

DATA AND APPLICATIONS SECURITY
DEVELOPMENTS AND DIRECTIONS

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP's aim is two-fold: to support information
processing within its member countries and to encourage technology transfer to developing
nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP's
events range from an international congress to local seminars, but the most important are:

 • The IFIP World Computer Congress, held every second year;
 • open conferences;

• working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings, while
the results of the working conferences are often published as collections of selected and
edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies preferring
a less committed involvement may apply for associate or corresponding membership.
Associate members enjoy the same benefits as full members, but without voting rights.
Corresponding members are not represented in IFIP bodies. Affiliated membership is open
to non-national societies, and individual and honorary membership schemes are also offered.

DATA AND
APPLICATIONS
SECURITY

DEVELOPMENTS AND DIRECTIONS

IFIP TC11 / WG11.3 Fourteenth Annual
Working Conference on Database Security
Schoorl, The Netherlands, August 21–23, 2000

Edited by:

Bhavani Thuraisingham
The MITRE Corporation, USA

Reind van de Riet
Vrije Universiteit, The Netherlands

Klaus R. Dittrich
Universität Zürich, Switzerland

Zahir Tari
RMIT University, Australia

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47008-X
Print ISBN: 0-7923-7514-9

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2001 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Boston

CONTENTS

Preface... ix
List of Contributors.. xi

CHAPTER 1.. 1
Keynote I
Protecting Information when Access is Granted for Collaboration

Gio Wiederhold

CHAPTER 2 .. 15
Author X: A Java-Based System for XML Data Protection

E. Bertino, M. Braun, S. Castano, E. Ferrari, M Mesiti

CHAPTER 3 ... 27
A Fair-Exchange E-Commerce Protocol with Automated
Dispute Resolution

Indrajit Ray, Indrakshi Ray, Natarajan Narasimhamurthi

CHAPTER 4 ... 39
XML Access Control Systems: A Component-Based Approach

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati

CHAPTER 5 .. 51
A Configurable Security Architecture Prototype

Alexandre Hardy, Martin S. Olivier

CHAPTER 6 ... 63
Distributed Policies for Data Management – Making Policies Mobile

Susan Chapin, Don Faatz, Sushil Jajodia

CHAPTER 7 ... 77
Security Architecture of the Multimedia Mediator

Christian Altenschmidt, Joachim Biskup, Yücel Karabulut

CHAPTER 8 ... 89
Simulation and Analysis of Cryptographic Protocols

M. Papa, O. Bremer, S. Magill, J. Hale, S. Shenoi

vi DATA AND APPLICATIONS SECURITY

CHAPTER 9 ... 101
Authentic Third-Party Data Publication

Premkumar Devanbu, Michael Gertz, Charles Martel,
Stuart G. Stubblebine

CHAPTER 10 ... 113
Protecting File Systems Against Corruption Using Checksums

Daniel Barbará, Rajni Goel, Sushil Jajodia

CHAPTER 11 ... 125
Web Security and Privacy, Panel 1

Bhavani Thuraisingham

CHAPTER 12 ... 127
Keynote II
Coordinating Policy for Federated Applications

Ken Moody

CHAPTER 13 ... 135
Integrating Multilevel Security Policies in Multilevel Federated
Database Systems

Marta Oliva, Fèlix Saltor

CHAPTER 14 ... 149
Wrappers – A Mechanism to Support State-Based Authorization
in Web Applications

Martin S. Olivier, Ehud Gudes

CHAPTER 15 ... 161
An Integrated Framework for Database Privacy Protection

LiWu Chang, Ira S. Moskowitz

CHAPTER 16 .. 173
Discovery of Multi-level Security Policies

Christina Yip Chung, Michael Gertz, Karl Levitt

CHAPTER 17 ... 185
Protecting Deductive Databases from Unauthorized Retrievals

Steve Barker

vii

CHAPTER 18 ... 197
Confidentiality vs Integrity in Secure Databases

Adrian Spalka, Armin B. Cremers

CHAPTER 19 ... 209
Extending SQL’s Grant Operation to Limit Privileges

Arnon Rosenthal, Edward Sciore

CHAPTER 20 ... 221
Language Extensions for Programmable Security

J. Hale, R. Chandia, C. Campbell, M. Papa, S. Shenoi

CHAPTER 21 ... 233
Protecting Privacy from Continuous High-Resolution Satellite
Surveillance

Soon Ae Chun, Vijayalakshmi Atluri

CHAPTER 22 ... 245
Database Security Integration Using Role-Based Access Control

Sylvia Osborn

CHAPTER 23 .. 259
User Role-Based Security Model for a Distributed Environment

S. Demurjian, T.C. Ting, J. Balthazar, H. Ren, C. Phillips, P. Barr

CHAPTER 24 ... 271
WorkFlow Analyzed for Security and Privacy in using Databases

Wouter Teepe, Reind van de Riet and Martin Olivier

CHAPTER 25 .. 283
Identifying Security Holes in OLAP Applications

Jürgen Steger, Holger Günzel, Andreas Bauer

CHAPTER 26 .. 295
Algorithms and Experience in Increasing the Intelligibility and
Hygiene of Access Control in Large Organizations

Marc Donner, David Nochlin, Dennis Shasha, Wendy Walasek

CHAPTER 27 ... 317
Database Security 2000

John R. Campbell

viii DATA AND APPLICATIONS SECURITY

CHAPTER 28 ... 323
Declarative Semantics of Belief Queries in MLS Deductive Databases

Hasan M. Jamil

CHAPTER 29 .. 329
Trust Management in Distributed Databases

James B. Michael, Leonard T. Gaines

CHAPTER 30 .. 339
Active Authorization as High-level Control

Daniel Cvrcek

CHAPTER 31 .. 347
Conference Key Agreement Protocol using Oblivious Transfer

Ari Moesriami Barmawi, Shingo Takada, Norihisa Doi

CHAPTER 32 ... 355
An Integration Model of Role-Based Access Control and
Activity Based Access Control Using Task

Sejong Oh, Soeg Park

CHAPTER 33 .. 361
Authorization Model in Object-Oriented Systems

Keiji Izaki, Katsuya Tanaka, Makoto Takizawa

CHAPTER 34 ... 367
Panel 2

Reind van de Riet, Raban Serban, Sylvia Osborn, Arnie Rosenthal,
Vijay Atluri, Joachim Biskup, Gio Wiederhold

CHAPTER 35 ... 373
Conference Summary

Bhavani Thuraisingham

INDEX ... 375

PREFACE

This book consists of the enhanced versions of the papers presented at the
14th IFIP Conference on Data and Applications Security. The preliminary
versions of these papers were published in the Informal Proceedings and
distributed at the conference. We have also included papers describing the
two panel discussions as well as a summary of the conference. The
conference was held in Schoorl, Netherlands from August 21 to 23, 2000.

We thank all those who submitted papers, presented papers as well as
participated at the conference. We thank the three keynote speakers, the
sponsors of this conference, and all those who provided administrative
support to this conference both at The MITRE Corporation as well as at Vrije
University. With special thanks to Laura-Cristina Nyiredi of The MITRE
Corporation for her work compiling the camera-ready manuscript. Finally,
we thank IFIP for its support as well as Kluwer Academic Publishers for this
book.

Bhavani Thuraisingham (Program Chair)
Reind van de Riet (General Chair)
Klaus Dittrich (Program Chair, Europe/Africa)
Zahir Tari (Program Chair, Australasia)

This page intentionally left blank

CONTRIBUTORS

Chapter Number/Name(s)/Affiliation

1. Gio Wiederhold; Dept. of Computer Science, Stanford University,
Stanford CA, USA

2. E. Bertino, M. Braun, S. Castano, E. Ferrari; Dept. of Information
Science, University of Milan, ITALY
M Mesiti; Dept. of Information Science; University of Genova, Genova
ITALY

3. Indrajit Ray, Indrakshi Ray; Dept. of Computer and Information
Information Science, University of Michigan-Dearborn USA
Natarajan Narasimhamurthi; Dept. of Electrical and Computer
Engineering, University of Michigan-Dearborn, USA

4. Ernesto Damiani; Computer Science Dept., George Mason University,
Fairfax VA, USA and Dept. of Information Science, University of
Milano, Milano ITALY
Sabrina De Capitani di Vimercati; University of Brescia, Dept. of
Electronic Automation, Brescia, ITALY
Stefano Paraboschi; Milano Polytechnic, Dept. of Electronic
Informaiton, Milano, ITALY
Pierangela Samarati; Dept. of Information Science, University of
Milano, Milano ITALY

5. Alexandre Hardy, Martin S Olivier; Dept. of Computer Science,
Rand Afrikaans University, Johannesburg SOUTH AFRICA

6. Susan Chapin, Don Faatz, Sushil Jajodia; The MITRE Corporation,
McLean, VA, USA

7. Christian Altenschmidt, Joachim Biskup, Yucel Karabulut;
University of Dortmund, Dortmund, GERMANY

xii DATA AND APPLICATIONS SECURITY

8. M Papa, O Bremer, S Magill, J Hale, S Shenoi; Center for
Information Security; Dept. of Computer Science, University of Tulsa,
Tulsa, OK, USA

9. Premkumar Devanbu, Michael Gertz, Charles (Chip) Martel, Dept.
of Computer Science, University of California, Davis, CA, USA
Stuart Stubblebine; Cert Co, New York, NY, USA

10. Daniel Barbara, Rajni Goel, Sushil Jajodia; Center for Secure
Information Systems; George Mason University, Fairfax, VA, USA

11. Bhavani Thuraisingham, The MITRE Corporation, Bedford, MA
USA

12. Ken Moody; Computer Laboratory, University of Cambridge,
Cambridge, ENGLAND

13. Marta Oliva; Dept. of Information and Industrial Engineering,
University of Lleida, Lleida (Catalonia) SPAIN
Felix Saltor; Dept. of Information System Engineering; Catalunya
Polytechnic University, Barcelona (Catalonia) SPAIN

14. Martin S Olivier; Dept. of Computer Science, Rand Afrikaans
University, Johannesburg SOUTH AFRICA
Ehud Gudes; Mathmatics and Computer Science, Ben-Gurion
University, Beer-Sheva, ISRAEL

15. LiWu Chang, Ira S Moskowitz; Center for High Assurance Computer
Systems, Naval Research Laboratory, Washington, DC, USA

16. Christina Yip Chung, Michael Gertz, Karl Levitt; Dept. of
Computer Science; University of California, Davis, CA, USA

17. Steve Barker; Cavendish School of Computer Science, University of
Westminster, London, ENGLAND

18. Adrian Spalka, Armin B Cremers; Dept. of Computer Science,
University of Bonn, Bonn, GERMANY

xiii

19. Arnon Rosenthal; The MITRE Corporation, Bedford, MA, USA
Edward Sciore; Boston College, Boston, MA, USA and The MITRE
Corporation, Bedford, MA, USA

20. John Hale, Rodrigo Chandia, Clinton Campbell, Mauricio Papa,
Sujeet Shenoi; Center for Information Security, Dept. of Computer
Science, University of Tulsa, Tulsa, OK, USA

21. Soon Ae Chun, Vijayalakshmi Atluri; MSIS Department, Rutgers
University and Center for Information Managemnt, Inegration and
Connectivity, Newark, NJ, USA

22. Sylvia Osborn; Dept. of Computer Science, The University of Western
Ontario, London, Ontario, CANADA

23. Profs. S.A. Demurjian, T.C. Ting, J. Balthazar, H. Ren, C. Phillips;
Computer Science & Engineering Dept. The University of Connecticut,
Storrs, CT, USA
P. Barr; The MITRE Corporation, Eatontown, NJ, USA

24. Wouter Teepe; Dept. of Technical Cognition Science, University of
Groningen, Groningen, THE NETHERLANDS
Reind van de Riet; Dept. of Mathmatics and Computer Science, Vrije
University, Amsterdam, THE NETHERLANDS
Martin Olivier; Dept. of Mathmatics and Computer Science, Rand
University, Johannesburg, SOUTH AFRICA

25. Jurgen Steger, Holger Gunzel, Andreas Bauer; Dept. of Database
Systems, University of Erlangen-Nuremberg, Erlangen, GERMANY

26. Marc Donner, David Nochin, Wendy Walasek; Morgan Stanley
Dean Witter, NY, NY USA
Dennis Shasha; New York University, NY, NY, USA

27. John R Campbell; Department of Defense, Fort Mead, MD, USA

28. Hasan M Jamil; Dept. of Computer Science; Mississippi State
University, MS, USA

29. James B Michael, Leonard T Gaines; Naval Postgraduate School,
Computer Science Dept., Monterey, CA, USA

xiv DATA AND APPLICATIONS SECURITY

30. Daniel Cvrcek; PhD Student at Dept. of Computer Science and
Engineering, Brno University of Technology, Brno, CZECH
REPUBLIC

31. Ari Moesriami Barmawi, Shingo Takada, Norihisa Doi; Dept. of
Computer Science, Graduate School of Science and Technology, Keio
University, JAPAN

32. Sejong Oh, Seog Park; Sogang University, Seoul, KOREA

33. Keiji Izaki, Katsuya Tanaka, Makoto Takizawa; Dept. of Computers
and Systems Engineering, Denki University, Tokyo, JAPAN

34. Reind van de Riet; Dept. of Mathmatics and Computer Science, Vrije
University, Amsterdam, THE NETHERLANDS
Radu Serban; Dept. of Mathmatics and Computer Science, Vrije
University, Amsterdam, THE NETHERLANDS
Sylvia Osborn; Dept. of Computer Science, The University of Western
Ontario, London, Ontario, CANADA
Arnon Rosenthal; The MITRE Corporation, Bedford, MA, USA
Vijayalakshmi Atluri; MSIS Department, Rutgers University and
Center for Information Managemnt, Inegration and Connectivity,
Newark, NJ, USA
Joachim Biskup; University of Dortmund, Dortmund, GERMANY

35 Bhavani Thuraisingham, The MITRE Corporation, Bedford, MA,
USA

CHAPTER 1

Protecting Information when Access is Granted for
Collaboration
Keynote 1

Gio Wiederhold
Dept. of Computer Science, Stanford University, Stanford CA 94305; gio@ cs. stanford.edu

Abstract: There are settings where we have to collaborate with individuals and
organizations who, while not being enemies, should not be fully trusted.
Collaborators must be authorized to access information systems that contain
information that they should be able to receive. However, these systems
typically also contain information that should be withheld. Collaborations can
be rapidly created, requiring dynamic alterations to security policies.
Classifying data to cover all current and possible access privileges is both
awkward and costly, and always unreliable.

An alternative approach to protection, complementing basic access control, is
to provide filtering of results. Filtering of contents is also costly, but provides
a number of benefits not obtainable with access control alone. The most
important one is that the complexity of setting up and maintaining specific,
isolated information cells for every combination of access rights held by
collaborators is avoided. New classes of external collaborators can be added
without requiring a reorganization of the entire information structure. There is
no overhead for internal use, i.e., for participants that are wholly trusted.
Finally, since documents contents rather than their labels are being checked,
cases of misfiled information will not cause inappropriate release.

The approach used in the TIHI/SAW projects at Stanford uses simple rules to
drive filtering primitives. The filters run on a modest, but dedicated computer
managed by the organization’s security officer. The rules implement the
institution’s security policy and must balance manual effort and complexity.
By not relying on the database systems and network facilities, and their
administrators a better functional allocation of responsibilities ensues.

2 DATA AND APPLICATIONS SECURITY

1. Introduction

There are data sources that are primarily intended for external access,
such as public web pages, reports, bibliographies, etc. These are organized
according to external access criteria. If some of the information is not
intended to be public, then security provisions are put into place. In more
complex settings several mandatory layers will exist, and protection may
require discretionary access control as well. When we deal with
collaborators more discretionary partitions will be needed, and those are
likely to overlap, creating combinatorial cells. Examples in the medical
domain include external research groups, various public health agencies,
pharmaceutical companies performing drug surveillance, as well as third-
party payors.

These collaborators are increasingly important in our complex
enterprises, and cannot be viewed as enemies. They may be part of a supply
chain, they may provide essential, complementary information, or may
supply specialized services, beyond our own capabilities. However, their
roles are often specific, so that they do not fit neatly into existing security
categories. The problem of managing security becomes impossibly
complex.

Today, security provisions for computing focus on controlling access. At
least five technological requirements interact in the process, and all of these
are will recognized in the literature:
1. Secure Communication, c.f. [He:97].
2. Perimeter Control, c.f. [CheswickB:94].
3. Reliable Authentication, c.f. [CastanoFMS:95]
4. Authorization to information cells, c.f. [GriffithW:76]
5. Partitioning of the information into cells, c.f. [LuniewskiEa:93]

The fifth requirement, often under-emphasized, is that there must be a
highly reliable categorization of all information to those cells [Oracle:99]. It
is in the management of that categorization where many failures occur, and
where collaborative requirements raise the greatest problem.

Relying on access control makes the assumption that all these five
conditions are fulfilled. Unfortunately, there are many situations where the
last one, namely perfect partitioning of the information into cells for disjoint
access is not realistic. A corporation may have large, existing databases
which were established before external access needed to be considered. In
modern environments access will be needed for off-site staff, corporate
salespersons, vendors which have contract relationships, government
inspectors, and an ever-increasing number of collaborators. The trend to
outsourcing of tasks that used to be internal exacerbates the problem.
Reorganizing corporate databases to deal with developing needs for external

Protecting Information when Access is Granted for Collaboration 3

access is costly and disruptive, since it will affect existing users and their
application. It is not surprising that security concerns were the cited as the
prime reason for lack of progress in establishing virtual enterprises
[HardwickS:96].

We encountered the problem initially in the manufacturing area, where
security concerns caused the interchange of manufacturing data to a
subcontractor to take many weeks, although they had installed compatible
CAD systems and high-speed datalinks. All drawings had to be printed,
inspected by a security specialist, verified, and edited if the design contained
information inappropriate for the subcontractor. The edited drawings could
then be copied and shipped to the contractor, who had to scan the paper
copies into their systems. The source of the problem is, of course, that the
design engineer makes drawings of the equipment to be built, with
justifications, finishing information, and explicit and implicit performance
criteria. The drawings are not initially produced to satisfy the capabilities of
an unknown subcontractor.

Our actual initial application domain was actually in healthcare. Medical
records are needed for many purposes: diagnosis, care delivery, drug
supplies, infection control, room assignments, billing, insurance claims,
validation of proper care, research, and public health records. Patient care
demands that the record be accessible in a comprehensive form and up-to-
date [Rindfleisch:97]. Historical information is important for disease
management, but not for many billing tasks. It is obviously impossible to
split the record into access categories that match every dimension of access.
Even if that would be possible, the cost and risks to the internal operations in
a hospital or clinic would be prohibitive. Expecting a physician to carry out
this task is unrealistic, and, if required, would greatly increase the cost of
healthcare.

Partitioning of the information into cells

The process of assigning categories to information involves every person
who creates, enters, or maintains information. When there are few cells,
these originators can understand what is at stake, and will perform the
categorization function adequately, although error in filing will still occur.
When there are many cells, the categorization task becomes onerous and
error prone. When new coalitions are created, and new collaborators must
share existing information system, the categorization task becomes
impossible.

A solution to excessive partitioning might be to assign accessors
combinations of access rights. This approach appears to invert the multi-
level security approach. Numerous research results deal with multi-level

4 DATA AND APPLICATIONS SECURITY

security within a computer system [LuntEa:90]. Several simple
implementations are commercially available, but have not found broad
acceptance, likely because of a high perceived cost/benefit ratio
[Elseviers:94]. These systems do not accommodate very many distinct cells,
and mainly support mandatory security levels [KeefeTT:89]. Leaks due to
inference are still possible, and research into methods to cope with this issue
is progressing [Hinke:88]. However few cases of exploiting these
weaknesses have been documented [Neuman:00].

However, break-ins still occur. Most of them are initiated via legitimate
access paths, since the information in our systems must be shared with
customers and collaborators. In that case the first three technologies provide
no protection, and the burden falls on the mappings and the categorization if
the information. Once users are permitted into the system, protection
becomes more difficult.

A complementary technology

The solution we provide to this dilemma is result checking
[WiederholdBSQ:96]. In addition to the conventional tasks of access control
the results of any information requests are filtered before releasing them to
the requestor. We also check a large number of parameters about the release.
This task mimics the manual function of a security officer when checking
the briefcases of collaborating participants leaving a secure meeting, on
exiting the secure facility. Note that checking of result contents is not
performed in standard security processing. Multi-level secure systems may
check for unwanted inferences when results are composed from data at
distinct levels, but rely on level designations and record keys. Note that
result checking need not depend on the sources of the result, so that it
remains robust with respect to information categorization, software errors,
and misfiling of data.

2. Filtering System Architecture

We incorporate result checking in a security mediator workstation, to be
managed by a security officer. The security mediator system interposes
security checking between external accessors and the data resources to be
protected, as shown in Fig.l. It carries out functions of authentication and
access control, to the extent that such services are not, or not reliably,
provided by network and database services. Physically a security mediator is
designed to operate on a distinct workstation, owned and operated by the
enterprise security officer (S.O.). It is positioned as a pass gate within the
enterprise firewall, if there is such a firewall. In our initial commercial

Protecting Information when Access is Granted for Collaboration 5

installation the security mediator also provided traditional firewall functions,
by limiting the IP addresses of requestors [WiederholdBD:98].

Figure 1. Functions provided by a TIHI/SAW Security Mediator

The mediator system and the source databases are expected to reside on
different machines. Thus, since all queries that arrive from the external
world, and their results, are processed by the security mediator, the databases
behind a firewall need not be secure unless there are further internal
requirements. When combined with an integrating mediator, a security
mediator can also serve multiple data resources behind a firewall
[Ullman:96]. Combining the results of a query requiring multiple sources
prior to result checking improves the scope of result validation.

The supporting database systems can still implement their view-based
protection facilities [GriffithsW:76]. These need not be fully trusted, but
their mechanisms add efficiency.

Operation

Within the workstation is a rule-base system which investigates queries
coming in and results to be transmitted to the external world. Any request
and any result, which cannot be vetted by the rule system, is displayed to the
security officer, for manual handling. The security officer decides to
approve, edit, or reject the information. An associated logging subsystem
provides an audit trail for all information that enters or leaves the domain.

6 DATA AND APPLICATIONS SECURITY

The log provides input to the security officer to aid in evolving the rule set,
and increasing the effectiveness of the system.

The software of our security mediator is composed of modules that
perform the following tasks
1. Optionally (if there is no firewall): Authentication of the requestor
2. Determination of authorization type (clique) for the requestor
3. Processing of a request for information (pre-processing) using the policy

rules
4. If the request is dubious: interaction with the security officer
5. Communication to internal databases (submission of certified request)
6. Communication from internal databases (retrieval of unfiltered results)
7. Processing of results (post-processing) using the policy rules
8. If the result is dubious: interaction with the security officer
9. Writing query, origin, actions, and results into a log file
10. Transmission of vetted information to the requestor

Item 7, the post-processing of the results obtained from the databases,
possibly integrated, is the critical additional function. Such processing is
potentially quite costly, since it has to deal thoroughly with a wide variety of
data. Applying such filters selectively, specifically for he problems raised in
collaborations, as well as the capabilities of modem computers and text-
processing algorithms, makes use of the technology feasible. A rule-based
system is used in TIHI to control the filtering, allowing the security policies
to be set so that a reasonable balance of cost to benefit is achieved. It will be
described in the next section.

Having rules, however is optional. Without rules the mediator system will
operate in fully paranoid mode. Each query and each result will be submitted
to the security officer. The security officer will view the contents on-line,
and approved, edit, or reject the material. Adding rules enables automation.
The extent of automation depends the coverage of the rule-set. A reasonable
goal is the automatic processing of say, 90% of queries and 95% responses.

Unusual requests, perhaps issued because of a new coalition, assigned to
a new clique, will initially not have applicable rules, but can be immediately
processed by the security officer. In time, simple rules can be entered to
reduce the load on the officer.

Traditional systems, based on access control to precisely defined cells,
require a long time to before the data are set up, and when the effort is great,
may never be automated. In many situations we are aware of, security
mechanisms are ignored when requests for information are deemed to be
important, but cannot be served by existing methods. Keeping the security
officer in control allows any needed bypassing to be handled formally. This
capability recognizes that in a dynamic, interactive world there will always
be cases that are not foreseen or situations the rules are too stringent.

Protecting Information when Access is Granted for Collaboration 7

Keeping the management of exceptions within the system greatly reduces
confusion, errors, and liabilities.

Even when operating automatically, the security mediator remains under
the control of the enterprise since the rules are modifiable by the security
officer at all times. In addition, logs are accessible to the officer, who can
keep track of the transactions. If some rules are found to be to liberal, policy
can be tightened. If rules are too stringent, as evidenced by an excessive load
on the security officer, they can be relaxed or elaborated.

3. The Rule System

The rules system is composed of the rules themselves, an interpreter for
the rules, and primitives, which are invoked by the rules. The rules embody
the security policy of the enterprise. They are hence not preset into the
software of the security mediator.

In order to automate the process of controlling access and ensuring the
security of information, the security officer enters rules into the system.
These rules are trigger analyses of requests, their results, and a number of
associated parameters. The interpreting software uses these rules to
determine the validity of every request and make the decisions pertaining to
the disposition of the results. Auxiliary functions help the security officer
enter appropriate rules and update them as the security needs of the
organization change.

The rules are simple, short and comprehensive. They are stored in a
database local to the security mediator system with all edit rights restricted
to the security officer. Some rules may overlap; in which case the most
restrictive rule automatically applies. The rules may pertain to requestors,
cliques of requestors having certain roles, sessions, databases tables or any
combinations of these.

Rules are selected based on the authorization clique determined for the
requestor. All the applicable rules will be checked for every request issued
by the requestor in every session. All rules will be enforced for every
requestor and the request will be forwarded to the source databases only if it
passes all tests. Any request not fully vetted is posted immediately to the log
and sent the security officer. The failure message is directed to the security
officer and not to the requestor, so that the requestors in such cases will not
see the failure and its cause. This prevents that the requestor could interpret
failure patterns and make meaningful inferences, or rephrase the request to
try to bypass the filter [KeefeTT:89].

The novel aspect of our approach is that security mediator checks
outgoing results as well. This is crucial since, from the security-point-of-
view, requests are inclusive, not exclusive selectors of content and may

8 DATA AND APPLICATIONS SECURITY

retrieve unexpected information. In helpful, user-friendly information
systems getting more than asked for is considered beneficial, but from a
security point-of-view being generous is risky. Thus, even when the request
has been validated, the results are also subject to screening by a set of rules.
As before, all rules are enforced for every requestor and the results are
accessible only if they pass all tests. Again, if the results violate a rule, a
failure message is logged and sent to the security officer but not to the
requestor.

Primitives

The rules invoke executable primitive functions which operate on
requests, data, the log, and other information sources. As new security
functions and technologies appear, or if specialized needs arise, new
primitives can be inserted in the security mediator for subsequent rule
invocation. In fact, we do not expect to be the source of all primitives. We
do hope that all primitives will be sufficiently simple that their correct
function can be verified.

Primitives that have been used include:
Assignment of a requestor to a clique
Limit access for clique to certain database table segments or columns
Limit request to statistical (average, median, ..) information
Provide number of data instances (database rows) used in a statistical
result
Provide number of tables used (joins) for result for further checking
Limit number of requests per session
Limit number of sessions per period
Limit requests by requestor per period
Block requests from all but listed sites
Block delivery of results to all but listed sites
Block receipt of requests by local time at request site
Block delivery of results by local time at delivery site
Constrain request to data which is keyed to requestor name
Constrain request to data which is keyed to request site name
Filter all result terms through a clique-specific good-word dictionary
Disallow results containing terms in a clique-specific bad-word
dictionary
Convert text by replacing identifies with non-identifying surrogates
[Sweeney:96]
Convert text by replacing objectionable terms with surrogates
Randomize responses for legal protection [Leiss:82]
Extract text out of x-ray images (for further filtering) [WangWL:98]

Protecting Information when Access is Granted for Collaboration 9

Notify the security officer immediately of failure reports
Place failure reports only in the log

Not all primitives will have a role in all applications.
Primitives can vary greatly in cost of application, although modern

technology helps. Checking for terms in results is costly in principle, but
modem spell-checkers show that it can be done fairly fast. For this task we
create clique-specific dictionaries, by initially processing a substantial
amount of approved results. In initial use the security officer will still get
false failure reports, due to innocent terms that are not yet in the dictionary.
Those will be incrementally added, so that in time the incidence of such
failures will be minimal.

