before calling any communicator
construction operation. If a globally recognized failed process is represented
in a communicator passed to a communicator construction operation other
than MPI COMM SPLIT, then it is represented in the new communicator.
In the presence of failures, the communicator construction operations ensure
uniformly consistent creation of the communicator handle and return codes.
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Abstract. This paper describes a programming model that integrates
intra-node asynchronous task parallelism with inter-node MPI commu-
nications to address the hybrid parallelism challenges faced by future
extreme scale systems. We explore the integration of MPI’s blocking and
non-blocking communications with lightweight tasks. We also provide
the implementation details of a non-blocking runtime execution model
based on computation and communication workers.

1 Introduction

As we head towards exascale computing, it is estimated that we will need to
build systems with O(106) nodes and O(103) cores per node [3]. This paper
describes a programming model intended for such systems. We demonstrate this
model (HC-MPI) by integrating intra-node asynchronous task parallelism with
inter-node MPI communications in the Habanero-C (HC) research language. Our
model tightly integrates MPI’s blocking and non-blocking communications with
HC’s lightweight tasks, and allows inter-node collective MPI operations to be
initiated by asynchronous tasks. This paper provides a summary of the HC-MPI
model, and includes some preliminary results that show its promise.

2 HC-MPI

An HC-MPI program follows a task parallel model within a node and MPI’s
SPMD model across nodes. The Habanero-C language has two constructs for
asynchronous task parallel programming: async and finish, which were borrowed
from the X10 [1] programming language. To extend HC for distributed systems,
we provide two types of message passing operations that are similar to MPI,
asynchronous message passing (async MP), async send and async recv , and syn-
chronous message passing (sync MP), sync send and sync recv . The async MP
calls use asynchronous tasks to pass messages, and do not block the current
execution flow. The enclosing finish statement of async MPs serves as a syn-
chronization scope that guarantees that all the asynchronous operations (tasks
and MPs) will be completed before proceeding to the code after the finish scope.
The sync MP operations, sync send and sync recv , synchronize the sender and
receiver in a message passing transaction. At the intra-node level, the sync calls
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only suspend the current execution context, and do not block the CPU on either
the sender or the receiver side. The compiler transforms HC-MPI constructs to
standard C code that handles context suspension, resumption, and interaction
with the runtime system.

The HC-MPI runtime contains several computation workers and a single com-
munication worker. Computation workers perform computation tasks, and the
communication worker performs MP and global collective operations delegated
to it by computation workers.
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Fig. 1. HC-MPI work-stealing runtime with MPI integration

A computation worker has two queues, a double-ended queue (deque) to
manage computation tasks, and a regular queue that acts as an outbox for MP
operations. A computation worker pushes or pops asynchronous computation
tasks from the tail end of the deque when it creates tasks (through async) or
picks up new work. When the deque is empty, it steals tasks from the head of
the deque of other workers, or from the communication worker’s outbox.

A communication worker has an outbox queue and a local query queue. It
retrieves and pulls MP operations from the outbox queues of computation work-
ers, and processes each MP operation in turn. After submitting an MP operation,
the worker moves it to the query queue. The worker alternates between the re-
trieving/submission and query cycles. When the communication worker detects
that an MP operation is complete and needs to release a previously suspended
task, it pushes the task on its outbox deque so that a computation worker can
steal it and continue its execution. When the communication worker performs
a collective MPI operation, it suspends untill the operation is completed. The
computation workers can continue executing tasks during this time.

3 Experimental Results

We used the test suite developed for evaluating multi-threaded MPI communi-
cations [4]. The experiment setup is a cluster with quad-core Intel Xeon CPU’s,
4GB memory per node, OpenMPI 1.4.3 compiled with support for multi-threaded
MPI. The MPI environment was initialized with MPI THREAD SINGLE for
HC-MPI experiments since HC-MPI uses a single communication worker per
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MPI process. “xP-yT” indicates a configuration of x MPI processes, and each
process has y threads in MPI cases, or y tasks in HC-MPI case.

As shown in Figure 2, HC-MPI is able to reduce the communication time by
a factor of 10x as compared to MPI. In this experiment, communications are
performed with MPI Isend and MPI Irecv in the MPI test, and by async send
and async recv in HC-MPI test, thus to allowing overlap with computation. The
trade-off between communication and computation time is paid off as we see
that the total time is reduced by about 15% by HC-MPI.
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Figure 3a shows the latency between two processes of both HC-MPI and pure
MPI implementation of the benchmark. On average, HC-MPI is able to reduce
the latency by about 5-10% compared to the corresponding MPI examples for
the “2P-2T” and “2P-4T” cases. The bandwidth test is performed by repeatedly
sending 8Mbyte messages and then measuring the bandwidth [4]. From the test
results shown in Figure 3b, the overhead incurred by HC-MPI implementation
poses no noticeable impact on the bandwidth.

