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In this fourth edition of An Introduction to Dynamic Meteorology 1 have retained
the basic structure of all chapters of the previous edition. A number of minor correc-
tions, pedagogical improvements, and updates of material are included throughout.
The major departure from previous editions, however, is inclusion of a variety of
computer-based exercises and demonstrations utilizing the MATLAB® program-
ming language at the end of each chapter (MATLAB® is a registered trademark of
The MathWorks, Inc.). These will, I hope, provide students with an opportunity to
visualize and experiment with various aspects of dynamics not readily accessible
through analytic problem solving.

I have chosen MATLAB because it is a high-level language with excellent
graphing capabilities and is readily available to most university students. The
ability within MATLAB to animate wave fields is particularly valuable as a learning
aid in dynamic meteorology. It is not necessary to have much experience with
MATLAB to solve most of the problems provided. In most cases MATLAB scripts
(M-files) are provided on the accompanying CD, and the student need only run the
scripts for various parameter choices or make minor revisions. Through studying
the various examples, students should gradually be able to gain the confidence to
program their own MATLAB scripts.

xi



Xii PREFACE

Much of the material included in this text is based on a two-term course sequence
for seniors majoring in atmospheric sciences at the University of Washington. It
would also be suitable for first-year graduate students with little previous back-
ground in meteorology. As in the previous editions the emphasis in the text is on
physical principles rather than mathematical elegance. It is assumed that the reader
has mastered the fundamentals of classical physics and has a thorough knowledge
of elementary calculus. Some use is made of vector calculus. In most cases, how-
ever, the vector operations are elementary in nature so that the reader with little
background in vector operations should not experience undue difficulties.

The fundamentals of fluid dynamics necessary for understanding large-scale
atmospheric motions are presented in Chapters 1-5. These have undergone only
minor revisions from the previous edition. The development of the Coriolis force
in Section 1.5 has been substantially improved from previous editions. The dis-
cussion of the barotropic vorticity equation in Section 4.5 now introduces the
streamfunction. As in previous editions, Chapter 6 is devoted to quasi-geostrophic
theory, which is still fundamental to the understanding of large-scale extratropical
motions. This chapter has been revised to provide increased emphasis on the role of
potential vorticity and potential vorticity inversion. The presentation of the omega
equation and the Q vector has been revised and improved.

In Chapter 9, the discussions of fronts, symmetric instability, and hurricanes
have all been expanded and improved. Chapter 10 now includes a discussion of
annular modes of variability, and the discussion of general circulation models has
been rewritten. Chapter 11 has an improved discussion of El Nifio and of steady
equatorial circulations. Chapter 12 presents a revised discussion of the general
circulation of the stratosphere, including discussions of the residual circulation
and trace constituent transport. Finally, Chapter 13 has been updated to briefly
summarize modern data assimilation techniques and ensemble forecasting.

Acknowledgments: 1 am indebted to a large number of colleagues and students
for their continuing interest, suggestions, and help with various figures. [ am partic-
ularly grateful to Drs. Dale Durran, Greg Hakim, Todd Mitchell, Adrian Simmons,
David Thompson, and John Wallace for various suggestions and figures.



CHAPTER 1

Introduction

1.1 THE ATMOSPHERIC CONTINUUM

Dynamic meteorology is the study of those motions of the atmosphere that are
associated with weather and climate. For all such motions the discrete molecular
nature of the atmosphere can be ignored, and the atmosphere can be regarded as
a continuous fluid medium, or continuum. A “point” in the continuum is regarded
as a volume element that is very small compared with the volume of atmosphere
under consideration, but still contains a large number of molecules. The expres-
sions air parcel and air particle are both commonly used to refer to such a point.
The various physical quantities that characterize the state of the atmosphere (e.g.,
pressure, density, temperature) are assumed to have unique values at each point in
the atmospheric continuum. Moreover, these field variables and their derivatives
are assumed to be continuous functions of space and time. The fundamental laws
of fluid mechanics and thermodynamics, which govern the motions of the atmo-
sphere, may then be expressed in terms of partial differential equations involv-
ing the field variables as dependent variables and space and time as independent
variables.



2 1 INTRODUCTION

The general set of partial differential equations governing the motions of the
atmosphere is extremely complex; no general solutions are known to exist. To
acquire an understanding of the physical role of atmospheric motions in determin-
ing the observed weather and climate, it is necessary to develop models based on
systematic simplification of the fundamental governing equations. As shown in
later chapters, the development of models appropriate to particular atmospheric
motion systems requires careful consideration of the scales of motion involved.

1.2 PHYSICAL DIMENSIONS AND UNITS

The fundamental laws that govern the motions of the atmosphere satisfy the princi-
ple of dimensional homogeneity. That is, all terms in the equations expressing these
laws must have the same physical dimensions. These dimensions can be expressed
in terms of multiples and ratios of four dimensionally independent properties:
length, time, mass, and thermodynamic temperature. To measure and compare the
scales of terms in the laws of motion, a set of units of measure must be defined for
these four fundamental properties.

In this text the international system of units (SI) will be used almost exclusively.
The four fundamental properties are measured in terms of the SI base units shown
in Table 1.1. All other properties are measured in terms of SI derived units, which
are units formed from products or ratios of the base units. For example, velocity
has the derived units of meter per second (m s~1). A number of important derived
units have special names and symbols. Those that are commonly used in dynamic
meteorology are indicated in Table 1.2. In addition, the supplementary unit desig-
nating a plane angle, the radian (rad), is required for expressing angular velocity
(rad s~1) in the SI system.1

In order to keep numerical values within convenient limits, it is conventional to
use decimal multiples and submultiples of SI units. Prefixes used to indicate such
multiples and submultiples are given in Table 1.3. The prefixes of Table 1.3 may
be affixed to any of the basic or derived SI units except the kilogram. Because the

Table 1.1 SI Base Units

Property Name Symbol
Length Meter (meter) m
Mass Kilogram kg
Time Second S
Temperature Kelvin K

I Note that Hertz measures frequency in cycles per second, not in radians per second.


IBM
Highlight

IBM
Highlight

IBM
Highlight


1.2 PHYSICAL DIMENSIONS AND UNITS 3

Table 1.2 SI Derived Units with Special Names

Property Name Symbol
Frequency Hertz Hz (s~ 1)
Force Newton N (kg m 5*2)
Pressure Pascal Pa (N m*2)
Energy Joule J(Nm)
Power Watt \VAC sfl)

kilogram already is a prefixed unit, decimal multiples and submultiples of mass
are formed by prefixing the gram (g), not the kilogram (kg).

Although the use of non-SI units will generally be avoided in this text, there are
a few exceptions worth mentioning:

1. In some contexts, the time units minute (min), hour (h), and day (d) may be
used in preference to the second in order to express quantities in convenient
numerical values.

2. The hectopascal (hPa) is the preferred SI unit for pressure. Many meteo-
rologists, however, are still accustomed to using the millibar (mb), which
is numerically equivalent to 1 hPa. For conformity with current best prac-
tice, pressures in this text will generally be expressed in hectopascals (e.g.,
standard surface pressure is 1013.25 hPa).

3. Observed temperatures will generally be expressed using the Celsius tem-
perature scale, which is related to the thermodynamic temperature scale as
follows:

Tc=T -1y

where T¢ is expressed in degrees Celsius (°C), T is the thermodynamic temperature
in Kelvins (K), and 7y =273.15 K is the freezing point of water on the Kelvin scale.
From this relationship it is clear that one Kelvin unit equals one degree Celsius.

Table 1.3 Prefixes for Decimal Multiples and Submulti-
ples of SI Units

Multiple Prefix Symbol
109 Mega M
103 Kilo k
102 Hecto h
101 Deka da
10~1 Deci d
102 Centi c
103 Milli m
10-° Micro n
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4 1 INTRODUCTION

1.3 SCALE ANALYSIS

Scale analysis, or scaling, is a convenient technique for estimating the magnitudes
of various terms in the governing equations for a particular type of motion. In scal-
ing, typical expected values of the following quantities are specified:
(1) magnitudes of the field variables; (2) amplitudes of fluctuations in the field
variables; and (3) the characteristic length, depth, and time scales on which these
fluctuations occur. These typical values are then used to compare the magnitudes
of various terms in the governing equations. For example, in a typical midlatitude
synoptic? cyclone the surface pressure might fluctuate by 10 hPa over a horizontal
distance of 1000 km. Designating the amplitude of the horizontal pressure fluctu-
ation by 8p, the horizontal coordinates by x and y, and the horizontal scale by L,
the magnitude of the horizontal pressure gradient may be estimated by dividing
dp by the length L to get

ap 0 )
_p’ _p ~ —p =10 hpa/lo3 km (10_3 Pa m_l>
dx dy L

Pressure fluctuations of similar magnitudes occur in other motion systems of vastly
different scale such as tornadoes, squall lines, and hurricanes. Thus, the horizon-
tal pressure gradient can range over several orders of magnitude for systems of
meteorological interest. Similar considerations are also valid for derivative terms
involving other field variables. Therefore, the nature of the dominant terms in the
governing equations is crucially dependent on the horizontal scale of the motions.
In particular, motions with horizontal scales of a few kilometers or less tend to
have short time scales so that terms involving the rotation of the earth are negli-
gible, while for larger scales they become very important. Because the character
of atmospheric motions depends so strongly on the horizontal scale, this scale
provides a convenient method for the classification of motion systems. Table 1.4
classifies examples of various types of motions by horizontal scale for the spectral
region from 107 to 107 m. In the following chapters, scaling arguments are used
extensively in developing simplifications of the governing equations for use in
modeling various types of motion systems.

1.4 FUNDAMENTAL FORCES

The motions of the atmosphere are governed by the fundamental physical laws
of conservation of mass, momentum, and energy. In Chapter 2, these principles
are applied to a small volume element of the atmosphere in order to obtain the

2 The term synoptic designates the branch of meteorology that deals with the analysis of observations
taken over a wide area at or near the same time. This term is commonly used (as here) to designate the
characteristic scale of the disturbances that are depicted on weather maps.
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1.4 FUNDAMENTAL FORCES 5

Table 1.4 Scales of Atmospheric Motions

Type of motion Horizontal scale (m)
Molecular mean free path 1077
Minute turbulent eddies 10~2-10~!
Small eddies 1071 -1
Dust devils 1-10
Gusts 10- 102
Tornadoes 102
Cumulonimbus clouds 103
Fronts, squall lines 104~ 10°
Hurricanes 10°
Synoptic cyclones 100
Planetary waves 107

governing equations. However, before deriving the complete momentum equation
it is useful to discuss the nature of the forces that influence atmospheric motions.

These forces can be classified as either body forces or surface forces. Body forces
act on the center of mass of a fluid parcel; they have magnitudes proportional to the
mass of the parcel. Gravity is an example of a body force. Surface forces act across
the boundary surface separating a fluid parcel from its surroundings; their magni-
tudes are independent of the mass of the parcel. The pressure force is an example.

Newton’s second law of motion states that the rate of change of momentum (i.e.,
the acceleration) of an object, as measured relative to coordinates fixed in space,
equals the sum of all the forces acting. For atmospheric motions of meteorological
interest, the forces that are of primary concern are the pressure gradient force, the
gravitational force, and friction. These fundamental forces are the subject of the
present section. If, as is the usual case, the motion is referred to a coordinate system
rotating with the earth, Newton’s second law may still be applied provided that
certain apparent forces, the centrifugal force and the Coriolis force, are included
among the forces acting. The nature of these apparent forces is discussed in
Section 1.5.

1.4.1 Pressure Gradient Force

We consider an infinitesimal volume element of air, 6V = x§ydz, centered at
the point xg, 3o, zo as illustrated in Fig. 1.1. Due to random molecular motions,
momentum is continually imparted to the walls of the volume element by the
surrounding air. This momentum transfer per unit time per unit area is just the
pressure exerted on the walls of the volume element by the surrounding air. If the
pressure at the center of the volume element is designated by po, then the pressure
on the wall labeled A4 in Fig. 1.1 can be expressed in a Taylor series expansion as

op 8
po + pox + higher order terms
ax 2
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6 1 INTRODUCTION

(Xo, Yoi20)

Fig. 1.1 The x component of the pressure gradient force acting on a fluid element.

Neglecting the higher order terms in this expansion, the pressure force acting on
the volume element at wall A is

ap 8x
Fgpo=—|po+ ——)0yéz
ax 2

where §yéz is the area of wall 4. Similarly, the pressure force acting on the volume
element at wall B is just

Ip ox
Fax =+ (po - —i’—)ayaz

Therefore, the net x component of this force acting on the volume is

ad
F, = Fyy + Fpx = —% 0x 38y dz

Because the net force is proportional to the derivative of pressure in the direction
of the force, it is referred to as the pressure gradient force.The mass m of the dif-
ferential volume element is simply the density p times the volume: m = p§x45ydz.
Thus, the x component of the pressure gradient force per unit mass is

F 1ap

m p ox

Similarly, it can easily be shown that the y and z components of the pressure
gradient force per unit mass are

F 19
R and
m p 0y
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1.4 FUNDAMENTAL FORCES 7

so that the total pressure gradient force per unit mass is

F 1
—=——Vp (1.1)
m P

It is important to note that this force is proportional to the gradient of the pressure
field, not to the pressure itself.

1.4.2 Gravitational Force

Newton’s law of universal gravitation states that any two elements of mass in the
universe attract each other with a force proportional to their masses and inversely
proportional to the square of the distance separating them. Thus, if two mass
elements M and m are separated by a distance » = |r| (with the vector r directed
toward m as shown in Fig. 1.2), then the force exerted by mass M on mass m due
to gravitation is

GMm /r

v, =24
where G is a universal constant called the gravitational constant. The law of grav-
itation as expressed in (1.2) actually applies only to hypothetical “point” masses
since for objects of finite extent r will vary from one part of the object to another.
However, for finite bodies, (1.2) may still be applied if |r| is interpreted as the
distance between the centers of mass of the bodies. Thus, if the earth is designated
as mass M and m is a mass element of the atmosphere, then the force per unit mass

exerted on the atmosphere by the gravitational attraction of the earth is

Fig. 1.2 Two spherical masses whose centers are separated by a distance r.
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8 1 INTRODUCTION

In dynamic meteorology it is customary to use the height above mean sea level
as a vertical coordinate. If the mean radius of the earth is designated by a and
the distance above mean sea level is designated by z, then neglecting the small
departure of the shape of the earth from sphericity, » = a + z. Therefore, (1.3) can
be rewritten as

£
e ——= 14
¢ = Troay (1.4)
where g5 = —(GM /a®)(r/r) is the gravitational force at mean sea level. For

meteorological applications, z < a so that with negligible error we can let g* = g
and simply treat the gravitational force as a constant.

1.4.3 Viscous Force

Any real fluid is subject to internal friction (viscosity), which causes it to resist
the tendency to flow. Although a complete discussion of the resulting viscous
force would be rather complicated, the basic physical concept can be illustrated
by a simple experiment. A layer of incompressible fluid is confined between two
horizontal plates separated by a distance / as shown in Fig. 1.3. The lower plate
is fixed and the upper plate is placed into motion in the x direction at a speed ug.
Viscosity forces the fluid particles in the layer in contact with the plate to move at
the velocity of the plate. Thus, at z = / the fluid moves at speed u(/) = uq, and
at z = 0 the fluid is motionless. The force tangential to the upper plate required
to keep it in uniform motion turns out to be proportional to the area of the plate,
the velocity, and the inverse of the distance separating the plates. Thus, we may
write F' = pAug/ Il where p is a constant of proportionality, the dynamic viscosity
coefficient.

This force must just equal the force exerted by the upper plate on the fluid
immediately below it. For a state of uniform motion, every horizontal layer of
fluid of depth 6z must exert the same force F' on the fluid below. This may be

% 73, o
217 ull)=u
(o]
u(z)
z2=0 u(0)=0
~N
o %]

Fig. 1.3 One-dimensional steady-state viscous shear flow.
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1.4 FUNDAMENTAL FORCES 9

expressed in the form F = puAdu/8z where u = uopdz/l is the velocity shear
across the layer §z. The viscous force per unit area, or shearing stress, can then be
defined as

i Su u
Ty = lim pu— = pu—
520 - 6z - 0z

where subscripts indicate that 7, is the component of the shearing stress in the x
direction due to vertical shear of the x velocity component.

From the molecular viewpoint, this shearing stress results from a net downward
transport of momentum by the random motion of the molecules. Because the
mean x momentum increases with height, molecules passing downward through a
horizontal plane at any instant carry more momentum than those passing upward
through the plane. Thus, there is a net downward transport of x momentum. This
downward momentum transport per unit time per unit area is simply the shearing
stress.

In a similar fashion, random molecular motions will transport heat down a mean
temperature gradient and trace constituents down mean mixing ratio gradients. In
these cases the transport is referred to as molecular diffusion. Molecular diffusion
always acts to reduce irregularities in the field being diffused.

In the simple two-dimensional steady-state motion example given above there
is no net viscous force acting on the elements of fluid, as the shearing stress acting
across the top boundary of each fluid element is just equal and opposite to that acting
across the lower boundary. For the more general case of nonsteady two-dimensional
shear flow in an incompressible fluid, we may calculate the viscous force by again
considering a differential volume element of fluid centered at (x, y, z) with sides
8x6ydz as shown in Fig. 1.4. If the shearing stress in the x direction acting through
the center of the element is designated 7y, then the stress acting across the upper
boundary on the fluid below may be written approximately as

0T, 0z

dz 2

while the stress acting across the lower boundary on the fluid above is

0T,y 0z

— T JR— —

“w @ €
(This is just equal and opposite to the stress acting across the lower boundary
on the fluid below.) The net viscous force on the volume element acting in the x

direction is then given by the sum of the stresses acting across the upper boundary
on the fluid below and across the lower boundary on the fluid above:

ad ) a )
(sz + b, _Z> 8x 8y — (tzx U _Z) 3x 8y

Tox +

dz 2 dz 2
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10 1 INTRODUCTION

0Tax é
2

— Ty +

8y
T - OTzx 2
™9z 2

Fig. 1.4 The x component of the vertical shearing stress on a fluid element.

Dividing this expression by the mass péx§ydz, we find that the viscous force per
unit mass due to vertical shear of the component of motion in the x direction is

1 0T 1 0 ou
p 9z  p oz (Maz)

For constant w, the right-hand side just given above may be simplified to
vo2u/dz2, where v = u/p is the kinematic viscosity coefficient. For standard
atmosphere conditions at sea level, v = 1.46 x 103 m? s~ !. Derivations anal-
ogous to that shown in Fig. 1.4 can be carried out for viscous stresses acting in

other directions. The resulting frictional force components per unit mass in the
three Cartesian coordinate directions are

[0%u  0%u  9%u
[0%2v  9%v  8%v
(02w 92w 02w
il

(1.5)

For the atmosphere below 100 km, v is so small that molecular viscosity is
negligible except in a thin layer within a few centimeters of the earth’s surface
where the vertical shear is very large. Away from this surface molecular boundary
layer, momentum is transferred primarily by turbulent eddy motions. These are
discussed in Chapter 5.

1.5 NONINERTIAL REFERENCE FRAMESAND “APPARENT” FORCES

In formulating the laws of atmospheric dynamics it is natural to use a geocentric
reference frame, that is, a frame of reference at rest with respect to the rotating
earth. Newton’s first law of motion states that a mass in uniform motion relative to
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1.5 NONINERTIAL REFERENCE FRAMES AND “APPARENT” FORCES 11

a coordinate system fixed in space will remain in uniform motion in the absence of
any forces. Such motion is referred to as inertial motion; and the fixed reference
frame is an inertial, or absolute, frame of reference. It is clear, however, that an
object at rest or in uniform motion with respect to the rotating earth is not at rest or
in uniform motion relative to a coordinate system fixed in space. Therefore, motion
that appears to be inertial motion to an observer in a geocentric reference frame
is really accelerated motion. Hence, a geocentric reference frame is a noninertial
reference frame. Newton’s laws of motion can only be applied in such a frame if the
acceleration of the coordinates is taken into account. The most satisfactory way of
including the effects of coordinate acceleration is to introduce “apparent” forces
in the statement of Newton’s second law. These apparent forces are the inertial
reaction terms that arise because of the coordinate acceleration. For a coordinate
system in uniform rotation, two such apparent forces are required: the centrifugal
force and the Coriolis force.

1.5.1 Centripetal Acceleration and Centrifugal Force

A ball of mass m is attached to a string and whirled through a circle of radius r at a
constant angular velocity w. From the point of view of an observer in inertial space
the speed of the ball is constant, but its direction of travel is continuously changing
so that its velocity is not constant. To compute the acceleration we consider the
change in velocity 8§V that occurs for a time increment 8¢ during which the ball
rotates through an angle 6 as shown in Fig. 1.5. Because §0 is also the angle
between the vectors V and V + 8V, the magnitude of §V is just [6V| = |V]| §0. If
we divide by &7 and note that in the limit §f — 0, §V is directed toward the axis
of rotation, we obtain

DV D6 r
oW ()
Dt Dt r

3v

36 v

JE

36

Fig. 1.5 Centripetal acceleration is given by the rate of change of the direction of the velocity vector,
which is directed toward the axis of rotation, as illustrated here by §V.
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However, |V| = wr and D6/ Dt = w, so that

DV
- = —w?r (1.6)
Dt

Therefore, viewed from fixed coordinates the motion is one of uniform accel-
eration directed toward the axis of rotation and equal to the square of the angular
velocity times the distance from the axis of rotation. This acceleration is called
centripetal acceleration. It is caused by the force of the string pulling the ball.

Now suppose that we observe the motion in a coordinate system rotating with
the ball. In this rotating system the ball is stationary, but there is still a force acting
on the ball, namely the pull of the string. Therefore, in order to apply Newton’s
second law to describe the motion relative to this rotating coordinate system,
we must include an additional apparent force, the centrifugal force, which just
balances the force of the string on the ball. Thus, the centrifugal force is equivalent
to the inertial reaction of the ball on the string and just equal and opposite to the
centripetal acceleration.

To summarize, observed from a fixed system the rotating ball undergoes a
uniform centripetal acceleration in response to the force exerted by the string.
Observed from a system rotating along with it, the ball is stationary and the force
exerted by the string is balanced by a centrifugal force.

1.5.2 Gravity Force

An object at rest on the surface of the earth is not at rest or in uniform motion relative
to an inertial reference frame except at the poles. Rather, an object of unit mass
at rest on the surface of the earth is subject to a centripetal acceleration directed
toward the axis of rotation of the earth given by —Q?R, where R is the position
vector from the axis of rotation to the object and = 7.292 x 10> rad s~ ! is the
angular speed of rotation of the earth.> Since except at the equator and poles the
centripetal acceleration has a component directed poleward along the horizontal
surface of the earth (i.e., along a surface of constant geopotential), there must be a
net horizontal force directed poleward along the horizontal to sustain the horizontal
component of the centripetal acceleration. This force arises because the rotating
earth is not a sphere, but has assumed the shape of an oblate spheroid in which there
is a poleward component of gravitation along a constant geopotential surface just
sufficient to account for the poleward component of the centripetal acceleration
at each latitude for an object at rest on the surface of the earth. In other words,
from the point of view of an observer in an inertial reference frame, geopotential

3 The earth revolves around its axis once every sidereal day, which is equal to 23 h 56 min 4 s
(86,164 s). Thus, 2 = 27/(86, 1645) = 7.292 x 10 rads~ 1.
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NV, Earth

Fig.1.6 Relationship between the true gravitation
vector g* and gravity g. For an idealized
homogeneous spherical earth, g* would
be directed toward the center of the earth. R _ Q2R
In reality, g* does not point exactly to the
center except at the equator and the poles.
Gravity, g, is the vector sum of g* and
the centrifugal force and is perpendicular
to the level surface of the earth, which g
approximates an oblate spheroid.

Sphere

g*

surfaces slope upward toward the equator (see Fig. 1.6). As a consequence, the
equatorial radius of the earth is about 21 km larger than the polar radius.

Viewed from a frame of reference rotating with the earth, however, a geopo-
tential surface is everywhere normal to the sum of the true force of gravity, g*,
and the centrifugal force Q%R (which is just the reaction force of the centripetal
acceleration). A geopotential surface is thus experienced as a level surface by an
object at rest on the rotating earth. Except at the poles, the weight of an object
of mass m at rest on such a surface, which is just the reaction force of the earth
on the object, will be slightly less than the gravitational force mg* because, as
illustrated in Fig. 1.6, the centrifugal force partly balances the gravitational force.
It is, therefore, convenient to combine the effects of the gravitational force and
centrifugal force by defining gravity g such that

g=-—gk=g*+Q°R (1.7)

where k designates a unit vector parallel to the local vertical. Gravity, g, sometimes
referred to as “apparent gravity,” will here be taken as a constant (g = 9.81m s~2).
Except at the poles and the equator, g is not directed toward the center of the earth,
but is perpendicular to a geopotential surface as indicated by Fig. 1.6. True gravity
g*, however, is not perpendicular to a geopotential surface, but has a horizontal
component just large enough to balance the horizontal component of Q?R.

Gravity can be represented in terms of the gradient of a potential function &,
which is just the geopotential referred to above:

Vo =—-¢g
However, because g = —gk where g = |g|, it is clear that ® = ®(z) and

d®/dz = g. Thus horizontal surfaces on the earth are surfaces of constant geopo-
tential. If the value of geopotential is set to zero at mean sea level, the geopotential
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@ (z) at height z is just the work required to raise a unit mass to height z from
mean sea level:

<I>=/ngz (1)
0

Despite the fact that the surface of the earth bulges toward the equator, an object
atrest on the surface of the rotating earth does not slide “downhill” toward the pole
because, as indicated above, the poleward component of gravitation is balanced
by the equatorward component of the centrifugal force. However, if the object
is put into motion relative to the earth, this balance will be disrupted. Consider
a frictionless object located initially at the North pole. Such an object has zero
angular momentum about the axis of the earth. If it is displaced away from the
pole in the absence of a zonal torque, it will not acquire rotation and hence will
feel a restoring force due to the horizontal component of true gravity, which, as
indicated above is equal and opposite to the horizontal component of the centrifugal
force for an object at rest on the surface of the earth. Letting R be the distance from
the pole, the horizontal restoring force for a small displacement is thus —Q2R,
and the object’s acceleration viewed in the inertial coordinate system satisfies the
equation for a simple harmonic oscillator:

d’R = _,
T +Q°R=0 (1.9)

The object will undergo an oscillation of period 27 /<2 along a path that will
appear as a straight line passing through the pole to an observer in a fixed coordinate
system, but will appear as a closed circle traversed in 1/2 day to an observer rotating
with the earth (Fig. 1.7). From the point of view of an earthbound observer, there
is an apparent deflection force that causes the object to deviate to the right of its
direction of motion at a fixed rate.

1.5.3 The Coriolis Force and the Curvature Effect

Newton’s second law of motion expressed in coordinates rotating with the earth
can be used to describe the force balance for an object at rest on the surface of the
earth, provided that an apparent force, the centrifugal force, is included among the
forces acting on the object. If, however, the object is in motion along the surface
of the earth, additional apparent forces are required in the statement of Newton’s
second law.

Suppose that an object of unit mass, initially at latitude ¢ moving zonally at
speed u, relative to the surface of the earth, is displaced in latitude or in altitude by
animpulsive force. As the object is displaced it will conserve its angular momentum
in the absence of a torque in the east—west direction. Because the distance R to
the axis of rotation changes for a displacement in latitude or altitude, the absolute
angular velocity, €2 4+ u#/R, must change if the object is to conserve its absolute
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‘OO

. 0°

6 hr

0°
12 hr

-—

Fig. 1.7 Motion of a frictionless object launched from the north pole along the 0° longitude meridian
att = 0, as viewed in fixed and rotating reference frames at 3, 6, 9, and 12 h after launch. The
horizontal dashed line marks the position that the 0° longitude meridian had at # = 0, and
short dashed lines show its position in the fixed reference frame at subsequent 3 h intervals.
Horizontal arrows show 3 h displacement vectors as seen by an observer in the fixed reference
frame. Heavy curved arrows show the trajectory of the object as viewed by an observer in
the rotating system. Labels A, B and C show the position of the object relative to the rotating
coordinates at 3 h intervals. In the fixed coordinate frame the object oscillates back and forth
along a straight line under the influence of the restoring force provided by the horizontal
component of gravitation. The period for a complete oscillation is 24 h (only 1/2 period is
shown) . To an observer in rotating coordinates, however, the motion appears to be at constant
speed and describes a complete circle in a clockwise direction in 12 h.

angular momentum. Because €2 is constant, the relative zonal velocity must change.
Thus, the object behaves as though a zonally directed deflection force were acting
on it.

The form of the zonal deflection force can be obtained by equating the total
angular momentum at the initial distance R to the total angular momentum at the
displaced distance R + § R:

u u+du
Q —)R2= Q4+ 2% N (R4 SR)?
( + = ( +R+5R>( +38R)

where u is the change in eastward relative velocity after displacement. Expand-
ing the right-hand side, neglecting second-order differentials, and solving for §u
gives
Su = —2Q6R — =5R
R
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Noting that R = a cos ¢, where a is the radius of the earth and ¢ is latitude,
dividing through by the time increment §¢ and taking the limit as 6t — 0, gives in
the case of a meridional displacement in which 6 R = — sin ¢§y (see Fig. 1.8):

Du . u Dy . uv
e :<2§25m¢+—tan¢>—:2stm¢+—tan¢ (1.10a)
Dt a Dt a

and for a vertical displacement in which 6 R = + cos ¢4z:

Du u\ Dz uw
(E) :—(ZQCOS¢+;>E=—Zchos¢—7 (1.10b)

where v = Dy/Ddt and w = Dz/Dt are the northward and upward velocity
components, respectively. The first terms on the right in (1.10a) and (1.10b) are
the zonal components of the Coriolis force for meridional and vertical motions,
respectively. The second terms on the right are referred to as metric terms or
curvature effects. These arise from the curvature of the earth’s surface.

