
Lecture Notes in Artificial Intelligence 1585
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Bob McKay Xin Yao Charles S. Newton
Jong-Hwan Kim Takeshi Furuhashi (Eds.)

Simulated Evolution
and Learning

Second Asia-Pacific Conference
on Simulated Evolution and Learning, SEAL’98
Canberra, Australia, November 24-27, 1998
Selected Papers

1 3

Series Editors
Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Bob McKay
Xin Yao
Charles S. Newton
School of Computer Science, University College, UNSW
Australian Defence Force Academy
Canberra, ACT, Australia 2600
E-mail: {rim/xin/csn}@cs.adfa.edu.au

Jong-Hwan Kim
Department of Electrical Engineering
Korea Advanced Institute of Science and Technology
373-1, Kusung-dong, Yusung-gu, Taejon-shi 305-701, Republic of Korea
E-mail: johkim@vivaldi.kaist.ac.kr

Takeshi Furuhashi
Department of Information Electronics, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
E-mail: furuhashi@nuee.nagoya-u.ac.jp

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Simulated evolution and learning : selected papers / Second Asia
Pacific Conference on Simulated Evolution and Learning, SEAL ’98,
Canberra, Australia, November 24 - 27, 1998. Bob McKay . . . (ed.). -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 1999

(Lecture notes in computer science ; Vol. 1585 : Lecture notes in
artificial intelligence)
ISBN 3-540-65907-2

CR Subject Classification (1998): I.2, F.1.1, I.6, J.3, J.2

ISBN 3-540-65907-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10703189 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

This volume contains selected papers presented at the Second Asia-Pacific Con-
ference on Simulated Evolution and Learning (SEAL’98), from 24 to 27 Novem-
ber 1998, in Canberra, Australia. SEAL’98 received a total of 92 submissions (67
papers for the regular sessions and 25 for the applications sessions). All papers
were reviewed by three independent reviewers. After review, 62 papers were ac-
cepted for oral presentation and 13 for poster presentation. Some of the accepted
papers were selected for inclusion in this volume. SEAL’98 also featured a fully
refereed special session on Evolutionary Computation in Power Engineering or-
ganised by Professor Kit Po Wong and Dr Loi Lei Lai. Two of the five accepted
papers are included in this volume.

The papers included in these proceedings cover a wide range of topics in
simulated evolution and learning, from self-adaptation to dynamic modelling,
from reinforcement learning to agent systems, from evolutionary games to evo-
lutionary economics, and from novel theoretical results to successful applications,
among others.

SEAL’98 attracted 94 participants from 14 different countries, namely Aus-
tralia, Belgium, Brazil, Germany, Iceland, India, Japan, South Korea, New Zea-
land, Portugal, Sweden, Taiwan, UK and the USA. It had three distinguished
international scientists as keynote speakers, giving talks on natural computation
(Hans-Paul Schwefel), reinforcement learning (Richard Sutton), and novel mod-
els in evolutionary design (John Gero). More information about SEAL’98 is still
available at http://www.cs.adfa.edu.au/conference/seal98/.

A number of people have helped to make the conference a great success.
They include our secretaries: Alison McMaster, Jodi Wood and Kaylene Tulk,
and students: Ko-Hsin Liang, Jason Bobbin, Thomas Runarsson and Chi-Wu
Chou. We would like to take this opportunity to express our sincere thanks to
them.

December 1998 Xin Yao
Bob McKay

Charles Newton
Jong-Hwan Kim

Takeshi Furuhashi

Conference Committee

General Chair: Professor Charles S. Newton
Organising Committee Chair: Dr Bob McKay
Programme Committee Co-Chairs: Takeshi Furuhashi, Jong-Hwan Kim

and Xin Yao
Conference Secretary: Miss Alison McMaster
Special Sessions Chair: Professor Kit Po Wong
Sponsorship Chair: Dr Graham Williams

Programme Committee Members

Alan Blair (University of Queensland, Australia)
Terry Bossomaier (Charles Sturt University, Australia)
Jong-Chen Chen (National Yunlin University of Technology, Taiwan)
Shu-Heng Chen (National Chengchi University, Taiwan)
Sung-Bae Cho (Yonsei University, Korea)
George Coghill (University of Auckland, New Zealand)
David Fogel (Natural Selection, Inc., USA)
Tamas D. Gedeon (University of New South Wales, Australia)
Mitsuo Gen (Ashikaga Institute of Technology, Japan)
David Green (Charles Sturt University, Australia)
Tetsuya Higuchi (Electrotechnical Laboratory, Japan)
Tim Hendtlass (Swinburne University of Technology, Australia)
Robert Hinterding (Victoria University of Technology, Australia)
Hitoshi Iba (Electrotechnical Laboratory, Japan)
Tadashi Iokibe (Japan)
Lishan Kang (Wuhan University, P. R. China)
Nikola Kasabov (University of Otago, New Zealand)
Osamu Katai (Kyoto University, Japan)
K. S. Leung (The Chinese University of Hong Kong, Hong Kong)
Huan Liu (National University of Singapore, Singapore)
Jiming Liu (Hong Kong Baptist University, Hong Kong)
Jiyin Liu (University of Science and Technology of Hong Kong, Hong Kong)
Yong Liu (UNSW, ADFA, Australia)
Zhi-Qiang Liu (University of Melbourne, Australia)
John McDonnell (SSC-San Diego, USA)
Bob McKay (UNSW, ADFA, Australia)
Masoud Mohammadian (Monash University, Australia)
Akira Namatame (National Defence Academy, Japan)
Bill Porto (Natural Selection, Inc., USA)
Robert Reynolds (Wayne State University, USA)
Simon Ronald (University of Adelaide, Australia)
N. Saravanan (Ford Motor Company, USA)
Henry Selvaraj (Monash University, Australia)

Additional Reviewers VII

Stephen Smith (Central Queensland University, Australia)
Russell Standish (University of New South Wales, Australia)
Russell Stonier (Central Queensland University, Australia)
Yasuhiro Tsujimura (Ashikaga Institute of Technology, Japan)
Brijesh Verma (Griffith University, Australia)
Donald Waagen (Lockheed Martin Tactical Defense Systems, USA)
Peter Whigham (CSIRO, Australia)
Kit Po Wong (University of Western Australia, Australia)
Xingdong Wu (Monash University, Australia)
Toru Yamaguchi (Utsunomiya University, Japan)
Xinghuo Yu (Central Queensland University, Australia)
Byoung-Tak Zhang (Seoul National University, Korea)
Chengqi Zhang (University of New England, Australia)
Qiangfu Zhao (University of Aizu, Japan)

Additional Reviewers

Syed Nadeem Ahmed
Hussein Aly Abbass Amein
Nick Barnes
Michael Blumenstein
Jinhai Cai
Jirapun Daengdej
Honghua Dai
M. Dash
Zhexue Huang
Md. Farhad Hussain
Jun Jo
Yuefeng Li
Man Leung Wong
Jingtao Yao

Table of Contents

Natural Computation . 1
H-P. Schwefel

Multiple Lagrange Multiplier Method for Constrained Evolutionary
Optimization . 2

H. Myung, J-H. Kim

Robust Evolution Strategies . 10
K. Ohkura, Y. Matsumura, and K. Ueda

Hybrid Genetic Algorithm for Solving the p-Median Problem 18
V. Estivill-Castro, R. Torres-Velázquez

Correction of Reflection Lines Using Genetic Algorithms 26
B. Pham, Z. Zhang

Adaptation under Changing Environments with Various Rates
of Inheritance of Acquired Characters: Comparison between Darwinian
and Lamarckian Evolution . 34

T. Sasaki, M. Tokoro

Dynamic Control of Adaptive Parameters in Evolutionary Programming . . 42
K-H. Liang, X. Yao, and C.S. Newton

Information Operator Scheduling by Genetic Algorithms 50
T. Yamada, K. Yoshimura, and R. Nakano

Solving Radial Topology Constrained Problems with Evolutionary
Algorithms . 58

P.M.S. Carvalho, L.A.F.M. Ferreira, and L.M.F. Barruncho

Automating Space Allocation in Higher Education . 66
E.K. Burke, D.B. Varley

Application of Genetic Algorithm and k-Nearest Neighbour Method
in Medical Fraud Detection . 74

H. He, W. Graco, and X. Yao

Evolution of Reference Sets in Nearest Neighbor Classification 82
H. Ishibuchi, T. Nakashima

Investigation of a Cellular Genetic Algorithm that Mimics Landscape
Ecology . 90

M. Kirley, X. Li, and D.G. Green

X Table of Contents

Quantifying Neighborhood Preservation: Joint Properties of Evolutionary
and Unsupervised Neural Learning . 98

R. Garionis

Neural Networks and Evolutionary Algorithms for the Prediction
of Thermodynamic Properties for Chemical Engineering 106

M. Mandischer, H. Geyer, and P. Ulbig

Evolving FPGA Based Cellular Automata . 114
R. Porter, N. Bergmann

Asynchronous Island Parallel GA Using Multiform Subpopulations 122
H. Horii, S. Kunifuji, and T. Matsuzawa

Multiple Sequence Alignment Using Parallel Genetic Algorithms 130
L.A. Anbarasu, P. Narayanasamy, and V. Sundararajan

Evolving Logic Programs to Classify Chess-Endgame Positions 138
P.G.K. Reiser, P.J. Riddle

Genetic Programming with Active Data Selection . 146
B-T. Zhang, D-Y. Cho

Evolutionary Programming-Based Uni-vector Field Method
for Fast Mobile Robot Navigation . 154

Y-J. Kim, D-H. Kim, and J-H. Kim

Evolution with Learning Adaptive Functions . 162
M. Ishinishi, A. Namatame

Modelling Plant Breeding Programs as Search Strategies
on a Complex Response Surface . 171

D.W. Podlich, M. Cooper

Large Generating Equations with Genetic Programming for Control
of a Movable Inverted Pendulum . 179

H. Shimooka, Y. Fujimoto

A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem 187
E. Burke, P. De Causmaecker, and G. Vanden Berghe

Reinforcement Learning: Past, Present and Future . 195
R.S. Sutton

A Reinforcement Learning with Condition Reduced Fuzz Rules 198
H. Kawakami, O. Katai, and T. Konishi

Generality and Conciseness of Submodels in Hierarchical Fuzzy Modeling . 206
K. Tachibana, T. Furuhashi

Table of Contents XI

Using Evolutionary Programming to Optimize the Allocation
of Surveillance Assets . 215

V.W. Porto

Applying the Evolutionary Neural Networks with Genetic Algorithms
to Control a Rolling Inverted Pendulum . 223

N. Kaise, Y. Fujimoto

Evolving Cooperative Actions Among Heterogeneous Agents
by an Evolutionary Programming Method . 231

T. Fujinaga, K. Moriwaki, N. Inuzuka, and H. Itoh

Cooperative Works for Welfare Agent Robot and Human Using Chaotic
Evolutionary Computation . 240

T. Yamaguchi, M. Sato, T. Takagi, and H. Hashimoto

Evolutionary Computation for Intelligent Agents Based on Chaotic
Retrieval and Soft DNA . 251

N. Kohata, M. Sato, T. Yamaguchi, T. Baba, and H. Hashimoto

A Study of Bayesian Clustering of a Document Set Based on GA 260
K. Aoki, K. Matsumoto, K. Hoashi, and K. Hashimoto

An Evolutionary Approach in Quantitative Spectroscopy 268
P. Husbands, P.P.B. de Oliveira

Evolutionary Recognition of Features from CAD Data 276
Y. Tsujimura, M. Gen

Modeling Strategies as Generous and Greedy in Prisoner’s Dilemma like
Games . 285

S. Johansson, B. Carlsson, and M. Boman

Using Genetic Algorithms to Simulate the Evolution of an Oligopoly Game 293
S-H. Chen, C-C. Ni

An Evolutionary Study on Cooperation in N-person Iterated Prisoner’s
Dilemma Game . 301

Y-G. Seo, S-B. Cho

Simulating a N-person Multi-stage Game for Making a State 309
A. Iwasaki, S.H. Oda, and K. Ueda

Learning from Linguistic Rules and Rule Extraction for Function
Approximation by Neural Networks . 317

K. Tanaka, M. Nii, and H. Ishibuchi

Can a Niching Method Locate Multiple Attractors Embedded
in the Hopfield Network? . 325

A. Imada, K. Araki

XII Table of Contents

Time Series Prediction by Using Negatively Correlated Neural Networks . . 333
Y. Liu, X. Yao

Animating the Evolution Process of Genetic Algorithms 341
A. Li, K-P. Wong

Analysis on the Island Model Parallel Genetic Algorithms
for the Genetic Drifts . 349

T. Niwa, M. Tanaka

A Paradox of Neural Encoders and Decoders
or Why Don’t We Talk Backwards? . 357

B. Tonkes, A. Blair, and J. Wiles

Continuous Optimization Using Elite Genetic Algorithms
With Adaptive Mutations . 365

A.B. Djurivsić, A.D. Rakić, E.H. Li, M.L. Majewski, N. Bundaleski,
and B.V. Stanić

Evolutionary Systems Applied to the Synthesis of a CPU Controller 373
R.S. Zebulum, M.A. Pacheco, and M. Vellasco

Novel Models in Evolutionary Designing . 381
J.S. Gero

Co-evolution, Determinism and Robustness . 389
A.D. Blair, E. Sklar, and P. Funes

Co-operative Evolution of a Neural Classifier and Feature Subset 397
J. Hallinan, P. Jackway

Optimal Power Flow Method Using Evolutionary Programming 405
K-P. Wong, J. Yuryevich

Grammatical Development of Evolutionary Modular Neural Networks 413
S-B. Cho, K. Shimohara

Hybridized Neural Network and Genetic Algorithms
for Solving Nonlinear Integer Programming Problem 421

M. Gen, K. Ida, and C-Y. Lee

Evolution of Gene Coordination Networks . 430
T.P. Runarsson, M.T. Jonsson

Adaptive Simulation: An Implementation Framework 438
R. Hall, B. Pham, and J. Yearwood

A Model of Mutual Associative Memory for Simulations
of Evolution and Learning . 446

Y. Akira

Table of Contents XIII

The Application of Cellular Automata to the Consumer’s Theory:
Simulating a Duopolistic Market . 454

S.H. Oda, K. Iyori, K. Miura, and K. Ueda

Object-oriented Genetic Algorithm based Artificial Neural Network
for Load Forecasting . 462

L.L. Lai, H. Subasinghe, N. Rajkumar, E. Vaseekar, B.J. Gwyn, and
V.K. Sood

Author Index . 471

Natural Computation?

Hans-Paul Schwefel

Chair of Systems Analysis
Department of Computer Science

University of Dortmund
D-44221 Dortmund, Germany

Abstract. The idea of mimicking processes of organic evolution on com-
puters and using such algorithms for solving adaptation and optimization
tasks can be traced back to the Sixties. Genetic Algorithms (GA), Evo-
lutionary Programming (EP), and Evolution Strategies (ES), the still
vivid different strata of this idea, have not only survived until now, but
have become an important tool within what has been called Computa-
tional Intelligence, Soft Computing, as well as Natural Computation. An
outline of Evolutionary Algorithms (EA — the common denominator
for GA, EP, and ES) will be sketched, their differences pinpointed, some
theoretical results summarized, and some applications mentioned.

? Abstract only.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 1–1, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Multiple Lagrange Multiplier Method for
Constrained Evolutionary Optimization

Hyun Myung and Jong-Hwan Kim

Dept. of EE, KAIST, 373-1 Kusong-dong,
Yusong-gu, Taejon, 305-701, Korea

Tel: +82-42-869-8048, Fax: +82-42-869-8010
{myung, johkim}@vivaldi.kaist.ac.kr

Abstract. One of the well-known problems in evolutionary search for
solving optimization problem is the premature convergence. The gen-
eral constrained optimization techniques such as hybrid evolutionary
programming, two–phase evolutionary programming, and Evolian algo-
rithms are not safe from the same problem in the first phase. To overcome
this problem, we apply the sharing function to the Evolian algorithm and
propose to use the multiple Lagrange multiplier method for the subse-
quent phases of Evolian. The method develops Lagrange multipliers in
each subpopulation region independently and finds multiple global op-
tima in parallel. The simulation results demonstrates the usefulness of
the proposed sharing technique and the multiple Lagrange multiplier
method.

1 Introduction

This paper addresses the general constrained optimization problem for continu-
ous variables defined as:

Minimize f(x) subject to constraints

g1(x) ≤ 0, · · · , gr(x) ≤ 0, h1(x) = 0, · · · , hm(x) = 0 (1)

where f and the gk’s are functions on Rn and the hj ’s are functions on Rn for
m ≤ n, and x = [x1, · · · , xn]T ∈ Rn.

One of the well-known problems in genetic search for solving general op-
timization problem is the phenomenon called genetic drift [1]. In multimodal
functions with equal peaks, simple evolutionary algorithms converge to only one
of the peaks, and that peak is chosen randomly due to the stochastic varia-
tions associated with the genetic operators. Evolutionary algorithms have been
criticized for this premature convergence where substantial fixation occurs at
genotype before obtaining sufficiently near optimal points [2]. In the same con-
text, the main problem associated with the constrained optimization techniques
such as hybrid evolutionary programming (EP) [3], two–phase EP (TPEP) [4],
and Evolian algorithms [5] is the premature convergence in the first phase.

To overcome the above problem, Goldberg and Richardson proposed a method
based on sharing in Genetic Algorithms; the method permits a formation of

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 2–9, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Multiple Lagrange Multiplier Method 3

stable subpopulations (species) of different strings – in this way the algorithm
investigates different peaks in parallel [2].

Recently, Beasley, Bull, and Martin proposed a new technique, called sequen-
tial niching [6], for multimodal function optimization, which avoids some of the
disadvantages associated with the sharing method (e.g., time complexity due
to fitness sharing calculations, population size, which should be proportional to
the number of optima). The sequential niching method is based on the following
idea: once an optimum is found, the evaluation function is modified to elimi-
nate this (already found) solution, since there is no interest in re-discovering the
same optimum again. In some sense, the subsequent runs of genetic algorithm
incorporate the knowledge discovered in the previous runs.

However, the comparison results of sequential niching methods and parallel
approaches by Mahfoud [7] indicate that parallel niching methods outperform
sequential ones with respect to parallelization, convergence speed, and popula-
tion diversity. Parallel methods, such as sharing function, form and maintain
niches simultaneously within a population, and seem to have potential to escape
extraneous attractors and to converge to the desired solutions.

Consequently, an improvement is expected if the sharing technique is incor-
porated into the first phase of Evolian. In Evolian, the first phase is equivalent
to the usual exterior penalty method, since Lagrange multipliers are set to zero.
When there are constraints, the subsequent phases of Evolian should be applied.
The existence of multiple peaks implies the need for multiple Lagrange multi-
pliers since different local optima conveys different Lagrange multipliers. Thus,
for subsequent phases, the Lagrange multipliers should be initialized in each
potential local optimum region.

In this paper, we investigate the usefulness of the sharing function in Evolian
and propose the multiple Lagrange multiplier method for constrained optimiza-
tion.

2 Sharing function

A sharing function determines the degradation of an individual’s fitness due to
a neighbor at some distance d. A sharing function sh is defined as a function of
the distance with the following properties:

– 0 ≤ sh(d) ≤ 1, for all distances d
– sh(0) = 1 and limd→∞ sh(d) = 0.

There are various forms of sharing functions which satisfy the above conditions.
In [2], a sharing function is defined by a sharing parameter σshare for controlling
the extent of sharing, and a power law function sh(d) having a distance metric
d between two individuals as a parameter:

sh(d) =
{

1 − (d
σshare

)α, if d < σshare

0, otherwise
(2)

where α is a constant determining the degree of convexity of the sharing func-
tion. The sharing takes place by derating an individual’s fitness by its niche

4 Hyun Myung and Jong-Hwan Kim

count. The new (shared) fitness of an ith individual xi is given by: eval′(xi) =
eval(xi)/m(xi), where m(xi) returns the niche count for a particular individual
xi:

m(xi) =
2Np∑
j=1

sh(d(xi,xj)), (3)

where Np is the parent population size and the sum is taken over the entire
population including itself. Consequently, if an individual xi is all by itself in
its own niche, its fitness value does not decrease (m(xi) = 1). Otherwise, the
fitness function is decreased in proportion to the number and closeness of the
neighboring points. As a result, this technique limits the uncontrolled growth of
particular species within a population. As a side benefit, sharing helps maintain
a more diverse population and a better (and less premature) convergence [2].

Since the EP procedure deals with the minimization problem, the use of
fitness sharing in the EP loop is implemented as follows:

Φ′(xi) = Φ(xi) + η(t)(m(xi) − 1),
η(t) = rs(Φ̄ − Φ(x1))/2Np,

Φ̄ = 1
2Np

∑2Np

j=1 Φ(xj),

where m(xi) returns the niche count for a particular individual xi calculated by
(3). The adaptive parameter η(t), which depends on the population statistics at
generation t, controls the rate to increase an objective function in proportion to
the niche count normalized by the total population size 2Np. The scale factor,
rs < 1.0 is a positive constant, Φ̄ is the average objective function of the current
population, and x1 is the best individual in the population. In case where an
individual xi is all by itself in its own niche (niche count = 1), the last term
in equation (2) disappears and the shared objective function is the same as the
original one.

This shared objective function used for the stochastic tournament selection
(step 5) in the standard EP implementation in [3,4,5] is as follows:

A selected number of pairwise comparisons over all individuals are con-
ducted. For each solution, Nc randomly selected opponents are chosen
from the whole population with equal probability. In each comparison, if
the conditioned solution offers less shared objective function value than
the randomly selected opponent, it receives a “win.”

It should be noted that this shared objective function applies only to the first
phase because of the computational burden in calculating all the niche counts.
In the calculation of the niche count of an individual, 2Np number of evaluations
of the Euclidean distance and sharing function are needed at each generation. In
addition, the number of competing opponent Nc are set to min(2Np − 1, 10) to
fit into the total population size 2Np and to restrict the maximum competition
size to 10.

To investigate the usefulness of this sharing technique, let us consider the
two functions presented in [2].

Multiple Lagrange Multiplier Method 5

Problem #1:
Minimize f1(x) = − sin6(5.1πx + 0.5).
Problem #2:

Minimize f2(x) = f1(x) · e−4 log 2 (x−0.0667)2

0.82 .
With a population size of Np = 30 and a maximum generation of 30, the plots

of resulting individuals, where only the first phase of Evolian is used, are shown
in Figure 1. The procedure of Evolian is omitted for brevity and the interested
reader is referred to [5].

As can be seen in Figure 1, without sharing, the first phase of Evolian, which
is simply an exterior penalty function method, can not locate multiple optima.
With the help of the sharing function, it can locate individuals at local minima
in the search space. It is worthy to note that the number of individuals in each
peak is approximately inversely proportional to the objective value of the peak
[2].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

(a) f1(x): Population without
sharing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

(b) f1(x): Population with
sharing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

(c) f2(x): Population without
sharing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

(d) f2(x): Population with
sharing.

Fig. 1. First phase run of Evolian with and without a sharing function.

6 Hyun Myung and Jong-Hwan Kim

3 Multiple Lagrange multipliers

When there are constraints, the subsequent phases of Evolian should be applied.
The existence of multiple peaks implies the need for multiple Lagrange multi-
pliers since different local optima conveys different Lagrange multipliers. Thus,
for subsequent phases, the Lagrange multipliers should be initialized in each
potential local optimum region (see Figure 2).

For this purpose, Evolian has a routine to determine the multiple peaks in the
current population space. Since we are interested only in the global minimum,
only the peaks having the global optimum are to be calculated by the peak
determination algorithm. To ease this determination process, the individuals are
sorted in an ascending order of the objective function value. The high ranked
individuals are determined to be peaks if they have objective values near the
best one and also have a distance of at least less than the sharing parameter
σshare from the earlier arrived at peak(s).

The peak determination algorithm correctly determined multiple peaks for
the function f1. It should be noted that this algorithm draw out multiple peaks
with almost the same objective values as that of the best peak. For the function
f1, the algorithm correctly determined multiple peaks, while only one peak was
determined for the function f2 as it has only one global minimum. After the
determination of local peaks, Lagrange multipliers are assigned to each local
peak and are updated at the peak point according to the following update rule:

λk[t + 1] = λk[t] + εstg
+
k (x[t]) and µj [t + 1] = µj [t] + εsthj(x[t])

where ε is a small positive constant. Each local region undergoes, in parallel,
subsequent phases of Evolian until it meets the stopping criteria.

Objective
Function

Embedding search space

o oo

o oo o

o individual

λ, µ1 1 λ, µ2 2 λ, µ3 3

Fig. 2. In Evolian, the Lagrange multipliers are updated in parallel in local optimum
subpopulation space.

Multiple Lagrange Multiplier Method 7

Now let us consider the following nonlinear constrained optimization problem
[8]:
Problem #3:
Minimize f3(x) = x2

1 + (x2 − 1)2

subject to h(x) = x2 − x2
1 = 0.

This problem has two global optima (x1, x2) = (±1/
√

2, 1/2). With specific
parameter settings for Evolian as given in Table 1, the results for 100 trials are
summarized with bar graphs in Figure 3.

Table 1. The specific parameter values for Evolian used for the function f3.

Parameter Value Meaning
Np 30 Population size
ρ 10−3 Error tolerance for EP

Ng 7 Generation tolerance for EP
s0 1.0 Initial penalty parameter

smax 105 Maximum penalty parameter
γ 3.0 Increasing rate of penalty parameter

σshare 0.1 Sharing parameter
rs 0.1 Sharing scale factor

σtol 0.05 Peak determination similarity parameter

The results for 100 trials are summarized with bar graphs in Figure 3. From
Figure 3, the frequency of forming stable subpopulations is found to be about
60% in both the cases of with and without using the sharing function. It can
be seen that the use of a sharing function in the first phase has no significant
improvement compared with the case where the sharing function is not used.
The use of subsequent phases in Evolian leads to the formation of multiple
subpopulation regions, regardless of the use of sharing function.

By investigating the bar graphs, it can be seen that the more the number
of peaks determined in the first phase, the more the frequency with which the
solution converges to the optima. Thus the search for multiple subpopulation
regions is critical in finding the multiple global optima.

It can be said that the use of multiple Lagrange multipliers in multiple sub-
population regions effectively searches for multiple global minima in parallel.

8 Hyun Myung and Jong-Hwan Kim

1 2 3 4 5 6
0

5

10

15

20

25

Number of peaks

F
re

qu
en

cy

(a) Frequency versus number of
peaks in 100 trials using Evolian
without sharing.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Number of peaks

F
re

qu
en

cy

(b) Frequency versus number of
peaks in 100 trials using Evolian
with sharing.

Fig. 3. Results obtained by Evolian with or without sharing. The white bar indicates
that the solution converges to one optimum, while grey bar to two optima.

4 Summary

After the first phase of Evolian algorithm, the local minimum regions are de-
termined using the peak determination algorithm. By applying the multiple La-
grange multipliers to these subpopulation regions, the globalness of a local solu-
tion can be improved. In addition, this subpopulation scheme is inherently par-
allel so that the computation time would be greatly reduced if it is implemented
on a parallel machine. It is investigated that the use of multiple Lagrange mul-
tipliers in multiple subpopulation regions effectively searches for multiple global
minima in parallel.

References

1. C. Hocaoglu and A. C. Sanderson, “Multimodal function optimization using mini-
mal representation size clustering and its application to planning multipaths,” Evo-
lutionary Computation, vol. 5, no. 1, pp. 81–104, 1997.

2. D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal
function optimization,” in Proc. of the Second International Conference on Genetic
Algorithms (J. J. Grefenstette, ed.), (Hillsdale, NJ), pp. 41–49, Lawrence Erlbaum,
1987.

3. H. Myung and J.-H. Kim, “Hybrid evolutionary programming for heavily con-
strained problems,” BioSystems, vol. 38, pp. 29–43, 1996.

4. J.-H. Kim and H. Myung, “Evolutionary programming techniques for constrained
optimization problems,” IEEE Trans. on Evolutionary Computation, vol. 1, pp. 129–
140, July 1997.

Multiple Lagrange Multiplier Method 9

5. H. Myung and J.-H. Kim, “Evolian: Evolutionary optimization based on Lagrangian
with constraint scaling,” in Proc. of the Sixth Annual Conference on Evolutionary
Programming / Lecture Notes on Computer Science (LNCS) 1213 (P. J. Angeline,
R. G. Reynolds, J. R. McDonnell, and R. Eberhart, eds.), (Indianapolis, USA),
pp. 177–188, Springer-Verlag, April 1997.

6. J. E. Beasley, D. R. Bull, and R. R. Martin, “A sequential niche technique for multi-
modal function optimization,” Evolutionary Computation, vol. 1, no. 2, pp. 101–125,
1993.

7. S. W. Mahfound, “A comparison of parallel and sequential niching methods,” in
Proc. of the Sixth International Conference on Genetic Algorithms (L. J. Eshelman,
ed.), (Los Altos, CA), pp. 136–143, Morgan Kaufmann, 1995.

8. C. Y. Maa and M. A. Shanblatt, “A two-phase optimization neural network,” IEEE
Trans. Neural Networks, vol. 3, no. 6, pp. 1003–1009, 1992.

Robust Evolution Strategies ?

Kazuhiro Ohkura, Yoshiyuki Matsumura and Kanji Ueda

Faculty of Engineering, Kobe University
Rokkodai, Nada-Ku, Kobe, 657, JAPAN

FAX: +81-78-803-1131 TEL: +81-78-803-1119
E-mail: {ohkura,matsumu,ueda}@mi-2.mech.kobe-u.ac.jp

Abstract. Evolution Strategies(ES) are an approach to numerical opti-
mization that shows good optimization performance. However, according
to our computer simulations, ES shows different optimization perfor-
mance when a different lower bound of strategy parameters is adopted.
We analyze that this is caused by the premature convergence of strategy
parameters, although they are traditionally treated as “self-adaptive” pa-
rameters. This paper proposes a new extended ES, called RES in order
to overcome this brittle property. RES has redundant neutral strategy
parameters and adopts new mutation mechanisms in order to utilize the
effect of genetic drift to improve the adaptability of strategy parameters.
Computer simulations of the proposed approach are conducted using
several test functions.
Keywords: Evolution Strategies, Numerical Optimization, Strategy
Parameters, Neutrality, Robustness

1 Introduction

Evolutionary computation has been widely recognized as a robust approach
to various kinds of engineering optimization problems. There are three main
streams in this field, i.e., Evolution Strategies(ES) [1], Genetic Algorithms(GA)
[5] and Evolutionary Programming(EP) [3]. Especially, when we consider nu-
merical optimization, ES gives us better results than the other two in many
problems (for instance, [2]). Although ES has several formulations, the most re-
cent form is (µ, λ)-ES, where λ > µ ≥ 1. (µ, λ) means that µ parents generate
λ offspring through recombination and mutation in each generation. The best
µ offspring are selected deterministically from the λ offspring and replace the
current parents. Elitism and stochastic selection are not used. This paper uses
ES without recombination, following Yao and Liu [12].

ES considers that strategy parameters, which roughly define the size of mu-
tation, are controlled by “self-adaptive” property of their own. However, they
often converge before finding the global optimum so that individuals cannot
practically move to any other better points. Therefore, to avoid this behavior,
? The authors acknowledge financial support through the “Methodology of Emergent

Synthesis” project(96P00702) by JSPS (the Japan Society for the Promotion of
Science).

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 10–17, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Robust Evolution Strategies 11

strategy parameters are conditioned to be larger than a certain small positive
value ε, i.e., the lower bound. However, according to our computer simulations,
which will be described in Section 4 in detail, ES not only shows strongly depen-
dent performance with respect to ε but also has a different optimal ε for each
problem. This suggests that ES should be applied to an optimization problem
with ε that is carefully tuned to it.

Recently, Liang, et al. [6] observed the same phenomena on EP and pointed
out the importance of careful setting of the lower bound.

This paper focuses on how to overcome this brittleness which comes from the
insufficient “self-adaptive” property of strategy parameters. Thus, we propose
a new design of individual representation that has redundant neutral strategy
parameters for each active strategy parameter so that they can accumulate var-
ious genetic changes through generations using the effect of genetic drift [8]. In
addition to this, new genetic mechanisms associated with the above individual
representation are also introduced in order to replace the current active strategy
parameter with one of those neutral strategy parameters stochastically. We call
the proposed approach as “Robust-ES(RES)”. This original idea comes from the
basic concept of operon-GA [9,4, 10]. Operon-GA uses redundant genotype and
new genetic operations so that each individual can generate adaptive size of ge-
netic change, which contributes to autonomous diversity control in a population.

The rest of this paper is organized as follows. Section 2 formulates the opti-
mization problem and ES. Section 3 describes the proposed approach in detail.
Section 4 shows the results of our computer simulations. Finally, Section 5 con-
cludes this paper.

2 Function Optimization by ES

A global minimization problem can be formalized using a pair (S, f), where
S ⊆ Rn is a bounded set on Rn and f : S 7→R is an n-dimensional real-valued
function. The objective is to find a point xmin ∈ S such that fmin is a global
minimum on S. That is to say:

fmin = min
x∈S

f(x), xmin = arg fmin (1)

According to the description by Bäck and Schwefel [2], the computational pro-
cedure of ES can be described as follows:

1. Generate the initial population of µ individuals, and set g = 1. Each indi-
vidual is taken as a pair of real-valued vectors (xi, ηi), ∀i ∈ {1, . . . , µ}, where
xi and ηi are the i-th coordinate value in Rn and its strategy parameters
larger than zero, respectively.

2. Evaluate the objective value for each individual (xi, ηi), ∀i ∈ {1, . . . , µ} of
the population based on the objective function f(xi).

3. Each parent (xi, ηi), i = 1, . . . , µ, creates λ/µ offspring on average, so that a
total of λ offspring are generated. At that time, offspring are calculated as
follows: for i = 1, . . . , µ, j = 1, . . . , n, and k = 1, . . . , λ,

12 Kazuhiro Ohkura, Yoshiyuki Matsumura and Kanji Ueda

η′
k(j) = ηi(j)exp(τ ′N(0, 1) + τNj(0, 1)) (2)

x′
k(j) = xi(j) + η′

k(j)N(0, 1) (3)

where xi(j), x′
k(j), ηi(j) and η′

k(j) denote the j-th component values of the
vectors xi, x

′
k, ηi and η′

k, respectively. N(0, 1) denotes a normally distributed
one-dimensional random number with mean zero and standard deviation
one. Nj(0, 1) indicates that the random number is generated anew for each

value of j. The factors τ and τ ′ have commonly set to
(√

2
√

n
)−1

and(√
2n

)−1
[2]. Notice that, when η′

k(j) calculated by Equation (2) is smaller
than a small positive value ε, i.e., the lower bound , ε is assigned to η′

k(j).
4. Calculate the fitness of each offspring (x′

i, η
′
i), ∀i ∈ {1, . . . , λ}, according to

f(x′
i).

5. Sort offspring (x′
i, η

′
i), ∀i ∈ {1, . . . , λ} in a non-descending order according

to their fitness values, and select the µ best offspring out of λ to be parents
of the next generation.

6. Stop if the halting criterion is satisfied; otherwise, g = g+1 and go to step 3.

A key to successful optimization in any evolutionary computation (EC) is in the
diversity control. However, the appropriate diversity is strongly dependent on the
current state of a population and the landscape of a problem. If its population
is converged too fast compared with the ruggedness of its landscape, a method
cannot often find the global optimum: on the contrary, if the converging speed
is too slow, a large computational cost is required to find a global optimum. The
diversity control in EC is generally achieved by adjusting the balance between
reproduction and selection. However, we consider here only the reproduction at
Step 3, because ES treats the selection at Step 5 as a deterministic process.

Since ES uses not recombination but mutation as a primary operator, the
calculation of mutation step size (ηi(j)N(0, 1)), which is traditionally consid-
ered to be “self-adaptive”, can be modified for improving the optimization per-
formance. Kappler [7] investigated the replacement of Gaussian mutation with
Cauchy mutation in (1+1)-ES, although no clear conclusions were obtained. Yao
and Liu [12, 11] proposed to replace Gaussian mutation with Cauchy mutation
for (µ, λ)-ES, where Cauchy mutation uses the following Cauchy distribution
function:

Ft(x) = 1/2 + (1/π) arctan(x/t) (4)

where t = 1. They conducted empirical experiments using many test functions
to show the improvement of performance, especially on multimodal function
optimization problems. They called their approach Fast-ES(FES) in order to
distinguish from classical ES(CES). The success of FES can be explained such
that the population does not easily lose the global search ability by the con-
vergence of strategy parameters into local optima, because Cauchy mutation
generates longer jumps more frequently than Gaussian mutation. However, the
brittle property with respect to the change of ε still remains as shown in Sec-
tion 4.

Robust Evolution Strategies 13

1e-10

1e-05

1

100000

0 500 1000 1500

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(a) FES for f4

1e-10

1e-05

1

100000

0 500 1000 1500

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(b) RES for f4

1e-06

0.0001

0.01

1

100

10000

0 200 400 600 800 1000

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(c) FES for f5

1e-08

1e-06

0.0001

0.01

1

100

10000

0 250 500 750 1000

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(d) RES for f5

0.001

0.01

0.1

1

10

0 200 400 600 800 1000

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(e) FES for f6

0.001

0.01

0.1

1

10

0 200 400 600 800 1000

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(f) RES for f6

Fig. 1. The averaged best results of FES and RES for multimodal functions when the
lower bounds are 10−2, 10−4, 10−6, 10−8 and 10−10.

3 Robust ES

When we apply ES to an optimization problem, it shows a similar evolving
behavior to the other evolutionary algorithms: a simple search focus shift from a
global region into a local region, which is derived from the gradual convergence
of the population. This convergence is the direct effect of natural selection which,
in a practical sense, makes strategy parameters small monotonically. This change
has been considered as the process of “self-adaptation”. However, we assume here
that this behavior is not adaptive enough to perform a robust search and thus
ES can be extended from the viewpoint of giving more adaptability to strategy
parameters.

Based on this idea, we propose a following individual representation xi:

xi = (xi(j), {ηi(j, p)}) (5)

14 Kazuhiro Ohkura, Yoshiyuki Matsumura and Kanji Ueda

where, j = 1, . . . , n, p = 1, . . . , m. Notice that each xi(j) has m strategy pa-
rameters, where the traditional ES has only one strategy parameter. Then, its
offspring x′

k = (x′
k(j), η′

k(j, p)) is calculated in the following way. The component
values x′

k(j) are calculated in the same manner as FES, as follows:

x′
k(j) = xi(j) + η′

k(j, 1)δj (6)

where δj is a random number calculated anew for each j based on Cauchy mu-
tation. An individual xi has n × m strategy parameters, although only ηi(j, 1)
is used when its x′

k(j) is calculated. Thus, we call ηi(j, 1) as active strategy
parameters and ηi(j, p), p = 2, . . . , m as inactive strategy parameters. They are
replaced each other and are modified by the following three operations which
are applied stochastically:

Odup : η̃i(j, 1) = ηi(j, 1) (7)
: η̃i(j, p) = ηi(j, p − 1),∀p ∈ {2, . . . , m}
η′

i(j, p) = D(η̃i(j, p)), ∀p ∈ {1, . . . , m}
Odel : η̃i(j, p) = ηi(j, p + 1),∀p ∈ {1, . . . , m − 1} (8)

η̃i(j, m) = min(ηmax,
m−1∑
p=1

η̃i(j, p)),

η′
i(j, p) = D(η̃i(j, p)), ∀p ∈ {1, . . . , m}

Oinv : η̃i(j, 1) = ηi(j, p), ∃p ∈ f{2, . . . , d} (9)
η̃i(j, p) = ηi(j, 1))
η′

i(j, p) = D(η̃i(j, p)), ∀p ∈ {1, . . . , m}
where, D is the same mutation as Equation 2 with the lower bound ε, and ηmax

is a constant. That is to say, Odup shifts all of ηi(j, p) into the adjacent position
of (p+1) then modifies with D. Odel discards ηi(j, 1), shifts all the other ηi(j, p)
into the adjacent position of (p − 1) and inserts the smaller value either ηmax or∑m−1

p=1 ηi(j, p) then modifies with D. Oinv swaps ηi(j, 1) with one of ηi(j, p) and
then modifies with D.

The proposed RES has the same computational steps as those of CES or FES
concerning the other parts. The difference is only that offspring are generated by
Equation 6 after applying Odup, Odel and Oinv stochastically to each individual.

4 Computer Simulations

4.1 Test functions and Conditions

Six test functions are listed on Table 1. They are hypersphere function, Schwe-
fel’s problem 2.22, step function, Rastrigin’s function, Ackley’s function and
Griewank’s function, respectively. Functions f1 to f3 are unimodal functions
and the other three, f4 to f6, are multimodal functions. All the functions are de-
fined in a 30 dimensional search space and have the global minimum fi,min = 0

Robust Evolution Strategies 15

Table 1. Six test functions

Expression(n = 30) Range

f1(x) =
n∑

i=1

x2
i −100 ≤ xi ≤ 100

f2(x) =
n∑

i=1

|xi| +
n∏

i=1

|xi| −10 ≤ xi ≤ 10

f3(x) =
n∑

i=1

(bxi + 0.5c)2 −100 ≤ xi ≤ 100

f4(x) =
n∑

i=1

{x2
i − 10 cos(2πxi) + 10} −5.12 ≤ xi ≤ 5.12

f5(x) = −20 exp

(
−0.2

√
1
n

∑n

i=1 x2
i

)

− exp
(

1
n

∑n

i=1 cos 2πxi

)
+ 20 + e

−32 ≤ xi ≤ 32

f6(x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos(
xi√

i
) + 1 −600 ≤ xi ≤ 600

at (0, . . . , 0). The main purpose of our computer simulations is to show the effect
of lower bound of strategy parameters ε to the optimization performance of FES
and RES. The both ESs use (µ, λ) = (30, 200), no correlated mutations and no
recombinations. The upper bound of strategy parameters ηmax is set at 1.0 for
f4 and 3.0 for the other functions. In the case of RES, Odup, Odel and Oinv are
applied to an individual with the probabilities of 0.6, 0.3 and 0.1, respectively.
The number of strategy parameters m for each variable is set at 6. The six
function were solved 50 times under the same initial conditions.

4.2 Results

Figure 2 compares the results of FES and RES for the unimodal functions f1, f2
and f3. Figure 2(a), (c) and (e) show the results of FES. The effect of the lower
bound is observed for all the functions. For f1, the best results were obtained
when ε was 10−2 at generation 200, 10−4 at 500 and 10−6 at 1000. The better
results were not obtained for the cases of smaller lower bounds, i.e., 10−8 and
10−10. In case of RES shown in Fig. 2(b), better performance was obtained when
the smaller lower bound was adopted. A clearer difference between FES and RES
was observed for f2 and f3 as shown in Figures 2(c) and (d) or (e) and (f). FES
for f2 showed the stagnation of performance for every case. As a result, the
best performance was 2.5 × 10−4 when ε = 10−6. In case of RES, better results
were obtained as the smaller ε was adopted. Especially, RES reached 3.9 × 10−8

16 Kazuhiro Ohkura, Yoshiyuki Matsumura and Kanji Ueda

1e-15

1e-10

1e-05

1

100000

0 500 1000 1500 2000

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(a) FES for f1

1e-15

1e-10

1e-05

1

100000

0 500 1000 1500 2000

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(b) RES for f1

1e-08

1e-06

0.0001

0.01

1

100

10000

0 200 400 600 800 1000

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(c) FES for f2

1e-08

1e-06

0.0001

0.01

1

100

10000

0 200 400 600 800 1000

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(d) RES for f2

0.01

0.1

1

10

100

1000

10000

100000

0 100 200 300 400 500
Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(e) FES for f3

0.01

0.1

1

10

100

1000

10000

100000

0 100 200 300 400 500

Generation

10exp(-2)
10exp(-4)
10exp(-6)
10exp(-8)

10exp(-10)

(f) RES for f3

Fig. 2. The averaged best results of FES and RES for unimodal functions when the
lower bounds are 10−2, 10−4, 10−6, 10−8 and 10−10.

when ε = 10−10. FES for f3 found the global minimum only when ε = 10−2 and
10−4 as shown in Figure 2(e), while RES with any ε successfully optimized the
function without a large difference in computational cost.

Figures 1(a) to (e) show the results for multimodal functions, f4, f5 and
f6. Similar results to those of unimodal functions were obtained. As shown in
Figure 1(a), FES showed stagnation for all the cases, although the best result
of 1.9 at generation 1500 was obtained when ε = 10−4. In the case of RES,
the better results were obtained according to the use of smaller ε as shown in
Figure 1(b). The results for f5 in Figures 1(c) and (d) show the same tendency
as that for f4. Figures 1(e) and (f) show the results for f6. RES obtained the
better and robust results than those of FES, although the both ESs showed the
stagnation after about generation 300 and 500, respectively. However, by looking
at 50 trials when ε = 10−10, no trials of FES found the global optimum, while
RES found it successfully in 24 trials.

Robust Evolution Strategies 17

Therefore, what these results are suggesting to us is that FES should adopt a
carefully selected lower bound for each problem to obtain the best performance,
but RES can use a smaller lower bound without worrying about the decrease of
the performance.

5 Conclusions

This paper proposed an extended ES, called RES, that shows robust performance
against the lower bound of strategy parameters. Computer simulations were
conducted using several test functions in order to investigate the performance
of RES. The robust performance was confirmed in all six functions. The future
work will be directed to the detailed analysis of the evolving behavior in RES
and the application of the proposed approach to evolutionary programming.

References

1. T. Bäck (1996), Evolutionary Algorithms in Theory and Practice, Oxford Univer-
sity Press

2. T. Bäck and H.-P. Schwefel (1993), “An Overview of Evolutionary Algorithms for
Parameter Optimization”, Evolutionary Computation, Vol.1, No.1, pp.1-24

3. D. Fogel (1995), Evolutionary Computation Toward a New Philosophy of Machine
Intelligence, IEEE Press

4. T. Gohtoh, K. Ohkura and K. Ueda (1996), “An Application of Genetic Algorithm
with Neutral Mutations to Job-Shop Scheduling Problems”, Proc. of International
Conference on Advances in Production Management Systems, pp.563-568

5. D. Goldberg (1989), Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley

6. K.-H. Liang, X. Yao, Y. Liu, C. Newton and D. Hoffman (1998), “An Experi-
mental Investigation of Self-adaptation in Evolutionary Programming,” Proc. of
the Seventh Annual Conference on Evolutionary Programming, Lecture Notes in
Computer Science, Springer-Verlag, Berlin, pp.291-300

7. C. Kappler (1996), “Are Evolutionary Algorithms Improved by Large Mutations?”,
H.-M. Voigt, W. Ebeling, I. Rechenberg and H.-P. Schwefel, eds., Proc. Parallel
Problem Solving from Nature IV, Vol.1141 of Lecture Notes in Computer Science,
Springer-Verlag, pp.346-355

8. M. Kimura (1983), The Neutral Theory of Molecular Evolution, Cambridge Uni-
versity Press

9. K. Ohkura and K. Ueda (1995), “Solving Deceptive Problems using Genetic Algo-
rithms with Neutral Mutations”, C. H. Dagli, et al. edited, Intelligent Engineering
Systems Through Artificial Neural Networks, Vol.5, ASME Press, pp.345-350

10. K. Ohkura and K. Ueda (1997), “An Extended Framework for Overcoming Pre-
mature Convergence”, Proc. the Seventh International Conference on Genetic Al-
gorithms, Morgan Kaufmann, pp.260-267

11. X. Yao and Y. Liu (1997), “Fast Evolution Strategies”, Control and Cybernetics,
26(3) pp.467-496

12. X. Yao and Y. Liu (1997), “Fast Evolution Strategies,”, Proc. of the Sixth Annual
Conference on Evolutionary Programming, Lecture Notes in Computer Science,
Vol. 1213, Springer-Verlag, Berlin, pp.151–161.

Hybrid Genetic Algorithm for Solving the
p-Median Problem

Vladimir Estivill-Castro1 and Rodolfo Torres-Velázquez2

1 Department of Computer Science & Software Engineering, The University of
Newcastle, Callaghan, 2308 NSW, Australia. vlad@cs.newcastle.edu.au

2 Institut d’Investigació en Intelligencia Artificial (IIIA), Spanish Scientific Research
Council (CSIC), Campus Universitat Autónoma de Barcelona, 08193 Bellaterra,

Barcelona, Spain. torres@iiia.csic.es

Abstract. The p-median problem is an NP-complete combinatorial op-
timisation problem well investigated in the fields of facility location and
more recently, clustering and knowledge discovery. We show that hy-
brid optimisation algorithms provide reasonable speed and high quality
of solutions, allowing effective trade-off of quality of the solution with
computational effort. Our approach to hybridisation is a tightly cou-
pled approach rather than a serialisation of hill-climbers with genetic
algorithms. Our hybrid algorithms use genetic operators that have some
memory about how they operated in their last invocation.

1 Introduction

The p-median problem is a central facilities location problem that seeks the lo-
cation of p facilities on a network of n points minimising a weighted distance
objective function [10]. The problem is NP-complete and has a zero-one in-
teger programming formulation [23] with n2 variables and n2 + 1 constraints
and many techniques have been developed to heuristically solve instances of the
problem [4,25,26,27,28,30]. For finding high quality approximate solutions, hill-
climbing variations of an interchange heuristic [4,9,16,30] are considered very ef-
fective, but they risk being trapped in local optima. Other alternatives have been
also explored; amongst them, Lagrangian relaxation [3,18,32], Tabu search [25]
and Simulated Annealing [16]. Recently the p-median problem has been identified
as a robust method for spatial classification, clustering and knowledge discov-
ery [5,17,19]. While facility location problems may involve perhaps hundreds of
points, knowledge discovery applications will face thousands of points.

Genetic Algorithms (GAs) have been suggested as a robust technique for
solving optimisation problems. However, progress towards solving the p-median
problem displays a chronology analogous to the efforts to use GAs for solving
other combinatorial optimisation problems. One side, we have the recent records
on optimally solving instances of the Travelling Salesman Problem (TSP) with
linear programming and local cuts [24,12] that dim the efforts to solving TSP
with GAs [15,31]. On the other side, we see GAs providing very good solutions
for the bin packing problem [7,22].

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 18–25, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Hybrid Genetic Algorithm for Solving the p-Median Problem 19

For the p-median problem, early attempts with GAs used direct binary encod-
ing and the results were discouraging [11]. It was then accepted that GAs could
not compete with the efficient and well designed hill-climbing approaches used
for heuristically solving the p-median problem. More recently, the use of integer
encoding [1,2] and some theory of set recombination [6] has shown that genetic
algorithms could potentially become competitive. Although it is now clear that
integer encoding is better than binary encoding for the p-median problem, none
of the at least 5 crossover operators has been identified as the most appropri-
ate. Also, the adequate balance between quality of the approximate solution
(proximity to optimality) and computational effort has not been established.

This paper argues that although GAs for the p-median problem have im-
proved, they hardly outperform hill-climbers. The trade-off of effort vs quality
slightly favours hill-climbers. However, occasionally, GAs happen to identify so-
lutions which are closer to optimality. In order to incorporate the efficiency of
hill-climbers and the potential higher quality solutions of GA an approach to
hybridisation is proposed. We will discuss why this hybridisation is challenging
and present result that illustrate the benefits of this hybrid approach.

2 The p-Median Problem

In real D-dimensional space, the p-median problem is concerned with selecting
p stations out of S = {s1, s2, . . . , sn} points so that the sum of the distances of
all si in <D to their nearest station is minimum. The problem is motivated by
the 2D scenarios where the points are sites that must be serviced by p stations
selected from the sites. Naturally, the distance from every site to its nearest
station should be as small as possible. In fact, the p-median problem has a
formulation where the assignment of stations minimises the expected distance
for servicing a site from its station. As an example, say that S are positions in
the plane of potential fires and we are to place p fire-fighting stations. Let wi be
the probability that site si has a fire. Then, we seek to minimise

E[d(si, station for si)] =
n∑

i=1

Prob(si has a fire)d(si, station for si)

=
n∑

i=1

wid(si, station for si).

The distance d could be the Euclidean metric or any other metric.
Note that, for any C ⊂ S of size p, the station for si is the site in C nearest to

si and we will denote it as rep[si, C]. That is, rep[si, C] is the representative for
si in C and it satisfies that minsj∈C d(si, sj) = d(si, rep[si, C]). In this context,
the p-median problem is a problem of finding the best set C of representatives, so
every site is as similar as possible to its representative. This is how the p-median
translates into a clustering formulation where the sites are partitioned into p
groups. Each group is a set of sites with a common representative. The expected

20 Vladimir Estivill-Castro and Rodolfo Torres-Velázquez

dissimilarity between a site and its representative is minimum. We write the
p-median problem in this context as

Minimise C⊂S&|C|=pM(C) =
n∑

i=1

wid(si, rep[si, C]). (1)

3 The Solution Methods

There have been several formulations of the p-median problem as a 0/1-integer
programming problem. A trade-off between the type of constraints in the for-
mulation and the frequency by which integer solutions occur when solving the
relaxed linear programming problem allows problem to be solved to optimality
when n is small (a few hundred sites) [28]. However, when n is moderately large,
the NP-completeness of the problem requires the use of heuristics to obtain
approximate solutions.

In what follows we discuss the most effective approaches from the litera-
ture emphasising similarities, rather than the differences, since we want to com-
bine their features to obtain methods that integrate their advantages. The most
popular type of heuristics are hill-climbers rediscovered in many contexts and
best known as interchange heuristics [16,30]. The hill-climbing nature of these
heuristics is clearly revealed if we structure the search space of the p-median

problem as a graph with
(

n
p

)
nodes. The nodes of this graph are all C ⊂ S

with |C| = p. The edges of the graph are defined as follows, two nodes C and
C ′ are adjacent if and only if |C ∩ C ′| = p − 1; that is, if they differ in ex-
actly one representative. So, every node in the graph is a feasible solution, we
seek to find the node that minimises M(C) in Equation (1). The hill-climber
interchange heuristics start on a random solution C0 (a random node in the
graph). Iteratively, the heuristic explores a set N(Ct) of adjacent nodes and
moves to the best alternative in this neighbourhood if the alternative is an
improvement (i.e. M(Ct+1) < M(Ct)). Thus, the new node Ct+1 is such that
M(Ct+1) = minC∈N(Ct) M(C). The search halts when no better solution is found
in the neighbourhood N(Ct). The interchange hill-climbers offer different vari-
ants in how they define the set N(Ct) of adjacent nodes to explore. Complete
hill-climbers and other hill-climbers [14,29,9,13] have been shown not to be as
efficient [25] in finding a local optimum of high quality as an original heuristic
proposed in 1968 by Teitz and Bart [30]. We will refer to this heuristic as TAB.

In an amortised sense, in the TAB search only a constant number of neigh-
bours of Ct are examined for the next interchange [5]. When searching for a
profitable interchange, it considers the points in turn, according to a fixed circu-
lar ordering (s1, s2, . . . , sn) of the points. Whenever the turn belonging to a point
si comes up, if si is currently a representative, it is ignored, and the turn passes
to the next point in the circular list, si+1 (or s1 if i = n). If si is not a represen-
tative point, then it is considered for inclusion in the set of representatives. The
most advantageous interchange Cj of non-representative si and representative sj

Hybrid Genetic Algorithm for Solving the p-Median Problem 21

is determined, over all possible choices of sj ∈ Ct. If Cj = {sj}∪Ct\{si} is better
than Ct, then Cj becomes the new current solution Ct+1; otherwise, Ct+1 = Ct.
In either case, the turn then passes to the next point in the circular list, si+1
(or s1 if i = n). If a full cycle through the set of points yields no improvement, a
local optimum has been reached, and the search halts. The TAB heuristic forbids
the reconsideration of si for inclusion until all other non-representatives points
have been considered as well. The heuristic can be therefore be regarded as a
local variant of Tabu search [8]. TAB’s careful design balances the need to ex-
plore a variety of possible interchanges against the ‘greedy’ desire to improve
the solution as quickly as possible.

The time required to compute M(C ′) on an adjacent node C ′ of C is O(n)
time — O(n) steps to find rep[s, C ′] for all s ∈ S (rep[s, C ′] is either unchanged
or the new representative si), and O(n) to compute M(C ′) as defined in Equa-
tion (1). Therefore, the time required to test points of Ct for replacement by si

is O(pn) time. In most situations, p can be viewed as a small constant, and thus
the test can be considered to take linear time.

Simulated Annealing can be considered a hill-climber that may accept solu-
tions Ct with M(Ct+1) > M(Ct). It also starts with a random C0 and iteratively
redefines a current solution Ct. All p(n − p) neighbours of Ct are not explored,
but they are sampled. A temperature T works as a tolerance parameter for ac-
cepting a ∆t = M(Ct+1) − M(Ct). When T > ∆t a worse solution may be
probabilistically accepted as the current solution. The value of T decreases as
more solutions are explored (t → ∞). Although Simulated Annealing opens the
possibility to better approximation because it escapes local optima, its compu-
tation time is much larger than hill-climbers [16] and it demands tuning of more
parameters.

Genetic algorithms maintain a population of chromosomes (encodings) of
feasible solutions. New populations are built from previous ones by genetic oper-
ators. Simulated Annealing is very similar to a genetic algorithm with population
size 1 and a specific mutation operator. However, populations provide “implicit
parallelism”. This means that the solutions in the current population are simul-
taneous samples of subspaces of the search space. Thus, the GA is exploring
combinations of subspaces simultaneously and balances allocating chromosomes
in subspaces of observed good performance with exploring other regions of the
search space. We can see a progression of robustness in the methods.

4 The Structure of the Hybrid GA

The GA proposed here seeks to find a set C of representatives that optimises
Equation (1). Thus, Equation (1) defines the objective function. Genetic op-
erators and the encoding of feasible solutions are tightly related. The litera-
ture [1,2,6] has reached consensus that because feasible solutions are subsets
C ⊂ {s1, . . . , sn} with p elements and p << n, the chromosomes are strings of p
different positive integers less than n. This encoding has some redundancy since
the same integer values in different order represent the same feasible solution.

22 Vladimir Estivill-Castro and Rodolfo Torres-Velázquez

However, empirical evidence [1,2,6] shows that no significant improvement in
performance is obtained by choosing some canonical form (for example, keeping
the integer values sorted by ascending order within the chromosome), but the
extra bookkeeping slows down the search. Moreover, some genetic operators de-
pend on this redundancy for preserving diversity in the population. For example,
the Template Operator [2] would produce offspring identical to their parents if a
canonical form is enforced; however, when representing subsets C as strings of p
integers, the operator can produce offspring that encode a different phenotype
of its parents despite the parents have equal phenotype. Simple crossover on in-
teger strings [1] does not guarantee different integer values in the offspring (thus
a penalty is applied when evaluating unfeasible solutions). B. Bozkaya et al [2]
define 4 crossover operators, none of which is a definite winner. They are progres-
sively more complex versions of simple crossover on integer strings that ensure
that values are not replicated within a chromosome. As the operator’s complexity
increases, there is a small improvement in the search but at more computational
effort per crossover. Since crossover occurs in the inner-most loops of the GA’s
program, slightly more complex crossover operators rapidly raise the demand
on computational effort. Also, all these crossover operators mentioned earlier
have a strong physical bias. That is, the possible offspring of two parents do not
have uniform probability and the distribution is closely related to the encoding,
rather than to the semantics of the chromosome in the problem. Operators that
use the theory of Random Assorting Recombination [20,21] have also been pro-
posed [6]. These operators balance two desirable properties of crossover in GAs,
assortment and respect.

The goal here is not to argue in favour of one or another crossover operator,
because besides using chromosomes that are integer strings it is not clear that the
added complexity of more sophisticated crossing is worth it. Moreover, typically
more complex operators imply more parameters that the end user must properly
set at the start of the optimisation (a challenging task in itself). We argue that
a more effective search is obtained by a hybrid optimisation algorithm with a
rather simple and fast crossover that a GA whose genetic operators are complex,
heavily parameterised and difficult to use. The operator provided by the TAB
hill-climber takes a feasible solution Ct and improves it to a new solution Ct+1.
We consider this a mutation operator and incorporate it as such in the GA. This
mutation operator may appear computationally costly at first sight, but as we
discussed in the analysis of TAB, it typically requires O(n) time (or O(n2) time
if a local optima is reached). However, evaluating the objective function requires
O(n) time, thus O(n) time is required every time an unseen individual comes
into play. Since the rate of application of this TAB mutation assures it occurs
sparingly per generation, its cost is well amortised in the genetic program.

The second aspect is that the hybridisation must be a tight integration that
must preserve those aspects of TAB that make it the most effective hill-climber.
Thus, a non-representative si that fails to become a representative must be
banned until all other non-representatives have also been attempted. Our muta-
tion operator remembers the index i where the last promotion of a si to a repre-

Hybrid Genetic Algorithm for Solving the p-Median Problem 23

Table 1. TAB and GA optimisation with respect to objective function evaluations.

Method Values of solution found Average Evaluations
TAB 11.75 (3 times) 11.77 11.78 (4 times) 11.86 12.08 11.89 � 0.23 804 � 14

Hybrid GA 11.67 (6 times) 11.68 11.71 (3 times) 11.68 �0.01 5,897 �35

sentative took place. Moreover, it can detect local optima, and in this case, they
are typically of high quality. By adjusting the mutation rate (and the population
size) the hybrid can be configured to resemble TAB or to be more independent
(TAB is the case population size 1 and mutation rate 1).

Table 1 shows the performance of TAB and a GA on a p-median problem with
100 data points and p = 5. The computational effort is measured as the number
of evaluations of the objective function, a uniform measure of resources required.
Since TAB and the GA are randomised, we show results over 10 executions. TAB
is typically much faster that the optimisation with GAs, but risks getting stuck
on local optima. The best solution with TAB is worst than the poorest solution
with the hybrid GA. The GA has a population of 25 chromosomes. For the test
problem, smaller population sizes result in poor performance of the GA. As we
already mentioned, hybridisation is complicated because TAB’s operation as a
mutation that does a hill-climbing step needs to remember how it operated in
its previous invocation. However, even if we remember the last point attempted
to be promoted, this may be for a very different chromosome than the one who
is now being mutated. Remembering the context of mutation per chromosome is
not a successful alternative because it makes the GA work as many concurrent
TAB searches, each disrupted (rather than helped) by crossover. We have found
that this results in much computational effort and no better search.

Another problem that complicates hybridisation is that the chromosome mu-
tated by TAB may exhibit an above average fitness with respect to the rest of the
population, moving sharply in the direction of a local optima. This has the effect
that the chromosome dominates the population and the GA converges early to
local optima. This is a problem of diversity loss. Thus, we found that the pop-
ulation size of our hybrids can not be very small. In the results of Fig. 1, the
hybrid improves the performance GA, the hybrid’s population size is 15 while
the GAs is 50. Smaller population sizes in the hybrid result in poor optimisation
performance of the hybrid and larger population size result in as many or more
function evaluations than the simple GA. We also found that although the mu-
tation rate of the TAB mutation must be small, it must be of some impact when
it occurs, otherwise it just looks like a costly random mutation. For this, when a
TAB-mutation occurs, two hill-climbing steps on the chromosome are performed
(and not just one). More hill-climbing steps over-fit one individual with respect
to the population.

24 Vladimir Estivill-Castro and Rodolfo Torres-Velázquez

5 Final Remarks

We have presented a hybrid genetic algorithm that incorporates exploitation
characteristics of a hill-climber into the GA program. This approach applies
with all cross-over operators but it demands delicate balancing of the impact of
hill-climbing so the hybrid GA avoids early convergence. As a result, the hybrid
GA optimisation is robust and effective and balances effort/quality of solution
better than the plain GA.

4

0 1000 2000 3000 4000

GA �

���

Hybrid +

++

Fig. 1. Hybrid GA and GA optimisation with respect to objective function evaluations.
Final average for hybrid GA is 3.54 with a standard deviation of 0.03 while the final
average for the GA is 3.60 with a standard deviation of 0.07.

References

1. G. Bianchi and R. Church. A non-binary encoded GA for a facility location prob-
lem. Working Paper, 1992. D. Geography, U. California, Santa Barbara.

2. B. Bozkaya, J. Zhang, and E. Erkut. An effective genetic algorithm for the p-
median problem. Paper presented at INFORMS Conf. in Dallas, October 1997.

3. G. Cornuejols, M. Fisher, and G. Nemhauser. Location of bank accounts to opti-
mize float: An analystic study of exact and approximate algorithms. Management
Science, 23:789–910, 1977.

4. P. Densham and G. Rushton. A more efficient heuristic for solving large p-median
problems. Papers in Regional Science, 71:307–329, 1992.

5. V. Estivill-Castro and A.T. Murray. Discovering associations in spatial data - an
efficient medoid based approach. In X. Wu, R. Kotagiri, and K.K. Korb, Proc. of
the 2nd Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD-
98), 110–121, Melbourne, Australia, 1998. Springer-Verlag LNAI 1394.

6. V. Estivill-Castro and A.T. Murray. Spatial clustering for data mining with genetic
algorithms. Int. ICSC Symp. Engineering of Intelligent Systems EIS-98. 1998.

7. E. Falkenauer. A new representation and operators for genetic algorithms applied
to grouping problems. Evolutionary Computation, 2(2):123–144, 1994.

8. F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 5:533–549, 1986.

9. M Goodchild and V. Noronha. Location-allocation for small computers. Mono-
graph 8, U. of Iowa, 1983.

10. L. Hakimi. Optimum locations of switching centers and the absolute centers and
medians of a graph. Operations Research, 12:450–459, 1964.

Hybrid Genetic Algorithm for Solving the p-Median Problem 25

11. C. Hosage and M. Goodchild. Discrete space location-allocation solutions from
genetic algorithms. Annals of Operations Research, 6:35–46, 1986.

12. R.C. Johnson. Record travelling salesman solution. TechWeb, June 29th 1998.
http://www.techweb.com/.

13. L. Kaufman and P.J. Rousseuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley & Sons, NY, US, 1990.

14. J.E. Maranzana. On the location of supply points to minimize transport costs.
Operational Research Quarterly, 15:261–270, 1964.

15. H. Mühlenbein, M. Gorger-Schleuter, and O. Krämer. Evolution algorithms in
combinatorial optimization. Parallel Computing, 7:65–85, 1988.

16. A.T. Murray and R.L. Church. Applying simulated annealing to location-planning
models. J. of Heuristics, 2:31–53, 1996.

17. A.T. Murray and V. Estivill-Castro. Cluster discovery techniques for exploratory
spatial data analysis. Int. J. of GIS, 12(5):431–443, 1998.

18. S. Narula, U. Ogbu, and H. Samuelsson. An algorithm for the p-median problem.
Operations Research, 25:709–713, 1977.

19. R.T. Ng and J. Han. Efficient and effective clustering methods for spatial data
mining. In J. Bocca, M. Jarke, and C. Zaniolo, Proc. of the 20th Conf. on Very
Large Data Bases (VLDB), 144–155, 1994. Santiago, Chile, Morgan Kaufmann.

20. N.J. Radcliffe. Genetic set recombination. In L. D. Whitley, Foundations of Genetic
Algorithms 2, 203–219, San Mateo, CA, 1993. FOGA-92 Morgan Kaufmann.

21. N.J. Radcliffe and F.A.W. George. A study of set recombination. Proc. Fifth Int.
Conf. Genetic Algorithms, 23–30, San Mateo, CA, 1993. Morgan Kaufmann.

22. C. Reeves. Hybrid genetic algorithms for bin-packing and related problems. Annals
of Operations Research, 63:371–396, May 1996.

23. C. ReVelle and R. Swain. Central facilities location. Geographical Analysis, 2:30–
42, 1970.

24. Rice News. Researchers forge new optimal path for traveling salesman problem.
Rice University, June 25th 1998.

25. D. Rolland, E. Schilling and J. Current. An efficient tabu search procedure for the
p-median problem. European J. of Operations Research, 96:329–342, 1996.

26. K. Rosing. An optimal method for solving the (generalized) multi-Weber problem.
European J. of Operations Research, 58:414–426, 1992.

27. K. Rosing, E. Hillsman, and H. Rosing. A note comparing optimal and heuristic
solutions to the p-median problem. Geographical Analysis, 11:86–89, 1979.

28. K.E. Rosing, C.S. Revelle, and H. Rosing-Voyelaar. The p-median and its linear
programming relaxation: An approach to large problems. J. of the Operational
Research Society, 30:815–823, 1979.

29. P. Sorensen. Analysis and design of heuristics for the p-median location-allocation
problem. MSc’s thesis, D. Geography, U. California, Santa Barbara, 1994.

30. M.B. Teitz and P. Bart. Heuristic methods for estimating the generalized vertex
median of a weighted graph. Operations Research, 16:955–961, 1968.

31. N.L.J. Ulder, E.H.L. Aarts, H.-J. Bandelt, P.J.M. van Laarhoven, and E. Pesch.
Genetic local search algorithms for the travelling salesman problem. H.-P. Schwefel
and P. Manner, eds., Proc. of 1st Workshop on Parallel Problem Solving from
Nature, 109–116, Berlin, 1991. Springer Verlag.

32. J. Weaver and R. Church. A median location model with nonclosest facility service.
Transportation Science, 19:107–119, 1985.

Correction of Reflection Lines Using
Genetic Algorithms

Binh Pham and Zhongwei Zhang

School of Information Technology and Mathematical Sciences
University of Ballarat, PO Box 663 Ballarat, VIC 3353, Australia

Phone +61 3 5327 9286 Fax +61 3 5327 9289
Email: {b.pham, z.zhang}@ballarat.edu.au

Abstract. The method of smoothing surfaces by correcting reflection
lines which is commonly used in the car design industry, relies heavily
on the experience of designers and often involves very tedious work. This
paper discusses how genetic algorithms can be used to alleviate this
problem by providing alternative solutions under suitable constraints set
by designers. Strategies for designing genetic codes, fitness functions,
crossover and mutation methods, are investigated, with the aim to make
the surface smoothing process more intuitive and yet leave designers with
a greater choice.
Keywords: surface smoothing, reflection line, genetic algorithm, aes-
thetic constraints

1 Introduction

The problem of smoothing free form surfaces is very important in many indus-
tries where it is essential to produce surfaces which are visually pleasing. In
particular, in car body design, undesirable bumps, oscillations or wiggles should
be identified and corrected to obtain smoother lines. One common method de-
ployed by the automobile industry uses reflection lines which are obtained by
reflecting a family of light sources along parallel straight lines on a surface and
viewing from a fixed position (e.g. [2,3]). Irregularities on these reflection lines
are then examined and corrected, and the surface becomes smoother as a result.

A common practice for a designer is to identify the part of the surface with
irregularities and to manually correct reflection lines along some specific direc-
tions. The resultant changes to this part of surface are then calculated. These
tasks may be performed iteratively until the designer is satisfied. This process
is often very tedious and since it is difficult to predict the effects that corrected
reflection lines have on the surface, the decision on how to perform the correc-
tions relies heavily on the experience of the designer. Another drawback is that
this process does not produce a unique solution, nor a number of alternative
solutions. What would be desirable is an automated scheme that can generate
different corrections to reflection lines to produce possible solutions that are ca-
pable of satisfying not only smoothness but also other constraints specified by
the designer (e.g. orientations and maximum distance for correction vectors).

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 26–33, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Correction of Reflection Lines Using Genetic Algorithms 27

These alternative solutions would allow the designer freedom to choose the one
with surface characteristics that is perceived as the most optimal in some way, for
example, in terms of aesthetics. We propose to achieve this by using evolutionary
programming methods based on genetic algorithms.

Genetic algorithms (GA) which simulate the evolution of a population of
living beings through the mutation of their genetic codes of chromosomes, does
not aim to provide an exact or the most optimal solution, but rather, to produce
potential solutions that satisfy specified constraints. The simulation is based on
the assumptions that offsprings inherit some characteristics of their parents and
that only those who are fit would survive. How to define and evaluate the degree
of fitness depends on the application domains. Thus, to apply GAs to a prob-
lem, one firstly needs to decide how best to construct the genetic codes that can
represent appropriately the essence of the problem. A suitable method for muta-
tion together with a fitness function and a penalty function must be devised to
ensure that survival individuals through evolution would depict faithfully pos-
sible solutions to the problem. GAs have been applied successfully to numerous
complex problems that cannot be solved easily by analytical or numerical meth-
ods. In particular, alternative solutions in computer-aided design problems such
as smoothing curves [4] and bridge design [1], have been generated using this
approach.

This paper explores how GAs can be used for correction of reflection lines in
an intuitive way. The aim is to remove some tedious tasks from designers, yet
provide them with further flexibility and control over the ways corrections are
performed. Section 2 discusses how the fitness function is designed and gives a
brief description of the overall algorithm. Section 3 covers implementation details
and Section 4 analyses the results.

2 Design of Genetic Algorithms

2.1 Reflection Line

There are a number of alternative methods for generating reflection lines (e.g.
[2,3]). For the first evaluation of our approach, we choose to use a more simple
definition of reflection lines proposed by Kaufmann and Klass [2], instead of the
physical reflection lines defined by Klass [3].

V

α

V

KK reflection line

Surfaceα

V

α

V

α

V

α

Fig. 1. KKRL: Reflection lines defined by Kaufmann and Klass

28 Binh Pham and Zhongwei Zhang

The latter case will be dealt with in a future paper. To distinguish the two
types of reflection lines, we denote those proposed by Kaufmann and Klass as
KKRL. We use parameter spline curves that represent a surface and construct
their corresponding reflection lines as follows. Given a fixed vector ~V and an
angle α, we look for a point on each spline where the angle between the tangent
vector to the curve and ~V equals α. The line segment formed by connecting these
points is the reflection line corresponding to angle α. Thus, a family of reflection
lines can be constructed for a set of equally distributed angles (see Figure 1).

2.2 Genetic Algorithms

To design the first set of genetic algorithms to produce possible smoother sur-
faces, we choose the most simple assumption and constraints, and plan to care-
fully analyse their performance before proceeding to more complex cases. Al-
though it is generally possible to correct the points on the reflection lines in any
direction, it appears that the most simple and natural way is to correct these
points along the direction perpendicular to the curve tangent vector. In addition,
we need to incorporate the following constraints which are considered desirable
by the automobile industry:

– the amounts of correction should be kept to the minimum;
– the reflection lines must be as smooth as possible;
– local convexity is retained in the adjusted splines, obtained after the reflec-

tion splines are corrected.
– the angle between the tangent vector of the adjusted splines and ~V remains

unchanged;

The first constraint ensures that the essence of the design has not been altered
significantly after the smoothing process. It also keeps the cost to the minimum.
The second and third constraints ensure that surface smoothness be achieved
and oscillations be avoided. The fourth constraint obeys the definition of the
reflection lines.

Representation scheme The population of individuals in our simulation are
reflection lines, while the genetic codes are formed by sequences of corrected
distances at points on each reflection line. Thus, the genetic codes can be repre-
sented as a 2D array of corrected distances.

Genetic operations and parameters As the current practice is to correct
reflection lines directly, while the adjustments to the surface is only implied, in
our first design of GAs, we choose to use a fixed point crossover and random point
mutation strategy along only each reflection line. This will facilitate comparative
analysis of our method to existing ones. However, this strategy will be later
extended to use variable crossover points (e.g. at points where the reflection
line is least smooth), and to allow crossover along parameter curves as well
as along reflection lines. Although there is no sound theory of selecting GA

Correction of Reflection Lines Using Genetic Algorithms 29

parameters such as population size, crossover rate and mutation rate, there are
some empirical results indicating that the optimal performance can be achieved
for the cases where population size is between 20 and 30, while crossover rate
and mutation rate are between 0.75 and 0.95 and 0.005 and 0.01, respectively
[5].

Selection of fitness function As stated above, a genetype and a chromosome
are designed respectively as a single corrected distance and a set of corrected
distances. Fitness function f provides a mechanism to evaluate a set of reflection
lines with respect to constraints. The selection of the fitness function is even
more application-oriented. In our case, the better fit to the constraints, the more
possibility for a chromosome to be selected for use to generate new chromosomes
from which new reflection lines are obtained. In the context of industrial design,
these constraints can be interpreted in terms of position and smoothness as
follows:

– positional constraints
• each KKRL must lie with a strip specified by a designer after inspecting

the original RL;
• displacements of the points on RL to be minimum.

– smoothness constraints of KKRL
• sum of squares of curvatures must be small as possible;
• sum of second derivatives must be as small as possible.

Then the fitness function f = f(Sc2, Sh2, N) is defined as

f =
w1

Sc2 +
w2

Sh2 − w3 × N (1)

where w1, w2, w3 are the coefficient and Sc2, Sh2 respectively are summation
of the squared curvatures, and the squared distances at all points determining
reflection lines, while N represents the number of points which have violated the
curvature constraints.

2.3 Description of the Genetic Algorithms

(1) Given a vector V and a surface, compute parametric spline curves
(2) Compute KKRL corresponding to these spline curves
(3) Ask user to specify area surrounding each KKRL within which

the corrected one must lie
(4) Generate an initial population of chromosomes (40 X 2D arrays of

randomly chosen displacement of KKRL points)
(5) For each chromosome (ie each set of displacement of KKRL points)

1. evaluate its fitness and its probability of crossover and mating
2. only display those KKRL that satisfy positional constraints

(6) Generates offsprings from each pair of parents
(7) Perform crossover and/or mutation on the selected pairs of parents

30 Binh Pham and Zhongwei Zhang

(8) Repeat steps 5-7 until one of the following conditions are satisfied:
1. a number of chromosomes acquire a specified degree of fitness;
2. a number of chromosomes satisfy visual requirement;
3. the population is uniform.

3 Implementation

On a SGI workstation, a GUI which uses X-Windows and Motif, has been devel-
oped in C++ for doing experiments, while the display of 3D curves or surfaces
is based on OpenGL.

3.1 The Overall System

To obtain a set of the reflection lines, users have to provide the system with a
set of 3D control points and a constant vector ~V . The system is currently able to
display a set of reflection lines. After the users specify a set of parameters for the
GA, the system will correct the reflection lines, and then display the corrected
surface.

3.2 Data Structure

Non-Uniform Rational B-Splines (NURBS) have become the de facto standard
for CAD surface representation in car body design, and a NURBS representation
of a surface can be determined by a set of control points. Such a representation
may be found in many textbooks (see, for example [6])

Following the definition of reflection line described in section 2.1, a few reflec-
tion lines with respect to a vector ~V = (0.2, 0.2, 0.8) are displayed in Figure 2(a).

Fig. 2. KK reflection lines: (a) original; (b) corrected

Correction of Reflection Lines Using Genetic Algorithms 31

Whenever the corrected offsets and the directions of change are given, a new
reflection line can be determined by a series of scalar parameters, and a family
of new reflection lines can be determined by a 2D array of scalars, hij . Such
a set of 2D array of floating points is encoded as a chromosome, and used as
a representation of a family of reflection lines. Figure 3 describes a family of
reflection lines with their changing direction vectors, Wij , displacements, hij

and encoded representation at the bottom.

11 13

31 34

34

h

h

21

12

44

42 43

22

23

3332

h

hh

h

34
44

W41

W

h

hhhh

h h

h h

h

24232221141312 31

Chromosome

44434232 33 34 4111 hhhhh h h h h

41

hhh hhh h

33

333231

24232221

42

W
W

WW11 12

13

14

W

W

W

W

W

W

W W W

W

Fig. 3. The chromosome encode schema

As a basis of the developing GA, the data has been structured into classes
and four major classes are B Spline, Ref Line, RLine Surf and GA RLine (see
Figure 4). The B Spline are used to structure B-splines, Ref Line are for the
single reflection line and RLines for a set of reflections lines. Finally GA RLine
is designed for the genetic algorithms. These classes are designed as a cascade
relationship, represented in Figure 4, i.e. the GA RLine is based on the Rline Surf
combined with their operations and fitness function, while Rline Surf is a derived
class of Ref Line, and so on.

3.3 Curvatures and Fitness

The calculation of curvatures on the corrected splines is obtained by adding the
curvature of each original spline and that of its difference spline.

s(u, v) = s(u, v) + d(u, v) (2)

s0
u(u, v) = s

0
u(u, v) + d

0
u(u, v) (3)

s00
u(u, v) = s

00
u(u, v) + d

00
u(u, v) (4)

32 Binh Pham and Zhongwei Zhang

(crossover,

Operations Fitness function

(constraints)

)
 mutation,

GA_RLine

Rline_Surf

Ref_Line

B_Spline

Point3D

elite

Fig. 4. The implementation of the system

where s, s
0
and s

00
are the parameteric representation of NURBS and its first and

second derivative along u direction, while d, d′ and d
00

are the difference spline
and first and second derivatives of the difference spline along u direction.

4 Analysis of the Results

We ran the genetic algorithm on the reflection lines with a population size of 30
generated at random, crossover rate 0.8 and mutation rate 0.08. The coefficients
w1, w2 and w3 selected for (1) to measure their fitness in experiments are 100.0,
15.0 and 10, respectively.

The corrected KKRL can be seen in Figure 2 at right side. Figure 5 shows
the fitness changes of the best solution at generations.

The convergence of the genetic algorithm is qualitatively interpreted in terms
of the speed of the optimal solutions can be generated. From Figure 5, it can
be seen that the convergence of the genetic algorithm used in our experiments
is slow at the beginning, but gains a dramatic increase at the later stage. One
reason could be that initial random solutions are too far from potential solutions.

The amount of computation involved in our approach is proportional to the
number of points on the reflection lines to be corrected. This compares favourably
with the traditional approach which has a linear relationship to the squared
number of control points in terms of computations.

Correction of Reflection Lines Using Genetic Algorithms 33

260
270
280
290
300
310
320
330

0 5 10 15 20 25 30

Fitness

Generation

Fitness vs. Generation

Fig. 5. The fitness change along generations

5 Conclusion

A new approach to correcting the reflection lines based on the evolutionary
technique has been proposed and implemented. Comparing with other methods,
our approach has the advantages that corrections on all reflection lines can be
performed simultaneously and users can influence the results by modifying the
fitness function.

We plan to explore this approach further in the following aspects:

– using a variable crossover point at positions where curvature is less than a
specified value;

– performing fixed point crossover along parametric lines as well as reflection
lines;

– correcting reflection lines along different directions;
– using physical reflection lines as defined by Klass [3];
– including other aesthetic constraints in the fitness function.

References

1. Furuta H., Maeda and Watanabe E.: Application of Genetic Algorithm to Aesthetic
Design of Bridge Structures, Microcomputers in Civil Engineering 10 (1995), pp.415-
421.

2. Kaufmann E. and Klass R.: Smoothing surfaces using reflection lines for families of
splines, Computer-Aided Design 20 (6), 1988, pp.312-316.

3. Klass R.: Correction of local surface irregularities using reflection lines, Computer-
Aided Design 12 (2), 1980, pp.73-77.

4. Markus A., Renner G. and Vancza: Genetic Algorithms in Free Form Surface Curve
Design, in Mathematical Methods for Curves and Surfaces, M. Daehlen, T. Lyche
and L.L. Schumaker (Eds.), Vanderbilt University Press, 1995, pp.343-354.

5. Mitchell, M.: An Introduction to Genetic Algorithms, The MIT Press, London,
England 1996.

6. Rogers, D. F. and Adams, J. A.: Mathematical Elements for Computer Graphics
(2nd ed.), The McGraw-Hill Publishing Company, 1990.

Adaptation under Changing Environments with
Various Rates of Inheritance of

Acquired Characters:
Comparison between Darwinian and Lamarckian Evolution

Takahiro Sasaki1 and Mario Tokoro2

1 Department of Computer Science, Faculty of Science and Technology, Keio
University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-0061, Japan

2 Sony Computer Science Laboratory Inc., 3-14-13 Higashigotanda, Shinagawa-ku,
Tokyo 141-0022, Japan

E-mail: sasaki@mt.cs.keio.ac.jp, mario@csl.sony.co.jp

Abstract. In this paper, we study the relationship between learning and
evolution in a simple abstract model, where neural networks capable of
learning are evolved through genetic algorithms (GAs). The connective
weights of individuals’ neural networks undergo modification, i.e., certain
characters will be acquired, through their lifetime learning. By setting
various rates for the heritability of acquired characters, which is a mo-
tive force of Lamarckian evolution, we observe adaptational processes of
the populations over successive generations. Paying particular attention
to behaviours under changing environments, we show the following re-
sults. The population with the lower rate of heritability not only shows
more stable behaviour against environmental changes, but also main-
tains greater adaptability with respect to such changing environments.
Consequently, the population with zero heritability, i.e., the Darwinian
population, attains the highest level of adaptation toward dynamic en-
vironments.

1 Introduction

It is obvious that the adaptational processes of natural organisms consist of two
complementary phases, each taking place at different spatio-temporal levels: 1)
learning, occurring within each individual’s lifetime, and 2) evolution, occur-
ring over successive generations of the population[4,9,1]. Here, a simple question
arises: “How should these processes of adaptation at the different levels be con-
nected with each other for a greater advantage?” The main goal of this paper is
to point to a possible direction for the answers to this question.

In the history of evolutionary theory, there have been two major ideas that
give different explanations for the motive force of natural evolution and the
phenomenon of genetic inheritance: Lamarckism and Darwinism. The former
regards the effect of “inheritance of acquired characters” as the motive force of
evolution. Through interactions with the environment or learning, individuals

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 34–41, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Adaptation under Changing Environments with Various Rates of Inheritance 35

may undergo some adaptive changes that will then somehow be encoded in their
genes and direct the evolutionary process. On the other hand, the central dogma
of Darwinism is that the motive force of evolution is “(non-random) natural
selection following on random mutation”; mutation itself has no direction, but
some individuals with advantageous mutations will have more chance of survival
and reproduction through natural selection. It claims that evolution is nothing
but these cumulative processes of natural selection. As we know, the mainstream
of today’s evolutionary theory follows Darwinism, and Lamarckism is regarded
as wrong or as a heresy.

In spite of the biological background mentioned above, from the viewpoint
of engineering it is not necessary to consider only Darwinian evolution models.
Indeed, the possibility of using the heredity of acquired characters would be
quite attractive[3,5]. For this reason, we compared Darwinian and Lamarckian
evolution using a simple abstract model in our previous paper[10]. We showed
that, under changing environments, the population with Darwinian evolution
not only showed more stable behaviour against environmental changes, but sur-
prisingly, could also maintain greater adaptability with respect to such dynamic
environments than could the Lamarckian population. While Lamarckian popu-
lations could adapt themselves quite quickly to a certain single situation, they
had difficulty in leaving the specific state of adaptation once it had taken place
owing to their extremely greedy strategy for genetic inheritance. That is why the
Lamarckian population in [10] performed poorly under changing environments.
Therefore, in this paper, we introduce a new parameter, heredity rate, into our
Lamarckian model to control the amount of inheritance of acquired characters.
We discuss whether there is any appropriate value range of the heredity rate that
enables Lamarckian evolution to cope appropriately with changing environments
while maintaining quick adaptability toward each single condition.

With other researchers who have recently considered adaptational processes
under changing environments[2,8,7], we also believe that any evolutionary com-
putation for real-world application must be equipped with adaptability toward
dynamic situations. For this reason we have concentrated especially on changing
environments.

2 Experimental Model

Here we present our experimental framework and settings. A hundred individuals
come into a virtual “world,” with 500 units of initial “life energy” for each. Each
individual has a feed-forward neural network that serves as its “brain,” meaning
that the individual takes action based on the network outputs (Figure 1). We
take an array of real numbers as a “chromosome” from which the neural network
is developed. The chromosome directly encodes all the connective weights of the
network[6]. Values of the chromosomes in the initial generation are set randomly,
from the range −0.30 ∼ 0.30.

The world contains two groups of materials, “food” and “poison,” both of
which have distinctive features, i.e., patterns of bits. For example, in Figure 2,

36 Takahiro Sasaki and Mario Tokoro

Action
Decision
Module

Action
 "Eat"
 or
"Discard"

Life EnergyMaterial
 "Food"
 or
"Poison"

Reinforcement Learning
"Reward" or "Punishment"

Neural Network

Back Propagation Learning

Individual

0.34 0.08 −0.20 0.32 −0.56 1.02 0.151.06 2.10

ChromosomeGene

Fig. 1. The architecture of an individual.

Group A

Group B

Fig. 2. The materials in the
virtual world.

materials in “group A” are food, and those in “group B” are poison. The symbol
“*” means don’t care whether the cell is black or white. Thus, food and poison
are discriminated by the upper three bits, and the lower three bits are noise.

On each occasion when given any material, an individual inputs the pattern
of the material into its neural network and stochastically determines whether
to “eat” or “discard” it according to the network outputs. These actions are
not mapped directly from the outputs themselves. The network outputs are fed
once as signals to an “Action Decision Module” (Figure 1), which then finally
determines the action of the individual stochastically according to a Boltzmann
distribution. This type of stochastic mechanism is necessary to maintain the
possibility of seeking more advantageous behaviours, even if an individual has
already acquired a certain adequate behavioural pattern[10].

If what the individual ate was food, it receives 10 units of energy and tries to
train itself to produce the “eat” action with a higher probability for that pattern.
Conversely, if the individual ate poison, it loses a comparable amount of energy
and tries to train itself to produce the “discard” action with a higher probability
for that pattern. When the individual discards the material, no learning is con-
ducted. The aim of each individual is to maximize its life energy by learning a
rule that discriminates food and poison, which in this case corresponds to a par-
ity problem of three bits. We use the Back Propagation Learning (BP Learning)
algorithm, in combination with a Reinforcement Learning framework, to train
each individual. The coefficients of learning and inertia of BP Learning are set
at η = 0.75 and α = 0.8, respectively.

Each individual is repeatedly offered a certain number of materials, 400 in
the current experiments, and learning occurs. We regard this number of repeated
events as the length of an individual’s “lifetime.” At the end of each generation,
some of the individuals are selected as parents by a stochastic criterion pro-
portional to the level of their energy, i.e. their fitness. Parents re-encode their
network connective weights, that suffered modification through their lifetime
learning, into their chromosomes according to a given heredity rate τ (Figure
3). In Figure 3, w0 and wL represent the vectors of connective weights at the
time of birth and at the time of reproduction, i.e., after the lifetime learning,
respectively. Chromosomes ce and ci represent the one from which an individual

Adaptation under Changing Environments with Various Rates of Inheritance 37

CChromosome Pool

Genetic Algorithm

− selection
− recombination
− mutation

w0

ce

cew0 D= ()

wL

ic

ic D
−1 w0wL(−)w0+ ().=

Learning during
the Life

Fig. 3. The mechanisms of genetic inheritance

develops and the one which the individual produces after learning, respectively.
D is a mapping from genotype to phenotype, and D−1 is its inverse. Individuals
with τ = 0 do not re-encode any acquired characters into their chromosomes,
but just hand the chromosomes that they inherited from their parents to the
process of GAs. On the other hand, with τ = 1 all the acquired characters are
re-encoded into the chromosomes. Therefore, we refer to the populations with
τ = 0 and those with 0 < τ < 1 as Darwinian and Lamarckian, respectively, and
especially refer to those with τ = 1 as full-Lamarckian. Chromosomes of the se-
lected individuals undergo the genetic processes of recombination and mutation.
Here, the number of crossing-over points is set randomly from the range 0 ∼ 4.
Each mutation occurs at the rate of 5%, with a variation range between ±0.5.
Thus, the selected parents reproduce new offspring, which then undergo lifetime
learning in the following generation. Although the parameters in this paper are
set heuristically according to some preliminary experiments, we have confirmed
that changing these values within a moderate range results in qualitatively sim-
ilar outcomes.

3 Experimental Evaluations

Now consider a world where food and poison are characterized by arrays of six
bits, as shown in Figure 2. At any given time, one group of the two is set up
as food and the other as poison. We referred to an environment where “group
A” is food as “Env A,” and the other where “group B” is food as “Env B.”
To consider changing environments, we make the world switch between “Env
A” and “Env B,” so that food and poison swap their roles repeatedly at each
particular interval, which is here set at 20 generations. Although a situation such
as this may seem to be rather arbitrary or unrealistic, it can actually happen
that characters advantageous to survival are totally overturned. A well-known
example is the industrial melanism of certain moths in the Industrial Revolution

38 Takahiro Sasaki and Mario Tokoro

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600
Generations

(a) 0 − 600 generations

0

500

1000

1500

2000

2500

(b) 0 − 5000 generations
Generations

0 1000 2000 3000 4000 5000

Average Fitness Average Fitness

= 1.0

= 0.0 = 1.0

= 0.0

Fig. 4. The average fitness: Darwinian (τ = 0.0) vs. full-Lamarckian (τ = 1.0)

era in England[11]. Although we obtain qualitatively similar results even if we
use a more difficult and random situation, we show here the results for this type
of simple case, where the environment is repeatedly overturned, for clarity. All
the experimental results, shown hereafter, are the average of 20 runs.

3.1 Darwinian (τ = 0.0) versus full-Lamarckian (τ = 1.0)

Let us first compare the two extreme cases: Darwinian (τ = 0.0) and full-
Lamarckian evolution (τ = 1.0). Figures 4(a) and (b) show the changes in the
average fitness of the populations. As is evident from the figures, the fitness of
the full-Lamarckian population oscillates violently as the environment is over-
turned, while that of the Darwinian population hardly oscillates and is more
stable. The point that we should especially emphasize is that the fitness of the
Darwinian population rises over successive generations. This suggests that a pop-
ulation that can cope with both the rules of “Env A” and “Env B” is formed
through Darwinian evolution. To confirm this practically, we let four groups of
populations (an initial generation, 500th, 2000th, and 5000th generation) con-
duct learning under each of the two environments. Figures 6(a) – 6(d) show
the learning curves of both populations under each environment. The figures
show the changes in average output errors for the discrimination ability learned
during their lifetime. The mean squared error is used to measure the difference
between the actual outputs and the ideal outputs. We can confirm that the Dar-
winian mechanism forms a population of individuals that learn both rules more
appropriately as the generations proceed. In contrast, full-Lamarckian evolution
produces individuals that cannot appropriately learn either rule. The two learn-
ing curves for Lamarckian individuals in the later generation differ from each
other, which means that they cope with one rule better than the other. However,
even if the preferred rule is given, the Lamarckian population cannot learn it
better than the Darwinian one.

Adaptation under Changing Environments with Various Rates of Inheritance 39

Env A

Env B
0.0

1.0

2.0

3.0

4.0

0 100 200 300 400
Learning Steps

Outputs Error

5.0

(a) = 0.0005

Env AEnv B

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400
Learning Steps

Outputs Error

(c) = 0.01

Env A

Env B

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400
Learning Steps

Outputs Error

(b) = 0.001

Env A

Env B

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400
Learning Steps

Outputs Error

(d) = 0.02

Env A

Env B

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400
Learning Steps

Outputs Error

(e) = 0.05

Env A

Env B

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400
Learning Steps

(f) = 0.1

Outputs Error

Fig. 5. Learning curves with various heredity rates

(a) Initial generation

0.0

1.0

2.0

3.0

4.0

0 100 200 300 400
Learning Steps

Env A, Env B

Outputs Error

5.0
= 0.0

= 1.0

(b) 500th generation

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400
Learning Steps

Env A

Env B

Env B

Outputs Error

= 0.0

= 1.0

(c) 2000th generation

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400
Learning Steps

Env AEnv B

Outputs Error

= 0.0

= 1.0

(d) 5000th generation

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400
Learning Steps

Env A

Env B

Env A

Outputs Error

= 0.0

= 1.0

Fig. 6. Learning curves: Darwinian (τ = 0.0) vs. full-Lamarckian (τ = 1.0)

3.2 Controlling Heredity Rate (τ) of Acquired Characters

We now control the amount of heredity by setting τ at various values and ob-
serve the evolutionary processes of the populations. Figures 7(a) – 7(f) show the
changes in the average fitness of the populations with the heredity rate set at
0.0005, 0.001, 0.01, 0.02, 0.05, 0.1, respectively. As shown by the figures, pop-
ulations with a higher heredity rate become more unstable than those with a
lower rate. The fitness oscillations of the populations with heredity rates smaller
than 0.02 are within a rather tolerable range, while the oscillations grow intoler-
able with larger heredity rates. Figures 5(a) – 5(f) show the learning curves for
each environment of the 5000th populations with the heredity rate set at 0.0005,
0.001, 0.01, 0.02, 0.05, 0.1, respectively. As we can see from the figures, the two
learning curves become more different from each other as the heredity rate gets
higher, which indicates that the evolutionary processes with lower heredity rates
produce individuals that can learn both rules more appropriately.

40 Takahiro Sasaki and Mario Tokoro

Generations

500

1000

1500

2000

2500

0
0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

0
0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

0
0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

0
0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

0
0 1000 2000 3000 4000 5000

500

1000

1500

2000

2500

0
0 1000 2000 3000 4000 5000

Average Fitness

(a) = 0.0005

(f) = 0.1(e) = 0.05(d) = 0.02

(b) = 0.001 (c) = 0.01

Fig. 7. The average fitness with various heredity rates

4 Discussion

Under a dynamic environment, the ability to cope with various situations be-
comes more important than the ability to cope appropriately only with a specific
one. The direct Lamarckian effect that greedily transmits the “ability to perform
something” is not only useless but also harmful under a changing environment.
On the other hand, the indirect Baldwin effect that transmits the “ability to
learn something” plays a crucial role. Thus, the Darwinian population became
most adapted toward the changing environments in our experiment.

In the real biological world, while a phenotype is developed dynamically
through quite complex chemical processes according to the information of a
genotype, it is very difficult to do the reverse, that is, to determine and compose
the corresponding formation of the genotype for a certain phenotype. This is
why Lamarckian inheritance is generally said to be infeasible. However, from
our experimental results we may suggest another explanation for the essential
reason why creatures selected the Darwinian strategy of genetic inheritance in
the earlier stages of their evolution. The real world is an environment with
strong dynamic characteristics; therefore Darwinian inheritance itself has been
an advantageous strategy for adaptation to the real world.

Adaptation under Changing Environments with Various Rates of Inheritance 41

5 Conclusions

We evaluated on a simple abstract model how learning with inheritance of ac-
quired characters affects the evolution of the population, especially under chang-
ing environments. By controlling the amount of inheritance, we have shown
that populations with lower heritability not only showed more stable behaviour
against environmental changes, but also maintained greater adaptability with
respect to such changing environments.

Although it must be considered whether our experimental model and results
are sufficiently general, we have clarified possible fundamental characteristics
that are required for adaptation toward changing environments. Therefore, we
believe that the results obtained here may give helpful suggestions in, for ex-
ample, designing artificial intelligence systems or software agents that will be
brought into play under dynamic environments.

References

1. David H. Ackley and Michael L. Littman. Interactions between Learning and
Evolution. In Artificial Life II, SFI Studies in the Sciences of Complexity, vol.X,
pages 487–509. Addison-Wesley, 1992.

2. Helen G. Cobb and John J. Grefenstette. Genetic Algorithms for Tracking Chang-
ing Environments. In Proceedings of 5th International Conference on Genetic Al-
gorithms and their applications (ICGA-93), pages 523–530, 1993.

3. John J. Grefenstette. Lamarckian Learning in Multi-agent Environments. In Pro-
ceedings of 4th International Conference on Genetic Algorithms and their applica-
tions (ICGA-91), pages 303–310, 1991.

4. G. E. Hinton and S. J. Nowlan. How Learning Can Guide Evolution. Complex
Systems, 1:495–502, 1987.

5. Akira Imada and Keijiro Araki. Lamarckian evolution of associative memory. In
Proceedings of 1996 IEEE The Third International Conference on Evolutionary
Computation (ICEC-96), pages 676–680, 1996.

6. David J. Montana and Lawrence Davis. Training Feedforward Neural Networks
Using Genetic Algorithms. In Proceedings of the 11th International Conference on
Artificial Intelligence (IJCAI-89), pages 762–767, 1989.

7. Naoki Mori, Seiji Imanishi, Hajime Kita, and Yoshikazu Nishikawa. Adaptation
to Changing Environments by Means of the Memory Based Thermodynamical
Genetic Algorithm. In Proceedings of 7th International Conference on Genetic
Algorithms and their applications (ICGA-97), pages 299–306, 1997.

8. Stefano Nolfi and Domenico Parisi. Learning to adapt to changing environments in
evolving neural networks. Technical Report 95-15, Institute of Psychology, National
Research Council, Rome, 1995.

9. Domenico Parisi, Stefano Nolfi, and Federico Cecconi. Learning, Behaviour and
Evolution. In Toward a Practice of Autonomous Systems: Proceedings of the First
European Conference on Artificial Life, pages 207–216. MIT Press, 1991.

10. Takahiro Sasaki and Mario Tokoro. Adaptation toward changing environments:
Why Darwinian in nature? In 4th European Conference on Artificial Life (ECAL-
97), pages 145–153, 1997.

11. John Maynard Smith. Evolutionary Genetics. Oxford University Press, 1989.

Dynamic Control of Adaptive Parameters in
Evolutionary Programming

Ko-Hsin Liang, Xin Yao, and Charles Newton

Computational Intelligence Group, School of Computer Science
University College, The University of New South Wales

Australian Defence Force Academy, Canberra, ACT, Australia 2600
Email: {liangk, xin, csn}@cs.adfa.oz.au

Abstract. Evolutionary programming (EP) has been widely used in
numerical optimization in recent years. The adaptive parameters, also
named step size control, in EP play a significant role which controls the
step size of the objective variables in the evolutionary process. However,
the step size control may not work in some cases. They are frequently
lost and then make the search stagnate early. Applying the lower bound
can maintain the step size in a work range, but it also constrains the
objective variables from being further explored. In this paper, an adap-
tively adjusted lower bound is proposed which supports better fine-tune
searches and spreads out exploration as well.

1 Introduction

Evolutionary programming (EP) [1] has been applied to many optimization prob-
lems successfully in recent years [2,3,4]. A global optimization problem can be
formalised as a pair (S, f), where S ⊆ Rn is a bounded set in Rn and f : S → R is
an n-dimensional real-valued function. The problem is to find a vector xmin ∈ S
such that f(xmin) is a global minimum on S. More specifically, it is required to
find an xmin ∈ S such that

∀x ∈ S : f(xmin) ≤ f(x)

Here f does not need to be continuous, but it has to be bounded.
According to the description of Fogel [1] and Bäck and Schwefel [5], EP is

implemented in this study as follows:

1. Generate the initial population of µ individuals, and set the generation κ =
1. Each individual is taken as a pair of real-valued vectors, (xi, ηi), ∀i ∈
{1, · · · , µ}, where ηi is an adaptive parameter. Each x has n components
x(j), j = 1, · · · , n.

2. Evaluate the fitness score for each individual (xi, ηi), ∀i ∈ {1, · · · , µ}, of the
population based on the objective function, f(xi).

3. For each parent (xi, ηi), i = 1, · · · , µ, create a single offspring (x′
i, η

′
i) by :

η′
i(j) = ηi(j) exp(τ ′N(0, 1) + τNj(0, 1)), (1)

x′
i(j) = xi(j) + η′

i(j)Nj(0, 1),

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 42–49, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Dynamic Control of Adaptive Parameters in Evolutionary Programming 43

xi(j), x′
i(j), ηi(j) and η′

i(j) denote the j-th component of the vectors xi, x′
i, ηi

and η′
i, respectively. N(0, 1) denotes a normally distributed one-dimensional

random number with mean 0 and standard deviation 1. Nj(0, 1) indicates
that the random number is generated anew for each value of j. The factors τ
and τ ′ have commonly been set to (

√
2
√

n)−1 and (
√

2n)−1, respectively [6].
4. Calculate the fitness of each offspring (x′

i, η
′
i), ∀i ∈ {1, · · · , µ}.

5. Conduct pairwise comparisons over the union of parents (xi, ηi) and offspring
(x′

i, η
′
i), ∀i ∈ {1, · · · , µ}. For each individual, q opponents are chosen ran-

domly from all the parents and offspring with an equal probability. For each
comparison, if the individual’s fitness is no greater than the opponent’s, it
receives a “win.”

6. Select the µ individuals out of (xi, ηi) and (x′
i, η

′
i), ∀i ∈ {1, · · · , µ}, that have

the most wins to be parents of next generation.
7. Stop if the halting criterion is satisfied; otherwise, k = k+1 and go to Step 3.

The adaptive parameter, ηi, also called the step size control in Step 3, is
expected to adaptively adjust the step size for each objective variable. The ideal
result is to have a larger step size for the objective variable at the beginning of
the evolutionary process to speed up the search, and become smaller at the later
stage for better fine-tuning. Eq. 1 is the update rule for the adaptive parameters
at the component level [7]. An adaptive parameter value can survive to the
next generation when its corresponding variable value leads to higher fitness.
However, it can also survive to the next generation when the higher fitness is
caused by other objective variables.

In evolution, some of the adaptive parameters are reduced too fast which
cause the affected variables to lose their usefulness in maintaining diversity [8].
If the distance from xj to the minimum x∗

j for the j-th component has, for
example, |xj − x∗

j | ≥ 1, and the adaptive parameter ηj < 0.001, the probability
for xj reaching x∗

j will be very small. We expect that the selection procedure can
expunge those individuals with the phenomenon. In fact, some individuals with
the phenomenon have even better performance than others in the population.
These individuals survive and generate offspring with similar characteristics.
When all individuals have the feature after a certain number of generations,
the stagnation happens. This problem has been studied in detail in an early
paper [8].

In evolution strategies [6,9] the lower bound η− is used to keep the step
size controls from being lost. One implementation of evolutionary programming
applies a small value 0.001 to replace the negative adaptive parameters when
using the Gaussian update rule [10]. The empirical study in [8] has shown that
a proper selected η− can improve EP’s performance significantly.

However, applying a lower bound may constrain the objective variables from
finer exploitation. Different problems also need different lower bounds which can
only be determined empirically [8]. In this paper, we propose a scheme to apply
a dynamic lower bound on the adaptive parameters for each individual. The use
of such a dynamic scheme has improved the performance of EP significantly.
The rest of this paper is organised as follows. Section 2 provides a mathematical

44 Ko-Hsin Liang, Xin Yao, and Charles Newton

and empirical analysis of the adaptive parameters in (1+1) EP. The scheme
of applying a dynamic lower bound to the adaptive parameters is presented in
Section 3. Section 4 presents the main results of this paper. It compares EP with
different lower bound schemes on the adaptive parameter of a set of benchmark
functions. Finally, Section 5 concludes the paper with some remarks.

2 Analysis

In this section, we use a (1+1) EP as the optimization algorithm. Given an n-
dimensional real-valued function f(x), using one parent in each generation, the
adaptive parameter η′

j is created by:

η
(i+1)
j = η

(i)
j exp(τNj(0, 1))

Here j denotes the j-th component and τ = 1√
n

[11]. This is a modified version of

Eq.1 . Given initial η
(0)
j , we can find η

(κ)
j after running κ generations of successful

mutations. Note that the actual generation number will be greater or equal to
κ as the success rate of generating the offspring is no more than 1. Therefore,
through the sequence

{ η
(1)
j , η

(2)
j , η

(3)
j , · · · , η

(κ)
j }

we get

η
(κ)
j = η

(0)
j exp

(
τ

κ∑
i=1

Ni(0, 1)
)

The probability that the adaptive parameter η
(κ)
j will be smaller than an

arbitrary small number ε is:

Pη = P
(
η
(κ)
j < ε

)

= P
(
η
(0)
j exp

(
τ

κ∑
i=1

Ni(0, 1)
)

< ε
)

Since the sum of κ independent N(0, 1) random variables has the distribution [12,
pp.267]:

κ∑
i=1

Ni(0, 1) ∼ N(0, κ),

we get

Pη = P
(
η
(0)
j exp

(
τN(0, κ)

)
< ε

)

= P
(
N(0, κ) < ln

(ε

η
(0)
j

)
/τ

)

=
∫ C

−∞

1√
2πκ

exp
(− t2

2κ

)
dt

= Φ
(C√

κ

)

Dynamic Control of Adaptive Parameters in Evolutionary Programming 45

where C = ln
(

ε

η
(0)
i

)
/τ . For sufficiently large C√

κ
, the following approximation [13]

can be used:
Φ(x) ' 1 − 1√

2π
exp

(−1
2
x2) · 1

x

The derivative ∂
∂κ (Pη) can be used to evaluate the impact of κ on Pη.

∂

∂κ
(Pη) =

∂

∂κ

(
1 − 1√

2π
exp

(−C2

2κ

) ·
√

κ

C

)

= − 1√
2π

1
C

exp
(−C2

2κ

)(1
2
√

κ
+

C2

2
κ− 3

2
)

For C =
√

n ln
(
ε/η

(0)
j

)
, it is apparent from the above equation that

∂

∂κ
(Pη)

{
> 0, if ε < η

(0)
j

< 0, if ε > η
(0)
j

From the trend of the adaptive parameters, we intuitively know that ε < η
(0)
j

after several generations, then we get ∂
∂κ (Pη) > 0. Thus, the larger the number

of generations κ, the larger Pη. In other words, the probability that the adaptive
parameter η

(k)
j becomes smaller than an arbitrary small number ε will be higher

if κ is larger.
To make a further evaluation of the impact of κ on the adaptive parameter ηj ,

we conducted a preliminary experiment with (1+1) EP. The benchmark function
tested was:

f(x) = −20 exp
(

−0.2

√√√√ 1
n

n∑
i=1

x2
i

)
− exp

(1
n

n∑
i=1

cos(2πxi)
)

+ 20 + e,

f(x) is a multimodal function with many local minima. The function dimension-
ality n was set to 3 and all components xj were initialized uniformly at random
over the range [−32, 32]. The total trials were 100, the maximum generation was
2000, the initial adaptive parameter η

(0)
j was 3. We randomly selected one vec-

tor of η to observe the variation and only the η with successful mutations were
recorded. Figure 1(a) shows the average variations of the adaptive parameter
ηj . At random, the third component η3 was selected. All η3 on each successful
generation were averaged over the trial number. Only trial numbers over 40 were
drawn. For large κ, less trials can generate more successful mutations.

It is clear that the larger κ becomes, the probability to get the smaller adap-
tive parameter becomes larger. The examples of the (1+1) EP have shown that
the smaller adaptive parameters were preferred after several generations. That
is, through the mutation and selection, the evolutionary process is working at
large step sizes in the early stage and smaller ones after certain generations.

When the adaptive parameters decrease, the best situation is when the ob-
jective variables are very close to the global optimum. Thus, the smaller step

46 Ko-Hsin Liang, Xin Yao, and Charles Newton

(a) (b)

0.1

1

10
0 10 20

successful generations

M
ea

n

0

25

50

75

100

T
ria

l N
o.

average of eta trial number

1

10

100

1000

10000

0 10 20

successful generations

M
ea

n

0

25

50

75

100

T
ria

l N
o.

x / eta trial number

Fig. 1. (a)The average variations of η3 are shown. The start of η
(0)
j > η

(κ)
j is found at

κ = 12. (b)The average relation pairs (xj

ηj
) are shown. At κ = 25, for example, after

average of 49 trials, the worst pair has xj

ηj
= 588

sizes are preferred. If any of the step sizes decrease faster than the objective vari-
ables approach to the optimum, the process may be stagnated by the unbalanced
component pair. That is, the step size becomes very small while the objective
variable is still far away from the global optimum. In figure 1(b), the worst rela-
tion pair (xj

ηj
) in each generation is shown. The average per trial number and the

experimental data are obtained from the same results. The stagnation largely
begins when xj

ηj
is over 1000.

To prevent the unbalanced phenomenon, a lower bound η− is definitely
needed [8]. However, the fixed lower bound creates a limitation on the search.
The choice of the lower bound is problem dependent. In the next section, we
propose a dynamic lower bound to improve the situation.

3 Dynamic Lower Bound

The implementation of the dynamic lower bound includes two steps. First, set up
an index to measure the adaptation of the lower bound. Then, adjust the lower
bound accordingly. The method used to evaluate the performance of the lower
bound is similar to “1/5 success rule” [9, pp.110]. If the number of successful
mutations is larger than 1/5 of all mutations, increase the step size. Otherwise,
decrease the step size. We calculate the number of offspring selected for the next
generation, and decide the ratio of successes to all offspring. Then, apply the
following rule to update the lower bound:

η−′ = η− (Sκ

A

)
, (2)

where Sκ is the success rate at generation κ and A is a reference rate, which has
been set between 0.25 and 0.45 in our experiments. It is worth pointing out that
our dynamic lower bound differs significantly from the 1/5 rule. The 1/5 rule

Dynamic Control of Adaptive Parameters in Evolutionary Programming 47

is based on the component level adaptation, while our dynamic lower bound is
based on the whole population, i.e. Sκ is calculated across the entire population.

Applying the dynamic lower bound, we expect to eliminate the early stagna-
tion, support the finer exploitation, provide the adaptively adjusted lower bound,
and most essentially, spread out the population for extensive search. This scheme
uses the lower bound to indirectly control the mutation step size to optimize the
evolutionary process. When the success rate is over the reference point, the step
size will increase to encourage the offspring aggressively to extend the search
range. On the contrary, the step size will be smaller for the closer range search.

4 Results

Six benchmark functions were tested as shown in Table 1. The functions were
numbered as in [3], f1, f2, f5 are unimodal functions and f9, f10, f11 are multi-
modal functions with many local minima. The EP algorithm used in our study
was the improved fast evolutionary programming (IFEP) [14]. The difference
between IFEP and classical EP (CEP) is in Step 3 of the algorithm described
in Section 1. Instead of generating one offspring using Gaussian mutation, IFEP
creates two offspring, one by Gaussian mutation and the other by Cauchy. The
better one is then chosen as the offspring. The population size µ = 50, the
tournament size q = 10 for selection, the reference rate A = 0.3, and the initial
standard deviations 3.0 were used. Two different IFEPs were tested, one with the
dynamic lower bound initialized to 0.1 and the other with the fixed η− = 0.0001.
The dynamic lower bound in IFEP was updated every 5 generations using eq. 2.

Table 1. The 6 benchmark functions used in our experimental studies, where n is the
dimension of the function, fmin is the minimum value of the function, and S ⊆ Rn.

Test function n S fmin

f1(x) =
∑n

i=1 x2
i 30 [−100, 100] 0

f2(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| 30 [−10, 10] 0
f5(x) =

∑n−1
i=1 [100(xi+1 − x2

i)
2 + (xi − 1)2] 30 [−30, 30] 0

f9(x) =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0

f10(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x2

i)
− exp(1

n

∑n
i=1 cos(2πxi)) + 20 + e 30 [−32, 32] 0

f11(x) = 1
4000

∑n
i=1 x2

i − ∏n
i=1 cos(xi√

i
) + 1 30 [−600, 600] 0

Table 2 summerises the experimental results of comparing IFEP with and
without a dynamic lower bound. All results have been averaged over 50 runs.
IFEP with the dynamic lower bound has much better performance on f1, f2, f10
and f11 because it maximised the IFEP’s capability to keep searching for a better
function value from the beginning. However, a worse result was observed on f5
and f9. Both of these cases lead to early stagnation of search. The experimental
data showed that the lower bound decreased too fast on certain generations

48 Ko-Hsin Liang, Xin Yao, and Charles Newton

and could not be recovered by eq. 2. This happened when all the individuals
were trapped into a local optimum. The success rate of the generation could not
provide any useful information about the search in this situation. The IFEP with
the fixed lower bound stagnates when the function value approaches the lower
bound value. Our experimental results appear to indicate that the dynamic lower
bound we proposed is quite efficient in finding a near optimal solution, but has a
weak ability in escaping from a local optimum once trapped. There is a trade-off
between efficiency and optimality here. In general, we feel the dynamic lower
bound provides a good balance between the two. We are currently investigating
methods for escaping from a local optimum once the algorithm is trapped.

Table 2. Comparison between IFEP with the fixed and dynamic lower bound on
functions f1, f2, f5, f9, f10, f11. All results have been averaged over 50 runs. “dLB” and
“fLB” mean the dynamic and fixed lower bound respectively. “Mean Best” indicates
the mean best function values found in the last generation.

Function number of IFEP w/dLB IFEP w/fLB dLB-fLB
generation Mean Best Std Dev Mean Best Std Dev t-test

f1 2000 2.00e-17 3.10e-17 3.33e-7 4.05e-8 −58.22†

f2 2000 6.56e-10 6.97e-10 2.31e-3 1.61e-4 −101.56†

f5 20000 1.83 1.43 3.58e-1 5.77e-1 6.76†

f9 5000 7.50 3.67 2.48 1.60 8.88†

f10 2000 2.15e-9 2.47e-9 4.16e-4 1.99e-5 −147.74†

f11 2000 1.27e-2 1.76e-2 1.17e-1 1.64e-1 −4.46†

†The value of t with 49 degrees of freedom is significant at α = 0.05 by a two-tailed
test.

5 Conclusions

Lower bounds for adaptive parameters in EP and evolution strategies are an
important issue which have been overlooked by most researchers. This paper
analyses the variation phenomenon of the adaptive parameter using (1+1) EP
through mathematical and empirical approaches. They both demonstrate the
necessity to add a lower bound to the adaptive parameters. This paper also pro-
poses a scheme to apply a dynamic lower bound to indirectly control the search
step size. This combines population-level adaptation of the success rate with
component-level self-adaptation of the adaptive parameters to optimise evolu-
tionary performance. The experimental results have shown that this dynamic
lower bound can provide better performance in IFEP for most numerical func-
tions we tested.

The mathematical analysis of (1+1) EP in this paper did not consider se-
lection. The selection also has an impact on the step size. The proposed update
rule of the dynamic lower bound does not work in some cases. However, this
scheme provides a good direction to promote and maximise the performance of
the evolutionary algorithm.

Dynamic Control of Adaptive Parameters in Evolutionary Programming 49

References

1. D.B. Fogel. A comparison of evolutionary programming and genetic algorithms on
selected constrained optimization problems. Simulation, 64(6):397–404, 1995.

2. D.B. Fogel. Applying evolutionary programming to selected control problems.
Computers & Mathematics with Applications, 27(11):89–104, 1994.

3. X. Yao and Y Liu. Fast evolutionary programming. In L.J. Fogel, P.J. Angeline,
and T. Bäck, editors, Evolutionary Programming V: Proc. of the Fifth Annual
Conference on Evolutionary Programming, pages 451–460, Cambridge, MA, 1996.
MIT Press.

4. K.-H. Liang, X. Yao, C. Newton, and D. Hoffman. Solving cutting stock problems
by evolutionary programming. In V.W. Porto, N. Saravanan, D. Waagen, and A.E.
Eiben, editors, Evolutionary Programming VII: Proc. of the Seventh Annual Con-
ference on Evolutionary Programming, volume 1447 of Lecture Notes in Computer
Science, pages 755–764, New York, 1998. Springer.

5. T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1(1):1–23, 1993.

6. T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University, New York,
1996.

7. P.J. Angeline. Adaptive and self-adaptive evolutionary computation. In
Y. Palaniswami, R. Attikiouzel, R. Marks, D. Fogel, and T. Fukuda, editors, Com-
putation Intelligence: A Dymanic System Perspective, pages 152–163, Piscataway,
NJ, 1995. IEEE Press.

8. K.-H. Liang, X. Yao, Y. Liu, C. Newton, and D. Hoffman. An experimental inves-
tigation of self-adaptation in evolutionary programming. In V.W. Porto, N. Sara-
vanan, D. Waagen, and A.E. Eiben, editors, Evolutionary Programming VII: Proc.
of the Seventh Annual Conference on Evolutionary Programming, volume 1447 of
Lecture Notes in Computer Science, pages 291–300, New York, 1998. Springer.

9. H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.
10. D.B. Fogel, L.J. Fogel, and J.W. Atmar. Meta-evolutionary programming. In

R.R. Chen, editor, Proc. of the 25th Asilomar Conference on Signals, Systems and
Computers, pages 540–545, San Jose, CA, 1991. Maple Press.

11. H.-G. Beyer. Toward a theory of evolution strategies: Self-adaptation. Evolutionary
Computation, 3(3):311–348, 1995.

12. H.J. Larson. Introduction to Probability Theory and statistical Inference. Wiley,
New York, third edition, 1982.

13. W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
Wiley, New York, third edition, 1968.

14. X. Yao, G. Lin, and Y Liu. An analysis of evolutionary algorithms based on neigh-
bourhood and step sizes. In P.J. Angeline, R.G. Reynolds, J.R. McDonnell, and
R Eberhart, editors, Evolutionary Programming VI: Proc. of the Sixth Annual Con-
ference on Evolutionary Programming, volume 1213 of Lecture Notes in Computer
Science, pages 297–307, New York, 1997. Springer.

Information Operator Scheduling by Genetic
Algorithms

Takeshi Yamada, Kazuyuki Yoshimura, and Ryohei Nakano

NTT Communication Science Laboratories,
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

{yamada, kazuyuki, nakano}@cslab.kecl.ntt.co.jp
http://www.kecl.ntt.co.jp/as

Abstract. In this paper, we discuss an approach to an operator schedul-
ing problem in a large organization over time with the aim of maintain-
ing service quality and reducing total labor costs. We propose a genetic
algorithm (GA) with a parameterized fitness function inspired by ho-
motopy methods and with null mutation to handle a variable number
of operators. The proposed method is applied to the practical problem
of scheduling operators in a telephone information center. Experimental
results show that the proposed method performs consistently better than
a GA method previously developed.