4 Related Work

A similar approach was taken in a recent MPI/SMP effort [2] in which MPI
message passing operations are wrapped as tasks and blocking communication
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operations are annotated as restartable to allow runtime to switch to other tasks
when the current task is blocked on messaging operations. HC-MPI uses a scal-
able work-stealing approach, while MPI/SMP used a shared list for all tasks
among computation workers which may easily become a scalable bottleneck.

5 Conclusions and Future Work

In this paper, we presented our work on integrating asynchronous task paral-
lelism with MPI in the Habanero-C programming language, runtime and com-
piler for latency hiding and communication/computation overlap. The HC-MPI
compiler support and a scalable workstealing runtime guarantees no CPU is
blocked when an execution context needs to be suspended. The non-blocking
collective operations for MPI is to be investigated in future.
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Although Unified Parallel C and OpenMP are being proposed for supporting more 
efficiently multicore architectures, the fact is that MPI is still used as a useful model 
on shared memory machines. Traditional mainstream MPI implementations as 
MPICH2 and OpenMPI build each MPI task as a process, an approach that presents 
some disadvantages in shared memory because message passing between processes 
usually requires two copies. One-copy communication can be achieved with operating 
system support, through kernel modules like KNEM or Limic, techniques like 
SMARTMAP, or special system calls like vmsplice, with disadvantages mainly in 
portability and limited improvements in performance. It is also possible building each 
MPI task as a thread. This is not a new concept. Implementations such as TOMPI, 
TMPI, or the newer MPI Actor or MPC-MPI run an MPI node as a thread, each one 
stressing different goals. AzequiaMPI is a thread-based but still a full conformant 
open source implementation of the MPI-1.3 standard. AzequiaMPI shows that MPI 
performance can be significatively improved by fully exploiting a single shared ad-
dress space.  

1   System Design and Performance 

AzequiaMPI has a simple design based on three queues per MPI task. LFQ is the 
communication interface to the rest of tasks, a lock-free queue supporting a single 
receiver (its owner node) and many senders. Once dequeued, a message goes to the 
internal ordinary double-linked MBX queue if no matching is found in the also pri-
vate PRQ queue, where the node posts its receiving requests.  

Some performance improvement techniques have been applied to AzequiaMPI. 
Firstly, using the two-copy fastbox mechanism (taken from MPICH2, [1]) reduces the 
latency for messages up to 1 KB, gaining 50% over MPICH2in messages up to 32 
bytes. Secondly, we use a new technique called split copy in synchronous communi-
cation. In a rendezvous, sender just copies the first half of its user buffer while receiv-
er gets charged of the second half. Split copy increases the bandwidth up to 90% 
around 128 Kbyte messages. 

We compare the overall performance of AzequiaMPI versus that of MPICH2-
Nemesis in an Intel Xeon E5620 Nehalem machine. All tests were run with ranks 
bound to cores. Figure 1 illustrates the point to point performance using the Netpipe 
benchmark, while Figure 2 shows the results from the IMB benchmark on collective 
operations of eight ranks. HPL and NPB SP Multizone results are hardly influenced 
by AzequiaMPI improvements because they are computation intensive benchmarks. 
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Fig. 1. Bandwidth of AzequiaMPI versus that of MPICH2-Nemesis in Netpipe benchmark 

 

Fig. 2. IMB performance of AzequiaMPI versus MPICH2-Nemesis in four collectives 

As conclusions, the thread-based design, together with the lock-free communica-
tion and further optimizations that exploit the properties of a common address space 
makes of AzequiaMPI to outperform other MPI distributions in a significant manner.  
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Abstract. Large-scale scientific simulations generate petascale data sets
subsequently analyzed by groups of researchers, often in databases. We
developed a software library, MPI-DB, to provide database services to
scientific computing applications. As a bridge between CPU-intensive
and data-intensive computations, MPI-DB exploits massive parallelism
within large databases to provide scalable, fast service. It is built as a
client-server framework, using MPI, with MPI-DB server acting as an
intermediary between the user application running an MPI-DB client
and the database servers. MPI-DB provides high-level objects such as
multi-dimensional arrays, acting as an abstraction layer that effectively
hides the database from the end user.

Keywords: Databases, data-intensive computing, software library.

Introduction. In virtually every field of science very large data sets are gener-
ated by measurement instruments (telescopes, high-energy particle accelerators,
gene sequencing machines, etc.), as well as by computer simulations, changing
the way we do science. In astrophysics, following the example of the SDSS Sky-
Server, the Millennium simulation [3] created a remotely accessible database
with a collaborative environment [2], which drew hundreds, if not thousands of
astronomers into analyzing simulations.

The emerging challenge in processing these data sets is scalability and par-
allelism. Scientists at the JHU Institute of Data-Intensive Engineering and Sci-
ence (IDIES) have been developing technology to integrate parallel distributed
databases with traditional high-performance parallel scientific computing. MPI-
DB is planned as the foundational software component in this strategy, enabling
direct parallel data ingest and retrieval between HPC nodes and a database
cluster, the equivalent of ODBC for high perfornce computing.