A similar argument can be used to obtain the meridional component of the
Coriolis force. Suppose now that the object is set in motion in the eastward direction
by an impulsive force. Because the object is now rotating faster than the earth, the
centrifugal force on the object will be increased. Letting R be the position vector

Q
A
R 1)
0 » OR
%\ - 5
‘n !
PR '
L 2\
/<\ i
Ro+3R e 5
’ -
7, -~
. --Za
’ _ i radiV®
// - Eaﬁhr
¢0 P i’ _ - -
,:\,\’ ¢0+5¢

Fig. 1.8 Relationship of R and §y = ad¢ for an equatorward displacement.
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from the axis of rotation to the object, the excess of the centrifugal force over that
for an object at rest is

2QuR N u’R
R R2

U2
Q —) R— QR =
(2+%

The terms on the right represent deflecting forces, which act outward along
the vector R (i.e., perpendicular to the axis of rotation). The meridional and
vertical components of these forces are obtained by taking meridional and ver-
tical components of R as shown in Fig. 1.9 to yield

Dv . u?

— )| = —2Qusin¢p — —tan¢ (1.11a)
Dt a

Dw u?

— | =2Qucos¢p + — (1.11b)
Dt a

The first terms on the right are the meridional and vertical components, respec-
tively, of the Coriolis forces for zonal motion; the second terms on the right are
again the curvature effects.

For synoptic scale motions |u| < 2R, thelasttermsin (1.10a)and (1.11a) canbe
neglected in a first approximation. Therefore, relative horizontal motion produces
a horizontal acceleration perpendicular to the direction of motion given by

Du 2Qusing = f (1.12a)

—_— = vV S1n = JVv 1Za

Dt ),

D

<—v> — 2Qusing = — fu (1.12b)
where f = 2Qsin ¢ is the Coriolis parameter.
0
Y
Cnu cos ¢
R 20u(R/R)
\ \-20u sin ¢

¢

Fig. 1.9 Components of the Coriolis force due to relative motion along a latitude circle.
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The subscript Co indicates that the acceleration is the part of the total acceleration
due only to the Coriolis force. Thus, for example, an object moving eastward in
the horizontal is deflected equatorward by the Coriolis force, whereas a westward
moving object is deflected poleward. In either case the deflection is to the right of
the direction of motion in the Northern Hemisphere and to the left in the Southern
Hemisphere. The vertical component of the Coriolis force in (1.11b) is ordinarily
much smaller than the gravitational force so that its only effect is to cause a very
minor change in the apparent weight of an object depending on whether the object
is moving eastward or westward.

The Coriolis force is negligible for motions with time scales that are very short
compared to the period of the earth’s rotation (a point that is illustrated by several
problems at the end of the chapter). Thus, the Coriolis force is not important for
the dynamics of individual cumulus clouds, but is essential to the understanding of
longer time scale phenomena such as synoptic scale systems. The Coriolis force
must also be taken into account when computing long-range missile or artillery
trajectories.

As an example, suppose that a ballistic missile is fired due eastward at 43°N
latitude (f = 107*s~"at43°N). If the missile travels 1000 km at a horizontal
speed ug = 1000 m s~', by how much is the missile deflected from its eastward
path by the Coriolis force? Integrating (1.12b) with respect to time we find that

v = — fuot (1.13)

where it is assumed that the deflection is sufficiently small so that we may let f
and u( be constants. To find the total displacement we must integrate (1.13) with

respect to time:
t YW+38y t
/vdt:/ dy:—fu()/ tdt
0 0 0

Thus, the total displacement is
8y = — fuot?*/2 = —50km

Therefore, the missile is deflected southward by 50 km due to the Coriolis effect.
Further examples of the deflection of objects by the Coriolis force are given in some
of the problems at the end of the chapter.

The x and y components given in (1.12a) and (1.12b) can be combined in vector

form as DV
- = — xV 1.14

( Dt )Co fk ( )
where V = (u, v) is the horizontal velocity, k is a vertical unit vector, and the

subscript Co indicates that the acceleration is due solely to the Coriolis force.
Since —k x V is a vector rotated 90° to the right of V, (1.14) clearly shows the
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deflection character of the Coriolis force. The Coriolis force can only change the
direction of motion, not the speed of motion.

1.54 Constant Angular Momentum Oscillations

Suppose an object initially at rest on the earth at the point (xg, )p) is impulsively
propelled along the x axis with a speed V at time ¢t = 0. Then from (1.12a)
and (1.12b), the time evolution of the velocity is given by u = V cos ft and
v = —V sin ft. However, because u = Dx /Dt and v = Dy/ Dt, integration with
respect to time gives the position of the object at time ¢ as

14 14
x—x():?sinft and y—y0=7(cosft—1) (1.15a,b)

where the variation of f with latitude is here neglected. Equations (1.15a) and
(1.15b) show that in the Northern Hemisphere, where f is positive, the object
orbits clockwise (anticyclonically) in a circle of radius R = V'/f about the point
(x0, yo — V' /f) with a period given by

T=2aR/V =2x/f =n/(Qsin¢) (1.16)

Thus, an object displaced horizontally from its equilibrium position on the sur-
face of the earth under the influence of the force of gravity will oscillate about
its equilibrium position with a period that depends on latitude and is equal to
one sidereal day at 30° latitude and 1/2 sidereal day at the pole. Constant angular
momentum oscillations (often referred to misleadingly as “inertial oscillations”)
are commonly observed in the oceans, but are apparently not of importance in the
atmosphere.

1.6 STRUCTURE OF THE STATIC ATMOSPHERE

The thermodynamic state of the atmosphere at any point is determined by the values
of pressure, temperature, and density (or specific volume) at that point. These field
variables are related to each other by the equation of state for an ideal gas. Letting
p. T p,and a(= p~ ') denote pressure, temperature, density, and specific volume,
respectively, we can express the equation of state for dry air as

pa=RT or p=pRT 1.17)

where R is the gas constant for dry air (R = 287 kg™ K™1).
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C‘é:‘(’)’;'s‘;:'g:#':ﬁ Fig. 1.10 Balance of forces for hydrostatic equi-
AREA librium. Small arrows show the upward
and downward forces exerted by air
pressure on the air mass in the shaded
block. The downward force exerted by
PRESSURE = p gravity on the air in the block is given
by pgdz, whereas the net pressure force
given by the difference between the
upward force across the lower surface
and the downward force across the upper
surface is —d p. Note that dp is negative,
as pressure decreases with height. (After

‘Wallace and Hobbs, 1977.)

PRESSURE =p+dp

GROUND

1.6.1 The Hydrostatic Equation

In the absence of atmospheric motions the gravity force must be exactly balanced
by the vertical component of the pressure gradient force. Thus, as illustrated in
Fig. 1.10,

dp/dz = —pg (1.18)

This condition of hydrostatic balance provides an excellent approximation for
the vertical dependence of the pressure field in the real atmosphere. Only for intense
small-scale systems such as squall lines and tornadoes is it necessary to consider
departures from hydrostatic balance. Integrating (1.18) from a height z to the top
of the atmosphere we find that

P(Z)Z/ pgdz (1.19)

so that the pressure at any point is simply equal to the weight of the unit cross
section column of air overlying the point. Thus, mean sea level pressure p(0) =
1013.25 hPa is simply the average weight per square meter of the total atmospheric
column.* It is often useful to express the hydrostatic equation in terms of the
geopotential rather than the geometric height. Noting from (1.8) that d® = gdz
and from, (1.17) that « = RT/p, we can express the hydrostatic equation in the
form

gdz=d® =—(RT/p)dp=—RTdInp (1.20)

Thus, the variation of geopotential with respect to pressure depends only on tem-
perature. Integration of (1.20) in the vertical yields a form of the hypsometric
equation:

P
d(z) — D(z1) =g0(Zg—Zl)=Rf Tdln p (1.21)
P2

4 For computational convenience, the mean surface pressure is often assumed to equal 1000 hPa.
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Here Z = ®(z)/go, is the geopotential height, where gy = 9.80665m s~ 2 is
the global average of gravity at mean sea level. Thus in the troposphere and lower
stratosphere, Z is numerically almost identical to the geometric height z. In terms
of Z the hypsometric equation becomes

R [P
ZTEZQ—Z1=—/ Tdlnp (1.22)
80 Jp,

where Z7 is the thickness of the atmospheric layer between the pressure surfaces
p2 and pj. Defining a layer mean temperature

Pl P -1
(T):/ lenp|:/ dlnp]
P2 P2

and a layer mean scale height H = R(T) /gy we have from (1.22)

Zr = Hin(py/ p2) (1.23)

Thus the thickness of a layer bounded by isobaric surfaces is proportional to the
mean temperature of the layer. Pressure decreases more rapidly with height in a
cold layer than in a warm layer. It also follows immediately from (1.23) that in an
isothermal atmosphere of temperature 7, the geopotential height is proportional to
the natural logarithm of pressure normalized by the surface pressure,

Z = —Hln(p/po) (1.24)

where py is the pressure at Z = 0. Thus, in an isothermal atmosphere the pressure
decreases exponentially with geopotential height by a factor of e ~! per scale height,

p(Z) = p(0)e 41

1.6.2 Pressure as a Vertical Coordinate

From the hydrostatic equation (1.18), it is clear that a single valued monotonic
relationship exists between pressure and height in each vertical column of the
atmosphere. Thus we may use pressure as the independent vertical coordinate and
height (or geopotential) as a dependent variable. The thermodynamic state of the
atmosphere is then specified by the fields of ®(x, y, p,¢) and T(x, y, p, t).
Now the horizontal components of the pressure gradient force given by (1.1)
are evaluated by partial differentiation holding z constant. However, when pres-
sure is used as the vertical coordinate, horizontal partial derivatives must be



22 1 INTRODUCTION
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Fig. 1.11 Slope of pressure surfaces in the x, z plane.

evaluated holding p constant. Transformation of the horizontal pressure gradi-
ent force from height to pressure coordinates may be carried out with the aid of
Fig. 1.11. Considering only the x, z plane, we see from Fig. 1.11 that

(po+dp) —po| _[(po+38p) —po]| (32
ox - 8z L \6x »
where subscripts indicate variables that remain constant in evaluating the differ-
entials. Thus, for example, in the limit 6z — 0

[(P0+5P)—po] N <_3_p>
8z . 0z ),

where the minus sign is included because 6z < 0 for ép > 0.
Taking the limits 8x, 8z — 0 we obtain’

(7). (), (%),

which after substitution from the hydrostatic equation (1.18) yields

L(ipY _ () (1
), ), o

Similarly, it is easy to show that

! (3_1’> :_<E> (1.26)
p \dy/. /),

Stis important to note the minus sign on the right in this expression!
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Thus in the isobaric coordinate system the horizontal pressure gradient force is
measured by the gradient of geopotential at constant pressure. Density no longer
appears explicitly in the pressure gradient force; this is a distinct advantage of the
isobaric system.

1.6.3 A Generalized Vertical Coordinate

Any single-valued monotonic function of pressure or height may be used as the
independent vertical coordinate. For example, in many numerical weather predic-
tion models, pressure normalized by the pressure at the ground [0 = p(x, y, z, )/
ps(x, v, t)] is used as a vertical coordinate. This choice guarantees that the ground
is a coordinate surface (0 = 1) even in the presence of spatial and temporal surface
pressure variations. Thus, this so-called o coordinate system is particularly useful
in regions of strong topographic variations.

We now obtain a general expression for the horizontal pressure gradient, which
is applicable to any vertical coordinate s = s(x, y, z, t) that is a single-valued
monotonic function of height. Referring to Fig. 1.12 we see that for a horizontal
distance §x the pressure difference evaluated along a surface of constant s is related
to that evaluated at constant z by the relationship

Pc— Pa _ Pc— Ps 5_Z+PB—pA

ox 6z ox ox

Taking the limits as §x, §z — 0 we obtain

Y _op (02, (%
(), -5 () (). a2

s =const

Pc

Sz

Pa Sx 1
Ps

Fig. 1.12 Transformation of the pressure gradient force to s coordinates.
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Using the identity dp/dz = (9s/0z)(dp/ds), we can express (1.27) in the

alternate form 5 ; ; ; ;
(%).- ()% (5).(%) 129
ox /g ox/, 0z \dx/ \0s

In later chapters we will apply (1.27) or (1.28) and similar expressions for other
fields to transform the dynamical equations to several different vertical coordinate
systems.

PROBLEMS

1.1. Neglecting the latitudinal variation in the radius of the earth, calculate the
angle between the gravitational force and gravity vectors at the surface of
the earth as a function of latitude. What is the maximum value of this angle?

1.2. Calculate the altitude at which an artificial satellite orbiting in the equatorial
plane can be a synchronous satellite (i.e., can remain above the same spot
on the surface of the earth).

1.3. An artificial satellite is placed into a natural synchronous orbit above the
equator and is attached to the earth below by a wire. A second satellite is
attached to the first by a wire of the same length and is placed in orbit directly
above the first at the same angular velocity. Assuming that the wires have
zero mass, calculate the tension in the wires per unit mass of satellite. Could
this tension be used to lift objects into orbit with no additional expenditure
of energy?

1.4. A train is running smoothly along a curved track at the rate of 50 m s~!. A
passenger standing on a set of scales observes that his weight is 10% greater
than when the train is at rest. The track is banked so that the force acting
on the passenger is normal to the floor of the train. What is the radius of
curvature of the track?

1.5. If a baseball player throws a ball a horizontal distance of 100 m at 30°
latitude in 4 s, by how much is it deflected laterally as a result of the rotation
of the earth?

1.6. Two balls 4 cm in diameter are placed 100 m apart on a frictionless horizontal
plane at 43°N. If the balls are impulsively propelled directly at each other
with equal speeds, at what speed must they travel so that they just miss each
other?

1.7. A locomotive of 2 x 10° kg mass travels 50 m s~ ! along a straight horizon-
tal track at 43°N. What lateral force is exerted on the rails? Compare the
magnitudes of the upward reaction force exerted by the rails for cases where
the locomotive is traveling eastward and westward, respectively.
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1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

1.16.

Find the horizontal displacement of a body dropped from a fixed platform
at a height A at the equator neglecting the effects of air resistance. What is
the numerical value of the displacement for # = 5 km?

A bullet is fired directly upward with initial speed wo, at latitude ¢. Neglect-
ing air resistance, by what distance will it be displaced horizontally when
it returns to the ground? (Neglect 2Qu cos¢ compared to g in the vertical
momentum equation.)

A block of mass M = 1 kg is suspended from the end of a weightless string.
The other end of the string is passed through a small hole in a horizontal
platform and a ball of mass m = 10 kg is attached. At what angular velocity
must the ball rotate on the horizontal platform to balance the weight of the
block if the horizontal distance of the ball from the hole is 1 m? While the
ball is rotating, the block is pulled down 10 cm. What is the new angular
velocity of the ball? How much work is done in pulling down the block?

A particle is free to slide on a horizontal frictionless plane located at a latitude
¢ on the earth. Find the equation governing the path of the particle if it is
given an impulsive northward velocity v = Vj att = 0. Give the solution for
the position of the particle as a function of time. (Assume that the latitudinal
excursion is sufficiently small that f is constant.)

Calculate the 1000- to 500-hPa thickness for isothermal conditions with
temperatures of 273- and 250 K, respectively.

Isolines of 1000- to 500-hPa thickness are drawn on a weather map using a
contour interval of 60 m. What is the corresponding layer mean temperature
interval?

Show that a homogeneous atmosphere (density independent of height) has
a finite height that depends only on the temperature at the lower boundary.
Compute the height of a homogeneous atmosphere with surface temperature
To = 273K and surface pressure 1000 hPa. (Use the ideal gas law and
hydrostatic balance.)

For the conditions of Problem 1.14, compute the variation of the temperature
with respect to height.

Show that in an atmosphere with uniform lapse rate y (where y = —d T /dz)
the geopotential height at pressure level p; is given by

T —Ry/g
Ll P (@)
% pi

where Tp and pg are the sea level temperature and pressure, respectively.
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1.17. Calculate the 1000- to 500-hPa thickness for a constant lapse rate atmosphere

1.18.

1.19.

with y = 6.5K km~! and Ty = 273K. Compare your results with the results
in Problem 1.12.

Derive an expression for the variation of density with respect to height in a
constant lapse rate atmosphere.

Derive an expression for the altitude variation of the pressure change dp
that occurs when an atmosphere with a constant lapse rate is subjected to
a height-independent temperature change §7 while the surface pressure
remains constant. At what height is the magnitude of the pressure change a
maximum if the lapse rate is 6.5 K km~!, Ty = 300, and 87 = 2K?

MATLAB EXERCISES

M1.1.

M1.2.

M1.3.

This exercise investigates the role of the curvature terms for high-latitude
constant angular momentum trajectories.

(a) Run the coriolis.m script with the following initial conditions: initial
latitude 60°, initial velocity u = 0, v =40 m s~ run time = 5 days.
Compare the appearance of the trajectories for the case with the cur-
vature terms included and the case with curvature terms neglected.
Qualitatively explain the difference that you observe. Why is the tra-
jectory not a closed circle as described in Eq. (1.15) of the text? [Hint:
consider the separate effects of the term proportional to tan ¢ and of
the spherical geometry.]

(b) Run coriolis.m with latitude 60°, u = 0, v = 80 m/s. What is different
from case (a)? By varying the run time, see if you can determine how
long it takes for the particle to make a full circuit in each case and
compare this to the time given in Eq. (1.16) for ¢ = 60°.

Using the MATLAB script from Problem M1.1, compare the magnitudes
of the lateral deflection for ballistic missiles fired eastward and westward
at 43° latitude. Each missile is launched at a velocity of 1000 m s~'and
travels 1000 km. Explain your results. Can the curvature term be neglected
in these cases?

This exercise examines the strange behavior of constant angular momen-
tum trajectories near the equator. Run the coriolis.m script for the following
contrasting cases: a) latitude 0.5°, ¥ = 20 m s~!, v = 0, run time =
20 days and b) latitude 0.5°, u = —20 m s~!, v = 0, run time = 20 days.
Obviously, eastward and westward motion near the equator leads to very
different behavior. Briefly explain why the trajectories are so different in
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M14.

these two cases. By running different time intervals, determine the approxi-
mate period of oscillation in each case (i.e., the time to return to the original
latitude.)

More strange behavior near the equator. Run the script const_ang._
mom_trajl.m by specifying initial conditions of latitude = 0, u = 0,
v =50m s~ !, and a time of about 5 or 10 days. Notice that the motion is
symmetric about the equator and that there is a net eastward drift. Why does
providing a parcel with an initial poleward velocity at the equator lead to
an eastward average displacement? By trying different initial meridional
velocities in the range of 50 to 250 m s~!, determine the approximate
dependence of the maximum latitude reached by the ball on the initial
meridional velocity. Also determine how the net eastward displacement
depends on the initial meridional velocity. Show your results in a table or
plot them using MATLAB.

Suggested References

Complete reference information is provided in the Bibliography at the end of the book.

Wallace and Hobbs, Atmospheric Science: An Introductory Survey, discusses much of the material in
this chapter at an elementary level.

Curry and Webster, Thermodynamics of Atmospheres and Oceans, contains a more advanced discussion
of atmospheric statistics.

Durran (1993) discusses the constant angular momentum oscillation in detail.



CHAPTER 2

Basic Conservation Laws

Atmospheric motions are governed by three fundamental physical principles:
conservation of mass, conservation of momentum, and conservation of energy.
The mathematical relations that express these laws may be derived by considering
the budgets of mass, momentum, and energy for an infinitesimal control volume
in the fluid. Two types of control volume are commonly used in fluid dynamics.
In the Eulerian frame of reference the control volume consists of a parallelepiped
of sides §x, 8y, 8z, whose position is fixed relative to the coordinate axes. Mass,
momentum, and energy budgets will depend on fluxes caused by the flow of fluid
through the boundaries of the control volume. (This type of control volume was
used in Section 1.4.1.) In the Lagrangian frame, however, the control volume con-
sists of an infinitesimal mass of “tagged” fluid particles; thus, the control volume
moves about following the motion of the fluid, always containing the same fluid
particles.

The Lagrangian frame is particularly useful for deriving conservation laws, as
such laws may be stated most simply in terms of a particular mass element of the
fluid. The Eulerian system is, however, more convenient for solving most problems
because in that system the field variables are related by a set of partial differential
equations in which the independent variables are the coordinates x, y, z, and .

28
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In the Lagrangian system, however, it is necessary to follow the time evolution of
the fields for various individual fluid parcels. Thus the independent variables are
X0, )0, Z0, and ¢, where xo, ), and zo designate the position that a particular parcel
passed through at a reference time fy.

2.1 TOTAL DIFFERENTIATION

The conservation laws to be derived in this chapter contain expressions for the
rates of change of density, momentum, and thermodynamic energy following the
motion of particular fluid parcels. In order to apply these laws in the Eulerian frame
itis necessary to derive a relationship between the rate of change of a field variable
following the motion and its rate of change at a fixed point. The former is called
the substantial, the total, or the material derivative (it will be denoted by D/ Dt).
The latter is called the local derivative (it is merely the partial derivative with respect
to time). To derive a relationship between the total derivative and the local deriva-
tive, itis convenient to refer to a particular field variable (temperature, for example).
For a given air parcel the location (x, y, z) is a function of ¢ so that x = x (),
y = y(t), z = z(t). Following the parcel, T may then be considered as truly a
function only of time, and its rate of change is just the total derivative DT/ Dt.
In order to relate the total derivative to the local rate of change at a fixed point,
we consider the temperature measured on a balloon that moves with the wind.
Suppose that this temperature is Ty at the point xg, )p, zo and time #y. If the bal-
loon moves to the point xog + §x, yo + 8y, zo + 8z in a time increment &z, then
the temperature change recorded on the balloon, § 7', can be expressed in a Taylor
series expansion as

oT oT oT oT )
ST =(—)ét+|—)éx+ | — ) 6y+ | — ) 6z+ (higher order terms)
at dax ay daz

Dividing through by §¢ and noting that §7 is the change in temperature following
the motion so that

DT . 6T

— = lim —

Dt 5i—0 6t

we find that in the limit §z — 0
DT oT 0T\ Dx aT\ Dy oT\ Dz
— =4+ \=— )=+ =— )=
Dt at ox | Dt ay ) Dt dz | Dt

is the rate of change of T following the motion.
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If we now let
Dx Dy Dz
— =u,—=v,— =w
Dt Dt Dt
then u, v, w are the velocity components in the x, y, z directions, respectively, and
DT 0T n oT n oT n oT
—_— = U—+v—+w—
Dt at ox ay 0z

Using vector notation this expression may be rewritten as

2.1)

oT DT

— =——-U.VT

ot Dt
where U = iu + jv 4 kw is the velocity vector. The term —U « VT is called the
temperature advection. It gives the contribution to the local temperature change
due to air motion. For example, if the wind is blowing from a cold region toward
a warm region —U « VT will be negative (cold advection) and the advection term
will contribute negatively to the local temperature change. Thus, the local rate
of change of temperature equals the rate of change of temperature following the
motion (i.e., the heating or cooling of individual air parcels) plus the advective rate
of change of temperature.

The relationship between the total derivative and local derivative given for tem-
perature in (2.1) holds for any of the field variables. Furthermore, the total deriva-
tive can be defined following a motion field other than the actual wind field. For
example, we may wish to relate the pressure change measured by a barometer on
a moving ship to the local pressure change.

Example. The surface pressure decreases by 3 hPa per 180 km in the eastward
direction. A ship steaming eastward at 10 km/h measures a pressure fall of 1 hPa
per 3 h. What is the pressure change on an island that the ship is passing? If we
take the x axis oriented eastward, then the local rate of change of pressure on the
island is

p _Dp  dp

ot~ Di ox
where Dp/ Dt is the pressure change observed by the ship and u is the velocity of
the ship. Thus,

dp _—1hPa (10km> <—3 hPa) _ 1hPa

9t 3h h 180km/) 6h

so that the rate of pressure fall on the island is only half the rate measured on the
moving ship.

If the total derivative of a field variable is zero, then that variable is a conservative
quantity following the motion. The local change is then entirely due to advection.
As shown later, field variables that are approximately conserved following the
motion play an important role in dynamic meteorology.
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2.1.1 Total Differentiation of a Vector in a Rotating System

The conservation law for momentum (Newton’s second law of motion) relates
the rate of change of the absolute momentum following the motion in an inertial
reference frame to the sum of the forces acting on the fluid. For most applications
in meteorology it is desirable to refer the motion to a reference frame rotating
with the earth. Transformation of the momentum equation to a rotating coordinate
system requires a relationship between the total derivative of a vector in an inertial
reference frame and the corresponding total derivative in a rotating system.

To derive this relationship, we let A be an arbitrary vector whose Cartesian
components in an inertial frame are given by

A=A, +jA4, +K 4]
and whose components in a frame rotating with an angular velocity €2 are
A=id, +jd,+k4;
Letting D,A/Dt be the total derivative of A in the inertial frame, we can write

DaA_i,DA; ., D4, k,DA;

pr "o oy Dt
DA, DA, DA. D Daj D,k
- K I L
“or Vo Yo T ot o T o

The first three terms on the line above can be combined to give

DA _ DAy DAy | DA
— =i
Dt Dt IV Dr Dt

which is just the total derivative of A as viewed in the rotating coordinates (i.e.,
the rate of change of A following the relative motion).

The last three terms arise because the directions of the unit vectors (i, j, k) change
their orientation in space as the earth rotates. These terms have a simple form for
a rotating coordinate system. For example, considering the eastward directed unit

vector:
oi oi

i = —38A —6 —8
o + P o+
For solid body rotation A = 6¢,5¢ = 0,8z = 0,sothatdi/ét = (di/IA) (51/6t)
and taking the limit 6 — O,
D,i ai
=Q—
Dt oA




32 2 BASIC CONSERVATION LAWS

Fig. 2.1 Longitudinal dependence of the unit vector i.

But from Figs. 2.1 and 2.2, the longitudinal derivative of i can be expressed as

.
a:Jsma&—kcosqﬁ
However, £ = (0, 2sin ¢, 2 cos ¢) so that
Dygi . .
Dt =Q(jsing —kcosp) =2 xi

In a similar fashion, it can be shown that D,j/Dt = & x jand D, k/Dt = @ x k.
Therefore, the total derivative for a vector in an inertial frame is related to that in
a rotating frame by the expression

D,A DA

— 22 L axA 22
D - D TR 2.2)

. Fig.2.2 Resolution of §iin Fig. 2.1 into northward
j sin and vertical components.

Si )
“k cos ¢
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2.2 THE VECTORIAL FORM OF THE MOMENTUM EQUATION IN
ROTATING COORDINATES

In an inertial reference frame, Newton’s second law of motion may be written
symbolically as
D,Uq

D = >F (2.3)
The left-hand side represents the rate of change of the absolute velocity U,, fol-
lowing the motion as viewed in an inertial system. The right-hand side represents
the sum of the real forces acting per unit mass. In Section 1.5 we found through
simple physical reasoning that when the motion is viewed in a rotating coordinate
system certain additional apparent forces must be included if Newton’s second
law is to be valid. The same result may be obtained by a formal transformation of
coordinates in (2.3).

In order to transform this expression to rotating coordinates, we must first find a
relationship between U, and the velocity relative to the rotating system, which we
will designate by U. This relationship is obtained by applying (2.2) to the position
vector r for an air parcel on the rotating earth:

=~ +@xr (2.4)

but D,r/Dt = U, and Dr/Dt = U; therefore (2.4) may be written as
U,=U+Q2xr (2.5)

which states simply that the absolute velocity of an object on the rotating earth is
equal to its velocity relative to the earth plus the velocity due to the rotation of the
earth.

Now we apply (2.2) to the velocity vector U, and obtain

D,U, DU

a
=—+2xU 2.6
Dr o T 2x U (2.6)
Substituting from (2.5) into the right-hand side of (2.6) gives
D,U D
8 = (U42xn)+2x U+2xr)

Dt Dt

2.7

=— 422 xU—-Q°R

Dt

where €2 is assumed to be constant. Here R is a vector perpendicular to the axis of
rotation, with magnitude equal to the distance to the axis of rotation, so that with
the aid of a vector identity,

Qx(2xr) =R x (xR =—-Q°R
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Equation (2.7) states that the acceleration following the motion in an inertial
system equals the rate of change of relative velocity following the relative motion
in the rotating frame plus the Coriolis acceleration due to relative motion in the
rotating frame plus the centripetal acceleration caused by the rotation of the coor-
dinates.

If we assume that the only real forces acting on the atmosphere are the pressure
gradient force, gravitation, and friction, we can rewrite Newton’s second law (2.3)
with the aid of (2.7) as

DU 1
E_—ZSZXU—;Vp+g+Fr (2.8)
where F, designates the frictional force (see Section 1.4.3), and the centrifugal
force has been combined with gravitation in the gravity term g (see Section 1.5.2).
Equation (2.8) is the statement of Newton’s second law for motion relative to
a rotating coordinate frame. It states that the acceleration following the relative
motion in the rotating frame equals the sum of the Coriolis force, the pressure
gradient force, effective gravity, and friction. This form of the momentum equation
is basic to most work in dynamic meteorology.

2.3 COMPONENT EQUATIONS IN SPHERICAL COORDINATES

For purposes of theoretical analysis and numerical prediction, it is necessary to
expand the vectorial momentum equation (2.8) into its scalar components. Since
the departure of the shape of the earth from sphericity is entirely negligible for
meteorological purposes, it is convenient to expand (2.8) in spherical coordinates
so that the (level) surface of the earth corresponds to a coordinate surface. The
coordinate axes are then (A, ¢, z), where A is longitude, ¢ is latitude, and z is
the vertical distance above the surface of the earth. If the unit vectors i, j, and k
are now taken to be directed eastward, northward, and upward, respectively, the
relative velocity becomes

U=iu+jv+kw

where the components u, v, and w are defined as

D¢ Dz
U=rcosep —, vV=r—m, w=—
Dt

2.9
Dt Dt 29

Here, r is the distance to the center of the earth, which is related to zby r = a + z,
where a is the radius of the earth. Traditionally, the variable » in (2.9) is replaced by
the constant a. This is a very good approximation, as z < a for the regions of the
atmosphere with which meteorologists are concerned. For notational simplicity,
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it is conventional to define x and y as eastward and northward distance, such that
Dx = acos¢ DA and Dy = a D¢. Thus, the horizontal velocity components
are u = Dx/Dt and v = Dy/Dt in the eastward and northward directions,
respectively. The (x, y, z) coordinate system defined in this way is not, however,
a Cartesian coordinate system because the directions of the i, j, k unit vectors are
not constant, but are functions of position on the spherical earth. This position
dependence of the unit vectors must be taken into account when the acceleration
vector is expanded into its components on the sphere. Thus, we write

DU _Du+,Dv+ka+ Di+ Dj+ Dk (2.10)
_— ] _— _— e e e .
Dr "o Yo "D "M D TV Dy

In order to obtain the component equations, it is necessary first to evaluate the rates
of change of the unit vectors following the motion.