For example, we have in use a dictionary for ophtamology, to allow
authenticated researchers in that field to have access to patient data. That
dictionary does not include terms that would signal, say HIV infection or
pregnancies, information which the patients would not like to see released to
unknown research groups. Also, all proper names, places of employment,
etc. are effectively filtered.

Figure 2. Extract from a report to the Security Officer

Several of these primitives are designed to help control inference
problems in statistical database queries [AdamW:89]. While neither we, nor
any feasible system can prevent leaks due to inference, we believe that
careful management can make reduce the probability [Hinke:88].
Furthermore, providing the tools for analysis, as logging all accesses will
reduce the practical threat [Hinke:88], [Sweeney:97]. The primitive to
enforce dynamic limits on access frequencies will often have to refer to the

10 DATA AND APPLICATIONS SECURITY

log, so that efficient access to the log, for instance by maintaining a large
write-through cache for the log, will be important. Here again the function
of traditional database support and security mediation diverges, since
database transaction are best isolated, where as inference control requires
history maintenance.

4. Logging

Throughout, the failures, as well as the request text and source, and
actions taken by the security officer, are logged by the system for audit
purposes. Having a security log that is distinct from the database log is
important since:

A database system logs all transactions, not just external requests, and is
hence confusingly voluminous
Most database systems do not log attempted and failed requests fully,
because they appear not to have affected the databases
Reasons for failure of requests in database logs are implicit, and do not
give the rules that caused them.

We provide user-friendly utilities to scan the security log by time, by
requestor, by clique, and by data source. Offending terms in results are
marked.

No system, except one that provides complete isolation, can be 100%
foolproof. The provision of security is, unfortunately, a cat-and-mouse game,
where new threats and new technologies keep arising. Logging provides the
feedback, which converts a static approach to a dynamic and stable system,
which can maintain an adequate level of protection. Logs will have to be
inspected regularly to achieve stability.

Bypassing of the entire system and hence the log remains a threat.
Removal of information on portable media is easy. Only a few enterprises
can afford to place controls on all personnel leaving daily for home, lunch,
or competitive employment. However, having an effective and adaptable
security filter removes the excuse that information had to be downloaded and
shipped out because the system was too stringent for legitimate purposes.
Some enterprises are considering limiting internal workstations to be
diskless. It is unclear how effective this approach will be outside of small,
highly secure domains in an enterprise. Such a domain will then have to be
protected with its own firewall and a security mediator as well, because
collaboration between the general and highly secure internal domains must
be enabled.

Protecting Information when Access is Granted for Collaboration 11

5. Current State and Further Work

Our initial demonstrations have been in the healthcare domain, and a
commercial version of TIHI is now in use to protect records of genomic
analyses in a pharmaceutical company. As the expectations for protection of
the privacy of patient data are being solidified into governmental regulations
we expect that our approach will gain popularity [Braithwaite:96]. Today
the healthcare establishment still hopes that commercial encryption tools will
be adequate for the protection of medical records, since the complexity of
managing access requirements has not yet been faced [RindKSSCB:97].
Expenditures for security in medical enterprises are minimal [NRC:97].
Funding of adequate provisions in an industry under heavy economic
pressures, populated with many individuals who do not attach much value to
the privacy of others, will remain a source of stress.

Non-textual contents

Identifying information is routinely deleted from medical records that are
disseminated for research and education. However, here a gap existed as
well: X-ray, MRI, and similar images accompany many records, and these
also include information identifying the patient. We have developed
software that recognizes such text using wavelet-based decomposition and
analysis, extracts it, and can submit to the filtering system developed in
TIHI. Information, which is determined to be benign, can be retained, and
other text is effectively removed by omitting high-frequency components in
the affected areas [WangWL:98].

We have also investigated our original motivating application area,
namely manufacturing information. Here the simple web-based interfaces
that are effective for the customer and the security officer interfaces in health
care are not adequate. We have demonstrated interfaces for the general
viewing and editing of design drawings and any attached textual
information. In drawings significant text may be incorporated in the
drawings themselves. When delivering an edited drawing electronically, we
also have to assure that there is no hidden information. Many design formats
allow undo operations, which would allow apparently deleted information to
reappear.

Before moving to substantial automation for collaboration in
manufacturing, we will have to understand the parameters for reliable
filtering of such information better. However, as pointed out initially, even a
fully manual security mediator will provide a substantial benefit to
enterprises that are trying to institute shared efforts rapidly.

12 DATA AND APPLICATIONS SECURITY

6. Conclusions

Security mediation provides an architectural function as well as a specific
service. Architecturally, expanding the role of a gateway in the firewall from
a passive filter to an active pass gate service allows concentration of the
responsibility for security to a single node, owned by the security officer.
Assigning responsibilities for security to database or network personnel, who
have primary responsibilities of making data and communication available,
will conflict with security concerns and is unwise. These people are
promoted to their positions because they have a helpful attitude and know
how to overcome problems of system failures and inadequacies. This
attitude is inherently in conflict with corporate and legal concerns for the
protection of data.

Existing services, as constraining views over databases, encryption for
transmission in networks, password management in operating systems can
be managed via the security mediator node.

The specific, novel service presented here, result checking, complements
traditional access control. We have received a patent to cover the concept.
Checking results is especially relevant in systems with many types of users,
including external collaborators, and complex information structures. In such
settings the requirement that systems that are limited to access-control
impose, namely that all data are correctly partitioned and filed is not
achievable in practice. Result checking does not address all issues of security
of course, as protection from erroneous or malicious updates, although it is
likely that such attacks will be preceded by processes that extract
information. A side-effect of result checking that it provides a level of
intrusion detection.

The rule-based approach allows balancing of the need for preserving data
security and privacy and for making data available. Data, which is too
tightly controlled, reduces the benefits of sharable information in
collaborative settings. Rules, which are too liberal, can violate security and
expectation of privacy. Having a balanced policy will require directions
from management. Having a single focus for execution of the policy in
electronic transmission will improve the consistency of the application of the
policy.

Result filtering does not solve all problems, in security, of course. They
rely still on a minimum level of reliability in the supporting systems. They
cannot compensate when information is missing or not found because of
misidentification. In general, a security mediator cannot protect from
inadvertent or intentional denial of information by a mismanaged database
system.

Acknowledgements

Research leading to security mediators was supported by an NSF HPCC
challenge grant and by DARPA ITO via Arpa order E017, as a subcontract
via SRI International. Steve Dawson was the PI at SRI. The commercial
transition was performed by Maggie Johnson, Chris Donahue, and Jerry
Cain under contracts with SST (www.2ST.com). Work on editing and
filtering graphics is due to Jahnavi Akalla and James Z. Wang, This paper is
a version of a broader paper being submitted to an IEEE Transaction.

References

[CastanoFMS:95] S.Castano, M.G. Fugini, G.Martella, and P. Samarati: Database Security;
Addison Wesley Publishing Company - ACM Press, 1995 pp. 456

[CheswickB:94].William R.Cheswick and Steven M. Bellovin: Stalking the Wily Hacker;
Addison-Wesley, 1994.

[Didriksen:97] Tor Didriksen: “Rule-based Database Access control – A practical
Approach””; Proc. 2nd ACM workshop on Rule-based Access Control, 1997, pp.143-151.

[Elseviers:94] Elseviers Advanced Technology Publications: Trusted Oracle 7; Computer
Fraud and Technology Bulletin, March 1994.

[GriffithsW:76] Patricia P. Griffiths and Bradford W. Wade: “An Authorization Mechanism
for a Relational Database System”; ACM Trans. on Database Systems, Vol.1 No.3,
Sept.l976, pp.242-255.

[HardwickS:96] M. Hardwick, D.L. Spooner, T. Rando, and KC Morris: "Sharing
Manufacturing Information In Virtual Enterprises"; Comm. ACM, Vol.39 no.2, pp.46-54,
February 1996.

[He:97] J. He: "Performance and Manageability Design in an Enterprise Network Security
System"; IEEE Enterprise Networking Miniconference 1997 (ENM-97), IEEE, 1997.

[Hinke:88] T. Hinke: “Inference Aggregation Detection in Database management Systems”;
Proc. IEEE Symposium on Security and Privacy, Oakland CA, April 1988.

[JohnsonSV:95?] Johnson DR, Sayjdari FF, Van Tassel JP.: Missi security policy: A formal
approach. Technical Report R2SPO-TR001, National Security Agency Central Service,
July 1995.

[KeefeTT:89] T. Keefe, B.Thuraisingham, and W.Tsai: “Secure Query Processing
Strategies”; IEEE Computer, Vol.22 No.3, March 1989, pp.63-70.

[LandwehrHM:84] Carl E. Landwehr, C.L. Heitmyer, and J.McLean: “A Security Model for
Military Message Systems”; ACM Trans. on Computer Systems, Vol.2 No.3, Aug. 1984,
pp. 198-222.

[LuniewskiEa:93] Luniewski, A. et al. "Information organization using Rufus" SIGMOD ’93,
ACM SIGMOD Record, June 1993, vol.22, no.2 p. 560-1

[LuntEa:90] Therea Lunt et al.: “The SeaView Security Model”; IEEE Trans. on Software
Eng., Vol.16 No.6, 1990, pp.593-607.

Protecting Information when Access is Granted for Collaboration 13

14 DATA AND APPLICATIONS SECURITY

[Neuman:00] Peter Neumann: Illustrative Risks to the Public in the Use of Computer Systems
and Related Technology”; SRI International, May 2000,
http://www.csl.ri.com/neumann/illustrative.html.

[Oracle:99] Oracle 81 Fine-grained Access Control, Oracle corporation, February 1999.
[QianW:97] Qian, XioaLei and Gio Wiederhold: “Protecting Collaboration”; abstract for

IEEE Information Survivability Workshop, ISW’97, Feb. 1997, San Diego.
[RindKSSCB:97] David M. Rind, Isaac S. Kohane, Peter Szolovits, Charles Safran, Henry

C. Chueh, and G. Octo Barnett: “Maintaining the Confidentiality of Medical Records
Shared over the Internet and the World Wide Web”; Annals of Internal Medicine 15 July
1997. 127:138-141.

[Rindfleisch:97] Thomas C. Rindfleisch: Privacy, Information Technology, and Health Care;
Comm. ACM; Vol.40 No. 8 , Aug.1997, pp.92-100.

[SchaeferS:95] M. Schaefer, G. Smith: “Assured discretionary access control for trusted
RDBMS”; in Proceedings of the Ninth IFIP WG 11.3 Working Conference on Database
Security, 1995:275-289.

[Seligman:99] Len Seligman, Paul Lehner, Ken Smith, Chris Elsaesser, and David Mattox:
"Decision-Centric Information Monitoring"; Jour, of Intelligent Information Systems
(JIIS), Vol.14, No. l.; also at http://www.mitre.org/pubs/edge/june_99/dcim.doc

[Sweeney:96] Latanya Sweeney: "Replacing personally-identifying information in medical
records, the SCRUB system" Cimino, JJ, ed. Proceedings, Journal of the American
Medical Informatics Association, Washington, DC: Hanley & Belfus, 1996, Pp.333-337.

[Sweeney:97] Latanya Sweeney: "Guaranteeing anonymity when sharing medical data, the
DATAFLY system"; Proceedings, Journal of the American Medical Informatics
Association, Washington DC, Hanley & Belfus, 1997.

[Ullman:97?] Jeffrey Ullman: Information Integration Using Logical Views; International
Conference on Database Theory (ICDT ’97) Delphi, Greece, ACM and IEEE Computer
Society, 1997.

[WangWL:98] James Z. Wang, Gio Wiederhold and Jia Li: Wavelet-based Progressive
Transmission and Security Filtering for Medical Image Distribution“; in Stephen Wong
(ed.): Medical Image Databases; Kluwer publishers, 1998, pp.303- 324.

[WiederholdBC:98] Gio Wiederhold, Michel Bilello, and Chris Donahue: "Web
Implementation of a Security Mediator for Medical Databases"; in T.Y. Lin and Shelly
Qian:Database Security XI, Status and Prospects, IFIP / Chapman & Hall, 1998, pp.60-
72.

[WiederholdBSQ:96] Gio Wiederhold, Michel Bilello, Vatsala Sarathy, and XiaoLei Qian: A
Security Mediator for Health Care Information"; Journal of the AMIAecurity Mediator for
Health Care Information"; Journal of the AMIA issue containing the Proceedings of the
1996 AMIA Conference, Oct. 1996, pp.120-124.

[WiederholdEa:96] Gio Wiederhold, Michel Bilello, Vatsala Sarathy, and XiaoLei Qian:
Protecting Collaboration; postscript); presented and published at the National Information
Systems Security Conference, 21 Oct. 1996; as Proceedings of the NISSC'96, Baltimore
MD, Oct. 1996, pp. 561-569.

CHAPTER 2

Author- A JAVA-BASED SYSTEM
FOR XML DATA PROTECTION*

E. Bertino, M. Braun, S. Castano, E. Ferrari, M. Mesiti

Abstract Author- is a Java-based system for access control to XML documents.
Author- implements a discretionary access control model specifically
tailored to the characteristics of XML documents. In particular, our sys-
tem allows (i) a set-oriented and single-oriented document protection, by
supporting authorizations both at document type and document level;
(ii) a differentiated protection of document/document type contents by
supporting multi-granularity protection objects and positive/ negative
authorizations; (iii) a controlled propagation of authorizations among
protection objects, by enforcing multiple propagation options.

Keywords: XML, access control, authorization base, eXcelon, Java.

1. Introduction
Since the Web is becoming the main information dissemination means

for most organizations, an increasing number of applications at Internet
and Intranet level need access control mechanisms enforcing a selective
access to information retrieved/exchanged over the Web. XML [9] has
recently emerged as the most relevant standardization effort in the area
of markup languages, and it is increasingly used as the language for
information exchange over the Web. In this context, developing an ac-
cess control mechanism in terms of XML is an important step for Web
information security.

In this paper, we present Author- a Java-based system for discre-
tionary access control to XML documents. Author- takes into account
XML document characteristics, the presence of document types (called
Document Type Definitions (DTDs)), and the types of actions that can
be executed on XML documents (i.e., navigation and browsing), for im-
plementing an access control mechanism tailored to XML. In particular,

*This work has been partially supported by a grant from Microsoft Research.

16 DATA AND APPLICATIONS SECURITY

Author- has the following distinguishing features: both a set-oriented
and instance-oriented document protection, by supporting DTD-level as
well as document-level authorizations; differentiated protection of XML
document and DTD contents by supporting positive and negative autho-
rizations and fine grained protection objects, identified on the basis of
the graph structure of XML documents and DTDs; controlled propaga-
tion of authorizations among protection objects at different granularity
levels, by enforcing multiple propagation options stating how an autho-
rization defined on a document/DTD applies by default to protection
objects at a finer granularity level within the document/DTD.

Author- exploits authorizations stored in an XML authorization
base and their propagation options to evaluate access requests issued by
users and determines if they can be completely satisfied, partially satis-
fied, or not satisfied at all. In case of a partially satisfied request, only a
view of the requested document (s) is returned by Author- Author-
is implemented in Java on top of the eXcelon data server [4], which is
used to store both the sources to be protected and the XML autho-
rization base of the system. Architectural and implementation issues of
Author- are described, with particular attention to the authorization
base and the access control mechanism. An application of Author- to
the protection of a real XML source, derived from the Sigmod Record
Articles XML Database [7], is presented.

As far as we know, Author- is the first tool, we are aware of, support-
ing XML document protection. In fact, research work in this field has
concentrated more on the development of access control models for Web
documents [6]. XML documents have a richer structure than HTML
documents and can be coupled with DTDs describing their structures.
Such aspects require the definition and enforcement of more sophisti-
cated access control mechanisms for XML, than the ones devised for
HTML. An access control model for XML documents has been recently
proposed in [3]. Such model borrows some ideas from previous models for
object-oriented databases and does not actually take into account some
peculiarities of XML. For example, the case of documents not conform-
ing/partially conforming to a DTD is not considered, and no support is
provided to the Security Officer for protecting such documents.

The paper is organized as follows. Section 2 summarizes character-
istics of the Author- discretionary access control model and describes
the overall system architecture. Section 3 describes the structure of an
XML source and of the authorization base. Section 4 presents the access
control module of Author- Section 5 illustrates expected interactions
of the Security Officer with Author- for authorization management.

Author- a Java-Based System for XML Data Protection 17

Finally, Section 6 concludes the paper and outlines future research di-
rections.

2. Overview of Author-
In the following we first briefly review the access control model of

Author- [1]. Then, we present its overall architecture.

2.1. Author- access control model
Authorizations in the Author- model have the following format:

< users, protection-objs, priv, prop-opt, sign >

Component users denotes a (set of) user(s) to which the authoriza-
tion applies. Component protection-objs denotes the (portions of)
documents/DTDs (called protection objects) to which the authorization
applies. The priv component denotes the access modes that can be
exercised on the protection objects specified in the authorization. We
support two different kinds of privileges: browsing and authoring priv-
ileges. Browsing privileges allow users to read the information in an
element (read privilege) or to navigate through its links (navigate priv-
ilege). Authoring privileges allow users to modify (or delete) the content
of an element (write privilege) or to append new information in an el-
ement (append privilege). The prop-opt component allows one to
specify how authorizations specified at a given level propagate to lower
level elements. The following options are provided: i) CASCADE: the
authorization propagates to all the direct and indirect subelements of
the element(s) specified in the authorization; 2) FIRST_LEV: the autho-
rization propagates only to all the direct subelements of the element (s)
specified in the authorization; 3) NO_PROP: no authorization propaga-
tion occurs. Finally, the component specifies whether the
authorization is a permission or a prohibition

In addition to such “explicit” propagation, Author- supports a form
of “implicit” propagation according to which an authorization specified
on a certain protection object o “applies by default” to a set of protection
objects that have a relationship with o. In Author- the relationships
considered for propagation are the element-to-subelements, element-to-
attributes, element-to-links relationships, deriving from the graph struc-
ture of documents and DTDs, and the DTD-to-instances relationship,
holding between a DTD and the set of its valid instances. Note that, the
possibility of specifying both positive and negative authorizations allows
the Security Officer to always override these “by default” propagation
principles.

18 DATA AND APPLICATIONS SECURITY

The possibility of specifying both positive and negative authorizations
introduces potential conflicts among authorizations, in that a user may
have two authorizations for the same privilege on the same protection
object but with different signs. These conflicting authorizations can
be either explicit or derived through propagation. We do not consider
the simultaneous presence of conflicting authorizations as an inconsis-
tency; rather we define a conflict resolution policy which is based on the
notion of most specific authorization. The conflict resolution policy of
Author- is based on the following principles: authorizations specified
at the document level prevail over authorizations specified at the DTD
level; authorizations specified at a given level in the DTD/document
hierarchy prevail over authorizations specified at higher levels; when
conflicts are not solved by the previous rules, we consider as prevailing
negative authorizations.

2.2. Architecture of Author-
Author- is built on top of eXcelon [4], an XML data server for build-

ing Web applications. EXcelon manages an XMLstore where the XML
data can be indexed and manipulated using the Document Object Model
(DOM) [8], and queried using the XQL language [5]. Programmers can
extend eXcelon functionalities by writing Java server extensions. The
purpose of server extensions is to extend the eXcelon server with custom
modules to cover specific application requirements.

Figure 1 shows the general architecture of an eXcelon document server
enhanced with Author- Author- components of the architecture are:

XMLStore, which is organized in two components: XML source,
which stores XML documents and DTDs to be protected, and

-base, the authorization base storing authorizations.

-core, which is the main component of the architecture. It is
composed of two Java server extensions, -access and -admin.

-access is the server extension implementing access control over
the XML source based on authorizations contained in -base.

-admin is the server extension providing support functionalities
to the Security Officer for authorization management.

-core is part of the eXcelon data server and interacts with the ex-
ternal environment by means of an eXcelon client API. Users and the
Security Officer interact with -core by means of specific user applica-
tions, or through the Web, using an eXcelon explorer or a Web server
extension. Users submit access requests which are processed by the

-access component of -core, and receive back the (portion of) re-

Author- a Java-Based System for XML Data Protection 19

Figure 1: Architecture of an eXcelon document server enhanced with
Author-

quested data in the XML source they are authorized for. The Security
Officer interacts with the -admin component of -core, for performing
administrative operations on authorizations in the -base.

3. Structure of Author- XMLStore
In this section, we describe in more detail the structure of the XML-

Store, i.e., the XML source and the -base.

3.1. XML source
The XML source component of the XMLStore contains XML docu-

ments to be protected with their DTDs, if defined. In particular, the
source can contain well-formed or valid documents. A well-formed doc-
ument is a document that follows the grammar rules of XML [9], while,
valid documents have an associated DTD defining their structure.

To illustrate functionalities of Author- we have defined an XML
source derived from the Sigmod Record Articles XML Database [7], con-
taining sigmod record documents and associated DTDs. Figure 2(a)
shows a portion of an XML document in the XML source. For each
sigmod record issue, the document provides information about the num-
ber and volume, and about articles therein contained. Each article is
characterized by information about title, authors, abstract, initial page
and final page in the issue. Moreover, information about related articles

20 DATA AND APPLICATIONS SECURITY

Figure 2: (a) An example of SigmodRecord XML document and (b)
its corresponding graph representation

is provided in the document. Figure 2(b) shows a graph representation
of the XML document in Figure 2(a). This representation is compliant
with the Document Object Model (DOM) specification [8] adopted by
eXcelon to internally represent XML documents.

3.2. -base
The -base part of the XMLStore is an XML file (auth.xml) stor-

ing authorizations on the XML source contents. Authorizations in the
-base conform to the DTD presented in Figure 3.
According to the DTD of Figure 3, authorizations are organized into

an authorizations XML document with a subelement users, denot-
ing users, and a subelement auths, denoting access authorizations. The
users subelement contains a user subelement for each user to be au-
thorized to access the XML source. Each user element is identified
by the login of the corresponding user (attribute id) and contains the
password of the user (attribute passwd). The auths element contains
an authspec subelement for each authorization given to a certain user
on the XML source. Each authspec element is characterized by the
following attributes:

userid: it contains a reference to the user to which the authoriza-
tion refers;

Author- a Java-Based System for XML Data Protection 21
\

Figure 3: -base DTD

target: it stores the file name of the XML document/DTD to
which the authorization refers;

path: it stores a path within the target document correspond-
ing to the specific protection object(s) to which the authorization
applies, path is based on the following notation, compliant with
Xpath [10] and XQL language [5]:

where: first symbol ‘/’ denotes the root element; TRGelem denotes
the name of a target element; TRGattr denotes the name of a tar-
get attribute;1 {elem/} denote optional intermediate element(s)
(separated by ‘/’) in the path from the root element to the target
element/attribute in the considered file, and [expr] is an optional
condition on an element/attribute content to select specific docu-
ment portions in the considered XML source files.

perm: it stores the authorization privilege (i.e., READ, NAVIGATE,
APPEND, or WRITE);

type: it stores the authorization type (i.e., GRANT, or DENY);

prop: it stores the propagation option of the authorization (i.e.,
NO_PROP, ONE_LEVEL, or CASCADE).

Example 1 An example of -base is shown in Figure 4. According to
this authorization base, users Mary and Rose are authorized to read all
information about issues contained in the Sigmod Record document of the
XML source, except articles’ abstract. Additionally, Mary is authorized
to read all the information about the article identified by WB99.

1 Symbol @ denotes attribute names as in Xpath and XQL.

22 DATA AND APPLICATIONS SECURITY

Figure 4: An example of -base

4. The -access component of Author-
The -access component of Author- enforces access control on the

XML source.
Users request access to documents under two different modalities:

browsing and authoring. A user requests a browsing access when he/she
wants to access a document (and navigating its links), without modi-
fying it, whereas, requests an authoring access when a modification of
the document is required. Access can also be requested wrt a specific
portion(s) of a document. Thus, an access request r is represented as
a tuple where user is the user
requesting the access, target is the XML document to which the access
is requested, path is a path within the requested document (specified
through an XQL query [5]) which eventually selects specific portions of
the requested document, andacc_modality {browsing, authoring}
specifies whether a browsing or authoring access is requested.

Upon issuing an access request r, -access checks which authoriza-
tions (both positive and negative) user has on the target document.
Such authorizations can be either explicitly stored in the -base or im-
plicitly given by the propagation policies enforced by Author- model.
Based on such authorizations, user can receive a view of the requested
document that contains only those portions for which he/she has a cor-
responding positive authorization which is not overridden by a negative
conflicting authorization. In the case of totally authorized requests, the
view coincides with the whole document (or with all the requested por-
tions in the case the user does not require the access to the whole doc-
ument). When, no positive authorizations are found for the requested
document, or all of them are overwritten by negative authorizations, the
access is denied.

Author- a Java-Based System for XML Data Protection 23

Figure 5: The access control process

To enforce access control, Author- adopts the following strategy:
all the elements and/or attributes for which user does not have an ap-
propriate authorization are removed from the target document, before
evaluating the path contained in the access request. The path is then
evaluated against such pruned version and the result is returned to user.
This strategy allows us to define an access control mechanism indepen-
dent from any query language. This possibility is very important, be-
cause XQL is not yet a standard query language.

For lack of space we do not report here the access control algorithm
implementing the above strategies. A detailed description of the algo-
rithm can be found in [1].

Example 2 Suppose that Rose submits the access request

Figure 5 shows the access control process. Author- extracts the brows-
ing authorizations for Rose (from the -base reported in Figure 4) and
evaluates them against the file SigmodRecord.xml. The result of the
evaluation is a graph, where each node is labeled with symbol “–”, if a
negative authorization applies to the corresponding attribute/element, or
with symbol “+”, if a positive authorization applies to the correspond-
ing attribute/element. The view to be returned to Rose is obtained by
pruning from the graph nodes with a label different from “+”, and by ex-
tracting from the resulting graph the elements/attributes identified by the
path: /issue/articles/ article[@id=’ WB99’]. As a result, a view of
article WB99 is returned to Rose (shown on the right hand side of Fig-
ure 5) that does not contain the abstract element.

Figure 6 shows the graphical interface provided by Author- for ac-
cess request submission (the access request is the one of Example 2).

〈 Rose, SigmodRecord.xml,/issue/articles/article[@id =’ WB99’],browsing〉

24 DATA AND APPLICATIONS SECURITY

Figure 6: Access request submission in Author-

The left hand side of the figure shows how the user can submit his/her
request, whereas the right hand side shows the corresponding result.

5. The -admin component of Author-
The -admin component of Author- is designed to support adminis-

trative operations on authorizations under responsibility of the Security
Officer. In particular, -admin supports the Security Officer in defining
new authorizations to protect XML documents in the XML source.

Author- supports two kinds of policies for authorization specifi-
cation: a DTD-based policy, in which authorizations are specified at
the DTD level, and propagated within the DTD due to the element-
to-subelements and the element-to-attributes/links relationships as well
as to all XML documents that are valid instances of the DTD, due
to the DTD-to-instances relationship, and a document-based policy, in
which authorizations are specified at the document level, and apply
only to the considered document. In this case, authorization propa-
gation occurs only due to the element-to-subelements and the element-
to-attributes/links relationships within the considered document.