The NSF has recently awarded our group to build a 5PB cluster, the Datas-
cope, for extreme data-intensive computations. The driving goal behind the
Data-Scope design is to maximize stream processing throughput over 100TB-
size datasets. MPI-DB will enable us to establish peer-to-peer connections be-
tween nodes on the HPC cluster and the Data-Scope I/O nodes – both for the
on-the-fly ingest of data generated by an MPI application, or for the parallel
compute-intensive analysis of large data sets read from the parallel database.
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MPI-DB: Description of the Software Library. The MPI-DB software
library provides database services to scientific computing processes. The user
client application is compiled and linked against the MPI-DB client library. At
run time it connects to an MPI-DB server at a specified network address, which
services clients’ requests by querying the database and sending the results back to
the clients. The library uses MPI for client-server communications, is supported
on both Linux and Windows and supplied with C, C++ and Fortran language
bindings. We plan to provide support for major databases, such as SQL Server,
MySQL and PostgreSQL.

As illustrated in Figure 1, MPI-DB is a distributed scheduler for the database
addressing scalability for both data-intensive and CPU-intensive applications.

d a t a b a s e

MPI-DB

servers

DB servers

Data-non-intensive applicationData-intensive application

H P C   c l u s t e r
MPI-DB

 clients

MPI-DB

 clients

h i g h   b a n d w i d t h   n e t w o r k

Fig. 1. Scalable architecture of the MPI-DB software library: The HPC cluster and
the database are connected by a high bandwidth network. MPI-DB acts as a scheduler
for the database: it allocates multiple database server connections for each process of
a data-intensive applications, while fewer database server connections are allocated for
an application with lower data requirements.

The MPI-DB software is built as a collection of layers (See Figure 2). The user
is no longer required to write SQL queries: MPI-DB provides a set of high-level
programming objects, with methods to store and retrieve from the database.
These include a rich set of multi-dimensional array operations, incorporating
the basic features proposed in [1]. as well as basic functionality to store and
manipulate strings and binary obejcts, such as images or checkpointing files.

Remarks on Implementation. MPI-DB is being developed as object-oriented
software in C++ using MPI-2 functionality. Presently, for MPI-DB the Intel MPI
library is the only satisfactory MPI implementation, while other MPI implemen-
tations contain run-time bugs, do not provide adequate hardware drivers or do
not support MPI-2 standard altogether.
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client

client

client

client

User Management Layer

Simulation Data Layer

Database Access Layer
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server

server

server

server

database

network connection

Fig. 2. Multi-layered software architecture for MPI-DB. Vertical arrows denote soft-
ware dependencies. The client and the server of the MPI Transport layer communicate
over the high bandwidth network using the MPI protocol. The client and the server
in a higher layer communicate with each other using the client and the server of the
layer below, respectively. The server in the Database Access Layer acts as a client to a
database server.

We tested MPI-DB in parallel data ingestion over a 10 Gigabit/sec Ethernet.
Client data was sent to the server and then ingested into mysql database. We
were able to realize scalable data ingestion with maximum aggregate throughput
of up to 700 Megabytes per second when all processor cores were utilized.

References

1. Dobos, L., Csabai, I., Milovanovic, M., Budavari, T., Szalay, A.S., Tintor, M., Blake-
ley, J., Jovanovic, A., Tomic, D.: Array requirements for scientific applications and
an implementation for microsoft sql server. In: Baumann, P. (ed.) Proc. of the
EDBT/ICDT 2011 Workshop on Array Databases, Uppsala, Sweden (2011)

2. Lemson, G., The Virgo Consortium: Halo and galaxy formation histories from the
millennium simulation: Public release of a vo-oriented database (2006)

3. Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., Gao, L.,
Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J.A., Cole, S., Thomas, P.,
Couchman, H., Evrard, A., Colberg, J., Pearce, F.: Simulations of the formation,
evolution and clustering of galaxies and quasars, vol. 435, pp. 629–636 (2005)



Scalable Runtime for MPI: Efficiently Building

the Communication Infrastructure

George Bosilca1, Thomas Herault1, Pierre Lemarinier2,
Ala Rezmerita3, and Jack J. Dongarra1

1 University of Tennessee, Knoxville
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1 Introduction and Motivation

The runtime environment of MPI implementations plays a key role to launch the
application, to provide out-of-band communications, enabling I/O forwarding
and bootstrapping of the connections of high-speed networks, and to control
the correct termination of the parallel application. In order to enable all these
roles on a exascale parallel machine, which features hundreds of thousands of
computing nodes (each of them featuring thousands of cores), scalability of the
runtime environment must be a primary goal.