We first consider Di/Dt. Expanding the total derivative as in (2.1) and noting
that i is a function only of x (i.e., an eastward-directed vector does not change its
orientation if the motion is in the north—south or vertical directions), we get

Di oi
—_— = U—
Dt 0x

From Fig. 2.1 we see by similarity of triangles,

|51
m — =
sx—0 8x

oi

_ 1
0x

" acos¢

and that the vector di / dx is directed toward the axis of rotation. Thus, as is illus-
trated in Fig. 2.2,

B L (jsing —keose)
—_— = sin — COS
dx acos¢ J

Therefore
DU % sing — keos) @.11)
_— = Sin — K COS .
Dt acos¢ J

Considering now Dj/Dt, we note that j is a function only of x and y. Thus, with
the aid of Fig. 2.3 we see that for eastward motion |§j| = §x/(a/ tan ¢). Because
the vector dj / dx is directed in the negative x direction, we have then

aj tanqbi
ax a
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Fig.2.3 Dependence of unit vector j on
longitude.

From Fig. 2.4 it is clear that for northward motion |5j| = 8¢, but §y = ad¢, and

&j is directed downward so that

aj k
dy  a
Hence,
Dj t
by _wang. vy (2.12)
Dt a a

Finally, by similar arguments it can be shown that

Dk
(2.13)

U L v

—_— =1 —_
Dt a Ja
Substituting (2.11)—(2.13) into (2.10) and rearranging the terms, we obtain the
spherical polar coordinate expansion of the acceleration following the relative

motion

DU Du wuvtang uw), Dv  ultang vw) .
D\ e )N\t )
(2.14)

D 2 2
(3-22)s
Dt a



2.3 COMPONENT EQUATIONS IN SPHERICAL COORDINATES 37

]

8j
8¢

Fig.2.4 Dependence of unit vector j on

latitude.
adp\ij

3¢

We next turn to the component expansion of the force terms in (2.8). The Coriolis
force is expanded by noting that € has no component parallel to i and that its
components parallel to j and k are 22 cos ¢ and 2Q2sin¢, respectively. Thus, using
the definition of the vector cross product,

i j k
2@ xU=-2210 cos ¢ sin ¢
u v w

= —Q2Qwcos¢p —2Qusing) i —2Qusing j+2Qucosp k  (2.15)
The pressure gradient may be expressed as

0 0 0
L O 1L (2.16)

Vp=i
P T T2

and gravity is conveniently represented as
g=—gk (2.17)

where g is a positive scalar (g = 9.8 m s~ at the earth’s surface). Finally, recall
from (1.5) that
F, =iF. +jF, +KF,; (2.18)

Substituting (2.14)—(2.18) into the equation of motion (2.8) and equating all
terms in the i, j, and k directions, respectively, we obtain

Du wuvtan¢ wuw 1dp .
4+ — =———42Qusing — 2Qw cos¢p + F,« (2.19)
Dt a a p 0x

D 2 19
_U u an¢+%:———p—29uSin¢+Fry (220)
Dt a a /03)’
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2 2
Dw _wHv 100 i squcosd + . 2.21)
Dt a p o0z
which are the eastward, northward, and vertical component momentum equations,
respectively. The terms proportional to 1/a on the left-hand sides in (2.19)-(2.21)
are called curvature terms; they arise due to the curvature of the earth.! Because
they are nonlinear (i.e., they are quadratic in the dependent variables), they are dif-
ficult to handle in theoretical analyses. Fortunately, as shown in the next section,
the curvature terms are unimportant for midlatitude synoptic scale motions. How-
ever, even when the curvature terms are neglected, (2.19)—(2.21) are still nonlinear
partial differential equations, as can be seen by expanding the total derivatives into
their local and advective parts:

Du ou ou ou ou
—=—+u w
Dt ot ox ay 0z

with similar expressions for Dv/Dt and Dw/Dt. In general the advective accel-
eration terms are comparable in magnitude to the local acceleration. The presence
of nonlinear advection processes is one reason that dynamic meteorology is an
interesting and challenging subject.

2.4 SCALE ANALYSIS OF THE EQUATIONS OF MOTION

Section 1.3 discussed the basic notion of scaling the equations of motion in order
to determine whether some terms in the equations are negligible for motions of
meteorological concern. Elimination of terms on scaling considerations not only
has the advantage of simplifying the mathematics, but as shown in later chapters,
the elimination of small terms in some cases has the very important property of
completely eliminating or filtering an unwanted type of motion. The complete
equations of motion [(2.19)—(2.21)] describe all types and scales of atmospheric
motions. Sound waves, for example, are a perfectly valid class of solutions to
these equations. However, sound waves are of negligible importance in dynamical
meteorology. Therefore, it will be a distinct advantage if, as turns out to be true,
we can neglect the terms that lead to the production of sound waves and filter out
this unwanted class of motions.

In order to simplify (2.19)—(2.21) for synoptic scale motions, we define the
following characteristic scales of the field variables based on observed values for
midlatitude synoptic systems.

1 It can be shown that when r is replaced by a as done here (the traditional approximation) the
Coriolis terms proportional to cos ¢ in (2.19) and (2.21) must be neglected if the equations are to
satisfy angular momentum conservation.
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U~ 10ms~! horizontal velocity scale
W~ 1lcms™! vertical velocity scale
L~ 10°m length scale [~1/(27) wavelength]
H~10*m depth scale
8P/p~103m? s~% horizontal pressure fluctuation scale
LIU~10°s time scale

Horizontal pressure fluctuation § P is normalized by the density p in order to
produce a scale estimate that is valid at all heights in the troposphere, despite
the approximate exponential decrease with height of both § P and p. Note that
8 P/p has units of a geopotential. Referring back to (1.25) we see that indeed the
magnitude of the fluctuation of § P/ p on a surface of constant height must equal the
magnitude of the fluctuation of the geopotential on an isobaric surface. The time
scale here is an advective time scale, which is appropriate for pressure systems
that move at approximately the speed of the horizontal wind, as is observed for
synoptic scale motions. Thus, L/ U is the time required to travel a distance L ata
speed U, and the substantial differential operator scales as D/ Dt ~ U/ L for such
motions.

It should be pointed out here that the synoptic scale vertical velocity is not a
directly measurable quantity. However, as shown in Chapter 3, the magnitude of
w can be deduced from knowledge of the horizontal, velocity field.

We can now estimate the magnitude of each termin (2.19) and (2.20) for synoptic
scale motions at a given latitude. It is convenient to consider a disturbance centered
at latitude ¢9 = 45° and introduce the notation

fo =2Qsingy = 2Qcos o = 107457 !

Table 2.1 shows the characteristic magnitude of each term in (2.19) and (2.20)
based on the scaling considerations given above. The molecular friction term is so
small that it may be neglected for all motions except the smallest scale turbulent
motions near the ground, where vertical wind shears can become very large and
the molecular friction term must be retained, as discussed in Chapter 5.

Table 2.1 Scale Analysis of the Horizontal Momentum Equations

A B C D E F G
x — Eq. % —2Qusing  +2Qwcosg  +4° —”“aﬂ = —%%’ +Fy
y—Eq. % +2Qu sin ¢ + 2 +”2‘%¢ :_%% +Fy
Scales U%/L foU fow UT UTZ %’ ‘;TLz’
ms=2) 1074 1073 1076 10-% 1073 1073 10712
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2.4.1 Geostrophic Approximation and Geostrophic Wind

It is apparent from Table 2.1 that for midlatitude synoptic scale disturbances the
Coriolis force (term B) and the pressure gradient force (term F) are in approxi-
mate balance. Retaining only these two terms in (2.19) and (2.20) gives as a first
approximation the geostrophic relationship

19 19
_fv%_zf; fu%—;£ (2.22)

where f = 2Qsing is called the Coriolis parameter. The geostrophic balance
is a diagnostic expression that gives the approximate relationship between the
pressure field and horizontal velocity in large-scale extratropical systems. The
approximation (2.22) contains no reference to time and therefore cannot be used
to predict the evolution of the velocity field. It is for this reason that the geostrophic
relationship is called a diagnostic relationship.

By analogy to the geostrophic approximation (2.22) it is possible to define a
horizontal velocity field, V, = iug + jug, called the geostrophic wind, which
satisfies (2.22) identically. In vectorial form,

1
Vo=kx —Vp (2.23)
g of

Thus, knowledge of the pressure distribution at any time determines the geostrophic
wind. It should be kept clearly in mind that (2.23) always defines the geostrophic
wind, but only for large-scale motions away from the equator should the geostrophic
wind be used as an approximation to the actual horizontal wind field. For the scales
used in Table 2.1 the geostrophic wind approximates the true horizontal velocity
to within 10-15% in midlatitudes.

2.4.2 Approximate Prognostic Equations; the Rossby Number

To obtain prediction equations it is necessary to retain the acceleration (term A) in
(2.19) and (2.20). The resulting approximate horizontal momentum equations are

Du _ 1dp _

=l s f(v - vg) (2.24)
Dv _ 1dp _
B =S gy = () =2

where (2.23) is used to rewrite the pressure gradient force in terms of the geostrophic
wind. Because the acceleration terms in (2.24) and (2.25) are proportional to the
difference between the actual wind and the geostrophic wind, they are about an
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order of magnitude smaller than the Coriolis force and the pressure gradient force
in agreement with our scale analysis. The fact that the horizontal flow is in approx-
imate geostrophic balance is helpful for diagnostic analysis. However, it makes
actual applications of these equations in weather prognosis difficult because accel-
eration (which must be measured accurately) is given by the small difference
between two large terms. Thus, a small error in measurement of either velocity or
pressure gradient will lead to very large errors in estimating the acceleration. This
problem is discussed in some detail in Chapter 13.

A convenient measure of the magnitude of the acceleration compared to the
Coriolis force may be obtained by forming the ratio of the characteristic scales
for the acceleration and the Coriolis force terms: (U2/L)/( foU). This ratio is a
nondimensional number called the Rossby number after the Swedish meteorologist
C. G. Rossby (1898-1957) and is designated by

Ro=U/(foL)

Thus, the smallness of the Rossby number is a measure of the validity of the
geostrophic approximation.

2.4.3 The Hydrostatic Approximation

A similar scale analysis can be applied to the vertical component of the momentum
equation (2.21). Because pressure decreases by about an order of magnitude from
the ground to the tropopause, the vertical pressure gradient may be scaled by Py/H,
where P, is the surface pressure and H is the depth of the troposphere. The terms in
(2.21) may then be estimated for synoptic scale motions and are shown in Table 2.2.
As with the horizontal component equations, we consider motions centered at 45°
latitude and neglect friction. The scaling indicates that to a high degree of accuracy
the pressure field is in hydrostatic equilibrium; that is, the pressure at any point is
simply equal to the weight of a unit cross-section column of air above that point.

The above analysis of the vertical momentum equation is, however, somewhat
misleading. It is not sufficient to show merely that the vertical acceleration is small
compared to g. Because only that part of the pressure field that varies horizontally
is directly coupled to the horizontal velocity field, it is actually necessary to show
that the horizontally varying pressure component is itself in hydrostatic equilibrium
with the horizontally varying density field. To do this it is convenient to first define a

Table 2.2 Scale Analysis of the Vertical Momentum Equation

z-Eq. Dw/Dt —2Qucos¢ —w?+ v2)/a = —pflap/Bz —-g +F;2
Scales  UW/L foU U?/a Po/(pH) g VWH?2
ms~2 1077 1073 1075 10 10 1071
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standard pressure pg(z), which is the horizontally averaged pressure at each height,
and a corresponding standard density pg(z), defined so that pg(z) and py(z) are in
exact hydrostatic balance:

——=-g (2.26)
We may then write the total pressure and density fields as

plx, v, z,t) = po(2) + p'(x, y, z, 1)

, (2.27)
px, y,z,t) = po(2) + p'(x, y, z, 1)

where p’ and p’ are deviations from the standard values of pressure and density.
For an atmosphere at rest, p’ and p’ would thus be zero. Using the definitions of
(2.26) and (2.27) and assuming that p’/pg is much less than unity in magnitude so
that (oo + 0)) "1 = py ! (1 =p’/po), we find that

1dp 1 0 ,
__r _ o= -~ + _
b5z £ Tmamaz TP e 02%)
L [pdpp op] 17T, n ap’ '
polpodz  0z] " po 787 8z
For synoptic scale motions, the terms in (2.28) have the magnitudes
1 ap 3P !
_l ~ |:_:| ~ 10_11’1’1 S—Z’ rg ~ lo—lms—z
0o 0z poH £0

Comparing these with the magnitudes of other terms in the vertical momentum
equation (Table 2.2), we see that to a very good approximation the perturbation
pressure field is in hydrostatic equilibrium with the perturbation density field so that

/
—+0g=0 (2.29)
a0z
Therefore, for synoptic scale motions, vertical accelerations are negligible and
the vertical velocity cannot be determined from the vertical momentum equation.
However, we show in Chapter 3 that it is, nevertheless, possible to deduce the
vertical motion field indirectly.

2.5 THE CONTINUITY EQUATION

We turn now to the second of the three fundamental conservation principles, con-
servation of mass. The mathematical relationship that expresses conservation of
mass for a fluid is called the continuity equation. This section develops the con-
tinuity equation using two alternative methods. The first method is based on an
Eulerian control volume, whereas the second is based on a Lagrangian control
volume.



2.5 THE CONTINUITY EQUATION 43

2.5.1 An Eulerian Derivation

We consider a volume element §x §y §z that is fixed in a Cartesian coordinate
frame as shown in Fig. 2.5. For such a fixed control volume the net rate of mass
inflow through the sides must equal the rate of accumulation of mass within the
volume. The rate of inflow of mass through the left-hand face per unit area is

a ( )(Sx
u— —(pu)—
P ox P 2
whereas the rate of outflow per unit area through the right-hand face is
+ L
u+ —(pu)—
P ox P 2

Because the area of each of these faces is §ydz, the net rate of flow into the
volume due to the x velocity component is

d Sx 0 Sx
- — — | 8yéz — — — | 8y8
[pu 8x(pu) 2} iz [pqu 8x(pu) 2} ¥z
d
= ——(pu)dxdydz
ox

Similar expressions obviously hold for the y and z directions. Thus, the net rate of
mass inflow is

0 B 0
_ [a(ﬂ)u) + @(;Ov) + g(pw)] 3x8ydz

b | ) Sx
: 5 _:>pu+ax(pu)2
: 4
)8

s Sy

X

Fig. 2.5 Mass inflow into a fixed (Eulerian) control volume due to motion parallel to the x axis.
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and the mass inflow per unit volume is just —V « (pU), which must equal the rate
of mass increase per unit volume. Now the increase of mass per unit volume is just
the local density change dp / dt.Therefore,

0
a—‘; FVe(pU)=0 (2.30)
Equation (2.30) is the mass divergence form of the continuity equation.
An alternative form of the continuity equation is obtained by applying the vector
identity
Ve(pU) =pVeU+UVp

and the relationship

to get
— =2 4V.U= 2.31)

Equation (2.31) is the velocity divergence form of the continuity equation. It states
that the fractional rate of increase of the density following the motion of an air parcel
is equal to minus the velocity divergence. This should be clearly distinguished from
(2.30), which states that the local rate of change of density is equal to minus the
mass divergence.

2.5.2 A Lagrangian Derivation

The physical meaning of divergence can be illustrated by the following alternative
derivation of (2.31). Consider a control volume of fixed mass § M that moves with
the fluid. Letting 5/ = 8x §ydzbe the volume, we find that because M = pé§V =
p8x8ydz is conserved following the motion, we can write

1 D 1 D 1 Dp 1 D

M) = —— =8V = -ZL 4 — Zsr)=0 232
o3 i M = S5 o PO = D T sy o ©F) 2.32)
but
1 D(5V)— : D(3)+ ] D(5)+1 D(S)
sV e ) T sk D T sy pe ) T 52 i ”

Referring to Fig. 2.6, we see that the faces of the control volume in the y, z
plane (designated A and B) are advected with the flow in the x direction at speeds
uy = Dx/Dt and up = D(x + 8x)/ Dt, respectively. Thus, the difference
in speeds of the two faces is 6u = up —uy = D(x + 6x)/Dt — Dx /Dt or
du = D(éx) /Dt. Similarly, v = D(6y)/ Dt and w = D(6z)/ Dt. Therefore,

—+—=V.U
8x+8y+8z

. 1 D
lim |——@V)| =2
8x,8y,8z—0

_ Ju ov ow
8V Dt N
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un j ug

et o
Up 3t up dt

Fig.2.6 Change in Lagrangian control volume (shown by shading) due to fluid motion parallel to the
X axis.

so that in the limit §V — 0, (2.32) reduces to the continuity equation (2.31); the
divergence of the three-dimensional velocity field is equal to the fractional rate of
change of volume of a fluid parcel in the limit 677 — 0. It is left as a problem for
the student to show that the divergence of the horizontal velocity field is equal to
the fractional rate of change of the horizontal area § 4 of a fluid parcel in the limit
84 — 0.

2.5.3 Scale Analysis of the Continuity Equation

Following the technique developed in Section 2.4.3, and again assuming that

| o / p0| <« 1, we can approximate the continuity equation (2.31) as

1 [dp w dpg

— [ —4+UeVo' |+——+4V.U=0

P < a1 g ) po dz (2.33)
B C

where p’ designates the local deviation of density from its horizontally averaged

value, po (z). For synoptic scale motions p’/pp ~ 1072 so that using the charac-
teristic scales given in Section 2.4 we find that term A has magnitude

1 (op' ‘U
—<a—€ +U-vp’> ~ P22 ~1077s !
P0

For motions in which the depth scale H is comparable to the density scale height,
dln po/dz ~ H™! so that term B scales as

dpo W
Wa 2~ 10767
po dz H

Expanding term C in Cartesian coordinates, we have

_ u ov ow

VeU= —+ — + —
8x+3y+ 0z
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For synoptic scale motions the terms du / dx and dv / dy tend to be of equal mag-
nitude but opposite sign. Thus, they tend to balance so that

bu 0 U
(—” + —v) ~ 1071 A 10765

ax  Jy L
and in addition
ow w —6 —1
— ~ —==10""s
0z H

Thus, terms B and C are each an order of magnitude greater than term A, and to a
first approximation, terms B and C balance in the continuity equation. To a good
approximation then

0 npy) =0
—+ — + — w— npg) =
ox 3y | 9z o

or, alternatively, in vector form

Thus for synoptic scale motions the mass flux computed using the basic state den-
sity pg is nondivergent. This approximation is similar to the idealization of incom-
pressibility, which is often used in fluid mechanics. However, an incompressible
fluid has density constant following the motion:

Dp_
Dt

Thus by (2.31) the velocity divergence vanishes (V « U = 0) in an incompressible
fluid, which is not the same as (2.34). Our approximation (2.34) shows that for
purely horizontal flow the atmosphere behaves as though it were an incompressible
fluid. However, when there is vertical motion the compressibility associated with
the height dependence of py must be taken into account.

2.6 THE THERMODYNAMIC ENERGY EQUATION

We now turn to the third fundamental conservation principle, the conservation of
energy as applied to a moving fluid element. The first law of thermodynamics is
usually derived by considering a system in thermodynamic equilibrium, that is,
a system that is initially at rest and after exchanging heat with its surroundings
and doing work on the surroundings is again at rest. For such a system the first
law states that the change in internal energy of the system is equal to the differ-
ence between the heat added to the system and the work done by the system.
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A Lagrangian control volume consisting of a specified mass of fluid may be
regarded as a thermodynamic system. However, unless the fluid is at rest, it will not
be in thermodynamic equilibrium. Nevertheless, the first law of thermodynamics
still applies. To show that this is the case, we note that the total thermodynamic
energy of the control volume is considered to consist of the sum of the internal
energy (due to the kinetic energy of the individual molecules) and the kinetic
energy due to the macroscopic motion of the fluid. The rate of change of this total
thermodynamic energy is equal to the rate of diabatic heating plus the rate at which
work is done on the fluid parcel by external forces.

If we let e designate the internal energy per unit mass, then the total thermody-
namic energy contained in a Lagrangian fluid element of density p and volume §V
is ple + (1/2)U « U] §V. The external forces that act on a fluid element may be
divided into surface forces, such as pressure and viscosity, and body forces, such
as gravity or the Coriolis force. The rate at which work is done on the fluid element
by the x component of the pressure force is illustrated in Fig. 2.7. Recalling that
pressure is a force per unit area and that the rate at which a force does work is
given by the dot product of the force and velocity vectors, we see that the rate at
which the surrounding fluid does work on the element due to the pressure force on
the two boundary surfaces in the y, z plane is given by

(pu) 48y8z — (pu) pdydz
(The negative sign is needed before the second term because the work done on the

fluid element is positive if u is negative across face B.) Now by expanding in a
Taylor series we can write

J
(pu)p = (pu) 4 + [B—(pu)] 3x + ...
X A

(puly = ! (-pulg
I

s 3y

X

Fig. 2.7 Rate of working on a fluid element due to the x component of the pressure force.
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Thus the net rate at which the pressure force does work due to the x component
of motion is

3
[(pu)4 — (pu)ploydz = — [a—(pu)} sV
X A

where 6V = §x6ydz.
Similarly, we can show that the net rates at which the pressure force does work
due to the y and z components of motion are

— [i(pv)i| 6V and — [i(pw)i| sV
ay 0z

respectively. Hence, the total rate at which work is done by the pressure force is
simply
=V (pU)éV

The only body forces of meteorological significance that act on an element of mass
in the atmosphere are the Coriolis force and gravity. However, because the Coriolis
force, —22 x U, is perpendicular to the velocity vector, it can do no work. Thus
the rate at which body forces do work on the mass element is just p g « U V.

Applying the principle of energy conservation to our Lagrangian control volume
(neglecting effects of molecular viscosity), we thus obtain

D 1
o |:,0 (e+ 5U.U> (SV} = —Ve(pU)SV + pg s USV + pJSV  (2.35)

Here J is the rate of heating per unit mass due to radiation, conduction, and latent
heat release. With the aid of the chain rule of differentiation we can rewrite (2.35) as

sv 2 (exluou) 4 (e iu.u) 222D
—_— e —_ . e — .
PO" by 2 2 Dt (2.36)

=—UeVpsV — pVeUSV — pgwéV + pJ sV

where we have used g = —gk. Now from (2.32) the second term on the left in
(2.36) vanishes so that

De D
p—-l—p—(—U-U)=—Uon—pV-U—pgw+pJ (2.37)

This equation can be simplified by noting that if we take the dot product of U with
the momentum equation (2.8) we obtain (neglecting friction)

D /1
— (=U.U)=-U.Vp-— 2.38
Y <2 ) p—pgw (2.38)
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Subtracting (2.38) from (2.37), we obtain
p— =—pVeU+ pJ (2.39)

The terms in (2.37) that were eliminated by subtracting (2.38) represent the balance
of mechanical energy due to the motion of the fluid element; the remaining terms
represent the thermal energy balance.

Using the definition of geopotential (1.15), we have

Dz Do
w = —_— = —
S8 T D
so that (2.38) can be rewritten as
D 1U U+®)=-U.V (2.40)
i \2 h P ’

which is referred to as the mechanical energy equation. The sum of the kinetic
energy plus the gravitational potential energy is called the mechanical energy. Thus
(2.40) states that following the motion, the rate of change of mechanical energy
per unit volume equals the rate at which work is done by the pressure gradient
force.

The thermal energy equation (2.39) can be written in more familiar form by
noting from (2.31) that

1 1 Dp  Da

p2 Dt Dt
and that for dry air the internal energy per unit mass is given by e = ¢, T, where
c(=T7171] kg_l K1) is the specific heat at constant volume. We then obtain

v b pt = J (2.41)

which is the usual form of the thermodynamic energy equation. Thus the first law
of thermodynamics indeed is applicable to a fluid in motion. The second term
on the left, representing the rate of working by the fluid system (per unit mass),
represents a conversion between thermal and mechanical energy. This conversion
process enables the solar heat energy to drive the motions of the atmosphere.

2.7 THERMODYNAMICS OF THE DRY ATMOSPHERE

Taking the total derivative of the equation of state (1.14), we obtain

Da+ Dp_RDT
P T T Ve
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Substituting for pDer/ Dt in (2.41) and using ¢, = ¢y + R, where ¢, (= 1004 ]
kg~! K1) is the specific heat at constant pressure, we can rewrite the first law of
thermodynamics as
DT Dp
Cp—— —a—— =
Dt Dt
Dividing through by 7' and again using the equation of state, we obtain the entropy
form of the first law of thermodynamics:

J (2.42)

J
=0 (2.43)

Equation (2.43) gives the rate of change of entropy per unit mass following the
motion for a thermodynamically reversible process. A reversible process is one in
which a system changes its thermodynamic state and then returns to the original
state without changing its surroundings. For such a process the entropy s defined
by (2.43) is a field variable that depends only on the state of the fluid. Thus Ds is
a perfect differential, and Ds/ Dt is to be regarded as a total derivative. However,
“heat” is not a field variable, so that the heating rate J is not a total derivative.?

2.7.1 Potential Temperature

For an ideal gas undergoing an adiabatic process (i.e., areversible process in which
no heat is exchanged with the surroundings), the first law of thermodynamics can
be written in differential form as

¢pDInT —RDInp=D(c,InT —Rlnp) =0

Integrating this expression from a state at pressure p and temperature 7 to a state
in which the pressure is py and the temperature is 6, we obtain after taking the
antilogarithm

0 =T (ps/ )"/ (2.44)

This relationship is referred to as Poisson’s equation, and the temperature 6 defined
by (2.44) is called the potential temperature. 6 is simply the temperature that a
parcel of dry air at pressure p and temperature 7" would have if it were expanded or
compressed adiabatically to a standard pressure p, (usually taken to be 1000 hPa).
Thus, every air parcel has a unique value of potential temperature, and this value
is conserved for dry adiabatic motion. Because synoptic scale motions are approx-
imately adiabatic outside regions of active precipitation, 6 is a quasi-conserved
quantity for such motions.

2 For a discussion of entropy and its role in the second law of thermodynamics, see Curry and
Webster (1999), for example.
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Taking the logarithm of (2.44) and differentiating, we find that

DIn6 DInT Dlnp
cp =cp —R (2.45)
Dt Dt Dt
Comparing (2.43) and (2.45), we obtain
DIné J Ds
— = (2.46)

c === —
)Y, T Dt

Thus, for reversible processes, fractional potential temperature changes are indeed
proportional to entropy changes. A parcel that conserves entropy following the
motion must move along an isentropic (constant 0) surface.

2.7.2 The Adiabatic Lapse Rate

A relationship between the lapse rate of temperature (i.e., the rate of decrease of
temperature with respect to height) and the rate of change of potential tempera-
ture with respect to height can be obtained by taking the logarithm of (2.44) and
differentiating with respect to height. Using the hydrostatic equation and the ideal
gas law to simplify the result gives

790 OT g
=+ = (2.47)
0 oz 0z ¢p
For an atmosphere in which the potential temperature is constant with respect to
height, the lapse rate is thus
dT
E_f_p, (2.48)
dz c¢p
Hence, the dry adiabatic lapse rate is approximately constant throughout the lower
atmosphere.

2.7.3 Static Stability

If potential temperature is a function of height, the atmospheric lapse rate, ' =
—dT/0z, will differ from the adiabatic lapse rate and

T

=I,;,—-T 2.49
e d (2.49)

If I < I'y so that 6 increases with height, an air parcel that undergoes an adiabatic
displacement from its equilibrium level will be positively buoyant when displaced
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downward and negatively buoyant when displaced upward so that it will tend to
return to its equilibrium level and the atmosphere is said to be statically stable or
stably stratified.

Adiabatic oscillations of a fluid parcel about its equilibrium level in a stably
stratified atmosphere are referred to as buoyancy oscillations. The characteristic
frequency of such oscillations can be derived by considering a parcel that is dis-
placed vertically a small distance §z without disturbing its environment. If the
environment is in hydrostatic balance, pgg = —dpo/dz, where pg and pg are the
pressure and density of the environment. The vertical acceleration of the parcel is

Dw
Dt

D? 1dp

where p and p are the pressure and density of the parcel. In the parcel method it is
assumed that the pressure of the parcel adjusts instantaneously to the environmental
pressure during the displacement: p = pg. This condition must be true if the
parcel is to leave the environment undisturbed. Thus with the aid of the hydrostatic
relationship, pressure can be eliminated in (2.50) to give

D? 00— P 0
= _(8§2) = =o— 2.51
th( 2) g( . ) &% (2.51)

where (2.44) and the ideal gas law have been used to express the buoyancy force
in terms of potential temperature. Here 6 designates the deviation of the potential
temperature of the parcel from its basic state (environmental) value 6y(z). If the
parcel is initially at level z = O where the potential temperature is 6y (0), then for a
small displacement 6z we can represent the environmental potential temperature as

60(82) ~ 60(0) + (dbo/dz) 8z

If the parcel displacement is adiabatic, the potential temperature of the parcel is
conserved. Thus, 8(8z) = 6y(0) — 09(5z) = —(d6y/dz)Sz, and (2.51) becomes

D2
D—tz(az) = —N?5z (2.52)
where J1ne
nbtp
N? =
£ dz

is a measure of the static stability of the environment. Equation (2.52) has a general
solution of the form 8z = A exp(iNt). Therefore, if N> > 0, the parcel will oscillate
about its initial level with a period t = 27/ N. The corresponding frequency N is
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the buoyancy frequency.? For average tropospheric conditions, N & 1.2x 107! s~!

so that the period of a buoyancy oscillation is about 8 min.