1 Introduction

In the operator scheduling problem for customer service operations at a tele-
phone information center, we are given a set of working shifts with known start
and end times and number of short breaks to be taken during the work session.
The primary objective is to minimize staff shortages against number of customer
calls over time. This objective is so important to maintain service quality that
it is treated as a constraint such that the shortage must be zero. The secondary
objective is to minimize labor costs or a surplus of operators for actual needs.
Other objectives such as overtime and employee satisfaction are not considered.
This problem reflects the very significant needs of a large organization such as
an information service center for telephone directory assistance. Constructing a
good schedule by hand, however, can be very difficult. Nippon Telegraph and
Telephone Corporation (NTT), for example, has more than one hundred such
centers all over Japan and currently suffers huge deficits. There is urgent de-
mand to automatically supply efficient schedules in a short time corresponding
to frequently changing work shift patterns and distribution of customer calls.

Genetic algorithms (GAs) have been successfully applied to a variety of
scheduling problems including jobshop and flowshop [2,7,4,6,8]. Yoshimura and
Nakano [9] first applied GAs to the information operator scheduling problem.
They proposed a GA with mutation especially dedicated to the problem and a
partial reinitialization method with good success. The more general form of the
problem is discussed in [3] under the name of the employee scheduling problem,

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 50–57, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Information Operator Scheduling by Genetic Algorithms 51

1 180
0

10

20

30

40

50

60

70

80

Time (5 min. units)

N
u

m
b

er
 o

f
O

p
er

at
o

rs

(8:00~8:05) (22:55~23:00)

n1(t)

n2(t)

Fig. 1. Time distribution of required information operators

where they proposed tabu search approach to solve the problem and compared
with other methods.

The organization of this paper is as follows. Section 2 explains the information
operator scheduling problem and its objective functions. In Section 3, we briefly
review the GA approach previously proposed by Yoshimura and Nakano [9]
and then modify their mutation to handle a variable number of operators. In
Section 3.4 a GA with ranking based selection, duplicate elimination and local
search is proposed. A new approach using a parameterized fitness function is
proposed in Section 4. Experimental results using real data supplied by NTT
are reported in Section 5.

2 The Information Operator Scheduling Problem

The number of human operators required to deal with inquiry calls from cus-
tomers changes over time, and its time distribution is given based on statistical
data at each center. Figure 1 shows such an example sampled at one of NTT’s
largest centers. The service starts at t = 8:00 and ends at t = 23:00. The time
interval is measured in units of five minutes, therefore the total service time in-
terval of 15 hours corresponds to T = 180 time units. The vertical axis represents
the number of required operators for each time unit and is denoted by n1(t). A
solid line at the top of the n1(t) histogram represents tolerable surplus n2(t): an
acceptable margin of at most 5 % at each time unit to absorb daily fluctuations.

A shift type specifies the work starting and ending times and the number of
breaks to be taken during the work session. The number of breaks depends on
the length of the shift type, and the length of one break is fixed at 10 minutes (=
2 time units). A break pattern is a placement of breaks under a given shift type.
A working pattern of an operator can be represented by specifying its shift type
and break pattern. An operator can choose any shift type from a list of admissible

52 Takeshi Yamada, Kazuyuki Yoshimura, and Ryohei Nakano

Table 1. List of admissible working shift types

No. Shift Type Breaks No. Shift Type Breaks
1 8 : 00 ∼ 12 : 00 4 9 14 : 00 ∼ 18 : 00 4
2 8 : 30 ∼ 12 : 00 3 10 14 : 00 ∼ 19 : 00 5
3 8 : 30 ∼ 12 : 30 4 11 17 : 00 ∼ 20 : 00 3
4 8 : 30 ∼ 13 : 00 4 12 17 : 00 ∼ 21 : 00 4
5 9 : 00 ∼ 13 : 00 4 13 17 : 30 ∼ 22 : 00 4
6 9 : 00 ∼ 14 : 00 5 14 17 : 30 ∼ 23 : 00 5
7 13 : 00 ∼ 17 : 00 4 15 19 : 00 ∼ 23 : 00 4
8 13 : 00 ∼ 17 : 30 4

shift types and any break pattern under the constraint that the length of any
continuous working period must be between 30 and 60 minutes. Table 1 shows
an example set of admissible shift types and the number of breaks. For example,
a shift type with starting time 8:00 and ending time 12 : 00 has four breaks.

Let us assume there are a total of D operators available per day, and each of
these operators is assigned a shift type selected from Table 1 and a break pattern.
A schedule is obtained by finding a combination of D working patterns with
possibly different shift types and break patterns. Each chosen working pattern
corresponds to a (partial) schedule of one operator. Please note that even though
the total number D is fixed, the total labor costs differ depending on the total
length of the chosen shift types. In a center, operators must work in pairs, thus
a working pattern is shared by two operators. To avoid confusion, however, we
simply assume that one working pattern corresponds to one operator.

Let n(t) be a number of operators working at time t under a schedule S.
Total shortage of operators f1 and total surplus f2 are defined in Equation (1),
where bxc = x if x > 0; otherwise bxc = 0.

f1 =
TX

t=1

bn1(t) − n(t)c, f2 =
TX

t=1

bn(t) − n2(t)c. (1)

The objective of the information operator scheduling problem is to minimize f2
under the constraint that f1 must be zero. In [9], a single f with a constant
a ∈ [0, 1] in Equation (2) is used as a fitness measure. Another type of fitness
function shown in Equation (3) can also be considered where the constant α
must be small enough to satisfy f1 = 0.

f =
a

f1 + 1
+

1 − a

f2 + 1
(0 ≤ a ≤ 1). (2)

fα =
1

1 + Fα
, Fα = f1 + αf2 (0 ≤ α ≤ 1). (3)

Information Operator Scheduling by Genetic Algorithms 53

3 Genetic Algorithms

3.1 Solution representations

A schedule S consists of a set of partial schedules of all the operators and is
denoted by S = {s1, s2, . . . , sD}. Each partial schedule si is a working pattern
of an operator and is represented by a string of 10 integer-valued genes as si =
a1a2 . . . a10, where a10 represents its shift type number given in Table 1 and a9
the number of breaks, whereas a1a2 . . . a8 represent continuous working length
before and after the breaks, thus a break pattern altogether. Each a1a2 . . . a8
must be between 30 (= 6 time units) and 60 minutes (= 12 time units) as
described in Section 2, and only a1, . . . , am(m = a9 + 1 ≤ 8) is actually used.
For example, an operator who starts working at time ts and ends at te as specified
by a shift type a10, first works for a duration specified by a1, then takes the first
ten-minute (= 2 time units) break, and resumes work for a duration specified by
a2 and so on. The following equality must be satisfied (for more details, please
refer to [9]):

ts + a1 + 2 + a2 + 2 + . . . + am = te (6 ≤ aj ≤ 12, m = a9 + 1). (4)

3.2 Mutation

For each si probabilistically selected for mutation with probability pmut, one
of the following M1 to M4 is applied with the probabilities p1, p2, p3 and p4
(p1 + p2 + p3 + p4 = 1), respectively.

M1 Two genes aj1 and aj2 are randomly selected and their values are exchanged.
M2 A gene aj1 with a value greater than 30 minutes is randomly selected and

decreased by 5 minutes, another gene aj2 with a value smaller than 60 min-
utes is randomly selected and increased by 5 minutes.

M3 a1, . . . , am are randomly regenerated under the constraint Equation (4),
while a9 and a10 remain the same.

M4 a10 is probabilistically changed to the next (a10+1) or the previous (a10−1)
type in Table 1, a9 to the corresponding number of breaks, and then a1, . . .,
am are randomly generated with the new a9, a10 under Equation (4).

The mutation defined above assumes the number of genes and the total
number of operators D are fixed. However, it is desirable to extend the mutation
to allow D to be varied within an upperbound D0 during the search to find a
solution of higher quality. A special gene null for a10, meaning that the operator
is off duty, is introduced for this purpose. The following mutation M5, called
null mutation, is applied with probability p5.

M5 (null mutation) : a10 is probabilistically changed to null.

The mutation M4 is slightly modified to incorporate this change such that if
a10 is null, it is changed to any type in Table 1 at random.

54 Takeshi Yamada, Kazuyuki Yoshimura, and Ryohei Nakano

1. Initialize population: randomly generate a set of P schedules.
2. Repeat Step 2a to Step 2d L1 times:

(a) Select two schedules S1; S2 from the population with probabilities in-
versely proportional to their fitness ranks.

(b) Apply crossover with probability pcross and obtain T1 and T2, otherwise
just copy S1 and S2 to T1 and T2.

(c) For i = 1; 2, repeat as follows L2 times:
Apply mutation to Ti and obtain Ti. If Ti is at least as good as Ti, replace
Ti with Ti.

(d) For i = 1; 2, if Ti is better than the worst in the population, and no
member of the current population has the same fitness as Ti, replace the
worst individual with Ti.

3. Output the best member in the population and terminate.

Fig. 2. Genetic local search for information operator scheduling problem

3.3 Crossover

A partial schedule-wise uniform crossover is employed as follows. Let two par-
ent solutions be S1 = {s11, s12, . . . , s1m} and S2 = {s21, s22, . . . , s2m}. Before
applying crossover to S1 and S2, their partial schedules sij are sorted first by
a10 and then by a1, . . . , am in the case of ties. Let us denote the results by
Si = s∗

i1s
∗
i2 . . . s∗

im (i = 1, 2). A new schedule T1 is generated by selecting s∗
1j or

s∗
2j randomly for each j (1 ≤ j ≤ m). Similarly T2 is generated by selecting a

s∗
ij for each j that is not selected for T1.

3.4 Genetic local search

It is well known that there are some problem classes in which GAs are not well
suited for fine-tuning structures that are very close to optimal solutions and
that it is essential to incorporate local search methods into GAs. The result
of such incorporation is often called Genetic Local Search (GLS) [5]. In this
framework, an offspring obtained by a recombination operator is not included
in the next generation directly but is used as a “seed” for the subsequent local
search. The local search moves the offspring from its initial point to the nearest
locally optimal point, which is included in the next generation.

The mutation discussed in Section 3.2 is used for local search here. Instead of
applying mutation only once to each individual generated from the crossover, it
is applied repeatedly and the results are accepted only when they are improved
(or at least the same). Figure 2 shows the outline of our GLS algorithm based
on the steady state model with ranking selection. The reinitialization method
introduced in [9] is substituted by the duplicate elimination technique in Step 2d
to avoid premature convergence even under a small-population condition.

Information Operator Scheduling by Genetic Algorithms 55

Table 2. Performance comparison under various parameter conditions

No. parameters results
fitness D f1(avg:) f2(avg:) f2(best) D(avg:)

I f in [9] 105 0 173.5 135 -
II f�=1 105 9.7 118.1 - -
III f�:1!0 105 0 143.1 123 -
IV f�:1!0 100 3.0 102.5 - -
V f�:1!0 ≤ 120 0 128.7 107 103.2
VI f�:1!0 ≤ 105 0 119.9 97 102.8

4 Parameterized Fitness Function

Yoshimura and Nakano use f in Equation (2) with a = 0.7 as a fitness func-
tion [9]. They observe that their GA finds a solution with f1 = 0 effectively
as long as a > 0.3, while the quality of f2 is not always excellent. In their ex-
periments, f1 and f2 start from large values, then f1 quickly decreases to zero
and does not increase again, while f2 decreases very slowly. Once a solution S
with f1(S) = 0 is found, a new solution S′ with f1(S′) > 0 is difficult to survive
because f(S′) is inferior to f(S) in many cases. Thus only a limited region where
f1 is always 0 is searched. On the other hand, if fα with α = 1 in Equation (3)
is used, both f1 and f2 decrease smoothly, but f1 does not reach zero or close
to zero. One may be able to overcome this dilemma by finding an optimal α in
Equation (3), but this itself is quite difficult.

As a possible remedy, we treat α as a parameter, which decreases from 1 to
0 throughout the search. For our purpose, the algorithm in Figure 2 is slightly
modified to use the parameterized fα in which α is first initialized as α = 1 in
Step 1, and is changed as α := (1 − ε)α in Step 2b after the crossover is applied,
where ε > 0 is a small constant.

The idea of a parameterized fitness function is inspired by a far more so-
phisticated approach known as the homotopy method, which has been used for
decades to find solutions of nonlinear equations [1]. By initializing α = 1, we
start from a relaxed problem in which minimizing f2 is easier at the cost of
violating the constraint f1 = 0. α is then gradually decreased to enforce f1 = 0
and finally a schedule with f1 = 0 and reasonably small f2 is obtained.

5 Experimental Results

Numerical experiments based on the data given in Figure 1 and in Table 1 are
carried out under various conditions. Figure 3 shows the average time evolutions
of f1 and f2 over 40 runs each on a SUN Ultra30 workstation. The programs are
written in C language, and each run takes about 25 minutes of CPU time. All
experiments were conducted under these conditions: the population size P = 9,
the crossover and mutation rate pcross = 0.2 and pmut = 0.02 respectively,

56 Takeshi Yamada, Kazuyuki Yoshimura, and Ryohei Nakano

(a)

STEPS

0

100

200

300

400

500

0 500 1000 1500 2000

(b)

STEPS

0

40

80

120

160

200

240

0 500 1000 1500 2000

IIIf1

IIIf2

If1

If2

IIf1

IIf2

f1; f2f1; f2

IIIf1

IVf1

IIIf2

IVf2

Vf2
VIf2

V,VIf1

Fig. 3. Time evolutions of f1 and f2 under (a) fixed and parameterized fitness func-
tions, and (b) different D settings

probabilities for each mutation: p1 = 0.2, p2 = 0.45, p3 = 0.1 and p4 = 0.25,
L1 = 250, L2 = 2000 and ε = 0.99 are used. These values are determined based
on preliminary experiments. Results are summarized in Table 2. In Figure 3(a),
the number of operators D is fixed to 105 as in [9]. In the figure, the results of
three different fitness functions are compared: (I) the same fitness function used
in [9], (II) fα with α = 1, and (III) the parameterized fα with α decreasing
from 1 to 0. It is clear that by using the parameterized fitness function, the
quality of f2 greatly improves while the constraint f1 = 0 is satisfied at the end
of the computation.

In Figure 3(b), the null mutation M5 is applied as well as M1,. . .,M4 to make
D changeable. D is initialized as D0 = 120 under (V) and D0 = 105 under (VI)
respectively, and can be varied during the search with D0 the upper bound. p4 is
modified from 0.25 to 0.25 × (1 − 1/Ns), and p5 = 0.25 × 1/Ns with Ns number
of shift types. The results of fixed D with (III) D = 105 and (IV) D = 100 are
also shown for comparison. It can be seen that changing D dynamically results
in better performance, with the optimal D around 102–103. The results under
(IV) suggest that it is quite difficult to find a good solution with f1 = 0 when
D ≤ 100. The best results are obtained when the perameterized fitness function
and the modified mutation is used. Figure 4 shows one of the best schedules
obtained under (VI). The picture on the right in Figure 4 shows the schedule,
where the x axis represents time and the y axis the chosen working patterns.
The filled block indicates that an operator is at work, while each small white
block is a ten-minute break. Among 105 operators initially assigned, a total of
102 operators were found to be actually necessary, and the total surplus is 97,
meaning that only 0.54 operators on average are redundant per time interval. The
picture on the left shows the corresponding time distribution of the operators.

Information Operator Scheduling by Genetic Algorithms 57

0

10

20

30

40

50

60

70

80
N

u
m

b
er

 o
f

O
p

er
at

o
rs

1 180Time (5 min. units)
(8:00~8:05) (22:55~23:00)

10

20

30

40

50

60

70

80

90

100

O
p

er
at

o
r

N
u

m
b

er

1 180Time (5 min. units)
(8:00~8:05) (22:55~23:00)

Fig. 4. Example of a solution with D = 102; f1 = 0 and f2 = 97

6 Conclusions

We have developed a genetic algorithm with local search for the information
operator scheduling problem. The experimental results show that the use of a
parameterized fitness function and null mutation improves the solution quality
with a smaller number of total operators, while satisfying the given constraints.
Future research will be to investigate the better control of α rather than decreas-
ing it monotonically.

References

1. E.L. Allgower and K. George. Numerical Continuation Methods: An Introduction.
Springer-Verlag, 1990.

2. C. Bierwirth, D. Mattfeld, and H. Kopfer. On permutation representations for
scheduling problems. In 4th PPSN, pages 310–318, 1996.

3. F. Glover and C. MacMillan. The general employee scheduling problem: An inte-
gration of MS and AI. Computers and Operations Research, 13(5):563–573, 1986.

4. S. Kobayashi, I. Ono, and M. Yamamura. An efficient genetic algorithm for job
shop scheduling problems. In 6th ICGA, pages 506–511, 1995.

5. N.L.J. Ulder, E. Pesch, P.J.M. van Laarhoven, H.J. Bandelt, and E.H.L. Aarts.
Genetic local search algorithm for the traveling salesman problem. In 1st PPSN,
pages 109–116, 1994.

6. T. Yamada and R. Nakano. Job Shop Scheduling. Chapter 7 in A.M.S. Zalzala and
P.J.Fleming (Ed.) Genetic algorithms in engineering systems. The Institution of
Electrical Engineers, London, UK, 1996.

7. T. Yamada and R. Nakano. Scheduling by genetic local search with multi-step
crossover. In 4th PPSN, pages 960–969, 1996.

8. T. Yamada and C.R. Reeves. Permutation flowshop scheduling by genetic local
search. In 2nd IEE/IEEE Int. Conf. on Genetic ALgorithms in Engineering Systems
(GALESIA ’97), pages 232–238, 1997.

9. K. Yoshimura and R. Nakano. Genetic algorithm for information operator schedul-
ing. In Proc. of 1998 IEEE Int. Conf. on Evolutionary Computation (ICEC’98),
pages 277–282, 1998.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 58–65, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Solving Radial Topology Constrained Problems
with Evolutionary Algorithms

P. M. S. Carvalho1, L. A. F. M. Ferreira1, L. M. F. Barruncho2

1Instituto Superior Tecnico, Energy Section, Av. Rovisco Pais, 1096 Lisbon, Portugal
Phone: 351-1-841 7706, Fax: 351-1-841 7421, Email:{pcarvalho, lmf}@hertz.ist.utl.pt

2Edinfor—Grupo EDP, Av. Duque de Avila, 79, 1096 Lisbon, Portugal
Phone: 351-1-312 1260, Fax: 351-1-312 1201, Email: lb@edinfor.pt

Abstract. We report key algorithmic specific features involved in the evolutionary radial
network problem solution. We focus on the dimensionality problem of large-scale networks
and on the singularities of the radial topology search space. We (1) report the difficulties of
the canonical genetic algorithm in handling network topology constraints, and (2) present
both the genotype information structure and the recombination operator to overcome such
difficulties. The proposed recombination operator processes genetic information as mean-
ingful topological structures, and turns radiality and connectivity into genetic transmissible
properties. Results are presented to illustrate the difference between the canonical approach
and the approach taken.
Keywords. Evolutionary computation, network planning, radial topology constraints.

1 Introduction

A large class of important optimization problems has yet no reasonably fast and robust
algorithmic solution: large-scale network planning problems belong to such class
when the objective function is non-convex. Network planning comprehend a set of
different problems whose solutions are subsets of arcs from a given graph. Those are
important problems in fields like electric power and gas distribution, and telecommu-
nications. The problem differences rely on the solution topology requisites.

Network planning has been approached in the past by mathematical programming.
Branch-and-bound applications can be found in [1-3]. Mixed-integer programming
approaches can be found in [4], together with Bender’s decomposition [5], and with
branch-exchange [6]. Tabu search [7], simulated annealing [8], and dynamic pro-
gramming [9] approaches have also been taken. More recently, evolutionary tech-
niques have also been proposed [10-12]. A motivation to take evolutionary approaches
comes from the possibility to address complex objectivesthe objective function is
sometimes difficult to define as well behaved. However for large networks the combi-
natorial nature of decision-making precludes the canonical genetic algorithm (cGA)
approaches. In the following we will spring out some difficulties related with the ca-
nonical string genotype (in §2). We will notice that the string genotype approach is not

Solving Radial Topology Constrained Problems with Evolutionary Algorithms 59

adequate to represent network topological relationships. A new genotype information
structure is then proposed together with a recombination algorithm (in §3). In the
proposed genotype approach the problem topological requisites are genetically trans-
mitted by recombination. Illustration is provided in §4.

2 Problem Formulation and the cGA Difficulties

Many of the real-world network planning problems are characterized, as an optimiza-
tion problems, by (1) a non-convex non-separable objective function of the arc deci-
sions, and (2) topological constraints like radiality and connectivity. Take (q) as a
possible subproblem formulation.

(q))(allover)(minimize GTTf R∈

where
 f: objective function
 G: set of graph arcs
 T: set of tree arcs
R(G): space of radial trees for graph G

The (q) problem can be stated as connecting all nodes by selecting a spanning tree T
(out of graph G) to minimize f. In the following we refer to network planning as a (q)-
like problem. For several reasons, such as simplicity of analysis and definition of
genetic operators, the binary or bit string representation of solutions has dominated the
genetic algorithm research. A conceivable canonical genotype approach defines a
graph as an array of arcs, and takes binary bits to select the arcs to form a solution
tree. However, the problem requires satisfaction of non-trivial constraints, such as
radiality and connectivity, which the canonical crossover cannot transmit to the off-
spring. We point out two difficulties for the canonical approach.

D1. Topological properties such as connectivity and radiality are not genetically
transmitted to the descendants by one-point crossover—the descendant populations get
a significant number of non-feasible solutions.

D2. Important similarities about solutions can hardly propagate by crossover—the
one-point crossover operator destroys meaningful network building-blocks, as graph
adjacent arcs are generally impossible to place close to each other in a string.

D1 have been reported before [12]: corrective procedures are possible if non-feasible
solutions are rare occurrences, which is not the current case. D2 have not been re-
ported in such a context, although it represents a crucial obstacle to the success of
large-scale optimization processes [13,14]. One could think of improving the repre-
sentation by developing a complex coding function. However, that is difficult to do
without introducing non-linearities or other kind of bias search into the process

60 P. M. S. Carvalho et al.

[14,15]. We use a more natural problem-related representation, described in the fol-
lowing.

3 Evolutionary Approach

We take a genotype space to be a partially ordered set (A,≤) [16], i.e. a set where: (i)
a≤a; (ii) a≤b and b≤a implies a=b; (iii) a≤b and b≤c implies a≤c, for every a,b,c∈A.
The element a is called the direct precedent of the element b in A, iff: (i) a≠b; (ii)
a≤b; (iii) there is no element c∈A such that a≤c and c≤b. The relation is denoted by
b↵a. Similarly, an element b is called the direct follower of an element a in A, iff a is
one of its direct precedents.

Trees are particular partially ordered sets: each tree element is directly preceded
by one and just one single element; an exception is made for the first element (tree
root), which is not preceded. Take g as a tree T genotype coding function.

b}aTab)a:{bTg ≤∈∀↵→ with (arc:

Suppose we want to change tree information by changing T elements direct prece-
dence. If we want to keep T as a partially ordered set after the change, we must guar-
antee that the three above mentioned properties (i), (ii) and (iii) hold for elements
precedence changing. If the properties hold, we say the change is consistent. Let p(b)
be the b direct precedence element in T, and F(b) be the set of b direct followings
elements in T. Take Lemma 1 to identify non-consistent changes.

Lemma 1. A b direct-precedence change b↵a taken over a tree ordered set (T) violates
order (i-ii-iii) iff b≤a.
Proof: Sufficiency — If b≤a there exists in T a direct ordered sequence like,
a↵x↵y↵...↵b. A change b↵a forces a circulation a↵x↵y↵...↵b↵a, and thus an order
violation (property-ii). Necessity — If b≤a does not apply, either (1) a≤b, or (2) no
order exists between a and b. In case (1), a change b↵a eliminates the order relation-
ships between every x:a≤x≤b and y:b≤y by eliminating the existent b-precedence. The
x-elements order is not changed, they remain as followers of a. Similarly for the y-
elements, they remain as followers of b, and by change b↵a, also followers of a. In
case (2), a change b↵a forces b to become a follower of a, and thus every y:b≤y be-
come a follower of a, instead of being a follower of the existing p(b).

Lemma 1 permits to classify precedence changes as consistent or non-consistent.
When consistent, precedence changing is a possible way to change tree information
guaranteeing network radiality and connectivity. Moreover, information can be easily
changed in a simple exchanging procedure over the set of precedence elements, i.e. the
genotype. Precedence change resolves D1.

It is known that a recombination procedure must be able to interchange important
similarities about solutions (meaningful building blocks)[14]. A tree meaningful
building-block is a set of adjacent arcs: a possible simple one is a path between two

Solving Radial Topology Constrained Problems with Evolutionary Algorithms 61

network elements (nodes), i.e. a sequence of direct precedence relationships. As a
sequence of precedence changes, a path can be successfully submitted to a tree. Note
that a path should not be rejected just because some of the constituent precedence
relationships fall, as isolated, into the conditions of Lemma 1: a path is not just a set
but a partially ordered set, and thus precedence change consistency must be also tested
orderly. Path interchange resolves D2.

Path interchange algorithm
(Submit a path P to a tree T)
Denote by F(x∈P) the set of followers of x in the path P. Name a the path smallest
element (a≤x ∀x∈P).

Step 1. Change T by changing every x-precedence to x↵a iff (i) x∈F(a∈P) and (ii)
x↵a is consistent.

Step 2. Update T, and repeat Step 1 taking F(a∈P) as the followers of x elements,
i.e. F(a∈P) = ∪F(x∈P).

Recombination algorithm
(Interchange paths between solutions Ti and Tii)

Step 1. Randomly select two nodes, a and b.

Step 2. Find the paths Pi and Pii between a and b: Pi in Ti and Pii in Tii.

Step 3. Submit Pi to Tii, and Pii to Ti.

Recombination example
(Recombination of solutions Ti and Tii)
Solutions Ti and Tii are represented in Fig 1 (a) and (b) respectively. The descendants
are represented in (c) and (d) respectively. P is the path between the two randomly
selected element b and d. Take a as the solutions smallest element. The procedure is
summarized in the following:

Step 1. Represent the solutions as tree ordered sets
Ti ={c↵a, b↵c, d↵c, e↵d, f↵e} and Tii ={b↵a, e↵a, c↵e, d↵e, f↵e} and the
paths Pi in Ti and Pii in Tii as Pi ={b↵c, d↵c} and Pii ={b↵a, e↵a, d↵e}

Step 2. Submit Pi ={b↵c, d↵c}i to Tii ={b↵a, e↵a, c↵e, d↵e, f↵e}
Element c is the path Pi smallest element. F(c) = {b, d}. Both b↵c and d↵c
are consistent changes in Tii as no order relation exists between such pairs.
Changing precedence results in the tree {b↵c, e↵a, c↵e, d↵c, f↵e}.
Submit Pii ={b↵a, e↵a, d↵e} to Ti ={c↵a, b↵c, d↵c, e↵d, f↵e. Element a is
the path Pii smallest element. F(a) = {b, e}. Both b↵a and e↵a are consis-
tent changes as in Ti: a≤b and a≤e. Changing precedence results in the tree
update {c↵a, b↵a, d↵c, e↵a, f↵e}. Only element e has a follower in Pii:
F(e) = d. The change d↵e is now consistent (note that it was not before the
update). The change results in the tree {c↵a, b↵a, d↵e, e↵a, f↵e}.

62 P. M. S. Carvalho et al.

Fig. 1. Solutions Ti and Tii are represented in (a) and (b) respectively. The descendants are
represented in (c) and (d) respectively. Descendants result from path interchange between ele-
ments b and d.

4 Illustration

We take a complete graph problem as a theoretical example—it maximizes building-
block diversity over a fixed number of nodes. That makes the correct combination of
building-blocks unlikely as a random event. We took G as a 10 nodes-45 arcs com-
plete graph. To better illustrate the rule of recombination we produce a favorable envi-
ronment for the discrimination of the best building-blocks: we took f to guarantee a
small building-block cost variance, or so-called small collateral noise [17] (f(T)< f(T’)
for every: T with N correct arcs; and T’ with N-1 correct arcs). Convergence is illus-
trated in Fig 2-a,b.

We also took a canonical approach to address the same problem, Fig 3-a,b. Note
that for the canonical approach feasibility (i.e. radiality and connectivity) can drop
considerably in the process. The results concern a 60 solutions population, and non-
elitist binary tournament selection [18]. We did not use mutation.

a

b c

d

ef

a

b c

d

ef

a

b c

d

ef

a

b c

d

ef(a) (b)

(c) (d)

Solving Radial Topology Constrained Problems with Evolutionary Algorithms 63

5 10 15 20

5

10

15

20

25

30

35

40

45

Ne
tw
or
k
ar
c
no
.

Generation no.
5 10 15 20

5

10

15

20

25

30

35

40

45

Generation no.

Ne
tw
or
k
ar
c
no
.

Fig. 2. Evolution of the genotypes along 20 generations: convergence to the optimum (proposed
approach). Plots of contour lines show the evolution of arcs-frequency along generations. The
inner lines refer to a higher frequency. (a) Full population—note that in the first generations all
arcs are present with a low frequency. In the last generations only nine arcs are present, with a
high frequency. (b) Best solution—note that the optimal solution is found after 12 generations
(four correct arcs in gen-1, five in gen-2, six in gen-3, seven in gen-4, eight in gen-11, and all
nine arcs in gen-12)

5 10 15 20

5

10

15

20

25

30

35

40

45

Ne
tw

or
k

ar
c

no
.

Generation no.
5 10 15 20

5

10

15

20

25

30

35

40

45

Generation no.

Ne
tw

or
k

ar
c

no
.

Fig. 3. Evolution of the genotypes along 21 generations: convergence to a non-optimum (cGA
approach). Plots of contour lines show the evolution of arcs-frequency along generations. (a)
Full population—note that (1) the population presents an important number of solutions with
optimal arcs (36,40) at the latest 10 generations, and (2) those are not present in the last-
generation solution (they are lost). (b) Best solution—the optimal solution is not found. The
cGA is not able to find a solution with more optimal-arcs: the best first-generation solution
presents four correct arcs (1,7,22,36), as well as the best last-generation one (1,9,22,45)

64 P. M. S. Carvalho et al.

The results illustrate some differences between the proposed genotype approach and
the string canonical one. Namely, that the optimum is found by the proposed approach
after 12 generation, and that the canonical approach was unable to make any solution
improvement in 21 generations, despite having access to important number of easy-to-
discriminate building-blocks. These show how GA performance can be enhanced by
effectively combining important solution building-blocks and ensuring feasibility.

5 Conclusion

We reported key specificities of the taken genotype space and recombination algo-
rithm involved in the development of an evolutionary approach to radial topology
constrained problems. The major innovations of our proposal are that: (1) the tree
genotype information be taken as a partially ordered set of nodes instead of taken as
an array of arcs; and (2) the recombination process be to change network path infor-
mation between trees instead of swapping string segments between solutions.

References

1. R. N. Adams and M. A. Laughton ‘Optimal Planning of Power Networks using Mixed-
integer Programming Part 1—Static and time-phased network synthesis’ Proceedings IEE,
Vol 121, No 2 , 1974, pp. 139-148

2. G. T. Boardman and C. C. Meckiff ‘A Branch-and-Bound Formulation to an Electricity
Distribution Planning Problem’ IEEE Trans. PAS, Vol 104, No 8, 1985, pp. 2112-2118

3. R. H. Jan, F. J. Hwang, S.T. Cheng, ‘Topological Optimization of a Communication Net-
work Subject to a Reliability Contsraint’ IEEE Trans. Reliability, Vol. 42, 1993, pp. 63-
70.

4. M. A. El-Kady ‘Computer-aided Planning of Distribution Substation and Primary Feeders
IEEE Trans. PAS, Vol 103, No 6, 1984, pp. 1183-1189

5. N. Kagan and R. N. Adams ‘Application of Benders Decomposition Technique to the
Distribution Planning Problem’ Proc. 10th Power System Computation Conference, Graz,
Austria, 1990

6. G. J. Peponis and M. P. Papadopoulos ‘New Dynamic, Branch Exchange Method for
Optimal Distribution System Planning’ IEE Proc. Gener. Transm. Distrib., Vol 144, No 3,
1997, pp. 333-339

7. F. Glover, M. Lee, J Ryan, ‘Least-cost Network Topology Design for a New Service: An
Application of a Tabu Search’, Ann. Oper. Research, Vol 33, 1991, pp. 351-362

8. S. Pierre, M.-A. Hyppolite, J.-M. Bourjolly, O. Dioume, ‘Topology Design of Computer
Communication Networks Using Simulated Annealing’, Eng. Application Artificial Intel-
ligence, Vol 8, 1995, pp. 61-69

Solving Radial Topology Constrained Problems with Evolutionary Algorithms 65

9. J. Partanen ‘A Modified Dynamic Programming Algorithm for Sizing, Locating, and
Timing of Feeder Reinforcements’, IEEE Trans. Power Delivery, Vol 5, No 1, 1990, pp.
277-283.

10. V. Miranda, J. V. Ranito, L. M. Proença, ‘Genetic Algorithms in Optimal Multistage
Distribution Networks Planning’, IEEE Trans. Power Systems, Vol 9, No 4, 1994, pp.
1927-1933.

11. P. M. S. Carvalho L. A F. M. Ferreira F. G. Lobo and L. M. F. Barruncho ‘Optimal Distri-
bution Network Expansion Planning Under Uncertainty by Evolutionary Decision Conver-
gence’, International Journal of Electrical Power & Energy Systems (Special Issue on
PSCC' 96), Vol. 20, No. 2, 1998, pp. 125-129.

12. Berna Dengiz, F. Altiparmak, Alice E. Smith, ‘Local Search Genetic Algorithm for Opti-
mal Design of Reliabe Networks’, IEEE Trans. Evolutionary Computation, Vol 1, No. 3,
1997, pp. 179-188.

13. Z. Michalewicz, ‘Genetic Algorithms + Data Structures = Evolution Programs’, (Berlin,
Germany: Spriger, 1996).

14. D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning,
(Reading, MA, Addison-Wesley, 1989).

15. Thomas Bäck, Ulrich Hammel, Hans-Paul Schwefel, ‘Evolutionary Computation: Com-
ments on the History and Current State’, IEEE Trans. Evolutionary Computation, Vol 1,
No 1, 1997, pp. 3-17

16. Seymour Lipschutz, General Topology, McGraw-Hill (1965).
17. D. E. Goldberg, K. Deb and J. H. Clark ‘Genetic Algorithms, Noise and the Sizing of

Populations’, Complex Systems, 6, 1992, pp. 333-362
18. D. E. Goldberg and K. Deb ‘A Comparative Analysis of Selection Schemes Used in Ge-

netic Algorithms’ pp. 69-93 in Foundations of Genetic Algorithms, edited by G. Rawlins
(San Mateo, CA, Morgan Kaufman, 1991).

Automating Space Allocation in Higher Education

E.K. Burke, D.B. Varley12

Automated Scheduling and Planning Group,
Department of Computer Science,

University of Nottingham, UK.

Abstract. The allocation of office space in any large institution is usually a
problematical issue, which often demands a substantial amount of time to perform
manually. The result of this allocation affects the lives of whoever makes use of the
space. In the higher education sector in the UK, space is becoming an increasingly
precious commodity. Student numbers have risen significantly over the last few years
and as a result, university departments have grown in size. In addition, universities
have come under increasing financial pressure to ensure that space is utilized as
efficiently and effectively as possible. However, space utilization is only one issue to
take into account when measuring whether or not a particular allocation is of a
sufficient high quality. The problem of space allocation is further complicated by the
fact that no standard procedure is practiced throughout the higher education sector.
Most institutions have their own standards and requirements, which are often very
different to other institutions. Different levels of authority control the domains of
rooms and resources in different institutions. The most common situation is where a
central university office controls a number of faculties, each managing a number of
departments. This paper will focus specifically on applying optimization methods to
departmental room allocation for non-residential space in the higher education sector.
It will look at the use of three methods (hill-climbing, simulated annealing and genetic
algorithms) to automatically generate solutions to the problem. The processing power
of computers and the repetitive search nature of this problem means that there is great
potential for the automation of this process. The paper will conclude by discussing
and comparing these methods and showing how they cope with a highly constrained
problem.

Keywords. Space Allocation, Hill-Climbing, Simulated Annealing, Genetic Algorithms

1. Introduction

The problem of space allocation affects the lives of almost everyone in some way or
another, whether it is the size or layout of their office or work environment, limited
parking space or even the organisation of their homes. This paper will deal with the
problem of efficiently allocating space within academic institutions.

As student numbers increase and university departments expand, there is significant
pressure on estate managers and departmental heads to ensure space is utilised as
efficiently as possible. Due to the varied requirements and constraints, this task is not
simple. Obtaining just an acceptable solution often takes a large amount of man-hours.

1 The author’s names are listed in alphabetical order
2 ekbldbv@,cs.nott.ac.uk (Tel. +44 (0)115 9514206, Fax. +44 (0)115 9514254)

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 66-73, 1999.
 Springer-Verlag Berlin Heidelberg 1999

There have been few papers which have addressed the problem of space allocation
within academic institutions. Giannikos et al.1 states that space allocation has received
little attention in their paper on using goal programming for academic space allocation.
Rizman et al.2 presented a goal programming model to reassign 144 offices for 289
staff members at the Ohio State University. At a facilities level, Benjamin et al.3 used
the Analytical Hierarchy Process to determine the layout of a new computer laboratory
at the University of Missouri-Rolla.

The size of the space allocation process is related to the number of resources that
need to be allocated and the number of rooms available. In the education sector, sizes
vary from 1600 rooms in 30 buildings to 20000 rooms in 600 buildings4.

The organisation of most working environments exhibits specific structural
properties, such as members of staff being grouped into departments. As such the large
problem of university wide space allocation lends itself well to decomposition. This
allows us to partition the problem into smaller clusters, which it is possible to deal with
in a reasonable time-scale. In real life, the domain of rooms and resources within a
university are managed by differing authorities, with each level managing a subset of
the overall domain. These authorities may be at different levels of abstraction with a
central authority administrating the whole domain. All this occurs with
communication between the different levels, with lower levels regularly requesting
more space and competing with other groups on the same level. It is a continually
evolving problem, made more difficult by the addition and/or removal of
resources/rooms all the time.

The actual allocation of resources to areas of space happens in two ways. The first
being the initial allocation of a set of resources to a group of empty rooms. The second
being the addition or removal of resources from a previous allocation. This paper will
concentrate on the first problem of allocating resources to empty rooms, as all the
principles discussed in the first problem hold for the second.

2. The Space Allocation Process

There are two different levels to the problem of space allocation, a space utilisation
level and a constraint satisfaction/optimisation level.

2.1 Space Utilisation

The main requirement for the higher education sector is to find working space for all
staff and students. This involves allocating specific areas/rooms for each individual
resource. The amount of space required is dependent on the level, numbers and
functionality of each resource. Space guidelines are published by the various
education authorities and are used within this decision process. However, it is usual
for universities to adapt these guidelines to suit their own requirements. The Full Time
Education (FTE) 1987-space standards are the most widely adapted guidelines, with
square metre values for each type of resource.

With a listing of all-available rooms and sizes, a listing of all resources, their type
(e.g. Professor, Lecture Hall, Secretary, etc.) and these space guidelines it is possible to
allocate resources to rooms while attempting to maximise the utilisation of the rooms.

67Automating Space Allocation in Higher Education

The problem is complicated by the fact that not all resources are capable of sharing
rooms with other resources, a majority actually requiring their own rooms. The
problem then is to maximise the utilisation of the rooms without violating any of the
sharing limitations.

2.2 Constraint Satisfaction

The most efficient utilisation of space is one which allocates all resources while
minimising the amount of rooms and space wasted by these resources. However, space
utilisation is simply the first part of an efficient space allocation process. There are
additional constraints which need to be taken into account:
• Resource specific requirements

Unique facilities that are required by certain resources impose a limit on which
rooms that resource can be allocated to. For example, lecture theatres may require
disabled access or Audio Visual Aid (AVA) facilities, etc. The option of
modifying rooms through building work may be available, but it is more practical
(and less expensive) to use rooms which already have the facilities required.

• Ensuring grouping and close proximity of resources
There are two types of spatial grouping requirements: Adjacency and proximity.
There is always a requirement to place resources belonging to the same group in
close proximity, (e.g. members of the same department should not be widely
spread over many buildings). Likewise, resources, which are highly dependent on
each other, must be adjacent or at least close to each other (e.g. Wash Rooms must
be adjacent to Operating Theatres etc.).

• Ensuring distance between conflicting resources
This is the direct opposite to the previous requirement. It is often desirable that
resources which conflict in some way should be kept at a distance from each other.
For example, library space should not be located next to engineering workshops
due to noise problems.

Each university will have its own constraints and opinions as to what requirements
should be satisfied to make a good allocation of space.

The constraints that cause the most complexity as far as optimisation is concerned
are the ones involving spatial locations. The ability to cope with these types of
constraints requires information regarding the location and distance of all the rooms
within the university. These graphs (fig. 1) of rooms and distances can be decomposed
into subsets of buildings and floors, but even floors can hold many rooms which all
require distances from each other. Obtaining this information, which is unlikely to be
available at all universities, is a major task. It could be obtained through floor plans or
Computer Aided Design (CAD) drawings, but would require substantial work.

To reduce the amount of information required in making decisions upon proximity
information, optimisations could be made to reduce the number of proximity links
between rooms such as subset grouping5 6. By grouping adjacent rooms together tightly
and then obtaining and storing information regarding the distances of groups of rooms
from each other, the amount of information can be dramatically reduced.

68 E.K. Burke, D.B. Varley

Fig. 1. Example of Room ID, size and distance information required

The same subset grouping method can be applied to the resources requiring allocation,
making the decision process one of overlaying the resource subsets onto the best matching
room subsets. The minimal method of satisfying proximity and adjacency constraints is to
only hold information about room adjacencies, not distances. Knowing which rooms are
adjacent to each other, allows the adjacency constraints to be easily satisfied, whereas the
proximity constraints can be approximated by finding out whether two rooms are linked
(by following adjacencies) and by how many rooms. This method allows for a
compromise between excessive data gathering and constraint satisfaction and is used by
the algorithms discussed in this paper.

2.3 Evaluation of the space allocation process

In order to ascertain the quality of a space allocation solution, a measure of the overall
resource allocation, space utilisation and constraint satisfaction is needed. The
following equation represents a generalised penalty function for any algorithmic
method:

()

∑ ∑

∑
−

=

−

=

−

=

+

++=

1Re

0

1Re

0

1

0

),(Re

)()(Re

sourcesNoOf

x

sourcesNoOf

y

NoOfRooms

i

yxlictssourceConf

itiesSpacePenaliWastagecheduledsourcesUnsPenalty

Applying weights allows certain constraints to be considered to be more important than
others and therefore have differing penalties associated with them. Table 1 shows the
weighting functions used by the algorithms, for each of the sections of the equation
above. Each constraint has an exponent and factorial weighting allowing greater
versatility in applying penalties. An exponent of one represents a consistent penalty,
i.e. each resource that is unscheduled increases the penalty by 5000. An exponent of
greater than one represents an increasing exponential weighting depending on the size
of the violation, i.e. exceeding room capacity by 2.0m2

 increases the penalty by 4,
exceeding by 15.0m2

 increases the penalty by 225.

69Automating Space Allocation in Higher Education

Constraint Exponential Factor
Resources Unscheduled – resources not allocated to rooms 1.0 5000.0
Space Wastage (per m2) – not using full capacity of room 1.0 2.0
Space Penalties (per m2) – exceeding room capacity 2.0 2.0
Sharing Violations – resources sharing when not allowed 1.0 2000.0
Grouping Violations – members of different groups sharing 1.0 1000.0
Adjacency Requirements – resources requiring adjacent placing 1.0 500.0
Grouping Requirements – resources requiring same/adjacent room placing 1.2 50.0
Proximity Requirements – resources requiring proximity placing 1.0 750.0

Table 1. Constraint types and penalties used in all algorithms

3. Three Methods for Automating the Problem

The methods analysed in this paper have been run using real allocation data from the
School of Computer Science at the University of Nottingham. This school is moving
to new premises next year due to expansion and serious space limitation of the current
building, therefore this test data gives a true example of a difficult, highly constrained
problem. The data consists of 83 resources, 52 rooms with 69 specific constraints.
The 83 Resources consist of 1 Lecture Room, 4 Laboratories, 2 Meeting Rooms, 6
Storage Rooms, 3 Professors, 4 Senior Lecturers, 11 Lecturers, 3 Teaching Assistants,
6 Technical Staff, 8 Secretaries and 35 Researchers. The constraints consisted of 42
Resources requiring sole occupancy of a room, 7 Research groups unable to share with
other groups and requiring same or adjacent rooms, 3 Secretaries needing to be
adjacent/close to a manager, 3 Technical staff needing to be adjacent/proximity to
laboratories/workshops and 7 Group supervisors needing to be adjacent/close to
research groups.

3.1 Hill-Climbing

The hill-climbing algorithm consisted of three functions: Allocate Resource, Move
Resource and Swap Rooms. Allocate resource took an unallocated resource and
allocated it to a room using the appropriate fit method. Move resource took an already
allocated resource and reapplied the fit method to find another room. Swap rooms took
a room and swapped all the resources in that room with the resources in another. All
functions chose a random source unit to work on and applied one of two fit methods to
choose the target unit. The first fit method used random selection of rooms (random
fit), the other chose the room with the greatest reduction in penalty (best fit).

Algorithm: Hill Climbing

1. Evaluate Current Allocation
2. Loop until the current allocation has not improved in n iterations

a) Select one of Allocate Resource, Move Resource or Swap Rooms
in that order and apply it to produce a new allocation

b) Evaluate the new allocation
i) if it is better then make it the current allocation
ii) It if is not better, continue

70 E.K. Burke, D.B. Varley

Table 2 shows the results from 20 runs of both variations of the hill-climbing
algorithm, broken down into the main groups of penalties. The average entry is a
calculation of the average of all 20 runs.

Random fit managed an average utilisation of 76.5% whereas best fit managed
78.5%.

Random Fit Best FitConstraints
Worst Ave Best Worst Ave Best

Space Wastage (per m2) 997.8 929.4 508.4 553.2 540.6 512.2
Space Penalties (per m2) 5225.5 3502.4 177.9 932.5 738.9 184.2
Resource Penalties 10272.7 5544.12 500.0 8500.0 4700.0 0.0
Unscheduled Resources 10000.0 5000.0 0.0 0.0 0.0 0.0
Approx. Time Taken 1 minute 20 seconds 1 minute 6 seconds
Total Penalty 26496.0 15538.4 1186.3 9985.7 5979.6 696.4

Table 2. Results from Hill Climbing algorithm tests

3.2 Simulated Annealing

Simulated Annealing is an extension to hill climbing, reducing the chance of
converging at local optima by allowing moves to inferior solutions under the control of
a temperature function exp(-∆/T) > R7, where ∆ = the change in the evaluation
function, T = the current temperature and R = a random number between 0 and 1

The initial temperature value and the rate of cooling affects how the simulated
annealing algorithm performs. Through extensive tests, the combination of a 2200
initial temperature, a 300-iteration interval with a 100 decrement performed best.

The simulated annealing tests managed an average utilisation figure of 78.9%.

2200 temp /300 intervalConstraint
Worst Ave Best

Space Wastage (per m2) 555.2 507.9 475.8
Space Penalties (per m2) 695.56 281.7 0
Resource Penalties 2539.14 1307.6 0
Unscheduled Resources 0 0 0
Approx. Time Taken 7 minutes 46 seconds
Total Penalty 3777.3 2097.2 475.8

Table 3. Results from Simulated Annealing algorithm tests

3.3 A simple Genetic Algorithm

Genetic algorithms (GA’s) use progressive generations of potential solutions and
through Selection, Crossover and Mutation, aim to evolve solutions to the problem
through the principles of evolutionary survival of the fittest.

The GA in this paper consisted of a data encoding structured so that each gene
represents a room, with a linked list of all the resources allocated to that room.

71Automating Space Allocation in Higher Education

Fig. 2. Graphical representation of Genetic Algorithm encoding

The Roulette-Wheel method was used in the Selection process and the Mutation
operator simply moved a resource from one room to another. However, the Crossover
operator required more consideration as the standard methods frequently result in
invalid solutions, i.e. a resource being allocated to two rooms. The method
implemented into the GA involved checking each room in the parents and where both
parents had the same resource-to-room allocation, copy that to the child. Otherwise,
take a resource-to-room mapping from one parent, as long as that resource has not
already been allocated.

The GA was tested with various population sizes and with various initial
populations, the first of random room allocations, the second using the best fit hill
climbing algorithm and the last using the simulated annealing (S.A.) algorithm. Table
4 summarises the results for a population size of 50, using elitism to ensure the best
result so far is not lost.

Best in Initial Population Best Individual after GA runConstraints
Random Best Fit S.A. Random Best Fit S.A.

Space Wastage (per m2) 997.8 725.6 536.0 733.2 725.6 536.0
Space Penalties (per m2) 3265.7 254.6 234.2 1532.5 254.6 234.2
Resource Penalties 40251.3 1265.5 500.0 7565.3 1265.5 500.0
Unscheduled Resources 15000.0 0.0 0.0 0.0 0.0 0.0
Total Penalty 59514.8 2245.7 1270.2 9831.0 2245.7 1270.2

Table 4. Results from Genetic Algorithm tests

4. Conclusions

The analysis of the figures for the space utilisation layers throughout the tests shows
exactly how the different requirements and constraints of the space allocation problem
conflict and work against each other. The more highly constrained a problem is, the
less likely it is to ensure an acceptable level of utilisation. The methods analysed show
that the automation of this process can help balance utilisation and constraint
satisfaction.

Applying a polynomial-time approximation scheme bin packing algorithm8 on the
problem showed how the additional constraints affect the space utilisation. Removing
all the constraints except the space wastage and space penalty constraints, allowed the
binpacking algorithm to obtain 97% utilisation. Applying the sharing constraints

72 E.K. Burke, D.B. Varley

reduced this to 82.5%. This related to the other three methods (taking into account the
constraints), managed around 76-79%.

On the full space allocation problem, the three methods all performed in a
reasonably acceptable manner. The Simulated Annealing algorithm performed the best
with a minimum penalty of 475.8 allocating all 83 resources with zero room capacity
penalties and zero resource penalties, and a small variation between worst and best.
Random Fit Hill Climbing performed the worst with an approximately 25309.7 penalty
variation between best and worst. In this case, 10000 was the penalty for being unable
to allocate two of the 83 resources. Best Fit Hill Climbing performs better with a
9289.3 variation, never failing to allocate all 83 resources. However, Best Fit still has
problems allocating all those resources without exceeding room capacities. These
results, specifically the variations in best to worst, emphasise the benefit of simulated
annealing over hill-climbing methods which regularly get stuck in local optima.

The results however, are offset by the amount of time taken by each method. The
hill climbing methods took around 1 minute to finish, whereas the simulated annealing
method took nearer 8 minutes. Improvements on the simulated annealing algorithm
can be obtained by halving the cooling interval to 150. This results in a negligible
increase in the average result (+839.7) and an approx. 50% reduction in time taken

The genetic algorithm managed to obtain reasonable results from the random
initialisation data, however, it failed to improve on the hill-climbing and simulated
annealing initialised populations. Variations on the operators used may produce more
productive results, specifically the crossover operator. It may prove effective to rely
completely on the mutation operator or a combination of mutation operators, as
crossover consistently required more work to ensure legal solutions are produced.

Further work is required to analyse potential improvements from further testing,
specifically the possible hybridisation of the three methods with each other and with
other methods such as Tabu-Search.

5. References

1. I Giannikos, E El-Darzi and P Lees, An Integer Goal Programming Model to Allocate
Offices to Staff in an Academic Institution in the Joumal of the Operational Research
Society Vol. 46 No. 6. 713-720.

2. L Rizman, J Bradford and R Jacobs, A Multiple Objective Approach to Space Planning for
Academic Facilities in the Joumal of Management Science, Vol 25. 895-906.

3. C Benjamin, I Ehie and Y Omurtag, Planning Facilities at the University of Missouri-Rolia.
Joumal of Interfaces, Vol. 22 No. 4. 95-105.

4. EK Burke and DB Varley. An Analysis of Space Allocation in British Universities, in
Practice and Theory of Automated Timetabling It, Lecture Notes in Computer Science
1048, Springer-Verlag 1998. Pg 20-33

5. KB Yoon. A Constraint Model of Space Planning. Topics in Engineering Vol. 9,
Computation Mechanics Publications, Southampton, UK.

6. F Glover, C McMillan and B Novick, Interactive Decision Software and Computer
Graphics for Architectural and Space Planning, Annals of Operations Research 5,
Scientific Publishing Company, 1985.

7. E Rich and K Knight, Artificial Intelligence, international Second Edition, McGraw-Hill,
Ine, 1991. Pg. 71.

8. S Martello, P Toth. Knapsack Problems.. Algorithms and Computer Implementations.
Wiley-Interscience Series in Discrete Mathematics and Optimization. Pg. 50-52

73Automating Space Allocation in Higher Education

Application of Genetic Algorithm and k-Nearest
Neighbour Method in Medical Fraud Detection

Hongxing He1, Warwick Graco1, and Xin Yao2

1 Health Insurance Commission, 134 Reed Street, P. O. Box 1001 Tuggeranong ACT
2900, Australia

2 School of Computer Science, University College, University of New South Wales,
ACT 2600, Australia

Abstract. K-nearest neighbour (KNN) algorithm in combination with
a genetic algorithm were applied to a medical fraud detection problem.
The genetic algorithm was used to determine the optimal weighting of
the features used to classify General Practitioners’ (GP) practice profiles.
The weights were used in the KNN algorithm to identify the nearest
neighbour practice profiles and then two rules (i.e. the majority rule and
the Bayesian rule) were applied to determine the classifications of the
practice profiles. The results indicate that this classification methodology
achieved good generalisation in classifying GP practice profiles in a test
dataset. This opens the way towards its application in the medical fraud
detection at Health Insurance Commission (HIC).

1 Introduction

The Health Insurance Commission (HIC) of Australia is responsible for admin-
istering the Medicare Program for the Federal Government. Medicare provides
basic medical cover for all Australian citizens and residents and in Financial Year
1995/96 it dollar paid benefits of 6.014 billion. The HIC has a responsibility to
protect the public purse and ensure that taxpayers’ funds are spent wisely on
health care.

The HIC uses a number of supervised-learning systems to classify the prac-
tice profiles of practitioners who participate in Medicare to help identify those
who are practising inappropriately and those who are involved in fraudulent
practice. Inappropriate practice includes those who are over-servicing their pa-
tients by performing more services than is necessary for their medical condition
or who see their patients more often than is warranted. Fraudulent practice in-
cludes claiming for services not performed or mis-itemising services to attract a
higher benefit. An example is up-coding where a practitioner charged for a long
consultation when a short consultation was conducted with a patient.

One or more expert consultants, who are pre-eminent in the speciality, such
as GP, are used to identify features, or indicators, which discriminate between
good and bad practice in the speciality for which supervised-learning system
is developed. Once the features are selected, the consultants then classify the
practice profiles of a sample of practitioners from the speciality using a risk

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 74–81, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Application of Genetic Algorithm 75

classification scale ranging from a high risk profile to a low risk one. The classified
sample is then used to train the supervised-learning system.

One challenge the HIC faces is to achieve a high level of unanimity between
the classifications given by the supervised-learning system and those given by
the one or more expert consultants. This is necessary to ensure that the system
emulates the judgements of human experts by learning the classified patterns
in the training data set. The results of the supervised-learning system are likely
to be ignored if they tend to be inconsistent with those the expert. The HIC
has tested different supervised-learning techniques [6,3,5] for classifying prac-
titioners’ practice profiles to see which ones give the highest agreement rates
between machine-based judgements and those of human experts. The results of
these studies revealed that no one supervised-learning system (e.g. rule based
versus backpropagation neural network) was clearly superior to the others. One
method that can be used to improve the classifications given by various super-
vised learning techniques is the genetic algorithm. Genetic algorithms are ideal
for optimisation problems and can be applied to improve the matches between
the classifications of a system and those of human experts. The aim of this
research was conducted to see to what extent using a genetic algorithm to opti-
mise the weights of features improves the classifications of a supervised-learning
system above that obtained from using equally weighted features.

Genetic algorithms have been used in conjunction with other supervised-
learning methods[6,3,5]. In this study a genetic algorithm is applied to improve
the classifications obtained using a K-nearest neighbour (KNN) algorithm. The
KNN was selected for this study because it is a widely used profile-matching
technique and it bases its classifications of each case on those of its nearest
neighbours using different decision rules. Two rules are examined with this study
and they include the majority rule and the Bayesian rule. These rules are tested
to see what effect they have on the classifications of cases, while the genetic
algorithm is applied to find the optimal, or near, optimal weights for each features
using the distance metric employed in this study.

A sample of GP’s practice profiles is used in the research. GPs are responsible
for the primary medical care of patients and account for two-thirds of the general
population of medical practitioners in Australia. The aim of this paper is to
report the results obtained using the KNN algorithm in combination with a
genetic algorithm to classify GP practice profiles.

2 Methodology

Each GP practice profile contains a number of features which summarises aspects
of a GP’s practice over a year. An example is the total number of medical services
performed in a year. As described previously, the features were selected by one or
more expert consultants based on ability of the features to discriminate between
good and bad GP practice. For legal and professional reasons it is not possible to
list the features used to identify practitioners who are practising inappropriately.
There were 28 features used in the GPs’ practice profiles reported in this study.

76 Hongxing He, Warwick Graco, and Xin Yao

Each GP profile was given a risk classification of either 1 or 2 by the consul-
tants with ”1” signifying a high-risk profile and ”2” a low-risk profile. A sample
of 1500 GP profiles from a HIC database was selected and divided into three
data sets including a training set, a validation set and a test set. The profiles in
the training set were used to provide nearest neighbour examples to train the
KNN classifier. The validation set was used to optimise the weight values and
the test set was used to test the generalisation of the trained KNN classifier.
The training set consisted of 738 profiles, validation set 380 profiles and test set
382 profiles.

The statistic used to gauge the effectiveness of the KNN classifier and variants
was the agreement rate which is simply the percentage agreement between the
classifications of the expert consultants and classifications of the KNN classifier
divided by the total number of cases in the dataset.

3 K-Nearest Neighbour Classification Technique

The K Nearest Neighbour classification[1,2] of a sample is made on the basis
of the classifications of the selected number of k neighbours. The following two
methods were used in this study to decide the classification of nearest neigh-
bouring GP practice profiles using the KNN algorithm:

3.1 Majority Rule:

The classification of the nearest neighbours was decided by the number of class
1 (n1) compared to the number of class 2 (n2) of all k nearest neighbours. If
n1 > n2 then the classification was 1 and visa versa for situations where n2 > n1.
To avoid situations where n1 = n2, the value k was selected as an odd number.

3.2 Bayesian Rule:

The classification of a sample was based on the Bayes rule. With this approach,
a normal probability distribution function was applied in the neighbourhood of
each nearest neighbours whose identification is assigned:

P 1
i (xi, x) = e−d(xi,x)/2σ2

(1)

P 2
i (xi, x) = 0

if sample at xi is class 1

P 1
i (xi, x) = 0

P 2
i (xi, x) = e−d(xi,x)/2σ2

Application of Genetic Algorithm 77

if sample at xi is class 2, where P k
i (xi, x) is the probability being class k

at position x given classification at site i. The x and xi are position vectors in
multi-dimensional space. The d(x, xi) is the squared weighted distance between
two positions and is calculated as follows:

d(x, y) =
nX

j=1

w2
j (xj − yj)2 (2)

where n is the number of features, wj is the weight of the jth feature. The
probability of being class 1 or class 2 at site x given the known k nearest neigh-
bours’ classification is as follows:

P 1(x) =
M1(x)

M1(x) + M2(x)
(3)

P 2(x) =
M2(x)

M1(x) + M2(x)

where M1(x) and M2(x) are defined as follows:

M1(x) = P1

KX

i=1

P 1
i (xi, x) (4)

M2(x) = P2

KX

i=1

P 2
i (xi, x)

where P1 and P2 are the probability of being class 1 and 2 respectively.
Because of the number of features used, intuitively it can be seen that the

importance of the features cannot be the same and therefore it is inappropriate
to use Euclidean or other distance measures which give the equal weighting
to all features. Therefore different weights were applied to the features in the
distance equation (equation 2) and the optimal values were derived using a
genetic algorithm.

4 Genetic algorithm

The genetic algorithm developed by John Holland and associates[4] at the Uni-
versity of Michigan is a search algorithm based on the mechanics of natural
selection. The algorithm is used for searching for the optimal, or near optimal,
solution in a multi-dimensional space using Darwinian natural selection. In this
study the genetic algorithm was used in the following manner:

78 Hongxing He, Warwick Graco, and Xin Yao

4.1 Selection

At each iteration, two individuals in the population were selected to produce two
offspring for the next generation. In what is called the ’steady state’ approach
to generating offspring, the population was kept static with most individuals
retained in the next generation and only two individuals were replaced by two
created offspring. The two new individuals were created through crossovers and
mutations from two parent individuals. Crossovers and mutations used in this
study are explained later below in subsections b and c. The two individuals that
were replaced were the least optimal ones in the total population.

The selection of the parent individuals was random with the optimal ones
having a higher probability of being selected than the less optimal ones. To do
this, the whole population of offspring was ranked in ascending order in terms of
their cost function value. The derivation of the cost function is explained later
below in subsection d. A geometric series was created with common factor q.
With total population N, the series was as follows:

a, aq, aq2,aqN−1(q < 1) where a =
1 − q

1 − qN
(5)

The probability of selecting the most optimal individual is a, the second is
aq and the third aq2 and similar. This selection procedure favoured the more
optimal strings being selected for reproduction.

4.2 Crossover

In the crossover, the two new individuals were formed using both parents which
had been selected in the selection process. The n1 weight values from one indi-
vidual father individual) and n - n1 from another individual (mother individual
) were selected. The n1 was chosen randomly. The crossover procedure ensured
that the new individuals took some values of weights from the father individual
and some from the mother individual.

4.3 Mutation

After two offspring were formed, the small changes in values of selected param-
eters were added or subtracted. Weight value for each feature had a certain
probability of being changed. The extend of the change x was decided by a ran-
dom number which had a normal probability distribution as shown in equation
6 with a mean value µ and deviation σ

P (x) = e− (x−µ)2

2σ2 (6)

Application of Genetic Algorithm 79

4.4 Cost Function

The cost function was defined as the number of mis-classified cases Nmis plus a
regularisation term which is used to avoid the problem of inflation of the weights.
The cost function is shown in equation 7:

F = Nmis + α
nX

i=1

w2
i (7)

where the constant a is the regularisation coefficient, wi (i = 1, 2, ...n) are
the weights for all n features.

The data sets are normalised to be between 0.0 and 1.0 so that all features
used will follow to the same range. The parameters used in the genetic algorithm
and k nearest neighbour are as follows:

The ratio of geometric sequences used for selection of parents in equation (5)
is q = 0.8. Values m and s in normal distribution for mutation in equation (6)
are 0.2 and 1 respectively, and the mutation probability is 0.5.

The values m and s for normal distribution used in Bayesian rule in equation
(1) are 0.0 and 0.5 respectively.

5 Results

The results of using a genetic algorithm combined with the KNN for classifying
general practitioners’ practice profiles are listed in the table 1. The results are
the average over 50 runs where each run terminate at the 2000th generation. The
last column lists the agreement rate using Euclidean distance with all weights
are equal to 1. The common difference for the series is taken as three. The graph
in Figure 1 depicts the cost reduction process for a run using k = 3 and Bayes’
rule in making the decision.

Number Regularisation Decision Rule Agreement Agreement Agreement
nearest Coefficient Rate Rate Rate

neighbour Validation Test Test Dataset
Dataset Euclidean Distance

1 0 Nearest Neighbour 83.16 76.96 69.1
3 0 Majority Rule 83.68 73.82 69.37
3 0.1 Majority Rule 83.95 78.8 69.37
3 0.2 Majority Rule 83.16 76.44 69.37
3 0.3 Majority Rule 83.95 76.18 69.37
3 0.1 Bayes Rule 82.63 75.39 70.68
3 0.1 Bayes Rule 83.16 78.27 70.68
5 0.2 Majority Rule 82.63 77.49 71.21

Table 1. The results of a series of runs using genetic algorithm and KNN.

80 Hongxing He, Warwick Graco, and Xin Yao

The results shown in Table 1 an Figure 1 indicate that:
The KNN using the weights optimised by using a genetic algorithm improves

the classification results using the Euclidean distance.
High agreement rates were obtained using the KNN with both the majority

and the Bayes’ rules for the validation dataset. The obtained agreement rates
were in the range of 82 to 84 percent regardless of the number of nearest neigh-
bours selected and regardless of the regularisation coefficient used.

The genetic algorithm was very efficient in this application with only 2000
generation needed to achieve desired agreement rate for the validation dataset.

The agreement rates with the test dataset were in the range of 73 to 79
percent with some variations in results for different classification rules. The best
result of 78.8 percent agreement rate was obtained with the majority rule using
three neighbours with regularisation. The worst result of 73.82 percent agreement
rate was obtained with the majority rule without regularisation. These results
are better than those obtained with the features having the equal weights.

Fig. 1. An Example of the Cost Reduction as a Result of Training Using k = 3 and
Bayes’ Rule.

6 Discussion

The results show that the genetic algorithm is very effective in finding a near
optimal set of weights for the KNN classifier. The results also show that the
addition of the regularisation term in the cost function helps to prevent large
values being derived for variable weights, as shown by the test dataset results

Application of Genetic Algorithm 81

which show good generalisation from the validation dataset using genetically
trained weights with KNN. The other factors, such as the number of nearest
neighbours and the classification rule, do not appear to be critical in improving
the classification results.

The agreement rates for the KNN used in combination with a genetic algo-
rithm are comparable to those obtained from using a ripple-down rule and other
approaches to classify GP practice profiles.[6] For example, the agreement rates
for the KNN were in the range of 73 to 79 percent, while those for the ripple-
down rules which is case-based classification system were in the range of 70-74
percent. This suggests that KNN approach discussed in this paper is at least as
good as the ripple-down rules for classifying GP practice profiles.

7 Conclusions

The results in this study indicate that KNN used in combination with a genetic
algorithm achieved good generalisation with classifying GP practice profiles in
a test dataset. This opens the way for its application in solving a real world
problem namely medical fraud detection. A further refinement of the method
and the tuning of its parameters are needed to make it a routine application in
the Health Insurance Commission.

References

1. D. Aha, D. Kibler, and M. Alber. Instance-based learning algorithm. Machine
Learning, 6(1), 1991.

2. B. V. Dasarath. NN(Nearest Neighbour) Norms: NN pattern Classification Tech-
niques. IEEE CS Pre, Los Alamito, 1991.

3. H. He, W. Graco J. Wang, and Simon Hawkins. Application of neural networks in
medical fraud detection. Expert Systems with Application, 13(4):329–336, 1997.

4. J.H. Holland. Adaptation in Natural and Artificial System. MIT Pres, Massachusett,
1992.

5. F. Luan, H. He, and W. Graco. A comparison of a number of supervised-learning
techniques for classifying a sample of general practitioners’ practice profilil. In
Laurie Lock Lee and John Hough, editors, AI95,Eighth Australian Joint Artificial
Intelligence Conference, pages 114–133, Canberra, Australia, November 1995.

6. J. C. Wang, M. Boland, W. Graco, and H.He. Classifying general practitioner
practice profiles. In P. Compton, R. Mizoguchi, H. Motoda, and T. Menzies, editors,
PKAW96: The Pacific Knowledge Acquisition Workshop, pages 333–345, Coogee,
Sydney, Australia, October 1996.

Evolution of Reference Sets
in Nearest Neighbor Classification

Hisao Ishibuchi and Tomoharu Nakashima

Department of Industrial Engineering, Osaka Prefecture University,
Gakuen-cho 1-1, Sakai, Osaka 599-8531, Japan

Phone: +81-722-54-9354 FAX: +81-722-54-9915
E-mail:{hisaoi, nakashi}@ie.osakafu-u.ac.jp

Abstract. This paper proposes a genetic-algorithm-based approach for
finding a compact reference set used in nearest neighbor classification.
The reference set is designed by selecting a small number of reference
patterns from a large number of training patterns using a genetic al-
gorithm. The genetic algorithm also removes unnecessary features. The
reference set in our nearest neighbor classification consists of selected
patterns with selected features. A binary string is used for representing
the inclusion (or exclusion) of each pattern and feature in the reference
set. Our goal is to minimize the number of selected patterns, to mini-
mize the number of selected features, and to maximize the classification
performance of the reference set. The effectiveness of our approach is
examined by computer simulations on commonly used data sets.

Key words: Genetic algorithms, pattern classification, nearest neighbor
classification, combinatorial optimization, multi-objective optimization,
knowledge discovery.

1 Introduction

Nearest neighbor classification (Cover and Hart [1]) is one of the most well-
known classification methods in the literature. In its standard formulation, all
training patterns are used as reference patterns for classifying new patterns.
Various approaches were proposed for finding a compact set of reference patterns
used in nearest neighbor classification (for example, see Hart [2], Wilson [3],
Dasarathy [4], Chaudhuri [5]). In those approaches, a small number of reference
patterns were selected from a large number of training patterns. Recently genetic
algorithms were employed in Kuncheva [6,7] for finding a compact reference set
in nearest neighbor classification. Genetic algorithms were also used for selecting
important features in Siedlecki and Sklansky [8] and for weighting each feature
in Kelly and Davis [9] and Punch et al.[10]. In Knight and Sen [11], genetic
algorithms were used for generating prototypes.

This paper proposes a genetic-algorithm-based approach for simultaneously
selecting reference patterns and important features. Let us assume that m train-
ing patterns with n features are given in an n-dimensional pattern space. Our

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 82–89, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolution of Reference Sets in Nearest Neighbor Classification 83

problem is to design a compact reference set by selecting a small number of ref-
erence patterns from the given m training patterns and removing unnecessary
features from the given n features. In this paper, we first formulate our pattern
and feature selection problem as a multi-objective combinatorial optimization
problem with three objectives: to minimize the number of selected patterns, to
minimize the number of selected features, and to maximize the number of cor-
rectly classified training patterns by the reference set. Next we explain how a
genetic algorithm can be applied to our pattern and feature selection problem.
In the genetic algorithm, a reference set is coded by a binary string of the length
(n+m). Each bit value of the first n bits represents the inclusion or exclusion of
the corresponding feature. The other m bit values represent the inclusion or ex-
clusion of each of the given m training patterns. A fitness value of each reference
set (i.e., binary string) is defined by the weighted sum of the three objectives.
Finally we examine the effectiveness of our approach by computer simulations
on commonly used data sets. Simulation results show that a small number of
training patterns are selected by our approach together with a few important
features.

2 Problem Formulation

In general, the main goal of pattern classification methods such as statistical
techniques, machine learning and neural networks is to maximize the prediction
ability for unseen patterns. Thus their performance is usually measured by error
rates on unseen patterns. When pattern classification methods are used in the
context of decision support, knowledge discovery and data mining, it is required
to present understandable classification knowledge to human users. While the
classification mechanism of nearest neighbor classification is easily understood
by human users, the understandability of classification knowledge is not high
because a large number of training patterns are stored as classification knowl-
edge. Our goal in this paper is to extract a small number of reference patterns
together with important features in order to show classification knowledge to
human user in an understandable form.

We assume that m training patterns xp = (xp1, xp2, . . . , xpn), p = 1, 2, . . . , m
with n features are given in an n-dimensional pattern space where xpi is the
attribute value of the i-th feature in the p-th pattern. Let PALL be the set of
the given m training patterns: PALL = {x1,x2, . . . ,xm}. We also denote the
set of the given n features as FALL = {f1, f2, . . . , fn} where fi is the label of
the i-th feature. Our problem is to select a small number of reference patterns
from PALL and to select only important features from FALL. Let F and P be
the set of selected features and the set of selected patterns, respectively, where
F ⊆ FALL and P ⊆ PALL. We denote the reference set by S. Since S is uniquely
specified by the feature set F and the pattern set P , the reference set is denoted
as S = (F, P). In the standard formulation of nearest neighbor classification,
the reference set is defined as S = (FALL, PALL) because all the given features
and patterns are used for classifying a new pattern x = (x1, x2, . . . , xn). In our

84 Hisao Ishibuchi and Tomoharu Nakashima

nearest neighbor classification with the reference set S = (F, P), the nearest
neighbor xp̂ to the new pattern x is found from the pattern set P as

d(xp̂,x) = min {d(xp,x) | xp ∈ P}, (1)

where d(xp,x) is the distance between xp and x, which is measured based on
the feature set F as

d(xp,x) =
√∑

i∈F

(xpi − xi)2 . (2)

If the class of the nearest neighbor xp̂ is the same as that of the new pattern x,
x is correctly classified. Otherwise the new pattern x is misclassified.

Since our goal is to find a compact reference set that is easily understood
by human users, the number of selected patterns and the number of selected
features are minimized. The maximization of the classification performance is
also considered in the design of the reference set. Thus our pattern and feature
selection problem is written as follows:

Minimize |F |,minimize |P |, and maximize NCP (S), (3)

where |F | is the number of features in F (i.e., the cardinality of F), |P | is the
number of patterns in P , and NCP (S) is the number of correctly classified
training patterns by the reference set S = (F, P). In (3), NCP (S) is calculated
by classifying all the given m training patterns by the reference set S = (F, P).

3 Genetic Algorithms

For applying a genetic algorithm to our pattern and feature selection problem,
a reference set S = (F, P) is coded as a binary string with the length (n + m):

S = a1a2 · · · ans1s2 · · · sm, (4)

where the first n bits denote the inclusion or exclusion of each of the n features,
and the other m bits denote the inclusion or exclusion of each of the m patterns.
The feature set F and the pattern set P are obtained by decoding the string S
as follows:

F = {fi | ai = 1, i = 1, 2, . . . , n}, (5)

P = {xp | sp = 1, p = 1, 2, . . . , m}. (6)

The fitness value of the binary string S = a1a2 · · · ans1s2 · · · sm (i.e., the
reference set S = (F, P)) is defined by the three objectives of our pattern and
feature selection problem in (3). We use the following weighted sum as a fitness
function:

fitness(S) = WNCP · NCP (S) − WF · |F | − WP · |P | (7)

where WNCP , WF and WP are non-negative weights.

Evolution of Reference Sets in Nearest Neighbor Classification 85

Since the three objectives are combined into the above scalar fitness function,
we can apply a single-objective genetic algorithm to our pattern and feature
selection problem (We can also handle our problem by multi-objective genetic
algorithms [12] without introducing the scalar fitness function). In our genetic
algorithm, first a number of binary strings of the length (n + m) are randomly
generated to form an initial population. Let us denote the population size by
Npop. Next a pair of strings are randomly selected from the current population.
Two strings are generated from the selected pair of strings by crossover and
mutation. The selection, crossover and mutation are iterated to generate Npop
strings. The newly generated Npop strings are added to the current population
to form the enlarged population of the size 2 · Npop. The next population is
constructed by selecting the best Npop strings from the enlarged population.
The population update is iterated until a pre-specified stopping condition is
satisfied. The outline of our genetic algorithm is similar to Kuncheva’s algorithm
(Kuncheva [6,7]).

In our genetic algorithm, we use the uniform crossover to avoid the depen-
dency of the performance on the order of the n features and the m patterns in
the string. For efficiently decreasing the number of reference patterns, we use
the biased mutation (Nakashima and Ishibuchi [13]) where a larger probabil-
ity is assigned to the mutation from “sp = 1” to “sp = 0” than the mutation
from “sp = 0” to “sp = 1”. That is, we use two different mutation probabilities
pm(1 → 0) and pm(0 → 1) for the last m bits of the string, each of which repre-
sents the inclusion or exclusion of the corresponding pattern in the reference set.
Since pm(0 → 1) < pm(1 → 0), the number of reference patterns is efficiently
decreased by the biased mutation during the execution of our genetic algorithm.
The biased mutation is the main characteristic feature of our genetic algorithm.
We use the biased mutation because the number of selected reference patterns
is to be much smaller than that of the given patterns (e.g., 1/20 ∼ 1/40 of the
given patterns in computer simulations of this paper). It has been demonstrated
in Nakashima and Ishibuchi [13] that the number of reference patterns could
not be efficiently decreased without the biased mutation. Note that we use the
standard unbiased mutation for the first n bits of the string, each of which rep-
resents the inclusion or exclusion of the corresponding feature. This is because
usually the number of given features is not as large as that of given patterns. In
this case, the biased mutation is not necessary for the feature selection.

4 Computer Simulations

In this section, we first illustrate the pattern selection by a two-dimensional
pattern classification problem. Next we illustrate the pattern and feature selec-
tion by the well-known iris data. The iris data set is a three-class classification
problem involving 150 patterns with four features. Then the applicability of
our approach to high-dimensional problems is examined by wine data. The wine
data set is a three-class classification problem involving 178 patterns with 13 fea-
tures. Finally the performance of our approach on large data sets is examined by

86 Hisao Ishibuchi and Tomoharu Nakashima

Australian credit approval data. The credit data set is a two-class classification
problem involving 690 patterns with 14 attributes. We use the iris data, wine
data and credit data because they are available from the UC Irvine Database
(via anonymous FTP from ftp.ics.uci.edu in directory /pub/machine-learning-
databases). In our computer simulations, all the attribute values were normalized
into the unit interval [0,1] before applying the genetic algorithm to each data
set for the pattern and feature selection.

4.1 Computer Simulation on a Numerical Example

Let us illustrate our approach by a simple numerical example in Fig. 1 (a) where
200 training patterns are given from two classes. In Fig. 1 (a), we also show the
classification boundary by the nearest neighbor classification based on all the
given training patterns.

x

x

1

2

0.0
0.0

1.0

1.0
x

x

1

2

0.0
0.0

1.0

1.0

(a) (b)

Fig. 1. Simulation result for a numerical example. (a) Nearest neighbor classification by
all the given patterns. (b) Nearest neighbor classification by selected reference patterns.

We applied our approach with the following parameter specifications to the
two-dimensional pattern classification problem in Fig. 1 (a) with 200 training
patterns.

String length: 202 (2 features and 200 training patterns),
Population size: Npop = 50,
Crossover probability: 1.0,
Mutation probabilities: 0.01 for features,

pm(1 → 0) = 0.1 and pm(0 → 1) = 0.01 for patterns,
Weight values: WNCP = 5, WF = 1, WP = 1,
Stopping condition: 500 generations.

Evolution of Reference Sets in Nearest Neighbor Classification 87

After 500 generations, eight patterns were selected by the genetic algorithm.
Both the given two features were also selected. In Fig. 1 (b), we show the clas-
sification boundary by the nearest neighbor classification based on the selected
eight patterns. From this simulation result, we can see that a small number of
reference patterns were selected by the genetic algorithm from a large number
of training patterns.

4.2 Computer Simulation on Iris Data

In the same manner as in the previous subsection, we applied our approach to
the iris data. Since the iris data have four attributes and 150 training patterns,
the string length was specified as 154. The computer simulation was iterated
10 times using different initial populations. The following average result was
obtained:

Average number of selected features: 2.1.
Average number of selected patterns: 6.3.
Average classification rate on training patterns: 99.3%.

From this result, we can see that compact reference sets were obtained by the
genetic algorithm. For example, six reference patterns with two features (the
third and fourth features) were selected in nine of the ten trials. An example of
the selected reference sets is shown in Fig. 2 in the reduced pattern space with
the selected features x3 and x4. We also show the classification boundary by the
nearest neighbor classification based on the selected patterns and features. This
reference set can correctly classify 149 training patterns (99.3% of the given 150
training patterns). For the iris data, it is well-known that the third and fourth
features are important. These two attributes were always selected in the ten
independent trials.

x

x3

4

 Class 1 Class 2 Class 3

1.00.0

1.0

Fig. 2. Selected patterns and features for the iris data.

88 Hisao Ishibuchi and Tomoharu Nakashima

4.3 Computer Simulation on Wine Data

We also applied our approach to the wine data in order to demonstrate its
applicability to high-dimensional classification problems. Computer simulation
was performed in the same manner as in the previous subsections. Since the
wine data have 178 patterns with 13 features, the string length was specified
as 191. The computer simulation was iterated 10 times using different initial
populations. The following average result was obtained:

Average number of selected features: 6.9.
Average number of selected patterns: 5.4.
Average classification rate on training patterns: 100%.

From this result, we can see that compact reference sets were obtained by the
genetic algorithm for the wine data with many features.

4.4 Computer Simulation on Credit Data

We also applied our approach to the credit data in order to demonstrate its
applicability to large data sets with many training patterns. Since the credit
data have 690 patterns with 14 features, the string length was specified as 704.
Much longer strings were used for the credit data than the iris data and the wine
data. This means that the search space of the genetic algorithm for the credit
data is much larger than the cases of the other data sets. In the application to
the credit data, we used the following parameter specifications to handle such a
large search space:

Population size: Npop = 50,
Crossover probability: 1.0,
Mutation probabilities: 0.01 for features,

pm(1 → 0) = 0.1 and pm(0 → 1) = 0.005 for patterns,
Weight values: WNCP = 5, WF = 1, WP = 1,
Stopping condition: 2000 generations.

The computer simulation was iterated five times using different initial popula-
tions. The following average result was obtained:

Average number of selected features: 6.8.
Average number of selected patterns: 38.6.
Average classification rate on training patterns: 92.6%.

Since there is a large overlap between two classes in the credit data, the average
classification rate is smaller than the cases of the other data sets. The average
classification rate can be increased by assigning a large value to the weight for
the classification performance (i.e., WNCP). For example, we had a 94.2% aver-
age classification rate by specifying the weight values as WNCP = 20, WF = 1
and WP = 1. In this case, the number of selected patterns was increased from
38.6 to 76.0. As we can see from these simulation results, there is a trade-off
between the classification performance of the reference set and its compactness.

Evolution of Reference Sets in Nearest Neighbor Classification 89

5 Conclusion

In this paper, we proposed a genetic-algorithm-based approach to the design of
compact reference sets in nearest neighbor classification. In our approach, feature
selection and pattern selection are simultaneously performed by a genetic algo-
rithm. That is, a small number of reference patterns with only important features
are selected. The effectiveness of our approach was demonstrated by computer
simulations on commonly used data sets. The number of selected patterns was
1/20 ∼ 1/40 of the given training patterns in our computer simulations of this
paper. About half features were also removed in our computer simulations.

References

1. Cover, T. M., and Hart, P. E.: “Nearest neighbor pattern classification,” IEEE
Trans. on Information Theory. 13 (1967) 21-27.

2. Hart, P.: “The condensed nearest neighbor rule,” IEEE Trans. on Information The-
ory. 14 (1968) 515-516.

3. Wilson, D. L.: “Asymptotic properties of nearest neighbor rules using edited data,”
IEEE Trans. on Systems, Man, and Cybernetics. 2 (1972) 408-420.

4. Dasarathy, B. V.: “Minimal consistent set (MCS) identification for optimal nearest
neighbor decision systems design,” IEEE Trans. on Systems, Man, and Cybernetics.
24 (1994) 511-517.

5. Chaudhuri, D., et al.: “Finding a subset of representative points in a data set,”
IEEE Trans. on Systems, Man, and Cybernetics. 24 (1994) 1416-1424.

6. Kuncheva, L. I.: “Editing for the k-nearest neighbors rule by a genetic algorithm,”
Pattern Recognition Letters. 16 (1995) 809-814.

7. Kuncheva, L. I.: “Fitness functions in editing k-NN reference set by genetic algo-
rithms,” Pattern Recognition. 30 (1997) 1041-1049.

8. Siedlecki, W., and Sklansky, J.: “A note on genetic algorithms for large-scale feature
selection,” Pattern Recognition Letters. 10 (1989) 335-347.

9. Kelly, J. D. Jr., and Davis, L.: “Hybridizing the genetic algorithm and the k nearest
neighbors classification algorithm,” Proceedings of 4th International Conference on
Genetic Algorithm. University California. San Diego (July 13-16, 1991) Morgan
Kaufmann Publisher. San Mateo (1991) 377-383.

10. Punch W. F., et al.: “Further research on feature selection and classification us-
ing genetic algorithms,” Proceedings of 5th International Conference on Genetic
Algorithm. University of Illinois at Urbana-Champaign (July 17-21. 1993) Morgan
Kaufmann Publisher. San Mateo (1993) 557-564.

11. Knight, L., and Sen, S.: PLEASE: “A prototype learning system using genetic
algorithm,” In: Proceedings of 6th International Conference on Genetic Algorithm.
University of Pittsburgh (July 15-19. 1995). Morgan Kaufmann Publisher. San Fran-
cisco (1995) 429-435.

12. Ishibuchi, H., Murata, T., and Turksen, I.B.: “Single-objective and two-objective
genetic algorithms for selecting linguistic rules for pattern classification problems,”
Fuzzy Sets and Systems. 89 (1997) 135-149.

13. Nakashima, T., and Ishibuchi, H.: “GA-based approaches for finding the minimum
reference set for nearest neighbor classification,” Proceedings of 5th IEEE Inter-
national Conference on Evolutionary Computation. Anchorage (March 4-9. 1998).
709-714.

Investigation of a Cellular Genetic Algorithm
that Mimics Landscape Ecology

Michael Kirley, Xiaodong Li and David G. Green

School of Environmental and Information Sciences,
Charles Sturt University,

PO Box 789 Albury New South Wales 2640 - Australia
(mkirley, xli, dgreen)@csu.edu.au

Abstract. The cellular genetic algorithm (CGA) combines GAs with
cellular automata by spreading an evolving population across a pseudo-
landscape. In this study we use insights from ecology to introduce new
features, such as disasters and connectivity changes, into the algorithm.
We investigate the performance and behaviour of the algorithm on stan-
dard GA hard problems. The CGA has the advantage of avoiding prema-
ture convergence and outperforms standard GAs on particular problems.
A potentially important feature of the algorithm’s behaviour is that the
fitness of solutions frequently improves in large jumps following distur-
bances (culling by patches).

1 Introduction

Genetic algorithms (GAs) are search and optimization techniques that are based
on the analogy of biological evolution [4], [9], [10]. One of the great attractions
of this approach is that natural selection has succeeded in producing species
that solve the problem of survival and are often highly optimized with respect
to their environment. However the traditional GA approach is only a simplified
version of what really occurs in nature. For instance genes and chromosomes are
organized differently, and population dynamics in landscapes introduces added
complexity. An important question, therefore, is whether algorithms that more
closely mimic the evolutionary process convey any advantages over simple GAs.
In this study we begin to address this question by investigating the performance
and behaviour of a GA that embodies features of evolution in a landscape.

Traditional GAs evolve a population of individuals over time by selecting
mates from the entire population (either at random or based on some fitness
measure). Loss of population diversity (convergence) reduces the quality of many
solutions. Many ad hoc schemes have been introduced to continually change
genetic parameters in order to preserve diversity [10].

Parallel genetic algorithms (PGAs) attempt to improve the performance of
GAs by restricting mating to subpopulations of individuals [3], [11]. The spatial
population structure employed by PGAs helps to maintain diversity in a more
natural manner. Typically PGAs utilise static population structures that are
specified at the beginning of the run and remain unchanged. Here we develop

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 90–97, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Investigation of a Cellular Genetic Algorithm 91

an approach to PGAs in which changes in topology, brought about by varying
the proportion of individuals alive in the population, play a crucial part in
the operation of the algorithm. This approach is based on recent findings about
evolution in a landscape [6] and builds on findings into the critical nature of
connectivity [5], [6] and especially for cellular automata models of landscapes.
The proposed cellular genetic algorithm (CGA) highlights the importance of a
spatial population structure for the evolution of solutions to complex problems.

2 Parallel Genetic Algorithms

The PGA is a parallel search with information exchange between individuals
within a spatially distributed population. There are two categories of PGAs;
coarse or fine grained PGAs. In coarse-grained PGAs subpopulations are intro-
duced that work independently with only occasional exchanges of individuals
- migration. They are also known as “distibuted” GAs or “island” models [1].
In fine-grained PGAs the spatial distribution of the population is defined, and
selection and crossover are restricted within the individual’s neighbourhood [8].

As a consequence of local selection in PGAs, there is less selection pressure
and tendency towards more exploration of the search space. Critical parameter
settings include migration rate and interval, topology and the ratio of the radius
of the neighbourhood to the radius of the whole grid [3].

Various PGAs have been proposed to tackle optimisation problems. Mand-
erick and Spiessens [8] described a fine-grained PGA that uses a local selection
scheme where a mate was randomly selected based on the local fitness values.
The algorithm was implemented on a sequential machine, therefore it is not a
truly parallel algorithm. Muhlenbein et al [11] use local selection too, but it
is limited to a small neighbourhood (only 4 neighbours). Muhlenbein also uses
hill-climbing for each individual. In recent work by Rudolph and Sprave [13],
a self-adjusting threshold scheme was used to control the selection pressure.
Branke et al [2] described a number of global selection schemes for PGAs, but
they require global knowledge. Lin et al [7] introduces a hybrid PGA that in-
corporates both coarse and finegrained PGAs for job shop scheduling problems.
Yao [15] also describes global optimisation using parallel evolutionary algorithms
as well as the possibility of using hybrid algorithms to improve performance.

3 A Cellular Genetic Algorithm

The algorithm we explore here embeds the evolving population of the GA in a
cellular automaton (CA). Computationally this is a fine-grained PGA, but with
certain biologically inspired modifications. Whitley [14] introduced the term “cel-
lular genetic algorithm” (CGA) for this sort of model. However one important
difference in our approach is that the individuals only occupy cells in the grid;
they are not identified with them. We treat the grid as a model of a pseudo-
landscape, with each cell corresponding to a site in the landscape. At any given
time each cell may be active (occupied) or inactive.

92 Michael Kirley, Xiaodong Li and David G. Green

Fig. 1. Phase changes in connectivity within a genetic “landscape”. In each case the
x-axis represents the proportion p of cells in the grid that are occupied. (a) Change in
the size of the largest connected “patch” of cells. Note the phase change at p = 0.4. (b)
Variance in the size of the patch in (a) over repeated trials. Note the extreme variance
at the phase change. (c) Time for an epidemic process to traverse the largest patch.

Our approach draws on ideas from population dynamics and landscape ecol-
ogy. Its rationale derives from findings of our previous research on the nature
of evolution in a landscape [6]. We have shown that the structure change of a
cellular automaton model plays a critical role in many ecological changes and
species evolution [5] [6]. For example, a phase change occurs in the connectivity
of grids as the proportion of active cells changes (Fig. 1).

The above result has a crucial implication. Simply by changing the propor-
tion of active cells within the model (so that the number crosses the connectiv-
ity threshold), we can induce phase changes in genetic communication within a
population. For example if we randomly assign a certain proportion of the pop-
ulation as alive, and the remaining as dead, the population of living individuals
fragments into many patchy subpopulations (Fig. 2). Although the same fine-
grained local interaction rules apply, the use of patchy subpopulations in this
case resembles the coarse-grained PGA approach. This enables refinement of so-
lutions within a subpopulation as well as the accumulation of variations between
subpopulations. When individuals from different subpopulations spread out and
mate, fitter hybrids often appear.

The CGA uses a toroidal grid in which the state of each cell consists of
a binary chromosome as well as a value indicating fitness. The length of the
chromosome is problem dependent. Each generation consist of upgrading the
status of each cell in a series of steps. These steps follow the basic pattern for
GAs except that the spatial arrangement of cells modifies the process in the
following important ways.

1. On each generation each active cell produces an offspring to replace itself.
In doing so it carries out crossover of its genetic material with one of its
neighbours. A mate is selected based on its fitness value relative to the local
neighbourhood.

2. Varying proportions of individuals are removed at random using a disaster
option. Normally the disaster is small, but occasionally large numbers are

Investigation of a Cellular Genetic Algorithm 93

Fig. 2. Patchy subpopulations of a PGA model. Active cells are shaded, while inactive
cells are represented by white cells on the 2-dimensional grid. The black area shows
the extent of the single largest patch of connected active cells in this system. The
proportion of active cells in this case is set at the critical level (cf Fig. 1)

wiped out. Control parameters include the rate at which disasters strike a
generation and the maximum radius of the disaster zone.

3. Wherever a cell is cleared, the neighbouring cells compete to occupy it. Thus,
it will take a number of generations to fill the vacant zone after a disaster.

4 Experiments and Results

Initial investigations focussed on three different selection schemes within the
neighbourhood model: (a) a mate is selected at random; (b) a fitter mate is
randomly selected; and (c) the fittest individual in the local neighbourhood is
always selected as a mate. The size of the neighbourhood is set to one (eight
nearest neighbours) in all models.

For performance evaluation De Jong’s standard test functions F1, F2, F3
and F5 were used [4]. F4 was excluded due to the stochastic nature of the
function. The configurations described have been implemented in C* and run on
a Connection Machine CM-5. The 2-D grid size was set to 10 (100 individuals).
In all runs the crossover and mutation rates were 0.6 and 0.1 respectively.

The CGA was able to find optimum solutions for all test functions. Table 1(a)
lists the number of generations to reach the optimum solution for each function
for a given selection technique averaged over ten runs. For all test functions,
there is a significant reduction in the number of evaluations required to find the
optimal solution when the fittest selection technique is adopted. Table 1(b) lists
performance statistics for each function, based on the fittest selection strategy
after 100 generations. Here we compare the performance of the CGA with the
Manderick and Spiessens model [8] in column FG1. There does not appear to be
any significant improvement in performance for F1 or F2. However, the results for
F3 and F5 suggest that the CGA not only alleviates the premature convergence
problem and improves results, but also finds solutions in a shorter time.

94 Michael Kirley, Xiaodong Li and David G. Green

Table 1. CGA performance measures

(a) Selection Technique (b) Comparison
Function Selection Generation Function Performance CGA FG1

Random - Online 12.3358 2.8333
F1 Fitter 155.0 F1 Offline 0.1659 0.0192

Fittest 64.0 Best-so-far 0.0001 0.0000
Random 136.8 Online 128.789 47.7812

F2 Fitter 131.5 F2 Offline 0.1597 0.3032
Fittest 39.8 Best-so-far 0.0901 0.2573

Random 141.0 Online 8.3120 22.1863
F3 Fitter 120.5 F3 Offline 3.8200 11.0415

Fittest 40.3 Best-so-far 0.0000 10.8500
Random 83.0 Online 111.071 168.9408

F5 Fitter 52.3 F5 Offline 3.4192 14.4214
Fittest 50.6 Best-so-far 1.0021 9.2834

Next we investigated the CGA performance using a GA-hard problem. The
function used is a generalised version of the Rastrigin function.

f(x) = nA +
Pn

i=1 x2
i − Acos(2πxi)

−5.12 < xi < 5.12 and A = 3, n = 20

This function is predominantly unimodal with an overlying lattice of moder-
ately sized peaks and basins. The min f(x) = f(0, 0......0) = 0.

The CGA introduces a disaster option, which allows the grid to be broken
up into patches. The dynamic nature of connectivity allows interactions to be
restricted to small neighbourhoods which means that good alternative solutions
can persist by forming small clumps. All individuals can be considered to be
continuously moving around within their neighbourhoods, so that global com-
munication is possible, but not instantaneous. Wherever a cell is cleared, the
neighbouring cells compete to occupy it.

The 2-D grid size was set to 100. The large grid is needed to achieve a more
realistic model. The parameter settings for the preliminary investigations in-
clude the fittest selection strategy, with crossover and mutation rates 0.6 and
0.1 respectively. The disaster rate and maximum disaster zone radius (the range
or neighbourhood size of the disaster) values were systematically altered to de-
termine the effects of spatial disturbances on solution quality. The results are
summarised in Figs. 3 and 4.

As the disaster configuration parameters are altered the ability of the CGA to
find good solutions also changes. The results shown in Fig. 3 indicate that there
is variation in performance when the spatial population is disturbed. The best
results occur consistently with disaster rate in the range 0.1 - 0.2 and disaster
zone radius value of 30. As expected disturbances of too great a severity destroys
the variability of the population, and thus the basis of further advances.

Investigation of a Cellular Genetic Algorithm 95

Fig. 3. CGA average best fitness after 500 generations for the Rastrigin function using
different combinations of disaster rates and disaster zone radius values.

Fig. 4. A comparison of CGA performance. The best individual fitness value vs gen-
eration for the CGA without disasters averaged over five runs compared to a typical
run with disaster rate = 0.1 and disaster zone radius = 30. Disasters shown here as an
arrow.

If the disaster option is disabled the CGA functions as a typical fine-grained
PGA. Other performance measures examined included the average and standard
deviation of the solution fitness values at the end of the run as well as the time
to reach the best solution. There does not appear to be significant variation,
with or without disasters, based on these measures in the CGA.

Fig. 4 shows the average best-ever results of the CGA with the disaster
option turned off and an example with disaster rate = 0.1 and disaster zone
radius = 30. Typically we have rapid progress at the beginning, followed by a
more gradual improvement in solution quality. In the CGA with disaster trial,
there is often an increase in solution quality following disasters. For example,
the graph shows that a significant jump in fitness occurred at approximately
generation 180 following a disaster.

96 Michael Kirley, Xiaodong Li and David G. Green

5 Discussion

To summarise the results briefly, the version of the CGA that we have intro-
duced here works well on all the standard problems with which we have tested it
with, especially De Jong’s function F5 and the Rastrigin function. Improvement
in performance is attributable to the use of local neighbourhoods (i.e. the fine-
grained PGA approach) which reduces the tendency of premature convergence.
The introduction of disasters into the algorithm produces some interesting be-
haviour. In particular we saw that there is a strong tendency for the best fitness
in the population to increase in jumps following a disaster. This is something
that we anticipated by analogy with biological systems. Our earlier work [5], [6]
had shown that disasters in a landscape can lead to explosions of small popula-
tions that were previously suppressed by their competitors. The jumps in fitness
arise from hybridisation of these populations when they are able to spread and
come into contact with each other.

Lin et al [7] obtained best results for the job shop scheduling problem using a
hybrid PGA model consisting of course-grained PGAs connected in a fine-grained
PGA style topology. The CGA with disasters effectively achieves the same thing.
That is the regular operation of the algorithm, with mate selection confined to a
local neighbourhood is a straightforward fine-grained PGA. Disasters break up
the grid into isolated patches that are still locally communicating but isolated
from other patches - i.e. a coarse-grained PGA. The results support the concept
that emulating biological processes more closely holds the potential to produce
better algorithms. In this study we have tested the CGA only on standard test
problems. However, its ideal application is likely to be problems that involve
optima and criteria, which vary in time and space and correspond to the sorts
of circumstances faced by natural populations.

Acknowledgements

The CGA was implemented on the CM5 at the South Australian Centre for High
Performance Computing.

References

1. Belding, T.C. The Distributed Genetic Algorithm Revisited. In Eschelman, L.
(Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms,
San Francisco, CA: Morgan Kaufmann (1995) 114-121.

2. Branke, J., Andersen, H.C. and Schmeck, H. Global Selection Methods for Mas-
sively Parallel Computers. In Proceedings of AISB’96 workshop on Evolutionary
Computing, ed. Fogarty T.C., Lecture Notes in Computer Science 1143, Springer
Verlag (1996) 175-188.

3. Cantu-Paz, E. A Survey of Parallel Genetic Algorithms. IlliGAL Report No.97003,
Illinois Genetic Algorithms Laboratory (1997).

Investigation of a Cellular Genetic Algorithm 97

4. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning.
Reading, Massachusetts: Addison-Wesley Publishing Company, Inc. (1989).

5. Green, D.G. Emergent Behaviour in Biological Systems. In Green, D.G. and Bosso-
maier, T.R.J. Complex Systems - from Biology to Computation, Amsterdam: IOS
Press (1993) 24-35.

6. Green, D.G. Connectivity and the evolution of biological systems. Journal of Bio-
logical Systems 2 (1) (1994) 91-103.

7. Lin, S., Goodman, E. D. and Punch, W. F. Investigating Parallel Genetic Algo-
rithms on Job Shop Scheduling Problems. In Angeline, P. J. et al., (Eds) Evo-
lutionar Programming VI, Proc. Sixth Internat. Conf., EP97, Springer Verlag,
NY,.,Indianapolis, (1997) pp.383-394.

8. Manderick, B and Spiessens, P. Fine-Grained Parallel Genetic Algorithms, In
Schaffer, J.D. (Ed) Proceeding of 3rd International Conference on Genetic Al-
gorithms.. Morgan Kaufmann, (1989) pp.428-433.

9. Michalewicz, Z. Genetic Algorithms + Data Structure = Evolution Programs -
Third, Revised and Extended Edition. New York: Springer-Verlag Berlin Heidel-
berg (1996).

10. Mitchell, M. An Introduction to Genetic Algorithms. Cambridge, Massachusetts:
The MIT Press (1996).

11. Muhlenbein, H. Parallel genetic algorithms, population genetics, and combinato-
rial optimisation. In Schaffer, J.D. (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms, San Matteo, CA: Morgan Kaufmann, (1989)
pp.416-421.

12. Muhlenbein, H., Gorges-Scheuter, M. and Kramer O. Evolution Algorithms in
Combinatorial Optimisation. Parallel Computing, 7, (1988) pp.65-88.

13. Rudolph, G. and Sprave, J. Significance of Locality and Selection Pressure in the
Grand Deluge Evolutionary Algorithm. Proceeding of PPSN’96 (1996).

14. Whitley, D. Cellular genetic algorithms. In S. Forest, (Ed). Proceedings of the
5th International Conference on Genetic Algorithms. Morgan Kaufmann, (1993)
pp.658-662.

15. Yao, X. Global optimisation by evolutionary algorithms. Proceedings of the Sec-
ond Aizu International Symposium on Parallel Algorithm/Architecture Synthesis,
Aizu-Wakamatsu, Japan, Society Press,.IEEE Computer (1997) pp.282-291.

Quantifying Neighborhood Preservation: Joint
Properties of Evolutionary and Unsupervised

Neural Learning

Ralf Garionis

University of Dortmund, Department of Computer Science XI,
44221 Dortmund, Germany

Abstract. Unsupervised learning algorithms realizing topographic map-
pings are justified by neurobiology while they are useful for multivariate
data analysis. In contrast to supervised learning algorithms unsupervised
neural networks have their objective function implicitly defined by the
learning rule. When considering topographic mapping as an optimization
problem, the presence of explicitly defined objective functions becomes
essential. In this paper, we show that measures of neighborhood preser-
vation can be used for optimizing and learning topographic mappings by
means of evolution strategies. Numerical experiments reveal these mea-
sures also being a possible description of the principles governing the
learning process of unsupervised neural networks. We argue that quanti-
fying neighborhood preservation provides a link for connecting evolution
strategies and unsupervised neural learning algorithms for building hy-
brid learning architectures.

1 Introduction

A mapping being topographic is able to transform neighboring points in some
space into neighboring points in another space, while the neighborhood relation
is retained by means of the transformation. There exist several unsupervised
learning algorithms performing topographic mappings (some of which we will
consider in section 3). However, there is no generic framework subsuming the
different learning dynamics. Identifying the principles underlying such a learning
process becomes important when designing new learning schemes.

We will investigate empirically if the quantification of neighborhood preser-
vation is suitable as a black box description of neural learning dynamics by
calculating these measures in parallel to the neural learning process. By using
evolution strategies for optimizing the measures of neighborhood preservation,
we will see if these measures can be considered as objective functions describing
topographic mappings.

2 Quantifying neighborhood preservation

A recent work by Goodhill and Sejnowski [5] identifies several methods for quan-
tifying neighborhood preservation in topographic mappings and provides a tax-

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 98–105, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Quantifying Neighborhood Preservation 99

onomy of these measures. The authors have also calculated the values assigned
by these measures to a set of four static mappings (square to line problem) and
have done some analysis on parameter variation.

Here, we will make use of those non-stochastic measures named in [5], which
do not need additional parameters or target values for a mapping and which
do not yield binary relationship values. Therefore, we will consider the most
universal measures. These are briefly explained in the following, where xi (yi)
names point i in input (output) space of the mapping, while N is the number of
points mapped and ∆(x) (∆(y)) is a function quantifying similarity of points in
input (output) space.

The C measure

The cost functional C [4] measures the correlation between the distance ∆(x) in
input space and the distance ∆(y) in output space:

C =
N∑

i=1

∑
j<i

∆(x)(xi, xj)∆(y)(yi, yj) (1)

Metric Multidimensional Scaling

Metric multidimensional scaling (metric MDS) [14] is used to match a given set of
dissimilarities of measurements with the dissimilarities of points resulting from a
transformation of the initial measurements. The objective function defining the
quality of matching is the summed squared differences of dissimilarities:

mMDS =
N∑

i=1

∑
j<i

[∆(x)(xi, xj) − ∆(y)(yi, yj)]2 (2)

Sammon mappings

Although similar to metric MDS, Sammon mappings [10] are nonlinear by the
use of normalization. The Sammon function emphasizes differences involving
small ∆(x) values:

S =
1∑N

i=1
∑

j<i ∆(x)(xi, xj)

N∑
i=1

∑
j<i

[∆(x)(xi, xj) − ∆(y)(yi, yj)]2

∆(x)(xi, xj)
(3)

Spearman coefficient

The idea of metric topology preserving (MTP) maps presented in [1] is that
it preserves the relative positions (ranks) of pairwise similarities among points.

100 Ralf Garionis

For calculating the deviation from an optimal MTP mapping the Spearman
coefficient ρSp is used, which is the correlation coefficient of the ranks [9]:

ρSp =
∑N

i=1(Ri − R̄)(Si − S̄)√∑N
i=1(Ri − R̄)2

√∑N
i=1(Si − S̄)2

(4)

[1] proved that a map is metric topology preserving if ρSp = 1.

3 Self-organizing topographic mappings

Unsupervised learning rules for topographic maps transform points in some con-
tinuous input space into discrete lattice points in neuron space. Each neuron
carries a reference (weight) vector mapping its lattice position back into input
space. We will now briefly explain a selection of learning algorithms fitting in
this framework.

Kohonen’s self organizing maps

The self-organizing feature-mapping algorithm developed by Kohonen [7] be-
came a synonym for unsupervised learning algorithms providing topographic
mappings. Within the one- or two-dimensional lattice of neurons the algorithm
has to find the neuron that is closest to some network input of arbitrary di-
mension. The reference vector of the neuron found (the winner) is moved by
some distance in direction towards the input vector. The neurons neighboring
the winner are moved by a value decreasing with growing neighborhood size.

The Folk and Kartashov elastic network model

Based on elastic interaction between neurons, the network model of Folk and
Kartashov [2] moves the neuron reference vectors according to the ”forces” acting
on neighboring neurons. These forces are calculated by using the input signal
density inside the Voronoi cells defined by the neurons’ weight vectors, which
are also considered in terms of distances. The network can perform all weight
adaptations required for a single learning step in parallel.

Linsker’s maximum mutual information network

The idea of maximizing the Shannon information rate (average mutual informa-
tion) of an input-output mapping was used by Linsker for deriving a learning
rule that performs gradient ascent in the information rate [8]. The algorithm
explicitly addresses lateral connections and requires the calculation of distances
from input vectors to reference vectors. While Linsker uses Eucledian exponen-
tially weighted distances, distance measurement has to recognize that opposite
side neuron grid borders are connected to each other and therefore form a torus.

Quantifying Neighborhood Preservation 101

4 Evolution strategies

Evolution strategies are known to be well suited for solving difficult real valued
optimization problems [12]. For our numerical experiments we have chosen a par-
ticular instance of parallel evolutionary algorithms, the neighborhood evolution
strategy (NES) [11].

The neighborhood model of the NES places the individuals of the popula-
tion on a grid being folded in such a way as to form a two-dimensional torus.
Therefore, the grid defines the neighborhood relations among individuals. A par-
ticular neighborhood encloses all individuals surrounding an individual within
some fixed distance in the maximum norm.

As local selection operator we used mating selection successfully. The two
best individuals are selected from the neighborhood in order to generate the
successor of the current individual in the next generation. Therefore, the com-
munication among individuals within a certain neighborhood is purely local.

Both, the NES and the neural network models considered here, share similar
properties: They are inherently parallel and they are based on local interactions.
This is a useful prerequisite for hybrid learning systems.

5 Simulations

For calculating the measures of section 2 in parallel to the neural learning pro-
cess, we used random points drawn from the bivariate uniform distribution over
the range [0, 1] and mapped them into a 8 × 8 two-dimensional neuron lattice
(initially configured randomly) by using the algorithms described in section 3.
The rules’ parameters were chosen such that the lattice unfolds properly, while
the number of input presentations required depended on the learning algorithm
used (note: Linsker’s rule uses batch learning). At each pattern presentation, we
calculated on-line the measures of section 2 for the last 64 input-output map-
pings (initially less than 64) for approximating the mapping of 64 input points
each addressing another neuron of the 8 × 8 neuron lattice. Because we consider
Eucledian spaces, Eucledian distances were used for the ∆(·).

We used the same measuring code for optimizing the point to lattice map-
pings by the neighborhood evolution strategy. The NES controlled the real valued
two-dimensional coordinates of 64 points in input space. The measuring func-
tions kept the real valued coordinates of the 64 reference vectors constant while
the neighborhood relation of these vectors was defined by the equidistant spaced
discrete 8×8 two-dimensional grid in output space. Each of the reference vectors
coordinates were set to i

9 , i = 1 . . . 8 for representing the topologically correct
mapping of the discrete output space grid into input space. Therefore, the NES
had to find under control of the measures considered the points in input space
which map perfectly into the output space grid. (Due to this method the abso-
lute values calculated by the measuring functions in the NES do not match the
values of the neural network simulations.) As boundary restrictions imposed on
the optimization the variable values had to stay within the interval [0, 1].

102 Ralf Garionis

For solving this 128 real valued parameter optimization problem we com-
bined the NES with a line search algorithm (Hooke-Jeeves, [6]) ran at different
frequencies within the evolution strategy’s evaluation loop.

Note that it is difficult to compare the neighborhood measures gained by the
neural network models and the NES among each other since the NES operates
on a fixed set of input points and therefore calculates the optimum of the various
measures. Because the neural network models use changing input points, they
calculate the mean of the topographic distortion among the inputs. The pres-
ence of ”wrap around” neighborhoods (Linsker’s network) and ”border neurons”
(elastic network) influences the measure values for the neural mappings. There-
fore, the slope of the measure curves is most informative regarding the learning
process.

6 Discussion

We have simulated the learning algorithms (realizing topographic mappings) of
section 3 which differ regarding the principles underlying the learning rules. In
parallel to the learning process, we have calculated the neighborhood preser-
vation measures of section 2 for quantifying the process of learning. Figures 3
to 5 show that at least metric MDS and Sammon mappings can be considered
as Lyapunov functions describing the learning dynamics of the three network
models: These functions are clearly minimized. The results for metric MDS and
Sammon values are confirmed by the topology preserving mappings gained by
the NES (figures 6 to 7) using local mating selection (as described in [13]) and
a population size of 100 individuals.

In the neural network simulations, the on-line calculated values for the C mea-
sure and the Spearman coefficient ρSp do not show changes significant enough to
characterize the learning process (figures 3 to 5). In addition, the NES was not
able to generate a topology preserving mapping under control of the C measure
and the Spearman function. This gives rise to the assumption that the signal
for directing the process of learning topological mappings provided by these two
functions is too weak and that the values they calculate do not provide a strong
causal relation to the development of topological mappings.

The mapping obtained for Sammon’s measure (fig. 7) takes longer to learn
(fig. 2) than the mapping evolved for the mMDS case (fig. 6). Some preordering
of the initial grid configuration could speed up learning.

Furthermore, the line search optimization algorithm used for supporting the
NES failed to converge to a valid solution at any function used.

7 Conclusions

Summarizing, metric MDS and Sammon mappings are suited for guiding the
evolutionary learning process of an evolution strategy and for explaining the
topology preserving learning process of a variety of neural network learning algo-
rithms by means of a Lyapunov function. As combined result of the simulations,

Quantifying Neighborhood Preservation 103

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400
0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Fig. 1. Fitness values for metric MDS Fig. 2. Sammon’s measure: fitness

0
4500
9000

13500
18000

0 1250 2500 3750 5000

C

0
0.2
0.4
0.6
0.8

1

0 1250 2500 3750 5000

Spearman

0

30

60

90

120

150

180

0 1250 2500 3750 5000

MMDS

0

0.05

0.1

0.15

0.2

0 1250 2500 3750 5000

Sammon

Fig. 3. Kohonen’s SOM

0
4500
9000

13500
18000

0 500 1000 1500

C

0
0.2
0.4
0.6
0.8

1

0 500 1000 1500

Spearman

0

30

60

90

120

150

180

0 500 1000 1500

MMDS

0

0.05

0.1

0.15

0.2

0 500 1000 1500

Sammon

Fig. 4. Elastic network

0
4500
9000

13500
18000

0 1250 2500 3750 5000

C

0
0.2
0.4
0.6
0.8

1

0 1250 2500 3750 5000

Spearman

0

30

60

90

120

150

180

0 2000 4000

MMDS

0

0.05

0.1

0.15

0.2

0 2000 4000

Sammon

Fig. 5. Linsker’s network

Figures 1 and 2: The fitness values
returned by the NES are plotted as
bars for each generation. A missing
bar indicates that the corresponding
generation does not carry an im-
proved individual conforming to the
boundary restrictions.

Figures 3 to 5: Each of the graphs
show the values for metric mul-
tidimensional scaling (top left),
Sammon’s measure (top right), C
measure (bottom left), and for the
Spearman coefficient ρSp (bottom
right).

104 Ralf Garionis

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Fig. 6. Topographic mapping evolved using metric MDS as objective function: initial
random configuration, typical intermediate, and final mapping. Ordered intermediate
configurations are reached much faster compared to the S-measure case.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Fig. 7. Topographic mapping evolved using Sammon’s measure: initial random config-
uration, intermediate, and final mapping. Intermediate configurations are less stable
than those for the mMDS case (fig. 6).

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Fig. 8. Topographic mappings found by the Kohonen network (left) and by the neigh-
borhood evolution strategy for the C measure (middle) and ρSp (right) case.

we argue that metric MDS and Sammon mappings do characterize adequately
the essential properties of topology preserving mappings.

Considering the joint characteristics of the NES and the neural network
models used, hybrid architectures employing topology preserving mappings are
within reach.

Quantifying Neighborhood Preservation 105

Acknowledgements

We thank J. Sprave for useful discussions and supplying his code for the NES.
Thanks to M. Fellenberg for software support. We gratefully acknowledge sup-
port by the Deutsche Forschungsgemeinschaft (DFG) under grant Schw-361/10.

A preliminary version of this paper was published as [3].

References

1. J. C. Bezdek and N. R. Pal. An index of topological preservation for feature ex-
traction. Pattern Recognition, 28(3):381–391, 1995.

2. R. Folk and A. Kartashov. A simple elastic model for self-organizing topological
mappings. Network: Computation in Neural Systems, 5(3):369–387, 1994.

3. R. Garionis. Quantifying neighborhood preservation: Linking evolutionary and un-
supervised neural learning. In X. Yao, R. I. McKay, C. S. Newton, J.-H. Kim, and
T. Furuhashi, editors, Proc. Second Asia-Pacific Conf. on simulated Evolution and
Learning (SEAL’98), volume 2, Canberra, 1998. University College, The University
of New South Wales, Canberra, and Australian Defence Force Academy, Canberra,
Australia. ISBN 0-7317-0500-9.

4. G. J. Goodhill, S. Finch, and T. J. Sejnowski. Optimizing cortical mappings. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural
Information Processing Systems, volume 8, pages 330–336. MIT Press, Cambridge,
MA, 1996.

5. G. J. Goodhill and T. J. Sejnowski. Quantifying neighbourhood preservation in to-
pographic mappings. In Proceedings of the 3rd Joint Symposium on Neural Compu-
tation, University of California, San Diego and California Institute of Technology,
Pasadena, volume 6, pages 61–82, Pasadena, 1996. California Institute of Technol-
ogy.

6. R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical
problems. JACM, 8:221–229, 1961.

7. T. Kohonen. Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics, 43:59–69, 1982.

8. R. Linsker. How to generate ordered maps by maximizing the mutual information
between input and output. Neural Computation, 1(3):402–411, 1989.

9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C, 2nd Edition. Cambridge University Press, 1992.

10. J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans.
Comput., 18:401–409, 1969.

11. M. Schütz and J. Sprave. Application of parallel mixed-integer evolution strategies
with mutation rate pooling. In L. J. Fogel, P. J. Angeline, and Th. Bäck, editors,
Evolutionary Programming V – Proc. Fifth Annual Conf. Evolutionary Program-
ming (EP’96), pages 345–354, San Diego CA, 1996. The MIT Press, Cambridge
MA.

12. H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer Tech-
nology. Wiley, New York, 1995.

13. J. Sprave. Linear neighborhood evolution strategy. In A. V. Sebald and L. J. Fogel,
editors, Proc. Third Annual Conf. Evolutionary Programming (EP’94), pages 42–
51, San Diego, CA, 1994. World Scientific, Singapore.

14. W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika,
17:401–419, 1952.

Neural Networks and Evolutionary Algorithms
for the Prediction of Thermodynamic Properties

for Chemical Engineering

Martin Mandischer1, Hannes Geyer2, and Peter Ulbig2

1 Department of Computer Science XI, University of Dortmund, Germany
2 Institute for Thermodynamics, University of Dortmund, Germany

Abstract. In this paper1 we report results for the prediction of thermo-
dynamic properties based on neural networks, evolutionary algorithms
and a combination of them. We compare backpropagation trained net-
works and evolution strategy trained networks with two physical models.
Experimental data for the enthalpy of vaporization were taken from the
literature in our investigation. The input information for both neural net-
work and physical models consists of parameters describing the molecu-
lar structure of the molecules and the temperature. The results show the
good ability of the neural networks to correlate and to predict the ther-
modynamic property. We also conclude that backpropagation training
outperforms evolutionary training as well as simple hybrid training.
Keywords: Neural Networks, Evolution Strategies, Hybrid-Learning,
Chemical Engineering

1 Introduction

In chemical engineering the simulation of chemical plants is an important task.
Millions of chemical compounds are known yet and experimental data are often
not available. For this reason there is a need for calculation methods which are
able to predict thermodynamic properties. Usually models are developed, which
have a physical background and where the model parameters have to be fit-
ted with the aid of experimental data. This leads usually to nonlinear regression
models with a multi-modal objective function where evolution strategies are suc-
cessfully used. In contrast to models with physical background simple so-called
incremental methods are widely used, too. Each functional group of a molecule
gives a contribution to the thermodynamic property and the sum of all contri-
butions have to be calculated. A new way for the calculation and prediction of
thermodynamic properties is the use of neural networks. Descriptors, which can
be derived from the molecular structure, have to be defined for the input layer.
Then experimental data for a specific thermodynamic property can be used for
training. Predictions of this thermodynamic property are then possible by using
the molecular structure for a chemical compound, where no experimental data
1 Acknowledgments: The work presented is a result of the Collaborative Research

Center SFB 531 sponsored by the Deutsche Forschungsgemeinschaft (DFG)

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 106–113, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Neural Networks and Evolutionary Algorithms 107

are available. In this investigation the enthalpy of vaporization was taken. In
section 2 we give a brief overview of the models used and continue in section
3 with an experimental comparison of physical models, networks trained with
backpropagation, networks trained with evolutionary algorithms and a combi-
nation of the latter two.

2 Models for the enthalpy of vaporization

2.1 Physical models

The physical background for the enthalpy of vaporization ∆Hv consists of elec-
trostatic interactions forced by the atoms of the molecules. Equations can be
derived from statistical thermodynamics in order to describe the interactions
between molecules (first level) and between functional groups of these molecules
(second level). Physical models, such as UNIVAP2 (UNIversal enthalpies of VA-
Porization) which summarizes the interactions between functional groups of the
molecules within a pure liquid were developed [8]. This model consists of sums
of exponential terms, which include the interaction parameters and the tem-
perature. The interactions are weighed by the surface fractions of functional
groups of a molecule. The interaction parameters can be fitted to experimental
enthalpy of vaporization data. This leads to a non-linear regression problem with
a multi modal objective function. This function consists of the mean absolute
error (MAE) over all experimental data points N between the calculated values
(physical model) and the experimental data: MAE = 1

N

∑

N

∣
∣∆Hcalc.

v − ∆Hexp.
v

∣
∣

Due to the complex structure of the physical model, especially the exponen-
tial terms, multi-modality occurs. An evolution strategy for solving this problem
was developed [3,8,9]. Another theoretical approach is the so-called EBGVAP
model (Enthalpy Based Group contribution model for enthalpies of VAPoriza-
tion) which was used in our investigation, too.

2.2 Neural Networks

Neural networks are able to acquire an internal model of a process by learning
from examples. After successful training the network will be a model for the
process which led to the experimental data. Theoretical results show that feed-
forward networks are capable of arbitrary exact function approximation, given
an unlimited number of free parameters or infinite precision [4].

In our experiments we used simple feed-forward networks with non-linear
sigmoid activation functions. As training algorithms we employed the standard
Backpropagation algorithm [6] and various (µ,λ) evolution strategies [7,1] as well
as a combination of both.
2 For the UNIVAP model it was difficult to reach the critical point, where the enthalpy

of vaporization reaches null. A modified temperature dependence was used in this
investigation to improve the performance at critical points (UNIVAP2).

108 Martin Mandischer, Hannes Geyer, and Peter Ulbig

3 Experiments and Results

Comparing different methods or models is at least two-fold. On the one hand
a fair comparison should allow all models the same number of free parameters
to adjust to the problem. On the other hand, one can say that it is sufficient
if a model performs good on formerly unseen data regardless of the number of
parameters it needed.