In this work, we focus on an intermediate level of the deployment / communi-
cation infrastructure bootstrapping process.We present two algorithms: the first
to share the contact information of all runtime processes, enabling an arbitrary
set of connections, and the second to distribute only the information needed to
build a binomial graph. We implemented these two algorithms in ORTE, the
runtime environment of Open MPI, and we compare their efficiency, one with
the other, and with the runtime systems of other popular MPI implementations.

2 Evaluation

We use the underlying launching tree to exchange contact information at the
runtime level, and let the runtime system build for itself a communication in-
frastructure mapping a binomial graph [1] topology. This topology has several
interesting properties such as redundant links to support fault tolerance and
binomial tree shape connectivity rooted in each peer. A precedent work [3] pro-
poses a self-stabilizing algorithm to build such an overlay on top of a tree. Such
an algorithm provides two main features: 1) inherent fault-tolerance and 2) self-
adaptation to the underlying tree topology, which negates the need for initializing
the construction of the binomial topology.

We compare our implementation with three other setups: the implementa-
tion of ORTE described in [4] (prsh with improved flooding), MPICH2 [5] ver-
sion 1.3.2p1 using Hydra [6,2] with rsh and MVAPICH2 version 1.7a using the
ScELA [7] launcher. All versions are compiled in optimized mode and the exper-
iments based on rsh were using ssh as a remote shell system.
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Fig. 1. Comparison of ORTE prsh with BMG and ORTE prsh with Flooding

First, we compare the two implementations in ORTE together, in the figures
presented in Fig. 1. The first micro benchmark, presented in Fig. 1a measures the
time taken to solely exchange the Contact Information, following the Improved
Flooding Strategy, or the BMG Building strategy, as functions of the number of
nodes. The latter consists in two phases: first the building of the ring, then of the
BMG, and the two phases are represented in the figure. Individual measurements
are represented with light points, and mean values are connected with a line.
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Fig. 2. Comparison with other MPI
runtime systems

The BMG algorithm presents a better
convergence time, in practice, than the
Improved Flooding algorithm. This is ex-
pected, since it exchanges much less in-
formation (each node receives only the
contact information of O(log2(n)) nodes)
than the Flooding algorithm (O(n)). The
ring construction time occupies a major
part of this time, but the system appears
to scale faster than linearly.

This is also demonstrated in Fig. 1b,
which presents how both implementations
perform when increasing the number of nodes. On the /bin/true benchmark, the
BMG construction algorithm demonstrates a better scalability than the Flood-
ing Algorithm, with noticeable steps that characterize the logarithmic behavior
of the algorithm. This logarithmic behavior disappears, when launching a com-
municating MPI application, like a2a, or even a simple empty MPI application,
like initfinalize. This is due to the third phase of the launching in ORTE,
the modex, that introduces a linear component to the performance.

Fig. 2 compares the two ORTE implementations with Hydra (MPICH2), and
ScELA (MVAPICH) for the three benchmarks, and various number of nodes.
Although Hydra performs slightly better than both ORTE implementations at
a small scale, ORTE reaches the same performance for 154 nodes and above.
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After about 166 nodes, both Hydra and ScELA for the /bin/true benchmark
suffer from connections storms, that impact the performance by introducing a
delay of 3s, due to TCP SYN packets retransmission.

3 Conclusion

In this paper, we presented two strategies for the construction of a runtime com-
munication infrastructure running in parallel with the deployment of the runtime
processes and the deployment of the parallel application. The first strategy uses
an improved flooding algorithm, that enables any runtime process to communi-
cate with any other directly, thus providing an arbitrary routing topology for
the runtime. The second strategy uses an ad-hoc self-adapting algorithm, that
transforms the initial spawning tree into a binomial graph, not only sharing the
needed contact information (and only this information), but also establishing
at the same time the corresponding links. We implemented both algorithms in
ORTE, the runtime system of Open MPI, and compared the implementations
with the state of the art runtime environments for MPI. Experiments demon-
strated an improved scalability, highlighting the importance of tight integration
between launching and communication infrastructure construction, and the ad-
vantages of a flexible routing topology at the runtime level.
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Abstract. Modular programming is an important software design con-
cept. We discuss principles for programming parallel libraries, show sev-
eral successful library implementations, and introduce a taxonomy for
existing parallel libraries. We derive common requirements that parallel
libraries pose on the programming framework. We then show how those
requirements are supported in the Message Passing Interface (MPI) stan-
dard. We also note several potential pitfalls for library implementers us-
ing MPI. Finally, we conclude with a discussion of state-of-the art of
parallel library programming and we provide some guidelines for library
designers.

1 Introduction

Modular and abstract structured programming is an important software-
development concept. Libraries are commonly used to implement those tech-
niques in practice. They are designed to be called from a general purpose
language and provide certain functions. Libraries can be used to simplify the
software development process by hiding the complexity of designing an efficient
and reusable collection of (parallel) algorithms. High-performance libraries often
provide performance portability and hide the complexity of architecture-specific
optimization details. Library reuse has been found to improve productivity and
reduce bugs [2,17].