Based on these policies, authorization management for valid and well-
formed documents can be enforced by the Security Officer in Author-
as follows:

Valid document protection: the DTD-based policy is adopted,
in that valid documents are instances of some DTD in the source.

a Java-Based System for XML Data Protection 25

As a consequence, the Security Officer specifies authorizations at
the DTD level which apply by default to all its valid document
instances. Exceptions to the policy defined at the DTD level are
modeled by specific authorizations defined in the -base on the in-
volved document instances. For instance, if all information in a set
of valid documents have the same protection requirements, then
the Security Officer invokes the definition of authorizations at the
DTD level, with the CASCADE option. By contrast, when different
subelement(s) (respectively, attributes/links) of a DTD need differ-
ent authorization policies, it is convenient to guarantee a minimal
common protection on the whole DTD by defining an authorization
with the NO_PROP or FIRST_LEV propagation option. A number of
additional authorizations are then defined on the subelement(s)
(respectively, attribute(s)/link(s)) of the DTD with the most ap-
propriate privileges and sign to enforce the policy holding on the
specific subelement(s) (respectively, attribute(s)/link(s)).

Well-formed documents: different approaches are supported
by Author- According to a classification-based approach, the
Security Officer decides to adopt the DTD-based policy also for
well-formed documents. To this end, well-formed documents to be
protected are first classified against available DTDs in the source,
with the goal of finding the “best matching” DTD. If such a DTD is
found by the tool, protection of a well-formed document is enforced
by propagating authorizations defined for the selected DTD to the
document. This propagation can be total or partial, depending on
the level of conformance between the well-formed document and
the selected DTD (conformance vs. partial conformance). In case
of partial conformance, the Security Officer can manually define
additional authorizations on non-matching portions of the well-
formed document, if necessary. According to an instance-based
approach, the Security Officer defines from scratch authorizations
needed to implement the access control policy for the considered
well-formed document (document-based policy). The document-
based policy is also adopted when no conforming DTD is found
after the classification process, and also when exceptions for the
policy defined in the selected DTD have to be specified, when the
classification-based approach is taken.
The classification-based approach exploits the propagation prin-
ciple to limit the manual activity of the Security Officer in the
definition of the authorization policy for a well-formed document.
The classification-based approach relies on suitable mechanisms to

26 DATA AND APPLICATIONS SECURITY

automatically derive all required authorizations for all the involved
users. The Security Officer can interactively validate derived au-
thorizations to check their suitability to the well-formed document
to be protected.

6. Concluding Remarks
In this paper, we have presented Author- a Java-based system for

access control to XML sources. Author- supports positive and negative
authorizations for browsing and authoring privileges with a controlled
propagation. Core functionalities of access control and authorization
base management have been implemented as Java server extensions on
top of the eXcelon data server. Currently, we are setting up a com-
prehensive administration environment, by developing interactive tool
support for the Security Officer to guide the choice of the best policy to
be adopted for document protection, based on the results of document
classification process.

References
[1] E. Bertino, M. Brawn, S. Castano, B. Ferrari, and M. Mesiti. Author-

a Java-Based System for XML Data Protection. In pre-Proc. of 14th IFIP
WG11.3 Working Conference on Database and Application Security. Schoorl,
The Netherlands, August, 2000.

[2] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specifying and Enforcing
Access Control Policies for XML Document Sources. World Wide Web Journal,
3(3), 2000.

[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Se-
curing XML Documents. In Proc. of EDBT, 2000.

[4] Object Design Inc. An XML Data Server for Building Enterprise Web Appli-
cations, 1998. http://www.odi.com/excelon.

[5] J.Robie.XQLTutorial,2000. http://www.ibiblio.org/xql/xql-tutorial.html.
[6] P. Samarati, E. Bertino, and S. Jajodia. An Authorization Model for a Dis-

tributed Hypertext System. IEEE TKDE, 8(4):555–562, 1996.
[7] Sigmod Record XML Database,http: //www.dia.uniroma3. it/Areneus/Sigmod/.
[8] W3C. Document Object Model 1, 1998. http://www.w3.org/DOM/.
[9] W3C. Extensible Markup Language 1.0, 1998. http://www.w3.org/TR/REC-xml.

[10] W3C. XML Path Language, 1.0, 1999. http://www.w3.org/TR/xpath.

Chapter 3

A FAIR-EXCHANGE E-COMMERCE PROTOCOL
WITH AUTOMATED DISPUTE RESOLUTION

Indrajit Ray
Department of Computer and Information Science
University of Michigan-Dearborn
indrajit@umich.edu

Indrakshi Ray
Department of Computer and Information Science
University of Michigan-Dearborn
iray@umich.edu

Natarajan Narasimhamurthi
Department of Electrical and Computer Engineering
University of Michigan-Dearborn
nnarasim@engin.umd.umich.edu

Abstract
In this paper, we present a fair-exchange electronic commerce (e-commerce)

protocol, based on using an online trusted third party, that ensures fairness and
prevents any party from gaining advantage by quitting prematurely from the
transaction or otherwise misbehaving. An important contribution of this protocol
is that the dispute resolution is taken care of within the protocol itself and does not
require manual intervention. Thus even if one of the parties disappear after the
transaction completion, the other party does not suffer in any manner. Another
noteworthy contribution is that the protocol allows the customer to verify that the
product he is about to receive is the one he actually ordered, before the customer
pays for the product. At the same time it ensures that the customer receives the
product if and only if the merchant gets paid for the product. All these features
are achieved without significantly increasing the communication overhead or
interactions with the third party as compared with similar protocols.

28 DATA AND APPLICATIONS SECURITY

1. INTRODUCTION
In an electronic commerce environment the merchants and the customers are

reluctant to trust each other and the following scenario is not uncommon. A
customer is not willing to pay for a product without being sure it is the correct
product sent by the merchant. A merchant is not willing to give the product
unless he is sure that he will receive payment. If the merchant delivers the
product without receiving the payment, the fraudulent customer may receive
the product and then disappear without trace, causing loss for the merchant. If
the customer pays before receiving the product, the merchant may not deliver
or may deliver some wrong product. To address this problem we propose a
fair exchange protocol that ensures the two parties get their respective items
without allowing either party to gain an advantage by quitting or otherwise
misbehaving.

Fair exchange protocols have been proposed in the context of electronic mails
[2, 8] and electronic transactions [1, 3]. Most of these works [1,2, 8] focus on
storing evidence that is to be used in case one party misbehaves. If a dispute
occurs, a judge looks at the evidence and delivers his judgment. This dispute
resolution is done after the protocol execution, that is, after the customer has
obtained his product or the merchant his money. However, such “after-the-
fact” protection [3,4] may be inadequate in an e-commerce environment where
the customer and the merchant may not have identifiable places of existence
and may be unreachable after the transaction. This motivates us to propose a
protocol in which dispute resolution is within the scope of the protocol.

The e-commerce protocol that we develop is based on a theory of cross
validation. A merchant has several products. He places a description of his
products and the encrypted products in a catalog server. If the customer is in-
terested in a product, he downloads the encrypted version of the product. When
the customer agress to purchase the product, the merchant sends it encrypted
with a second key such that this key bears a mathematical relation with the key
the merchant used when putting up the encrypted product on the catalog server.
The mathematical relation between the keys is such that the encrypted messages
compare if and only if the unencrypted messages compare. Thus, by comparing
the encrypted product received with the encrypted product that the customer
downloaded from the catalog, the customer can be sure that the product he is
about to pay for is indeed the product he wanted. Once the customer is satisfied
with his comparison, he sends his payment token to a trusted third party. At the
same time, the merchant sends the decrypting key to the third party. The third
party verifies the customer’s financial information and forwards the payment
token to the merchant and the decrypting key to the customer. Thus we ensure
that fairness is established in the protocol.

A Fair-exchange E-commerce Protocol with Automated Dispute Resolution 29

Tygar [7] has identified three desirable properties of a secure e-commerce
protocol. These are the money atomicity, goods atomicity and certified delivery
properties. To prevent any misbehavior during the execution of the protocol,
we propose a new property which we call the validated receipt property. This
property allows the customer to verify the contents of the product the merchant
is about to deliver before making the payment. We reason that our protocol
satisfies all of these properties.

The rest of the paper is organized as follows: Section 2 presents the theory
for cross validation and then introduces the validated receipt property. This
section also describes briefly the product validation process based on this val-
idated receipt property. Section 3 describes the complete protocol. Section
4 shows informally that the protocol has all the desirable properties of secure
e-commerce protocols. This section also discusses how transaction disputes are
resolved automatically without human arbitration. Finally, Section 5 concludes
the paper.

2. THEORY FOR CROSS VALIDATION
Before presenting our protocol we establish the theory of cross-validation

on which the protocol is based. For lack of space we omit the proofs for the
theorems presented here. The interested reader is referred to [6].

We assume that the item that needs to be validated by the customer, is trans-
ferred from the merchant to the customer in the form of a message. Examples
of such products are digital library items such as, electronic papers, magazines,
books, images, internet movies, music etc.

Definition 1 The set of messages is the set of non negative integers m that

Definition 2 For positive integers a, b and N, we say a is equivalent to b,
modulo N, denoted by mod n, if a mod n = b mod n.

Definition 3 For positive integers a, x, n and n > 1, if gcd(a, n) = 1 and
mod n, then x is referred to as the multiplicative inverse of a modulo

n. Two integers a, b are said to be relatively prime if their only common divisor
is 1, that is, gcd(a, b) = 1. The integers are said to be pairwise
relatively prime, if

Definition 4 The Euler’s totient function is defined as the number of
integers that are less than N and relatively prime to N.

are less than an upper bound N, i.e.

30 DATA AND APPLICATIONS SECURITY

Theorem 1 Euler’s theorem states that for every a and N that are relatively
prime,

Corollary 1 If 0 < m < N and and are
primes, then

Definition 5 A key K is defined to be the ordered pair where N is
a product of distinct primes, where M is the largest message in the
set of messages and e is relatively prime to e is the exponent and N
is the base of the key K.

Definition 6 The encryption of a message m with the key
denoted as [m,K], is defined as

Definition 7 The inverse of a key denoted by is an
ordered pair < d, N >, satisfying

Theorem 2 For any message m.

where and

Corollary 2 An encryption, [m, K], is one-to-one if it satisfies the relation

Definition 8 Two keys and are said to be
compatible if and and are relatively prime.

Definition 9 If two keys and are compatible,
then the product key, is defined as

Lemma 1 For positive integers a, N1 and N2,

Theorems For any two messages m and such that

where is the key is the key and is the
product key

A Fair-exchange E-commerce Protocol with Automated Dispute Resolution 31

2.1. VALIDATED RECEIPT PROPERTY
The validated receipt property is stated as follows:

Validated Receipt A customer is able to ensure that the product he is about to
receive from the merchant is the same as the product he ordered, before
the customer pays for the product.

Our protocol achieves the validated receipt property using the results of
theorem 3. Let m be the product to be delivered. The values and are
public. The merchant generates the set of keys and sends m, and

to a trusted third party. The trusted third party computes
(that is encrypts m with the key and places T at a public place, henceforth
called the catalog, as an advertisement for m. When the customer decides to
purchase m from the merchant, the customer acquires T from the catalog and
keeps it for future validation of the product received.

To sell m to the customer, the merchant selects a second set of keys
such that is compatible with according to definition 8. The merchant
escrows the key with the trusted third party and provides the customer
with

The customer verifies that T and C are encryption of the same message m
by verifying: as per equation (4)

When satisfied, the customer requests the key from the trusted third
party and decrypts C to obtain m using

The proof of correctness follows from theorem 3:

if and only if

3. THE COMPLETE PROTOCOL
3.1. ASSUMPTIONS

We make the following assumptions in the protocol:

1 We assume the existence of an on-line trusted third party.

2 Before the protocol is initiated, mutual authentication takes place between
the trusted third party, the customer and the merchant and secure channels
are set up between them. All communications are assumed to occur
over these secure channels so that confidentiality of messages in transit
is ensured. Note, we do not assume that integrity of messages will be
ensured; nor do we assume that the secure channels are immune to replay
attacks.

32 DATA AND APPLICATIONS SECURITY

3 We assume that a message transmitted over a channel is guaranteed to be
delivered.

4 We assume that all encryptions are strong enough that the receiver of an
encrypted message is unable to decrypt the message without the appro-
priate key.

5 All parties use the same algorithm for encryption as well as for generating
cryptographic checksums.

6 Financial institutions are assumed to be trusted. The customer and its
financial institution shares a secret key that was established when the
customer opened an account with the financial institution.

7 Payment for product is in the form of a token, that is accepted by the
merchant.

8 The merchant advertises the product with the trusted third party by keep-
ing an encrypted copy of the product, with the trusted third party,
together with a description of the product. Note that the merchant ac-
tually creates the key pair and and sends and to
the trusted party. The trusted third party performs the encryption before
advertising the product on the catalog. We prefer this approach over the
merchant providing the encrypted copy of the product, because, in this
manner, the trusted third party is able to certify that the product meets its
claims.

Table 3.1 lists the notations used in the description of the protocol.

3.2. PHASE 1: INTENT TO PURCHASE PRODUCT
1

2 C M:PO= {purchase-order,[CC(purchase-order),
where purchase-order = {PID,C,M,Agreed_Price, }

Message 1 The customer browses the product catalog located at the trusted third
party, and chooses the product m he wants to buy. Then he gets the encrypted
form of the product, namely, together with the product identifier, PID.
Message 2 The customer decides on a price (Agreed_Price) to pay for the prod-
uct and prepares a purchase order. The purchase order contains the following
information:

(i) the product identifier, PID

(ii) the customer’s identity, C

A Fair-exchange E-commerce Protocol with Automated Dispute Resolution 33

Figure 3.1. Messages exchanged in the e-commerce protocol

(iii) the identity of the merchant, M

34 DATA AND APPLICATIONS SECURITY

(iv) the price of the product, Agreed_Price, and

(v) a nonce, from the customer.

The customer generates a cryptographic checksum of the purchase-order and
then digitally signs the digest. The cryptographic checksum of the purchase-
order forestalls debate over the details of the order, or whether the order was
received completely and correctly. The customer’s signature forestalls debate
over whether the customer expressed intention to purchase the product. The
nonce, in the purchase order forestalls a replay of the purchase order with
the merchant.

The purchase order and its signed checksum, together henceforth called PO,
is then forwarded to the merchant.

3.3. PHASE 2: KEY ESCROW AND PRODUCT
DELIVERY

3

4

Message 3 The merchant endorses the purchase order received from the cus-
tomer, provided the merchant agrees to all its contents (that is, the Agreed_Price
is indeed the price agreed upon for the product m); the merchant then digitally
signs the cryptographic checksum of the purchase-order bearing the customer’s
signature, that is [CC(purchase-order), and forwards it to the trusted third
party. This prevents the merchant claiming later on that he hadn’t agreed to the
terms and conditions of the transaction.

The merchant, at this time, generates a second set of keys and
such that and are compatible. He encrypts m with the product key,

and prepares a cryptographic checksum, from it.
The merchant digitally signs this digest and forwards it, together with the key

to the trusted third party. The signed digest for provides
certified delivery.
Message 4 To the customer the merchant sends the encrypted product

together with its signed cryptographic checksum
The signed cryptographic checksum establishes origin of the product and also
forestalls debate over the product being corrupted in transit.

3.4. PHASE 3: PRODUCT VALIDATION AND
PAYMENT FOR PRODUCT

5

A Fair-exchange E-commerce Protocol with Automated Dispute Resolution 35

Message 5 The customer validates the product by comparing with
(as outlined in Section 2.1). If the two compare, the customer

requests the decrypting key, from the trusted third party. To do this,
the customer forwards to the trusted third party, PO (as generated in Phase 1
above), signed payment token, together with its cryptographic checksum,
and a signed cryptographic checksum of the encrypted product received, [m,

The payment token contains the following information:

(i) the identity of the customer’s financial institution,

(ii) the customer’s identity, C

(iii) the customer’s account information with the financial institution,

(iv) the amount to be debited from the customer’s account, Agreed_Price and

(v) a nonce of the customer,

The customer’s account information is encrypted with the secret key, CF,
shared between the customer and his financial institution. This ensures that
nobody other than the customer and his financial institution can access this
information. The nonce, in the payment token ensures that it is not suscep-
tible to replay attacks. The customer prepares a digest of the payment token,

and then digitally signs the token and the digest. The digest forestalls
debate over the contents of the payment token and the customer’s signature
forestalls debate by customer regarding amount debited from his account.

The signed cryptographic checksum of the product received,
ensures certified delivery.

3.5. PHASE 4: PRODUCT AND PAYMENT RECEIPT
6

7

Messages 6 and 7 The trusted third party first compares the digest included
in PO from the customer (received in Message 5), with the digest of the same
from the merchant (as received in Message 3). If the two do not compare the
trusted third party aborts the transaction. If they do, the trusted third party
next validates the payment token with the customer’s financial institution by
presenting the token as well as the agreed upon sale price, Agreed_Price (from
the purchase-order). The financial institution validates the token only if the
two prices (the one from the payment token and the one supplied by the trusted
third party) match and the customer has sufficient funds in his account for the
payment. If the token is not validated, the trusted third party aborts the protocol

36 DATA AND APPLICATIONS SECURITY

by informing the merchant about this. If token is validated, the trusted third
party sends the decrypting key to the customer and the payment token
to the merchant, both digitally signed with the trusted third party’s private key.

4. PROTOCOL ANALYSIS
The e-commerce protocol presented here satisfies all the desirable properties

of secure e-commerce protocols. Secure channels guarantee the confidentiality
of all messages. Transmission freshness of request and/or response is guaran-
teed by including nonces within the relevant messages. Non-repudiation of the
origin for the request and/or response is provided because, wherever required,
such requests and/or responses are digitally signed by the sender’s private keys.

The protocol ensures money atomicity as follows: The payment token gen-
erated by the customer contains the amount to be debited from the customer’s
account and credited to the merchants account. Consequently no money is
created or destroyed in the system (comprising of the merchant’s account and
the customer’s account) by this protocol. Moreover, the nonces in the payment
token ensure that the merchant cannot debit the customer’s account multiple
times for the same purchase.

Goods atomicity is ensured because the trusted third party hands over the
payment token only when the customer acknowledges the receipt of the product;
the protocol also ensures that the product is actually available to the customer for
use, only when the customer gives the go-ahead for payment (by acknowledging
the receipt of the good).

Certified delivery is achieved as follows. The trusted third party receives a
cryptographic checksum of the product from the merchant. Also the customer
independently generates a checksum of the product received and sends it to
the trusted third party. Using these two copies of the cryptographic checksums
available at the trusted third party both the merchant and the consumer are able
to give non-repudiable proof of the contents of the delivered goods.

Finally validated receipt is ensured in the protocol. This has been illustrated
earlier in section 2.1.

4.1. DISPUTE HANDLING
Our e-commerce protocol, is able to handle almost all possible dispute sce-

narios without human arbitration.

Customer complains that product is not as advertised Such a complaint is
prevented in the protocol because the trusted third party is involved in
advertising the product on the catalog. Recall that the trusted third party
receives m, and from the merchant together with a description
of m. The trusted third party compares m with its description before
encrypting m with key and placing it on the catalog.

A Fair-exchange E-commerce Protocol with Automated Dispute Resolution 37

Customer complains about incorrect or damaged product The validated re-
ceipt property ensures that the customer requests the decryption key,
only after the customer is satisfied that the product received is correct.
Consequently, if such a complaint is ever made, it is not entertained.

Customer complains about incorrect decryption key The trusted third
party takes the following steps:

1 From the copy, that the trusted third party has on the catalog,
it gets the product m and sends it to the customer.

2 The trusted third party may optionally take appropriate action with
the merchant to prevent such problem/fraud in future.

Customer complains that he was charged more than what he agreed to The
trusted third party has a copy of the purchase order, PO, signed by the
customer and hence a proof of what the customer agreed to pay. Conse-
quently, such a claim is not entertained.

Customer complains that he has been wrongly charged The trusted third part;
can settle this dispute by producing the signed purchase order.

Merchant complains of inadequate payment Such a claim is not entertained
because the trusted third party validates the payment token with the cus-
tomer’s financial institution.

Merchant complains that payment token was not received The trusted third
party re-delivers the payment token. Note that even if the merchant re-
ceives the payment token multiple times, it can be used only once because
of the presence of the customer’s nonce in the payment token.

5. CONCLUSION AND FUTURE WORK
In this work we have proposed a new e-commerce protocol for performing

business over the Internet. The protocol relies on an online trusted third party.
An important feature of this protocol is that it tries to avoid disputes between
the transacting parties. If disputes still arise, the protocol can handle these
automatically, without manual intervention and within the protocol itself. The
protocol allows the customer to be confident that he is paying for the correct
product before actually paying for it. The protocol also ensures that the customer
does not get the product unless he pays for it and that the merchant does not get
paid unless he delivers the product.

A major bottleneck in the protocol is the trusted third party. Not only is
the performance of the trusted third party an issue, but also its vulnerability
to denial of service attacks. However, this is not a problem which is limited
to our protocol. This bottleneck is present in all e-commerce protocols that

38 DATA AND APPLICATIONS SECURITY

require a trusted third party for their operation. We are currently investigating
two approaches to reduce this problem. In the first approach we are looking
at ways to modify the protocol to reduce the interactions with the trusted third
party. In the second approach we are looking at the multiple roles played by the
trusted third party and ways to distribute these roles over a number of (possibly)
semi-trusted third parties. This second approach will also help in making our
protocol fault-tolerant.

Acknowledgment
The works of Indrajit Ray and Indrakshi Ray were partially supported by

the NSF under grant EIA 9977548 and by a Faculty Research Grant from the
University of Michigan-Dearborn.

References

[1] B. Cox, J. D. Tygar, and M. Sirbu. NetBill Security and Transaction Proto-
col. In Proceedings of the First USENIX Workshop in Electronic Commerce,

[2] R. H. Deng, L. Gong, A. A. Lazar, and W. Wang. Practical Protocols for
Certified Electronic Mail. Journal of Network and System Management,
4(3), 1996.

[3] S. Ketchpel. Transaction Protection for Information Buyers and Sellers.
In Proceedings of the Dartmouth Institute for Advanced Graduate Studies
’95: Electronic Publishing and the Information Superhighway, 1995, 1995.

[4] S. Ketchpel and H. Garcia-Molina. Making Trust Explicit in Distributed
Commerce Transactions. In Proceedings of the Sixteenth International
Conference on Distributed Computing Systems, pages 270–281,1996.

[5] National Institute of Standards. FIPS 180: Secure Hash Standard, April
1993. Federal Information Processing Standard.

[6] I. Ray, I. Ray, and N. Narasimhamurthi. A Fair-exchange E-commerce
Protocol with Automated Dispute Resolution. Technical Report CIS-TR-
010-00, Computer and Information Science Department, University of
Michigan-Dearborn, 2000.

[7] J. D. Tygar. Atomicity in Electronic Commerce. In Proceedings of the 15th
Annual ACM Symposium on Principles of Distributed Computing, pages
8–26, May 1996.

[8] J. Zhou and D. Gollmann. A Fair Non-repudiation Protocol. In Proceed-
ings of the 1996 IEEE Symposium on Security and Privacy, pages 55–61,
Oakland, California, May 1996.

pages 77–88, July 1995.

CHAPTER 4

XML ACCESS CONTROL SYSTEMS:
A COMPONENT-BASED APPROACH

E. Damiani1 S. De Capitani di Vimercati2 S. Paraboschi3 P. Samarati1

(1) Università di Milano, Polo di Crema, 26013 Crema - Italy
(2) Università di Brescia, 25123 Brescia - Italy
(3) Politecnico di Milano, 20133 Milano - Italy

Abstract We recently proposed an access control model for XML information that
permits the definition of authorizations at a fine granularity. We here
describe the design and implementation of an Access Control Processor
based on the above-mentioned model. We also present the major issues
arising when integrating it into the framework of a component-based
Web server system.

1. INTRODUCTION
XML [2] promises to have a great impact on the way information is exchanged

between applications, going well beyond the original goal of being a replacement for
HTML. Given the ubiquitous nature of XML, the protection of XML information will
become a critical aspect of many security infrastructures. Thus, the investigation of
techniques that can offer protection in a way adequate to the peculiarities of the XML
data model is an important research goal.

Current solutions do not address the peculiarities of the security of XML infor-
mation. Web servers may easily export XML documents, but their protection can
typically be defined only at the file system level. Our proposal, presented in [3, 4],
introduces an access control model for XML data that exploits the characteristics of
XML documents, allowing the definition of access control policies that operate with
a fine granularity, permitting the definition of authorizations at the level of the single
element/attribute of an XML document.

The focus of this paper is the design and implementation of a system offering the
services of our access control model. We first give in Section 2 a brief description
of the approach. Then, in Section 3 we describe the high-level software architecture.
Section 4 presents the IDL interfaces of the classes which implement the services of
the access control system. Finally, Section 5 is dedicated to the integration of the
access control system with Web based systems.

40 DATA AND APPLICATIONS SECURITY

The analysis contained in this paper derives from the experience we gained in the
implementation of the current prototype of the system; our results should be helpful
to those considering the implementation of security mechanisms in the WWW/XML
context.

2. XML ACCESS CONTROL MODEL
The access control model we present is based on the definition of authorizations

at the level of the elements and attributes of an XML document.
A natural interpretation for XML documents is to consider them as trees, where

elements and attributes correspond to nodes, and the containment relation between
nodes is represented by the tree arcs. Authorizations can be local, if the access
privilege they represent applies only to a specific element node and its attributes,
or can be recursive, if the access is granted/denied to the node and all the nodes
descending from it (i.e., the nodes that in the textual representation of an XML
document are enclosed between the start and end tags).

We identified two levels at which authorizations on XML documents can be defined,
instance and DTD (Document Type Definition, a syntax defining the structure of the
document). DTD level authorizations specify the privileges of all the documents
following a given DTD, whereas instance level authorizations denote privileges that
apply only to a specific document. The distinction between the two authorization
types may correspond to the distribution of responsibilities in an organization, as
DTD authorizations may be considered derived from the requirements of the global
enterprise, whereas authorizations on the instance may be the responsibility of the
creator of the document. We also hypothesize that normal DTD authorizations are
dominated by instance level ones (following the general principle that more specific
authorizations win [6, 9] and that an instance level authorization is more specific
than a DTD level one), but we also consider the need for an organization to have
assurance that some of the DTD authorizations are not overruled. Thus, we permit
the definition of hard DTD authorizations, which dominate instance level ones. For
cases where instance level authorizations must be explicitly defined as valid only if
not in conflict with DTD level ones, we designed soft instance level authorizations.

Each authorization has five components: subject, object, type, action and sign.
The subject is composed by a triple that describes the user or the group of users to
which the authorization applies, combined with the numeric (IP) and symbolic (DNS)
addresses of the machine originating the request. This triple can thus permit to define
controls that consider both the user and the location. Wild card character * permits
the definition of patterns for addresses (e.g., 131.* for all IP addresses having 131 as
first component, or *. it for all addresses in the Italian domain). The authorization
applies on the request only if the triple of parameters of the requester is equal or
more specific in all three components of the authorization subject. For example, an
authorization with subject <Student,131.175.*,*.polimi.it> will be applied to a
request from <Ennio,131.175.16.43,pcenn.elet.polimi.it>, if Ennio is a mem-
ber of group Student. The object is identified by means of an XPath [13] expression.
XPath expressions may be used to identify document components in a declarative
way, but they can also use navigation functions, like child, offering a standard and
powerful way to identify the elements and attributes of an XML document. The type
can be one of eight values, arising from the combination of three binary properties:
DTD level or instance level; local or recursive; normal or soft/hard. The eight types,
in order of priority, are: local DTD level hard (LDH), recursive DTD level hard

XML Access Control Systems: A Component-Based Approach 41

(RDH), local instance level (L), recursive instance level (R), local DTD level (LD),
recursive DTD level (RD), local instance level soft (LS), recursive instance level soft
(RS). Since currently, most XML applications offer read-only access, the action cur-
rently supported by our prototype is only read.
A positive authorization sign specifies that the authorization permits access, a nega-
tive sign instead forbids it.