Some of our experiments were designed to find good neural models under
the most similar conditions for the calculations as the physical models. Here
the number of adjustable parameters was almost the same for all models. In
other experiments we searched for good results independent of the number of
free parameters (weights) used. One difficulty is to find the optimal structure
of the neural network and the optimal structure of the temperature dependent
equation of the physical model. Here we only investigated the structure of the
network. Another important issue is to have the same input information for all
methods, which can be derived from the structure of the molecules.

3.1 Generation and Description of the Data

Selection of data. The experimental data concerning the enthalpy of vaporiza-
tion were taken from data handbooks. Data for three different classes of chemical
compounds were used: normal alkanes, 1-alcohols, and branched alcohols. These
data were chosen for the investigation of three different functional groups, the
so-called main groups: CH3, CH2 and CHnOH. The group CHnOH contains the
functional groups CH3OH, CH2OH and CHOH. The experimental data cover
a temperature range from 92 K to 776 K. The number of carbon atoms in the
n-alkanes goes from 2 (Ethane) to 19 (Nonadecane), for the 1-alcohols from 1
(Methanol) to 14 (Tetradecanol) and for the branched alcohols from 4 (2-Methyl-
2-propanol) to 6 (2-Methyl-2-pentanol).
Selection of descriptors. There are several possibilities for the definition of
descriptors as input variables for a neural network: number of atoms, number of
single bonds, molar mass, dipole moment and topological parameters concerning
the connectivity between atoms [2]. In our investigation the descriptors for the
input layer are the surface fractions of the functional groups within a molecule
and the temperature. Therefore a definition of functional groups is necessary.
Here the definition of the UNIVAP model [8] shall be used.
Partitioning into subsets for cross validation. After generating the data
set it was subdivided into 3 classes: training (50%), validation (25%) and test
(25%) set. The training set was used to adapt the parameters for all our models.
The validation set could be used during the adaption process to evaluate the
algorithms performance on unknown data and stop the adaption process if the
error on the validation set increases. Validation and test set therefore measure
the generalization ability of our models. However, 50% of the data were used only
for comparison, i. e. for a test of the prediction of the enthalpy of vaporization.
The distribution of the data can be seen in Table 1.

Neural Networks and Evolutionary Algorithms 109

Group interaction parameters data points (total) data points (training)

CH3CH3 3 110 53 (48.18 %)
CH3CH2 / CH2CH2 9 138 75 (54.35 %)
CHnOHCHnOH 3 19 10 (52.36 %)
CH3CHnOH / CH2CHnOH 12 162 76 (46.91 %)
total: 27 429 214 (49.88 %)

Table 1. Number of experimental data for the different group interactions

Transformation. For the use with the neural network the data were normalized
via separate linear transformations of main-groups, temperature and enthalpy to
the interval [0.1 .. 0.9]. Network responses outside of this interval were mapped
onto the boundaries and then re-transformed to the original scale.

3.2 Physical Model Experiments

The training set was used for the regression of the interaction parameters and the
training of the neural network. First the parameters were computed successive,
i. e. first the 3 parameters for the interaction CH3/CH3 were calculated and
with these parameters the next 9 parameters (corresponding to Table 1) were
calculated and so on. These sequential experiments for the physical models were
done with the aid of an encapsulated evolution strategy without a correlated
step-length control [3]:

[
GG 3 + 8(GG 7 + 19)200

]40

Three different runs with each 1.2·106 function calls of the evolution strategies
gave similar results. These results were optimized by the simplex-method with
30 different runs of 1000 iterations each. The best result for UNIVAP2 (seq)
and EBGVAP (seq) can be found in Table 2. In contrast to this sequential
regression of the model parameters a simultaneous regression (sim) of all 27
parameters was investigated by using a similar encapsulated ES as for the
sequential experiments. The results of these runs were improved by a simplex-
method, too and can be seen in Table 2.

UNIVAP 2 (seq) EBGVAP (seq) UNIVAP 2 (sim) EBGVAP (sim)
Train 0.914 0.635 1.128 3.784
Valid 1.190 0.867 1.353 4.436
Test 0.948 0.613 1.209 3.863
All 1.017 0.705 1.230 4.028

NN-A NN-B NN-ES (best) NN-ES (avrg)
Train 0.652 0.570 0.612 1.143
Valid 0.566 0.878 0.876 1.536
Test 0.686 0.703 0.747 1.357
All 0.635 0.717 0.745 1.345

Table 2. Mean absolut error per pattern for different data sets and models

110 Martin Mandischer, Hannes Geyer, and Peter Ulbig

Fig. 1. Training error (�=0.8) Fig. 2. Validation error (�=0.8)

3.3 Neural Networks Experiments (Backpropagation)

The learning rate η and the architecture of the network (number of hidden units
and connections) have the biggest influence on the performance of the network
[5]. To find good neural network solutions we did a primitive parameter study. We
first varied the learning rate with a fixed architecture which had approximately
the same number of free parameters (connections) as the UNIVAP methods.
With the best learning rate found, we searched for a good number of hidden
units. All runs were performed 10 times.
Variation of the learning rate. We fixed the architecture of the network at
4 input, 4 hidden and 1 output units (4-4-1) to have approximately the same
number of free parameters (25) as the UNIVAP method. We started with a very
low learning rate η = 0.001 and ended with a far too high rate η = 10.0. The
momentum term α was fixed to 0.2. A training run was stopped after it reached
the error limit or exceeded a maximum number of 100,000 pattern presentations
(epochs). The error is defined as: tss = 1

2 × ∑n
i=1 (θi − oi)2. With θ as target

vector and o as output activation of the network.
Figure 1 and 2 show the curves for 10 different runs with the best learning rate

which was used throughout all other experiments. The left-hand side figure gives
the error on the training set and on the right-hand side we see the validation
error. If an error curve reaches the base of the graph it satisfied a specified
error limit (tss ≤ 5 × 10−5) for the whole training set. Networks with very low
learning rate never reached the specified error limit, due to the very slow learning
progress. A too high rate, resulted in oscillating error curves.
Variation of the number of hidden units. After variation of η we used the
best rate, as constant for the hidden unit search3. The number of hidden units
were varied between 1 and 40. Networks with less then 3 units failed to learn
the task. Up to 40 units the results on training as well as validation data were
3 This does not mean that both parameter are independent of each other. We consider

this value to be a first estimate to start with.

Neural Networks and Evolutionary Algorithms 111

almost independent of the number units employed. We therefore used our initial
4-4-1 network. This is an additional advantage because it can now be directly
compared to other methods which use the same number of free parameters.

3.4 Neural Networks Experiments (Evolution Strategy)

In this experiment we substituted the Backpropagation algorithm with an evo-
lution strategy. Some authors [10] reported good results when training a net-
work with an ES. Again we systematically searched for a good parametrisation
of the (15,100)–ES. Parameters under consideration were the number of muta-
tion step-sizes σi and the recombination scheme used on the object variables xi

(the network weights). Each parameter setting was run for 10,000 generations
(1,000,000 pattern presentations) and repeated 10 times to have some statisti-
cal validity. All of the following variations of the bisexual recombination scheme
were done with 1 and 25 σ: no recombination of xi and σi, discrete recombina-
tion of xi and discrete of σi discrete recombination of xi and intermediate of σi

intermediate recombination of xi and discrete of σi intermediate recombination
of xi and intermediate of σi. For details on ES see [1,7].

None of the parameter settings lead to good and reliable results. Only one out
of all ES trained network performed comparable to Backpropagation. All other
networks give rather poor results. The quality of the average result did improve
when using backpropagation as local search procedure (an additional training of
250,000 epochs) after ES optimization but was not as good as Backpropagation
alone. Figure 3 shows the best run, which we regard as a very rare event, with
a (15,100)–ES.

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000

E
rr

or

Generations * 10

(15,100)-ES: n stepsizes, intermediate recombination of weights and stepsizes

SigMin
SigMax

Best

Fig. 3. (15,100)–ES (error during training)

112 Martin Mandischer, Hannes Geyer, and Peter Ulbig

3.5 Comparison

For a comparison, we took two network architectures with learning rates gained
by the previous experiments. Architecture A has 4 hidden units and the nearly
the same number of free parameters (25 weights) as the UNIVAP models (27).
Architecture B performs alike and has 6 hidden units (37 weights). Table 2 gives
on overview of all experiments.

1. Parameters for NN-A (4-4-1): η=0.8, epochs=250,000
2. Parameters for NN-B (4-6-1): η=0.8, epochs=250,000
3. Parameters for NN-ES (4-4-1): best (15,100)–ES #σ = n, intermediate re-

combination of xi and σi (100,000 generations)
4. Parameters for NN-ES (4-4-1): average (15,100)–ES #σ = n, intermediate

recombination of xi and σi (100,000 generations)

As an additional test for generalisation ability, we used all data of an ethane
molecule. In figures 4 and 5 we compare all models on the enthalpy prediction for
ethane. It can be seen that the physical model and the neural network performs
equally well on this task, except for the critical regions near T → Tcr and
∆Hv(Tcr) = 0 J/mol, where the network outperforms all other models. Almost
all networks trained with an ES and the UNIVAP model give only a poor linear
approximation of the enthalpy curve.

0

5

10

15

20

100 150 200 250 300

E
nt

ha
lp

y
(k

J/
m

ol
)

Temperature (Kelvin)

Prediction for Ethane Experimental
EBGVAP

NN
NN-ES (best)

Fig. 4. Performance on ethane (good)

0

5

10

15

20

100 150 200 250 300

E
nt

ha
lp

y
(k

J/
m

ol
)

Temperature (Kelvin)

Prediction for Ethane Experimental
UNIVAP2

NN-ES
NN-ES-BP

Fig. 5. Performance on ethane (poor)

4 Discussion

The most important result of this investigation is the good ability to correlate as
well as to predict the enthalpy of vaporization with neural and physical methods.
Neural networks with simple Backpropagation training are as good as physical
models and especially at critical temperatures even slightly better, but their
computational effort is much lower. The comparison of the results for UNIVAP2
and EBGVAP show the influence of the structure of the model itself. Further
investigations could use evolutionary algorithm to optimize the structure of the
models with regard to the temperature dependence. For the neural networks it
can be stated that the use of surface fractions of functional groups as descriptors
for a neural network leads to good results for both correlation and prediction. The

Neural Networks and Evolutionary Algorithms 113

big advantage of this new procedure is, that the molecules can easily be divided
into functional groups, which makes it easy to use in engineering applications
and allows the direct comparison of neural networks and physical models, due
to the same input information. The investigations concerning the architecture
of the neural networks show, that a simple network structure is sufficient and a
more complicated network does not give better results. In this context evolution
strategies as training algorithm and combinations of ES with backpropagation
failed to deliver useful models in almost all experiments.

From a thermodynamic point of view, it is interesting that a simple method
like a neural network can give similar results in comparison with much more
complicated physical motivated models. If a physical model gives results with a
quality less than a neural model, the physical model should be improved. How-
ever, in chemical engineering there are many thermophysical properties, which
are usually not described by physical methods, but by incremental methods.
These methods, for example, for critical data, normal boiling points and so on,
could be replaced by neural networks. However, these results are first steps in
developping efficient network structures for our purpose and especially investiga-
tions with more functional groups will give a better comparison between physical
models and neural networks.

References

1. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Univ. Press,
New York, 1996.

2. L. M. Egolf and P. Jurs. Prediction of boiling points of organic heterocyclic com-
pounds using regression and neural network techniques. In J. Chem. Inf. Comput.
Sci. 33, pages 616–625. 1993.

3. H. Geyer, P. Ulbig, and S. Schulz. Encapsulated evolution strategies for the de-
termination of group contribution parameters in order to predict thermodynamic
properties. In 5th Int‘l. Conf. on Parallel Problem Solving from Nature. Amster-
dam, 1998.

4. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2:359–366, 1989.

5. M. Mandischer. Evolving recurrent neural networks with non-binary encoding.
In Proc. Second IEEE Int’l Conf. Evolutionary Computation (ICEC ’95), vol. 2,
pages 584–589, Perth, Australia, 1995. IEEE Press, Piscataway NJ.

6. D. E. Rummelhart and J. L. McClelland. PDP: Explorations in the Microstructure
of Cognition, volume 1. MIT Press, Cambridge, MA, USA, 1986.

7. H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer
Technology. Wiley, New York, 1995.

8. P. Ulbig. Gruppenbeitragsmodelle UNIVAP & EBGCM. Dr.-Ing. Thesis, Univ. of
Dortmund, Institute for Thermodynamics, 1996.

9. P. Ulbig, T. Friese, H. Geyer, C. Kracht, and S. Schulz. Prediction of thermody-
namic properties for chemical engineering with the aid of Computational Intelli-
gence. In Progress in Connectionist-Based Information Systems. Springer, 1997.

10. W. Wienholt. Minimizing the system error in feedforward neural networks with
evolution strategy. In S. Gielen and B. Kappen, editors, Proc. of the Int‘l. Conf.
on Artificial Neural Networks, pages 490–493, London, 1993. Springer-Verlag.

Evolving FPGA Based Cellular Automata

Reid Porter and Neil Bergmann

Cooperative Research Centre for Satellite Systems,
Queensland University of Technology, Brisbane, Australia

r.porter//n.bergmann@qut.edu.edu,
Ph: +61 7 3864 1987, Fax: +61 7 3864 1361

Abstract. Cellular Automata architectures are attractive due to their
fine grain parallelism, simple computational structures and local rout-
ing resources. Some researchers have used genetic algorithms to find CA
that perform useful computations. The inherently parallel cellular au-
tomata model as well as the genetic algorithm are poorly suited to imple-
mentation on general purpose microprocessor based systems. Field Pro-
grammable Gate Arrays are an alternative that can provide significant
speedup. This paper describes the Xilinx XC6216 Field Programmable
Gate Array and how it is used to efficiently search a hybrid 2-state, 5-
neighbour cellular automata rule space that exhibits computation univer-
sality. Its application to an image processing application, binary texture
analysis, is discussed.
Keywords: FPGA, Cellular Automata, Genetic Algorithm

1 Introduction

Cellular Automata (CA) have been considered as a model for general purpose
computation by several authors. Several works describe CA capable of universal
computation (computational power equivalent to a universal Turing machine [1]).
Field Programmable Gate Arrays (FPGA) can provide a programmable, max-
imally parallel implementation of CA but can only efficiently implement small
CA. Large CA require multiple FPGA and/or time multiplexing where array
initialisation and result reading soon dominate the computation time. Searching
CA rule spaces is one application which typically uses small test examples and
therefore small CA.

Papers by Richards et. al[2], Mitchell[3] and Sahota[4] describe the use of
genetic algorithms to search CA rule spaces where fitness is a function of how
well the CA behaviour matches a desired algorithm output. We suggest that
CA individuals be implemented in a FPGA so that the time consuming fitness
evaluation task can be reduced. By using rapid reconfigurability individuals can
then be swapped in and out of hardware as required by the genetic algorithm [5].

Cellular Automata have long been considered as an ideal architecture for
spatially distributed/inherently parallel image processing applications [6]. We
are particularly interested in the application of small CA for block based image
processing applications such as local feature identification. In this paper we

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 114–121, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolving FPGA Based Cellular Automata 115

propose the use of XC6200 series FPGAs to accelerate exploration of CA rule
spaces to find solutions to such problems.

Previous work in this area has applied genetic algorithms to fixed size CA
rule tables. We consider a unique XC6200 hybrid CA model and search a hard-
ware dictated rule space based on the FPGA structure. This rule space has the
advantage of computation universality as well as ease of implementation.

Section 2 will introduce Field Programmable Gate Arrays and the Xilinx
XC6216 device. Section 3 describes the XC6216 hybrid CA model and discusses
the allocation of hardware resources and universal computation. Application
of genetic algorithms and issues of representation are discussed in Section 4.
Section 5 presents the CA Evolver experimental apparatus and its application
to a block based image processing application: binary texture analysis. Results
and observations will be presented in Section 6 followed by a summary and
discussion of future work in Section 7.

2 Field Programmable Gate Arrays and the XC6216

Field Programmable Gate Arrays are now a popular implementation style for
digital logic systems and sub-systems. These devices consist of an array of un-
committed logic gates whose function and interconnection is determined by
downloading configuration information to the device. When the programming
configuration is held in static RAM, the logic function implemented by those
FPGAs can be dynamically reconfigured in fractions of a second by rewriting
the contents of the SRAM configuration memory.

The XC6216 FPGA by Xilinx, depicted in Figure 1(a), has a regular 64 by
64 two-dimensional array of function blocks. These function blocks, depicted
in Figure 1(b), contain a function unit capable of implementing any 2 input
logic gate or 3 input multiplexer as well as a d-type flip-flop. Each block also

Fig. 1. (a) The XC6216 FPGA and (b) The XC6216 Cell

116 Reid Porter and Neil Bergmann

contains local routing resources to adjacent neighbours (Nout, Sout, Eout, Wout

multiplexers).
Function blocks are grouped hierarchically for routing purposes. At the lowest

level blocks are interconnected to the nearest neighbours in four directions. These
blocks are grouped into four and supplemented with length 4 fastlanes. These
4x4 groups then form part of larger 16x16 groups which are further supplemented
by length 16 wires and chip-length interconnects. The configuration memory of
Xilinx XC6216 FPGA is mapped directly to the host processor enabling partial
reconfigurability where part of an FPGA device can be programmed at high
speed without affecting the rest of the design. Readers are referred to [7] for a
more detailed description of the XC6216 device.

3 The XC6216 hybrid Cellular Automata

In their simplest form Cellular Automata can be considered a homogeneous ar-
ray of cells in one, two, three or more dimensions. Each cell has a finite discrete
state. Cells communicate with a number of local neighbours and update syn-
chronously according to deterministic rules [8]. One of the simplest CA models
has 5 neighbours and 2 states. The state of each binary 0/1 cell depends on the
state of the cell at the previous time step, plus the state of the four north, south,
east and west neighbours at the previous time step.

To implement this CA model, we need to be able to implement any logic
function of 5 variables. This can be achieved with a look up table, or alternatively
with the logic tree of Figure 2(a). This logic tree is implemented in a 4 by 4 group
of XC6216 function blocks illustrated in Figure 2(b). The function block outputs,
which implement the logic tree structure are illustrated by solid arrows. The CA
cell state is stored in function block 5. This function block output is routed back
throughout the 4 by 4 group and to all north, south, east and west faces of the
cell. Its path through the local routing resources is illustrated by dashed arrows.

State information from a CA cell’s north, south, east and west neighbours
is routed across all function blocks through the XC6216 length 4 fastlanes. This
means that every function block has access to all 5 boolean state variables. The
4 by 4 group of Figure 2(b) is replicated across the XC6216 to form a 15 by 15
two dimensional Cellular Automata. The North/South and East/West ends of
the array are wrapped around via the XC6216 chip length routing resources.

Codd in [8] proved that a 2-state 5 neighbour CA capable of universal com-
putation did not exist with a finite initial configuration. Several authors achieved
computation-universal CA models by adding more states or larger neighbour-
hoods [9]. We enhance the computational power of Figure 2(a) by including the
additional memory resources (flip-flops) that are freely available in each XC6216
function block. This allows us to consider a CA model based on neighbour-
hood information from further back in time. With this in mind, unbounded but
boundable propagation is easily demonstrated. We have also demonstrated the
computation universality of this hybrid CA model by simulating Minsky’s two
register machine [9].

Evolving FPGA Based Cellular Automata 117

Fig. 2. (a) Flexible Logic Tree (b) Function Block Assignment

4 Searching the XC6216 hybrid CA rule space

To search the XC6216 hybrid CA rule space with a genetic algorithm several
choices must be made concerning representation. In similar experiments, based
in software, individuals represent fixed size rule tables. Ease of implementation
leads us to consider a hardware dictated rule space with individuals based on
the XC6216 configuration bit string. We consider two different hardware repre-
sentations.
FPGA Bitstring: The first is based on the raw configuration bitstring of the 4
by 4 group of XC6216 function blocks. Connectivity between each group is pre-
defined (to implement the 15 by 15 two dimensional CA array) but all routing
and functionality within the group varies according to the genetic algorithm.
Logic Tree: The second representation is based on the flexible logic tree of
Figure 2(a). In this case the routing resources both between and within each 4
by 4 group of function blocks are pre-defined and we evolve only function. A
performance comparison of the FPGA Bitstring and Logic Tree hardware repre-
sentations, as well as a software based CA rule table representation is presented
in Section 6.

The function unit in each XC6216 function block is illustrated in Figure 3(a)
and defined by two eight bit configuration bytes of Figure 3(b). CS defines
whether or not the function unit will make use of the flip-flop resource. The
X1, X2 and X3 configuration bits define the input signals to the logic gate or
multiplexer. Y2 and Y3 define the gate or multiplexer type. RP sets the flip-flop
as read-only and M defines additional routing resources.

When using the Logic Tree representation a CA individual is completely
specified by defining these two bytes for each function block within the 4 by
4 group. The effective genetic string length for the Logic Tree GA is therefore

118 Reid Porter and Neil Bergmann

Fig. 3. (a) XC6216 Function Unit and (b) Configuration Bytes

32 bytes or 256 bits. The FPGA Bitstring GA requires an additional byte per
function block. Configuration byte 3, illustrated in Figure 3(b), defines the local
Nout, Sout, Eout, Wout multiplexers of Figure 1(b). The effective genetic string
length for the FPGA Bitstring GA is therefore 48 bytes or 384 bits.

5 The CA Evolver Experimental apparatus

Our experiments are based on the HotWorks development system. This system
incorporates a Xilinx XC6216 FPGA that communicates to a host processor
through a 32 bit PCI bus. The main genetic algorithm loop and genetic operators
are implemented on the host processor. A population of CA individuals are held
in memory and downloaded into the XC6216 as required to perform the fitness
evaluation task.

The reproduction scheme is similar to that used in [3]. The fittest 100 CA
individuals from a population of 300 are copied directly to the next generation.
The remaining 200 are generated by application of the cross-over and mutation
operators on parents chosen with replacement from the elite 100.

For the FPGA Bitstring GA a one point cross-over is applied to the 384 bit
configuration bit string. For the Logic Tree representation a specialised cross-
over that constrains the structure of CA offspring to the logic tree of Figure 2(a)
is used. A cross-over branch is randomly selected and then a sub-tree formed
by all child nodes and branches. This sub-tree is then exchanged between two
parents similar to genetic programming [5]. In both cases offspring are mutated
in exactly four randomly chosen positions.

The XC6216 CA Evolver system is applied to a binary texture analysis prob-
lem which involves identifying a particular pattern within a 15 by 15 pixel area.
The binary pattern chosen in this experiment is diagonal lines. Two screenshots
of the CA Evolver system, each with training image on the left and ideal image
on the right, are depicted in Figure 4. Each training image is segmented ei-
ther horizontally as in Figure 4(a) or vertically 4(b).The non-patterned segment
is filled with noise of a density randomly selected from a uniform distribution
between 0 and 1.

Evolving FPGA Based Cellular Automata 119

Fig. 4. (a) Horizontal and (b) Vertically segmented: input image left/ideal image right

The state of each CA cell is first initialised with the corresponding point in
the 15 by 15 training image. The XC6216 is then clocked for 200 cycles at 33Mhz
to iterate the CA array. The fitness of the CA individual is calculated by a bit
by bit comparison of the state of CA cells and the ideal image. A fitness counter
is incremented for each CA cell in correspondence with the ideal image. While
the counter is greater than zero it was also decremented for each cell that is
not in correspondence. As in [4] CA individuals that lead to collapsed images
(the state of the CA array ends up all 1’s or all 0’s) are penalised and receive a
fitness score of 0. Each individual within the population is evaluated against 300
training images at each generation. As in [4] the overall fitness for an individual
is calculated as the root mean square over the 300 images.

6 Performance Comparison

The computation times for the XC6216 based genetic algorithms were estimated
from the CA Evolver experiments. A software based experiment that searched
the XC6216 hybrid CA rule table was also implemented and is compared in
Table 1. The computation time for the genetic algorithm can be calculated as:

Ttotal = Tpop+Generations�(Tfit+Tga) where Tpop is the time to gener-
ate a population, Tfit is the time needed to evaluate the fitness of a population
and Tga is the time to generate a new population with the GA operators.

Measurements were based on non-optimised code and it is expected that exe-
cution time could be significantly reduced. The relative measurement of speedup
can be considered accurate and is summarised in Table 1.

Measurement
in Seconds

Software
Rule table

FPGA
Bitstring

Logic
Tree

Relative
Speedup

Tpop 0.1 0.1 0.1 1
Tfit per generation 1987.9 34.22 34.17 58
Tga per generation 0.05 0.06 0.08 1

Table 1. Estimation of Speedup

120 Reid Porter and Neil Bergmann

Fig. 5. Average pixel error in experiments

We also make a qualitative comparison of the two FPGA based GA, FPGA
Bitstring and Logic Tree representations as well as the software based rule table
GA. For each experiment run the GA had 100 generations in which to find a CA
to correctly classify the diagonal line pattern. Figure 5 illustrates the average
pixel error as a function of GA time (generations). The Logic Tree representation
outperformed the FPGA Bitstring representation in all experiments. We con-
clude that constraining connectivity and evolving only function avoids strange
feedback loop/analog circuit behaviours and allows a more detailed exploration
of a smaller, more relevant rule space.

In several runs individuals of note appeared that performed well for images
segmented in one direction (eg. vertically) but poorly in the other direction.
To encourage the GA to find solutions in both directions the Logic Tree search
space was further constrained. The multiplexer selector of node 4 in Figure 2(a)
was pre-defined as the cell’s current state in order to reduce the size of the
non-symmetric rule space. Due to the close spatial relationship between train-
ing and ideal images, two nodes of type 1 (one in each half of the logic tree)
were also pre-defined to store the initial training image data. The best of run
CA from these experiments had an average pixel error of 40 pixels, lower than
any other CA found. We conclude the Logic Tree GA can implement problem
specific constraints more easily than raw FPGA bitstring and rule table based
approaches.

Evolving FPGA Based Cellular Automata 121

7 Summary and Future Directions

The CA Evolver is a powerful tool with which to investigate genetic algorithm
’programming’ techniques of cellular automata architectures. When searching
XC6216 hybrid CA rule spaces speedup in the order of 10-100 times can be
achieved compared to software implementations. Our initial experiments ap-
plied this tool to a binary texture analysis problem and investigated the role
of representation. The FPGA based search space allowed problem specific con-
straints to be implemented easily leading to improved performance of the genetic
algorithm.

Questions yet to be addressed include the role of non local CA neighbour-
hoods, extension to practical application and issues of scale. Eventually our work
hopes to redefine these questions in terms of how best to ’program’ XC6216 ar-
chitectures as massively parallel machines and investigate a range of cellular
automata models including random boolean networks.

Acknowledgement

This work was carried out in the Cooperative Research Centre for Satellite Sys-
tems with financial support from the Commonwealth of Australia through the
CRC program.

References

1. J. E. Hopcroft and J. D. Ullman, ”Introduction to Automata Theory, Languages
and Computation”, Addison-Wesley, 1979, Reading, Massachusetts.

2. F. C. Richards, T. P. Meyer, N. H. Packard, ”Extracting Cellular Automaton Rules
Directly from Experimental Data”, Cellular Automata: Theory and Experiment, H.
Gutowitz, ed., 1st MIT Press ed., 1991, Massachusetts.

3. M. Mitchell, J. P. Crutchfield and R. Das, ”Evolving Cellular Automata with Ge-
netic Algorithms: A Review of Recent Work”, First International Conference on
Evolutionary Computation and Its Applications (EvCA’96), Moscow, Russia.

4. P. Sahota, M. F. Daemi, D. G. Elliman, ”Training Genetically Evolving Cellular
Automata for Image Processing”, International Symposium on Speech, Image Pro-
cessing and Neural Networks, 13-16 April, 1994, Hong Kong.

5. J. R. Koza, F. H. Bennett III, J. L. Hutchings, S. L. Bade, M. A. Keane, D. Andre
”Rapid Reconfigurable Field-Programmable Gate Arrays for Accelerating Fitness
Evaluation in Genetic Programming”, Late Breaking Papers at the Genetic Pro-
gramming 1997 Conference, J. R. Koza, ed., pp. 121-131, 1997, Stanford.

6. A. Rosenfeld, ”Parallel Image Processing Using Cellular Arrays”, Computer, No.
16, pp. 14-20, 1983.

7. Xilinx Inc. ”XC6200 Field Programmable Gate Arrays” Product Description, Ver-
sion 1.10, April 24, 1997.

8. E.F. Codd, ”Cellula Automata”, Academic Press, 1968, New York.
9. E. R. Banks, ”Universality in Cellular Automata”, IEEE 11th Annual Symposium

on Switching and Automata Theory, pp. 194-215, 1970, Santa Monica, California.

Asynchronous Island Parallel GA
Using Multiform Subpopulations

Hirosuke Horii, Susumu Kunifuji, and Teruo Matsuzawa
{holly, kuni, matuzawa}@jaist.ac.jp

Japan Advanced Institute of Science and Technology
Tatsunokuchi, Ishikawa, 923-1292, JAPAN

Abstract. Island Parallel GA divides a population into subpopulations
and assigns them to processing elements on a parallel computer. Then
each subpopulation searches the optimal solution independently, and ex-
changes individuals periodically. This exchange operation is called mi-
gration. In this research, we propose a new algorithm that migrants
are exchanged asynchronously among multiform subpopulations which
have different search conditions. The effect of our algorithm on combina-
tional optimization problems was verified by applying the algorithm to
Knapsack Problem and Royal Road Functions using parallel computer
CRAY-T3E. We obtained the results that our algorithm maintained the
population’s diversity effectively and searches building blocks efficiently.

1 Introduction

There are two typical problems in Genetic Algorithms (GAs). First, GAs require
huge calculation time for their genetic operations, such as selection, crossover,
mutation, and individuals’ fitness evaluations. Secondly, maintenance of the pop-
ulation’s diversity is necessary to avoid the premature convergence which spreads
local optimum solution and stagnates the evolution.

Island Parallel GA divides the population into subpopulations and assigns
them to processing elements on a parallel computer to improve the prosessing
speed. Then it performs migration, in other words, it exchanges individuals, so
that it can maintain subpopulations’ diversity.

To implement this migration, there are two possibilities, synchronously ex-
change individuals, synchronous migration model, and asynchronously exchange
individuals, asynchronous migration model. Tanese’s model called Distributed
GA [1] is the typical synchronous migration model. It synchronously exchanges
individuals among neighboring subpopulations to every fixed generation which
called migration interval. If individuals are introduced before the search con-
verged, it is difficult to generate superior schemata because good schemata will
be destructed. Thus it is effective to introduce individuals after the search con-
verged. However the progress of the search situation differs both the objective
problems and every subpopulation, and it makes difficult to set optimal migra-
tion interval.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 122–129, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Asynchronous Island Parallel GA Using Multiform Subpopulations 123

Munetomo’s model [2] is the typical asynchronous migration model, where
migration is performed asynchrounously when its genetic construction’s diver-
sity is lost. The loss of the diversity is judged by the ralative reduction rate of
the fitness distribution’s standard deviation. Migrants are introduced from other
subpopulation which has the most different genetic construction. The differences
among subpopulations’ genetic constructions are measured by the differences
among their fitness distributions’ average values and standard deviations. How-
ever it is difficult to grasp the search situation correctly in the problem where
the similarities of a gene and a fitness do not correspond such as combinational
optimization problems.

Considering the problems in both models, we propose a new algorithm which
performs migration asynchronously and a new migration scheme which is more
suitable for combinational optimization problems.

2 Asynchronous Island Parallel GA

This section describes the feature and the aim of our algorithm. We propose a
new migration scheme and a cooperative search by the subpopulations which
have different search conditions.

2.1 Migration

In order to maintain the diversity of the genetic construction, migrants must
be introduced from the subpopulation which has the most different genetic con-
struction. Then we face the problem. We need scales to grasp the search situation
and to measure the genetic construction of each subpopulation. As a solution
for this problem we propose to use Bias and Temporal Schema [4].

Bias and Temporal Schema are defined as follows. The population is expressed
by a matrix P (t), using the bit string of each individual as a row vector, where
pt

ij means i-th individual’s j-th locus at t generation. Diversity of the population,
which has population size N and gene length L, is measured as Bias Bt (0.5 ≤
Bt ≤ 1.0). Temporal Schema TSt is a binary string of length L and shows on
which each locus has converged to 1 or 0 at t generation. KTS is a parameter of
the schema detection threshold which is set up in the range (0.5 ≤ KTS ≤ 1.0).
In each locus, when the individuals of the rate more than KTS has 1 or 0, it is
considered that the locus converged.

P (t) = (pt
ij) (1)

Bt =
1

N × L

L∑
j=1

[∣∣∣∣∣
N∑

i=1

pt
ij − N

2

∣∣∣∣∣ +
N

2

]
(2)

124 Hirosuke Horii, Susumu Kunifuji, and Teruo Matsuzawa

TSt = (tst
1, ts

t
2, ..., ts

t
L)

tst
i =

1 :
∑N

j=1 pt
ij ≥ N × KTS

0 :
∑N

j=1(1 − pt
ij) ≥ N × KTS

∗ : otherwise

(3)

Each subpopulation judges whether the diversity of the genetic construction
is lost or not by the comparison between Bias Bt and the fixed threshold KB .
When Bias Bt exceeds the fixed threshold KB , migration is performed. Hamming
distances among the Temporal Schema of the subpopulation which performs
migration and the other subpopulations’ are made into the measure which judges
the degree of difference of the genetic construction. By introducing migrants, it
not only recovers the diversity of the genetic construction, but also it can obtain
superior schemata generated by the other subpopulations.

2.2 Cooprative Search Using Multiform Subpopulations

In Island Parallel GA, since a population is divided into small subpopulations,
the random genetic drift affects each subpopulation’s evolution strongly. So, even
if the parameters of each subpopulation’s genetic operations are set up equally,
each subpopulation’s genetic construction becomes various. Thus Island Parallel
GA is cooperative search using multiform subpopulations tacitly.

We propose making multiform subpopulations clearly by setting the param-
eters for the genetic operations different values, aiming to improve the adapt-
ability of the algorithm to object problems.

Ishikawa’s model [3] performs the cooperative search using four subpopula-
tions whose the generation gaps are set to 1.0, 0.7, 0.4 and 0.1. In his algorithm,
the cooperative search is performed among the subpopulations which search the
circumferences of high fitness individuals intensively by setting low generation
gap, and supply new individuals by setting high generation gap.

3 Applying APGA to Knapsack Problem

We compare Asynchronous Island Parallel GA (APGA) with Synchronous Island
Parallel GA (SPGA) by applying them to Knapsack Problem, which is the typical
combinational optimization problem.

Knapsack Problem is defined as follows. Knapsack Problem stuffs the loads,
which have weight and value as their parameters, into a knapsack, and searches
for the optimum combination which maximizes the total value within the weight
limits. In N loads, weight and value of the j-th load are set to wj and vj , and
the weight limits of the knapsack is W . It is referred to as xj = 1 when stuffing
j-th load, and as xj = 0 when not stuffing. Knapsack Problem is formulized as
follows.

Asynchronous Island Parallel GA Using Multiform Subpopulations 125

maximize
∑N

j=1 vjxj

subject to
∑N

j=1 wjxj ≤ W

xj ∈ {0, 1}, j = 1, ..., N

 (4)

3.1 Experiment

The population of 512 individuals is divided into 16 and 32 subpopulations.
APGA’s migration is performed asynchronously, when Bias Bt exceeds the thresh-
old of Bias KB for 20 generations. On the otherhand, SPGA’s migration is per-
formed synchronously every 20 generations. Both APGA and SPGA are applied
to Knapsack Problem which has 300 loads. Every trial is performed for 1000
generations. The results are evaluated by the average of 10 times trials.

3.2 Results and Discussion

Fig.1 shows the comparison between APGA and SPGA. Fig.1 indicates that
APGA’s fitness is lower than SPGA’s in the early generations. However, APGA’s
fitness overtakes SPGA’s in the later generations.

Fig.2 and Fig.3 show the changes of Bias in one of the subpopulations of
APGA and SPGA in applying to Knapsack Problem. Fig.2 and Fig.3 indicate
that APGA’s genetic construction is maintained more diverse than SPGA’s.

In APGA, although the search efficiency falls, the genetic construction’s di-
versity recovers successfully, because migrants are introduced from the subpop-
ulation which has the most different genetic construction. On the other hand,
in SPGA, local optimum solutions spread in the whole population gradually, all
subpopulations’ genetic constructions become uniform, and the effect of migra-
tion is lost.

4 Applying APGA to Royal Road Functions

In this section, we apply APGA to Royal Road Functions, R1 and R4, which are
evaluation functions proposed by Mitchell [5,6]. Royal Road Functions are given
the feature of building block hypothesis specifically.

Royal Road Functions are defined as follows. R1 uses one 8-bit binary string
as one building block, and one individual consists of 8 building blocks, that
is one individual consists of one 64-bit binary string. Fitness value is obtained
when 8 loci, which constitute one building block, are set to ‘1’. Optimum value
is obtained when all of the 64 loci, which constitute one individual, are set to
‘1’.

R4 is an extended function of R1 which uses 128-bit binary string as one
individual. 8-bit binary string constitutes the lowest order building block, and
two adjoining building blocks constitute a high order building block, that is one
second order building block consists of 16-bit binary string and one third order

126 Hirosuke Horii, Susumu Kunifuji, and Teruo Matsuzawa

Fig. 1. The comparison between APGA and SPGA by applying to Knapsack Problem

Fig. 2. The change of Bias in one of the subpopulations of APGA in applying to
Knapsack Problem

Fig. 3. The change of Bias in one of the subpopulations of SPGA in applying to
Knapsack Problem

Asynchronous Island Parallel GA Using Multiform Subpopulations 127

building block consists of 32-bit binary string. Fitness value is obtained when
higher order building block is constructed. Optimum value is obtained when all
of the 128 loci are set to ‘1’.

4.1 Experiments

We have two experiments, the evaluation of our migration scheme and the eval-
uation of cooperative search using multiform subpopulations.

Experiment 1: Migration in APGA We evaluate our migration scheme by
applying APGA to R1 and R4. The population of 1024 individuals is divided into
4, 8, 16 and 32 subpopulations. Every R1 trial is performed for 200 generations,
and every R4 trial is performed for 2000 generations. The results are evaluated
by the average of 30 times trials.

Experiment 2: Cooperative Search in APGA Using Multiform Sub-
populations We compare the single parameter model with the multiform pa-
rameters model by applying them to R4. The population of 1024 individuals is
divided into 32 subpopulations. Every R4 trial is performed for 2000 generations.
The results are evaluated by the average of 30 times trials.

In the single parameter model, we set the pair, (generation gap, mutation
rate, threshold of Bias KB), at (0.8, 0.01, 0.9).

In the multiform parameters model, we set the pair, (generation gap, mu-
tation rate), at (0.8, 0.01) and (0.5, 0.05). The pair (0.8, 0.01) emphasizes the
crossover and the pair (0.5, 0.05) emphasizes the mutation. And we set the
threshold of Bias KB at (0.9) and (0.8). KB (0.9) emphasizes the carefully search
in each subpopulation and KB (0.8) emphasizes the global search by positively
introducing migrants. We set 4 kinds of character on subpopulations by combin-
ing these parameter sets, (generation, gapmutation rate, threshold of Bias KB)
as (0.8,0.01,0.9), (0.8,0.01,0.8),(0.5,0.05,0.9) and (0.5,0.05,0.8).

4.2 Results and Discussion

Fig.4 and Fig.5 show the results of the first experiment. In the four subpop-
ulations case, they converged early generations in the all experimental results.
When the number of subpopulations increases and, at the same time, the number
of the individuals in each subpopulation decreases, the convergence as the whole
population becomes slow. Because the genetic construction of each subpopu-
lation becomes various, since random genetic drift affects each subpopulation
strongly. Therefore, our migration scheme is not suitable for the simple prob-
lem such as R1. On the other hand, at the difficult problem such as R4, our
migration scheme is very efficient and good solution is obtained. Because the
maintaining the diversity of the genetic construction prevents subpopulations
from falling into local optimum solution. And furthermore, each subpopulation
searches separate building blocks simultaneously, since subpopulations become

128 Hirosuke Horii, Susumu Kunifuji, and Teruo Matsuzawa

Fig. 4. Experiment 1: The process in applying APGA to Royal Road Function R1

Fig. 5. Experiment 1: The process in applying APGA to Royal Road Function R4

Fig. 6. Experiment 2: The comparison between the single parameter model and the
multiform parameters model by applying to Royal Road Function R4

Asynchronous Island Parallel GA Using Multiform Subpopulations 129

various by random genetic drift. Therefore, APGA is suitable for the problem
which has the strong tendency of building block hypothesis.

Fig.6 shows the result of the second experiment. The multiform parameters
model improved the accuracy comparing the single parameter model. We think
the reason of this result that multiform subpopulations are allotted different
task and cooperate with each other effectively. Unfortunately, we did not make
sufficiently investigation into multiform parameters model to substantiate the
reason of the second experiment’s result, we need more consideration about
these things.

5 Conclusion

In this research, we proposed Asynchronous Island Parallel GA where multiform
subpopulations migrate asynchronously according to each situation. The effect
on the combinational optimization problems was verified by applying our algo-
rithm to Knapsack Problem and Royal Road Functions using parallel computer
CRAY-T3E. Through these experiments, the following results were obtained.

The migration scheme proposed in this research is effective for the combi-
national optimization problems. Especially, when our algorithm is applyed to
the problem, such as Royal Road Functions, which has the strong tendency of
building block hypothesis, it performs effectively by the parallel search of the
building blocks. In the search using multiform subpopulations, the search effi-
ciency becomes worse, but the accuracy improves by maintaining the diversity
of each subpopulation’s genetic construction.

References

1. R. Tanese, Distributed Genetic Algorithm, in Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, pp.434–439, 1989.

2. M. Munetomo, Y. Takai, and Y. Sato, An Efficient Migration Scheme for
Subpopulation-Based Asynchronously Parallel Genetic Algorithms, in Proceedings
of the Fifth International Conference on Genetic Algorithms, pp.649, 1993.

3. M. Ishikawa,T. Toya, and Y. Totoki, Parallel Application Systems in Genetic Pro-
cessing, in Proceedings of International Symposium on Fifth Generation Computer
Systems, pp.129–138,1994.

4. S. Tsutsui, and Y. Fujimoto, Forking Genetic Algorithm with Blocking and Shrink-
ing Modes (fGA), in Proceedings of the Fifth International Conference on Genetic
Algorithms, pp.206–213, 1993.

5. M. Mitchell, S. Forrest, and J. H. Holland, The Royal Road for Genetic Algorithms:
Fitness Landscapes and GA Performance, in Toward a Practice of Autonomous
Systems: Proceedings of the First European Conference on Artificial Life, pp.245–
254,1992.

6. M. Mitchell, J. H. Holland, and S. Forrest, When Will a Genetic Algorithm Out-
perform Hill Climbing?, in Advances in Neural Information Processing 6, 1994.

Multiple Sequence Alignment Using Parallel
Genetic Algorithms

L.A.Anbarasu1, P.Narayanasamy1, and V.Sundararajan2

1 Anna University, Chennai 600 025, INDIA
2 Center for Development of Advanced Computing, Pune 411 007, INDIA

Abstract. An efficient approach to solve multiple sequence alignment
problem is presented in this paper. This approach is based on parallel
genetic algorithm(PGA) that runs on a networked parallel environment.
The algorithm optimizes an objective function ’weighted sums of pairs’
which measures alignment quality. Using isolated independent subpopu-
lations of alignments in a quasi evolutionary manner this approach grad-
ually improves the fitness of the subpopulations as measured by an ob-
jective function. This parallel approach is shown to perform better than
the sequential approach and an alternative method, clustalw. An inves-
tigation of the parameters of the algorithm further confirms the better
performance.

1 Introduction

Simultaneous alignment of many DNA or Protein sequences is an important tool
in molecular biology. Multiple alignments are used to study molecular evolution,
to help predict the secondary or tertiary structure of new sequences, RNA fold-
ing and gene regulation. Basically, there have been two approaches to solving
the problem of multiple sequence alignment: rigorous optimization by dynamic
programming and heuristic algorithms.

Extending dynamic programming for pairwise sequence alignment to multi-
ple alignment of N sequences is limited to small numbers of short sequences [8].
It requires memory space for N - dimensional array and calculation time of the
order of the Nth power of the sequence length. However, using Carrillo and Lip-
man algorithm [3], the Multiple Sequence Alignment(MSA) program attempts
to reduce the search space to a relatively small area [7]. Even with this reduction,
it is limited to ten sequences at most. Therefore, all of the methods capable of
handling larger problems in practical timescales make use of heuristics.

The most widely used heuristic approach is the ’progressive alignment’ of
Feng and Doolittle [4]. In this approach, the sequences are aligned in an order
imposed by some estimated phylogenetic tree. It first aligns the most closely
related sequences, gradually adding in the more distant ones. Some of the most
widely used multiple alignment programs like ClustalW [13], Mutal and Pileup
are based on this algorithm. This approach has the great advantage of speed and
simplicity as well as reasonable sensitivity. The main drawback of this approach is

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 130–137, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Multiple Sequence Alignment Using Parallel Genetic Algorithms 131

the ’local minimum’ problem that stems from the greedy nature of the algorithm.
Stochastic heuristics such as simulated annealing or genetic algorithm [5] can be
used to avoid this pitfall.

Simulated annealing has been used for multiple alignment but can be very
slow and usually only works well as an alignment improver [6]. Genetic algo-
rithms have been used to find globally optimal multiple alignments starting from
completely unaligned sequences [9]. The stochastic methods have the advantages
of flexibility and lower complexity. They do not have any strong restrictions on
the number of sequences to align or the length of those sequences. These methods
are very flexible in optimizing any objective functions.

Since genetic algorithm for multiple sequence alignment generally requires
a long computation time it is desirable to use parallel genetic algorithms. We
have developed a parallel genetic algorithm for multiple sequence alignment that
runs on a networked parallel environment. We show that our parallel approach
performs better than a sequential genetic algorithm when applied to multiple
sequence alignment problem.

The contributions of this paper are:

– comparison of the performance of our algorithm with other sequence align-
ment methods;

– comparison of the alignment quality of our parallel approach with the se-
quential genetic algorithm running under same constraints;

– an investigation of the influence of some parallelization parameters on the
alignment results.

We will use the term PGA to describe an island genetic algorithm with iso-
lated independent subpopulations. The rest of the paper is organized as follows:
the second section describes the problem formulation of multiple alignment. The
parallel approach is discussed in section three. The fourth section gives the im-
plementation details and results. The last section draws the conclusion and sum-
marizes the present work.

2 Problem Formulation

One can define a biosequence multiple alignment as an alignment of the residues
of a number of nucleic acid or protein sequences where a gap character, ”-”, is
used as a spacer so that each sequence has the same number of residues plus gaps
in the alignment. A column is a set of characters(residues plus gaps), one from
each sequence, written one over the other. The multiple alignment is composed of
the union of its columns. Each multiple alignment induces a pairwise alignment
[7].

Let S1, . . . , SK , be the input sequences and assume that K is at least 2. Let
Σ be the input alphabet; we assume that Σ does not contain the character ’-’,
so that a dash can be used to denote the gap in the alignment. Algorithms that
construct multiple sequence alignments require a cost model as a criterion for
constructing optimal alignment [7].

132 L.A.Anbarasu, P.Narayanasamy, and V.Sundararajan

In the simplest cost model there is a cost function sub: Σ
0 × Σ

0 → N , where
Σ

0
be the input alphabet including the gap character −. It can be defined such

that sub(a, b) is the cost of substituting a b in the second sequence for an a in
the first sequence; also, sub(−, b) is the cost for columns where the first sequence
has a gap and the second has a b, and sub(a,−) is the cost for columns where the
first sequence has an a and the second has a −. The cost of pairwise alignment
Ai,j induced in a multiple alignment A of width w is

c(Ai,j) =
X

1≤k≤w

sub(A[i][k], A[j][k])

With this, the basic weighted sum of pairs multiple sequence alignment problem
is to minimize the pairwise sum

c(A) =
X

i<j

Wi,jc(Ai,j)

3 Description of PGA

Genetic algorithms are highly suitable for parallelization and different ways exist
to parallelize them [12]. Parallel genetic algorithm with isolated subpopulations
or the island genetic algorithms is used to gain better problem solutions [11].
The population is divided into a few subpopulations or demes, and each of these
relatively large demes evolve separately on different processors. Exchange be-
tween subpopulations is possible via a migration operator. A set of n individuals
is assigned to each of N processors, for a total population size of n × N .

Initial subpopulations that consist of randomly constructed alignments are
created at each processor. Each processor, disjointly and in parallel, executes the
sequential genetic algorithm on its subpopulation for a certain number of gener-
ations(migration interval). Afterwards, each subpopulation exchanges a specific
number of individuals(migrants) with its neighbors. We exchange the individual
themselves, i.e., the migrants are removed from one subpopulation and added to
another. Hence, the size of the population remains the same after migration. The
process continues with the separate evolution of each subpopulation for certain
number of generations. [9].

3.1 Characteristics of PGA

Representation As DNA or Protein sequence alignment consist of both al-
phabets and a gap character ’-’, it’s better to represent alignments as it is so
that there is no need for any encoding or decoding mechanism. With all input
sequences, other important informations such as length of the sequences, number
of sequences, score etc. are placed in a structure. Initial subpopulation at each
processor is created randomly. It consists of a set of alignments containing only
terminal gaps. Alignments are created by choosing a random offset for all the
sequences and then moving each sequence to the right, according to its offset.

Multiple Sequence Alignment Using Parallel Genetic Algorithms 133

Fitness function The fitness of each individual in a subpopulation is calculated
by scoring each alignment according to the ’weighted sum of pairs’ objective
function. The overall alignment cost is calculated by adding a substitution cost
and gap cost to each pair of aligned residues in each column of the alignment
with their weights. We use pam250 substitution matrix and natural affine gap
penalties for calculating fitness function [1]. Sequence weights are calculated
using rationale 1 method developed by Altschul [2].

Genetic operators In this parallel implementation we used all the operators
of a sequential genetic algorithm approach for multiple sequence alignment. A
detailed description of these operators can be found in [9] .
Selection

We use overlapping generation technique, where half of the population will
survive unchanged, the other half will be replaced by the children during each
generation. Individuals are ranked according to their fitness function, and the
new children replace the weakest individuals. The expected offspring of an in-
dividual is calculated from the fitness. It is used as the probability for each
individual to be chosen as a parent. Parent are selected for breeding according
to their expected offspring value in spinning wheel.
Crossover

A new alignment is created using crossover operator by combining two differ-
ent alignment. Both, one-point crossover and uniform crossover are implemented.
Two parent alignments are combined through a single exchange in one-point
crossover. The first parent is cut straight at some randomly chosen position and
the second one is tailored so that the right and the left pieces of each parent
can be joined together while keeping the original order of the sequence of amino
acids. Any void space that appears at the junction point is filled with null signs.
This filling of null signs at junction point forces to design an operator that com-
bines the properties of traditional crossover and those of mutation. The best of
the two children produced in this way is kept in the population.

The uniform crossover is designed to promote multiple exchanges between
areas of homology. In both the parent, consistent positions are identified first.
Two positions are said to be consistent if each column contain the same residue
or a null coming from the same gap. Blocks between consistent positions are
swapped to create a new alignment.
Block shuffling

A block of residues or a block of gaps can be moved inside an alignment
using this operator. A set of overlapping stretches of residues from one or more
sequences is called a block of residues. Each subsequence can be of different
length but all subsequences must overlap. A block is chosen first by selecting one
residue or gap position from the alignment and moved to a specified position.
Gap insertion

The sequences are split into two groups based on an estimated phylogenetic
tree. A gap of randomly chosen length is inserted in each of the sequences of one
group at a randomly chosen position. A gap of same length is also inserted into

134 L.A.Anbarasu, P.Narayanasamy, and V.Sundararajan

all of the sequences of the second group at position that has maximum distance
from the first gap insertion.
Block searching

Given a substring in one of the sequences, this operator finds the block to
which it may belong in an alignment. Substring of random length at a random
position in one of the sequences is compared with all substrings of the same
length of other sequences. The best matching one is selected and added to the
initial string forming a small profile. Then, best match is located and added to
the profile for the remaining sequences. This process continues until a match is
identified in all the sequences.

4 Implementation and results

The algorithm has been implemented on PARAM 10000, a parallel machine de-
veloped at Center for Development of Advanced Computing(CDAC) [11]. The
algorithm is implemented using C language with PVM standard. The results
have been achieved with the machines running their normal daily loads in addi-
tion to this algorithm.

4.1 Comparison of PGA with other sequence alignment algorithms

A set of four test cases were chosen from Pascarella structural alignment data
base [10] . The results of PGA are compared with Clustal w, a well known
multiple sequence alignment method [13]. The Clustal w algorithm is based on
the greedy approach ’progressive alignment’. It does not explicitly optimize any
objective function. Despite these limitations, by choosing an appropriate set of
parameters, we evaluated Clustal w score in conditions where it would produce
a result as close as possible to the optimization of the weighted sums of pairs
objective function.

The results are presented in Table 1 and show that in all four test cases PGA
builds an alignment with the better score than Clustal w. PGA is implemented
with five subpopulations of size 20 keeping the total population size 100. The
run time of PGA is averaged over the runs that led to the presented results.

Table 1. Comparison of PGA with CLUSTAL W

CLUSTAL W PGA
Test Case Nseq Length Score CPU Time Score CPU Time

(in secs) (in secs)
Dfr 4 186 21316 5.440 21104 110
Gcr 8 48 39103 4.790 38903 636

Globin 15 169 4248160 13.019 4222846 1178
S protease 15 292 26285660 22.351 25970235 2815

Multiple Sequence Alignment Using Parallel Genetic Algorithms 135

4.2 Investigation on migration parameters

The PGA alternates the maintenance of isolated subpopulations in different en-
vironments with the introduction of individuals to new environment. The fitness
values of the individuals in the subpopulations will be altered by migrating better
individuals between subpopulations. Migration is based on various parameters,
such as how often, how much, who, size and the number of neighbor subpopula-
tions. To understand the specific effects of these parameters we have performed
several experiments. All the results presented in Table 2 are normalized as the
percentage exceeding the best score, with the percentage averaged over five runs.
For comparison purposes, we also applied a sequential genetic algorithm(SGA)
on the total population size. In all the experiments, the PGA and sequential ge-
netic algorithm were run the same total number of generations. To demonstrate
the importance of the migration, we also report the results achieved by PGA
with ” 0 Migrants”.

Table 2. Alignment Score with different numbers of migrants and migration interval.
All results are averaged over five runs and normalized as percent exceeding the best-
known score in Table 1. Thus, the smaller the value, the better the average alignment
score

Migration Interval
25 gen. 50 Gen.

Test case SGA Mig Migrants Migrants
0 1 2 1 2

Dfr 0.062 0.046 0.036 0.037 0.031 0.035
Gcr 0.404 0.272 0.238 0.247 0.221 0.242

Globin 0.163 0.026 0.027 0.030 0.017 0.028
S protease 0.754 0.528 0.329 0.348 0.282 0.320
Average 0.346 0.218 0.158 0.166 0.138 0.156
% SGA 100 63 46 48 40 45

Number of Migrants and Migration Interval The influence of migration
interval for different numbers of migrants is investigated. Better migrants were
chosen, and sent to its right neighbor on a ring topology. Table 2 shows that
the sequential approach is outperformed by all parallel variations, including the
version without any migration. Thus, the splitting of the total population size
into parallel evolving subpopulations increases the probability that at least one
of these subpopulations will evolve toward a better result.

Table 2 also shows that a limited migration between the subpopulations
further enhances the advantage of the PGA. One migrant to each neighbor in the
space of 50 generations resulted in the best parameters when averaged over all the
test cases. On the other hand, small migration interval affects the performance
of parallel evolving subpopulations. They reduce the genetic diversity between
the subpopulations by searching in the limited space of almost same individuals.

136 L.A.Anbarasu, P.Narayanasamy, and V.Sundararajan

2.6e+07

2.65e+07

2.7e+07

2.75e+07

2.8e+07

2.85e+07

2.9e+07

2.95e+07

3e+07

0 100 200 300 400 500 600

Sc
or

e

Generations

best score

Fig. 1. The convergence of the best alignment score in the individual, parallel evolving
subpopulations. Plotted are five runs with five subpopulation each, i.e. 25 curves with
one migrant

Figure 1 shows the convergence behavior of the best individuals in each of the
parallel evolving subpopulations for the case of S Protease. All the results were
obtained with five subpopulations of size 20 and with one migrants in the space
of 50 generations. Plotted are five runs with five subpopulations each, i.e 25
curves. The plot also indicates the importance of migration to avoid premature
stagnation by inserting new individuals into a stagnating subpopulation.

5 Conclusions

We presented a PGA for multiple sequence alignment problem. We have shown
here that the PGA outperforms the most widely used package Clustal W for
all the test cases.The results showed that, when applied to sequence alignment
problem, the PGA consistently performs better than a sequential genetic algo-
rithm. A set of experiments has been performed in order to evaluate the effects of
migration parameters on the PGA. As a result, a small number of migrants com-
bined with ’moderate’ migration interval leads heuristically to the best results.
This algorithm can be easily ported on any distributed networked environment.
Work is in progress for finding new migration scheme based on the principles of
bird migration and improving the performance of PGA using some local search
algorithms.

Multiple Sequence Alignment Using Parallel Genetic Algorithms 137

References

1. Altschul, S.F. (1989) Gap costs for multiple sequence alignment. J. Theor. Biol.,138:
297-309.

2. Altschul, S.F., Carroll, R.J. and Lipman, D.J. (1989) Weights for data related by a
tree. Journal of Molecular Biology, 207: 647-653.

3. Carrillo, H. and Lipman, D.J. (1988) The multiple sequence alignment problem in
biology. SIAM J. Appl. Math.,48: 1073-1082.

4. Feng, D.-F. and Doolittle, R.F. (1987) Progressive sequence alignment as a prereq-
uisite to correct phylogenetic trees. Journal of Molecular Evolution,25: 351-360.

5. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. New York, Addison-Wesley.

6. Ishikawa, M., Toya, T., Hoshida, M., Nitta, K., Ogiwara, A. and Kaneshia, M.
(1993) Multiple alignment by parallel simulated annealing. Comp. Applic. Biosci.,
9: 267-273.

7. Lipman,D.J., Altschul, S.F. and Kececioglu, J.D. (1989) A tool for multiple sequence
alignment. Proc. Natl. Acad. Sci. USA, 86: 4412-4415.

8. Needlman, S.B. and Wunch, C.D. (1970) A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48: 443-453.

9. Notredame, C. and Higgins, D.G. (1996) SAGA: sequence alignment by genetic
algorithm. Nucleic Acids Res., 24: 1515-1524.

10. Pascarella, S. and Argos, P. (1992) A data bank merging related protein structures
and sequences. Protein Eng., 5: 121-137.

11. Sundararajan, V. and Kolaskar, A.S. (1998) Distributed Genetic Algorithms on
PARAM for conformational search. in Computer Modeling and simulations of Com-
plex Biological systems Ed. S.Seetharama Iyengar. CRC Press 16-25.

12. Tanese, R. (1987) Parallel genetic algorithms for a hypercube. in Proceedings of
the Second International Conference on Genetic Algorithms and their Applications,
Ed. Grefenstette. Lawrence Erlbaum Associates 177-183.

13. Thompson, J., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22:
4673-4690.

Evolving Logic Programs to Classify
Chess-Endgame Positions

Philip G.K. Reiser and Patricia J. Riddle
philip@cs.auckland.ac.nz

Department of Computer Science
University of Auckland

New Zealand

Abstract. In this paper, an algorithm is presented for learning concept
classification rules. It is a hybrid between evolutionary computing and
inductive logic programming (ILP). Given input of positive and nega-
tive examples, the algorithm constructs a logic program to classify these
examples. The algorithm has several attractive features including the
ability to explicitly use background (user-supplied) knowledge and to
produce comprehensible output. We present results of using the algo-
rithm to tackle the chess-endgame problem (KRK). The results show
that using fitness proportionate selection to bias the population of ILP
learners does not significantly increase classification accuracy. However,
when rules are exchanged at intermediate stages in learning, in a manner
similar to crossover in Genetic Programming, the predictive accuracy is
frequently improved.

1 Introduction

This work addresses the classification problem in machine learning. That is, given
training examples of the form {(x1, y1), . . . , (xm, ym)} for some unknown func-
tion y = f(x), where the xi values are vectors of the form 〈xi,1, xi,2, . . . , xi,n〉,
and y values are drawn from a discrete set of classes {1, . . . , K}; find a definition
of function f such that the y value for any xi from the same distribution is
accurately predicted, [4].

Evolutionary algorithms (EA) have in the past successfully been used for
the classification problem. GABIL [3], and REGAL, [5], for example, create
a mapping between logic expressions and fixed-length binary strings. A genetic
algorithm then searches the space of strings. To evaluate strings they are mapped
to the corresponding logical expression which may then be interpreted. Other
work has been done on suitably modifying the operators in genetic algorithms
to manipulate logical expressions directly, e.g. SAMUEL, [12], GLPS, [13].

However, as the hypothesis language becomes increasingly expressive, the
space of logical expressions that needs to be searched grows combinatorially.
There is accumulating evidence that indicates that the performance of evolu-
tionary algorithms can be improved through the introduction of a local search
method, [1,7]. A local method progresses by refining an existing solution. Instead

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 138–145, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolving Logic Programs to Classify Chess-Endgame Positions 139

of considering the entire search space, a small subset – the solution’s neighbour-
hood – is examined. This can result in the rapid location of good solutions.
However, if all the points in the neighbourhood are inferior, then the algorithm
becomes trapped. Unless the local method is perturbed in some way, no fur-
ther improvements can be made. Evolutionary algorithms are relatively robust
against such local maxima, but are poor at local refinement.

Furthermore, evolutionary algorithms do not easily lend themselves to using
domain knowledge explicitly. Typically, they begin tabula rasa. The only real
alternative is to seed, or bias the initial population of candidate solutions towards
likely answers. However, this only makes certain classes of solution less likely, it
does not allow solutions to be declared invalid. For example, Wong and Leung’s
GLPS [13] induces logic programs by evolving a suitably chosen representation
such that the syntactic correctness will be guaranteed. However, the algorithm
does not easily allow background knowledge to be used to constrain the space
of solutions. The semantics of expressions are ignored.

The aim of this work is to combine the local search properties of an in-
ductive logic programming algorithm with the global search properties of an
evolutionary algorithm. The algorithm presented in this paper uses a common
language to express input and output, namely function-free Horn clauses. As a
result knowledge can be supplied a priori in the form of rules and facts; this
knowledge constrains the space of candidate solutions and thus eliminates from
consideration solutions known to be inappropriate.

The remaining sections of this paper introduce inductive logic programming;
describe EVIL 1, a hybrid ILP-EA algorithm; and finally present an empirical
study of learning performance on a chess-endgame problem.

2 Evolutionary Inductive Logic Programming

2.1 Inductive Logic Programming: a Brief Introduction

Inductive logic programming (ILP), [9], is an approach to inducing concept de-
scriptions that draws on the foundations of logic programming. The task tackled
by ILP is that of developing predicate descriptions given training examples and
background knowledge. More specifically, given sets of positive E+ and negative
E− examples and relevant background knowledge B, construct an hypothesis H
that is consistent and complete with respect to the training data and background
knowledge.

The search through the space of logic programs is structured. A partial order-
ing is imposed on the space of hypothesis clauses and this orders hypotheses by
generality and allows large parts of the search space to be pruned. For example, if
a clause C does not cover a positive example, then none of the specialisations of
C need be considered. In practice, however, this strict condition must be relaxed
in order to tolerate noise in training data.

Inductive logic programming is an appealing local search method as it allows
the easy incorporation of domain specific knowledge. Furthermore, it produces

140 Philip G.K. Reiser and Patricia J. Riddle

comprehensible solutions. However, as ILP algorithms are typically based on the
set covering algorithm, a greedy search algorithm, they are susceptible to local
maxima.

2.2 Evolutionary Algorithms

Evolutionary algorithms are domain independent search algorithms inspired by
principles of population genetics. Using very simple mechanisms, evolutionary
algorithms exhibit complex behaviour that has been harnessed to solve some dif-
ficult problems, e.g. [2,6]. However, evolutionary algorithms have certain draw-
backs. Domain knowledge cannot be used easily. Furthermore, while such al-
gorithms are good at establishing peaks in discontinuous multimodal objective
functions, they have poor local search properties.

2.3 Integrating the EA with ILP

Inductive logic programming and evolutionary algorithms have appealing prop-
erties which appear to be complementary. Evolutionary algorithms have good
global search properties, whereas inductive logic programming algorithms have
good local refinement characteristics. This provokes the question can a concept
learning algorithm be constructed that captures both of these properties?

Furthermore, when only a subset of the training set is seen by an ILP al-
gorithm the theories induced are likely to be less accurate than if all the data
had been used. However, in most real world applications, data will necessarily
only become available gradually, or will be too great to use in one batch for the
learner. It is therefore interesting to observe how algorithms perform when only
samples of the data are used.

2.4 The EVIL 1 Algorithm

In the approach adopted, an evolutionary algorithm is used to direct the com-
putational effort spent by multiple parallel instances of the ILP algorithm. The
evolutionary algorithm maintains a population of agents each comprising of a
logical theory (a logic program). The traditional mutation and crossover opera-
tors are replaced with the crossover operator used in [11] which in some respects
is similar to crossover in Genetic Programming.

Each agent is able to induce logic programs using an ILP algorithm. An
agent takes as input a random sample of the training data and induces a theory.
This theory is evaluated on a validation set. Those theories with poor predictive
accuracy risk extinction, while those with high predictive accuracy are likely to
occupy a larger proportion of the population in the next generation. As new rules
are discovered they are added to the theory. This augmented theory together
with the background knowledge is then used in subsequent trials. The fitness of
a theory is measured by determining its predictive accuracy on the validation
set1 comprising of the entire training set. The algorithm is shown below.
1 It should be noted that this is not to be confused with the test set which is used

only for evaluation independently of any learning.

Evolving Logic Programs to Classify Chess-Endgame Positions 141

procedure EVIL 1 is
begin

initialise(Population);
fitness = accuracy(Population,validation set);

while not termination criterion loop
for each member of population loop

theory = select parent(Population);
subset = sample(training set,sample size);
new theory = induce(background knowledge, theory, subset);

end loop
fitness = accuracy(Population, validation set);
new population = select(population);
population = new population;

end loop
return fittest(Population);

end EVIL 1;

The induce procedure refers to a call of the inductive logic programming
algorithm. The algorithm chosen was Progol, [10].

3 An Empirical Study

The aim of this empirical investigation is to examine the effect on predictive
accuracy of (1) applying fitness proportionate selection on a population of ILP
algorithms that only use a sample of the training set; and (2) of exchanging rules
between ILP algorithms at intermediate stages.

The task domain is the Chess Endgame (KRK) problem, proposed by [8].
This problem is a widely used test problem for ILP systems. The problem may
be characterised as follows. There are three pieces left on a chess board: the
white king, white rook, and the black king. The objective of the learning al-
gorithm is to discover rules to describe illegal positions when it is white’s turn
to move, given a set of positive and negative training instances. For example,
an illegal position occurs when the black king is in check with white to move.
The predicate illegal/6 is the target to be learned, and the attributes of the
target predicate are file and rank for white king, white rook and black king
respectively. Examples, therefore, take the form illegal(e,3,a,1,e,1) and
:- illegal(d,4,g,3,b,5) (where :- denotes negation). These examples cor-
respond to board positions as illustrated in Figure 1. The data comprises of
20000 examples which are split into 10000 training and validation instances and
10000 test instances.

The following background knowledge is also supplied. The adj/2 predicate
defines cases where the rank or file represented by the left argument is adjacent

142 Philip G.K. Reiser and Patricia J. Riddle

1

2

3

4

5

6

7

8

a b c d e f g h

1

2

3

4

5

6

7

8

a b c d e f g h

illegal(e,3,a,1,e,1). not(illegal(d,4,g,3,b,5)).

Fig. 1. Examples of legal and illegal positions.

to that represented by the right argument. The lt/2 predicate defines pairs of
ranks or files, where the left argument is less than the right. Consequently, rules
may take the form

illegal(A,B,C,D,C,C).
illegal(A,B,C,D,E,F) :- adj(A,E).

A population of 10 learning agents are supplied with subsets of the train-
ing set and are allowed to induce a hypothesis using the Progol inductive logic
programming algorithm. In each generation, each agent is supplied with a 0.2%
random sample of the training set2. Two experiments were conducted.

The first experiment considers the effect of fitness proportionate selection.
Two cases are considered: (1) multiple instances of ILP are run batch incremen-
tally; and (2) also with fitness proportionate selection. The predictive accuracy
on the test set was examined for both approaches. Figure 2 shows a scatter
plot for the test set accuracy of the fitness-proportionate selection case (y-axis)
against the no fitness proportionate selection case (x-axis). Points above the
line y = x reflect an improvement in predictive accuracy for the introduction of
fitness-proportionate selection. However, the distribution of points indicates that
while the introduction of fitness-proportionate selection is not advantageous, it
is also not disadvantageous.

The second experiment examined the effect of rule exchange between learn-
ers. At certain intervals denoted by the communication period ωc agents are
selected to exchange parts of their clausal theory. In the control case ωc = ∞,

2 The choice of sample size was based on a trade-off between providing enough data
for rules to be found while avoiding excessive run-times.

Evolving Logic Programs to Classify Chess-Endgame Positions 143

86

88

90

92

94

96

98

100

86 88 90 92 94 96 98 100

y = x

Fig. 2. Fitness-proportionate selection versus no fitness-proportionate selection.

no rule exchange occurs. In the treatment cases, ωc = 3, 5 or 10 generations.
The following types of rule-exchange were considered. (1) Union: new theories
are constructed by taking the union of two parent rule sets; (2) Crossover: new
theories are constructed by exchanging rules using the crossover operator de-
scribed in [11].

Figure 3 shows scatter plots for the test set accuracy of rule exchange us-
ing union, and Figure 4 the performance distributions for crossover. The graphs
indicate that in the cases where the ILP algorithm performs badly, the introduc-
tion of either union or crossover increases predictive accuracy. However, in the
cases where the ILP algorithm already performs well, union and crossover have
a detrimental effect. The statistical significance of these results were examined
using the paired t-test. For union periods 3, 5 and 10, the introduction of union
does not result in a statistically significant increase in predictive accuracy, and
therefore it may not be reasonably asserted that union improves performance in
the chess endgame problem. However, the exchange of rules through crossover
with high crossover frequency does result in a statistically significant increase.
ωc = 3 (P < 0.0005); ωc = 5 (P < 0.05); ωc = 10 (P < 0.1).

4 Conclusions

A new hybrid evolutionary learning algorithm has been presented that induces
first order logic clauses from examples. The algorithm has a number of attractive
features. In particular, it allows the use of explicit background knowledge to
constrain the space of solutions. In addition, the algorithm is inherently parallel
and its output is sufficiently expressive to learn relational concepts.

The algorithm’s learning properties were examined on the chess endgame
(KRK) problem. It was shown that learning with a population of ILP learners,
where fitness proportionate selection is used to bias trials towards good theories
does not yield an increase in predictive accuracy. When rules are exchanged
using a union operation a statistically significant increase is not observed.

144 Philip G.K. Reiser and Patricia J. Riddle

Union period 3

86

88

90

92

94

96

98

100

86 88 90 92 94 96 98 100

P
er

fo
rm

an
ce

 (
%

)
fo

r
C

on
tr

ol

Performance (%) for Union period 3

y = x

Union period 5

86

88

90

92

94

96

98

100

86 88 90 92 94 96 98 100

P
er

fo
rm

an
ce

 (
%

)
fo

r
C

on
tr

ol

Performance (%) for Union period 5

y = x

Union period 10

86

88

90

92

94

96

98

100

86 88 90 92 94 96 98 100

P
er

fo
rm

an
ce

 (
%

)
fo

r
C

on
tr

ol

Performance (%) for Union period 10

y = x

Fig. 3. Union periods 3,5,10

Crossover period 3

86

88

90

92

94

96

98

100

86 88 90 92 94 96 98 100

y = x

Crossover period 5

86

88

90

92

94

96

98

100

86 88 90 92 94 96 98 100

y = x

Crossover period 10

86

88

90

92

94

96

98

100

86 88 90 92 94 96 98 100

y = x

Fig. 4. Crossover periods 3,5,10

Evolving Logic Programs to Classify Chess-Endgame Positions 145

However, when crossover is used to exchange rules between learners, then a
significantly superior predictive accuracy is attained (P < 0.0005).

One possible explanation for these results is that the ILP algorithm is based
on the greedy algorithm which is susceptible to local minima. Crossover, to-
gether with fitness-proportionate selection, serves as a global strategy, which
can redirect the ILP algorithm to other areas of the search space.

Areas currently being pursued include a more detailed analysis of rule ex-
change between inductive learners and the application of evolutionary inductive
logic programming to more complex problem domains.

References

1. L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991.

2. Kenneth A. DeJong and William M. Spears. Using genetic algorithms to solve
NP-complete problems. In International Conference on Genetic Algorithms, pages
124–132, 1989.

3. Kenneth A. DeJong, William M. Spears, and Diana F. Gordon. Using genetic
algorithms for concept learning. Machine Learning, 13:161–188, 1993.

4. T. G. Dietterich. Machine learning research: Four current directions. AI Magazine,
18(4):97–136, 1997.

5. A. Giordana and L. Saitta. Regal: an integrated system for learning relations using
genetic algorithms. In Proceedings of 2nd International Workshop on Multistrategy
Learning, pages 234–249. Morgan Kaufmann, 1993.

6. David E. Goldberg. Genetic and evolutionary algorithms come of age. Communi-
cations of the ACM, Vol. 37:113–119, March 1994.

7. William E. Hart and Richard K. Belew. Optimization with genetic algorithm
hybrids that use local search. In Richard K. Belew and Melanie Mitchell, editors,
Adaptive Individuals in Evolving Populations: Models and Algorithms., volume 26,
chapter 27, pages 483–496. SFI Studies in the Sciences of Complexity, 1996.

8. S. H. Muggleton, M. Bain, J. Hayes-Michie, and D. Michie. An experimental com-
parison of human and machine learning formalisms. In Proc. Sixth International
Workshop on Machine Learning, pages 113–118, San Mateo, CA, 1989. Morgan
Kaufmann.

9. Stephen Muggleton. Inductive logic programming. New Generation Computing,
8(4):295–318, 1991.

10. Stephen Muggleton. Inverse Entailment and Progol. New Generation Computing,
13, 1995.

11. Philip Reiser. EVIL1: a learning system to evolve logical theories. In Proc. Work-
shop on Logic Programming and Multi-Agent Systems (International Conference
on Logic Programming), pages 28–34, July 1997.

12. A. C. Schultz and J. J. Grefenstette. Improving tactical plans with genetic al-
gorithms. In Proceedings of the 2nd International IEEE Conference on Tools for
Artificial Intelligence, number IEEE Cat. No. 90CH2915-7, pages 328–334, Hern-
don, VA, 6-9 Nov 1990. IEEE Computer Society Press, Los Alamitos, CA.

13. Man Leung Wong and Kwong Sak Leung. Inductive logic programming using
genetic algorithms. In J.W. Brahan and G.E. Lasker, editors, Advances in Artificial
Intelligence – Theory and Application II, pages 119–124, 1994.

Genetic Programming with Active Data
Selection

Byoung-Tak Zhang and Dong-Yeon Cho

Artificial Intelligence Lab (SCAI)
Dept. of Computer Engineering

Seoul National University
Seoul 151-742, Korea

{btzhang, dycho}@scai.snu.ac.kr
http://scai.snu.ac.kr/

Abstract. Genetic programming evolves Lisp-like programs rather than
fixed size linear strings. This representational power combined with gen-
erality makes genetic programming an interesting tool for automatic pro-
gramming and machine learning. One weakness is the enormous time re-
quired for evolving complex programs. In this paper we present a method
for accelerating evolution speed of genetic programming by active selec-
tion of fitness cases during the run. In contrast to conventional genetic
programming in which all the given training data are used repeatedly,
the presented method evolves programs using only a subset of given
data chosen incrementally at each generation. This method is applied to
the evolution of collective behaviors for multiple robotic agents. Exper-
imental evidence supports that evolving programs on an incrementally
selected subset of fitness cases can significantly reduce the fitness eval-
uation time without sacrificing generalization accuracy of the evolved
programs.

1 Introduction

Genetic programming (GP) is a method for finding the most fit computer pro-
grams by means of artificial evolution. A population of computer programs are
generated at random. They are evolved to better programs using genetic opera-
tors. The ability of the program to solve the problem is measured as its fitness
value.

The genetic programs are usually represented as trees. A genetic tree con-
sists of elements from a function set and a terminal set. Function symbols ap-
pear as nonterminal nodes. Terminal symbols are used to denote actions taken
by the program. Since Lisp S-expressions can be represented as trees, genetic
programming can, in principle, evolve any Lisp programs. Due to this powerful
expressiveness, GP provides an effective method for automatic programming and
machine learning.

One difficulty in genetic programming is, however, that it requires enormous
computational time. The time for evolution is proportional to the product of
population size, generation number, and the data size needed for fitness eval-

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 146–153, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Genetic Programming with Active Data Selection 147

uation. Typical population size for GP ranges from a few hundreds to several
thousands [4]. A typical run requires fifty to hundreds of generations. The data
size depends on the application. Fitness evaluation takes the most of evolution
time in GP since it requires programs to be executed against fitness cases.

In this paper we present two methods for reducing computational costs for
genetic programming by evolving programs on a selected subset of given fitness
cases. The idea of active data selection in supervised learning was originally
introduced in 1991 by one of the authors for efficient training of neural networks
[11,7,8]. Motivated by this work Gathercole et al. used training subsets for genetic
programming [1,2]. Our approach is different from that of Gathercole et al. in
that we increase the training set incrementally as generation goes on, rather
than using the same number of fitness cases. The effectiveness of the presented
methods was tested on a multiagent learning problem in which a group of mobile
agents are to transport together a large table to the goal position.

The paper is organized as follows. Section 2 describes the multiagent task.
Section 3 presents the genetic programming approach with active data selection.
Section 4 shows experimental results. Section 5 discusses the result.

2 Evolving Multiagent Strategies Using Genetic
Programming

The table transport problem that will be used in our experiments is an example
of multi-robot applications [9]. In an n × n grid world, a single table and four
robotic agents are placed at random positions, as shown in Figure 1. A specific
location is designated as the destination. The goal of the robots is to transport
the table to the destination in group motion. The robots need to move in herd
since the table is too heavy and large to be transported by single robots.

������
������
������
������
������
������

������
������
������
������
������
������

T

G

Agent

Agent

Agent

Agent

Table

Destination

Obstacle

Visible Range

Fig. 1. The environment for multiagent learning.

148 Byoung-Tak Zhang and Dong-Yeon Cho

Table 1. Terminals and functions of GP-trees for the table transport problem.

Symbol Description

Terminals FORWARD Move one step forward in the current direction
AVOID Check clockwise and make one step in the first direction

that avoids collision
RANDOM-MOVE Move one step in the random direction
TURN-TABLE Make a clockwise turn to the nearest direction of the

table
TURN-GOAL Make a clockwise turn to the nearest direction of the

goal
STOP Stay at the same position

Functions IF-OBSTACLE Check collision with obstacles
IF-ROBOT Check collision with other robots
IF-TABLE Check if the table is nearby
IF-GOAL Check if the table is nearby
PROG2, PROG3 Evaluate two (or three) subtrees in sequence

Each robot i (i = 1, .., Nrobots) is equipped with a control program Ai. If
Ai 6= Aj for i 6= j, then control programs are said to be private. In case of public
control programs, all instances of Ai are constrained to be the same A.

The robots activate Ai’s in parallel to run a team trial. At the beginning
of the trial, the robot locations are chosen at random in the arena. They have
different positions and orientations. During a trial, each robot is are granted a
total of Smax elementary movements. The robot is allowed to stop in less than
Smax steps if it reaches the goal. At the end of the trial, each robot i gets a
fitness value which was measured by summing the contributions from various
factors.

The objective of a GP run is to find a multi-robot algorithm that, when exe-
cuted by the robots in parallel, causes efficient table transport behavior in group.
The terminal and function symbols used for GP to solve this problem are listed
in Table 1. The terminal set consists of six primitive actions: FORWARD, AVOID,
RANDOM-MOVE, TURN-TABLE, TURN-GOAL and STOP. The function set consists of
six primitives: IF-OBSTACLE, IF-ROBOT, IF-TABLE, IF-GOAL, PROG2 and PROG3.
Each fitness case represents a world of 32 by 32 grid on which there are four
robots, 64 obstacles, and the table to be transported. A set of training cases are
used for evolving the programs.

All the robots use the same control program. To evaluate the fitness of robots,
we made a complete run of the program for one robot before the fitness of another
is measured. The fitness value, fij(g), of individual i at generation g against case
j is computed by considering various penalty factors. These include the distance
between the target and the robot, the number of steps moved by the robot, the
number of collisions made by the robot, the distance between starting and final

Genetic Programming with Active Data Selection 149

position of the robot, and the penalty for moving away from other robots. More
details can be found elsewhere [9].

The fitness, Fi(g), of program i at generation g is measured as the average
of its fitness values fij(g) for the cases j in the training set:

Fi(g) =
1
S

SX

j=1

fij(g) (1)

where S is the number of fitness cases.
In the following section we present the active data selection method for ge-

netic programming.

3 Genetic Programming with Incremental Data Selection

With each program is associated a small set of initial training cases of size n0,
chosen from the base training set D(N) of size N . Individuals are evolved by the
usual genetic programming. In addition, the algorithm has an additional step,
i.e. incremental data inheritance (IDI), in which data sets are evolved.

For the initial data population, a small subset of fitness cases, D(0), is chosen
from the base training set D(N) of size N :

D(0) ⊂ D(N), |D(0)| = n0. (2)

After individuals are evolved by the usual evolutionary process (fitness evalu-
ation, selection, and mating to generate offsprings), a portion of training set,
∆(g), is chosen from the previous candidate set C(g − 1)

∆(g) ⊂ C(g − 1), |∆(g)| = λ, (3)

where C(g − 1) = D(N) − D(g − 1). And it is mixed with the previous training
set to make a new training set D(g) for the next generation

D(g) = D(g − 1) ∪ ∆(g), D(g − 1) ∩ ∆(g) = {}. (4)

That is, the sequence of training sets for GP active is

D(0) ⊂ D(1) ⊂ D(2) ⊂ ... ⊂ D(G) = D(N), (5)

where G is the number of maximum generation.
We use a variant of uniform crossover to produce offspring data from their

parent data. Two parent data sets, Di(g) and Dj(g), are crossed to inherit their
subsets to two offspring data sets, Di(g + 1) and Dj(g + 1). In uniform data
crossover, the data of parents’ are mixed into a union set

Di+j(g) = Di(g) ∪ Dj(g), (6)

150 Byoung-Tak Zhang and Dong-Yeon Cho

g +1

Parents

Offspring

Base Data Set

giD (g)

i+jD (g)

D (g+1)

j

jiD (g+1)

D (g)

40 40

60

n = 40

n = 43

3463

4343

34 6 3

Fig. 2. Uniform data crossover for data inheritance.

which are then redistributed to two offspring:

Di(g + 1) ⊂ Di+j(g)
Dj(g + 1) ⊂ Di+j(g) (7)

where the size of offspring data sets are equal to ng+1 = ng + λ, where λ ≥ 1 is
the data increment size.

To ensure performance improvement, it is important to maintain the diversity
of the training data as generation goes on. The diversity of data set Di(g) is
measured by the ratio of distinctive examples:

di =
|Di+j(g)|
|Di(g)| − 1, 0 ≤ di ≤ 1 (8)

where di = 0 if the parents have the same data and di = 1 if parents have no
common training examples. To maintain the diversity, a portion ρ of the diversity
factor di is used to import examples from the base data set.

ri = ρ · (1 − di), 0 ≤ ρ ≤ 1. (9)

For example, assume that the current parents have data sets, Di(g) and
Dj(g), of size ng = 40 each and |Di+j(g)| = 60. Let the parameters be ρ = 0.3,
λ = 3. Then, we need to generate two training sets of size ng+1 = ng + λ = 43
for the offspring (Figure 2). The diversity is di = |Di+j(g)|

|Di(g)| − 1 = 1.5 − 1 = 0.5
and the import rate is ri = ρ · (1 − di) = 0.3 · (1 − 0.5) = 0.15. The data for
each offspring is generated by randomly choosing 34 examples from Di+j(g), 6
examples from D(N) and again λ = 3 examples from D(N). Figure 2 illustrates
this process.

Genetic Programming with Active Data Selection 151

4 Experimental Results

Experiments have been performed using the parameter values listed in Table
2. The terminal set and function set consist of six primitives, respectively, as
summarized in Table 1. A total of 100 training cases were used for evolving the
programs for standard GP runs. GP runs with active data selection used 10+3g
examples out of the given data set, i.e. n0 = 10, λ = 3, for fitness evaluation.
For all methods, a total of 100 independent worlds were used for evaluating the
generalization performance of evolved programs.

We compared the performance of the GP with active data selection to the
GP with random data selection. Results are shown in Figure 3. GPs with IDI
and incremental random selection (IRS) achieved better than GP without active
selection (GP standard). Figure 4 shows the fitness of three methods with repect
to the total number of evaluations. Since the GP with active data selection uses
variable data size, we calculated the number of evaluations at generation g by
a product of the population size and the data size at generation g. The active
GP methods achieved a speed-up factor of approximately two compared with
that of the standard GP. The results are summarized in Table 3. Though the
GP with active data selection methods used a smaller set of fitness cases, its
training and test performance were slightly better than those of the standard
GP. Though further experiments are necessary for more definite conclusion, it
seems that the active GP has a potential to evolve smaller programs than the
standard GP since small data usually tends to require smaller programs. This
seems interesting from the Occam’s razor principle point of view [10,6].

Table 2. Parameters used in the experiments.

Parameter Value

Population size 100
Max generation 30
Crossover rate 0.9
Mutation rate 0.1

Table 3. Comparison of time and average fitness values (lower is better) for the stan-
dard GP and the GP with active data selection. The values are averaged over ten runs.
Also shown are the standard deviation.

Method Time Average Fitness

Training Test

GP standard 300000 211.21 ± 9.19 225.64 ± 12.05
GP with IRS 170500 209.60 ± 7.67 219.91 ± 13.11
GP with IDI 170500 195.97 ± 8.41 203.39 ± 10.78

152 Byoung-Tak Zhang and Dong-Yeon Cho

150

200

250

300

350

400

450

500

550

600

0 5 10 15 20 25 30

F
itn

es
s

Generation

GP standard
GP with IRS
GP with IDI

Fig. 3. Comparison of fitness values as a function of generation number.

150

200

250

300

350

400

450

500

550

600

0 50000 100000 150000 200000 250000 300000

F
itn

es
s

Number of Evaluations

GP standard
GP with IRS
GP with IDI

Fig. 4. Comparison of fitness values as a function of the number of function evaluations.

5 Conclusions

We have presented a method for accelerating evolution speed of genetic program-
ming by selecting a subset of given fitness cases. Since the fitness evaluation step
is a bottleneck in GP computing time, this method can make an essential con-
tribution to improving the GP performance.

Genetic Programming with Active Data Selection 153

Experimental results have shown that by reducing the fitness cases the evo-
lution speed of GP can be enhanced without loss of generality of the evolved
programs. This is especially true for problem settings in which a large amount
of fitness cases are available. In this case, the active data selection can exploit
the redundancy in the data, while the standard GP blindly re-evaluates all the
fitness cases.

Acknowledgements

This research was supported in part by the Korea Science and Engineering Foun-
dation (KOSEF) under grants 96-0102-13-01-3 and 981-0920-350-2.

References

1. Gathercole, C. and Ross, P. 1994. Dynamic training subset selection for supervised
learning in genetic programming. In Y. Davidor, H.-P. Schwefel, and R. Männer,
(eds.). Parallel Problem Solving from Nature III, Berlin: Springer-Verlag, Pages
312-321.

2. Gathercole, C. and Ross, P. 1997. Small populations over many generations can
beat large populations over few generations in genetic programming. In J.R. Koza
(eds.). Genetic Programming 1997. Cambridge, MA: The MIT Press. Pages 111-
118.

3. Haynes, T., Sen, S., Schoenefeld, D., and Wainwright, R. 1995. Evolving a team,
In Proc. AAAI-95 Fall Symposium on Genetic Programming AAAI Press. Pages
23-30.

4. Koza, John R. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: The MIT Press.

5. Luke, S. and Spector, L. 1996. Evolving teamwork and coordination with genetic
programming. In J.R. Koza (eds.). Proc. First Genetic Programming Conf. Cam-
bridge, MA: The MIT Press. Pages 150-156.

6. Soule, T., Foster, J. A., and Dickinson, J. 1996. Code growth in genetic program-
ming. In J.R. Koza (eds.). Genetic Programming 1996. Cambridge, MA: The MIT
Press. Pages 215-223.

7. Zhang, B. T. 1992. Learning by Genetic Neural Evolution, DISKI Vol. 16, 268
pages, ISBN 3-929037-16-6, Infix-Verlag, St. Augustin/Bonn.

8. Zhang, B. T. 1994. Accelerated learning by active example selection, International
Journal of Neural Systems, 5(1): 67-75.

9. Zhang, B. T. and Cho, D. Y. 1998. Fitness switching: Evolving complex group
behaviors using genetic programming. In Genetic Programming 1998, Madison,
Wisconsin, pp. 431-438, 1998.

10. Zhang, B. T. Mühlenbein, H. 1995. Balancing accuracy and parsimony in genetic
programming. Evolutionary Computation. 3(1) 17-38.

11. Zhang, B. T. and Veenker, G. 1991. Focused incremental learning for improved gen-
eralization with reduced training sets, Proc. Int. Conf. Artificial Neural Networks,
Kohonen, T. et al. (eds.) North-Holland, pp. 227-232.

Evolutionary Programming-Based Uni-vector
Field Method for Fast Mobile Robot Navigation

Yong-Jae Kim, Dong-Han Kim, and Jong-Hwan Kim

Dept. of EE, KAIST,
373-1 Kusong-dong, Yusong-gu, Taejon, 305-701, Korea

Tel: +82-42-869-8048, Fax: +82-42-869-8010
{yjkim, dhkim, johkim}@@vivaldi.kaist.ac.kr

Abstract. A novel obstacle avoidance and a final position and orienta-
tion acquiring methods are developed and implemented for fast moving
mobile robots. Most of the obstacle avoidance techniques do not con-
sider the robot orientation or its final angle at the target position. These
techniques deal with the robot position only and are independent of its
orientation and velocity. To solve these problems we propose a novel
uni-vector field method, which introduces a normalized two-dimensional
vector field for navigation. To obtain the optimal vector field, a func-
tion approximator is used, and is trained by evolutionary programming.
Two kinds of vector fields are trained, one for the final posture acqui-
sition, and the other for obstacle avoidance. Computer simulations and
real experiments are carried out to demonstrate the effectiveness of the
proposed scheme.
Keywords: Navigation, Wheeled mobile robots, Uni-vector field method,
Evolutionary programming, Soccer robots.

1 Introduction

Navigation with obstacle avoidance is one of the key issues to be looked into for
successful applications of autonomous mobile robots. Navigation involves three
tasks: mapping and modeling the environment, path planning and selection, and
path following. The traditional navigation method separates path planning and
following, into two isolated tasks. In contrast, in the unified navigation such as
potential field method, these two steps are unified in one task [1].

Conventional navigation methods do not consider the robot orientation and
its final angle at the target position. For instance, when a robot dribbles a
ball in a robot soccer game [2,3] or pushes a load in an industrial field, it is
very important to acquire the final robot orientation. Using the conventional
methods, a robot has difficulties in performing such tasks. Moreover, in the path
planning step, the generated path ignores the mechanical properties of the robot.

In this paper, a novel uni-vector field method is proposed for the unified
navigation considering the kinematic properties of the robot and the practical
application to the fast moving mobile robots. To obtain the optimal uni-vector

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 154–161, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolutionary Programming-Based Uni-vector Field Method 155

field, a function approximator and its learning algorithm by evolutionary pro-
gramming (EP) are proposed. By introducing the uni-vector fields, the perfor-
mance of the unified navigational approach is improved along with the obstacle
avoidance capability. The developed navigation is implemented on a bi-wheel
type mobile robot designed for MiroSot [2].

In Sections 2, the kinematic properties of bi-wheel type mobile robot are
discussed. In Section 3, a novel uni-vector field navigation method is described as
a unified navigation approach, based on EP. Sections 4 and 5 describe computer
simulations and experimental results, respectively. Concluding remarks follow in
Section 6.

2 Modeling of a Mobile Robot

In this paper, two wheeled mobile robots with non-slipping and pure rolling are
considered [4]. The mechanical structure of the mobile robot is shown in Fig.1(a).

The kinematics of the robot can be described using Fig. 1(b). Posture ps and
position p of the robot are defined as

ps =

xc

yc

θc

 , p =

[
xc

yc

]
(1)

where (xc, yc) is the position of the center of robot, and θc is the heading angle
of the robot with respect to absolute coordinates. Velocity vector S is defined
as follows :

S =
[
v
ω

]
=

[
VR+VL

2
VR−VL

L

]
=

[1
2

1
2− 1

L
1
L

] [
VL

VR

]
(2)

where v is the translational velocity of the center of robot and ω is the rotational
velocity with respect to the center of robot. Equation (2) shows the relation
between the velocity vector and the velocities of two wheels, VL and VR, where
VL is the left wheel velocity, and VR is the right wheel velocity.

(a) Shape of the robot (b) Robot modeling

Fig. 1. Shape of bi-wheel type mobile robot and its modeling

156 Yong-Jae Kim, Dong-Han Kim, and Jong-Hwan Kim

3 Uni-vector Field Navigation Method

Potential field method is generally used in robot control. As it is very simple, it is
possible to control robots in real time. However, when the regular velocity cannot
be maintained or the obstacle is big, the robot is liable to get into oscillation,
and its direction cannot be guaranteed at an arriving position [5]. These are due
to the approximation of the robot to a point mass. By potential field navigation
the robot moves in the direction proportional to a resultant force comprised
of an attractive force from the desired position and a repulsive force from the
obstacle to be avoided. The resultant force can be considered as a vector field.
It is possible to control the robot better with a modified vector field, if we can
find the optimal one. In this paper, we introduce a uni-vector field in which the
magnitude of vectors is a unity at all the positions.

3.1 Uni-vector field generation

A uni-vector field, N for the robot navigation is defined as

N : F → I (3)

where F is the workspace of the robot in R2 and I is a set of unit vectors with
arbitrary direction. While controlling the robot, these unit vectors correspond
to the desired robot heading directions. As normalized vectors are used, the
uni-vector field N can be represented in terms of its directions, as follows:

θN : F → [−π, π]. (4)

Fig. 2 shows an example of the uni-vector field for a desired posture at a point
g, where the points and straight lines are uni-vector field, and the trajectories of
rectangles are simulated robot paths. The uni-vector field at position p is defined
as N(p). It is assumed that the magnitude of vectors in the field is a unity at all
points. The angle of the vector at a robot position p is generated by

θN (p) = 6 pg − nφ (5)

with φ = 6 pr − 6 pg

where n is a positive constant. The shape of the field and the turning motion of
the robots vary as per the parameter n and the distance between points g and
r. By this equation, we can obtain a uni-vector field at all points for the desired
posture at point g. This uni-vector was implemented to the robot soccer system
[3] for kicking motion, where the point g was the ball position and the heading
position r was adjusted to the desired kicking direction. As shown in Fig. 2, there
are inefficient properties in this heuristic uni-vector field. For example, the robot
behind the point g follows the long path to approach the final posture.

In order to exploit the vector field N for robot control with better per-
formance, the field has to be adjusted efficiently. A function approximator is
introduced in order to achieve the same.

Evolutionary Programming-Based Uni-vector Field Method 157

Fig. 2. Heuristic uni-vector field for final posture at a point g

To start with, a grid of size n × m is located within the workspace as shown
in Fig. 3(a). The shape and density of the grid net can be varied as per the
application and the desired accuracy. pi,j is the position of node (i,j) and Ni,j

represents the field vector at pi,j .
The set of field vectors Ni,j forms an n × m matrix, {Ni,j |1 ≤ i ≤ n, 1 ≤ j ≤

m}. The vector associated with an arbitrary position P in F , is calculated with
the function approximator as follows:

N(p) =
(dbdcdd)Ni,j +(dadcdd) Ni,j+1+(dadbdd) Ni+1,j +(dadbdc)Ni+1,j+1

dbdcdd+dadcdd+dadbdd+dadbdc
(6)

with da = ||p − pi+1,j+1||, db = ||p − pi,j+1||,
dc = ||p − pi+1,j ||, dd = ||p − pi,j ||

where pi,j , pi,j+1, pi+1,j and pi+1,j+1 are the positions of the nodes surrounding
the point p as shown in Fig. 3(b). N(p) in (6) represents an intermediate vector
for the Ni,j , Ni,j+1, Ni+1,j and Ni+1,j+1 vectors. As p approaches pi,j , N(p)
converges to Ni,j .

Consequently, by setting the elements of the matrix {Ni,j |1 ≤ i ≤ n, 1 ≤ j ≤
m} to each of node values, all the vectors in field N can be fully determined. In
Section 3.3, the training of the vector field N is discussed.

(a) (b)

Fig. 3. Grid net of the function approximator

158 Yong-Jae Kim, Dong-Han Kim, and Jong-Hwan Kim

3.2 Uni-vector field tracking controller

To apply the vector field method for navigation, a field tracking controller is
required. The control inputs to the wheels reduce the error in angle between the
robot heading direction and the field vector. The error in angle θe, between the
robot heading angle θc and the vector orientation θN is given as follows:

θe = θc − θN . (7)

Let us employ the following rotational velocity:

ω = G(xc, yc, θc)||ṗ|| + Kωsgn(θe)
√

|θe| (8)

with G(xc, yc, θc) = ∂θN

∂xc
cos θc + ∂θN

∂yc
sin θc,

where Kω is a positive constant and sgn is a sign function. Then, θe will become

zero within a time T ≥ 2
√

θe(0)
Kω

[6]. G(x, y, θc) is the product of the gradient
of θN and a unit vector in the direction of θc. In other words, it means the
variation of θN in the direction of θc, at the current position (x, y). The term
G(x, y, θc)||ṗc|| refers to the variation of θN of robot center in unit time. Equation
(8) represents a kind of sliding mode controller.

3.3 EP and the learning algorithm

To control a fast mobile robot, many conditions should be satisfied, which are
difficult to represent. Researchers focus on some of them, based on their interest
and the application field. To optimize such a complex system, EP is an efficient
tool. The evaluation function is decided based on the elapsed time, the distance
from target position, the distance from obstacle, the final orientation of robot
heading, and the maximal rotational acceleration.

These criteria are merged to form an evaluation function f(x) as follows:

f(x) = kt ts + kd | θc(ts) − θd | + ft(x) + fo(x) + fa(x) (9)

where ts is the elapsed time, and θd is the desired final direction. The evaluation
function is used for learning the uni-vector field matrix {Ni,j |1 ≤ i ≤ n, 1 ≤ j ≤
m}.

The first term in the evaluation function helps the robot to reach the target
point without wasting time, and the second term forces the robot heading to
converge to the desired final direction θd. The function ft(x) makes the robot to
move to the target point:

ft(x) =

{
0, if arrived at pg

Tp + mint∈[0,ts](|p(t) − pg|), otherwise
(10)

where p(t) is the position of the robot center at time t, pg is the target position
and Tp is a penalty value that is added when a robot does not arrive at pg. If

Evolutionary Programming-Based Uni-vector Field Method 159

the robot does not reach the target position, the evaluation function increases
depending on the distance from the robot center to the target point, and the
corresponding value mint∈[0,ts](|p(t)−pg|) added with Tp, gives the ft(x) value
as in equation (10). The function fo(x) prevents the robot from colliding with
an obstacle:

fo(x) =

{
0, when not in collision with an obstacle
Bp + maxt∈Φ(|p(t) − pb|), otherwise

(11)

where Bp is a penalty value, Φ ⊂ [0, ts] refers to the time interval during which
the robot is within an obstacle boundary, and pb is the closest point on the
obstacle boundary from the robot center. When a robot collides with an obstacle,
the fo(x) function is calculated going by projecting the robot trajectory nearest
to the obstacle center. The shortest distance of such a point from the periphery
of the obstacle is used in getting the value of the fo(x) function. The function
fa(x) makes the robot rotational acceleration, ω̇ not to exceed its limit αmax:

fa(x) =

{
0, when ω̇ is within the limit αmax

Ap + maxt∈[0,ts](|ω̇(t) − αmax|), otherwise
(12)

In computer simulation, the penalty values Gp, Bp, and Ap are taken as 500,
100, and 50, respectively. The value of Gp is greater than the sum of the other
two terms in evaluation function, as we assumed that the arrival at the target
point is the most important condition to be satisfied in robot navigation.

In the EP algorithm, self-adaptive Gaussian mutation is used. For details
on constrained optimization by evolutionary algorithms, the reader is referred
to [7].

4 Computer Simulations

Computer simulations were carried out using two kinds of vector fields(for final
posture and obstacle avoidance) on a Pentium IBM PC considering the kine-
matic model of the robot. For each individual, the simulation is carried out
25 times with uniformly distributed random starting positions. Throughout the
simulations, the elitist ((µ + λ) − EP) selection method was used and the grid
nets used in following simulations have circular form with size 10×6. The maxi-
mum speed of wheels was 100 cm/s, of the center of the robot was 50 cm/s, and
the maximal rotational acceleration of robot was 10 rad/sample. The number of
individuals was 20, and the number of offsprings was 40.

4.1 Uni-vector field for final posture

In this case, It was assumed that the final position is the center of the field (0,0)
and the final orientation is to the right (0 rad). Fig. 4(a), 4(b) and 4(c) show the
best vector fields obtained at each generation. Fig. 4(c) shows the constraints are
satisfied or traded off.

160 Yong-Jae Kim, Dong-Han Kim, and Jong-Hwan Kim

(a) 10th generation (b) 50th generation (c) 500th generation

Fig. 4. Simulation results for final posture acquisition

(a) 10th generation (b) 50th generation (c) 500th generation

Fig. 5. Simulation results for obstacle avoidance

4.2 Uni-vector field with obstacles

Fig. 5(a), 5(b) and 5(c) show the results for circular obstacle avoidance. The
final position is to the right border of each frame. As the generation goes on, the
navigation becomes more satisfactory.

5 Experiments

To demonstrate the effectiveness of the proposed scheme, it is implemented in
the real robot system. The overall system is composed of a robot, a host com-
puter, a vision system, and a communication system. The vision system detects
the position and orientation of the robot and obstacle. Using this vision informa-
tion, the host computer applies the proposed navigation method to calculate the
velocities of the robot wheels. The calculated wheel velocities are transmitted to
the robot through the communication system.

The vision system is composed of a TMC-7 CCD camera with a resolution
of 320×240 pixel and an image grabber with a processing rate of 30 frames/sec.
The vision system in the experimental setup has measurement errors of about
2.4cm for position and 4.83 degree for angle calculations. The host computer
is a Pentium processor with 133 MHz clock. The mobile robot is developed
for the purpose of playing MiroSot robot-soccer game [3]. The robot size is 7.5

Evolutionary Programming-Based Uni-vector Field Method 161

Fig. 6. Experimental results for desired robot postures

cm×7.5 cm×7.5 cm, with a wheel width of 6.5 cm. The robot has an AT89C52
micro-controller, two DC motors, and two LM629 motion controllers. In the
experiment, a sampling time of 33 ms is used. Other conditions are the same
as in simulation. Fig. 6 (a) shows the case of final posture acquiring without an
obstacle. Fig. 6 (b), (c), and (d) show the cases with obstacle avoidance. The
radius of the obstacle considered is 6cm. The arrows in Fig. 6 show the desired
final orientation of the robot. The robots move to the final position and converge
to the final heading angle by the short and smooth path without collision. Fig. 6
shows good performance for all cases.

6 Conclusions

A novel navigation method for obstacle avoidance and final posture acquiring
method were developed and implemented. This method was obtained introducing
a modifiable uni-vector field into the unified navigation. To obtain the optimal
vector field, a function approximator and its learning algorithm were proposed.
The developed navigation was implemented on a bi-wheel type mobile robot. As
seen from both simulations and experiments, the proposed method is useful for
fast mobile robot control and for robots performing more complex tasks.

References

1. E. Rimon, “Exact Robot Navigation Using Artificial Potential Functions,” IEEE
Trans. on Robotics and Automation, Vol. 8, No. 5, pp. 501-518, Oct. 1992.

2. http://www.fira.net/
3. J.-H. Kim (ed.), Special Issue: First Micro-Robot World Cup Soccer Tournament,

MiroSot, Robotics and Autonomous Systems, Elsevier, Vol. 21, No. 2, Sep. 1997.
4. G. Camoin, G. Bastin and B. D. Novel, “Structural Properties and Classification of

Kinetic and Dynamic Models of Wheeled Mobile Robots,” IEEE Trans. Robotics
and Automation, Vol. 12, No. 1, pp. 47-62, Feb. 1996.

5. J. Borenstein and Y. Koren, “Real-time Obstacle Avoidance for Fast Mobile
Robots,” IEEE Trans. Syst. Man. Cybern., Vol. 20, No. 4, pp. 1179-1187, 1989.

6. J. Gulder and V. I. Utkin, “Stabilization of Non-holonomic Mobile Robots using
Lyapunov functions for Navigation and Sliding Mode Control,” Proc. of the IEEE
conf. on Decision and Control, pp. 2967-2972, Dec. 1994.

7. J.-H. Kim and H. Myung, “Evolutionary Programming Techniques for Constrained
Optimization Problems,” IEEE Trans. on Evolutionary Computation, pp. 129-140,
May 1997.

Evolution with Learning Adaptive Functions

Masayuki Ishinishi and Akira Namatame

Dept. of Computer Science
National Defense Academy

Yokosuka, 239-8686, JAPAN
E-mail: mishi@cs.nda.ac.jp, nama@cc.nda.ac.jp

Abstract. In this paper, we consider a society of economic agents. Eco-
nomic agents are defined as autonomous software entities equipped with
the adaptive functions. They have their own adaptive functions defined
over the market which is governed with the market mechanism. We
especially focus the evolutional explanation on how the social compe-
tence that provides the motivation for the coordinated behavior can be
emerged from the interactions guided by the selfish behaviors of economic
agents. Especially we need to understand the following basic issues how
get the architecture of an agent, as a component of a complex system,
suited for evolution, how self-interested behaviors evolve to coordinated
behaviors, and how the structure of each goal (adaptive) function can
be modified for globally coordinated behaviors. We also show that the
concept of sympathy becomes a fundamental element for adaptation and
coordinated behavior.
Keywords: emergence of optimal behaviors, market mechanism, eco-
nomic agent, emotion

1 Introduction

In a large-scale complex adaptive system composed of those many rational
agents, two types of strategic behaviors may occur: agents mutually interact
and behave to achieve the common goal of the society, while at the same time,
each agent also behaves to optimizes its own goal. For an individual rational
agent, it behaves to improve its own adaptive function based on its local ob-
servation. This ability is based on principles of the individual rationality. By a
social goal we mean a goal that is not achievable by any single agent alone but
is achievable by a society of agents. The key element that distinguishes a so-
cial goal from an agent’s individual goal is that they require cooperation. Then
how will the evolution of individually rational behaviors proceed to coordinated
behavior?

We describe the model of economic agent as the basis for social cooperation
learnable through competitive interaction. We call the latter ability as compet-
itive cooperation. Economic agents are driven by their own selfish motivations,
and they are selfish in the sense that they only do what they want to do and
what they think is in their own best interests, as determined by their own in-
terests. The collective behavior of those agents is determined through the local

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 162–170, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolution with Learning Adaptive Functions 163

interactions of their constituent parts. These interactions merit careful study in
order to understand the macroscopic properties of collective behaviors . We espe-
cially ask the following questions: If agents make decisions on the basis imperfect
information about other agents’ goals or adaptive funcitons, and incorporate ex-
pectations on how its decision will affect other agents’ adaptive functions, then
how will the evolution of cooperation proceed? How will the structure of adap-
tive function of each agent should be self-modified for the evolution of social
cooperation?

In this paper, we study the evolution of social cooperation without loosing
the principle of competition in a society. Social learning is defined as the set
of mechanism which utilizes adaptive decision-making of economic agents. In
the adaptive decision-making mechanism, each economic agent modifies its own
adaptive function by reflecting its sympathy level to the other members. With
the principle of sympathy, It adapts its own decision to based on the current
and previous performance. The goal of an agent is determined solely by how
that agent affects other members of the society and how the decision of other
agents affects its own adaptive function. Adaptive decision-making is facilitated
by designing the agents to be somewhat modified selfish interest.

Social learning allows agents to achieve high-level social goals without the
need for cooperative planning and communications. Thus, over a time, a soci-
ety of economic agents will be able to learn to cooperate together at an even
higher-level learning of efficiency and adaptability. Under this social learning,
cooperation emerges as a side-effect of the adaptive decision-making which lead
them to learn the cooperative behaviors without sacrificing that the principle of
competition in the society.

2 A Model of Economic Agents

We consider a society of economic agents, G = {Ai : i = 1, 2, . . . , n}. Economic
agents are defined as autonomous software entities equipped with the adaptive
capabilities. They have their own adaptive functions as the function of the market
price which is governed with the market mechanism. We define the adaptive
function of each agent Ai ∈ G as

Ui(x1, . . . , xi, . . . , xn) = xiPi{xi, x(i)} (1)

where Pi{xi, x(i)}represents the price scheme associated to the activity of agent
Ai ∈ G. And xi represents the level of activity of agent Ai ∈ G, and x(i) =
(x1, . . . , xi−1, xi+1, . . . , xn) represents the set of activities of all agents in G ex-
cept agent Ai.

As a specific example, we consider the following social price scheme for each
agent Ai ∈ G,

Pi = ai −
nX

j=1

bijxj (2)

where ai, bij , i, j = 1, 2, . . . , n,are some positive constant.

164 Masayuki Ishinishi and Akira Namatame

The competitive solution in which each agent maximizes its own adaptive
function simultaneously is given as the solution of the following system of linear
equations:

(B + B1)x◦ = a (3)

where B is a n×n matrix with the (i, j)th element is, bij , i, j = 1, 2, . . . , n, B1
is a diagonal matrix with the i-th diagonal element is bii, and a are the column
vectors with the elements, ai, , i = 1, 2, . . . , n, respectively.

We define the socially optimal behavior as the set of the activities that opti-
mize the summation of the adaptive functions of all agents defined as

S(x1, . . . , xi, . . . , xn) =
nX

i=1

Ui{x1, . . . , xi, . . . , xn} (4)

The socially optimal behaviors is then obtained as the set of the activities sat-
isfying the following equations.

∂S/∂xi = ∂Ui/∂xi +
nX

j 6=i

∂Uj/∂xi = 0, i = 1, 2, . . . , n, (5)

As an example of the quadratic adaptive functions with the linear social price
scheme is given in (2), the social optimal solution is obtained as the solution of
the following system of linear equations:

(B + BT)x∗ = a (6)

where BT is the transpose matrix of B.
We especially consider the case in which the interaction matrix B is sym-

metric with the diagonal elements are the same, i.e., bii = d and the off-diagonal
elements are, bij = b, (0 < b < d), i, j = 1, 2, . . . , n. The column vector a also has
the same elements, i.e., ai = a, i = 1, 2, . . . , n,.

The level of adaptation of each agent at competitive equilibrium is obtained
as follows:

U◦
i (n) = a2d/{2d + b(n − 1)}2 (7)

The level of the adaptation as a society, which is defined as the summation of
the adaptive level of each agent is then given as

G◦(n) ≡
nX

i=1

U◦
i (n) = a2dn/{2d + b(n − 1)}2 (8)

The level of adaptation of each agent at socially optimal behavior is given as

U∗
i (n) = a2/4{d + b(n − 1)} (9)

The levels of the adaptation as a society, which is defined as the summation of
the adaptive level of each agent is then given as

G∗(n) ≡
nX

i=1

U∗
i (n) = a2n/4{d + b(n − 1)} (10)

Evolution with Learning Adaptive Functions 165

Here we are interested in how the adaptiveness of the whole organization may
affect if the size of the organization increases, i.e, we will investigate the asymp-
totic value of the summation of the adaptive functions of each agent in the case
that the number of agents increases. By taking the limits of those social adap-
tive functions with the number of the economic agents, those values converge as
follows:

lim
n→∞ G◦(n) = 0 (11)

lim
n→∞ G∗(n) = a2/4b (12)

This implies that the level of adaptation under competitive behaviors converges
to zero, and that of under socially optimal behaviors converge to same constant.

3 Learning of Social Adaptive Function

In the previous section, we showed that the conditions of the individual opti-
mality and the social optimality are different. This implies that if each economic
seeks its own optimality the level of adaptation decreases as the number of agents
in a society increases. Our question is then stated as follows, how will the evo-
lution of cooperation proceed and how the emergence of cooperation can take
place in a society.

We now consider the following modified adaptive function for each agent
Ai ∈ G.

Ui{xi, x(i)} = Ui{xi, x(i)} − λi{x(i)}xi (13)

The adaptive function of each agent defined in (13) consists of the two terms,
the private adaptive function and the social adaptive function. By taking the
derivative of the modified adaptive function of (13) by xi, we obtain

∂Ui/∂xi = ∂Ui/∂xi − λi(x(i)) (14)

we set λi(x(i)) in (14) as (15), the condition of the individual optimality un-
der the modified adaptive functions is equivalent to the condition of the social
optimality defined over the set of the original adaptive functions in (1).

λi(x(i)) = −
nX

j 6=i

(∂2Uj/∂xj∂xi)xj =
nX

j 6=i

bjixj (15)

We term λi(x(i)) as the level of the symphathy of the i-th economic agent. The
symphathy level indicates the level of the influence of the decision of i-th agent
to the adaptive functions of the other economic agents.

The condition of the individual optimality by considering the sympathy level
is given as

Mi{xi, x(i)} − λi{x(i)} = 0 i = 1, 2, . . . , n. (16)

where we denote the derivative of the adaptive function as Mi{xi, x(i)}.
The emergence of those social competence as intelligent can take place with-

out any commitment among selfish agents. In a society, economic agents are

166 Masayuki Ishinishi and Akira Namatame

driven by their own selfish motivations which lead them to learn the rules of
decentralized decision-making or the coordinated behaviors.

The process of building up intelligent behaviors and cooperative intentions
may be called mutual or social learning [7][12]. Social learning from the social
perspective is grounded in the actions of many agents’ activities taken together,
and it not a matter of individual choice. It is one’s actions in relation to those
of others (vice versa) that maintain its participation. Social learning is in this
sense is the outcome of a web of activity emerged from the mutual interactions
among agents. In the model of social learning, two types of learning may occur:
the economic agent can learn to cooperate as a group, while at the same time,
each agent can also learn its own by adjusting its activity level. Social learning
would require the exchange of actions of the other agents.

The dynamic action selection process must be coordinated to achieve globally
consistent and good actions. We define the social learning as the adjustment pro-
cess of each agents’ individually economic behavior. The social learning model
describes how each agent, without knowing the others’ adaptive functions, ad-
justs its activity level over time and reaches to an equilibrium situation.

Without complete knowledge of other agents, agent needs to infer the strate-
gies, knowledge, plans of other agents. Economic agents can put forward their
private knowledge for consideration by other agents based on its own local in-
teractions, and agents would require the exchange of actions with other agents.
Learning is then formulated as the web of activity emerged from the mutual in-
teractions among economic agents. With the individual learning capability, each
agent modifies its decision based on the current and previous performance in or-
der to optimize its own adaptive function[1]. This adjustment process generates
a partial action that governs the actions of the agents .The mutual adjustment
process of behaviors is modeled as follows:

Mi{xi, x(i)} > λi{x(i)} then xi := xi + δxi

Mi{xi, x(i)} < λi{x(i)} then xi := xi − δxi
(17)

At equilibrium , we have

Mi{x∗
i , x

∗(i)} − λi{x∗(i)} = 0 i = 1, 2, . . . , n. (18)

The use of directives by an agent to control another can be viewed as a form
of incremental behavior adjustment[14]. The adjustment process without any
sympathy by setting λi = 0, i = 1, 2, . . . , n., converges a competitive equilibrium.

The mutual adjustment process with the sympathy is modeled specifically as
follows:

δi = xi(t + 1) − xi(t)
= (αi/bii)[Mi{xi(t), x(i, t)} − λi{x(i, t)}] (19)

where x(i, t) = (x1(t), . . . , xi−1(t), xi(t), xi+1(t), . . . , xn(t)). The mutual ad-
justment process is then given as follows:

xi(t + 1) = (αi/bii)Pi(t) + (1 − αi)xi(t) − (αi/bii)λi{x(i, t)} (20)

Evolution with Learning Adaptive Functions 167

We also describe the adjustment process of each agent’s symphathy level as
follows:

λi(t + 1) = βi[Mi{xi(t), x(i, t)} − λix(i, t)] + λi{x(i, t)} (21)

With the definition the level symphathy in (18), we have the following process
for learning:

λi(t + 1) = βi{Pi(t) − biixi(t)} + (1 − βi)
nX

j 6=i

bjixj(t) (22)

The activity level of each agent should be determined solely by how its de-
cision affects other members in the same society and how the decisions of other
agents affect its own adaptive function. However, in the large society, it may
difficult for each agent to consider the interactions with other agent. Therefore,
we assume the following symmetric condition for mutual interactions.

bji/bii = k (0 < k ≤ 1), j = 1, 2, . . . , n, j 6= i (23)

The mutual adjustment process of behaviors based on goal-seeking with the
sympasy is then modeled as follows:

λi(t + 1) = βi{Pi(t) − biixi(t)} + (1 − βi)biik
nX

j 6=i

xj(t) (24)

4 Some Simulation Results

The goal of the research is to understand the competitive interactions based
on the self-interested motivations which produce purposive and optimal collec-
tive behavior. In this section, we address the question of how a society of the
economic agents with different internal model can achieve complex collective
behaviors as a whole. We especially address the following questions: How will
the internal model of each economic agent affect the evolution of their collec-
tive behaviors, how will the collective behavior of in economic agents proceed
by changing the combination patterns of different types of agents? In order to
answer those questions, we did some simulation under the following condition.

(simulate conditions)
(1) number of Agents:30
(2) social price scheme :ai = 300, bii = 1, bij = 0.1
(3) initial action of each agentœB!’œ(B5

The following figures show the change of adaptation level over the adaptive
time.

(Case1) αi = 0.1(slow to adjust the market price) and βi = 0.1(low learning
speed)

Fig.1 and Fig.2 shows the level of adaptation of an individual and the whole
society. Fig.1 shows the level of adaptation under sympathy. Fig.2 shows that
the level of adaption without sympathy From this simulation, each individual
can increase its adaptation level with sympathy to other agent.

168 Masayuki Ishinishi and Akira Namatame

(a) The adaptive level of individual

(b) The adaptive level of society

Fig. 1. The change of adaptation level (with sympathy)

Fig. 2. The change of adaptation level (without sympathy)

Evolution with Learning Adaptive Functions 169

Fig. 3. The change of adaptation level: slow convergence

(Case2) αi = 0.1 (slow to adjust the market price) and βi = 0.1 (high
learning speed)

Fig.3 shows the case of the high speed of learning factor of sympathy, and in
which the level of adaptation of each agent converges slowly.

5 Conclusion

The goal of the research is to understand the types of simples local interactions
which produce complex and purposive group behaviors. We formulated and an-
alyzed the social learning process of independent economic agents. We showed
that cooperative behaviors can be realized through purposive local interactions
based on each individual goal-seeking. Each economic agents does not need to
express its adaptive function, nor to have a priory knowledge of those of others.
Economic agent adapts its action both to the actions of other agents.

References

1. Barto,A.G,Sutton,” Learning and sequential decision-making”, Learning and Com-
putational Neuro Science, MIT Press,1991b

2. Basar,T, & Olsder,G., Dynamic Noncooperative Game Theory, Academic Press
,1982

3. Brazdil, P.B, Learning in Multi-agent Environments’, Proc. of the Second Work-
shop on Algorithmic Learning Theory, pp. 15–29,(1991).

4. Carley,K, & Prietula,M.: Computational Organization Theory, Lawrence Erall-
bawn, 1994

5. Creps,J,E., An Introduction to Modern Micro Economics,MIT Press, 1991.

170 Masayuki Ishinishi and Akira Namatame

6. Fudenberg,D,E,and Tirole.J, Game Theory, MIT Press ,1991.
7. Gasse,L.,Social conceptions of knowledge and action:DAI foundations and open

systems semantics, in Artificial Intelligence, Vol.47, pp.107–135,1991.
8. Kandori,M,Mailath,G,& Rob.R., Learning, mutation, and long run equilibrium,

Econometrica, Vol.61,No.1, pp.29–56, 1993.
9. Marschak,J,& Radner,R,:Theory of Teams, Yale Univ. Press,1972.