In the case of N = 0, examination of (2.52) indicates that no accelerating force
will exist and the parcel will be in neutral equilibrium at its new level. However,
if N2 < 0 (potential temperature decreasing with height) the displacement will
increase exponentially in time. We thus arrive at the familiar gravitational or static
stability criteria for dry air:

dbo/dz > 0 statically stable,
dbo/dz =0 statically neutral,
dby/dz <0 statically unstable.

On the synoptic scale the atmosphere is always stably stratified because any
unstable regions that develop are stabilized quickly by convective overturning.
For a moist atmosphere, the situation is more complicated and discussion of that
situation will be deferred until Chapter 11.

2.7.4 Scale Analysis of the Thermodynamic Energy Equation

If potential temperature is divided into a basic state 9y (z) and adeviation 6 (x, y, z, t)
so that the total potential temperature at any point is given by 6oy = 6y (z2) +
0 (x, y, z, t), the first law of thermodynamics (2.46) can be written approximately
for synoptic scaling as

(2.53)

1 /00 00 a0 d1n6 J
w v
dz cpT

% E—i_ua—i_va

where we have used the facts that for |6/6y| < 1,

d@/dz\ < deo/dz, and
In6;0; =1In[6p (1+6/60)] ~1n6p +6/6

Outside regions of active precipitation, diabatic heating is due primarily to net
radiative heating. In the troposphere, radiative heating is quite weak so that typi-
cally J / cp < 1°C d~! (except near cloud tops, where substantially larger cooling
can occur due to thermal emission by the cloud particles). The typical amplitude
of horizontal potential temperature fluctuations in a midlatitude synoptic system
(above the boundary layer) is 6 ~ 4°C. Thus,

T (00 n 00 . 00 oU
—+tu v
at dx ay

— ~— ~4°Cd!
8o L

3 Nis often referred to as the Brunt—Viisild frequency.
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The cooling due to vertical advection of the basic state potential temperature
(usually called the adiabatic cooling) has a typical magnitude of

T db (Tg —T) ~4°Cd”!
w —_—— = W — ~
6y dz d

where w ~ 1 cm s~ ! and 'y — T, the difference between dry adiabatic and actual
lapse rates, is ~ 4°C km~ L.

Thus, in the absence of strong diabatic heating, the rate of change of the per-
turbation potential temperature is equal to the adiabatic heating or cooling due to
vertical motion in the statically stable basic state, and (2.53) can be approximated as

a0 a0 a0 dbp
- had — =0 2.54
<3t+u8x+v8y>+w (2.54)

Alternatively, if the temperature field is divided into a basic state Ty (z) and a devi-
ation T (x, y, z, 1), then since 6 /6y ~ T /Ty, (2.54) can be expressed to the same
order of approximation in terms of temperature as

aT aT oT
—tu—+v— | +wTg—T)~0 (2.55)
at ox ay

PROBLEMS

2.1. A ship is steaming northward at a rate of 10 km h~!.The surface pressure
increases toward the northwest at the rate of 5 Pakm™!. What is the pressure
tendency recorded at a nearby island station if the pressure aboard the ship
decreases at a rate of 100 Pa/3 h?

2.2. The temperature at a point 50 km north of a station is 3°C cooler than at the
station. If the wind is blowing from the northeast at 20 m s~ ! and the air is
being heated by radiation at the rate of 1°C h~!, what is the local temperature
change at the station?

2.3. Derive the relationship
2x (@2xr) =-Q°R

which was used in Eq. (2.7).

2.4. Derive the expression given in Eq. (2.13) for the rate of change of k following
the motion.

2.5. Suppose a 1-kg parcel of dry air is rising at a constant vertical velocity. If
the parcel is being heated by radiation at the rate of 10~ 'W kg ™!, what must
the speed of rise be to maintain the parcel at a constant temperature?
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2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

Derive an expression for the density p that results when an air parcel initially
at pressure p; and density pg expands adiabatically to pressure p.

An air parcel that has a temperature of 20°C at the 1000-hPa level is lifted
dry adiabatically. What is its density when it reaches the 500-hPa level?

Suppose an air parcel starts from rest at the 800-hPa level and rises vertically
to 500 hPa while maintaining a constant 1°C temperature excess over the
environment. Assuming that the mean temperature of the 800- to 500-hPa
layer is 260 K, compute the energy released due to the work of the buoyancy
force. Assuming that all the released energy is realized as kinetic energy of
the parcel, what will the vertical velocity of the parcel be at 500 hPa?

Show that for an atmosphere with an adiabatic lapse rate (i.e., constant
potential temperature) the geopotential height is given by

Z = Hy [1 - (P/po)R/c"]

where py is the pressure at Z =0and Hy = ¢, 0/go is the total geopotential
height of the atmosphere.

In the isentropic coordinate system (see Section 4.6), potential temperature is
used as the vertical coordinate. Because potential temperature in adiabatic
flow is conserved following the motion, isentropic coordinates are useful
for tracing the actual paths of travel of individual air parcels. Show that
the transformation of the horizontal pressure gradient force from z to 6
coordinates is given by

1
—V.p=VoM
P
where M = ¢, T + ® is the Montgomery streamfunction.

French scientists have developed a high-altitude balloon that remains at
constant potential temperature as it circles the earth. Suppose such a balloon
is in the lower equatorial stratosphere where the temperature is isothermal
at 200 K. If the balloon were displaced vertically from its equilibrium level
by a small distance §z it would tend to oscillate about the equilibrium level.
What is the period of this oscillation?

Derive the approximate thermodynamic energy equation (2.55) by using the
scaling arguments of Sections 2.4 and 2.7.

MATLAB EXERCISES

M2.1. The MATLAB script standard_-T_p.m defines and plots the tempera-

ture and the lapse rate associated with the U.S. Standard Atmosphere as
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M2.2.

2 BASIC CONSERVATION LAWS

functions of height. Modify this script to compute the pressure and poten-
tial temperature and plot these in the same format used for temperature
and lapse rate. Hint: to compute pressure, integrate the hydrostatic equa-
tion from the surface upward in increments of §z. Show that if we define
a mean scale height for the layer between z and z + §z by letting H =
R[T (2) + T (z+82)]/(2g), then p(z+38z) = p(z)exp[-8z/H].
(Note that as you move upward layer by layer you must use the local
height-dependent value of H in this formula.)

The MATLAB script thermo_profile.m is a simple script to read in data
giving pressure and temperature for a tropical mean sounding. Run this
script to plot temperature versus pressure for data in the file tropical_
temp.dat. Use the hypsometric equation to compute the geopotential height
corresponding to each pressure level of the data file. Compute the cor-
responding potential temperature and plot graphs of the temperature and
potential temperature variations with pressure and with geopotential height.

Suggested References

Salby, Fundamentals of Atmospheric Physics, contains a thorough development of the basic conserva-
tion laws at the graduate level.

Pedlosky, Geophysical Fluid Dynamics, discusses the equations of motion for a rotating coordinate
system and has a thorough discussion of scale analysis at a graduate level.

Curry and Webster, Thermodynamics of Atmospheres and Oceans contains an excellent treatment of
atmospheric thermodynamics.



CHAPTER 3

Elementary Applications
of the Basic Equations

In addition to the geostrophic wind, which was discussed in Chapter 2, there
are other approximate expressions for the relationships among velocity, pressure,
and temperature fields, which are useful in the analysis of weather systems. These
are discussed most conveniently using a coordinate system in which pressure is
the vertical coordinate. Thus, before introducing the elementary applications of
the present chapter it is useful to present the dynamical equations in isobaric
coordinates.

3.1 BASIC EQUATIONS IN ISOBARIC COORDINATES

3.1.1 The Horizontal Momentum Equation

The approximate horizontal momentum equations (2.24) and (2.25) may be written
in vectorial form as

DV+fk \% 1V (3.1)
— xV=—— .
Dt o 7
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where V = iu + jv is the horizontal velocity vector. In order to express (3.1) in
isobaric coordinate form, we transform the pressure gradient force using (1.20)
and (1.21) to obtain

DV
o tkxV=-V,0 (3.2)

where V ,is the horizontal gradient operator applied with pressure held constant.
Because p is the independent vertical coordinate, we must expand the total
derivative as
D a Dx 0 Dy o Dp o

Di — a1 Diox  Diay  Diap
ad n d . d n ad
—tu—F+v—+ow—
ot ox ay ap

(3.3)

Here w = Dp/ Dt (usually called the “omega” vertical motion) is the pressure
change following the motion, which plays the same role in the isobaric coordinate
system that w = Dz/ Dt plays in height coordinates.

From (3.2) we see that the isobaric coordinate form of the geostrophic relation-
ship is

fVe=kxV,® 34

One advantage of isobaric coordinates is easily seen by comparing (2.23) and
(3.4). In the latter equation, density does not appear. Thus, a given geopotential gra-
dient implies the same geostrophic wind at any height, whereas a given horizontal
pressure gradient implies different values of the geostrophic wind depending on
the density. Furthermore, if f is regarded as a constant, the horizontal divergence
of the geostrophic wind at constant pressure is zero:

V,eVy=0

3.1.2 The Continuity Equation

It is possible to transform the continuity equation (2.31) from height coordinates
to pressure coordinates. However, it is simpler to directly derive the isobaric form
by considering a Lagrangian control volume 6V = §x 8y 6z and applying the
hydrostaticequation §p = —pgdz(note that§p < 0) to express the volume element
as 8V = —éx8ydp/(pg). The mass of this fluid element, which is conserved
following the motion, is then 6 M = pdV = —x8yép/g. Thus,

1 D D (x5
— My =8 = (2P
oM Dt éx8ySp Dt g
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After differentiating, using the chain rule, and changing the order of the differ-
ential operators we obtain'

1 Dx 1 Dy 1 Dp
—b| =)+l =)+—8|—=—)=0
8x Dt 8y \ Dt dp \ Dt

Su v  Sw

S + g} + E =
Taking the limit §x, 8y, 8p — 0 and observing that 8x and §y are evaluated at
constant pressure, we obtain the continuity equation in the isobaric system:

8u+8v +8a)_0 (3.5)
dx dy), p N '
This form of the continuity equation contains no reference to the density field

and does not involve time derivatives. The simplicity of (3.5) is one of the chief
advantages of the isobaric coordinate system.

or

3.1.3 The Thermodynamic Energy Equation

The first law of thermodynamics (2.42) can be expressed in the isobaric system by
letting Dp/ Dt = w and expanding DT/ Dt by using (3.3):
8T+8T+8T+8T _J
cp\ 5 T vay a)ap aw =
This may be rewritten as
aT oT oT J
il - — =S w=— 3.6
<8t +u8x+vay> pe Cp (36)
where, with the aid of the equation of state and Poisson’s equation (2.44), we have
RT 0T T 06
S =—-7—=—-—=— 3.7)
cpp Op 6 dp
which is the static stability parameter for the isobaric system. Using (2.49) and the
hydrostatic equation, (3.7) may be rewritten as

Sy, =0q—-T)/pg

Thus, S, is positive provided that the lapse rate is less than dry adiabatic.
However, because density decreases approximately exponentially with height, S,
increases rapidly with height. This strong height dependence of the stability mea-
sure S, is a minor disadvantage of isobaric coordinates.

1 From now on g will be regarded as a constant.
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3.2 BALANCED FLOW

Despite the apparent complexity of atmospheric motion systems as depicted on
synoptic weather charts, the pressure (or geopotential height) and velocity dis-
tributions in meteorological disturbances are actually related by rather simple
approximate force balances. In order to gain a qualitative understanding of the
horizontal balance of forces in atmospheric motions, we idealize by considering
flows that are steady state (i.e., time independent) and have no vertical component
of velocity. Furthermore, it is useful to describe the flow field by expanding the
isobaric form of the horizontal momentum equation (3.2) into its components in a
so-called natural coordinate system.

3.2.1 Natural Coordinates

The natural coordinate system is defined by the orthogonal set of unit vectors t, n,
and k. Unit vector t is oriented parallel to the horizontal velocity at each point; unit
vector n is normal to the horizontal velocity and is oriented so that it is positive
to the left of the flow direction; and unit vector k is directed vertically upward. In
this system the horizontal velocity may be written V= V't where V', the horizontal
speed, is a nonnegative scalar defined by V' = Ds/Dt¢, where s(x, y, t) is the
distance along the curve followed by a parcel moving in the horizontal plane. The
acceleration following the motion is thus

DV DVt DV Dt

- = =t—+V—=

Dt Dt Dt Dt

The rate of change of t following the motion may be derived from geometrical

considerations with the aid of Fig. 3.1:

s |t

S = — = —— = |5t
[RI It

Here R is the radius of curvature following the parcel motion, and we have used
the fact that |t| = 1. By convention, R is taken to be positive when the center of
curvature is in the positive n direction. Thus, for R > 0, the air parcels turn toward
the left following the motion, and for R < 0O the air parcels turn toward the right
following the motion.

Noting that in the limit §s — 0, §tis directed parallel to n, the above relationship
yields Dt/Ds = n/R. Thus,

Dt DtDs n

Dt DsDt R
and 5

DV DV ¥V

et e S 3.8

D Yo TR (3-8)
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Fig. 3.1 Rate of change of the unit tangent vector t following the motion.

Therefore, the acceleration following the motion is the sum of the rate of change
of speed of the air parcel and its centripetal acceleration due to the curvature of
the trajectory. Because the Coriolis force always acts normal to the direction of
motion, its natural coordinate form is simply

—fkxV=—fVn

whereas the pressure gradient force can be expressed as
0P od
-V, o=—(t—+n—

b ( as + on )

The horizontal momentum equation may thus be expanded into the following
component equations in the natural coordinate system:

DV oD
= = (3.9)
Dt as
Ve + fV = 00 (3.10)
R T~ on ’

Equations (3.9) and (3.10) express the force balances parallel to and normal to
the direction of flow, respectively. For motion parallel to the geopotential height
contours, d®/ds = 0 and the speed is constant following the motion. If, in addi-
tion, the geopotential gradient normal to the direction of motion is constant along
a trajectory, (3.10) implies that the radius of curvature of the trajectory is also
constant. In that case the flow can be classified into several simple categories
depending on the relative contributions of the three terms in (3.10) to the net force
balance.
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3.2.2 Geostrophic Flow

Flow in a straight line (R — £ o00) parallel to height contours is referred to
as geostrophic motion. In geostrophic motion the horizontal components of the
Coriolis force and pressure gradient force are in exact balance so that V' = V,,
where the geostrophic wind V is defined by?

fVg=—0®/0n @3.11)

This balance is indicated schematically in Fig. 3.2. The actual wind can be in
exact geostrophic motion only if the height contours are parallel to latitude circles.
As discussed in Section 2.4.1, the geostrophic wind is generally a good approxi-
mation to the actual wind in extratropical synoptic-scale disturbances. However,
in some of the special cases treated later this is not true.

3.2.3 Inertial Flow

If the geopotential field is uniform on an isobaric surface so that the horizontal
pressure gradient vanishes, (3.10) reduces to a balance between Coriolis force and
centrifugal force:

VI/R+ fV =0 (3.12)

Equation (3.12) may be solved for the radius of curvature

R=-V/f

$o-50

Co
®o

Fig. 3.2 Balance of forces for geostrophic equilibrium. The pressure gradient force is designated by
P and the Coriolis force by Co.

2 Note that although the actual speed V must always be positive in the natural coordinates, Vg ,
which is proportional to the height gradient normal to the direction of flow, may be negative, as in the
“anomalous” low shown in Fig. 3.5c.
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Since from (3.9), the speed must be constant in this case, the radius of curvature
is also constant (neglecting the latitudinal dependence of ). Thus the air parcels
follow circular paths in an anticyclonic sense.® The period of this oscillation is

2rR| 2w %day
V [fl Ising]

(3.13)

P is equivalent to the time that is required for a Foucault pendulum to turn through
an angle of 180°. Hence, it is often referred to as one-half pendulum day.

Because both the Coriolis force and the centrifugal force due to the relative
motion are caused by inertia of the fluid, this type of motion is traditionally referred
to as an inertial oscillation, and the circle of radius | R| is called the inertia circle.
It is important to realize that the “inertial flow” governed by (3.12) is not the same
as inertial motion in an absolute reference frame. The flow governed by (3.12)
is just the constant angular momentum oscillation referred to in Section 1.5.4. In
this flow the force of gravity, acting orthogonal to the plane of motion, keeps the
oscillation on a horizontal surface. In true inertial motion, all forces vanish and
the motion maintains a uniform absolute velocity.

In the atmosphere, motions are nearly always generated and maintained by
pressure gradient forces; the conditions of uniform pressure required for pure
inertial flow rarely exist. In the oceans, however, currents are often generated
by transient winds blowing across the surface, rather than by internal pressure
gradients. As a result, significant amounts of energy occur in currents that oscillate
with near inertial periods. An example recorded by a current meter near the island
of Barbados is shown in Fig. 3.3.

3.2.4 Cyclostrophic Flow

If the horizontal scale of a disturbance is small enough, the Coriolis force may
be neglected in (3.10) compared to the pressure gradient force and the centrifugal
force. The force balance normal to the direction of flow is then

V2 9D

R on

If this equation is solved for V', we obtain the speed of the cyclostrophic wind

9D 1/2
V=-rR— (3.14)
(~#%)

3 Anticyclonic flow is a clockwise rotation in the Northern Hemisphere and counterclockwise in the
Southern Hemisphere. Cyclonic flow has the opposite sense of rotation in each hemisphere.
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Fig. 3.3 Power spectrum of kinetic energy at 30-m depth in the ocean near Barbados (13°N). Ordinate
shows kinetic energy density per unit frequency interval (cph_1 designates cycles per hour).
This type of plot indicates the manner in which the total kinetic energy is partitioned among
oscillations of different periods. Note the strong peak at 53 h, which is the period of an inertial
oscillation at 13° latitude. [After Warsh et al., (1971.) Reproduced with permission of the
American Meteorological Society.]

As indicated in Fig. 3.4, cyclostrophic flow may be either cyclonic or anticy-
clonic. In both cases the pressure gradient force is directed toward the center of
curvature, and the centrifugal force away from the center of curvature.

The cyclostrophic balance approximation is valid provided that the ratio of the
centrifugal force to the Coriolis force is large. This ratio V/(fR) is equivalent to
the Rossby number discussed in Section 2.4.2. As an example of cyclostrophic
scale motion we consider a typical tornado. Suppose that the tangential velocity is
30 ms~! at a distance of 300 m from the center of the vortex. Assuming that f =
10~* s~!, the Rossby number is just Ro = ¥ /| fR| ~ 103, which implies that the
Coriolis force can be neglected in computing the balance of forces for a tornado.
However, the majority of tornadoes in the Northern Hemisphere are observed to
rotate in a cyclonic (counterclockwise) sense. This is apparently because they
are embedded in environments that favor cyclonic rotation (see Section 9.6.1).
Smaller scale vortices, however, such as dust devils and water spouts, do not have
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v
P Ce
T s m—
. . . . ad
Fig. 3.4 Force balance in cyclostrophic flow: R>0,=— <0
P designates the pressure gradient and dn
Ce the centrifugal force.
P Ce
(T o sm—
v
0®
R<O, Bn >0
n

a preferred direction of rotation. According to data collected by Sinclair (1965),
they are observed to be anticyclonic as often as cyclonic.

3.2.5 The Gradient Wind Approximation

Horizontal frictionless flow that is parallel to the height contours so that the tan-
gential acceleration vanishes (DV /Dt = 0) is called gradient flow. Gradient flow
is a three-way balance among the Coriolis force, the centrifugal force, and the hor-
izontal pressure gradient force. Like geostrophic flow, pure gradient flow can exist
only under very special circumstances. It is always possible, however, to define
a gradient wind, which at any point is just the wind component parallel to the
height contours that satisfies (3.10). For this reason, (3.10) is commonly referred
to as the gradient wind equation. Because (3.10) takes into account the centrifugal
force due to the curvature of parcel trajectories, the gradient wind is often a better
approximation to the actual wind than the geostrophic wind.
The gradient wind speed is obtained by solving (3.10) for V to yield

y=—_1"4 - R—

fR <f2R2 aq>>1/2

2 4 on
R 2R2 1/2
- fT + <fT + fRVg> (3.15)
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where in the lower expression (3.11) is used to express d®/dn in terms of the
geostrophic wind.

Not all the mathematically possible roots of (3.15) correspond to physically
possible solutions, as it is required that J* be real and nonnegative. In Table 3.1
the various roots of (3.15) are classified according to the signs of R and 0®/dn in
order to isolate the physically meaningful solutions

The force balances for the four permitted solutions are illustrated in Fig. 3.5.
Equation (3.15) shows that in cases of both regular and anomalous highs the
pressure gradient is limited by the requirement that the quantity under the radical
be nonnegative; that is,

9D R|f?
=‘— <i (3.16)
on

4

"

Thus, the pressure gradient in a high must approach zero as |R| — 0. It is for
this reason that the pressure field near the center of a high is always flat and the
wind gentle compared to the region near the center of a low.

The absolute angular momentum about the axis of rotation for the circularly
symmetric motions shown in Fig. 3.5 is given by ¥ R + f R?/2. From (3.15) it is
verified readily that regular gradient wind balances have positive absolute angular
momentum in the Northern Hemisphere, whereas anomalous cases have negative
absolute angular momentum. Because the only source of negative absolute angular
momentum is the Southern Hemisphere, the anomalous cases are unlikely to occur
except perhaps close to the equator.

In all cases except the anomalous low (Fig. 3.5¢) the horizontal components
of the Coriolis and pressure gradient forces are oppositely directed. Such flow is

Table 3.1 Classification of Roots of the Gradient Wind Equation in the Northern Hemisphere

Sign 9d/on R>0 R<0
Positive Positive root:* unphysical Positive root: antibaric flow
Vg <0) (anomalous low)
Negative root: unphysical Negative root: unphysical
Negative Positive root: cyclonic flow Positive root: (V' > — fR/2):
Vg >0) (regular low) anticyclonic flow (anomalous
high)
Negative root: unphysical Negative root: (V' < — fR/2):
anticyclonic flow (regular
high)

9The terms “positive root” and “negative root” in columns 2 and 3 refer to the sign taken in the final
term in Eq. (3.15).
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Fig. 3.5 Force balances in the Northern Hemisphere for the four types of gradient flow: (a) regular
low (b) regular high (c) anomalous low (d) anomalous high.

called baric. The anomalous low is antibaric; the geostrophic wind V', defined in
(3.11) is negative for an anomalous low and is clearly not a useful approximation to
the actual speed.* Furthermore, as shown in Fig. 3.5, gradient flow is cyclonic only
when the centrifugal force and the horizontal component of the Coriolis force have
the same sense (Rf > 0); it is anticyclonic when these forces have the opposite
sense (Rf < 0). Since the direction of anticyclonic and cyclonic flow is reversed
in the Southern Hemisphere, the requirement that R f > 0 for cyclonic flow holds
regardless of the hemisphere considered.

The definition of the geostrophic wind (3.11) can be used to rewrite the force
balance normal to the direction of flow (3.10) in the form

V2/R+ fV — fVy=0

Dividing through by fV shows that the ratio of the geostrophic wind to the
gradient wind is

Vg—1+ r (3.17)
72 fR '

For normal cyclonic flow (fR > 0), V4 is larger than V', whereas for anticy-
clonic flow (fR < 0), V' is smaller than V. Therefore, the geostrophic wind is an

4 Remember that in the natural coordinate system the speed V is positive definite.
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overestimate of the balanced wind in a region of cyclonic curvature and an under-
estimate in a region of anticyclonic curvature. For midlatitude synoptic systems,
the difference between gradient and geostrophic wind speeds generally does not
exceed 10-20%. [Note that the magnitude of V' /( f'R) is just the Rossby number.]
For tropical disturbances, the Rossby number is in the range of 1-10, and the gra-
dient wind formula must be applied rather than the geostrophic wind. Equation
(3.17) also shows that the antibaric anomalous low, which has V, < 0, can exist
only when V' /(fR) < —1. Thus, antibaric flow is associated with small-scale
intense vortices such as tornadoes.

3.3 TRAJECTORIES AND STREAMLINES

In the natural coordinate system used in the previous section to discuss balanced
flow, s(x, y, t) was defined as the distance along the curve in the horizontal plane
traced out by the path of an air parcel. The path followed by a particular air parcel
over a finite period of time is called the trajectory of the parcel. Thus, the radius
of curvature R of the path s referred to in the gradient wind equation is the radius
of curvature for a parcel trajectory. In practice, R is often estimated by using the
radius of curvature of a geopotential height contour, as this can be estimated easily
from a synoptic chart. However, the height contours are actually streamlines of
the gradient wind (i.e., lines that are everywhere parallel to the instantaneous wind
velocity).

It is important to distinguish clearly between streamlines, which give a “snap-
shot” of the velocity field at any instant, and trajectories, which trace the motion
of individual fluid parcels over a finite time interval. In Cartesian coordinates,
horizontal trajectories are determined by the integration of

i (3.18)
— =V(x, .
Dt d

over a finite time span for each parcel to be followed, whereas streamlines are

determined by the integration of

dy _ v(x, y, )

= 3.19
dx u(x, y, to) ( )

with respect to x at time 7. (Note that since a streamline is parallel to the velocity
field, its slope in the horizontal plane is just the ratio of the horizontal velocity
components.) Only for steady-state motion fields (i.e., fields in which the local
rate of change of velocity vanishes) do the streamlines and trajectories coincide.
However, synoptic disturbances are not steady-state motions. They generally move
at speeds of the same order as the winds that circulate about them. In order to
gain an appreciation for the possible errors involved in using the curvature of
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Fig. 3.6 Relationship between the change in angular direction of the wind §8 and the radius of
curvature R.

the streamlines instead of the curvature of the trajectories in the gradient wind
equation, it is necessary to investigate the relationship between the curvature of
the trajectories and the curvature of the streamlines for a moving pressure system.
We let B(x, y, t) designate the angular direction of the wind at each point on an
isobaric surface, and R; and R designate the radii of curvature of the trajectories
and streamlines, respectively. Then, from Fig. 3.6, §s = R 88 so that in the limit
és —> 0
D—ﬁ = L and % = i (3.20)
Ds R; 0s Ry
where DB/ Ds means the rate of change of wind direction along a trajectory (posi-
tive for counterclockwise turning) and 083/ds is the rate of change of wind direction
along a streamline at any instant. Thus, the rate of change of wind direction fol-

lowing the motion is
DB DBDs V

= = — (3.21)
Dt Ds Dt Ry
or, after expanding the total derivative,
D 0 a d V
Db _ 9 V—'B _¥ LY (3.22)

Dt~ ot ds ot R,

Combining (3.21) and (3.22), we obtain a formula for the local turning of the
wind:
2B 1 1
— =V |{——-— (3.23)
ot R, R

Equation (3.23) indicates that the trajectories and streamlines will coincide only
when the local rate of change of the wind direction vanishes.
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In general, midlatitude synoptic systems move eastward as a result of advection
by upper level westerly winds. In such cases there is a local turning of the wind
due to the motion of the system even if the shape of the height contour pattern
remains constant as the system moves. The relationship between R; and Ry in
such a situation can be determined easily for an idealized circular pattern of height
contours moving at a constant velocity C. In this case the local turning of the wind
is entirely due to the motion of the streamline pattern so that

ad 0 C
B_f =_C-Vﬁ=—C£cosy =—Ecosy

where y is the angle between the streamlines (height contours) and the direction
of motion of the system. Substituting the above into (3.23) and solving for R; with
the aid of (3.20), we obtain the desired relationship between the curvature of the
streamlines and the curvature of the trajectories:

Ccosy)1 (3.24)

R = R <1 7

Equation (3.24) can be used to compute the curvature of the trajectory anywhere
on a moving pattern of streamlines. In Fig. 3.7 the curvatures of the trajectories for
parcels initially located due north, east, south, and west of the center of a cyclonic
system are shown both for the case of a wind speed greater than the speed of
movement of the height contours and for the case of a wind speed less than the
speed of movement of the height contours. In these examples the plotted trajectories
are based on a geostrophic balance so that the height contours are equivalent to
streamlines. It is also assumed for simplicity that the wind speed does not depend
on the distance from the center of the system. In the case shown in Fig. 3.7b there is
a region south of the low center where the curvature of the trajectories is opposite
that of the streamlines. Because synoptic-scale pressure systems usually move at
speeds comparable to the wind speed, the gradient wind speed computed on the
basis of the curvature of the height contours is often no better an approximation to
the actual wind speed than the geostrophic wind. In fact, the actual gradient wind
speed will vary along a height contour with the variation of the trajectory curvature.

3.4 THE THERMAL WIND

The geostrophic wind must have vertical shear in the presence of a horizontal
temperature gradient, as can be shown easily from simple physical considerations
based on hydrostatic equilibrium. Since the geostrophic wind (3.4) is proportional
to the geopotential gradient on an isobaric surface, a geostrophic wind directed
along the positive y axis that increases in magnitude with height requires that the
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Fig.3.7 Trajectories for moving circular cyclonic
circulation systems in the Northern
Hemisphere with (a) ¥V = 2C and (b)
2V = C. Numbers indicate positions
at successive times. The L designates a

1 pressure minimum.

(b)

slope of the isobaric surfaces with respect to the x axis also must increase with
height as shown in Fig. 3.8. According to the hypsometric Eq. (1.21), the thickness
8z corresponding to a pressure interval §p is

sz~ —g 'RTSInp (3.25)

Thus, the thickness of the layer between two isobaric surfaces is proportional
to the temperature in the layer. In Fig. 3.8 the mean temperature 77 of the column
denoted by §z; must be less than the mean temperature 73 for the column denoted
by §z2. Hence, an increase with height of a positive x directed pressure gradient
must be associated with a positive x directed temperature gradient. The air in a
vertical column at x, because it is warmer (less dense), must occupy a greater
depth for a given pressure drop than the air at x;.
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Fig. 3.8 Relationship between vertical shear of the geostrophic wind and horizontal thickness
gradients. (Note that §p <0.)