Authorizations are then evaluated according to the following principles:

If two authorizations are of a different type, the one with the higher priority
wins (e.g., between LD and LS, LD wins).

If two authorizations have the same type, but the object of one is more spe-
cific, the more specific wins (e.g., a recursive authorization for an element is
dominated by authorizations on its subelements).
If two authorizations have the same type and are on the same object, but the
subject of one is more specific, the more specific wins (e.g., an authorization
for the Public group is dominated by an authorization for the specific user
Ennio).

When none of the above criteria is met, a site-specific general resolution policy
is used (e.g., assuming a closed access control policy, the negative authorization
wins).

We refer to the presentations in [3, 4] for a complete overview of the characteristics
of our solution. In this paper we intend to focus on the design and implementation
of a system for access control.

3. SOFTWARE ARCHITECTURE: AN
OUTLINE

For the access control technique outlined in Section 2 to be of any interest from the
software designer point of view, it must be suitable for clean integration in the frame-
work of XML-based WWW applications. To clarify this point, we shall briefly intro-
duce the use of an XML Access Control Processor (ACP) as a part of a component-
based Web service [5], where a set of reusable components are responsible of processing
user requests.

The sample UML Sequence Diagram shown in Figure 1 gives a general idea of the
internal operation of our processor and of its integration in a Web server system. For
the sake of simplicity, in this Section we shall not deal with the transformation of the
XML document, which is hidden inside a container ACP object. Also, Figure 1 does
not show provisions for persistence management and caching. The ACP object wraps
up entirely the computation of access permissions to individual elements and the final
transformation to be performed on the XML document. The standard operation of
a Web server receiving a HTTP request (1) from a user is represented in Figure 1
by the creation of a transient Connection Handler object (2). Then, a Processor
is activated by the Connection Handler, and an ACP object is instantiated (3). In
turn, ACP creates a Subjects object which fully encapsulates the subjects’ hierarchy
(4). After getting the available data about the user/group of the requestor, together
with the IP address and symbolic name (5), ACP signals to a static Loader/Parser
object to upload the requested XML document (6). The Loader/Parser translates the
document into a low level object data structure based on the Document Object model
(DOM) (not shown in Figure 1) more suitable for modification. Then, the ACP

42 DATA AND APPLICATIONS SECURITY

Figure 1 Sequence diagram

modifies the data structure according to the permissions, using the services of the
transient Subjects object which fully encapsulates the subjects’ hierarchy. Messages
sent to the Subjects object (7) allow the ACP object to position the requestor in the
subjects’ hierarchy. After computing the transformation, the ACP object signals to
the Parser (8) that the data structure can be returned to its text format, ready to be
served to the user by the Connection Handler (9).

From the architectural point of view, it should be noted that our design is fully
server side: all the message exchanges of Figure 1 except the connection itself (1) take
place on the server. Client-side processing strategies (including client-side caching,
and caching proxy servers) have been traditionally used for HTML. However, client-
side solutions have been found to be less apt at XML-based Web services [5], where
the contents to be transferred usually require extra processing. There may well be
cases where negotiation could be envisioned between the client and the server as to the
kinds of XML content transformations that are possible by the server and acceptable
to the client; but it is clear that client-side techniques must be excluded from any
sound implementation of access control. As we will see in Section 4.3, the fictitious
ACP object is indeed a complex object inheriting from Java Servlet class.

4. THE XML-AC PACKAGE
The interface offered by the XML-AC system can be represented by a set of classes

modeling the entities and concepts introduced by the access control model. Two major
class families are used: one constitutes an extension of the DOM Interface defined by
the W3C, the other describes all the concepts on which the ACP system is based.

4.1. ARCHITECTURAL OBJECTS: THE
SECUREDOM HIERARCHY

Our system, like most XML applications, internally represents XML documents
and DTDs as object trees, according to the Document Object Model (DOM) specifica-
tion [12]. DOM provides an object-oriented Application Program Interface (API) for
HTML and XML documents. Namely, DOM defines a set of object definitions (e.g.,

XML Access Control Systems: A Component-Based Approach 43

Element, Attr, and Text) to build an object-oriented representation which closely
models the document structure. While DOM trees are topologically equivalent to
XML trees, they represent element containment by means of the object-oriented part-
of relationship. For example, a document element is represented in DOM by an
Element object, an element contained within another element is represented as a
child Element object, and text contained in an element is represented as a child Text
object. The root class of the DOM hierarchy is Node, which represents the generic
component of an XML document and provides basic methods for insertion, deletion
and editing; via inheritance, such methods are also defined for more specialized classes
in the hierarchy, like Element, Attr and Text. Node also provides a powerful set of
navigation methods, such as parentNode, firstChild and nextSibling. Navigation
methods allow application programs to visit the DOM representation of XML doc-
uments via a sequence of calls to the interface. Specifically, the NodeList method,
which returns an array containing all the children of the current node, is often used
to explore the structure of an XML document from the root to the leaves.

We extended the DOM hierarchy associating to the members of the class hierarchy
a Secure variant. Each Secure variant extends the base class with references to all
the authorizations which can be applied to the node. Internally, each class separates
the references to authorizations into 8 containers, depending on the authorization
type. Each container internally keeps a list of positive and negative authorizations
of the type. The IDL interface common to all Secure classes, written in IDL, the
OMG-CORBA standard Interface Definition Language, is:

interface Secure{
void addAuthorization (in Authorization AuthToAdd);
AuthorizationLabel defineFinalLabel

(in AuthorizationLabel FatherAuthRecHard,
in AuthorizationLabel FatherAuthRec,
in AuthorizationLabel FatherAuthRecDTD,
in AuthorizationLabel FatherAuthRecSoft);

void prune();}
From this interface is possible to define the interfaces of each Secure variant of

the DOM classes, using multiple inheritance in IDL definitions. For example, the
definition of the SecureNode class is interface SecureNode: Node, Secure {}.

The extension imposes a limited increase in the cost of the document representa-
tion. Indeed, the containers can be implemented with dynamic structures, occupying
space only when authorizations are actually associated with the node. The node con-
tains references to the full description of the authorizations, kept in a separate area of
memory. In this way, there are no redundancies and, since in the evaluation of access
control authorizations must not be modified, the use of references is fully adequate.

4.2. APPLICATION OBJECTS: THE ACCESS
CONTROL CLASSES

We describe here the main classes of the Access Control Processor: UserGroup,
User, AuthorizationLabel, AuthorizationType, AuthorizationSubject and finally
Authorization.

Class UserGroup describes the features common to a user and a group: both have a
name and appear in the user/group hierarchy. The services offered by the class are the
storage of the hierarchy on users/groups, method addDescendent that permits to add
anew user/group in the hierarchy, andmethodisEqualOrMoreSpecific that permits
to determine if a user/group belongs, directly or indirectly, to another user/group.

44 DATA AND APPLICATIONS SECURITY

interface UserGroup{
attribute string Name;
void addChild (in UserGroup ChildToAdd);
boolean isEqualOrMoreSpecific (in UserGroup UserGroupToCompare);}

Class User is a specialization of class UserGroup and extends it with all the in-
formation specific to users, like the real person name. Method checkPassword im-
plements the cryptographic function that determines if the password returned by the
user corresponds to the stored value.

interface User: UserGroup{
attribute string FirstName;
attribute string LastName;
boolean checkPassword(in string PasswordToCheck);
void setPassword(in string NewPassword);}

Class AuthorizationLabel contains an enumerative type that describes the three
values (positive, negative, and undefined) of the security label that can be assigned
to a node, after the evaluation of the existing authorizations. Its methods permit to
set and retrieve the value.

interface AuthorizationLabel{
enum Label_t (positive, negative, undefined);
attribute Label_t label;
void setPositive();
void setNegative();
void setUndefined();
boolean isPositive();
boolean isNegative();
boolean isUndefined();}

Class AuthorizationType describes the possible types of authorization. Its meth-
ods permit to set and to retrieve the authorization type (local or recursive, on the
document or on the DTD, and hard or soft).

interface AuthorizationType{
enum AuthType_t (LDH, RDH, L, R, LD, RD, LS, RS);
void setLocal();
void setRecursive();
void setOnInstance();
void setOnInstanceSoft();
void setOnDTD(); }
void setOnDTDHard(); }
boolean isLocal();
boolean isRecursive();
boolean isOnInstance();
boolean isOnInstanceSoft();
boolean isOnDTD();
boolean isOnDTDHard() ; }

Class AuthorizationSubject describes the triple(user-group,IPaddress, symbolic
address) that identifies the subjects to which the authorizations must be applied. The
class offers methods to get and assign the components of the addresses and a method
isEqualOrMoreSpecific to determine if one subject is equal or more specific than
another subject.

interface AuthorizationSubject{
void setUserGroup(in UserGroup userGroupToSet);
UserGroup getAuthUser();
void setIpAddress(in string IPAddrToSet);

XML Access Control Systems: A Component-Based Approach 45

string getIpAddress ();
void setSnAddress(in string SymbAddrToSet);
string getSnAddress();
boolean isEqualOrMoreSpecific(in AuthorizationSubject AuthSubjToCmp);}

ClassAuthorization represents the authorizations that are defined on the system.
Each authorization is characterized by a subject (class AuthorizationSubject), an
object (represented by an XPath expression, managed by classes defined in an external
XSL implementation), the sign (represented by anAuthorizationLabel component
for which value undefined is not admitted), the action (currently a simple string), and
finally the type (represented by a component of classAuthorizationType).

interface Authorization{
attribute AuthorizationSubject subject;
attribute XPathExpr object;
attribute AuthorizationLabel sign;
attribute AuthorizationType type;
attribute string action; }

4.3. DEPLOYING THE PACKAGE
We implemented the above classes in Java and used them to realize a prototype of

the Access Control Processor with a Java servlet solution. Java servlets, designed by
Sun and part of the Java environment, appear as a set of predefined classes that offer
services that are needed for the exchange of information between a Web server and a
Java application. Examples of these classes areHttpSession andHttpRequest. Java
servlets constitute a simple and efficient mechanism for the extension of the services
of a generic Web server; the Web server must be configured to launch the execution of
a Java Virtual Machine when a request for a URL served by a servlet arrives, passing
the parameters of the request with a specified internal protocol.

The Java classes we implemented can also be used in a different framework, us-
ing a solution like JSP (Java Server Pages). Actually, JSP is internally based on
servlets, but it offers an easier interface to the programmer, requiring the definition
of HTML/XML templates which embed the invocation of servlet services. We have
already demonstrated the use of the prototype inside a JSP server.

There are several other architectures that could be used and whose applicability
we plan to investigate in the future. Since we gave an IDL description of the classes
that constitute the implementation of our system, it is natural to envision a solution
based on the distributed object paradigm, using protocols like RMI/IIOP (for the
Java implementation) or the services of a generic CORBA broker (where the services
are implemented by objects written in a generic programming language).

5. INTEGRATION WITH WEB-BASED
SYSTEMS

We are now ready to describe how our access control system can be integrated in
a Web-based framework for distribution and management of XML information. This
architecture needs to include a number of components and a careful study of their
interaction with access control is of paramount importance to achieve an efficient
implementation.

46 DATA AND APPLICATIONS SECURITY

5.1. LINKING XAS TO XML DOCUMENTS
AND DTDS

As XASs contain access control information for XML documents and DTDs, links
must be provided allowing the system, upon receipt of a HTTP request for an XML
document, to locate the XAS associated with both the document itself and its DTD.
In current XML practice, association between XML documents and their DTDs is
made by either direct inclusion (the DTD is embedded in the XML document) or by
hypertext link (the XML document contains the URL of its DTD). Neither technique
seems appropriate for linking documents and DTDs to XASs as they would interfere
with the normal processing of XML documents, and pose the problem of managing
access control for legacy documents not linked to any XAS specification. Luckily
enough, we can rely on the abstract nature of XML XLink specification to define out-
of-line links that reside outside the documents they connect, making links themselves
a viable and manageable resource. The repertoire of out-of-line links defining access
control mappings is itself an XML document, easily managed and updated by the
system manager; nonetheless it is easily secured by standard file-system level access
control. We propose to set up a suitable namespace, called AC, which is for the time
being aimed at reserving the standard tag name <XAS> to denote off-line links between
documents, DTDs and XASs. The DTD of the documents containing the mappings
from XML documents to DTDs and to XASs can be written as follows:

<!ENTITY % xlink " type CDATA # FIXED ‘arc’
role CDATA ‘access control’
title CDATA ‘access control’
actuate CDATA # FIXED ‘auto’
from CDATA # REQUIRED
to CDATA # REQUIRED">

<! ELEMENT XAS EMPTY>
<!ATTLIST XAS % xlink

xmlns:xlink CDATA ‘http://www.w3.org/TR/xlink’ >
Note that, in the private documents specifying link sets for each site and at the

DTD level, the name of the XAS element will be preceded by the mention of the
AC namespace in order to avoid ambiguity. In the above DTD definition, we rely on
a reusable XML entity to group the attributes needed to set up an out-of-line link
between a document and its access control information. Namely, out-of-line links are
identified by the type attribute being set to "arc", and by the presence of required
from and to attributes instead of the usual href used for embedded links. The
actuate attribute is set to "auto", meaning that the traversal of the link will be
automatically made by the system and not revealed to the user. Finally, the role
and title attributes are used primarily for descriptive purposes and are therefore not
mandatory.

5.2. XML-AC SUPPORT FOR SESSIONS
In the current prototype, sessions are managed by class HttpSession, a component

of the Java servlet environment. Class HttpSession keeps track of the series of
requests originating from the same user. Using the services of HttpSession it is
possible to ask only once to the user to declare his identity and password. The
implementation of class HttpSession permits to manage sessions in two modes, with
or without cookies. When the client has cookies enabled, HttpSession may store a

XML Access Control Systems: A Component-Based Approach 47

session identifier in the client cookies and use it to identify the request; if cookies are
not enabled, sessions are identified by storing the session identifier as a parameter of
the requests that are embedded into the page which is returned to the user. Since
users often do not enable cookies, it is important to be able to manage sessions
independently.

We observe that the solution we implemented, based on the services of class
HttpSession, is adequate for our context, where the goal was a demonstration of
the capabilities of the access control model. An environment with strong security
requirements should probably plan a different implementation of the session manage-
ment services, using adequate cryptographic techniques to protect the connection.

5.3. A MULTITHREADED SERVER
FRAMEWORK

To guarantee efficient and effective integration of access-control in the framework
of Web-based systems, two basic problems must be solved:

Quality of Service The emergence of the World Wide Web as a mainstream tech-
nology has highlighted the problem of providing a high quality of service (QoS) to
application users. This factor alone cautioned us about the risk of increasing sub-
stantially the processing load of Web server.

Seamless Integration A second point to be mentioned regards how to provide XML
access control as seamlessly as possible, without interfering with the operation of other
presentation or data-processing services. Moreover, the access control service should
be introduced on existing servers with minimal or no interruption of their operation.

To deal with these problems, we chose an integrated (yet modular) approach, that
supports reuse allowing for different deployment solutions according to implementa-
tion platforms’ performance profiles. In fact, besides being deployed as a single-thread
servlet invoked by the Connection Handler, as in our current prototype, our processor
can be easily interfaced to a Dispatcher registered with an Event Handler. Dispatcher-
based multi-threading can be managed synchronously, according to the well known
Reactor/Proactor design pattern [7] or asynchronously, as in the Active Object pat-
tern. In this section we shall focus on the former choice, as it facilitates integration of
our XML access control code in the framework of existing general-purpose server-side
transformers based on the same design pattern like Cocoon [1]. Figure 2 depicts the
Reactor-based multi-threading technique.

In order to avoid being a potential bottleneck for the server operation, our Access
Control system needs to manage effectively a high number of concurrent requests.
Multi-threaded designs are currently the preferred choice to implement Web-based,
high-concurrency systems. This is also our design choice for our components. How-
ever, it must be noted that no Java-based design of multi-threading components has
full control on thread management: when running on an operating system that sup-
ports threads, the Java Virtual Machine automatically maps Java threads to native
threads [8], while when no native thread support is available, the JVM has to emulate
threads. In the latter case, the emulation technique chosen by the JVM implementors
can make significant difference in performance. In the sequel, we shall briefly describe
the Java thread management technique used for the implementation of our processor,
providing full synchronization between threads when accessing the same DOM and
AuthorizationSubject objects. To clarify the synchronization problem associated
with multi-threading, consider two access control tasks that need to be executed in

48 DATA AND APPLICATIONS SECURITY

Figure 3 Two AC tasks to be executed in parallel (a) and their subdivision into four
atomic sub-tasks (b)

parallel (see Figure 3(a)). For the sake of simplicity both tasks are naturally subdi-
vided into four atomic non-interruptible sub-tasks, loosely corresponding to actions
from (4) to (7) of Section 3. In a “naive” multi-threaded implementation of our
processor, each task would be executed on its own thread. However, the only way to
preserve atomicity using this technique would be to explicitly synchronize threads by
means of semaphores. Fortunately, the additional complexity and overhead involved
in explicit synchronization can be easily avoided in our case.
Synchronous dispatching A synchronous dispatcher can be used to solve the syn-
chronization problem by simulating multi-threading within a single Java thread. To
illustrate the evolution of our design from a single task divided into portions to a syn-
chronous dispatcher, consider first the subdivision of each task of Figure 3(a) into four
independent sub-tasks, depicted in Figure 3(b). From the Java implementation point
of view, each sub-task can now be straightforwardly defined as the run() method of a
Runnable object [10]. Then, the objects can be stored into an array, and a scheduler
module can be added executing the objects one at a time. Sleep() or yield() calls
mark the transition between sub-tasks.

As anticipated, this code is a simple implementation of Schmidt’s Reactor design
pattern [7]. The effect is essentially the same as several threads waiting on a single
ordered binary semaphore that is set to true by an event. Here, the programmer

XML Access Control Systems: A Component-Based Approach 49

Runnable[] task = new Runnable[]

new Runnable(){ public void run(){ /* execute sub-task 1 */ } },
new Runnable(){ public void run(){ /* execute sub-task 2 */ } },
new Runnable(){ public void run(){ /* execute sub-task 3 */ } },
new Runnable(){ public void run(){ /* execute sub-task 4 */ } },
};
for(int i = 0; i < talk.length; i++)
{task[i].run();
Thread.getCurrentThread().yield();
}

Figure 4 Sample Java code for the synchronous dispatcher

Runnable[] two_tasks = new Runnable[]

new Runnable(){ public void run(){ /* execute task 1, sub-task 1 */ } },
new Runnable(){ public void run(){ /* execute task 2, sub-task 1 */ } },
new Runnable(){ public void run(){ /* execute task 1 , sub-task 2 */ } },
new Runnable(){ public void run(){ /* execute task 2, sub-task 2 */ } },
new Runnable(){ public void run(){ /* execute task 1, sub-task 3 */ } },
new Runnable(){ public void run(){ /* execute task 2, sub-task 3 */ } },
new Runnable(){ public void run(){ /* execute task 1, sub-task 4 */ } },
new Runnable(){ public void run(){ /* execute task 2, sub-task 4 */ } },

for(int i = 0; i < two_task.length; i++)
{ two_tasks[i].run();
Thread.getCurrentThread().yield();
}

Figure 5 The interleaving dispatcher

retains full control over the sequence of subtask execution after the event. In our AC
processor, however, a slightly more complex technique should be used, as we need to
execute complex transformation tasks concurrently, each of them being subdivided
into atomic sub-tasks. To deal with this problem, the synchronous dispatcher of
Figure 4 can be easily modified [10] to provide interleaving (Figure 5).

The behavior of the code in Figure 5 allows for a multi-threading cooperative sys-
tem (in which threads explicitly yield control to other threads). Of course, this syn-
chronous dispatching technique is aimed at native multi-threaded operating systems,
where all the subtasks are executing on a single operating system-level thread. In this
case, there is no synchronization overhead at all, and no expensive context switch into
the host operating system’s kernel. It should be noted that several dispatchers could
be used, each running on its own thread (as in Sun’s green thread model [11]), so
that cooperative and preemptive threads may share the same process.

6. CONCLUSION
In this paper we presented the major results of the study we did before the im-

plementation of the processor for the proposed access control model for XML data.
Most of the considerations we present are not specific to our system, but can be of
interest in any context where services for the security of XML must be implemented.

};

{

{

50 DATA AND APPLICATIONS SECURITY

There are several directions where our work can be extended and that offer inter-
esting opportunities. For instance, we focused on multi-threading techniques to obtain
efficient concurrent execution of access control tasks. However, synchronization over-
head is obviously not the only performance problem. Other techniques rather than
round-robin interleaving could be adopted: e.g., the XML access-control service could
adaptively optimize itself to provide higher priorities for smaller requests. These tech-
niques combined could potentially produce a system highly responsive and with an
adequate throughput. The next release of the ACP plans to implement the prioritized
strategy.

Acknowledgments
The authors wish to thank Daniel Menasce’ for interesting discussions about XML

processing performance issues.

References
[1] Apache Software Foundation. Cocoon, a Java publishing framework.

http://xml.apache.org/cocoon, 2000.
[2] T. Bray et.al. (ed.). Extensible Markup Language (XML) 1.0. World Wide Web

Consortium (W3C), February 1998. http://www.w3.org/TR/REC-xml.
[3] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Design

and implementation of an access control processor for XML documents. In Proc.
of the Ninth Int. Conference on the World Wide Web, Amsterdam, May 2000.

[4] E. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. Samarati. Secur-
ing XML documents. In Proc. of EDBT 2000, Konstanz, Germany, March 2000.

[5] J. Hu, I. Pyarale, and D. Schmidt. Applying the proactor pattern to high perfor-
mance web services. In Proc. of the 10th International Conference on Parallel and
Distributed Computing, Las Vegas, Nevada, October 1998.

[6] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for Ex-
pressing Authorizations. In Proc. of the IEEE Symposium on Security and Privacy,
pages 31–42, Oakland, CA, May 1997.

[7] R. G. Lavender and D. Schmidt. Reactor: A object behavioral pattern for con-
current programming. In J. Vlissides, D. Coplien, and M. Kerth, editors, Pattern
Languages of Program Design 2. Addison Wesley, 1995.

[8] D. Lea. Concurrent Programming in Java. Addison Wesley, 1996.
[9] T.F. Lunt. Access Control Policies for Database Systems. In C.E. Landwehr,

editor, Database Security, II: Status and Prospects, pages 41–52. North-Holland,
Amsterdam, 1989.

[10] B. Marchant. Multithreading in Java.
http://www.javacats.com/US/articles/multithreading.html, 1996.

[11] M. L. Powell, S. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks. SunOS
Multi-thread Architecture. Sun Microsystems, 1998.

[12] World Wide Web Consortium (W3C). Document Object Model (DOM) Level
1 Specification Version 1.0, October 1998. http://www.w3.org/TR/REC-DOM-
Level-1.

[13] World Wide Web Consortium (W3C). XML Path Language (XPath), November
1999. http://www.w3.org/TR/xpath.

CHAPTER 5

A Configurable Security Architecture Prototype

Alexandre Hardy
ah@adam.rau.ac.za

Martin S Olivier
molivier@rkw.rau.ac.za

Department of Computer Science
Rand Afrikaans University
PO Box 524, Auckland Park, Johannesburg, South Africa

Abstract Traditional security systems are integrated closely with the applications
that they protect or they are a separate component that provides sys-
tem protection. As a separate component, the security system may be
configurable and support various security models. The component does
not directly support the application. Instead, operating system obj-
ects (such as files) are protected. Security systems that are integrated
with the applications that they protect avoid this shortcoming, but are
usually not configurable. They also cannot provide the same level of
protection that a system provided security component can enforce, as
the application does not have access to the hardware that supports these
features. The Configurable Security Architecture (ConSA [1]) defines
an architecture that provides the flexibility of a system security com-
ponent while still supporting application security. Such an architecture
provides obvious benefits. Security policies can be constructed from
off-the-shelf components, supporting a diverse array of security needs.
Before this or a similar architecture can be accepted by the industry, the
concept must be proven to work theoretically and practically. Olivier [1]
has developed the theoretical model and illustrates its usefulness. This
paper describes an implementation of ConSA and in so doing, proves
that ConSA can be implemented in practice.

Keywords: Access Control, Security, Security Model, Prototype

52 DATA AND APPLICATIONS SECURITY

1. INTRODUCTION
An architecture that supports arbitrary security policies through the

use of off the shelf components will greatly simplify the implementation
of security systems. Such an architecture will allow developers of security
models to concentrate on the access control algorithms of such a model,
without concern for the method in which access control will be enforced.
The ConSA (Configurable Security Architecture) architecture [1] is one
such system. Olivier [1] describes the model and provides a formal de-
scription of the various components. The model will not be described
again in this paper, due to lack of space. Section 2 will however briefly
illustrate how ConSA functions. This paper will instead describe a proof
of concept prototype that illustrates that ConSA can be implemented on
existing systems. The prototype is implemented in the Linux operating
system, and can be moved to another of the many UNIX [9, 11] like
operating systems available. Furthermore, the prototype illustrates the
use of ConSA for application level security and system level security.

In section 2 a brief background to security is presented, section 3 dis-
cusses the prototype and the three significant changes to the ConSA
model: the ConSA kernel, Protect Table and Message Dispatcher. Sec-
tion 4 presents the conclusions drawn from the prototype.

2. BACKGROUND
A security policy determines who may access (and who may not) obj-

ects or entities in a system. A security system on a computer must
enforce such a policy, ensuring integrity and availability of data. The
process of enforcing the security policy is known as Access Control. Sev-
eral security models have been proposed that may be used to implement
certain security policies. These models have generally been classified
as Discretionary Access Control (DAC) and Mandatory Access Control
(MAC - also known as multilevel access control).

Discretionary Access Control associates an owner with each object in
the system. The owner may then grant (or revoke) access to (from) other
subjects in the system so that they may access (may not access) that
object. The object may have an Access Control List associated with it
that contains a list of all subjects that may access that object.

Mandatory Access Control associates a clearance level with each sub-
ject and a classification with each object. A subject may obtain read
access to an object if the clearance of the subject dominates the clas-
sification of the object (known as the simple security property). Write
access may be obtained if the clearance of the subject is lower than the
classification of the object (known as the star property). The simple

Chapter 5 A Configurable Security Architecture Prototype 53

security property prevents unauthorized subjects from viewing sensitive
information, while the star property prevents subjects of high classifi-
cation from making sensitive information available to subjects of lower
classification.

Flow control ensures that if data is written to an object, then all the
subjects who could not access the data in its previous location will still
be unable to do so. Further information on security models and other
aspects of security can be found in [3, 4, 5, 6].

The concept of labels can be applied to most security models. A
label encodes security information and may be associated with subjects
or objects and perhaps others. Labels are well suited to implementing
more advanced and dynamic security models [7, 8].

Traditional security systems have only implemented one security model,
ConSA provides a security architecture that may be used to support and
enforce a variety of security models. We refer to [1, 2] for details on the
ConSA model, and only provide a short description here.

The ConSA system has two types of labels, Entity Labels protect
objects and determine who may access those objects. Subject Labels
are tokens presented by subjects that may grant them access to certain
objects. The Subject Management Module determines which Subject
Labels a subject will use. The Authorization Control Module determines
the initial protection attributes of an object that has just been created.
The Protect Table associates Entity Labels with the objects that they
protect and controls access to these objects. The Message Dispatcher
is responsible for relaying messages between objects and enforcing the
security model on those messages. And finally, the Information Flow
Manager enforces flow control on messages.