10. Ordeshook,P:Game Theory and Political Theory, Cambridge Univ. Press,1987.
11. Shoham,Y: Agent-oriented Programming, Artificial Intelligence, Vol.60, pp51–

92,1993,
12. Sian. S.E. ’The Role of Cooperation in Multi-agent Learning Systems’, in Cooper-

ative Knowledge-Based Systems, Springer-Verlag, pp. 67–84 (1990).
13. R. Sikora, Learning Control Strategies for Chemical Processes : A Distributed

Approach, IEEE Expert, June, pp. 35–43 (1992).
14. Tenney. R.,& Sandell,N.R., Strategies for Distributed Decision making, IEEE

Trans. Automatic Control, Vol.AC-19,,pp.236–247,1974.
15. Young,P., The evolution of conventions,Econometrica, Vol.61,No.1, pp.57–84, 1993.

Modelling Plant Breeding Programs as Search
Strategies on a Complex Response Surface

D.W. Podlich and M. Cooper

School of Land and Food, The University of Queensland, Brisbane, Australia
d.podlich@mailbox.uq.edu.au

Abstract. The concept of an adaptation (fitness) landscape has been
used to explain evolutionary processes. The landscape is a response sur-
face for the genetic space defined by a genotype-environment system and
evolution of populations through natural selection a search for higher
peaks in this space. This is an appealing framework for other disciplines
interested in issues of search and optimisation. One such application is
the genetic improvement of traits in plant breeding. Here, breeding pro-
grams can be viewed and analysed as search strategies that are used
to explore the surface of an adaptation landscape to find higher adap-
tive positions. The current theoretical framework considers genetic im-
provement as a hill climbing process on a smooth single peaked adap-
tation landscape. However, there is strong evidence to suggest that due
to the effects of genotype-by-environment (G�E) interactions and epis-
tasis, the landscapes encountered by plant breeders are in fact rugged
and multi-peaked. Simulation methodology was used to compare two se-
lection strategies currently used in plant breeding and investigate their
capacity to confront the difficulties associated with the influences of G�E
interaction and epistasis: (i) selection of genotypes based on performance
in a single environment (mass selection), and (ii) selection of genotypes
based on performance in several environments (multi-environment test-
ing). A third selection strategy was proposed for genetic improvement
on more complex adaptation landscapes. This selection strategy (shift-
ing search strategy) was based on Wright’s ‘Shifting Balance Theory’.
bf Keywords: fitness, adaptation, landscape, G�E interaction, epistasis,
plant breeding

1 Introduction

Breeding strategies applied to the genetic improvement of plants in agriculture
can be considered as search strategies seeking particular combinations of genes
(genotypes) to improve traits of commercial significance. The majority of these
traits are quantitative and under the control of many genes. For each gene there
are alternative forms, referred to as alleles. These alleles combine to generate the
different genotypes possible for a single gene at a locus on a chromosome. Com-
bining this variation across genes rapidly generates large numbers of possible
genotypes. Therefore, any search for a new genotype is a complex combinatorial
problem where the numbers preclude evaluation of all possible genotypes. In

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 171–178, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

172 D.W. Podlich and M. Cooper

addition the expression of the genes is influenced by environmental conditions,
which vary within a target population of environments (TPE). The genetic varia-
tion within the gene pool available to a breeding program and the environmental
variation within the TPE combine to generate a complex genotype-environment
system. Improved genotypes for this system are sought by applying artificial
selection strategies that aim to increase the frequency of genes contributing to
enhanced performance of the traits.

Any search for improved genotypes is further complicated by our lack of un-
derstanding of the genetic control of these quantitative traits. Theoretical con-
siderations, experimental investigations and experience from applied breeding
programs indicate that the relative effectiveness of alternative breeding strate-
gies will depend on the nature of this genetic control. For quantitative traits
the importance of both genotype-by-environment (G� E) interactions and gene-
by-gene interactions (epistasis) is of particular interest. G� E interactions occur
when there is a change in the relative performance of genotypes when the geno-
types are exposed to different environmental conditions. Epistasis occurs when
the contributions to a trait by the genotypes of one gene are influenced by the
genotypes of other genes. Both of these sources of interaction complicate the
nature of the genotype-environment system and increase the degree of difficulty
of the search for improved genotypes.

R.A. Fisher and S. Wright debated similar issues in relation to evolution and
natural selection [1]. Fisher proposed that a gene can be deemed favourable or
unfavourable in terms of its average effect within a genotype-environment sys-
tem. Therefore, adopting the Fisher model, breeding programs should operate to
increase the frequency of the favourable genes. Wright proposed an alternative
model where epistasis had a stronger influence on the value of genes. He sug-
gested that the relative performance of genotypes can be viewed in terms of the
concept of a landscape with multiple peaks. Therefore, with the Wright model it
can be argued that breeding programs should operate to exploit local peaks by
selecting specific desirable epistatic combinations of genes but at the same time
maintain a capacity to search for new higher peaks. Fisher’s model, considered in
terms of Wright’s landscape concept, is a simplification of the shape of the land-
scape which assumes a single peak. If there was a single peak, breeding programs
should operate to climb it as rapidly as possible without allocating resources to
search for new peaks. Historically the Fisher model has dominated much of the
thinking and principles used in the design of applied breeding strategies.

The availability of powerful tools to investigate the genetic control of traits
at the molecular level is contributing to increasing awareness of their complex-
ity. With this awareness the issue of what is an appropriate genetic model for
the design of breeding strategies is resurfacing. There is a growing body of ev-
idence suggesting a greater importance of epistasis and G � E interaction than
was previously thought. Improving our understanding of the relationship be-
tween the structure of the underlying adaptation landscape and the effective-
ness of alternative search strategies represented by breeding programs provides
a basis for designing and implementing selection strategies that optimise re-

Modelling Plant Breeding Programs 173

sponse to selection for different genotype-environment systems. We have used
computer simulation to investigate the effectiveness of plant breeding strate-
gies for genotype-environment systems that are influenced by both epistasis and
G� E interactions [2]. The objective of this paper is to examine the relative effi-
ciency of plant breeding strategies that take into consideration the influence of
G� E interactions and epistasis on the relative performance of genotypes for a
quantitative trait.

2 Materials and Methods

A computer simulation experiment was conducted using the QU-GENE (QUan-
titative GENEtics) simulation platform [2]. The QU-GENE simulation platform
enables the design of E(N:K) models for genotype-environment systems; E is
the number of different types of environments in the TPE, N is the number
of genes and K is a measure of the level of epistasis in the model. Using the
E(N:K) notation identifies that different N:K genetic models are nested within
the different types of environments encountered in the TPE, generating G � E in-
teraction. The E(N:K) framework is a more general treatment of Kauffman’s [3]
NK model and incoporates both the influences of G� E interaction and epistasis.
The E(N:K) model provides flexibility for investigating a wide range of genetic
models ranging from smooth single peaked landscapes (no G � E interaction or
epistasis: E = 1; K = 0) to rugged multi-peaked landscapes (G� E interaction
and epistasis: E > 1;K > 0).

The architecture of the QU-GENE platform consists of two major compo-
nents: (i) the engine that is used to define the genetic model (based on a diploid
system) for the genotype-environment system, and (ii) the application modules
that are used to investigate, analyse or manipulate populations of genotypes
within the defined genotype-environment system [2]. The engine generates an
E(N:K) adaptation landscape by defining the performance values of all possible
genotypes in each type of environment. For this simulation experiment, the al-
location of performance values to individual genotypes was based on the fitness
definition used for the NK model by Kauffman [3]. Here, the fitness (perfor-
mance) of a genotype in the TPE (W) was defined as:

W =
EX

j=1

ej

NX

i=1

wij

N

where E is the number of environment types in the TPE, N is the number of
genes, ej is the frequency of occurrence of environment type j in the TPE and
wij is the fitness contribution of the ith gene in environment type j and is drawn
(at random) from the uniform distribution between 0 and 1. For each epistatic
combination, an independent fitness contribution (wij) was defined for locus i.

An application module (LANDS) was developed to improve population fit-
ness using three different recurrent selection strategies: (i) mass selection (MASS),
(ii) multi-environment testing (MET) and (iii) shifting search strategy (SSS).

174 D.W. Podlich and M. Cooper

Fig. 1. Schematic outline of three selection strategies (a) mass selection (MASS) and
multi-environment trials (MET), (b) shifting search strategy (SSS).

Fig. 1a represents a schematic outline of the MASS and MET selection strate-
gies. Using the individuals generated by the engine as an initial population,
recurrent selection proceeds by evaluating the performance of the genotypes,
identifying a select group of individuals and randomly intermating the select
group to generate a population for the next cycle. For MASS selection, the eval-
uation of genotypes was based on performance in a single environment type sam-
pled at random from the TPE. For MET selection, the evaluation of genotypes
was based on performance in multiple environment types sampled at random
from the TPE. The third selection strategy (SSS) was based on Wright’s [4]
‘Shifting Balance Theory’ (Fig. 1b). As with the MET selection strategy, the
population of genotypes was evaluated in multiple environment types, a select
group of genotypes identified and randomly intermated. However, these cycles of
population improvement were interspersed with phases of subdivision. Here, the
population was divided into smaller sub-populations where evaluation, selection
and intermating were independently conducted. After a number of cycles these
sub-populations were combined into a single population where the process was
continued as for the MET strategy.

Using the LANDS module, the performance of three selection strategies
(MASS, MET, SSS) were evaluated for E(N:K) landscapes with increasing com-
plexity. Genotype-environment systems based on 20 genes (N = 20), eight levels
of K (K = 0, 1, ..., 7) and four levels of E (E = 1, 2, 5, 10) were considered,
resulting in 32 different E(N:K) models. For each model, 250 independent runs

Modelling Plant Breeding Programs 175

(10 different starting populations; 25 runs of each) were conducted for each se-
lection strategy. Each run was conducted for 50 cycles using a population of
500 genotypes (starting populations constructed to have a fitness level of 0.5)
with the top 20% selected at each cycle. During the subdivision phases of the
SSS, the population was divided into 20 sub-populations (25 genotypes in each).
The subdivision phases were conducted in blocks of five cycles interspersed with
blocks of ten cycles of single population improvement (Fig. 1b). For the MASS
selection strategy, genotypes were evaluated in a single environment type. For
the MET and SSS, genotypes were evaluated across ten environments sampled
at random from the TPE. The performance of the three selection strategies for
each of the E(N:K) models was evaluated as the average fitness of the population
for the 250 runs over the 50 cycles.

3 Results

The simulation experiment indicated there were significant interactions between
the relative efficiency of the three selection strategies and two major parameters
of the E(N:K) model, E (G� E interaction) and K (epistasis). For smooth single
peaked landscapes (E = 1;K = 0), all three selection strategies achieved similar
response to selection. However, with the introduction of G � E interaction and
epistasis into the E(N:K) framework, alternative response profiles were observed
for the three strategies.

Fig. 2 displays the average performance of the three selection strategies
for four levels of G� E interaction (E = 1, 2, 5, 10) and no epistasis (K = 0).
As the level of G � E interaction introduced into the system was increased, the
population fitness achieved by the three selection strategies decreased (Fig. 2a–
d). The relative efficiency of the three selection strategies within levels of E was
not constant. For the model containing no G� E interaction, E(N:K)=1(20:0),
the three selection strategies achieved a similar response (Fig. 2a). However, as
G� E interaction was introduced (Fig. 2b–d), the two selection strategies using
multi-environment trials (MET and SSS) were more efficient than the single
environment trial (MASS). The level of relative improvement of the MET and
SSS strategies increased as the level of E was raised.

Fig. 3 displays the average performance of the selection strategies for four
levels of epistasis (K = 1, 3, 5, 7) and no G� E interaction (E = 1). Here, the
MET selection strategy offered no improvement over the MASS selection strat-
egy. However, the strategy based on phases of subdivision (SSS) achieved a higher
level of fitness. Furthermore, the level of relative improvement increased with the
amount of epistasis (Fig. 3a–d). Unlike the smooth curvilinear average fitness
response of the MASS and MET selection strategies, the SSS displayed phases
of rapid improvement interspersed with cycles of sharp decrease in fitness. The
fitness profile of the SSS can be attributed to the different components of the
shifting search. Here, the independent searches conducted during the subdivision
phases of the SSS enabled smaller sub-populations to explore different regions of
the adaptation landscape. Due to the large amount of genetic variability among

176 D.W. Podlich and M. Cooper

(a)

Cycle
0 10 20 30 40 50

F
itn

es
s

0.50

0.53

0.56

0.59

0.62

0.65

0.68

(c)

Cycle
0 10 20 30 40 50

F
itn

es
s

0.50

0.53

0.56

0.59

0.62

0.65

0.68

(b)

Cycle
0 10 20 30 40 50

F
itn

es
s

0.50

0.53

0.56

0.59

0.62

0.65

0.68

(d)

Cycle
0 10 20 30 40 50

F
itn

es
s

0.50

0.53

0.56

0.59

0.62

0.65

0.68

Mass
MET
SSS

Fig. 2. Response to selection of the MASS, MET and SSS strategies for four levels of
E and K = 0: (a) E = 1, (b) E = 2, (c) E = 5 and (d) E = 10.

(a)

Cycle
0 10 20 30 40 50

F
itn

es
s

0.50

0.53

0.56

0.59

0.62

0.65

0.68

0.71

(c)

Cycle
0 10 20 30 40 50

F
itn

es
s

0.50

0.53

0.56

0.59

0.62

0.65

0.68

0.71

(b)

Cycle
0 10 20 30 40 50

F
itn

es
s

0.50

0.53

0.56

0.59

0.62

0.65

0.68

0.71

(d)

Cycle
0 10 20 30 40 50

F
itn

es
s

0.50

0.53

0.56

0.59

0.62

0.65

0.68

0.71

Mass
MET
SSS

Fig. 3. Response to selection of the MASS, MET and SSS strategies for four levels of
K and E = 1: (a) K = 1, (b) K = 3, (c) K = 5 and (d) K = 7.

sub-populations, the combination of these independent searches into a single
population initially reduced population fitness. However, the exposure to alter-
native regions of the landscape provided an opportunity for the SSS to increase
performance relative to the MASS and MET strategies.

Modelling Plant Breeding Programs 177

(a)

K value
0 1 3 5 7

F
itn

es
s

0.50

0.55

0.60

0.65

0.70

0.75
Mass
MET
SSS

(b)

K value
0 1 3 5 7

F
itn

es
s

0.50

0.55

0.60

0.65

0.70

0.75

(c)

K value
0 1 3 5 7

F
itn

es
s

0.50

0.55

0.60

0.65

0.70

0.75 (d)

K value
0 1 3 5 7

F
itn

es
s

0.50

0.55

0.60

0.65

0.70

0.75

Fig. 4. Response to selection of the MASS, MET and SSS strategies at cycle 50 for
four levels of E and five levels of K: (a) E = 1, (b) E = 2, (c) E = 5 and (d) E = 10.

Fig. 4 displays the average performance of the selection strategies at cycle
50 for combinations of both G� E interaction and epistasis. The three selection
strategies achieved an improved fitness level, relative to the starting population
(0.5), for all of the E(N:K) models considered. However, the introduction and
increase in levels of G � E interaction and epistasis influenced the relative effec-
tiveness of the selection strategies. For models containing no G� E interaction
(Fig. 4a), the MASS and MET strategies achieved similar levels of response for
all levels of K. However, the efficiency of the MET strategy increased relative
to MASS with the introduction of G� E interaction into the system (Fig. 4a–
d). For models containing no epistasis (Fig. 4a–d; K = 0), the MET and SSS
strategies achieved similar levels of response for all levels of E. However, the
efficiency of the SSS strategy increased relative to MET with the introduction
of epistasis into the system (Fig. 4a–d).

4 Discussion

As the complexities of the genome are exposed there is an increasing aware-
ness that many of the simplifying assumptions used to mathematically model
genotype-environment systems are difficult to sustain. The E(N:K) model pro-
vides a framework for relaxing many of these assumptions, in particular those
related to epistasis and G� E interactions. Plant breeding strategies apply artifi-
cial selection to finite samples of genotypes and seek to identify those genotypes
with higher performance values for a given genotype-environment system. As

178 D.W. Podlich and M. Cooper

the levels of epistasis and G � E interaction increase, the shape of the adapta-
tion landscape on which this search takes place becomes more complex. We are
investigating the relative merits of alternative breeding strategies in terms of
their ability to search for improved genotypes on these landscapes. An impor-
tant finding is that directional selection is an extremely powerful search strategy
across a wide range of levels of complexity in the genotype-environment systems
and their associated adaptation landscapes. For example, in the present study
mass selection was capable of making improvement for all of the E(N:K) mod-
els considered, albeit gradual for the most complex. However, it is clear that
selection strategies which take into account important features of the shape of
the adaptation landscape can improve the effectiveness of the search. The use
of multi-environment trials (MET and SSS) was more effective than the single
environment trial (MASS) as G� E interaction was introduced to the system.
This is a common strategy used in applied plant breeding to deal with this
source of complexity. The use of the shifting search strategy (SSS) introduced
a further improvement to the search over MET as the level of epistasis in the
system increased. The role of this sort of search strategy has been discussed in
relation to evolution in natural systems but only speculated on in agricultural
systems. However, at the global level the flow of genetic resources from small
local breeding programs to the larger breeding programs of the international
centres and the subsequent flow of new germplasm back to the local programs
may be viewed as a form of shifting search strategy. This suggestion and the re-
sults of our simulation studies identifies avenues for investigation of the efficient
use of genetic resources in plant breeding.

While to date we have confined our investigations to random genetic net-
works, the resulting genotype-environment systems show many emergent prop-
erties that are observed in practice when plant breeding programs search real
biophysical systems. These parallels, and the limited ability of our current quan-
titative genetic theory to predict significant genetic improvements for quantita-
tive traits, provide much food for thought in relation to the role of plant breeding
in the quest for food security and sustainable agricultural systems.

References

1. Wade, M.J: Sewall Wright: Gene interaction and the Shifting Balance Theory. Ox-
ford Surveys in Evolutionary Biol. 8 35–62 (1992)

2. Podlich, D.W., Cooper, M.: QU-GENE: A platform for quantitative analysis of
genetic models. Bioinformatics. 14 632–653 (1998)

3. Kauffman, S.A.: The origins of order, self-organisation and selection in evolution.
Oxford University Press, New York (1993)

4. Wright, S.: Evolution and the genetics of populations, Vol 3. University of Chicago
Press, Chicago. (1977)

Generating Equations with
Genetic Programming for Control of a

Movable Inverted Pendulum

Hiroaki Shimooka and Yoshiji Fujimoto

Department of Applied Mathematics and Informatics
Faculty of Science and Technology, Ryukoku University
1-5 Yokoya, Ooe, Seta, Ohtsu, Shiga 520-2194 Japan

fujimoto@math.ryukoku.ac.jp

Abstract. Equations for calculating the control force of a movable in-
verted pendulum are generated directly with Genetic Programming (GP).
The task of a movable inverted pendulum is to control the force given a
cart on which a pole is hinged, not only to keep a pole standing but also
to move it to an arbitrary target position.
As the results of experiments, intelligent control equations are obtained
that can lean the pole toward a target position by pulling the cart in the
opposite direction, and then move the cart to the target while keeping
the pole standing inversely. They also have the robustness to move the
cart with the pole standing to the new target position when the target
is changed, even if the cart is moving to the old target position.
The robustness of the problem is experimentally defined and the appro-
priate value of the parsimony factor in GP is identified to obtain control
equations with robustness and simplicity as the solutions.

1 Introduction

The pole-balancing problem has been attacked many times previously with meth-
ods such as evolutionary fuzzy logics [1] and evolutionary neural networks [2,3].
However, approaches to this problem with Genetic Programming (GP) have
hardly been found except in the eleventh chapter of the book “Genetic Pro-
gramming” by John Koza [4]. His approach is to evolve equations to determine
the direction of the bang-bang force given a cart.

However, the objective of this paper is to evolve an equation with GP that
can calculate the magnitude of the driving force of a cart so that it allows the cart
to move to given target positions while keeping a pole standing on the cart. It is
in contrast to a general pole-balancing problem whose objective is only to keep
a pole standing. Moreover, a robustness of a control equation is experimentally
defined and evaluated to realize a robust control that is able to respond to the
changes of a target position while moving to an old target.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 179–186, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

180 Hiroaki Shimooka and Yoshiji Fujimoto

2 Model of Inverted Pendulum

The model of the pole-balancing problem in this study is simulated in two-
dimensional space, and no friction of the hinge or sliding of the cart is assumed.
The equations of motion given by Anderson [5] are simulated at discrete times.
The velocity of the cart and the angular velocity of the pole at time t+1 are cal-
culated with the Runge-Kutta approximation method. The position of the cart
and the angle of the pole are calculated with the Euler approximation method.
For these simulations, the constants are the time step (∆t = 0.02 seconds), the
mass of the cart (mc = 1.0 kg), the mass of the pole (mp = 0.1 kg), the pole
length (l = 1.0 m) and gravity (g = 9.8 m/s2).

3 Applying GP to the Inverted Pendulum

3.1 Function Set and Terminal Set

In this study, the force to control the cart is directly expressed as an equation
defined by a tree of S-expression with a function set and a terminal set in GP.
For this problem, the function set and the terminal set are prepared as follows.

F = {+, −, ∗, %},

T = {θ̇, θ, ẋ, d, 1.0, 10.0, −1.0},

where % is the modified division defined by Koza [4]. The parameters of the
pole-cart system are θ̇, θ and ẋ, which are the angular velocity, the pole angle,
the cart velocity, respectively. Moreover, d is the difference between the cart
and the target positions. The function set is the most elemental set of the four
arithmetic functions. This is determined by preparatory experiments with larger
function sets that additionally include the absolute, square root, exponential and
sine functions. In these experiments, the complex functions are rarely used for
successful solutions.

The driving force of the cart is calculated at each time step from the status
of the pole-cart system by the equation tree consisted of the elements of the
function set and the terminal set.

3.2 Fitness Function

The purpose of this study is to search for a control equation which will move the
cart to the given target positions while keeping the pole standing. The target
position is a variable in the control process. However, it is difficult to define
the fitness function that evaluates the control performance in such a dynamic
environment with variable target positions.

Therefore, the fitness function is defined as the control problem of moving
the cart to a fixed target position while keeping the pole standing. It is defined
as a minimum search problem as follows:

Generating Equations with Genetic Programming 181

fitness =
t0−1∑
t = 1

(ω1 |θ(t)| + ω2 |x(t) − T |)

+
STEP∑
t = t0

(ω1 θmax + ω4 xmax) + ω3 × s, (1)

s =

ts
((θ̇ 2(ts) + θ 2(ts) + ẋ 2(ts)) < ε

and |x(ts) − T | ≤ δ),
STEP (otherwise),

(2)

where T is the target position, ε is the small constant to decide the stationary
state of the pole, and δ is the allowance for the error between the cart and the
target positions. In addition, ω1, ω2, ω3 and ω4 are weight constants given in
Table 1. STEP shows the maximum number of simulation steps, which means
that the maximum simulation period is STEP × 0.02 seconds. Moreover, t0 is
the time of the first instant when the condition |θ(t0)| ≥ θmax or |x(t0)| ≥ xmax

is satisfied. The constants are set at θmax = 45.0 degrees, xmax = 15.0 m, ε =
10−6 and δ = 10−3.

Table 1. Weights for the fitness function

Weight ω1 ω2 ω3 ω4

Value 0.1 5.0 3.0 10.0

4 Empirical Study

4.1 Empirical Procedure

In this empirical study, the SGPC program developed by Walter Aldern Tackett
and Aviram Carmi is used for GP simulations. The main parameters of GP are
set at population = 2,100, maximum generation = 100 and parsimony factor
= 0.0, 10.0, 30.0, 50.0, 80.0, 100.0, 150.0 and 200.0. The paper of Kinner [6] is
referred to for the parsimony factor. The reason why the parsimony factor is used
is that it works for reducing the number of nodes in a tree in an evolutionary
process. It is also because the generalization of an equation tree for the problem
may be expected. The tree fitness which includes the parsimony factor is defined
by Eq. (3).

tree-fitness = fitness + parsimony factor × No. of nodes in a tree. (3)

In the evaluation, the initial states and the target position are as follows.
θ̇(0) = 0.0,

θ(0) = {2 θmax + Rnd(−1.0, 1.0)} mod (2 θmax) − θmax,

ẋ(0) = 0.0,

x(0) = sign(Rnd(−1.0, 1.0)) × 10.0,

T = 0.0.

A simulation is done for STEP = 2000, i.e. 40 seconds.

182 Hiroaki Shimooka and Yoshiji Fujimoto

4.2 Empirical Results

The first objective of the experiments is to investigate the robustness of the con-
trol equations obtained by evolutions of GP. It is important to examine whether
they work in a wide variety of situations. In this study, the robustness of a
control equation is regarded as how successfully it controls the driving force to
move the cart to a given target position while keeping the pole standing for the
initial states of various angular velocities of the pole and various velocities of the
cart. The reason is that the pole-cart system has various angular velocities and
various cart velocities at the instant the target position is changed on the way
of moving to the old target position.

The robustness of a control equation is defined as the success rate in 1,000
simulations of the pole-cart system. Success is defined as controlling the driving
force that moves the cart to the fixed target position while keeping the pole
standing for the random initial values of the four parameters. The initial values
of the parameters have normal distributions, with the variances given in Table 2.

Table 2. Variances of initial values

Parameters θ̇ θ ẋ x

Variance 2.0 12.0 2.5 4.0

Table 3 shows the results of the evolutionary experiments and the robust tests
for each value of the parsimony factors for 20 experiments of GP evolutions. In
this table, the “hit rate” means the rate at which the control equations which
satisfy the condition part of Eq. (2) in the simulation process are obtained as
solutions of GP evolutions in 20 experiments. The “depth” and “nodes” are the
average depth and the average number of nodes of the trees obtained as the best
solutions in 20 experiments.

Table 3. Results of robust tests for 20 experiments

parsimony factor hit rate robustness depth nodes
0.0 0.75 0.588 16.20 181.6
10.0 0.90 0.770 12.00 70.8
30.0 0.70 0.615 9.35 42.5
50.0 0.75 0.685 9.45 41.0
80.0 0.70 0.626 8.80 37.7
100.0 0.90 0.824 9.15 31.5
150.0 0.75 0.653 7.85 27.4
200.0 0.65 0.618 5.20 18.6

Generating Equations with Genetic Programming 183

Fig. 1. The effect of parsimony factors on the robustness

Fig. 1 shows the effect of the parsimony factors on the average (indicated by
a bold line) and the best (indicated by a thin line) robustness over 20 exper-
iments. In this figure, there is the highest peak when the parsimony factor is
100, although the variations of the best robustness are small. The best global
robustness in all experiments is also obtained at the parsimony factor of 100.
This means that if the parsimony factor were properly set around 100, solutions
with higher robustness would be obtained with the highest probability. That is,
it is found that there exists an optimal value of the parsimony factor for the
evolution of robustness.

Fig. 2 also shows the effect of parsimony factors on the average number of
nodes and the depth of trees for 20 experiments. The number of nodes and the
depth of equation trees with the best robustness are also shown for 20 experi-
ments by the thinner line in Fig. 2. In this figure, the average number of nodes
and the average depth decrease monotonically, but the depth of equation trees
with the best robustness have a peak at the parsimony factor of 100. From this,

Fig. 2. The effect of parsimony factors on the number of nodes and the depth

184 Hiroaki Shimooka and Yoshiji Fujimoto

it is estimated that the equation tree with higher robustness needs fewer nodes
and more depth.

The following Eqs. (4), (5), (6), (7) and (8) are simplified control equations
from equation trees with the higher robustness that are obtained in each of 20
evolutionary experiments that has parsimony factors of 10, 30, 80, 100 and 200,
respectively.

force1(θ̇, θ, ẋ, d) = 30 θ̇ + 101 θ + 12 ẋ + 6 d − 10 θ̇ θ (θ̇ θ − 10 θ + 1), (4)
force2(θ̇, θ, ẋ, d) = 54 θ̇ + 118 θ + 54 ẋ + 5 d, (5)
force3(θ̇, θ, ẋ, d) = 33 θ̇ + 99 θ + 10 ẋ + 4 d + 2 θ ẋ d, (6)
force4(θ̇, θ, ẋ, d) = 40 θ̇ + 88 θ + 8 ẋ + 3 d, (7)
force5(θ̇, θ, ẋ, d) = 19 θ̇ + 42 θ + 3 ẋ + d − θ̇ (θ̇ + 20 θ). (8)

The depths and the numbers of nodes of equation trees from which the above
equations are simplified are shown in Table 4.

Table 4. Depths and numbers of nodes of equation trees

Equation No. (4) (5) (6) (7) (8)
depth 10 10 7 14 6
nodes 81 57 33 45 31

Eqs. (5) and (7) have the form of a very simple linear combination of param-
eters: the angular velocity, the pole angle, the cart velocity and the difference
between the cart and the target positions. They also form the equations of P-D
control. Eqs. (4), (6) and (8) are also simple, although they include quadratic,
cubic and biquadratic terms.

The control processes by control Eqs. (4) and (7) are shown in Fig. 3 and 4,
respectively. The simulations are executed with two initial values of the cart
position for Eq. (4).

(i) x(0) = 10.0, (ii) x(0) = −10.0.

Other parameters are set at 0.0 and the target position is also 0.0.

Fig. 3. Transitions of distance, angle and force for Eq. (4)

Generating Equations with Genetic Programming 185

Fig. 4. Transitions of distance, angle and force for Eq. (7)

Because the control equation (7) is an odd function for all parameters of the
pole-cart system, simulations are executed for two positive initial values of the
cart position shown as follows.

(iii) x(0) = 10.0, (iv) x(0) = 5.0.

Other parameters are set at 0.0 and the target position is also 0.0.
The time elapsed until stationary state are 9.86 seconds in case (i) and 9.52

seconds in case (ii) for Eq. (4) and 13.88 seconds in case (iii) and 12.92 seconds
in case (iv) for Eq. (7).

Fig. 3 and 4 show that the equation controlled the driving force so that if
the target position is changed to another position when the pendulum is in the
stationary state, the cart moves to the target position after leaning the pole
toward the target direction by pulling the cart in the opposite direction.

This control pattern is executed even when the pendulum is not in the sta-
tionary state, that is, the state moving toward the old target position. This
control pattern easily comes to human minds through experiences and learning.
However, it has been very difficult for conventional artificial intelligence to ob-
tain an intelligent control pattern without human help. This is one evidence that
it is possible to obtain high intelligence by evolutionary processes. Moreover, it
is interesting to note that high intelligence is obtained with a very simple linear
equation.

5 Conclusions

In this paper, the evolutions with GP are tried to obtain equations for the
control of the movable inverted pendulum. In the experiments, robust solutions
of equations are obtained that control driving force to move a cart to a given
target position while keeping a pole standing.

The robustness for this problem is defined quantitatively and the effectiveness
of the parsimony factor for the evolutions of robustness is investigated. As a
result, it is found that there exists an optimal value of the parsimony factor for
the evolution of robustness. It is also found that solutions of very simple control
equations have the intelligence to move the cart to the target position after
leaning the pole toward the target direction by pulling the cart in the opposite

186 Hiroaki Shimooka and Yoshiji Fujimoto

direction. This study contributes to the evidence that it is possible to obtain
high intelligence by evolutionary processes.

Future works are to evolve control equations for the control of a movable
inverted pendulum in an environment that contains factors such as the friction
of the hinge and cart sliding, and various noises. In addition, future studies will
focus on more difficult control problems and investigate deeply how robustness
and generalization can be obtained in the evolutionary process.

References

1. C.L. Karr, Design of an Adaptive Fuzzy Logic Controller Using Genetic Algorithm,
Proc. of the Fourth Int. Conf. on Genetic Algorithms, pp. 450–457 (1991).

2. D.B. Fogel, Evolving Neural Control Systems, IEEE Expert Vol. 10, No. 3, pp.
23–27 (1995).

3. B. Maricic, Genetically Programmed Neural Networks for Solving Pole-Balancing
Problem, Proc. of the 1991 Int. Conf. on Artificial Neural Networks, Vol. 2, pp.
1273–1276 (1991).

4. J. Koza, Genetic Programming, MIT Press, pp. 289–307 (1992).
5. C.W. Anderson, Strategy Learning with Multilayer Connectionist Representations,

Proc. of the 4th Int. Workshop on Machine Learning, pp. 103–114 (1987).
6. K.E. Kinner, Jr., Generality and Difficulty in Genetic Programming: Evolving a

Sort, Proc. of the Fifth Int. Conf. on Genetic Algorithms, pp. 287–294 (1993).

A Hybrid Tabu Search Algorithm for the Nurse
Rostering Problem

Edmund Burke1, Patrick De Causmaecker, and Greet Vanden Berghe2

1 Department of Computer Science, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK, Tel: (0044)(115)9514234, Fax: (0044)(115)9514254,

e-mail: ekb@cs.nott.ac.uk
2 KaHo St.-Lieven, Procestechnieken en Bedrijfsbeleid, Gebr. Desmetstraat 1, 9000

Gent, Belgium, Tel: (0032)(9)2658610, Fax: (0032)(9)2256269,
e-mail: patdc,greetvb@kahosl.be

Abstract. This paper deals with the problem of nurse rostering in Bel-
gian hospitals. This is a highly constrained real world problem that was
(until the results of this research were applied) tackled manually. The
problem basically concerns the assignment of duties to a set of people
with different qualifications, work regulations and preferences.
Constraint programming and linear programming techniques can pro-
duce feasible solutions for this problem. However, the reality in Belgian
hospitals forced us to use heuristics to deal with the over constrained
schedules. An important reason for this decision is the calculation time,
which the users prefer to reduce. The algorithms presented in this pa-
per are a commercial nurse rostering product developed for the Belgian
hospital market, entitled Plane.
Keywords Nurse rostering, personnel scheduling, tabu search

1 Introduction

In this paper we will discuss the algorithms that have been developed for the
commercial nurse rostering system (Plane). The development of Plane was based
on an extensive market research in 1993. One of the conclusions was that the re-
quirements of Belgian hospitals cannot be met with a cyclic ’three shift’ schedule.
Recent research done by the Stichting Technologie Vlaanderen [7] also showed
that, instead of a cyclic schedule, the nurses prefer an ’ad-hoc schedule’ in which
they can express their personal wishes and priorities. Because of the size of the
solution space (the scheduling period is usually one month and the number of
possible duties per day varies from 6 to 15), the nurse rostering problem tackled
by Plane differs a lot from other rostering problems described in the literature.
The planning period in [2,3] is restricted to 1 week and in [2,5,6] there are only
three different duties to be planned.
Plane can decide (per nurse) which duties can or cannot be performed (accord-
ing to that nurse’s qualification category) when there is not enough personnel
available.
Another goal of Plane is the freedom for the user to define a personal cost
function modifying predefined constraints, modifying weight parameters, . . . The

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 187–194, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

188 Edmund Burke, Patrick De Causmaecker, and Greet Vanden Berghe

solution method has to be robust enough to cope with widely varying cost func-
tions.
In [3] a constraint programming solution for the nurse rostering problem is pre-
sented. Preliminary experiments with Oz showed that it is very hard to calculate
monthly schedules that take into account the high number of ’consecutiveness’
constraints that Belgian hospitals have to deal with. Also in the mathematical
approaches of [4,8], the number of different constraints is much lower than in
our problem.
A heuristic method, combining tabu search and algorithms based on manual
scheduling techniques proved to be very appropriate for this combinatorial prob-
lem in which the calculation speed is as important as the attempt to find a
solution that is close to optimal.

2 Plane, nurse rostering software for Belgian hospitals

Plane is a scheduling system developed by Impakt1 and GET2 to assist the
scheduling of personnel in hospitals for which the demands for every qualifica-
tion can be determined over a fixed period in time and which have to fulfil a
number of constraints, limiting their assignments.
A description of Plane, its problem domain, its system specific and functional
requirements can be found in [1]. The first version of Plane was first implemented
in a hospital in 1995 but the system is still evolving to cope with the new and
more complicated real world problems that keep appearing. So far, several hos-
pitals in Belgium have replaced the very time consuming manual scheduling by
this system.
The cost function used in the algorithms is modular and can deal with all con-
straints matching the types described section 3.2.

3 Problem description

In general, a ward consists of about 20 people, having different qualifications
and responsibilities. These people are placed into categories based upon their
qualifications and job description such as head nurse, regular nurse, nurse aid,
student,. . . Some of the nurses can replace people from another category (de-
pending upon their qualifications). Each replacement by a person from another
category will raise the evaluation function by an amount the user can set.

3.1 Hard constraints

The personnel requirements are expressed in terms of a required number of nurses
of every category for every duty during the planning period, which is often one
month. These requirements are the only hard constraints in the problem. Op-
tionally, the user can choose to plan the minimum number of required personnel
1 Impakt N.V., Ham 64, B-9000 Gent
2 GET, General Engineering & Technologie, Antwerpse Steenweg 107, B-2390 Oost-

malle

A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem 189

greedy
shuffling

-

results

TS2

TS1

tabu search

solve worst possible
schedule

6

complete weekends

?
6

�
no success

success

make the schedule feasible

minimal
requirements

preferred personnel
requirements

according to
calculated realistic

requirements

initialisation

schedule previous
planning period

schedule current
planning period

empty schedule

? ? ?

? ? ?

-

??

?
add duties towards
preferred personnel

requirements

Fig. 1. Diagram of the hybrid tabu search algorithms for the nurse rostering problem

or the preferable number of personnel. A third option is to plan at least the min-
imal required number of nurses and to add nurses whenever it doesn’t increase
the evaluation function (’add duties towards preferred personnel requirements’
Fig. 1).

3.2 Soft constraints

It is highly exceptional in real world problems to find a schedule that satisfies all
the soft constraints, but the aim of the algorithms is to minimise the violations of
these constraints. The constraints are all to be specified by the users of the sys-
tem. Certain general constraints are recommended by hospital regulations (but
in certain situations, may need to be ignored). There are other soft constraints
that are normally created by an agreement between the head nurse (or personnel
manager) and the individual nurses. At this moment there are about 30 (modifi-
able) constraints. It is usually the case that not all constraints can be satisfied at
the same time. When a contradiction between constraints occurs, the personal

190 Edmund Burke, Patrick De Causmaecker, and Greet Vanden Berghe

preferences of staff (such as requests for holidays, requests to work a certain duty
on a certain day) are stronger than any other constraint. A detailed list of the
constraints in Plane can be found at http://www.impakt.be/plane/indexf.htm.

4 Tabu search algorithm and variants

The entire flow diagram of the hybrid tabu search algorithms described in this
section can be seen in Fig. 1.

4.1 Feasible initial schedule

The first part of the scheduling algorithm is the construction of a feasible initial
solution. For practical planning problems three possible strategies are used:
Current schedule: This is especially useful when urgent changes in the schedule
are required. In real life this may happen when a scheduled nurse is suddenly ill
and has to be replaced and, of course, we do not want to drastically change the
schedule for the other people.
Schedule of the previous planning period: this option is useful when the schedule
in the previous planning period was of very high quality and the constraints on
the current and the previous planning period are similar.
Random initialisation: This is the simplest initialisation, it starts from an empty
schedule.
After this initialisation, the schedule has to be made feasible. This is carried
out by randomly adding and/or removing duties for every category until the
requirements are met.
Although the two first initial schedule constructors may seem very attractive,
our experiments show that it is not too difficult for the tabu search algorithm to
produce schedules of comparable quality starting from a random initial schedule.
Indeed it is often the case that with the two latter initialisations, the algorithm
is in a local minimum already and has problems escaping from it.

4.2 Original tabu search algorithm

In the simplest tabu search algorithm, the only move we consider is a move of
a duty from one person to another on the same day. The move is not allowed if
the goal person is not of the right category or is already assigned to that duty.
This will not affect the hard constraints.
For each category (for each iteration) possible moves will be calculated and the
move leading to the highest benefit will be performed. If the highest benefit is
negative, the move will be performed anyway, unless this move is forbidden by
the tabu list. When a move is accepted, an area in the roster around the roster
point where the duty comes from and where it is moved to may not be changed.
For comparison purposes only, we introduced a steepest descent algorithm in
which the neighbourhood of the moves is exactly the same as in the tabu search
algorithm. After evaluating all the possible moves in the neighbourhood, the

A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem 191

best one will be performed, unless this best move does not improve the schedule,
in which case the algorithm stops. These algorithms turned out not to be pow-
erful enough to produce good solutions for complex problems as is shown in the
’steepest descent’ and ’tabu search’ experiments in Table 1 & 2 (section 5). The
tabu search algorithm performs better than the steepest descent algorithm and
is therefore used as a local search heuristic in the hybrid algorithms described
in section 4.4.

4.3 Some Heuristics for the problem

Here we describe some heuristics that can be employed (in conjunction with the
tabu search algorithm) to improve the solution.

Diversification 1: Complete weekend Although the users of the program
can assign a cost parameter to this constraint it is very hard to find satisfactory
solutions. The problem is that there are so many constraints and the degree of
freedom of the problem is so high that it is likely to find solutions satisfying many
other constraints but not this one. In the graphical user interface, incomplete
weekends really catch the eye, while other constraints such as overtime or too
many morning shifts on Mondays,. . . are not immediately visible. Because it
is almost impossible to guarantee good solutions with a certain setting of the
parameters, we decided to solve this problem the hard way, by not caring about
possible problems for other constraints.

Diversification 2: Consider the worst personal schedule If the complete
weekend function (above) has not changed the schedule it can be beneficial to
look at the people with the worst schedule (according to the evaluation function).
For every person (within the category being scheduled) it is possible to calculate
the value of the evaluation function after exchanging a part of the schedule of
the people involved. The parts of the schedule always contain full days and the
maximum length is half the planning period. After all possibilities have been
calculated, which is quite time consuming, the best exchange (chosen at random
from equal values) is performed. The result of this process often results in a
better solution.

Greedy shuffling: Model human scheduling techniques There was a prob-
lem with the results of the tabu search algorithm because sometimes a human
could improve the visual result by making a small change. This process cal-
culates all possible ’Diversification 2’ (above) moves for every pair of people.
After listing the gain in the cost function for every possible exchange, the shuffle
leading to the best improvement will be performed. Afterwards, the next best
improvement in the list is performed, provided none of the people involved were
already involved in an earlier shuffle. As long there are improving exchanges in
the list, they are carried out. The whole procedure starts over again until none

192 Edmund Burke, Patrick De Causmaecker, and Greet Vanden Berghe

of the possible exchanges improves the cost function.
The improvements on the schedule that can be obtained by employing this pro-
cedure and tabu search (described below) are considerable but the biggest ad-
vantage of this step is that it creates schedules for which it is almost impossible
for a human to improve the schedule.

4.4 Hybrid tabu search algorithms

After extensive testing of hybrid versions of the tabu search algorithm and the
above heuristics 2 algorithms were developed. The first one produces schedules
when a very short calculation time is required (as it often is). The second al-
gorithm needs more calculation time but generates schedules of a considerably
higher quality.

Tabu search + diversification: TS1 The aim of this algorithm is to provide
reliable solutions in a very short time. In practice this algorithm has proved to
be very useful to check whether the constraints are realistic, whether during the
holiday periods it will be possible to plan good schedules if every person gets
their desired holiday period etc. . .
The algorithm is constructed quite simply from the original tabu search algo-
rithm. If after a number of iterations no improvement is found, the weekend
step is performed. If the weekend step does not result in a different schedule
the second diversification step is performed. After this diversification step, the
original tabu search algorithm is used again and so on. The calculations stop
after a number of iterations without improvement.

Tabu search + greedy shuffling: TS2 This requires more time but the
results are considerably better from the human point of view. Anecdotal evidence
suggests that the level of satisfaction with schedules produced by this algorithm
is actually higher than the cost function indicates. The main reason for this is
that after the shuffling step the users cannot easily improve the results.
It is important to do the greedy shuffling step at the end of the calculations
because its real aim is to perform the exchanges a human user would perform. It
is because of the exhaustive search character of the shuffling that this step takes
a lot of time. It is very important to calculate this step until there are no further
improvements because otherwise the goal of excluding manual improvements to
the schedule might be lost (Greedy shuffling in section 4.3).

5 Test results

The tests in this paper are restricted to planning the minimal requirements
(R-min), planning between the minimal and the preferred requirements (R-min-
pref), and planning according to the calculated demands (R-calc) as explained
in section 3.1 (Hard constraints). For the latter we decided to do the step ’add

A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem 193

Problem 1 R-min R-min-pref R-calc
Value Time Value Time Value Time

steepest descent 2594 1’26” 2395 1’37” 2657 1’36”
tabu search 2435 2’05” 2214 2’06” 1928 1’59”
ts stop crit. x50 1915 40’58” 1675 41’21” 1534 23’58”
ts1 1341 6’00” 1089 5’59” 929 5’27”
ts2 1264 20’15” 1011 24’39” 809 28’08”

Table 1. Value of the evaluation function and results of the steepest descent and
variants of the hybrid tabu search algorithm for Problem 1, planning order of the
qualifications as chosen by the customer

Problem 2 R-min R-min-pref R-calc
Value Time Value Time Value Time

steepest descent 1338 44” 1338 45” 1134 47”
tabu search 1189 57” 1189 58” 933 1’03”
ts1 843 3’18” 843 3’18” 867 2’14”
ts2 809 6’25” 809 6’25” 588 10’19”

Table 2. Value of the evaluation function and results of the steepest descent and
variants of the hybrid tabu search algorithm for Problem 2, planning order of the
qualifications as chosen by the customer

duties towards preferred personnel requirements’ whenever this does not cause
a violation of the soft constraints (section 3.2).

In Table 1 and 2, the results of the variants of the tabu search algorithm are
compared to the steepest descent algorithm. The test examples Problem 1 and
Problem 2 are hard to solve real world problems and in both cases the personal
demands make a good schedule almost impossible.
The column ’value’ shows the value of the evaluation function (cost parameter
per constraint times the extent the constraint is violated). The column ’Time’
contains the calculation times on an IBM Power PC RS6000.
The third set of results, where the demands are adapted to the constraints as
described in section 3.1 (calculating more realistic demands), are better than the
results in the first column. In Problem 2, there was no difference between the
minimal and the required demands.
For all the considered examples, the tabu search algorithm performs better than
the steepest descent algorithm. We decided to organise the stop criterion for
the tabu search algorithm so that the calculation time is of the same order of
magnitude as the time required to do steepest descent. Only Table 1 contains
the results of the original tabu search algorithm for a longer calculation time.
The behaviour of the hybrid algorithms is better than the behaviour of the
normal tabu search algorithm (with a short calculation time). Even considering
the calculation time, for use in practice it is worth using the hybrid tabu search
algorithm because the degree of confidence the users have in the program is
much higher.

194 Edmund Burke, Patrick De Causmaecker, and Greet Vanden Berghe

6 Conclusion

By automating the nurse rostering problem, the scheduling effort and calculation
time are reduced considerably. The evaluation of schedules is very quick for
all possible combinations of constraints and the quality of the automatically
produced schedules is much higher than the quality of the manual schedules.
The users of Plane often place an emphasis on the higher quality of the solution
because the system provides an objective schedule in which all nurses are treated
equally and in which the number of violated constraints is very low. Combining
the simple tabu search algorithm with some specific problem solving heuristics
not only guarantees better quality rosters but also satisfies the users of the system
to a very high extent because it is almost impossible for experienced planners to
improve the results (considering the constraints) manually. For many practical
scheduling problems the higher quality of the solutions produced by the hybrid
algorithm compared to the simple tabu search algorithm compensates for the
increase in calculation time.

References

1. Coppens, P.: Geautomatiseerde personeelsplanning bij het A.Z. Sint-Erasmus. GET
info 9 (1995) 1–3

2. Dowsland, K.: Nurse scheduling with Tabu Search and Strategic Oscillation. EJOR
(to appear)

3. Meisels, A., Gudes, E., Solotorevski, G.: Employee Timetabling, Constraint Net-
works and Knowledge-Based Rules: A Mixed Approach. Practice and Theory of
Automated Timetabling, First International Conference Edinburgh (1995) 93–105

4. Miller, H., Pierskalla, W., Rath, G.: Nurse Scheduling Using Mathematical Pro-
gramming. Operations Research 24 (1976) 857–870

5. Okada, M.: Prolog-Based System for Nursing Staff Scheduling Implemented on a
Personal Computer. Computers and Biomedical Research 21 (1988) 53–63

6. Okada, M.: An approach to the Generalised Nurse Scheduling Problem - Generation
of a Declarative Program to represent Institution-Specific Knowledge. Computers
and Biomedical Research 25 (1992) 417–434

7. Vanderhaeghe, S.: Dienstroosters in de gezondheidszorg: ongezond? Infor-
matiedossier. Stichting Technologie Vlaanderen (1998)

8. Warner, M., Prawda, J.: A Mathematical Programming Model for Scheduling Nurs-
ing Personnel in a Hospital. Management Science 19 (1972) 411–422

Reinforcement Learning:

Past, Present and Future?

Richard S. Sutton

AT&T Labs, Florham Park, NJ 07932, USA,

sutton@research.att.com, www.cs.umass.edu/~rich

Reinforcement learning (RL) concerns the problem of a learning agent inter-
acting with its environment to achieve a goal. Instead of being given examples of
desired behavior, the learning agent must discover by trial and error how to be-
have in order to get the most reward. RL has become popular as an approach to
arti�cial intelligence because of its simple algorithms and mathematical founda-
tions (Watkins, 1989; Sutton, 1988; Bertsekas and Tsitsiklis, 1996) and because
of a string of strikingly successful applications (e.g., Tesauro, 1995; Crites and
Barto, 1996; Zhang and Dietterich, 1996; Nie and Haykin, 1996; Singh and Bert-
sekas, 1997; Baxter, Tridgell, and Weaver, 1998). An overall introduction to the
�eld is provided by a recent textbook (Sutton and Barto, 1998). Here we summa-
rize three stages in the development of the �eld, which we coarsely characterize
as the past, present, and future of reinforcement learning.

RL past , up until about 1985, developed the general idea of trial-and-error
learning|of actively exploring to discover what to do in order to get reward.
It was many years before trial-and-error learning was recognized as a signi�cant
subject for study di�erent from supervised learning and pattern recognition.
RL past emphasized the need for an active, exploring agent, as in the studies
of learning automata and of the n-armed bandit problem. Another key insight
of RL past was just the idea of a scalar reward signal as a simple but general
speci�cation of the goal of an intelligent agent, an idea which I like to highlight by
referring to it as the reward hypothesis . The learning methods of RL past usually
learned only a policy , a mapping from perceived states of the world to the action
to take. This limited them to relatively benign problems in which reward was
immediate and indicated (e.g., by its sign) whether the behavior was good or
bad. Problems with delayed reward, or in which the best action much be picked
out of several good actions (or the least bad out of several bad actions), could
not be reliably solved until the ideas of value functions and temporal-di�erence
learning were introduced in the 1980s.

The transition to RL present (� 1985) came about by focusing on value func-

tions and on a general mathematical characterization of the RL problem known
as Markov decision processes (MDPs). The state-value function, for example, is
the function mapping perceived states of the world to the expected total future
reward starting from that state. Almost all sound methods for solving MDPs
(that is, for �nding optimal behavior) are based on learning or computing ap-
proximations to value functions, and the most e�cient methods for doing this all

? The slides used in the talk corresponding to this extended abstract can be found at

http://envy.cs.umass.edu/~rich/SEAL98/sld001.htm.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 195-197, 1999.
 Springer-Verlag Berlin Heidelberg 1999

seem to be based on temporal di�erences in estimated value (as in dynamic pro-
gramming, heuristic search, and temporal-di�erence learning). Although �nding
a policy to maximize reward is still the ultimate goal of RL, RL present is much
more focused on the intermediating goal of approximating value, from which the
optimal policy can be determined. RL present is also as much about planning
using a model of the world as it is about learning from interaction with the
world. Whether learning or planning optimal behavior, approximation of value
functions seems to be at the heart of all e�cient methods for �nding optimal
behavior. The value function hypothesis is that approximation of value functions
is the dominant purpose of intelligence.

RL future has yet to happen, of course, but it may be useful to try to guess
what it will be like. Just as RL present took a step away from the ultimate
goal of reward to focus on value functions, so RL future may take a further step
away to focus on the structures that enable value function estimation. Principle
among these are representations of the world's state and dynamics. It is com-
monplace to note that the e�ciency of all kinds of learning is strongly a�ected by
the suitability of the representations used. If the right features are represented
prominently, then learning is easy; otherwise it is hard. It is time to consider
seriously how features and other structures can be constructed automatically by
machines rather than by people. In RL, representational choices must also be
made about states (e.g., McCallum, 1995), actions (e.g., Sutton, Precup, and
Singh, 1998) and models of the world's dynamics (Precup and Sutton, 1998), all
of which can strongly a�ect performance. In psychology, the idea of a developing
mind actively creating its representations of the world is called constructivism.
My prediction is that for the next tens of years RL will be focused on construc-
tivism.

References

Baxter, J., Tridgell, A., Weaver, L. (1998). KnightCap: A chess progream that
learns by combining TD(�) with game-tree search. Proceedings of the Fif-
teenth International Conference on Machine Learning, pp. 28{36.

Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena Scienti�c, Belmont, MA.

Crites, R. H., and Barto, A. G. (1996). Improving elevator performance using re-
inforcement learning. In Advances in Neural Information Processing Sys-

tems 9, pp. 1017{1023. MIT Press, Cambridge, MA.

McCallum, A. K. (1995) Reinforcement Learning with Selective Perception and
Hidden State. University of Rochester PhD. thesis.

Nie, J., and Haykin, S. (1996). A dynamic channel assignment policy through
Q-learning. CRL Report 334. Communications Research Laboratory, Mc-
Master University, Hamilton, Ontario.

Precup, D., Sutton, R.S. (1998). Multi-time models for temporally abstract plan-
ning. Advances in Neural Information Processing Systems 11. MIT Press,
Cambridge, MA.

196 Richard S. Sutton

Singh, S. P., and Bertsekas, D. (1997). Reinforcement learning for dynamic chan-
nel allocation in cellular telephone systems. In Advances in Neural Infor-

mation Processing Systems 10, pp. 974{980. MIT Press, Cambridge, MA.

Sutton, R. S. (1988). Learning to predict by the methods of temporal di�erences.
Machine Learning, 3:9{44.

Sutton, R. S., and Barto, A. G. (1998).Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA.

Sutton, R. S., Precup, D., Singh, S. (1998). Between MDPs and semi-MDPs:
Learning, planning, and representing knowledge at multiple temporal scales.
Technical Report 98-74, Department of Computer Science, University of
Massachusetts.

Tesauro, G. J. (1995). Temporal di�erence learning and TD-Gammon. Commu-

nications of the ACM, 38:58{68.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, Cam-
bridge University.

Zhang, W., and Dietterich, T. G. (1996). High-performance job-shop scheduling
with a time{delay TD(�) network. In Advances in Neural Information

Processing Systems 9, pp. 1024{1030. MIT Press, Cambridge, MA.

197Reinforcement Learning: Past, Present and Future

A Reinforcement Learning with Condition
Reduced Fuzz Rules

Hiroshi Kawakami1, Osamu Katai1, and Tadataka Konishi2

1 Kyoto University, Yoshida-Honmachi, Kyoto 606-8501, JAPAN
{kawakami, katai}@i.kyoto-u.ac.jp

http://www.symlab.sys.i.kyoto-u.ac.jp/indexE.html
2 Okayama University, 3-1-l Tsushima-Naka, Okayama 700-8530, JAPAN

konishi@sdc.it.okayama-u.ac.jp

Abstract. This paper proposes a new Q-learning method for the case
where the states (conditions) and actions of systems are assumed to be
continuous. The components of Q-tables are interpolated by fuzzy in-
ference. The initial set of fuzzy rules is made of all the combinations
of conditions and actions relevant to the problem. Each rule is then as-
sociated with a value by which the Q-value of a condition/action pair
is estimated. The values are revised by the Q-learning algorithm so as
to make the fuzzy rule system effective. Although this framework may
require a huge number of the initial fuzzy rules, we will show that consid-
erable reduction can be done by using what we call “Condition Reduced
Fuzzy Rules (CRFR)”. The antecedent part of CRFR consists of all the
actions and the selected conditions, and its consequent is set to be its
Q-value. Finally, experimental results show that controllers with CRFRs
perform equivalently to the system with the most detailed fuzzy con-
trol rules, while the total number of parameters that have to be revised
through the whole learning process is reduced and the number of the
revised parameters at each step of learning is increased.
Key Words: Q-learning, fuzzy rule, interpolation, reduced condition.

1 Introduction

In case of solving problems with various types of I/O data that are related with
each other in complicated manners, extracting embedded rules from these I/O
data manually becomes quite complicated and hence is sometimes practically
impossible.

Recently, reinforcement learning methods have been successfully applied to
various kinds of problems. Among them, Q-learning[1] is one of the widely-used
methods, which employs Q-functions for evaluating condition/action pairs. One
of the simplest ways to realize a Q-function is to look up a Q-table. Assume
an environment that has n conditions for taking m actions. Each cell of the
n + m dimensional Q-table holds a value of one of the conditions/actions pairs
(Q-value). The values are revised through the whole learning process. Q-table
is simple, but its size will explode when applied to practical problems in which

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 198–205, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Reinforcement Learning with Condition Reduced Fuzz Rules 199

continuous-valued conditions and actions are sometimes involved. In addition to
this, only a portion of a Q-table is revised at each time of learning, and hence we
can not make good use of the continuity of condition/action values. Thus, we will
propose a new framework where fuzzy reasoning is introduced to continuously
interpolate the Q values.

Q-learning requires only experienced condition/action and rewards combina-
tions. Therefore, Q-learning can be applied to problems where meaningful I/O
sets can not be specified beforehand. Thus, fuzzy rules can not be specified be-
forehand by referring to domain-specific heuristics. Namely, the initial rule set
has to be made of all the combinations of conditions and actions. This frame-
work may lead to the explosion of initial rule sets. To cope with this problem,
we introduce fuzzy reasoning by the use of “condition reduced fuzzy rules” to
Q-learning.

2 Q-learning with Condition Reduced Fuzzy Rules

2.1 Interpolating Q-tables

For utilizing the continuity of I/O values, many methods for interpolating cells
of Q-tables have been proposed. We focus our attention to the methods where
CMAC[2] architecture or Fuzzy reasoning[3] is incorporated.

The Cerebellum Model Arithmetic Computer (CMAC) has been introduced
to reinforcement learning [2] where a Q-table is represented by multi-layered
tables whose partition of the cells is set to be cruder than the original table.
Figure 1 illustrates the idea where one dimensional Q-table with 9 cells (Figure
1 (a)) is represented by the combination of three tables with 3 + 4 + 4 (= 11)
cells (Figure 1 (b)).

In case (a), 9 parameters are associated with these 9 cells, whereas in case (b)
11 parameters are required. Through learning processes, these parameters have
to be revised correctly. Thus the increase of total number of parameters seems
to be disadvantage of CMAC (b), but CMAC enhances the effect of learning. As
shown by the meshed part in Figure 1, only one cell is revised at each step of
learning in case (a), whereas the effect of each revision is not limited to one cell
in case (b).

Fuzzy reasoning has also been successfully used to interpolate the cells of
Q-tables[3]. This method estimates a Q-value for an action by fuzzy reasoning.
The antecedent part of each rule consists of conditions and actions, and the
consequent shows the Q-value of the rule. The framework of learning process is
almost same as the basic Q-learning algorithm[1] except for the way to estimate
Q values by using Takagi-Sugeno method[4], the way of selecting an action and
the way of learning by revising the Q-value of each fuzzy rule.

2.2 Condition Reduced Fuzzy Rule

We propose fuzzy reasoning with Condition Reduced Fuzzy Rules (CRFR) and
incorporate it to Q-learning. The antecedent part of each CRFR consists of all
the possible actions and the selected conditions. Table 1 shows parameters for

200 Hiroshi Kawakami et al.

is
qs

k1 k2 k3
k=3

big

medium

small
01

ra
ng

e
of

 in
pu

t v
al

ue

Q-table
(a) (b) (c)

Fig. 1. Interpolating a Q-table (a) by Cerebellar Model (b) or Fuzzy Sets (c)

generating the initial fuzzy rules. Let us assume that each condition and action
involve fuzzy sets and that their numbers are uniformly Nf . Then, in case of
Nc + Na = 3 and Nf = 5, the normal form of fuzzy rules will be represented in
the following form:

if(X1 is P1y1) ∧ (X2 is P2y2) ∧ (X3 is P3y3) then (Qz = Cz),

where Pxy, Qz and Cz denote fuzzy set, Q-variable and its value, respectively.
The combination of y1, y2 and y3 such that 1 ≤ y1, y2, y3 ≤ 5 yields 125(=53)
fuzzy rules. On the other hand, in case of Nr +Na = 2, the CRFR will be given
as

if(X1 is P1y1) ∧ (X2 is P2y2) then (Ql = Cl)
if(X2 is P2y2) ∧ (X3 is P3y3) then (Qm = Cm)
if(X1 is P1y1) ∧ (X3 is P3y3) then (Qn = Cn),

where the total number of CRFR is 75(= 3 × 52).

Table 1. Parameters for generating initial fuzzy rules

Nc: the total number of conditions
Nr: the number of conditions which are included in each CRFR
Na: the total number of actions
Nf : the number of fuzzy sets for each condition and action
Ng: the number of fuzzy sets having nonzero grades for an arbitrary input

2.3 Introducing CRFR to Q-learning

The framework of Q-learning with CRFR is given in Table 2. In the experiment
described in the next section, the Q-value of a condition/action pair is estimated
by the mean value of Ci with weighting by ωi (Q = (

P
i ωiCi)/

P
i ωi). ωi are

given by the algebraic product of the grades of its antecedents. The action for
the current condition is randomly selected with the probabilities calculated by
the Q-values of assumed actions. Each time an action is selected, the Q values of

A Reinforcement Learning with Condition Reduced Fuzz Rules 201

the rules that contributed the process of selecting the action (ωi 6= 0) are revised.
The obtained reward is distributed to each rule so as to ∆Ci be proportional to
ωi, i.e., ∆Ci = (

P
i ωjωi∆Q)/(

P
i ω2

j).

Table 2. The framework of Q-learning with CRFR

1. Initialize Ci (value of Qi)
2. repeat forever

(a) repeat T times
i. Randomly assume (select) a set of actions.
ii. Calculate the grade of each rule (ωi) under the current conditions and

assumed actions.
iii. Estimate the Q-value for the current conditions/actions pair.

(b) (after the second cycle)
i. Calculate ∆Q for the last conditions/actions pair by the standard way of

Q-learnings, i.e., the equation proposed in [1].
ii. distribute ∆Q to CRFRs’ ∆Ci.

(c) Select and execute one of the assumed (selected) actions.
(d) Observe the next state and reinforcement signal.

2.4 Comparison of Learning Efficiency

In order to compare the performance of learning algorithms, we examine the total
number of the parameters to be revised through the whole learning process, the
size of revised parameters at each step of learning and the generality of the
following algorithms:

(a) standard Q-learning (QL)
(b) Q-learning with interpolation by CMAC (QL+CMAC)
(c) Q-learning with interpolation by normal Fuzzy Rule (QL+Fuzzy)
(d) Q-learning with interpolation by CRFR (QL+CRFR)
In order to examine the number of parameters, we assume that each condition

and each action is uniformly partitioned into S regions, and in the case of using
fuzzy rules, the number of fuzzy sets (labels) for each condition/action is equal
to be Nf .

QL: The total number of parameters is equal to the number of all the combi-
nations of conditions and actions as shown in Table 3 (a). The rule revision at
each step of learning is localized to one section.

QL+CMAC: The total number of parameters depends on the number (k) of
tables and the width (qs) of their cells. Table 3 (b) shows the number of param-
eters in case that no redundancy is allowed, i.e., qs is set to be k × is, where is
denotes the width of the normal Q-tables cells as shown in Figure 1 (b).

202 Hiroshi Kawakami et al.

QL+Fuzzy: The total number of parameters depends on the number of con-
sequent parts of the rules. Table 3 (c) shows the number in case of only one
parameter is associated with each rule. In order to estimate the number of re-
vised rules at each step of learning, we assume that fuzzy sets are placed like
Figure 1 (c). The same number (Ng) of the fuzzy sets will have nonzero values for
various values of inputs. Table 3 (c) shows the number under this assumption.

QL+CRFR: Table 3 (d) shows the total number and the revised number of pa-
rameters in case (d). They reveal that the total number of parameters is smaller
than that in case (c) when N

(Nc−Nr)
f >Nc CNr. They also show that the number

of revised parameters is larger than that in case (c) when N
(Nc−Nr)
g <NcCNr.

We can set Nr such that these two conditions hold simultaneously.

Table 3. Number of parameters in the interpolating methods

total revised at each step
(a) QL SNc+Na 1
(b) QL+CMAC {S

k
}Nc+Na + (k − 1){S

k
+ 1}Nc+Na k

(c) QL+Fuzzy NNc+Na
f NNc+Na

g

(d) QL+CRFR NcCNrN
Nr+Na
f NcCNrN

Nr+Na
g

3 Experiments and Results

3.1 Experimental Environment

Figure 2 illustrates an experimental problem. Learning methods in this case
will yield rules for controlling boats to go around the racing track. The state
variables (condition for selecting an action) of this system are the current location
(x, y), the velocity (oz, sy), the direction (r) and the angular velocity (w) of the
boat, and the action is the combination of operating “steering wheel (hnd)” and
“acceleration lever (acc)”. In this case, Nc = 6, Na = 2. The value of T (cf.
Table 2. 2. (a)) is set to be 25.

States are calculated by sx(t+1) = 0.8 sx(t)+acc·cos(r(t)), sy(t+1) = 0.8 sy(t)+
acc · sin(r(t)), w(t+1) = 0.8 ω(t) + hdl and r(t+1) = r(t) + w(t+1). The large time-
constant of the boat makes the controlling task difficult.

Fuzzy membership functions are set as shown in Figure 1 (c). Rewards in
this case are set to be inversely proportional to the “distance between the boat
and the nearby local target” as shown in Figure 2, and each time a boat collides
with a fence, it will be penalized. Penalties are given as rewards with certain
minus value.

A Reinforcement Learning with Condition Reduced Fuzz Rules 203

boat

turning
points

fence

distance between the boat
and local targets

base track

Fig. 2. Experimental problem (boat racing track)

3.2 Comparison with Interpolation Method

In order to compare the performance of each method under the condition that
each method requires almost the same number of total parameters, we set S for
QL, S for QL+CMAC, k and Nf to be 5, 24, 8 and 5, respectively.

Table 4 shows the number of times the boat could go around the track after
500,000 steps of learning, and also the number’ of collisions with the fences. We
call the number of control signals for going around the track “lap time”. Table
4 shows the average lap time and the average number of collisions for one round
of the track. The upper part of Figure 3 shows the learning processes of these
methods. In the figure, the lap time averaged over 10,000 rounds of QL+CMAC,
QL+Fuzzy and QL+CRFR (in the case of Nr = 4) are shown by dashed thin
line, thin line and thick line, respectively.

The result shows that QL+CMAC could not achieved the performance equiv-
alent to Fuzzy-based methods. The normal QL could not achieve the performance
equivalent to other methods.

Table 4. Performance of each interpolating method after 500,000 steps of learning

Nr number of parameters total number average
total (×1, 000) each revision rounds collisions lap time collisions

(a) QL 391 1 755 11,109 660.877 14.685
(b) QL+CMAC 465 8 3,470 3,357 144.057 0.967
(c) QL+fuzzy 391 256 4,469 1,328 111.865 0.297
(d) QL+CRFR 6 391 256 4,469 1,328 111.865 0.297

5 469 768 4,489 1,561 111.358 0.348
4 234 960 4,584 1,370 109.058 0.299
3 63 640 4,426 1,774 112.960 0.401
2 9 240 3,838 4,542 130.268 1.183
1 1 48 2,179 10,288 229.415 4.721

3.3 Performance of Condition Reduction

The fundamental difference between the proposed method and QL+Fuzzy is the
introduction of Nr. QL+Fuzzy can be seen as a specific version of the proposed
method where Nr is always set to be Nc. Table 4 shows the results on all the
possible values of Nr (1 ∼ Nc) after 500,000 steps of learning. The lower part
of Figure 3 shows the lap time averaged over 10,000 rounds.

204 Hiroshi Kawakami et al.

average lap time

100

140

180 QL+CMAC
QL+Fuzzy

QL+CRFR (Nr=4)

100

120

140
Nr=2
Nr=3
Nr=4
Nr=5
Nr=6

0 100 200 300 iteration (x 1,000)

Fig. 3. Comparison the learning process between Interpolating Methods

Generally speaking, it is expected that the rules using all the conditions (the
most detailed rules) will yield better performance than the rules with reduced
number of conditions. However, Table 4 and Figure 3 reveal that the result with
CRFR is equivalent to or even better than those with the most detailed rules.
When Nr is set to be 1 or 2, the number of parameters is too small that the
controller can not achieve good performance. The ratio of revised number of
parameters (at each step) over the total number of parameters ((Ng/Nf)Nr+Nc)
shows that Nr should be set to be small in order to enhance the effect of each
step of learning, but the results show that it is difficult to be set as a small
number.

3.4 Robustness to the Complexity of Environments

When other boats are existent in the environment, the controller has to take
into account not only their locations (oxi, oyi) but also their velocities (osxi,
osyi) since they are moving. The controller learns a skill for avoiding moving
obstacles by receiving the minus rewards when it collides with another boat.

In this case, the relation between conditions and actions are extremely com-
plicated. In the case of two boats are in the environment (Nc = 10), even if Nr

A Reinforcement Learning with Condition Reduced Fuzz Rules 205

is set to be small value, e.g. 3, total parameters and revised parameters at each
step of learning are calculated to be 375,000 and 3,840, respectively.

After 500,000 steps of learning, the two boats showed performances almost
equivalent to the case where they are trained solely. We also examined the rela-
tion between the average lap time and the step of learning, which showed that
the two boats attained the level of 120 step/round within 1,500,000 steps. Com-
paring with the result shown in Figure 3, we can say that the proposed method
is not affected by the complexity of environments.

4 Conclusion

We have proposed a method for applying Q-learning to problems where contin-
uous I/O data are involved, where the Learning/Adaptation is done by chang-
ing Q-values of each Condition Reduced Fuzzy Rules. The experimental results
elucidated the satisfying performance of the proposed method. This method is
applicable to the problem where domain-specific heuristics are not known be-
forehand. Furthermore, we can expect that it will learn novel actions. when we
do not intend to utilize the continuity of I/O values, nor to yield symbolic rep-
resentations, Q-learning may be integrated with other generalization methods,
e.g. neural networks[5]. Namely, this method is peculiar in reforming outputs of
the proposed systems into human-readable symbolic rules.

References

1. C. Watkins and P. Dayan: Technical Note: Q-learning. Machine Learning 8-3/4
(1992) 279–292

2. R. S. Sutton: Generalization in Reinforcement Learning: Successful Examples Using
Sparse Coarse Coding. Advances in Neural Information Processing Systems 8, MIT
Press (1996)

3. T. Horiuchi, A. Fujino, O. Katai and T. Sawaragi: Fuzzy Interpolation-Based Q-
Learning with Profit Sharing Plan Scheme. Proc. of the 6th IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE’97) 3 (1997) 1,707–1,712

4. M. Sugeno: Fuzzy Controls. Nikkan kogyo Sinbun (1988), (in Japanese)
5. L. J. Lin: Self-improving reactive agents based on reinforcement learning, planning

and teaching. Machine Learning 8-3/4 (1992) 293–321

Generality and Conciseness of Submodels in
Hierarchical Fuzzy Modeling

Kanta Tachibana1 and Takeshi Furuhashi1

Nagoya University, Furou-cho Chikusa-ku Nagoya 464–8603, Japan

Abstract. Hierarchical fuzzy modeling is a promising technique to de-
scribe input-output relationships of nonlinear systems with multiple in-
puts. This paper presents a new method of dividing input spaces for hier-
archical fuzzy modeling using Fuzzy Neural Network (FNN) and Genetic
Algorithm (GA). Uneven division of input space for each submodel in
the hierarchical fuzzy model can be achieved with the proposed method.
The obtained hierarchical fuzzy models are probable to be more concise
and more precise than those identified with the conventional methods.
Studies on effects of the weights on performance indices for the fuzzy
model are also shown in this paper.

1 Introduction

Fuzzy modeling[1] is a method to describe the characteristics of nonlinear sys-
tems using fuzzy rules. For automatic acquisition of fuzzy rules, combinations of
fuzzy logic and neural networks have been studied[2]. The Fuzzy Neural Network
(FNN) in [2] is capable of identifying fuzzy rules and tuning the membership
functions by means of back propagation learning. This FNN has been applied
to the fuzzy modeling of nonlinear systems. Sufficient data, which cover whole
input space, is hard to obtain from the actual plant with many input variables.
Hierarchical fuzzy modeling method using multiple FNNs[3] was proposed. Each
sub model in the hierarchical fuzzy model has a smaller number of input vari-
ables, and it does not need many data to describe the input-output relationships
in the sub space.

Karr et al. [4] proposed a combination of fuzzy logic and Genetic Algorithm
(GA). GA finds fuzzy rules using the payoff for the success/failure of its actions.
GA was applied to identification of hierarchical structure of fuzzy model[5] from
given input-output pairs of data. The authors[6] have applied GA to selection
of input variables of FNN hierarchical model. This method is very effective in
the case where the plant has a strong nonlinearity. GA can find appropriate
sets of input variables and a proper number of membership functions for each
selected input variable from many candidates. The authors have also proposed
a fuzzy modeling method which realized uneven division of input spaces using
the FNN[8], and have applied the method to the hierarchical fuzzy modeling.

This paper presents a new hierarchical fuzzy modeling method using the
FNN and GA. The proposed method can find fuzzy submodels with unequally
divided input space.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 206–214, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Generality and Conciseness of Submodels in Hierarchical Fuzzy Modeling 207

2 Hierarchical Fuzzy Modeling Using FNN

2.1 Fuzzy neural network

The FNN presented by the authors is a multi-layered back-propagation (BP)
model with a specially designed structure for easy extraction of fuzzy rules from
the trained NN. This paper uses Type I of the FNNs in [2]. Fig. 1(a) shows an
example of the FNN.

This is a case where the FNN has two inputs x1 and x2, one output y and
three membership functions for each input. The Back Propagation (BP) learning
algorithm can be applied to modify the connection weights wc,wg, and wb. From
this network, the following simplified fuzzy inference can be extracted:

Ri : ifx1isAi,1andx2isAi,2theny = bi(i = 1, 2, · · · , n) (1)

µi = Ai,1 (x1) Ai,2 (x2) (2)

µ̂i =
µi∑
k µk

(3)

y∗ =
n∑

i=1

µ̂ibi (4)

where Ri is the i-th fuzzy rule. Ai,1, Ai,2 are labels of membership functions,
bi is a singleton in consequence, n is the number of fuzzy rules, µi is the truth
value of Ri, µ̂i is the normalized truth value, and y∗ is the inferred value.

Fig. 1(b) shows an example of membership functions in the antecedent formed
in (A)-(D)-layers. The connection weights wc, wg determine the positions and
slopes of the sigmoid functions f in the units in (C)-layer, respectively. Each
membership function consists of one or two sigmoid functions. The outputs of
the units in (D)-layer are the values of membership functions. The products of
these values are the inputs to the units in (E)-layer and the outputs of the units
are the normalized truth value in the antecedent µ̂i in eq.(3). The output of
the unit in (F)-layer is the sum of the products of the connection weights wb

(E)

x2

x1

wgΣ1

fΣ

wc 1
f

11

Σ f

Σ f
Σ

1

-1

wgΣ1

fΣ

wc 1
f

11

(A) (B) (C) (D)

Σ f

Σ f
Σ

1

-1

Π

Π

Π

1

1

Σ

(F)

w

y *
@@ @@

b

1

0

G
ra

de

A1j A2j A3j

xj

(a) Fuzzy Neural Network (b) Membership Functions

Fig. 1. Fuzzy Neural Network

208 Kanta Tachibana and Takeshi Furuhashi

yx1

x2

x4

1st layer 2nd layer

x3

1-1*

y 1-2*

FNN
1-1

FNN
1-2

FNN
2-1

x5

y *

0 1 1 0
1 2 3 lg

(a) Hierarchical Fuzzy Model (b) Example of Chromosome

Fig. 2. Hierarchical fuzzy model using FNNs and chromosomes

and the normalized truth values. The connection weights wb correspond to the
singletons in the consequence bi in eq.(1). The output in (F)-layer is, therefore,
the inferred value y∗ in eq.(4).

Since the center-of-gravity method is used in (E)-layer, the updating method
of connection weights, i.e. BP algorithm, needs some modifications. The learning
algorithm for the FNN is well described in [2].

The feature of this FNN is that fuzzy rules can be extracted easily from
the trained FNN. Three layered neural network can identify the input-output
relationships. However, it is hard to extract rules from the three layered neural
network.

2.2 Procedure of Hierarchical Fuzzy Modeling

Fig. 2 shows an example of hierarchical fuzzy model which consists of FNN sub-
models. The figure shows a case where the model has 5 inputs (x1, x2, x3, x4, x5),
one output (y), a two level hierarchical structure. In Fig. 2, y1−1�

, y1−2�
, y∗ are

the inferred values of the fuzzy sub-models. In the 1st layer, the fuzzy model
with the inputs x1 and x2, and the model with x3 and x4 are lined in paral-
lel. The outputs of these models are y1−1�

and y1−2�
, respectively. These two

fuzzy sub-models in the 1st layer greatly contribute to the input-output rela-
tionships of the system. The input variable x5 is used for a small adjustment of
the model. This fuzzy model reduces the number of divisions of each input space
by constructing sub-models in a hierarchical manner. This reduction of divisions
prevents the model from over-fitting. The obtained fuzzy model, therefore, has
the generalities.

The authors have proposed a hierarchical fuzzy modeling method using the
FNNs and GA[3,6]. Each sub-model was built by the FNN and a proper set of
input variables and sets of membership functions for the sub-model were selected
by GA. A hierarchical structure was constructed by finding proper sub-models
one by one.

This paper proposes a new hierarchical fuzzy modeling method which realizes
uneven division of input space. GA is utilized to find an appropriate set of input

Generality and Conciseness of Submodels in Hierarchical Fuzzy Modeling 209

variables. A model having the selected variables is generated by the proposed
uneven division method of input space and it is tuned by the FNN learning. The
procedure of this hierarchical fuzzy modeling is as follows:

1. The input-output data are divided into two groups A, B whose statistical
characteristics are nearly the same. The group A constitutes training data,
and the group B is used as a test set. The model identified from the data of
group A is called model A. The number of layer h is initially set at 1.

2. Using GA and the FNN, a sub-model is identified. A combination of input
variables is encoded into a chromosome as shown in Fig. 2(b). The number of
genes lg is the same as that of the whole candidates of input variables. If the
value of a gene is 1, the corresponding input variable is used for the model.
If it is 0, the input variable is not selected. The evolution of individuals is
carried out by the following procedure:
(a) Chromosomes are initialized to have 0 in each gene. The number of

chromosomes is ng. The binary number in each gene is flipped to 1 with
the probability of pi.

(b) Chromosomes are evaluated. The chromosome determines a combination
of input variables to be used for the sub-model. The division process of
the input space to be described in subsection 2.3 is carried out. In this
process, the identification of singletons in the consequent parts of FNN
is done with the data of group A. The performance index F used in this
fuzzy modeling process is given by

F =
∑nB

i=1

(
yBA

i − yB
i

)2

nB
+ kS (5)

where nB is the number of the data of group B, yB
i is the output data

of group B, yBA
i is the inferred value of model A with data B, and S is

the number of subspaces. The first term evaluates the generality of the
identified model, and the second term is a criterion for the conciseness
of the model. Coefficient k adjust the weights on the generality and the
conciseness.
An appropriate division of input space for each input variable is obtained
as described in subsection 2.3.

(c) Individuals are ranked with this performance index. The worst nw chro-
mosomes are replaced with copies of better chromosomes.

(d) Crossover and mutation operations are applied to the population. Cross-
over is applied to the whole population except for one elite at the rate of
pc. Parents are randomly selected, and one point crossover with randomly
selected crossover point is applied. Mutations are applied to each gene
of all the chromosomes except for that of the elite chromosome at the
rate of pm.

(e) Stop if the performance of the elite chromosome does not improve during
mend generations. Otherwise, go to step (b).

The next step is fine tuning of the acquired model by the back propagation
learning of the FNN[9]. The membership functions in the antecedent as well

210 Kanta Tachibana and Takeshi Furuhashi

the singletons in the consequence of the best model found in the above
process are modified to obtain a better model. For the stopping condition of
this learning, the following criterion is used:

C =
√∑nA

i=1

(
yA

i − yAA
i

)2 +
∑nB

i=1

(
yB

i − yBB
i

)2

+
√∑nA

i=1

(
yAB

i − yAA
i

)2 +
∑nB

i=1

(
yBA

i − yBB
i

)2
(6)

where nA and nB are the numbers of data groups A, B, respectively; yA
i and

yB
i are the outputs of data A and data B, respectively; yAA

i and yBB
i are

the inferred value of model A with data A and that of model B with data B,
respectively; yAB

i and yBA
i are the inferred value of model B with group A

and that of model A with group B, respectively. The first term on the right
hand side in eq.(6) is the precision of the model, and the second term is the
criterion for evaluation of the generalities of the model.
This identified model is called model h-1 and its output is denoted by yh−1�

.
The model h-k means that it is the k-th model in the h-th layer.

3. If the number of remaining input variables that are not used in the model
h-1 is more than two, another model to compensate the error of model h-1
is identified using GA. This error is used as the teaching signal for the next
model. Some of the remaining input variables would be selected. The fine
tuning of the acquired model is, then, carried out. The model is denoted by
model h-2. If more variables remain, model h-3 for the compensation of the
error of model h-2 will then be identified. This modeling is repeated until
the number of remaining input variables becomes less than two. The model
h-1 will be used for the identification of the models in the succeeding layer.
The outputs of the models h-2, -3, · · · will be the candidates for the input
variables of the models in the next layer.

4. Fuzzy modeling in the next layer is done using the sub-models identified in
the previous layer. The output of model h-1 is always used. A combination
of this output yh−1�

and some of the outputs of models h-2, -3, · · · as well
as the input variables not used in model h-1 is chosen by GA. The acquired
model is denoted by (h + 1)-1.

5. The evaluation criterion C of model h-1 and model (h + 1)-1 are compared.
If the latter value is less, repeat the procedure from (3). If not, stop. Since
the input variables which are used in the previous layer are not used in the
succeeding layers, the acquired structure is simple.

2.3 Unequal Division of Input Space

Unequal division of input space for the fuzzy modeling is described in this section.
The input space is divided so that the variations of data outputs across the
subspaces are minimized. The procedure of input space division is as follows:

1. If the given data have I input variables, I dimensional input space is to
be divided. The input space initially has no division, i.e. the number of

Generality and Conciseness of Submodels in Hierarchical Fuzzy Modeling 211

x
k

x
l

I = 2, S = 1,
d = 3

x
k

x
k

x
k

...x
l

x
l

x
l

S = 2

Fig. 3. Division of input space

subspaces S equals 1. Figure 3 shows a case where two inputs xk, xl are given.
The top figure shows the initial division of input space. A fuzzy model with
one rule is made with an FNN, trained, and evaluated under the criterion
F in eq.(5). The training of the FNN here is only to adjust the singleton in
the consequence for efficient training.

2. Input space is divided. S is increased by 1, i.e. S = S+1. Number of possible
division points on each axis d is given a priori. Figure 3 shows that it has
three possible division points, d = 3. There are I × S × d possible division
points in this case. Each division is evaluated as shown in the figure with
the criterion given by

V =
S∑
s

vs (7)

V is the accumulation of variation of data outputs in each subspace. The
variation in a subspace s is expressed as:

vs =

∑ns

j (yj − ys)2

ns
, ys =

∑ns

j yj

ns

(8)

where ns is the number of data in the subspace s, yj and ys are the data
output and the average of the data outputs in this subspace, respectively.
The division with the smallest V value is selected. An FNN with S rules is
generated, trained, and evaluated. The training of the FNN is only to adjust
the singletons in the consequence for efficient training.

3. If F is not improved, stop. The model obtained before the above step is
selected as the final fuzzy model. If it is improving, step 2 is repeated. Fig-
ure 4 shows an example of unequal division of the input space xk, xl, and
the membership functions constructed by the FNN.

212 Kanta Tachibana and Takeshi Furuhashi

I = 2, S = 5, d = 3

xk

xl

xk xl

xk xl

xk xl

xk xl

xk xl

Ak1
Al1

Al2

Al3

Al4

Al5

Ak2

Ak3

Ak4

Ak5

 rule 1

 rule 5

 rule 4

 rule 3

 rule 2

(a) Unequal division (b) Membership functions

Fig. 4. Obtained division and membership functions

3 Numerical Experiment

Numerical experiments are discussed in this section. Model 1-1 was identified
with the coefficient k in eq.(5) varied from 10−9 to 1. The object nonlinear
system was given by the following equation:

y = (−4 + x0.5
0 + x−1

1)2 + 5 sin (x2 + x3)
+ exp (1 + x4 + x5)
= (−4 + x10)2 + 5 sin (x11) + exp (1 + x12)

(9)

x6 = x0.5
0 , x7 = x−1

1 , x8 = x−2
1 ,

x9 = x0.5
0 x−1

1 , x10 = x0.5
0 + x−1

1 , x11 = x2 + x3,
x12 = x4 + x5

(10)

where x0 to x5 were input variables. x6 to x12 were arranged input variables ex-
pressed by eq.(10). x13 was used as a dummy variable, that had no relationship
with y. The number of candidates of inputs lg was 14. The ranges of input vari-
ables are shown in Table 1. The ranges were decided so that the input variables
influenced the output nearly equally.

Table 1. Range of variable

variable range
x0 {0, 1, · · · , 20}
x1 {0.5, 0.7, · · · , 1.5}
x2, x3 {−1.0, −0.9, · · · , 5.0}
x4 {0.0, 0.1, · · · , 0.5}
x5 {−1.5, −1.4, · · · , 0.5}
x13 {0, 1, · · · , 17}

Eighteen sets of eighty pairs of input-output data were generated. The input-
output data were normalized within the range [0, 1) for the fuzzy modeling. The
parameters of GA were set as follows: ng = 20, ns = 2, pi = 0.1, pc = 0.85,
pm = 0.01and mend = 10. The number of possible dividing point d was set at 9.

Generality and Conciseness of Submodels in Hierarchical Fuzzy Modeling 213

Two of the eighteen sets were used each for A and B group, i.e. tainning data
and test data respectively, in an experiment. Nine experiments were done.

The input variables of the model 1-1 identified by the proposed method were
x10 and x11. The input space was divided into 7 subspaces. Fig.5(a) shows the
divisioin of input space obtained with the proposed method. The mean square
error (MSE) for test data was 0.0199.

The model 1-1 identified with the conventional method in [7] also had the
same combination of input variables, x10 and x11, and the number of membership
functions were 6 for x10 and 7 for x11. The number of subspaces was 42. Fig.5(b)
shows the division of input space with the conventional method. The MSE was
0.0108. Obtained models are summerized in Table 2.

Table 2. Comparison of the models 1-1

proposed conventional
method method

selected variables x10, x11 x10, x11

mean square error 0.0199 0.0108
number of rules 7 42

(a) proposed method (b) conventional method

Fig. 5. Division of Input Space

4 Conclusion

This paper presented a hierarchical fuzzy modeling with FNN and GA. The pro-
posed method generated more precise and concise model than the one by the
conventional method. Numerical experiments show that the weights on the per-
formance indices affect the generality and the conciseness of obtained submodel.
These weights can control the characteristics of the obtained model. Various
models can be generated as candidates for the model by changing the coeffi-
cient.

214 Kanta Tachibana and Takeshi Furuhashi

References

1. T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications
to Modeling and Control”, IEEE Trans. on Syst., Man, and Cybern., Vol.15, No.1,
pp.116–132, 1985.

2. S. Horikawa, T. Furuhashi and Y. Uchikawa, “On Fuzzy Modeling Using Fuzzy
Neural Networks with the Back-Propagation Algorithm”, IEEE Trans. on Neural
Networks, Vol.3, No.5, 801–806, 1992.

3. S. Nakayama, T. Furuhashi, Y. Uchikawa, “A Proposal of Hierarchical Fuzzy Mod-
eling Method”, Journal of Japan Society of Fuzzy Theory and Systems, vol.5, no.5,
pp.1155-1168, 1993.

4. C.L. Karr, L. Freeman, D. Meredith, “Improved Fuzzy Process Control of Spacecraft
Autonomous Rendezvous Using a Genetic Algorithm”, SPIE Conf. on Intelligent
Control and Adaptive Systems, pp.274-283, 1989.

5. K. Shimojima, T. Fukuda, Y. Hasegawa, “Self-tuning Fuzzy modeling with Adaptive
Membership Function, Rules, and Hierarchical Structure Based on Genetic Algo-
rithm”, Fuzzy Sets and Systems, Vol.71, No.3, pp.295-309, 1995.

6. S. Matsushita, A. Kuromiya, M. Yamaoka, T. Furuhashi, and Y. Uchikawa, “De-
termination of Antecedent Structure of Fuzzy Modeling Using Genetic Algorithm”,
Proc. of 1996 IEEE Int’l Conf. on Evolutionary Computation (ICEC’96), pp.235-
238, 1996.

7. K. Tachibana, T. Hasegawa, T. Furuhashi, Y. Uchikawa, Y. Fujime, M. Yamaguchi,
“A Proposal of Allocation of Membership Functions for Fuzzy Modeling”, The 13th
Fuzzy System Symposium, pp.87-90, 1997.

8. K. Tachibana, T. Furuhashi, “A Hierarchical Fuzzy Modeling Using Fuzzy Neural
Networks which Enable Uneven Division of Input Space”, The 14th Fuzzy System
Symposium, pp.305-308, 1998.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp.215–222, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Using Evolutionary Programming to
Optimize the Allocation of Surveillance Assets

V. William Porto
Natural Selection, Inc.

3333 N. Torrey Pines Ct., Suite #200
La Jolla, CA 92037 USA

Tel (619) 455-6449 FAX (619) 455-1560

Abstract. An intelligent surveillance planning system must allocate available
resources to optimize data collection with respect to a variety of operational
requirements. In addition, these requirements often vary temporally (i.e., targets
of interest move, priorities change, etc.), requiring dynamic reoptimization on-
the-fly. Allocation of surveillance resources has typically been accomplished
either by human planners, (for small problems of very limited complexity) or
by deterministic methods (typically producing suboptimal solutions which are
incapable of adapting to dynamic changes in the environment). The method
presented here solves these problems by using evolutionary programming to
optimize the simultaneous and coordinated scheduling of multiple surveillance
assets. The problem of allocating unmanned aerial vehicles (UAVs) to acquire
temporally variable, time-differential intelligence data is addressed. Imposition
of realistic constraints ensures solution feasibility in real-world problems. This
implementation can be modified to optimize solutions for a suite of different
surveillance asset types, such as manned vehicles and satellites.

1 Introduction
Airborne reconnaissance involves allocating a limited number of surveillance assets
to a set of ‘targets of interest’. Although aerial surveillance is often accomplished by
means of human pilots, there are times when other intelligence gathering methods are
required. Unmanned aerial vehicles (UAVs) provide the capability to gather
intelligence in areas where inherent danger/threats would present an unacceptable risk
to human pilots. In addition, they can often operate more covertly than manned
aircraft. Whether under human or autonomous control, the goal is to obtain the
desired information within the imposed constraints: available fuel capacity, turning
rates, desired sensing/imaging requirements, etc. In most cases the surveillance asset
is required to return to its original base, in effect completing a ‘tour’ of the assigned
targets of interest. Hence, the problem is analogous to a set of multiple constrained
traveling salesman problems (TSP) solved in parallel, albeit with notable differences
due to the specific problem domain.

Time-differential imagery is important to reconnaissance as it is often the change in
an image (e.g., movement of targets) which is of interest to the analyst. Thus, in this
TSP it is necessary to revisit a target of interest on a periodic basis to obtain time-

216 V. W. Porto

differential images. When multiple surveillance assets are available, their flight paths
may be optimized over and around the targets of interest cooperatively, i.e., desired
imaging schedules are met via a combination of assets. The problem can be
formulated as a simultaneous tour assignment for a set of UAVs such that the solution
optimizes the mission goals. Importantly, this formulation permits combining both
UAVs and overhead assets (i.e., satellites) within one optimization framework, as
opposed to solving the problems separately (and perhaps, suboptimally). Providing
for simultaneously optimizing allocation of multiple asset types represents a
capability that was not possible with prior methods.

Fig 1. Geographic plot of a multi-target UAV reconnaissance scenario with targets of interest
color coded by priority. Elliptical regions define threat zones.

In the real world, no intelligence gathering system operates in a completely covert
manner. Lack of covert operation often poses a significant risk to reconnaissance
vehicles. UAVs are often tasked to fly over hostile territories. Surface-to-air missile
(SAM) sites pose a threat to any flying object within range of the missile. Minimizing
threat exposure is important since the UAV may have to return to its base intact for its
reconnaissance information to be usable. Potential threats from SAM sites are
generally known with some degree of precision so their presence can be incorporated
into a path evaluation function. Fig. 1 shows a typical scenario with a target-rich
environment (targets of opportunity are indicated by various sized shaded rectangular
shapes). A set of spatio-temporal paths for multiple UAVs (based at two
geographically separate locations) must be planned over this hostile environment. In
this example, over 100 targets of opportunity must be imaged within the desired
surveillance time, fuel, and acceptable threat exposure constraints.

2 Background
This problem belongs to the class of NP-complete problems. The search space of
candidate solutions for even small sized problems is too large for direct enumeration.
Given N surveillance platforms and K targets, there are [N/2*(K-1)!] potential

Using Evolutionary Programming to Optimize the Allocation of Surveillance Assets 217

solutions. Applicable feasibility constraints reduce this somewhat, but for a typical
problem with only 5 UAVs and 100 targets, there exist over 2.3 x 10156 possible
solutions. Branch and bound techniques [8] are applicable for reducing the size of the
search space, but typically they only reduce the number of possible search paths by a
few orders of magnitude.

Chief among the known approaches to solving this problem is the ubiquitous greedy
method wherein targets are first prioritized then assigned for imaging. Assignment
proceeds through the list until all available resources (e.g., fuel) are exhausted. This
method forms the basis for the rank-trimming (RT) algorithm. Targets are first ranked
using a target value function. UAVs are then assigned to visit the rank-ordered targets
with respect to the desired target imaging periodicity. Because of the heuristic UAV
and target assignment strategy, this rarely results in an optimal solution. Variations of
this technique include scheduling each UAV according to a ‘best-fit’ metric which
attempts to maximize utilization (total imaging time).

Methods for solving the TSP for a single entity range from neural network algorithms
[6] to techniques incorporating variants of evolutionary computation [3], [4]. Blanton
and Wainwright [2] solved a related multiple vehicle routing problem (VRP) using an
order-based genetic algorithm. Their approach optimized assignment of routes for
multiple vehicles visiting a set of customers in prescribed time windows, given a
single start/terminal point for all vehicles. Although similar in concept, the
formulation did not allow for multiple visits to any site, utilized fixed time windows,
and required all vehicles to choose tours constructed from a set of defined (i.e.,
geographically fixed) paths.

All of the aforementioned methods have deficiencies in one or more of the following
areas: 1) generation of optimal solutions for multiple, cooperative, time-coordinated
entities, 2) creating integrated solutions for multiple asset types (i.e., overhead
sensors), 3) incorporating revisitation (re-imaging) of target sites for time-differential
surveillance information, and 4) scalability to larger (real-world) problem sizes.

Porto and Fogel [7] demonstrated the use of evolutionary programming (EP) [5] as an
optimization technique to generate optimal cooperative behaviors for multiple
vehicles with respect to a set of mission goals. Complex, interactively intelligent
behaviors which optimized vehicle routes, firing capabilities, and variable action
sequences were generated. The evolved vehicle routes were only constrained by
terrain and the physical dynamics of the vehicles. Obvious similarities between
evolving cooperative behaviors and the assignment of flight tours for multiple
surveillance assets inspired confidence that EP is well suited for solving this problem.

3 Technical Approach
There are several key aspects to developing a successful evolutionary optimization
solution to this problem. First, a suitable representation must be defined. The chosen
formulation represents the tour for each UAV as an ordered sequence of targets to
image. The tour for each UAV is a unique list instantiation. Flexible (and more
realistic) cooperation between multiple UAVs is achieved by incorporating

218 V. W. Porto

individually variable UAV tour start times. Starting and ending points in the list are
constrained to be the initial base of the vehicle. Replication of targets in these lists
allows for multiple revisits of targets (time-differential re-imaging). The number of
replications necessary, R, can be defined as follows:

R = Ft / Kmin (1)

where Ft is the maximum possible flight (or surveillance) time over all UAVs, and
Kmin is the smallest desired imaging periodicity. This representation is also extensible
to include overhead assets with potentially variable imaging schedules. Once the list
sequences are created, evaluation consists of calculating the number of targets
imaged, adjusted by priority, with respect to desired imaging periodicities. Similarly,
constraints (i.e., remaining fuel and survivability) can be evaluated by sequential
checks through the cumulative flight distance and exposure through threat zones.

Path sequences for each UAV are aggregated into a single solution that is evaluated as
a whole. Due to re-imaging requirements as well as cooperative capabilities (when
incorporating multiple UAVs), individual UAV path sequences cannot be evaluated
independently. Evolutionary programming provides an efficient optimization method
for this problem. Because EP optimizes total behaviors instead of individual parts, it
is well suited to exploit the inherent interdependence of the UAV imaging schedules.

4 Implementation
Four separate phases of flight (each with a unique but constant flight speed) are
modeled, including ramp-up/down, ingress (to the surveillance area), steady-state
flight, and egress (flight back to the base). Associating a specific starting base for
each UAV allows optimizing for multiple UAVs launched from a variable number of
bases. Fuel consumption rates are a function of the specific phase of flight. No fuel
penalty is imposed for changing direction. Refueling is not permitted during flight.

Targets of interest are modeled as stationary geographic points in space with assigned
priorities, desired imaging periodicities, and image qualities. Required imaging times
are a function of both target size and required image quality. Since the angle of
inspection (imaging angle) is not currently modeled in this study (it is assumed that
UAV images can be taken directly over targets), UAV tours can be specified
efficiently as point-to-point paths. Additionally, the time to the first (closest) target is
assumed to be greater than the time required to reach an operational imaging altitude.

Direct routing of UAVs to and from a set of predefined targets leads to paths that may
intersect threat zones. Way-points which can delineate paths around an object are
incorporated to address this problem. These ‘pseudo-targets’ have the same structure
as regular targets except that their imaging times, priorities, and revisitation
periodicities are all ignored. In this way, the addition (or deletion) of appropriate way-
points in the tours allows the model to permit maneuvering around threat zones.

Probability of survival is a function of the length of time a UAV spends traveling
through threat zones. Threat zones are modeled as 3-D cylindrical regions extending
through the UAV vertical flight envelope. Any path intersecting a threat zone

Using Evolutionary Programming to Optimize the Allocation of Surveillance Assets 219

boundary is assigned a probability of kill, Pk, proportional to the length of the path in
the zone. A path intersecting a threat zone through its center (maximal exposure to the
threat) is assigned a zero survival score. Path segments not intersecting threat zones
are survivable with probability one (mechanical failures are not modeled). The
cumulative survival probability over the entire flight tour for UAVj can then be
expressed as follows:

 M

Psj = ∏ (1 - αi,j Pki,i) (2)
 i=1

where
M = total number of threats in the scenario
Ri = kill radius of threat i
Cj = chord length of UAVj passing by threat i
Pki,j = probability of threat i killing UAVj

= Cj,i / 2Ri

αi,j ∈ {0,1} denotes the vulnerability of UAVj to threat i

Each pass of a UAV through a threat zone is treated as an independent event allowing
paths to intersect threat zones multiple times in a single tour. In addition, feasibility
constraints dictate that all UAVs must have sufficient fuel to return to their bases. At
least one target is assumed to be within the range (including return) of each
originating base point. UAV tours with zero survivability are feasible but have zero
fitness score. No advantage is gained for returning to base with more than the
minimum fuel load.

4.1 Mutation
Given the sequential target-list problem representation, numerous mutation operators
are possible which span the range of small to large jumps through the search space.
Unless otherwise specified, random selection of list entries indicates selection with
equal probability for all outcomes. The mutations operators implemented are:

1) Swap two adjacent randomly selected targets in the list.
2) Swap two non-adjacent randomly selected targets.
3) Move a randomly selected target to the bottom of the list.
4) Add/Delete a way-point to/from the list at a randomly selected point.
5) Modify a randomly selected way-point by random alteration of its position.
6) Alter the starting launch time for a randomly selected UAV.

The mutation operator which adds a new pseudo-target (way-point) to the list utilizes
the position(s) of adjacent target points in the list. New pseudo-target positions are
randomly generated within a bounding circle with radius equal to the distance
between adjacent target points in the list. Mutation of pseudo-target locations is
accomplished by adding a random variable N(0,1) in ℜ2. Mutation of initial UAV
launch times uses addition of a N(0,1) random variable to the existing starting time.

220 V. W. Porto

4.2 Constructing a Feasible Solution
Construction of initial list sequences is accomplished by one of three methods: 1) list
sequence generation via random selection, 2) sequence generation based upon ranked
target priorities (greedy method), and 3) sequence generation as read from file. Thus,
heuristic solutions can be incorporated allowing for direct comparison with existing
resource allocation methods. After creating the target-list sequences, solution
construction proceeds by selective inclusion of targets into a feasible tour. Feasibility
constraints are checked as each target (or way-point) entry is read from the list.
Available fuel (a critical constraint) is constantly updated throughout this process. If
no constraints are violated, the target is added to the tour and the next potential target
point is examined. Upon violation of any constraint, the potential target is skipped,
and the next target in the list is examined. Since targets are replicated N times in each
list, solutions are generated which allow UAVs to visit a target more than once.

4.3 Fitness Evaluation
Solution fitness is evaluated after constructing tours for all available UAVs. The
fitness function, which addresses the requirement for time differential target imaging,
is defined by calculating user satisfaction as a function of time. User satisfaction at
time tk can be expressed as follows:

 N

 S(tk) = ∑ (Tvi * Psj) (3)
 i=0

where target value for the ith target, imaged by UAVj is defined as:

Tvi = α * Pri + β * Ai (4)
N = total number of targets in the scenario
Pri = priority of target i
Ai = normalized area of target i
Psj = cumulative survival probability of UAVj

α, β ∈ [0.0,1.0]

The fitness function, summed over the entire time of the desired surveillance period is

F = ∑S(tk) (5)

The formulation of Eq. 3 allows for implementing the fitness function calculation
over various time resolutions by discretizing over different time periods. This
facilitates inclusion of the concept of an acceptable time-window for imaging a target
with respect to its previous imaging time. Incorporating survival probabilities results
in a penalty function for targets imaged by UAVs whose paths intersect threat zones.

Using Evolutionary Programming to Optimize the Allocation of Surveillance Assets 221

5 Experiments and Results
Experiments with a variable number of threat zones, target distributions, target
priorities, and desired image periodicities were performed. Six UAVs were simulated,
each with identical physical capabilities. Forty targets were (uniformly) randomly
distributed in the (10,000 geographic units squared) searchable domain. Target
priorities (in the range of [1-10]) and target areas, Ai ∈ {2x2, 5x5, or 10x10
geographic units} were randomly selected using a uniform distribution. In all tests, a
24 hour surveillance period was used, and each UAV was capable of reaching the
farthest target in the search area and returning to base within its available fuel limit.
When used, three threat zones with a radius of 50 geographic units) were modeled.

EP without self-adaptation of mutation parameters was used with a of 100 parents,
each generating 5 offspring per parent per generation. Selection of mutation operators
was from a uniform random distribution. After scoring each candidate solution,
tournament selection probabilistically culled the least-fit members from the
population (tournament size 10). The RT greedy algorithm was used to initialize the
starting population. This provided a performance benchmark for comparison with the
evolved solutions (indicated by the initial fitness values at generation 0 in Fig. 2).
Results presented below were averaged over all 20 runs for statistical validation.

Fig. 2. Graph showing evolved fitness scores vs. generation (averaged over 20 runs).

Algorithmic performance with no requirement for revisiting target sites (all target
periodicities, K, set equal to 24 hours) was tested in scenarios with and without threat
zones. Evolved solutions quickly exceeded the performance of the RT method both
without and in the presence of threat zones. The average number of added way-points
(per UAV) in the solution for the no-threat zone scenario was less than one indicating
evolution of relatively efficient solutions. Complexity of evolved solutions (as
measured by the number of way-points added to a solution) increased with the
introduction of threat zones, to an average of 6.4 per UAV.

40 Target Scenario

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100
Generation

F
it

ne
ss

 S
co

re K=24 w/o threats
K=24 w/3 threats

K=12 w/o threats
K=12 w/3 threats
K=4,6,12 w/o threats
K=4,6,12 w/3 threats

222 V. W. Porto

Next, re-imaging requirements for all targets were set with periodicity K=12 hours.
Results of this more constrained problem showed lower overall fitness scores as
expected due to the imposed re-imaging constraints. Interestingly, the number of way-
points in the no-threat tests increased to an average of 11.4 per UAV. Analysis
indicated the additional maneuvering manipulated total flight times to increase the
satisfaction of imposed target revisitation schedules. Finally, solutions for scenarios
with targets of interest with multiple periodicities were also evolved. Each target was
assigned one of three periodicities (K=4, 6, or 12 hours) selected from a uniform
distribution. Again, significant improvements over the existing RT solutions were
obtained (> 50% increase in user satisfaction) after relatively few generations.

6 Conclusion
Results of this evolutionary programming approach demonstrate performance that is
significantly better than that obtained with current typical algorithms. Solutions for
realistic numbers of surveillance assets, targets, and threats are possible within a few
hours of computational time. Convergence to optimal or near-optimal solutions on
problems with a realistic number of targets is now within the capabilities of modern
computers. The inherent design of the EP algorithm is also well suited for
implementation on parallel processing machines. This research provides a means for
optimizing the allocation of multiple UAVs with respect to the reconnaissance goals
and environmental constraints. Perhaps of greatest importance is the ability to
incorporate other surveillance platforms and sensor types into the simulation. The list-
based object-oriented design facilitates this extensibility. Future research will include
increasing model fidelity and integration with other sensor suites (i.e., satellite assets).

References

1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D., (1974) The Design and Analysis of Computer
Algorithms, Reading, MA: Addison-Wesley, pp. 364-404

2. Blanton, J.L. Jr. and Wainwright, R.L. (1993) “Multiple Vehicle Routing with Time and
Capacity Constraints using Genetic Algorithms,” Proc. of the Fifth International
Conference on Genetic Algorithms, Stephanie Forrest ed., San Mateo, CA: Morgan
Kaufmann, pp. 452-459

3. Dorigo, M. and Gambardella, L.M., (1997) “Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem,” IEEE Trans. on Evolutionary
Computation, Vol. 1, No. 1, pp. 53-66

4. Fogel, D.B. (1988) “An Evolutionary Approach to the Traveling Salesman Problem,”
Biological Cybernetics, Vol 60:2, pp. 139-144

5. Fogel, L.J., Owens, A.J., and Walsh, M.J. (1966) Artificial Intelligence through Simulated
Evolution, New York, NY: John Wiley

6. Hopfield, J.J, and Tank, D.W., (1985) “Neural Computation of Decisions in Optimization
Problems,” Biological Cybernetics, Vol. 52, pp. 141-152

7. Porto, V.W., and Fogel, L.J. (1997) “Evolution of Intelligently Interactive Behaviors for
Simulated Forces,” Proceedings of the Sixth International Conference on Evolutionary
Programming, P.J. Angeline, R.G. Reynolds, J.R. McDonnell, and R. Eberhart (eds.),
Berlin: Springer Verlag, pp. 419-429

8. Sedgewick, R. (1983) Algorithms, Reading, MA: Addison Wesley, pp. 513-524

Applying the Evolutionary Neural Networks
with Genetic Algorithms to Control

a Rolling Inverted Pendulum

Naoki Kaise and Yoshiji Fujimoto

Department of Applied Mathematics and Informatics,
Faculty of Science and Technology,

Ryukoku University.
1-5 Yokoya, Ooe, Seta, Ohtsu, Shiga 520-2194 Japan

fujimoto@math.ryukoku.ac.jp

Abstract. Genetic Algorithms (GA) are applied to evolutionary neural
networks to control a rolling inverted pendulum. The task of a rolling
inverted pendulum is to control the driving force of a cart on which one
side of a pole is jointed by a rotary shaft in order to roll the pole up from
the initial state of hanging down and to keep the pole standing reversely.
The controller is a multilayer perceptron (MLP) with three layers whose
weight coefficients are evolved and optimized by GA.
Experiments for evolving the weights of two types of MLPs are conducted
and their results are compared. Simultaneously, the effect of the weight
ranges of neural networks on evolutionary results is investigated. In these
evolutionary experiments, MLPs are generated that successfully control
the driving force of the cart to roll the pole up and stand it inversely.
MLPs also gain the intelligent control patterns with a few swings that
correspond to the variations in the maximum driving force of the cart.

1 Introduction

The pole-balancing problem has been attempted many times previously with various
control methods including PID control, nonlinear control, fuzzy control, and neural
networks [1,2,3]. The target of these attempts is to find the control rules that make a
pole stand up at a certain position from the initial state of pole angles between -π/2
and π/2 when the angle of the upright pole is assumed to be zero.

In this paper, our target is to get an MLP (multilayer perceptron) or a feed-forward
neural network to control the driving force of a cart in order to make a pole stand up
at a certain position from the hanging state (i.e. the pole angle is π or -π). This control
problem requires two types of control. The first one is to control the driving force
required to roll the pole up to the upright position and the second one is to control
the force needed to keep the pole standing up. It is supposed that it is difficult to
implement these two types of control into an MLP. Thierens [4] attacked this problem
with evolutionary neural networks whose weights are restricted to ensure the second
type of control.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 223–230, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

224 Naoki Kaise and Yoshiji Fujimoto

Fig. 1. A pole-cart system

In this paper,
two types of MLPs
with no restrictions
are evolved to find
solutions for this
problem and the ef-
fect of the range
of weights in neu-
ral networks on evo-
lutionary results is
investigated. In ad-
dition, many MLPs
with intelligent con-
trol patterns are
found by evolution
in the experiments
that have four val-
ues of the maximum
driving force.

2 Evolutionary System

2.1 The System Structure

The diagram of the evolutionary system is shown in Fig. 2. GA transfers a set of
weights to an MLP as an individual in order to evaluate it. An MLP calculates the
driving force at each time step from the state parameters of an inverted pendulum.
The inverted pendulum simulator calculates the status at the next time step from
the driving force and the current status using the equations of motion. The evaluator
observes the transition of status and calculates the fitness value with a fitness function
and return it to GA. This cycle for the evaluation of an individual is repeated as many
times as the population size. GA evolves the population of the weight sets using these
fitness values.

2.2 Simulation of a Rolling Inverted Pendulum

The model of the pole-cart system in this study is simulated in two-dimensional space
and no friction of the rotary shaft or cart sliding is assumed. The equations of motion
given by Anderson [5] are simulated at discrete times. The velocity ẋ of the cart and
the angular velocity θ̇ of the pole at time t+1 are calculated with the Runge-Kutta
approximation method. The position x of the cart and the angle θ of the pole are
calculated with the Euler approximation method. For this simulation, the constants
are the time step (∆t = 0.02 seconds), the mass of the cart (mc = 0.5 kilograms), the
mass of the pole (mp = 0.1 kilograms), the pole length (l = 0.5 meters) and gravity
(g = 9.8 m/sec2).

The initial states of the cart position, the cart velocity and the pole angular velocity
are set at 0.0. The pole angle is defined as 0 degrees when the pole is standing upright
on the cart and the range of the angle is between -180 degrees(-π) and 180 degrees
(π). The initial state of the angle is set at 180 degrees which means the pole is in the
hanging state.

Applying the Evolutionary Neural Networks 225

Fig. 2. Evolution system of inverted pendulum controls

2.3 MLP Architectures

The architecture of an MLP has three layers. The structure of a three layer-perceptron
is expressed by a triplet (ni- nh- no) where ni, nh, and no are the number of inputs, the
number of neurons in the hidden layer and the number of neurons in the output layer,
respectively. Two types of MLPs (5 - 5 - 1) and (6 - 5 - 1) are prepared. Furthermore,
the following sigmoid function is introduced to output the value for the range between
-1 and +1.

f(v) = tanh v. (1)
The driving force of the cart is given by the following equation:

force(x(t), ˙x(t), θ(t), ˙θ(t)) = fNN × Fmax, (2)
where fNN is the output of an MLP and Fmax is the constant which determines

the maximum force.

Fig. 3. Architecture of MLP(5-5-1) Fig. 4. Architecture of MLP(6-5-1)

3 Application of GA

The Genetic Algorithm applied to this problem is the basic model of the Forking
Genetic Algorithm [6], in which parents and offspring are selected together by the best
N selection method.

226 Naoki Kaise and Yoshiji Fujimoto

The weights of an MLP that form an individual are coded by a 15-bit Gray code.
The movable range of the cart is limited to -3.0 m and 3.0 m. When the cart is moving
in this range, the fitness function is defined as follows:

fitness =
1

STEP

STEPX

t=0

(θ2
(t) + α|x(t)|), (3)

where STEP is the maximum number of simulation steps and α is the weight constant.
If the cart runs outside of the range limit, the position of the cart and the angle of the
pole are fixed at the point when the cart runs outside the range. This fitness function
tends to keep the pole at the position 0.0.

4 Empirical Study

The objectives of this study are to verify the possibility of evolving a neural network
which realize the complex controls mentioned above, to investigate the effect of varying
the neural network weight range on evolutionary results, and to observe control patterns
when the maximum driving force is varied between 20N(Newton), 10N, 3N, and 1N,
respectively. The weights are encoded by a 15-bit Gray code and are converted to real
values with three ranges of Range A (-16.384 ∼ 16.383), Range B (-4.09600 ∼ 4.09575),
and Range C (-1.6384 ∼ 1.6383). The experiments are conducted with the combined
conditions of these maximum driving forces and weight ranges, and the GA parameters
of population size = 400, crossover rate = 1.0, mutation rate = 0.002 and maximum
trials = 100,000.

4.1 Experiments and Results

Tables 1 and 2 show the results of experiments for two neural network architectures:
(5-5-1)model and (6-5-1)model, respectively. In these tables, ‘Trials’ is the average
number of trials when a solution is found in 20 experiments; ‘No. of Swings’ is the

Table 1. Results of evolutions with the (551) model

Weight range Fmax Trials No. of Swings Success rate Force Freq.
Range A 20 79069 2 1/20 high
-16.384 10 2680 0.5 1/20 high

∼ 3 10331 2.5 15/20 high
16.383 1 13417 5 1/20 low

Range B 20 - - 0/20 -
-4.09600 10 2563 1.5 4/20 high

∼ 3 - - 0/20 -
4.09575 1 - - 0/20 -
Range C 20 - - 0/20 -
-1.6384 10 - - 0/20 -

∼ 3 - - 0/20 -
1.6383 1 - - 0/20 -

Applying the Evolutionary Neural Networks 227

Table 2. Results of evolutions with the (651) model

Weight range Fmax Trials No. of Swings Success rate Force Freq.
Range A 20 43531 0 1/20 high
-16.384 10 64018 0 9/20 high

∼ 3 22270 1.5 11/20 high
16.383 1 44384 2 17/20 high

Range B 20 - - 0/20 -
-4.09600 10 34815 0 7/20 high

∼ 3 29179 1.5 9/20 low
4.09575 1 69340 2 10/20 low
Range C 20 28013 0.5 1/20 high
-1.6384 10 11548 0.5 4/20 low

∼ 3 12798 2.5 2/20 low
1.6383 1 42880 3 4/20 low

number of swings contained in the control pattern of the best solution found in 20
experiments; ‘Success Rate’ is the number of times that the solution is obtained in 20
experiments; and ‘Force Freq.’ indicates whether the frequency of the on-off control is
high or low.

In the standard (5-5-1) model of Fig. 3, input signals are the position and velocity
of the cart and the angle and angular velocity of the pole. In the (6-5-1) model of
Fig. 4, the input signals are the same as those of the (5-5-1) model, except that the
parameter of the angle θ is separated into the sign and the absolute value of the angle
in order to reduce the discontinuity of the angle parameter.

Comparing the results of Table 1 and 2, it is clear that the success rates of the (6-
5-1) model are better than ones of the (5-5-1) model in almost all experiments based
on the combined parameters of the maximum driving forces and weight ranges. In the
(5-5-1) model, it is supposed that the discontinuous cliff of the angle parameter makes
more difficult the evolution of neural networks. On the other hand, the success rate
tend to decrease as the maximum driving force increases. It is supposed that the large
driving force makes it difficult to stabilize the pole at the inverted position, though it
makes it easy to roll the pole up.

4.2 Control Patterns of ENN
The control patterns of the evolutionary neural networks with the (6-5-1) model that
are obtained as the solutions of four maximum driving forces in the cases of Range A
and C are shown in Figures 5 to 12 by simulations of motion.

In the case of Range A, when the maximum driving force is 20N or 10N, the pole
stands up in a single roll without swing by a strong force as shown in Fig. 5 and Fig. 6.
However, when the maximum driving force is 3N, the pole stands up after one swing and
a half. Similarly, when the maximum driving force is 1N, the pole stands up after two
swings. In the case of Range C, similar control patterns are observed. These control
patterns show that the kinetic energy to stand the pole is accumulated by swings,
because the force is not sufficiently strong to make the pole stand up in a single roll. This
idea comes easily to human minds through experiences and learning. However, it has
been almost impossible for conventional artificial intelligence to obtain an intelligent
solution of this problem without human help. These experiments corroborate that it is
possible to obtain high intelligence through evolution.

228 Naoki Kaise and Yoshiji Fujimoto

Fig. 5. Time transitions of the angle,
the position, and the force[fNN×20N(6-5-1
Range A)]

Fig. 6. Time transitions of the angle,
the position, and the force[fNN×10N(6-5-1
Range A)]

Fig. 7. Time transitions of the angle,
the position, and the force[fNN×3N(6-5-1
Range A)]

Fig. 8. Time transitions of the angle,
the position, and the force[fNN×1N(6-5-1
Range A)]

Applying the Evolutionary Neural Networks 229

Fig. 9. Time transitions of the angle,
the position, and the force[fNN×20N(6-5-1
Range C)]

Fig. 10. Time transitions of the angle,
the position, and the force[fNN×10N(6-5-1
Range C)]

Fig. 11. Time transitions of the angle,
the position, and the force[fNN×3N(6-5-1
Range C)]

Fig. 12. Time transitions of the angle,
the position, and the force[fNN×1N(6-5-1
Range C)]

230 Naoki Kaise and Yoshiji Fujimoto

In the case of Range A, the control patterns are an on-off control with high fre-
quency as shown in Figures 5 to 8. Because a strong force is needed for the pole to stand
up in a single roll, the neural networks with larger weights survive on the evolutionary
process. However, the neural networks with larger weights can hardly make the driving
force small. Therefore, it is guessed that they select the on-off control with high fre-
quency to stabilize the pole at the inverted position. For practical use, a driving force
with a high frequency on-off control is irrelevant. In the case of Range C, the control
patterns are very similar except that the nonlinearity of the sigmoid functions is re-
duced by small weights. As the results imply, it is supposed that neural networks with
small weights tend to select control patterns with swings as shown in Figures 9 and
10. Although the frequency of semi on-off control lessens, the stabilization performance
worsens as shown in Figures 9 to 12.

5 Conclusions

This study on applying evolutionary neural networks to control a rolling inverted pen-
dulum confirm that it is possible for a machine to obtain a higher intelligence by
evolution that is hardly obtained by control theories and conventional artificial intel-
ligences without human help. The intelligent MLPs are evolved by GA which have
sophisticated control patterns with the different number of pre-swings, based on the
magnitudes of the maximum driving force. The two types of MLPs are compared for
the evolutionary performance, and it is found that the (6-5-1) model, which has a con-
tinuous angle parameter, achieves better performance. The effect of the weight range
of neural networks on the control patterns is made clear through these experiments.

Future works are to evolve MLPs with more robust and smoother control, to analyze
the functions of the MLPs obtained as solutions, and to evolve weights and architectures
of neural networks together [7].

References

1. M.O. Odetayo, D.R. McGregor: Genetic Algorithm for Inducing Control Rules For
A Dynamic System, Proc. of the 3rd Int. Conf. on Genetic Algorithms, pp. 177-182,
1989.

2. F. Pasemann: Pole-Balancing with Different Evolved Neurocontrollers, Proc. of the
7th Int. Conf. on Artificial Neural Networks, pp. 823-829, 1997.

3. A.P. Wieland: Evolving neural network controllers for unstable systems, Proc. of
IJCNN-91-Seattle: Int. Joint Conf. on Neural Networks, pp. 667-673, 1991.

4. D. Thierens, etc.: Genetic Weight Optimization of a Feedforward Neural Network
Controllers, Proc. of the Int. Conf. in Austria on Artificial Neural Nets and Genetic
Algorithms, pp. 658-663, 1993.

5. C.W. Anderson: Strategy Learning with Multilayer Connectionist Representations,
Proc. of the 4th Int. Workshop on Machine Learning, pp. 103-114, 1987.

6. S. Tsutsui, Y. Fujimoto, and Ashish Ghosh: Forking Genetic Algorithms: GAs with
Search Space Division Schemes, Evolutionary Computation, Vol. 5, No. 1, pp.61-80,
1997.