Equations for the rate of change with height of the geostrophic wind compo-
nents are derived most easily using the isobaric coordinate system. In isobaric
coordinates the geostrophic wind (3.4) has components given by

109 d 109 (3.26)

Vg = ——— an Uy = ——— .

£ fox £ Sy

where the derivatives are evaluated with pressure held constant. Also, with the aid
of the ideal gas law we can write the hydrostatic equation as

ad RT
= g =-—— (3.27)
Ip p

Differentiating (3.26) with respect to pressure and applying (3.27), we obtain

dvg  dug R /0T
v = =5 (5, o
p% = s R <£> (3.29)
p dlnp  f\dy/,
or in vectorial form
Ve _ —Ek x V,T (3.30)

dln p f
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Equation (3.30) is often referred to as the thermal wind equation. However, it
is actually a relationship for the vertical wind shear (i.e., the rate of change of the
geostrophic wind with respect to In p). Strictly speaking, the term thermal wind
refers to the vector difference between geostrophic winds at two levels. Designating
the thermal wind vector by V7, we may integrate (3.30) from pressure level pg to

level p; (p1 < po) to get

R Pi
V7 =V(p1) — Ve(po) = —?/ (k x V,T)dInp (3.31)
Po

Letting (7") denote the mean temperature in the layer between pressure py and
p1, the x and y components of the thermal wind are thus given by

R (9(T) po), R(am) <P0>
S AR I (CU DR (2 3.32
ur f(ay ),f‘(m =G ), ) 6%

Alternatively, we may express the thermal wind for a given layer in terms of the
horizontal gradient of the geopotential difference between the top and the bottom
of the layer:

19
= ———(d; — Dy): =——(®; - 3.33
ur fay( 1 0); Ur fax( ! 0) (3.33)
The equivalence of (3.32) and (3.33) can be verified readily by integrating the
hydrostatic equation (3.27) vertically from pg to p; after replacing 7 by the mean
(T'). The result is the hypsometric equation (1.22):

@ — ®g = gZr = R(T)In (ﬂ) (3.34)
p1

The quantity Zr is the thickness of the layer between pg and p; measured in units
of geopotential meters. From (3.34) we see that the thickness is proportional to the
mean temperature in the layer. Hence, lines of equal Z7 (isolines of thickness) are
equivalent to the isotherms of mean temperature in the layer.

The thermal wind equation is an extremely useful diagnostic tool, which is often
used to check analyses of the observed wind and temperature fields for consistency.
It can also be used to estimate the mean horizontal temperature advection in a layer
as shown in Fig. 3.9. It is clear from the vector form of the thermal wind relation:

1 R
V= —Kk x V(& — ®) = Sk x VZ; = —k x V(T)In <@> (3.35)
f f P

f

that the thermal wind blows parallel to the isotherms (lines of constant thickness)
with the warm air to the right facing downstream in the Northern Hemisphere.
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Fig. 3.9 Relationship between turning of geostrophic wind and temperature advection: (a) backing
of the wind with height and (b) veering of the wind with height.

Thus, as is illustrated in Fig. 3.9a, a geostrophic wind that turns counterclockwise
with height (backs) is associated with cold-air advection. Conversely, as shown in
Fig. 3.9b, clockwise turning (veering) of the geostrophic wind with height implies
warm advection by the geostrophic wind in the layer. It is therefore possible to
obtain a reasonable estimate of the horizontal temperature advection and its vertical
dependence at a given location solely from data on the vertical profile of the wind
given by a single sounding. Alternatively, the geostrophic wind at any level can be
estimated from the mean temperature field, provided that the geostrophic velocity
is known at a single level. Thus, for example, if the geostrophic wind at 850 hPa
is known and the mean horizontal temperature gradient in the layer 850-500 hPa
is also known, the thermal wind equation can be applied to obtain the geostrophic
wind at 500 hPa.

3.4.1 Barotropic and Baroclinic Atmospheres

A barotropic atmosphere is one in which the density depends only on the pressure,
p = p(p), so that isobaric surfaces are also surfaces of constant density. For
an ideal gas, the isobaric surfaces will also be isothermal if the atmosphere is
barotropic. Thus, V,T = 0 in a barotropic atmosphere, and the thermal wind
equation (3.30) becomes 0V,/0ln p = 0, which states that the geostrophic wind
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is independent of height in a barotropic atmosphere. Thus, barotropy provides a
very strong constraint on the motions in a rotating fluid; the large-scale motion
can depend only on horizontal position and time, not on height.

An atmosphere in which density depends on both the temperature and the pres-
sure, p = p(p, T), is referred to as a baroclinic atmosphere. In a baroclinic
atmosphere the geostrophic wind generally has vertical shear, and this shear is
related to the horizontal temperature gradient by the thermal wind equation (3.30).
Obviously, the baroclinic atmosphere is of primary importance in dynamic mete-
orology. However, as shown in later chapters, much can be learned by study of the
simpler barotropic atmosphere.

3.5 VERTICAL MOTION

As mentioned previously, for synoptic-scale motions the vertical velocity compo-
nent is typically of the order of a few centimeters per second. Routine meteoro-
logical soundings, however, only give the wind speed to an accuracy of about a
meter per second. Thus, in general the vertical velocity is not measured directly
but must be inferred from the fields that are measured directly.

Two commonly used methods for inferring the vertical motion field are the
kinematic method, based on the equation of continuity, and the adiabatic method,
based on the thermodynamic energy equation. Both methods are usually applied
using the isobaric coordinate system so that w(p) is inferred rather than w(z).
These two measures of vertical motion can be related to each other with the aid of
the hydrostatic approximation.

Expanding Dp/ Dt in the (x, y, z) coordinate system yields

Dp _dp ap
=—=—+4V.V — 3.36
“=Dr " " p+w(az (3.36)
Now, for synoptic-scale motions, the horizontal velocity is geostrophic to a first
approximation. Therefore, we can write V = V4V, where V,, is the ageostrophic
wind and |[V,| < |Vg|. However, Vo = (pf )"k x V p, so that VeeVp =0.
Using this result plus the hydrostatic approximation, (3.36) may be rewritten as
Ip
a)za-i-Va-Vp—gpw (3.37)
Comparing the magnitudes of the three terms on the right in (3.37), we find that
for synoptic-scale motions

dp/dt ~ 10 hPad™!
VyeVp~ (1 m s_1> (1 Pa km_1> ~ 1hPad™!
gpw ~ 100 hPad™!
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Thus, it is quite a good approximation to let

w=—pgw (3.38)

3.5.1 The Kinematic Method

One method of deducing the vertical velocity is based on integrating the conti-
nuity equation in the vertical. Integration of (3.5) with respect to pressure from a
reference level ps to any level p yields

Prou ov
w(P)=w(Ps)—/ (8_+3_> dp
Ps X y P

3.39
0 {u) | 9{v) -39
=)+ (ps=—p\ 75—+ 5~
X y/p
Here the angle brackets denote a pressure-weighted vertical average:
p
O=@-p" [ 0dp
Ps
With the aid of (3.38), the averaged form of (3.39) can be rewritten as
- 0 d
w(z) = LEIWE) Ps p( w <U>> (3.40)
p(2) p(2)g \ 9x ay

where z and z; are the heights of pressure levels p and pj, respectively.

Application of (3.40) to infer the vertical velocity field requires knowledge of the
horizontal divergence. In order to determine the horizontal divergence, the partial
derivatives du/dx and dv/dy are generally estimated from the fields of «# and v
by using finite difference approximations (see Section 13.3.1). For example, to
determine the divergence of the horizontal velocity at the point xg, )p in Fig. 3.10
we write

8_u+8_vNu(xo+d)—u(xo—d)+v(yo+d)—v(yo—d)
ax ' ay 2d 2d

However, for synoptic-scale motions in midlatitudes, the horizontal velocity is
nearly in geostrophic equilibrium. Except for the small effect due to the variation of
the Coriolis parameter (see Problem 3.19), the geostrophic wind is nondivergent;
that is, du/dx and dv/dy are nearly equal in magnitude but opposite in sign. Thus,
the horizontal divergence is due primarily to the small departures of the wind from
geostrophic balance (i.e., the ageostrophic wind). A 10% error in evaluating one of
the wind components in (3.41) can easily cause the estimated divergence to be in
error by 100%. For this reason, the continuity equation method is not recommended
for estimating the vertical motion field from observed horizontal winds.

(3.41)
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® v(yo+d)
d
d
u(xg-d) e . ° ulxg+d) Fig. 3.10  Grid for estimation of the horizontal
(x0,Yo) divergence.
® v(yo-d)

3.5.2 The Adiabatic Method

A second method for inferring vertical velocities, which is not so sensitive to
errors in the measured horizontal velocities, is based on the thermodynamic energy
equation. If the diabatic heating J is small compared to the other terms in the heat
balance, (3.6) yields

s (204,00, 0T (3.42)
w = —_— u— —_— B
P\ ot ox y

Because temperature advection can usually be estimated quite accurately in
midlatitudes by using geostrophic winds, the adiabatic method can be applied
when only geopotential and temperature data are available. A disadvantage of
the adiabatic method is that the local rate of change of temperature is required.
Unless observations are taken at close intervals in time, it may be difficult to
accurately estimate d7/d¢ over a wide area. This method is also rather inaccurate
in situations where strong diabatic heating is present, such as storms in which
heavy rainfall occurs over a large area. Chapter 6 presents an alternative method
for estimating w, based on the so-called omega equation, that does not suffer from
these difficulties.

3.6 SURFACE PRESSURE TENDENCY

The development of a negative surface pressure tendency is a classic warning of
an approaching cyclonic weather disturbance. A simple expression that relates the
surface pressure tendency to the wind field, and hence in theory might be used as
the basis for short-range forecasts, can be obtained by taking the limit p — 0 in
(3.39) to get

Ps
w(ps) = — / (VeV)dp (3.43)
0
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followed by substituting from (3.37) to yield

Ps

9

al? ~ —/(V-V)dp (3.44)
0

Here we have assumed that the surface is horizontal so that wy = 0 and have
neglected advection by the ageostrophic surface velocity in accord with the scaling
arguments in Section 3.5.1.

According to (3.44), the surface pressure tendency at a given point is determined
by the total convergence of mass into the vertical column of atmosphere above
that point. This result is a direct consequence of the hydrostatic assumption, which
implies that the pressure at a point is determined solely by the weight of the column
of air above that point. Temperature changes in the air column will affect the heights
of upper level pressure surfaces, but not the surface pressure.

Although, as stated earlier, the tendency equation might appear to have potential
as a forecasting aid, its utility is severely limited due to the fact that, as discussed in
Section 3.5.1, V « V is difficult to compute accurately from observations because it
depends on the ageostrophic wind field. In addition, there is a strong tendency for
vertical compensation. Thus, when there is convergence in the lower troposphere
there is divergence aloft, and vice versa. The net integrated convergence or diver-
gence is then a small residual in the vertical integral of a poorly determined quantity.

Nevertheless, (3.44) does have qualitative value as an aid in understanding the
origin of surface pressure changes, and the relationship of such changes to the hori-
zontal divergence. This can be illustrated by considering (as one possible example)
the development of a thermal cyclone. We suppose that a heat source generates
a local warm anomaly in the midtroposphere (Fig. 3.11a). Then according to the
hypsometric equation (3.34), the heights of the upper level pressure surfaces are
raised above the warm anomaly, resulting in a horizontal pressure gradient force

<«—— High ——> -« High

—_— —

\
/
\
/

Sea level —
(a) (b)

Fig. 3.11 Adjustment of surface pressure to a midtropospheric heat source. Dashed lines indicate
isobars. (a) Initial height increase at upper level pressure surface. (b) Surface response to
upper level divergence.
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at the upper levels, which drives a divergent upper level wind. By (3.44) this upper
level divergence will initially cause the surface pressure to decrease, thus generat-
ing a surface low below the warm anomaly (Fig. 3.11b). The horizontal pressure
gradient associated with the surface low then drives a low-level convergence and
vertical circulation, which tends to compensate the upper level divergence. The
degree of compensation between upper divergence and lower convergence will
determine whether the surface pressure continues to fall, remains steady, or rises.

The thermally driven circulation of the above example is by no means the only
type of circulation possible (e.g., cold core cyclones are important synoptic-scale
features). However, it does provide insight into how dynamical processes at upper
levels are communicated to the surface and how the surface and upper troposphere
are dynamically connected through the divergent circulation. This subject is con-
sidered in detail in Chapter 6.

Equation (3.44) is a lower boundary condition that determines the evolution
of pressure at constant height. If the isobaric coordinate system of dynamical
equations (3.2), (3.5), (3.6), and (3.27) is used as the set of governing equations,
the lower boundary condition should be expressed in terms of the evolution of
geopotential (or geopotential height) at constant pressure. Such an expression can
be obtained simply by expanding D®/ Dt in isobaric coordinates

0 0D
— =—-V,eVO —v—
at ap

and substituting from (3.27) and (3.43) to get

Ps
3P RT,
P / (VeV)dp (3.45)
ot Ds

0

where we have again neglected advection by the ageostrophic wind.

In practice the boundary condition (3.45) is difficult to use because it should
be applied at pressure py, which is itself changing in time and space. In simple
models it is usual to assume that p, is constant (usually 1000 hPa) and to let
o = 0 at pg For modern forecast models, an alternative coordinate system is
generally employed in which the lower boundary is always a coordinate surface.
This approach is described in Section 10.3.1.

PROBLEMS

3.1. An aircraft flying a heading of 60° (i.e., 60° to the east of north) at air speed
200 m s~ moves relative to the ground due east (90°) at 225 m s~1. If the
plane is flying at constant pressure, what is its rate of change in altitude (in



80

3.2.

3.3.

34.

3.5.

3.6.

3.7.

3.8.
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meters per kilometer horizontal distance) assuming a steady pressure field,
geostrophic winds, and 1 = 107 s71?

The actual wind is directed 30° to the right of the geostrophic wind. If the
geostrophic wind is 20 m s~!, what is the rate of change of wind speed? Let
f=10"*s"1.

A tornado rotates with constant angular velocity . Show that the surface
pressure at the center of the tornado is given by

P = Po€Xp YRT

where py is the surface pressure at a distance r( from the center and 7 is the
temperature (assumed constant). If the temperature is 288 K and pressure
and wind speed at 100 m from the center are 1000 hPa and 100 m s~!,
respectively, what is the central pressure?

Calculate the geostrophic wind speed (m s~!) on an isobaric surface for a
geopotential height gradient of 100 m per 1000 km and compare with all
possible gradient wind speeds for the same geopotential height gradient and
a radius of curvature of £ 500 km. Let f = 10~% s~ 1"

Determine the maximum possible ratio of the normal anticyclonic gradient
wind speed to the geostrophic wind speed for the same pressure gradient.

Show that the geostrophic balance in isothermal coordinates may be written
fVYe=Kkx V7 (RT In p+ &)

Determine the radii of curvature for the trajectories of air parcels located
500 km to the east, north, south, and west of the center of a circular low-

pressure system, respectively. The system is moving eastward at 15 m s,

Assume geostrophic flow with a uniform tangential wind speed of 15ms~!.

Determine the normal gradient wind speeds for the four air parcels of Prob-
lem 3.7 using the radii of curvature computed in Problem 3.7 Compare
these speeds with the geostrophic speed. (Let f = 107 s71.) Use the gra-
dient wind speeds calculated here to recompute the radii of curvature for
the four air parcels referred to in Problem 3.7. Use these new estimates of
the radii of curvature to recompute the gradient wind speeds for the four air
parcels. What fractional error is made in the radii of curvature by using the
geostrophic wind approximation in this case? [Note that further iterations
could be carried out but would converge rapidly.]
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3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

Show that as the pressure gradient approaches zero the gradient wind reduces
to the geostrophic wind for a normal anticyclone and to inertial flow (Sec-
tion 3.2.3) for an anomalous anticyclone.

The mean temperature in the layer between 750 and 500 hPa decreases
eastward by 3° C per 100 km. If the 750-hPa geostrophic wind is from the
southeast at 20 m s~!, what is the geostrophic wind speed and direction at
500 hPa? Let f = 107* s~

What is the mean temperature advection in the 750- to 500-hPa layer in
Problem 3.10?

Suppose that a vertical column of the atmosphere at 43°N is initially isother-
mal from 900 to 500 hPa. The geostrophic wind is 10 m s~! from the south
at 900 hPa, 10 m s~! from the west at 700 hPa, and 20 m s~! from the west
at 500 hPa. Calculate the mean horizontal temperature gradients in the two
layers 900-700 hPa and 700-500 hPa. Compute the rate of advective tem-
perature change in each layer. How long would this advection pattern have
to persist in order to establish a dry adiabatic lapse rate between 600 and
800 hPa? (Assume that the lapse rate is constant between 900 and 500 hPa
and that the 800- to 600-hPa layer thickness is 2.25 km.)

An airplane pilot crossing the ocean at 45°N latitude has both a pressure
altimeter and a radar altimeter, the latter measuring his absolute height above
the sea. Flying at an air speed of 100 m s~! he maintains altitude by referring
to his pressure altimeter set for a sea level pressure of 1013 hPa. He holds
an indicated 6000-m altitude. At the beginning of a 1-h period he notes that
his radar altimeter reads 5700 m, and at the end of the hour he notes that it
reads 5950 m. In what direction and approximately how far has he drifted
from his heading?

Work out a gradient wind classification scheme equivalent to Table 3.1 for
the Southern Hemisphere ( f < 0) case.

In the geostrophic momentum approximation (Hoskins, 1975) the gradient
wind formula for steady circular flow (3.17) is replaced by the approximation

VVeR™ + fV = fV,
Compare the speeds V' computed using this approximation with those

obtained in Problem 3.8 using the gradient wind formula.

How large can the ratio V,/(fR) be before the geostrophic momentum
approximation differs from the gradient wind approximation by 10% for
cyclonic flow?
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3.17. The planet Venus rotates about its axis so slowly that to a reasonable approx-

3.18.

3.19.

3.20.

imation the Coriolis parameter may be set equal to zero. For steady, friction-
less motion parallel to latitude circles the momentum equation (2.20) then
reduces to a type of cyclostrophic balance:

uztanqﬁ_ 1ap
a  pdy

By transforming this expression to isobaric coordinates, show that the ther-
mal wind equation in this case can be expressed in the form

—RIn(po/p1) 9(T)
(asingcos¢gp) 9y

w? (p1) — w? (po) =

where R is the gas constant, a is the radius of the planet, and w, = u/(a cos ¢)
is the relative angular velocity. How must (7 )(the vertically averaged tem-
perature) vary with respect to latitude in order that w, be a function only
of pressure? If the zonal velocity at about 60 km height above the equator
(p1 = 2.9 x 10° Pa) is 100 m s~! and the zonal velocity vanishes at the
surface of the planet (pg = 9.5 x10° Pa), what is the vertically averaged
temperature difference between the equator and the pole, assuming that w,
depends only on pressure? The planetary radius is ¢ = 6100 km, and the
gas constant is R = 187 J kg~ ! K~

Suppose that during the passage of a cyclonic storm the radius of curvature
of the isobars is observed to be 800 km at a station where the wind is veering
(turning clockwise) at a rate of 10° per hour. What is the radius of curvature
of the trajectory for an air parcel that is passing over the station? (The wind
speed is 20 ms~1.)

Show that the divergence of the geostrophic wind in isobaric coordinates on
the spherical earth is given by

__i@ cos ¢ _ cot ¢
VeVe= fa ox (sinqb)_ vg< a )

(Use the spherical coordinate expression for the divergence operator given
in Appendix C.)

The following wind data were received from 50 km to the east, north, west,
and south of a station, respectively: 90°, 10m s_l; 120°, 4 m s_l; 90°,
8ms~!;and 60°, 4 m s~!. Calculate the approximate horizontal divergence
at the station.
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3.21.

3.22.

3.23.

Suppose that the wind speeds given in Problem 3.20 are each in error by
+ 10%. What would be the percentage error in the calculated horizontal
divergence in the worst case?

The divergence of the horizontal wind at various pressure levels above a
given station is shown in the following table. Compute the vertical velocity

Pressure (hPa) VeV(x1079 s
1000 +0.9
850 +0.6
700 +0.3
500 0.0
300 —-0.6
100 —1.0

at each level assuming an isothermal atmosphere with temperature 260 K
and letting w = 0 at 1000 hPa.

Suppose that the lapse rate at the 850-hPa level is 4 K km™!. If the tem-
perature at a given location is decreasing at a rate of 2 K h™!, the wind is
westerly at 10 m s~!, and the temperature decreases toward the west at a
rate of 5 K/100 km, compute the vertical velocity at the 850-hPa level using
the adiabatic method.

MATLAB EXERCISES

Ma3.1. For the situations considered in problems M2.1 and M2.2, make further

modifications in the MATLAB scripts to compute the vertical profiles of
density and of the static stability parameter S, defined in (3.7). Plot these
in the interval from z = 0 to z = 15 km. You will need to approximate
the vertical derivative in S, using a finite difference approximation (see
Section 13.3.1).

Ma3.2. The objective of this exercise is to gain an appreciation for the diff-

erence between trajectories and streamlines in synoptic-scale flows. An
idealized representation of a midlatitude synoptic disturbance in an atmo-
sphere with no zonal mean flow is given by the simple sinusoidal pattern
of geopotential,

® (x, y,t) = Do+ @ sin [k (x — ct)]cos Iy
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M3.3.

M34.
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where ®¢ (p) is the standard atmosphere geopotential dependent only on
pressure, ®’ is the magnitude of the geopotential wave disturbance, c is the
phase speed of zonal propagation of the wave pattern, and k and / are the
wave numbers in the x and y directions, respectively. If it is assumed that
the flow is in geostrophic balance, then the geopotential is proportional to
the stream function. Let the zonal and meridional wave numbers be equal
(k = 1) and define a perturbation wind amplitude U’ = ®'k / fy, where f
is a constant Coriolis parameter. Trajectories are then given by the paths
in (x, y) space obtained by solving the coupled set of ordinary differential
equations:

Dx 00

Ezuz—fo 5=+U/sin[k(x—ct)]sinly
D 0P
F)t} =v= —|—f07]g = 4U'cos [k (x — ct)]cosly

[Note that U’ (taken to be a positive constant) denotes the amplitude of
both the x and y components of the disturbance wind.] The MATLAB script
trajectory_1.m provides an accurate numerical solution to these equations
for the special case in which the zonal mean wind vanishes. Three separate
trajectories are plotted in the code. Run this script letting U’ = 10 m s~/
for cases with ¢ = 5, 10, and 15 m s~!. Describe the behavior of the
three trajectories for each of these cases. Why do the trajectories have their
observed dependence on the phase speed ¢ at which the geopotential height
pattern propagates?

The MATLAB script trajectory_2.m generalizes the case of problem M3.2
by adding a mean zonal flow. In this case the geopotential distribution is
specified to be ® (x, y,t) = Py — f()Ufl sinly + @ sin [k (x — ct)]
cos/y. (a) Solve for the latitudinal dependence of the mean zonal wind
for this case. (b) Run the script with the initial x position specified as
x = —2250km and U’ = 15 m s~ .. Do two runs, letting U=10ms"!,
c=5mstandU =5ms!,c=10ms, respectively. Determine
the zonal distance that the ridge originally centered at x = —2250 km
has propagated in each case. Use this information to briefly explain the
characteristics (i.e., the shapes and lengths) of the 4-day trajectories for
each of these cases. (¢) What combination of initial position, Uand ¢, will
produce a straight-line trajectory?

The MATLAB script trajectory_3.m can be used to examine the dispersion
of a cluster of N parcels initially placed in a circle of small radius for a
geopotential distribution representing the combination of a zonal mean jet
plus a propagating wave with NE to SW tilt of trough and ridge lines.
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The user must input the mean zonal wind amplitude, U, the disturbance
horizontal wind, U’, the propagation speed of the waves, ¢, and the initial
y position of the center of the cluster. (a) Run the model for three cases
specifying y = 0, U/ = 15 ms™!, and U = 10,12, and 15 ms~!,
respectively. Compute 20-day trajectories for all parcel clusters. Give an
explanation for the differences in the dispersion of the parcel cluster for
these three cases. (b) For the situation with ¢ = 10 m sTL U =15ms !,
and U = 12m s~ !, run three additional cases with the initial y specified to
be 250, 500, and 750 km. Describe how the results differ from the case with
y=0kmand U = 12 ms~! and give an explanation for the differences
in these runs.



CHAPTER 4

Circulation and Vorticity

In classical mechanics the principle of conservation of angular momentum is
often invoked in the analysis of motions that involve rotation. This principle pro-
vides a powerful constraint on the behavior of rotating objects. Analogous con-
servation laws also apply to the rotational field of a fluid. However, it should be
obvious that in a continuous medium, such as the atmosphere, the definition of
“rotation” is subtler than that for rotation of a solid object.

Circulation and vorticity are the two primary measures of rotation in a fluid.
Circulation, which is a scalar integral quantity, is a macroscopic measure of rota-
tion for a finite area of the fluid. Vorticity, however, is a vector field that gives a
microscopic measure of the rotation at any point in the fluid.

4.1 THE CIRCULATION THEOREM

The circulation, C, about a closed contour in a fluid is defined as the line integral
evaluated along the contour of the component of the velocity vector that is locally

tangent to the contour:
CE%U'CH:%“.”COS adl

86
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Fig. 4.1 Circulation about a closed contour.

di

where 1(s) is a position vector extending from the origin to the point s(x, y, z) on
the contour C, and dl represents the limit of §1 = 1(s+48s) —1(s) as s — 0. Hence,
as indicated in Fig. 4.1, dl is a displacement vector locally tangent to the contour.
By convention the circulation is taken to be positive if C > 0 for counterclockwise
integration around the contour.

That circulation is a measure of rotation is demonstrated readily by considering
a circular ring of fluid of radius R in solid-body rotation at angular velocity 2
about the z axis. In this case, U = € x R, where R is the distance from the axis of
rotation to the ring of fluid. Thus the circulation about the ring is given by

27
Cz?gU-dlzf QR?*d). = 2Qn R?
0

In this case the circulation is just 27 times the angular momentum of the fluid
ring about the axis of rotation. Alternatively, note that C/(r R*) = 22 so that the
circulation divided by the area enclosed by the loop is just twice the angular speed
of rotation of the ring. Unlike angular momentum or angular velocity, circulation
can be computed without reference to an axis of rotation; it can thus be used to
characterize fluid rotation in situations where “angular velocity” is not defined
easily.

The circulation theorem is obtained by taking the line integral of Newton’s
second law for a closed chain of fluid particles. In the absolute coordinate system
the result (neglecting viscous forces) is

D,U V,edl
ﬂ.m:—?ﬁ"——fwb-dl 4.1
Dt P

where the gravitational force g is represented as the gradient of the geopotential
®, defined so that —- V& = g = —gk. The integrand on the left-hand side can be
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rewritten as!

D,U,
Dt

Da )
Dt

D
odl = E(Ua odl) —U,
or after observing that since 1 is a position vector, D,1/Dt = Uy,

D,U,
Dt

D
sdl= - (U «d) ~ U, + U, 42)

Substituting (4.2) into (4.1) and using the fact that the line integral about a closed
loop of a perfect differential is zero, so that

%V@-dl:%dszo

and noting that
1
?{Uu «dU, =§?§d(Ua «U,) =0

we obtain the circulation theorem:

DC, D
== Ua-d1=—y§p—‘dp (4.3)

Dt Dt

The term on the right-hand side in (4.3) is called the solenoidal term. For a
barotropic fluid, the density is a function only of pressure, and the solenoidal term
is zero. Thus, in a barotropic fluid the absolute circulation is conserved following
the motion. This result, called Kelvin’s circulation theorem, is a fluid analog of
angular momentum conservation in solid-body mechanics.

For meteorological analysis, it is more convenient to work with the relative
circulation C rather than the absolute circulation, as a portion of the absolute
circulation, C,, is due to the rotation of the earth about its axis. To compute C,,
we apply Stokes’ theorem to the vector U,, where U, = £ X r is the velocity of
the earth at the position r:

Cesze-dlsz(Ver)ondA
A

! Note that for a scalar D, /Dt = D/ Dt (i.e., the rate of change following the motion does not depend
on the reference system). For a vector, however, this is not the case, as was shown in Section 2.1.1.
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where A is the area enclosed by the contour and the unit normal n is defined by the
counterclockwise sense of the line integration using the “right-hand screw rule.”
Thus, for the contour of Fig. 4.1, n would be directed out of the page. If the line
integral is computed in the horizontal plane, n is directed along the local vertical
(see Fig. 4.2). Now, by a vector identity (see Appendix C)

VxU,=Vx(®x1r)=Vx(@xR)=QV.R =29

so that (V x U,) e n = 2Qsin¢ = f is just the Coriolis parameter. Hence, the
circulation in the horizontal plane due to the rotation of the earth is

C, =2Q(sing) A =2QA4,

where (sin ¢) denotes an average over the area element 4 and 4, is the projection
of A4 in the equatorial plane as illustrated in Fig. 4.2. Thus, the relative circulation
may be expressed as

C=C,—C.=C, —204, 4.4)

Differentiating (4.4) following the motion and substituting from (4.3) we obtain
the Bjerknes circulation theorem:

2Q—— 4.5
Ds (4.5)

DC f dp DA,
h P Dt

For a barotropic fluid, (4.5) can be integrated following the motion from an initial
state (designated by subscript 1) to a final state (designated by subscript 2), yielding
the circulation change

Cr—Cy = -2 (A sin¢gy — Ay sin¢y) (4.6)

Ae

Fig. 4.2 Area A, subtended on the equatorial plane by horizontal area A centered at latitude ¢.
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Equation (4.6) indicates that in a barotropic fluid the relative circulation for a closed
chain of fluid particles will be changed if either the horizontal area enclosed by the
loop changes or the latitude changes. Furthermore, a negative absolute circulation
in the Northern Hemisphere can develop only if a closed chain of fluid particles
is advected across the equator from the Southern Hemisphere. The anomalous
gradient wind balances discussed in Section 3.2.5 are examples of systems with
negative absolute circulations (see Problem 4.6).