In this work, we discuss principles for designing and developing parallel li-
braries in the context of the Message Passing Interface (MPI) [18]. We reca-
pitulate the features that have been introduced 18 years ago [21,6], add newly
found principles and interface issues, and discuss lessons learned. We also analyze
current practice and how state of the art libraries use the provided abstractions.

We show that the key concepts are widely used while other concepts, such as
process topologies and datatypes, did not find very wide adoption yet. In the
following sections, we describe principles for modular distributed memory pro-
gramming, introduce a taxonomy for parallel libraries, discuss several example
libraries, derive common requirements to support modular programming, show
how MPI supports those requirements, discuss common pitfalls in MPI library
programming, and close with a discussion of common practice.
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2 Modular Distributed Memory Programming

Modular programming plays an important role in “Component-based software
engineering (CBSE)”, which suggests to program by composing large-scale com-
ponents. Korson and McGregor [12] identify ten generally desirable attributes
that each serial and parallel library should bear: wide domain coverage, consis-
tency, easy-to-learn, easy-to-use, component efficiency, extensibility, integrabil-
ity, intuitive, robust, well-supported.

Those principles are also valid in distributed memory programming. The main
difference is that distributed and parallel programming requires to control mul-
tiple resources (processing elements). Several major language techniques to sup-
port the development of distributed libraries have been identified in the develop-
ment of the Eiffel language [16]. The list includes (among others) several items
that are relevant for the development of parallel libraries:

classes reusable components should be organized around data structures rather
than action structures

information hiding libraries may use each others facilities, but internal struc-
tures remain hidden and “cross talk” between modules is avoided

assertions characterize semantic properties of a library by assertions
inheritance can serve as module inclusion facility and subtyping mechanism
composability especially performance composability and functional orthogo-

nality. This requires to query relevant state of some objects.

Writing distributed libraries offers a large number of possibilities because spa-
tial resource sharing can be used in addition to temporal sharing with multiple
actors. We identify the following main library types that are commonly used
today: (1) spatial libraries use a subset of processes to implement a certain
functionality and leave the remaining processes to the user (e.g., ADLB [15]),
(2) collective loosely-synchronous libraries are called “in order” (but not syn-
chronously) from a statically specified process group, and (3) collective asyn-
chronous libraries are called by a static group of processes but perform their
functions asynchronously.

2.1 A Taxonomy for Parallel Libraries

We classify existing parallel application libraries into four groups:

Computational Libraries provide full computations to the user, for exam-
ple the solution of PDEs, n-body interactions, or linear algebra problems.
Example libraries include PETSc [1], ScaLAPACK, PMTL [14], PBGL [4],
PPM [20].

Communication Libraries offer new high-level communication functions
such as new collective communications (e.g., LibNBC [11]), domain-specific
communication patterns (e.g., the MPI Process Group in PBGL), or Active
Messages (e.g., AM++ [23]).
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Programming Model Libraries offer a different (often limited) program-
ming model such as the master/slave model (e.g., ADLB [15]) or fine-grained
objects (e.g., AP [24]).

System and Utility Libraries offer helper functionality to interface differ-
ent architectural subsystems that are often outside the scope of MPI (e.g.,
LibTopoMap [10], HDF5 [3]) or language bindings (e.g., Boost.MPI, C# [5]).

Some of the example libraries and their used abstractions are discussed in the
next section.

2.2 Example of Libraries

We now describe some example libraries that we categorized in our taxonomy
that either utilize MPI to implement parallelism or integrate with MPI to provide
additional functionality. This collection is not supposed to be a complete listing
of all important parallel libraries. It merely illustrates one example for each type
of parallel library and shows which abstractions have been chosen to implement
parallel libraries with MPI.

PETSc. The PETSc library [1] offers algorithms and data structures for the
efficient parallel solution of PDEs. PETSc provides abstractions of distributed
datatypes (vectors and matrices) that are scoped by MPI communicators and
hides the communication details from the user. The passed communicator is
copied and cached as attribute to ensure isolation. PETSc uses advanced MPI
features such as nonblocking communication and persistent specification of com-
munication patterns while hiding the message passing details and data distribu-
tion from the user. It also offers asynchronous interfaces to communication calls,
such as VectScatterBegin() and VecScatterEnd() to expose the overlap to the
user.

PBGL. The Parallel Boost Graph Library [4] is a generic C++ library to
implement graph algorithms on distributed memory. The implementation bases
on lifting the requirements of a serial code to base a parallel implementation
on it. The main abstractions are the process group to organize communications,
the distributed property map to implement a communication abstraction, and a
distributed queue to manage computation and detect termination. The library
offers a generic interface to the user and uses Boost.MPI to interface MPI.