7. Xin Yao: A Review of Evolutionary Artificial Neural Networks, Int. Journal of
Intelligent Systems, Vol. 8, No. 4, pp. 539-567, 1993.

Evolving Cooperative Actions Among
Heterogeneous Agents by an Evolutionary

Programming Method

Takayuki Fujinaga, Kousuke Moriwaki, Nobuhiro Inuzuka, and Hidenori Itoh

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
E-mail: {fujisan, moriw, inuzuka, itoh}@ics.nitech.ac.jp

Abstract. We studied a baggage carriage problem, in which agents try
to carry baggage from a pile to their base, evolving a data structure,
called n-BDD, expressing action strategy of the agents. Through this
problem we consider emergence of cooperation among heterogeneous
agents, or each agent has a particular ability, which is different each
other. We formalize heterogeneity by defining forte actions and foible
actions of agents. Emergence of cooperation was observed by simulation.
Different types of agents are emerged to behave different way. We also
observed that agents in a type branch to have two different roles.

1 Introduction

Cooperation among a group is a subject in the field of multi-agent systems. There
are two ways of cooperation by many agents. One is to share a task by agents,
and every agent plays the same role. We call this way homogeneous cooperation.
The other is to play a particular role by each agent, that is, the right man in
the right place. The way should be called heterogeneous cooperation.

A number of approaches to emerge cooperative interactions among agents are
investigated. H.Yanco et al[1] tries to emerge cooperation among mobile robots
by learning non-verbal communication. Reinforcement learning was also used to
acquire social action of agents[2] and decision policy in multi-agent systems[3].
Some researches mimic natural creatures, such as ants and bees, to organize
social behavior among agents[4,5] and apply the behavior to real robots[6].

In order to study evolution of heterogeneous cooperation, we use a group of
agents which are heterogeneous. That is, some agents of a group have different
ability from others. Target of this paper is to observe evolution of heterogeneous
cooperation that is reflected by the heterogeneity. For this purpose we use a
data structure, called n-BDD, to express action strategy of agents. It was first
proposed by Moriwaki et al. [7] and we have demonstrated its applicability[8,9].

We give a goal to a set of heterogeneous agents with an environment, and
expect them to evolve their appropriate behavior there. This evolution is not
obvious, because agents’ abilities do not relate with their behavior directly. They
have to find their appropriate behavior only through their experience. In this
paper, we give an environment where agents can accomplish their work without
their cooperation but they can do more efficiently with cooperation.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 231–239, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

232 Takayuki Fujinaga et al.

Fig. 1. Field of the problem. Fig. 2. Deciding action by n-BDD.

2 Baggage carriage problem

In this problem, there are two kinds of agents defined later, a base and a pile of
baggage. Each agent tries to find a pile of baggage, to take baggage there, and
to find a base where the baggage should be put on.

Agents work on a field which is shown in Fig. 1. The field is a two-dimensional
plane with a grid, and enclosed by a frame. Agents can not go out of this frame.
There is a pile of baggage at the left of field and a base at the right. In the
figure an agent is shown as a circle or a diamond to denote two different types
of agents. The difference of the two types will be described in the next section.
Shadowed agents show ones carrying baggage.

We expect emergence of roles of agents. Some agents may work to lift up
baggage and to hand to others. Some agents may receive baggage and carry to
the base. Another may put down baggage received from the carrier to the base.

3 Definition of agents in our problem

Input and output of agents An agent is formalized as a machine that takes
an input string and outputs an action by using a strategy which is evolved. The
outline is shown in Fig. 2. Input strings reflect the environment surrounding the
agent. On the field every time step an agent takes an input string, calculates its
action and does it. An agent can see objects in their surrounding 13× 13 square
in the grid. These informations are coded in an input bit string:

P = (X0, X1, X2, X3, X4, X5, X6).

We call the square a visual scope of an agent. Each bit of X1, · · · , X6 in the bit
string P for an agent will be one (1) when there is an object in the visual scope
of the agent as described in Table 1. A bit will be zero (0) otherwise. X0 gives
information of self-status of an agent. It will be one (1) if the agent has baggage.

An agent takes an action from the sixteen actions described in Table 2. The
algorithm to execute each action is omitted because of the length of paper.

Evolving Cooperative Actions Among Heterogeneous Agents 233

Table 1. Meanings of each input bit.

Input bits The case where the bit is 1
X0 Has baggage.
X1 A pile of baggage is in the visual scope.
X2 A base is in the visual scope.
X3 An agent of the same type is in the visual scope.
X4 An agent of the opposite type is in the visual scope.
X5 An agent of the same type with baggage is in the visual scope.
X6 An agent of the opposite type with baggage is in the visual scope.

Table 2. Actions of agents.

Actions / Descriptions Actions / Descriptions
3A / Approaches a pile of baggage. 2I / Takes baggage.
3B / Goes away a pile of baggage. 2J / Puts baggage.
3C / Approaches a base. 5K / Gets baggage from an agent of the
3D / Goes away a base. same type.
3E / Approaches an agent of the same 5L / Hands baggage to an agent of the

type. same type.
3F / Goes away from an agent of the 5M / Gets baggage from an agent of the

same type. opposite type.
3G / Approaches an agent of the 5N / Hands baggage to an agent of the

opposite type. opposite type.
3H / Goes away from an agent of the 4O / Walks at random.

opposite type. 4P / Does nothing.

Table 3. Steps consumed for actions by agents.

take (I) put (J) transport (A to H, K to P)
Type-A (Truck) 70 steps 70 steps 1 steps
Type-B (Lift) 1 step 1 step 7 steps

Strategies to decide actions We used a data structure n-BDD to encode
action strategies, which gives an action shown in Table 2 from an input bit string
consisting of input bits described in Table 1. Each agent has an n-BDD and obeys
an action strategy encoded in it. This data structure gives an efficient calculation
of actions and a good framework for evolution as explained in Appendix. Thick
arrows in Fig. 2 shows an n-BDD giving the action B from an bit string.

A group of agents To focus on cooperation, we evaluate work of agents by
total points accomplished by all of agents in the field. Eight agents, including
four type-A and four type-B agents, which are explained later, make a group
and behave in the field. The points is also used as a fitness for evolution.

We can also use another fitness, a point accomplished by only an individual
agent. We do not take this idea, however, because the effectiveness of total points
is investigated and evidenced in [9] as fitness of group.

234 Takayuki Fujinaga et al.

4 Heterogeneous ability of agents

To give heterogeneous ability of agents, we define forte actions and foible actions
for each agent. A forte action is an action which an agent can take with con-
sumption of only small amount of energy or with a short length of time. A foible
action is an action which an agent can take with consumption of large energy or
with a large length of time.

We can formalize the heterogeneity of agents by giving sets of forte actions
and foible actions. Then we define forte and foible actions of two different agents
by time lengths for actions:

Type-A agents (Truck agents) We give type-A agents characteristics like
dump trucks. They are good at bringing baggage, although they are not
good at lifting up and down baggage. So, actions to transport baggage (Ac-
tions A to H and K to P with input bit 1 in X0) are forte actions. An action
to take baggage (Action I) and an action to put on (Action J) are foible.

Type-B agents (Lift agents) Type-B agents have characteristics of lifts.
They have converse abilities to Type-A agents. So, actions to take (Action
I) and to put (Action J) baggage are forte actions, and actions to transport
(Action A to H and K to P with input bit 1 in X0) are foible.

Table 3 gives time lengths (steps) consumed by the actions.

5 Evolution with an Evolutionary Method

To evolve cooperation among agents we use an evolutionary method, of which
Fig. 3 shows an outline. In the algorithm fifty initial groups, each consisting
of eight agents, are prepared by generating randomly. Every group is evaluated
through execution on the simulator during 500 time steps. Each group is given
the following value as its fitness.

fitness = (the total number of pieces of baggage taken from the pile)
+2(the total number of pieces of baggage put on the base)

To accomplish the goal to bring baggage to the base, the second term of the
above expression is sufficient for fitness. However, we add the first term to have
effective evolution at the initial stage of evolution.

The groups evaluated are transfered to the next generation based on the elite
strategy (Fig. 3). The ten best groups are transfered as is. The ten worst groups
are thrown away. The other thirty with copies of the best ten, i.e. forty groups,
are modified by genetic operations and make the next generations with the ten
best groups. We used genetic operations with probability 0.5 for mutation, 0.25
for insertion and deletion. The genetic operations are described in Appendix.

Evolving Cooperative Actions Among Heterogeneous Agents 235

6 Experimental results

In this section we show experimental results and give analyses of the results.

Analysis of fitness of group Fig. 4 shows the transition of fitness of the
best group at each generation. The graph shows the average of the fitness of 50
trials. The fitness of group increased with the passage of generations by agent’s
learning. In special, we can see rapid increase of fitness around 1200th generation.
This is observed in many cases and explained in the later.

Analysis of ranges where agents act We divide the field into the four field
ranges s1, s2, s3 and s4 as shown in Fig. 5, to analyze the positions in the field
where each agent is in large portion of their time. We can expect differences
according to roles of agents in the problem and also to the types of agents.

Fig. 6 shows histograms of agent’s positions during 500 step simulations
through generations. Each histogram is for each agent, Trucks #1 to #4 and
Lifts #1 to #4. A histogram consists of 15 small histograms for every 200th
generation range and for the best group at the generation. The number of steps
when an agent at the generation is in a field range is plotted in the histogram.

From histograms we can observe that Lift agents are in the field ranges ad-
jacent to the pile of baggage or to the base. On the other hand, Truck agents
are in every range. This tendency becomes clear according as generations pass,
especially after 1200th generation. The rapid increase of fitness at 1200th gen-
eration may relate to this phenomena. We also observe that the four Lift agents
branch to two groups. Lifts #1 and #2 are mostly in the field range adjacent to
the pile of baggage and others are in the range adjacent to the base.

Analysis of handing actions In Fig. 7 we analyze handing actions from an
agent to another. We categorize handing actions by types of sender agents and
receiver agents. The categories are described in Fig. 7.

Fig. 7 shows histograms of the numbers of actions happened in each category
and in each field range. As according generations pass, only category #2 handings
are happened. They are happened only in field ranges s1 and s4. This observation
is reasonable for expected cooperation.

Fig. 8 shows n-BDDs of representative agents obtained. We can see that
Truck agents does not have nodes for actions to take and put baggage, while
Lifts have them. Nodes of Truck are for transport and handing actions and they
are chosen by careful conditions. Lifts have fewer nodes and are specialized for
their functions. The two different roles of Lifts are also seen in the difference in
their structure. Lift #1 has node I and Lift #4 has J.

236 Takayuki Fujinaga et al.

Fig. 3. A generation loop in the
algorithm. Fig. 4. Fitness of group. Fig. 5. Field ranges.

200th to 3000th : generations, s1 to s4 : field ranges,
0 to 500 : the number of steps when agents is in the field range.

Fig. 6. Histograms of agent’s positions.

Evolving Cooperative Actions Among Heterogeneous Agents 237

200th to 3000th : generations, s1 to s4 : field ranges,
0 to 30 : the times of handing actions in each categories in the field ranges.

Fig. 7. Histograms of handing actions by agents.

(a) Truck #1 (b) Lift #1 (c) Lift #4

Fig. 8. n-BDD structures of representative agents evolved.

7 Conclusions

Our observation is summarized: (1) Each type of agents works in a particular
field range. (2) Handing actions are done between different types of agents, and
(3) are done around the pile of baggage and the base. (4) Lift agents branches
into two groups. A group works near the pile and the other works near the base.
(5) The tendency of these observations increases according as generations pass.

We conclude that each agent found their individual role, and each agent
selects forte work for efficiency. “The right man in the right place” is emerged.
The cooperation emerged includes two different type of branching of agent’s
roles. First, the two different types of agents, Trucks and Lifts, became to play
two different roles as shown in Fig. 6. Second, the Lift type agents branch to
play their roles in the two different field ranges as shown in Fig. 6 and 7.

238 Takayuki Fujinaga et al.

Though this paper, we showed the possibility of emerging cooperative works
in heterogeneous agents by using n-BDD and its genetic operations. Other evo-
lutionary methods should also be compared in the future work. We characterized
agent’s abilities by the consumption steps of actions. Investigation by changing
the consumption steps also remains for the future work.

(a) mutaion (b) insertion (c) deletion

Fig. 9. Genetic operations for n-BDDs.

Appendix n-BDD and genetic operations

A BDD is a graphical notation of logical functions. A BDD has only two kinds
of terminal nodes labeled true or false, but an n-BDD can have more than two
labels and gives a value from any set of values. Genetic operations, mutation,
insertion and deletion are defined to operate n-BDD as gene.

Mutation changes a direction of an edge to a randomly selected node. The
node must be subordinated by the node which the edge rises. Because of this
restriction a loop and a cycle are never caused. Insertion inserts a new decision
node on a randomly selected edge. Either of 0-edge or 1-edge of the new deci-
sion node is randomly selected to point to the node which pointed before. The
other edge becomes to point to a subordinate node randomly selected. Deletion
deletes a randomly selected decision node. The edge pointing to the deleted node
becomes to point to one of the nodes which pointed by deleted node before.

References

1. H. Yanco and L. A. Stein, “An Adaptive Communication Protocol for Cooperating
Mobile Robots”, From animals to animats 2, The MIT Press, pp.478-485, 1993.

2. M. J. Mataric, “Learning to Behave Socially”, From animals to animats 3, The
MIT Press, pp.453-462, 1994.

3. N. Ono and K. Fukumoto, “Multi-agent Reinforcement Learning: A Modular Ap-
proach”, Proc. of 2nd Int’l Conf. on Multi-Agent Systems, pp.252-258, 1996.

4. R. Beckers, O. E. Holland and J. L. Deneubourg, “From Local Actions to Global
Tasks: Stigmergy and Collective Robotics”, Artificial Life IV, pp.181-189, 1994.

5. A. Hiura, T. Kuroda, N. Inuzuka, K. Itoh, M. Yamada, H. Seki and H. Itoh,
“Cooperative Behavior of Various Agents in Dynamic Environment”, J. Computer
and Industrial Engineering Vol.33, Nos.3-4, pp.601-604, 1997

Evolving Cooperative Actions Among Heterogeneous Agents 239

6. D. McFarland, “Towards Robot Cooperation”, From animals to animats 3, The
MIT Press, pp.440-444, 1994.

7. K. Moriwaki, N. Inuzuka, M. Yamada, K. Itoh, H. Seki and H. Itoh, “Self Adapta-
tion of Agent’s Behavior using GA with n-BDD”, Proc. 5th IEEE Int’l Workshop
on Robot and Human Communication, pp.96-101, 1996.

8. K. Moriwaki, N. Inuzuka, M. Yamada, H. Seki and H. Itoh, “A genetic Method
for Evolutionary Agents in a Competitive Environment”, in Soft Computing in
Engineering Design and Manufacturing, pp.153-162, Springer, 1997.

9. T. Suzuki, K. Moriwaki, N. Inuzuka, H. Seki and H. Itoh, “Allotment of Individual
Roles Among Evolutionary Agents in Pursuit Problem”, Proc. 10th Australian
Joint Conf. on AI Workshop on Evolutionary Computation, pp.66-83, 1997.

Cooperative Works for Welfare Agent Robot
and Human Using

Chaotic Evolutionary Computation

Toru Yamaguchi1, Makoto Sato1, Tomohiro Takagi2, and Hideki Hashimoto3

1 Department of Information Science Faculty of Engineering Utsunomiya University
2753 Ishii-machi, Utsunomiya-shi, Tochigi-ken, 321-8585, Japan

2 Department of Computer Science Meiji University
1-1-1 Higashi-Mita, Tama-ku, Kawasaki 214, Japan
3 University of Tokyo Institute of Industrial Science
7-22-1 Roppongi, Minato-ku, Tokyo-to, 106, Japan

msato@sophy.is.utsunomiya-u.ac.jp

Abstract. This paper proposes a multi-agent system that carries out
cooperative works. To achieve such works, Fuzzy Associative Memory
Organizing Unit Systems (FAMOUS), Chaotic FAMOUS (CFAMOUS),
and Conceptual Fuzzy Sets (CFS) are employed. With the proposed sys-
tem, each agent robot can decide its own behavior for the situation in its
environment. We apply this system for a Welfare Agent Robot System
and carry out simulations.

1 Introduction

Recently, the population of old people has been increasing while at the same
time the number of people nursing the elderly has been decreasing. This actual
problem will perhaps require the robots to nurse the elderly in place of humans.
From such a viewpoint, we are trying to achieve cooperative works with a wel-
fare agent robot system (i.e., a walking support robot system), where robots
cooperate with humans and also with other robots.

Accordingly, we propose a multi-agent algorithm; each robot decides its own
movement to create a certain formation (line style or circle style). We construct
the system using the same robot control used in part FAMOUS, CFAMOUS,
and CFS. This control part drives both (1) and (2) below.

(1) A robot determines its own movement by following the general instructions of
a human and the situation in its environment, without detailed instructions
from a human.

(2) When the robot cannot cope with a problem by using existing knowledge
without the instructions of a human, the robot creates new knowledge to
avoid trouble.

Experimental results have shown the effectiveness of the welfare agent robot
system.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 240–250, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Cooperative Works for Welfare Agent Robot and Human 241

2 Multi-agent Systems for Welfare Agent Robots

In this paper, we regard a welfare agent robot as a walking support robot, such
that the robot is equipped with a stick and walks with humans. Figure 1 shows
an image of a welfare agent robot system.

Each agent robot works cooperatively with other agent robots and with hu-
mans. The agent robots brain consists of (a)a local feedback block, (b)a micro-
scopic knowledge block, and (c)a macroscopic knowledge block.

(a) Local feedback block: Analyzes information from a camera and sends transfer
orders to the robot.

(b) Microscopic knowledge block: Determines the goal coordinates where the
robot will move to.

(c) Macroscopic knowledge block: Judges whether the configuration of the robot
is right or not.

We construct the robot control block by using the Russmussen model, which is
familiar as an efficient model for constructing an intelligent model. We construct
the control block of the welfare agent robot by using FAMOUS, CFAMOUS, and
CFS (mentioned in Sections 2.1 and 2.2).

The agent robots have standard formations (mentioned in Section 2.3). By
defining these, the agent robots are able to do cooperative works in various
scenes.

2.1 FAMOUS and CFAMOUS

FAMOUS[1] achieves fuzzy associative inference by constructing fuzzy knowledge
on an associative memory. Figure 2 illustrates this system, which uses fuzzy
rules as fuzzy knowledge. FAMOUS adopts BAM (Bidirectional Asso

Fig. 1. Image of a welfare agent robot system.

242 Toru Yamaguchi et al.

Fig. 2. Construction and fuzzy rules of FAMOUS

ciative Memory)[2], giving it bidirectional retrieval capabilities. Therefore, the
system can retrieve the most appropriate pattern to fit the input conditions, by
bottom-up and top-down processing conveying active values. (A regular associa-
tive matrix is used for the BAM associative matrix.) Furthermore, the system
can extract knowledge from active values in post reflection movements, because
it has familiar, clear-cut knowledge expression capabilities.

The associative inference performed on FAMOUS features the following.

1) Bidirectional conversion is possible between oral expressions and feature-
value pattern-like images.

2) Macroscopic elements can be analyzed into microscopic elements.

CFAMOUS adopts chaotic retrieval in the process of retrieval of FAMOUS.
For our part, we use a chaotic abrupt descending method for chaotic retrieval.
This method allows chaotic occurrences in the minimal energy area, by applying
a periodically variable non-lineal resistance, in order to scatter the dynamics
formula for movement on the energy curved surface of the neural network. CFA-
MOUS presents the following two functions.

1) From among stored patterns, the system dynamically retrieves patterns
within a range close to the input patterns.

2) If no patterns are stored, the system retrieves effective new patterns in terms
of meaning.

The second function means that multiple patterns retrieved chaotically from
patterns not stored may include possibly effective patterns in terms of mean-
ing. In other words, CFAMOUS can evaluate the effectiveness of such retrieved
patterns, since knowledge is clearly expressed on each node of the network with
meaningful fuzzy labels.

Cooperative Works for Welfare Agent Robot and Human 243

Fig. 3. Robot formations.

These functions enable CFAMOUS to create new knowledge based on existing
knowledge stored in the associative memory. Therefore, creativity (support) is
possible by adopting CFAMOUS.

2.2 CFS

Fuzzy sets provide strong notations for representing real world concepts, which
are essentially vague. However, they do have problems caused by the restrictions
of numerical membership functions, restrictions of logical expressions, lack of
context dependency, etc. These problems relate to the representation of the
meaning of a concept.

In this paper, we propose Conceptual Fuzzy Sets (CFS)[3], fuzzy sets of a
new type that conform to Wittgenstein’s ideas[4] on the meanings of concepts. A
CFS is achieved as an associative memory, combining a long-term memory and
a short-term memory, thereby reducing the complexity of knowledge representa-
tion. In addition to solving the above problems, CFS provides a simple formula
for knowledge representation and a procedure for using this knowledge. We in-
troduce an inductive method for constructing CFS based on neural network
learning. The effectiveness of CFS and of the learning method are illustrated
through their application to the recognition of facial expressions.

CFS represents the meanings of concepts in multiple layers. The meaning
of a concept is translated into an expression indicated by the distribution of
activation in each layer. Propagations arise from the activation of the concept.
In contrast, the activation of a lower concept determines the activation of an
upper concept, it corresponds to recognition or understanding.

2.3 Robot Formations

As shown in Figure 3, we propose two robot formations. For the line style
formation, all agent robots line up at regular intervals on a line, for example,
two agent robots and a human in the center.

244 Toru Yamaguchi et al.

In the case of the circle style formation, all agent robots line up at regular
intervals on a circle. When there are three agent robots, the three construct an
equilateral triangle. With four, a square is constructed.

3 Simulations and Robot Experiments

3.1 Pre requisite

The system consists of a tracking block, sensor data computing block, and robot
control block. The tracking block is composed of a CCD camera, color tracker,
and color extractor. This block computes the center of gravity of the robot based
on color information, and assumes it to be the robot’s position. Then it outputs
the coordinate values for a two-dimensional coordinate system. These coordinate
values are transferred to the computer every 1/60th of a second. Processing is
done on a hardware basis. In addition, as shown in Figure 4, a visual field to
the robot is assumed.

3.2 Robot Control Block

Figure 5 shows CFS representing an action of the welfare robot. The environ-
mental information of a robot through the CCD camera or infrared ray sensor
is analyzed. At the lower layer, other information, e.g., the positions of other
robots and the unit number of all robots in the visual field are input, in order
to determine the movement direction and migration length of the robot.

At the upper layer, the inputs include 1) the difference from the closest robot
and the distance from the farthest robot, and 2) the difference from the robot
of the right side center piece and the angle of the robot of the left side center
piece. The outputs here are the movement direction and the migration length
adjustment to the result of the lower layer. Finally, the result of the lower layer
and the result of the upper layer are integrated.

Fig. 4. Robot sense of distance.

Cooperative Works for Welfare Agent Robot and Human 245

Fig. 5. CFS representing a welfare robot

3.3 Simulation Experiments

To verify the effectiveness of the control rule used in this paper, we experimented
with two cases, i.e., only using the lower control rule of CFS and using CFS.
Table 1 shows the results of a circle style formation experiment and a line style
formation experiment. In both experiments, the left side of the table used CFS
and the right side used only the lower control rule.

Table 1 Circle Style Formation and Line Style Formation.

Circle style formation Line style formation
CFS lower rule CFS lower rule

Ave Sim Ave Sim Ave Sim Ave Sim
36 4 45 5 30 3 34 4
41 13 32 11 38 4 43 5
42 8 50 18 41 4 44 5
39 7 33 24 30 3 35 4
27 3 27 3 39 4 42 5
18 2 18 2 57 9 56 8
36 4 40 5 20 2 17 2
9 1 8 1 30 3 34 4

59 31 87 12 39 4 43 5
27 3 28 8 29 3 34 4

33.4 7.6 36.8 8.9 35.3 3.9 38.2 4.6

Ave: average of each robot’s migration length
Sim: simulation time

In Figure 6, first, three robots are placed at random positions. Then, a
human sends an order to them to arrange themselves in a single row. All of
the robots get the same order. The human, however, does not issue any small

246 Toru Yamaguchi et al.

Fig. 6. Simulation result of line style formation with three robots.

indication for each robot. These robots judge where to go by themselves and
then move. Finally, they reach for the correct position independently.

In Figure 7, first, four robots are placed at random positions. When they
get an order from a human to arrange themselves circularly, they reach for the
four corners.

From the unit number of the robots placed first, when a difference emerges
from an increase in the number, then the formation of the robots changes. As
shown in Figure 8, four robots are placed first and later one robot is added.
Because of the addition, the formation of the robots changes from a square to a
positive pentagon.

3.4 Robot Experiments

We apply knowledge obtained by simulation to real robot experiments. In the
experiments, we use two robots and create formations of the two robots and one

Fig. 7. Simulation result of circle style formation with four robots.

Cooperative Works for Welfare Agent Robot and Human 247

Fig. 8. Simulation result of circle style formation with four robots and five robots.

Fig. 9. Experimental result of line style formation with a person and two robots.

Fig. 10. Experimental result of circle style formation with a person and two robots.

248 Toru Yamaguchi et al.

person. In Figure 9, the person is in the center of a field (of length 1m by width
1m), and the two robots arrange themselves at both sides to make a line style
formation.

In Figure 10, the person is in the center of a field (of length 1m by width
1m), and the two robots move to make a circle style formation.

4 Formation Movements using Chaotic Evolutionary
Computation

It is necessary to work cooperatively to maintain a formation style. For example,
when two persons walk together, they generally walk side-by-side to maintain
their formation. When turning, the outside person walks faster, while the inside
person slows down.

We apply these concepts to two robots moving in parallel. Each of the robots
obtains knowledge based on chaotic retrieval using the proposed method.

In the case of formation movements, the robot control block is switched to an-
other control block, i.e., one representing formation movements. Two robots will
have the same control block using CFS. The low-level layer maintains such fun-
damental action rules as going forward and turning left or right. The high-level
layer maintains steering and speed control rules and another rule to maintain a
constant distance from the other agent when both are moving together. Chaotic
retrieval is applied to the steering and speed control of this high-level layer.
Then, it becomes possible to obtain rules on how to move together in parallel,
by conceiving and adjusting the steering degree and moving speed. Figures 11
and 12 show two real robots moving side-by-side while maintaining a regular
interval.

Fig. 11. Simulation locus of two robots moving side-by-side.

Cooperative Works for Welfare Agent Robot and Human 249

Fig. 12. Experimental result of Figure 11.

5 Effectiveness of Soft DNA

In a system in which a large number of agents work, it is good for all agents to
share roles. To produce cooperative works, we have a proposal of a new method
(under discussion).

We call this new method ”Soft DNA (Soft computing oriented Data driven
fuNctional scheduling Architecture)[5]”. Soft DNA aims to imitate the idea of the
developmental process, such as the body plans in actual life based on biological
DNA (DeoxyriboNucleic Acid).

In biological DNA, the genes called ”Homeo box genes” dynamically control
the body development of an individual in actual life based on the concentrations
of proteins in cells. The control architecture called ”soft DNA” dynamically
controls the development of intelligence in each agent based on environmental
information, in order to achieve dynamic cooperation. Biological DNA has sets
of genes that are related to each body part such as the head, chest, abdomen,
and tail. These sets of genes are each called a homeo box.

Similarly, soft DNA has boxes of intelligence (made by soft computing, i.e.,
associative memories, neural networks, fuzzy logic, chaos, and so on) that are
related to various environments, a suitable box of intelligence is developed ac-
cording to the environmental information available as shown in Figure 13.

Soft DNA has boxes characterized as a set of roles, e.g., a search robot,
transportation robot, or construction robot.

All agent robots have the same soft DNA and can switch their own roles
dynamically.

250 Toru Yamaguchi et al.

Fig. 13. Biological DNA and Soft DNA

We are trying to apply soft DNA to a multi-agent robot system. As an ex-
ample, when it was applied to an intelligent transport system (ITS), the average
of the vehicular gap error improved about 1/4.

6 Conclusions

This paper proposed a multi-agent system that carries out cooperative works.
To achieve cooperative works, we proposed fuzzy sets of a new type named
Conceptual Fuzzy Sets (CFS). By using FAMOUS and CFS, each agent robot has
become able to determine its own behavior for the situation in its environment.
We applied this system to a welfare agent robot system and showed the usefulness
of CFS. In addition, we showed the possibility of soft DNA as a new method.

References

1. T.Yamaguchi, ”Fuzzy Associative Memory System,” Journal of Japan Society for
Fuzzy Theory and Systems, Vol.5, No.2, 245-260, (1993)(in Japanese).

2. T. Takagi, T. Yamaguchi and M. Sugeno, ”Conceptual Fuzzy Sets,” International
Fuzzy Engineering Symposium’91, PART II, pp.261-272, (1991).

3. Tomohiro Takagi, Toru Yamaguchi and Makoto Sato, “Multi-Modal Information
Integration by Conceptual Fuzzy Set for Interactive Systems,” IEEE Int. Conf. on
Fuzzy Systems (FUZZ-IEEE’98), pp.738-743, (1998).

4. Wittgenstein, ”Philosophical Investigations,” Basil Blackwell, Oxford, (1953).
5. Naoki Kohata, Toru Yamaguchi, Takanobu Baba and Hideki Hashimoto, “Chaotic

Evolutionary Parallel Computation on Intelligent Agents,” Journal of Robotics
and Mechatronics(accepted), (1998).

Evolutionary Computation for Intelligent Agents
Based on

Chaotic Retrieval and Soft DNA

Naoki Kohata1, Makoto Sato1, Toru Yamaguchi1, Takanobu Baba,
and Hideki Hashimoto2

1 Department of Information Science, Faculty of Engineering, Utsunomiya University
7-1-2 Youtou, Utsunomiya 321-8585, Japan

2 Institute of Industrial Science, University of Tokyo
7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan

Abstract. This paper proposes a chaotic evolutionary computation al-
gorithm instead of conventional GA (Genetic Algorithm) for such intel-
ligent agents as welfare robots which assist humans. This evolutionary
computation is realized by applying chaotic retrieval and Soft DNA(Soft
computing oriented Data driven fuNctional scheduling Architecture) on
associative memories. We apply this evolutionary computation to multi-
agent robots which move abreast and ITS(Intelligent Transport System).
Essentially, the process of this evolutionary computation is parallel pro-
cessing. Therefore, we implement its parallel processing algorithm on
A-NET (Actors NETwork) parallel object-oriented computer, and show
the usefulness of parallel processing for proposed evolutionary computa-
tion.

1 Introduction

Recently, evolutionary computation models on Alife (Artificial life) have been re-
searched by computer[1]. Nowadays, its typical approach method is GA (Genetic
Algorithm). Conventional GA is an algorithm based on traditional Darwinism.
On the other hand, in recent years, new theories of evolution except Darwinism
have been advocated. Nakahara et al. have advocated virus theory of evolution,
and explain rapid evolution which can not be explained by mutation and natural
selection[2]. Yomo et al. have advocated evolution based on competitive coexis-
tence, and argue that evolution is not simple optimization because of interaction
among life[3]. In any case, it is certain that evolution of actual life is not such
simple processes as conventional GA. Above all, we think there are not only ge-
netic factors but also other factors (e.g., cultural factor) in evolutionary process
of brain or its intelligence. In addition, it is said that evolution is irreversible
process which does not enable the life to become again the exactly same life as
it used to be. It seems to us that there is chaos in this complexity of evolution.

Therefore, we propose evolutionary computation of intelligence by chaotic dy-
namics and Soft DNA (Soft computing oriented Data driven fuNctional schedul-

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 251–259, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

252 Naoki Kohata et al.

ing Architecture) as shown in Fig.1[4]. We explain this evolutionary computation
and Soft DNA in the following chapter.

intelligence associative memory

not satisfied with
condition

Chaotic retrieval on associative memory
 generation of agents

kill

estimation of
intelligence

satisfied with
condition

(keep)

(Soft DNA)

with new soft DNA

Environmental information
Development of intelligence based on soft DNA

Fig. 1. Evolutionary computation of intelligence by chaotic dynamics

camera

1) Workstation

3) Mobile robot with arms

4) Voice

5) Image

Agent's brain
microphone

5) Image

2) Personal computer

(b) Micro knowledge
 (concrete)

Intuition-based agent model

(a) Local Feedback
Interaction with

Agent's brain

Action

Can change the agent to
the other type of agent
(Walking assistance robot, etc.)

Walking assistance robot

(c) Macro knowledge
 (abstract)

Learning / Creation Bottom-up

Feature
extractor

Action
generator

human and outer world

Camera

 (gesture and voice)
 Instructions

Top-downkill kill

kill

Agent
kill

kill

Next generation
Group A

Group B

Evolutionary Parallel Computation
on Agent

Fig. 2. Welfare intelligent agents and intuition-based agent model

On the one hand, in the society which is filled with old people, the welfare
agent robots which assist the old or the sick people are requested as shown
in Fig.2. The welfare robots have to move in a suitable formation, in coopera-
tion with other agents, humans and the outer environment. We have to acquire
the knowledge of cooperative work efficiently. Therefore, we apply the proposed
evolutionary computation to the multi-agent robots which move abreast as an
example of cooperative work in welfare robots and we also apply this evolu-
tionary computation to ITS (Intelligent Transport System). The brain of this

Evolutionary Computation for Intelligent Agents 253

welfare robot is constructed by the intuition-based agent model as shown in
Fig.2. This agent model consists of hierarchical fuzzy knowledge that uses asso-
ciative memories[5], and it imitates human creativities in order to adapt itself
to its environmental changes, conceiving new ideas based on current knowledge
by chaotic retrieval. Each hierarchical part retrieves the knowledge based on
fuzzy associative inference on associative memories. Essentially, this inference in
each part is parallel processing, and these hierarchical parts also work in par-
allel. Furthermore, a large number of agents work in parallel on a multi-agent
model and its evolutionary computation. Therefore, we undertook parallel pro-
cessing according to these parallel properties in the brain and in nature. We
implement a parallel processing algorithm on A-NET(Actors NETwork) parallel
object-oriented computer[8], and show its usefulness.

2 Soft DNA and its Evolutionary Computation

2.1 Soft DNA

We propose a new method for development of intelligence in order to realize dy-
namic cooperation in the intelligent agents. We call this new method ”Soft DNA
(Soft computing oriented Data driven fuNctional scheduling Architecture)”. Soft
DNA aims to imitate the idea of the developmental process, such as the body
plans in actual life based on biological DNA(DeoxyriboNucleic Acid). Fig.3 shows
the image of soft DNA compared with biological DNA. In biological DNA, the
genes called ”Homeo box genes” dynamically control the body development of
an individual in actual life based on the concentrations of proteins in cells. The
control architecture called ”soft DNA” dynamically controls the development
of intelligence in each agent based on environmental information, in order to
achieve dynamic cooperation. Biological DNA has sets of genes that are related
to each body part such as the head, chest, abdomen, and tail. These sets of
genes are each called a homeo box. Similarly, soft DNA has boxes of intelligence
(made by soft computing, i.e., associative memories, neural networks, fuzzy logic,

Homeo box
genes

Biological DNA
Conce ntra tion
of prote in

head chest abdomen ta il

Informa tion about
environment

Control rules
 (Soft DNA)

Inte lligent Agents

Coopera tive works
in the agents

head chest abdomen ta il

Position in the ce ll

So ft DNA

Development,
Diffe rentia tion

C o n tro l
Development,
Diffe rentia tion

C o n tro l

Fig. 3. Image of soft DNA

254 Naoki Kohata et al.

chaos, and so on) that are related to various environments, and a suitable box
of intelligence is developed according to the environmental information.

2.2 Evolutionary Computation on Soft DNA

The proposed soft DNA consists of some boxes which are made by associative
memory system named FAMOUS(Fuzzy Associative Memory Organizing Units
System)[5]. We use CFAMOUS(Chaotic FAMOUS) to carry out evolutionary
computation on soft DNA. We simulate the proposed evolutionary computation
in parallel on A-NET parallel computer which is explained in the next chapter.

Rule 1

Memory part

IF ((x1 is Small) & (x2 is Medium)) THEN y1 = f1(x)

f1

f2

fn

 Mry

S

M

B

M

B

S

R1

R2

R3

Rr

 Mxr

x1

x2

Mrr

If-Layer Rule -Layer Then-Layer

(Coordina tor)

Fig. 4. Fuzzy associative memory organizing units system

FAMOUS (Fig.4) represents fuzzy knowledge using several BAMs (Bi-di-
rectional Associative Memories) [7]. This system performs fuzzy associative in-
ference that causes an input pattern to approach the nearest pattern using top-
down and bottom-up processing (i.e., network reverberation). This propagates
the activation values of each node. CFAMOUS applies the chaotic retrieval to
the retrieval process of the memorized patterns in FAMOUS. The chaotic steep-
est descent method (CSD method)[6] is used as chaotic retrieval method. This
method chaotically itinerates among the local minimums in the energy function
of the neural network. CFAMOUS has two functions. First, memorized pat-
terns near the external input pattern are dynamically retrieved and this range
is restricted by one parameter which defines the degree of system nonlinearity.
Second, non-memorized and valid patterns can be retrieved as well as memorized
ones. We explain the proposed evolutionary computation at the 6th chapter in
detail.

3 The A-NET parallel computer

Baba et al. have been proceeding with development and research of an A-NET
(Actors NETwork) parallel computer[8]. A-NET has a parallel object-oriented
total architecture, and allows users to describe parallel programs naturally by
using A-NETL(A-NET Language). The node processor on this computer con-
sists of a processing element(PE), a local memory, and a router, and optional

Evolutionary Computation for Intelligent Agents 255

network topologies have been provided. A-NETL(A-NET Language) is a paral-
lel object-oriented language which describes parallel programs naturally. A unit
of parallel processing on A-NETL is an object. An object consists of data and
procedure(method). On A-NETL, each object cooperatively sends or receives
messages and processes them in parallel.

4 Multi-agent robots which move abreast

We will explain multi-agent robots which move abreast as a fundamental example
of cooperative work in welfare robots. When two people walk together, they
generally keep in step with one another. When turning, the outside person walks
faster, while the inside person slows down. We have applied this conception
to two robots which move abreast as shown in Fig.5. In this model, a robot
understands its situation, i.e., where the robot is, and it then carries out chaotic
retrieval to adapt itself to its situation.

more speedily

more slowly

IN

OUT
R1

R2

Fig. 5. Multi-agent robots which move abreast

Straight or Right or Left

The numerical
value information Robot

Control rule

Human / Outer world

Action

Inside or Outside

3) Estimation network

2) Upper network

1) Lower rule

Degree of curve
and speed

Speed up or down
Steering large or small

Chaotic retrieval

a) Distance from here to
 next mark point
b) Direction to next mark point
c) Top speed

estimation rule

Fig. 6. Robot control block

The robot control block is shown in Fig.6. This control block is constructed
based on the proposed agent model shown in Fig.2. The upper network of this
figure has the knowledge to adapt itself to the change in its situation. The

256 Naoki Kohata et al.

steering value

speed value

Steering large or small

Speed up or down

Instruction type

Inside or outside

Numerical
input

Label input

Label output

Numerical
output

Number of
agent

Instruction input
(steering value)

Position to
another agent

Chaotic retrieval

Fig. 7. Lower rule and upper network using CFS (Conceptual Fuzzy Set)

output of the lower rule depends on this knowledge. The robots estimate their
movement in the estimation network. These networks are realized by associative
memory network based on FAMOUS or CFAMOUS. More concretely, the lower
rule and the upper network are constructed by CFS (Conceptual Fuzzy Set)[9]
as shown in Fig.7. This CFS is constructed by hierarchical network applying
(C)FAMOUS. The bottom of this figure shows the lower rule. The top shows
the upper network. In the lower rule, the left is the numerical value input and the
right is the numerical value output. The outputs are speed and steering value. In
this application, a box of soft DNA is made by the CFS shown in Fig.7. New soft
DNA is created by chaotic retrieval on this CFS network. Each intelligence as
box of soft DNA can evolve separately according to environmental information
such as whether the mobile agent is inside or outside at turning abreast. In order
to acquire suitable knowledge(i.e., good soft DNA) in the upper network, we use
the proposed evolutionary computation. We create new generation of various
agent robots with new knowledge by applying chaotic retrieval in the upper
network.

5 ITS(Intelligent Transport Systems)

The ITS are the systems which realize safer and more efficient traffic and trans-
portation by constructing the intelligent automobiles and road environment. For
example, the realization of platooning of automobiles has been researched for
that purpose. The platooning means platoon (i.e., group) running of automo-
biles. In platooning, if all platoons or all automobiles run based on the exactly
same control knowledge, the traffic system may be a failure as a whole. Therefore,
it seems that each platoon or each automobile needs to have the fluctuations of
its intelligence in order to do the different movement from the others. If we con-
sider a platoon to be a group of automobile agents, we can apply the proposed
evolutionary computation to this platooning. The basic control block is realized
by CFS as well as the case of multi-agent robots which move abreast.

In ITS platooning, it seems that desirable intelligence of a automobile should
be change according to whether the automobile runs as a head vehicle or as a

Evolutionary Computation for Intelligent Agents 257

middle vehicle or as a tail vehicle in the platoon. The situation of each automobile
changes dynamically as the current middle vehicle changes to the head vehicle
because of division of the platoon. Therefore, we apply evolutionary computation
on soft DNA to each ITS automobile and aim to realize the dynamic development
of intelligence.

6 Simulation results and discussion

6.1 Multi-agent robot which move abreast

First, we will explain the results of evolutionary computation based on chaotic
retrieval and soft DNA in multi-agent robots which move abreast. Second, we
will explain the results of parallel processing on agent robots. Fig.8 shows an
example of the evolutionary process. The situation of this figure shows the case
where the agents are given the ”Turn Left” instruction. First, two agent robots
can’t move abreast because they move based on the same control value. The
evolutionary computation creates new generation of various agents with new
knowledge(i.e., the box containing new soft DNA) by applying chaotic retrieval
in the agent’s brain (i.e., associative memories). The generation consists of the
group of the pairs of two agents which intend to move abreast. These pairs
are kept or killed based on the estimation about their movement. Finally, the
agent with the suitable knowledge(i.e., good soft DNA) to move abreast is kept.
Evolutionary computation is performed in the same way for all situations (i.e.,
for all instructions).

1 2 3

4 5 6

Fig. 8. An example of the evolutionary process

Table 1. The number of pairs of created agents in each instruction before the agent
with suitable knowledge is acquired. (The case of parallel algorithm of evolutionary
computation)

5 10 6 926 27

Instruction Right &
Large

Turn
Right

Right &
Small

Left &
Large

Turn
Left

Left &
Small

The number of pairs of
created agents

Table 1 shows a result in the case of parallel algorithm of evolutionary compu-
tation, that is, it shows the number of pairs of created agents in each instruction
before the agent with suitable knowledge is acquired. Each knowledge item is
acquired by creating the about 14 pairs of agents on average. In this parallel evo-
lutionary process, each knowledge is created separately, that is, plural pairs of

258 Naoki Kohata et al.

Table 2. The number of pairs of created agents in each instruction before the agent
with suitable knowledge is acquired. (The case of serial algorithm of evolutionary com-
putation : Total number is 67)

9 2 5 326 22

Instruction Right &
Large

Turn
Right

Right &
Small

Left &
Large

Turn
Left

Left &
Small

The number of pairs of
created agents

agents are created and perform evolutionary computation concurrently. Finally,
all knowledges are integrated on the associative memory network of CFAMOUS.
This integration of knowledge was realized by utilizing evolutionary computation
using CFAMOUS. It is difficult for conventional neural networks to realize this
evolutionary parallel computation.

After agent robots had acquired suitable knowledge for all instructions, we
verified their movement by means of computer simulation. The results are shown
in Fig.9. As shown, the robots move abreast suitably when a series of instructions
is given to the robots.

Fig. 9. The movement of robots (Instructions: Turn Left ! Right & Small ! Right
& Large)

Table 2 shows a result in the case of serial algorithm of evolutionary compu-
tation, that is, it shows the number of pairs of created agents in each instruction
before the agent with suitable knowledge is acquired. In this serial evolutionary
process, one pair of agents repeats evolutionary computation serially to acquire
all suitable knowledges.

In parallel algorithm, the maximum number of created pairs is 27 at the
”Left & Large” instruction as shown in Table 1. The processing time of parallel
algorithm is directly proportional to this number (27). In serial algorithm, the
total number of created pairs through all situations is 67 from Table 2. The
processing time of serial algorithm is directly proportional to this total number
(67). Therefore, the parallel algorithm of evolutionary computation is about 2.5
times faster than its serial algorithm from the viewpoint of the number of pairs
of created agents.

We also realized parallel program which simulates the associative inference
and the movement of robots in multi-agent robots which move abreast in par-
allel, and implemented it on A-NET parallel computer. The simulation results
show that the parallel program is about 11 times faster than conventional serial
program.

Evolutionary Computation for Intelligent Agents 259

6.2 ITS(Intelligent Transport Systems)

We apply the proposed evolutionary computation on soft DNA to the platooning
of ITS (Intelligent Transport System). In this application, each box of soft DNA
is made by the CFS. and each box develops the intelligence for each role such
as the roles of a head vehicle, a middle vehicle and a tail vehicle in the platoon
according to environmental information. We show the soft DNA is useful for
the realization of dynamic cooperation by simulations. Furthermore, we show
the proposed evolutionary computation improves the control performance about
distance between vehicles in the ITS platooning. Simulation result showed that
the average error between the ideal distance and the actual one improved about
1/4 by the evolved soft DNA.

7 Conclusion

This paper proposed an evolutionary computation algorithm by chaotic dynam-
ics and Soft DNA instead of conventional GA (Genetic Algorithm) for such
intelligent agents as welfare robots which assist humans. This evolutionary com-
putation was realized by applying chaotic retrieval on associative memories. We
applied this evolutionary computation to multi-agent robots which move abreast.
Essentially, the process of this evolutionary computation is parallel processing.
Therefore, we implemented its parallel processing algorithm on A-NET (Actors
Network) parallel object-oriented computer, and showed the usefulness of paral-
lel processing for proposed evolutionary computation.

References

1. T. Hoshino: Dream and Distress of Alife, SHOUKABOU (1994) (in Japanese).
2. H.Nakahara and T.Sagawa: Virus theory of evolution, HAYAKAWASYOBOU

(1996) (in Japanese).
3. W.-Z.Xu, A.Kashiwagi, T.Yomo and I.Urabe: Fate of a mutant emerging at the ini-

tial stage of evolution, Researches in Population Ecology, 38(2), pp231-237 (1996).
4. N.Kohata, T.Yamaguchi, Y.Wakamatsu and T.Baba: Evolutionary Parallel Com-

putation based on Chaotic Retrieval and Creation, Proceedings of the 4th Inter-
national Conference on Soft Computing (IIZUKA’96), Vol.2, pp.638-641 (1996).

5. T.Yamaguchi: Fuzzy Associative Memory System, Journal of Japan Society for
Fuzzy Theory and Systems, Vol.5, No.2, 245-260 (1993) (in Japanese).

6. J.Tani: Proposal of Chaotic Steepest Descent Method for Neural Networks and
Analysis of Their Dynamics, Trans.IEICE, Vol. J74-A, No.8, pp1208-1215 (1991).

7. B.Kosko: Adaptive Bidirectional Associative Memories, Applied Optic, Vol.26,
No.23, pp.4947-4960(1987).

8. T.Baba, T.Yoshinaga, Y.Iwamoto and D.Abe: The A-NET Working Prototype: A
Parallel Object-Oriented Multicomputer with Reconfigurable Network, Proc. Int.
Workshop on Innovative Architecture for Future Generation High-Performance
Processors and Systems, IEEE Computer Society Press, pp.40-49 (1998).

9. T.Takagi, T.Yamaguchi and M.Sugeno: Conceptual Fuzzy Sets, International Fuzzy
Engineering Symposium’91 (IFES’91), Vol.2, pp.261-272 (1991).

A Study of Bayesian Clustering of a Document
Set Based on GA

Keiko Aoki, Kazunori Matsumoto, Keiichiro Hoashi,
and Kazuo Hashimoto

{keiko, matsu, hoashi, kh}@lab.kdd.co.jp
KDD Laboratories Inc.,

2-1-15 Ohara Kamifukuoka-Shi, Saitama 356-8502, Japan

Abstract. In this paper, we propose new approximate clustering algo-
rithm that improves the precision of a top-down clustering. Top-down
clustering is proposed to improve the clustering speed by Iwayama et al,
where the cluster tree is generated by sampling some documents, mak-
ing a cluster from these, assigning other documents to the nearest node
and if the number of assigned documents is large, continuing sampling
and clustering from top to down. To improve precision of the top-down
clustering method, we propose selecting documents by applying a GA to
decide a quasi-optimum layer and using a MDL criteria for evaluating
the layer structure of a cluster tree.
Keywords: Document Retrieval, Beysian Clustering, Minimum Descrip-
tion Length Criteria, Genetic Algorithm

1 Introduction

Recently, Document retrieval based on similarity is becoming a new active re-
search area. Iwayama et al. proposed a hierarchical clustering method for docu-
ment retrieval based on similarity. They call the algorithm Hierarchical Bayesian
Clustering (HBC)[1]. When the number of documents is N, the required time for
a simple exhaustive search method is O(N). When a prearranged cluster is used,
required time is O(log N). However the calculation amount to make a cluster
is O(N2), therefore it is extremely difficult to make a cluster of a large num-
ber of documents by conventional systems. Then they proposed an approximate
clustering technique for applying HBC to large number of document sets. The
basic idea of the approximation is to decrease processing time in deciding a layer
by computing the similarity from selected documents instead of all documents.
However, in Iwayama’s proposed method, the layer is not always optimum be-
cause documents are selected at random.

We propose to select documents by applying a genetic algorithm (referred to
hereafter as GA)[2] to deciding a quasi-optimum layer and using a MDL criteria
for evaluating the layer structure of a cluster tree. Our method gives better
accuracy than Iwayama’s method, because the layer structure of a cluster tree
constructed by our method is quasi-optimum. The advantage of the GA based
algorithm is that it is known to converge speed compared with other optimal
methods.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 260–267, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Study of Bayesian Clustering of a Document Set Based on GA 261

In this paper, we report speed comparison results between our method and
a strict clustering technique, and also report evaluation results of precision com-
pared to Iwayama’s method.

2 Strict Clustering by HBC

HBC uses evaluation parameters which take account of word appearance fre-
quency. It is known that compared to a general clustering method such as that
of Ward[3], the clustering precision of HBC is higher[4]. Here, the detailed clus-
tering algorithm of HBC and Iwayama’s approximate clustering algorithm will
be described.

2.1 HBC Algorithm

In this method, the measurement of nearness is posterior probability P (ci|dtest),
the probability that the test document dtest is classified into a cluster ci. “T=t”
means that a randomly selected term T from the document dtest is equal to t.

P (ci|dtest) = P (ci)
∑

t

P (T = t|ci)P (T = t|dtest)
P (T = t)

(1)

Probabilities on the right-hand side of this equation are estimated as follows:

– P (T = t|dtest): relative frequency of a term t in a test document dtest.
– P (T = t|ci): relative frequency of a term t in a cluster ci.
– P (T = t): relative frequency of a term t in the entire set of training docu-

ments.
– P (ci): relative frequency of documents that belong to ci in the entire set of

training documents.

HBC constructs a cluster hierarchy (also called dendrogram) from bottom to top
by merging two clusters at a time. At the beginning, each document belongs to
a cluster whose only member is the document itself. For every pair of clusters,
HBC calculates the increase of posterior probability after merging the pairs and
selects the pair that results in the maximum increase, and those clusters are
merged to form a new cluster.

To see the details of this merge process, consider a merge step k+1(0 ≤ k ≤
N − 1). By the step k+1, a data collection of N data D = {d1, d2, ..., dND} has
been partitioned into a set of clusters Ck = {c1, c2, ...}. That is, each datum
di ∈ D belongs to a cluster cj ∈ Ck. The overall posterior probability at this
point becomes

P (Ck|D) =
∏

cj∈Ck

∏

di∈cj

P (cj |di) (2)

The set of clusters Ck is updated as follows:

Ck+1 = Ck − {cx, cy} + {cx ∪ cy} (3)

262 Keiko Aoki et al.

After the merge, the posterior probability is inductively updated as follows:

P (Ck+1|D) = P (CK |D)

∏
di∈cx∪cy

P (cx ∪ cy|di)∏
di∈cx

P (cx|di)
∏

di∈cy
P (cy|di)

(4)

When clustering is performed with the above algorithm, the number of cal-
culations of evaluation values of the posterior probability is:

NC2 +
N−2∑

k=1

k = (N − 1)2 = O(N2) (5)

Hence when a large number of documents is handled, cluster generation be-
comes more difficult as the number of documents increases.

2.2 Iwayama’s Approximate Clustering Method

Iwayama et al proposed approximate clustering techniques called “top-down
clustering”, where the cluster tree is generated from top to down[5]. The algo-
rithm of top-down clustering is,

1. Selects S-documents from document set |D|, randomly.
2. Classifies S-documents with strict clustering, and make a seed cluster.
3. Assigns |D| − S non-selected documents to the nearest leaf node of the seed

cluster tree.
4. If the size of document set assigned to a single leaf is reasonable to treat with

a strict clustering method, construct a tree, otherwise, continue to select
documents and cluster that document set.

The clustering time becomes twice faster than that of strict clustering method.
However, in Iwayama’s proposed method, the layer is not always optimum be-
cause documents are selected at random.

3 Proposed Clustering Method

Now, we shall discuss the technique that we propose, an evaluation function for
finding an optimum document set by this method, and the GA technique we
use.

3.1 Algorithm of proposed method

To improve the precision of Iwayama’s clustering method, we propose the follow-
ing method, combining conventional strict clustering with top-down clustering
using GA. Assume that the total number of documents to be clustered is N,
and the number of documents within a range which can be handled by a strict
clustering method is M.

A Study of Bayesian Clustering of a Document Set Based on GA 263

procedure GA-clustering()
all documents are assigned to a root document set (Droot);
Droot is registered as cue-Q;
while (Q is not empty) {

a document set Dp at the head of Q is extracted;
if (the number of documents Dp < M)

HBC(Dp); /* clustering of Dp by HBC */

else {
Dd = Select(Dp);
/* document set Dd, constructed from M documents considered to be optimum,

which are extracted from Dp.

The coding lengths of cluster is minimized based on an MDL criteria (see 3.2).

A genetic algorithm is used for the analytical search (see3.3).*/

HBC(Dd);
The remaining document sets (Dp − Dd) are assigned to the nearest
leaf (Li ∈ Cd);
Document sets assigned to the Di = Li;
if(number of documents Di > 0)

Di is added to Q;
}

}
endproc

3.2 Evaluation function for finding an optimum document set

To extract document set Dd including M documents considered to be optimum
from a document set D, we make a cluster using that document set and use a
coding length of a cluster tree as a basis. Herein, as the MDL criteria is used,
a document set which minimizes the coding length of a tree is considered to be
optimum.

The coding length (L) is calculated as the sum of the description length (L1)
required to write the tree, and the description length (L2) for the probabilistic
distribution of documents assigned to leaf nodes.

The coding of a tree follows the universal coding principle[6]. The tree is
queried in a pre-ordered manner[7] and it outputs 1 when an internal node is
encountered, and outputs 0 when a leaf node is encountered. In this case, if the
number of leaf nodes is k, the number of internal nodes is k − 1, and the coding
length L1 becomes 2k − 1.

The documents for evaluation are assigned to the nearest leaf nodes. If the
number of documents assigned to a leaf node i is ni, and the probability that
a document assigned to ni is selected from all assigned documents is pi, the
description length L2 is given by equation (6).

L2 = −
k∑

i

ni log pi = −
k∑

i

ni log
ni∑
j nj

(6)

As the number of documents for evaluating the tree (referred to hereafter as
R) is extracted at random from D − Dd, R is independent of D or Dd.

264 Keiko Aoki et al.

3.3 GA for finding optimum document sets

Regarding the ploblem of finding an optimum document set, there is no method
to define suitable initial value for the next search. GA is suitable for this problem,
because GA performe multi-point sampling in parallel. Thus, we apply GA to
find a cluster having a minimal coding length.

In this algorithm, a gene represents a document in the target documents,
and a value of 1 means selected for evaluation whereas 0 means not selected.
A genotype denotes a combination of selected documents. The whole number
of genes in a genotype, therefore, is equal to the number of target documents,
and the number of genes having a value of 1 is equal to that of the selected
documents.

Here, the following model is used.

– Scaling: power scaling (f ′ = f2)
– Selection crossing: Fitness proportional strategy and elite storage strategy
– Crossing and Mutation: In this method, instead of pairing two parents, a

given proportion of bits(Crossing) of parents of which the number is equal
to a generation gap, is replaced by random bits.

– Generation model: Continuous generation model

If the number of document sets is N and the number of extracted documents
is M, the merge frequency in the GA-clustering of 3.1 is as follows. The merge
frequency of strict clustering of M extracted document sets is (M − 1)2. Merge
frequency per document to assign to a leaf node is 2α log M where α is a number
depending on the degree of balance of the tree, and is in the vicinity of 1 when
the balance is good. The frequency of GA-clustering is βN/M where β(≤ 1) also
depends on the balance of the tree. The number of genes to be evaluated per GA-
clustering is Npg + NpgRg(Ng − 1) where Ng, Npg, Rg are respectively number
of generations, number of genes per generation and generation gap. From the
above, it is seen that the total frequency of merges is approximately:

((M − 1)2 + 2Rα log(M))(Npg + NpgRg(Ng − 1))β
N

M
= O(N) (7)

4 Estimation of Clustering Speed and Precision

Here, we shall show how much the proposed method improves clustering speed
and precision.

4.1 Experimental Environment and Measurement Parameters

Sun UltraEnterprise 450 (Solaris 2.6, 512MB) is used. We used patent data all of
which have a reasonably large document length. We used 21 patents for search
input, and had a professional organization conduct a search for similar patents.
We used other patents which we sampled at random from the same period, and
all of the patents found by this organization as a target document set.

A Study of Bayesian Clustering of a Document Set Based on GA 265

4.2 Experimental results: speed

We fixed the parameters relating to GA as follows, and examined the relation
between number of documents and processing speed.

M (number of documents extracted) 16
R (number of documents assigned to 128

leaf nodes)
Ng (number of generations) 10
Npg (number of genes per generation) 10
Rg (generation gap) 10
Crossing (number of bits to be changed) 3

Table 1 shows measured results for processing speed for HBC which is strict
clustering and the proposed method when the number of documents is varied.
It is seen that almost all of the processing time is taken up by merging clusters.

Table 1. Processing Time

Number of documents 50 100 250 500 1000 2500
HBC Merge part 10.47 43.16 303.97 1,172.64 4,378.84 25,044.56
(sec) Total 39.45 72.88 380.27 1,572.07 7,509.49 72,306.67

Proposed Merge part 604.04 3,183.04 6,230.81 7,150.97 13,896.17 52,608.81
method(sec) Total 1,747.34 4,555.79 7,929.94 11,692.47 28,267.38 92,279.07

Fig. 1 shows the merge frequency of clusters and the time required to merge
clusters for different numbers of documents. “Strict clustering” refers to HBC,
“GA based clustering” refers to the proposed method, the horizontal axis shows
numbers of documents and the vertical axis shows merge frequency and merge
time. From this it is found that whereas according to the conventional method
the merge frequency increases in direct proportion to N2, in the proposed method
it is directly proportional to N up to N = 250.

When M is small compared to N, there is a larger proportion of clustering
using GA. Hence in the proposed method when N = 500, there is a sharp rise
in the number of gene evaluations and the merge frequency appears to sharply
increase. However it is expected that although the merge frequency increases
overall when the value of M is increased, the change-over point will be slightly
later.

4.3 Experimental results: precision

To determine the search precision, we found the Recall/Precision considering the
patents cited by the professional organization to be correct answers. The search
covered 250 patents including all the patents which were correct answers found
by inputting the above 21 patents.

266 Keiko Aoki et al.

Fig. 1. Merge Frequency and Merge Time

The experimental results are shown in Fig. 2. “Exhaustive” is the result of a
exhaustive search without using a cluster, “top-down” is the result of a search
corresponding to Iwayama’s top-down approximation algorithm when clustering
was performed by extracting M documents at random using GA, “GA based”
is the result when clustering was performed with 16 generations and 50 genes.
As a result, the proposed method achieves a higher precision than a top-down
approximation search.

Fig. 2. Measured results of clustering precision

A Study of Bayesian Clustering of a Document Set Based on GA 267

5 Conclusions

In this paper, we measured clustering performance using the proposed method.
It was found that according to the proposed method, the number of merges of
clusters was reduced from O(N2) to O(N), and the time required for one merge
could be maintained substantially constant regardless of N.

Also, we determined precision by Recall/Precision to verify that there was
no deterioration of precision due to increased speed. As a result, it was found
that the precision of the proposed method is higher than that of “top-down
approximation clustering” which is a type of approximation clustering proposed
by Iwayama et al, and that GA functioned effectively.

References

1. Makoto IWAYAMA, Takenobu TOKUNAGA: A Probabilistic Model for Text Cat-
egorization: Based on a Single Random Variable with Multiple Values. Proceedings
of 4th Conference on Applied Natural Language Processing, pp.162-167, 1994.

2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley(1989).

3. Yutaka TANAKA, Kazuaki Wakimoto: Statistical Analysis of Large Volumes of
Information. Modern Mathematics Society, 1983.

4. Makoto IWAYAMA, Takenobu TOKUNAGA: Hierarchical Bayesian Clustering for
Automatic Text Classification. Proceedings of IJCAI-95, pp.1322-1327, 1995.

5. IWAYAMA, TOKUNAGA, SAKURAI: Large-Scale Clustering for Document
Search. 3rd Annual Meeting of Institute of Language Processing of Japan (March
1997), pp. 245-248, 1997.

6. ITOH, KAWABATA: Universal Data Compression Algorithm using Parameter Dis-
persion and Estimation Amount. 8th Conference on Information Theory and Ap-
plied Research, p.239-244, 1985.

7. Aho, Hopcroft, Ullman: The Design and Analysis of Computer Algorithms. p.54,
Addison-Wesley Pub. Co., 1974.

8. AOKI, MATSUMOTO, HASHIMOTO: Evaluation of Clustering Methods for Large
Volumes of Documents. 56th Meeting of the Institute of Information Processing of
Japan (first semester, 1998), 3-100, 1998.

An Evolutionary Approach in Quantitative
Spectroscopy

Phil Husbands1 and Pedro P.B. de Oliveira2

1 COGS, University of Sussex, UK
philh@cogs.susx.ac.uk

2 Universidade do Vale do Paráıba, Brazil
pedrob@univap.br

Abstract. This paper describes investigations into using evolutionary
search for quantitative spectroscopy. Given the spectrum (intensity �
frequency) of a sample of material of interest, we would like to be able to
infer the make-up of the material in terms of percentages by mass of its
constituent compounds. The problem is usually tackled using regression
methods. This approach can have various difficulties. We have cast the
problem as an optimisation task. Using a hybrid of distributed genetic
algorithm with a local search around the best individual of the popula-
tion, very good results have been found, even with noise, for a number of
different instances of the problem, with variations in the range between
6 and 16 constituent compounds. The stochastic optimisation approach
shows great promise in overcoming many of the problems associated with
the more standard regression techniques.

Keywords: Genetic algorithm, quantitative spectroscopy.

1 Introduction: The Problem

Given the spectrum (intensity × frequency) of a sample of material of interest, we
would like to be able to infer the make-up of the material in terms of percentages
by mass of its constituent compounds. This is illustrated in Figure 1.

A x + B x + C x=

I

f

I

f

I

f

I

f

source material compound 1 compound 2 compound 3

....

Fig. 1. The problem. Given the spectra, what is the make-up of the source material in
terms of the percentages by mass of its constituent compounds?

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 268–275, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

An Evolutionary Approach in Quantitative Spectroscopy 269

This important problem in quantitative spectroscopy, occurring widely in
medicine and the chemical industries, is officially referred to as quantitation. A
useful route into solving the problem comes in the form of the Beer–Lambert
Law [1,3]. Simply stated, it claims that when a sample is placed in the beam of a
spectrometer, there is a direct and linear relationship between the amount (con-
centration) of its constituent(s) and the absorbance of the sample (the amount
of energy it absorbs). It follows directly from this that the source material’s
spectrum is a linear combination of its constituents’ spectra. This law forms the
basis of nearly all chemometric methods for spectroscopic data. If the constituent
compounds’ spectra are known, then we can cast the problem as an optimal line
fitting exercise of a special kind. Essentially the constituents’ spectra are used
as basis functions. The problem is to find the coefficients, ai, in the following
equation (the spectra have all been normalised to equate to the same reference
concentration): source spectrum =

∑N
i=1 ai × spectrumi , where 0 ≤ ai ≤ 1.

There are several different versions of this problem. The simplest is where the
set of N constituent compounds is known. The problem is to find the proportions
of each in the source material. In the second version of the problem the number
of constituent compounds is not known. However, the set of compounds from
which the constituents might be drawn is known. In the third and hardest version
of the problem neither the number of constituents or the full set from which they
might be drawn is known. In all version of the problem spectrum noise must be
taken into account. We will concentrate on the first version of the problem for
the rest of this paper.

The standard way of tackling the problem is to use one of the data fitting
techniques based on regression ([7,6]). Although varying in complexity and scope,
there is not one single method that is undeniably the best across all possibili-
ties of spectral analysis. All in all, the more sophisticated the method, the more
mathematical and complicated it becomes, often introducing mathematical ar-
tifacts that may compromise the quality of solution, and the speed of execution.

A typical problem that all these methods can produce unreliable solutions
for, will involve a fairly large number of constituent compounds (> 15), with ex-
tensively overlapping spectra, where many of the compounds make up a similarly
small fraction of the whole (about 1%) — typically there will be singularities in
the analytic solutions [8].

However, the quantitation problem can be alternatively cast as an optimisa-
tion problem. Namely, find the set of ais that minimises the difference between
the source spectrum and that composed of the constituent spectra multiplied by
their respective ais. In general, the search space will be very large and complex,
so simple gradient methods are unlikely to do well.

This paper describes our investigations into using stochastic search (hybrid
GA/local search) to tackle the problem. As far as we know, this is the first time
the quantitation problem has been treated as an optimisation task. Evolutionary
search has been used on data fitting problems before (e.g. [5]), but not on this
kind of task with complex non-analytic basis functions and strong constraints.

270 Phil Husbands and Pedro P.B. de Oliveira

The evolutionary computation approach being developed is intended as an al-
ternative approach to quantitative spectroscopy, one that avoids the drawbacks
of the standard methods, while bringing the additional promise of being able to
address problems that affect even the current best methods, for instance their
very weak ability to handle samples with constituents not present in the original
calibration mixtures. Evolutionary computation seems to be a natural way to
tackle the latter problem, with its ability to handle variable-length genotypes
that would represent the concentrations of a variable number of constituents.

It would be desirable to compare the evolutionary method with current tech-
niques for this problem. However, since much of the software is proprietary and
linked to special apparatus, this comparison was left as the next stage of the re-
search. The aim of the present work is to establish whether or not evolutionary
computation can be used at all. If it can find accurate solutions to hard instances
of the problem, it must be considered a serious new candidate for this important
class of problems.

2 The Encoding

A solution to the problem as outlined in the previous section is clearly a set of
ais, the proportion by mass of the constituents of the source material. A direct
encoding for use with a GA could just be a string of N real numbers representing
the ais. However, the ais are all interrelated by the constraint

∑N
i=1 ai = 1, which

just reflects the obvious fact that the sum of all proportions by mass must equal
unity. This constraint would invalidate nearly all solutions created by simple
versions of GA operators, such as crossover and mutation, acting on a direct
encoding. In the direct encoding we effectively have maximum epistasis. This
means that either an indirect encoding must be found or appropriate genetic
operators must be developed.

For this initial study a simple indirect encoding was devised for use with
simple cheap genetic operators. In this encoding a genotype is a string of real
numbers: genotype = x1 x2 x3 xN where, 0 ≤ xi ≤ 100 (any upper
limit could be used, 100 having been chosen for convenience). This is the only
constraint on the values of xi. Figure 2 illustrates how this is decoded into a
candidate solution.

First the xis are mapped onto the real interval [0, 100]. The constituent
fractions, the ais, are then allocated as the sub-interval to the right of each xi

position on the line interval. The rightmost xi is treated differently; the sub-
interval to the its right is calculated by wrapping round to the leftmost xi; in
this way it is guaranteed that the constraint mentioned above is obeyed.

This encoding was found to work well. A normalised encoding, where the
ais were calculated from N xis, directly encoded on the genotype as reals in the
range [0,100], by dividing each xi by the sum of all xis on the genotype, was
found to work well – but not as well as the encoding presented here.

An Evolutionary Approach in Quantitative Spectroscopy 271

x1 x2 x3

0.0 a2 100.0

x4 x5 x6 x7

a6

x3 x4 x7 x5 x2 x6
a3

x1
a1 a4 a7 a5

Fig. 2. Decoding the genotype. First the xis are mapped onto the real interval [0,100],
then the ais are given by the sub-interval to the right of xis position on the line. The
full interval is treated as circular with the end wrapping round to the beginning.

3 Cost Function

Let us assume that a spectrum S is represented by a discrete set of m points,
as follows: S = {s1, s2, s3, . . . , sm} . Hence, both the spectra of target materials
and of the constituent compounds are stored as sets of m points; in the study
presented below synthetic data was used, generated as sets of m = 500 points.
A candidate solution spectrum,

∼
S, is built up from the set of ais through the

relation
∼
S = {∑N

j=1 aj× ∼
sji} , i = 1, 2, 3, . . . , m , where {∼

sj1,
∼
sj2,

∼
sj3, . . . ,

∼
sjm

) =
∼
Sj is the spectrum of the jth constituent compound. The cost of a solution

is just the squared difference between the target spectrum (
∧
S) and the candidate

spectrum (
∼
S), that is: C(

∼
S) =

∑m
i=1(

∧
si − ∼

si)2. Minimisation of this function
will provide a set of ais that can account for the observed spectrum. Whether
or not it is the right set will depend on whether or not there is a many to one
mapping to sets of ais to spectra. Investigating this question was an important
part of this research and it shall be discussed again in Section 5.

4 Implementation

The problem was tackled with the encoding and cost functions as described
above, using a distributed GA with local selection similar to that detailed in [2],
with a population of size 225 distributed over a 15x15 toroidal grid.

Recalling that the genotypes are just strings of real numbers (that is, geno-
type = x1 x2 x3 xN), simple one point crossover was used with a probability
of 0.9. Three forms of mutation were used. Type 1: a gene, xi, was mutated by
adding to it a random number from a uniform distribution over the range [-10.0,
10.0]. The probability of a gene mutating was set at 1.0/N, where N is the num-
ber of genes. Type 2: if a gene was to be mutated there was a 1 in 10 chance that
the random number added to it was taken from a uniform distribution over the
range [-40.0, 40.0]. If a mutation event of either of these two kinds caused a gene
value to exceed 100.0 or become negative, its value was calculated by treating

272 Phil Husbands and Pedro P.B. de Oliveira

x1 x2 x3

x6
0.0 100.0

x4 x5 x6 x7

iril

r1 r2

x3 x1 x4 x7 x5 x2

Fig. 3. Coupled mutation. The set of xis making up the genotype are ordered. Two
random points in this set, r1 and r2, are chosen. The whole of the section of the set
between r1 and r2 is moved to the right/left (50% chance) by some random fraction of
the subinterval immediately to the right/left (ir/il).

the range of possible values [0.0, 100.0] as a circular interval as described earlier.
Referring to Figure 2, the effect of this kind of mutation is to slide the relevant
gene up or down the line interval. This means that a single mutation is likely to
only affect a small number (usually 2) of ais given the decoding scheme used.
Type 3 is a little more complicated and shall be referred to as coupled mutation.
Its workings are illustrated in Figure 3. It is a problem specific operator that
proved to be very powerful.

In order to achieve the operation illustrated in the diagram, each of the xis
between the random points r1 and r2 are each increased or decreased by the
same amount. This means that the subintervals in this section of the ordered
set are not altered. Hence, the ais specified by this part of the ordered set are
unchanged. Only the intervals above and below the specified section are altered;
one increases by exactly the same amount the other decreases. This has the
effect on the solution of randomly choosing two constituent compounds and
increasing the proportion of one while decreasing the proportion of the other
by the same amount. Although type 1 and type 2 mutations can also have this
effect it is less likely that every possible ‘coupling’ will be ‘tweaked’ in this way.
Type 3 mutation was applied with a probability of 0.2 per genotype. Coupled
mutation was also used as the operator at the heart of the local search algorithm
incorporated into the GA. Heuristically motivated problem specific encodings
and operators are becoming more and more popular in GA application [4], and
can often produce significant improvements in performance. After every pseudo-
generation a simple local search algorithm – using the coupled mutation operator
– was run (200 times) on the fittest individual in the population. If a better
solution was found using this algorithm, it replaced the original best solution
and the GA continued running. The addition of this local search was found to
be quite effective, speeding up the search, particularly in the early stages. Run
by itself, it produced fairly poor results.

An Evolutionary Approach in Quantitative Spectroscopy 273

5 Results

A number of synthetic problems were randomly generated by means of random
reference constituent spectra. The number, height and width of peaks were cho-
sen randomly (but setting the value of the highest possible peak). The proportion
of the constituents in the target compound were then randomly generated and
the resulting linear sum of spectra (the target material spectrum) was created.
In this way a large number of test problems were created with varying numbers
of constituent compounds and also with varying amounts of noise introduced
into the data. In all of the problems the number of constituents were known, as
well as the set of constituents.

Using this setup, very good results were consistently found. The problems
used between 6 and 16 constituent compounds. Note that a problem size of 16 is
considered to be very large in this area. The distributed GA incorporating local
search on the best individual was able to consistently find solutions with almost
zero cost in terms of spectrum difference – these always turned out to be correct
to two or three sig. figs. on all the compound percentages.

A number of baseline experiments were carried out on the problems detailed
below. Random search was applied to each. Not surprisingly, it only ever found
very poor solutions. Local gradient descent was also tried. The coupled mutation
operator described earlier was exhaustively run in small steps on all pairs of ais
in a solution. This created the set of nearest neighbours. The best of these was
moved to until no further progress was made. This was much better than random
search and often found fairly good solutions. However, they were never down in
the very low regions the GA was able to reach. Lastly, running the GA without
the local search generally resulted in good solutions. However, they were not as
reliably excellent as with the local search in combination with the GA.

No noise. The first set of experiments involved problems of size 6, 8, 12 and
16 where there was no noise on the spectral data. Results are shown in the first
half of Table 1. A single random problem was generated for each size and 25
runs of 300 generations were performed on each of these. The left-hand columns
of the table show the cost of the worst, average and best solutions found. This
cost is just the spectra difference measure used in the cost function detailed
earlier. The right-hand columns show the corresponding differences between the
set of constituent percentages in the target and those given by the solution. This
difference (referred to as composition error), is the root mean square difference
between the vector of ais given in the solution (

∼
ai) and the actual percentages

(
∧
ai), that is: Error =

√∑N
j=1 (

∧
ai − ∼

ai)
2

.
We can see that both sets of errors are reduced to very low values. The

good news is that reducing the spectra difference (the only thing available from
observable data) does result in solutions that give the constituent percentages to
a very high level of accuracy (2 or 3 sig. figs.). The important thing to know is
that once the composition error goes below about 0.08, the solutions are almost
exactly correct; above this level some of the percentages are not quite right. There
is a very strong correlation between where the solution costs (spectra difference)

274 Phil Husbands and Pedro P.B. de Oliveira

Number 25 runs on 1 random problem 1 run on 25 random problems
of Spectrum error Composition error Spectrum error Composition error

Components Worst Avg. Best Worst Avg. Best Worst Avg. Best Worst Avg. Best
6 5.3 2.6 1.0 0.08 0.04 0.02 5.5 2.5 1.0 0.1 0.05 0.02
8 7.2 3.2 1.0 0.09 0.04 0.02 6.8 3.2 0.0 0.09 0.05 0.02
12 10.2 7.3 1.0 0.13 0.06 0.04 11.4 7.8 1.0 0.17 0.08 0.03
16 12.5 7.4 1.0 0.18 0.07 0.04 13.9 7.4 1.0 0.19 0.07 0.04

Table 1. In the first half of the table, a different random problem, of the appropriate
size, was generated for each row; the results given are taken from 25 runs on the single
problem, and refer to the best solution found in a single run. In the second half of the
table, for each row, 25 random problems were generated, of the appropriate size; the
results given are taken from a single run of each of the 25 problems, and refer to the
best solution found in a single run. Each run lasts 300 generations.

go below about 12.0 and where the accuracy of the constituent percentages
becomes extremely high. If this had not been the case the method would not be
applicable. Results from the first half of Table 1 show that the method is reliable
– every single run gave a very accurate solution.

The second half of Table 1 gives results averaged over single runs of 25
problems each for the four different sizes. Again the results are very good. These
sets include very difficult problems such as 16 constituent compounds where
most are only present in amounts between 0.5% and 1.0% and a few dominate
the mixture with much higher percentages (something like 35% or 50%). Even in
these cases the evolutionary method finds solutions where all the percentages are
correct to a fraction of a percent of the true value. It is important to note that
these results are far more accurate than standard methods are able to achieve.

Noise. The second set of experiments involved adding noise to the spectral
data, making them unreliable. Amounts of 2% and 5% noise were added to
the problem from the first half of Table 1. Every time a spectrum was used
in an evaluation its points were randomly moved within these limits giving a
slightly different version every time. Each evaluation was repeated 5 times and
the average cost was used in the selection algorithm. As can be seen in Table 2,
the results are a little worse than with no noise, but not much. The important
thing is that the best solutions are still accurate in terms of the percentages of
the constituents. The fact that this method inherently uses the whole spectrum,
helps in averaging out the effects of noise. This is a very promising result as all
real data is noisy.

6 Conclusions

This paper has described initial investigations into casting the spectroscopy
quantitation problem as an optimisation task and tackling it with stochastic
search. Results are very promising. The method can find very accurate solutions

An Evolutionary Approach in Quantitative Spectroscopy 275

Number 2% Noise 5% Noise
of Spectrum error Composition error Spectrum error Composition error

Components Worst Avg. Best Worst Avg. Best Worst Avg. Best Worst Avg. Best
6 7.4 4.6 1.7 0.1 0.06 0.03 10.1 5.5 1.9 0.3 0.1 0.06
8 9.2 5.1 1.0 0.13 0.05 0.03 11.2 6.2 1.3 0.18 0.12 0.06
12 11.3 7.4 1.0 0.15 0.08 0.05 13.3 8.4 2.0 0.21 0.18 0.06
16 12.8 7.7 1.0 0.19 0.08 0.04 13.8 8.6 2.0 0.22 0.16 0.05

Table 2. These results are for the same problem as in the first half of Table 1, but with
2% and 5% noise added. See text for further details.

to large hard noisy problems, and appears to be general. It is conceptually sim-
pler than the standard methods used and does not appear to suffer from the
problems that plague many of these methods (unreliable solutions for certain
classes of problem, or solutions that are difficult to interpret).

As already mentioned, an alternative normalised encoding was also tried.
However, empirical evidence showed that the results were a little worse with this
alternative decoding scheme. Importantly, very good results were only achieved
for both encodings as long as a coupled mutation operator was used. Hence, the
heuristically motivated coupled mutation appears to be a key issue in the success
of the approach described. Future work will tackle problems where the number
of constituents are not known in advance.
ACK.: This work was supported by grants from FAPESP (96/7200-8), The
British Council (SPA/126/881) and CNPq (300.465/95-5). We thank P.Bargo
for conversations on spectroscopy and M.T.Pacheco for suggesting the problem.

References

1. J. J. Baraga. PhD thesis, Massachusetts Institute of Technology, 1992.
2. R. Collins and D. Jefferson. Selection in massively parallel genetic algorithms. In

R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth Intl. Conf. on
Genetic Algorithms, ICGA-91, pages 249–256. Morgan Kaufmann, 1991.

3. Galactic Industries Corporation. http://www.galactic.com/galactic/Science/algo.htm.
Web Site, 1996.

4. C. Kappler, T. Back, J. Heistermann, A.V. Velde, and M. Zamparelli. Refueling of
a nuclear power plant: Comparison of a naive and a specialized mutation operator.
In Proc. of PPSN IV, volume LNCS, 1141, pages 829–838. Springer, 1996.

5. J. Koza. Genetic Programming: On the programming of computers by means of
natural selection. MIT Press, 1992.

6. E.H. Malinowski and D.G. Howery. Factor Analysis in Chemistry. John Wiley,
1980.

7. H. Mark. Analytical Chemistry, 58:2814, 1986.
8. W. Press, W. Vetterling, S. Teukolsky, and B. Flannery. Numerical recipes in C

(2/e). CUP, 1992.

Evolutionary Recognition of Features
from CAD Data

Yasuhiro Tsujimura and Mitsuo Gen

Department of Industrial and Information Systems Engg.
Ashikaga Institute of Technology

268-1 Ohmae-cho, Ashikaga 326-8558, Japan
Phone: +81(284)62-0605 Fax: +81(284)64-107

E-mail: tujimr@ashitech.ac.jp

Abstract. This paper proposes a method based on evolutionary compu-
tation for recognizing features of CAD data. Feature-based chromosome
scheme is developed in which its locus corresponds to two features of
CAD data provided by using the Boundary Representation method. The
efficiency of the proposed method is shown through experimental results.

Keywords. CALS (Continuous Acquisition and Lifecycle Support), Evo-
lutionary Computation, CAD (Computer Aided Design), Boundary Rep-
resentation Method

1 Introduction

Recently, a lot of companies integrate CAD/CAM system to enhance the product
quality and productivity, and to reduce overall product life cycle cost. However,
practical CAD data are usually very large and complex, so integration of a
CAD/CAM system to a practical production system is very difficult due to a
difficulty to store such large actual CAD data in a computer system.

To eliminate the difficulty, possible common data in all the CAD data are
shared. Sharing common data among the large number of CAD data can reduce
amount of whole the CAD data. The common data to be shared can be obtained
by recognizing features of the CAD data, i.e., the common data are the features
themselves. Such a feature recognition problem can be stated as a combinatorial
optimization problem, which must consider huge number of combinations [1].

In this paper, we propose a method to recognize features from CAD data
using Evolutionary Computation (EC) for sharing CAD information [2][3]. In
the proposed method, we employ the Boundary Representation method to de-
velop feature-based representation scheme. This scheme is based on two kinds
of information derived from CAD data by using the Boundary Representation
method, and is developed as a suitable one for recognizing the features of CAD
data. Furthermore, the efficiency of the proposed method is demonstrated using
some simplified CAD data.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 276–284, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolutionary Recognition of Features from CAD Data 277

2 Boundary Representation of Solid Model

The solid model shown in Figure 1 can be illustrated as Table 1 by using the
Boundary Representation method [4]-[6]. The values of Face Type (FT) and
Edge Type (ET) in Table 1 are given by Table 2. Neighboring Face Loop (NFL)
represents the relationship between the face and neighboring faces.

F1
F2

F3

F4

F5

F6

F7

F8 F9

F10

Fig. 1. Solid model

Table 1. Illustration of solid model using Boundary Representation

Face FT nE NFL (ET) FS
F1 1 4 F7(1) - F8(1) - F9(1) - F2(1) 1.0
F2 1 4 F7(1) - F1(1) - F9(1) - F3(1) 1.5
F3 1 4 F7(1) - F2(1) - F9(1) - F4(1) 2.0
F4 1 4 F7(1) - F4(1) - F9(1) - F5(1) 1.5
F5 1 4 F7(1) - F5(1) - F9(1) - F6(1) 1.0
F6 1 4 F7(1) - F5(1) - F9(1) - F10(1) 1.0
F7 1 8 F1(1) - F8(1) - F10(1)- F6(1) - 1.0

F5(1) - F4(1) - F3(1) - F2(1)
F8 1 4 F7(1) - F1(1) - F9(1) - F10(1) 1.0
F9 1 8 F1(1) - F2(1) - F3(1) - F4(1) - 1.0

F5(1) - F6(1) - F10(1)- F8(1)
F10 1 4 F7(1) - F5(1) - F9(1) - F5(1) 1.0

Table 2. Types of Face and Edge

Face Type Edge Type
Plane 1 Straight 1

Cylinder 2 Ellipse 2
Cone 3 Circle 3
Torus 4
Sphere 5

278 Yasuhiro Tsujimura and Mitsuo Gen

Face Score (FS) is used to measure the face complexity based upon the con-
vexity or concavity of the solid model. Face Score can be calculated by equation
(1), where Average Edge Score (AES) is given by equation (2), and Angle Score
(AS) is the score of edge for its angle (see Figures 2 and 3).

FS = 12 ∗ (ET ∗ AS) + AES (1)

AES =
∑

(ET ∗ AS)
nE

(2)

where nE is the number of edges.

Edge Score

Fig. 2. Concept of Edge Score

0

2

4

90 180 270 360
0

Edge Score

Angle
Score

Convex Edge Concave Edge
Smooth Edge

Fig. 3. Illustration of Angle Score

3 Evolutionary Computation Approach

3.1 Chromosome Representation and Initialization

When comparing the target model with a reference model, we must consider all
combinations of faces between the target and reference models. In this paper, to
deal with such numerous combinations, we use the random key representation
for encoding [7]. The random key representation encodes a solution with random
numbers.

The allele tackles a random decimal number from an open interval (0,1).
Here, the allele is only used as keys for sorting in descending order. The locus
corresponds to two features: FS of each face and the Average Face Score (AFS)
of NFL (see equation (3)).

AFS =
∑

FS of Neighboring Face
The Number of Neighboring Face

(3)

For example, the solid model shown in Figure 1 can be coded into the feature-
based chromosome shown in Figure 4. In Figure 4, the reference list can be
obtained by sorting the keys of these features in descending order. The reference
list is compared with every reference model stored in database on both FS and

Evolutionary Recognition of Features from CAD Data 279

1.000 1.500 2.000 1.500 1.000 1.000 1.000 1.000 1.000 1.000

1.125 1.125 1.125 1.125 1.125 1.000 1.125 1.000 1.125 1.000

[0.51 0.25 0.47 0.98 0.72 0.09 0.86 0.36 0.18 0.74]

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
FS

AFS
chromosome

sort in descending order

[F4 F7 F10 F5 F1 F2 F8 F2 F9 F6]
reference
 list

0.98 0.86 0.74 0.72 0.51 0.47 0.36 0.25 0.18 0.09

Fig. 4. Chromosome representation

Fig. 5. An example of crossover operation

AFS of NFL, and then one of the reference models which matches the most can
be obtained.

The number of genes is as many as the number of faces. Various chromosomes
can prepare various orders for comparing the target model with a reference
model.

In the initialization phase, pop size (the population size) chromosomes are
generated randomly as the initial population.

3.2 Crossover

The arithmetical crossover [7] is employed as crossover operator. The arithmeti-
cal crossover is defined as a convex combination of two vector. If the constraint
set is convex, this operation ensures that children are feasible if both parents are
feasible. For a pair of parents p1 and p2, the crossover operator can produce two
offspring o1 and o2 as follows:

o1 = λ × p1 + (1 − λ) × p2

o2 = λ × p2 + (1 − λ) × p1

where λ is randomly generated from (0,1). An example is shown in Figure 5.
Note that we choose two chromosomes, which have same length, as the parents.

Changing p1 and p2 each other, the other offspring o2 can be obtained by
applying the same manner.

280 Yasuhiro Tsujimura and Mitsuo Gen

3.3 Mutation

Mutation is designed to perform the swapping mutation [7], i.e., it selects two
genes randomly in a chromosome and exchanges their positions. An example is
shown in Figure 6.

[0.51 0.25 0.47 0.98 0.72 0.09 0.86 0.36 0.18 0.74]

[0.51 0.86 0.47 0.98 0.72 0.09 0.25 0.36 0.18 0.74]

p

o

Fig. 6. An example of mutation operation

3.4 Evaluation and Selection

A chromosome (a target solid model) is evaluated by comparing its FS and AFS
lists with ones of a reference solid model. If the length of two lists (the number of
faces) of the target solid model is different from one of the reference solid model,
add dummy variables to the shorter FS and AFS lists to make the lengths of all
the lists equal. An example of this adjustment is shown in Figure 7.

Fig. 7. Adjustment of the lengths of FS and AFS lists

The evolution is controlled by the following evaluation function.

Sfsi = |Rfsi − Tfsi| (4)
Safsi = |Rafsi − Tafsi| (5)

∆ =
nF∑
i=1

Si (6)

Si =

1 ; δ1 > Sfsi and δ2 > Safsi

0 ; Both Sfsi and Safsi are dummy variables,
or (δ1 ≤ Sfsi or δ2 ≤ Safsi)

i = 1, 2, . . . , nF

Evolutionary Recognition of Features from CAD Data 281

where Rfsi is the FS of face i for reference solid models, Tfsi is the FS of face
i for target solid models, Rafsi is the AFS of face i in NFL for reference solid
models, Tafsi is the AFS of face i in NFL for target solid model, ∆ is the total
agreement degree, nF is the number of faces, and δ1, δ2 are threshold values.
The total agreement degree ∆ is used as the fitness of a chromosome, and the
roulette wheel approach [7] is employed at the selection phase.

4 Numerical Experiments

4.1 Experiment 1

In order to verify the basic ability of the proposed method, we tested our method
by recognizing a target solid model given in Figure 8 among the reference models
shown in Figure 9. There are 6 reference models, and all of them have the same
number of faces as the target model (nF = 10).

The parameters for genetic algorithm, which are the experimentally best
tuned values, are set as: population size pop size = 5, maximum generation
maxgen = 1000, crossover rate pc = 0.2, mutation rate pm = 0.7, and the
threshold values δ1 = 0.1, δ2 = 0.15. To verify the robustness of the proposed
method, we used such a small population size (=5), even though it restricts the
performance of the method.

The result is summarized in Table 3, where the result is obtained by averaging
results among 100 runs. In Table 3, a reference model D was recognized as the
fittest one with high frequency in 100 runs. Table 3 also includes the results
obtained by using EC employing only FS in the evaluation phase.

4.2 Experiment 2

We tested our method using more complex problem, i.e., recognizing a target
solid model among the 16 reference models given in Figure 10.

The evolutionary parameters were set as follows: population size pop size =
20, maximum generation maxgen = 5000, crossover rate pc = 0.5, mutation
rate pm = 0.7, and the threshold values δ1 = 0.1,δ2 = 0.15. We prepared 16
solid models (A∼P) shown in Figure 10. One solid model among the 16 models

F1
F2

F3
F4

F5
F6

F7
F8

F9

F10

Fig. 8. Target solid model

282 Yasuhiro Tsujimura and Mitsuo Gen

Fig. 9. Reference models

Fig. 10. 16 solid models for the Numerical Experiment

was used as the target model, and the remaining 15 models were used as the
reference models. Every A∼P models were used as the target.

The results were summarized in Table 4, where each result was obtained
as the average among 100 runs. This table shows that the proposed EC-based
method could recognize the appropriate model(s) with high probability in most
cases.

5 Conclusions

In this paper, we proposed the new feature recognition method of CAD data us-
ing EC. And we demonstrated the effectiveness of the proposed method through
an experimental result.

The result showed a good ability of our method for feature recognition. For
feature study, we will improve the proposed method to deal with more complex
solid models.

Evolutionary Recognition of Features from CAD Data 283

Table 3. Results of recognition (1)

Using FS and AFS Using only FS
Result Frequency Average Average Frequency Average Average

Fitness Generation Fitness Generation
B 24/100 7.00 946.79 - - -
D 76/100 8.00 27.25 100/100 10.00 44.56

Table 4. Results of recognition (2)

Target Result Frequency Average Average
(nF) (nF) Fitness Generation
A(10) B(10) 96/100 8.00 413.906

H(9) 4/100 8.00 94.000
B(10) P(12) 56/100 8.00 201.964

A(10) 23/100 8.00 461.783
G(10) 19/100 8.00 300.579
J(8) 2/100 7.00 22.500

C(10) none
D(10) H(9) 100/100 7.00 44.280
E(10) I(8) 100/100 7.00 17.220
F(10) M(9) 100/100 6.00 51.280
G(10) P(12) 100/100 10.00 353.190
H(9) K(8) 53/100 7.00 25.566

D(10) 42/100 7.00 42.500
G(10) 3/100 7.00 21.330
A(10) 1/100 7.00 5.000
L(8) 1/100 7.00 10.000

I(8) K(8) 100/100 8.00 75.160
J(8) K(8) 88/100 7.00 37.318

B(10) 12/100 7.00 27.583
K(8) I(8) 100/100 8.00 72.740
L(8) G(10) 60/100 7.00 277.217

P(12) 23/100 7.00 287.348
F(10) 17/100 7.00 154.000

M(9) F(10) 100/100 6.00 28.310
N(11) none
O(11) none
P(12) G(10) 100/100 10.00 134.900

284 Yasuhiro Tsujimura and Mitsuo Gen

References

1. Chu-Chai Henry Chan: Artificial Neural-Network-Based Feature Recognition and
Grammar-Based Feature Extraction to Integrate Design and Manufacturing, Ph.D
Disser.. Univ. of Iowa. 1994.

2. Yasuhiro Tsujimura. Mitsuo Gen and Masaki Hiji: Feature Recognition of CAD
Data Using Evolutionary Computation, Proc. of 1997 Spring Meeting of JIMA,
pp.164-165. 1997.(in Japanese)

3. Yasuhiro Tsujimura. Mitsuo Gen and Masaki Hiji: Evolutionary Feature Recogni-
tion of CAD Data Employing Boundary Representation Method, Proc. of Third
International Symposium on Artificial Life, and Robotics, pp.39-42, 1998.

4. Nikkei CG ed.: New Foundation of CAD, Nikkei BP, 1996.(in Japanese)
5. Mamoru Hosaka and Toshio Sata: Integrated CAD/CAM System, Ohm Pub.,

1994.(in Japanese)
6. Yukinori Kakazu and Masasi Furukawa: Shape Disposal Engineering for

CAD/CAM/CG. Morikita Pub., 1995.(in Japanese)
7. Mitsuo Gen and Runwei Cheng: Genetic Algorithms and Engineering Design, John

Wiley & Sons, New York, 1997.

Modeling Strategies as Generous and Greedy in
Prisoner’s Dilemma Like Games

Stefan Johansson1, Bengt Carlsson1, and Magnus Boman2

1 Department of Computer Science and Business Administration, University of
Karlskrona/Ronneby, Soft Center, SE-372 25 Ronneby, Sweden

email {sja, bca}@ide.hk-r.se
2 Department of Computer and Systems Sciences, Stockholm University and the

Royal Institute of Technology, Electrum 230, SE-164 40 Kista, Sweden
email mab@dsv.su.se

Abstract. Four different prisoner’s dilemma and associated games were
studied by running a round robin as well as a population tournament,
using 15 different strategies. The results were analyzed in terms of def-
initions of generous, even-matched, and greedy strategies. In the round
robin, prisoner’s dilemma favored greedy strategies. Chicken game and
coordinate game were favoring generous strategies, and compromise di-
lemma the even-matched strategy Anti Tit-for-Tat. These results were
not surprising because all strategies used were fully dependent on the
mutual encounters, not the actual payoff values of the game. A popu-
lation tournament is a zero-sum game balancing generous and greedy
strategies. When strategies disappear, the population will form a new
balance between the remaining strategies. A winning strategy in a pop-
ulation tournament has to do well against itself because there will be
numerous copies of that strategy. A winning strategy must also be good
at resisting invasion from other competing strategies. These restrictions
make it natural to look for winning strategies among originally generous
or even-matched strategies. For three of the games, this was found true,
with original generous strategies being most successful. The most diverg-
ing result was that compromise dilemma, despite its close relationship to
prisoner’s dilemma, had two greedy strategies almost entirely dominat-
ing the population tournament.

Keywords: games, simulations, evolutionary stable strategies

1 Introduction

In multi agent systems the concept of game theory is widely in use. There has
been a lot of research in distributed negotiation [10], market oriented program-
ming [21], autonomous agents [19] and, evolutionary game theory [13] [14].

The evolution of cooperative behavior among self-interested agents has re-
ceived attention among researchers in political science, economics and evolution-
ary biology. In these disciplines, it has been used from a social science point of
view to explain observed cooperation, while in multi agent systems (MAS) it may

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 285–292, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

286 S. Johansson, B. Carlsson, and M. Boman

be used to try to create systems with a predicted cooperative behavior. In section
2 we look at prisoner’s dilemma like games and the Tit-for-Tat (TfT) strategy.

In evolutionary game theory [16], the focus has been on evolutionary stable
strategies (ESS). The agent exploits its knowledge about its own payoffs, but
no background information or common knowledge is assumed. An evolutionary
game repeats each move, or sequence of moves, without a memory. In many MAS,
however, agents frequently use knowledge about other agents. We look at three
different ways of describing ESSs and compare them to MAS. Firstly we treat the
ESS as a Nash equilibrium of different strategies. A Nash equilibrium describes
a set of chosen strategies where no agent unilaterally wishes to change its choice.
In MAS, some knowledge about the other agents should be accessible when
simulating the outcome of strategies. This knowledge (e.g., the payoff matrix of
another agent, and the knowledge that it maximises its expected utility) makes
it hard to predict the outcome of the actual conflict. Instead of having a single
prediction we end up with allowing almost any strategy. This is a consequence
of the so-called Folk Theorem (see, e.g., [9], [14]).

A game can be modeled as a strategic or an extensive game. The former is a
model of a situation in which each agent choose a plan of action once and for all,
and all agents’ decisions are made simultaneously while the latter specifies the
possible orders of events. All the agents in this paper use strategic strategies,
which we classify as generous, even-matched, or greedy. In section 3 the outcomes
for 15 different strategies are shown as an example of our classification.

Secondly the ESS can be described as a collection of successful strategies,
given a population of different strategies. An ESS is a strategy in the sense that if
all the members of a population adopt it, then no mutant strategy can invade the
population under the influence of natural selection. In an evolutionary context,
we can therefore simply calculate how successful an agent will be. The problem
is that this is not the same as finding a successful strategy in an iterated game
because in this game the agents are supposed to know the history of the moves.
Instead of finding the best one, we can try to find a possibly sub-optimal but
robust strategy in a specific environment, and this strategy may eventually be
an ESS. In section 4 a round robin tournament is held for prisoner’s dilemma like
games to see what kind of strategy that will do best and population tournaments
illustrate what succesful combinations there are.

Thirdly the ESS can be seen as a collection of evolved successful strategies.
It is possible to simulate a game through a process of two crucial steps: mutation
(changes in the ways agents act) and selection (choice of the preferred strate-
gies). Different kinds of evolutionary computations (see e.g., [11], [12]) have been
applied within the MAS society, but the similarities to biology are restricted.1 In
section 5 we introduce noise and the agents become uncertain about the outcome
of the game, even if they have complete knowledge about the context.

1 Firstly, EC, use a fitness function instead of using dominating and recessive genes.
Secondly, there is a crossover between parents instead of the meiotic crossover.

Modeling Strategies as Generous and Greedy 287

2 Prisoner’s dilemma like games

Prisoner’s dilemma [15], [17] was originally formulated as a paradox (in the sense
of that of Allais and Ellsberg) where the cooperatively preferable solution for
both agents, low punishment, was not chosen. The reason is that the first agent
did not know what the second agent intended to do, so he had to guard himself.
The paradox lies in the fact that both agents had to accept a high penalty in
spite of that cooperation is a better solution for both of them.

The one-choice prisoner’s dilemma has one dominant strategy, play defect. If
the game is iterated there will be other dominating strategies because the agents
have background information about previous moves. The iterated prisoner’s
dilemma (IPD) is generally viewed as the major game-theoretical paradigm for
the evolution of cooperation based on reciprocity.

When Axelrod and Hamilton [4], [3] analyzed the iterated prisoner’s dilemma
they found that the cooperating TfT strategy did very well against more defect-
ing strategies. All agents are interested in maximizing individual utilities and are
not pre-disposed to help each other. If an agent cooperates this is not because
of an undirected altruism but because of a reciprocal altruism [20] favoring a
selfish agent. The TfT strategy has become an informal guiding principle for
reciprocal altruism [1], [2].

Binmore [5] gives a critical review of the TfT strategy and of Axelrod’s sim-
ulation. He concludes that TfT is only one of a very large number of equilibrium
strategies and that TfT is not evolutionarily stable. On the other hand evolu-
tionary pressures will tend to select equilibrium for the IPD in which the agents
cooperate in the long run. In the next section we will look at an alternative
interpretation.

3 A simulation example

In a simulation we used the proportions of (C,C), (C,D), (D,C) and (D,D) to
analyze the successfulness of a strategy. We have developed a simulation tool in
which we let 15 different strategies meet each other The different strategies are
described in [7].

The tournament was conducted in a round robin way so that each strat-
egy was paired with each other strategy plus its own twin and a play random
strategy. Each game in the tournament was played on average 100 times (ran-
domly stopped) and repeated 5000 times. The outcomes are shown in figure 1
below where the percentage of (C,C), (C,D), (D,C) and (D,D) for each strat-
egy is shown. We will use the proportions of (C,C), (C,D), (D,C) and (D,D)
as ”fingerprints” for the strategy in the given environment, independent of the
payoff matrix. For some of the strategies this is true without any doubts: Al-
ways Cooperate (AllC) and Always Defect (AllD) have 100 per cent cooperate
(C,C)+(C,D) and 100 per cent defect (D,C)+(D,D) respectively. It is possible to
look at how the proportions of (C,D) compared to (D,C) form different groups
of strategies. TfT begins with cooperate and then does the same move as the

288 S. Johansson, B. Carlsson, and M. Boman

(C,C)

(C,D)

(D,C)

(D,D)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Alw
ay

s C
oopera

te
95%C

Tit f
or tw

o Tat

Grofm
an Fair

Sim
plet

on

Tit f
or T

at

Ran
dom

Anti T
it f

or T
at

Feld Jo
ss

Test
er

Dav
is

Frie
dman

Alw
ay

s d
efe

ct

��
�

���
�� �

�
�

� 	
�

�
� �
� 	�

�
� �

 	�
�

 �
� 	�

�
 �
 	

Fig. 1. Proportions of (C,C), (C,D), (D,C) and (D,D) for different strategies.

other player did last time. This means that (C,D)≈(D,C) for all payoff matrices
so the actual values do not matter. It is possible to treat the other strategies the
same way because none of them reflect upon their actual payoff value. We will
instead describe the strategies as generous, even-matched or greedy.

1. A generous strategy cooperates more than its partners do. This means that
(C,D)>(D,C) i.e. it is betrayed more often than it plays defection against a
cooperate agent itself.

2. An even-matched strategy has (C,D)≈(D,C). This group includes the TfT
strategy, always doing the same as the other strategy.

3. A greedy strategy defects more than its partners do. This means (C,D)<(D,C),
i.e., the opposite to a generous strategy.

The basis of the subdivision above is a zero-sum play. The sum of the strategies
(C,D) must equal the sum of the strategies (D,C), i.e., if there is a generous
strategy there must also be a greedy strategy. The classification of a strategy can
change depending on the surrounding strategies. Theoretically a lot of changes
are possible making a generous strategy become an even-matched or a greedy
strategy, or doing it in a reverse order. What will happen with a particular
strategy depends both of the surrounding and the character of the strategy. As
an example AllC will always be generous while 95%C will change to a greedy
strategy when there are only these two strategies left.

4 Simulating four different games

If we let the letters k, l, m and n be the payoffs for (C,C), (C,D), (D,C)
and (D,D) respectively in a symmetric game, the average payoff for a strat-
egy Eavg(strategy) is a function of the payoff matrix and the distribution of the

Modeling Strategies as Generous and Greedy 289

payoffs among the four outcomes.

Eavg(strategy) = p(C, C)k + p(C, D)l + p(D, C)m + p(D, D)n, (1)

where p(C, C) + p(C, D) + p(D, C) + p(D, D) = 1 (2)

The aim of the simulation is to test how different games behave in a round robin
tournament and in a population tournament. We used four different games,
prisoner’s dilemma (PD), chicken game, coordination game and compromise
dilemma games to illustrate the distributions among different strategies (see fig-
ure 2). Additional information about the results of the simulations, definitions of
the strategies, etc. can be found in [6]. It holds for all the games that (D,D) has

Prisoner’s dilemma Chicken Game Coordination Game Compr. Dilemma
C D C D C D C D

3, 3 0, 4 C 3, 3 1, 4 C 2, 2 0, 0 C 2, 2 2, 3
0, 0 1, 1 D 3, 2 1, 1

Fig. 2. Payoff matrices for prisoner’s dilemma, chicken game, coordination game and
compromise dilemma.

a lower payoff value than (C,C) and for three of the games that (D,C) has the
highest value. In an earlier paper we have examined the differences between PD
and chicken game [8]. Compromise dilemma is closely related to chicken game.
Coordination game is a game with two dominating strategies, playing (C,C)
or playing (D,D). Rapoport and Guyer [18] give a more detailed description of
possible 2 × 2 games.

We ran a round robin tournament with the 15 strategies for the four different
games described in figure 22. The greedy strategies Davis and Friedman are
doing well in PD while chicken game and coordinate game favor the generous
strategies AllC and Fair respectively Tf2T. Compromise dilemma favored the
counter intuitive strategy ATfT. In our classification TfT is regarded as an even-
matched strategy. There is no reason for believing PD to favor more generous
strategies than the rest of the games. Finding successful greedy strategies is well
in line with the hypothesis that PD, because of the given payoff matrices, is the
least cooperative game from the generous strategies point of view. The chicken
game is less greedy than PD because it costs more to play defect (0 instead of
1 in the (D,D) case). The most successful strategies AllC and Fair are both
generous. The coordinate game has the highest payoff value for (C,C), but it
also has a dominating (D,D) value. The generous Tf2T is doing the best but the
greedy strategies Davis and Friedman are also doing well compared to the other
games. Random and ATfT, two strategies with a big proportion of (C,D)+(D,C)
are doing very poorly in this game.In compromise dilemma (C,D)+(D,C) have

2 For a full description of the strategies, see [7]

290 S. Johansson, B. Carlsson, and M. Boman

high scores which favor the two even-matched strategies Random and ATfT 3.
ATfT has the biggest proportion of (C,D)+(D,C) making it a winning strategy.

In a population tournament different strategies compete until there is only
one strategy left or until the number of generations exceed 10.000. Because of
changes in the distribution of strategies between different generations it is not
possible to rely on previous descriptions of the strategies. A generous strategy
can for example be greedy under certain circumstances. On average it must hold
that there is the same amount of greedy strategies as generous ones, forming
the even-matched strategies at the position of equilibrium. The population tour-
nament was run 100 times for the four different games. It took between 2100
(compromise dilemma) and 3400 (chicken game) on average to find a winner in
the game. At most a single strategy can win all the 100 times, but in our simula-
tion different strategies won different runs. In all, five strategies were not winning
a single game namely: 95%C, ATfT, Feld, Joss and Tester. For the compromise
dilemma, despite the fact that ATfT was the winner in the round robin tour-
nament, the strategy did not win a single game in the population tournament.
In the prisoners dilemma there is a change towards the originally more generous
strategies Tf2T and Grofman. This is also true for the coordinate game, which
also favors AllC, just as in the round robin tournament. For the chicken game
the same generous strategies are doing well as in the PD and the coordinate
game. The most surprising result is the almost total dominance of two greedy
strategies, Davis and Friedman in compromise dilemma. Both strategies have a
large proportion of (D,C) compared to (C,D) in the original round robin tour-
nament. We also found the generous strategies to be more stable in the chicken
game part of the matrix.

5 Noisy environment

In the next simulation, we introduced noise on four levels: 0.01, 0.1, 1 and 10%.
This means that the strategies change to the opposite move for this given per-
centage.

In compromise dilemma Friedman, a greedy strategy dominates the popu-
lation when the noise is 1% or below. ATfT is the second best strategy and
together with Fair and AllD replace Friedman with 10% noise. Unlike the rest
of the games there is a mixture of strategies winning each play for 0.1 to 10%
noise.

Two greedy strategies are doing well in PD with none or a small level of noise.
Davis is doing well without noise and Friedman with 0.01% noise. Simpleton, a
generous strategy, is dominating the population when the noise is 0.1% or more.

In chicken game three generous strategies, Tf2T, Grofman and Simpleton are
almost entirely dominating the population under noisy conditions. With increas-
ing noise Tf2T first disappears then Grofman disappears leaving Simpleton as
a single dominating strategy at 10% noise.
3 Neither of the strategies do have to be even-matched, it depends on the actual

surroundings.

Modeling Strategies as Generous and Greedy 291

Finally in coordination game three generous strategies, AllC, Tf2T and Grof-
man are winning almost all the games when noise is introduced. With 10% noise
AllC wins all the games.

6 Conclusions

We investigated four different PD like games in a round robin tournament and
a population tournament. The results were analyzed using our classification of
generous, even-matched and greedy strategies.

In the round robin tournament we found PD being the game which favored
greedy strategy the most. The chicken game and the coordinate game were favor-
ing generous strategies and compromise dilemma even-matched strategies. These
results are not consistent with the common idea of treating the PD as the most
important cooperating iterated game. We do not find these results surprising
because all the used strategies are fully dependent on the mutual meetings.

A more interesting investigation is to figure out what happens in a population
tournament. If a strategy is generous, even-matched or greedy it is so only in
a particular surrounding and will possibly change when the strategies change.
A winning strategy in a population tournament has to do well against itself
because there will be lots of copies of that strategy. A winning strategy must
also be good at resisting invasion from other competing strategies otherwise it
will be impossible to become a single winner.

These restrictions in a population tournament make it natural to look for
winning strategies among originally generous or even-matched (i.e. TfT) strate-
gies. For three of the games, the PD, the chicken game and the coordination
game, this is true with Tf2T and Grofman winning a big proportion of popula-
tion games. Contrary to what was advocated by Axelrod and others, TfT was
not among the most successful strategies.

The most divergent result was that compromise dilemma had two greedy
strategies, Davis and Friedman, almost entirely dominating the population tour-
nament. Both Davis and Friedman are favoring playing defect against a coop-
erate agent but unlike AllD they are also able to play cooperate against a co-
operate agent. Despite a close relationship to the PD, the compromise dilemma
finds other, more greedy, successful strategies.

When noise was introduced to the games, chicken game and coordinating
game almost entirely favored generous strategies. In PD and even more in com-
promise dilemma the greedy, Friedman strategy was doing well.

We think these results can be explained by looking at the original game ma-
trices. For chicken game (D,D) is doing the worst, favoring generous strategies.
Coordination game gives (C,C) the highest results which outscores greedy strate-
gies. PD is, compared to chicken game, less punishing towards (D,D) which al-
lows greedy strategies to become more successful. In compromise dilemma (C,D)
and (D,C) have the best scores making a balance between different strategies
possible.

292 S. Johansson, B. Carlsson, and M. Boman

Like ESS this description of MAS, as a competition between generous and
greedy strategies, tries to find robust strategies that are able to resist invasion
by other strategies. It is not possible to find a single best strategy that wins, but
it is possible to tell what kinds of strategies which will be successful.

References

1. R. Axelrod. Effective choice in the prisoner’s dilemma. Journal of Conflict Reso-
lution, 24(1):379–403, 1980.

2. R. Axelrod. More effective choice in the prisoner’s dilemma. Journal of Conflict
Resolution, 24(3):3–25, 1980.

3. R. Axelrod. The Evolution of Cooperation. Basic Books Inc., 1984.
4. R. Axelrod and Hamilton W.D. The evolution of cooperation. Science, 211, 1981.
5. K. Binmore. Playing Fair: game theory and the social contract. MIT Press, 1994.
6. B. Carlsson. Evolutionary models in multi-agent systems. Licentiate thesis, Lund

University, Department of Cognitive Studies, 1998.
7. B. Carlsson and S.J. Johansson. Generous and greedy strategies. In Proceedings

of Complex Systems ’98, 1998.
8. B. Carlsson and S.J. Johansson. An iterated hawk-and-dove game. In Pagnucco,

M. Wobcke, W. and Zhang, C., editors, Agents and Multi-Agent Systems, volume
1441 of Lecture Notes in Artificial Intelligence, pages 25–37. Springer Verlag, 1998.

9. D. Fudenberg and E. Maskin. The folk theorem in repeated games with discounting
or with incomplete information. Econometrica, 80(2):274–279, 1986.

10. M.R. Genesereth, M.L. Ginsberg, and J.S. Rosenschein. Cooperation without com-
munication. In Bond and Gasser, editors, Distributed Artificial Intelligence, pages
220–226. Kaufmann, 1988.

11. D.E. Goldberg. Genetic Algorithms. Addison-Wesley, 1989.
12. J.R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, 1992.
13. K. Lindgren. Evolutionary phenomena in simple dynamics. In Farmer, J. D.

Langton, C. G., Taylor, C. and Rasmussen, S., editors, Artificial life II. Addison
Wesley, 1991.

14. B. Lomborg. Game theory vs. multiple agents: The iterated prisoner’s dilemma.
In Castefranchi, C. and Werner, E., editors, Artificial Social Systems, volume 830
of Lecture Notes in Artificial Intelligence. Springer Verlag, 1994.

15. R.D. Luce and H. Raiffa. Games and Decisions. Dover Publications, 1957.
16. J. Maynard Smith. Evolution and the theory of games. Cambridge University

Press, 1982.
17. A. Rapoport and A.M. Chammah. Prisoner’s Dilemma A Study in Conflict and

Cooperation. The University of Michigan Press, 1965.
18. A. Rapoport and M. Guyer. A taxonomy of 2×2 games. In Yearbook of the Society

for General Systems Research, pages 203–214. 1966.
19. J.S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT Press, 1994.
20. R.L. Trivers. The evolution of reciprocal altruism. Quarterly Review of Biology,

46:35–57, 1971.
21. M.A. Wellman. A computational market model for distributed configuration de-

sign. In Proceedings of AAAI ’94. Morgan-Kaufman, 1994.

Using Genetic Algorithms to Simulate the
Evolution of an Oligopoly Game?

Shu-Heng Chen1 and Chih-Chi Ni2

1 AI-ECON Research Group
Department of Economics

National Chengchi University
Taipei, Taiwan 11623

E-mail: chchen@cc.nccu.edu.tw
2 AI-ECON Research Group
Department of Economics

National Chengchi University
Taipei, Taiwan 11623

E-mail: g2258503@grad.cc.nccu.edu.tw

Abstract. This paper extends the N-person IPD game into a more in-
teresting game in economics, namely, the oligopoly game. Due to its mar-
ket share dynamics, the oligopoly game is more complicated and is in
general not an exact N-person IPD game. Using genetic algroithms, we
simulated the oligopoly games under various settings. It is found that,
even in the case of a three-oligopolist (three-player) game, collusive pric-
ing (cooperation) is not the dominating result.
Keywords: Oligopoly, Cartels, Price Wars, Genetic Algorithms, State-
Dependent Markov Chain, Coevolution.

1 Motivation and Introduction

In the past, the prisoner’s dilemma was frequently applied to the study of collu-
sive pricing or predatory pricing. However, this application is largely restricted to
the duopoly industry because most economists are only familar with the 2-person
Iterated Prisoner’s Dilemma (IPD) game. In terms of the oligopoly industry, the
more relevant one should be the n-person IPD game, which economists are less
familiar with. Recently, the n-person IPD game was studied in Yao and Darwen
(1994). Using genetic algorithms (GAs), they showed that cooperation can still be
evolved in a large group, but that it is more difficult to evolve cooperation as the
group size increases. Considering this result as a guideline for the oligopoly pric-
ing probelm, then what the n-person IPD game tells us is that when the number
of oligopolists is small, say 3, it is very likely to see the emergence of collusive
? This is a revised version of a paper presented at The Second Asia-Pacific Conference

on Simulated Evolution and Learning in Canberra, Australia, 24-27 November, 1998.
The authors thanks two anonymous referees for helpful comments. Research support
from NSC grant NSC. 86-2415-H-004-022 is also gratefully acknowledged.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 293–300, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

294 Shu-Heng Chen and Chih-Chi Ni

pricing (cooperation). However, real data usually shows that, even in a three-
oligopolist industry, the observed pricing pattern is not that simple. (Midgely,
Marks and Cooper, 1996)

{ First, while collusive pricing is frequently observed, it is continually inter-
rupte by the occurence of predatory pricing (price wars).

{ Second, it is not always true that oligopolists are either collectively charging
high prices (collusive pricing) or low prices (price wars). In fact, a dispersion
of prices can persistently exist, i.e., some firms are charging a higher price,
whilst others are charging a lower price.

{ Third, the firms who charge a high price may switch to a low price in a later
stage, and vice versa.

These features seem to be difficult to be displayed in 3-person IPD games (See
Yao and Darwen,ibid, Figure 5). Therefore, one may reasonably conject that
the oligopoly game is not an exact n-person IPD game. While they share some
common features, there are other essential elements which distinguish these two
games.

In this paper, we consider the payoff matrix determined by the market share
dynamics as such an essential element. In Section 2, we propose a very simple
oligopoly game with 3 oligopolists. We then in Section 3 show that this setup
disqualify the oligopoly game from being an n-person IPD game. Due to the
non-equivalence of these two games, we use genetic algroithms to simulate the
evolution of oligopoly games in Sections 4 and 5. The simulation results are given
in Section 5, followed by concluding remarks in Section 6.

2 The Analytical Model

For simplicity, an oligopoly industry is assumed to consist of three firms, say
i = 1, 2, 3. At each period, a firm can either charge a high price Ph or a low
price Pl. Let at

i be the action taken by firm i at time t. at
i = 1 if the firm i

charges Ph and at
i = 0 if it charges Pl. To simplify notations, let St denote the

row vector (at
1, a

t
2, a

t
3). To characterize the price competition among firms, the

market share dynamics of these three firms are summarized by the following
time-variant state-dependent Markov transition matrix,

Mt =

mt

11 m
t
12 m

t
13

mt
21 m

t
22 m

t
23

mt
31 m

t
32 m

t
33

 (1)

where mt
ij , the transition probability from state i to state j, denotes the pro-

portion of the customers of firm i switching to firm j at time period t. Let nt
i

(i=1,2,3) be the number of customers of firm i at time period t, and Nt the row
vector [nt

1, n
t
2, n

t
3]. Without loss of generality, we assume that each consumer will

purchase only one unit of the commodity. In this case, Nt is also the vector of

Using Genetic Algorithms to Simulate the Evolution of an Oligopoly Game 295

quantities consumed. With Nt and Mt, the customers of each firm at period t+1
can be updated by:

Nt+1 = NtMt (2)

To see the effect of price competition on the market share dynamics, the
transition probabilities mt

ij are assumed to be dependent on the pricing strategy
vector St. If three firms charge the same price, then Mt is an identity matrix.
Furthermore, if firm i charges Ph, then it will lose α

2 percent of its consumers
each to firms j and k, who charge Pl. Furthermore, if firms i and j charge Ph,
then they each will lose α percent of their consumers to firm k, who charges Pl.

Given these state-dependent transition matrices, Equation (2) can be rewrit-
ten as:

Nt+1 = NtMt(St), (3)

where St = (at
1, a

t
2, a

t
3) and at

i ∈ {0, 1}.
Equation (3) summarizes the intra-industry competition given a number of

customers nt =
∑3

i=1 n
i
t. The next step of our modeling is to endogenize nt by

setting nt+1 as a function of St. More precisely,

nt+1 = nt(1 + β), β = β(St) (4)

The β(.) function explicitly shows how the market share of the industry can
be affected by its pricing strategies St. The simple β(.) function considered in
this paper is as follows.

β =

δW , if
∑3

i=1 ai = 0,
δw, if

∑3
i=1 ai = 1,

δc, if
∑3

i=1 ai = 2,
δC , if

∑3
i=1 ai = 3.

(5)

where δW ≥ δw ≥ δc ≥ δC .
Given Equations (3)-(5), the objective of oligopolists is to maximize their

profits or the present value of the firm, and the profits for a single period is
given by Equation (6).

πs
i = (P s

i − C)ns
i (6)

where P s
i is the price charged by firm i at period s, ns

i number of customers,
and C fixed unit cost. ns

i can be obtained from Equations (3) - (6).

3 The Oligopoly Game: an N-Perosn IPD Game?

Before proceeding further, let us consider the relevance of the n-person IPD
games to the oligopoly game. Is an oligopoly game necessarily an n-person IPD
game? If not, what is their relation? For simplicity, let us consider the first r
periods of an oligopoly game. Here, “cooperate” (C) means “charging high prices
for all r periods” and “defect” (D) means “charging low prices for all r periods”.
We first work out the payoff matrix defined by Yao and Darwen (1994). In our

296 Shu-Heng Chen and Chih-Chi Ni

Table 1. Parameters and Payoffs

Set PH PL C α r D2 D1 D0 C2 C1 C0

1 1.4 1.2 1 0.2 8 3.47 2.07 1.6 3.2 1.33 1.33
2 1.4 1.2 1 0.2 25 13.40 7.10 5 10 1.60 1.60
3 2 1.2 1 0.2 8 3.47 2.07 1.6 8 3.33 3.33
4 2 1.2 1 0.2 25 13.40 7.10 5 25 3.98 3.98

case (3 oligopolists), there are six elements in the payoff matrix, namely Ci and
Di (i = 0, 1, 2). Here, Ci (Di) denotes the payoff for a specific player who plays
C (D) when there are i players acting cooperatively. From Equations (3)-(6), Ci

and Di can be derived. Without losing generality, let us assume that β = 0 and
n1 = n2 = n3 = 1, then the explicit solutions obtained are:

[
D2 C1 C1

]′ =

(PL − C)[3r − 2 (1−α)−(1−α)r+1

α]
(PH − C)[(1−α)−(1−α)r+1

α]
(PH − C)[(1−α)−(1−α)r+1

α]

[
D1 D1 C0

]′ =

(PL − C)[r + 1
2r − 1

2

∑r
j=1(1 − α)j]

(PL − C)[r + 1
2r − 1

2

∑r
j=1(1 − α)j]

(PH − C)(
∑r

t=1(1 − α)t)

[
C2 C2 C2

]′ =

(PH − C)r
(PH − C)r
(PH − C)r

 , [D0 D0 D0

]′ =

(PL − C)r
(PL − C)r
(PL − C)r

 .