Example. Suppose that the air within a circular region of radius 100 km centered
at the equator is initially motionless with respect to the earth. If this circular air
mass were moved to the North Pole along an isobaric surface preserving its area,
the circulation about the circumference would be

C = —2Qmur*[sin(r/2) — sin(0)]
Thus the mean tangential velocity at the radius » = 100 km would be
V=C/Qur)=—-Qr~—-Tms"!

The negative sign here indicates that the air has acquired anticyclonic relative
circulation.

In a baroclinic fluid, circulation may be generated by the pressure-density
solenoid term in (4.3). This process can be illustrated effectively by considering
the development of a sea breeze circulation, as shown in Fig. 4.3. For the situation
depicted, the mean temperature in the air over the ocean is colder than the mean
temperature over the adjoining land. Thus, if the pressure is uniform at ground
level, the isobaric surfaces above the ground will slope downward toward the

T
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Ocean Land

Fig. 4.3 Application of the circulation theorem to the sea breeze problem. The closed heavy solid
line is the loop about which the circulation is to be evaluated. Dashed lines indicate surfaces
of constant density.
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ocean while the isopycnic surfaces (surfaces of constant density) will slope down-
ward toward the land. To compute the acceleration as a result of the intersection
of the pressure-density surfaces, we apply the circulation theorem by integrating
around a circuit in a vertical plane perpendicular to the coastline. Substituting the
ideal gas law into (4.3) we obtain

DC,
Dt

=—%Rlenp

For the circuit shown in Fig. 4.3 there is a contribution to the line integral only for
the vertical segments of the loop, as the horizontal segments are taken at constant
pressure. The resulting rate of increase in the circulation is

DC _
—“=R1n<@)(T2—T1)>o
Dt P

Letting (v) be the mean tangential velocity along the circuit, we find that

D(v) _ RIn(po/p1)

Dr = am+r (T2 TV @D

If we let pg = 1000 hPa, p; = 900 hPa, T, — T = 10°C, L = 20 km, and
h = 1 km, (4.7) yields an acceleration of about 7 x 10~ m s~2. In the absence
of frictional retarding forces, this would produce a wind speed of 25 m s~! in
about 1 h. In reality, as the wind speed increases, the frictional force reduces
the acceleration rate, and temperature advection reduces the land—sea temperature
contrast so that a balance is obtained between the generation of kinetic energy by

the pressure-density solenoids and frictional dissipation.

4.2 VORTICITY

Vorticity, the microscopic measure of rotation in a fluid, is a vector field defined as
the curl of velocity. The absolute vorticity @, is the curl of the absolute velocity,
whereas the relative vorticity @ is the curl of the relative velocity:

w;, =V xUy,, 0w=V xU

so that in Cartesian coordinates,
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In large-scale dynamic meteorology, we are in general concerned only with the
vertical components of absolute and relative vorticity, which are designated by n
and ¢, respectively.

n=ke(VxU,), ¢=ke(VxU

In the remainder of this book, n and ¢ are referred to as absolute and relative
vorticities, respectively, without adding the explicit modifier “vertical component
of.” Regions of positive ¢ are associated with cyclonic storms in the Northern
Hemisphere; regions of negative { are associated with cyclonic storms in the
Southern Hemisphere. Thus, the distribution of relative vorticity is an excellent
diagnostic for weather analysis. Absolute vorticity tends to be conserved following
the motion at midtropospheric levels; this conservation property is the basis for
the simplest dynamical forecast scheme discussed in Chapter 13.

The difference between absolute and relative vorticity is planetary vorticity,
which is just the local vertical component of the vorticity of the earth due to its
rotation; k ¢ Vx U, = 2Qsin¢ = f.Thus,n = ¢+ f or, in Cartesian coordinates,

ov ou v ou
=Z-2 = -4

T ax 9y’ T ax 9y
The relationship between relative vorticity and relative circulation C discussed in
the previous section can be clearly seen by considering an alternative approach
in which the vertical component of vorticity is defined as the circulation about a
closed contour in the horizontal plane divided by the area enclosed, in the limit
where the area approaches zero:

¢ = /111210 <?§ Ve dl) A7! (4.8)

This latter definition makes explicit the relationship between circulation and vor-
ticity discussed in the introduction to this chapter. The equivalence of these two
definitions of ¢ is shown easily by considering the circulation about a rectangular
element of area §x&y in the (x, y) plane as shown in Fig. 4.4. Evaluating V « dl
for each side of the rectangle in Fig. 4.4 yields the circulation

v ou
0C=ubx+ v+ —0x)Sy—|u+ —d6y)éx —véy
ox ay

v du
=|———)&xby
dx  dy

Dividing through by the area § 4 = §x 4y gives

8C _ (0v  du _,
s4  \oax oay)
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Fig. 4.4 Relationship between circulation and vorticity for an area element in the horizontal plane.

In more general terms the relationship between vorticity and circulation is given
simply by Stokes’ theorem applied to the velocity vector:

%U-dl://(VxU)-ndA
A

Here A is the area enclosed by the contour and n is a unit normal to the area
element d 4 (positive in the right-hand sense). Thus, Stokes’ theorem states that the
circulation about any closed loop is equal to the integral of the normal component of
vorticity over the area enclosed by the contour. Hence, for a finite area, circulation
divided by area gives the average normal component of vorticity in the region.
As a consequence, the vorticity of a fluid in solid-body rotation is just twice the
angular velocity of rotation. Vorticity may thus be regarded as a measure of the
local angular velocity of the fluid.

4.2.1 Vorticity in Natural Coordinates

Physical interpretation of vorticity is facilitated by considering the vertical compo-
nent of vorticity in the natural coordinate system (see Section 3.2.1). If we compute
the circulation about the infinitesimal contour shown in Fig. 4.5, we obtain®

v
8C =V[ss+d(8s)] — (V + a—Sn) s
n

2 Recall that n is a coordinate in the horizontal plane perpendicular to the local flow direction with
positive values to the left of an observer facing downstream.
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— Fig. 4.5 Circulation for an infinitesimal loop in
T_’._—— Ss the natural coordinate system.

Sn

L

However, from Fig. 4.5, d(8s) = §86n, where 8 is the angular change in the wind
direction in the distance §s. Hence,

d(3s)

or, in the limit 67, §s — 0

sC arv 14
= lim — = 4 — (4.9)
8n,85—0 (6n 8s) on Ry

¢
where Rj is the radius of curvature of the streamlines [Eq. (3.20)]. Itis now apparent
that the net vertical vorticity component is the result of the sum of two parts: (1)
the rate of change of wind speed normal to the direction of flow -9V /9n, called the
shear vorticity; and (2) the turning of the wind along a streamline V' / Ry, called the
curvature vorticity. Thus, even straight-line motion may have vorticity if the speed
changes normal to the flow axis. For example, in the jet stream shown schematically
in Fig. 4.6a, there will be cyclonic relative vorticity north of the velocity maximum
and anticyclonic relative vorticity to the south (Northern Hemisphere conditions)
as is recognized easily when the turning of a small paddle wheel placed in the
flow is considered. The lower of the two paddle wheels in Fig. 4.6a will turn in a
clockwise direction (anticyclonically) because the wind force on the blades north
of its axis of rotation is stronger than the force on the blades to the south of the axis.
The upper wheel will, of course, experience a counterclockwise (cyclonic) turning.
Thus, the poleward and equatorward sides of a westerly jetstream are referred to
as the cyclonic and anticyclonic shear sides, respectively.

Conversely, curved flow may have zero vorticity provided that the shear vorticity
is equal and opposite to the curvature vorticity. This is the case in the example
shown in Fig. 4.6b where a frictionless fluid with zero relative vorticity upstream
flows around a bend in a canal. The fluid along the inner boundary on the curve
flows faster in just the right proportion so that the paddle wheel does not turn.
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Fig. 4.6 Two types of two-dimensional flow:
(a) linear shear flow with vorticity and
(b) curved flow with zero vorticity.

(b)

4.3 POTENTIAL VORTICITY

With the aid of the ideal gas law (1.17), the definition of potential temperature (2.44)
can be expressed as a relationship between pressure and density for a surface of
constant 0:

p = plr (RO (p)R/er

Hence, on an isentropic surface, density is a function of pressure alone, and the
solenoidal term in the circulation theorem (4.3) vanishes;

7{@ o %dpa—cv/cp) —0
P

Thus, for adiabatic flow the circulation computed for a closed chain of fluid parcels
on a constant 6 surface reduces to the same form as in a barotropic fluid; that is, it
satisfies Kelvin’s circulation theorem, which may be expressed as

D
5, (C+2Q84sin¢) =0 (4.10)
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where C is evaluated for a closed loop encompassing the area § 4 on an isentropic
surface. If the isentropic surface is approximately horizontal, and it is recalled
from (4.8) that C & £§ A4, then for an infinitesimal parcel of air (4.10) implies that

8A4(¢p + f) = Const 4.11)

where &y designates the vertical component of relative vorticity evaluated on an
isentropic surface and f = 22 sin ¢ is the Coriolis parameter.

Suppose that the parcel of (4.11) is confined between potential temperature
surfaces 6y and 6y + 86, which are separated by a pressure interval —ép as shown in
Fig. 4.7. The mass of the parcel, M = (—8p/g)é A, must be conserved following
the motion. Therefore,

SMg 30 SMg 30
d=———=|——)|——)=Const x g| ——
dp op 860 op

as both § M and 66 are constants. Substituting into (4.11) to eliminate §4 and
taking the limit p — 0, we obtain

P=(+)) (—g%) = Const 4.12)

The quantity P [units: K kg~! m? s~!] is the isentropic coordinate form of Ertel’s
potential vorticity.? It is defined with a minus sign so that its value is normally
positive in the Northern Hemisphere.

According to (4.12), potential vorticity is conserved following the motion in
adiabatic frictionless flow. The term potential vorticity is used, as shown later,
in connection with several other mathematical expressions. In essence, however,

6 +386

— ~ q

= SP

Fig. 4.7 A cylindrical column of air moving adiabatically, conserving potential vorticity.

—8

3 Named for the German meteorologist Hans Ertel. A more general form of Ertel’s potential vorticity
is discussed, for example, in Gill (1982). Potential vorticity is often expressed in the potential vorticity
unit (PVU), where 1 PVU = 1070 K kg~ ! m? s—1.
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potential vorticity is always in some sense a measure of the ratio of the absolute vor-
ticity to the effective depth of the vortex. In (4.12), for example, the effective depth
is just the differential distance between potential temperature surfaces measured
in pressure units (—d6/9p).

In a homogeneous incompressible fluid, potential vorticity conservation takes a
somewhat simpler form. In this case, because density is a constant, the horizontal
area must be inversely proportional to the depth, /4, of the fluid parcel:

84 = M(ph)~' = Const/h
where / is the depth of the parcel. Substituting to eliminate § 4 in (4.11) yields
&+ f)/h=n/h = Const (4.13)

where ¢ is here evaluated at constant height.

If the depth, /4, is constant, (4.13) states that absolute vorticity is conserved
following the motion. Conservation of absolute vorticity following the motion
provides a strong constraint on the flow, as can be shown by a simple example.
Suppose that at a certain point (xg, }p) the flow is in the zonal direction and the
relative vorticity vanishes so that n(xg, o) = fo. Then, if absolute vorticity is
conserved, the motion at any point along a parcel trajectory that passes through
(x0, yo) must satisfy £ + f = fy. Because f increases toward the north, trajectories
that curve northward in the downstream direction must have § = fo — f < 0,
whereas trajectories that curve southward must have § = fy — f > 0. However,
as indicated in Fig. 4.8, if the flow is westerly, northward curvature downstream
implies £ > 0, whereas southward curvature implies { < 0. Thus, westerly zonal
flow must remain purely zonal if absolute vorticity is to be conserved following
the motion. The easterly flow case, also shown in Fig. 4.8, is just the opposite.
Northward and southward curvatures are associated with negative and positive
relative vorticities, respectively. Hence, an easterly current can curve either to the
north or to the south and still conserve absolute vorticity.

When the depth of the fluid changes following the motion, it is potential vorticity
that is conserved. However, again (4.13) indicates that westerly and easterly flows
behave differently. The situation for westerly flow impinging on an infinitely long

y

>0 t<o
WESTERLY FLOW EASTERLY FLOW
m NOT CONSERVED x n CONSERVED

£<0 "\ ,/§>o

Fig. 4.8 Absolute vorticity conservation for curved flow trajectories.
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Fig. 4.9 Schematic view of westerly flow over a topographic barrier: (a) the depth of a fluid column
as a function of x and (b) the trajectory of a parcel in the (x, y) plane.

topographic barrier is shown in Fig. 4.9. In Fig. 4.9a, a vertical cross section of
the flow is shown. We suppose that upstream of the mountain barrier the flow is
a uniform zonal flow so that £ = 0. If the flow is adiabatic, each column of air
of depth / confined between the potential temperature surfaces 6y and 6y + 56
remains between those surfaces as it crosses the barrier. For this reason, a potential
temperature surface 6y near the ground must approximately follow the ground
contours. A potential temperature surface 6y + 86 several kilometers above the
ground will also be deflected vertically. However, due to pressure forces produced
by interaction of the flow with the topographic barrier, the vertical displacement
at upper levels is spread horizontally; it extends upstream and downstream of the
barrier and has smaller amplitude in the vertical than the displacement near the
ground (see Figs. 4.9 and 4.10).

As a result of the vertical displacement of the upper level isentropes, there
is a vertical stretching of air columns upstream of the topographic barrier. (For
motions of large horizontal scale, the upstream stretching is quite small.) This
stretching causes /4 to increase, and hence from (4.13) ¢ must become positive
in order to conserve potential vorticity. Thus, an air column turns cyclonically
as it approaches the mountain barrier. This cyclonic curvature causes a poleward
drift so that f also increases, which reduces the change in ¢ required for potential
vorticity conservation. As the column begins to cross the barrier, its vertical extent
decreases; the relative vorticity must then become negative. Thus, the air column
will acquire anticyclonic vorticity and move southward as shown in the x, y plane
profile in Fig. 4.9b. When the air column has passed over the barrier and returned
to its original depth, it will be south of its original latitude so that f will be smaller
and the relative vorticity must be positive. Thus, the trajectory must have cyclonic
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Fig. 4.10 As in Fig. 4.9, but for easterly flow.

curvature and the column will be deflected poleward. When the parcel returns to its
original latitude, it will still have a poleward velocity component and will continue
poleward gradually, acquiring anticyclonic curvature until its direction is again
reversed. The parcel will then move downstream, conserving potential vorticity by
following a wave-like trajectory in the horizontal plane. Therefore, steady westerly
flow over a large-scale ridge will result in a cyclonic flow pattern immediately to
the east of the barrier (the lee side trough) followed by an alternating series of
ridges and troughs downstream.

The situation for easterly flow impinging on a mountain barrier is quite different.
As indicated schematically in Fig. 4.10b, upstream stretching leads to a cyclonic
turning of the flow, as in the westerly case. For easterly flow this cyclonic turning
creates an equatorward component of motion. As the column moves westward
and equatorward over the barrier, its depth contracts and its absolute vorticity
must then decrease so that potential vorticity can be conserved. This reduction in
absolute vorticity arises both from development of anticyclonic relative vorticity
and from a decrease in f due to the equatorward motion. The anticyclonic relative
vorticity gradually turns the column so that when it reaches the top of the barrier
it is headed westward. As it continues westward down the barrier, conserving
potential vorticity, the process is simply reversed with the result that some distance
downstream from the mountain barrier the air column again is moving westward
at its original latitude. Thus, the dependence of the Coriolis parameter on latitude
creates a dramatic difference between westerly and easterly flow over large-scale
topographic barriers. In the case of a westerly wind, the barrier generates a wave-
like disturbance in the streamlines that extends far downstream. However, in the
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case of an easterly wind, the disturbance in the streamlines damps out away from
the barrier.

The situation described above, which assumes that the mountain barrier is
infinitely long in the meridional direction, is highly idealized. In reality, because
static stability tends to suppress vertical motions, large-scale flows in statically
stable environments are blocked by topographic barriers and are forced to flow
around mountains rather than over them. However, whether fluid columns go over
or around topographic barriers, the potential vorticity conservation constraint still
must be satisfied.

The Rossby potential vorticity conservation law, (4.13), indicates that in a
barotropic fluid, a change in the depth is dynamically analogous to a change in the
Coriolis parameter. This can be demonstrated easily in a rotating cylindrical vessel
filled with water. For solid-body rotation the equilibrium shape of the free sur-
face, determined by a balance between the radial pressure gradient and centrifugal
forces, is parabolic. Thus, as shown in Fig. 4.11, if a column of fluid moves radially
outward, it must stretch vertically. According to (4.13), the relative vorticity must
then increase to keep the ratio (¢ + f)/ & constant. The same result would apply if a
column of fluid on a rotating sphere were moved equatorward without a change in
depth. In this case, £ would have to increase to offset the decrease of f. Therefore,
in a barotropic fluid, a decrease of depth with increasing latitude has the same
effect on the relative vorticity as the increase of the Coriolis force with latitude.

44 THE VORTICITY EQUATION

The previous section discussed the time evolution of the vertical component of
vorticity for the special case of adiabatic frictionless flow. This section uses the
equations of motion to derive an equation for the time rate of change of vorticity
without limiting the validity to adiabatic motion.
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4.4.1 Cartesian Coordinate Form

For motions of synoptic scale, the vorticity equation can be derived using the
approximate horizontal momentum equations (2.24) and (2.25). We differentiate
the zonal component equation with respect to y and the meridional component
equation with respect to x:

o (du ou ou ou 1dp

B T T I S 4.14
ay<at+“ax+vay+uﬁn v p8x> (“14)
a [dv e av . av n av +fu= 1dp 4.15)
——=+tu—+v— — ——— .
ax \ar " Yax TV, Tz 0y

Subtracting (4.14) from (4.15) and recalling that £ = dv/dx — du/dy, we obtain
the vorticity equation

% W2 8—5+wa—5+<z+f)<‘“)“ 3”)—

at  ox  dy 3 dy
dwdv  dw du df 1 (dpdp dpdp (4.16)
ax 0z 0y oz dy p2 \dx dy dyax '

Using the fact that the Coriolis parameter depends only on y so that Df/Dt =
v(df/dy), (4.16) may be rewritten in the form

D ou 8v
E@+ﬂ @+ﬂ< )

dy
ow 9 Jw 9 1 op 0 0p 0
dx 0z  dy az dx dy 8y ox

Equation (4.17) states that the rate of change of the absolute vorticity following
the motion is given by the sum of the three terms on the right, called the divergence
term, the tilting or twisting term, and the solenoidal term, respectively.

The concentration or dilution of vorticity by the divergence field [the first term
on the right in (4.17)] is the fluid analog of the change in angular velocity resulting
from a change in the moment of inertia of a solid body when angular momentum
is conserved. If the horizontal flow is divergent, the area enclosed by a chain
of fluid parcels will increase with time and if circulation is to be conserved, the
average absolute vorticity of the enclosed fluid must decrease (i.e., the vorticity
will be diluted). If, however, the flow is convergent, the area enclosed by a chain
of fluid parcels will decrease with time and the vorticity will be concentrated.
This mechanism for changing vorticity following the motion is very important in
synoptic-scale disturbances.

The second term on the right in (4.17) represents vertical vorticity generated by
the tilting of horizontally oriented components of vorticity into the vertical by a
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Fig. 4.12 Vorticity generation by the tilting of a horizontal vorticity vector (double arrow).

nonuniform vertical motion field. This mechanism is illustrated in Fig. 4.12, which
shows a region where the y component of velocity is increasing with height so
that there is a component of shear vorticity oriented in the negative x direction as
indicated by the double arrow. If at the same time there is a vertical motion field in
which w decreases with increasing x, advection by the vertical motion will tend
to tilt the vorticity vector initially oriented parallel to x so that it has a component
in the vertical. Thus, if dv/dz > 0 and dw/dx < O, there will be a generation of
positive vertical vorticity.

Finally, the third term on the right in (4.17) is just the microscopic equivalent
of the solenoidal term in the circulation theorem (4.5). To show this equivalence,
we may apply Stokes’ theorem to the solenoidal term to get

—%adpz—ygan-dlz—//Vx(an)-de
4

where 4 is the horizontal area bounded by the curve 1. Applying the vector identity
V x (¢V p) = Va x V p, the equation becomes

—%adp:—// (Va x Vp) ekdA
4

However, the solenoidal term in the vorticity equation can be written

_(___——>=—(V(xpr)-k

Thus, the solenoidal term in the vorticity equation is just the limit of the solenoidal
term in the circulation theorem divided by the area when the area goes to zero.
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4.4.2 The Vorticity Equation in Isobaric Coordinates

A somewhat simpler form of the vorticity equation arises when the motion is
referred to the isobaric coordinate system. This equation can be derived in vec-
tor form by operating on the momentum equation (3.2) with the vector operator
k « Vx, where V now indicates the horizontal gradient on a surface of constant
pressure. However, to facilitate this process it is desirable to first use the vector
identity

VeV
(V-V)V:V<T>+§ka (4.18)
where & = k ¢ (V x V), to rewrite (3.2) as

v VeV v
5=_V<T+<I>>—(;+f)k><v—w% (4.19)

We now apply the operator k « Vx to (4.19). Using the facts that for any scalar 4,
V x VA = 0 and for any vectors a, b,

Vx(@axb)=(Veb)a—(asV)b— (Vea)b+ (beV)a (4.20)

we can eliminate the first term on the right and simplify the second term so that
the resulting vorticity equation becomes

8_§ :-VoV(§+f)—wa£—(§+f)V°V+k‘ (a xVa)) 4.21)
at ap ap

Comparing (4.17) and (4.21), we see that in the isobaric system there is no vorticity
generation by pressure-density solenoids. This difference arises because in the
isobaric system, horizontal partial derivatives are computed with p held constant
so that the vertical component of vorticity is & = (dv/dx — du/dy), whereas
in height coordinates it is ¢ = (dv/dx — du/dy),. In practice the difference
is generally unimportant because as shown in the next section, the solenoidal
term is usually sufficiently small so that it can be neglected for synoptic-scale
motions.

4.4.3 Scale Analysis of the Vorticity Equation

In Section 2.4 the equations of motion were simplified for synoptic-scale motions
by evaluating the order of magnitude of various terms. The same technique can
also be applied to the vorticity equation. Characteristic scales for the field variables
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based on typical observed magnitudes for synoptic-scale motions are chosen as
follows:

U~10ms™! horizontal scale

W ~1lcms™! vertical scale

L~ 10°m length scale

H~ 10*m depth scale

dp ~ 10hPa horizontal pressure scale

p~lkgm™3 mean density
Splp ~ 1072 fractional density fluctuation
LIU ~ 107 s time scale

fo~ 104571 Coriolis parameter

~ 107U m1g! “beta” parameter
P

Again we have chosen an advective time scale because the vorticity pattern, like
the pressure pattern, tends to move at a speed comparable to the horizontal wind
speed. Using these scales to evaluate the magnitude of the terms in (4.16), we first

note that

§=@_8_u <Y ~ 107371

ax dy "~ L

where the inequality in this expression means less than or equal to in order of
magnitude. Thus,

¢/fo<U/(foL)=Ro~ 107"

For midlatitude synoptic-scale systems, the relative vorticity is often small (order
Rossby number) compared to the planetary vorticity. For such systems, { may be
neglected compared to f in the divergence term in the vorticity equation

du dv du  0v
e+ (Gr5) = (5 5)
This approximation does not apply near the center of intense cyclonic storms.

In such systems |/ f| ~ 1, and the relative vorticity should be retained.
The magnitudes of the various terms in (4.16) can now be estimated as

8 28 L0 U g g
ac Vax dy L2

w2 YU o1 g2
82 HL
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d
v—f ~UB~ 10710572
dy

9 U
sy fo ~1077 572
ox ay L

dwin _dwdn) WU
ox dz  0Jy 0z HL

i Opdp _9pdp\ _ 800p . oni 2
axdy dyox sz

The inequality is used in the last three terms because in each case it is possible that
the two parts of the expression might partially cancel so that the actual magnitude
would be less than indicated. In fact, this must be the case for the divergence term
(the fourth in the list) because if 0u/dx and dv/dy were not nearly equal and oppo-
site, the divergence term would be an order of magnitude greater than any other
term and the equation could not be satisfied. Therefore, scale analysis of the vor-
ticity equation indicates that synoptic-scale motions must be quasi-nondivergent.
The divergence term will be small enough to be balanced by the vorticity advection

terms only if
ou L av
ax  Jy

so that the horizontal divergence must be small compared to the vorticity in
synoptic-scale systems. From the aforementioned scalings and the definition of
the Rossby number, we see that

G o) /e
G+ 55) /el

Thus the ratio of the horizontal divergence to the relative vorticity is the same
magnitude as the ratio of relative vorticity to planetary vorticity.

Retaining only the terms of order 10710 s=2 in the vorticity equation yields the
approximate form valid for synoptic-scale motions,

<106 -1

and

Dy + f) =_f<3_”+3_”) (4.222)

Dt dx  dy
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where
Dy, b ad

Do Max Ty

As mentioned earlier, (4.22a) is not accurate in intense cyclonic storms. For these
the relative vorticity should be retained in the divergence term:

DiE+ 1) _ u v
Dt =-¢+h <8x + By) (4-226)

Equation (4.22a) states that the change of absolute vorticity following the hori-
zontal motion on the synoptic scale is given approximately by the concentration
or dilution of planetary vorticity caused by the convergence or divergence of the
horizontal flow, respectively. In (4.22b), however, it is the concentration or dilu-
tion of absolute vorticity that leads to changes in absolute vorticity following the
motion.

The form of the vorticity equation given in (4.22b) also indicates why cyclonic
disturbances can be much more intense than anticyclones. For a fixed amplitude of
convergence, relative vorticity will increase, and the factor (¢ + f) becomes larger,
which leads to even higher rates of increase in the relative vorticity. For a fixed
rate of divergence, however, relative vorticity will decrease, but when { — — f,
the divergence term on the right approaches zero and the relative vorticity cannot
become more negative no matter how strong the divergence. (This difference in
the potential intensity of cyclones and anticyclones was discussed in Section 3.2.5
in connection with the gradient wind approximation.)

The approximate forms given in (4.22a) and (4.22b) do not remain valid, how-
ever, in the vicinity of atmospheric fronts. The horizontal scale of variation in
frontal zones is only ~100 km, and the vertical velocity scale is ~10 cm s~!. For
these scales, vertical advection, tilting, and solenoidal terms all may become as
large as the divergence term.

4.5 VORTICITY IN BAROTROPIC FLUIDS

A model that has proved useful for elucidating some aspects of the horizontal
structure of large-scale atmospheric motions is the barotropic model. In the most
general version of this model, the atmosphere is represented as a homogeneous
incompressible fluid of variable depth, A (x, y,t) = z» — z;, where z; and z;
are the heights of the upper and lower boundaries, respectively. In this model, a
special form of potential vorticity is conserved following the motion. A simpler
situation arises if the fluid depth is constant. In that case it is absolute vorticity that
is conserved following the motion.



4.5 VORTICITY IN BAROTROPIC FLUIDS 107

4.5.1 The Barotropic (Rossby) Potential Vorticity Equation

For a homogeneous incompressible fluid, the continuity equation (2.31) simplifies
to V « U = 0 or, in Cartesian coordinates,

8u+8v _ ow
ax  dy) dz

so that the vorticity equation (4.22b) may be written

Dy &+ f) dw
0 - C+0N (E) (4.23)

Section 3.4 showed that the thermal wind in a barotropic fluid vanishes so that
the geostrophic wind is independent of height. Letting the vorticity in (4.23) be
approximated by the geostrophic vorticity ¢, and the wind by the geostrophic wind
(ug, vg), we can integrate vertically from z; to z; to get

hDh(§g+f)

o = (¢ + f) [w(z2) —w ()] (4.24)

However, because w = Dz/Dt and h = h(x, y, t),

Dz, Dz _ Dyh

_ == _ 7 4.25
w (z22) —w(z1) D D Di (4.25)
Substituting from (4.25) into (4.24) we get
1 Dh(é—g'i‘f)_thh
(¢e+f) Dt h Di
or
Dyn(¢g+ f)  Dylnh
Dt Dt
which implies that
Dh Cg + f
— =) =0 4.26
Dt < h (4.26)

This is just the potential vorticity conservation theorem for a barotropic fluid,
which was first obtained by C. G. Rossby [see (4.13)]. The quantity conserved
following the motion in (4.26) is the Rossby potential vorticity.
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4.5.2 The Barotropic Vorticity Equation

If the flow is purely horizontal (w = 0), as is the case for barotropic flow in a
fluid of constant depth, the divergence term vanishes in (4.23) and we obtain the
barotropic vorticity equation

Dy (g + £)

=0 4.27
D 4.27)

which states that absolute vorticity is conserved following the horizontal motion.
More generally, absolute vorticity is conserved for any fluid layer in which the
divergence of the horizontal wind vanishes, without the requirement that the flow
be geostrophic. For horizontal motion that is nondivergent (du/dx + dv/dy = 0),
the flow field can be represented by a streamfunction ¥ (x, y) defined so that the
velocity components are given as 4 = —dy/dy, v = +9y¥/dx. The vorticity is
then given by

& =0v/0x — du/dy = 02y /0x> + 0%y /0)? = V2

Thus, the velocity field and the vorticity can both be represented in terms of the
variation of the single scalar field ¥ (x, y), and (4.27) can be written as a prognostic
equation for vorticity in the form:

) _ 2
SV =V -V (VY 4 ) (4.28)

where Vy, = k x V4 is a nondivergent horizontal wind. Equation (4.28) states
that the local tendency of relative vorticity is given by the advection of absolute
vorticity. This equation can be solved numerically to predict the evolution of the
streamfunction, and hence of the vorticity and wind fields (see Section 13.4).
Because the flow in the midtroposphere is often nearly nondivergent on the synoptic
scale, (4.28) provides a surprisingly good model for short-term forecasts of the
synoptic-scale 500-hPa flow field.