Typical system interaction may occur as follows: A subject logs onto
the system and is presented with a subject label by the Subject Man-
agement Module. When the subject sends a message to an object, the
Message Dispatcher determines which label protects the object by con-
sulting the Protect Table, and then determines if the message will be
relayed by consulting the Entity Label and Information Flow Manager.

3. THE PROTOTYPE
The most important modifications to the ConSA model for the proto-

type are the introduction of a kernel component that controls the ConSA
system, modifications to the role of the Protect Table, and a specifica-
tion for the Message Dispatcher. The kernel component allows for the
specification of how the various ConSA components interact. This in-
teraction is controlled by the ConSA kernel and can be specified by

54 DATA AND APPLICATIONS SECURITY

Figure 2. Entity interface
Figure 1. Prototype ConSA archi-
tecture

sequential algorithms. The Protect Table and ConSA kernel describe
how the task of the original Protect Table may be achieved. Lastly the
Message Dispatcher is specified so that interaction between applications
and the security system may be achieved. Space restrictions preclude a
discussion of the other components of the ConSA architecture.

3.1. THE ConSA KERNEL
The ConSA model allows various modules to work together to deter-

mine and enforce a security policy. It is clear that a Message Dispatcher
component is needed to transfer messages between the ConSA system
and user programs. It will be useful to define a new component that
integrates the existing components, and defines how these components
interact. This component shall be referred to as the ConSA kernel. Now
the only concern of the Message Dispatcher is to facilitate the passing of
messages between components. The ConSA kernel will handle requests
and delegate to the necessary components. In this way, only the Mes-
sage Dispatcher need be rewritten to support new message transferring
methods. These may include network transports, API calls or system
calls.

The system can be implemented at different levels to increase the
inherent security or efficiency of the system. For example a Message
Dispatcher in the form of a linkable library (including the rest of the
ConSA system) would increase efficiency. A library would be supplied
that clients may use to access the ConSA system. This also allows the
system to be easily subverted. Another option would be to integrate the
ConSA system into the Linux kernel so that existing system routines
may be protected by ConSA (and perhaps more). This approach is
slightly less efficient, but inherently much more secure, since the kernel

Chapter 5 A Configurable Security Architecture Prototype 55

memory is inaccessible to user space programs. Now some component
must decide whether messages are to be permitted or denied. The Entity
Label module and Information Flow Manager both have an effect on the
outcome of this decision. Modularity of the ConSA system would be
improved if these two modules did not have to communicate in order to
reach a decision. This can be achieved if we allow the ConSA kernel to
make the decision, with ‘advice’ from these two modules. This process
will be illustrated a little later.

Furthermore it is difficult to allow the Protect Table to intercept mes-
sages to enforce security concerns. The result is that the ConSA modules
in the prototype are trusted. The modules themselves are responsible for
correctly implementing the security model when inter-module commu-
nication occurs. The ConSA kernel will however facilitate this to some
extent. Figure 1 illustrates the architecture selected for the prototype.

The Message Dispatcher is responsible for communication between the
user and the ConSA system, and the Protect Table simply remembers
which labels protect which entities. The ConSA kernel accepts messages
from the Message Dispatcher and coordinates with the other modules to
achieve the desired result.

3.1.1 Entities. Arbitrary messages are usually difficult to inter-
cept or not very efficient. These problems may be simplified by defining
a communication interface for objects, that can be easily monitored and
still support arbitrary messages. To support the Message Dispatcher
and facilitate message passing to Entities, an Entity interface is defined,
as illustrated in figure 2. The Entity Label and Subject Label do not
have to conform to this specification. This Entity interface is required
for resources in the system to be accessed uniformly by the ConSA ker-
nel. Arbitrary messages can be implemented at a higher level by using
this interface as a transport.

The methods listed in figure 2 are self explanatory. Resources are
accessed using a resource locator format of class: resource. For example
file: example.txt refers to an entity of class file, and the resource to be
accessed is example.txt. Now that entities have been defined the services
that the ConSA kernel provide can be examined.

3.1.2 ConSA Kernel Services. There are a large number of
services defined to support module interaction and internal administra-
tive tasks. A discussion of all these services is beyond the scope of this
paper, and cannot be presented due to space constraints. The services
that implement the ConSA interface are of much greater interest, and so
only these services will be discussed. Once again, only selected services

56 DATA AND APPLICATIONS SECURITY

Figure 3. KOpen algorithm

will be presented as a result of space restrictions. Please refer to [2]
for details on all these algorithms. The KOpen and KGrantAccess algo-
rithms will be presented as they are fairly representative of the structure
of these algorithms.

KOpen (subject, resource, mode)
The KOpen service opens a resource for access specified by mode. This
service must ensure that the specified subject has been granted the re-
quired access to the resource. The Protect Table is enlisted to determine
which labels protect the requested resource. The algorithm is listed in
figure 3.

The first action taken is to validate the subject token provided, by
attempting to locate the associated subject label and Information Flow
Manager. Next the label protecting the entity, and specifically the open
method (if any) is located via the GetLabel call. If no suitable label
is found, then the default policy of the ConSA system determines if ac-
cess is granted or not. If the label permits access, then the Information
Flow Manager is consulted. In this service the Information Flow Man-

Chapter 5 A Configurable Security Architecture Prototype 57

Figure 4. KGrant Access Algorithm

58 DATA AND APPLICATIONS SECURITY

ager cannot deny the request, and still indicate that the operation was
successful.

KGrantAccess (subject, resource ,user_for_ACL, mode) (figure 4)
It must be possible for the System Security Officer, and perhaps for
other subjects (as in Discretionary Access Control) to change the access
control list associated with a resource. The entity label provides these
services, but the application cannot communicate directly with the label.
The ConSA kernel provides access to the entity label, and also deter-
mines whether the subject may in fact access the entity label (which is
also a resource). For access to the ACL, the Information Flow Manager
is consulted first. It does not matter in which order the Information
Flow Manager and entity label are consulted. The operation is always
the logical and of the results. It is important to see that the label pro-
tecting the resource is the entity which is being checked. Once the label
has been found, the label protecting this label is in turn found. This
label is then the label that determines if access to modify, or read the
label is granted or not. This label is the variable protlabel in the algo-
rithm. The Subject Manager provides the subject label for the subject
that is to be queried, added or removed from the ACL. The user only
knows some token that identifies the subject. The entity label may be
modified to accept extra parameters specifying which type of access is
to be granted (to pass to the protlabel variable in this case). Another
simpler alternative may also be followed, specific modes of access com-
bining say granting and reading, may be combined to form a new mode:
grant read access. If numerical values are used for modes, a bitwise
or operation may perhaps be used to obtain the new mode. A further
question to ask is, how may we implement Discretionary Access Control
with this algorithm? To allow subjects to grant access, the protlabel
needs to be modified. The algorithm does not modify this label at any
stage. Two options are however possible:

Construct a new resource for accessing and modifying labels. This
new resource will allow subjects to query and modify labels at all
levels.

The label protecting the object can determine which label pro-
tects it. If the label is to grant access for grant mode then the
label simply grants access to the label protecting it. Some method
must be developed to differentiate between a label requesting the
grant access and another portion of the program from requesting
grant access, otherwise the label will recursively grant access to
the parent.

Chapter 5 A Configurable Security Architecture Prototype 59

3.2. PROTECT TABLE
Entity Labels protect objects in the system. The Entity Labels cannot

practically be stored with the objects they protect due to the diversity
of the security models that may be implemented. Some other method
must be devised to associate objects with their Entity Labels. One
solution is a Protect Table that associates labels with objects. The
entire table is stored on secondary storage in some representation that
may be implemented independently of the file system. This also allows
queries to quickly locate labels associated with an object, without first
locating the object. The next section lists the services required from a
Protect Table.

3.2.1 Protect Table Services. One method has been identi-
fied in [1] for the Protect Table, namely Protect. Protect associates an
Entity Label with an object. The association means that the specified
Entity Label controls access to the object it is associated with. It is as-
sumed that at most one Entity Label will protect an object. If two labels

could protect an object then we could construct a single new la-
bel such that If the label module
cannot support this, then a new label module may be constructed that
can implement the new label. This specification is relatively simple, but
in a practical implementation there are several difficulties. It is difficult
to capture attempts to access an object. A universal communication
scheme may be implemented to help trap messages, but this cannot be
enforced. One object may be instantiated several times in the system,
and may have a different identifier at each instantiation. The identifier
is provided by the operating system. The information the Protect Table
stores must not be lost if the system is halted.

The prototype attempts to address these problems by enforcing pro-
tection with the ConSA kernel and Message Dispatcher. A new object
identification scheme was implemented to provide objects with identi-
fiers that remained the same even after system reboot. The Protect
Table has also been extended to explicitly support protection of objects,
classes and methods. The services implemented are listed in table 1.

3.3. MESSAGE DISPATCHER
The Message Dispatcher is responsible for forwarding messages to the

correct objects, and enforcing the selected security model on these mes-
sages. It is very difficult to intercept messages in an already existing
system. A better approach is to implement a new message transmission
technique that is difficult to circumvent, and to make services available

60 DATA AND APPLICATIONS SECURITY

through this system. The efficiency of such a system is also important.
The Message Dispatcher has no specific methods that can be identi-
fied, rather it is an inherent part of the ConSA system, and facilitates
all communication between ConSA and the application. As such, the
implementation is very dependent on the system selected for implemen-
tation. For the prototype, three message transports were implemented
offering various degrees of security and efficiency:

Dynamic Link Library - As a library, the ConSA system is linked
into the application at compile time. The application uses the
ConSA system to enforce a security policy. The application may
choose not to use the ConSA security system, and this cannot
be prevented. Pluggable Authentication Module in Linux [10] is
implemented in a similar fashion.

Device Driver - The device driver developed for Linux supports
communication with the Message Dispatcher. The security of the
communication mechanism is a lot higher. The device driver is a
compiled object module that can be inserted into the Linux kernel
at run time. A character device can then be created in the file
system, through which communication occurs. Two applications
are now required, a server application that responds to requests
on one device, and a client application that communicates with
the server program. The client application may still access other
system resources, but the Linux security system may be used to
limit access so that the character devices are the only valid means
for communication.

Kernel Integration - The ultimate level of security is integrating
the ConSA system with the operating system. The messages may
then be implemented in the same way as existing operating system
calls are implemented, and existing system calls may be intercepted
to implement the security model on all aspects of the operating

REFERENCES 61

system. Now the ConSA system can also protect files that define
the behavior of the system. In the prototype, the Linux syscall
table was replaced to intercept system commands.

The prototype system implements each of these transports, which demon-
strates the flexibility of the architecture. To provide a uniform communi-
cation system, whatever the transport, the following services have been
identified for implementation:

Message Dispatcher maintenance routines
MessageDispatcherInit()
MessageDispatcherClose()
DispatchMessage()
The DispatchMessage method is provided so that Message Dis-
patchers that are not automatically aware of messages, and cannot
automatically dispatch the messages, may poll for messages and
dispatch them if any are found.

ConSA Kernel access routines

The ConSA kernel services are used extensively in the Message Dis-
patcher. By identifying these services, communication can be strictly
controlled, and may be more efficient than supporting arbitrary method
invocations directly. The communication with an Entity could also have
been implemented by writing a device driver for each entity, but this
would complicate development of entities. Instead the goal was to keep
development of all modules in the ConSA system relatively transparent
and independent of the level of implementation selected. This has been
achieved in the prototype to a large extent. There are very few items
that need replacing if the transport is changed; the various Message
Dispatchers can be changed with ease to support the desired transport.

4. CONCLUSION
A prototype implementation of the ConSA system proves that the

ConSA is a viable security architecture. Solutions to many of the prob-
lems with an implementation have been found. Such a system will be
able to implement many security models, including newer techniques
such as those presented in [8].

Notes
1. subj (L) Denotes all the subjects that the label L grants access to.

62 DATA AND APPLICATIONS SECURITY

References
[1] M. S. Olivier, Towards a Configurable Security Architecture, Data & Knowledge

Engineering, To appear
[2] A. Hardy, An Implementation and Analysis of the Configurable Security Archi-

tecture, Masters dissertation, Rand Afrikaans University, 1999
[3] S. H. von Solms and J. H, P. Eloff, Information Security, Rand Afrikaans Uni-

versity, 1998

[4] D. E. Bell and L. J. LaPadula, “Secure computer system: unified exposition and
Multics interpretation”, Rep. ESD-TR-75-306, March 1976, MITRE Corporation

[5] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathematical Foun-
dations”, Secure Computer Systems: Mathematical Foundations (Mitre technical
Report 2547, Volume I), March 1973, MITRE Corporation

[6] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: A Mathematical
Model”, Secure Computer Systems: Mathematical Foundations (Mitre technical
Report 2547, Volume II), May 1973, MITRE Corporation

[7] L. Gong and X.Qian, “Enriching the Expressive power of Security Labels”, IEEE
Transactions on Knowledge and Data Engineering, 7(5) , October 1995

[8] S. N. Foley, L. Gong and X.Qian, “A Security Model of Dynamic Labeling Pro-
viding a Tiered Approach to Verification”, Technical Report SRI-CSL-95-15, SRI
International, 1995

[9] The Single UNIXR Specification, Version 2, The Open Group, 1997,
www. opengroup. org

[10] Andrew G. Morgan, The Linux-PAM System Administrators’ Guide, (Dis-
tributed with the PAM software package), 1998

[11] Chris Hare, Emmett Dunlaney, George Eckel, Steven Lee, Lee Ray, Inside Unix,
New Riders Publishing, 1994

CHAPTER 6

Distributed Policies for Data Management –
Making Policies Mobile1

Susan Chapin, Don Faatz, and Sushil Jajodia

Abstract: This paper presents the challenges facing developers of multi-tier information
systems in providing effective consistent data policy enforcement, such as
access control in these architectures. It introduces “Mobile Policy” (MoP) as a
potential solution and presents a framework for using mobile policy in the
business logic tier of multi-tier information systems.

Key words: Security, access control, mobile policy, n-tier architecture

1. INTRODUCTION

In typical multi-tier architectures, the client is reduced to no more than a
Web browser and the database management system (DBMS) is returned to
its primary function of storing data. Business logic is moved from the client
and the database to a middle tier, hosted on a different platform from the
DBMS as shown in Figure 1.

Multi-tier architectures require changes in the way security and other
policies are managed. Mechanisms are needed that can achieve consistent
policy across elements of a distributed environment and support flexible
policies other than access control. The need for consistent policy
management across distributed components is analogous to the need for
consistent transaction management across distributed components. The need
for flexible policies arises from the complex functionality of many multi-tier
applications. While control over access to data remains a very important
policy, support for other types of policies, such as requiring certain files to

1 This work was funded by the MITRE technology program under project number
51MSR871.

64 DATA AND APPLICATIONS SECURITY

have a copyright notice or be sanitized in some way before being returned to
certain clients, is also needed.

Figure 1. Multi-tier Architectures for Multiple Clients and Databases

Specific requirements for making policies consistent across different
components include making policies mobile, so that they may travel with the
data from one component to another rather than being applied before the
data are released from the DBMS, and making security contexts mobile, so
that references to users and roles have the same meaning to all components.
Making policies flexible requires enabling those who manage data to define
the kinds of policies supported, rather than relying on DBMS vendors.

Traditional data tier policy management does not well support these
needs. Supported policies, defined by DBMS vendors, are limited to access
control policies; access control is applied by the DBMS at the time access to
the data is requested, requiring that the source of the request be known to the
DBMS; and traditional data tier users, roles, and policies are all locally
defined within the DBMS based on local security context.

We propose an application framework that extends the capabilities for
policy management in multi-tier applications without interfering with
existing access control policy mechanisms. Policy management is
decomposed into three functions, defining policies, associating policies with
data, and applying policies. Security context management is enhanced by
including third-party mechanisms, such as digital certificates provided by a
public key infrastructure (PKI), that can be referred to by all components;
the description of the context management can be found in [2]. Almost any
policy can be supported, limited only by the ability of developers to
implement the policy in software. The framework allows policies to be
applied in any tier of the application, determined by the application
developers in conjunction with the database administrators. As of this
writing, we have developed our proposed framework design in sufficient
detail to support a proof-of-concept prototype.

Distributed Policies for Data Management - Making Policies Mobile 65

The rest of this paper is organized as follows. Section 2 describes the
needs for policy management in multi-tier architectures. Section 3 describes
the limitations of existing mechanisms for dealing with policy management
in multi-tier architectures. Section 4 presents an overview of our proposed
framework and describes how security contexts, as well as policies, can be
shared among application components. Section 5 summarizes what we have
achieved and what we want to achieve in the future.

2. MULTI-TIER ARCHITECTURES

The downside of multi-tier application architectures is that they can be
quite complex. The presentation tier can consist of any one of a number of
browser products on any one of a number of platforms. The data tier can
consist of multiple databases in different DBMSs on different platforms. The
business logic tier can consist of multiple components on multiple different
platforms.

The problem is that all these different components need to be composed
together into a single application. Where security is involved, the
composition must be seamless and reliable. Composing policies in multi-tier
applications can be an issue, because the developers of the different
components of the business tier and the different databases have different
responsibilities and knowledge about the policies that should apply. We
address policy composition in multi-tier architectures by providing a
framework that allows the developers of each component to concentrate on
policy matters that are properly their responsibilities.

2.1 Aligning the Authority for Policy with the
Responsibility

Reserving policy application to the DBMS requires extensive
communication among various subgroups within the enterprise. Managing a
policy has three components, and each component is, ultimately, the
responsibility of different enterprise subgroups. Policy specification is
properly the responsibility of enterprise management. Policy association is
the process of associating enterprise policy with data. It is properly the
responsibility of the data owners, usually represented by the database
administrator (DBA). Policy application is the process of applying the policy
to data at the appropriate time. It is properly the responsibility of the
business logic developer or whoever is in charge of the point(s) at which the
data are used. Applying the policy at time of use is an ongoing activity; the

66 DATA AND APPLICATIONS SECURITY

data may be considered to be “used” when they are accessed withi n the
DBMS, but they are also “used” within the application, whether the
application code is located within the DBMS or in a separate middle tier
component, and whether the application uses the data immediately or holds
on to it for several days before use.

Policy enforcement is only complete when all three elements, definition,
association, and application, work harmoniously together. The problem is
that building coordinated support for policies can require close cooperation
among those responsible for each component. It is not that any of the policy
management problems are inherently impossible to solve. The problem is
that they require cooperative design decisions affecting application code in
both the middle tier and the DBMS, and these two portions of the application
may be developed by different groups of people on different time schedules.
The result is a greater risk of miscommunication and decreased assurance in
the resulting product.

A mechanism is needed that decouples the development of software that
implements the policy, the process of associating the policy with data, and
the development of software that applies the policy at time of use.

2.2 Making Policies General

“Policy” is often taken to mean “security policy,” and “security” is often
taken to mean “access control,” and all access control is assumed to be
handled by the same mechanisms. Although security policies are important
policies, and access control policies are important to an enterprise’s overall
security, these are not the only policies that an enterprise may want to
enforce. Furthermore, not all policies, access control or other types, are
equally important.

A substantial part of most middle-tier application development involves
implementing various kinds of policies. Some policies are enterprise policies
that are specified by enterprise management as rules that must be followed.
Examples of enterprise policies include requirements for ensuring files have
the proper copyright notice before they are released outside the enterprise,
degrading the resolution of certain images before they are released to
specified classes of clients, and scanning files for viruses before they are
used.

Other rules are local to the application but span both the business logic
tier and the data tier. It is a bit of a stretch to call these application rules
“policies,” but it is convenient for our discussion because they share many of
the characteristics of enterprise policies. In particular, they may be as
critically important and as much in need of assurance that they are working

Distributed Policies for Data Management - Making Policies Mobile 67

correctly as enterprise policies, and can equally well be handled by our
proposed framework.

An example of one of these other “policies” is a rule that defines the
confidence that the middle tier application can have in the accuracy of a data
item retrieved from a DBMS. Imagine an application that controls airplane
takeoffs for various destinations. One of the data items it needs is the amount
of fuel in the plane’s tank. The rule might be that the confidence level of this
type of data is a function of metadata, such as the time since the data were
last updated, rather than something that can be derived from the data
themselves. The application as a whole, including both the middle tier and
the DBMS, needs a mechanism to calculate the confidence factor and get
that information to the middle tier before the middle tier releases the plane
for takeoff, or some considerable unpleasantness might ensue.

Support is needed for any policies that may be applicable to data, using
the same techniques for any policy, without requiring that policy types be
predefined by DBMS vendors.

A characteristic of this expanded definition of policies is that not all
policies are equally critical. Some types of policies may be less critical than
others in an enterprise; for example, the need to check files for copyright
notice may be less critical than protecting write access to the salary file.
Even within access control, some data may need to be protected more
carefully than others. For example, the author of a document may wish it to
be restricted to only a small group of people while it is under development,
but the accidental release of the partially written document to other
employees would not have as severe consequences as the accidental release
of the company product’s source code to the general public.

Therefore, a mechanism that is not deemed sufficiently secure for one
policy may still be acceptable, and very valuable, for other policies. The
requirement is that the mechanisms must not interfere with each other.

3. RELATED WORK

Several research efforts are currently under way to centralize the
administration of policy. The Open Group's Adage project [7, 9] is a typical
example of this research. The notion of mobile policy is not particularly new
[1,4,5-7,10]. Several approaches to sharing policy information have been
developed. However, none is as general as the approach proposed here.

One problem common to all attempts to centralized policy definition and
storage is the need for a semantically rich policy specification language
capable of representing all policies that may apply within the multi-tier
system. Such a language is very difficult to define and has so far eluded

68 DATA AND APPLICATIONS SECURITY

researchers. Mobile policy tries to avoid this problem by encapsulating
policy in an executable module. These modules can be coded using any
programming or policy definition language that the policy administrator
chooses. Instead of defining an all-powerful magic policy language, the
problem is transformed into defining a shared vocabulary of inputs to and
outputs from policy modules. These vocabularies should be more tractable
than a general-purpose policy language.

The next section describes our framework for use of mobile policy in
multi-tier information systems.

4. THE PROPOSED FRAMEWORK

We call our proposed framework MoP, for mobile policies. With MoP,
when data move from one component or tier to another, any associated
policies travel along with the data until the policies are applied. The
movement of policies is shown in Figure 2.

Figure 2. Mobile Policy

MoP is designed to minimize effort on the part of application developers,
support assurance that the system works as intended, work harmoniously
alongside existing policy mechanisms, support multiple application and
DBMS platforms, and minimize the impact on performance. The framework
consists of code component types and vocabulary standards that represent
the minimal knowledge that must be shared among the developers of
systems that use MoP. The component types are shown in Figure 3. The
vocabulary standard is the glue that makes the system work. The next
sections describe each of these elements.

Distributed Policies for Data Management - Making Policies Mobile 69

Figure 3. MoP Component Types

4.1 Policy Module

Policy modules implement policy rules. Each policy module is an
executable code module, written for the platform of choice of the
application, that implements one specific policy rule. For example, a policy
module may determine whether a requested access is granted based on user
identity, or whether access is granted based on the type of connection
between the client and the application, or it may add the correct copyright
notice to a file. Thus, each policy module is a self-contained package with a
limited, specific function, which has the nice benefit that it simplifies
validation of correct behavior.

Policy modules are classified into types by the end function they perform,
not by the rule that governs how they perform it. The three examples above
include only two policy types: determine whether access is granted and add a
copyright notice. The two access granting rules, one of which looks at user
identity and the other of which looks at the client connection, would be
implemented in two separate policy modules, both of which are of type
“access grant.”

All policy modules of the same function type return the same output
parameters with the same syntax and semantics. An application programmer
needs to know what the module does in order to determine whether the
module is applicable to the planned use of the data, and what output
parameters the module returns and what they mean in order to code an
appropriate response, but the application programmer does not need to know
the policy rule the module implements.

In contrast, not all policy modules of the same type require the same
input parameters. All policy modules implement a method that returns a list
of input parameters. The application must be able to accept a list of
parameters and return a value for each.

70 DATA AND APPLICATIONS SECURITY

To summarize, a policy module is an executable code module that
implements a single rule, has a well-known type and set of output
parameters, and produces a list of required input parameters.

4.2 Policy Composition Module

Policy composition modules deal with issues such as the order in which
policies are to be applied. We have not yet designed or prototyped this
capability, and do not discuss it further.

4.3 Conflict Resolution Module

Conflict resolution modules resolve conflicts among policy modules.
Multiple policy modules may be associated with the same data set. If it
should happen that more than one policy module of the same type is
associated with the same dataset, then any conflicts must be resolved before
the correct single output parameter set is defined. This conflict resolution is
performed by a conflict resolution module.

We assume that different policy module types are independent of each
other. Any interactions between, say, a copyright notice rule and an access
grant rule we consider to be idiosyncratic, complex, and outside the scope of
the MoP framework. MoP, of course, does not prevent the application
developer from writing code to resolve any such conflicts.

Conflict resolution module development is closely linked to policy
module development. Conflict resolution modules implement the resolution
of conflicts among policy rules, and therefore conflict resolution rules are
policy rules.

4.4 DBMS Stored Procedures

When data are accessed, the MoP application component needs to
retrieve the policy modules associated with the data. Two DBMS stored
procedures provide this capability. One receives a SQL request and returns
identifiers associated with relevant policy modules, the other receives a
policy module identifier and returns the specified policy module.

MoP therefore requires three or more database queries instead of one for
each request: access the data, request relevant policy module identifiers, and
request each needed policy module. The MoP application component makes

Distributed Policies for Data Management - Making Policies Mobile 71

all three (or more) requests within the same transaction, thereby eliminating
potential synchronization difficulties.

The separation of function not only supports flexibility but also decreases
performance overhead by allowing the application to make only those
requests it actually needs and to make them in any order. For example, for
READ requests the policy may be run before the data are retrieved, because
the result of the policy may make retrieving the data unnecessary, or the
application may first retrieve data and review it to determine which of the
associated policies are relevant to its intended use of the data before
requesting the policy modules.

Separating the request for policy module identifiers from the request for
specific policy modules allows the application to cache policy modules and
to request only those policy modules it actually needs, a potentially
significant performance enhancement.

4.5 Application Framework Component (MoP)

The MoP application framework component encapsulates MoP
implementation details that are not application dependent. The MoP
component exposes methods that support accessing data, identifying relevant
policy modules, retrieving relevant policy modules, and running selected
policy types.

As of this writing, the application is responsible for setting up pointers to
permanent objects (in the current version, the permanent objects are caches
and connections to databases), providing an object that actualizes
parameters, and calling the MoP retrieve time and MoP apply time methods.

4.6 MoP Shared Vocabularies

MoP shared vocabularies are the heart of our solution for sharing policy
among developers responsible for different application tiers while
minimizing the knowledge they must share with each other. Encapsulating
policy rules into components allows us to reduce the semantics that must be
shared from understanding policy logic, which requires a “magic language”
and is very difficult, to understanding a small vocabulary of shared terms,
which is a relatively easy and familiar technology. We define three
vocabularies: a policy module types vocabulary, an output parameters
vocabulary, and an input parameters vocabulary.

72 DATA AND APPLICATIONS SECURITY

In the policy module types vocabulary, each term specifies what the
policy module does, such as add a copyright notice or determine whether
access is granted and implies a set of output parameters.

In the output parameters vocabulary, each term specifies both syntax and
meaning of a parameter returned from a policy module. Output parameters
are the same for all policy modules of the same type. The application uses
the output parameters to apply the policy. The output parameter vocabulary
is important because for many policy types, such as access control, the
application must be prepared to take action based on returned output
parameters.

In the input parameters vocabulary, each term specifies an input
parameter needed by the policy module. The application provides a method
to be called by the MoP component that accepts a list of input parameters
and returns a list of matching values. The input parameter vocabulary is
important because two modules with the same function may have different
input parameters.