Whether the oligopoly game is an n-person IPD game depends on the fol-
lowing criteria (Yao and Darwen, 1994):

{ (1) D2 > C2, (2) D1 > C1, and (3) D0 > C0.
{ (4) D2 > D1 > D0, and (5) C2 > C1 > C0.
{ (6) C2 >

D2+C1
2 , and (7) C1 >

D1+C0
2 .

It is not difficult to see that not all of these conditions can be satisfied. For
example, in Table 1, four sets of parameters and their associated payoffs are
given. The conditions which can be satisfied by these four sets of parameters are
summarized in Table 2.

Given the analysis above, we may consider the oligopoly game is a pertur-
bation or a generalization of an n-person IPD game, and it is interesting to see
whether the evolution process of the n-person, in particular, the 3-person, IPD
game documented by Yao and Darwen (1994) still applies.

Using Genetic Algorithms to Simulate the Evolution of an Oligopoly Game 297

Table 2. Parameter Sets and Testing Results

Inequality Set 1 Set 2 Set 3 Set 4
1. D2 > C2 > > < <

2. D1 > C1 > > < >

3. D0 > C0 > > < >

4. D2 > D1 > D0 >, > >, > >, > >, >

5. C2 > C1 > C0 >, = >, = >, = >, =
6. C2 > 0.5(D2 + C1) > > > >

7. C1 > 0.5(D1 + C0) < < > <

The sign > in columns 2-5 means the condition is satisifed. Other signs means the
condition is weakly violated (=) or strongerly violated (<).

4 Modeling the Adaptive Behavior of Oligopolists with
GAs

The main idea of genetic algorithms is to encode the variable one wants to
optimize as a binary string and work with it. Following, Midgley et al (1996),
we consider the following special class of pricing strategy ψ,

ψ : Ωk −→ {0, 1}, (7)

whereΩk is the collection of all {St−j}k
j=1. By this simplification, the oligopolist’s

memory is assumed to be finite.
While, potentially, different choices of k may lead to quite different sets of

strategies (Beaufils et al., 1998), the issue concerns us is the smallest value of k
which can reasonably replicate the price dynamics of the oligopoly industry, and
as we shall see later, setting k to equal 1 is good enough to achieve this goal.

5 Experimental Designs and Results

For all the experiments conducted in this study, Ph is set at “2”, Pl “1.2” and
C “1”. Other control parameters of GAs are set according to Tables 3 and 4.

The first experiment is to test whether GA-based oligopolists can achieve
a reasonable level of adaptation. For this purpose, we design the experiment
“absolute-loyalty-with-no-external-effects”. In terms of notations, absolute loyalty
means α = 0, and the absence of external effects means β = 0. When α = β = 0,
the most profitable pricing strategy for firm i is obviously an unconditional high-
price strategy, i.e.,

ψi = 1, ∀St ∈ Ω1, (8)

since a lower price will not help the firm to gain any advantages over its com-
petitors or other industries. So, we expect that the GA-based oligopoly industry
should converge to a state of a collusive price, i.e., the state (1, 1, 1).

In order to test whether GAs can find out this simple solution, we ran ex-
periment 1 for 1000 periods (125 generations) with the prespecified parameters

298 Shu-Heng Chen and Chih-Chi Ni

Table 3. The Parameters of the GA-based Oligopoly Game

Memory size (k) 1
Number of oligopolists 3
Population size (l) 30
Number of periods in a single play (r) 8 (25)
Selection Scheme Roulette-wheel selection
fitness function Profits (π)
Number of generations evolved (Gen) 125 (126)
Number of periods (T) 1000 (3150)
Crossover Style One-Point Crossover
Crossover rate 0.8
Mutation rate 0.0001
Immigration rate 0.001

Table 4. Experimental Designs and Results

Experiment r # of Simulations α δW δw δc δC Results
Pilot 8 5 0 0 0 0 0 C(5)
1 25 5 0.2 0 0 0 0 C(2), c(1), NC(2)
2 8 5 0.2 0 0 0 0 C(5)

given in Tables 3 and 4. To facilitate the report of simulations, we need a few
more notations. Let “W” refer to the state “price war” (0,0,0), “C” the state
“collusive price” (1,1,1), “w” the states which are closer to “W” and “c” the
states closer to “C”. “Closer” is defined in terms of Hamming distance. Thus,
“w” includes states (0,0,1), (0,1,0) and (1,0,0), and “c” includes (1,1,0), (1,0,1),
(0,1,1). Since there are 30 pairs of oligopolists in each period of the evolution,
to summarize simulation results of St in terms of its distribution, let pt

W , pt
w,

pt
c, and pt

C denote respectively the percentage of the pairs who, in period t, are
in the states labeled with “W”, “w”,“c”, and “C” respectively. Figures 1.1-1.5
display the time series plot of the distribution of St. From Figures 1.1-1.5, we
can see that the industry converges to the state “C” (1,1,1) very quickly.

In Experiment 1, α is set to be 0.2. In the meantime, we still assume the
absence of external effects, i.e., β remains to be zero. In this situation, it is not
difficult to see that the best solution is to form a cartel and to jointly charge
a high price. To see how well our GA-based adaptive oligopolists evolve in this
scenario, we ran Experiment 1 for 3150 periods (126 generations), and the time
series of the distribution of St is shown in Figures 2.1-2.5. From Figures 2.2
and 2.5, we can see that, like the Pilot Experiment, pt

C gradually increases and
eventually converges to 1. However, as compared with Figure 1.1-1.5, it can be
seen that the convergence speed is much slower.

The interesting patterns observed in this experiments are shown in Figures
2.3 and 2.4. In these two simulations, we experience an oscillation between the

Using Genetic Algorithms to Simulate the Evolution of an Oligopoly Game 299

Çêèöóæ ³¯³Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

¶
²
±

²
±
²
±

²
¶
²
±

³
±
²
±

³
¶
²
±

´
±
²
±

Ñæóêðå

Óâõêð

Ø ø

ä Ä

Çêèöóæ ³¯´Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

¶
²
±

²
±
²
±

²
¶
²
±

³
±
²
±

³
¶
²
±

´
±
²
±

Ñæóêðå

Óâõêð

Ø ø
ä Ä

Çêèöóæ ³¯µÕéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

¶
²
±

²
±
²
±

²
¶
²
±

³
±
²
±

³
¶
²
±

´
±
²
±

Ñæóêðå

Óâõêð

Ø ø
ä Ä

Çêèöóæ ³¯¶Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

¶
²
±

²
±
²
±

²
¶
²
±

³
±
²
±

³
¶
²
±

´
±
²
±

Ñæóêðå

Óâõêð

Ø ø

ä Ä

Çêèöóæ ²¯² Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²
²
±

²
²
±

³
²
±

´
²
±

µ
²
±

¶
²
±

·
²
±

¸
²
±

¹
²
±

º
²
±

Ñæóêðå

Óâõêð

Ø ø

ä Ä

Çêèöóæ ²¯³ Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

²
²
±

³
²
±

´
²
±

µ
²
±

¶
²
±

·
²
±

¸
²
±

¹
²
±

º
²
±

Ñæóêðå

Óâõêð

Ø ø

ä Ä

Çêèöóæ ²¯´ Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

²
²
±

³
²
±

´
²
±

µ
²
±

¶
²
±

·
²
±

¸
²
±

¹
²
±

º
²
±

Ñæóêðå

Óâõêð

Ø ø

ä Ä

Çêèöóæ ²¯µ Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

²
²
±

³
²
±

´
²
±

µ
²
±

¶
²
±

·
²
±

¸
²
±

¹
²
±

º
²
±

Ñæóêðå

Óâõêð

Ø ø
ä Ä

Çêèöóæ ²¯¶ Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

²
²
±

³
²
±

´
²
±

µ
²
±

¶
²
±

·
²
±

¸
²
±

¹
²
±

º
²
±

Ñæóêðå

Óâõêð

Ø ø

ä Ä

Çêèöóæ ³¯² Õéæ Åêôõóêãöõêðï ðç Ôõâõæô

±

±¯³

±¯µ

±¯·

±¯¹

²

²
±

¶
²
±

²
±
²
±

²
¶
²
±

³
±
²
±

³
¶
²
±

´
±
²
±

Ñæóêðå

Óâõêð

Ø ø
ä Ä

300 Shu-Heng Chen and Chih-Chi Ni

states “w” and “c”, i.e., three firms are continuously charging different prices.
This is the second and the third stylized facts of oligopoly industries summa-
rized in Section 1. The emergence of persistenly heterogeneous pricing may be
caused by the inconsistency between “D2 < C2” and “D1 > C1” for the first
r periods (Table 2). This inconsistency may encourage an early defection, and
once that happens, by the path-dependent property, the oligopoly game is fur-
ther perturbated away from a standard n-person IPD game and may support
its own complex dynamics. To see whether or not this conjecture is correct, we
design the experiment 2 as shown in Table 4.

The only difference between Experiment 1 and Experiment 2 lies in the choice
of the parameter r. The setting has been changed from 25 to 8. By Table 2, this
makes the first three inequalities all consistent, i.e., Di < Ci, i = 0, 1, 2. This
structure shall punish early defection, and keep the payoff structure unchanged.
Then the whole process can be reinforced (an aspect of the path-dependent
property). The simulation results, as we have conjected, all converge to the state
of collusive pricing.

6 Concluding Remarks

The message revealed in this paper is simple: the oligopoly game in general is not
an n-person IPD game and, in effect, is more complicated than that. Therefore,
the simulated results can be quite rich in even a 3-person oligopoly game. But,
that also bridges the gap between the complexity of the oligopolists’ pricing
behaviour and the the simplicity of the insight gained from the n-person IPD
games. In a word, we think that the oligoply game is a meaningful generalization
of the n-person IPD game, and a formal mathematical treatment of it is definitely
a direction for future research.

References

1. Beaufils, B. J.-P. Delahaye and P. Mathieu (1998), “Complete Classes of Strategies
for the Classical Iterated Prisoner’s Dilemma,” in V. W. Porto, N. Saravanan, D.
Waggen and A. E. Eiben (eds.), Evolutionary Programming VII, pp. 32-41.

2. Midgley, D. F., R. E. Marks, and L. G. Cooper (1996), “Breeding Competitive
Strategies,” forthcoming in Management Sciences.

3. Yao, X. and P. J. Darwen (1994), “An Experimental Study of N-Person Iterated
Prisoner’s Dilemma Games,” Inoformatica, Vol. 18, pp. 435-450.

An Evolutionary Study on Cooperation in
N-person Iterated Prisoner’s Dilemma Game?

Yeon-Gyu Seo and Sung-Bae Cho

Department of Computer Science, Yonsei University
134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Korea

[kitestar, sbcho]@candy.yonsei.ac.kr

Abstract. The iterated prisoner’s dilemma game has been used to study
on the evolution of cooperation in social, economic and biological sys-
tems. There have been much work on the relationship of number of play-
ers and cooperation, evolutionary strategy learning as a kind of machine
learning, and the effect of payoff function to cooperation. This paper at-
tempts to reveal that cooperative coalition size depends on payoff func-
tion and localization affects the evolution of cooperation in the N-player
Iterated Prisoner’s Dilemma (NIPD). Localization makes individuals to
interact or learn with adjacent individuals. Experimental result reports
that cooperative coalition size increases as the gradient of the payoff
function for cooperation becomes steeper than that of defector’s payoff
function or as minimum coalition size gets smaller. It is also shown that
localization of interaction is an important factor to affect cooperative
coalition.

1 Introduction

The iterated prisoner’s dilemma game has been studied for long time. In general,
a player in IPD must choose one of the two decisions, defect (D) or cooperate
(C). Table 1 shows the payoffs for all the possible combinations of decision. The
game is repeated infinitely and none of the players know the end of game. No
matter how many players cooperate, anyone of them will earn better payoff by
defecting. Therefore, defect may be a rational selection, and all players may get
to select D and obtain payoff P. However, if all cooperate, they would get better
score than all defect. This is the dilemma for players to face with in the IPD
game.

Originally, most of the works were focused on 2IPD. However, 2IPD cannot
model such complex problems as social and economic problems in real world. It
is the NIPD game that has appeared as more realistic model. Table 2 shows an
example of payoff function in NIPD game. The basic principle in 2IPD game is
also true for NIPD game: Defect is dominant for each player. In NIPD game,
there are many parameters to be considered such as payoff function [3], noise

? This work has been supported in part by a grant (975-0900-004-2) from the Korea
Science and Engineering Foundation.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 301–308, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

302 Yeon-Gyu Seo and Sung-Bae Cho

[2], population structure [5], localization [4], the shadow of the future [1] [2],
the number of players [7]. and so on. Among these parameters, we consider two
parameters: payoff function and localization.

Table 1. Payoff matrix in 2IPD. T > R > P > S, 2R > T + P

Cooperate Defect
Cooperate R S

Defect T P

The payoff function is generally fixed in the game but there exist many
criteria of payoff function in real world, especially in economic and social systems.
We examine the effect of payoff function in the first experiment and the second
reveals the relationship of cooperative coalition and localization. The latter is
divided into two factors: learning and interaction. These factors are reported to
affect the emergence of cooperation . This paper uses co-evolutionary strategy
learning which has advantage of reflection of dynamic environment. A genotype
has all information which determines a player’s next move according to the other
player’s previous moves as well as his own previous moves.

In Section 2, we discuss relationship of cooperation and payoff functions,
and Section 3 focuses on localization. In Section 4, we conduct NIPD game
repeatedly with various payoff rules and test the localization effects in learning
and interaction.

Table 2. Payoff matrix in NIPD.

No. of Cooperator 0 1 · · · X · · · N − 1
Cooperate C0 C1 · · · Cx · · · CN−1

Defect D0 D1 · · · Dx · · · DN−1

2 Payoff Function

In this section, we discuss whether the payoff function is important to cooperative
coalition or not. In real society, a selfish and rational individual has a tendency
to select action according to payoff that it takes. If there is room for getting more
payoff by specified action like as cooperative coaltion in IPD game, an individual
might select the collective action to get better result. Thus, we experiment the
payoff function as a very important factor in this paper. Generally, the payoff
function in NIPD game satisfies the following condition.

Cooperation in N-person Iterated Prisoner’s Dilemma Game 303

Cx > Cx−1, Dx > Dx−1, Dx > Cx, CN−1 > D0

The payoff function is a very important factor to determine minimum coalition
size [3] [6]. According to Schelling, minimum coalition size means the number of
players among which a player obtains any interest, zero or more. Cooperative
coalition can emerge above minimum coalition size.

In IPD game, the payoff function is fixed and the payoff of defect is generally
higher than that of cooperate, but we can easily find many criteria for payoff
function in real world. Therefore, we also examine the linear and quadratic func-
tions for the payoff function which does not belong to payoff rule in NIPD game.
This gives us some possibility to observe role of payoff function in depth. Fig. 1
shows some of possible payoff functions. Here, important parameters of the pay-
off function in the game are the x-intercept and the gradient of C. In the cases of
(c) in this figure, as the number of cooperators increases, the payoff of cooperate
gets to overrun that of defect. This is not fit for the payoff rule in NIPD game,
but there are many similar payoff functions in social and economic systems. We
attempt to observe the coalition size by changing the payoff function in NIPD
game.

In the case of Fig. 1(a), the larger y-intercept of cooperate, k, is, the smaller
the number of cooperators is. In the case of Fig. 1(c), the gradient of defect is
steeper than that of C. It can be expected that the result ends up with defect
because the payoff is unfavorable to cooperator.

(a) (b) (c)

Fig. 1. Payoff functions. Solid line is payoff function for Defection and dashed line for
cooperation. (a) Cx = 3x − k and Dx = 3x (b) Cx = 2x − k and Dx = 3x + 1 (c)
Cx = 1

2x2 − k and Dx =
√

2x

3 Localization

The emergence of cooperation in the game is strongly affected by the localiza-
tion of both interaction and learning [4]. Localizing learning means restricting the
subset of the population from which players can learn better-performing strate-
gies. Nowak and May [5] study a population of agents distributed on squares on

304 Yeon-Gyu Seo and Sung-Bae Cho

a torus which are only capable of the always defect (AD) and always cooper-
ate (AC) strategies. Each agent interacts with the agents on all eight adjacent
squares and imitates the strategy of any better performing one. Cooperative
behavior can be sustained in clusters of agents that insulate cooperators from
hostile ADs under certain payoffs. Warning and Hoffmann [4] consider localized
interaction and learning between agents on torus employing Moore machine to
play game.

In order to ascertain the effect of localizing learning and interaction, we make
an individual interact and learn with adjacent individuals distributed on torus
which is to avoid boundary effect where players in the boundary have an unequal
number of neighbors. In many cases, it is not clear why the localization of both
learning and interaction should coincide. It is easy to imagine the situation where
individuals interact locally while being able to observe what individuals outside
their interaction-neighbourhood are doing.

4 Experiments

For the experiments of payoff function and localization, we use population size of
100, crossover rate of 0.6, mutation rate of 0.001, and two-point crossover with
elite preserving. In localization, we consider two factors, learning and interaction,
which might have different effects on the evolution of coalition size.

4.1 Payoff function

A. Cx = 3x − k and Dx = 3x
This case is one of general IPD game. The cooperative coalition size is shown

in Fig. 2, according to k. When the number of players is small, cooperative coali-
tion size depends on the number of players: They all cooperate in this experiment.
However, as the number of players gets larger, the difference of cooperative coali-
tion size becomes larger according to k. This result indicates that the number
of players affects to cooperative coalition.

We can see that cooperative coalition gets lower in Fig. 2(b), as k becomes
larger. This result supports that the number of players and y-intercept are im-
portant factors to affect cooperation.

B. Cx = 2x − k and Dx = 3x

The gradient of payoff function of defect is steeper than that of cooperate.
In this case, we can expect all players to defect in any case. However, the result
says that high cooperative coalition can appear even in this case. We can see in
Fig. 3 that cooperative coalition is stabilized at high level when the number of
players is 4 and k < 3. In Fig. 3(b), cooperative coalition size is small because the
gradient of payoff function and the number of players are adverse to cooperators
as the number of players becomes larger. Nevertheless, if the number of players
is small and Cn > D0, the cooperation coalition could be stabilized at high level.

Cooperation in N-person Iterated Prisoner’s Dilemma Game 305

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

N
um

be
r

of
 c

oo
ep

ra
to

r

Generation

"k_1"
"k_3"
"k_5"

(a) 4 players

0

1

2

3

4

5

6

7

8

0 50 100 150 200

N
um

be
r

of
 c

oo
ep

ra
to

r

Generation

"k_1"
"k_3"
"k_5"

(b) 8 players

Fig. 2. Cx = 3x − k and Dx = 3x.

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

N
um

be
r

of
 c

oo
ep

ra
to

r

Generation

"k_1"
"k_2"
"k_3"

(a) 4 players

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200

N
um

be
r

of
 c

oo
ep

ra
to

r

Generation

"k_1"
"k_2"
"k_3"

(b) 8 players

Fig. 3. Cx = 2x − k and Dx = 3x.

C. Cx = 1
2x2 − k and Dx =

√
2x

In this case, if the number of cooperators is large, the payoff of cooperator
overruns that of defect. This case makes us to expect cooperative coalition to be
stabilized at high level. However, when k is large and the number of players is
small, all players defect. It is because the number of players is less than or equal
to the minimum coalition size. In this case, the larger the number of players is,
the higher cooperative coalition is.

With these experiments, we could get something essential to evolve cooper-
ative coalition to high level. They are payoff for all C and minimum coalition
size. If gradient of the payoff for C is steeper than that of all defect, cooperation
is stabilized at high level as shown in Fig. 4. Here, minimum coalition size is
determined by payoff function. If the minimum coalition size is small, high level
of cooperation could emerge [3].

306 Yeon-Gyu Seo and Sung-Bae Cho

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

N
um

be
r

of
 c

oo
ep

ra
to

r

Generation

"k_2"
"k_3"
"k_4"

(a) 4 players

7

8

9

10

11

12

13

14

15

16

0 50 100 150 200

N
um

be
r

of
 c

oo
ep

ra
to

r

Generation

"k_2"
"k_3"
"k_4"

(b) 16 players

Fig. 4. Cx = 1
2x2 − k and Dx =

√
2x.

High cooperation level is determined by various factors such as the number
of players, the gradient of payoff function, x-intercept, and so on. From the
simulations, we can see that the high cooperation level can emerge, as long
as the condition such as small number of players, small x-intercept and steep
gradient of payoff function for C is satisfied.

4.2 Localization

Experiments have been conducted in two aspects. One is a localizing interaction
and the other is a localizing learning. It is not clear that two factors have the
same effect on the cooperative coalition.

Localization of interaction High level of localization of interaction can im-
prove cooperativity but it can do that only with localized learning [4]. We exper-
iment localizing interaction and learning, respectively. This paper uses genetic
approach to represent strategy and a genotype has all information to determine

(a) 4 players and 2
neighbors

(b) 4 players and 8
neighbors

(c) 4 players and 10
neighbors

Fig. 5. Localization of inteaction.

Cooperation in N-person Iterated Prisoner’s Dilemma Game 307

the next move. Fig. 5 shows the variations of coalition size in the case of localiz-
ing interaction. We can see that cooperative coalition size is large when the level
of localization is high.

When local size is small, players gradually cooperate but it takes some time
to be stabilized. When the number of neighbours is 8 or 10, players almost defect
at first. As time goes on, players turn to keep cooperating. In comparison to the
size of 2, it shows somewhat unstable but it takes little time to reach to a stable
state.

Localization of learning Just as localizing interaction, localizing learning
could be an important factor to improve cooperativity [4]. Experimental results
indicate that it is adverse to the evolution to cooperation. It seems that local-
ization of learning prevent the population from evolving to a different state from
the initial state. Fig. 6 shows the result.

We can conclude that localization of interaction is very important to affect
cooperative coalition size, but the effect of localizing learning produces the am-
biguous result to cooperative coalition.

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 C

oo
pe

ra
to

r

Generation

’general4’
’neighbor_2’

Fig. 6. Localization of learning. Dotted line is for 2 neighbors and large dot is for
General case, when the number of players is 4.

5 Concluding Remarks

This paper aims to study on cooperative coalition through experiments of payoff
function and localization. In real society, payoff function acts on selection of
individuals in economic and social systems. Generally, in IPD game, the payoff
function is fixed, but we can easily find many criteria for payoff function in real
world. Therefore, we have also considered payoff functions which is not fit for
original payoff rule in NIPD game.

A series of simulations reports that payoff function is very important to
improve cooperative coalition. The steeper the gradient of payoff function of C

308 Yeon-Gyu Seo and Sung-Bae Cho

is, the higher the level of cooperative coalition is. In this case, the larger the
number of players is, the higher the level of cooperative coalition is, especially
in case that the gradient of payoff function for C is steeper than that of D.

The localization of interaction also improves the level of cooperative coalition
size. If the local size is small, cooperative coalition should be stabilized at high
level. However, the effect of local learning is obscure. We could not confirm the
effect of localization of learning, which requires much work for further study.

References

1. Axelrod, R.: The Evolution of Cooperation. Basic Books, (1984) New York
2. Axelrod, R. and Dion, D.: The further evolution of cooperation. Science, 242 (1988)

1385–1389
3. Banks, S.: Exploring the foundation of artificial societies: Experiments in evolving

solutions to iterated N-player prisoner’s dilemma. ALife IV, (1994) 337–342
4. Hoffmann, R. and Warning, N.: The localization of interaction and learning in the

repeated prisoner’s dilemma. Santa Fe Institute Working Paper no.96-08-064, (1996)
5. Nowak, M. A. and May, R. M.: Evolutionary games and spatial chaos. Nature, 359

(1992)
6. Schelling, T. C.: Micromotives and Macrobehaviour. New York (1978)
7. Yao, X. and Darwen, P.: The experimental study of N-player iterated prisoner’s

dilemma. Informatica, 18 (1994) 435–450

Simulating a N-person Multi-stage Game for
Making a State

Atsushi Iwasaki1, Sobei H. Oda2, and Kanji Ueda3

1 Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho,
Nada-ku, Kobe 657-8501, Japan(iwasaki@mi-2.mech.kobe-u.ac.jp).

2 Faculty of Economics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku,
Kyoto 603-8047, Japan(oda@cc.kyoto-su.ac.jp).

3 Faculty of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe
657-8501, Japan(ueda@mech.kobe-u.ac.jp).

Abstract. This paper describes how a state emerges and collapses that
makes it possible for citizens to do something which they will not do vol-
untarily. The model is a generalisation of the multi-stage game of Okada
and Sakakibara (1991). The general model, its mathematical analysis
with condition for simplicity and simulations for more general cases are
presented. The results of simulations suggest that selfish but rational
people may agree to make a state, which grows as the public capital
stock accumulates but collapses when the stock reaches a certain level.

1 Introduction

The tragedy of commons is a well-known example of how people fail to cooperate
for maintaining the public capital. In the circumstances people may voluntarily
make a state that force themselves to construct and maintain the public capital
stock. Okada and Sakakibara (1991) presents a multi-stage game to show this
possibility. We shall show a more general model and analyse it both mathemat-
ically and by simulations.

In Section 2 we shall explain the basic model, which is divided into four sub-
games: first each inhabitant announces whether he or she becomes a citizen or an
outsider; secondly all citizens propose tax rates, of which the smallest is adopted
as the tax rate; thirdly every citizen proposes the rate of the enforcer’s salary to
the total tax revenue and the person who proposed the minimum ratio is chosen
as the enforcer who watches for tax evasion without making private business is
elected; last tax payers pay taxes honestly or become tax evaders, whose income
from private business will be all confiscated by the enforcer if tax evasion is
found by him or her. In Section 3 we shall show how the subgame-perfect Nash
equilibrium for a simple case mathematically. In Section 4 we shall show the re-
sults of simulations for more general cases, which suggest some inhabitants may
make a state, which grows as the public capital stock accumulates but collapses
when the stock reaches a certain level.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 309–316, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

310 Atsushi Iwasaki, Sobei H. Oda, and Kanji Ueda

2 The model

The outline of our model is as follows. There live n inhabitants in a valley
irrigated by a canal. Inhabitants make shovels in the winter, dredge the canal in
the spring and grow rice in the summer. They exchange all or some of the shovels
they made for rice with foreigners living outside the valley, while using the rest
of the shovels for dredging the canal. Their non-agricultural income is defined
as the rice value of the shovels they made, which may differ from inhabitant
to inhabitant according to their skill, while their non-agricultural income is the
harvest of rice, which depends on the location of their private rice field as well
as the condition of the canal.

For the sake of simplicity, let us assume the following; the non-agricultural
income of the ith inhabitant is γi, while his agricultural income is βiK where
K represents the depth of the canal; if a unit value of shovels are used for
dredging the canal, they are all worn out while increasing the depth of the canal
by one inch. In other words, if the depth of the canal is K̄ at the be beginning
of the spring and the ith inhabitant contributes 100ti percent of the shovels
he made to the dredge of the canal, the total income of the ith inhabitant is
(1 − ti)γi + βi(K̄ +

∑n
j=1 tjγj).

The difficulty the valley is faced with is that no one may contribute their
shovels to the dredge of the canal even if it can increase every inhabitant’s
income. This is because th ith inhabitant’s contribution to the dredge of the canal
is distributed among all inhabitants: it decreases his non-agricultural income by
tiγi while increasing the jth inhabitant’s agricultural income by βjtiγi. In other
wards, the valley’s income increases in net terms if 1 <

∑n
j=1 βj while the ith

inhabitant’s total income increases only if 1 < βi. Hence no one contribute if
1 < βi for all n, even if everyone’s income increases if everyone contributes only
small portion of his income.

Some organization or the system of monitoring and punishment may be re-
quired for making people contribute to the accumulation and maintenance of
the public capital stock. In this paper we examine the following scenario or the
four-stage game.

Subgame 1

Each inhabitant announces whether he or she becomes a citizen or an outsider.
Accordingly the n inhabitants in the valley: {Inhabitant i|i ∈ N = {1, 2, . . . ,n}}
are divided into m(0 ≤ m ≤ n) citizens: {Inhabitant i|i ∈ M ⊂ N, } and n − m
outsiders: {Inhabitant i|i ∈ L = N − M}, where M ∪L = N and M ∩L = ∅. The
citizens advance towards the following stages to determine their role or duty as
well as the penalty which may be imposed on those who do not perform it, while
the outsiders can enjoy all benefit from the public capital without making any
contribution to its accumulation or maintenance.

Simulating a N-person Multi-stage Game for Making a State 311

Subgame 2

Every citizen announces the acceptable tax rate on non-agricultural income τi.
The minimum τi is adopted as the tax rate of the state: τ∗ = mini∈M τi. (Ev-
eryone can virtually dissolve the state by proposing τi = 0.)

Subgame 3

Every citizen offers him/herself as the candidate for the enforcer who makes nei-
ther shovels nor rice to concentrate on monitoring the other citizens, by declaring
the ratio of the enforcer’s salary to the tax revenue of the state θi. The person
who has proposed the minimum θi is elected as the enforcer and has salaries paid
accordingly: if mini∈M θi = θe = θ∗, Inhabitant e is the enforcer, whose salary is
τ∗ ∑

j∈T γj where Inhabitants i (i ∈ T) pay taxes honestly while Inhabitants j
(j ∈ U) pay no taxes (M = {e} ∪ T ∪ U and {e} ∩ T = T ∩U = U ∩ {e} = ∅). In
addition to the salary, the enforcer can confiscate all non-agricultural income of
the tax evaders he or she has found out, whose expected value is εe

m−1
∑

j∈U γj

as his/her income. Here it is assumed that Inhabitant e can find out each tax
evader at the probability of εe

l if he or she monitors l citizens.

Subgame 4

The m − 1 tax payers make shovels and rice, and pay or do not pay taxes. As
the result, Inhabitant i expects the following income:

Ei

= θ∗τ∗∑
j∈T

γj + εe
m−1

∑
j∈U

γj if i = e

= (1 − τ∗)γi + βi{(1 − θ∗)τ∗∑
j∈T

γj + K} if i ∈ T

= (1 − εe
m−1)γi + βi{(1 − θ∗)τ∗∑

j∈T

γj + K} if i ∈ U

= γi + βi{(1 − θ∗)τ∗∑
j∈T

γj + K} if i ∈ L

. (1)

3 Game Theoretic Analysis

As to the range of the exogenous parameters: βi, γi, εi
m−1, K and n and n

(where 1 ≤ i ≤ n and 2 ≤ m ≤ n), let us assume the following: 0 < βi < 1,
0 < γi, 0 < εi

l ≤ 1, 0 ≤ K and 3 ≤ n. Here the first condition implies that no one
voluntarily contributes to the accumulation of the public capital, while the last
one is a necessary condition for the emergence of a state; it can readily checked
that if a state is made by two persons, the only tax payer’s income is - whether
he or she honestly pays tax or not - smaller than it would be if he or she were
an outsider.

Although we can prove the existence of the unique sub-game perfect Nash
equilibrium for our model as well as its mathematical expression under more

312 Atsushi Iwasaki, Sobei H. Oda, and Kanji Ueda

general conditions, we should here like to mention only simple and symmetric
case where the following conditions are satisfied:

1. βi = β, γi = γ and εi
m−1 = ε for all 1 ≤ i ≤ n and 1 ≤ m ≤ n.

2. Every inhabitant knows the structure of the game as well as all the exogenous
parameters as common knowledge.

3. In Subgame 3, the enforcer is chosen by lottery if more than one citizens
propose the minimum θ.

4. In Subgame 1, every inhabitant announces whether he or she joins the state
or not by turns.

On the first three assumptions we can solve Subgame 4, Subgame 3 and
Subgame 4 in this order. In fact τ∗ and θ∗ are expressed in terms of m, or the
number of the citizens]M :
if 2 ≤ m, max[ε, τ θ̂] < min[ε

1−β , τ̂e] and K ≤ (εm−1)γ
β ,

τ∗ = max[ε, τ θ̂] and θ∗ = θ̂; (2)

if 2 ≤ m, τ1 < ε and 0 < βm − β − 1,

τ∗ = ε and θ∗ = θ̄; (3)

if 2 ≤ m, max[ε, τ̄] < min[ε
1−β , τ θ̂, 1] and and 0 < βm − β − 1,

τ∗ = min[
ε

1 − β
, τ θ̂, 1] and θ∗ = θ̄; (4)

otherwise
τ∗ = 0. (5)

Here
θ̂ = 1 − 1

β
(1 − ε

τ∗) (6)

θ̄ =
(1 − τ∗)γ + β{τ(m − 1)γ + K}

(1 + β)τ∗(m − 1)γ
(7)

τ1 =
γ + βK

mγ
(8)

τ θ̂ =
β(γ + βK) − (1 + β)ε(m − 1)γ

(β − m + 1)γ
(9)

τ̂e =
ε(m − 1)γ − β(γ + βK)

(1 − β)(m − 1)γ
(10)

τ̄ =
β(γ + βK)

(βm − β − 1)γ
(11)

Hence for every M , every inhabitant’s expected income is uniquely deter-
mined; for example the expected income of any citizens is determined as 1

m×

Simulating a N-person Multi-stage Game for Making a State 313

the enforcer’s expected income +(1 − 1
m)× the average citizen’s income (as is

readily checked, every citizen is a honest taxpayers and earns the same income).
This assures that when he or she must say whether he or she joins the state,
every inhabitant can make backward induction to see which brings him or her in
greater income. This assures the existence of the unique subgame-perfect Nash
equilibrium.

4 Simulations

The analysis of the previous section suggests that even if the existence of the
unique subgame-perfect Nash equilibrium is mathematically proved, its explicit
expression is often unattainable or rather complicated. To see how the subgame-
perfect Nash equilibrium changes as time passes, simulation is necessary. In fact
simulation makes it possible to examine the dynamics of the model with less
restrictive conditions. As an example let us show the simulation of cases where
non-agricultural income is not common to all inhabitants in this section. To put
it concretely, we shall show the results of simulation, assuming the following:
n = 7; β = 0.9; γi = 0.6 + 0.4 i

n+1 ; ε = 0.2; K(0) = 0; K(t) = K(t − 1) +
(1 − θ∗(t))τ∗(t)

∑
j∈S(t) γj . We shall show two cases for these parameters: Case

1 (where inhabitants announce whether they become citizen or an outsider in
order of their productivity) and Case 2 (where they announce in the reverse
order).

In Figure 1, the left side graphs shows Case 1 while the right side ones
describes Case 2.

Figure 1 shows how Ei changes as time passes.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

in
co

m
e

year0 1 2 3 4 5 6 7 8 9 10 11 12 13 13

P5 joins

P6 joins

The state collapses

P1,P2,P3,P4
make a state

P2 becomes a free-rider

P2 rejoins the state

Player 21 3 4 5 6 7

lower productivity higher productivity

P7 joins

2

1

3

4

5

6

7 Outsider

Enforcer

Tax Payer

P
la

ye
r

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

in
co

m
e The state collapses

P1 joins to be the enforcer

P2 joins to be the enforcer

P3 joins to be the enforcer

P4,P5,P6,P7
make a state

Free-rid
ers

Ta
x P

ay
er

s

Player 21 3 4 5 6 7

lower productivity higher productivity

0 1 2 3 4 5 6 7 8 9 10 11 12

P1 declares firstP7 declares first

Fig. 1. The dynamics of the state

314 Atsushi Iwasaki, Sobei H. Oda, and Kanji Ueda

Since both dynamics are basically the same, let us explain only Case 1.
In Year 0 Inhabitants 1, 2, 3 and 4 make a state and Inhabitant 1, who

has the smallest productivity among them is elected to be the enforcer. This is
because the value of parameters and the initial condition are such that only a
state with four individuals can be formed. Knowing this, Inhabitants 5, 6 and
7 announce that they become outsiders, expecting that the remaining four will
make a state.

In Year 5 Inhabitant 5 joins the state. This is because the total income of
Inhabitants 1, 2, 3 and 4 can earn if no state is made has increased as the result
of the accumulation of the public capital. They will not make a state, which does
not make their income lager than it would be if no state is formed. Realises that a
state is made if and only if Inhabitant 5 declare that he or she becomes a citizen
(on the supposition that Inhabitants 6 and 7 become outsiders), Inhabitant 5
compares the income he or she obtains if no state is formed and what he or she
gets if he or she joins the state of Inhabitants 1, 2, 3 and 4 (actually 2 leaves the
state, but it has no effect to 5’s decision); he or she finds the latter is greater
even though it is smaller than his or her income in the previous year.

Inhabitant 6 join the state in Year 9 and Inhabitant 7 also become its citizen
in Year 11. The reason they join the state is the same as Inhabitant 5 becomes
a citizen in Year 5. It would also be obvious why they become a citizen even
though their income temporarily decreases.

An exceptional phenomenon is observed when Inhabitant 5 joins the state:
Inhabitant 2 leaves the state. This is because (he or she knows) Inhabitants 5, 4,
3 and 1 make a state; though Inhabitants 4, 3 and 1 do not agree to make a state
with Inhabitant 2, they agree to make a state with Inhabitant 5 who has higher
productivity. Nevertheless soon (actually in the next year) making a four-person
state cannot attract any group of four individuals so that Inhabitant 2 becomes
a citizen again to make a five-inhabitant state. Though each of players considers
only how his or her maximize his or her payoff in one-shot game, it seems that
he or she adapt his or her behavior to Capital Stock in one-shot iterated game.
In other words, we can say that players share their roles and cooperate with each
other voluntarily.

Now the dynamics of θ and τ is described in Figure 2: both τ and θ period-
ically increase: they repeat a monotonous increase and a sharp fall. Every time
the value of either value becomes nearly equal to unity, the number of citizens
increases so that (by the reason mentioned above) they can cooperate with a
smaller value. This trick can however work only till the capital stock reaches a
certain amount.

The dynamics of capital stock is shown in Figure 3: It is only natural that
the capital stock monotonously increases in our model where never depreciates.
It is also apparent why the speed and the final level of capital accumulation are
greater when Inhabitant 1 declares whether he becomes a citizen or not: then
those inhabitants with higher productivity become citizens, who pay more taxes
to accumulate the capital stock.

Simulating a N-person Multi-stage Game for Making a State 315

:P1 declares first.

:P7 declares first.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

year
0 1 2 3 4 5 6 7 8 9 10 11 12 13

ta
x

ra
te

:P1 declares first.

:P7 declares first.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

year
0 1 2 3 4 5 6 7 8 9 10 11 12 13

sa
ra

ly
 ra

tio

Fig. 2. The dynamics of tax rate and salary ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

C
ap

ita
l_

S
to

ck

year
0 1 2 3 4 5 6 7 8 9 10 11 12 13

:P1 declare first.

:P7 declare first.

Fig. 3. The dynamics of capital stock

316 Atsushi Iwasaki, Sobei H. Oda, and Kanji Ueda

5 Concluding remarks

Though we mentioned very simple cases in the previous sections, we have made
more mathematical analysis and simulations for more general cases. As an ex-
ample, our model shows there are some cases where some citizens join the state
to evade taxes. This may seem irrational because remaining an outsider is better
than becoming an tax evader who may be charged penalties, but a state may not
be formed without tax evaders who increase the enforcer’s expected income. We
are now analysing these cases, which will hopefully deepen our understanding of
the emergence of the state.

Our analysis could be criticised for assuming subgame perfectness, which
is often failed to be realised in experiments (probably because of the lack of
required computational power and/or sticking to fairness; see for example Davis
and Holt (1993). Certainly more realistic cases, in particular such cases where all
or some individuals behave adoptively rather than perfectly rationally, should
be examined. We are actually developing our analysis toward this direction.

We believe that the mathematical analysis of game theory and the evolu-
tionary simulations can be complemental approaches. Although still at an early
stage of our study, we should be grateful if the reader could find this possibility
in our game theoretical analysis with computer simulations

This project “Methodology of Emergent Synthesis”(JSPS-RFTF96P00702)
has been supported by the Research for the Future Program of the Japan Society
for the Promotion of Science.

References

1. Okada, A. and Sakakibara, K.: The emergence of the state: A game theoretic ap-
proach to the theory of social contract, Economic Studies Quarterly, vol.42, no.4
(1991)

2. Davis, D.D. and Holt, C.H.: Experimental Economics, Princeton University Press
(1993)

Learning from Linguistic Rules and Rule
Extraction for Function Approximation by

Neural Networks

Kimiko Tanaka, Manabu Nii, and Hisao Ishibuchi

Department of Industrial Engineering, Osaka Prefecture University,
Gakuen-cho 1-1, Sakai, Osaka 599-8531, Japan

Phone: +81-722-54-9354 FAX: +81-722-54-9915
E-mail: {kimiko, manabu, hisaoi}@ie.osakafu-u.ac.jp

http://www.ie.osakafu-u.ac.jp/student/ci lab/ci lab e/

Abstract. We have already shown that the relation between neural net-
works and linguistic knowledge is bidirectional for pattern classification
problems. That is, neural networks are trained by given linguistic rules,
and linguistic rules are extracted from trained neural networks. In this
paper, we illustrate the bidirectional relation for function approximation
problems. First we show how linguistic rules and numerical data can be
simultaneously utilized in the learning of neural networks. In our learn-
ing scheme, antecedent and consequent linguistic values are specified
by membership functions of fuzzy numbers. Thus each linguistic rule is
handled as a fuzzy input-output pair. Next we show how linguistic rules
can be extracted from trained neural networks. In our rule extraction
method, linguistic values in the antecedent part of each linguistic rule
are presented to a trained neural network for determining its consequent
part. The corresponding fuzzy output from the trained neural network
is calculated by fuzzy arithmetic. The consequent part of the linguistic
rule is determining by comparing the fuzzy output with linguistic values.
Finally we suggest some extensions of our rule extraction method.

Key words: Learning of neural networks, hybrid learning, fuzzy neural
systems, linguistic knowledge, rule extraction.

1 Introduction

When multi-layer feedforward neural networks are used as information process-
ing systems such as classifiers and function approximators, they are usually han-
dled as black box models. That is, we do not know why a trained neural network
produces a particular output (e.g., classification, decision making, and predic-
tion) for a new input vector. Several attempts have been tried to improve the
transparency of neural networks. One approach is rule extraction from trained
neural networks. In this approach, black box models are explained by extracted
rules. Various methods [1-3] have been proposed for extracting non-fuzzy if-then
rules and fuzzy if-then rules. Almost all of those approaches were designed for

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 317–324, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

318 Kimiko Tanaka, Manabu Nii, and Hisao Ishibuchi

extracting classification rules from neural networks trained for pattern classifi-
cation problems. In this paper, we discuss the transparency of neural networks
trained for function approximation problems. We use linguistic rules, which are
fuzzy if-then rules with linguistic interpretation, for explaining neural networks.

Another approach for improving the transparency is the learning of neural
networks from experts’ knowledge. We have already shown that neural networks
can be trained by fuzzy if-then rules [4]. In our learning method, neural networks
are trained by simultaneously utilizing linguistic knowledge and numerical data.
Based on our former studies on the fuzzy rule extraction [3] and the learning from
fuzzy if-then rules [4], we have shown that the relation between neural networks
and linguistic knowledge is bidirectional for pattern classification problems [5].
In this paper, we illustrate the bidirectional relation between neural networks
and linguistic knowledge for function approximation problems.

2 Learning from Linguistic Rules

Our problem in this section is to train a neural network for approximately real-
izing an unknown nonlinear function with n inputs and a single output. For this
task, we use a standard three-layer feedforward neural network [6] with n input
units, nH hidden units and a single output unit.

We assume that we have a set of input-output pairs obtained from the
unknown nonlinear function as training data. We denote the training data as
(xp, yp), p = 1, 2, . . . , mData where xp = (xp1, xp2, . . . , xpn) is an n-dimensional
input vector, yp is the corresponding output value, and mData is the number of
the given input-output pairs. We also assume that we have linguistic knowledge
about the unknown nonlinear function. We denote the linguistic knowledge as
the following linguistic rules:

Rule Rq : If x1 is Aq1 and . . . and xn is Aqn then y is Bq, q = 1, 2, . . . , mRule, (1)

where Rq is the label of the q-th linguistic rule, Aqi’s (i = 1, 2, . . . , n) are an-
tecedent linguistic values such as “small” and “large”, Bq is a consequent lin-
guistic value, and mRule is the number of the given linguistic rules. We assume
that the meaning of each linguistic value is specified by its membership func-
tion. That is, we handle linguistic values as fuzzy numbers. In Fig.1, we show
membership functions of typical linguistic values.

In the learning of the neural network, the given linguistic rules in (1) are
handled as fuzzy input-output pairs (Ap, Bp), p = 1, 2, . . . , mRule where Ap =
(Ap1, . . . , Apn) is a fuzzy vector. Since real numbers can be viewed as a special
case of fuzzy numbers, the given numerical data (xp, yp), p = 1, 2, . . . , mData
are also handled as fuzzy input-output pairs. This means that two kinds of
available information (i.e., numerical data and linguistic knowledge) are handled
in a single framework as fuzzy input-output pairs. In this paper, we denote
the linguistic knowledge (Ap, Bp), p = 1, 2, . . . , mRule and the numerical data
(xp, yp), p = 1, 2, . . . , mData as (Ap, Bp), p = 1, 2, . . . , m where m = mRule +
mData. From the above discussion, we can see that our problem is to train the

Learning from Linguistic Rules and Rule Extraction 319

neural network by the fuzzy input-output pairs (Ap, Bp), p = 1, 2, . . . , m. When
the fuzzy vector Ap = (Ap1, . . . , Apn) is presented to the neural network, the
input-output relation of each unit can be written as follows [4]:

Input units: Opi = Api, i = 1, 2, . . . , n, (2)

Hidden units: Opj = f(
nX

i=1

wji · Opi + θj), j = 1, 2, . . . , nH , (3)

Output unit: Op = f(
nHX

j=1

wj · Opj + θ), (4)

where wji and wj are connection weights, θj and θ are biases, and f(·) is the
sigmoidal activation function: f(x) = 1/{1 + exp(−x)}. Our neural network
architecture in (2)-(4) is the same as the standard three-layer feedforward neural
network [6] except that the input and output of each unit are fuzzy numbers.
As in various studies on fuzzified neural networks [7,8], the fuzzy input-output
relation of each unit is defined by fuzzy arithmetic [9] and numerical calculation
is performed by interval arithmetic [10] on the level sets of fuzzy numbers.

In the learning of the neural network, we have to define a cost function to
be minimized. We measure the difference (or distance) between the actual fuzzy
output Op and the fuzzy target Bp using their h-level sets as

d(Bp, Op) =
X

h

([Bp]Lh − [Op]Lh)2/2 +
X

h

([Bp]Uh − [Op]Uh)2/2, (5)

where [·]Lh and [·]Uh are the lower limit and the upper limit of the h-level set [·]h
of a fuzzy number, respectively.

In the same manner as the back-propagation algorithm [6], a learning algo-
rithm can be derived for adjusting the connection weights and biases from the
cost function in (5). For details of the derivation, see Ishibuchi et al.[4,8].

3 Computer Simulations

Let us illustrate the learning from numerical data and linguistic knowledge by
computer simulations on a simple numerical example. As an unknown nonlinear

Fig. 1. Membership functions of typical linguistic values. (S:small, MS:medium small,
M:medium, ML:medium large, and L:large)

320 Kimiko Tanaka, Manabu Nii, and Hisao Ishibuchi

function, we used the following one:

y = f(x) = (x3.5
1 + x3.5

2)2/4. (6)

This nonlinear function is depicted in Fig. 2 (a). As numerical data, we generated
200 input-output pairs by randomly specifying input vectors xp = (xp1, xp2), p =
1, 2, . . . , 200 in the input space (i.e., the unit square [0, 1]×[0, 1]). First we trained
a three-layer feedforward neural network with two input units, five hidden units,
and a single output unit using the 200 input-output pairs. We employed the
standard back-propagation algorithm [6] with the momentum term (the learning
rate and the momentum constant were specified as 0.25 and 0.9, respectively).
The shape of the output from the trained neural network after 10000 epochs is
shown in Fig. 2 (b). From the comparison between Fig. 2 (a) and Fig. 2 (b),
we can see that the neural network could approximately realize the unknown
nonlinear function very well.

y

x1

x2

y

x2
x1

Fig. 2. Learning from numerical data. (a) Unknown function. (b) Result of the learning
from numerical data.

Next we trained the same neural network using only 100 input-output pairs
whose first input values are less than 0.5 (i.e., x1 < 0.5). The shape of the
output from the trained neural network is shown in Fig. 3 (a). Since the given
numerical data were not sufficient, the neural network could not approximate
well the unknown function in this case. Finally we trained the same neural
network using the 100 input-output pairs and the following linguistic knowledge:

If x1 is large and x2 is small then y is medium small,
If x1 is large and x2 is large then y is large,

where the membership function of each linguistic value is shown in Fig. 1. It
should be noted that these two linguistic rules are not sufficient to describe the
unknown nonlinear function in Fig. 2 (a). In Fig. 3 (b), we show the shape of
the output from the neural network trained by the insufficient numerical data
and the insufficient linguistic knowledge. As we can see from Fig. 3 (b), we
obtained a good approximation result because these two kind of information
were simultaneously utilized in the learning of the neural network.

Learning from Linguistic Rules and Rule Extraction 321

yy

x1

x2
x1

x2

Fig. 3. Learning from numerical data and linguistic knowledge. (a) Result of the learn-
ing from insufficient numerical data. (b) Result of the simultaneous learning from nu-
merical data and linguistic knowledge.

4 Linguistic Rule Extraction

Our task in this section is to extract linguistic rules from trained neural networks.
We assume that a trained neural network has already been given. We do not
assume any particular network architectures or learning algorithms.

Our linguistic rules to be extracted from the trained neural network are of the
same type as in the previous sections. In our rule extraction method, we examine
all combinations of antecedent linguistic values. When we have the five linguistic
values in Fig. 1 for each of n inputs, the total number of possible combinations of
antecedent linguistic values is 5n. For extracting a linguistic rule, first we present
a combination of antecedent linguistic values to the trained neural network. The
antecedent part of the linguistic rule is specified by these linguistic values. Then
we calculate the corresponding fuzzy output from the trained neural network
using the fuzzy input-output relation in (2)-(4). Finally the fuzzy output is
compared with each linguistic value in order to determine the consequent part
of the linguistic rule. The difference (or distance) between the fuzzy output and
each linguistic value is measured by (5). The closest linguistic value to the fuzzy
output is chosen as the consequent of the linguistic rule. Not only individual
linguistic values but also their combinations (e.g., small or medium small) are
considered as a candidate for the consequent of each linguistic rule.

Let us illustrate our rule extraction method by a simple numerical example.
In our computer simulation, we used the three-layer feedforward neural net-
work that had already been trained by the back-propagation algorithm in Fig.
2 (b). Our task is to extract linguistic rules from the trained neural network. As

Table 1. Extracted linguistic rules.

x1
x2 S MS M ML L
L MS MS MS or M MS or M or ML M or ML or L

ML S S S or MS MS or M MS or M or ML

M S S S S or MS MS

MS S S S S MS

S S S S S MS

322 Kimiko Tanaka, Manabu Nii, and Hisao Ishibuchi

antecedent and consequent linguistic values, we used the five linguistic values
in Fig. 1. Thus we examined 25 combinations of antecedent linguistic values,
each of which was presented to the trained neural network. In Table 1, we show
extracted linguistic rules in the form of a 5 × 5 rule table.

5 Some Extensions of Rule Extraction Method

Our rule extraction method can be modified in various manners. The following
points may be important issues to be discussed for improving our method:

1. Coping with high-dimensional problems.
2. Avoiding the increase in excess fuzziness in fuzzy outputs.
3. Improving the understandability of extracted linguistic rules.

The first issue is the handling of high-dimensional problems. In our rule extrac-
tion method in the previous section, we examined all combinations of antecedent
linguistic values. Such an exhaustive examination can not be performed in the
case of high-dimensional problems due to the curse of dimensionality. One ap-
proach to the handling of high-dimensional problems is to extract only general
linguistic rules with a few antecedent conditions. Specific linguistic rules with
long antecedent parts (i.e., many antecedent conditions) are not extracted in
order to decrease the computational load.

The second issue is the increase in excess fuzziness included in fuzzy outputs
obtained by the feedforward calculation in neural networks. This undesirable
phenomenon is the same as the increase in excess width in interval arithmetic.
It is known in interval arithmetic that the excess width can be decreased by
subdividing intervals into multiple subintervals [10]. Such a subdivision method
can be utilized for decreasing the excess fuzziness included in fuzzy outputs from
neural networks. In the numerical calculation of the fuzzy outputs, h-level sets
of linguistic inputs are subdivided into multiple subintervals. This is illustrated
in Fig. 4. Since sharper fuzzy outputs are obtained by subdividing h-level sets
of linguistic inputs as in Fig. 4, the consequent part of extracted linguistic rules
can be specified more precisely. Table 2 shows examples of extracted linguistic
rules using a subdivision method in Fig. 4 (a). Linguistic rules in Table 2 were
extracted from the trained neural network used in the previous section. From
the comparison between Table 1 with no subdivision and Table 2, we can see
that the fuzziness of the consequent linguistic values of the extracted rules was
decreased by the subdivision method.

The third issue is the understandability of extracted linguistic rules. It is a
time-consuming task for human users to manually examine extracted linguistic
rules when hundreds of rules are extracted. In this case, we can use genetic al-
gorithms for selecting a small number of significant linguistic rules from a large
number of extracted rules. GA-based rule selection methods have been proposed
for selecting a small number of linguistic rules for pattern classification problems
[11,12]. While those methods can not be directly applied to function approxi-
mation problems, we can use the same coding method and genetic operations.

Learning from Linguistic Rules and Rule Extraction 323

The definition of a fitness function and a rule generation procedure should be
modified in the application to function approximation problems. Extracted lin-
guistic rules from the trained neural network are used as candidate rules for the
rule selection. A fitness function is defined by two terms: the fitting ability of
selected rules to training data and the number of selected rules.

Fig. 4. Examples of subdivision methods. (a) Simple subdivision. (b) Hierarchical sub-
division.

Table 2. Extracted linguistic rules using a subdivision method.

x1
x2 S MS M ML L
L MS MS MS M ML or L

ML S S S or MS MS or M M

M S S S S or MS MS

MS S S S S MS

S S S S S MS

6 Conclusion

In this paper, we illustrated the bidirectional relation between neural networks
and linguistic knowledge for function approximation problems. That is, we out-
lined two research directions: the learning of neural networks from linguistic
knowledge and the linguistic rule extraction from trained neural networks. We
also suggested some extensions of our rule extraction method. The learning from
linguistic knowledge and the linguistic rule extraction can be utilized to improve
the transparency of neural networks, which are usually handled as black box
models. The main characteristic of our approach is that neural networks are
linguistically explained.

In this paper, we described the bidirectional relation between linguistic knowl-
edge and multi-layer feedforward neural networks with the sigmoidal activation
function. Since RBF networks can be viewed as a kind of fuzzy rule-based sys-
tems [13,14], this bidirectional relation is much more straightforward in RBF
networks. That is, a single basis function can be viewed as a fuzzy if-then rule.

324 Kimiko Tanaka, Manabu Nii, and Hisao Ishibuchi

While such straightforward relation exists, the linguistic interpretation of each
fuzzy if-then rule represented as a basis function is not always easy.

Acknowledgement

This research was partially supported by Yazaki Memorial Foundation for Sci-
ence and Technology.

References

1. Andrews, R., Diederich, J., and Tickele, A. B.: “Survey and critique of techniques
for extracting rules from trained artificial neural networks,” Knowledge-Based Sys-
tems, vol. 8, no. 6. (1995) 373–389.

2. Hayashi, Y.: “A neural expert system with automated extraction of fuzzy if-then
rules and its application to medical diagnosis,” In Lippmann, R. P., Moody J. E.,
and Touretzky, D. S. (eds.). Advances in Neural Information Processing Systems
3. Morgan Kaufmann, San Mateo, USA. (1991) 578–584.

3. Ishibuchi, H., and Nii, M.: “Generating fuzzy if-then rules from trained neural
networks: Linguistic analysis of neural networks,” Proc. of ICNN’96. Washington
D. C. (1996) 1133–1138.

4. Ishibuchi, H., Fujioka, R., and Tanaka, H.: “Neural networks that learn from fuzzy
if-then rules,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 2. (1993) 85–97.

5. Ishibuchi, H., Nii, M., and Turksen, I. B.: “Bidirectional bridge between neural
networks and linguistic knowledge: Linguistic rule extraction and learning from
linguistic rules,” Proc. of FUZZ-IEEE’98. Anchorage, USA (1998) 1112–1117.

6. Rumelhart, D. E., McClelland, J. L., and the PDP Research Group.: Parallel Dis-
tributed Processing. MIT Press, Cambridge. (1986).

7. Buckley, J.J., and Hayashi, Y.: “Fuzzy neural networks: A survey,” Fuzzy Sets and
Systems, vol. 66, no. 1. (1994) 1-13.

8. Ishibuchi, H., Morioka, K., and Turksen, I. B.: “Learning by fuzzified neural net-
works,” International Journal of Approximate Reasoning, vol. 13, no. 4. (1995)
327–358.

9. Kaufmann, A., and Gupta, M. M.: Introduction to Fuzzy Arithmetic. Van Nostrand
Reinhold, New York. (1985).

10. Moore, R. E.: Methods and Applications of Interval Analysis. SIAM Studies in
Applied Mathematics. Philadelphia. (1979).

11. Ishibuchi, H., Nozaki, K., Yamamoto, N., and Tanaka, H.: “Selecting fuzzy if-then
rules for classification problems using genetic algorithms,” IEEE Trans. on Fuzzy
Systems, vol. 3, no. 2. (1995) 260–270.

12. Ishibuchi, H., Murata, T., and Turksen, I. B.: “Single-objective and two-objective
genetic algorithms for selecting linguistic rules for pattern classification problems,”
Fuzzy Sets and Systems, vol. 89, no. 2. (1997) 135–150.

13. Jang, J. S. R. and Sun, C. T.: “Functional equivalence between radial basis function
networks and fuzzy inference systems,” IEEE Trans. on Neural Networks, vol. 4,
no. 1. (1993) 156–163.

14. Nie, J. and Linkens, D. A.: “Learning control using fuzzified self-organizing radial
basis function network,” IEEE Trans. on Fuzzy Systems, vol. 1, no. 4. (1993) 280–
287.

Can a Niching Method Locate Multiple
Attractors Embedded in the Hop�eld Network?

Akira Imada1 and Keijiro Araki2

1 Graduate School of Information Science

Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-01 Japan

akira-i@is.aist-nara.ac.jp

2 Department of Computer Science and Computer Engineering

Graduate School of Information Science and Electrical Engineering

Kyusyu University

6-1 Kasuga-koen, Kasuga, Fukuoka, 816 Japan

araki@c.csce.kyusyu-u.ac.jp

Abstract. We apply evolutionary computations to the Hop�eld's neu-

ral network model of associative memory. In the model, a number of

patterns can be stored in the network as attractors if synaptic weights

are determined appropriately. So far, we have explored weight space to

search for the optimal weight con�guration that creates attractors at the

location of patterns to be stored. In this paper, on the other hand, we

explore pattern space to search for attractors that are created by a �xed

weight con�guration. All the solutions in this case are a priori known.

The purpose of this paper is to study the ability of a niching genetic

algorithm to locate these multiple solutions using the Hop�eld model as

a test function.

1 INTRODUCTION

Associative memory is a dynamical system which has a number of stable states
with a domain of attraction around them (Koml�os et al. 1988). If the system
starts at any state in the domain, it will converge to the stable state. Hop-
�eld (1982) proposed a fully connected neural network model of associative mem-
ory in which information is stored by being distributed among neurons.

The Hop�eld model consists of N neurons and N2 synapses. Each neuron
state is either active (+1) or quiescent (�1). When an arbitrary N -bit bipolar

pattern, a sequence of +1 and �1, is given to the network as an initial state,
the dynamical behavior of neuron states afterwards are characterized by the
strengths of the N2 synapses. The synaptic strengths are called weights and the
weight from neuron j to neuron i is denoted as wij in this paper. Provided the
synaptic weights are determined appropriately, network can store some number
of patterns as attractors. Hop�eld employed the so-called Hebbian rule (Hebb,
1949) to prescribe the weights. That is, to store p bipolar patterns ��:

�� = (��
1
; � � � ; ��N); � = 1; � � � ; p;

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 325-332, 1999.
 Springer-Verlag Berlin Heidelberg 1999

the weight values are determined as:

wij =
1

N

pX
�=1

��i �
�
j (i 6= j); wii = 0:

An instantaneous state of a neuron is updated asynchronously (one neuron at a
time) as:

si (t+ 1) = sgn

0
@

NX
j 6=i

wijsj(t)

1
A ;

where si(t) is a state of the i-th neuron at time t. If an initial state converges
to one of the stored patterns �� as an equilibrium state, then the pattern is said
to be recalled. Furthermore, if an initial state chosen from the stored patterns
remains unchanged from the beginning, then the pattern is said to be stored as
a �xed point.

In analyzing the Hop�eld model, there have been basically two di�erent ap-
proaches: one is to explore pattern space searching for attractors under a speci�c
weight con�guration, and the other is to explore weight space searching for an
appropriate weight con�guration that stores a given set of patterns. To be more
speci�c, the former is an analysis of the Hamiltonian energy as a function of
all the possible con�gurations of bipolar pattern given to the network, where
the synaptic weights are pre-speci�ed using a learning algorithm, usually the
Hebb's rule, so that the network stores a set of p given patterns. In this con-
text, the model for p = 1 corresponds to the Mattis model of spin-glass (Mattis
1976), in which the Hamiltonian energy has two minima, while the model for
in�nitely large p corresponds to the Sherrington-Kirkpatrick model (1975), in
which the synaptic weights become Gaussian random variables. Analyses of the
former type have been made in between these two extreme cases (see Amit,
1989). The latter analysis was addressed by Gardner (1988). She discussed the
optimal weight con�gurations for a �xed number of given patterns in terms of
the volume of the solutions in weight space, suggesting that the volume shrinks
to vanish when p approaches to 2N . In short, the former approach searches for
the optimal pattern con�gurations which minimize the Hamiltonian energy in

pattern space with the weights being �xed, while the latter searches for the weight
con�gurations in weight space that optimally store a set of given �xed patterns.

So far, we have studied the model with the latter approach. We have ex-
plored �tness landscapes of the model de�ned on weight space, and have found
many solutions that store more patterns or store them with larger basin of at-
tractions than, e.g., the Hebbian synaptic weights (Imada et al. 1997a, 1997b).
Now, our interest is on the number and distribution of these solutions over the
whole weight space, which is still an open problem. We think the niching GA is
one of the appropriate tools to pursue these problems. However, since the N2-
dimensional continuous weight space is much more di�cult to wander around
than the N -dimensional discrete pattern space, we explore here the pattern space

to see preliminary how our �tness function works under the niching method. In

326 Akira Imada and Keijiro Araki

other words, we use the model as a test function of the niching technique in
the sense that all solutions are a priori known, like in other studies using pure
mathematical test functions.

Since we explore the �tness landscape de�ned on the pattern space in this
paper, the �tness function of an arbitrary con�guration of N -bit bipolar pattern
should be de�ned. Here we evaluate the �tness of a pattern according to how
the instantaneous neurons' states si(t) after the pattern is given to the network,
are similar to either of the stored patterns. The similarity as a function of time
is de�ned as:

m�(t) =
1

N

NX

i=1

��i s
�
i (t):

The temporal average of m�(t) is calculated for each stored pattern, and the
maximum value among them is assigned to the input pattern as �tness. Thus,
the �tness value f is evaluated as follows:

f = maxf
1

t0

t0X

t=1

m�(t) j � = 1; 2; � � � ; pg:

In this paper, t0 is set to 2N , twice the number of neurons. Note that the �tness 1
implies the pattern is a �xed point attractor, while �tness less than 1 includes
many other cases.

2 Niching Methods

Niching genetic algorithm is a genetic algorithm (GA) (Holland 1975) that was
devised to locate multiple solutions simultaneously. To do this, sharing (Gold-
berg & Richardson 1987), for example, derates the �tness value of each individ-
ual using sharing function which reects the number of similar individuals in the
population. Or crowding (De Jong 1975) reduces the number of similar individu-
als in the population by replacing some of the individuals with new individuals.
Here, we employ the deterministic crowding GA (Mahfoud 1992) because of its
niching capability (Mahfoud 1995) as well as the simplicity for implementation.

In each generation, as neatly summarized by Mahfoud (1995), the current
population is reproduced as follows.

(1) Choose two parents, p1 and p2, at random, with no parent being chosen more
than once.

(2) Produce two children, c1 and c2, with uniform crossover (Syswerda 1989).
(3) Mutate the children by ipping bit chosen at random with probability pm,

yielding c0

1
and c0

2
.

(4) Replace parent with child as follows:
� IF d(p1; c0

1
) + d(p2; c0

2
) > d(p1; c0

2
) + d(p2; c0

1
)

� IF f (c0

1
) > f(p1) THEN replace p1 with c0

1

� IF f (c0

2
) > f(p2) THEN replace p2 with c0

2

� ELSE

327Can a Niching Method Locate Multiple Attractors Embedded?

� IF f(c0

2
) > f (p1) THEN replace p1 with c0

2

� IF f(c0

1
) > f (p2) THEN replace p2 with c0

1

where d(�1; �2) is the Hamming distance between two points (�1; �2) in pattern
con�guration space. The process of producing child is repeated until all the
population have taken part in the process. Then the cycle of reconstructing a
new population and restarting the search is repeated until all the global optima
are found or a set maximum number of generation has been reached.

3 Experimental Results

Experiments were carried out on networks with 49 neurons. For a given set of p
patterns, a con�guration of synaptic weights in a network is calculated by the
Hebb's rule. Thus, the network with 49 neurons now stores these p patterns as
�xed point attractors, so far as p dose not exceed the storage capacity. Namely,
the �tness landscape de�ned on pattern space has p global peaks exactly at the
location of the patterns. Then the deterministic crowding GA searches for these
attractors. The parameters of the GA employed in this paper are as follows. The
population size is 200; mutation probability pm is set to 0.05; and the number
of iterations is limited to a maximum of 12,000 generations.

To take the bird's-eye view of the landscape, we picked up 240,000 samples
randomly from pattern space. The number of samples was chosen to be equal
to the typical number of function evaluations of our usual GA implementations.
We observed that the �tness values were distributed ranging from 0.01 to 0.95.
At �rst glance, this broad distribution might seem that the search for the opti-
mal solution(s) is not so di�cult. In fact, Davis (1990) pointed out that some
problems can be solved more easily with a simple hill-climber than genetic algo-
rithms. So, we experimented a random hill climbing on the landscape. Starting at
a randomly chosen position in the space, a point is mutated 200 times, and then
moves to the highest �tness point among mutants. We repeated a run varying p,
but all we observed were early stagnations to a local minimum. The solutions of
our problem were not reachable by a simple hill-climber. which satis�es Whit-
ley et al.'s (1995) demand that test functions should be resistant to simple hill
climbing searches.

Before applying the deterministic crowding, we also studied the problem with
a simple GA where two parents are randomly selected from the best �t 40% of
the population, and the worst 60% were replaced with the children produced,
with other schemes such as recombination and mutation being the same as those
described above. The simple GA founds easily the embedded patterns, but only
one of them at a time. The typical result of the best and average �tness versus
generation obtained by the simple GA is shown in Figure 1.

Next, we apply the deterministic crowding GA to this problem. We investi-
gated how many of the embedded patterns can be located. For a speci�c number
of patterns p, starting with p = 2, we studied 30 runs with varying random
number seed at the start of a run. The experiments are iterated with p being

328 Akira Imada and Keijiro Araki

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 10 15 20 25 30 35

F
itn

es
s

Generation

max

avg

p=5

Fig. 1. Best and average �tness versus generation obtained by a simple GA.

incremented if any of the 30 runs locates all the embedded solutions. As results,

we observed that when p = 2, 19 out of 30 runs locate all the embedded pat-

terns; then as p increases, the number of successful runs decreases, i.e., when

p = 3; 4; 5; 6 the number of successful trials out of 30 runs was 14, 8, 3, 0, re-

spectively. Some examples of the number of individuals that converged on each

of the given patterns when a GA run terminated are shown in Table 1.

Table 1. Number of individuals converged to each attractor.

number of located attractors

p #1 #2 #3 #4 #5 #6 total

4 40 96 27 59 - - 200

4 68 26 24 82 - - 200

4 109 7 20 64 - - 200

4 23 52 76 49 - - 200

4 23 43 78 56 - - 200

4 18 79 11 92 - - 200

4 54 8 7 131 - - 200

4 31 28 38 103 - - 200

5 85 71 5 34 5 - 200

5 42 54 68 11 25 - 200

5 15 102 26 52 5 - 200

6 33 17 58 50 0 42 200

329Can a Niching Method Locate Multiple Attractors Embedded?

We can see that all the individuals eventually �nd some di�erent niches for

p < 6. Then, how the number of individuals in each of these niches changes as an

evolution proceeds? An example is shown in Figure 2. Also the total number of

these located solutions are shown in Figure 3, together with a result of a simple

GA. The �gure shows that all the individuals in the deterministic crowding GA

converge to any of the solutions, while the simple GA reaches about half of the

solutions.

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 lo

ca
te

d
so

lu
tio

ns

Generation

p=5#3

#2

#1

#5

#4

Fig. 2. Number of individuals converged on each niche.

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 s

ol
ut

io
ns

 in
 e

ac
h

ni
ch

e

Generation

s-GA

c-GA

p=5

Fig. 3. Number of individuals that reach solutions.

330 Akira Imada and Keijiro Araki

4 Conclusion

We have described an application of the deterministic crowding GA, one of
multi-modal function optimization techniques, to the Hop�eld model of associa-
tive memory. What we concern is to obtain multiple solutions of weight con�g-
uration in weight space. We think the deterministic crowding GA is one of the
candidates for the purpose. As a preliminary stage, the �tness landscape de�ned
on pattern space instead of weight space was explored in this paper. As expected,
we observed that convergence behaviors of the deterministic crowding GA were
di�erent from those of a simple GA. The deterministic crowding GA converges
to multiple solutions, while a simple GA converges to one of these solutions. The
number of solutions located by the deterministic crowding GA depends on trials.
When more than 6 patterns are given, the deterministic crowding GA located
only a part of them One possible reason for these results is that the number of
embedded patterns exceeds the capability of the deterministic crowding GA to
make niches on all of them. The other possibility might be due to our �tness
evaluation. We are now experimenting with the Hamiltonian energy function for
�tness evaluation.

The approach we have taken in this paper, that is, the exploration in pattern
space to search for solutions, can be extended in the problem of searching for
the solutions in weight space. Needless to say, much remains to be done. The
simulations in this paper were made under speci�c limitations, such as low di-
mensionality and low cardinality of genes. Under experiments with the network
with 49 neurons, the search space to be explored is vertices of the 49-dimensional
hyper cube, while the weight space to be explored will be continuous entire region
inside the 2401-dimensional hyper cube.

Although the analysis of the fully-connected network model of associative
memory is rather classical, many issues are still unknown. Our goal of applying
multi-modal-GA to the model is to address one of these issues, that is, the distri-
bution of solutions in weight space. We believe these studies using evolutionary
algorithms shed new light on the analysis of the model.

Acknowledgements

We thank Peter Davis at Advanced Telecommunication Research Institute (ATR)
for providing us great insights into the dynamics of the Hop�eld neural networks.

References

Amit, D. J. (1989) Modeling Brain Function: The World of Attractor Neural

Networks. Cambridge University Press.
Davis, L (1991) Bit-Climbing, Representation Bias, and Test Suite Design. Pro-

ceedings of the 4th International Conference on Genetic Algorithms, pp.18{
23.

331Can a Niching Method Locate Multiple Attractors Embedded?

De Jong, K. A. (1975) An Analysis of the Behavior of a Class of Genetic

Adaptive Systems. Ph.D. theses University of Michigan.
Gardner, E. (1988) The Phase Space of Interactions in Neural Network Models.

Journal of Physics, 21A, pp257-270.
Goldberg, D. E., and J. Richardson (1987) Genetic Algorithms with Sharing for

Multimodal function Optimization. Proceedings of 2nd International Confer-
ence on Genetic Algorithms, pp.41-49.

Hebb, D. O. (1949) The Organization of Behavior. Wiley.
Holland, J. (1975) Adaptation in Natural and Arti�cial Systems. The University

of Michigan Press.
Hop�eld, J. J. (1982) Neural Networks and Physical Systems with Emergent

Collective Computational Abilities. Proceedings of the National Academy of
Sciences, USA, 79, pp2554-2558.

Imada, A., and K. Araki (1997a), Random Perturbations to Hebbian Synapses

of Associative Memory using a Genetic Algorithm. Proceedings of Interna-
tional Work-Conference on Arti�cial and Natural Neural Networks. Springer
Verlag, Lecture Notes in Computer Science, No.1240, pp398{407.

Imada, A., and K. Araki (1997b) Evolution of Hop�eld Model of Associative

Memory by the Breeder Genetic Algorithm. Proceedings of the 7th Interna-
tional Conference on Genetic Algorithms, pp784{791.

Koml�os, J., and R. Paturi (1988) Convergence Results in an Associative Mem-

ory Model. Neural Networks 1, pp239{250.
Mahfoud, S. W. (1992) A Comparison of Parallel and Sequential Niching Meth-

ods. Proceedings of the 2nd Parallel Problem Solving from Nature, pp.27{36.
Mahfoud, S. W. (1995) A Comparison of Parallel and Sequential Niching Meth-

ods. Proceedings of the 6th International Conference on Genetic Algorithms,
pp.136{143.

Mattis, D. C. (1976) Solvable Spin Systems with Random Interactions. Physics
Letters, 56A, pp421{422.

Sherrington, D., and S.Kirkpatrick (1975) Solvable Model of a Spin Glass. Phys-
ical Review Letters 35, pp1792{1796.

Syswerda, G. (1989) Uniform Crossover in Genetic Algorithms. Proceedings of
the 3rd International Conference on Genetic Algorithms, pp2{9.

Whitley, D., K. Mathias, S. Rana, and J. Dzubera (1995) Building Better Test
Functions. Proceedings of the 6th International Conference on Genetic Al-
gorithms, pp239{246.

This article was processed using the LATEX macro package with LLNCS style

332 Akira Imada and Keijiro Araki

Time Series Prediction by Using Negatively
Correlated Neural Networks

Yong Liu and Xin Yao

Computational Intelligence Group, School of Computer Science
University College, The University of New South Wales

Australian Defence Force Academy, Canberra, ACT, Australia 2600
{liuy,xin}@csadfa.cs.adfa.oz.au

Abstract. Negatively correlated neural networks (NCNNs) have been
proposed to design neural network (NN) ensembles [1]. The idea of NC-
NNs is to encourage different individual NNs in the ensemble to learn
different parts or aspects of a training data so that the ensemble can
learn the whole training data better. The cooperation and specialisation
among different individual NNs are considered during the individual NN
design. This provides an opportunity for different NNs to interact with
each other and to specialise. In this paper, NCNNs are applied to two
time series prediction problems (i.e., the Mackey-Glass differential equa-
tion and the chlorophyll-a prediction in Lake Kasumigaura). The exper-
imental results show that NCNNs can produce NN ensembles with good
generalisation ability.

1 Introduction

Many real-world problems are too large and too complex for a single monolithic
system to solve alone. There are many examples from both natural and artificial
systems which show that a composite system consisting of several subsystems
can reduce the total complexity of the system while solving a difficult problem
satisfactorily. The success of neural network (NN) ensembles in improving clas-
sifier’s generalisation is a typical example [2]. However, designing NN ensembles
is a very difficult task. It relies heavily on human experts and prior knowledge
about the problem. This paper describes a cooperative learning algorithm which
can create negatively correlated neural networks (NCNNs) automatically [1,3].

The idea behind NCNNs is to encourage different individual networks to
learn different parts or aspects of a training data so that the whole system can
learn the training data better. NCNNs are trained simultaneously rather than
independently or sequentially. Simultaneous training provides an opportunity for
individual NNs to cooperate and specialise.

NCNNs have been tested on a number of benchmark problems, including re-
gression and classification problems [1,3]. In all these problems, both the input
and the output are independent of time. This paper describes NCNNs’ applica-
tion to the time series prediction problems, where the input and output change
over time. It is assumed that the appropriate response at a particular point in

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 333–340, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

334 Yong Liu and Xin Yao

time depends not only on the current input, but also on previous inputs. One
artificial and one real-world problems are used in this paper to evaluate the effec-
tiveness and efficiency of NCNNs. The experimental results obtained by NCNNs
are better than those obtained by other systems in terms of prediction error.
They also illustrate that NCNNs are applicable to a wide range of problems,
regardless of whether the input and output are static or time-varying.

The rest of this paper is organised as follows: Section 2 briefly describes
NCNNs. Section 3 presents the experimental results of NCNNs and discussions.
Finally, Section 4 concludes with a summary of the paper and a few remarks.

2 Negative Correlation Learning

The negative correlation learning has been successfully applied to NN ensembles
[1,3] for creating NCNNs. The idea of negative correlation learning is to introduce
a correlation penalty term into the error function of each individual network in
a NN ensemble so that the individual network can be trained simultaneously
and interactively. The error function Ei for individual i in negative correlation
learning is defined by

Ei =
1
N

ΣN
n=1Ei(n)

=
1
N

ΣN
n=1

[
1
2
(Fi(n) − y(n))2 + λpi(n)

]
(1)

where N is the number of training patterns, Ei(n) is the value of the error
function of network i at presentation of the nth training pattern, Fi(n) is the
output of network i on the nth training pattern, and y(n) is the desired output of
the nth training pattern. The first term in the right side of Eq.(1) is the empirical
risk function of network i. The second term pi is a correlation penalty function.
The purpose of minimising pi is to negatively correlate each individual’s error
with errors for the rest of the ensemble. The parameter 0 ≤ λ ≤ 1 is used to
adjust the strength of the penalty.

The penalty function pi has the form:

pi(n) = (Fi(n) − F (n))Σj 6=i (Fj(n) − F (n)) (2)

where F (n) = ΣM
i=1Fi(n) is the output of the NN ensemble on the nth training

pattern.
The partial derivative of Ei with respect to the output of network i on nth

training pattern is

∂Ei(n)
∂Fi(n)

= Fi(n) − d(n) + λ
∂pi(n)
∂Fi(n)

= Fi(n) − d(n) + λΣj 6=i (Fj(n) − F (n))
= Fi(n) − d(n) − λ(Fi(n) − F (n)) (3)

Time Series Prediction by Using Negatively Correlated Neural Networks 335

where we have made use of the assumption that F (n) has constant value with
respect to Fi(n). The back-propagation (BP) algorithm has been used for weight
adjustments in the mode of pattern-by-pattern updating. That is, weight updat-
ing of all the individual networks is performed simultaneously using Eq.(3) after
the presentation of each training case. One complete presentation of the entire
training set during the learning process is called an epoch. The negative corre-
lation learning from Eq.(3) is a simple extension to the standard BP algorithm.
In fact, the only modification needed is to calculate an extra term of the form
λ(Fi(n) − F (n)) for ith NN.

From Eqs.(1), (2), and (3), we may make the following observations:

1. During the training process, all the individual networks interact with each
other through their penalty terms in the error functions. Each network Fi

minimises the difference between Fi(n) and y(n) while maxmising the differ-
ence between Fi(n) and F (n). That is, negative correlation learning considers
errors what all other NNs have learned while training a NN.

2. For λ = 0.0, there are no correlation penalty terms in the error functions
of the individual networks, and the individual networks are just trained
independently using BP. That is, independent training using BP for the
individual networks is a special case of negative correlation learning.

3. For λ = 1, from Eq.(3) we get

∂Ei(n)
∂Fi(n)

= F (n) − y(n) (4)

Note that the empirical risk function of the ensemble for nth training pattern
is defined by

Eensemble =
1
2
(ΣM

i=1Fi(n) − d(n))2 (5)

The partial derivative of Eensemble with respect to Fi on nth training pattern
is

∂Eensemble

∂Fi(n)
=

1
M

(ΣM
i=1Fi(n) − d(n))

=
1
M

(F (n) − y(n)) (6)

In this case, we get
∂Ei(n)
∂Fi(n)

∝ ∂Eensemble

∂Fi(n)
(7)

The minimisation of the empirical risk function of the ensemble is achieved
by minimising the error functions of the individual networks. From this point
of view, negative correlation learning provides a novel way to decompose the
learning task of the ensemble into a number of subtasks for each individual.

336 Yong Liu and Xin Yao

3 Experimental Studies

3.1 The MacKey-Glass Time Series Prediction Problem

The MacKey-Glass time series investigated here is generated by the following
differential equation

ẋ(t) = βx(t) +
αx(t − τ)

1 + x10(t − τ)
(8)

where α = 0.2, β = −0.1, τ = 17 [4,5]. As mentioned by Martinetz et al. [6],
x(t) is quasi-periodic and chaotic with a fractal attractor dimension 2.1 for the
above parameters.

Experimental setup The input consists of four past data points, x(t), x(t−6),
x(t − 12) and x(t − 18). The output is x(t + 6). In order to make multiple step
prediction (i.e., ∆t = 90) during testing, iterative predictions of x(t+6), x(t+12),
..., x(t+90) will be made. During training, the true value of x(t+6) was used as
the target value. Such experimental setup is the same as that used by Martinetz
et al. [6].

In the following experiments, the data for the MacKey-Glass time series
was obtained by applying the fourth-order Runge-Kutta method to Eq.(8) with
initial condition x(0) = 1.2, x(t − τ) = 0 for 0 ≤ t < τ , and the time step is 1.
The training set consisted of point 118 to 617 (i.e., 500 training patterns). The
following 500 data points (starting from point 618) were used as the testing set.
The values of training and testing data were rescaled linearly to between 0.1 and
0.9. Such experimental setup was adopted in order to facilitate comparison with
other existing work.

The normalised root-mean-square (RMS) error E was used to evaluate the
performance of NCNNs, which is determined by the RMS value of the absolute
prediction error for ∆t = 6, divided by the standard deviation of x(t) [4,6],

E =
〈[xpred(t, ∆t) − x(t + ∆t)]2〉 1

2

〈(x − 〈x〉)2〉 1
2

(9)

where xpred(t, ∆t) is the prediction of x(t + ∆t) from the current state x(t) and
〈x〉 represents the expectation of x. As indicated by Farmer and Sidorowich [4],
“If E = 0, the predictions are perfect; E = 1 indicates that the performance is
no better than a constant predictor xpred(t, ∆t) = 〈x〉.”

The ensemble architecture used in the experiments has 20 individual net-
works. Each individual network is a feedforward NN with one hidden layer.
Both hidden node function and output node function are defined by the logistic
function

ϕ(y) =
1

1 + exp (y)
(10)

All the individual networks have 6 hidden nodes. The number of training epochs
was set to 10000. The strength parameter λ was set to 1.0.

Time Series Prediction by Using Negatively Correlated Neural Networks 337

Experimental Results and Comparisons Table 1 shows the average results
of NCNNs over 50 runs. Each run of NCNNs was from different initial weights.
Fig.1 shows the best results of NCNNs on the training and testing set. Table 2
compares NCNNs’ results with those produced by EPNet [7], BP learning and
the cascade-correlation (CC) learning [8]. It is obvious that NCNNs are able to
achieve the generalization performance better than that of others.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

System output
Predicted

0

0.2

0.4

0.6

0.8

1

500 550 600 650 700 750 800 850 900 950 1000

System output
Predicted

Fig. 1. The Mackey-Glass time series prediction problem. The system’s and the best
NCNNs’ outputs on the training set (left). The system’s and the best NCNNs’ outputs
on the testing set (right). The time span is ∆t = 6.

For a large time span ∆t = 90, NCNNs’ results also compare favorably with
those produced by Martinetz et al. [6] which had been shown to be better than
Moody and Darken [9]. For the same training set size of 500 data points, the
smallest prediction error achieved by “neural-gas” networks [6] was about 0.06.
The smallest prediction error among 50 runs of NCNNs was 0.0305, while the
average prediction error was 0.0458.

Testing RMS
Mean Std Dev Min Max

∆t = 6 0.0100 0.0006 0.0090 0.0116
∆t = 84 0.0326 0.0033 0.0273 0.0400
∆t = 90 0.0367 0.0038 0.0305 0.0458

Table 1. The average results produced by negative correlation learning over 50 runs
for the Mackey-Glass time series prediction problem. The “Testing RMS” in the table
refers to the error defined by Eq.(9) on the testing set.

338 Yong Liu and Xin Yao

NCNNs EPNet BP CC Learning
∆t = 6 0.01 0.02 0.02 0.06
∆t = 84 0.03 0.06 0.05 0.32

Table 2. Generalisation errors comparison among NCNNs, EPNet[7], and BP learning
and the cascade-correlation (CC) learning[8] for the Mackey-Glass time series predic-
tion problem. The generalisation error refers to the error defined by Eq.(9) on the
testing set.

3.2 Chlorophyll-a Prediction

Recknagel [10] has recently proposed to use feed-forward NNs to predict chloro-
phyll-a in Lake Kasumigaura. The experimental results reported by Recknagel
[10] were very promising, although more improvements can be made.

Experimental setup In order to compare our results with previous work, we
have followed as closely as possible the previous experimental setup described in
[10]. The limnological time series for 10 years between 1984 and 1993, inclusively,
were used in our experiments. The experiment was divided into two parts. The
first part used the data in 1984 and 1985 as the training data to train the first
NN ensemble. Then the NN ensemble was tested on the 1986 data. The second
part of the experiment used the data between 1987 and 1992 as the training
data to train the second NN ensemble. Then the NN ensemble was tested on the
1993 data. Using the 1986 and 1993 data as the independent testing data was
suggested by Recknagel [10] because they represent typical years for blooms of
Microcystis and Oscillatoria, respectively. More details about these data were
given in [10].

As a preprocessing step, the original data were rescaled linearly to between
0.1 and 0.9. The input to each individual network consists current 8 input condi-
tions and output conditions in the past seven days. It should be pointed out that
Recknagel [10] used a 5-vector input layer which included the current input con-
ditions and those input conditions of present 10, 20, 30, and 40 days previously.
The reasons for changing input are to decrease the number of input attributes
and make the Chlorophyll-a prediction problem more meaningful in the sense of
time series prediction.

The normalised root-mean-square (RMS) error E defined in Eq.(9) for ∆t =
1 was used to evaluate the performance of negative correlation learning. The
ensemble architecture used in the experiments has 20 individual networks. Each
individual network is a feedforward NN with one hidden layer. Both hidden node
function and output node function are defined by the logistic function in Eq.(10).
All the individual networks have 6 hidden nodes. The number of training epochs
was set to 2000 for the first part of the experiment, and 1000 for the second part
of the experiment. The strength parameter was set to 1.0.

Time Series Prediction by Using Negatively Correlated Neural Networks 339

Experimental Results Table 3 shows the average results of NCNNs over 50
runs for the chlorophyll-a prediction problem. Each run of NCNNs was from dif-
ferent initial weights. Fig.2 shows the best predictions of NCNNs along with the
observed values. As can be seen, the predictions of NCNNs are remarkably accu-
rate except the peak magnitudes in 1986 were slightly underestimated. NCNNs
also outperformed the standard feedforward NNs for the chlorophyll-a prediction
problem [10].

Year Mean Std Dev Min Max
1983 – 1984 0.0104 0.0003 0.0099 0.0111

1986 0.0812 0.0044 0.0740 0.0902
1987 – 1992 0.0213 0.0005 0.0206 0.0228

1993 0.1051 0.0016 0.1025 0.1094

Table 3. The average results of RMS errors produced by NCNNs over 50 runs for the
chlorophyll-a prediction in Lake Kasumigaura.

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

Observed
Predicted

0

50

100

150

200

250

300

3250 3300 3350 3400 3450 3500 3550 3600

Observed
Predicted

0

50

100

150

200

250

300

1500 2000 2500 3000

Observed
Predicted

0

50

100

150

200

250

300

750 800 850 900 950 1000 1050

Observed
PredictedChlorophyll-a [mg/l] Chlorophyll-a [mg/l]

Chlorophyll-a [mg/l] Chlorophtll-a [mg/l]

1984 1985

1987

1986

19931992

Fig. 2. The observed outputs and the best NCNNs’ outputs for the chlorophyll-a pre-
diction in Lake Kasumigaura. The time span is ∆t = 1.

340 Yong Liu and Xin Yao

4 Conclusions

This paper introduces NCNNs and applies NCNNs to two time series predic-
tion problems, i.e., the Mackey-Glass differential equation and the chlorophyll-a
prediction in Lake Kasumigaura. Accurate prediction of chlorophyll-a and other
blue-green algae in fresh water lakes can provide ecologists and environmen-
talists with valuable information for controlling major outbreaks of these algae
and protecting the environment. Very good results were obtained by NCNNs in
comparison with other algorithms.

NCNNs provide a very promising and competitive alternative to designing
NN ensembles manually. However, no special considerations were made in the
optimisation of the size of the ensemble in this paper. It would be desirable
to develop a learning algorithm which can vary the ensemble size dynamically.
Preliminary work on this research has already started.

References

1. Y. Liu and X. Yao, “Negatively correlated neural networks can produce best en-
sembles,” Australian Journal of Intelligent Information Processing Systems, 4(3/4),
pp.176–185, 1997.

2. X. Yao and Y. Liu, “Making use of population information in evolutionary ar-
tificial neural networks,” IEEE Transactions on Systems, Man and Cybernetics,
28B(3),pp.417–425, June 1998.

3. Y. Liu and X. Yao, “Simultaneous Learning of Negatively Correlated Neural Net-
works,” Journal of Artificial Life and Robotics. Accepted, 1998.

4. J. D. Farmer and J. J. Sidorowich, “Predicting chaotic time series,” Physical Review
Letters, Vol. 59, pp.845–847, 1987.

5. M. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,”
Science, vol. 197, p. 287, 1977.

6. T. M. Martinetz and S. G. Berkovich and K. J. Schulten, “‘Neural-gas’ network for
vector quantization and its application to time-series prediction,” IEEE Trans. on
Neural Networks, Vol. 4, pp.558–569, 1993.

7. X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural net-
works,” IEEE Transactions on Neural Networks, Vol.8, no.3, pp.694–713, May 1997.

8. R. S. Crowder, “Predicting the Mackey-Glass timeseries with cascade-correlation
learning,” in Proc. of the 1990 Connectionist Models Summer School, pp.117–123,
1990.

9. J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned processing
units,” Neural Computation, Vol. 1, pp.281–294, 1989.

10. F. Recknagel, T. Fukushima, T. Hanazato, N. Takamura and H. Wilson, “Mod-
elling and Prediction of Phyto- and Zooplankton Dynamics in Lake Kasumigaura
by Artificial Neural Networks,” Lakes & Reservoirs (in press).

Animating the Evolution Process of Genetic
Algorithms

An Li and Kit Po Wong

Artificial Intelligence and Power Systems Research Group
The University of Western Australia

Australia

Abstract. This paper reports the work on the development of an an-
imation system for visualising the optimisation process of the Genetic
Algorithm. The description on the requirements and structure of the
system is presented. The developed system is applied to visualise some
six testing cases. Sequences of animation shots of the evolution pro-
cess for solving the Branin RCOS problem and the Schaffer-6 problem
are presented. In the latter example, the effect of a solution acceleration
technique is also demonstrated. The method of building the visualisation
system can be applied to other evolutionary computation techniques.

Keywords: Genetic Algorithm, animation, graphic user interface (GUI),
optimisation

1 Introduction

In the areas of science, engineering and economics, there are many optimisation
problems, which are highly non-convex and their global optimum solutions are
required. Owing to their ability in seeking the global or near-global optimum
solution, Genetic Algorithms (GAs) [1,2] have been applied to solving optimisa-
tion problems in image processing [3,4], VLSI design [5], robotics systems [6,7],
transportation [8,9], and power engineering [10,11,12,13].

Genetic algorithms (GAs) are an adaptive searching technique in the field of
evolutionary computation based on the mechanics of natural genetics and natu-
ral selection. The success of the application of GAs to an optimisation problem
depends on the design of (a) representation of chromosomes, (b) fitness function,
(c) method of crossover, (d) mutation operation and (e) measures and techniques
to ensure robustness of the GA evolution process for the determination of the
optimum solution. Besides these factors, the performances of GAs depend on
the parameter settings of the population size, crossover rate and mutation rate.

To ease the design of the components above and to examine the effectiveness
of the measures and techniques in (e), a visualisation tool will be very helpful.
In such a tool, the evolution processes of GAs need to be animated. While the

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 341–348, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

342 An Li and Kit Po Wong

evolution processes of GAs are difficult to predict particularly during the de-
velopment phase of the GA-based optimisation algorithms, visualisation of the
evolution processes will make the processes transparent. Owing to the trans-
parency provided, deeper insight to the performance of the algorithm under
development can be obtained and hence the development time can be shortened.

The animation of the GA evolution process will give aids to determine the ap-
propriateness of the values of the parameter settings, or the appropriate points
in the process on which settings of the parameters need to be changed. Fur-
thermore, it will provide a better insight to the distribution and diversity of
chromosomes in the population.

While work [14] on a two dimensional data matrix representation of the search
space for visualisation purposes has recently been reported, this paper is de-
voted to the development of an animation system for visualising the evolution
of chromosomes during the evolution process. It describes the requirements and
structure of the system. The developed system is applied to visualise some six
testing cases. Sequences of animation shots of the evolution process for opti-
mising the Branin RCOS problem [15] and the Schaffer-6 problem [15] are pre-
sented. In the latter example, the effect of a solution acceleration technique is also
demonstrated. The method of building the visualisation system can be applied
to optimisation process based on other evolutionary computation techniques.

2 Requirements of animating system

An animating system for the GA evolutionary process should be able to display:
– population of chromosomes;
– distribution of the chromosomes;
– display of search space in two- and three-dimensional space for up-to three

variable problems;
– sequential change in the distribution of the chromosomes in a population

from one generation to the next;
– crossover action in forming a child chromosome;
– mutation action in forming a child chromosome;
– convergence characteristics of the GA optimisation process;
– background information and relevant terminology.

Moreover, an animating system should have the ability to allow interactive set-
ting of the parameters for executing the evolution process.

3 Design and Structure of the GA Animation System

A system called the Genetic Algorithm Animation System (GAAS) has been
designed and developed to fulfil the requirements in Section 2. GAAS is built

Animating the Evolution Process of Genetic Algorithms 343

using the high performance language MATLAB (version 5.2), a sophisticated
software package for numeric computation and data visualization. By making use
of sophisticated graphic user interfaces (GUIs) provided by MATLAB, GAAS is
designed to provide a visually rich environment for conveying information, al-
lowing more intimate interaction between users and machines. Rather than the
one-way path from keyboard to video screen, GAAS allows the user to interact
directly with the objects on the display. The overall structure of the GAAS is
shown in Fig. 1.

Fig. 1. Block diagram of Genetic Algorithm Animation System

With reference to Fig. 1, when GAAS is initiated, a main window will be dis-
played. From the main window, the user is allowed to (a) set parameters, (b)
select a test case, (c) select the dimension of the search space, (d) access the
information on selected test cases, (e) access the tutorials on GA, (f) select the
display on genetic operations and convergence characteristics, and (g) execute
the animation process. Fig. 2 gives an actual GAAS display of the main window,
the parameter setting control panel, test case indicator and menu bar.

GAAS is designed and implemented following a hierarchical structure shown
in Fig.3. In GAAS, the main window is the Root Figure object depicted in
Fig.3. As shown in Fig. 2, the main window is responsible for taking parameter
setting, executing numerical calculation and graphical animation, and initiating
the display for tutorials and information. There are a number of key objects
developed and built into the main window. The key objects include:

– 2D (Radio button): Enable or disable the display for 2D search space;
– 3D (Radio button): Enable or disable the display for 3D search space;
– Acceleration (Check box): Enable or disable the acceleration technique;

344 An Li and Kit Po Wong

Fig. 2. A sample display of the Genetic Algorithm Animation System

Fig. 3. Hierarchical Structure used in GASS Design

– Animations (User interface menu): Allow to select pop-up windows for
animating crossover, mutation and selection operations. The animation of
convergence behavior can also be selected from this object;

– Animated computation (Radio button): Enable or disable animation;
– Case Selection (Pop-up menu): Provide 6 build-in test cases including De

Jong function 1, De Jong function 2, Schaffer function 6, Schaffer function
7, Six-hump camel back function and Branin RCOS function;

– Elitism (Check box): Enable or disable the elitism scheme;
– Info (Push button): Invoke a pop-up window describing selected test case;
– Tutorials (User interface menu): Allow to select pop-up windows for tuto-

rials on Genetic Algorithms and related technical jargons.

Animating the Evolution Process of Genetic Algorithms 345

Four pop-up windows have been designed and implemented for animating key
genetic operations. These four windows are Crossover Animation, Mutation An-
imation, Selection Animation and Convergence Animation. A pop-up help win-
dow is also provided and can be invoked from Tutorials menu to display the
definition for relevant evolutionary computation terms.

In the implementation of GAAS, the object-oriented programming methodol-
ogy has been used. The implementation details are omitted here.

4 Application Examples

GAAS has been applied to visualise the evolution process of the Standard GA
(SGA) in optimising some well-known functions given in [15]. The authors have
previously developed a solution acceleration method for improving the perfor-
mance of SGA. The acceleration method can be found in [16] and it is the acceler-
ation scheme (a) described in Reference [17]. This method has been incorporated
into the SGA program given in Reference [15] to form the accelerated GA and
has also been applied to optimise the functions mentioned above. This section
presents the animation shots in the optimisation processes when searching so-
lutions for the Branin RCOS problem. To illustrate the effect of acceleration,
the animation results obtained by GAAS for the Schaffer-6 problem are also
presented.

(i) Solution searching for the Branin RCOS problem

The objective function, given by Eq. (1), of Branin RCOS problem has the
global minimum value of 0.397887 at (x1, x2) = (−π, 12.275), (π, 2.275), or
(9.425, 2.475).

F (x1, x2) = (x2 − 5.1
4π2 x2

1 +
5
π

x1 − 6)2 + 10(1 − 1
8π

)cos(x1) + 10 (1)

The chromosomes in the initial population spread widely over the search space
in terms of the x1- and x2- axes as shown in Fig. 4(a). However, it can be ob-
served that there are two initial chromosomes located very close to the third
solution point near the bottom-left corner of the figure. This visualisation indi-
cates that the evolution process may be attracted to the third solution point.
The distribution of the chromosomes in the 2nd generation in Fig. 4(b) shows
that the chromosomes are attracted to the second and the third solution points.
A further generation sees the solution process evolves towards the third solu-
tion points as shown in Fig. 4(c). The third optimal solution is obtained in the
7th generation. The chromosome distribution at the 20th generation is shown
in Fig. 4(d) giving confirmation to the optimal solution. To capture all the op-
timal solutions, clustering algorithms can be included into the evolution process.

346 An Li and Kit Po Wong

Statistics of the number of mutation performed and the number of times a chro-
mosome has been selected for crossover in the 20th generation are displayed as
shown in Figs. 4(e) and (f). In the Fig. 4(e), a bar represents a chromosome
and a black bar represents a mutated chromosome. In Fig. 4(f), the digits in
the odd columns give the index of a chromosome. In the even columns, the digit
summarised the number of times the chromosome has been selected for crossover
while the symbol ’x’ indicates no selection.

Fig. 4. Evolution process and statistics in solving
the Branin RCOS problem

Fig. 5.

Convergence Characteristic

Fig. 5 shows the convergence characteristics of the process. From the statistics
of chromosome selection, crossover and mutation given in the animation widows
such as shown in Fig. 4 and the convergence characteristic given in Fig. 5, the
user will be able to examine the effectiveness of the evolutionary process at any
generation and hence evaluate the appropriateness of the settings of the GA
parameters and the performances of the various genetic operations.

(ii) Solution searching for the Schaffer-6 problem

To demonstrate the visualisation of the acceleration effect in [16,17], the Schaffer-
6 problem is solved here. The objective function is given in eqn. (2) and the global
minimum value is zero at (x1, x2) = (0, 0).

F (x1, x2) = 0.5 +
sin2(

p
x2

1 + x2
2) − 0.5

(1 + 0.001(x2
1 + x2

2))2
(2)

The evolution of a population of chromosomes through the first four generations
with and without the acceleration scheme is shown in Figs. 6 and 7. In these

Animating the Evolution Process of Genetic Algorithms 347

figures, the vertical axis is for the value of the objective function and the other
two axes are for x1 and x2. Without the acceleration, as shown in Figs. 6(a)-
(d), the chromosomes hop around in the searching space without getting close
to the optimum point. However, in Figs. 7(a)-(d) when solution acceleration is
enabled, the chromosomes move rapidly towards the optimum point immediately
after the 1st generation, the optimum point is almost reached at the 4th gener-
ation by the fittest chromosome. The same phenomenon was observed when the
problem was solved by separate executions of the accelerated GA algorithm.

Fig. 6. Evolution process without acceleration in solving the Schaffer-6 problem

(a) root generation (b) 2nd generation (c) 3rd generation (d) 4th generation

Fig. 7. Evolution process with acceleration in solving the Schaffer-6 problem

5 Conclusions

A GA animation system, GAAS, has been designed and developed using the
object-oriented programming methodology. The structure and facilities of GAAS
have been reported. The multiple-window displays that the system provides en-
able a clear visualisation of the evolution process of GA and statistics of some
of the important GA operations. Two optimisation problems, Branin RCOS and
Schaffer-6, have been used to demonstrate the usefulness of the developed ani-
mation system. This system will be very useful for education purposes and for
advancing the research into robust evolutionary algorithms. Further development
of GAAS is currently undertaken to include more functions and facilities.

348 An Li and Kit Po Wong

References

1. J.H. HOLLAND. Adaption in Natural and Artificial Systems. Ann Arbor: Univer-
sity of Michigan Press, 1975.

2. D.E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learning.
Addison-Wesley, 1989.

3. V.R. MANDAVA, FITZPATRICK M., and D. R. PICLENS. Adaptive search
space scaling in digital image registration. IEEE Transactions on Medical Imaging,
8(3):251–262, 1989.

4. J. LUI, Y.Y. TANG, and CAO Y.C. An evolutionary autonomous agents approach
to image feature extraction. IEEE Trans. on Evolutionary Computation, 1(2):141–
158, 1997.

5. J. LIENIG. A parallel genetic algorithm for performance-driven vlsi routing. IEEE
Trans. on Evolutionary Computation, 1(1):29–39, 1997.

6. J. K. PARKER and D.E. Goldberg. Inverse kinematics of redundant robots using
genetic algorithm. Proceedings, IEEE International Conference on Robotics and
Automation, pages 271–276, 1989.

7. J. XIAO, Z. MICHALEWICZ, L. ZHANG, and K. TROJANOWSKI. Adaptive
evolutionary planner/navigator for mobile robots. IEEE Trans. on Evolutionary
Computation, 1(1):18–28, 1997.

8. G.A. VIGNAUX and Z MICHALEWICZ. A genetic algorithm for the linear trans-
portation problem. IEEE Trans. on Systems, Man and Cybernetics, 21(2):321–326,
1989.

9. S.R. THANGIAH, K.E. NYGARD, and P. L. JUELL. Gideon: a genetic algorithm
system for vehicle routing with time windows. Proceedings, 7th IEEE Conference
on AI Applications, pages 322–328, 1991.

10. K.P. WONG and WONG Y.W. Genetic and genetic/simulated-annealing ap-
proaches to economic dispatch. IEEE Trans. on Systems, Man and Cybernetics,
1994.

11. K.P. WONG, A. LI, and M. Y. LAW. Development of constrained genetic-
algorithm load-flow method. IEE Proc.-Gener. Transm. Distrib., 144(2):91–99,
March 1997.

12. D.C. WALTER and G.B. SHEBLE. Genetic algorithm solution of short term
hydro-thermal scheduling with valve point loading. IEEE PES Summer Meeting,
Seattle, SM 414-3 PWRS, 1992.

13. R.R. BISHOP and G.G. RICHARDS. Identifying induction machine parameters
using a genetic opimization algorithm. IEEE Proceedings, Section 6C2, pages 476–
479, 1990.

14. T.D. COLLINS. Understanding evolutionary computing: A hands on approach.
IEEE Proc. International Conference on Evolutionary Computation, Anchorage,
Alaska, pages 564–569, 1998.

15. Z. MICHALEWICZ. Genetic algorithms + data structures = evolution programs,
3rd rev. extended ed. Springer-Verlag, 1996.

16. K.P. WONG and A. LI. A technique for improving the convergence characteristic
of genetic algorithms and its application to a genetic-based load flow algorithm.
Simulated Evolution and Learning, JH Kim, X. Yao, T. Furuhasi (Eds), Lecture
Notes in Artificial Intelligence 1285, pages 167–176, 1997.

17. K.P. WONG and A. LI. Virtual population and solution acceleration techniques for
evolutionary optimisation algorithms. Proc. The 2nd Asia Pacific Conference on
Simulated Evolution and Learning (SEAL98), Canberra, Australia, 24-27 Novem-
ber 1998.

Analysis on the Island Model Parallel Genetic
Algorithms for the Genetic Drifts

Tatsuya NIWA? and Masaru TANAKA??

Information Science Division
Electrotechnical Laboratory

1–1–4 Umezono Tsukuba-shi Ibaraki, 305-8568 JAPAN.
phone: +81-298-54-5866, fax: +81-298-54-5841

Abstract. In our former paper, we have investigated the relation among
the mean convergence time, the population size, and the chromosome
length of genetic algorithms (GAs). Our analyses of GAs make use of the
Markov chain formalism based on the Wright-Fisher model, which is a
typical and well-known model in population genetics. The Wright-Fisher
model is characterized by 1-locus, 2-alleles, fixed population size, and
discrete generation. For these simple characters, it is easy to evaluate
the behavior of genetic process. We have also given the mean conver-
gence time under genetic drift. Genetic drift can be well described in the
Wright-Fisher model, and we have determined the stationary states of
the corresponding Markov chain model and the mean convergence time to
reach one of these stationary states. The island model is also well-known
model in population genetics, and it is similar to one of the most typical
model of parallel GAs, which require parallel computer for high perfor-
mance computing. We have also derived the most effective migration rate
for the island model parallel GAs with some restrictions. The obtained
most effective migration rate is rather small value, i.e. one immigrant
per generation, however the behaviors of the island model parallel GAs
at that migration rate are not revealed yet clearly. In this paper, we dis-
cuss the mean convergence time for the island model parallel GAs from
both of exact solution and numerical simulation. As expected from the
Wright-Fisher model’s analysis, the mean convergence time of the island
model parallel GAs is proportional to population size, and the coefficient
is larger with smaller migration rate. Since to keep the diversity in popu-
lation is important for effective performance of GAs, the convergence in
population gives a bad influence for GAs. On the other hand, mutation
and crossover operation prevent converging in GAs population. Because
of the small migration rate makes converging force weak, it must be ef-
fective for GAs. This means that the island model parallel GAs is more
efficient not only to use large population size with parallel computers,
but also to keep the diversity in population, than usual GAs.

Keywords: Markov chain, population genetics, genetic drift, Wright-
Fisher model, island model parallel genetic algorithms.

? <niwa@etl.go.jp>
?? <mtanaka@etl.go.jp>

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 349–356, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

350 Tatsuya Niwa and Masaru Tanaka

1 Introduction

Genetic Algorithms (GAs) are adaptive methods based on the genetic processes
of biological organisms which were introduced by Holland [6]. They successed
to solve many problems of search, optimization, and machine learning [4]. It
is natural to study behaviors of GAs theoretically, because we want to know
performances of GAs compared with other methods and that how GAs converge
good solutions; it is expected that situations are different from random search
methods. Then many researchers have studied GAs theoretically [2][12][13]. One
of the interesting topics in the finite population of GAs is the genetic drift.

In population genetics and GAs, genetic drift is well known phenomenon. In
[1][3][7], genetic drift has been studied with computer simulations. Kimura gave
the mathematical analysis for the population genetics through diffusion models
[8].

In [11], we derived the most efficient mutation rate for standard GAs and
the most efficient migration rate for island model parallel GAs. In this paper, we
discuss the mean convergence time for the island model parallel GAs. This paper
is organized as follows. Section 2 is a review of our former researches [10][11] in
order to understand the later sections, and it is devoted to analyze the mean
convergence time and the stationary state on the Wright-Fisher model which is
a model of simple GAs. In section 3 we consider the island model parallel GAs,
which is often used in parallel GAs. For the details of our analyses on the Markov
chain model, see [14].

2 Genetic Drifts and the Wright-Fisher Model

Let the population consist of fixed n individuals which have only one locus,
in other words, the length of chromosome is one for each. There are only two
different alleles (‘0’ and ‘1’) in the locus, and the state is denoted as the number
of ‘1’s in the population. This is the well known genetic model as “Wright-Fisher
model” in biological population genetics field (e.g. [5]).

Genetic drift is the random fluctuation of gene frequencies subjected by prob-
abilistic transition from generation to generation in finite population size. It
tends to localize genes to particular genes (convergent states of Markov chain).
This tendency is against mutation, which makes genes disperse to various genes.
In this section, we consider the mean convergence time of the Wright-Fisher
model without mutation using standard Markov chain analysis.

In this case, the convergence of the Wright-Fisher model is driven by genetic
drift. The model has only two alleles, i.e. 0 and 1. In general case, i.e. more than
two alleles, we pick up a particular allele to use the Wright-Fisher model. If a
total population size is n, then the state of the population is uniquely specified
by the number of 0s, so we define the state as the number of 0s.

Analysis on the Island Model Parallel Genetic Algorithms 351

2.1 Mean Convergence Time for the Wright-Fisher Model

The mean convergence time of simple GAs is proportional to the population size.
In [1][3][7], the effects of genetic drift to the mean convergence time have been

studied with numerical experiments. It is shown that the mean convergence time
is proportional to the population size of a model. Theoreticaly, we can show, in
the continuous limit such as the large population limit, the mean convergence
time is proportional to the size of population. According to Kimura [8] with some
tedious calculations, we have the following relation on the mean convergence time
τ ;

τ '
∞∑

j=0

P2j(1 − 2p) − P2j+2(1 − 2p)
(j + 1)(2j + 1)

n (1)

where P∗(·) are the Legendre polynomials, and p is the gene frequency at the
initial state. This shows that the mean convergence time is proportional to the
population size. It is too difficult to explain the derivation of eq.(1), see [8] and
[14] for detail. As shown in table 1, the theoretical values from eq.(1) coincide
with the results from the numerical experiments [1]. Note that the right hand
side of eq.(1) is equal to −2{p log p + (1 − p) log(1 − p)}n.

theoretical analysis numerical analysis
initial state

from eq.(1) from [1]
p = 1/2 1.386n 1.4n

p = 1/4 1.125n 1.0n

p = 1/8 0.754n 0.7n

Table 1. Mean convergence time at large population

2.2 Stationary State for the Wright-Fisher Model

Here we consider the Wright-Fisher model with mutation. Then the transition
matrix Q, each element of which is transition probability from state i to state
j, is given as

Qij =
(

n

j

) (
µ +

1 − 2µ

n
i

)j (
1 − µ − 1 − 2µ

n
i

)n−j

. (2)

Since the largest eigenvalue of Q is 1, we get the density function of the sta-
tionary state by normalizing the eigenvector for the eigenvalue 1 [5]. Making the
population size n the infinity, the density function of stationary state is given as
[8];

Γ (4nµ)
{Γ (2nµ)}2

{
i

n

(
1 − i

n

)}2nµ−1

. (3)

Figure 1 shows the shape of the density function of stationary state in the
large population limit. From the eq.(3), we see that the mutation rate µ = 1

2n

352 Tatsuya Niwa and Masaru Tanaka

0

0.2

0.4

0.6

0.8

1

n*mu

0

0.2

0.4

0.6

0.8

1

freq.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

density

Fig. 1. The density function of the stationary states: the large population limit
Γ (4nµ)

{Γ (2nµ)}2

{
i
n

(
1 − i

n

)}2nµ−1
.

makes the density function flat. This shows that this mutation rate makes the
GAs work well. Because, if the mutation rate is large, GAs are hard to get
stationary results, and if the mutation rate is small GAs become easy to converge
to a certain value which might not be an optimal result. When the mutation rate
µ is 1

2n all of the states have the same probability. At that mutation rate, the
density function could be expected to take the same shape as the considered
fitness function.

In this consideration, we didn’t take the influence of the chromosome length
into account. This is because, the gene of each locus behaves like described
here. Furthermore, since the reciprocal effect spanning plural loci, i.e. epistasis,
depends on the problem to be solved, we cannot describe it without knowing the
fitness function. But the mutation rate µ = 1

2n could be a standard value.

3 Island Model Parallel GAs

Parallel GAs have been investigated since GAs were introduced. The island
model parallel GAs are typical models of parallel GAs [15]. For the island model
parallel GAs, the total population is divided into several subpopulations, and one
processor is allocated to each subpopulation. Each processor is engaged to run
the simple GA independently. Inter-processor communication occurs during the
migration phase at regular intervals (i.e. migration interval). During migration,
a fixed rate of each subpopulation is selected and sent to another subpopulation.
In return, the same number of migrants are received and replace individuals
selected according to some criteria.

Analysis on the Island Model Parallel Genetic Algorithms 353

3.1 Stationary State for the Island Model

In the limit of subpopulation size n tending to infinity, the density function of
stationary state is given by [8];

Γ (2nm)
(

i
n

)2nmx−1 (
1 − i

n

)2nm(1−x)−1

Γ (2nmx)Γ (2nm(1 − x))
, (4)

where n is the number of individuals in a subpopulation, m is migration rate or
the ratio of migrants for each generation in subpopulation, and x is the mean
value of i

n of whole populations. Figure 2 shows the density function of the
stationary states.

0

0.5

1

1.5

2

n*m

0

0.2

0.4

0.6

0.8

1

freq.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

density

Fig. 2. The density function of the stationary states: the large population limit of
island model parallel GAs, where subpopulation size is n, and the mean frequency x

of whole population is 1
2 ; Γ (2nm)

{Γ (nm)}2

{
i
n

(
1 − i

n

)}nm−1
.

From the eq.(4), the migration rate m is twice large as mutation rate µ of
the eq.(3) when x is 1

2 . That means the migration rate m = 1
n makes the density

function uniform, similar to the case of µ = 1
2n . This implies that the migration

rate m = 1
n , which means one migrant per generation, makes parallel GAs work

well. This situation is similar to the case of the mutation rate of standard GAs.
However, there are some differences between them; First, mutation is ignored
in the eq.(4). Second, we assume x (the mean value of i

n of whole populations)
is 1

2 . Because of these differences, our expectation would have a little error. In
fact, the migration rates used in the several researches on parallel GAs are larger
than 1

n .
Although Manderick et al.[9] tried to determine the most effective migration

rate, they could not determine it. Because a small difference of migration rate

354 Tatsuya Niwa and Masaru Tanaka

does not make a meaningful deference in the performance of the island model
parallel GAs. Since the smaller migration rate gives less communication overhead
cost, we expect the migration rate 1

n might drive the island model parallel GAs
effectively.

3.2 Mean Convergence Time for the Island Model

For the simple model, i.e. two islands case, we can evaluate the mean conver-
gence time depending on its population size and migration rate by the numerical
simulation. As well as the Wright-Fisher model, the mean convergence time is
proportional to its population size, and the coefficient decreases by larger mi-
gration rate. We set the initial value of this simulation to half of the population
for each island.

Fig. 3. Mean convergence time vs population size with respect to several migration
rates (two islands, population size is in total).

When the population size is small, we can get the exact solution. The number
of the states of two islands case is the product of the number of the states of
each island. It is too difficult to get the transition matrix in general form. We
evaluated the mean convergence time when the population sizes of one island
are 2 and 4, i.e. the total population sizes are 4 and 8. As the initial state of

Analysis on the Island Model Parallel Genetic Algorithms 355

population migration simulation exact solution
2-2 1 6.154 6.167
4-4 1 11.623 11.670
4-4 2 11.240 11.297

Table 2. Mean convergence time for two-island model. Migration represents the num-
ber of immigrant per generation.

this simulation, we set the gene frequency of each island to 1/2. The simulation
results almost coincide with the exact solutions, as shown in table 2.

Though the mean convergence time of island model parallel GAs is propor-
tional to population size, the proportional constant is large when the migration
rate is small. From the numerical simulation, the proportional constants are
1.54, 1.47, and 1.38, depending on the migration for one per generation, two per
generation, and half of island population per generation, respectively. Since the
proportional constant of the ordinary (“panmictic”) GA is 1.386, the migration
of half of island population per generation seems to give a similar behavior to
panmictic GAs. However, the small migration makes the convergence time long,
it would give a good influence to GAs.

4 Conclusions

We considered the mean convergence time subjected to genetic drift and gave
reference values of mutation and migration. We want to know the performance
of GAs compared with other methods. Therefore theoretical and experimental
studies of GAs must be performed. The roles of mutation, crossover, and selection
must be made clear and controllable. Mutation and crossover are effective to tend
to increase the diversity in population. Convergence by reproduction gives the
tendency of decreasing the diversity. So we want to know the critical point that
is to balance between increasing and decreasing the diversity in population, to
make the searching process of GAs effective. Even though the Wright-Fisher
model is a very simple model, i.e. 1-locus, 2-alleles, fixed population size, and
discrete generation, it has some remarkable features. From figure 1, when the
mutation rate has the value µ = 1

2n , the density of the stationary states tends
to be uniform. Furthermore, in case of island model parallel GAs, the migration
rate m = 1

n makes the density uniform. Additionally, such small migration rate,
as m = 1

n , increases the convergence time. This means that the island model
parallel GAs is more efficient not only to use large population size, but also to
keep the diversity in population than usual GAs. These reference values might
be a key point to determine the mutation rates and the migration rates.

356 Tatsuya Niwa and Masaru Tanaka

Acknowledgments

The authors would like to give thanks to Dr. H. Nakashima, Director of the In-
formation Science Division, and Dr. H. Asoh, for their continual encouragement
and valuable discussions and useful comments.

References

1. H. Asoh and H. Mühlenbein, “On the Mean Convergence Time of Evolutionary Al-
gorithms without Selection”, Parallel Problem Solving from Nature 3 (proceedings),
1994.

2. A. E. Eiben, E. H. L. Aarts, and K. M. Van Hee, “Global Convergence of Genetic
Algorithms: a Markov Chain Analysis”, Parallel Problem Solving from Nature (pro-
ceedings), 4-12, 1990.

3. D. E. Goldberg and P. Segrest, “Finite Markov Chain Analysis of Genetic Algo-
rithms”, Proceedings of the 2nd International Conference on Genetic Algorithms,
1-8, 1987.

4. D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning,
Addison-Wesley, Reading, Mass., 1989.

5. D. L. Hartl and A. G. Clark, Principles of Population Genetics, Second Edition,
Sinauer Associates Inc., 1975.

6. J. H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan
Press, Ann Arbor, Mich., 1975.

7. J. Horn, “Finite Markov Chain Analysis of Genetic Algorithms with Niching”,
Proceedings of the 5th International Conference on Genetic Algorithms, 110-117,
1993.

8. M. Kimura, “Diffusion Models in Population Genetics”, J. Appl. Prob. 1, 177-232,
1964.

9. B. Manderick and P. Spiessens, “Fine-Grained Parallel Genetic Algorithms”, Pro-
ceedings of the 3rd International Conference on Genetic Algorithms, 428-433, 1989.

10. T. Niwa and M. Tanaka, “On the Mean Convergence Time for Simple Genetic Al-
gorithms”, Proceedings of the International Conference on Evolutionary Computing
’95, 1995.

11. T. Niwa and M. Tanaka, “Analyses of Simple Genetic Algorithms and Island Model
Parallel Genetic Algorithm”, Artificial Neural Nets and Genetic Algorithms, Pro-
ceedings of the International Conference in Norwich, U.K., 1997, 224-228, 1997.

12. G. Rudolph, “Convergence Analysis of Canonical Genetic Algorithms”, IEEE
Transactions on Neural Networks, Vol.5, No.1, 96-101, 1994.

13. J. Suzuki, “A Markov Chain Analysis on a Genetic Algorithm”, Proceedings of the
5th International Conference on Genetic Algorithms, 146-153, 1993.

14. M. Tanaka and T. Niwa, “Markov Chain Analysis on Simple Genetic Algorithm”,
ETL-TR-94-13, 1994.

15. R. Tanese, “Distributed Genetic Algorithms”, Proceedings of the 3rd International
Conference on Genetic Algorithms, 434-439, 1989.

A Paradox of Neural Encoders and Decoders or
Why Don’t We Talk Backwards??