PMTL. The Parallel Matrix Template Library [14] is, like the PBGL, a generic
C++ library. It uses distributed vectors and matrices to express parallel linear
algebra computations. As for PBGL, the concepts completely hide the underlying
communication and enable optimized implementations.

PPM. The Parallel Particle Mesh Library [20] provides domain decomposition
and automatic communication support for the simulation of continuous systems.
The library offers a high-level application oriented interface which is close to a
domain-specific language for such simulations. It offers support for advanced
functions of MPI.
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ADLB. The Asynchronous Dynamic Load Balancing Library, developed at Ar-
gonne [15], offers a simplified programming model to the user. The master/slave
model consists of essentially three function calls and the scalable distribution of
work and parallelization of the server process is done by the library. The library
expects an initialized MPI and uses communicators during its init call to divide
the job into master and slave groups. The master group “stays” within ADLB
while the user has full access to the slave group to issue ADLB calls to the mas-
ter. The library has been used with multi-threaded processes on BlueGene/P to
achieve 95% on-node speedup.

LibNBC. LibNBC [11] is an asynchronous communication library that provides
a portable implementation of all MPI-specified collective operations with a non-
blocking interface. It uses advanced MPI features to provide a high-performing
interface to those functions and faces several of the issues discussed in Sec-
tions 3.3 and 3.4. LibNBC also offers an InfiniBand-optimized transport layer [9]
that faces problems described in Section 3.5.

LibTopoMap. LibTopoMap [10] provides portable topology mapping function-
ality for the distributed graph topology interface specified in MPI-2.2 [18]. It re-
places the distributed graph topology interface on top of MPI and caches the new
communicator and new numbering as attribute of the old communicator. This
shows that a complete modular implementation of the Topology functionality in
MPI is possible.

HDF5. The HDF5 library [3] offers an abstract data model for storing and
managing scientific data. It offers support to specify arbitrary data layouts and
its parallel version relies heavily on MPI datatypes and MPI-IO. As a system
library, it faces several problems as discussed in Section 3.4.

2.3 Common Requirements of Parallel Libraries

Based on the survey of libraries, we distill the common requirements for a par-
allel runtime environment such as MPI. Parallel libraries require performance,
scalability, usability, error handling, isolation (a “safe and private” communi-
cation space) for point-to-point and collective communication, and virtualized
process naming (e.g., topologies or a virtual one-dimensional namespace). In
addition, high-quality programming frameworks may offer topology mapping,
fault-tolerance, and data management support to libraries.

3 The Loosely Synchronous Model in MPI

We now discuss how MPI supports parallel libraries by providing many of the
required features listed in Section 2.3. The loosely synchronous model for parallel
libraries is specified in Section 6.9 of the MPI standard [18]. In this model, all
processes in a communicator invoke parallel subroutines in the same order. Those
processes do not have to synchronize before the invocation.

We now discuss the main concepts in MPI that support the development of
parallel libraries.
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Communication Contexts in the form of MPI communicators are the most
important concept for libraries. Communicators offer spatial and temporal isola-
tion because they can specify disjoint process groups and isolate communication
on overlapping process groups. This “communication privatization” is similar
to the important “data privatization” in object oriented languages. Section 3.2
discusses potential issues with reentrant libraries. Each communicator has an
associated Process Group that offers a virtual one-dimensional namespace for
processes. Communicators also provide a scope for collective communication and
support the concept of “functional and spatial composability” [16].

Virtual Topologies allow for domain-specific process naming schemes that can
be passed to and queried by libraries. This extends the simple one-dimensional
naming of process groups to arbitrary Cartesian naming schemes or general
graph topologies (which can be enumerated by graph traversals, such as Breadth
First Search).

Attribute Caching can be used to associate state to communicator objects.
MPI allows to attach arbitrary data to communicators, windows, and datatypes
in order to pass context or state information between library calls. MPI guar-
antees that this information can be quickly retrieved and is consistent. It also
offers functionality to strictly control the inheritance of attributes in communi-
cator copy functions. This allows to mimic the concept of “inheritance” [16] of
general object oriented programming.

Datatypes defines an interface to exchange the layout of data structures for
communications between libraries and user applications. MPI offers the required
functions to create private copies of datatypes (MPI Type dup) and manipulate
them. It also offers functions to query the composition of existing datatypes and
serialize or deserialize (MPI Pack/MPI Unpack) them into/from buffers. Those
abstractions support the abstract definition of datatypes in libraries.

MPI’s Modular Design allows to implement full sections of the MPI standard
as separate libraries (e.g., Sections 5 (Collective Communication), 7 (Process
Topologies), and 13 (I/O) can solely be implemented with the core function-
ality of MPI 1). This supports and encourages the implementation of external
communication libraries, such as LibTopoMap or LibNBC.