4.6 THE BAROCLINIC (ERTEL) POTENTIAL VORTICITY EQUATION

Section 4.3 used the circulation theorem and mass continuity to show that Ertel’s
potential vorticity, P = ({p + f)(—gd6/9dp), is conserved following the motion in
adiabatic flow. If diabatic heating or frictional torques are present, P is no longer
conserved. An equation governing the rate of change of P following the motion
in such circumstances can, however, be derived fairly simply starting from the
equations of motion in their isentropic coordinate form.
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4.6.1 Equations of Motion in Isentropic Coordinates

If the atmosphere is stably stratified so that potential temperature 6 is a mono-
tonically increasing function of height, & may be used as an independent vertical
coordinate. The vertical “velocity” in this coordinate system is just § = D6/ Dt.
Thus, adiabatic motions are two dimensional when viewed in an isentropic coordi-
nate frame. An infinitesimal control volume in isentropic coordinates with cross-
sectional area § 4 and vertical extent 56 has a mass

5 54 0
SM = pS A8z = 54 (——p) =22 (——p> 56 = 65480 (4.29)
g g

Here the “density” in (x, y, 0) space (i.e., as shown in Fig. 4.7 the quantity that
when multiplied by the “volume” element § 456 yields the mass element § M) is
defined as

o=—g lop/oo (4.30)

The horizontal momentum equation in isentropic coordinates may be obtained by
transforming the isobaric form (4.19) to yield

gw@<¥+w)+(ce+f)kxv=—é%+m “31)
where Vy is the gradient on an isentropic surface, {y = keVy x V is the isen-
tropic relative vorticity originally introduced in (4.11), and ¥ = ¢, T + ® is the
Montgomery streamfunction (see Problem 10 in Chapter 2). We have included a
frictional term F, on the right-hand side, along with the diabatic vertical advection
term. The continuity equation can be derived with the aid of (4.29) in a manner
analogous to that used for the isobaric system in Section 3.1.2. The result is

foled

9 .
ey +Vge (0V) = - (c6) 4.32)

The W and o fields are linked through the pressure field by the hydrostatic equation,
which in the isentropic system takes the form

W p\Rer T

where I1 is called the Exner function. Equations (4.30)—(4.33) form a closed set
for prediction of V, o, W, and p, provided that 6 and F, are known.
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4.6.2 The Potential Vorticity Equation

If wetakek « Vg x(4.31) and rearrange the resulting terms, we obtain the isentropic
vorticity equation:

~

D A%
— G+ N+ +NVeeV=KkeVyx |F, —0— (4.34)
Dt 90
where N
b _ 3 +Ve.V
Dt~ 3t 0

is the total derivative following the horizontal motion on an isentropic surface.
Noting that 0 ~290/dt = —do~' /3¢, we can rewrite (4.32) in the form

N A T TU I

Multiplying each term in (4.34) by o ~! and in (4.35) by (¢p + f) and adding, we
obtain the desired conservation law:

Dr P yvevp=L2 (06) + 0 'keVy x (F A (4.36)
—_— . = —— (o o . X — 00— .
Dt ot (Y o SPT)

where P = ({p + f)/o is the Ertel potential vorticity defined in (4.12). If the
diabatic and frictional terms on the right-hand side of (4.36) can be evaluated, it
is possible to determine the evolution of P following the horizontal motion on
an isentropic surface. When the diabatic and frictional terms are small, potential
vorticity is approximately conserved following the motion on isentropic surfaces.

Weather disturbances that have sharp gradients in dynamical fields, such as jets
and fronts, are associated with large anomalies in the Ertel potential vorticity. In
the upper troposphere such anomalies tend to be advected rapidly under nearly
adiabatic conditions. Thus, the potential vorticity anomaly patterns are conserved
materially on isentropic surfaces. This material conservation property makes poten-
tial vorticity anomalies particularly useful in identifying and tracing the evolution
of meteorological disturbances.

4.6.3 Integral Constraints on Isentropic Vorticity

The isentropic vorticity equation (4.34) can be written in the form

A

=—Vy[(Zo+ f)V] +k+ Vg x (Fr — 9@) 4.37)

0
ot
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Using the fact that any vector A satisfies the relationship
ke (Vg xA)=Vye (A xk)
we can rewrite (4.37) in the form

88%9 =—Vye [(;9 + f)V — (F, - 9%) X k} (4.38)
Equation (4.38) expresses the remarkable fact that isentropic vorticity can only be
changed by the divergence or convergence of the horizontal flux vector in brackets
on the right-hand side. The vorticity cannot be changed by vertical transfer across
the isentropes. Furthermore, integration of (4.38) over the area of an isentropic
surface and application of the divergence theorem (Appendix C.2) show that for
an isentrope that does not intersect the surface of the earth the global average
of g is constant. Furthermore, integration of &y over the sphere shows that the
global average ¢y is exactly zero. Vorticity on such an isentrope is neither created
nor destroyed; it is merely concentrated or diluted by horizontal fluxes along the
isentropes.

PROBLEMS

4.1. What is the circulation about a square of 1000 km on a side for an easterly
(i.e., westward flowing) wind that decreases in magnitude toward the north
at a rate of 10 m s™! per 500 km? What is the mean relative vorticity in the
square?

4.2. A cylindrical column of air at 30°N with radius 100 km expands to twice
its original radius. If the air is initially at rest, what is the mean tangential
velocity at the perimeter after expansion?

4.3. An air parcel at 30°N moves northward conserving absolute vorticity. If its
initial relative vorticity is 5 x 107> s~!, what is its relative vorticity upon
reaching 90°N?

4.4. An air column at 60°N with ¢ = 0 initially stretches from the surface to a
fixed tropopause at 10 km height. If the air column moves until it is over
a mountain barrier 2.5 km high at 45°N, what is its absolute vorticity and
relative vorticity as it passes the mountain top assuming that the flow satisfies
the barotropic potential vorticity equation?

4.5. Find the average vorticity within a cylindrical annulus of inner radius 200 km
and outer radius 400 km if the tangential velocity distribution is given by
V = A/r, where A = 10° m? s~! and r is in meters. What is the average
vorticity within the inner circle of radius 200 km?
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4.6.

4.7.

4.8.
4.9.

4.10.

4.11.

4.12.

4.13.

4 CIRCULATION AND VORTICITY

Show that the anomalous gradient wind cases discussed in Section 3.2.5
have negative absolute circulation in the Northern Hemisphere and hence
have negative average absolute vorticity.

Compute the rate of change of circulation about a square in the (x, y) plane
with corners at (0, 0), (0, L), (L, L), and (L, 0) if temperature increases
eastward at a rate of 1°C per 200 km and pressure increases northward at
a rate of 1 hPa per 200 km. Let L = 1000 km and the pressure at the point
(0, 0) be 1000 hPa.

Verify the identity (4.18) by expanding the vectors in Cartesian components.

Derive a formula for the dependence of depth on radius for an incompressible
fluid in solid-body rotation in a cylindrical tank with a flat bottom and free
surface at the upper boundary. Let H be the depth at the center of the tank,
Q the angular velocity of rotation of the tank, and a the radius of the tank.

By how much does the relative vorticity change for a column of fluid
in a rotating cylinder if the column is moved from the center of the tank
to a distance 50 cm from the center? The tank is rotating at the rate of
20 revolutions per minute, the depth of the fluid at the center is 10 cm, and
the fluid is initially in solid-body rotation.

A cyclonic vortex is in cyclostrophic balance with a tangential velocity
profile given by the expression V' = Vor/rg)" where V) is the tangential
velocity component at the distance 7y from the vortex center. Compute the
circulation about a streamline at radius 7, the vorticity at radius r, and the
pressure at radius 7. (Let pg be the pressure at 7y and assume that density is
a constant.)

A westerly zonal flow at 45° is forced to rise adiabatically over a north—
south-oriented mountain barrier. Before striking the mountain, the westerly
wind increases linearly toward the south at a rate of 10 m s~! per 1000 km.
The crest of the mountain range is at 800 hPa and the tropopause, located
at 300 hPa, remains undisturbed. What is the initial relative vorticity of the
air? What is its relative vorticity when it reaches the crest if it is deflected
5° latitude toward the south during the forced ascent? If the current assumes
a uniform speed of 20 m g1 during its ascent to the crest, what is the radius
of curvature of the streamlines at the crest?

A cylindrical vessel of radius a and constant depth H rotating at an angular
velocity 2 about its vertical axis of symmetry is filled with a homoge-
neous, incompressible fluid that is initially at rest with respect to the vessel.
A volume of fluid V is then withdrawn through a point sink at the center of
the cylinder, thus creating a vortex. Neglecting friction, derive an expression
for the resulting relative azimuthal velocity as a function of radius (i.e., the
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4.14.

4.15.

4.16.

velocity in a coordinate system rotating with the tank). Assume that the
motion is independent of depth and that ¥ < mwa®H. Also compute the
relative vorticity and the relative circulation.

(a) How far must a zonal ring of air initially at rest with respect to the earth’s
surface at 60° latitude and 100-km height be displaced latitudinally in order
to acquire an easterly (east to west) component of 10 m s~! with respect
to the earth’s surface? (b) To what height must it be displaced vertically in
order to acquire the same velocity? Assume a frictionless atmosphere.

The horizontal motion within a cylindrical annulus with permeable walls of
inner radius 10 cm, outer radius 20 cm, and 10-cm depth is independent of
height and azimuth and is represented by the expressions u = 7 —0.2r, v =
40 + 2r, where u and v are the radial and tangential velocity components
in cm s~ 1, positive outward and counterclockwise, respectively, and r is
distance from the center of the annulus in centimeters. Assuming an incom-
pressible fluid, find

(a) the circulation about the annular ring,

(b) the average vorticity within the annular ring,

(c) the average divergence within the annular ring, and

(d) the average vertical velocity at the top of the annulus if it is zero at the
base.

Prove that, as stated below Eq. (4.38), the globally averaged isentropic vor-
ticity on an isentropic surface that does not intersect the ground must be
zero. Show that the same result holds for the isobaric vorticity on an iso-
baric surface.

MATLAB EXERCISES

M4.1. Section 4.5.2 showed that for nondivergent horizontal motion, the flow

field can be represented by a streamfunction ¥ (x, y), and the vorticity is
then given by ¢ = 82y/dx2 + 92y/8y*> = V>y. Thus, if the vorticity
is represented by a single sinusoidal wave distribution in both x and y,
the streamfunction has the same spatial distribution as the vorticity and
the opposite sign, as can be verified easily from the fact that the second
derivative of a sine is proportional to minus the same sine function. An
example is shown in the MATLAB script vorticity_1.m. However, when
the vorticity pattern is localized in space, the space scales of the stream-
function and vorticity are much different. This latter situation is illustrated
in the MATLAB script vorticity_demo.m, which shows the streamfunc-
tion corresponding to a point source of vorticity at (x,y) = (0, 0). For
this problem you must modify the code in vorticity_1.m by specifying



114

M4.2.
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¢ (x,y) = exp[—b (x? + »?)] where b is a constant. Run the model for
several values of b from b = 1 x 107*km™2 to 4 x 10~7 km~2. Show
in a table or line plot the dependence of the ratio of the horizontal scales
on which vorticity and the streamfunction decay to one-half of their max-
imum values as a function of the parameter b. Note that for geostrophic
motions (with constant Coriolis parameter), the streamfunction defined
here is proportional to geopotential height. What can you conclude from
this exercise about the information content of a 500-hPa height map versus
that of a map of the 500-hPa vorticity field?

The MATLAB scripts geowinds_1.m (to be used when the mapping tool-
box is available) and geowinds_2.m (to be used if no mapping toolbox is
available) contain contour plots showing the observed 500-hPa height and
horizontal wind fields for November 10, 1998 in the North American sec-
tor. Also shown is a color plot of the magnitude of the 500-hPa wind with
height contours superposed. Using centered difference formulas (see Sec-
tion 13.3.1), compute the geostrophic wind components, the magnitude of
the geostrophic wind, the relative vorticity, the vorticity of the geostrophic
wind, and the vorticity minus vorticity of the geostrophic wind. Following
the models of Figs. 1 and 2, superpose these fields on the maps of the
500-hPa height field. Explain the distribution and the sign of regions with
large differences between vorticity and geostrophic vorticity in terms of
the force balances that were studied in Chapter 3.

Suggested References

Williams and Elder, Fluid Physics for Oceanographers and Physicists, provides an introduction to
vorticity dynamics at an elementary level. This book also provides a good general introduction to
fluid dynamics.

Acheson, Elementary Fluid Dynamics, provides a good introduction to vorticity at a graduate level.

Hoskins et al. (1985) provide an advanced discussion of Ertel potential vorticity and its uses in diagnosis
and prediction of synoptic-scale disturbances.



CHAPTER 5

The Planetary Boundary Layer

The planetary boundary layer is that portion of the atmosphere in which the
flow field is strongly influenced directly by interaction with the surface of the
earth. Ultimately this interaction depends on molecular viscosity. It is, however,
only within a few millimeters of the surface, where vertical shears are very intense,
that molecular diffusion is comparable to other terms in the momentum equation.
Outside this viscous sublayer molecular diffusion is not important in the boundary
layer equations for the mean wind, although it is still important for small-scale tur-
bulent eddies. However, viscosity still has an important indirect role; it causes the
velocity to vanish at the surface. As a consequence of this no-slip boundary con-
dition, even a fairly weak wind will cause a large-velocity shear near the surface,
which continually leads to the development of turbulent eddies. These turbulent
motions have spatial and temporal variations at scales much smaller than those
resolved by the meteorological observing network. Such shear-induced eddies,
together with convective eddies caused by surface heating, are very effective in
transferring momentum to the surface and transferring heat (latent and sensible)
away from the surface at rates many orders of magnitude faster than can be done
by molecular processes. The depth of the planetary boundary layer produced by
this turbulent transport may range from as little as 30 m in conditions of large
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static stability to more than 3 km in highly convective conditions. For average
midlatitude conditions the planetary boundary layer extends through the lowest
kilometer of the atmosphere and thus contains about 10% of the mass of the
atmosphere.

The dynamical structure of the flow in the planetary boundary layer is not pro-
duced directly by viscosity. Rather, it is largely determined by the fact that the
atmospheric flow is turbulent. In the free atmosphere (i.e., the region above the
planetary boundary layer), this turbulence can be ignored in an approximate treat-
ment of synoptic-scale motions, except perhaps in the vicinity of jet streams, fronts,
and convective clouds. However, in the boundary layer the dynamical equations
of the previous chapters must be modified to properly represent the effects of
turbulence.

5.1 ATMOSPHERIC TURBULENCE

Turbulent flow contains irregular quasi-random motions spanning a continuous
spectrum of spatial and temporal scales. Such eddies cause nearby air parcels to
drift apart and thus mix properties such as momentum and potential temperature
across the boundary layer. Unlike the large-scale rotational flows discussed in
earlier chapters, which have depth scales that are small compared to their horizontal
scales, the turbulent eddies of concern in the planetary boundary layer tend to have
similar scales in the horizontal and vertical. The maximum eddy length scale is thus
limited by the boundary layer depth to be about 10* m. The minimum length scale
(1073 m) is that of the smallest eddies that can exist in the presence of diffusion
by molecular friction.

Even when observations are taken with very short temporal and spatial separa-
tions, a turbulent flow will always have scales that are unresolvable because they
have frequencies greater than the observation frequency and spatial scales smaller
than the scale of separation of the observations. Outside the boundary layer, in the
free atmosphere, the problem of unresolved scales of motion is usually not a seri-
ous one for the diagnosis or forecasting of synoptic and larger scale circulations
(although it is crucial for the mesoscale circulations discussed in Chapter 9). The
eddies that contain the bulk of the energy in the free atmosphere are resolved by
the synoptic network. However, in the boundary layer, unresolved turbulent eddies
are of critical importance. Through their transport of heat and moisture away from
the surface they maintain the surface energy balance, and through their transport of
momentum to the surface they maintain the momentum balance. The latter process
dramatically alters the momentum balance of the large-scale flow in the bound-
ary layer so that geostrophic balance is no longer an adequate approximation to
the large-scale wind field. It is this aspect of boundary layer dynamics that is of
primary importance for dynamical meteorology.



5.1 ATMOSPHERIC TURBULENCE 117

5.1.1 The Boussinesq Approximation

The basic state (standard atmosphere) density varies across the lowest kilometer of
the atmosphere by only about 10%, and the fluctuating component of density devi-
ates from the basic state by only a few percentage points. These circumstances
might suggest that boundary layer dynamics could be modeled by setting den-
sity constant and using the theory of homogeneous incompressible fluids. This is,
however, generally not the case. Density fluctuations cannot be totally neglected
because they are essential for representing the buoyancy force (see the discussion
in Section 2.7.3).

Nevertheless, it is still possible to make some important simplifications in
dynamical equations for application in the boundary layer. The Boussinesq approx-
imation is a form of the dynamical equations that is valid for this situation. In this
approximation, density is replaced by a constant mean value, pg, everywhere except
in the buoyancy term in the vertical momentum equation. The horizontal momen-
tum equations (2.24) and (2.25) can then be expressed in Cartesian coordinates as

Du 1 ap

—_— = F 5.1

Dr poax+fv+ rx (5.1
and

Dv 1 dp

e F, 5.2

Dt 00 3y Su+ Fry (5.2)

while, with the aid of (2.28) and (2.51) the vertical momentum equation becomes

Do _ L% ,,% ik (53)
Dt po 0z g@() = ’

Here, as in Section 2.7.3, € designates the departure of potential temperature from
its basic state value 6y(z).' Thus, the total potential temperature field is given by
Oror = 0(x, y, z,t) +6p(z), and the adiabatic thermodynamic energy equation has
the form of (2.54):

Do d6y

= = 4
D Yz (54)

Finally, the continuity equation (2.34) under the Boussinesq approximation is

ou dv OJw
— 4+ — 4+ —=0 55
ax + ay + dz (5-3)

! The reason that we have not used the notation 6’ to designate the fluctuating part of the potential
temperature field will become apparent in Section 5.1.2.
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5.1.2 Reynolds Averaging

In a turbulent fluid, a field variable such as velocity measured at a point generally
fluctuates rapidly in time as eddies of various scales pass the point. In order that
measurements be truly representative of the large-scale flow, it is necessary to
average the flow over an interval of time long enough to average out small-scale
eddy fluctuations, but still short enough to preserve the trends in the large-scale
flow field. To do this we assume that the field variables can be separated into
slowly varying mean fields and rapidly varying turbulent components. Following
the scheme introduced by Reynolds, we then assume that for any field variables,
w and 6, for example, the corresponding means are indicated by overbars and the
fluctuating components by primes. Thus, w = w+w’ and§ = §+6'. By definition,
the means of the fluctuating components vanish; the product of a deviation with a
mean also vanishes when the time average is applied. Thus,

wl=wo=0

where we have used the fact that a mean variable is constant over the period of
averaging. The average of the product of deviation components (called the covari-
ance) does not generally vanish. Thus, for example, if on average the turbulent
vertical velocity is upward where the potential temperature deviation is positive
and downward where it is negative, the product w’@’ is positive and the variables
are said to be correlated positively. These averaging rules imply that the average
of the product of two variables will be the product of the average of the means plus
the product of the average of the deviations:

wl = W+ w)@ + 0" =wo + w6’

Before applying the Reynolds decomposition to (5.1)—(5.4), it is convenient to
rewrite the total derivatives in each equation in flux form. For example, the term
on the left in (5.1) may be manipulated with the aid of the continuity equation (5.5)
and the chain rule of differentiation to yield

_ ou n du? n ouv n Juw (5.6)
At ax Ay dz '

Du  du ou ou ou (E)u v 8w>

Separating each dependent variable into mean and fluctuating parts, substituting
into (5.6), and averaging then yields

Du _ %, 2 (it + ') + ! (a5 + ') + ! (i +ww’)  (57)
_ = — \uu uu — \uv uv — \uUw uw .
Dt at  JOx ay dz
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Noting that the mean velocity fields satisfy the continuity equation (5.5), we can
rewrite (5.7), as

Du Diu 9 [— d f— 0 ——
2" T Ay —(uv —(u'w 5.8
Dt Dt+ax(“”>+ay(“>+az(”w> (5-8)
where o
D 9 3 9 9

EIEJr“ax 8y+ a0z

is the rate of change following the mean motion.
The mean equations thus have the form

Dii 19p . |ouu duv  duw _
— == — 5.9
Dr = ppox 7 |:8x+8y+ az}r”‘ (59)
Db 1dp | aul N v’ N av'w’ L F (5.10)
—_—= ——— — fu — .
Dt po 0y dx ay 0z "
Dw  19p N 6 | ou'w L ) s 5.11)
Dt~ podz by ax ay 9z = ’
D6 doy | w0’ v dw'e’
et U 5.12
D Vdz |:3x+3y+82i| (5.12)
di AU oW
— 4 —4+—=0 5.13
dax + ay + daz ( )

The various covariance terms in square brackets in (5.9)—(5.12) represent turbu-
lent fluxes. For example, w’6’ is a vertical turbulent heat flux in kinematic form.
Similarly w's’ = u/w’ is a vertical turbulent flux of zonal momentum. For many
boundary layers the magnitudes of the turbulent flux divergence terms are of the
same order as the other terms in (5.9)—(5.12). In such cases, it is not possible to
neglect the turbulent flux terms even when only the mean flow is of direct interest.
Outside the boundary layer the turbulent fluxes are often sufficiently weak so that
the terms in square brackets in (5.9)—(5.12) can be neglected in the analysis of
large-scale flows. This assumption was implicitly made in Chapters 3 and 4.

The complete equations for the mean flow (5.9)—(5.13), unlike the equations for
the total flow (5.1)—(5.5), and the approximate equations of Chapters 3 and 4, are
not a closed set, as in addition to the five unknown mean variables %, v, w, 6, P,
there are unknown turbulent fluxes. To solve these equations, closure assump-
tions must be made to approximate the unknown fluxes in terms of the five
known mean state variables. Away from regions with horizontal inhomogeneities
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(e.g., shorelines, towns, forest edges), we can simplify by assuming that the tur-
bulent fluxes are horizontally homogeneous so that it is possible to neglect the
horizontal derivative terms in square brackets in comparison to the terms involving
vertical differentiation.

5.2 TURBULENT KINETIC ENERGY

Vortex stretching and twisting associated with turbulent eddies always tend to
cause turbulent energy to flow toward the smallest scales, where it is dissipated
by viscous diffusion. Thus, there must be continuing production of turbulence if
the turbulent kinetic energy is to remain statistically steady. The primary source
of boundary layer turbulence depends critically on the structure of the wind and
temperature profiles near the surface. If the lapse rate is unstable, boundary layer
turbulence is convectively generated. If it is stable, then instability associated with
wind shear must be responsible for generating turbulence in the boundary layer.
The comparative roles of these processes can best be understood by examining the
budget for turbulent kinetic energy.

To investigate the production of turbulence, we subtract the component mean
momentum equations (5.9)—(5.11) from the corresponding unaveraged equations
(5.1)—(5.3). We then multiply the results by ’, v’, w’, respectively, add the resulting
three equations, and average to obtain the turbulent kinetic energy equation. The
complete statement of this equation is quite complicated, but its essence can be
expressed symbolically as

D(TKE)

5 =MP+BPL+TR—¢ (5.14)

where TKE = (u'? 4 v"? + w'2) /2 is the turbulent kinetic energy per unit mass,
MP is the mechanical production, BPL is the buoyant production or loss, TR des-
ignates redistribution by transport and pressure forces, and ¢ designates frictional
dissipation. ¢ is always positive, reflecting the dissipation of the smallest scales of
turbulence by molecular viscosity.

The buoyancy term in (5.14) represents a conversion of energy between mean
flow potential energy and turbulent kinetic energy. It is positive for motions that
lower the center of mass of the atmosphere and negative for motions that raise it.
The buoyancy term has the form?

BPL=w'0'(g/6)

Zn practice, buoyancy in the boundary layer is modified by the presence of water vapor, which has a
density significantly lower than that of dry air. The potential temperature should be replaced by virtual
potential temperature in (5.14) in order to include this effect. (See, for example, Curry and Webster,
1999, p.67.)
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760

Fig. 5.1 Correlation between vertical velocity and potential temperature perturbations for upward or
downward parcel displacements when the mean potential temperature 6 (z) decreases with
height.

Positive buoyancy production occurs when there is heating at the surface so that
an unstable temperature lapse rate (see Section 2.7.2) develops near the ground
and spontaneous convective overturning can occur. As shown in the schematic of
Fig. 5.1, convective eddies have positively correlated vertical velocity and potential
temperature fluctuations and hence provide a source of turbulent kinetic energy and
positive heat flux. This is the dominant source in a convectively unstable boundary
layer. For a statically stable atmosphere, BPL is negative, which tends to reduce
or eliminate turbulence.

For both statically stable and unstable boundary layers, turbulence can be gen-
erated mechanically by dynamical instability due to wind shear. This process is
represented by the mechanical production term in (5.14), which represents a con-
version of energy between mean flow and turbulent fluctuations. This term is
proportional to the shear in the mean flow and has the form

Mp = v T ? (5.15)
dz 0z
MP is positive when the momentum flux is directed down the gradient of the
mean momentum. Thus, if the mean vertical shear near the surface is westerly
(Ou /82 > 0), then w'w’ < 0 for MP > 0.
In a statically stable layer, turbulence can exist only if mechanical production is
large enough to overcome the damping effects of stability and viscous dissipation.



122 5 THE PLANETARY BOUNDARY LAYER

This condition is measured by a quantity called the flux Richardson number. It is
defined as
Rf=—-BPL/MP

If the boundary layer is statically unstable, then Rf < 0 and turbulence is sus-
tained by convection. For stable conditions, Rf will be greater than zero. Observa-
tions suggest that only when Rf is less than about 0.25 (i.e., mechanical production
exceeds buoyancy damping by a factor of 4) is the mechanical production intense
enough to sustain turbulence in a stable layer. Since MP depends on the shear, it
always becomes large close enough to the surface. However, as the static stability
increases, the depth of the layer in which there is net production of turbulence
shrinks. Thus, when there is a strong temperature inversion, such as produced by
nocturnal radiative cooling, the boundary layer depth may be only a few decame-
ters, and vertical mixing is strongly suppressed.

5.3 PLANETARY BOUNDARY LAYER MOMENTUM EQUATIONS

For the special case of horizontally homogeneous turbulence above the viscous
sublayer, molecular viscosity and horizontal turbulent momentum flux divergence
terms can be neglected. The mean flow horizontal momentum equations (5.9) and
(5.10) then become

Di 19p .. duw
ou__ P - 5.16
Dt po 0x + 0z ( )
D7 1dp dv'w’

L (5.17)

— u
Dt po 0y a0z

In general, (5.16) and (5.17) can only be solved for # and v if the vertical distribution
of the turbulent momentum flux is known. Because this depends on the structure
of the turbulence, no general solution is possible. Rather, a number of approximate
semiempirical methods are used.

For midlatitude synoptic-scale motions, Section 2.4 showed that to a first approx-
imation the inertial acceleration terms [the terms on the left in (5.16) and (5.17)]
could be neglected compared to the Coriolis force and pressure gradient force
terms. Outside the boundary layer, the resulting approximation was then simply
geostrophic balance. In the boundary layer the inertial terms are still small com-
pared to the Coriolis force and pressure gradient force terms, but the turbulent
flux terms must be included. Thus, to a first approximation, planetary boundary
layer equations express a three-way balance among the Coriolis force, the pressure
gradient force, and the turbulent momentum flux divergence:

ou'w’

0z

[ (5 —5g) — =0 (5.18)
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— i —i.) —
o 0z

where (2.23) is used to express the pressure gradient force in terms of geostrophic
velocity.

=0 (5.19)

5.3.1 Well-Mixed Boundary Layer

If a convective boundary layer is topped by a stable layer, turbulent mixing can
lead to formation of a well-mixed layer. Such boundary layers occur commonly
over land during the day when surface heating is strong and over oceans when the
air near the sea surface is colder than the surface water temperature. The tropical
oceans typically have boundary layers of this type.

In a well-mixed boundary layer, the wind speed and potential temperature are
nearly independent of height, as shown schematically in Fig. 5.2, and to a first
approximation it is possible to treat the layer as a slab in which the velocity and
potential temperature profiles are constant with height and turbulent fluxes vary
linearly with height. For simplicity, we assume that the turbulence vanishes at the
top of the boundary layer. Observations indicate that the surface momentum flux
can be represented by a bulk aerodynamic formula®

(W) =-caV]a, and (V') =-Ca[V]D
s s

A Free
atmosphere

Entrainment
zone

Mixed
layer

Surface layer

cl

L)

Fig. 5.2 Mean potential temperature, 6, and mean zonal wind, U, profiles in a well-mixed boundary
layer. Adapted from Stull (1988).

3 The turbulent momentum flux is often represented in terms of an “eddy stress” by defining, for
example, ey = pou’w’. We prefer to avoid this terminology to eliminate possible confusion with
molecular friction.




124 5 THE PLANETARY BOUNDARY LAYER

where Cy is a nondimensional drag coefficient, |V| = (ﬁ2 + 1212 and the
subscript s denotes surface values (referred to the standard anemometer height).
Observations show that Cy is of order 1.5 x 1073 over oceans, but may be several
times as large over rough ground.

The approximate planetary boundary layer equations (5.18) and (5.19) can then
be integrated from the surface to the top of the boundary layer at z = / to give

f (=) == (ww) /n=calV|i/n (5.20)

—f (@ —iig) == (V') /h=CalV]D/n (5.21)

Without loss of generality we can choose axes such that v, = 0. Then (5.20) and
(5.21) can be rewritten as

b=k [V|i;  a=ig— ks V|5 (5.22)

where k;, = Cy / (fh). Thus, in the mixed layer the wind speed is less than
the geostrophic speed and there is a component of motion directed toward lower
pressure (i.e., to the left of the geostrophic wind in the Northern Hemisphere and
to the right in the Southern Hemisphere) whose magnitude depends on k. For
example, if ig = 10m s~ and kg = 0.05 m™ ' s, then & = 8.28 ms™!, v = 3.77
ms~!, and W| =9.10 m s~ at all heights within this idealized slab mixed layer.