Bradley Tonkes1, Alan Blair1, and Janet Wiles12

1 Department of Computer Science and Electrical Engineering
2 School of Psychology

University of Queensland
QLD 4072 Australia

{btonkes, blair, janetw}@csee.uq.edu.au

Abstract. We present a framework for studying the biases that recur-
rent neural networks bring to language processing tasks. A semantic
concept represented by a point in Euclidean space is translated into a
symbol sequence by an encoder network. This sequence is then presented
to a decoder network which attempts to translate it back to the original
concept. We show how a pair of recurrent networks acting as encoder and
decoder can develop their own symbolic language that is serially trans-
mitted between them either forwards or backwards. The encoder and
decoder bring different constraints to the task, and these early results
indicate that the conflicting nature of these constraints may be reflected
in the language that ultimately emerges, providing clues to the structure
of human languages.

1 Introduction

The study of automata and the languages they can process has a history dating
back to Turing [9] and beyond. Entwined with this story is the study of natural
languages and of the human mind. The issue is essentially one of constraints.
The constraints on an automaton, such as time and space, place bounds on
the types of tasks it can perform including the types of languages it can process.
Likewise, it is believed that the constraints of the human mind are reflected in the
languages we use, so that by examining the features of language we may better
understand the principles that guide human language and thought processes.

Perhaps the best known work relating automata and languages, which also
seems highly relevant to natural languages, is Chomsky’s hierarchy [1]. Chom-
sky’s hierarchy is a family of language classes that can be recognised by a corre-
sponding family of automata classes. With different restrictions on the automata,
different language classes may be processed. This hierarchy was designed with
symbolic systems in mind, and it has been suggested that dynamical systems,

? We thank Tony Plate and Elizabeth Sklar for helpful discussions. The research was
supported by an APA to BT, a UQ Postdoctoral Fellowship to AB and an ARC
grant to JW.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 357–364, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

358 Bradley Tonkes, Alan Blair, and Janet Wiles

Encoder Decoder

0.8125 0.8125
(real number, y)(real number, x)

Message (bit sequence, m)
<1,1,0,1>

Fig. 1. Getting the point across. Two recurrent networks are used as encoder and
decoder for a communication channel. The encoder is presented with a point from a
subset of Euclidean space, x ∈ U ⊂ IRn, and outputs a sequence of bits, m ∈ Σ�, Σ =
{0, 1}. This sequence of bits is then used as input for the decoder, which outputs a value
y ∈ IRn after the last bit in the sequence has been processed. If the communication
is successful, then y should approximate x. The example shown is using a numeric
encoding.

including many connectionist models, may bring different biases to language
processing tasks relative to their symbolic counterparts [8], necessitating a re-
evaluation of the automata/language relationship.

As well as processing constraints, connectionist models also have learning
constraints. That is, models are limited not only in what they can represent,
but in what they can learn. The distinction between learning and representation
is important when we consider how human languages have developed. For a
natural language to be viable, it must not only be representable by its users, but
also learnable by subsequent generations [6]. The learning and representational
constraints of the human brain dictate the set of languages humans are able to
understand and learn, and consequently the languages that have emerged.

Recurrent neural networks (RNNs) have shown significant promise as com-
putational models of various aspects of the human language processing system.
Part of their appeal is the ability to incorporate syntax and semantics into a
single model [3]. They have also demonstrated competence in learning a wide
range of grammatical structures [7], and often reflect real-world data on natural
language tasks [2,10] and language change [5]. It seems important then, to in-
vestigate the constraints of recurrent networks and the way that they influence
the properties and emergence of language.

This paper is motivated by the observation that communication is essentially
a shared task between sender and receiver, in which the kind of language favoured
by the sender may not be convenient for the receiver and vice-versa. That is, the
constraints of the sender and receiver may be different. The language that ulti-
mately emerges may arise as a compromise between these competing interests.

We consider a simple language task in which two RNNs try to communicate
a semantic “concept” represented by a point in a subset, U ⊂ IRn of Euclidean
space . One network sends a message in the form of a sequence of bits, which the
other network decodes back into a point in the same Euclidean space (Fig. 1).
In this paper we consider the case where U is the unit interval [0, 1].

A Paradox of Neural Encoders and Decoders 359

While the task is superficially simplistic, it has some interesting properties.
The “concept” is specified in a continuous space with arbitrary precision, whereas
the “language” is a sequence of symbols from a finite alphabet. Unlike studies
that have looked at language emergence between symbolic agents over a sym-
bolic channel, this task requires a transformation from a concept described with
arbitrary precision in a continuous space to a symbolic language. A trade-off is
required between the amount of precision in the concepts and the length of the
symbol sequences in the language.

It is possible to accomplish the task by using a numeric encoding — inter-
preting the sequence of bits as its numeric (binary) value. For this numeric code,
two possibilities are immediately obvious: either the most significant part of the
message can be sent first, or it can be sent last. For example, 0.812510 = 0.11012
may be sent most-significant-bit (MSB) first as <1, 1, 0, 1> or least-significant-
bit (LSB) first as < 1, 0, 1, 1 >. This paper investigates the effect that encoder
and decoder constraints have on the way that the concept space and message
sequence can be related.

In Sect. 2, encoder and decoder networks are each trained separately using a
hill-climbing algorithm to perform the task using the numeric code. In Sect. 3,
the encoder and decoder are co-evolved together and are at liberty to determine
their own “language”. We conclude with some remarks relating the results of
the simulations to features of natural language.

2 Simulations 1 and 2: Encoders and Decoders

In the first two series of simulations we investigate the ability of the individ-
ual encoders and decoders to perform their respective mappings. In total, four
mappings are considered.

1. Encoding a real value to an MSB first binary sequence.
2. Encoding a real value to an LSB first binary sequence.
3. Decoding from an MSB first binary sequence to a real value.
4. Decoding from an LSB first binary sequence to a real value.

2.1 Encoders

The architecture for the encoder is a simple recurrent network (SRN) with ad-
ditional connections from the output units to the hidden units.Since a real value
may require representation by an arbitrarily long binary string, we initially
intended that the encoder would output an end-of-sequence symbol once the
number had been encoded. Pilot simulations suggested that this encoding was
difficult to evolve so the length of sequences was artificially limited.

Given this general architecture, it is relatively straightforward to hand-code
a network with a single hidden unit to perform the encoding for an MSB first
sequence. Such a network is shown in Fig. 2(a). However, it is not possible to
perform the LSB first encoding without a large number of hidden units due

360 Bradley Tonkes, Alan Blair, and Janet Wiles

2.0

1.0

1.0
-1.0

(a) Start End0 1

0.0 0.0

0.5

2.0

0.5-1.0

(b)

Fig. 2. (a) MSB encoder: A RNN that takes a real number between 0 and 1 and
encodes it as a numeric string, most significant bit first. The hidden unit uses a linear
threshold activation function that saturates at -1 and 1, whereas the output units use
binary (0.5) threshold units. The input value is presented at the first time-step only.
(b) LSB decoder: A SRN that decodes numeric sequences LSB first. The input is
wrapped with start and end markers. After presentation of the end marker, the output
unit activation corresponds to the appropriate value. Linear (0,1) threshold activations
are used on all units.

to the fractal nature of such an encoding. (For messages of n bits, 2n values
(0
2n , 1

2n , . . . , 2n−1
2n) may be encoded. For any value, k

2n , the first bit of output is
the opposite to that of its neighbours.)

Although a solution could be hand-coded, it was unknown whether it was
learnable, so a series of simulations was designed to address this question. Net-
works were evolved using a simple hill-climbing algorithm to perform both the
LSB and MSB mappings. A “champion” decoder was created with initially ran-
dom weights. A single mutant was then spawned by randomly perturbing the
weights of the champion according to a Gaussian distribution with 0 mean and
initially 0.1 variance. If the mutant was able to encode values as well as, or bet-
ter than the champion, then the mutant became champion and a new mutant
was spawned. To evaluate the accuracy with which values were encoded, the
strings were decoded with a perfect numeric decoder, and the sum squared error
between encoder input and decoder output was calculated.

The values chosen to be encoded were selected by taking a staged learning
approach [4]. Initially, only two values, 0 and 0.5, were encoded, and the number
of bits that could be sent was accordingly set to 1. Once a network was able to
perform this mapping, 2 bits could be sent, encoding 0, 0.25, 0.5 and 0.75. In
general, after 2k numbers could be successfully encoded into k bits, the networks
were given 2k+1 values to encode into (k + 1)−bit sequences. The variance was
modulated throughout the course of the simulations. Simulations were run for
a maximum of 100K generations, or until all 5-bit values could be encoded.
Networks with 1, 2, 3 and 5 hidden units were evolved.

2.2 Decoders

SRNs were used as decoders. The task for the these networks was the inverse
of the encoders’ task with minor variations. Each string presented to a decoder

A Paradox of Neural Encoders and Decoders 361

MSB First LSB First
Hidden units: 1 2 3 5 1 2 3 5

Encoders 11 18 11 7 0 0 0 0
Decoders 0 0 0 0 22 26 30 22

Table 1. Number of networks (of 50 trialed) attaining 5-bit precision in each condition.

was enclosed with start-of-sequence and end-of-sequence inputs, a legacy of the
task originally considered for the encoder. The additional inputs did not appear
to have a considerable impact on the simulations.

Unlike the encoder, the decoder is capable of decoding either MSB or LSB
first, though with some significant differences. Figure 2(b) shows a SRN that
decodes LSB first. Although an LSB decoder is able to decode strings of varying
lengths with only a single hidden unit, an MSB decoder (not shown) can only
decode strings of a fixed length with a single hidden unit. Simulations were
carried out in a similar manner to the encoder. A perfect encoder was used to
encode values to numeric binary sequences. Decoders were compared by the sum
squared error across all presented strings. The same principle of staged learning
was applied.

2.3 Results: Encoders and Decoders

Networks of all sizes were able to encode MSB first sequences and decode LSB
first sequences of up to 5-bits. No networks could encode more than 2-bit values,
LSB first. No networks were able to decode 5-bit sequences MSB first, although
one network with 5 hidden units was able to decode 4-bit sequences. The results
are broadly summarised in Table 1.

3 Evolving a Language

There is clearly a significant difference between the encoders and decoders. The
encoders were only able to learn the MSB first encoding, whereas the decoders
preferred learning LSB first sequences. This presents a serious dilemma when we
consider the complete system of encoding and decoding (Fig. 1). If the system
is to successfully communicate values, then the encoder and decoder must com-
promise on the nature of the code. An MSB or LSB code will not suffice for the
combined system.

Simulations of the complete system were performed under two conditions. In
the first, the communication channel reversed the message: whatever was sent
first by the encoder was received last by the decoder. This condition allows an
MSB code with the encoder encoding MSB first and the decoder decoding LSB
first. With the second condition, the order of the message on the communication
channel was preserved. In this scenario an MSB code is more difficult, and the

362 Bradley Tonkes, Alan Blair, and Janet Wiles

1. Create a champion encoder and decoder.
2. Create a mutant encoder by perturbing the weights of the champion.
3. If the encoding created by the mutant uses a greater variety of strings than the

champion, select that mutant.
4. Create a mutant decoder with weights initialised between -1.0 and 1.0.
5. For n iterations, present all inputs of the current precision to the encoder. Train

the decoder on the output of the encoder.
6. If the final sum squared error of the mutant encoder and decoder across all

strings is lower than that of the champions, make the mutants the champi-
ons. Furthermore, if the mutants got all strings correct, increase the precision.
Return to step (2).

Fig. 3. Evolutionary algorithm for combined encoder/decoder system.

encoder and decoder must develop a code which can be effectively learned and
processed by both networks.

Pilot simulations showed that using a hill-climber for both encoder and de-
coder was intractable. Tests of backpropagation through time (BPTT) on the
decoder showed that it was qualitatively similar with respect to the learning
task of Sect. 2.2, but faster. Hence, a hill-climber was used for the encoder and
BPTT for the decoder. The basic algorithm for the co-evolution of the system
is described in Fig. 3.

3.1 Forwards and Reversed

Both the encoder and decoder used two hidden units, with the decoder trained
for 1000 epochs. The system was give n + 2 bits when communicating n−bit
values in the reversed case, and 2n bits in the forwards case. The extra bits were
found to be necessary for a successful code to develop and have the effect of
increasing the proportion of codes that uniquely identify each value.

In the reversed condition, the system was able to create successful codes for
5-bit values. A typical code is shown in Table 2. The code is effectively a sparse
numeric code. Although not all binary sequences are used, those that are used
are ordered by their numeric values.

The simulations performed with the forwards channel were not nearly as
successful as the reversed case. The best observed code, shown in table 2, encoded
all 3-bit values. It is apparent that it is neither strictly MSB nor LSB first, since
there is no clear ordering of the significance of each bit (less significant bits
should tend to show greater sensitivity to changes in the input.)

4 Discussion and Conclusions

The first series of simulations demonstrated the different constraints of the en-
coder and decoder on the numeric encoding task. Whereas the encoder is only

A Paradox of Neural Encoders and Decoders 363

Reversed Forwards
Input Message Flipped Output Message Flipped Output
0.0000 100111 001101 0.0029 010111 000010 0.0000
0.0625 100100 001110 0.0420
0.1250 111001 010011 0.1211 010101 000000 0.1194
0.1875 111111 010101 0.1943
0.2500 110010 011000 0.2738 011101 001000 0.2425
0.3125 110011 011001 0.3136
0.3750 110000 011010 0.3608 111101 101000 0.3538
0.4375 001001 100011 0.4424
0.5000 001111 100101 0.4945 111111 101010 0.4977
0.5625 001100 100110 0.5412
0.6250 000011 101001 0.6105 111110 101011 0.6162
0.6875 000000 101010 0.6577
0.7500 000001 101011 0.7272 101110 111011 0.7414
0.8125 000111 101101 0.8002
0.8750 011000 110010 0.8488 101010 111111 0.8761
0.9375 011001 110011 0.9184

Table 2. Left: Language for the reversed system, 4 bit precision. The code employed
is not immediately apparent. Flipping alternate bits of the message (bits 1, 3 and 5)
in the third column shows that the messages are, in fact, in numeric order. The bit-
flipping behaviour is a consequence of having negative recurrent weights that oscillate
the significance of successive bits. Right: The code from a forwards system for 3 bit
precision. Flipping the bits of the message results in a code which is almost in numeric
order both left-to-right and right-to-left, 0.0 proving the exception in both cases.

able to encode values MSB first, the decoder has a preference for decoding val-
ues LSB first. The second series of simulations are pilots and show how the
different constraints of the networks may affect the evolved code. In both cases,
co-evolution of the encoder and decoder was difficult. The primary cause of this
appeared to be the lack of quality information given to direct the encoder’s search
through a combinatorically large space (functions from values to strings). En-
couraging variability in the encoder proved a useful heuristic, since a necessary
condition for a successful code is that every value has a unique encoding.

In the reversed condition, the biases of the networks were consistent and
produced a numeric code. The system produced the type of encoding expected,
given the results of the earlier component simulations. The codes developed
in this condition were more sparse than strict numeric codes. Attempting to
force a compact encoding on the encoder failed due to the small proportion of
appropriate codes within the large search space.

When the message sent by the encoder was not reversed (the forwards case)
the networks compromised on the code since neither was able to learn the en-
coding preferred by the other. Although the simulations did not develop codings
to cope with significant levels of precision, they did give indications that the

364 Bradley Tonkes, Alan Blair, and Janet Wiles

system employed neither MSB nor LSB codes, but instead those that could be
read either backwards or forwards.

This is preliminary work and further simulations will be needed to substan-
tiate the combined encoder/decoder study. We have presented a framework for
studying the effects of constraints on the processing and emergence of language.
The simulations presented here have been abstracted away from real languages,
so an important goal of future work is to tie the framework more closely to nat-
ural language. A number of extensions for this purpose are immediately obvious
including the use of multi-dimensional inputs, more symbols in the language, a
non-uniform distribution of inputs and a population of communicators.

However, comparing the results of these initial simulations with human lan-
guages shows some interesting parallels. In the unrealistic reversed case, a code
develops which resembles a numeric code. In the forwards case, the networks cre-
ate a code that can be read either forwards or backwards, which is less efficient
but meets the constraints of both the encoder and decoder. This is reminiscent
of the tendency in human languages towards palindrome-like structure (e.g. N1
N2 N3 V3 V2 V1) which can be parsed in either direction. In further studies we
hope to explore how certain features of human languages might have arisen as
a compromise between the conflicting constraints of sender and receiver.

References

1. Noam Chomsky. On certain formal properties of grammars. Information and Con-
trol, 2(2):113–124, 1959.

2. M. H. Christiansen and N. Chater. Toward a connectionist model of recursion in
human linguistic performance. To appear: Cognitive Science, 1998.

3. J. Elman. Distributed representations, simple recurrent networks and grammatical
structure. Machine Learning, 7:195–224, 1991.

4. J. Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48:71–99, 1993.

5. M. Hare and J. Elman. Learning and morphological change. Cognition, 56:61–98,
1995.

6. S. Kirby. Fitness and the selective adaptation of language. In James Hurford, Chris
Knight, and Michael Studdert-Kennedy, editors, Approaches to the Evolution of
Language: Social and Cognitive Bases for the Emergence of Phonology and Syntax.
Cambridge University Press, 1998.

7. S. Lawrence, C. L. Giles, and S. Fong. Natural language grammatical inference with
recurrent neural networks. To appear: IEEE Transactions on Knowledge and Data
Engineering, 1998.

8. C. Moore. Dynamical recognizers: Real-time language recognition by analog com-
puters. Theoretical Computer Science, 201(1–2):99–136, 1998.

9. A. M. Turing. On computable numbers, with an application to entscheidungsprob-
lem. Proceedings of the London Mathematical Society, Series 2, 42:230–265, 1936.

10. J. Weckerly and J. Elman. A PDP approach to processing center-embedded sen-
tences. In Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society, Hillsdale, NJ, 1992. Erlbaum.

Continuous Optimization Using Elite Genetic
Algorithms With Adaptive Mutations

Aleksandra B. Djurǐsić1, Aleksandar D. Rakić2, E. Herbert Li1,
Marijan L. Majewski2, Nenad Bundaleski3, and Božidar V. Stanić4

1 Dept. of EEE, University of Hong Kong, Pokfulam Road, Hong Kong
email: dalek@eee.hku.hk, ehli@eee.hku.hk;

Tel: +852-2857-8485 Fax: +852-2559-8738
2 Department of Computer Science and Electrical Engineering, The University of

Queensland, Brisbane, QLD 4072, Australia; email: rakic@csee.uq.edu.au
3 Institut of Nuclear Sciences, Vinča, 11000 Belgrade,Yugoslavia

4 School of Electrical Engineering, P.O.Box 35-54, Belgrade, Yugoslavia

Abstract. The elite genetic algorithm with adaptive mutations is ap-
plied to two different continuous optimization problems: determination
of model parameters of optical constants of aluminum and thin film opti-
cal filter design. The concept of adaptive mutations makes the employed
algorithm a versatile tool for solving continuous optimization problems.
The algorithm has been successful in solving both investigated problems.
In determination of optical constants of aluminum, excellent agreement
between calculated and experimental data is obtained. In application to
thin film optical filter design, low-pass filters designed using this algo-
rithm are clearly superior to filters designed using the traditional ap-
proach.

1 Introduction

Genetic algorithms (GAs) [1] are stochastic global search methods that mimic
the concept of natural evolution. Due to the nature of the algorithm, their suc-
cessful application is mostly restricted to optimization problems whose solution
can be conveniently represented in binary form. However, there is a rising in-
terest in applying genetic algorithms to continuous optimization problems. For
that reason, various modifications of original GAs have been reported [2,3,4,5,6].
The fact that real-coded GAs are superior to the binary coded ones in contin-
uous optimization has already been recognized [4,5,7,8,9,10]. By representing
variables with the real numbers, length of the chromosome is equal to the num-
ber of variables and it is significantly smaller than in the case of binary coding.
Also, conversion of binary numbers into floating-point numbers and vice versa
is avoided. The most important advantages of the real-coded GAs are the ab-
sence of the Hamming cliff problem, which is inherent to all binary coded GAs
[1,9,10], and the fact that variables cannot be altered in an undesired manner
or destroyed in the crossover operation. However, the real coded GAs can in
certain cases be blocked from further progress [8]. There has been much work

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 365–372, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

366 Aleksandra B. Djurǐsić et al.

in modifying the real-coded GAs in order to make them as successful in solv-
ing continuous optimization problems as they binary counterparts are in solving
discrete optimization problems [2,3,9,10].

Main shortcoming in continuous optimization applications of the GAs ap-
pears to be the discrete sampling of the solution space, which results in the fact
that global minimum can be located only roughly. For obtaining the location of
global minimum more precisely a huge number of the chromosomes in the popula-
tion is required. Several methods have been proposed to overcome this difficulty.
Obviously, if new values could be introduced during the optimization procedure,
that would reduce the necessary number of chromosomes in the population for
finding satisfactory solution of the problem. Since mutation is usually consid-
ered to be of less importance than selection and crossover operators [1,8], the
work in development of real-coded GAs suitable for continuous optimization was
concentrated on devising crossover operators suitable for real numbers [2,3,9,10].
In elite genetic algorithm with adaptive mutations (EGAAM) [11] new values
are introduced by mutation operator, while for selection and crossover conven-
tional operators are employed. Adaptive mutations are performed by completely
replacing specified percent of entire individuals by new ones, whose variable val-
ues are generated in boundaries which are being adaptively narrowed during the
optimization. In such a manner, improvement in the precision of locating the
minimum is achieved. This algorithm is applied here to two different problems:
model parameter determination and thin film optical filter design.

2 Description of the algorithm

We shall give brief description of the employed algorithm. The algorithm uses the
floating point representation [4,5,8], which was proved to be more convenient for
continuous optimization problems. In floating-point chromosome representation,
each gene has the value of the corresponding variable p(k), k = 1, nv, w here nv
is the number of variables. Values p(k) in chromosomes of the initial population
are given by p(k) = pl(k) + (pu(k) − pl(k)) · r, where r is a random number
r ∈ [0,1], and pl(k) and pu(k) are initially set boundaries. In such a manner,
confinement of variables in the specified domain is achieved insuring that all
variables have physical interpretation. Due to the nature of the problem, in
design of low-pass optical filter slightly different chromosome representation is
used, as follows. Each layer is characterized with two real numbers - material
code and layer thickness. Refractive index of the layer is m-th element of the
sequence of refractive indexes of available materials, where m is rounded value
of material code of the layer.

EGAAM employes the elitist selection mechanism [12,13,14]. In elitist selec-
tion, Ps percent of the new generation is produced by selection, and Pc percent
is produced by crossover. Ns = N ∗ Ps strings with the best fitness, where
N is the number of strings in the population which enter directly the next
generation. The Nc = N ∗ Pc strings in the new population are generated by
crossover among the parent strings which were chosen fitness proportionally

Continuous Optimization Using Elite Genetic Algorithms 367

between all the strings in the current population. Crossover is performed by
generating a random integer N1 ∈ [nmin, nv], where nv is a number of variables,
i.e. number of elements in strings, and n min is the minimal number of elements
exchanged in the crossover. Then we generate random integers ni ∈ [1, npar],
i = 1, N1 and swap elements at positions ni. Adaptive mutations are imple-
mented as follows. In the current generation, average value µ̂(k) of parameter
p(k) is computed, and Pm percent of the chromosomes in the next generation
are formed by generating their genes in the same manner as during the cre-
ation of initial population, but in the narrowed boundaries. New boundaries for
each parameter are given by pnew−u(k) = pold−u(k) − c · (pold−u(k) − µ̂(k)) and
pnew−l(k) = pold−l(k) + c · (µ̂(k) − pold−l(k)), where µ̂(k) is the average value of
the parameter p(k) in the current population, and c is a predetermined positive
number 0 < c < 1. In such a manner, a specified Pm percent of every generation
are entirely new chromosomes. The EGAAM was proved to be superior over the
conventional GA on three families of multiminima test functions for 20, 50 and
100 variables [11].

3 Application to modeling the optical constants of
aluminum

In this section, the applied Lorentz-Drude (LD) model for the optical dielectric
function, which was often employed for modeling the optical constants of metals
[15,16] is briefly discussed. It was shown [17,18] that dielectric constant ε(ω) can
be expressed in the following form

ε̂(ω) = 1 − Ω2
p

ω(ω + iΓ0)
−

k∑
j=1

fjω
2
p

(ω2 − ω2
j) + iωΓj

, (1)

where ωp is the plasma frequency, k is the number of interband transitions with
frequency ωj , oscillator strength fj and lifetime 1/Γj , while Ωp =

√
f0ωp is

associated with intraband transitions with oscillator strength f0 and damping
constant Γ0. The model parameters are determined by minimizing the discrep-
ancy between calculated and experimental dielectric function values, employing
the objective function proposed in Refs. [6,11]. To investigate how many signifi-
cant digits the proposed algorithm obtains for the parameters of the LD model,
we have generated values of the dielectric function εtest(ω) in the range from 6.3
meV to 15 eV, using the target parameter values given in Table 1. To emulate
more realistically a real set of experimental data, we have generated another
set of data with the same target parameter values, but with Monte-Carlo gen-
erated Gaussian noise which accounts for experimental uncertainties of 0.5% in
the reflectance data calculated from generated dielectric function values. Param-
eters obtained by EGAAM and conventional GA for both data sets are given in
Table I. Mutation in conventional GA is performed by changing the value of pa-
rameter p(k) to pmut(k) = p(k)+sgn∗∆p(k), where sgn is a random number in
interval [-1,1], while ∆p(k) is the step value for parameter k. It can be observed

368 Aleksandra B. Djurǐsić et al.

Table 1. Target and obtained parameter values, superscript a denotes results on data
set without noise, while superscript b denotes results for the data set with noise.

parameter Target EGAAMa GAa EGAAMb GAb

F — 0.021 1.090 0.782 1.370
f0 0.700 0.702 0.712 0.702 0.703
Γ0 0.060 0.061 0.059 0.061 0.061
f1 0.200 0.194 0.188 0.190 0.188
Γ1 0.300 0.294 0.280 0.291 0.280
ω1 0.400 0.401 0.397 0.401 0.402
f2 0.300 0.308 0.387 0.313 0.378
Γ2 0.300 0.305 0.354 0.309 0.354
ω2 1.500 1.502 1.519 1.503 1.519
f3 0.200 0.191 0.125 0.184 0.114
Γ3 1.000 1.009 1.252 0.998 0.786
ω3 2.000 2.026 2.297 2.036 2.196
f4 0.050 0.050 0.046 0.051 0.064
Γ4 3.000 3.053 2.956 2.980 3.105
ω4 4.500 4.519 4.538 4.498 4.341

that EGAAM is clearly superior to GA in terms of how close are the obtained
values to the target ones.

There has been considerable interest in the optical properties of aluminum
[15,16]. We have chosen to model the optical properties of aluminum as another
test of our technique, since it is well known material, ensuring that results can
be anticipated in advance. Fig. 1 shows real and imaginary parts of the dielec-
tric function of aluminum as a function of energy. Excellent agreement between
calculated and experimental values, with relative rms error of about 6% for ε1
and relative rms error of 3% for ε2, can be observed.

Fig. 1. Real and imaginary parts of the dielectric constant of Al vs. energy (solid line
- model, open circles - experimental data)

Continuous Optimization Using Elite Genetic Algorithms 369

4 Application to thin film filter design

Many electromagnetic applications require devices that exhibit specific frequency
dependent properties. One of such structures is an optical filter consisting of
dielectric layers. The structure is bounded by air on one side, and by a sub-
strate medium with known refractive index (usually glass) on the other side.
The structure is characterized by reflectance R (fraction of incident energy that
is reflected from the filter). Assuming that the filter is lossless, which is valid
for dielectric layers, transmittance T (fraction of incident energy transmitted
through the filter) equals 1 − R in the case of normal incidence. Design of the
optical filter represents choice of the optimal materials of layers and their thick-
nesses, or just optimal thicknesses if the dielectric properties of two alternating
materials are given, in order to obtain the desired frequency dependence of R.
GA based filter design algorithms have several advantages compared to classical
design procedures [19]. Firstly, GA do not require a crude preliminary design to
ensure convergence, since it is not easily trapped in a local optimum, contrary to
classical iterative techniques. Secondly, design procedure is independent on the
nature of multilayer, as well as the characteristics of incident and substrate me-
dia. Finally, the design objective can be changed easily by manipulating the cost
function. There are several studies employing GAs in thin film filter design. In
[20] real-coded GA was used for optimizing the thicknesses of alternating layers
of two given materials, while the objective function measured how closely ob-
tained reflectance characteristics approaches the desired one over the prescribed
frequency band. In [21] similar objective function and real-coded GA were used,
while not only thicknesses but also refractive indexes of layers were optimized.
However, main shortcoming of this method is that material properties of each
layer have continual values within given range, thus giving no guarantee that
material with such properties exists. In [22] filter consisting both of dielectric
and metal layers was designed. Objective function measured heat trapping effi-
ciency of the device, while the coding method was binary. Binary coding enabled
selection of the material for each layer from the database of available materials.

We shall describe briefly the theoretical background of transport of electro-
magnetic wave through a series of dielectric layers with the index of refraction nI
and thickness dI, placed between the two transparent media with the refractive
indexes n0 and ng. In the case of one dielectric layer, relation between electric
and magnetic fields of the incident (EI, HI) and transmitted (EII, HII) waves is
[23] [

EI
HI

]
= M ·

[
EII
HII

]
; M =

[
cos(k0h) i 1

YI
sin(k0h)

iYI sin(k0h) cos(k0h)

]
. (2)

Here, k0 = 2π/λ is the wavenumber of the incident electromagnetic wave, h =
nId cos θI, θI is the angle of incidence, and YI =

√
ε0
µ0

nI cos θI. In the case of N

layers of dielectrics between two transparent media, we can assign to each layer
the matrix in the form of Eq.(2). The connection between electric and magnetic
fields before (EI, HI) and after (EII, HII) the multilayer structure is described by

370 Aleksandra B. Djurǐsić et al.

Fig. 2. Reflectance of the low-pass filter with cut-off wavelength (a) λ0 = 750nm and
(b) λ0 = 600nm. GA optimized design shows significantly reduced ripple in both the
pass band and the stop band

[
EI
HI

]
=

(
N∏

i=1

MI

)
·
[

EN+1
HN+1

]
=
[

m11 m12
m21 m22

]
·
[

EN+1
HN+1

]
(3)

Coefficient of transmittivity and coefficient of reflectivity are given by

r =
Y0m11 + Y0Ygm12 − m21 − Ygm22

Y0m11 + Y0Ygm12 + m21 + Ygm22
; t =

2Y0

Y0m11 + Y0Ygm12 + m21 + Ygm22
(4)

where n0 and ng are refractive indexes of the two transparent media, while Y0
and Yg are the corresponding admitanses defined in the same manner as the YI
above.

Ratios of the intensities of the transmitted and incident wave and the re-
flected and incident wave, are transmittance T = tt∗(ng cos θg)/(n0 cos θ0) and
reflectance R = rr∗. The multilayer in conventional thin-film optical filters usu-
ally consists of alternating layers with high and low refractive index, whose
optical thicknesses h = nId cos θI equal to one quarter of the chosen wavelength
λ0, and there are also some filters with layers where h = λ0/8. Structure of the
filter is often denoted with the following: a - air, g - glass, H - layer with high
refractive index and L - layer with low refractive index. Conventional low-pass
filters have the structure g-(0.5H)L(HL)N(0.5H)-a, where 0.5H denotes the layer
with high refractive index whose h = λ0/8.

Region of interest in the low-pass filter is the edge of the pass band, rather
then the peak reflection of the stop band. It is generally desired that (a) the
transition edge be as sharp as possible and (b) the transmission zone has re-
flection as close to 0% as possible. Traditionally degree of steepness of the edge
is improved by increasing the number of the layers. This, in turn, significantly
increases the ripple in the pass band. Departing from the traditional h = λ0/4
layer thicknesses seems to be the only way to achieve both requirements. In

Continuous Optimization Using Elite Genetic Algorithms 371

Fig. 3. Reflectance of the low-pass filter with cut-off wavelength λ0 = 350nm. Pass
band ripple is improved, especially in the ling-wavelength region. The peak reflectance
in the stop band is less important feature in these filters.

EGAAM designed filter, the following objective function was used to achieve
the desired reflectance dependence on wavelength

f =
np∑
i=1

100 · (Ro − Rd)2 · exp

[
−
(

λ − λ0

2σ

)2
]

(5)

where np is the number of points in which we calculate reflectance, λ0 cut-off
wavelength and Ro and Rd the obtained and the desired reflectance, respectively.
The squared difference between the obtained and desired relectance is multiplied
with the Gaussian function to enhance the sharp edge at the cut-off wavelength.
In spite of this, EGAAM design still has improved pass band ripple, as compared
to the traditional design.

We have compared the frequency characteristics of the reflectance for the
conventional and GA optimized thin film filter design with 15 dielectric layers.
The results obtained for the cut-off wavelengths equal 750 nm and 350 nm are
shown on Fig. 2 and Fig. 3, respectively. Conventional low-pass filter consists
of alternating layers of cryolite and As2Se3, which was the most favorable choice
for traditional design. GA optimized filter used layers chosen from the list of 16
available materials. It has been found that GA optimized filters tend to preserve
the tendency of alternating layers with high and low values of the refractive
index, but greater choice of available materials enables finer tuning of the filter
characteristics. It can be observed that for all three cut-off wavelengths GA
optimized low-pass filters have satisfactory performance in wider spectral range.
On the other hand, traditionally designed low-pass filter with λ0= 750 nm, has
significant ripple in the stop band (especially in the visible range) which can be
very important from the application point of view. Its reflectivity drops to very
low values below 400 nm, while GA optimized filter retains high reflectivity in
the entire visible range.

372 Aleksandra B. Djurǐsić et al.

5 Conclusion

Elite genetic algorithm with adaptive mutations (EGAAM) is applied to mod-
eling the optical constants of aluminum and to low-pass thin film optical filter
design. In application to determination of model parameters of optical constants
it is shown that EGAAM is capable of obtaining more significant digits in model
parameter values than its conventional counterpart. Excellent agreement be-
tween calculated and experimental data for the dielectric function of aluminum
is obtained. In application to low-pass filter design, reflectance of EGAAM op-
timized filter is superor over the conventionally designed one in terms of wider
spectral range in which the desired characteristics of the filter is achieved.

References

1. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning,
(Addison-Wesley, Reading, 1989).

2. M. W. Gutowski, J. Phys. A, Math. Gen., 27, 7893, (1994).
3. H. Műhlenbein and D. Schlierkamp-Voosen, Evolutionary Computation, 1, 25,

(1993).
4. K. P. Wong and Y. W. Wong, in Proc. ANZIIS-93, Perth, Western Australia, pp.

512-516, 1993.
5. K. P. Wong and Y. W. Wong, IEE Proc. Gen. Transm. Distrib., 141, 507, 1994.
6. A. B. Djurǐsić, J. M. Elazar and A. D. Rakić, J.Phys.A Math. Gen., 30, 7849,

(1997).
7. A. Chipperfield and R. Fleming, Control and Computers, 23, 88, (1995).
8. D. E. Goldberg, Complex Systems, 5, 139, (1991).
9. K. Deb and R. B. Agrawal, Complex Systems, 9, 115, (1995).

10. J. L. Eshelman and J. D. Schaffer, in Proc. of Foundations of GA Workshop,
pp.187-202, (1992).

11. A. B. Djurǐsić, Opt. Commun. 151, 147, (1998).
12. R. Vemuri and R. Vemuri, Elec. Lett., 30, 1270, (1994).
13. S. H. Clearwater and T. Hogg, Artificial intelligence, 81, 327, (1996).
14. R. R. Brooks, S. S. Iyengar and J. Chen, Artificial intelligence, 81, 327, (1996).
15. A. D. Rakić. Appl. Opt., 34, 4755, (1995).
16. C. J. Powel, J. Opt. Soc. Am., 60,78, (1970).
17. H. Ehrenreich, H. R. Philipp, and B. Segall, Phys. Rev., 132, 1918, (1963).
18. K. Sturm and N. W. Ashcroft, Phys. Rev. B, 10, 1343, (1974).
19. E. Michielssen and D. S. Weile, in Genetic Algorithms in Engineering and Com-

puter Science, edited by G. Winter, J. Periaux, M. Galan and P. Cuesta, John
Wiley & Sons, New York, 345-369,(1995).

20. E. Michielssen, S. Ranjithan and R. Mittra, IEE Proceedings J, 139(12), 413,
(1992).

21. S. Martin, J. Rivory and M. Shoenauer, Opt. Comm,110,503,(1994).
22. T. Eisenhammer, M. Lazarov, M. Leutbecher, U. Schoeffel and R. Sizmann, Appl.

Opt., 32, 6310, (1994).
23. M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York, (1964).

Evolutionary Systems Applied to the Synthesis
of a CPU Controller

Ricardo S. Zebulum12, Marco Aurélio Pacheco23, and Marley Vellasco23

1 CCNR, University of Sussex, Brighton, BN1 9QG UK, e-mail:
ricardoz@cogs.susx.ac.uk

2 ICA – Pontificia Universidade Catolica do Rio de Janeiro – Brasil
3 Depto de Engenharia de Sistemas e Computação, UERJ -RJ, Brasil

Abstract. Our work introduces an evolutionary approach applied to the
design of digital circuits. Particularly, we address the case of synthesising
a controller for a simple CPU, a case study which has not been tackled
by other authors so far. In order to cope with this problem, a novel cir-
cuit evaluation strategy has been employed; and new evolvable hardware
systems paradigms derive from this technique. We show that the use of
this new evaluation approach allows the achievement of smaller circuits
and promises to be effective when the problem scales up. Furthermore,
our methodology yields novel digital circuits comparing to conventional
design.

Keywords: Evolutionary Hardware, Sequential Circuits, CPU control.

1 Introduction

This work applies artificial evolution as a tool for automatic synthesis of digital
circuits. Digital design encompasses two major areas, combinational and sequen-
tial circuits [1]. Although the majority of the evolutionary systems applications
in circuit design have focused on the area of combinational circuits [3], the area
of sequential systems promises to be more adequate for evolutionary computa-
tion. This stems from the fact that sequential circuits design allows the use of
feedback connections, making it more complex for conventional techniques [4].

Our preliminary study on the use of evolutionary computation in sequential
circuits design indicated the inability of simple genetic algorithms to handle more
complex tasks in the area, a fact observed in combinational design as well. We
propose in this work a new kind of evaluation strategy, in which internal points
of the evolving digital circuits are assessed together with the circuit output. The
authors have selected, as case study, the evolution a CPU controller, since this
illustrates a practical application for evolutionary systems.

This article is composed of five additional sections: section 2 briefly reviews
the area of sequential systems design and conventional tools used for that pur-
pose. Section 3 presents the target problem, i.e., the particular architecture of
the CPU for which the control circuit will be designed. Section 4 describes our
evolutionary approach and section 5 presents the evolved circuit. Finally, section
6 analyses our results.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 373–380, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

374 Ricardo S. Zebulum, Marco Aurélio Pacheco, and Marley Vellasco

2 Sequential System Design

Figure 1 illustrates the basic topology of a sequential circuit. It can be seen that
a combinational circuit (formed by basic boolean gates) and storage elements are
interconnected to form this kind of topology [4]. The sequential circuit receives
binary information from its environment via the inputs. These inputs, together
with the present state of the storage elements, determine the binary value of the
outputs. A sequential circuit is, therefore, specified by a time sequence of inputs,
internal states and outputs [4].

SIS is a state of art tool for synthesis and optimisation of sequential circuits
[5]. One of the main features of this tool is the exploration of signal dependencies
across the memory elements boundaries, instead of optimising logic only within
the combinational blocks. However, the design specification must be supplied as
a netlist of gates or a finite state machine transition table, which requires a prior
knowledge of the system from the user.

Combinational

Circuit Storage

Elements

State
Present

Inputs

Next
State

Outputs

Fig. 1. Block Diagram of a Sequential Circuit (extracted from [4])

3 Target Problem - Random Control Logic Unit

The task of controlling the operations of a microprocessor is a typical example
of a sequential circuit task. The control unit enables the CPU to carry out the
instruction currently in the instruction register. This is accomplished through the
interpretation of the pattern of bits in the instruction register[1], which generates
a sequence of actions taking place during the execution of an instruction [1]; the
control unit is the circuit that provides this operation. Particularly, the random
or hardwired logic control unit is made up of an arrangement of boolean gates
and flip-flops [4].

In [1], a simple model of CPU is presented and a random logic control unit is
designed to allow the execution of eight different instructions. Using this CPU
model we propose the task of evolving the control unit, instead of designing it.
Figure 2 shows the structure of this primitive CPU; table 1 shows the interpre-
tation of machine-code instructions (note that the fetch cycle occurs for all the
eight instructions). There are a total of 16 control signals, which are clustered
in 5 groups: Enable signals (E); Clock signals (C); ALU signals; Main Store
(MS) signals (Read and Write); and Flip-Flop (FF) signals (Reset and Set). The
evolutionary system must generate the signals CMAR, EMBR, EIR, etc, given a

Evolutionary Systems Applied to the Synthesis of a CPU Controller 375

particular instruction as input. For further details on the CPU operation, refer
to [1].

T0

T1

T2

T3

T4

T0

T0

T0

T1

T2

T0

T1

T2

T0

T1

T2

T3

T0

T1

T2

T3

T0

T0

Fetch

Load
Store

Add

Sub

Inc

Dec

BRA

BEQ

MBR
0

0

0

0

0

0

0

0

1

0

0

1

0

0

1

0

1

0

1

0

1

0

0

IR
0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

PC
1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D0
0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

ALU
0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

1

0

0

0

MAR
1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

MBR
0

0

0

0

0

0

0

1

0

0

1

0

0

1

0

1

0

1

0

1

0

0

0

IR
0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 PC
0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

Z

 D0
0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

F1
x

x

1

x

x

x

x

x

0

x

x

0

x

x

1

x

x

x

1

x

x

x

x

F0
x

x

0

x

x

x

x

x

0

x

x

1

x

x

0

x

x

x

1

x

x

x

x

R

1

0

0

0

1

0

1

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

W

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

R

0

0

0

1

1

0

0

1

0

0

1

0

0

0

1

0

0

0

1

1

1

0

S

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0

Enables Clocks ALU MS FFTime

x = don’t care

Table 1 - Interpretation of Machine Code Instructions (Reproduced from [1])

Main Store

Address Input Write

Date
Read

MAR

MBR

IR

PC

D0

ALU

CU

MAR
C

C
MBR

F
1

0
F

C
D0

C
PC

IR
C

System

Bus

GMSR

GMSW

GMBR

GIR

GPC

GD0

GALU

R

W

MBR

E

E

E

E

E

IR

PC

D0

ALU

P
Q

f(P,Q)

Fig. 2. Block Diagram of a Simple CPU (Reproduced from [1])

4 Problem Modelling

This section describes both the representation and evaluation used within our
evolutionary system.

The gate level representation [2] has been used to encode each circuit into
an integer string. Figure 3 illustrates an example of this kind of representation

376 Ricardo S. Zebulum, Marco Aurélio Pacheco, and Marley Vellasco

for a hypothetical output signal. The circuit (phenotype) is constituted by a
combinational part (arrangement of boolean gates) and a sequential part (D
flip-flop [1]). The latter provides the means whereby a delayed version of the
output signals can be used as feedback for the same or other circuits.

The genotype is made up of blocks of integer numbers or genes that encode
the type of each particular logic gate shown in the figure. The genes associated
with the gates of the first layer will encode its nature and also the source of
the input signals. The cell input signals are chosen among the following signals
(Figure 4):

1. Clock signals, supplied by a master-clock and a counter;
2. the three bits of the instruction register that determines the instruction to

be executed;
3. and the own output control signals delayed by one clock period.

As there are a total of 16 output signals, the overall system will be made up
of 16 cells like the one in the figure.

r0

D Q

Clk

Output

Master

Clock

Gene selects gate’s nature (AND, NAND, OR, NOR and XOR)

and inputs’ sources

Delayed output signal

Gene selects gate’s nature

 V

V

V

V

V

Fig. 3. Gate level representation of a sequential circuit

The fitness evaluation function was designed to simply count the number
of hits in each cell output, comparing to the target output signals. However,
this approach proved to be unsuccessful for some output signals. The authors
devised a way to overcome the problem by providing additional signals to the
fitness evaluation function. These new signals are taken from internal circuit
points. Figure 5 illustrates this procedure: circuits (A) and (B) have two internal
points and the external output probed. In order to implement this new evaluation
strategy, it is necessary to set target functions for the internal points. This
has been accomplished through the so-called OR and NOR evolvable hardware
paradigms, in which the output gates are fixed to either OR (Circuit A) or

Evolutionary Systems Applied to the Synthesis of a CPU Controller 377

COUNTER
Master
Clock

Input Signals

Clk Clk/2 Clk/4

0 0 0
0 0 1

Instruction Register: I2 I1 I0

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ADD
STORE

 LOAD

SUB

DEC
BRA
BEQ

INC

1
2

3

Delayed Output Sugnals: MBR-ENABLE(T - 1), IR-ENABLE(T-1), PC-ENABLE(T-1),
D0-ENABLE(T-1), ALU-ENABLE(T-1), MAR-CLOCK(T-1), MBR-CLOCK(T-1),

IR-CLOCK(T-1), PC- ,CLOCK(T-1), D0-CLOCK(T-1), F1(T-1),,WRITE(T-1), RESET(T-1),

, READ(T-1) SET(T-1) and F0(T-1).

Fig. 4. Inputs available for the evolutionary system

NOR (Circuit B) functions respectively. OR and NOR gates have been chosen
because they simplify the internal points assessment comparing to other gates.
When using the OR paradigm, the internal points’ fitness are computed by
taking as target function the own output function to be realised by the circuit,
because the OR gate performs a simple boolean sum. Conversely, when using
the NOR paradigm, the internal points’ fitness are calculated by taking as target
function the complement of the output function, since the NOR gate performs
a complemented boolean sum. The circuit shown in Figure 3 illustrates this
strategy as well. Its output gate has been fixed to a NOR boolean function (2
ORs followed by 1 NOR = 1 NOR); five points are then evaluated, the final
output and four internal points.

V V

V

V
F

F

F

2
1

3

(A)

F
1

V

V

Fixed Output
Gate

Fixed Output
Gate

(B)

F
2

F
3

F = F = F
1 2 3

F = F = F
1 2 3

Fitness = F + F + F
 1 2 3

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

Fig. 5. New evaluation strategy

378 Ricardo S. Zebulum, Marco Aurélio Pacheco, and Marley Vellasco

It has been verified that, for some control signals, the OR paradigm brought
a significant improvement in performance, whereas the NOR paradigm was more
effective for other signals. This improvement stems from the fact that the circuit
behaviour is now constrained in its internal points, which makes the search
process focus on a smaller set of solutions.

To further improve the GA performance, penalties have been applied to dele-
terious sub-circuits. For instance, when the output gate is fixed as an OR, the
individual fitness is penalized when internal circuit’s points produce a ’1’ output
when the target is ’0’. This is due to the fact that a ’1’ will clamp the circuit out-
put to an erroneous value, regardless of the values of the other internal points.
A similar method is applied in the NOR paradigm.

5 Results

In order to evolve the whole control system, 16 genetic algorithms have to be
executed, one for each circuit output. The authors adopted the following strat-
egy:

1. Run the 16 GAs for each signal, assuming a delay flip-flop in each circuit
output;

2. Find the output signal(s) which was(were) hardest to evolve, and store the
delayed output signals used as inputs to this(these) cell(s);

3. Re-run the GA for the other signals, keeping available only the delayed
signals used by the circuit(s) representing the signals mentioned in the second
item;

The aim of this strategy is to minimise the amount of hardware, by placing
a delay flip-flop only in those signals used as inputs to the cells which have
been more difficult to evolve. In our particular case, the evolution of the RESET
signal was the most time consuming . The output function of this control signal
is depicted in the column R (FF) of Table 1. The OR paradigm has been used
and, due to the task complexity, we allowed the GA to use all the available input
signals (see Figure 4). Figure 6 shows the evolved circuit as well as its input
signals. It has also been verified that the cell could be simplified by taking away
a sub-circuit which was not effectively contributing to the final behaviour. The
possibility of cutting hardware from the final solution is another advantage of
the OR paradigm.

In order to evolve the other signals, we allowed the GA to use only the delayed
output signals used as inputs to the RESET circuit. After simplifying the circuit
in Figure 6, it can be verified that only 6 out of 16 control signals will need
a delay flip-flop: MBR-Enable, the own Reset signal, PC-Clock, MBR-Clock,
D0-Enable and SET (signals with time index T-1).

The graph of Figure 7 compares the evolution of the particular signal ALU-
ENABLE when the OR and NOR paradigms are used. The average value of the
best genotypes over five executions, along 300 generations for 40 individuals is
shown in this graph. It took around 4 minutes to run the executions in a SPARC

Evolutionary Systems Applied to the Synthesis of a CPU Controller 379

D Q

Clk

Master

Clock

Delayed output signal

 V

V

V

V

V

Reset(T)
Reset(T-1)

1

2

3
4

5

6

7

8

9
10

11

12

13

14

15

16

1 - I2
2 - MBR-ENABLE(T-1)

3 - RESET(T-1)
4 -MBR-ENABLE(T-1)

5 - PC-CLOCK(T-1)

6 - Clk

7 - MBR-CLOCK(T-1)

8 - Clk/4

9 - D0-CLOCK(T-1)

10 -MBR-CLOCK(T-1)

11 - GROUND

12 -READ(T-1)

13 - D0-ENABLE(T-1)

14 - SET(T-1)

15 - I1

16- I2

Fig. 6. Circuit evolved to generate the RESET control signal

4 workstation. One of the evolved circuits for the ALU-ENABLE signal is shown
in Figure 8. It can be verified that this circuit could be utterly simplified, and
there is no need for an output flip-flop. Due to space limitations, we can not
show the other control circuits evolved. The final solutions have been checked
using the PSPICE simulator.

0.0 100.0 200.0 300.0
Generations

0.0

500.0

1000.0

1500.0

2000.0

2500.0

Fi
tn

es
s

NOR PARADIGM

OR PARADIGM

Fig. 7. Average Fitness of the Best Genotypes for the ALU-ENABLE signal using OR
and NOR Paradigms

6 Analysis of the Results

We can compare the evolved CPU controller with a human designed one shown in
[1]. The evolved circuit uses six additional flip-flops, meaning that evolutionary
systems does not use the minimum amount of states in the synthesis of the
sequential system. In terms of boolean gates, the evolved controller uses around
150 gates, against 90 of the human designed one. Nevertheless, the authors are
confident that the amount of hardware can be reduced in further experiments.

Our proposed design approach has the advantage of using minimum designer
knowledge of the target system and of achieving novel digital circuits. The former

380 Ricardo S. Zebulum, Marco Aurélio Pacheco, and Marley Vellasco

ALU-ENABLE

Clk/2

Vcc

Clk

PC-Clock (T-1)

Fig. 8. Circuit evolved to generate the ALU-ENABLE control signal

property reveals an advantage over conventional CAD tools like SIS. The latter
property refers to the fact that the evolved circuits depart from the constrained
spatial structures observed in conventional circuit design [6]. Two main benefits
arise from this feature: the achievement of new design methodologies and the
potential of evolutionary tools to handle more complex designs.

The authors have also presented a new evolvable hardware technique, in
which internal circuit points are evaluated. This strategy can be generally applied
to both combinational and sequential circuits’ evolution.

7 Acknowledgements

The authors wish to thank CAPES, Brazilian federal agency, for the support
and Dr. Phil Husbands for the collaboration.

References

1. Clements, A., ”The Principles of Computer Hardware”, Oxford University Press,
1991

2. Higuchi, T., Iba, H., Manderick, B., ”Evolvable Hardware”, in Massively Parallel
Artificial Intelligence (ed. H. Kitano), MIT Press, 1994.

3. Miller, J. F., Thomson, P. and Fogarty, T., ”Designing Electronic Circuits Using
Evolutionary Algorithms. Arithmetic Circuits: A Case Study”, chapter 6, in Ge-
netic Algorithms Recent Advancements and Industrial Applications. Editors: D.
Quagliarella, J. Periaux, C. Poloni and G. Winter, published by Wiley, 1997 (Novem-
ber).

4. Morris, M., Kime, C. R., ”Logic and Computer Design Fundamentals”, Prentice-
Hall International Inc., 1997.

5. Sentovich, E. M., Singh, K. J., Moon, C., Savoj, H., Brayton, R.K., Sangiovanni-
Vincentelli, A., ”Sequential Circuit Design Using Synthesis and Optimization”, Pro-
ceedings of the IEEE Int. Conf. on Computer Design, pp. 328-333, 1992.

6. Thompson, A., Harvey, I., Husbands, P., ”Unconstrained Evolution and Hard Con-
sequences”, in ”Towards Evolvable Hardware: An International Workshop,” Lau-
sanne, Switzerland, October 2-3, 1995. pages 136-165, edited by E. Sanchez and M.
Tomassini, Springer-Verlag LNCS 1062, 1996.

X. Yao et al. (Eds.): SEAL’ 98, LNCS 1585, pp. 381-388, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Novel Models in Evolutionary Designing

John S. Gero

Key Centre of Design Computing
Department of Architectural and Design Science

University of Sydney NSW 2006 Australia
john@arch.usyd.edu.au

Abstract. This paper introduces and describes a number of novel models of
evolutionary designing beyond that of genetic algorithms and genetic program-
ming treating designing as search. The focus in many of these novel approaches
when applied to designing is to add to the range of possible designs which might
be able to be produced during an evolutionary process. Four approaches are
briefly described: genetic engineering; reverse engineering of emergent features
in the phenotypes; developmental biology and generalizing crossover.

1 Introduction

The basic genetic analogy in designing utilises a simple model of the Darwinian the-
ory of improvement of the organism’s performance through the “survival of the fit-
test”. This occurs through the improvement of the genotype which goes to make up the
organism. This is the basis of most evolutionary systems. Fundamental to this analogy
are a number of important operational aspects of the model:

• the design description (structure) maps on to the phenotype
• separation of the representation at the genotype level from that of the design

description level
• the processes of designing map on to the evolutionary processes of crossover

and mutation at the genotype level
• performances (behaviours) of designs map on to fitnesses
• operations are carried out with populations of individuals.

In designing terms this maps directly onto the method of designing as search. We
can describe this notion using the state-space representation of computation:

• state space is fixed at the outset
• state space comprises behaviour (fitness) and structure (phenotype) spaces
• genetic operators move between states in structure space, performance

evaluated in behaviour space.

382 John S. Gero

Designing as search is a foundational designing method but one that is restricted in
its application to routine or parametric designing. In such designing all the possible
variable which could occur in the final design are known beforehand as are all the
behaviours which will be used to evaluate designs. Since the goal is to improve the
behaviours of the resulting designs, the processes of designing during search map well
onto those of optimization. This sits well with our notion of genetic algorithms and
genetic programming. They can be readily viewed as robust optimization methodolo-
gies. Genetic algorithms and genetic programming have been used successfully as
analogies of designing methodologies.

In this paper we will briefly explore new approaches which can be drawn from na-
ture and humans’ intervention in nature as possible sources for fruitful ideas on which
to base evolutionary designing methodologies. We will look at four such approaches:
genetic engineering, reverse engineering and the genetic analogy, developmental biol-
ogy and a generalization of the crossover operation.

2 Genetic Engineering in Designing

The practice of genetic engineering in natural organisms involves locating genetic
structures which are the likely cause of specified behaviours in the organism [1]. This
provides a direct analog with finding significant concepts during the process of de-
signing and giving them a specific primacy. The behaviour of the organism is an ob-
servable regularity which maps onto the concept and the structure of the genetic mate-
rial which causes that behaviour is a representation of that concept, albeit a represen-
tation which has to be expressed in the organism for the concept to appear. The prac-
tice of genetic engineering is akin to the reverse of synthesis in the sense that one
aspect of an already synthesised design is converted into the means by which it could
be generated. In fact it is more complex than that since it is the behaviour of the al-
ready synthesised design which is the controlling factor but the analogy still holds. Let
us examine in a little more detail the concept of genetic engineering [2].

Consider Figure 1 where the population of designs is divided into two groups (it
could be more). One group exhibits a specific regularity whilst the other does not. The
goal is to locate an “emergent” common structure in the genotypes of those designs
which exhibit this regularity. Here “emergent” means that the structure was not inten-
tionally placed there but could be found and represented for later use. Genetic engi-
neering at this symbolic level uses pattern matching and sequence analysis techniques
to locate these genetic structures. The process can be summarised as follows:

• locate emergent properties in the behaviour (fitness) space
• produce new genes which generate those emergent properties -> gene evo-

lution
• introduce evolved genes into gene pool.

Novel Models in Evolutionary Designing 383

••

x
x

x
x

x
x

••

QR
UHJXODULW\

UHJXODULW\

genotypes

 Population
 of Designs

Figure 1. Genetic engineering is concerned with locating groups of genes’ regularity, marked as
X in the genotypes of those design which exhibit a specific behavioural regularity.

These newly “evolved” genes capture some problem specific characteristics of the
genetic representation of the good solutions to that problem. As such they may be able
to be re-used in related problems to advantage. Typically each new problem to be
solved using optimization techniques is treated anew without taking into account any-
thing which has been learned from previous problems. Genes evolved using genetic
engineered provide the basis for learning from previous design episodes and transfer-
ring what has been learned to the current design problem.

3 Reverse Engineering and the Genetic Analogy

In the computational model of genetic engineering used in designing the evolved
genes are complexes of the original genes. Even when they are mutated they remain
complexes of the original genes. As a consequence the boundary of the state space of
possible designs is unchanged so that the designs produced are no different to those
which could have been produced using the original genes only. In order to produce
novel designs, ie designs which could not have been produced using the original genes
only, the evolved genes need to be different to simply being complexes of the original
genes. In order to “evolve” such genes different processes are required. We can take
ideas from reverse engineering in manufacturing and include them in the genetic anal-
ogy [3].

The concept is analogically similar to that of genetic engineering in that emergent
properties are looked for and new genes which generate those properties are produced,
although the processes are different and the result is quite different. The process can
be summarised as follows:

384 John S. Gero

• locate emergent design (phenotype rather than fitness) properties
• reverse engineer new genes which can generate those emergent properties

→ gene evolution
• introduce evolved genes into gene pool.

The critical differences between this and genetic engineering occur in two places in
this process. The first difference is in the locus of emergent properties – these are
looked for in the phenotype, ie in the designs themselves rather than in their fitnesses
or performances. The second difference is in the means by which “evolved” genes are
created.

Having located an emergent feature the next step is to reverse engineer a new gene
which is capable of producing that emergent feature. This new “evolved” gene is then
added to the gene pool. A variety of machine learning-based methods is available for
this task. These include inductive substitution of the new representation in the place of
the original representation in the design generator, turning constants into variables,
and rule-based induction methods.

Evolving genes by reverse engineering is a form of Lamarckism in that characteris-
tics of an organism not directly produced by its genetic makeup are acquired by that
organism’s genome.

4 Developmental Biology and Designing

Perhaps more interesting is to specifically model phenotypic plasticity to produce a
form of pleiomorphism. This would allow for a form of genotype/phenotype environ-
ment interaction during the development of the phenotype. A variety of environmental
interactions can be proposed to allow for adaptive mapping between genotype and
phenotype. Classes of interactions include the following where “f” is some function:

• phenotype = f(genotype, situation), where situation refers to a state of the
environment at some time, or

• phenotypet = f(genotype, phenotypet-1);

both in lieu of :
• phenotype = f(genotype).

Example 1
Here the phenotype is made up of components but the components themselves

are some function of the path taken to reach that component. A simple path func-
tion would be that each component is in some way a function of the components it
is connected to, ie:

• phenotype = {component1,... component i,... component n}
• component i = f(component i-1, path[i-1,i]).

Novel Models in Evolutionary Designing 385

Example 2
Here the phenotype is developed over some time intermediate periods from a

given genotype, during which various intermediate fitnesses control its develop-
ment in a pleiomorphic sense, ie:

• phenotype = f(genotype, intermediate fitnesses during development)

Example 3
Here the phenotype, as it develops over some time intermediate periods from a

given genotype, does so as a function of its expression at the previous time period.
This is a crude model of cell division, ie:

• phenotypet = f(genotype, phenotypet-1).

Models such as these provide opportunities to include both problem- and domain-
specific knowledge in the evolutionary process.

5 Generalizing Crossover as an Operator in Designing

Crossover is one of the fundamental genetic operations in evolutionary systems, par-
ticularly genetic algorithms and genetic programming. Formally, any genotype, gc,
produced by a crossover operator from genotypes g1 and g2 can be written as an inter-
polation:

gc(t) = f(t)g1+ (I-f(t))g2, t = 0,1,...,n

where I is a unit n-dimensional matrix with all diagonal elements equal to 1 and all
other elements equal to 0, f (t) is the n-dimensional matrix obtained from the unit
matrix by setting all diagonal elements from the t-th to the n-th to zero, f(0)=I and
f(1)=O, where O is the n-dimensional zero matrix.

From this characterisation the crossover operation can be viewed as a random sam-
pling of interpolating genotypes between two basic points g1 and g2 [4]. Note, that this
linear matrix interpolation, which corresponds to the standard one-point crossover, is
only one of many possible methods of interpolation between two genotypes in geno-
typic space of the following form:

gi(t) = c1(t)g1+ c2(n-t)g2,

where operators c1(t) and c2(n-t) obey the condition c1(0)=I and c1(n)=O and c2(0)=I
and c2(n)=O. The crossover induced interpolation gc(t) is singled out from many other
possible interpolations gi(t) by the condition that the sum of the Hamming distances
from gc(t) to g1 and to g2 plus a penalty function (any kind of standard optimization
penalty function will do) is to be optimized for two sequential coordinates in gc(t) one
of which coincides with the component of g1 and the other which the component of g2.

386 John S. Gero

Different versions of crossover can be constructed by choosing different conditions
imposed on the interpolation points.

Since each genotype corresponds to a unique phenotype, the crossover-induced in-
terpolation operation between two genotypes maps onto an interpolation operation
between two corresponding phenotypes p1=M(g1) and p2=M(g2). If pc(t)=M(gc(t)) for
t=0,1,…,n and assuming that P is a linear space we can fit a path between p1 and p2

and pc(t), using the following formula:

pc(t) = fc(t)p1+ q c(n-t)p2, t=0,1, ...,n

where fc(t) and q c(t) are operators which depend continuously on t. Since pc(0)= p2
and pc(1)= p1, the weakest conditions these operators must satisfy are fc(0)=I , f c(0)=O
and qc(0)=I , f c(0)=O (where I is the unit operator whose application to any phenotypes
gives the same phenotype and O is the zero operator whose application to any pheno-
type gives an empty phenotype). If we use any operators f(t) and q (t) which differ
from fc(t) and q c(t) but still obey these conditions then this formula will produce inter-
polation points which differ from those produced by standard genetic crossover.

One way to conceive of this generalization of the crossover operator is to think of
the standard crossover operator forcing interpolated results to lie on a surface in phe-
notypic space P, defined by the bitstring representation of the genotype and the iso-
morphic mapping between the genotype and the phenotype. Thus, any phenotypes
which are a result of this crossover lie on a trajectory which is constrained to lie on
this surface as indicated in Figure 2. The generalized crossover in the form of an in-
terpolation generalizes P to P+ (which is a superspace with respect to P ⊂ P+). The
generalized crossover consists of interpolating trial points directly in P+ using trial
points from P as the end points of the interpolation. They are shown in Figure 2 with
the dotted line. The expectation is that since these end points belong to the established
search space P, the exploration due to interpolation in the enlarged P+ will not distort
the consistency and viability of the space P too much. The critical effect can be no-
ticed in Figure 2, namely that the interpolation in P+ does not lie in P. In addition to
interpolation we can now produce extrapolations, shown with arrows in Figure 2.
These also lie outside P and in P+. Hence, these interpolations have the capacity to
produce designs outside the original state space. The interpolation process expands the
state space of possible designs.

This is significant in designing as it allows for the generation of novel designs, de-
signs which could not been evolved using the standard crossover. Any genotypic rep-
resentation can be reduced to a bitstring of length n. All possible genotypes lie within
the space of 2n possible designs. Without either increasing the length of the genotype
or introducing new members of the alphabet (beyond 0 and 1), it is not possible to
expand the state space. The approach introduced here solves this problem by devel-
oping a homomorphism between the phenotype and its genetic representation. It does
away with the separate bitstring genotype representation, replacing it with this homo-
morphism after the exploration process. The interpolation and extrapolation processes
operate on the phenotype, changing it. As a consequence of this homomorphism a new
genotypic representation is constructed each time exploration occurs.

Novel Models in Evolutionary Designing 387

A large number of possible interpolation functions may be used not all of which
will produce viable results as there is a close connection between the useful interpola-
tion functions and the representation employed.

Figure 2. The illustration of the crossover-induced interpolation in P and direct interpolation in
enlarged space P+. The enlarged space P+ represents the complete 3-d space and the set P
represents the surface in it. The solid line represents an interpolation in P, whilst the dotted line
represents an interpolation in P+ [4].

6 Discussion

The genetic engineering analogy has been applied in designing in a number of dispa-
rate ways [5, 6, 7]. The reverse engineering approach has been used with emergent
feature detection in state-space search to add to the alphabet of the genotype [8]. The
generalization of crossover approach has been used to extend the state-space in de-
signing [4].

The genetic analogy in designing has been based on a model of Darwin’s survival
of the fittest. This has provided a foundation for a body of important work which has
implicitly treated designing as a search method largely akin to optimization. The effect
of this in designing terms has been to set up a fixed state-space which is then searched
for appropriate solutions. Alternative analogies drawn from genetics, reverse engi-
neering, developmental biology and alternate views of the crossover operation offer
the opportunity to change the state-space of possible designs in some cases. In de-
signing this ability to modify the state-space of possible designs in conceptually and
practically important.

Designing involves not just finding the best solution from a subset of possible solu-
tions, it also involves determining what the possible solutions might be. A fixed search
space does not allow for the exploration of possible solutions. Some of the novel
methods described in this paper point to possible direction where such explorations
may be modeled.

P+

P

388 John S. Gero

Acknowledgment

This work has been supported by a number of grants from the Australian Research
Council.

References

1. Sofer, W. H.: Introduction to Genetic Engineering, Butterworth-Heinemann, Stoneham
(1991)

2. Gero, J. S. and Kazakov, V.: Evolving building blocks for design using genetic engineering:
a formal approach. In: Gero, J S (ed.), Advances in Formal Design Methods for CAD,
Chapman and Hall, London (1996) 31-50

3. Gero, J. S. and Kazakov, V.: Adaptive expansion of search spaces using emergent features,
in J. Slaney, G. Antoniou and M. Maher (eds), AI’98, Griffith University, Brisbane, Aus-
tralia (1998) 25-36

4. Gero, J. S. and Kazakov, V.: Adapting evolutionary computing for exploration in creative
designing. In J. S. Gero and M. L. Maher (eds), Preprints Fourth International Conference on
Computational Models of Creative Design, Key Centre of Design Computing, University of
Sydney, Sydney, Australia (1998) (to appear)

5. Gero, J. S., Kazakov, V and Schnier, T.: Genetic engineering and design problems. In D.
Dasgupta and Z. Michalewicz (eds), Evolutionary Algorithms in Engineering Applications,
Springer-Verlag, Berlin (1997) 47-68

6. Gero, J. S. and Ding, L.: Learning emergent style using an evolutionary approach. In B.
Varma and X. Yao (eds), ICCIMA’97, Griffiths University, Gold Coast, Queensland, Aus-
tralia (1997) 171-175

7. Schnier, T. and Gero, J. S.: From Frank Lloyd Wright to Mondrian: transforming evolving
representations. In I. Parmee (ed.), Adaptive Computing in Design and Manufacture,
Springer, London (1998) 207-219

8. Gero, J. S. and Kazakov, V.: Adaptive expansion of search spaces using emergent features,
in J. Slaney, G. Antoniou and M. Maher (eds), AI’98, Griffith University, Brisbane, Aus-
tralia (1998) 25-36

Co-evolution, Determinism and Robustness

Alan D. Blair1, Elizabeth Sklar2, and Pablo Funes2

1 Dept. of Computer Science
and Electrical Engineering

University of Queensland, 4072 Australia
Tel.: +61-7-3365-1195; Fax: +61-7-3365-1999

blair@cs.uq.edu.au
2 Dept. of Computer Science

Brandeis University
Waltham, MA 02254 USA

Tel.: +1-781-736-3366; Fax: +1-781-736-2741
sklar,pablo@cs.brandeis.edu

Abstract. Robustness has long been recognised as a critical issue for co-
evolutionary learning. It has been achieved in a number of cases, though
usually in domains which involve some form of non-determinism. We
examine a deterministic domain – a pseudo real-time two-player game
called Tron – and evolve a neural network player using a simple hill-
climbing algorithm. The results call into question the importance of de-
terminism as a requirement for successful co-evolutionary learning, and
provide a good opportunity to examine the relative importance of other
factors.

Keywords: Co-evolution, Neural networks

1 Introduction

In 1982, Walt Disney Studios released a film called Tron which featured a game
in a virtual world with two futuristic motorcycles running at constant speed,
making only right angle turns and leaving solid wall trails behind them. As the
game advanced, the arena filled with walls and eventually one opponent would
die by crashing into a wall. This game became very popular and was subsequently
implemented on many computers with varying rules, graphic interpretations and
configurations.

In earlier work [5] we built an interactive version of Tron (using Java) and
released it on the Internet. With this setup, we created a new type of co-
evolutionary learning where one population consists of software agents controlled
by evolving genetic programs (GP) [8] and the other population is comprised of
human users. From a human factors standpoint, the fact that this simple game
has attracted a large number of users and that many of them return to play
multiple games is surprising and significant. From an evolutionary programming
standpoint, the fact that the GP players have evolved to embody a robust set of

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 389–396, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

390 Alan D. Blair, Elizabeth Sklar, and Pablo Funes

strategies, capable of overcoming a wide range of human behaviours, is notewor-
thy.

We have been studying co-evolutionary learning environments in several con-
texts [2,7,3], trying to understand the reasons why this paradigm works very well
for some tasks [6,10,11] but poorly for others. In particular, we have developed a
“minimalist” co-evolutionary learning method that consists of a neural network
which evolves using a simple hill-climbing algorithm. We have found this to be
a useful means for studying the effect of co-evolutionary learning in various task
domains.

Previously, we have applied this method successfully to backgammon [9] as
well as a simulated robotic hockey game called Shock [1]. Tron is similar to these
domains in some respects but differs in other, significant, aspects. Backgammon
is a stochastic domain in which the outcome of each game is influenced by ran-
dom dice rolls as well as choices made by the players. In the Shock domain,
each game is started from a different random initial condition. Tron, on the
other hand, is totally deterministic in the sense that two games played by the
same two opponents will necessarily be identical. Since many authors have cited
non-determinism as a critical factor in the success of co-evolutionary learning
systems, particularly in relation to backgammon, we were interested to apply
our hill-climbing procedure to a deterministic domain, hence Tron.

This paper is organised as follows: we first describe the Tron implementation
and the network architecture and algorithm. We then detail some of the experi-
ments that were conducted to compare the neural network players with the GP
players evolved in the Internet experiment. We conclude with some discussion
and ideas for extending this work further.

2 Tron

Our interpretation of Tron abstracts the motorcycles and represents them only
by their trails. Players may move past the edges of the screen and re-appear on
the opposite side to create a wrap-around, or toroidal, game arena. The size of
the arena is 256 × 256 pixels. Two players start at positions 128 pixels apart,
heading in the same direction. One player is controlled by the computer (e.g.
a GP), the other may also be controlled by the computer, or by a human user.
The GP players are provided with 8 simple sensors with which to perceive their
environment.
Figure 1 Robot sensors. Each sensor evaluates the distance
in pixels from the current position to the nearest obstacle
in one particular direction. Every sensor returns a maximum
value of 1:0 for an immediate obstacle (i.e. a wall in an adja-
cent pixel), a lower number for an obstacle further away, and
0:0 when there are no obstacles in sight.

6 2

5

7 1

3

0

4

The game runs in simulated real-time, where each player can select one of
the following actions: left, right or straight.

Co-evolution, Determinism and Robustness 391

In the Internet experiment, data has been collecting since September 1997
and is still accumulating. Over 2500 users have logged into the system and played
at least one game. The average number of games played by each human is 53
games; the most games played by one player is 5028. Sixteen players have played
over 1000 games.

Figure 2 Internet Tron Results.

Our basic measure of performance is the “win rate” – the percentage of games
that the GP players have won in playing against humans. As shown in figure 2,
this rate has steadily risen from approximately 30% initially to more than 60%
over a period of several months, resulting in a robust GP population capable of
beating a wide variety of opponents. This “database” of players, along with the
Java Tron environment, provide an excellent resource for testing and comparison
with other methods for training artificial players.

3 Implementation and Results.

In the present work, we develop Tron players controlled by two-layer feed-forward
neural networks with 5 hidden units. Each network has 8 inputs – one for each
of the sensors described earlier. There are 3 output units, representing each of
the three possible actions (as above). Of these, the output unit with the largest
activation determines the selected action for the current time step.

We train the network using an evolutionary hill-climbing algorithm in which
a champ neural network is challenged by a series of mutant networks until one
is found that beats the champ; the champ’s weights are then adjusted in the
direction of the mutant:

1. mutant ← champ + gaussian noise
2. mutant plays against champ
3. if mutant beats champ, champ ← (1− α) ∗ champ + α ∗mutant

392 Alan D. Blair, Elizabeth Sklar, and Pablo Funes

Using this neural network architecture, three players were evolved. Network
nn-0 was evolved for 1200 generations, networks nn-1 and nn-2 for 50000 gener-
ations each. The parameter α, which we refer to as the mutant influence factor,
was set to 0.5 for nn-0 and 0.33 for nn-1 and nn-2. The network weights were
saved every 100 generations and tested against five of the best GP players hand-
picked from our Internet experiment (referred to as GP players 510006, 460003,
480001, 540004 and 400010).1 Note that the GP players were used purely for
diagnostic purposes and had no effect on the evolving networks.

a. versus GP-510006

c. versus GP-480001

b. versus GP-460003

d. versus GP-540004

Figure 3 Network nn-1, generation 40500 (darker trail, starting on left)
versus GP players (starting on right)

Many of the GP players exhibit distinctive features, permitting loose charac-
terisation of behaviours. For example, players GP-510006 and GP-460003 follow
similar strategies of trying to fill the arena in a contracting spiral, first carving
an outline and then gradually moving inward, attempting to reduce the area
available to the opponent. They exhibit a consistent inter-line spacing of ap-
proximately 12 and 4 pixels, respectively. When confined, both players seem to
1 Note that this numbering is consistent with our previous papers on this work [5]; [4].

Co-evolution, Determinism and Robustness 393

“panic”, making a series of tight turns until either crashing or out-lasting their
opponent.

Player GP-480001 often performs a diagonal “coat-hanger” manoeuvre, turn-
ing at angles of 45◦ or 135◦ by alternating left and right turns in rapid succession.
Player GP-540004 is more aggressive, darting about the space in a seemingly er-
ratic manner looking for opportunities to confine its opponent. Finally, player
GP-400010 (shown in figure 4b) seems more defensive, gradually moving outward
in a tight spiral pattern with an inter-line spacing of 1 or 2 pixels.

a. generation 20000 vs GP-480001 b. generation 10000 vs GP-400010

Figure 4 Defensive strategies of nn-1 and GP players.

The results of playing every 100th generation network against the five GP
players are shown in figure 5, smoothed by aggregation. The performance of
network nn-1 can be seen to improve gradually, peaking at around 70% after
40000 generations. In particular, the network sampled at generation 40500 was
able to beat all five GP players.

0 10 20 30 40 50
0

25

50

75

100

Game no * 1000

N
eu

ra
l N

et
w

or
k

W
in

 R
at

e

nn−0
nn−1
nn−2

Figure 5 Neural network results.

394 Alan D. Blair, Elizabeth Sklar, and Pablo Funes

It is interesting to note that the neural network players do not seem to evolve
distinctive features in quite the same way as the GP players (see figure 3).

Figure 6 illustrates the evolution of network nn-1. Each game shown is
against GP player 510006. The network makes early mistakes (a), but quickly
learns a defensive strategy (b), then changes its behaviour (c), and finally wins
again by “boxing in” its opponent (d).

a. generation 10000

c. generation 30000

b. generation 20000

d. generation 40000

Figure 6 Evolution of Network nn-1 (starting on left),
versus GP-510006 (starting on right)

Network nn-0 (not shown) developed a fragile defensive strategy similar to
GP-400010, filling the screen as slowly as possible in a series of expanding spirals.
This method works well against GP-400010, an opponent with a similar strategy.
It also happens to beat GP-510006 consistently, but loses almost all the time to
the other three players.

Co-evolution, Determinism and Robustness 395

4 Discussion

Co-evolutionary systems – particularly self-learning hill-climbers – often develop
brittle strategies that perform well against a narrow range of opponents but
are not robust enough to fend off strategies outside their area of specialisation.
This brittleness has been overcome in a number of instances, but usually in
domains that involve some form of non-determinism. Even though Tron is a
deterministic domain, our self-learning hill-climbers have learned the task well
enough to perform capably against a selection of GP players with a variety of
different strategies.

The fact that performance oscillates – as measured by our sample of 5 GP
players (figure 5) – shows on the one hand that our NN representation for Tron
players can be very effective: nn-1 at generation 40500 beats all the GP opponents.
On the other hand, oscillations may indicate that the landscape is deceiving for
our hill-climbing algorithm, i.e. going up in one sense may imply going down in
another. Further experiments will help us explore these issues.

It is interesting to note that nn-0, with a mutant influence factor of α = 0.5,
developed a fragile strategy which plays an almost identical game against every
opponent, while nn-1, with α = 0.33, developed an ability to react to different
opponents in a robust manner. The practice of making only a small adjustment
in the direction of the mutant – determined by the parameter α – was originally
introduced in [9] on the assumption that most of the strategies of the well-tested
champion would be preserved, with only limited influence from the mutant.
However, it may also be that a lower value of α improves the robustness of the
champion by exposing it to a greater variety of mutant challengers. Indeed, we
conjecture that there may be an optimal value for α – which likely varies from
one task to another. We plan to explore these issues in further experiments.

In future work we intend to make more extensive studies of Tron and other
domains, in the hope of gaining more insight into the role of non-determinism in
co-evolutionary learning, and the relative importance of other factors. We also
plan to make the neural network players available in the Tron Internet system.
Look for them on our web site... http://www.demo.cs.brandeis.edu/tron.

Acknowledgements

Thanks to Hugues Juillé for his help in providing the genetic program players,
and to Jordan Pollack, Janet Wiles and Brad Tonkes. This research was funded
by a University of Queensland Postdoctoral Fellowship and by the Office of Naval
Research under grant N00014-98-1-0435.

396 Alan D. Blair, Elizabeth Sklar, and Pablo Funes

References

1. Blair, A. and Sklar, E. (1998). The evolution of subtle manoeuvres in simulated
hockey. In Proc. of SAB-5.

2. Blair, A. D. and Pollack, J. (1997). What makes a good co-evolutionary learning
environment? Australian Journal of Intelligent Information Processing Systems,
4(3/4):166–175.

3. Ficici, S. and Pollack, J. (1998). Challenges in coevolution- ary learning: Arms-race
dynamics, open-endedness, and mediocre stable states. In Proc. of ALIFE-6.

4. Funes, P., Sklar, E., Juillé, H., and Pollack, J. (1997). The inter- net as a virtual
ecology: Coevolutionary arms races between human and artificial populations.
Computer Science Technical Report CS-97-197, Brandeis University.

5. Funes, P., Sklar, E., Juillé, H., and Pollack, J. (1998). Animal- animat coevolution:
Using the animal population as fitness function. In Proc. of SAB-5.

6. Hillis, W. D. (1992). Co-evolving parasites improve simulated evolution as an
optimization procedure. In et al., L., editor, Proc. of ALIFE-2, pages 313–324.
Addison Wesley.

7. Juillé, H. and Pollack, J. B. (1996). Dynamics of co-evolutionary learning. In Proc.
of SAB-4, pages 526–534. MIT Press.

8. Koza, J. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

9. Pollack, J. B. and Blair, A. D. (1998). Co-evolution in the successful learning of
backgammon strategy. Machine Learning (to appear).

10. Sims, K. (1995). Evolving 3d morphology and behavior by competition. In Proc.
of ALIFE-4. MIT Press.

11. Tesauro, G. (1995). Temporal difference learning and td-gammon. Commun. of
the ACM 39(3).

Co-operative Evolution of a Neural Classifier
and Feature Subset

Jennifer Hallinan and Paul Jackway

Cooperative Research Centre for Sensor Signal and Information Processing,
Department of Computer Science and Electrical Engineering,

University of Queensland, St Lucia, QLD 4072,
hallinan@elec.uq.edu.au

Abstract. This paper describes a novel feature selection algorithm which
utilizes a genetic algorithm to select a feature subset in conjunction with
the weights for a three-layer feedforward network classifier. The algo-
rithm was tested on the “ionosphere” data set from UC Irvine, and on
an artifically generated data set. This approach produces results com-
parable to those reported for other algorithms on the ionosphere data,
but using fewer input features and a simpler neural network architec-
ture. These results indicate that tailoring a neural network classifier to
a specific subset of features has the potential to produce a classifier with
low classification error and good generalizability.

Keywords: Genetic algorithm; neural network; classification; iono-
sphere

1 Introduction

Feature selection is the process of selecting an optimum subset of features from
the much larger set of potentially useful features available in a given problem
domain [1]. The “optimum subset of features” which is the aim of the feature
extraction algorithm can be defined as “the subset that performs the best under
some classification system” [2] , where “performs the best” is often interpreted
as giving the lowest classification error.

The feature selection problem has been investigated by many researchers, and
a wide variety of approaches has been developed, including statistical approaches,
decision trees, neural networks, and various stochastic algorithms (see [2] for an
overview). One approach which has received considerable recent attention is the
use of genetic algorithms (GAs) for feature selection.

A GA is an optimization tool inspired by biological evolution. A GA can find
near-global optimal parameter values even for poorly behaved functions, given
sufficient time. As such, its applicability to the optimum feature subset selection
problem is apparent, and a number of authors have investigated the use of GAs
for feature selection [2,3,4,5].

The actual subset of features which is optimal for a given problem will depend
upon the classifier used. In many real-world problems, classes are not linearly

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 397–404, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

398 Jennifer Hallinan and Paul Jackway

separable, and a non-linear classifier, such as a neural net, is required. GAs have
been used in combination with neural nets in several ways. They have been used
to select feature sets for classification by a neural net trained using conventional
learning algorithms (eg [6,7]), and to evolve the weight vector and/or architecture
of a neural net (for a review see [8]).

Incorporating the neural net classifier as part of the objective function of
the GA requires training a neural net for each fitness evaluation performed by
the GA. Due to the stochastic element of neural net training, each net should
be trained several times with different initial weights in order to properly assess
performance; at least 30 repeats has been suggested in [9]. This makes this
approach computationally prohibitively expensive. The solution has usually been
to use a simpler, related classifier in the GA [6], or to only partially train a subset
of the neural nets in each generation [7,5].

A different approach, described below, is to combine the evolution of the
weight vector for a neural net with the selection of a feature subset. In this way
it should be possible to use a GA to evolve a nonlinear classifier explicitly tuned
to a feature subset, without excessive computational overhead. This combines
the advantages of using a small feature set, as discussed above, with those of
having a classifier developed specifically for that feature set, and should lead to
high accuracy of classification using a small number of features. We decided to
see whether such an approach is feasible and whether it could, in fact, lead to
the development of an effective, generalizable classifier.

2 Method

The task chosen to test the algorithm was classification of the “ionosphere” data
set from the UCI Repository of Machine Learning Databases [10]. The dataset
consists of radar returns from the ionosphere. There are 350 returns, consisting
of 34 features, normalized to the range[-1 , 1], with a target value of “good”
or “bad”, which was recoded for this application as “0” and “1” respectively.
The features were originally 17 discrete returns, each comprising a real and an
imaginary part. These parts are used as separate features, leading to the final
array of 34 features. The data was initially divided into a training set of 200
returns, of which 100 were good and 100 bad, and a test set of 150 returns, of
which 123 were good and 27 were bad. This is the partitioning used by [12], who
first collected and analyzed the data.

The distribution of good/bad returns in the test set is very uneven . To assess
the effect of the partitioning of the data on the classifier developed, a further 5
data partitionings were used. In each case 63 good and 63 bad cases were selected
at random from the data set and these 126 cases were used as the training set,
with the remaining 124 forming as the test set. This results in a smaller training
set, but a test set with a somewhat greater proportion of bad returns.

A three-layer feedforward net was used, with a sigmoid activation function
on the hidden and output units. The network had six input units, three hidden
units, and a single output unit. The GA could thus select a set of 6 features, or, by

Co-operative Evolution of a Neural Classifier and Feature Subset 399

setting both the weights from a feature to 0, could select less than 6 features. This
choice of network architecture was a compromise between an attempt to make
the network as small as possible, reducing the number of parameters to be fitted,
and thus the complexity of the problem which the GA is to solve, and the need to
make it complex enough to successfully classify the nonlinear input data. Three
hidden units were used because they proved to be sufficient to solve the problem
— experiments with different network architectures indicate that more hidden
units, as would be expected, produce a more accurate classifier. However, since
the objective of this study was to demonstrate that a very simple classifier can
perform well if its inputs are carefully chosen, the simplest successful architecture
was used.

Each net was encoded as a single binary string 160 bits long, with each eight
bits representing a single integer in the range 0–255 (binary coded decimal).
Alternative representations, such as Gray coding, may have advantages in a
GA, but were not considered in this study.

Each integer represented either a feature or a weight. The first eight bits
represented the first feature, feature 1; the next eight the weight from feature 1
to hidden unit 1; the next eight the weight from feature 1 to hidden unit 2, and
so on. The weights associated with a given feature were located close to that
feature to facilitate the development of schema during evolution. Features and
weights were both coded in eight bits, so that they were both subject to the
same chance of mutation and crossover.

Integers representing features were rescaled to lie between 0 and 3 by multi-
plying by (3/255). The result was rounded, and this integer was interpreted as
an index to a particular feature. Integers representing weights were scaled to lie
in the range −3.0 to +3.0, using w = (k× (2×3.0)/255)−3.0. This weight range
was chosen because it is fairly small and centred around 0.0, which is the centre
of the sigmoid activation function used.

The objective function for the GA attempts to minimize the mean squared
error of the net over the entire training data set. The fitness of an individual
chromosome is (1 − MSE).

The parameter settings used for the GA were achieved by trial-and-error on
the training set only. The initial values were taken from [11]. The final con-
figuration was: Population Size 50; Mutation Rate 0.01; Crossover Rate 0.02;
Generation Gap 0.5.

Individuals were chosen to reproduce on the basis of their fitness, using
Roulette Wheel selection [11] and elitist generational replacement was used,
with the fittest 50% of parents and the fittest 50% of offspring making up the
next generation.

The GA was run five times on the Sigillito-partitioned training dataset, with
a different random number seed each time. The course of training was followed
by recording the maximum fitness observed in each generation, and training was
stopped when the population appeared to have converged. The fittest individual
in the population was then decoded and used to classify the test and training

400 Jennifer Hallinan and Paul Jackway

sets. The GA was then run on each of the 5 randomly partitioned data sets, with
a random number seed of 1 each time, using the same training methodology.

3 Results and Analysis

The results of the training runs are recorded in Table 1. For each trial, the fittest
neural net was used to classify each case in both the training and the test data
sets. The optimum threshold for each classifier was selected and the percentage
of cases correctly classified using that threshold are recorded in Table 1.

Table 1. Runs of the Neural GA with different Random Number Seeds

Seed Max Gener- Features AUC AUC % Correct % Correct
Fitness ations Selected (Train) (Test) (Train) (Test)

1 0.901581 687 4,5,7,20,26,28 0.892 0.902 90.5 90.8
345 0.861244 688 4,5,9,9,15,23 0.901 0.808 88.6 90.8
7356 0.892623 609 2,4,5,12,13,14, 0.898 0.947 90.0 93.4
629 0.899525 691 2,4,5,7,9,13, 0.941 0.976 90.0 96.1
30 0.894945 677 4,7,8,9,20,23 0.927 0.859 86.6 90.8

Ave 0.889984 89.1 92.4

The average percentage of cases in the unseen test set classified correctly is
92.4% — somewhat higher than that achieved for the training set, at 89.1%. This
implies that the test set is easier to classify than the training set, a conclusion
which is supported by [12], who note that bad returns are more diverse than
good ones, and hence presumably harder to characterize. Bad returns comprise
only 18% of the test set, but form 50% of the training set. When different, and
more even, partitionings of the data into training and test sets were used, the
average area under the ROC curve on the training set was 0.979, and on the
test set was 0.937. This supports the premise that the good returns are easier to
classify, and suggests that conclusions about the generalizability of any classifier
developed on this data set are limited by this variability.

The accuracy of the nets produced by different runs varied from 86.6% to
90.5% for the training set, and from 90.8% to 96.1% for the test set, indicating
that the system is quite robust with respect to initial conditions.

A Receiver Operating Characteristic (ROC) curve was constructed for each
set by taking the output of each case in each run and thresholding the entire data
set at a number of points between 0 and 1. The proportion of correctly classified
“good” values (true positives) and incorrectly classified “bad” values (false pos-
itives) was computed for each threshold, and these values plotted against each
other to give the ROC curves (Fig. 1). A ROC curve provides a concise graphic
depiction of the overall performance of a classifier; for any given classifier it is
possible to operate at any point on the ROC curve by using the corresponding

Co-operative Evolution of a Neural Classifier and Feature Subset 401

threshold for classification. The area under the ROC curve may be used as a
measure of the power of the classifier. It ranges from 0.5 (no power – random
classification) to 1.0 (perfect classification of all cases). The columns labelled
“AUC” in Table 1 is the area under the ROC curve for that classifier.

The ROC curves in Fig. 1 vary more than the single figure for accuracy would
indicate, implying that, although the optimum performance of the classifiers is
similar, the overall performance is not so uniform — some feature subsets appear
to be more effective than others over a wide range of thresholds.

Fig. 1 also shows the results achieved by Sigillito[12] on this data set. They
used a linear perceptron, which achieved an accuracy of 90.7%, a true positive
value of 95.9% and a false positive value of 33.3%; a nonlinear perceptron, which
achieved an accuracy of 92.0%, a true positive value of 98.4% and a false positive
value of 37.0%; and a number of multilayer perceptrons (MLPs) with 3–15 hidden
units. The best of these achieved 98% accuracy, with a true positive value of 100%
and a false positive rate of 11.1%.

Fig. 1. ROC Curves for 6 Input Neural GA Classifier. A, B and C mark the results
obtained by Sigillito et al.(1989) on this data set with varying classifiers (see text for
details)

402 Jennifer Hallinan and Paul Jackway

Fig. 1 illustrates the difference between the point accuracy of a classifier, and
its overall performance. While the accuracy achieved by [12] using an MLP with
15 hidden nodes and 34 inputs was considerably better than that achieved by
the Neural GA at what we selected as “optimum” threshold, all their classifiers
are operating within the range of the ROC curves for the neural GA. That is,
this classifier could operate with equal percentage accuracy with the appropriate
tradeoff between true positive and false positive rates.

The variability observed due to different partitionings of the data set makes it
difficult to quantify the generalizability of the classifier evolved by this algorithm.
In order to overcome this problem, the algorithm was tested on an artificially
constructed data set. This consisted of points from a set of multidimensional
nested spheres. This problem is clearly non-linearly separable, but is readily
visualized by humans. The data set consisted of a two-dimensional, two-class
problem. 1,000 points from each class were generated as a training set, a total of
2,000 training cases. An equal number of points was generated for the test set.
The spheres are centred on 0.5, with the inner sphere having a radius of 0.25,
and the outer forming an annulus of thickness 0.25 around the inner sphere.

Seven “features” were generated. Features 0 and 1 are the x and y coordinates
for the data point. Features 2 ind 5 are random numbers in the range (0,1);
feature 3 is half of (feature 0 plus a random number in the range (0,1)); feature
4 is 2/3 of (feature 0 plus feature 1); and feature 6 is half of feature 2 plus feature
5. All feature values are in the range (0,1). The optimum subset of features for
this data set is thus (0,1). The neural network consisted of two input nodes, five
hidden nodes and a single output node.

Over the course of several runs it became apparent that there was a strong
tendency for the GA to converge to either (0,0) or (1,1) as the features selected.
These solutions apparently represent local minima in the search space in which
the system tended to become trapped, although the correct solution was found
occasionally. In order to overcome this, a penalty function was introduced into
the fitness function, whereby the SSE for an individual was multiplied by 1.1 for
each duplicate feature selected.

The results of five runs of the algorithm on the artificial data are recorded
in Table 2.

Table 2. Runs of the Neural GA on Artificial Data

Run Seed Features AUC AUC
Selected (Train) (Test)

1 1 1,4 0.999 0.803
2 1234 1,4 1.000 0.999
3 999 0,1 1.000 1.000
4 5869 0,1 1.000 1.000
5 65 0,1 1.000 1.000

Co-operative Evolution of a Neural Classifier and Feature Subset 403

In three of the five runs the correct solution was found. On the other two runs
the solution found was (1,4); feature 4 is a combination of features 0 and 1, and
so provides useful, although noisier, information to the classifier. The classifiers
based upon the correct features generalized perfectly to unseen test data, while
those based on the noisier features generalized less well.

4 Conclusions

The results achieved with the neural genetic algorithm described above on real
data are encouraging, in that they demonstrate that a simple nonlinear classifier,
tailored to a feature subset, can perform almost as well as a much more complex
classifier utilizing six times as many input features. There is some evidence that
many of the features in this data set are not contributing to the true classifica-
tion, but the “more accurate” classifier is actually reflecting idiosyncrasies of the
training data set. This is not surprising, given that a three-layer neural net with
20 inputs and three hidden units is attempting to estimate 63 parameters using
200 training exemplars, whereas a 6-input net is fitting only 21 parameters.

On an artifical data set with large amounts of data, the algorithm produces
a classifier which selects the most discriminatory features three times out of five,
and generalizes well to unseen test data. This suggests that the algorithm can
combine feature selection and classifier construction within the limits of the data
set.

Feature selection techniques are often applied to data sets having large num-
bers of features, but relatively few cases. Division of data into training and test
(and preferably validation) sets, while essential, further aggravates the situa-
tion. In such a situation, the use of a subset of features is highly likely to lead to
improved generalizability of a classifier. The algorithm described here permits
network architecture to be kept simple, but strongly tailored to a feature subset,
to reduce computation and enhance generalizability of the resulting classifier.

References

1. Gose, E., Johnsonbaugh, R. & Jost, S. (1996). Pattern Recognition and Image Anal-
ysis. Prentice Hall PTR: Upper Saddle River, NJ.

2. Jain, A. & Zongker, D.(1997). Feature Selection: Evaluation, application and small
sample performance. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 19(2): 153–158.

3. Siedlecki, W. & Sklansky, J.(1989). A note on genetic algorithms for large-scale
feature selection. Pattern Recognition Letters 10(5): 335–347.

4. Vafaie, H. & DeJong, K. (1993). Robust feature selection algorithms. Proceedings
of the International Conference on Tools with AI. Boston, Mass.

5. Yang, J. & Honavar, V.(1998). Feature subset selection using a genetic algorithm.
IEEE Intelligent Systems 13: 44–49.

6. Brill, F. Z., Brown, D. E. & Martin, W. N.(1992). Fast genetic selection of features
for neural network classifiers. IEEE Transactions on Neural Networks 3(2): 324-328.

7. Guo, H. & Gelfand, S. B.(1992). Classification trees with neural network feature
extraction. IEEE Transactions on Neural Networks 3(6): 923–933.

404 Jennifer Hallinan and Paul Jackway

8. Yao, X.(1993). A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems 8(4): 539–577.

9. Setiono, R. & Liu, H.(1997). Neural-network feature selector. IEEE Transactions on
Neural Networks 8(3): 654–659.

10. Murphy, P. M. & Aha, D. W. (1992). UCI Repository of Machine Learning
Databases, Machine Readable Data Repository, Irvine, CA. University of California,
Dept. of Information and Computer Science.

11. Mitchell, M.(1996).An Introduction to Genetic Algorithms. MIT Press: Cambridge,
Massachusetts.

12. Sigillito, V. G., Wing, S. P., Hutton, L. V. & Baker, K. B. (1989). Classification
of radar returns from the ionosphere using a neural networks. Johns Hopkins APL
Technical Digest, 10: 262–266.

Optimal Power Flow Method Using
Evolutionary Programming

Kit Po Wong and Jason Yuryevich

Artificial Intelligence and Power Systems Research Group
University of Western Australia

Australia

Abstract. This paper reports on an evolutionary programming based
method for solving the optimal power flow problem. The method in-
corporates an evolutionary programming based load flow solution. To
demonstrate the global optimisation power of the new method it is ap-
plied to the IEEE30 bus test system with highly non-linear generator
input/output cost curves and the results compared to those obtained us-
ing the method of steepest descent. The results demonstrate that the new
method shows great promise for solving the optimal power flow problem
when it contains highly non-linear devices.

Keywords: Evolutionary programming, Optimal power flow, Optimisa-
tion

1 Introduction

Recently attempts have been made by power system researchers to develop Evo-
lutionary Computation (EC) based optimisation techniques for solving power
system problems. EC is the study of computational systems, which use ideas
and get inspiration from natural evolution and adaption. Currently there are
three major implementations of the evolutionary algorithms: genetic algorithms
(GAs) [1,2], evolutionary programming (EP) [3,4] and evolution strategies [5,6].

In the last five years, the first two EC approaches have been applied to may
operating and planning problems in power systems. The GA techniques have
been used in the reconfiguration of radial distribution networks, load-flow [7],
economic active power and fuel dispatch [8,9,10], hydrothermal scheduling [11],
unit commitment [12,13] and transmission systems [14]. The EP approach has
in the last two years gained some momentum and has been applied to economic
dispatch [15], economic/environmental dispatch [16], reactive power planning
[17] and transmission network expansion planning [18].

The works reported in the literature so far have confirmed that, as an opti-
misation methodology, EC has global search characteristics and it is flexible and
adaptive. Depending on the problem class, it can be very robust. For example,
the constrained genetic algorithm based load flow algorithm [7] has been shown
to be robust and has the ability to find the saddle node bifurcation point of

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 405–412, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

406 Kit Po Wong and Jason Yuryevich

extremely loaded practical systems and abnormal load flow solutions. Its perfor-
mance is superior to the conventional Newton Raphson method in these aspects.

The work on GA load flow has been extended and implemented using the
EP methodology. Based on the work so far developed, this paper reports on the
development of a pure EP based method for solving the optimum power flow
(OPF) problem [19,20,21], which merges the load flow and economic dispatch
problems into one. The complexity of the problem is increased due to a larger
set of operational constraints of the generators and transformers in the electrical
networks. Moreover, highly nonlinear generator input/output cost characteris-
tics will increase the complexity of the OPF problem rendering conventional ap-
proaches ineffective in obtaining the global optimum solution. An OPF method
based on EC such as the one in this paper will provide a sound basis for further
development, not only to reduce the computational time requirement of the EP–
based OPF method, but to include non-linear devices such as FACTs devices.
The OPF evaluations become more and more important under the deregula-
tion of the electricity industry as OPF is an essential component in any power
transmission costing and pricing calculations.

This paper reports a pure EP-based method for solving the OPF problem.
The developed method is tested and validated using the IEEE 30–bus test sys-
tem. Two study cases are presented in which the generator cost characteristics
are represented by (a) quadratic functions and (b) by mixed quadratic functions
and piece-wise quadratic functions. The convergence characteristics of the new
method in the application studies are presented. The method is shown to be
powerful and promising.

2 Optimum Power Flow Problem

The OPF problem is a combination of the load flow and economic dispatch prob-
lem. The objective of this problem can be stated differently depending on the
aspect of interest. One of the possible objectives of OPF is the minimisation of
the power generation cost subject to the satisfaction of the generation and load
balance in the transmission network as well as the operational limits and con-
straints of the generators and the transformers. The OPF problem can therefore
be regarded as a constrained minimisation problem which, in general, has the
following formulation:

min f(x,u) (1)

subject to: g(x,u) = 0
h(x,u) ≤ 0

where f(x,u) is the objective function in terms of the power production cost,
which depends on the generations levels of the generators. The vector of inde-
pendent variables u is given by the active powers of the generators, the voltages
of the PV nodes and transformer tap settings. The vector of dependent variables
x is given by the voltages of PQ nodes, argument of PV nodes voltages and re-
active power generation. The equality constraint in equation set 1 represents the

Optimal Power Flow Method Using Evolutionary Programming 407

balance of supply and load at each node in the network, that is the load flow
problem. The inequality constraints represent operational limits of the genera-
tors and the tap settings of transformers. In solving the OPF problem, it can be
seen that the load flow problem must also be solved. In the present work, an EP
based load flow method similar to that in [7] is employed.

3 Solving OPF using Evolutionary Programming

The essence of the EP technique can be found in [4,15,16,17,18]. The essential
components of the pure EP-based OPF algorithm are given below. Based on
these components, an EP based procedure can be established for solving the
OPF problem. The procedure is illustrated by the flow-chart in Fig. 1.

Fig. 1. Flow Chart of EP-based OPF

(a) Representation of Individuals: An individual or candidate solution in a pop-
ulation is represented in an array in which the values of the generator active
power powers, nodal voltages and transformer tappings are stored. Slack
node power is not included in the individual. The active powers of the gen-
erators, nodal voltages and transformer tap settings in an individual in the
initial population are set randomly within their given ranges. New individ-
uals are formed by mutation.

(b) Fitness function: The fitness fi of individual i, that is the degree of optimal-
ity of the candidate solution is evaluated by the following fitness function:

fi =
M

Ci +
∑

j

VPj + SQ
(2)

408 Kit Po Wong and Jason Yuryevich

VPj =
{

Kv(Vj − 1.0)2 if Vj > V max
j or Vj < V min

j

0 otherwise

SQj =

Kq(Qslack − Qmax
slack)2 if Qslack > Qmax

slack

Kq(Qslack − Qmin
slack)2 if Qslack < Qmin

slack

0 otherwise

In equation (2), Ci is the total cost of active power generation in individual
i,

∑
j VPj represents a penalty applied for any voltage violations, while SQ is

a penalty for reactive power violations at the slack node. As the production
cost is usually very high, its reciprocal will normally be very small. To ob-
tain better numerical values for the fitness of the individual for comparison
purposes, the factor M is used in equation (2) to amplify the value. M is
here set to the maximum possible cost of power generation. Kv and Kq are
penalty weighting constants.

(c) Generation of Candidate Solutions: New individuals are produced by mu-
tating the existing individuals. Let p′

i be the new individual produced from
old individual pi according to:

x′
ji = xji + N(0, σ2

ji) (3)

where x′
ji and xji are the values of the jth element in p′

i and pi respec-
tively and N(0, σ2

ji) is a gaussian random number with a mean of zero and
a standard deviation of σji. The expression designed for σji is:

σji = (xmax
j − xmin

j)((fmax − fi)/fmax + ar) (4)

where fi is the fitness of individual i; fmax is the maximum fitness within
the population; xmax

j ,xmin
j denote the upper and lower limits of variable j; a

is a positive constant slightly less than unity and r is the iteration counter.
The term ar provides a decaying mutation offset the rate of which depends
on the value of a [16].

(d) Selection of a new population by competition: A resultant population of indi-
viduals is formed from the two existing populations. Each of the individuals
in the two populations will compete with Nt rival individuals selected ran-
domly in the combined populations and score si will be assigned to the
individual i, according to:

si =
Nt∑
j=1

nj (5)

nj =
{

1 if fi > fr

0 otherwise

where nj is the result of a tournament between individuals i and r, fi and
fr are the fitnesses of the individuals under consideration. If the population
size is k, then the k highest ranked individuals will be selected to form the
new population form which future generations are evolved.

Optimal Power Flow Method Using Evolutionary Programming 409

4 Application Example

The results obtained when the EP-based method is applied to the IEEE 30
bus system are presented in this section. The test system data can be found in
[19]. Two study cases are presented, the first case is taken from [19] and uses
quadratic generator input/output cost curves which provides a convex solution
surface. The second study replaces the generator input/output cost curves for
nodes 1 and 2 by piece-wise quadratic curves to simulate different fuels or valve-
point loading effects.

All simulations were run on a Pentium Pro 200Mhz computer, the algorithm
was written in the C programming language. In all cases the average execution
time was 38 seconds. Reactive power limits at all nodes except the slack node
are enforced using conventional switching within the load flow. The population
size is set at 20 while in all cases 50 iterations are executed.

(i) Quadratic Input/Output Curves
In this study quadratic curves were used to describe the generators. This
provides a convex solution surface which is well suited to conventional op-
timisation techniques such as the method of steepest descent. The data for
the generators is given below in Table 1. The EP-OPF was run 100 times
and the cost of the final solution in each of the trials is graphed below in Fig.
2. The costs of solutions produced are consistently close to that reported in
[19]. The minimum cost being $802.86 while the average was $804.42. The
details of the minimum solution are provided in Table 3.
To illustrate the convergence of the EP-OPF the average statistics over the
100 trials are plotted in Fig. 3. It can be seen that the EP-OPF converges
quite rapidly to the global optimum solution.
The problem was also solved using the SD method of [19] and its convergence
is shown on Fig. 3. The SD method performs well on this case as expected,
due to the convex nature of the generator input output curves. The final
solution returned by the SD method is approximately $802.40.

Table 1. Unit Input/Output Curves for Case(i)

Bus P min
G P max

G Qmin
G Smax

G Cost Coefficients
No. MW MW MVAr MVA a b c
1 50 200 -20 250 0.00 2.00 0.00375
2 20 80 -20 100 0.00 1.75 0.01750
5 15 50 -15 80 0.00 1.00 0.06250
8 10 35 -15 60 0.00 3.25 0.00834
11 10 30 -10 50 0.00 3.00 0.02500
13 12 40 -15 60 0.00 3.00 0.02500

Ci = ai + biPi + ciP
2
i

410 Kit Po Wong and Jason Yuryevich

Fig. 2 Solutions for Case(i) Fig. 3 Convergence for Case(i)

(ii) Piece-wise Quadratic Curves
To simulate the effects of different fuels or valve point loading, the curves
describing the generators connected to nodes 1 and 2 were replaced by piece-
wise quadratics. The data for these curves is given in Table 2. These curves
provide a non-convex solution surface for the problem which will cause more
classical solution methods to fail in determining the global optimum.
The algorithm was run 100 times producing a minimum cost of $648.95 and
an average cost of $654.81, the data for the minimum solution is given in
Table 3. The final costs for the 100 trails are plotted below in Fig. 4. The
convergence of the algorithm is also plotted in Fig. 5.
The SD method of [19] was applied to this case also, the convergence is
given in Fig. 5. In this case the method fails to find the global optimum
solution. With reference to Fig. 5 the jump in cost at iteration 23 is a result
of the loading of the unit connected to bus 2 crossing a discontinuity. The
gradient information on which the method is based becomes invalid when
a discontinuity is crossed and results in the solution converging to a local
optimum.

Fig. 4 Solutions for Case(ii) Fig. 5 Convergence for Case(ii)

Optimal Power Flow Method Using Evolutionary Programming 411

Table 2. Unit Input/Output Curves for Case(ii)

Node From To Cost Coefficients
No. MW MW a b c
1 50 140 55.0 0.70 0.0050

140 200 82.5 1.05 0.0075
2 20 55 40.0 0.30 0.0100

55 80 80.0 0.60 0.0200
Ci = ai + biPi + ciP

2
i

Table 3. Solutions for Test Cases

Case P2 P3 P4 P5 P6 V1 V2 V3 V4 V5 V6 t11 t12 t15 t36

EP (i) 46.903 21.210 25.604 12.805 12.145 1.048 1.035 1.007 1.006 1.095 1.068 1.04 0.90 0.98 0.93
SD (i) 52.028 21.095 19.384 13.540 12.734 1.050 1.041 1.007 1.009 1.073 1.054 0.98 0.94 0.94 0.93
EP (ii) 54.936 24.567 33.917 18.630 18.709 1.046 1.057 1.038 1.051 1.025 1.068 0.91 1.09 0.95 1.02
SD (ii) 71.787 14.798 11.669 10.000 12.000 1.006 1.037 1.050 1.010 1.077 1.056 0.98 0.95 0.94 0.93

5 Conclusions

An EP-based method for solving the optimal power flow problem has been re-
ported and demonstrated through its application to the IEEE30 bus test system.
It has been compared to the steepest descent method and has been found to ob-
tain almost identical results in the case where the generator input/output cost
curves are quadratic. The new method is however superior when the generator
cost characteristics are highly non-linear. The limitations of the new method are
(i) that it is not robust enough to guarantee convergence to the global optimum
solution in the case of piece-wise quadratic cost functions and (ii) the computa-
tional speed is large compared to classical methods.
The EP-based OPF method reported is very promising. Further work is being
undertaken to improve the robustness and to reduce its computational require-
ment.

References

1. J.H. Holland. Adaption in Natural and Artificial Systems. Ann Arbor: University
of Michigan Press, 1975.

2. D.E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learn-
ing. Addison-Wesley, 1989.

3. L.J. Fogel. Autonomous automata. In Ind. Res., volume 4, pages 14–19, 1962.
4. D.B. Fogel. Evolutionary Computation: Toward a new Philosophy in Machine In-

telligence. IEEE Press, 1995.
5. I. Rechenberg. Evolutionsstrategie: Optimierung technischer systeme nach prinzip-

ien der biologischen evolution. Germany Frommann-Holzboog, 1973.
6. H.P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.
7. K.P. Wong, A. Li, and M.Y. Law. Development of constrained genetic algorithm

load flow method. IEE Proc. Gener. Transm. and Distrib., 144(2):91–99, 1997.

412 Kit Po Wong and Jason Yuryevich

8. D.C. Walter and G.B. Sheble. Genetic algorithm solution of economic dispatch
with valve point loading. In IEEE PES Summer Meeting, Seattle, Paper Number
SM 414-3 PWRS, 1992.

9. K.P. Wong and Y.W. Wong. Genetic and genetic simulated–annealing appraoches
to economic dispatch. IEE Proc. Gener. Transm. Distrib., 141(5):507–513, 1994.

10. K.P. Wong and Wong S.Y.W. Hybrid genetic/simulated annealing approach
to short-term multiple-fuel-constrained generation scheduling. IEEE Trans. on
Power Systems, 12(2):776–784, 1997.

11. K.P. Wong and Y.W. Wong. Development of hybrid optimisation techniques based
on genetic algorithms and simulated annealing. In X Yao, editor, Progress in
Evolutionary Computation, Lectures in Artificial Intelligence, pages 372–380. 956
Series by Springer-Verlag, 1995.

12. K.P. Wong and Y.W Wong. Thermal generator scheduling using hybrid
genetic/simulated-annealing approach. IEE Proc. Gener. Transm. Distrib.,
142(4):372–380, 1995.

13. S.A. Kazarlis, A.G. Bakirtzis, and V. Petrdis. A genetic algorithm solution to the
unit commitment problem. IEEE Trans. on Power Systems, 11(1):372–380, 1995.

14. H. Rudnick, R. Palma, E. Cura, and C. Silva. Economically adapted transmission
systems in open access schemes – application of genetic algorithms. IEEE Trans.
on Power Systems, 11(3), 1996.

15. H.T Yang, P.C. Yang, and C.L. Huang. Evolutionary programming based eco-
nomic dispatch for units with non-smooth fuel cost functions. IEEE Trans. on
Power Systems, 11(1):112–117, 1996.

16. K.P. Wong and J Yuryevich. Evolutionary programming-based economic dispatch
for environmentally constrained economic dispatch. accepted in 1997 for publica-
tion in IEEE Trans. on Power Systems.

17. L.L. Lai and J.T. Ma. Application of evolutionary programming to reactive power
planning – comparison with non-linear programming approach. IEEE Trans. on
Power Systems, 12(1), 1997.

18. L.L. Lai, T.J. Ma, Wong K.P., R. Yokoyama, M Zhao, and H. Sasaki. Application
of evolutionary programming to transmission system planning. In Conf. Proc. on
Power Systems, Institution of Electrical Engineers Japan, pages 147–152, 1996.

19. O. Alsac and B. Stott. Optimal loadflow with steady-state security. IEEE Trans.,
PAS-93:745–751, 1974.

20. R. Ristanovic. Successive linear programming based opf solution. In Optimal
Power Flow: Solution Techniques, Requirements and Challenges, pages 1–9. IEEE
Power Engineering Society, 1996.

21. S.M. Shahidehpour and V.C. Ramesh. Non-linear programming algorithms and
decomposition strategies for opf. In Optimal Power Flow: Solution Techniques,
Requirements and Challenges, pages 10–24. IEEE Power Engineering Society, 1996.

Grammatical Development of Evolutionary
Modular Neural Networks?

Sung-Bae Cho12 and Katsunori Shimohara2

1 Dept. of Computer Science, Yonsei University
134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Korea

2 ATR Human Information Processing Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

E-mail: [sbcho,katsu]@hip.atr.co.jp

Abstract. Evolutionary algorithms have shown a great potential to de-
velop the optimal neural networks that can change the architectures and
learning rules according to the environments. In order to boost up the
scalability and utilization, grammatical development has been consid-
ered as a promising encoding scheme of the network architecture in the
evolutionary process. This paper presents a preliminary result to apply
a grammatical development method called L-system to determine the
structure of a modular neural network that was previously proposed by
the authors. Simulation result with the recognition problem of handwrit-
ten digits indicates that the evolved neural network has reproduced some
of the characteristics of natural visual system, such as the organization
of coarse and fine processing of stimuli in separate pathways.

1 Introduction

There are more than hundred publications that report an evolutionary design
method of neural networks [1,2,3,4]. One of the important advantages of evo-
lutionary neural networks is their adaptability to a dynamic environment, and
this adaptive process is achieved through the evolution of connection weights,
architectures and learning rules [4]. Most of the previous evolutionary neural
networks, however, show little structural constraints. However, there is a large
body of neuropsychological evidence showing that the human information pro-
cessing system consists of modules, which are subdivisions in identifiable parts,
each with its own purpose or function.

This paper takes a module as a building block for evolutionary neural net-
works previously proposed by [5], and applies a parametric L-system to the
development of the network architecture. Each module has the ability to au-
tonomously categorize input activation patterns into discrete categories, and
representations are distributed over modules rather than over individual nodes.
Among the general principles are modularity, locality, self-induced noise, and
self-induced learning.
? This work was supported in part by a grant no. SC-13 from the Ministry of Science

and Technology in Korea.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 413–420, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

414 Sung-Bae Cho and Katsunori Shimohara

V V

RR

A

E

EXCITATORY

INHIBITORY

COMMUNICATION

CONTROL

(a)

(b)

Fig. 1. (a) Schematic diagram of the internal structure of a module; (b) Simplified
diagram of the module (a).

2 Evolutionary Modular Neural Networks

The basic idea is to consider a module as a building block resulting in local rep-
resentations by competition, and develop complex intermodule connections with
evolutionary mechanism. In computing terms, an evolutionary algorithm maps
a problem onto a set of strings, each string representing a potential solution.
In the problem at hand, a string encodes the network architecture and learning
parameters in tree structure. The evolutionary algorithm then manipulates the
most promising strings in its search for improved solutions. This process operates
through a simple cycle of stages:

1. creation of a population of tree-structured strings,
2. evaluation of each string,
3. selection of good strings, and
4. genetic manipulation to create the new population of strings.

The activation value of each node in the modular neural network is calculated
as follows:

ei =
∑

j

wijaj(t), (1)

where wij denotes the weight of a connection from node j to node i. The effective
input to node i, ei, is the weighted sum of the individual activations of all
nodes connected to the input side of the node. The input may be either positive
(excitatory) or negative (inhibitory).

The internal structure of each module is fixed and the weights of all intramod-
ular connections are non-modifiable during learning process (see Fig. 1(a)). In a
module, R-node represents a particular pattern of input activations to a mod-
ule, V-node inhibits all other nodes in a module, A-node activates a positive

Grammatical Development of Evolutionary Modular Neural Networks 415

function of the amount of competition in a module, and E-node activation is a
measure of the level of competition going on in a module. The most important
feature of a module is to autonomously categorize input activation patterns into
discrete categories, which is facilitated as the association of an input pattern
with a unique R-node.

The process goes with the resolution of a winner-take-all competition be-
tween all R-nodes activated by input. In the first presentation of a pattern to a
module, all R-nodes are activated equally, which results in a state of maximal
competition. It is resolved by the inhibitory V-nodes and a state-dependent noise
mechanism. The noise is proportional to the amount of competition, as measured
through the number of active R-nodes by the A-node and E-node. Evolutionary
mechanism gives a possibility of change to the phenotype of a module through
the genetic operators.

The interconnection between two modules means that all R-nodes in one
module are connected to all R-nodes in the other module. These intermodule
connections are modifiable by Hebb rule with the following equation:

∆wij(t + 1) = µtai

[K − wij(t)] aj − Lwij(t)

∑
f 6=j

wif (t)af

 , (2)

µt = d + wµE
aE , (3)

where ai, aj and af are activations of the corresponding nodes, respectively:
wij(t) is the interweight between R-nodes j and i, wif (t) indicates an interweight
from a neighboring R-node f (of j) to R-node i, and ∆wij(t+1) is the change in
weight from j to i at time t + 1. Note that L and K are positive constants, and
aE is the activation of the E-node. As a mechanism for generating change and
integrating the changes into the whole system, we use evolutionary algorithm to
determine the parameters in the above learning rule and structure of intermodule
connections.

Three kinds of information should be encoded in the genotype representation:
the structure of intermodule connection, the number of nodes in each module,
and the parameters of learning and activation rules. The intermodule weights
are determined by the Hebb rule mentioned at the previous section. In order to
represent the information appropriately, a tree-like structure has been adopted.
An arc in a tree expresses an intermodule connection, and each node represents a
specific module and the number of nodes therein. For more detailed description
on the evolutionary modular neural networks, see the recent publication [5].

3 Grammatical Development of MNN

Aristid Lindenmayer introduced a formalism for simulating the development of
multicellular organisms, subsequently named L-systems [7], and the vigorous
development of the mathematical theory was followed by its applications to the
modeling of plants. L-systems are sets of rules and symbols that model growth

416 Sung-Bae Cho and Katsunori Shimohara

processes, and there are several variants depending on the properties. This paper
adopts one of them, called context-sensitive parametric L-system.

Parametric L-system operates on parametric words, which are strings con-
sisting of letters with associated parameters. The letters belong to an alphabet
V , and the parameters belong to the set of real numbers R. A string with letter
A ∈ V and parameters a1, a2, . . . , an ∈ R is denoted by A(a1, a2, . . . , an). A
formal definition of the context-sensitive parametric L-system is as follows:

Definition 1. A parametric L-system is defined as an ordered quadruple G =
(V, Σ, w, P), where

– V is the alphabet of the system,
– Σ is the set of formal parameters,
– ω ∈ (V × R∗)+ is a nonempty parametric word called axiom,
– P ∈ (V × Σ∗) × C(Σ) × (V × E(Σ)∗)∗ is a finite set of productions, where

C(Σ) and E(Σ) denote logical and arithmetic expressions with parameters
from Σ, respectively.

The symbols ‘:’ and ‘→’ are used to separate the three components of a produc-
tion: predecessor, condition, and successor. Thus, a production has the format
of lc < pred > rc : cond → succ.

For example, a production with predecessor B(y), left context A(x), right
context C(z), condition x + y + z >= 10 and successor U(x + y)V (y + z) is
written as

A(x) < B(y) > C(z) : x + y + z >= 10 → U(x + y)V (y + z). (4)

The left context is separated from the predecessor by the symbol <, and the
predecessor is separated from the right context by the symbol >. This production
can be applied to the B(4) that appears in a parametric word · · ·A(3) B(4)
C(5) · · ·, and replaces B(4) with U(7)V (9).

With this formalism, a basic element of the L-system can be defined as a
module or a functional group composed of several modules for modular neural
networks. A module is denoted as A(x, y) where A identifies the name, x repre-
sents the number of nodes and y means the connection pointer of the module,
respectively. Consecutive symbols for modules mean a default forward connec-
tion from the former module to the latter module. Positive integer of y means
the forward connection and negative one does the backward connection. The
functional group is represented by a pair of ‘[’ and ‘]’. One more addition is a
special symbol ’,’ which is used to represent disconnection between two mod-
ules. Fig. 2 shows some of the typical examples of the grammar and structure
generated by it.

In order to see how the grammar generates various network structures, as-
sume that we have the following definition of an L-system for modular neural
networks.

Grammatical Development of Evolutionary Modular Neural Networks 417

A

B

A

B C

D

A

B

C

(a) (b) (c)

Fig. 2. Some of the typical examples of the network structure generated by the gram-
mar. (a) AB, (b) A[B, C]D, (c) A(x, 1)BC.

– Alphabet V = {A, B, C, D, ‘,′ },
– Axiom ω = A(100, 0),
– Productions:

A(x, y) → A(x, 1)[B(x/10 − 2, y)B(x/10 + 2,−1)]C(x/10, −1) (5)

B(x1, y1) < B(x, y) > C(x2, y2) : x > 10 → C(x/2, y)C(x/2, y − 1) (6)

B(x1, y1) < C(x, y) > C(x2, y2) : x > 5 → [D(x, y), D(x, 0)] (7)

The sequence of strings generated by the parametric L-system specified as
above is like this:

A(100, 0) → A(100, 1)[B(8, 0)B(12, −1)]C(10, −1) (8)
→ A(100, 1)[B(8, 0)C(6,−1)C(6, −2)]C(10,−1) (9)
→ A(100, 1)[B(8, 0)[D(6,−1), D(6, 0)]C(6, −2)]C(10, −1) (10)

Fig. 3 shows the modular neural networks corresponding to each string generated
by the parametric L-system.