3.1 Where It Breaks

MPI’s support for parallel libraries is comprehensive. However, library writers
have to exercise care when using several functionalities in MPI and define exter-
nal contracts with the users of the library.

The most prominent example is multi-threading. If a library requires a certain
thread level, e.g., MPI THREAD MULTIPLE, then the user must ensure that MPI
is initialized with this thread level. This can be tricky if multiple parallel libraries
are used in a single program and can lead to performance degradation if the
thread support is only needed for small parts of the code.
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A second limitation applies to the MPI Info values that can be specified during
the creation of several objects. Specified values cannot be queried or reset by
libraries and need to be communicated out-of-band or enforced via external
“contracts”. This can influence performance, or even correctness if specified info
arguments change the object’s semantics (e.g., no locks).

In the following sections, we discuss several application-specific issues and
limitations that library-writers may be confronted with.

3.2 Reentrant Libraries

A parallel library invocation will be passed a communicator argument that in-
dicates the group of processes performing the call. A well designed library will
pass this communicator as an explicit argument. The library needs a communi-
cation context that is distinct from the communication contexts of the invoking
code. This is usually done by creating a communicator private to the library
that is a duplicate of the argument communicator shows how this private com-
municator can be cached with the communicator argument, so that the private
communicator is created only at the first invocation.

This method provides a static communication context, shared by all library
instances. It ensures that sends inside the library cannot match receives outside
the library, and vice-versa; but it does not ensure that a send performed by
one instance of the library be matched by a receive in another instance.. Such
a library is nonreentrant : it requires that only one invocation instance be active
on a communicator at the same time (no recursion, no new invocation before a
previous one completed at all processes). : One can build reentrant libraries in
various ways: E.g., by having a barrier, either at entry or at exit (which may
have severe impact in performance due to unnecessary synchronization), by cre-
ating a new communicator instance for each invocation (several communicators
could be pre-dup’d and managed in a stack-like manner as attributes), or by im-
posing a communication discipline that avoids out-of-order message matching:
no wildcard source receives (MPI ANY SOURCE), no cancel operations and mes-
sages produced within a dynamic scope are consumed within the same dynamic
scope.

3.3 Nonblocking Libraries

Nonblocking or asynchronous libraries pose the challenge of progress and con-
trol transfer. We differentiate between “manual” progress (the user periodically
transfer control to the library, for the library to progress, cf. coroutines) and
“asynchronous” progress (the library spawns an asynchronous activity, e.g., a
thread) [8]. Manual progress is required on some HPC systems because of limi-
tations on multithreading, limitations on signaling between the communication
hardware and (user) threads, and lack of an appropriate scheduling policy.

MPI-2.2 offers generalized requests to integrate completion checks of opera-
tions in nonblocking library routines with the usual MPI completion calls (e.g.,
MPI Test). However, the specification requires asynchronous progress and does
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not work on systems where manual progress is needed. A simple fix for this,
which adds manual progress facilities to generalized requests, has been proposed
for MPI-3 [13].

The parallel invocation method described in Section 3.3 requires that the com-
municator argument be duplicated, at least at the first library invocation on the
communicator. However, MPI Comm dup is a blocking collective routine and may
require synchronization. This makes it impossible to implement pure nonblock-
ing collective libraries. The alternative of Initializing each communicator before
using it with a library is an unnecessary burden for library users even though it
is common practice (e.g., in ScaLAPACK). A nonblocking MPI Comm dup call
would solve this problem.

3.4 Complex Communication Operations

Libraries are often used to implement new, higher-level communication opera-
tions. We already discussed issues with nonblocking interfaces of such libraries,
however, implementers need to consider two more potential hurdles.

If the library on top of MPI-2.1 was to perform a reduction with either a
predefined or user-defined MPI operation, then the library needed to implement
the reduction operation itself (since the new library cannot access the function
pointer associated with an MPI Op). MPI-2.2 introduces MPI Reduce local to
solve this problem. MPI Reduce local performs a single binary reduction with an
MPI Op handle as it would be performed by a collective reduction operation. It
is recommended to use this functionality to implement reduction communication
operations, such as nonblocking MPI Reduce on top of MPI.

3.5 Process Synchronization Outside of MPI

The MPI standard does not specify the interaction of MPI with other, poten-
tially synchronizing, communication mechanisms outside of MPI. This can pose
problems when such operations are mixed, e.g., if communication libraries are
tuned for low-level transport interfaces [9]. The implementer has to ensure that
all communication interfaces make progress. However, MPI may require man-
ual progress but does not offer an explicit progress call. This may be emulated
(rather inelegantly) by calling MPI Iprobe in a progress loop.