4.7 Allocation of Responsibilities

Supporting separation of duty by allocating specific policy management
responsibilities to different development groups is MoP’s prime benefit.
With MoP, each group of developers needs to understand only the subset of
policy management that falls properly within the group’s purview.

MoP allocates responsibilities to policy-makers, database administrators,
DBMS developers, and application developers. MoP does not impose any
requirements on the client tier.

Policy-makers specify the policy rules that are implemented by MoP
policy modules. They also have the ultimate responsibility for locating or
creating policy modules that implement the rules and conflict resolution
modules that implement the resolution of conflicts among policy rules.

DBMS developers create stored procedures that implement the two
DBMS functions required by MoP, returning identifiers for the policy
modules associated with a data access request and returning a policy module
on request.

Database administrators create and install the MoP stored procedures
into the DBMS, insert policy modules identified by the policy-makers, and
associate policy modules with data. Mechanisms for these functions will
vary from DBMS to DBMS. This process is out of the scope of MoP.

Application developers call the MoP application component, pass it
required parameters, and use policy module outputs to apply policy.

Distributed Policies for Data Management - Making Policies Mobile 73

4.8 The Implementation

We are using a prototype implementation of the MoP components to
validate our framework design as we develop it. We do not consider any
portion of our design complete until it has been included in the prototype.

The current prototype is an all-COM solution built using Microsoft
Visual Basic Enterprise 6.0 and Microsoft Access 8.0. Early work has
focused on building the MoP application component, using stubs for
database support and policy modules, and a demonstration application that
exercises each feature of the MoP application component.

Our target databases are Oracle and SQL Server. Access does not provide
stored procedures or sophisticated policy management mechanisms, but its
functionality is adequate to support work on the MoP application
component.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes the use of mobile policy in multi-tier information
systems. Specifically, it separates policy administration from policy
enforcement. Policy is specified and administered at the element of a
distributed system where the data being controlled by policy is defined. That
policy is then shared with consumers of the data so that they can enforce the
appropriate policy when using the data.

Performing authentication and access control in the database is suitable
where the data are extremely sensitive or the number of potential clients is
limited. However, it can be restrictively expensive where the application
resides in a middle tier instead of the database or the number of potential
clients is large. Therefore, where company policy permits, a solution such as
MoP can enhance overall security by expanding practical policy enforcement
beyond access control within the DBMS.

Although we have not completed work on the basic MoP framework, we
have identified a number of enhancements that we would like to add once
the basic framework is complete: dynamically-generated policy modules,
dynamic determination of conflict resolution metadata, a policy composition
module that manages relationships among different policy modules, and
support for associating policy modules with subsets of retrieved data.

Dynamically generated policy modules are interesting because they
would eliminate parallel implementations of the same policy. DBMS
systems already have a mechanism that associates access control policies
with data. We would like to develop a mechanism that extracts the access
control information relevant to an SQL query and packages it as a MoP

74 DATA AND APPLICATIONS SECURITY

policy module. In addition to convenience value, automatic generation of
MoP policy modules potentially could enhance assurance because the
information would not have to be associated with the data twice, once as a
policy module and once as DBMS access control lists.

Dynamic determination of conflict resolution metadata is interesting
because it would simplify the task of policy module developers. As it stands
today, MoP requires linked code development in policy modules on one type
and their associated conflict resolution modules. We think it would be
desirable to provide a cleaner interface so that policy module and conflict
resolution module development can be more independent.

Support for associating policy modules with subsets of retrieved data is
interesting because it would support applications, such as data warehouses,
where a large block of data is retrieved all at once and stored internally in
database table format. Later, when the data are to be used, the application
extracts subsets of the data for each specific use. MoP as currently designed
does not support this kind of application.

Before our framework can be shown to be useful in production
environments, a number of issues need to be addressed: performance, multi-
platform application support, and assurance.

Performance is an issue, because a prime reason for using multi-tier
architectures is to gain enhanced scalability and efficiency. If making
policies mobile slows processing down any appreciable amount, any benefits
will not be worth the cost.

Multi-platform support is an issue because another prime reason for using
multi-tier architectures is to gain application development flexibility. If the
MoP application component can be called only by COM applications, and
not by EJB or CORBA applications, its usefulness will be limited.

Assurance is an issue because many MoP policies are security policies. A
mechanism for implementing security policies that cannot itself be shown to
meet enterprise requirements for security will not be very useful.

REFERENCES

1. Black, D. L., D. B. Golub, D. P. Julin, R. F. Rashid, R., P. Draves, R. W. Dean, A. Forin, I. Barrera, H. Tokuda, G. Malan, and,

D. Bohman, “Microkernel Operating System Architecture and Mach,” Journal of Information Processing, Volume 14, Number

4, 1995.

2. Doshi. Vinti, Amgad Fayad, and Sushil Jajodia, “Using Attribute Certificates with Mobile Policies in Electronic Commerce

Applications,” Proc. 16th Annual Computer Security Applications Conf., New Orleans, LA, December 2000.

3. Minear, Spencer E., “Providing Policy Control Over Object Operations in a Mach Based System,” Secure Computing

Corporation, Roseville, MN, April 1995.

4. Minear, Spencer E., “Controlling Mach Operations for use in Secure and Safety-Critical Systems,” Secure Computing

Corporation, Roseville, MN, June 1994.

Distributed Policies for Data Management - Making Policies Mobile 75

5. Object Management Group (OMG), Resource Access Decision (RAD), OMG document corbamed/99-03-02, March 1999.

6. Object Management Group (OMG), Transaction Service Specification.

7. Simon, Richard and Mary Ellen Zurko, “Separation of duty in role-based environments,” Proceedings of the 10th Computer

Security Foundations Workshop, June 1997.

8. U.S. Department of Commerce/National Institute for Standards and Technology, Standard Security Label for Information

Transfer, FIPS PUB 188, September 1994.

9. Zurko, Mary Ellen, Rich Simon, Tom Sanfilippo, “A user-centered, modular authorization service built on an RBAC

 foundation,” Proc. IEEE Symp. on Security and Privacy, May 1999.

This page intentionally left blank

CHAPTER 7
SECURITY ARCHITECTURE
OF THE MULTIMEDIA MEDIATOR

Christian Altenschmidt
Joachim Biskup
Yücel Karabulut
Fachbereich Informatik
Universitiät Dortmund
D-44221 Dortmund
Germany
altensch, biskup, karabulu@ls6.cs.uni-dortmund.de

Abstract Mediation is a powerful paradigm for advanced interoperable information sys-
tems. This paper presents the security module of the multimedia mediator which
enforces a previously reported approach to secure mediation. In this approach,
a user submits cryptographically signed credentials containing both personal au-
thorization attributes and his public encryption key, and data sources decide on
the query access on the basis of shown personal authorization attributes and return
encrypted answers. The security module uniformly represents the query access
authorizations of the sources, controls the intermediate usage of credentials, as-
sists users in submitting appropriate credentials, selects and forwards credentials
for subqueries, and exploits credentials for query optimization.

Keywords: Security, Mediator, Credential, Authorization, Access Control

1. INTRODUCTION
Mediation is a powerful paradigm for advanced interoperable information

systems [Wie92]. A mediator manages queries on behalf of a user by identifying
and addressing appropriate subqueries to heterogeneous and autonomous data
sources and by subsequently collecting and integrating the returned answers. A
previously reported approach to secure mediation [BFK99, BFK98] is based on
a public-key infrastructure and cryptographically signed credentials that encode
the eligibility of users. These technologies potentially provide for an inherently
scalable and secure mechanism for widely distributing assured authentication
and authorization attributes. Secure mediation is roughly outlined as follows
[BFK99, BFK98]. A user submits evidence of being eligible for seeing the

78 DATA AND APPLICATIONS SECURITY

answer to a query by submitting certified personal authorization attributes
which are encoded in credentials. A mediator examines, selects and forwards
submitted credentials together with appropriate subqueries to the data sources.
A data source autonomously bases access decisons for requested data on shown
credentials, and it returns subquery answers in encrypted form to the mediator.
For encryption it applies the user’s public key for an asymmetric encryption
scheme which is also contained in the credentials. Then the mediator processes
the returned encrypted data in order to produce the final, still encrypted query
answer.

In our Multimedia Mediator, MMM, project [BFKS97] a specific kind of
a mediator has been designed and implemented as a prototype. A security
module for the MMM is being constructed under the following requirements:
(1) implement the design [BFK99] as outlined above, (2) smoothly integrate
the security features into the functionalities of the MMM prototype, (3) meet
emerging standards [IET00, RL98, PKI00] for credentials.

In this paper, we present and discuss the architecture of this security module
emphasizing the following original contributions:

an authorization model that allows to consider credentials as grantees, to
be used for representing the query access authorizations of the sources;
specifications of query access authorizations as annotated ODL decla-
rations, which can be communicated from the sources to the MMM, in
particular;
a schema authorization policy for mediation, which allows to dynamically
generate external schemas for spontaneous users;
an instance authorization policy for mediation, which conjunctively com-
bines the access restrictions of the mediator and the sources;
an isolated co-existence of the functional layers and the security layers
treating authorization data in close correspondance to functional data;
an enrichment of (so far only functional) embeddings [ABFS98] from an
application object into the proxy objects for source items, as maintained
by the MMM, for evaluating expected access decisions of the sources;
user support for credential management by determining implications
among sets of personal authorization attributes;
and exploitation of credentials for query optimization.

2. ENVIRONMENT OF SECURE MEDIATION
The Multimedia Mediator prototype. The Multimedia Mediator, MMM,
is implemented as an autonomously operating agent. It is based on the object-
oriented database management system O2. Figure 2 shows its environment
and its functional and security architecture. Seen from the user, the MMM

Security Architecture of the Multimedia Mediator 79

appears as an object-oriented database which consists of an application schema
with a mostly virtual instance. Basically, in addition to persistent data owned
by the MMM, this instance is only transiently and partially materialized by
proxy objects representing items of the data sources. A user addresses the
MMM by means of his personal user agent. And data sources are connected
to the MMM with the help of wrapper agents. Interoperability is supported by
employing CORBA [OMG98] for data exchanges, KQML [FLM97] for agent
communications, and ODL/OQL [CB00] for schema declarations and query
expressions.

Authorization model. Credentials [IET00, RL98, Cha85, PKI00, BFL96]
are powerful means to receive and to present assured digital certificates about a
wide range of personal properties. Such properties may include the ownership of
a public key (and the corresponding secret key) for an asymmetric cryptographic
scheme, a unique identification for authentication, personal properties like date
of birth, gender, educational degrees, profession and so on, and received or
payed permissions to get access to digital services. Moreover credentials can
be used to approve that several of such properties belong together.

For mediated information systems we employ credentials that contain a pub-
lic key and additional properties of any kind as follows: they approve that the
owner of the public key enjoys the additional attributes. When shown to a
data source, as well as to a mediator, the additional attributes are interpreted
as personal authorization attributes proving that the owner of the private key
is eligible for querying certain data. Thus for our purpose we abstract creden-
tials as pairs of the form [public (encryption) key, set of personal authorization
attributes] which are digitally signed by the issuer.

Any agent autonomously decides on the specific interpretation, i.e., which
data it is willing to return. This means in terms of the usual authorization models
that an authorization subject can be modelled as a set of personal authorization
attributes, like identified users or roles in more traditional approaches. Ac-
cordingly, any agent needs two features to decide on an actual permission of a
requested query:

An authorization database of granted query access authorizations that
have sets of personal authorization attributes as grantees, and
authorization policies to evaluate the request with respect to the autho-
rization database.

Figure 1 shows a coarse model for the authorization database. As usual,
an authorization specifies a grantor, a privilege and a grantee. A privilege
is composed of an authorization object and a set of applicable access meth-
ods. The grantor is supposed to be an identified user that in most cases is the
owner of the privilege (here usually the administrators of the MMM and of the

80 DATA AND APPLICATIONS SECURITY

Figure 1. Coarse model for the authorization database

sources, respectively). The grantee might be an identified user, as usual, but
additionally, as a particularity of our credential based access control, a Boolean
expression over personal authorization attributes (authorization expression for
short). For the sake of simple exposition, we only consider authorization ex-
pressions over atomic personal authorization attributes which are in disjunctive
normal form without negations. Such an authorization expression can be iden-
tified with a set (representing the disjunction) which contains sets (representing
the conjunctions) of personal authorization attributes as elements.

A particular instance (p, g, a) with privilege p, grantor g, and authorization
expression a as grantee means that ghas granted privilegep to any request which
is accompanied with an authorization expression r such that "r qualifies for a".
In the full model, the exact definition of the relationship "qualifies" formalizes
the rough intuition of "logical implies under additional assumptions".

Then any authorization policy evaluates a request on the basis of the valid
qualifications between the accompanying authorization expression and the re-
quired authorization expression, for all needed privileges. There is a special
authorization policy, called pure, that only checks the envolved qualifications,
i.e., the request is permitted iff all these qualifications are valid (and there are
no further conditions).

Now we make a subtle distinction for the MMM:

For each connected source, the MMM maintains a representation of the
source’s authorization database, and the MMM expects that the source
applies the pure authorization policy.
The mediator itself applies two more elaborated authorization policies
for mediation, one for querying schemas and another one for querying
instances, which combine the envolved qualifications with additional
considerations, to be presented in subsequent sections.

Annotated ODL declarations. We mostly follow the ODMG proposal
to achieve interoperability among our agents with respect to schema decla-
rations. Thus all schema declarations are supposed to be convertable into a

Security Architecture of the Multimedia Mediator 81

canonical form expressed in ODL. For the current prototype we use the fol-
lowing basic ODL features: class; class attribute; attribute type built from
classes and atomic types (boolean, string, integer,...) using construc-
tors like set_of, list, struct (tuple_of); relationship (specifying in-
verse attributes); key; extent for denoting an access path to a full class exten-
sion; persistent root for denoting an access path to an arbitrary subset of a class
extension. (Strictly speaking, "persistent root" is an O2 feature which is not ex-
plicitly mentioned in [CB00].) Further advanced features (method, inheritance,
interface, exception,...) could be added to future versions of the prototype.

For specifying access authorizations in the context of the MMM, we have to
identify the possibly relevant instances (p, g, a), with privilege p = (o, m) for
accessing an authorization object o by method m, grantor g, and authorization
expression a. For the current prototype, as well as for the sake of short presenta-
tion, we make the following simplifying assumptions: (1) We restrict to schema
based authorizations (refraining from content based authorizations which de-
pend on actual data values). Thus as authorization objects we allow concrete
incarnations of all ODL features, except for types where only components of
struct-declarations are considered. (2) We assume some generic access method
for all authorization objects (refraining from specializing the generic method
into read, navigate, and so on). (3) As a default, we postulate an administrator
who acts as owner of any object and as grantor of any authorization. Thus
we can ignore these components further on. (4) In summary, we can specify
authorizations as (o, a) where o is a considered ODL feature (more precisely a
concrete incarnation of it) and a is an authorization expression. Giving these
assumptions, we can succinctly express access authorization by adding two
kinds of annotations to ODL schema declarations, each of which consists of an
authorization expression:

a schema access annotation grants a privilege to access some part of the
schema itself, and
an instance access annotation grants a privilege to access some part of
the (mostly virtual) instance.

More precisely we offer the following possibilities: A schema access an-
notation on any ODL feature grants the privilege to access (read and use) the
declaration of this very instance. An instance access annotation on a class
c grants the privilege to access (activate) any instance object of the class ex-
tension. An instance access annotation on a class attribute attr grants the
privilege to access (execute) the attribute for any of the class’s instance objects
that already has been accessed before. Depending on the type of the attribute,
either the stored (complex) value is returned or the stored object identifier is
dereferenced resulting in an access to the identified object. An instance access
annotation on a relationship rel is treated as if rel was an attribute. An instance

82 DATA AND APPLICATIONS SECURITY

access annotation on a component com of a struct-declaration of an attribute
type grants the privilege to access that component of an instance object provided
the struct part has been accessed before. An instance access annotation on an
extent or persistent root ext grants the privilege to access that data structure,
i.e., to execute all available set operations including scanning, searching and so
on.

At this point we emphasize that so far we have only described how an annota-
tion updates the authorization database. In section 3 we define the authorization
policies which finally regulate the actual access decisions.

3. SECURE MEDIATION
For secure mediation we distinguish the initialization phase and, afterwards,

preparatory phases for sources and users, respectively, and query request phases
and corresponding answer delivery phases.

Initialization phase. In the initialization phase, a mediation administrator
instantiates the MMM by declaring an application schema expressed in ODL
which captures the information needs of the anticipated users. For many parts
of the application schema, there will be no persistent instance in general but the
corresponding data is dynamically retrieved from sources at query time.

But for some parts of the schema, the administrator may want to maintain
data owned by the MMM itself. Technically, for such parts the administrator
additionally declares a twin schema as a subschema of the application schema,
and he inserts an instance for this twin schema. Later on, query processing
treats the twin schema and its instance, also referred to as twin source, nearly
like the other sources.

While specifying the application schema and the twin schema the adminis-
trator also grants the (query access) authorizations using annotated ODL dec-
larations as introduced in section 2 for both schemas. If there is no annotation
for a concept, then there will be no query access restrictions. Conceptually, the
authorizations for both the application schema and the twin schema are stated
independently, though, in practice, they usually will be closely related.

Preparatory phase for a source. In a preparatory phase fora source, a data
source can be connected with the MMM for further cooperation provided the
source can comply with the functional requirements of the instantiated MMM.
Furthermore, the source must provide a credential based authorization policy.
The basic functional requirements are that appropriate parts of the application
schema can be embedded in matching parts of the (virtual or existing) source
schema. If the requirements are met, an appropriate wrapper agent is created
which is devoted to convert source items into a form that is canonical for the
mediator, and vice versa.

Security Architecture of the Multimedia Mediator 83

Thus, in this phase, firstly the wrapper provides a canonical form of the
matching source schema parts, again expressed in ODL, which subsequently
are internally represented within the MMM and there connected to the matching
application schema parts by so-called embeddings [ABFS98]. Secondly, as far
as possible, the wrapper also converts the source’s authorization database into a
canonical form. For this purpose, the wrapper adds pertinent annotations to the
ODL representation of the source schema, which are subsequently internally
represented within the MMM.

Preparatory phase for a user. In a preparatory phase for a user, a sponta-
neously emerging user asks for inspecting the application schema of the MMM
because he wants to know how it captures his information needs. In order to
do so, he presents some of his credentials. Let us assume that these credentials
contain the set of personal authorization attributes which is denoted by the au-
thorization expression a. Then the MMM returns the largest subschema of the
application schema permitted to that user according to the following schema
authorization policy for mediation:

A subschema is permitted (for an authorization expression a) iff it is al-
lowed according to the pure authorization policy applied to the authoriza-
tion database generated from the annotations declared for the application
schema (so far the privileges for all subschema items are granted individ-
ually) and, additionally, 1.) the subschema is syntactically correct (closed
with respect to the ODL rules) and 2.) privileges are consistently granted
(closed with respect to inferences in the sense of [OvS94, CG98]).

Thus the user gets a dynamically generated external view about the func-
tionality of the mediator. This view is closed in the following sense: 1.) If an
item is shown, then all other items needed to access that item are also shown.
2.) It is impossible to infer the existence of further items that are not shown.
The dynamic generation of subschemas is in the spirit of the open computing
environments for mediation. Hence we favour this novel dynamic approach
rather than declaring a limited set of external views in advance.

On demand, the user also gets the authorization requirements for the corre-
sponding (virtual) instances, i.e., the user can ask to be informed about which
personal authorization attributes are likely to be sufficient to access which parts
of the corresponding (virtual) instance. Then the user can assemble credentials
with his personal authorization attributes potentially providing evidence of his
eligibility to see answers to submitted queries.

Query request phase. In a query request phase, a prepared user sends a
global request to the MMM. A global request includes a global query with
respect to the application schema and a set of credentials. The MMM analyzes

84 DATA AND APPLICATIONS SECURITY

the request with respect to functional and authorization requirements, thereby
identifying subrequests to be forwarded to connected sources. Hereby, the twin
source maintained by the MMM itself is treated like any external source, except
that no wrapper is involved.

Accordingly, a subrequest to a source includes a local query with respect
to the internal representation of the source schema and appropriately selected
credentials, which are subsequently converted by the responsible wrapper.

Concerning the authorization requirements, the MMM relates the global
authorizations of the MMM to the local authorizations of the connected sources
using the following instance authorization policy for mediation:

A request is (globally) permitted (for an authorization expression a) iff
it is allowed according to the pure authorization policy applied to the
authorization database generated from the annotations declared for the
application schema and, additionally, all subrequests are (locally) per-
mitted.
A subrequest to the twin source is (locally) permitted iff it is allowed
according to the pure authorization policy applied to the authorization
database generated from the annotations declared for the twin schema.
A subrequest to an external data source is (locally) permitted iff the MMM
expects that the source will permit the access as requested by the included
local query based on the included credentials. The expectation is based
on the pure authorization policy applied to the authorization database
generated from the annotations specified for the representation of the
source schema.
If a request is (globally) permitted, then all subrequests are forwarded
and then autonomously evaluated by the sources. Otherwise the request
is (globally) denied, and the user will be informed that no answer can be
returned due to the lack of personal authorization attributes.
An external data source, as well as the twin source, autonomously decides
on permitting subrequests.
Subanswers from the twin source and external sources are processed in
the mediator and forwarded to the user without any further restrictions.

Thus, seen from the user, the authorization requirements of the mediator and
the sources are conjunctively combined: access to source data via the mediator
is permitted iff it is allowed by both the mediator and the source. Accordingly,
the security module of the mediator acts as a kind of filter put in front of the
sources. There are obvious tradeoffs between the strength of the filters as defined
by the global authorizations, the overall run-time complexity of mediated query
evalution and the response quality. These tradeoffs can be exploited for query
optimization as discussed in the preproceedings.

Security Architecture of the Multimedia Mediator 85

Answer delivery phase. A query request phase is followed by the corre-
sponding answer delivery phase (allowing the interleaving of several requests).
In this phase, a source produces a protected subanswer:

All content data for attribute values is piecewise probabilistically en-
crypted with the public encryption key of the user which is connected
with those personal authorization attributes on the basis of which query
access permissions have been decided.
All structural parts are left open as plain text.

The MMM uses the protected subanswers to generate new proxy objects,
and if necessary new application pseudo objects which are associated with
the corresponding proxy objects. Pertinent embeddings are determined by the
types of the application pseudo objects and the types of their corresponding
proxy objects in order to define (usually encrypted) attribute values for old and
new application pseudo objects. As soon as all subanswers are available (or
after some timeout) a suitably modified version of the original (global) query
is evaluated on the basis of the current instance, the embeddings into the proxy
objects and the retrieved method values for the proxy objects.

Surely, the functionality of this phase is essentially restricted by the attribute
values being encrypted with public keys of the user. Basically, the full func-
tionality is preserved as far as the modified version of the original query does
not have to perform comparisons for selections and joins on encrypted values.
For the strategies to avoid the restrictions we refer to the preproceedings.

4. THE SECURITY MODULE
In this section we provide some more details on how secure mediation as

explained in section 3 is actually implemented as part of the MMM. Figure 2
gives a first rough overview about the data flow between functional and security
components. We only describe the main security components. Further details
are given in the preproceedings.

The security module of the MMM has three main components, the secu-
rity knowledge base, SECKNOB, the credential manager, CREMA, and the
mediator authorization decision engine, MAIDEN.

The security knowledge base, SECKNOB, maintains the following parts:
(1) The authorization databases that are generated from the annotated dec-
larations of the application schema, the twin schema and the representations
of the external source schemas. (2) The credentials submitted by a user. (3)
The authorization attributes extracted from the credentials together with links
associating them with the credentials they are extracted from. (4) A (Horn
clause) rule base that specifies implications among authorization expressions
which are invoked when an instance of the relationship "qualifies for" between

86 DATA AND APPLICATIONS SECURITY

Figure 2. Security architecture of the Multimedia Mediator

authorization expressions must be decided. The rule base is intended to take
advantage of "real world" properties of authorization attributes, and to encode
known access control features like structured objects, groups or roles, for each
of which we can define hierarchies and corresponding inheritance rules. (5) A
collection of protocol converters which unify the various formats proposed in
existing and emerging standards for credentials [IET00, RL98, PKI00].

The credential manager, CREMA, verifies the authenticity and validity of
submitted credentials by checking the approving digital signatures and expi-
ration dates. Moreover, it extracts authorization attributes from credentials,
inserts credentials, their authorization attributes and the pertinent links into
SECKNOB, and determines credentials to be included to subqueries.

The mediator authorization decision engine, MAIDEN, implements the au-
thorization policies for mediation, both for schemas and for instances, and the
underlying pure authorization policy together with its basic relationship "qual-
ifies for" among authorization expressions.

Additionally, we need an appropriate access control shell for the underlying
object-oriented database management system. Unfortunately, this shell is not
provided by O2 which we use for our prototype.

REFERENCES 87

5. RELATED WORK AND CONCLUSION
Security in interoperable information systems has mostly been investigated

within federated database contexts, where the emphasis laid on resolving het-
erogeneity [Jon98, TF97]. For contributions to security in mediated systems
see [CJS96, WBD98, DSS00]. The security mechanisms presented in the works
above are identity based rather than credential based.

With our credential based approach we can model both identity based autho-
rization as well as attribute based authorization. In contrast to the efforts above,
our approach makes a specific contribution towards interoperation by combin-
ing the credential based authentic authorization with some kind of anonymity
and of asymmetric encryption for confidentiality. The concept of credentials
has also been adopted previously for various purposes in interoperable systems
[SWW97].

The ongoing implementation is based on several original contributions, in
particular the identification of suitable schema and instance authorization poli-
cies for mediation, ODL declarations with schema access and instance access
annotations, and an analysis of the impact of authorization for query optimiza-
tion. There are a lot of issues for further research and development. Among
them are the exploitation of the full scope of ODL, rapid construction of "au-
thorization wrappers", refined optimization, more sophisticated treatment of
encrypted subanswers, and user support for presenting appropriate credentials.

References
[ABFS98] C. Altenschmidt, J. Biskup, J. Freitag, and B. Sprick. Weakly constraining multi-

media types based on a type embedding ordering. In Proceedings of the 4th Inter-
national Workshop on Multimedia Information Systems, pages 121–129, Istanbul,
Turkey, September 1998.

[BFK98] J. Biskup, U. Flegel, and Y. Karabulut. Towards secure mediation. In 1st Workshop
on Sicherheit und Electronic Commerce, pages 93–106, Essen, Germany, October
1998.Vieweg-Verlag.

[BFK99] J. Biskup, U. Flegel, and Y. Karabulut. Secure Mediation: Requirements and Design.
In Proceedings of the 12th Annual IFIP WG 11.3 Working Conference on Database
Security, pages 127–140, Chalkidiki, Greece, 1999. Kluwer Academic Press.

[BFKS97] J. Biskup, J. Freitag, Y. Karabulut, and B. Sprick. Query evaluation in an object-
oriented multimedia mediator. In Proceedings of the 4th International Conference on
Object-Oriented Information Systems, pages 31–43, Brisbane, Australia, November
1997. Springer Verlag.

[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In 17th
IEEE Symposium on Security and Privacy, pages 164–173, Los Alamitos, 1996.

[CB00] R. G. G. Cattell and Douglas Barry, editors. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, San Francisco, 2000.

[CG98] F. Cuppens and A. Gabillon. Rules for designing multilevel object-oriented databases.
In Jean-Jacques Quisquater, Yves Deswarte, Catherine Meadows, and Dieter Goll-

88 DATA AND APPLICAT1ONS SECURITY

mann, editors, Proceedings of the 5th European Symposium on Research in Computer
Security (ESORICS’98), number 1485 in LNCS, pages 159–174, Louvain-la-Neuve,
Belgium, September 1998. Springer-Verlag.

[Cha85] David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10): 1030–1044, October 1985.