It is the work done by the flow toward lower pressure that balances the frictional
dissipation at the surface. Because boundary layer turbulence tends to reduce wind
speeds, the turbulent momentum flux terms are often referred to as boundary layer
friction. It should be kept in mind, however, that the forces involved are due to
turbulence, not molecular viscosity.

Qualitatively, the cross isobar flow in the boundary layer can be understood as
a direct result of the three-way balance among the pressure gradient force, the
Coriolis force, and turbulent drag:

kav_—iV‘——|V|V (5.23)

This balance is illustrated in Fig. 5.3. Because the Coriolis force is always normal to
the velocity and the turbulent drag is a retarding force, their sum can exactly balance
the pressure gradient force only if the wind is directed toward lower pressure.
Furthermore, it is easy to see that as the turbulent drag becomes increasingly
dominant, the cross isobar angle must increase.

5.3.2 The Flux-Gradient Theory

In neutrally or stably stratified boundary layers, the wind speed and direction vary
significantly with height. The simple slab model is no longer appropriate; some
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Fig. 5.3 Balance of forces in the well-mixed planetary boundary layer: P designates the pressure
gradient force, Co the Coriolis force, and Fr the turbulent drag.

means is needed to determine the vertical dependence of the turbulent momentum
flux divergence in terms of mean variables in order to obtain closed equations for
the boundary layer variables. The traditional approach to this closure problem is
to assume that turbulent eddies act in a manner analogous to molecular diffusion
so that the flux of a given field is proportional to the local gradient of the mean. In
this case the turbulent flux terms in (5.18) and (5.19) are written as

Tapy/ — __ 817{ . Tapy/ — __ aﬂ
ww =—-Kyu | — ) v =—-Ky | —
0z dz

and the potential temperature flux can be written as

— 90
=i (1)
0z

where K, (m?s~!) is the eddy viscosity coefficient and Kjis the eddy diffusivity
of heat. This closure scheme is often referred to as K theory.

The K theory has many limitations. Unlike the molecular viscosity coefficient,
eddy viscosities depend on the flow rather than the physical properties of the
fluid and must be determined empirically for each situation. The simplest models
have assumed that the eddy exchange coefficient is constant throughout the flow.
This approximation may be adequate for estimating the small-scale diffusion of
passive tracers in the free atmosphere. However, it is a very poor approximation
in the boundary layer where the scales and intensities of typical turbulent eddies
are strongly dependent on the distance to the surface as well as the static stability.
Furthermore, in many cases the most energetic eddies have dimensions comparable
to the boundary layer depth, and neither the momentum flux nor the heat flux is
proportional to the local gradient of the mean. For example, in much of the mixed
layer, heat fluxes are positive even though the mean stratification may be very close
to neutral.
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5.3.3 The Mixing Length Hypothesis

The simplest approach to determining a suitable model for the eddy diffusion coef-
ficient in the boundary layer is based on the mixing length hypothesis introduced
by the famous fluid dynamicist L. Prandtl. This hypothesis assumes that a parcel
of fluid displaced vertically will carry the mean properties of its original level for
a characteristic distance &” and then will mix with its surroundings just as an aver-
age molecule travels a mean free path before colliding and exchanging momentum
with another molecule. By further analogy to the molecular mechanism, this dis-
placement is postulated to create a turbulent fluctuation whose magnitude depends
on &’ and the gradient of the mean property. For example,
/ / 89 . !’ /! 817{ o / 81—)
o= sBz’u_ éaz’v_ EBZ
where it must be understood that §” > 0 for upward parcel displacementand §’ < 0
for downward parcel displacement. For a conservative property, such as potential
temperature, this hypothesis is reasonable provided that the eddy scales are small
compared to the mean flow scale or that the mean gradient is constant with height.
However, the hypothesis is less justified in the case of velocity, as pressure gradient
forces may cause substantial changes in the velocity during an eddy displacement.
Nevertheless, if we use the mixing length hypothesis, the vertical turbulent flux
of zonal momentum can be written as

—u'w = Tsfa—“ (5.24)
9z
with analogous expressions for the momentum flux in the meridional direction
and the potential temperature flux. In order to estimate w’ in terms of mean fields,
we assume that the vertical stability of the atmosphere is nearly neutral so that
buoyancy effects are small. The horizontal scale of the eddies should then be
comparable to the vertical scale so that |w’| ~ [V’| and we can set

v

/ /
w N —_—
§ 0z

where V' and V designate the turbulent and mean parts of the horizontal velocity
field, respectively. Here the absolute value of the mean velocity gradient is needed
because if &’ > 0, then w > 0 (i.e., upward parcel displacements are associated
with upward eddy velocities). Thus the momentum flux can be written

V| i di

— =Ku— 5.25
0z "oz ( )
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where the eddy viscosity is now defined as K, = &2 |9V /dz| = €2 |3V /az]|
and the mixing length,
{= (E_’z)l/z

is the root mean square parcel displacement, which is a measure of average eddy
size. This result suggests that larger eddies and greater shears induce greater tur-
bulent mixing.

5.3.4 The Ekman Layer

If the flux-gradient approximation is used to represent the turbulent momentum
flux divergence terms in (5.18) and (5.19), and the value of K, is taken to be
constant, we obtain the equations of the classical Ekman layer:

0%u

Kma? + f(v—1vg) =0 (5.26)
92

ng —f(u—ug)=0 (5.27)

where we have omitted the overbars because all fields are Reynolds averaged.
The Ekman layer equations (5.26) and (5.27) can be solved to determine the
height dependence of the departure of the wind field in the boundary layer from
geostrophic balance. In order to keep the analysis as simple as possible, we assume
that these equations apply throughout the depth of the boundary layer. The bound-
ary conditions on u and v then require that both horizontal velocity components
vanish at the ground and approach their geostrophic values far from the ground:

u=0,v=0atz=0 (5.28)
U— Ug,V—> VgaSZ—> 00

To solve (5.26) and (5.27), we combine them into a single equation by first mul-
tiplying (5.27) by i = (—1)!/? and then adding the result to (5.26) to obtain a
second-order equation in the complex velocity, (u + iv):

82 (u + iv)

Kon 922

—if(u—l—iv):—if(ug—}—ivg) (5.29)

For simplicity, we assume that the geostrophic wind is independent of height and
that the flow is oriented so that the geostrophic wind is in the zonal direction
(vg = 0). Then the general solution of (5.29) is

(4 + iv) = Aexp [(if/K,,,)l/2 z] + Bexp [— Gf] Km)'? z] +ug  (5.30)
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It can be shown that /i = (1 + i) /+/2. Using this relationship and applying the
boundary conditions of (5.28), we find that for the Northern Hemisphere ( f > 0),
A =0and B = —ug, Thus

u+iv=—ugexp [—y (1 +i)z] +ug

where y = (f/2Ku)"/>.
Applying the Euler formula exp(—if) = cos 6 — isin 6 and separating the real
from the imaginary part, we obtain for the Northern Hemisphere

U=ug (l — e YFcos yz) ,U=uge "Fsinyz (5.31)

This solution is the famous Ekman spiral named for the Swedish oceanographer
V. W. Ekman, who first derived an analogous solution for the surface wind drift
current in the ocean. The structure of the solution (5.31) is best illustrated by a
hodograph as shown in Fig. 5.4, where the zonal and meridional components of
the wind are plotted as functions of height. The heavy solid curve traced out on
Fig. 5.4 connects all the points corresponding to values of u and v in (5.31) for
values of y z increasing as one moves away from the origin along the spiral. Arrows
show the velocities for various values of yz marked at the arrow points. When
z = m/y, the wind is parallel to and nearly equal to the geostrophic value. It is
conventional to designate this level as the top of the Ekman layer and to define the
layer depth as De = /y.

Observations indicate that the wind approaches its geostrophic value at about
1 km above the surface. Letting De = 1 km and f = 10~* s!, the definition
of y implies that K,, ~ 5 m?s~!. Referring back to (5.25) we see that for a
characteristic boundary layer velocity shear of |§V/8z| ~ 5 x 1073 s~!, this value
of K, implies a mixing length of about 30 m, which is small compared to the depth
of the boundary layer, as it should be if the mixing length concept is to be useful.

Qualitatively the most striking feature of the Ekman layer solution is that, like
the mixed layer solution of Section 5.3.1, it has a boundary layer wind component

v/ ug

1 1

0.2 04 06 0.8 10
u/ug

Fig. 5.4 Hodograph of wind components in the Ekman spiral solution. Arrows show velocity vectors
for several levels in the Ekman layer, whereas the spiral curve traces out the velocity variation
as a function of height. Points labeled on the spiral show the values of yz, which is a
nondimensional measure of height.
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directed toward lower pressure. As in the mixed layer case, this is a direct result of
the three-way balance among the pressure gradient force, the Coriolis force, and
the turbulent drag.

The ideal Ekman layer discussed here is rarely, if ever, observed in the atmo-
spheric boundary layer. Partly this is because turbulent momentum fluxes are usu-
ally not simply proportional to the gradient of the mean momentum. However,
even if the flux—gradient model were correct, it still would not be proper to assume
a constant eddy viscosity coefficient, as in reality K, must vary rapidly with height
near the ground. Thus, the Ekman layer solution should not be carried all the way
to the surface.

5.3.5 The Surface Layer

Some of the inadequacies of the Ekman layer model can be overcome if we dis-
tinguish a surface layer from the remainder of the planetary boundary layer. The
surface layer, whose depth depends on stability, but is usually less than 10% of the
total boundary layer depth, is maintained entirely by vertical momentum transfer
by the turbulent eddies; it is not directly dependent on the Coriolis or pressure gra-
dient forces. Analysis is facilitated by supposing that the wind close to the surface
is directed parallel to the x axis. The kinematic turbulent momentum flux can then
be expressed in terms of a friction velocity, u,, which is defined as*

= )

Measurements indicate that the magnitude of the surface momentum flux is of
the order 0.1 m? s~2. Thus the friction velocity is typically of the order 0.3 m s~ .

According to the scale analysis in Section 2.4, the Coriolis and pressure gradient
force terms in (5.16) have magnitudes of about 1073 m s~2 in midlatitudes. The
momentum flux divergence in the surface layer cannot exceed this magnitude or
it would be unbalanced. Thus, it is necessary that

()

6z

< 103 ms™2

For §z = 10 m, this implies that S(ui) < 1072 m? s72, so that the change in the

vertical momentum flux in the lowest 10 m of the atmosphere is less than 10% of
the surface flux. To a first approximation it is then permissible to assume that in
the lowest several meters of the atmosphere the turbulent flux remains constant at
its surface value, so that with the aid of (5.25)

oi _

"3z *

(5.32)

4 Thus the surface eddy stress (see footnote 3) is equal to pou%.
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where we have parameterized the surface momentum flux in terms of the eddy
viscosity coefficient. In applying K, in the Ekman layer solution, we assumed a
constant value throughout the boundary layer. Near the surface, however, the verti-
cal eddy scale is limited by the distance to the surface. Thus, a logical choice for the
mixing length is £ = kz where & is a constant. In that case K,, = (kz)> Iaﬁ /E)z |
Substituting this expression into (5.32) and taking the square root of the result
gives

ou /82 = uy/(kz) (5.33)

Integrating with respect to z yields the logarithmic wind profile
u= (u* /k) In (z/zo) (5.34)

where zg, the roughness length, is a constant of integration chosen so that # = 0
at z = zg. The constant & in (5.34) is a universal constant called von Karman’s
constant, which has an experimentally determined value of £ ~ 0.4. The roughness
length zy varies widely depending on the physical characteristics of the surface.
For grassy fields, typical values are in the range of 1—4 cm. Although a number of
assumptions are required in the derivation of (5.34), many experimental programs
have shown that the logarithmic profile provides a generally satisfactory fit to
observed wind profiles in the surface layer.

5.3.6 The Modified Ekman Layer

As pointed out earlier, the Ekman layer solution is not applicable in the surface
layer. A more satisfactory representation for the planetary boundary layer can be
obtained by combining the logarithmic surface layer profile with the Ekman spiral.
In this approach the eddy viscosity coefficient is again treated as a constant, but
(5.29) is applied only to the region above the surface layer and the velocity and
shear at the bottom of the Ekman layer are matched to those at the top of the
surface layer. The resulting modified Ekman spiral provides a somewhat better fit
to observations than the classical Ekman spiral. However, observed winds in the
planetary boundary layer generally deviate substantially from the spiral pattern.
Both transience and baroclinic effects (i.e., vertical shear of the geostrophic wind in
the boundary layer) may cause deviations from the Ekman solution. However, even
in steady-state barotropic situations with near neutral static stability, the Ekman
spiral is seldom observed.

It turns out that the Ekman layer wind profile is generally unstable for a neutrally
buoyant atmosphere. The circulations that develop as a result of this instability have
horizontal and vertical scales comparable to the depth of the boundary layer. Thus,
itis not possible to parameterize them by a simple flux—gradient relationship. How-
ever, these circulations do in general transport considerable momentum vertically.
The net result is usually to decrease the angle between the boundary layer wind
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u (ms™)

Fig. 5.5 Mean wind hodograph for Jacksonville, Florida (= 30° N), April 4, 1968 (solid line) com-
pared with the Ekman spiral (dashed line) and the modified Ekman spiral (dash-dot line)
computed with De = 1200 m. Heights are shown in meters. (Adapted from Brown, 1970.
Reproduced with permission of the American Meteorological Society.)

and the geostrophic wind from that characteristic of the Ekman spiral. A typical
observed wind hodograph is shown in Fig. 5.5. Although the detailed structure is
rather different from the Ekman spiral, the vertically integrated horizontal mass
transport in the boundary layer is still directed toward lower pressure. As shown
in the next section, this fact is of primary importance for synoptic and larger scale
motions.

5.4 SECONDARY CIRCULATIONS AND SPIN DOWN

Both the mixed-layer solution (5.22) and the Ekman spiral solution (5.31) indicate
that in the planetary boundary layer the horizontal wind has a component directed
toward lower pressure. As suggested by Fig. 5.6, this implies mass convergence in
a cyclonic circulation and mass divergence in an anticyclonic circulation, which
by mass continuity requires vertical motion out of and into the boundary layer,
respectively. In order to estimate the magnitude of this induced vertical motion,
we note that if v, = 0 the cross isobaric mass transport per unit area at any level
in the boundary layer is given by pgv. The net mass transport for a column of unit
width extending vertically through the entire layer is simply the vertical integral
of pov. For the mixed layer, this integral is simply pov/i(kg m~! s~1), where / is
the layer depth. For the Ekman spiral, it is given by

De De
M = / povdz = / pougexp(—mz/De)sin(wz/De)dz (5.35)
0 0

where De = 7/y is the Ekman layer depth defined in Section 5.3.4.
Integrating the mean continuity equation (5.13) through the depth of the bound-

ary layer gives
De rau  dv
w(De) = —/ (8_ + —> dz (5.36)
0 x 0y
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e

Fig. 5.6 Schematic surface wind pattern (arrows) associated with high- and low-pressure centers in
the Northern Hemisphere. Isobars are shown by thin lines, and L and H designate high- and
low-pressure centers, respectively. After Stull (1988).

where we have assumed that w(0) = 0. Assuming again that v, = 0 so that u is
independent of x, we find after substituting from (5.31) into (5.36) and comparing
with (5.35) that the mass transport at the top of the Ekman layer is given by

pow(De) = —— (5.37)

Thus, the mass flux out of the boundary layer is equal to the convergence of the

cross isobar mass transport in the layer. Noting that —du,/0y = &g is just the

geostrophic vorticity in this case, we find after integrating (5.35) and substituting
K

into (5.37) that >
1 1/2 f
w<De>=§g(5)=¢gﬁ (m) 39

where we have neglected the variation of density with height in the boundary layer
and have assumed that 1 + e™™ & 1. Hence, we obtain the important result that the
vertical velocity at the top of the boundary layer is proportional to the geostrophic
vorticity. In this way the effect of boundary layer fluxes is communicated directly
to the free atmosphere through a forced secondary circulation that usually dom-
inates over turbulent mixing. This process is often referred to as boundary layer
pumping. It only occurs in rotating fluids and is one of the fundamental distinctions
between rotating and nonrotating flow. For a typical synoptic-scale system with
Gg ™~ 1079571, £ ~ 107*s7!, and De ~ 1 km, the vertical velocity given by
(5.38) is of the order of a few millimeters per second.

An analogous boundary layer pumping is responsible for the decay of the circu-
lation created when a cup of tea is stirred. Away from the bottom and sides of the

5 The ratio of the Coriolis parameter to its absolute value is included so that the formula will be
valid in both hemispheres.
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cup there is an approximate balance between the radial pressure gradient and the
centrifugal force of the spinning fluid. However, near the bottom, viscosity slows
the motion and the centrifugal force is not sufficient to balance the radial pressure
gradient. (Note that the radial pressure gradient is independent of depth, as water
is an incompressible fluid.) Therefore, radial inflow takes place near the bottom
of the cup. Because of this inflow, the tea leaves always are observed to cluster
near the center at the bottom of the cup if the tea has been stirred. By continuity of
mass, the radial inflow in the bottom boundary layer requires upward motion and a
slow compensating outward radial flow throughout the remaining depth of the tea.
This slow outward radial flow approximately conserves angular momentum, and
by replacing high angular momentum fluid by low angular momentum fluid serves
to spin down the vorticity in the cup far more rapidly than could mere diffusion.
The characteristic time for the secondary circulation to spin down an atmo-
spheric vortex is illustrated most easily in the case of a barotropic atmosphere.
For synoptic-scale motions the barotropic vorticity equation (4.24) can be written

approximately as
D¢, du  dv Jw
Dt f<8x+8y> _faz (5:39)
where we have neglected ¢, compared to f in the divergence term and have also
neglected the latitudinal variation of f. Recalling that the geostrophic vorticity is
independent of height in a barotropic atmosphere, (5.39) can be integrated easily
from the top of the Ekman layer (z = De) to the tropopause (z = H) to give

% _ +f[w(H) — w(De)i|

(5.40)
Dt (H — De)

Substituting for w(De) from (5.38), assuming that w(H) = 0 and that H > De,
(5.40) may be written as

1/2

Deg _ _|SKn g (5.41)

Dt~ |2H?

This equation may be integrated in time to give

g (1) = &g (0)exp (—1/7e) (5.42)

where £¢(0) is the value of the geostrophic vorticity at time ¢ = 0, and 7, =
H12/(f K)|'/? is the time that it takes the vorticity to decrease to e~ ! of its
original value.

This e-folding time scale is referred to as the barotropic spin-down time. Taking
typical values of the parameters as follows: # = 10km, f = 10~ s~!, and
K, = 10 m? s~!, we find that 7, ~ 4 days. Thus, for midlatitude synoptic-scale
disturbances in a barotropic atmosphere, the characteristic spin-down time is a
few days. This decay time scale should be compared to the time scale for ordinary



134 5 THE PLANETARY BOUNDARY LAYER

viscous diffusion. For viscous diffusion the time scale can be estimated from scale
analysis of the diffusion equation

ou_ g, (5.43)
ar " '

If 7,4 is the diffusive time scale and H is a characteristic vertical scale for diffusion,
then from the diffusion equation

U [ta ~ KnU [ H?

so that t; ~ H> / K. For the above values of H and K,,, the diffusion time scale
is thus about 100 days. Hence, in the absence of convective clouds the spin-down
process is a far more effective mechanism for destroying vorticity in a rotating
atmosphere than eddy diffusion. Cumulonimbus convection can produce rapid
turbulent transports of heat and momentum through the entire depth of the tro-
posphere. These must be considered together with boundary layer pumping for
intense systems such as hurricanes.

Physically the spin-down process in the atmospheric case is similar to that
described for the teacup, except that in synoptic-scale systems it is primarily the
Coriolis force that balances the pressure gradient force away from the boundary,
not the centrifugal force. Again the role of the secondary circulation driven by
forces resulting from boundary layer drag is to provide a slow radial flow in the
interior that is superposed on the azimuthal circulation of the vortex above the
boundary layer. This secondary circulation is directed outward in a cyclone so that
the horizontal area enclosed by any chain of fluid particles gradually increases.
Since the circulation is conserved, the azimuthal velocity at any distance from the
vortex center must decrease in time or, from another point of view, the Coriolis
force for the outward-flowing fluid is directed clockwise, and this force thus exerts
a torque opposite to the direction of the circulation of the vortex. Fig. 5.7 shows a
qualitative sketch of the streamlines of this secondary flow.

It should now be obvious exactly what is meant by the term secondary circula-
tion. It is simply a circulation superposed on the primary circulation (in this case
the azimuthal circulation of the vortex) by the physical constraints of the system.
In the case of the boundary layer, viscosity is responsible for the presence of the
secondary circulation. However, other processes, such as temperature advection
and diabatic heating, may also lead to secondary circulations, as shown later.

The above discussion has concerned only the neutrally stratified barotropic
atmosphere. An analysis for the more realistic case of a stably stratified baroclinic
atmosphere is more complicated. However, qualitatively the effects of stratifica-
tion may be easily understood. The buoyancy force (see Section 2.7.3) will act
to suppress vertical motion, as air lifted vertically in a stable environment will be
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Fig. 5.7 Streamlines of the secondary circulation forced by frictional convergence in the planetary
boundary layer for a cyclonic vortex in a barotropic atmosphere. The circulation extends
throughout the full depth of the vortex.

denser than the environmental air. As a result the interior secondary circulation will
decrease with altitude at a rate proportional to the static stability. This vertically
varying secondary flow, shown in Fig. 5.8, will rather quickly spin down the vor-
ticity at the top of the Ekman layer without appreciably affecting the higher levels.
When the geostrophic vorticity at the top of the boundary layer is reduced to zero,

Lo

Fig. 5.8 Streamlines of the secondary circulation forced by frictional convergence in the planetary
boundary layer for a cyclonic vortex in a stably stratified baroclinic atmosphere. The circu-
lation decays with height in the interior.
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the pumping action of the Ekman layer is eliminated. The result is a baroclinic vor-
tex with a vertical shear of the azimuthal velocity that is just strong enough to bring
&g to zero at the top of the boundary layer. This vertical shear of the geostrophic
wind requires a radial temperature gradient that is in fact produced during the
spin-down phase by adiabatic cooling of the air forced out of the Ekman layer.
Thus, the secondary circulation in the baroclinic atmosphere serves two purposes:
(1) it changes the azimuthal velocity field of the vortex through the action of the
Coriolis force and (2) it changes the temperature distribution so that a thermal wind
balance is always maintained between the vertical shear of the azimuthal velocity
and the radial temperature gradient.

PROBLEMS

5.1. Verify by direct substitution that the Ekman spiral expression (5.31) is indeed
a solution of the boundary layer equations (5.26) and (5.27) for the case
vg = 0.

5.2. Derive the Ekman spiral solution for the more general case where the
geostrophic wind has both x and y components (1, and v, respectively),
which are independent of height.

5.3. Letting the Coriolis parameter and density be constants, show that (5.38) is
correct for the more general Ekman spiral solution obtained in Problem 5.2.

5.4. For laminar flow in a rotating cylindrical vessel filled with water (molecular
kinematic viscosity v = 0.01 cm? s~!), compute the depth of the Ekman
layer and the spin-down time if the depth of the fluid is 30 cm and the rotation
rate of the tank is 10 revolutions per minute. How small would the radius of
the tank have to be in order that the time scale for viscous diffusion from
the side walls be comparable to the spin-down time?

5.5. Suppose that at 43° N the geostrophic wind is westerly at 15 ms~!. Compute
the net cross isobaric transport in the planetary boundary layer using both the
mixed layer solution (5.22) and the Ekman layer solution (5.31). You may let
V| =ugin (5.22), h = De = 1 km, ky = 0.05 m~!s,and p = 1 kg m3.

5.6. Derive an expression for the wind-driven surface Ekman layer in the ocean.
Assume that the wind stress 1, is constant and directed along the x axis.
The continuity of turbulent momentum flux at the air—sea interface (z = 0)
requires that the wind stress divided by air density must equal the oceanic
turbulent momentum flux at z = 0. Thus, if the flux—gradient theory is used,
the boundary condition at the surface becomes
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5.7.

5.8.

5.9.

5.10.

5.11.

where K is the eddy viscosity in the ocean (assumed constant). As a lower
boundary condition assume thatu, v — Oasz— —o0.If K = 103 m?s~!,

what is the depth of the surface Ekman layer at 43°N latitude?

Show that the vertically integrated mass transport in the wind-driven oceanic
surface Ekman layer is directed 90° to the right of the surface wind stress in
the Northern Hemisphere. Explain this result physically.

A homogeneous barotropic ocean of depth H = 3 km has a zonally sym-
metric geostrophic jet whose profile is given by the expression

ug = Uexp|— (/L]

where U = Im s~! and L = 200 km are constants. Compute the vertical
velocity produced by convergence in the Ekman layer at the ocean bottom
and show that the meridional profile of the secondary cross-stream motion
forced in the interior is the same as the meridional profile of ug. What are
the maximum values of v in the interior and w if K = 10m? s”! and
f =10"%s~! (Assume that w and the eddy stress vanish at the surface.)

Using the approximate zonally averaged momentum equation

compute the spin-down time for the zonal jet in Problem 5.8.

Derive a formula for the vertical velocity at the top of the planetary boundary
layer using the mixed layer expression (5.22). Assume that [V| = 5m s!
is independent of x and y and that ity = ug(y). If 2 = 1 km and «, = 0.05,
what value must K, have if this result is to agree with the vertical velocity
derived from the Ekman layer solution at 43° latitude with De = 1 km?

Show that K,,, = kzu,in the surface layer.

MATLAB EXERCISES

MS.1. The MATLAB script mixed_layer_wind1.m uses a simple iterative tech-

nique to solve for # and v in (5.22) with u in the range 1-20 m s~! for
the case vy = 0 and x; = 0.05 m~! s. If you run the script, you will
observe that this iterative technique fails for u, greater than 19 m s~ An
alternative method, which works for a wide range of specified geostrophic
winds, utilizes the natural coordinate system introduced in Section 3.2.1.
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Ms5.2.

MS5.3.
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(a) Show that in the natural coordinate system the force balances parallel
and perpendicular to the velocity vector in the mixed layer model (see
Fig. 5.3) can be expressed respectively as

fKSV2 = fugcosB, and [V = fugsinp

where it is here assumed that the pressure gradient force is directed north-
ward so that fu, = ‘p(; 'v p‘, and B designates the angle between the

pressure gradient force vector and the mixed layer velocity, V. (Other
notation as defined in Section 5.3.1.)

(b) Use MATLAB to solve for V' and B given ug in the range of 1 to
50 m s7! and plot ¥ and B versus ug. Hint: Solve for V' in the above
two equations and for each value of u, vary B until the two solutions for
V agree.

Suppose that the geopotential distribution at the top of the mixed layer can
be expressed in the form ® (x, y) = &9 — foUpy + A4 sin kx sin/y, where
®yp = 9800m?s2, fo = 1074571, Uy =5ms™!, 4 = 1500 m®> s2,
k=mnL"' and, I = wL~!, where L = 6000 km. (a) Use the technique
given in the demonstration script mixed_layer_wind1.m to determine the
wind distribution in the mixed layer for this situation for the case where
ks = 0.05. (b) Using the formula obtained in Problem 5.10, compute
the vertical velocity distribution at the top of the mixed layer for this
distribution of geopotential when the depth of the mixed layer is 1 km.
(The MATLAB script mixed_layer_wind_2.m has a template that you can
use to contour the vertical velocity field and vorticity fields.)

For the geopotential distribution of Problem M5.2, use the Ekman layer
theory to derive the pattern of vertical velocity at the top of the boundary
layer. Assume that K,,, = 10 m? s~! and again use MATLAB to contour the
fields of vorticity and vertical velocity. Explain why the vertical velocity
patterns derived from the mixed layer and Ekman theories differ for this
situation.

Suggested References

Arya, Introduction to Micrometeorology, gives an excellent introduction to boundary layer dynamics
and turbulence at the beginning undergraduate level.

Garratt, The Atmospheric Boundary Layer is an excellent graduate-level introduction to the physics of
the atmospheric boundary layer.

Stull, An Introduction to Boundary Layer Meteorology, provides a comprehensive and very nicely
illustrated treatment of all aspects of the subject at the beginning graduate level.



CHAPTER 6

Synoptic-Scale Motions I:
Quasi-Geostrophic Analysis

A primary goal of dynamic meteorology is to interpret the observed structure
of large-scale atmospheric motions in terms of the physical laws governing the
motions. These laws, which express the conservation of momentum, mass, and
energy, completely determine the relationships among the pressure, temperature,
and velocity fields. As we saw in Chapter 2, these governing laws are quite compli-
cated even when the hydrostatic approximation (which is valid for all large-scale
meteorological systems) is applied. For extratropical synoptic-scale motions, how-
ever, the horizontal velocities are approximately geostrophic (see Section 2.4).
Such motions, which are usually referred to as quasi-geostrophic, are simpler to
analyze than are tropical disturbances or planetary scale disturbances. They are
also the major systems of interest in traditional short-range weather forecasting,
and are thus a reasonable starting point for dynamical analysis.

This chapter shows that for extratropical synoptic-scale systems, the twin require-
ments of hydrostatic and geostrophic balance constrain the baroclinic motions so
that to a good approximation the structure and evolution of the three-dimensional
velocity field are determined by the distribution of geopotential height on iso-
baric surfaces. The equations that express these relationships constitute the quasi-
geostrophic system. Before developing this system of equations, it is useful to

139
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briefly summarize the observed structure of midlatitude synoptic systems and
the mean circulations in which they are embedded. We then develop the quasi-
geostrophic momentum and thermodynamic energy equations and show how these
can be manipulated to form the quasi-geostrophic potential vorticity equation and
the omega equation. The former equation provides a method for predicting the
evolution of the geopotential field, given its initial three-dimensional distribution;
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