4 Hybrid Programming

Hybrid Programming mixes MPI with other programming models such as
Pthreads, OpenMP, or PGAS models. The implementations of runtimes for those
models often use external communication layers and may suffer from issues dis-
cussed in Section 3.5. However, the interaction between different parallelization
schemes can have more complex effects. We discuss two issues with the interac-
tion of MPI and threads. We remark that the discussion is not limited to threads
and applies to other models, such as PGAS, or languages, such as C#.
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4.1 Thread-Safe Message Probing

MPI offers a mechanism (MPI Probe/MPI Iprobe) to peek into the receive queue
and query the size of found messages before posting the receive. This enables the
reception of dynamically-sized messages. However, this also creates problems in
the context of multiple threads [5] since one thread can query the message and
another thread can receive it (the queue is a global shared object). A matched
probe call that removes the message from the queue while peeking has been
proposed to MPI-3 to solve this problem [7]. This addition enables low-overhead
probing for threaded libraries and languages.

4.2 Control Transfer and Threading

Threaded libraries pose additional problems for the interfaces. This is because
threaded libraries encapsulate resource requirements in addition to functionality.
For single-threaded libraries, the control is handed from a single thread running
on a single processing element (PE) to a single thread. In multi-threaded envi-
ronments, we differentiate four scenarios:

1. A single application thread calls a single-threaded library.
2. A single application thread calls a multi-threaded library.
3. Multiple application threads call a single-threaded library.
4. Multiple application threads call a multi-threaded library.

Scenario 1 is identical to the single-threaded case while all other scenarios
require some kind of resource management. Scenario 2 is simple because the
library is the only consumer of PE resources, while Scenario 3 can solved by
synchronizing all threads before the library is called (this is commonly used
today, e.g., in [15]). Scenario 4 is most tricky and requires advanced resource
management.

Resource management can either be performed by the operating system (time
multiplexing) or explicitly by the user with ad-hoc mechanisms such as querying
the number of available cores and thread-pinning. A promising OS-based space
multiplexing (core allocation) approach is proposed in [19].

4.3 Communication Endpoints

Special care has to be taken if the communication layer requires multiple client
threads per node in order to achieve full performance. This has to be addressed
in hybrid programming by either using multiple threaded MPI processes per
node, or a scheme similar to Scenario 4. A proposal for MPI-3.0 [22] shows an
extension for MPI to provide multiple logical network endpoints in a threaded
hybrid MPI application.

5 Guidelines for Library Designers

We now conclude this work by providing some hints and guidelines for MPI li-
brary developers. All those guidelines are in addition to the well-known serial
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library design rules, such as privatization and abstraction. In general, libraries
should utilize the features provided by MPI while paying attention to the pit-
falls discussed above. In particular, libraries should use communicators to specify
spatial decomposition of the process space and to present safe communication
contexts for temporal decomposition. Created communicators and library in-
ternal state and data-structures should be cached with the user communicator
(which then becomes the central communication object that needs to be passed
to every library call, special care has to be taken for reentrant libraries, cf. Sec-
tion 3.2). Libraries should take advantage of virtual topologies to specify process
topologies and possibly perform topology mapping (this may conflict with the
user program or other stacked libraries). If library-specific structures are passed
to communication functions and from or to the user, then those should be spec-
ified with MPI datatypes. Parallel libraries should also handle errors internally
and provide library-specific error messages to the user. This can be achieved by
attaching a library-specific error handler to the library’s private communicator.

Library and communicator initialization can either be done explicitly or im-
plicitly (at first invocation). Communicator initialization must be done collec-
tively and we discuss issues with nonblocking communication in Section 3.3.

5.1 What to Avoid!

Libraries should never use the passed communicators directly (just attached at-
tributes); this includes the global communicator MPI COMM WORLD. Synchro-
nization or draining messages at entry or exit from a library call may impose
unnecessary overheads and should be avoided. Libraries also don’t need to limit
themselves to disjoint process groups. Overlapping communicators are managed
well within MPI.

5.2 Progress

There is no generally good strategy for highly-performance library progress: The
use of asynchronous progress may be too inefficient or even impossible, while
the use of manual progress breaks isolation and may lead to deadlock when
multiple libraries are composed, with no systematic use of manual progress at
each interface. Thus, progress should be ensured for each library separately. Also,
repeated library invocations for manual progress add a superfluous overhead on
systems with asynchronous progress. The cleaner solution would be to provide
adequate asynchronous progress on all systems. Baring this, it is very desirable
to provide manual progress calls that are macro-expanded into noops on systems
that do not need them.

6 Summary and Conclusions

In this paper, we showed principles for designing parallel libraries, described a
taxonomy of existing libraries and several library examples. We then derived
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general requirements for parallel libraries and described how they are supported
in MPI. Furthermore, we show issues with the current MPI specification that
may present pitfalls to developers. Finally, we summarize current practice and
good practices for designing parallel libraries.

We conclude that MPI is very well suited to support the development and
use of parallel libraries. It offers mechanisms for space- and time-multiplexing
processes and an object-oriented interface. It is crucial that other parallel pro-
gramming environments, such as upcoming PGAS languages, provide a similar
level of support for library development.
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