[CJS96] K. S. Candan, Sushil Jajodia, and V. S. Subrahmanian. Secure mediated databases.
In Stanley Y. W. Su, editor, 12th International Conference on Data Eng., pages 28–
37, New Orleans, Louisiana, USA, Feb. - Mar. 1996. IEEE, IEEE Computer Society
Press.

[DSS00] S. Dawson, Qian S., and P. Samarati. Providing security and interoperation of het-
erogeneous systems. Distributed and Parallel Databases, 8(1):119–145, January
2000.

[FLM97] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communication
language. In J. M. Bradshaw, editor, Software Agents. MIT Press, Cambridge, 1997.
http://www.cs.umbc.edu/kqml/papers/.

[IET00] IETF SPKI Working Group. SPKI certificate documentation. http://world.std.
com/~cme/html/spki.html, July 2000.

[Jon98] D. Jonscher. Access Control in Object-Oriented Federated Database Systems. PhD
thesis, University of Zurich, Department of Computer Science, Zurich, May 1998.
DISDBIS 49, Infix-Verlag.

[OMG98] Object Management Group. The common object request broker, architecture and
specification. CORBA 2.3.1/IIOP specification, http://www.omg.org/library/
c2indx.html, December 1998.

[OvS94] M.S. Olivier and S.H. von Solms. A taxonomy for secure object-oriented databases.
ACM Transactions on Database Systems, 19(1):3–46, 1994.

[PKI00] PKIX Working Group. An internet attribute certificate profile for authorization.
Internet draft, work in progress. http://www.ietf.org/internet-drafts/
draft-ietf-pkix-ac509prof-03.txt, May 2000.

[RL98] R. L. Rivest and B. Lampson. A simple distributed security infrastructure (SDSI).
http://theory.lcs.mit.edu/~cis/sdsi.html, 1998.

[SWW97] K. E. Seamons, W. Winsborough, and M. Winslett. Internet credential acceptance
policies. In Proceedings of the Workshop on Logic Programming for Internet Appli-
cations, Leuven, Belgium, July 1997.

[TF97] Z. Tari and G. Fernandez. Security enforcement in the DOK federated database
system. In P. Samarati and R. S. Sandhu, editors, Database Security, X: Status and
Prospects, Proceedings of the 10th IFIP WG 11.3 Working Conference on Database
Security, pages 23–42, Como, Italy, 1997. Chapman & Hall.

[WBD98] Gio Wiederhold, Michel Bilello, and Chris Donahue. Web implementation of a secu-
rity mediator for medical databases. In T. Y. Lin and Shelly Qian, editors, Database
Security, XI: Status and Prospects, Proceedings of the 11th Annual IFIP WG 11.3
Working Conference on Database Security, pages 60–72, Lake Tahoe, California,
1998. IFIP, Chapman & Hall.

[Wie92] G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, 1992 .

CHAPTER 8
SIMULATION AND ANALYSIS OF
CRYPTOGRAPHIC PROTOCOLS

M. Papa, O. Bremer, S. Magill, J. Hale and S. Shenoi

Abstract This paper integrates logic and process calculus components to permit
the comprehensive simulation and analysis of cryptographic protocols.
The approach permits proofs about the information transmitted in pro-
tocols as well as the behavior of participating principals.

Keywords: Cryptographic protocols, simulation, verification, logics, process calculi

1. INTRODUCTION
Cryptographic protocols are unambiguous, mutually subscribed se-

ries of steps, involving the exchange of messages between communicating
agents (principals). They are indispensable to distributed computing ap-
plications ranging from electronic commerce to national defense [14,15].

Most protocols fail due to design flaws, not because of weaknesses in
encryption [3,8,9,14]. A subtle flaw in the Needham-Schroeder protocol
[8] went undiscovered for nine years, potentially allowing malicious enti-
ties to steal keys, corrupt sensitive data, even sabotage military systems.

Higher order logics [3,5,15] are used to reason about protocols. BAN
logic [3] is a many-sorted modal logic for analyzing authentication pro-
tocols. It assumes that authentication is a function of integrity and
freshness of messages. Inference rules are specified for tracing these at-
tributes through all the steps of a protocol. BAN also defines inference
rules for reasoning about the information held by principals (“beliefs”).
BAN has detected flaws and exposed redundancies in several protocols,
including Needham-Schroeder, Yahalom and Kerberos protocols [3,14].

Despite their success, BAN logic and its derivatives (e.g., GNY [5]
and SVO logics [15]) have two major limitations. First, protocols must
be idealized prior to analysis. The translation of a real protocol to its
idealized counterpart is a difficult process, susceptible to misinterpreta-
tion and errors [5,14]. Moreover, a single protocol may have multiple
idealized representations, each with slightly different properties. The
second limitation arises from the logics’ inability to express the actions

90 DATA AND APPLICATIONS SECURITY

and evolution of principals. Message passing is modeled as an atomic
event; the exchange of a message only affects the information held by
the principals. When the actions and evolution of principals are ignored,
it is not possible to make formal guarantees about their behavior.

Another promising approach to protocol verification involves model-
ing principals as agents using a process calculus [1,2,10-12]. An axiom-
atization of the process calculus is then used to obtain proofs about
agent behavior. The [11,12] exemplifies this approach. It
models distributed systems as primitive concurrent agents with complex
message passing. Computation is simulated by agent communication:
agents exchange messages and evolve to simpler forms, until all com-
munication ceases. A deep embedding of using Higher Order
Logic (HOL) [6] permits proofs about agents, distributed systems, and
the itself [10]. The ROC process calculus [7] extends the

for distributed objects with complex message passing. The
Spi-calculus [2] augments the with cryptographic primitives,
permitting encrypted messages.

Process calculi give the ability to comprehensively model and reason
about the behavior of principals (agents) without protocol idealization.
However, process calculi lack constructs for reasoning about messages.
While the Spi-calculus can model principals exchanging encrypted mes-
sages, it can neither model nor reason about the information held by
principals. Thus, only limited properties can be proven about protocols.

This paper integrates logic and process calculus components, combin-
ing their strengths to permit the comprehensive simulation and analysis
of cryptographic protocols. Protocols need not be idealized prior to
modeling and verification. Moreover, it is possible to prove properties
about individual messages, principals, and the protocol itself.

2. MESSAGE MODELING
Following the style of process calculi [7,11,12], we model message pass-

ing using synchronous communication. Asynchronous communication
protocols can be constructed with synchronously communicating agents.

Communication occurs when a message output by one agent matches
a pattern exposed by another. This section describes the syntax of
messages and patterns, and the pattern-matching conventions.

Simulation and Analysis of Cryptographic Protocols 91

Definition 2.1: A key (k key) is a public/private key
a shared or secret key the concatenation of two keys a
placeholder for a key that is not yet known (k?), or nokey, corresponding
to a cleartext message:

We assume the existence of an infinite set of names (n name) as a
basic type. It is used to create unique keys, and data items for messages
and patterns.

Definition 2.2: A message (m message) is a tuple
encrypted under key k. A value (v value) is a key (k), a message (m),
a name (n) or a fresh name (#n):

To permit complex structures, messages are defined as nested tuples of
“values” (v value). Note that fresh names (nonces and time stamps)
are also incorporated in the BAN and GNY logics [3,5]. A newly gen-
erated value is considered to be fresh throughout a protocol run. A list
of fresh names associated with each run must be maintained to permit
reasoning about freshness.

Patterns permit the capture of messages and their contents. A pattern
exposed by a receiver expresses the information it has about message
format and content.

Definition 2.3: A pattern (p pattern) is a tuple en-
crypted under key k, a key (k), a wildcard (n?) for capturing values, or
a datum (n):

Figure 1 illustrates the modeling of messages and patterns. In the ex-
ample, the Law Enforcement Agency Field (LEAF) for a Clipper trans-
mission [14,15] is output by Phone as
where is the session key encrypted under the Clipper
chip’s unit key ID is the Clipper serial number, and AUTH
is the escrow authenticator. All these items are encrypted under the
Clipper family key

Since the law enforcement agency knows the LEAF format and the
family key it can expose the pattern to receive

92 DATA AND APPLICATIONS SECURITY

Figure 1. Modeling message passing.

the message as input. The wildcards ekey?, id? and auth? are place-
holders for receiving the individual LEAF items. Communication occurs
when the message output by Phone in Figure 1 matches the pattern
exposed by Police.

The following rules define the matching of messages and patterns.
First, we define the matching of keys. Intuitively, the key matching
operator establishes that an agent can decrypt an encrypted message if
it possesses the right key.

Definition 2.4: Key matching is defined by the following rules:

Definition 2.5: The matching of messages and patterns is defined
by the following rules (v value, p pattern, k key, m message
and n name):

Communication occurs only when a message is matched by an exposed
pattern. Free occurrences of a wildcard n? in the pattern p are replaced
with the corresponding matching value v throughout the pattern. For ex-
ample, in Figure 1, the message is matched by
the pattern exposed by Police, causing
ID and AUTH to be bound to ekey, id and auth, respectively.

Simulation and Analysis of Cryptographic Protocols 93

3. PROTOCOL MODELING
Protocols are modeled as sequences of messages exchanged by agents.

We model the messages exchanged and the behavior of the agents.
The starting point is a sequence of messages or patterns that are

output or input by an agent. Note that the term a seq
denotes that agent a outputs the message m. Likewise, a seq
denotes that a first outputs the message m and then exposes the pattern
p for input.

Definition 3.1: Let m message, p pattern and Istn : List of
n name. Then, sequences (seq), annotated sequences (aseq) and con-
current sequences (cseq) of messages and/or patterns are defined by:

where nil is the empty list, is an infinite sequence, and is the
commutative concurrency operator for sequences.

A sequence (seq) is defined as a sequence with an output message
or an input pattern or empty (nil). An annotated

sequence (aseq) is a sequence of messages and/or patterns followed by a
list of names ([seg].[lstn]); the list [lstn] stores fresh names for the cor-
responding sequence ([seg]). The term for an annotated sequence
denotes a sequence that has to be executed repeatedly, e.g., to model
a server. A concurrent sequence (cseq), the concurrent composition
of an annotated sequence and a concurrent sequence, models threads of
execution for a single agent. It can express multiple runs of one protocol
or parallel runs of different protocols.

Definition 3.2: The following property holds for an infinite sequence

Definition 3.3: An agent a is defined by:

where c cseq, id name and lstv : List of v value.

The term id identifies the agent a, lstv is a list of values representing
the information possessed by the agent. As in the BAN and GNY logics

94 DATA AND APPLICATIONS SECURITY

Figure 2. Simplified Clipper protocol.

[3,5], maintaining the list lstv permits reasoning about agents, especially
about what they know, say and have been told.

The modeling of cryptographic protocols with this syntax is high-
lighted using the simplified Clipper protocol in Figure 2.

Four agents participate in the protocol: a Clipper telephone (Phone),
a law enforcement agent (Police) and two key escrow agents (Escrow1
and Escrow2). The protocol has six steps. Police exposes patterns to
capture the LEAF (Step 1) and the encrypted message (Step 2) from
Phone. Next, Police transmits Phone’s identification and a court order
to Escrow1 and Escrow2 (Steps 3 and 4), each of which hold one-half
of Phone’s unit key. In Steps 5 and 6, Escrow1 and Escrow2 transmit
one-half of Phone’s unit key to Police.

Figure 3 shows the formal model of the protocol. Phone is defined
as: cseq(PhoneId, lstv). cseq is composed of two output messages, the
LEAF and a message M encrypted un-
der session key No fresh names are used in this particular
protocol, thus lstn = [nil]. List lstv = contains all
the the keys required for Phone to implement Clipper transmissions.
Note that the concatenation of the key halves yields
Phone’s unit key.

Police is defined by cseq(PoliceId, lstv). Its lstv only contains the
Clipper family key and two keys: and for communicat-
ing with Escrowl and Escrow2, respectively. Police’s cseq contains
two patterns: to capture the LEAF and emsg? to
capture Phone’s encrypted message The cseq also contains
two more concurrent sequences, each with a message output followed
by a pattern exposure. The first is
directed at Escrow1 to send Phone’s ID and AUTH (which were pre-
viously bound to the wildcards id? and auth?) and the court order (CO)

Simulation and Analysis of Cryptographic Protocols 95

Figure 3. Formal model of Clipper protocol.

and to receive the first half of Phone’s unit key (stored in the wildcard
Similarly, the second sequence is directed at Escrow2 to receive

the second half of Phone’s unit key (stored in Since no fresh names
are used, lstn = [nil] for the current sequence.

The definitions of Escrow1 and Escrow2 are similar to each other.
Escrow1 is defined by cseq(E1Id, where isused to commu-
nicate with Police. Escrow1’s cseq contains to
receive information from Police and the message to send
one-half of Phone’s unit key to Police. The pattern
exposed by Escrow1 ensures that Police submits a verifiable (id, escrow
authenticator, court order) tuple corresponding to Phone.

4. PROTOCOL SIMULATION
Most techniques for formally modeling protocols only consider the

messages exchanged by principals. We adopt an integrated approach
that models messages and principal behavior. Principals are formally
modeled as concurrent agents that exchange complex messages and re-
duce to simpler forms. A virtual machine has been designed to simulate
protocols by applying inference rules defined for agent communication
and reduction [7]. This permits the comprehensive simulation of proto-
cols – essential to their analysis and verification.

4.1. INFERENCE RULES FOR AGENT
BEHAVIOR

Inference rules governing agent communication and reduction provide
an unambiguous semantics for simulating agent behavior. Actions de-
fined for agents include communication, reduction and binding.

96 DATA AND APPLICATIONS SECURITY

Definition 4.1: Agent communication and reduction are defined
by the following inference rules. Communication offers are denoted by

where is m (input) or (output):

The In rule defines the semantics for the receipt of a message us-
ing a pattern. The precondition m p specifies that the message
m must match the pattern p exposed by agent (id, lstv) with com-
munication sequence [p seg].[lstn] cseq(id,lstv). The postcondi-
tion states that after the message is accepted, the agent reduces to

All free ocurrences of wildcards in p
are replaced by the corresponding values in m in the remaining sequences
of messages and/or patterns; this is specified by [seg].[lstn] cseq{m/p}.
The agent’s lstv is updated with the message that has just been ac-
cepted. The new list of values is denotes concatenation).

The Out rule has no preconditions. On offering message m, the com-
munication sequence of agent (id, lstv) reduces to
[seq].[lstn fresh(m)] cseq. The list of names lstn associated with the
remaining sequence of messages and/or patterns seq is updated with the
set of fresh names in m (fresh(m)); this is expressed by lstn fresh(m).
Similarly, the list of values lstv held by the agent is updated with the
offered message to produce lstv m.

Comm governs agent reduction. Two preconditions must hold for
a & b, the concurrent composition of agents a and b, to reduce to &
after communicating message m. First, agent a must be able to reduce
to agent with output Second, agent 6 must be able to reduce to
agent with input m.

4.2. CLIPPER PROTOCOL SIMULATION
We illustrate the simulation of the Clipper protocol in Figure 2 by

presenting the agent reductions for the first step. The agent definitions
in Figure 3 serve as the starting point for the simulation.

Step 1 implements the LEAF Transmission. Phone outputs the LEAF
as: Police exposes

Simulation and Analysis of Cryptographic Protocols 97

Note that Police knows the Clipper family key used to encrypt the
LEAF, i.e., lstv of Police. The message and pattern match ac-
cording to Definitions 2.4 and 2.5. Using Comm and chaining to Out
for Phone and In for Police, the agents reduce to:

Note that ID and AUTH are bound to Police’s wild-
cards ekey?, id? and auth?, respectively. Furthermore, the lists lstv of
Phone and Police are updated to include

The remaining steps proceed similarly. Two communicating agents
always reduce according to the Comm rule which requires Out to be
applied to the sender and In to be applied to the receiver. When no
further communication is possible the protocol run is complete.

5. PROTOCOL ANALYSIS
The agent inference rules in Section 4 formalize agent behavior, i.e.,

how agents exchange messages and evolve. To analyze protocols, it is
also necessary to specify how agents can infer new information from
exchanged messages. Inference rules are required for reasoning about the
information held by agents, the freshness of the information, and whether
or not agents can communicate. This section specifies inference rules for
messages and illustrates their application in the Clipper example.

5.1. INFERENCE RULES FOR AGENT
KNOWLEDGE

The rules in Definition 5.1 are used to determine: (i) what an agent
knows, (ii) what it can infer, and (iii) what messages it can produce.

Definition 5.1: The inference rules Knows, Extract and Construct
are defined by:

98 DATA AND APPLICATIONS SECURITY

The Knows rule expresses predicates of the form “agent id knows
value v;” this is written as “id knows v.” This predicate is true only
if v lstv or if v can be derived using the Extract and Construct
rules. The function Name(A) returns the id of an agent A from the
agent description, i.e., Name(cseq(id,lstv)) = id.

The Extract rule helps extract the components of a message held
by an agent in its lstv. The list Istv is augmented with the extracted
components according to the rule conclusion. For example, if an agent
holds the encrypted message and the key in lstv, then the
agent can obtain X and, therefore, X is added to lstv. Note that
denotes the concatenation of a value list and a value.

Construct creates new values from values held in lstv; these new
values are added to lstv. For example, if an agent’s lstv holds the values
X, Y and Z, and the key then it can construct the encrypted
message this encrypted message is added to the agent’s
lstv. Altering lstv using Extract and Construct does not change agent
behavior, only what the agent knows.

Variations of Extract, Construct andKnows are used in the GNY
logic [5] as the “Being-Told” and “Possession” rules.

5.2. CLIPPER PROTOCOL ANALYSIS
The Clipper protocol in Figures 2 and 3 is used to illustrate the ap-

plication of the message inference rules. We prove that at the end of the
protocol, the Police agent “knows” the message M that is encrypted as

and output by Phone in Step 2. The configuration of the Police
agent after the protocol is completed serves as the starting point for the
analysis. Since the Police’s knowledge (lstv) is of special importance,
the analysis focuses on it.

To Extract M from (1), Police must know which can be Ex-
tracted from (2). To do so, Police must Extract (2) from (3) requiring
knowledge of (4), and The latter two must be Extracted
from (5) and (6), requiring Police to know (7) and (8).

Simulation and Analysis of Cryptographic Protocols 99

Since Police Knows (4), (7) and (8) the
Extract-rule can be applied several times and finally M lstvPolice.
This completes the proof of “PoliceId knows M.”

6. AUTOMATING PROOFS
The inference rules defined in the previous sections provide the foun-

dation for verification. A significant advantage is that the rules governing
agent communication and reduction (used for simulation) can be inte-
grated with the inference rules for messages (used for analysis) to reason
about the properties of protocols and participating agents.

Proofs are automated using a translation (mechanization) [4] of the
agent reduction and message inference rules into Higher Order Logic
(HOL) [6], an interactive theorem proving environment. A HOL session
results in a theory – an object containing sets of types, constants, defini-
tions, axioms and theorems (logical consequences of the definitions and
axioms). As new theorems are proved, they are added to the theory and
may be used to develop additional results. Only well-formed theories can
be constructed because formal proofs are required for all new theorems.

Automating proofs in HOL involves incorporating type definitions,
function definitions, inference rules, tactics, and conversions.

Four types are defined in the HOL Protocol Theory: key, value,
message and pattern, the last three being mutually recursive.

Then, functions are implemented to manipulate the specified types.
E.g., functions for matching keys and matching messages and patterns,
and the Name function for obtaining an agent’s id.

Next, inference rules are defined for reasoning about agent behavior
and knowledge (In, Out, Comm, Knows, etc.). This implements a
HOL theory supporting basic proofs via manual rule application.

Tactics and conversions are required to automate proofs. A tactic
tranforms a goal into an equivalent goal that is easier to prove. Tactics
are introduced to selectively apply the inference rules governing agent
behavior and knowledge to facilitate theorem proving.

The final step is to create conversions for transforming propositions
into theorems. A conversion must establish the truth value for every
expression of the form it is designed to handle. Although it is not feasible
to develop conversions for all types of propositions, their introduction,
even to a limited degree, can facilitate the automation of proofs.

7. CONCLUSIONS
The integration of logic and process calculus provides a powerful

framework for simulating and analyzing cryptographic protocols. The

100 DATA AND APPLICATIONS SECURITY

approach advances logic techniques by not requiring protocols to be ide-
alized before analysis. It improves on process calculi by permitting the
exhaustive modeling of messages and principals. Novel features include
an expressive message passing semantics, sophisticated modeling of con-
currency, and seamless integration of inference rules for agent behavior
and knowledge. Furthermore, no assumptions are made about the hon-
esty of communicating agents. This facilitates the analysis of crypto-
graphic protocols in open, potentially hostile environments.

References
[1] Abadi, M. and Cardelli, L. (1995) An imperative object calculus, Proceedings of

the Conference on Theory and Practice of Software, 471-485.
[2] Abadi, M. and Gordon D. (1997) Reasoning about cryptographic protocols in

the Spi calculus. Proceedings of the Fourth ACM Conference on Computer and
Communications Security,, 36-47.

[3] Burrows, M., Abadi, M. and Needham, R. (1990) A logic of authentication. ACM
Transactions on Computer Systems, 8(1), 18-36.

[4] Galiasso, P. (1998) Mechanization of ROC in Higher Order Logic. M.S. Thesis,
Computer Science Department, University of Tulsa, Tulsa, Oklahoma.

[5] Gong, L., Needham, R. and Yahalom, R. (1990) Reasoning about belief in cryp-
tographic protocols. Proceedings of the IEEE Symposium on Research in Security
and Privacy, 234-248.

[6] Gordon, M. and Melham, T. (1993) Introduction to Higher Order Logic (HOL).
Cambridge University Press, Cambridge, U.K.

[7] Hale, J., Threet, J. and Shenoi, S. (1997) A framework for high assurance security
of distributed objects, in Database Security, X: Status and Prospects (eds. P.
Samarati and R. Sandhu), Chapman and Hall, London, 101-119.

[8] Lowe G. (1995) An attack on the Needham-Schroeder public key authentication
protocol. Information Processing Letters, 56(3), 131-133.

[9] Lowe G. (1996) Some new attacks upon security protocols. Proceedings of the
Ninth IEEE Computer Security Foundations Workshop.

[10] Melham, T. (1992) A mechanized theory of the π-calculus in HOL. Technical
Report 244, University of Cambridge Computer Laboratory, Cambridge, U.K.

[11] Milner, R. (1989) Communication and Concurrency. Prentice-Hall, New York.
[12] Milner, R., Farrow, J. and Walker, D. (1989) A calculus of mobile processes.

Report ECS-LFCS-89-85&86, University of Edinburgh, Edinburgh, U.K.
[13] Pfleeger, C. (1997) Security in Computing. Prentice Hall, Upper Saddle River,

New Jersey.
[14] Schneier, B. (1996) Applied Cryptography. John Wiley, New York.
[15] Syverson, P. and van Oorschot, P. (1994) On unifying some cryptographic pro-

tocol logics, Proceedings of the IEEE Symposium on Research in Security and
Privacy, 165-177

CHAPTER 9
AUTHENTIC THIRD-PARTY DATA
PUBLICATION

Premkumar Devanbu, Michael Gertz, Charles Martel
Department of Computer Science, University of California, Davis, CA 95616
{devanbu|gertz|martel}@cs.ucdavis.edu

Stuart G. Stubblebine
CertCo, 55 Broad Street, New York, NY 10004
stuart@stubblebine.com

Abstract Integrity critical databases, such as financial data used in high-value
decisions, are frequently published over the Internet. Publishers of such
data must satisfy the integrity, authenticity, and non-repudiation re-
quirements of clients. Providing this protection over public networks is
costly.

This is partly because building and running secure systems is hard.
In practice, large systems can not be verified to be secure and are fre-
quently penetrated. The consequences of a system intrusion at the data
publisher can be severe. This is further complicated by data and server
replication to satisfy availability and scalability requirements.

We aim to reduce the trust required of the publisher of large, infre-
quently updated databases. To do this, we separate the roles of owner
and publisher. With a few trusted digital signatures from the owner, an
untrusted publisher can use techniques based on Merkle hash trees to
provide authenticity and non-repudiation of the answer to a database
query. We do not require a key to be held in an on-line system, thus
reducing the impact of system penetrations. By allowing untrusted
publishers, we also allow more scalable publication of large databases.

1. INTRODUCTION
Consider an Internet financial-data warehouse, with historical data

about securities such as stocks and bonds, that is used by businesses
and individuals to make important investment decisions. The owner (or
creator) of such a database might be a rating/analysis service (such as
Standard & Poors), or a government agency. The owner’s data might
be needed at high rates, for example by the user’s investment tools. We
focus our attention on data which changes infrequently and needs to be
delivered promptly, reliably and accurately.

102 DATA AND APPLICATIONS SECURITY

One approach to this problem is for the owner of the information to
digitally sign the answers to clients’ queries, using a private signing key,

This signature is verified using the corresponding public key,
Based on the signature, a client can be sure that the answer comes from
the owner, and that the owner can’t claim otherwise. However, there
are several issues here. First, the owner of the data may be unwilling
or unable to provide a reliable and efficient database service to handle
the needed data rates. Second, the owner needs to maintain a high
level of physical security and system security to defend against attacks.
This has to be done to protect the signing key, which must be resi-
dent at the server at all times to sign outgoing data. In practice, large
software systems have vulnerabilities, and keeping secret information
on a publicly-accessible system is always risky. Using special hardware
devices to protect the signing key will help, as would emerging crypto-
graphic techniques like “threshold cryptography,” but these methods do
not fully solve the system-vulnerability problem, and can be too expen-
sive in our domain, both computationally and financially.

A more scalable approach uses trusted third-party publishers in con-
junction with a key management mechanism which allows a certified
signing key of a publisher to speak for the owner (see also [3]). The
database (or database updates) is provided securely to the publisher,
who responds to client queries by signing them with it’s own (certified)
signing key, Presumably, the market for useful databases will moti-
vate publishers to provide this service, unburdening database owners of
the need to do so. The owner simply needs to sign the data after each
update and distribute it to the publisher. As demand increases, more
publishers will emerge, or more capable ones, making this approach in-
herently scalable. But the approach still suffers from the problem and
expense of trying to maintain a secure system accessible from the In-
ternet. Furthermore, the client might worry that a publisher engages
in deception. She would have to believe that her publisher was both
competent and careful with site administration and physical access to
the database. She might worry about the private signing-key of the pub-
lisher, which is again vulnerable to attacks. To gain trust, the publisher
must adopt meticulous administrative practices, at far greater cost. The
need for trusted publishers would also increase the reliance on brand-
names, which would limit market competition.

In a summary of fundamental problems for electronic commerce [10],
Tygar asks “How can we protect re-sold or re-distributed information
... ?” We present a solution to this problem in the context of relational
databases.

Authentic Third-party DataPublication 103

2. BASIC APPROACH
We allow an untrusted publisher to provide a verification-object

to a client to verify an answer to its database query. The client
can use the to gain assurance that the answer is just what the
database owner would have provided. The verification-object is based
on a summary-signature that the owner periodically distributes to
the publisher (Figure 1).

Figure 1. We partition the role of information provider into owner and publisher.
The owner provides database updates to the publisher. The publisher is untrusted.
The client makes inquiries to the publisher. Its gets responses which can be verified
using a returned verification-object. Superscripts denote keys known to that party.
Only is secret. The client must be sure of the binding of to the owner.

The summary-signature is a bottom-up hash computed recursively
over B-tree type indexes for the entire set of tuples in each relation of
the owner’s database, signed with Answers to queries are various
combinations of subsets of these relations. Given a query, the publisher
computes the answer. To show that an answer is correct the publisher
constructs a verification-object using the same B-tree that the owner
had used to compute the summary-signature. This verification-object
validates an answer by providing an unforgeable “proof” which links the
answer to the summary-signature. Our approach has several features:

1 Besides its own security, a client needs only trust the key of the
owner. The owner only needs to distribute the summary-signature
during database updates. So, the owner’s private key can be main-
tained in an “off-line” machine, isolated from network-based at-
tacks. The key itself can be ensconced in a hardware token, which
is used only to sign a single hash during updates.