4 Simulation Results

In order to confirm the potential of the proposed model, we have used the hand-
written digit database of Concordia University of Canada, which consists of
6000 unconstrained digits originally collected from dead letter envelopes by the
U.S. Postal Services at different locations in the U.S. The size of a pattern was
normalized by fitting to coarse 10×10 grids over each digit. The proportion of
blackness in each square of the grid provided 100 continuous activation values for
each pattern. Network architectures generated by the evolutionary mechanism
were trained with 300 patterns. A fitness value was assigned to a solution by test-
ing the performance of a trained network with the 300 training digits, and the
recognition performance was tested on the other 300 digits. Initial population
consisted of 50 neural networks of having random connections. Each network

418 Sung-Bae Cho and Katsunori Shimohara

IN

OUT

(a)

IN

OUT

(b)

IN

OUT

(c)

Fig. 3. The sequence of modular neural networks generated by the parametric L-
system specified in the text. (a) A(100, 1) [B(8, 0)B(12,−1)] C(10,−1), (b) A(100, 1)
[B(8, 0) C(6,−1)C(6,−2)] C(10,−1), (c) A(100, 1) [B(8, 0) [D(6,−1), D(6, 0)]
C(6,−2)] C(10,−1).

Grammatical Development of Evolutionary Modular Neural Networks 419

contains one input module of size 100, one output module of size 10, and differ-
ent number of hidden modules. Every module can be connected to every other
module.

From the simulation, we can see that the evolution led to the increase of
complexity, and new structures as well as new functionality emerged in the course
of evolution: In general, the early networks have simple structures. In the early
stages of the evolution some complicated architectures also emerged, but they
were disappeared as the search of the optimal solution matured. The earlier good
specific solutions probably overfitted some of the peculiar training set with lack
of generality.

In the test of generalization capability, for the patterns that are similar to
the trained, the network produced the direct activation through a specific path-
way. On the contrary, the network oscillated among several pathways to make
a consensus for the strange patterns. The basic processing pathways in this
case complemented each other to result in an improved overall categorization.
Furthermore, the recurrent connections utilized bottom-up and top-down infor-
mation that interactively influenced categorization at both directions.

In order to illustrate the effectiveness of the model proposed, a comparison
with traditional neural network has been conducted. Multilayer perceptron has
been selected as a traditional neural network, because it is well known as a
powerful pattern recognizer. The network is constructed as 100×20×10, where
the number of hidden nodes, 20, has been determined after several trial-and-
errors. Table 1 reports the recognition rates of the two methods over ten different
sets of the data. As can be seen, the average recognition rate for the proposed
method is higher than that for the multilayer perceptron. Furthermore, with
the paired t-test, for all the cases “no-improvement” hypothesis is rejected at a
0.5% level of significance. This is a strong evidence that the proposed method is
superior to the alternative method.

Table 1. Comparison of the proposed method with a traditional neural network,
multilayer perceptron (MLP), for ten different data sets.

Proposed Method Multilayer Perceptron
1 97.67 95.67
2 97.67 96.33
3 97.33 94.67
4 98.00 96.67
5 96.33 93.67
6 97.00 94.67
7 98.00 96.00
8 97.00 95.67
9 96.67 94.67
10 97.67 95.33

Mean 97.33 95.33
S.D. 0.57 0.92

420 Sung-Bae Cho and Katsunori Shimohara

5 Concluding Remarks

We have described a preliminary design of the modular neural networks devel-
oped by evolutionary algorithm and a parametric L-system. It has a modular
structure with intramodular competition, and intermodular excitatory connec-
tions. We hope that this method can give the modular neural network the scal-
ability in complex problems, similarly to the result of [3]. This sort of network
will also take an important part in several engineering tasks exhibiting adaptive
behaviors. We are attempting to make the evolutionary mechanism sophisticated
by incorporating the concept of co-evolution.

Acknowledgements

The authors would like to thank Dr. Y. Tohkura at NTT Communication Sci-
ence Laboratories for continuous encouragement, and Mr. S.-I. Lee at Yonsei
University for supporting the implementation of the simulation program.

References

1. Harp, S.A.: Towards the genetic synthesis of neural networks. Proc. Int. Conf.
Genetic Algorithms. (1989) 360–369

2. Whitley, D., Hanson, T.: Optimizing neural networks using faster, more accurate
genetic search. Proc. Int. Conf. Genetic Algorithms. (1989) 391–396

3. Kitano, H.: Designing neural networks using genetic algorithms with graph gener-
ation system. Complex Systems. 4 (1990) 461–476

4. Yao, X.: Evolutionary artificial neural networks. Int. Journal Neural Systems. 4
(1993) 203–222

5. Cho, S.-B., Shimohara, K.: Evolutionary learning of modular neural networks with
genetic programming. Int. Journal Applied Intelligence. 9 (1998) 191–200

6. Whitley, D.: The GENITOR algorithm and selective pressure: why rank-based
allocation of reproductive trials is best. Proc. Third Int. Conf. Genetic Algorithms
and Their Applications. Morgan Kaufmann. San Mateo, CA. (1989) 116–121

7. Lindenmayer, A.: Mathematical models for cellular interaction in development. Int.
Journal Theoretical Biology. 18 (1968) 280–315

8. Prusinkiewicz, P., Hammel, M., Hanan, J., Mech, R.: Visual models of plant de-
velopment. Handbook of Formal Languages. Springer-Verlag. (1996)

Hybridized Neural Network and Genetic
Algorithms for Solving Nonlinear Integer

Programming Problem

Mitsuo Gen, Kenichi Ida, and Chang-Yun Lee

Ashikaga Institute of Technology, Ashikaga 326-8558, Japan
{gen ida cylee}@genlab.ashitech.ac.jp

Abstract. Optimization problems such as system reliability design and
general assignment problem are generally formulated as a nonlinear inte-
ger programming (NIP) problem. Generally, we transform the nonlinear
integer programming problem into a linear programming one in order to
solve NIP problems. However linear programming problems transformed
from NIP problems become a large-scale problem. In principal, it is de-
sired that we deal with the NIP problems without any transformation.
In this paper, we propose a new method in which a neural network tech-
nique is hybridized with genetic algorithms for solving nonlinear integer
programming problems. The hybrid GA is employed the simpelx search
method, and the chromosomes are improved to good points by using the
simplex search method. The effectiveness and efficiency of this approach
are shown with numerical simulations from the reliability optimal design
problem.

1 Introduction

Neural network (NN) technique is receiving much attention and applied for a
variety of optimization problems [3]-[2]. The advantages of neural network tech-
nique lie mainly in that the computation is completed in massively parallel
architectures and that optimal solutions renewed parameters are adaptively ob-
tained as new equilibrium points under the new environment. However, when
we apply neural network techniques for a solving nonlinear integer programming
problem, it is difficult to obtain integer solutions.

To solve this problem effectively, we introduced genetic algorithms (GAs)
which are very powerful tools for solving such the nonlinear optimization prob-
lems and can handle any kind of nonlinear objective function and constraints
[8][9]. The method for solving a nonlinear integer programming problem using the
neural network technique and the genetic algorithm (NIP/NN-GA) was recently
proposed by Gen et al. [9]. The NIP/NN-GA method is used Neural Network
and GA method to obtain the best solution. In this method, Neural Network
is used for finding initial soulutions of the GA. However, if we deal with the
large-scale problems, the NIP/NN-GA method has many combination for the
solution. In this paper, we propose the new method in which the neural network

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 421–429, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

422 Mitsuo Gen, Kenichi Ida, and Chang-Yun Lee

technique is hybridized with the genetic algorithm combined with the simplex
search method for solving NIP problems. Simplex search method is one of the
direct search methods, and makes calculations very time-consuming and great
accuracy in the final solution is desired. And the effectiveness and efficiency of
this approach is shown with numerical simulations from the large-scale problem
in which the proposed method is obtained the best solutions faster than the
NIP/NN-GA method.

2 Nonlinear Integer Programming Model

The NIP problem which maximizes a nonlinear objective function f(x) subject
to m constraints and n decision variables, is formulated as follows:

NIP :
max f(x) (1)
s. t. gi(x) ≤ bi, i = 1, 2, · · · , m (2)

x = [x1x2 · · ·xn], xj ≥ 0, j = 1, 2, · · · , n : integer

where gi(x) is the ith inequality constraint, bi is right-hand side constant of the
ith constraint and xj is the jth decision variable which takes integer value.

3 Methods for solving NIP problem

3.1 NP/NN method

We consider that the NIP problem has no integer restrictions, because the neural
network technique is an approximate method suitable for a continuous values,
i.e., we solve the NP problem [5]. We can easily transform the above to the
minimization prolbem by multiplying objective function by -1.

We can construct the energy function based on the penalty function method
for solving the NP problem. The penalty function method transforms the con-
strained optimization problem into the unconstrained optimization one. In order
to solve the NP problem, we construct the following energy function [2]:

E(x, κ) = −f(x) +
κ

2

 m∑

i=1

([bi − gi(x)])2 +
n∑

j=1

([xj])2

 (3)

where κ > 0 is penalty parameter, [bi − gi(x)] = min{0, bi − gi(x)} and [xj] =
min{0, xj}. Minimizing the energy function (3) leads to the system of ordinary
differential equations as follows:

dx
dt

= −µ∇xE(x, κ) (4)

where µ ≥ 0 is called learning parameter.

Hybridized Neural Network and Genetic Algorithms 423

3.2 Genetic Algorithms

Representation and Initialization Let xk denote the kth chromosome in a
population as follows:

xk = [xk1 · · ·xkj · · ·xkn], k = 1, 2, · · · , pop size

where pop size means population size. The initial integer solution vectors are
randomly created within the region of the real-valued solutions obtained by the
neural network technique. The revised width is a parameter to limit the range
for creating the initial solution vectors.

Evaluation We evaluate the original objective function of the NIP problem as
follows:

eval(xk) =
{

f(xk); gi(xk) ≤ bi (i = 1, 2, · · · , m)
−M ; otherwise

where M is a positive large integer as a penalty in the case of violating the
constraints.

Genetic Operators

(1)Crossover: For each pair of parents x1 and x2, the crossover operator will
produce two children x′ and x

00
as follows:

x′ = bc1x1 + c2x2 + 0.5c , x′′ = bc2x1 + c1x2 + 0.5c

where, x1,x2 ≥ 0 and c1 + c2 = 1.
(2)Mutation: We set the revised width, and then select a mutating position

at random. Finally, we exchange the selected value for the revised value.
(3)Selection: We select the better chromosomes among parent and offspring

by evaluation value. The number to be selected is pop size and let these
chromosomes enter the next generation. Duplicate selection is prohibited.

3.3 Simplex Search Method

The implementation of simplex search algorithm requires only two types of cal-
culations: (1)generation of a regular simplex given a base point and appropriate
scale factor, and (2) calculation of the reflected point. The first of these calcu-
lations is readily carried out, since it can be shown from elementary geometry
that given an n-dimensional starting or base points x(0) and a scale factor α,
the other n vertices of the simplex in n dimensions are given by

x
(i)
j = x

(0)
j + δ1 if i = j (5)

= x
(0)
j + δ2 if i 6= j, for i, j = 1, 2, ..., n (6)

424 Mitsuo Gen, Kenichi Ida, and Chang-Yun Lee

where,

δ1 = α

[
(n + 1)1/2 + n − 1

n
√

2

]
, δ2 = α

[
(n + 1)1/2 − 1

n
√

2

]

The choice α = 1 leads to a regular simplex with sides of unit length. The second
calculation, reflection through the centroid, is equally straightforward. Suppose
x(p) is the point to be reflected. Then the centroid of the remaining n points is

x
(c)
j =

∑n
i=0,j 6=i x

(i)
j

n
, j = 1, 2, ..., n (7)

All points on the line from x(p) through x(c) are given by

x∗ = x(p) + λ(x(c) − x(p)) (8)

Here, λ = 2 will yield the desired new vertex point. Thus,

x∗ = b2x(c) − x(p) + 0.5c (9)

4 Proposed Algorithms for solving NIP problem

Now, we show the overall procedure for solving the NIP problem as follows:

Step 1: Set learning parameter µ, penalty parameter κ, the initial solutions
xj(0), the step size η and permissive error ε.

Step 2: Initial search by the neural network technique:
2-1: Construct the energy function E(x, κ) for solving the NP problem.
2-2: Construct the system of ordinary differential equations from E(x, κ)

and then solve it by using Runge-Kutta method.
2-3: If |xj(t + η) − xj(t)| < ε, round off to initial solutions and go to Step

3.
Step 3: Set population size pop size, crossover rate pc, mutation rate pm, max-

imum generation maxgen and the revised width rev.
Step 4: Optimal search by the genetic algorithm:

4-1: Generate the initial population
Decide the range of the decision variables which we round to a decimal
point and the revised width, and then, generate the initial populations.

4-2: Evaluation
Calculate the evaluation function.

4-3: Genetic Operations
4-3-1: Crossover (arithmetical crossover)
4-3-2: Mutation (one-point mutation)
4-3-3: Selection (elitist selection)

4-4: Reorganization of population
4-4-1: Generate a regular simplex for each selected chromosome by

if i = j then x
(i)
j = x

(0)
j + δ1, else x

(i)
j = x

(0)
j + δ2 for i, j = 1, 2, ..., n.

Hybridized Neural Network and Genetic Algorithms 425

4-4-2: Calculate the centroid vector by which each chromosome is re-
flected. Centroid of the remaining n points is

x
(c)
j =

∑n
i=0,i6=j x

(i)
j

n
, j = 1, 2, ..., n.

4-4-3: Reflect all genes through centorid x(c).
x∗ = b2x(c) − x(p) + 0.5c

where, x(p) = argmax{evalf(x(i)) | i = 0, 1, ..., n}
4-4-4: If the evaluation value of the reflected chromosome get better
than those of the selected chromosomes from Step 4-3-3, put it into the
population of the next generation.

4-5: Termination condition
If the generation is equal to number of maximum generation, then go to
Step 5. Otherwise, go to Step 4-2.

Step 5: Output the solution.

5 Numerical Examples

In this section, numerical examples as a NIP problem are solved by the proposed
method and we make comparative study for the simple GA, NIP/NN-GA method
and proposed method.
5.1 Example 1:

We consider the following NIP problem with 5 decision variables and 3 con-
straints [11]:

max f(x) =
5∏

j=1

{1 − (1 − Rj)xj}

s. t.
5∑

j=1

pjx
2
j ≤ 100

5∑
j=1

cj{xj + exp(xj/4)} ≤ 175

5∑
j=1

wjxjexp(xj/4) ≤ 200, xj ≥ 1, j = 1, · · · , 5 : integer

where the coefficients for this problem is shown in Table 1.

Table 1. Coefficients for Example 1

j 1 2 3 4 5
Rj 0.80 0.85 0.90 0.65 0.75
pj 1 2 3 4 2
cj 7 7 5 9 4
wj 7 8 8 6 9

426 Mitsuo Gen, Kenichi Ida, and Chang-Yun Lee

We relax the NIP problem into the NP problem to apply neural network
technique and construct the energy function from it. According to the gradient
method for the energy function E(x, κ), we can transform the system of ordinary
differential equations. When the initial values and the parameters for the initial
search are µ = 1000, κ = 5000, x

(0)
1 = · · · = x

(0)
5 = 1, η = 0.01, ε = 0.001,

the search result in x1 = 2.5641, x2 = 2.3410, x3 = 2.19344, x4 = 3.1850, x5 =
2.77524. Next, we create the initial population based on the obtained solutions
and set revised width for GA. We set the parameters of the genetic algorithm as

Table 2. Simulation Results for Example 1 with 20 times performance

Simple GA NIP/NN-GA Proposed method
best 0.874107 0.904489 0.904514
worst 0.704481 0.890721 0.894232

average 0.783321 0.900031 0.901274

Fig. 1. Convergence of the proposed
method and the Simple GA mehtod for
Example 1

Fig. 2. Convergence of the proposed
method and the NIP/NN-GA method
for Example 1

follows: the population size is 20, crossover rate is 0.5, mutation rate is 0.2, the
maximum generation is 150 and revised width is 3. The optimal solution for this
problem is [x1 x2 · · · x5] =[3 2 2 3 3] and the objective function is 0.904514.

Figure 1 and 2 show the convergence process of the proposed method, NIP/NN-
GA method and the simple GA run by 20 times. In Fig. 1 and Fig. 2, the proposed
method and the NIP/NN-GA method are obtained the solutions better than the
simple GA. And then, the proposed method(NIP/NN-hGA) is obtained the best
solutions faster than the NIP/NN-GA method shown in Fig. 2.

Hybridized Neural Network and Genetic Algorithms 427

5.2 Example 2:

Now, we have another NIP problem with 15 decision variables and 2 constraints:

max f(x) =
15∏

j=1

{1 − (1 − Rj)xj}

s. t.
15∑

j=1

cjxj ≤ 400

15∑
j=1

wjxj ≤ 414, xj ≥ 1, j = 1, 2, · · · , 15 : integer

Table 3. Coefficients for Example 2

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rj 0.90 0.75 0.65 0.80 0.85 0.93 0.78 0.66 0.78 0.91 0.79 0.77 0.67 0.79 0.67
cj 5 4 9 7 7 5 6 9 4 5 6 7 9 8 6
wj 8 9 6 7 8 8 9 6 7 8 9 7 6 5 7

Table 4. Simulation Results for Example 2 with 20 times performance

Simple GA NIP/NN-GA Proposed method
best 0.92023 0.94471 0.944819
worst 0.84744 0.93296 0.94383

average 0.89305 0.94432 0.94450

where the coefficients for this problem is shown in Table 3. By the same
way, we relax the NIP problem into the NP problem to apply neural network
technique. After constructing the energy function and its ordinary differential
equations, we can obtain the following solutions to use initial values of the hy-
bridized GA with the neural network technique:

x1 = 2.717, x2 = 3.707, x3 = 4.367, x4 = 3.385, x5 = 3.059
x6 = 2.497, x7 = 3.514, x8 = 4.299, x9 = 3.514, x10 = 2.645
x11 = 3.450, x12 = 3.578, x13 = 4.232, x14 = 3.450, x15 = 4.232

We set the parameters of the genetic algorithm as follows: the population size
is 20, crossover rate is 0.4, mutation rate is 0.3, the maximum generation is 2000
and revised width is 2. The optimal solution for this problem is [x1 x2 · · · x15]=[3
4 5 3 3 2 4 5 4 3 3 4 5 5 5] and the objective function is 0.944819 while
these values are same in [7].

428 Mitsuo Gen, Kenichi Ida, and Chang-Yun Lee

Fig. 3. Convergence of the proposed
method and the Simple GA mehtod for
Example 2

Fig. 4. Convergence of the proposed
method and the NIP/NN-GA method
for Example 2

6 Conclusion

In this paper, we proposed the new method in which neural network technique
was hybridized with the genetic algorithm for a solving nonlinear integer pro-
gramming problem. The hybrid GA employs the simplex search method thereby
incorporating a local search mechanism to complement the global search capa-
bilities of traditional GAs. In the results of the simulation, the proposed method
is obvious that the chromosome is improved as every generation. And then, the
NIP/NN-hGA method proposed results in one of practical tools to solve the
nonlinear integer programming problems.

Acknowledgment: This research work was partially supported by the Interna-
tional Scientific Research Program (No. 10044173: 1998.4-2001.3), Grant-in-Aid
for Scientific Research by the Ministry of Education, Science and Culture of the
Japanese Government.

References

1. Gen, M.: ”Reliability Optimization by 0-1 Programming for a System with Several
Failure Modes”, pp.252-256 in Rai, S. & D. P. Agrawal eds: Distributed Computing
Network Reliability, IEEE Comp. Soc. Press, 1990.

2. Cichocki, A. & R. Unbehauen: Neural Networks for Optimization & Signal Pro-
cessing, John Wiley & Sons, New York, 1994.

3. Gong, D., M. Gen, G. Yamazaki & W. Xu: ”Neural Network Approach for General
Assignment Problem”, Proc. of IEEE International Conference on Neural Net-
works, pp.1861-1866, 1995.

4. Gong, D., M. Gen, G. Yamazaki & W. Xu: ”Lagrangian ANN for Convex Program-
ming with Linear Constraints”, Computers & Ind. Engg., Vol.32, No. 2, pp.429-443,
1997.

Hybridized Neural Network and Genetic Algorithms 429

5. Gen, M., K. Ida, & H. Omori: ”Method for Solving System Reliability Optimiza-
tion Problem Using Neural Network” , Journal of Japan Industrial Management
Association, Vol. 48, No.5, pp.271-276, 1997 (in Japaneses).

6. Ida, K., M. Gen, Y. Ota, & H. Omori: ”Method for Solving Linear Programming
Problem Using Neural Networks” , The Transactions of the Inst. of Elect., Inform.
& Communication Engienrs A, Vol. J80-A, No.1, pp.298-301, 1997 (in Japaneses).

7. Gen, M. & R. Cheng:Genetic Algorithms & Engineering Design, John Wiley &
Sons, New York, 1997.

8. Yokota, T. , M. Gen & Y. Li: ”Genetic Algorithm for Non-linear Mixed Integer
Programming Problems & Its Applications”, Computers & Ind. Engg., Vol. 30, No.
4, pp.905-917, 1996.

9. Gen, M., K. Ida & R. Kobuchi: ”Neural Network Technique and Genetic Algo-
rithm for Solving Nonlinear Interger Programming Problem”, Proceedings of the
Australia-Japan Joint Workshop on Intelligent & Evolutionary Systems, pp.95-105,
1997.

10. Skeel, R. D. & J. B. Keiper: Elementary Numerical Computing with MATHEMAT-
ICA, McGraw-Hill, New York, 1993.

11. Ravi,V., B. S. N. Murty & P. J. Reddy: ”Nonequilibrium Simulated Annealing-
Algorithm Applied to Reliability Optimization of Complex Systems”, IEEE Trans-
actions on Reliability, Vol. 46, No. 2, 1997.

Evolution of Gene Coordination Networks

Thomas Philip Runarsson and Magnus Thor Jonsson

Department of Mechanical Engineering, University of Iceland
Hjardarhagi 2-6, 107 Reykjavik, Iceland.

Internet: tpr@verk.hi.is, magnusj@verk.hi.is

Abstract. A new model for the incorporation of learning with simu-
lated evolution is presented. The model uses gene coordination networks
to control gene expression. Alleles at a locus compete for expression by
matching up to the network. Reinforcement is achieved through choice
dynamics where gene expression will be decided by competing environ-
mental states. The result is a epistasis model containing both plastic-
ity and mean loci. Solutions obtained are adaptive in the sense that
any changes in the environment will bring about a spontaneous self-
organization in the pattern of gene expression resulting in a solution
with (near) equivalent fitness. Additionally the model makes the search
for structures through neutral or near neutral mutation possible. The
model is tested on two standard job-shop scheduling problems which
demonstrate the novelty of the approach.

1 Introduction

The paper discusses an evolutionary algorithm for adaptive search and opti-
mization. The algorithm evolves plastic solutions capable of immediate self-
organization in the event of an environmental change. If a gene is deleted other
genes will alter their expression so that a solution with (near) equivalent fit-
ness is obtained. This is accomplished through local gene interaction networks
that coordinate gene expression. Genes regulate each other’s activity directly
or through their products via these networks. Here the gene coordination net-
works are modelled by simple feed-forward neural networks. An analogy is drawn
between the neural network and a network of interactions among information
macromolecules responsible for gene coordination (Zuckerkandl, [1997]).

There are two reasons why we should be interested in a system of this type.
The first is its role in the search for structures. Due to the plastic nature of
individuals, mutations may have little or no influence on their fitness. Neutral
mutations like these could play an important role in search through random
drift due to finite population numbers (Kimura, [1968]). Secondly adaptive so-
lutions may be desirable for critical applications where sudden changes in the
environment must be met with a compromise solution immediately.

The next section describes in detail the gene coordination network and how
it regulates gene expression. Section 3 discusses how this network may be in-
corporated in an evolutionary algorithm which then is used in the simulation
examples in section 4 on two standard job-shop scheduling benchmarks. The
paper concludes with a discussion.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 430–437, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolution of Gene Coordination Networks 431

2 Gene Coordination

The gene coordination network’s task is to determine which gene is to be ex-
pressed as a function of the environmental state of the genome. As genes are
expressed their products change the environment. Through the environment or
directly genes are capable of regulating the activity of other genes. There is no
predetermined environmental problem for which there is a solution, the genome
constructs the environment and hence determines both the solution and problem
simultaneously (Lewontin, [1982]). The construction and reconstruction of their
environments is, however, constrained by what they already are. The genome
alters its environment based on patterns of the world which are presented to the
gene coordination network. The network consists of nodes and connections. The
nodes are simple processing units whose activation is the weighted sum of their
input from the environment and from other nodes. Knowledge is stored in the
connections among the processing units and learning takes place through the
adjustment of their connection strengths.

Each environmental state and corresponding response could be considered in
isolation by the network if an absolute value judgement were given. The response
strength, gene activity, would then be an intervening variable reinforced by some
function of the individuals fitness. In essence the network would be attempting
to predict the resulting individual’s fitness based on the current environmental
state and actions taken. Formulating reinforcement in isolation is, however, not
a simple procedure. It is believed that choice procedures may provide a better
measure of the effects of reinforcement. The measures of ‘absolute values’ are
just a result of choice dynamics (Williams, [1994]). This is the approach taken
here, where gene expression is the result of choices made from a set of competing
environmental states.

In fig. 1 a section of the genome model, depicted as a genetic string, is illus-
trated. Two different loci (l and m) are shown. Each locus is occupied by alter-
native forms of a gene which are known as alleles of one another. An individual is
imagined to contain multiple alleles. In general, however, living organisms have
only two alleles although a greater variety exists within the population. In our

E1
l E2

l E3
l E4

l E5
l E6

l E1
mE2

mE3
mE4

mE5
mE6

m

+N

?

∆E4,2
m

j zjj

zj

= � U ~

w?/+ /?ws

R

?

j zzz

jz

= � U ~

w?/+ /?ws

∆E3,6
l

hidden
nodes

output nodes

environmental
difference

-
direction of transcription

Fig. 1. Genome model. Competing alleles at loci l and m where (?) marks the currently
successful allele.

432 Thomas Philip Runarsson and Magnus Thor Jonsson

model multiple alleles will compete for the right to be expressed but only two of
them at a time. The competition is resolved by the gene coordination network
which is modelled by a feed-forward neural network. As for any connectionist
model we must make assumptions about the number of nodes, arrangement of
connectivity and their interaction with the environment. Since the network is
a competitive or choice network the input will be the difference between two
competing environmental states associated with the alleles. An array of environ-
ment state differences at locus l is denoted by ∆Ei,j

l = Ei
l − Ej

l , where allele
i is competing with allele j. The environmental differences are connected to a
hidden layer of nodes which are connected to two output nodes as shown in the
figure. The activations of the two output nodes Olhs and Orhs are real numbers
between 0 and 1. The node with the higher activity wins. Having two output
nodes allows us to instruct the network when the two choices are equivalent. For
each competition performed two separate inquiries are made as to whether an
allele should be chosen over the currently successful one. The results must be
consistent and if the challenge of allele j is to be successful over allele i then:
Oi,j

lhs < Oi,j
rhs and Oj,i

lhs ≥ Oj,i
rhs must be satisfied where ∆Ei,j = −∆Ej,i. If the

above inequality does not hold then allele i remains successful. With no useful
information available from the environment the network may respond in a con-
tradictory manner and the successful gene will hold its position independently
of changes in the environment. To achieve this the model must remember which
allele was expressed previously at that locus. Loci which are sensitive to the
environment are known as plasticity loci and those insensitive to the environ-
ment mean loci. A genome containing only plasticity loci has been labelled the
pleiotropy model by Scheiner ([1998]). The pleiotropy model is a special case of
the epistasis model which contains also mean loci.

Two types of perturbations are possible at a given locus. The first is a min-
imal perturbation where a previously expressed allele is forgotten and therefore
will not hold through to the next generation. If the locus is a plasticity locus
then it is likely that the allele will regain its position. If, however, the locus is
a mean locus the allele will loose its position. The second is a structural per-
turbation where the gene coordination network itself is modified. This may be a
modification of the network architecture or the connection strengths. Viewed in
this manner a structural perturbation may constitute learning. The names for
these perturbations are taken from Kauffman ([1991]). Additionally, a previously
expressed allele and/or other alleles may be deleted (removed from a locus) and
others added.

3 Evolving Gene Coordination

The genome is represented by a string containing M loci as shown in fig. 1.
The string is transcribed systematically from left to right processing one locus
at a time. Within each locus there exist m alleles. Random competitions are
held where alleles compete with the currently successful one for its right to be
expressed. The competitions continue until a maximum number is reached or
a time τ has elapsed. The competitions are decided by the gene coordination
network as discussed in the previous section. Each locus will be represented by

Evolution of Gene Coordination Networks 433

a data structure containing a neural network for gene regulation and a list of
competing alleles. The data structure may also hold information about which
allele was previously expressed, training history for the network, etc. In the model
presented here the previously expressed allele will be remembered and in the next
generation be the default successful allele. If, however, this allele happens to be
illegal in the following generation, a random legal allele is selected as the default
which then other alleles must compete with.

There are a number of possible methods for evolving the connection strengths
of the gene coordination networks. In this paper the networks will be trained
using supervised learning with backpropagation. Training data for learning is
sampled from the current population. During transcription the environmental
states associated with the expressed alleles are recorded in the loci data structure.
Once the genome has been expressed completely, its total fitness will be known.
From a population of N unique individuals a training set of the size N × (N −1)
can be sampled. Should there be any useful information in this data the network
may learn it and hopefully generalize this knowledge.

New individuals may be formed using standard recombination operators. Loci
may be exchanged between two or more individuals using one, two or multiple
crossover sites. Mutation will play an important role in maintaining a diverse
environment. Minimal perturbations will attempt to knock out successful alleles.
It is expected that minimal perturbation will have less influence on plasticity loci.
Structural perturbation will randomly reset the connection strengths for the gene
coordination networks and will permanently damage loci. It is also possible to
view the training of a network as a more complex structural perturbation. If the
new networks perform well, regardless of whether the training data used was
sensible, we expect it to be selected for. The evolutionary algorithm used in the
following section for our simulations may be summarized as follows:

1. Initialize population and networks randomly.
2. Loop through the following steps until the termination criteria is met:

(a) Transcribe loci by performing m random competitions at each locus with the
successful allele. Record allele transcribed and corresponding environmental
state. Compute individual’s fitness and store elite individual.

(b) Select individuals from the current population using tournament selection to
form the new population for the next generation.

(c) Train gene coordination networks in the new population at loci which have not
been trained before with a probability Pl. The Pl parameter will essentially
dictate the initial rate of learning. Training samples are taken from the old
population. When a network has been trained a training flag T for that locus
is set to false.

(d) If the elite has been lost inject a copy into the new population (elitist).
(e) Shuffle new population and perform a two point crossover in order to exchange

loci between selected individuals. The probability of crossover is Pc.
(f) Perform a minimal perturbation with probability Pm by exchanging the cur-

rently successful allele at a locus by another randomly chosen allele. Perform a
structural perturbation with probability Ps by randomly resetting the connec-
tion strengths for a network at a random locus. In both cases set the training
flag T to true.

434 Thomas Philip Runarsson and Magnus Thor Jonsson

4 Computational Results

In this section the evolutionary algorithm described in the previous section will
be tested on two well studied job-shop scheduling problems. The problem is an
NP hard optimization problem and has been extensively studied. There exist
over a hundred different rules for building job schedules and so it is interesting
to observe what type of rules emerge in the networks. The redundant nature of
the problem also makes it an interesting test case. The goal is to assign jobs
on machines such that the overall production time, the makespan, is minimal.
The order by which a job may be processed on the machines is predetermined.
Schedules are formed by systematically assigning one job after the other at its
earliest convenience. In our experiments each allele denotes a unique job. So for
a problem with nj jobs and nm machines there will be nj alleles competing at
each locus in the string of length nj × nm. Alleles corresponding to jobs that
have been completed are illegal and will not compete for expression.

The test problems taken from Muth and Thompson ([1963]) are of sizes 6×6
and 10×10. The optimal makespans are known and are 55 and 930 respectively.
As a schedule is being constructed a number of features of the solution become
available. These are the environment states which may be associated with a job
(allele). For the simulation performed three environment states are used: the
time a job is available, the time it may be expected to finish and the total time
still needed to complete the entire task (work remaining). These environment
states are used as input data for the gene coordination network which has one
hidden layer with 6 nodes. For the training of the network the output pattern
used is fi ≤ fj for the left output node and fi ≥ fj for the right output node,
where f is the global fitness value. Note that these are Boolean operators and
that the problem is one of minimization. A sample size, twice the size of the

5 10 15 20 25 30 35
55

75

95

115

locus

fit
ne

ss

5 10 15 20 25 30 35
55

75

95

115

locus

fit
ne

ss

a)

0 20 40 60 80 100

1000

1500

2000

locus

fit
ne

ss

0 20 40 60 80 100

1000

1500

2000

locus

fit
ne

ss

Fig. 2. Perturbation results for the 6 � 6 (left) and 10 � 10 (right) problems. The top
figure shows the fitness at a locus which has had its successful allele deleted and all
loci to the right of it have been structurally perturbed. The bottom figure shows the
fitness at a locus which has only had its successful allele deleted at that point.

Evolution of Gene Coordination Networks 435

population, is extracted as discussed in the previous section. Samples for which
∆E = 0 are ignored.

The training algorithm used is the gradient decent backpropagation with mo-
mentum and adaptive learning rate (Demuth and Beale, [1997]). The log-sigmoid
transfer function returns the activations of the nodes squashed between 0 and 1.
A network is trained for 100 epochs and if it survives it may be trained further in
some future generations. A population size of 30 is used for the 6×6 problem and
50 for the 10 × 10 problem. These are small population sizes, especially for the
larger problem, but are sufficient for our purposes. The probability for crossover
is Pc = 1, for learning Pl = 0.2 and for minimal perturbations Pm=1/(string-
length). The probability of structural perturbation for the smaller problem was
none. For the larger problem it was found to be useful to add a very slight chance
(0.01%) of a structural perturbation and an increase in minimal perturbations.
Thirty independent runs were taken for each problem. For the 6 × 6 problem
the optimal solution was found within 40 generations. The larger problem was
stopped after 200 generations since the solutions have essentially converged. The
results varied from a makespan of 960 to 990.

Results for a typical solution found for the two problems will be presented. To
test the plasticity of the solutions found all loci are systematically perturbed by
deleting the successful allele and putting another in its place. This can be done
in m − 1 different ways at each locus. The result of this is that on average 50%
of the loci are immune to the perturbation for the 6 × 6 problem. Either other
loci performed its function or another phenotype was produced which gave the
same global fitness value. Fig. 3 (left) shows six different solutions resulting from

0 10 20 30 40 50 60

1

2

3

4

5

6

M
ac

hi
ne

1 4 3 6 2 5

2 4 6 1 5 3

3 1 2 5 4 6

3 6 4 1 2 5

2 5 3 4 6 1

3 6 2 1 5 4

(A)

0 10 20 30 40 50 60

1

2

3

4

5

6

1 4 3 6 2 5

2 4 6 5 1 3

3 1 2 5 4 6

3 6 4 1 2 5

2 5 4 3 6 1

3 6 2 1 5 4

(B)

0 10 20 30 40 50 60

1

2

3

4

5

6

M
ac

hi
ne

1 4 3 6 2 5

2 4 6 1 5 3

3 1 2 5 4 6

3 6 1 4 2 5

2 5 3 4 6 1

3 6 2 1 5 4

(C)

0 10 20 30 40 50 60

1

2

3

4

5

6

1 4 3 6 2 5

2 4 6 1 5 3

3 1 2 5 4 6

3 6 4 1 2 5

2 5 4 3 6 1

3 6 2 5 1 4

(D)

0 10 20 30 40 50 60

1

2

3

4

5

6

Time

M
ac

hi
ne

1 4 3 6 2 5

2 4 6 1 5 3

3 1 2 5 4 6

3 6 4 1 2 5

2 5 3 4 6 1

3 6 2 5 1 4

(E)

0 10 20 30 40 50 60

1

2

3

4

5

6

Time

1 4 3 6 2 5

2 4 6 1 5 3

3 1 2 5 4 6

3 6 4 1 2 5

2 5 4 3 6 1

3 6 2 1 5 4

(F)

1 (1)

7 (2)

13 (1)

19 (2)

25 (2)

31 (1)

2 (2) 3 (1) 4 (1) 5 (1) 6 (2)

8 (2) 9 (2) 10 (5) 11 (1) 12 (2)

14 (2) 15 (3) 16 (3) 17 (6) 18 (5)

20 (1) 21 (3) 22 (3) 23 (1) 24 (2)

26 (2) 27 (1) 28 (3) 29 (3) 30 (2)

32 (3) 33 (1) 34 (2) 35 (4) 36 (2)

Fig. 3. Gantt charts (left) and network landscapes (right). The left shows six different
solutions obtained due to perturbation by deletion for the 6 � 6 job-shop problem’s
elite solution. The right the choice landscapes for the gene coordination networks per
locus. The locus number is given above each map with the number of time the network
has been trained during its evolution over the generations in parenthesis.

436 Thomas Philip Runarsson and Magnus Thor Jonsson

these perturbations. The bottleneck remains on the same machine but some job
orders have changed. The means by which a solution is constructed as well as
the problem itself are redundant. The bottom plot in fig. 2 shows which loci are
most immune to the perturbation by deletion. Regions that are in the start of
the string are more susceptible to damage. This is reasonable since they must
essentially predict much further into the future. To eliminate the possibility that
this is a result of some other factors, such as the constraining of the solution
space, all networks to the right of the damaged locus were structurally perturbed.
The result of this is shown in the top plot in fig. 2 and illustrates how the fate
of the last m loci is determined independent of the network when M − m loci
have been expressed.

Fig. 3 (right) shows the choice landscape for the 6 × 6 problem where the
difference in the work remaining has been set to zero. The horizontal axis is the
difference in time of completion and the vertical axis when a job is available. On
both axis the scale is from −50 to 50. The landscape is the difference between
the two output nodes, Olhs−Orhs. The darker regions are positive values whereas
the lighter are negative. The network for example at locus 24 will prefer a job
(allele) with a sooner completion time and later availability, but at locus 34 early
completion time is preferred regardless of availability. In general scheduling jobs
with earlier completion times are preferred. Some of the nets are contradictory
which will make their corresponding loci a mean loci. Examples of these are the
first and the last locus. It is understandable that the last locus could be a mean
locus since its fate is always decided. The first loci has one environment state
always equal to zero. When we examine the choice landscapes also with respect
to the work remaining, we find that most loci are of the plasticity type.

The same perturbations by deletion were performed on a 10×10 solution. The
result was that on average 60% of the loci were immune to deletion. The results
are depicted in fig. 2 (right). When an arbitrary gene is deleted, how many genes
alter their expression pattern? The single perturbation brings about a cascade of
change in the patterns of gene activation. If the mutations are neutral the result-
ing solution – the phenotype – remains the same or the phenotype has changed
but its fitness remains unchanged. In fig. 4 the number of genes which alter
their expression is plotted against the locus where the deletion occurred. Only
the cases where the equivalent elite fitness was obtained is shown. Commonly it
suffices that just one additional gene changes its expression to compensate for
the damage. Changes for up to 19% of the string are also observed.

0 20 40 60 80 100
0

5

10

15

20

locus

nu
m

be
r

of
 c

ha
ng

es

Fig. 4. Expression changes. The figure shows how many genes have changes their ex-
pression as a function of locus where the successful allele was deleted.

Evolution of Gene Coordination Networks 437

5 Discussion
In this paper we have presented a general epistasis model for adaptive search
and optimization. The development of the model is like creating a language
whose rules have not been formalized and where there is no priori definition
of ‘purpose’ or ‘sense’. As the gene coordination networks evolve their meaning
develops alongside or with it. Gene expression is controlled by these networks,
where two alleles are matched up at a time. This is a contingent process.

It is commonly regarded that in genetic systems information storage lies in
the gene frequency within the population. A more efficient means of storing
knowledge can, however, be achieved through biological networks. Formulating
gene expression as an ‘intelligent’ process introduces new possibilities for the
role of learning in difficult search problems and introduces naturally problem
domain knowledge to the evolutionary algorithm.

Further studies of the effects of different learning procedures and learning
rate is currently being investigated. The importance of neutral and nearly neu-
tral mutations as pathways toward new structures also needs further studies.
Preliminary results suggest that an increase in the rate of minimal perturbation
may be beneficial in this case. Additionally, the effect of adding perturbation by
deletion during evolution (a removal of competing alleles), which will produce
individuals with a varying number alleles, would be a natural extension of the
evolutionary approach presented here.

Acknowledgement
The first author would like to thank professor Einar Arnason for helpful discus-
sions and comments. This work has been supported by the Research Council of
Iceland and the Research Fund of the University of Iceland, hereby gratefully
acknowledged.

References

1997. Demuth, H. and Beale, M.: Neural Network Toolbox – User’s Guide Version 3.0.
The Mathworks Inc. MA (1997)

1986. Kauffman, S.A.: Developmental logic and its evolution. BioEssays 6:2 (1986)
82–87

1991. Kauffman, S.A.: Antichaos and adaptation. Scientific American 265:2 (1991)
64–70

1968. Kimura, M.: Evolutionary rate at the molecular level. Nature 217 (1968) 624–
626

1982. Lewontin, R.C.: Organism and environment in Learning, Development and Cul-
ture, H.C. Plotkin (ed), John Wiley & Sons Ltd. New York (1982) 162

1963. Muth, J.F. and Thompson, G.L.: Industrial Scheduling, Prentice Hall, New Jer-
sey (1963)

1998. Scheiner, S.M.: The genetics of phenotype plasticity. VII. Evolution in a
spatially-structured environment. Journal of Evolutionary Biology 11:3 (1998) 303–
320

1994. Williams, B.A.: Reinforcement and choice in Animal Learning and Cognition,
N.J. Mackintosh (ed), Academic Press Inc., London (1994) 81–108

1997. Zuckerkandl, E.: Neutral and nonneutral mutations: the creative mix-evolution
of complexity in gene interaction systems. Journal of Molecular Evolution 44:(Suppl
1) (1997) S2–S8

Adaptive Simulation: An Implementation
Framework

Richard Hall, Binh Pham, and John Yearwood

Research Centre for Intelligent Tele-Imaging
School of Information Technology and Mathematical Sciences

University of Ballarat, P.O. Box 663, Ballarat, 3353
Facsimile: +61 (03) 53 279 289

Email:(r.hall,b.pham,j.yearwood)@.ballarat.edu.au

Abstract. We present an approach to adaptive simulation based upon
a stratified representation of the behaviour of entities. In previous sim-
ulation models, the adaptation of an entity’s behaviour is defined prior
to runtime, as the conditions they might encounter are completely spec-
ified. While entities are custom-made to function properly for particular
situations, their behaviour could be inappropriate in other situations.
We propose a behavioural model of adaptation which enables entities to
modify their behaviour for a large variety of situations, and describe the
implementation of the model for two simulations in a biological context.
Application areas range from environmental simulation and ecological
planning to psychological modelling and navigation simulation.

1 Introduction

Designers of computer simulations aim to accurately represent the entities from
a specific domain within the real-world, and these simulated entities do not need
to function in other domains. In contrast, our aim is to simulate the capacity of
biological organisms to dynamically adapt their behaviour to different domains.
Adaptation is defined as “the process of becoming adjusted to new conditions”
[11], and is important to three areas within computer science: artificial life, case-
based reasoning and intelligent agents. Artificial life simulates the interactive
behaviours of large populations of organisms, where each entity’s behaviour is
locally defined in their specification [7]. However, each entity’s behaviour is usu-
ally derived from an original set of behaviours, and is thus constrained to operate
in situations for which the original behaviours were designed.

Case-Based Reasoning (CBR) simulates adaptation within the memory of
one individual over time, with the basic unit of memory called a ’case’. Three
types of adaptation have been investigated: additive, indexing, and case. Additive
adaptation simply refers to the addition of a new case into memory, and has been
compared to experiential learning [14]. Indexing adaptation modifies the index
structures of memory with the aim of optimising case retrieval efficiency [8].
Case adaptation occurs when cases in memory which are similar to an input
case are modified to find a solution to an input case [13]. Current CBR research

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 438–445, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Adaptive Simulation: An Implementation Framework 439

focuses on encapsulating large amounts of expert knowledge about a domain
within cases for specialised domains such as cooking [4], and law [1]. CBR thus
attempts to simulate the problem-solving reasoning process of an expert about
a particular area of knowledge through the adaptation of information, and is not
concerned with the adaptation of these individuals’ behaviour in new situations.

Intelligent Agents researchers, while not in complete agreement about what
constitutes the notion of agency [17], have proposed mentalistic characteristics
for agents which are useful for considering adaptation with a biological metaphor.
These mentalistic characteristics have been represented in the specification of
entities in various explicit and implicit combinations. An explicit mentalistic
representation (EMR) attempts to model psychological characteristics in the
simulated organisms. We consider four characteristics only due to their obvious
connection to adaptation: emotions, rationality, memory, and learning.

– Emotional states are represented as they can significantly influence the be-
haviour of individuals.

– Rationality defines an entity’s behaviour as teleological (directed towards a
goal). A hierarchy of goals such as Maslow’s Model [10] might be included
in a mental model.

– Memory is required for entities to record past situations. Without it, entities
are unable to practically observe even a simple sequence of events. Perceptual
aliasing occurs when an entity’s behaviour depends upon something from the
past as opposed to the present [9].

– Learning capability allows an entity to detect recurring sequences of events
in their memory which relate to their goals, identify the key events, and act
on their knowledge to their own advantage. Such learning has been classed
as medium level [5].

An implicit mentalistic representation (IMR) relates an entity’s perceived world
state to an entity’s action state, similar to machine learning, so psychological
characteristics are not explicitly represented. It has been argued that it would
be theoretically possible to create two entities, one with EMR and one with IMR
adaptation, and be unable to tell the difference between the two by observing
their behaviour [15]. However, it has been shown that it would be practically
and computationally infeasible to represent the responses necessary for IMR for
all the possible combinations of large numbers of conditions in situations [2].
Nonetheless it is useful for entities to have black box responses for two cases:
conditions which are anticipated to occur across a broad range of situations; and
for conditions which require adaptation so quickly that the time required for an
EMR to process the input would be prohibitive.

In our domain we are investigating the simulation of intelligent interactions
and require the behaviour of entities to be appropriate for any conceivable situ-
ation. In order to be computationally feasible, all possible situations are struc-
tured as much as possible into typical situations with changing parameters. Since
Bakhtin [6] argued that the greatest degree of structure occurs when the world is
authored within the structure of a story, a simulation can be placed conceptually
within the context of a story and typical situations can be represented as ab-
stract components of stories [3]. Our domain requires two modular components:

440 Richard Hall, Binh Pham, and John Yearwood

a module capable of authoring situations; and a module capable of representing
the behaviour of entities with the capacity to adapt intelligently to any authored
situation. The latter is the particular focus of this paper.

In Section 2, we discuss our stratified behavioural model of adaptation which
locates the various research efforts in adaptation into a unified framework. Sec-
tion 3 details the implementation of this model for two simulations of biology,
while Section 4 concludes and proposes the future directions of our work.

2 Our Adaptation Model

We now describe our stratified representation of behaviour shown in Figure 1.,
and relate previous research on adaptation within our structure.

Current

Situation

Action

Perception

Unconditioned Response

Conditioned Response

Analogical Response

Entity Behavioural Type

Fig. 1. Conceptual Model of Adaptation

The Current Situation describes all objects and events that can be observed
by an entity through its perception. An entity is also aware of its own EMR,
and other entities will not be aware of these internal states unless they are
communicated in some manner. Consequently, each entity perceives a slightly
different version of the same current situation. While an entity may not need to
continually perceive the state of the world, all entities are in a constant state
of action. As Bakhtin asserted, the act of doing nothing is the continous act of
choosing not to do something else [6]. We define behaviour for entities by relating
what they perceive P of a situation to an act A. The behaviour B of an entity
over their lifetime is then a set of these tuples where t = 0 is the first moment an
entity perceived their environment and acted, and t = N is the current situation.

B = {(Pt=0, At=0), (Pt++, At++), · · · , (Pt=−−N , At=−−N), (Pt=N , At=N)}
The Entity Behavioural Type models the three different sources of behaviour in
an entity. Each behavioural type is represented mathematically, and the rela-
tionship between these are described.

Traditional simulation creates entities with behaviour which is of the type
called Unconditioned Response (UR). The behaviour is called unconditioned for
two reasons: the rules controlling it are generated before t = 0 for an entity; and
no modifications are made to the set of behaviours during runtime. Note that
both EMR and IMR can produce unconditioned responses. UR can be described
mathematically as a set of tuples relating perceived situations P to the actions

Adaptive Simulation: An Implementation Framework 441

A which are optimal as they match some given criteria for situations 0 to N
which are created before runtime.

UR = {(P0, A0), (P1, A1), · · · , (PN−1, AN−1), (PN , AN)}
Note that if every tuple in B maps to a tuple in UR then the entity will behave
appropriately for all situations during its lifetime. UR has two advantages for
entities: they respond in a specified manner every time to a specific situation; and
there is no computational expense associated with training on the fly. However,
for an entity to always behave in a correct manner, the complete set of possible
world states needs to be known before runtime. With the simulation of biological
organisms, unconditioned responses are always appropriate for the situations
considered and should have priority over the remaining two response types.

On the other hand Conditioned Responses (CR) describes behaviours learnt
during runtime that also produce desirable situations for entities, so CR is ex-
pressed similarly to UR. Such learning can be likened to situation-based additive
adaptation in case-based reasoning, since an entity must be able to recall and
store separate cases within some form of memory structure. Since the memory of
an entity is finite a maximum size is set for sliding memory window called short
term memory MST . Consider an entity with the ability to remember a limited
number J of situations P and correct responses A which they had perceived
from t = 0 to the current situation t = N .

MST = {(Pt=J , At=J+1), (Pt=J+1, At=J+2), · · · ,
(Pt=N−2, At=N−1), (Pt=N−1, At=N)}

However, storing all of these tuples for multiple entities is computationally ex-
pensive, so only the situations which satisfy particular criteria should be remem-
bered. For our biological context, the criteria is the satisfaction of particular goals
of entities. We call this filtered memory long term memory MLT , where what
has been learnt (CR) is related to the goal G that CR achieves. The long term
memory could be indexed by the relative importance I of the goals in a goal
hiearchy to facilitate retrieval.

MLT = {(G0, CR0), (G1, CR1), · · · , (GN−1, CRN−1), (GN , CRN)}
where I(G0) > I(G1) > ...I(GN−1) > I(GN)

During the update cycle, MST should be searched for patterns which an entity
could take advantage of, and tuples new to MLT should be added. The best
time for elements of MST to be filtered for MLT is when the process of filtering
does not hinder the entity. Psychologists have suggested that this operation may
occur in humans during sleep [16].

The disadvantage of CR is the computational expense associated with the
creation and maintenance of the dynamic index structure. However, the advan-
tage of CR is that it enables entities to adapt to new situations which do not
need to be considered in their specifications, so complete domain knowledge does
not need to be integrated into their design. The speed of behavioural response

442 Richard Hall, Binh Pham, and John Yearwood

depends on how efficiently the memory is indexed so CR is given less priority
than UR. In contrast with analogical response, a 1 to 1 mapping exists between
what has been learnt and the current situation so CR is given greater priority.

The behavioural response of an entity can be called an analogical response
(AR) where no UR or CR exists for the particular situation. Instead of searching
for a behaviour which will produce an response which is based on matching
an input case to a case in long term memory, a similarity metric is performed
between the cases in memory and the input case in an attempt to decide the ’best’
behaviour to perform in an intelligent manner. Consider a perceived situation P
and correct behaviour A at time X and a long term memory with one goal G0.

For a perceived situation and correct response (Pt=X , At=X+1)
and MLT = {(G0, CR0 = (P0, A0), (P1, A1), · · · , (PN−1, AN−1), (PN , AN))}
then At=X+1 ≡ AQ where PQ ≡ Pt=X , (AQ, PQ) ∈ CR0

AR can be compared to case adaptation in case-based reasoning, which has
been utilised in domains of complex design, and at present we are considering
how AR might be useful for entities in the context of simulating a story.

3 Implementation of the Adaptation Model

To demonstrate that our stratified behavioural model was applicable in simulat-
ing adaptation in biological environments, we chose to implement two situations
which required the behavioural adaptation of entities: the excitation behaviour
of bees in the presence of an intruder; and the behaviour of a group of cats who
learn that the sound of a tin signifies that they will be fed. These simulations,
although simple, could provide the building blocks for more complex examples.

The bee simulation had an UR with both an IMR and EMR. Note that for
UR, all of the states which the bees could perceive were specified before runtime.
The mental states are not defined when relating perception to action,

UR = {(P0, A0), (P1, A1), · · · , (PN−1, AN−1), (PN , AN)}
but were defined relating perception to the emotional mental state.

UR = {(P0, E0), (P1, E1), · · · , (PN−1, EN−1), (PN , EN)}
The cat simulation had some UR and IMR. However the definition of the cat

UR is identical to the definition for the bees, so only the method for generating
CR through the use of EMR is described. All of the situations that the cats
perceive and their responses are stored within their short term memory MST .
When cats are not engaged in moving for a particular period of time, MST is
filtered into long-term memory MLT by considering the recurring sequence of
events which precedes the satisfaction of the goal of eating food. A conditioned
response is then created which allows the cats to satisfy their goal faster. Goals
are only used in analysing the MST and are not explicitly represented in the
CR:

CR = {(P0, A0), (P1, A1), · · · , (PN−1, AN−1), (PN , AN)}

Adaptive Simulation: An Implementation Framework 443

3.1 Simulation of Adaptation in Bees

Bees change their behaviour in the presence of an intruder, from a calm patrolling
state to an angry attacking state [12]. In the simulation a bee detects an intruder
at its bee hive and begins to get excited and simultaneously emit an alarm
pheremone which increases the pheremone level in the situation. This emission
of alarm pheremone then excites other bees who also emit the pheremone. Once
the alarm pheremone level exceeds the alarm threshold of an individual bee they
become fully excited and attack the intruder.

For our bee representation, each bee had three emotion (E) tuples relating
a particular perceived situation in the world to a new situation where their
emotions have changed.

P0 = no intruder E0 = emotion(calm)
P1 = detect intruder and emotion(calm) E1 = emotion(excited)
P2 = detect intruder and emotion(excited) E2 = emotion(aggressive)

and pheremone level ≥ alarm

Bees also had four UR tuples. The goals of bees are implicitly represented be-
cause the actions of bees protect their hive.

P0 = no intruder A0 = patrolling
P1 = detected intruder and emotion(calm) A1 = threatening
P2 = detected intruder and pheremone level < alarm A2 = release pheremone

and emotion(calm) and A1
P3= detected intruder and pheremone level ≥ alarm A3 = fighting and A2

and emotion(aggressive) and A1

The class relationship diagram of the bee simulation is shown in Figure 2.

Legend:

Class Relationship Icons
HasA (always)
HasA (at time t)

Association syntax
1 = one class
N = many classes

Bee
Hive
Situation

Bee

Alarm
Phemerone
Level

Intruder

1

N

1 1

1
1

Fig. 2. Bee Simulation Class Diagram

3.2 Simulation of Adaptation in Cats

In the simulation of feeding cats the cats learn that the cats’ owner S hitting a
tin of cat food implies that S has put out food for them. The situation is divided
into two partitions known as Kitchen and Lounge Room respectively. The cats
prefer the room which is warmer so on the basis of warmth alone the cats will

444 Richard Hall, Binh Pham, and John Yearwood

spend the majority of their time in the Lounge Room. Each time S puts out
food they then hit the tin of cat food. If the cats do not come to the kitchen
S picks them up and carries them. After a few times of being carried the cats
learn that the sound of the tin implies that food is available in the kitchen. The
class relationship diagram of the cat simulation is shown in Figure 3.

Legend:

Class Relationship Icons
HasA
Inheritance

Association Syntax
1 = one class
N = many classes

Situation Blackboard

Situation

Event Object Scheduler

Cat

MindGoal Act

Filter M(lt)M(st)

1
N

N

1

1
1

1

NN

N

1
1 1

1

11

1

1 1 1

Food

Fig. 3. Cat Simulation Class Diagram

The cats were given two UR type behaviours which enabled them to cope
with situations where conditions existed simultaneously by using an EMR with
goals. The goal importance I determined which tuple had priority.

URcat = {(P0, G0, A0), (P1, G1, A1)} where I(G0) > I(G1)
P0 = detect food G0 = satisfy hunger A0 = eat food
P1 = detect cold G1 = satisfy warmth A1 = move to warmer place

During the simulation, the cats updated their long term memory while all of
their goals were satisfied. By examining their short term memory of events the
cats realised that the best time to move to the kitchen for food was when the
sound of the tin was heard. Thus

MLT = {(G0, CR0 = (P0, A0))} where
P0 = detect tin sound A0 = move to food place

4 Conclusion

Previously, entities in simulations had all the important domain knowledge em-
bedded into their specifications. However, these entities are unable to function
optimally in other situations, simply because they are not designed to do so.

We presented a theoretical adaptation model based upon a stratification of
behavioural responses which enabled entities to adapt to new situations. Our
model was implemented in two simulations which demonstrated different ele-
ments of implicit and explicit mentalistic representations. The work presented
is important to the development of our wider area of study- story authoring-
which is currently being implemented.

Adaptive Simulation: An Implementation Framework 445

Computer simulations have been attempted for a long period of time, and
entities within these simulations often embody large amounts of complex and
specific domain knowledge. One can envisage the benefits of cross-domain inter-
ations which adaptation capabilities would make possible for entities.

References

1. Ashley K.: Distinguishing - a reasoner’s wedge. In Proceedings of the Ninth Annual
Conference of the Cognitive Science Society. Cognitive Science Society. L. Erlbaum.
Hillsdale N.J. 1987 737-747

2. Ginsberg M.: Universal Planning: An (Almost) Universally Bad Idea. AI Magazine.
Winter 1989 v10 n4. 40-44

3. Hall R., Pham B., Yearwood J.: Design Of An Artificial Life Simulation System
Based On The Concept of MetaStories. University of Ballarat Research Report
Series. 98/2

4. Hammond K.: Case-based planning using planning as a memory task. Perpsectives
in Artificial Intelligence. Academic Press. Boston MA. 1989

5. Harrison N.: How to design effective text-based open-learning: a modular course.
New York. McGraw- Hill. 1991

6. Holquist M.: Dialogism: Bakhtin and His World. Routledge. London 1990
7. (ed) Langton, C.: Artificial Life. The Proceedings of an Interdisciplinary Workshop

on the Synthesis and Simulation of Living Systems. Sept 1987. Los Alamos. New
Mexico

8. Leake D., Plaza E.: Case-Based Reasoning Research and Development. Second In-
ternational Conference on Case-Based Reasoning. ICCBR-7. Providence. RI. USA.
July 1997

9. Lin L-J., Mitchell T.: Memory Approaches To Reinforcement Learning in Non-
Markovian Domains. Technical Report CMU-CS-92-138. Carnegie Mellon Univer-
sity. Pittsburg. 1992

10. Maslow A.: Motivation and personality. New York. Harper’s Psychological Series.
1954

11. The Concise Oxford Dictionary. Ninth Edition. Clarendon Press. Oxford. 1995
12. Staniford G., Paton R.: Simulating Animal Societies with Adaptive Communicat-

ing Agents. In Intelligent Agents : ECAI-94 Workshop on Agent Theories, Archi-
tectures, and Languages. Amsterdam, the Netherlands, August 8-9. 1994. 145-159

13. Riesbeck C., Schank R.: Inside Case-Based Reasoning. Hillsdale. N.J. L. Erlbaum.
1989

14. Schank R., Abelson R.: Scripts, Plans, Goals and Understanding. L. Erlbaum.
Hillsdale. N.J.

15. Schoppers, M.: Universal Plans for Reactive Robots in Unpredictable Domains. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence.
Menlo Park. California. 1987. 1039-1046

16. Smith, C. Sleep States and Memory Processes. Journal of Behavioural Brain Re-
search. 1995 Jul-Aug: Vol 69(1- 2) 37-145

17. (eds) Wooldridge M., Jennings, N.: Intelligent Agents : ECAI-94 Workshop on
Agent Theories, Architectures, and Languages. Amsterrdam. the Netherlands. Au-
gust 8-9. 1994

A Model of Mutual Associative Memory

for Simulations of Evolution and Learning

Yoshida Akira(akira-yo@is.aist-nara.ac.jp)

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, 630-0101 Japan

Abstract. Evolution could be assumed as a natural reinforced learning.
We tried simulations of Mutual-association with varying population size
to investigate evolution and learning. Mutual associative memory is our
extension from hetero-association or temporal-association of the Asso-
ciative Memory by J.J.Hop�eld[1]. Mutual Associative Memory is used
as memory of organism for the tool to investigate evolution and learning.
Genetic Algorithms are used to evolve the weights of mutual associative
memory. We got the result that evolution of learning can be observed
when organisms change rule itself during their lifetime.

1 Introduction

Mutual associative model typically associate the pattern to be stored with dif-
ferent patterns. We name the word "mutual associative memory" as an extended
concept from so called hetero-association of simple perceptron. Our mutual as-
sociative memory uses fully connected neural network instead of multi-layer
networks with back-propagation and observe the evolution and the capacity of
learning using genetic algorithms.

Mechanism of mutual associative memory is implemented by adjusting the
weights, which means the degree of how much e�ect the synapses give to the neu-
rons connected by the synapses to each other. This weight or the degree of e�ect
is called "weights of connection" or "connection matrix" since it is usually repre-
sented with matrix. We call the adjustment of weights of connection "learning"
or "remembrance" of the neural network. And we call the learning(adjustment)
of weights of connection during organism's lifespan "Mutual Association" of the
neural network. Increment of the capacity of being able to mutually associate
over many generations is called "Evolution of Learning".

We have proposed a toy model of mutual associative memory on a few pa-
pers[2][3]. Now the models became more natural and the simulation time be-
came shorter since varying population size by death of organism was added to
our Genetic Algorithms. We call the mutual associative memory an organism or
an individual after this since we assume the mutual associative memory as an
organism which have the ability of learning in a virtual environment.

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 446-453, 1999.
 Springer-Verlag Berlin Heidelberg 1999

2 Mutual Associative Memory

The model of mutual associative memory use genetic algorithms to evolve the
functions of recalling memories and mutually associating memories or experi-
ences. We think that genetic algorithm could be a model of reinforcement learn-
ing nature have been executing for more than three billion years over. The se-
lection of parents and the reproduction of o�springs in the genetic algorithm
correspond to the single yes/no reinforcement signal in reinforcement learning.

Figure 1 shows our meaning and concepts of the words "Mutual Association".
In auto-association the recalled pattern(output) is same as the input pattern, on
the contrary the output is distinct from the input in hetero-association. These
two associations deal with only known patterns. Third and fourth association
also deal with unknown patterns. We want to call third association in which
the input is an unknown pattern and the output is a known pattern "Learning
unknown" or simply "Learning". Fourth association in which the input is a
known pattern or an unknown pattern and the output is a new unknown pattern
is called "Creating".

Mutual Association has four kinds of associations
 trigger(input) association(output)

 0. Auto-association : a known pattern the known pattern itself
 1. Hetero-association : a known pattern another known pattern
 2. Learning(unknown) : an unknown pattern a known pattern
 3. Creating : a known pattern or a new unknown pattern

A known pattern means :
 a pattern learned by initial Hebbian learning

An unknown pattern means :
 a pattern not learned by initial Hebbian learning
(a new pattern organism meets in his life)

an unknown pattern

Fig. 1. Concept of Mutual Association

2.1 Evolution of Mutual Association

(1) The initial weight matrices(w0

ij) are made by Hebbian rule or all zero. Heb-
bian rule determines the elements of the weight matrix as follows:

w0

ij =
1

N

pX

�=1

�
�
i �

�
j +

�

N

pX

�=1;�=1

��i �
�
j

where p means the number of patterns to be stored, ��i is the i-th bit of the �-th
initial patterns. � is a constant that governs the relative strength of �rst and sec-
ond terms. The second term speci�es the �xed pairs between initial patterns(��

and ��) for fh(5) and fb(7).
(2) N chromosomes which have a �xed length from 2401 to 4096 alleles are ran-
domly made. They are chosen randomly from f�1; 0;+1g, where the probability
of selecting either �1 or 0 is set to 0.01 in this paper. Allele �1 means to reverse
excitatory/inhibitory connections, and 0 means to remove the connection. These
alleles(�1 and 0) are used to give a small perturbation to synaptic weights as
Sompolinsky wrote[5]. This make the initial weight matrices slightly asymmetry.

447A Model of Mutual Associative Memory

wn
ij = w0

ij + cn(Ni + j) (i; j = 1; 2; � � � ; N ;n = 1; 2; � � � ; 128)
where wn

ij denotes (i; j) element of the n-th weight matrix in the population,
cn(k) denotes the k-th allele of the n-th chromosome.
(3) Renew state asynchronously with a discrete time, as follows:

Si(t+ 1) = sgn(wiiSi(t) +
NX

j 6=i

wijSj(t))

where Si(t) is the state of i-th neuron at time t, and sgn is the sign function
to be sgn(x) = 1 if x � 0; sgn(x) = �1 if x < 0. Hop�eld set the self-
coupling diagonal terms wii = 0. We found when wii > 0 (chaos neural network)
auto-association converges extremely fast.
(4) Go to (5), (6) or (7) depending on the kind of mutual association
(5) Evaluate mutual �tness value fh for hetero-association. At �rst sum of the
similarity between the initial state vectors and varying state vectors over a �xed
time Tmax is calculated as the mutual relation. Then this sum is divided with
the product between the number of patterns to be stored p, a certain maximum
life time Tmax, and the number of neurons N .

fh =

Pp

�=1;�=1;�6=�

PTmax
t=2

PN

j=1 �
�
j s

�
j (t)

p � Tmax � N

where ��j is the j-th bit of the �-th initial pattern which takes the value of either
�1 or +1. s�j (t) means the state of the j-th neuron at time t when the �-th
initial pattern is given to the network. fh = 1 means all the pairs of �� and ��

are stored as �xed points. Goto(8)
(6) Evaluate mutual �tness fl for an unknown patterns as follows:

fl =

Pp

�=1

PTmax
t=2

PN

j=1 �
�
j s

�
j (t)

p � Tmax � N

where ��j is the j-th bit of the �-th unknown pattern. Go to (8).
(7) Evaluate mutual �tness fc for both known and unknown patterns :

fc =

Pp

�=1;�=1;� 6=�

PTmax
t=2

PN

j=1 �
�
j �

�
j s

�
j (t)

p � Tmax � N

where ��j , �
�
j , and s�j (t) mean the same as (5) and (6).

(8) Evaluate �tness fa for auto-association as follows:

fa =

Pp

�=1

PTmax
t=2

PN

j=1 �
�
j s

�
j (t)

p � Tmax � N

fa = 1 means all the patterns are stored as �xed points.
(9) Extend or shorten the lifetime of organisms according to the mutual �tness
value calculated by (5),(6) or (7). Kill organisms whose remaining days are zero.

448 Yoshida Akira

(10) Select two parent at random from the upper 40% of the population sorted
in descending order. Then recombinations are made with uniform crossing over
to generate child chromosomes. Next mutation occur upon the o�springs with
mutation rate 0.05. The value of randomly selected allele in chromosome cn(k)
rotates cyclically such as : +1)�1) 0) +1

(11) If the highest �tness value (di�erent in the cases which use fh,fl, or fc)
reach 1.0 or the number of generation exceeds the upper limit this simulation
terminates. If not, above processes from (2) to (10) are repeated.

Mutual associative memory evolve the weight matrix explained at (1) during
above processes. The above simulation is a mixture of "learning on an individual
level during its life time" and "learning on a population level during evolution".

2.2 Varying population size

We simulated the hetero-association with varying population size. The lifetime(4
generations on average) is extended or shorten according to the value of mutual
�tness of an organism. Even 5% natural increase of population would cause an
exponential growth of population size if constant decrease of population were
not made. Figure 2 (a) shows the increases of hetero �tness with decreasing
population down to 64 organisms every 50 generations. Thick zigzag broken line
is the change of B-population. Figure 2 (b) shows the result of same simulation
with constant population.

We calculated the total population in order to study the relation between the
increasing of �tness value and the total population at a certain generation. Figure
2 (c) shows the comparison of them. Here the lines which have "v" at the head are
the results with varying population size, and "c" shows the results with constant
population. Meanwhile the �rst column shows total population and the second
shows the values of �tness. We can see both the values of B-hetero-�tness with
varying population and constant population are nearly equal (**), although total
populations of constant population is nearly twice as much as total populations
of varying population at both 1000th and 12000th generation(*).

Our models became more natural and the simulation time became shorter
since varying population size improved the performance more than double.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400 450 500

Generation

A-hetero-f

A population = B population (=128 organisms)

B-hetero-f

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400 450 500

A
ut

o/
H

et
er

o-
F

itn
es

s

Generation

A-hetero-f

A-population

B-population

B-hetero-f

 (c) Fitness & total population
 total population B Fitness-B

1. from 0 to 100 generations
v 9734 0.134325
c 12800 0.144468

c/v 1.315 1.0755

2. from 0 to 1000 generations
v 71792 0.202175
c 128000 0.218822

c/v 1.783 * 1.0823 **

3. from 0 to 120000 generations
 v 823325 0.247745
 c 1536000 0.267727

c/v 1.866 * 1.0807 **

(b)Constant population(128 organisms)(a)Decrease to 64 organisms every 50 genarations

100

Fig. 2. Varying population size and Constant population

449A Model of Mutual Associative Memory

2.3 Hetero-association(associating another known pattern)

We simulated hetero-associations with learning the pairs between initial patterns
(� > 0 and � = 0 on 2.1(1)) and without learning them. Figure 3(left) shows
the results of simulation using 2.1(5) with varying the values of �=0 to 3.0.
Organisms remember 16 initial patterns, and also 8 pairs between initial patterns
at birth if � > 0. Hetero-�tness increases as the value of � increase from 0 to
1.0 on both generation=0 and 12000. But they begin to decrease slightly when
� rises more than 1.0 since the memory of initial patterns are gradually lost.

Figure 3(right) shows the same results as the �gure 3(left) except it remem-
bers the 4 pairs of initial patterns in the beginning which is half the number
compared with �gure 3(left). In �gure 3(right) hetero-�tness increases slightly
even when � become more than 1.0 on both generation=0 and 12000 since the
organism has enough room for storage capacity.

We can observe the e�ect of learning the pairs initially (� > 0 in 2.1(1)) be-
come insigni�cant after long evolution. This can be seen by the curves of mutual
�tness on generation=12000 of �gure 3(thick broken lines). Natural reinforce-
ment learning which corresponds to from 2.1(2) to (10) is not inferior to the
compulsory learning the pairs of patterns at his birth.

Figure 4 shows the results of hetero-association started with the values of
�=0 or 1.0 (left or right) and 12 initial patterns. In the �gure 4(left) hetero-
�tness cannot catch up with auto-�tness. But, in the �gure 4(right) hetero-
�tness catches up with auto-�tness on near 300th generation and keeps higher
value from near 500th generation. This is the result of smaller number of initial
patterns and the value of � > 0. The curves of hetero-�tness and auto-�tness
show nearly a line symmetry.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

A
ut

o-
F

itn
es

s,
H

et
er

o-
fit

ne
ss

Lambda

Auto-Fitness(g=0)

Hetero-fitness(g=0)

Hetero-fitness(g=12000)

Auto-Fitness(g=12000)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

A
ut

o-
F

itn
es

s,
H

et
er

o-
fit

ne
ss

Lambda

Auto-Fitness(g=0)

Auto-Fitness(g=12000)

Hetero-fitness(g=12000)

Hetero-fitness(g=0)

Fig. 3. Hetero-�tness vs � (N=49,p=16(left),p=8(right))

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

A
ut

o/
H

et
er

o-
F

itn
es

s,
S

ym
m

et
ry

Generation

Auto-Fitness

Hetero-Fitness

Symmetry

lambda=0.0

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 500 1000 1500 2000 2500 3000

A
ut

o/
H

et
er

o-
F

itn
es

s,
S

ym
m

et
ry

Generation

Auto-Fitness

Hetero-FitnessSymmetry

lambda=1.0

Fig. 4. Hetero-Fitness and Auto-Fitness; p=12

450 Yoshida Akira

2.4 Learning unknown

Learning may be said to associate a known pattern from a given unknown pat-
tern(see Figure 1 and 2.1(6)). This process may be recognized as the process of
learning, for example, new languages. We can also observe auto-�tness decreases
as learning-�tness increases, and the curves of learning-�tness and auto-�tness
show nearly a line symmetry.

3 Evolution of learning

Here we try to simulate the evolution of learning capacity using the mutual
associative memory. This is the simulation of mutual associative memory with
many populations. To be exact, this simulation of evolution of learning is the
simulation of "learning with many teachers among many populations". An imag-
inary language is the target of "Learning". We also try to simulate one of the
"Dynamics to change rule itself" since one of the essence of life is the ability to
change itself or open dynamics[6].

We simulate here the evolution of learning capacity or the evolution of weight
matrix for learning no more than tens of words. First, we prepare two populations
which have evolved their own language separately. Second, two populations begin
the communicationwith one of their languages. The �tness function is the ability
to communicate to another populations with some language. The survival rule
is the same rule as the simulation of mutual association. The situation where
third medium which neither A nor B know is used can be consider. This may
mean creating new language.

Figure 5 shows the algorithmof the evolution of learning on the condition that
organisms change rule by themselves. They always watch the other populations
to see which language-�tness has higher value in order to change the language
which they learn next.

Genetic Algorithm Implementation (Evolution of Learning Ability)

initialize N populations which has 64 ~ 128 organisms
 by learning own language with Heb rule

 (mutual-fitness<1.0 && genaration<12000)
evaluate mutual-fitness of N populations
 by comparing with N learning abilities
select language learning from N languages

evaluate mutual-fitness of each individual
 by counting how many relations can be memorized

 the worst 60% in the population are replaced
select two individuals randomly from the best 40%
recombine them with uniform crossover to produce offspring
mutate all the offsprings

generation++

while do

repeat until do

Fig. 5. The algorithm of evolution of learning the language on the condition that
organisms change rule itself

3.1 Evolution when rule never change

We observe evolution of learning as the interaction among many populations.
Figure 6 shows the result of A population and B population with the same �xed
rules. The rules are that A population uses only their language A from the start
to the half of their lives, but starts learning the language B fromhalf to the end. B

451A Model of Mutual Associative Memory

population uses the same rule as A population. The language-�tness is calculated
using the expression 2.1(6) : mutual-�tness fl for the unknown patterns. The
�gure 6 shows both language-�tness of A and B increase their values as the
generation go on. They show nearly same values though the amplitude of B
is bigger than A. On the contrary, both �tness of A and B decrease. These
results show both A population and B population have more abilities to learn
foreign language as the generation go on. The simulations with more than two
populations also shows progress as the result of evolution.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

La
ng

ua
ge

-f
itn

es
s,

A
ut

o-
F

itn
es

s

Generation

A-auto-fitness

A-Language-fitness

B-auto-fitness

B-Language-fitness
(hidden under B)

Fig. 6. Competition of language ability by two populations A and B

3.2 Evolution when organisms change rule

Here we simulate on the condition that organisms change the rule itself. First is
the simulation of evolution when populations change language learning during
their own lives. Second is the simulation of evolution when populations change
language learning on the start point of each generations.

Figure 7 shows the result of �rst one. On this simulation all organisms have
two kinds of processes in their life times. Organisms learn their own language
at �rst half life, and at second half life they decide to learn what language to
learn by comparing the language abilities of other populations. We can observe
evolution on both A-language-�tness and B-language-�tness. A-language-�tness
has chaotic bifurcation.

Figure 8 shows the result of same simulation with four populations. Here
C-language-�tness shows much higher increase than A, B and D. Sudden twice
increases at about 500th and 4000th generation of C-language-�tness attract
much attention. These may be happened by mutations.

Second simulation that populations change language learning on the start
point of each generation showed no evolution except �rst 500 generations.

3.3 Creating new medium

Creating new medium means that organisms invent, for example, a new sign
comprehensible only to them. We tried two simulations with the initializations
by Hebbian weight matrix and Zero matrix (see 2.1(1)). The organisms do not
learn their native language when we use Zero matrix for the initial weight. The
mutual �tness fc is used here for evaluate communication-�tness (2.1(7)).

452 Yoshida Akira

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600

F
itn

es
s

&
 L

an
gu

ag
e-

F
itn

es
s

Generation

A-Fitness

A-Language-Fitness

B-Fitness

B-Language-Fitness

Fig. 7. Two populations A and B change language learning in their life time

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

La
ng

ua
ge

-f
itn

es
s

Generation

A-Language-Fitness

C-Language-Fitness

D-Language-Fitness

Fig. 8. Four populations change the language learning in their life time

We could observe evolution of communication only when two populations
have their native languages. Simulation without native languages showed in-
signi�cant increase of their communication-�tness.

4 Conclusion

(1) Genetic algorithms with varying population size improves the performance.
(2)We got a mutual capacity of 14% as a result of evolution of hetero-association.
(3) The cognition between a known pattern and another known pattern is easier
than the cognition between a known pattern and an unknown pattern.
(4) Evolution of learning can be observed only when organisms change rule itself
during their lifetime
(5) Evolution of communication or making contact with others needs initial
knowledge of native language in advance.

References

[1]J.J.Hop�eld,"Neural Networks and Physical Systems with Emergent Collec-
tive Computational Abilities", Proc. Nat. Acad. Sci.,U.S.A,vol.79,p.2554,1982.
[2]A.Yoshida,"Evolution of learning Capacity by means of Mutual Associative
Memory", JCIS'98, Earth Science & Softcomputing, Proc.Vol.1,p439,1998.
[3]A.Yoshida,"Self-Organizingapproach of Mutual Associative Memory"(submitted)
[4]H.Sompolinsky,"Neural Network with Non-linear Synapses and Static Noise",
Phys.Rev.A34 p2571,1986.
[5]Daniel J.Amit,"Modeling Brain Function-The world of attractor neural net-
works",Cambridge U. P.,1989.
[6]K.Kaneko,"A trial to extend the view of dynamical system", Dynamics and
Logic for Understanding Cognition and Behavior of Human,Yukawa Institute,
Kyoto U.,1997.

453A Model of Mutual Associative Memory

The Application of Cellular Automata to the
Consumer’s Theory: Simulating a Duopolistic

Market

Sobei H. Oda1, Kouhei Iyori2, Miura Ken3, and Kanji Ueda4

1 Faculty of Economics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku,
Kyoto 603-8501, Japan (oda@cc.kyoto-su.ac.jp).

2 Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho,
Nada-ku, Kobe 657-8501, Japan (iyori@mi-2.mech.kobe-u.ac.jp).

3 Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho,
Nada-ku, Kobe 657-8501, Japan (miuraken@mbox.kyoto-inet.or.jp).

4 Faculty of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe
657-8501, Japan (ueda@mech.kobe-u.ac.jp).

Abstract. This paper presents a cellular automata model of a duopolis-
tic market with consumers’ leraning and network externalities. The model
produces various dynamics of the market. In particular, if the user cost
can locally be different, it generates such rich dynamics that aggregate
models could not explain. The results of simulations also suggest that the
long-run consequence of duopolistic competition may crucially depends
on the initial condition.

1 Introduction

When you buy an application, you may probably take account of how long you
have used it and how many of others will use it. Even if an application with
higher performance is available, you may hesitate to change it from the one you
are familiar with, suspecting understandably that mastering a new application
may require considerable time and effort. You may however abandon the use
of your favorite application if increasingly many of your friends and colleagues
use another one, fearing naturally that adhering to it may make it difficult to
exchange data and programs with them. We should like to examine such mar-
kets where consumers consider these things: consumers’ learning by doing and
network externality, which plays an important role in the so-called information-
oriented society.

This paper, which describes a duopolistic market with network externality
and consumers’ learning by doing, is a generalisation of our previous one (Oda et
al [3]) does, which examines the dynamics of a monopolistic market with network
externality. In fact both are cellular automata models; what is new in the present
work are only the existence of a rivalling product and the dependence of the
consumers’ reservation prices for products on their past purchasing behaviour.
Although consumers do not like move around, their behaviour is influenced by

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 454–461, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

The Application of Cellular Automata to the Consumer’s Theory 455

their experience so that our model has become similar to the CA+Agent models
of (Epstein and Axtell [1]).1

We shall explain our model in Section 2 and mention a few results of its
simulation in Section 3. Owing to the introduction of consumer’s learning and a
rivalling product, the dynamics of the market has become much more complex:
in addition to the drastic change of the final equilibrium by a small change in
the initial condition, it is often observed that the market goes on changing in a
complicated — not simple but not random — manner.

2 The model

Let us assume the following.

1. There are M2 consumers in a closed society. Every consumers has a personal
computer for which two operating systems are available. To use an OS, each
consumer must make a new or renewal contract at its supplier at the beginning
of every week. We designate X(m, n, t) = 1 if Consumer m (m = (m1, m2),
1 ≤ m1 ≤ M and 1 ≤ m2 ≤ M) contracts with the supplier of OSn (n = 1 or 2)
for Week t (t = 0, 1, 2, . . .) and X(m, n, t) = 1 if he or she does not.

2. The utility which Consumer m obtains from using his or her computer for
Week t is

U(m, t) = max
n∈(1,2)

(X(m, n, t)U(m, n, t) + αX(m, 3 − n, t)U(m, 3 − n, t)) (1)

where α is a constant while U(m, n, t) represents Consumer m’s utility from using
OSn alone. Here 0 ≤ α < 1 is assumed because using two operating systems does
not brings in twice as much utility as using one.

3. Consumer’s utility from using an OS consists of three terms:

U(m, n, t) = Umin + θ(Umax −Umin)L(m, n, t)+(1− θ)(Umax −Umin)N(m, n, t)
(2)

where Umin, Umax and θ are given constants (0 ≤ Umin ≤ Umax and 0 ≤ θ ≤ 1).
Here the first term of (2) stands for the basic utility that a beginner can readily
obtain from standing alone computer usage.

4. The second term of (2) represents the effect of consumers’ learning by doing:
one can obtain more utility from the same OS as he or she uses it longer. Here

1 The other new point is that each consumer’s neighbourhood is probabilistically de-
termined according to the method developed by (Markus and Hess [2]). Yet it does
not seem to make significant effects at least in the simulations mentioned in this
paper.

456 Sobei H. Oda et al.

L(m, n, t) stands for the skill for using OSn that Consumer m has acquired till
time t (the beginning of Week t), which is defined as

L(m, n, t)

= L(m, n, 0) for t = 0

= λ

t∑
k=1

(1 − λ)k max(X(m, n, t − k), βX(m, 3 − n, t − k)) for t ≥ 1

(3)
where λ and β are given constants (0 ≤ λ ≤ 1) while L(m, n, 0) are all given as
a part of the initial condition (0 ≤ L(m, n, 0) ≤ 1). Here λ stands for the speed
of skill depreciation, while β represents the substitutability between the two
operating systems: the increase of the skill for using an OS by using the other OS
alone is 100β percent of its increase by using the OS. Note that the second term
of (2) is regarded as the product of the degree of skill accumulation L(m, n, t)
and its absolute weight on the total consumer’s utility θ(Umax −Umin), because
0 ≤ L(m, n, t) ≤ 1, limt→∞ L(m, n, t) = 1 if X(m, n, 0) = X(m, n, 1) = . . . = 1,
and limt→∞ L(m, n, t) = 0 if X(m, n, 0) = X(m, n, 1) = . . . = 0.

5. The third term of (2) stands for the effect of network externality, which is
determined by

N(m, n, t) =

∑
i∈Ω(m) max(X(i, n, t), γX(i, 3 − n, t))

|Ω(m)| . (4)

Here γ is a given constant (0 ≤ γ ≤ 1); Ω(m) represents the set of Consumer
m’s neighbours:

Ω(m) = {Consumer i| dis(i, m) < R} (5)

where R is a given constants (1 < R); |Ω| stands for the number of Consumer
m’s neighbours. It is tacitly assumed that in our model cells (consumers) are
arranged so that those who exchange more information are nearer. That is to
say, in our terms neighbours are not those who live in neighbourhood but those
who share the same interest.

We can find some similarities in the second and the third term of (2). First,
since 0 ≤ N(m, n, t) ≤ 1, we can regard the third term as the product of the
degree of network externality N(m, n, t) and its absolute weight on the total
consumer’s utility (1 − θ)(Umax − Umin). Secondly, β and γ play a similar role:
β is smaller if consumers can use both operating systems in a more similar
way, while γ is smaller if users of different operating systems can more easily
exchange data and programs. Thirdly, Ω(m) corresponds to λ: the former sets
the contemporary boundary to network externality while the latter limits the
benefit from past experience.

6. Consumers follow a simple adoptive behaviour: they calculate N(m, n, t) on
the supposition that X(i, n, t) = X(i, n, t − 1) for all i ∈ Ω(m). In other words,
at time t Consumer m expects the following utility for Week t:

N̂(m, n, t)

{
= N̂(m, n, 0) fort = 0

=
∑

i2Ω(m)
max(X(i,n,t−1),γX(i,3−n,t−1))

|Ω(m)| fort ≥ 0
(6)

The Application of Cellular Automata to the Consumer’s Theory 457

where N̂(m, n, 0) are given as the other part of the initial condition (0 ≤
N̂(m, n, 0) ≤ 1). We also define Û(m, n, t) by replacing N(m, n, t) with N̂(m, n, t)
in (2) and Û(m, t) by replacing U(m, n, t) with Û(m, n, t) in (1). Here we have
explained how consumers expect their weekly utility Û(m, t) at the beginning of
each week.

7. Consumer’s cost for using a computer is given by

C(m, t) = X(m, 1, t)P1 + X(m, 2, t)P2 (7)

where Pn represents cost for using OSn. In the next section it will be assumed to
be constant for Examples 1, 2 and 3 of the next section while it will be regarded
as

P (m, n, t) = Q(n, t) + R(m, n, t) (8)

for Examples 4, 5, 6 and 7. Here Q(n, t) stands for the rental fee for using OSn
while R(m, n, t) represents the consumer m’s fees for using OSn applications.
The former decreases as the total number of the users of the OS increases, while
the latter decreases as the number of the consumer m’s neighbours who use the
OS:

Q(n, t) = Qnmin + (Qnmax − Qnmin)x(n, t) (9)

R(m, n, t) = Rnmin + (Rnmax − Rnmin)y(m, n, t) (10)

x(n, t) = rZ(n, t − 1) +
x(n, t − 1)

1 + r
(11)

y(m, n, t) = rW (m, n, t − 1) +
y(m, n, t − 1)

1 + r
(12)

Z(n, t − 1) =
∑

all m X(m, n, t − 1)
M2 (13)

W (m, n, t − 1) =

∑
l∈Ω(m) X(l, n, t − 1)

|Ω(m)| . (14)

Here Qnmax, Qnmin, Rnmax, Rnmin and r are all given positive constants.

8. At time t Consumer m calculates

V̂ (m, n, t) = Û(m, t) − C(m, t) (15)

for all the four possible combinations of X(m, 1, t) and X(m, 2, t): (0, 0), (0, 1),
(1, 0) and (1, 1), and chooses the combination that maximises V̂ (m, n, t) as
(X(m, 1, t), (m, 2, t)).

3 Simulations

Let us show some results of simulations for the following value of parameters and
the set of the initial condition: M = 50, R = 2, Umin = 0.2, Umax = 0.4, α =
β = γ = 0, λ = 0.5 and L(m, n, 0) = 0.5 for all m and n. In the following figures,
black points, gray points and white points represent OS1 users, OS2 users and
non-users respectively (no consumer use both operating systems simultaneously
in the following examples).

458 Sobei H. Oda et al.

3.1 Examples 1, 2 and 3

These are cases where Pn are given constants (P1 = P2 = 0.25). Since all the
parameters are common to both operating systems, their technical performance
is the same. Fail or success totally depends on the distribution of the initial
users.

Example k(1 ≤ k ≤ 3) is more advantageous for OS2 unconditionally than
Example k − 1. Because the initial distribution of the OS1 users are common to
the three examples, while initial OS2 users are chosen so that an OS2 initial user
in Example k(1 ≤ k ≤ 3) is an OS2 initial user in Example k − 1. In addition,
the initial condition for every example is chosen so that all consumers will user
an OS if the initial users of the other OS does not exist.

The long-run consequence of competition is quite understandable: in Example
1 OS1 dominates the whole markets; in Example 2 OS1 and OS2 shares the
market; in Example 3 OS2 monopolises the market.

Example 3 seems noteworthy. OS1 users and OS2 users rapidly increase al-
most at the same rate till every consumer uses either product, but then the
former gradually decrease and disappear in the end. Yet neither products’ prop-
erties nor consumers’ behaviour has changed when the market is saturated. Both
the rapid diffusion of OS1 and its fade-out are explained by the same value of
parameters and the same utility functions.

3.2 Examples 4, 5, 6 and 7

Let us examine cases where the price of the same product may locally be dif-
ferent. Let us assume that Rnmax = R + a and that Rnmin = R − a. Since
Rnmax − Rnmin = 2a, the greater a is, the larger Pi can locally differ. Figures 4,
5, 6 and 7 show cases where a equals 0, 0,03, 0.04 and 0.09 respectively (all the
other parameters and the initial condition are common to all the four cases).

The dynamics of the distribution of the users of the two OSs (the black-gray
patterns in the figures) qualitatively changes according as a increases. For a = 0,
the black-gray patterns are finally fixed (every consumer goes on using either
OS in the long run). For a = 0.03, the black and gray belts move rightwards for
ever(every consumer continue to change the product he or she buys cyclically).
For a = 0.04, the dynamics is most interesting: after 300 weeks, winding black
and gray stripes (from upper right to lower left) emerge and continue to move
(from upper right to lower left) with their shapes changing for 1000 weeks.
Then the shifting diagonal stripes suddenly disappear; then no steady changing
patterns can apparently be seen even approximately for thousands weeks; then
again suddenly the shifting diagonal stripes appear.

For a = 0.09, the black-gray patterns change unsteadily at least as long as
the simulation is observed. In short, the larger a is, the more difficult it is to
predict each consumer’s behaviour in the long run.

The Application of Cellular Automata to the Consumer’s Theory 459

0

500

1000

1500

2000

2500

0
50

100
150

200
250

300
0

500

1000

1500

2000

2500

0
50

100
150

200
250

300
0

500

1000

1500

2000

2500

0
50

100
150

200
250

300

E
xam

ple1.
E

xam
ple2.

E
xam

ple3.
the number of users

step

the number of users

step

the number of users

step

460 Sobei H. Oda et al.

the number of users

step

E
xam

ple5 (a=
0.03).

• • •

• • •

the number of users

step

E
xam

ple6 (a=
0.04).

• • • ?

the number of users

step

E
xam

ple7 (a=
0.09).

the number of users

step

E
xam

ple4 (a=
0).

The Application of Cellular Automata to the Consumer’s Theory 461

4 Concluding Remarks

Though having made a small number of simulations for very limited combi-
nations of parameters and the initial condition, we have found both results of
simulations which could and could not be explained by some aggregate model.
This suggests that the cellular automata model of oligopolistic market may have
much richer dynamics than the aggregate model describes. We hope that our
model and simulations could contribute to connecting individual consumers’ in-
teraction and the dynamics of aggregate values in oligopolistic markets.

This project “Methodology of Emergent Synthesis”(JSPS-RFTF96P00702)
has been supported by the Research for the Future Program of the Japan Society
for the Promotion of Science.

References

1. Epstein, J.M. and Axtell, R.: Growing Artificial Society; Social Science From the
Bottom Up. Brooking Institution Press (1996)

2. Markus, M. and Hess, B.: Isotropic cellular automaton for modeling excitable media.
Nature 347 (1990) no.6288, 56-58

3. S.H. Oda, K. Miura and K. Ueda.: The application of cellular automata to network
externality in consumer’s theory: a generalisation of life game. Artificial Life Five
in Langton, C.G. and Shimohara, K. (ed). MIT Press (1997) 473-480

Object-Oriented Genetic Algorithm Based
Artificial Neural Network for Load Forecasting

L.L. Lai1, H. Subasinghe1, N. Rajkumar1, E. Vaseekar, B.J. Gwyn1,
and V.K. Sood2

1 City University, London EC1V 0HB
United Kingdom

http://eeisun5.city.ac.uk
2 Hydro Quebec, Montreal

Canada

Abstract. This paper illustrates an integrated Computational Intelli-
gence (CI) technique using Artificial Neural Networks (ANN) and Ge-
netic Algorithms (GA) for Electric Load Forecasting. A load forecasting
model has been developed based on ANN and GA. The model produces
a short-term forecast of the load in the 24 hours of the forecast day
concerned. Optimum weights and the biases of ANN are found by the
Genetic Algorithm. The technique has been tested on data provided by
an Italian power company and the results obtained through the appli-
cation of integrated computational intelligence approach show that this
approach is not practical without high computational facilities as this
problem is very complex. However, this points to the direction of evolu-
tionary computing being integrated with parallel processing techniques
to solve practical problems . . .

1 Introduction

An accurate and stable load forecast is essential for many operating decisions
taken by utilities. In fact, it is well known that a cheap and reliable power
system operation is definitely the result of good short-term load forecasting.
The short-term load forecast provides the information to be adopted in the on-
line scheduling and security functions of the energy management system, such
as unit commitment, economic dispatch and load management. Hence, accurate
load forecasting is essential for the optimal planning and operation of large-scale
power systems.

Many techniques have been proposed and used for short-term load forecast-
ing. Time-series models based on extrapolation are used for the representation of
load behaviour by trend curves. The time series approach, regression approach,
state-space models, pattern recognition and expert systems are also some of the
other techniques used [1-5].

The time series approach assumes that the load of a time depends mainly
on previous load patterns, such as the auto-regressive moving average models

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 462–469, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Object-Oriented Genetic Algorithm Based Artificial Neural Network 463

and the spectral expansion technique [2]. The regression method utilises the ten-
dency that the load pattern has a strong correlation to the weather pattern. The
weather-sensitive portion of the load is arbitrarily extracted and modelled by
a pre-determined functional relationship with weather variables. All the above
approaches use a large number of complex equations that involve lots of com-
putational time. More recently, artificial neural network (ANN) techniques have
been used in many modelling problems [6-10]. One of the most popular train-
ing algorithms for feed-forward ANNs is a gradient descent search algorithm,
for example, the back-propagation (BP) approach, which tries to minimise the
total Mean Square Error (MSE) between actual output and target output of an
ANN. This error is used to guide BP’s search in the weight space. There have
been some successful applications of BP algorithms in various areas. However,
drawbacks with the BP algorithm do exist due to its gradient descent nature. It
often gets trapped in a local minimum of the error function and is very ineffi-
cient in searching for a global minimum of a function which is vast, multimodal,
and non-differentiable. One way to overcome BP’s as well as other gradient de-
scent search-based training algorithms’ shortcomings, is to consider the training
process as the evolution of connection weights towards an optimal (near opti-
mal) set defined by a fitness function. From such a point of view, global search
procedures like GAs can be used effectively to train an ANN. Therefore, GA in-
tegrated with ANN (GA-ANN) has been implemented for searching a solution.
Object Oriented Techniques (OOT) were the framework for integrating ANN
and GA. OOT gives us the ability to combine the existing objects (ANN object
and GA object) and create new components (GA-ANN).

2 GA and ANN Hybridisation

There are three levels at which GA search procedures can be introduced to
ANNs, namely, connection weights and biases, architectures and training algo-
rithms. In here GA has been used to optimise the connection weights and biases
of the neural network.

2.1 Optimising ANN Weights Using GA

The GAs training approach is divided into two major steps: the first one is to
decide the representation scheme of connection weights, e.g., binary strings and
the second one is the evolution itself driven by GA. Different representation
schemes and GAs can lead to quite different training performance in terms of
training time and accuracy. A typical cycle of the evolution of connection weights
with GA is shown in figure 1:

2.2 Representation of Connection Weights

When using GA the most convenient representation is binary, since GA usually
uses binary representation (chromosomes) of the problem parameters and binary

464 L.L. Lai et al.

Fig. 1. One Typical cycle of evolution of connection weights with GA

operators for combination. The range of each free parameter depends on the
problem complexity and the required resolution of the system parameters.

A key issue here is to decide how much information about an architecture
should be encoded into a representation. This includes number of layers and
number of neurons in each layer. As the architecture parameters decoded in
GA individuals are increased, the computational cost increases. There is a trade
off between these two factors as the combination differs for different classes of
problems.

2.3 GA and ANN Hybridisation

Interaction between developed ANN and GA components are presented in or-
der to explore possible benefits arising from these combinations, instead of using
them individually. Object Oriented Technique gives us the ability to combine the
existing developed objects and create new components. In order to perform this
task, a through analysis on both objects should be done, including understand-
ing the principles of the hybrid systems, identifying objects which will remain
important in the life of the hybrid system and finally identifying the relationships
between the different objects and the ways in which the objects interact.

After analysing the system which includes identifying the object interactions,
adaptation of classes in the new environment is performed. This task also in-
cludes composing ANN free parameters including weights, biases and decoding
them into chromosomes. The number of ANN free parameters is calculated as
shown in the equation below to form the chromosomes.

nfree = [(nin × nhid) + (nhid × nout) nhid + nout] . (1)

where
nin = Number of Nodes in Input Layer
nhid = Number of Nodes in Hidden Layer
nout = Number of Nodes in Output Layer
nfree = Number of Free Parameters

Object-Oriented Genetic Algorithm Based Artificial Neural Network 465

Other parameters such as architecture and training algorithms can be added
to the chromosomes as an extension. The interaction between ANN and GA
objects is performed by message passing. Both ANN and GA instances are cre-
ated at the beginning of the optimisation procedure and last until the end. The
GA object makes calls to ANN object and passes messages to fitness function.
The optimisation is processed to find the near optimum global solution for each
applied problem. Our experience is that GA-ANN are highly application de-
pendent, the approach is tested on a parabolic function approximation and on
electric load forecasting as explained in the following section.

3 GA-ANN Application

3.1 Parabolic Function Approximation

Parabolic function parameters (x and y values) were obtained using MatLab to
create training and testing data files. The following system parameters are found
to be the best for this problem, namely, population size, ANN free parameters,
bits for each parameter, mutation rate, crossover rate, number of inputs to the
neural network, number of nodes in the hidden layer and number of outputs
which are 200, 16, 10. 0.1, 0.9, 1, 5 and 1 respectively.

Similar network was constructed using BP-ANN for comparison with GA-
ANN. Figure 2 shows comparison of BP and GA training schemes’ resulting
error functions in the first 100 generations during the training.

Fig. 2. Comparison between GA and BP during training for 100 Generations

GA-ANN and BP-ANN were further trained to reduce the RMS error in
order to obtain better results. Figure 3 shows comparison between BP and GA
training scheme’s resulting error functions in the first 500 generations during
the training. As shown in Figure 2, the GA-ANN system converges much faster
than BP-ANN. It means that it finds a near global optimum with no significant
difference in computational time between the two training schemes. The GA
training scheme shows improvement over the BP in the first 100 generations

466 L.L. Lai et al.

Fig. 3. Comparison between GA and BP during training for 500 Generations

and presents a very good convergence. However, when GA generations increase,
the convergence speed reduces rapidly. As in Figure 3, BP begins to converge
faster than GA after about 220 generations. Figures 4 and 5 show the outputs of
GA-ANN and BP-ANN for unseen data with 100 and 500 generations of trained
GA-ANN and BP-ANN respectively.

Fig. 4. Comparison between actual, GA-ANN and BP-ANN outputs for unseen data
with 100 generations of trained GA-ANN and BP-ANN

3.2 Short-term Load Forecasting

There are 58 inputs to the developed model. The features that are taken into
account as input factors in the load forecast system are as follows: two 24-hour
load records of day i-1 and i-2 (the forecast day is day i. Six more inputs are
the maximum and minimum temperatures of day i, i-1 and i-2. Three other
inputs are the binary codes to show seven days of the week. One binary code
is dedicated to the holidays or any yearly special occasions that may affect the

Object-Oriented Genetic Algorithm Based Artificial Neural Network 467

Fig. 5. Comparison between actual, GA-ANN and BP-ANN outputs for unseen data
with 500 generations of trained GA-ANN and BP-ANN

forecast. In summary, the designed NN is of the MLP type and is used to learn
about the relationship between the 58 inputs and 24 outputs.

The input are:

Hourly loads for two days prior to the forecast day 24
Hourly loads for the day prior to the forecast day 24
Max. and Min. temps for two days prior to the forecast day 4
Max. and Min. temps for the forecast day 2
Day of the week 3 bits
Holiday 1 bit
The outputs are:
Load forecast for all 24 hours of the day 24

The above values are normalised as indicated by Equation (2).

Normalised V alue =
Actual V alue − Min

Max − Min
. (2)

where Max. and Min. are the maximum and minimum of the attribute respec-
tively.

The mean square error (MSE) is used to measure the accuracy of the model.
The sigmoid activation function is adopted. The following system parameters
are found to be the best for this problem, namely, population size, ANN free
parameters, bits for each parameter, mutation rate, crossover rate, number of
inputs to the neural network, number of nodes in the hidden layer and number
of outputs which are 150, 1269, 16, 0.1, 0.9, 58, 15 and 24 respectively.

The Back-propagation was also used to train another ANN which is then
used as a reference to make a comparison between two algorithms. The training
Mean Square Error (MSE) of both BP-ANN and GA-ANN for the first 100
generations is shown in Figure 6.

468 L.L. Lai et al.

As in Figure 6, it shows that the BP-ANN converges much faster than GA-
ANN. It could mean that that it finds a better optimum in less number of
iterations. Figure 7 shows the comparison between actual results and GA-ANN
outputs for unseen data.

Fig. 6. Comparison between GA-ANN and BP-ANN for 100 generations

Fig. 7. Comparison between actual and GA-ANN outputs for unseen data

4 Conclusions

The main question is whether the GA-ANN is more efficient than conjugate
gradient (e.g. BP) methods. In general GA-ANN gives better solutions for the
problems with a small number of parameters. But for systems with a large num-
ber of problem parameters it becomes impractical as it increases the compu-
tational time and the computational cost. If powerful computer facilities are
available, then GA-ANN are generally the preferred method. Parallel GA-ANN
is one of the solutions to reduce training time. The OO methodology is a very
useful framework in the development of GA-ANN as it reduces the development
time. The developed OO models of all algorithms give this flexibility to upgrade

Object-Oriented Genetic Algorithm Based Artificial Neural Network 469

and maintain the software constantly and form different configurations. Artifi-
cial Neural Network and Genetic Algorithms have been used to design a neural
network for short-term load forecasting. The forecasting model has been used
to produce a forecast of the load in the 24 hours of the forecast day concerned,
using data provided by an Italian powerthe company. The results obtained are
promising. In this particular case, the comparison between the results from the
GA-ANN and BP-ANN shows that the GA-ANN does not provide a faster solu-
tion than the BP-ANN. This could be due to the fact that the initial randomly
selected starting point is a poor one. The size of the problem is very large and as
such the amount of memory and computation time are large too. This points to
the direction of parallel processing techniques being integrated with evolutionary
computing to solve complex practical problems.

5 Acknowledgements

The authors would like to express their thanks to M Sforna and M Caciotta of
Electric and Automation Department, ENEL Research, Italy for providing the
data.

References

1. Gross, G., Galiana, F.D.: Short term load forecasting. Proc. of IEEE, Vol. 75, No.
12, 1987, pp. 1558-1573

2. Hagan, M.T., S M Behr, S.M.: The time series approach to short term load fore-
casting. IEEE Transactions on Power Systems, Vol. 2, No. 3, 1987, pp. 785 -791

3. Papalexopoulos, A.D., Hesterberg, T.C.: A regression-based approach to short-
term load forecasting. IEEE Transactions on Power Systems, Vol. 5, No. 4, 1990,
pp. 1535-1547

4. Rahman, S., Bhantnagar, R.: An expert system based algorithm for short-term load
forecast. IEEE Transactions on Power Systems, Vol. 3, No. 2, 1988, pp. 392-399

5. Dhdashti, A.S., Tudor, J.R., Smith, M.C.: Forecasting of hourly load by pattern
recognition: a deterministic approach. Transactions on Power Apparatus and Sys-
tems, Vol. 101, 1982, pp. 900-910

6. Caciotta, M., Lamedica, R., Cencelli, V.O., Prudenzi, A., Sforna, M.: Application
of artificial neural networks to historical data analysis for short-term electric load
forecasting. European Transactions on Electrical Power, Vol. 7, 1997, pp. 49-56

7. Maifield, T., Sheble, G.: Short term load forecasting by neural network and a
refined genetic algorithm. Electrical Power Systems Research, Vol. 31, pp. 9-14.

8. Lai, L.L.,Sichanie, A.G., Rajkumar, N., Styvaktakis, E., Sforna, M., Caciotta, M.:
Practical application of object oriented techniques to designing neural networks
for short-term electric load forecasting. Proceedings of the Energy Management
and Power Delivery Conference, IEEE Catalogue No 98EX137, March 1998, pp.
559-563

9. Heng, E.T.H., Srinivasan, D., Liew, A.C.: Short term load forecasting using genetic
algorithm and neural networks. Proceedings of the Energy Management and Power
Delivery Conference, IEEE Catalogue No 98EX137, March 1998, pp. 576-581

10. Lai, L.L.: Intelligent system applications in power engineering - evolutionary pro-
gramming and neural networks. John Wiley and Sons, 1998

Author Index

Akira, Y., 446
Anbarasu, L.A., 130
Aoki, K., 260
Araki, K., 325

Baba, T., 251
Barruncho, L.M.F. , 58
Bergmann, N., 114
Blair, A., 357
Blair, A.D., 389
Boman, M., 285
Bundaleski, N., 365
Burke, E., 187
Burke, E.K., 66

Carlsson, B., 285
Carvalho, P.M.S. , 58
Chen, S-H., 293
Cho, D-Y., 146
Cho, S-B., 301, 413
Cooper, M., 171

De Causmaecker, P., 187
de Oliveira, P.P.B., 268
Djurivsić, A.B., 365

Estivill-Castro, V., 18

Ferreira, L.A.F.M. , 58
Fujimoto, Y., 179, 223
Fujinaga, T., 231
Funes, P., 389
Furuhashi, T., 206

Garionis, R., 98
Gen, M., 276, 421
Gero, J.S., 381
Geyer, H., 106
Graco, W., 74
Green, D.G., 90
Gwyn, B.J., 462

Hall, R., 438
Hallinan, J., 397
Hashimoto, H., 240, 251
Hashimoto, K., 260

He, H., 74
Hoashi, K., 260
Horii, H., 122
Husbands, P., 268

Ida, K., 421
Imada, A., 325
Inuzuka, N., 231
Ishibuchi, H., 82, 317
Ishinishi, M., 162
Itoh, H., 231
Iwasaki, A., 309
Iyori, K., 454

Jackway, P., 397
Johansson, S., 285
Jonsson, M.T., 430

Kaise, N., 223
Katai, O., 198
Kawakami, H., 198
Kim, D-H., 154
Kim, J-H., 2, 154
Kim, Y-J., 154
Kirley, M., 90
Kohata, N., 251
Konishi, T., 198
Kunifuji, S., 122

Lai, L.L., 462
Lee, C-Y., 421
Li, A., 341
Li, E.H., 365
Li, X., 90
Liang, H-K., 42
Liu, Y., 333

Majewski, M.L., 365
Mandischer, M., 106
Matsumoto, K., 260
Matsumura, Y., 10
Matsuzawa, T., 122
Miura, K., 454
Moriwaki, K., 231
Myung, H., 2

472 Author Index

Nakano, R., 50
Nakashima, T., 82
Namatame, A., 162
Narayanasamy, P., 130
Newton, C.S., 42
Ni, C-C., 293
Nii, M., 317
Niwa, T., 349

Oda, S.H., 309, 454
Ohkura, K., 10

Pacheco, M.A., 373
Pham, B., 26, 438
Podlich, D.W., 171
Porter, R., 114
Porto, V.W., 215

Rajkumar, N., 462
Rakić, A.D., 365
Reiser, P.G.K., 138
Riddle, P.J., 138
Runarsson, T.P., 430

Sasaki, T., 34
Sato, M., 240, 251
Schwefel, H-P., 1
Seo, Y-G., 301
Shimohara, K., 413
Shimooka, H., 179
Sklar, E., 389
Sood, V.K., 462
Stanić, B.V., 365
Subasinghe, H., 462

Sundararajan, V., 130
Sutton, R.S., 195

Tachibana, K., 206
Takagi, T., 240
Tanaka, K., 317
Tanaka, M., 349
Tokoro, M., 34
Tonkes, B., 357
Torres-Velázquez, R., 18
Tsujimura, Y., 276

Ueda, K., 10, 309, 454
Ulbig, P., 106

Vanden Berghe, G., 187
Varley, D.B., 66
Vaseekar, E., 462
Vellasco, M., 373

Wiles, J., 357
Wong, K-P., 341, 405

Yamada, T., 50
Yamaguchi, T., 240, 251
Yao, X., 42, 74, 333
Yearwood, J., 438
Yoshimura, K., 50
Yuryevich, J., 405

Zebulum, R.S., 373
Zhang, B-T., 146
Zhang, Z., 26

	Front matter
	Lecture Notes in Artificial Intelligence
	Preface
	Committee
	Table of Contents

	Chapter 1
	Chapter 2
	Introduction
	Sharing function
	Multiple Lagrange multipliers
	Summary

	Chapter 3
	Introduction
	Function Optimization by ES
	Robust ES
	Computer Simulations
	Test functions and Conditions
	Results

	Conclusions

	Chapter 4
	Introduction
	The p-Median Problem
	The Solution Methods
	The Structure of the Hybrid GA
	Final Remarks

	Chapter 5
	Introduction
	Design of Genetic Algorithms
	Reflection Line
	Genetic Algorithms
	 Description of the Genetic Algorithms

	Implementation
	The Overall System
	Data Structure
	Curvatures and Fitness

	Analysis of the Results
	Conclusion

	Chapter 6
	Introduction
	Experimental Model
	Experimental Evaluations
	Darwinian (t = 0.0) versus full-Lamarckian (t = 1.0)
	Controlling Heredity Rate (t) of Acquired Characters

	Discussion
	Conclusions

	Chapter 7
	Introduction
	Analysis
	Results
	Conclusions

	Chapter 8
	Introduction
	The Information Operator Scheduling Problem
	Genetic Algorithms
	Solution representations
	Mutation
	Crossover
	Genetic local search

	Parameterized Fitness Function
	Experimental Results
	Conclusions

	Chapter 9
	1 Introduction
	2 Problem Formulation and the cGA Difficulties
	3 Evolutionary Approach
	4 Illustration
	5 Conclusion
	References

	Chapter 10
	Chapter 11
	Introduction
	Methodology
	K-Nearest Neighbour Classification Technique
	Majority Rule:
	Bayesian Rule:

	Genetic algorithm
	Selection
	Crossover
	Mutation
	Cost Function

	Results
	Discussion
	Conclusions

	Chapter 12
	Introduction
	Problem Formulation
	Genetic Algorithms
	Computer Simulations
	Computer Simulation on Wine Data
	Computer Simulation on Credit Data

	Conclusion

	Chapter 13
	Introduction
	 Parallel Genetic Algorithms
	 A Cellular Genetic Algorithm
	 Experiments and Results
	 Discussion

	Chapter 14
	Introduction
	Quantifying neighborhood preservation
	Self-organizing topographic mappings
	Evolution strategies
	Simulations
	Discussion
	Conclusions

	Chapter 15
	Introduction
	Models for the enthalpy of vaporization
	Physical models
	Neural Networks

	Experiments and Results
	Generation and Description of the Data
	Physical Model Experiments
	Neural Networks Experiments (Backpropagation)
	Neural Networks Experiments (Evolution Strategy)
	Comparison

	Discussion

	Chapter 16
	Introduction
	Field Programmable Gate Arrays and the XC6216
	The XC6216 emph {hybrid} Cellular Automata
	Searching the XC6216 emph {hybrid} CA rule space
	The CA Evolver Experimental apparatus
	Performance Comparison
	Summary and Future Directions

	Chapter 17
	Introduction
	Asynchronous Island Parallel GA
	Migration
	Cooprative Search Using Multiform Subpopulations

	Applying APGA to Knapsack Problem
	Experiment
	Results and Discussion

	Applying APGA to Royal Road Functions
	Experiments
	Results and Discussion

	Conclusion

	Chapter 18
	Introduction
	Problem Formulation
	Description of PGA
	Characteristics of PGA

	Implementation and results
	 Comparison of PGA with other sequence alignment algorithms
	Investigation on migration parameters

	Conclusions

	Chapter 19
	Introduction
	Evolutionary Inductive Logic Programming
	Inductive Logic Programming: a Brief Introduction
	Evolutionary Algorithms
	Integrating the EA with ILP
	The EVIL_1 Algorithm

	An Empirical Study
	Conclusions

	Chapter 20
	Introduction
	Evolving Multiagent Strategies Using Genetic Programming
	Genetic Programming with Incremental Data Selection
	Experimental Results
	Conclusions

	Chapter 21
	Introduction
	Modeling of a Mobile Robot
	Uni-vector Field Navigation Method
	Uni-vector field generation
	Uni-vector field tracking controller
	EP and the learning algorithm

	Computer Simulations
	Uni-vector field for final posture
	Uni-vector field with obstacles

	Experiments
	Conclusions

	Chapter 22
	Introduction
	A Model of Economic Agents
	Learning of Social Adaptive Function
	Some Simulation Results
	Conclusion

	Chapter 23
	Introduction
	Materials and Methods

	Chapter 24
	Introduction
	Model of Inverted Pendulum
	Applying GP to the Inverted Pendulum
	Function Set and Terminal Set
	Fitness Function
	Empirical Study
	Empirical Procedure

	Empirical Results
	Conclusions

	Chapter 25
	Introduction
	Plane, nurse rostering software for Belgian hospitals
	Problem description
	Hard constraints
	Soft constraints

	Tabu search algorithm and variants
	Feasible initial schedule
	Original tabu search algorithm
	Some Heuristics for the problem
	Hybrid tabu search algorithms

	Test results
	Conclusion

	Chapter 26
	Chapter 27
	Introduction
	Q-learning with Condition Reduced Fuzzy Rules
	Interpolating Q-tables
	Condition Reduced Fuzzy Rule
	Introducing CRFR to Q-learning
	Comparison of Learning Efficiency

	Experiments and Results
	Experimental Environment
	Comparison with Interpolation Method
	Performance of Condition Reduction
	Robustness to the Complexity of Environments

	Conclusion

	Chapter 28
	Introduction
	Hierarchical Fuzzy Modeling Using FNN
	Fuzzy neural network
	Procedure of Hierarchical Fuzzy Modeling
	Unequal Division of Input Space

	Numerical Experiment
	Conclusion

	Chapter 29
	1 Introduction
	2 Background
	3 Technical Approach
	4 Implementation
	4.1 Mutation
	4.2 Constructing a Feasible Solution
	4.3 Fitness Evaluation

	5 Experiments and Results
	6 Conclusion

	Chapter 30
	Introduction
	Evolutionary System
	The System Structure
	Simulation of a Rolling Inverted Pendulum
	MLP Architectures

	Application of GA
	Empirical Study
	Experiments and Results
	Control Patterns of ENN

	Conclusions

	Chapter 31
	Introduction
	Baggage carriage problem
	Definition of agents in our problem
	Heterogeneous ability of agents
	Evolution with an Evolutionary Method
	Experimental results
	Conclusions

	Chapter 32
	Introduction
	Multi-agent Systems for Welfare Agent Robots
	FAMOUS and CFAMOUS
	CFS
	Robot Formations

	Simulations and Robot Experiments
	Pre requisite
	Robot Control Block
	Simulation Experiments
	Robot Experiments

	Formation Movements using Chaotic Evolutionary Computation
	Effectiveness of Soft DNA
	Conclusions

	Chapter 33
	Introduction
	Soft DNA and its Evolutionary Computation
	Soft DNA
	Evolutionary Computation on Soft DNA

	The A-NET parallel computer
	Multi-agent robots which move abreast
	ITS(Intelligent Transport Systems)
	Simulation results and discussion
	Multi-agent robot which move abreast
	ITS(Intelligent Transport Systems)

	Conclusion

	Chapter 34
	Introduction
	Strict Clustering by HBC
	HBC Algorithm
	Iwayama's Approximate Clustering Method

	Proposed Clustering Method
	Algorithm of proposed method
	Evaluation function for finding an optimum document set
	GA for finding optimum document sets

	Estimation of Clustering Speed and Precision
	Experimental Environment and Measurement Parameters
	Experimental results: speed
	Experimental results: precision

	Conclusions

	Chapter 35
	Introduction: The Problem
	The Encoding
	Cost Function
	Implementation
	Results
	Conclusions

	Chapter 36
	Introduction
	Boundary Representation of Solid Model
	Evolutionary Computation Approach
	Chromosome Representation and Initialization
	Crossover
	Mutation
	Evaluation and Selection

	Numerical Experiments
	Experiment 1
	Experiment 2

	Conclusions

	Chapter 37
	Introduction
	Prisoner's dilemma like games
	A simulation example
	Simulating four different games
	Noisy environment
	Conclusions

	Chapter 38
	Motivation and Introduction
	The Analytical Model
	The Oligopoly Game: an N-Perosn IPD Game?
	Modeling the Adaptive Behavior of Oligopolists with GAs
	Experimental Designs and Results
	Concluding Remarks

	Chapter 39
	Introduction
	Payoff Function
	Localization
	Experiments
	Payoff function
	Localization

	Concluding Remarks

	Chapter 40
	Introduction
	The model
	Game Theoretic Analysis
	Simulations
	Concluding remarks

	Chapter 41
	Introduction
	Learning from Linguistic Rules
	Computer Simulations
	Linguistic Rule Extraction
	 Some Extensions of Rule Extraction Method
	Conclusion

	Chapter 42
	Chapter 43
	Introduction
	Negative Correlation Learning
	Experimental Studies
	The MacKey-Glass Time Series Prediction Problem
	Chlorophyll-a Prediction

	Conclusions

	Chapter 44
	Introduction
	Requirements of animating system
	Design and Structure of the GA Animation System
	Application Examples
	Conclusions

	Chapter 45
	Introduction
	Genetic Drifts and the Wright-Fisher Model
	Mean Convergence Time for the Wright-Fisher Model
	Stationary State for the Wright-Fisher Model

	Island Model Parallel GAs
	Stationary State for the Island Model
	Mean Convergence Time for the Island Model

	Conclusions

	Chapter 46
	Introduction
	Simulations 1 and 2: Encoders and Decoders
	Encoders
	Decoders
	Results: Encoders and Decoders

	Evolving a Language
	Forwards and Reversed

	Discussion and Conclusions

	Chapter 47
	Introduction
	Description of the algorithm
	Application to modeling the optical constants of aluminum
	Application to thin film filter design
	Conclusion

	Chapter 48
	Introduction
	Sequential System Design
	Target Problem - Random Control Logic Unit
	Problem Modelling
	Results
	Analysis of the Results
	Acknowledgements

	Chapter 49
	1 Introduction
	2 Genetic Engineering in Designing
	3 Reverse Engineering and the Genetic Analogy
	4 Developmental Biology and Designing
	Example 1
	Example 2
	Example 3

	Generalizing Crossover as an Operator in Designing
	Discussion
	Acknowledgment
	References

	Chapter 50
	Introduction
	Tron
	Implementation and Results.
	Discussion

	Chapter 51
	Introduction
	Method
	Results and Analysis
	Conclusions

	Chapter 52
	Introduction
	Optimum Power Flow Problem
	Solving OPF using Evolutionary Programming
	Application Example
	Conclusions

	Chapter 53
	Introduction
	Evolutionary Modular Neural Networks
	Grammatical Development of MNN
	Simulation Results
	Concluding Remarks

	Chapter 54
	Introduction
	Nonlinear Integer Programming Model
	Methods for solving NIP problem
	NP/NN method
	Genetic Algorithms
	Simplex Search Method

	Proposed Algorithms for solving NIP problem
	Numerical Examples
	Example 1:
	Example 2:

	Conclusion

	Chapter 55
	Introduction
	Gene Coordination
	Evolving Gene Coordination
	Computational Results
	Discussion

	Chapter 56
	Introduction
	Our Adaptation Model
	Implementation of the Adaptation Model
	Simulation of Adaptation in Bees
	Simulation of Adaptation in Cats

	Conclusion

	Chapter 57
	Chapter 58
	Introduction
	The model
	Simulations
	Examples 1, 2 and 3
	Examples 4, 5, 6 and 7

	Concluding Remarks

	Chapter 59
	Introduction
	GA and ANN Hybridisation
	Optimising ANN Weights Using GA
	Representation of Connection Weights
	GA and ANN Hybridisation

	GA-ANN Application
	Parabolic Function Approximation
	Short-term Load Forecasting

	Conclusions
	Acknowledgements

	Back matter
	Author Index