2 Clients need not trust the publishers, nor their keys. In particular,
if a particular publisher were compromised, the result would only
be a loss of service at that publisher.

104 DATA AND APPLICATIONS SECURITY

3 In all our techniques, the verification-object is of size linear in the
size of the answer to a query, and logarithmic in the size of the
database.

4 The verification-object guarantees that the answer is correct, with-
out any extra or missing tuples.

5 In all of our techniques, the overheads for computing the summary-
signature, the and for checking the are reasonable.

6 The approach offers far greater survivability. Publishers can be
replicated without coordination, and the loss of one publisher does
not degrade security and need not degrade availability.

A correct answer and verification-object will always be accepted by
the client. An incorrect answer and verification-object will almost always
be rejected, since our techniques make it computationally infeasible to
forge a correct verification-object for an incorrect answer. Overall, the
approach nicely simplifies the operational security requirements for both
owners and publishers.

3. MERKLE HASH TREES
We describe the computation of a Merkle Hash Tree [6] for a relation r

with m tuples and relation schema R = A more complete
description can be found in [4]. Assume that is a
list of attributes from schema(R). A Merkle Hash Tree, denoted by
MHT(r, is a balanced binary tree whose leaves are associated with

the tuples of r. Each node in the tree has a value computed using a
collision-resistant hash function h:

1 First, compute the tuple hash for each tuple t r, thus

The tuple hash (by the collision resistance of the hash function) is a
“nearly unique” tuple identifier. We also assume distinct “bound-
ary tuples” t0, with artificial attribute values chosen to be
smaller (larger) than any real tuple. These are associated with the
left (right) most leaves in the tree.

2 Next, compute the Merkle hash tree for relation r. We assume
that r is sorted by the values of so that for two distinct tuples

Any total order over r based on will
work. We now describe how to compute V(u) the value associated
with a node u of MHT(r, Let be the leaf associated with

Authentic Third-party DataPublication 105

Leaf-node :

Internal node u : V(u) = h(V(w) || V(x))

where w, x are the children of u. We also refer to w, x as hash
siblings,

The value of the root is the “root hash” of the Merkle tree. This
construction easily generalizes to a higher branching factor K > 2, such
as in a -tree; however, for our presentation here we use binary trees.
If the owner and the publisher build a MHT around index structures
that are used in query evaluation, then constructing a is a minor
overhead over the query evaluation process itself.

Note that (by the cryptographic assumption of a collision-resistant
hash function) if the correct value of the parent is known to the client,
it is hard for the publisher to forge the value of its children.

Definition 1 (Hash Path)
For a leaf node ui in MHT(r, the nodes necessary to compute the

hash path up to the root hash is denoted as path Such a hash path
always has the length d, the depth of node With ti

and the values of siblings of the nodes on the path we can recompute the
value at the root. Hash paths can also be provided for non-leaf nodes.

The d values of the siblings of path constitute the showing
that tuple is actually in the relation. Indeed any interior node within
the hash tree can be authenticated by giving a path to the root. Hash
paths show that tuples actually exist in a relation; to show that set
of tuples is complete, we need to show boundaries. Any non-empty
contiguous sequence q = of leaf nodes in a Merkle Hash Tree
MHT(r,. uses and as its boundary tuples.

Any non-empty contiguous sequence q = of leaf nodes in a
Merkle Hash Tree MHT(r, has a lowest common ancestor LCA(q).
This situation is illustrated in Figure 2. Given LCA(q), one can show
a hash path path(LCA(q)) to the authenticated root hash value. After
this is done, (shorter) hash paths from its boundary tuples and
to LCA(q) and the values of allow us to compute V(LCA(q)).
We can then compute the root hash using the values of the siblings of
path(LCA(q)). This lets us verify of that are associated
with contiguous leaves in our tree.

We finally define desirable properties of the answer set q returned by
publisher, in terms of the correct answer that would have been returned
by owner.

106 DATA AND APPLICATIONS SECURITY

Figure 2. A Merkle tree, with a contiguous subrange q = with a least
common ancestor LCA(q), and upper and lower bounds. Note verifiable hash path
“1” from LCA(q) to the root, and the proximity subtrees (thick lines) for the “near
miss” tuples and which show that q is complete.

Definition 2 The answer given by publisher to a query q is inclusive if
it contains only the tuples that would have been returned by owner, and
is complete if it contains all the tuples that would have been returned by
owner.

4. BASE LEVEL RELATIONAL QUERIES
In this section we outline the computation of for answers to basic

relational queries. We illustrate the basic idea behind our approach
for selection and projection queries in Section 4.1 and 4.2, respectively.
Slightly more complex types of queries (join queries) and set operators
are discussed in Sections 4.3 and 4.4.

4.1. SELECTIONS
Assume a selection query (c constant) that asks for tuples

with attribute values for Ai in a specified range. Assuming that the tree
MHT(r, has been constructed, we can provide compact for the

answer q to a query. We consider two cases: when q = {}, and otherwise.
If q {}, assume a set of answer tuples which build a
contiguous sequence of leaf nodes in MHT(r, We simply include a
couple of boundary tuples and return the set along with
the hash paths to and If q is empty, just the boundary tuples
are returned. In either case, the size of the is

Authentic Third-party DataPublication 107

In [4] we present a formal proof that our construction for selection
queries is secure:
Lemma 3 If publisher cannot engineer collisions on the hash function
or forge signatures on the root hash value, then if client computes the
right authenticated root hash value using the and the answer provided
for selection queries, then the answer is indeed complete and inclusive.

4.2. PROJECTIONS
For queries of the pattern schema(R), the projection op-

erator eliminates some attributes of the tuples in the relation r, and then
eliminates duplicates from the set of shortened tuples, yielding the final
answer q. A user can choose many different ways to project from a rela-
tion R; if this choice is dynamic, it may be best to leave the projection to
the client. However, the client then gets a potentially large intermediate
result so the will be linear in size rather than in the smaller
final result | q | . We note that we can, if necessary, mask some of the
attributes from the client; with just the hash of those attributes in each
tuple, the client can compute the tuple hash.

Consider, however, an often-used projection which projects
onto attributes where duplicate elimination will remove numerous tu-
ples. Given the pre-projection tuple set, the client would have to do
all this work. Now, suppose we have a Merkle tree MHT(r, i.e.,
we assume that the sets of retained attribute values can be mapped to
single values with an applicable total order. In this case, we can provide
a for the projection step that is linear in the size of the projected
result q.

Each tuple t in the result set q may arise from a set S(t) r with
tuples having identical values for the projected attribute (s) We must
show that the set q is inclusive and complete:

1 To prove t q, we show the hash path from any witness tuple
y S(t) r to the Merkle Root. However, “boundary” tuples
make better witnesses, as we describe next.

2 To show that there are no tuples missing, say between t and

the sorted order. Hash paths from two “boundary” tuples y S(t)
and x that occur next to each other in the Merkle tree can
do this.

We observe that both the above bits of evidence are provided by
displaying at most 2 | q | hash paths, each of length This meets
our constraint that the size of the verification object be bounded by

 we just show that S(t), are contiguous in

108 DATA AND APPLICATIONS SECURITY

Constructing Merkle trees to provide compact for duplicate elim-
ination with every possible projection might be undesirable. We might
construct trees for only highly selective, common projection attributes,
and leave the other duplicate eliminations to the client.

4.3. JOINS
Joins between two or more relations, specially equi-joins where re-

lations are combined based on primary key – foreign key dependen-
cies, are very common. We focus on pairwise joins of the pattern
r s where C is a condition on join attributes of the pattern

schema(R), schema(S), {=,<,>}. For being the
equality predicate, we obtain the so-called equi-join. We show 3 differ-
ent approaches, for different situations.

Given a query of the pattern s, one structure that supports
computation of very compact for the query result is based on
the materialization (i.e., the physical storage) of the Cartesian Prod-
uct r × s. This structure supports the three types of joins, which can
all be formulated in terms of basic relational algebra operators, i.e.,
r s (r × s). Assume m =| r |, n =| s |. The verifica-
tion structure for r s queries is constructed by sorting the Cartesian
Product according to the difference between the values for and
assuming such an operation can be defined, at least in terms of “posi-
tive” , “none” or “negative”. This yields three “groups” of leaf nodes in
the Merkle Tree: (1) nodes for for two tuples t r, u s is
0, thus supporting equi-joins, (2) nodes where the difference is positive,
for the predicate >, and (3) nodes where the difference is negative, for
the predicate <. If only simple joins, with =, > or < are desired,
there is no need to construct binary Merkle trees over the entire cross
product—we can just group the tuples in R × S into the three groups,
hash each group in its entirely, and append the three hashes to get the
root hash. In this case, the for the three basic queries would
consist only of 2 hash values!

For equi-join queries, an optimized structure, presented briefly below,
can be used. Rather than the full Cartesian Product r × s, we ma-
terialize the Full Outer Join r s which pads tuples for which no
matching tuples in the other relation exist with null values (see, e.g.,
[2, 8]). The result tuples obtained by the full outer-join operator again
can be grouped into three classes: (1) those tuples tu, t r, u s, for
which the join condition holds, (2) tuples from r for which no matching
tuples in s exist, and (3) tuples from s for which no matching tuples

Authentic Third-party DataPublication 109

in r exist. Constructing a for the result of query of the pattern
r s then can be done in the same fashion as outlined above.

Suppose R and S have B-tree indices over the join attributes, and
these trees have been Merkle-hashed; also suppose, without loss of gen-
erality, that of the two relations, r has the smaller number of distinct
values, say and that the size of the answer is q. We can now provide
larger of size logm+ | q |) in the worst case1. This
is done by doing a “verified” merge of the leaves of the two index trees.
Whenever the join attributes have the right relation, witness hash
paths in the trees for R and S are provided to show inclusiveness of the
resulting answer tuples; when tuples in r or s are skipped during the
merge, we provide a pair of proximity subtrees in R or S respectively to
justify the length of the skip. This conventional approach to joins gives
rise to larger than the approach described above, but at reduced
costs for publisher and owner.

4.4. SET OPERATIONS
Consider set operations over relations u and v, which may be inter-

mediate query results, u and v may be subsets of some relations r and
s respectively, which are each sorted (possibly on different attributes)
and have its own Merkle tree MHT(r, and MHT(s, the root of
which is signed as usual. We consider unions and intersections.
Union. In this case, the answer set is q = u v. The client is given

for u and v, along with for both; client verifies both and
computes u v. This can be done in O(u + v) using a hash merge. Since
|q| is O (|u| + |v|), the overall and the time required to compute
and verify the answer, are linear in the size of the answer.
Intersection. The approach for union, however, does not produce
compact for set intersection. Suppose q = u v where u and v are
as before: note that often | q | could be much smaller than | u | + | v |.
Thus, sending the for u and v and letting the client compute the
final result could be a lot of extra work. We would like a of size
O(| q |). If Merkle trees exist for u and v, we can do inclusiveness
in O(| q |): publisher can build a for q with O(| q |) verification
paths, showing elements of q belong to both u and v. Completeness is
harder. One can pick the smaller set (say u) and for each element in
u – q, construct a show that it is not in v. In general, if u and v
are intermediate results not occurring contiguously in the same Merkle

1 While we can construct pathological cases that require of this size, practical cases may
often be better, being closer to O(q log n + q log m). Further empirical study is needed.

110 DATA AND APPLICATIONS SECURITY

tree, such a is linear in the size of the smaller set (say u). A similar
problem occurs with set differences u – v.

We have not solved the general problem of constructing linear
in the size of the result for intersections and set differences. Indeed, the
question remains as to whether (in general) linear-size can even be
constructed for these objects. However, we have developed an approach
to constructing linear-size for a common type of intersection, range
query, for example, a selection query where the age and salary fall in
specified ranges. For these, we use a data structure drawn from com-
putational geometry called a multi-dimensional range tree. This also
supports set differences over range queries on several attributes.

In d-dimensional computational geometry, when one is dealing with
sets of points in d-space, one could ask a d-space range query. Consider
a spatial interval (< >); this represents an axis-
aligned rectilinear solid in d-space. A query could ask for the points
that occur within this solid. Such problems are solved efficiently in
computational geometry using so-called Range Trees (See [5], Chapter
5). We draw an analogy between this problem and a query of the form

where schema(R). We use the multi-dimensional range
tree (mdrt) data structure to solve such queries and provide compact
verification objects. For brevity, we omit the full details of our approach.
However, in [4], we show how to construct for “d”-way range queries
such as the ones shown above. We also argue that the size of these
for a relation with size n, is O(| q | + The mdrt itself uses
O(n n) space and can also be constructed in time O(n n).
While the data structure arises out of computational geometry, it can be
used with any domain that has enough structure to admit a total order.
Full details are discussed in [4]

5. CONCLUSIONS AND FUTURE RESEARCH
We have explored the problem of authentic third party data publi-

cation. In particular, we have developed several techniques that allow
untrusted third parties to provide evidence of inclusive and complete
query evaluation to clients without using public-key signatures. In ad-
dition, the evidence provided is linear in the size of the query answers,
and can be checked in linear time. Our techniques can involve the con-
struction of complex data structures, but the cost of this construction
is amortized over more efficient query evaluation, as well as the produc-
tion of compact verification objects. Such pre-computation of views and
indexing structures are not uncommon in data warehousing applications.

Authentic Third-party DataPublication 111

We now examine some pragmatic considerations in using our ap-
proach, as well as related work and future research.

Query processing flexibility. What queries can be handled? A
typical SQL “select . . . from . . . where ...” can be thought of one or
more joins, followed by a (combined) selection, followed by a projection.
A multi-dimensional range tree can be used for both efficient evaluation
and construction of compact for such queries. Specifically, consider
a query that involves the join of two relations R and S, followed by a
series of selections and a final projection. Let’s assume a Theta-join
over attribute (occurring in both relations), followed by selections
on attributes and and a final projection on several attributes,
jointly represented by Full details are deferred to [4]. However,
to summarize briefly: such a query can be evaluated by constructing
a mdrt, beginning with the join attributes, followed by trees for each
selection attribute, and perhaps finishing with a tree for some selective
projection attributes.

Conventions. It is important to note that all interested parties:
owner, publisher and client, share a consistent schema for the databases
being published. In addition there needs to be secure binding between
the schema, the queries and the query evaluation process over the con-
structed Merkle trees. A convention to include this information within
the hash trees needs to be established. All parties also need to agree
on the data structures used for the It is also important that the
publisher and the client agree upon the format in which the together
with the query result is encoded and transmitted. Tagged data streams
such as XML provide an attractive option.

Recent Query Evaluations. Verifiers must verify that query evalu-
ation is due to an “adequately recent” snapshot of the database and not
an old version. We assume the technique of recent-secure authentica-
tion [9] for solving this problem. Risk takers (e.g., organizations relying
on the accuracy of the data) specify freshness policies on how fresh the
database must be. The digital signatures over the database include a
timestamp of the last update as well as other versioning information.
Clients interpret the timestamps and verify the database is adequately
recent with respect to their freshness policies.

Query flexibility. For efficient verification of query answering, we
make use of different trees over sorted tuple sets. Without such trees, our
approach cannot provide small verification objects. This points to a lim-

112 DATA AND APPLICATIONS SECURITY

itation of our approach—only queries for which Merkle trees have been
pre-computed can be evaluated with compact verification objects. Our
approach cannot support arbitrary interactive querying with compact
verification objects. Arbitrary interactive querying, however, is quite
rare in the presence of fixed applications at client sites. In practice,
however, data-intensive applications make use of a fixed set of queries.
These queries can still make use of parameters entered by a user and
which are typically used in selection conditions. Our approach is com-
patible with such applications. Essentially, client applications commit a
priori the queries they wish to execute; the owner and the publisher then
pre-compute the required Merkle hash trees to produce short verification
objects. While our approach cannot provide compact verification objects
in the context of arbitrary interactive database querying, it is quite com-
patible with the widely-used practice of embedding pre-determined (and
parameterizable) queries within data-intensive applications.

References
[1] M. Bellare. Practice-oriented Provable Security. In G. Davida E. Okamoto and

M. Mambo (eds.), Proceedings of First International Workshop on Information
Security (ISW 97), LNCS 1396, Springer Verlag, 1997.

[2] C.J. Date. An Introduction to Database Systems, Addison-Wesley, 1999.

[3] P. Devanbu and S.G. Stubblebine. Software Engineering for Security: a roadmap.
In The Future of Software Engineering, Special volume published in conjunction
with ICSE 2000, ACM Press, 2000.

[4] P. Devanbu, M. Gertz, C. Martel, and S.G¿ Stubblebine.
Authentic Third-party Data Publication. Technical Report,
www.db.cs.ucdavis.edu/publications/DGM00.ps, 2000.

[5] M. D. Berg , M. V. Kreveld, M. Overmars and O. Schwarzkopf. Computational
Geometry. Springer-Verlag, New York, 2000.

[6] R.C. Merkle. A Certified Digital Signature. In Advances in Cryptology (Crypto
’89), LNCS Vol. 435, Springer Verlag, 218–238, 1989.

[7] M. Naor, K. Nissim. Certificate Revocation and Certificate Update. Proceedings
of the 7th USENIX Security Symposium, 1998.

[8] A. Silberschatz, H. Korth, S. Sudarshan. Database System Concepts, (3rd edi-
tion), McGraw-Hill, 1997.

[9] S. G. Stubblebine. Recent-secure authentication: Enforcing Revocations in dis-
tributed systems. IEEE Computer Society Symp. on Security and Privacy, 1995.

[10] J. D. Tygar Open Problems in Electronic Commerce. In Proc. SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, ACM, 101, 1999.

CHAPTER 10

Protecting File Systems Against Corruption Using
Checksums1

Daniel Barbará, Rajni Goel, and Sushil Jajodia

Abstract: We consider the problem of malicious attacks that lead to corruption of files in
a file system. A typical method to detect such corruption is to compute
signatures of all the files and store these signatures in a secure place. A
malicious modification of a file can be detected by verifying the signature.
This method, however, has the weakness that it cannot detect an attacker who
has access to some of the files and the signatures (but not the signing
transformation) and who replaces some of the files by their old versions and
the corresponding signatures by the signatures of the old versions.

In this paper, we present a technique called Check2 that also relies on
signatures for detecting corruption of files. The novel feature of our approach
is that we compute additional levels of signatures to guarantee that any change
of a file and the corresponding signature will require an attacker to perform a
very lengthy chain of precise changes to successfully complete the corruption
in an undetected manner. If an attacker fails to complete all the required
changes, check2 can be used to pinpoint which files have been corrupted. Two
alternative ways of implementing Check2 are offered, the first using a
deterministic way of combining signatures and the second using a randomized
scheme. Our results show that the overhead added to the system is minimal.

Key words: Security, data corruption, integrity

1 This work was supported by the Air Force Research Laboratory/Rome under the contract
F30602-98-C-0264.

114 DATA AND APPLICATIONS SECURITY

1. INTRODUCTION

A file system may be a target of an attack that aims to disrupt its correct
functioning so that the files containing user data, applications, or system
executables become degraded and dysfunctional. To date, information
security systems focus on preventing attacks, though experience has
indicated that prevention is not completely successful. Our aim is to
formulate a defence mechanism that is effective against an attacker who
penetrates the prevention system, or an insider attacker. A legitimate user
misusing the system within his or her access domain, or attackers having
sniffed passwords thus appearing as authorized users could pose the insider
threat. Access controls or encryption technologies do not stop this kind of
file data corruption. In this paper we describe a technique called Check2 that
is designed to detect malicious changes to a file system. Check2 provides a
protection layer by creating a chain of obstacles that protect a file system
from unauthorized malicious modifications, deletions or additions.

Existing integrity and intrusion detection tools assist the users and
administrators in monitoring and detecting changes in individual files. To
date, integrity-checking tools identify and notify security officials about any
changed, deleted or added files, after the occurrence. Established approaches
identify corruption using statistical or pattern matching techniques, or by
comparing replicated copies of files' contents. Some [3] use securely stored
signatures (usually a message digest) to identify an alteration to a single file.
The functionality of integrity checking tools, such as Tripwire, relies on the
tamper proof security of these signatures. But, this intrusion security system
is susceptible to penetration by an attacker who has managed to gain access
to the signatures. This well-equipped intruder directly alters the stored file
signature to coincide with his or her malicious changes to a file. To detect
such attacks, the latest release of Tripwire signs the database of signatures
with a single signature [8]. In Tripwire, if an intruder gains write access to
stored file signatures, he or she can then be successful in corrupting the
system by completing one extra signature change. We propose to further
complicate the situation for an attacker who gains write access to the
checksums, which can be of concern in particular when the attacker tries to
restore an old version of a file for which the correct signature had been
observed.

Our proposed technique, Check2, operates on the file system as one
entity; each file alteration produces a set of reactions throughout the file
system. These reactions appear as modifications in some pre-calculated
values involving the contents of the files. The algorithm utilizes unique
combinations (subsets) of the set of file signatures to compute a second and a
third level signature. Each level is recomputed upon any change to a file.

Protecting File Systems Against Corruption Using Checksums 115

To significantly increase the workload of the intruder, each file change
triggers numerous changes in these higher-level signatures. When damaging
a single file, the intruder is accountable of updating each of these other
signatures and/or files for the system validation. Accumulating a stock, a
databank of old versions of valid files and matching signatures and
identifying the string of signatures to replace is part of the intruder’s battle.
We aim to make this stock too large to collect and the chain of reactions
nearly impossible to calculate and unrepeatable. The availability of high-
speed processors results in low maintenance costs for Check2 (the extra cost
is primarily computation time of extra signatures).

Check2 has one additional very desirable property: If the intruder fails to
complete all this work, the system is able to identify the files that have been
corrupted, so that the security officer can take proper action (presumably by
restoring them to the proper versions, safely stored elsewhere).

We present two strategies for Check2. Both use techniques that have
been utilized previously to solve other problems (viz., file comparison and
mutual exclusion) [2]. From the set of file signatures, the Check2 algorithm
utilizes either a randomized or deterministic procedure to produce a set of
subsets. In the randomized algorithm, each file signature appears exactly
once in one of the subsets. The deterministic strategy derives the subsets
where each file signature appears in more than one subset, which abides by
the parities non-null intersection property. In this strategy, the system further
calculates a third level of signatures using the same algorithm except using
the set of second level signatures in place of the file signatures. Furthermore,
the assumption is that authentic changes to the file system occur
occasionally. Although Check2 produces extra system expenses of
calculating signature values beyond the existing file signatures upon each
update in the system, our empirical results, using the MDS [6] signature
algorithm, show that this cost is extremely low. Moreover, this cost is
incurred only occasionally, and it is well justified by the chain of copying
and the enormous data bank the intruder must accumulate in order to
complete a single file corruption.

We begin in Section 2 by presenting a motivating example. In Section 3,
we present our deterministic and randomized techniques. Finally in section
4, we offer some conclusions and future directions.

2. MOTIVATING EXAMPLE

To illustrate, Figure 1 displays a simplified application file system with
seven files Cl, C2, ..., to C7. Each column i represents a file name, its
content, and its signature value,

116 DATA AND APPLICATIONS SECURITY

Contents

Figure 1. An example of a signature protected file system. The symbols indicate different
contents, and these in turn determine the signatures

The system utilizes a trusted and secret one way hashing function f (in
reality the function is not the “trusted” part, rather the function will be driven
by a trusted, presumably inviolable key that is likely to be stored in a safe
place), to compute a checksum value [6,7] involving the contents of each
file: f(#) = Here “#” represents the contents of the file i (i.e., one of the
symbols in In this paper we use the term signature in a
general manner: a fixed-size “fingerprint” generated by a one-way hashing
function on any set of data. These checksums are stored in a highly secure
database, where the value automatically is recalculated when a file contents
changes. When an unauthorized user corrupts a file item, the stored
signature will no longer be valid, thus indicating intrusive behavior.

Now, consider a scenario in which the software application new release is
to be installed. Some files have been altered from a prior version. The
process of installing these new releases of information consists of securing
the validity of many separate files. Since each of these files is protected by
one signature whose value is unlikely to be calculated by an intruder, a
malicious altering appears improbable.

Unfortunately, one may circumvent this protection. A legitimate system
user (or an intruder who has broken into the system) may have extensive
knowledge of the layout of the file information storage and security system.
This intruder tracks previous versions of the software and collects copies of
the files and associated signatures. Having accumulated previous copies of
numerous combinations of the valid file versions with the corresponding
matching checksums associated to them, he or she can compromise the
integrity of the file system as follows. He replaces a current new version of
a file by copying over it an entire old valid file, and copy the matching
signature into the database. If the system performs a checksum validation on
this block, it will not discover any anomaly in the file data. In our example
above, an intruder has copies of the files of the system at time as it is in
Figure 1. After several updates and/or new releases take place, the state of
the file system at time t1 is as shown in Figure 2:

Contents

Figure 2. The file system of Figure 1 after a new release

Protecting File Systems Against Corruption Using Checksums 117

To maliciously modify file back to the content at the attacker
replaces the current column 3 in figure 2, with a copy of the previous
contents, column 3 in figure 1 (checksum changed in the database), resulting
on the status shown in Figure 3. File corruption has been successfully
completed.

Contents

Figure 3. The corrupted file system

To detect this attack, we propose a technique that employs a second set of
checksums. The system determines subsets of the file signatures and applies
a predetermined one way hashing function, g, on the contents of each subset,
as in figure 4. These level signatures, are also stored in a secure
database.

Figure 4. Possible subsets of example system to link the seven file signatures of revised files
with 2nd level signatures

With this layer of signatures, when the intruder copies signature to
match the old copy of the file 3, all second level signatures involving in
their calculations must also be replaced, namely and In
order to successfully complete this, two conditions must have occurred.
First, at some prior time, the system must have been in such a state where

and =
implying that files 1,2,4,5,6, and 7 contained contents as

in Figure 2, and file 3 has contents as in Figure 1. Second, the intruder
copied the signatures at that instance into his stock. Now, not only must the
attacker consistently track prior behavior of the system, store and make the 3
extra signature copies, but also track any other file modifications that occur
concurrently in the system during the copying process.

Furthermore, if the intruder fails to change all these files properly and
simply performs the change shown in Figure 3, the security administrator
will be notified of the anomaly and will be able to track the exact file that
was modified. Noting which three level signatures changed and
calculating the intersection of the subsets of the file signatures from which
each was computed, only one file, precisely can be diagnosed as the
corrupted file. Moreover, this design is flexible and scalable with the file
system size.

118 DATA AND APPLICATIONS SECURITY

3. OUR TECHNIQUE

We consider a file system S that is composed of N files:
denoted by S = Since each file size may be quite large, we
first compute a concise representation, called a signature or check sum, of
each file The signature has a fixed length of b bits, for
some integer b, and is computed by some one-way hash function. It is stored
in a secure database elsewhere. Before a change to a file is saved, the
system computes and validates the signature value for the updated file. An
intruder copying an old version file, in place of one current file, will
also need to manually replace the signature of with the correct match,
since during this type of intrusion, the system would not automatically
compute values.

Generating signatures may require more computation, though little time
is necessary for this and it requires less storage than storing a copy of the
entire file. Also, two different pages may have the same signature. The
probability of this happening is proportional to Moreover, it is
computationally infeasible to produce two messages having the same
message digest, or to produce any message having a given pre-specified
target signature [6].

The system responds to any file alteration by computing the level
signatures, which utilizes a non-reversible, trusted and secret hash function,
(again, the key to the function is unattainable, thus 'trusted'), on a
combination of a selection of the file signatures, Thus since it is
unlikely that an intruder accesses the ability of compute the signatures,
copying valid values is the avenue of corruption. Check2 computes a
maximum of N second level signatures; each is a function of a subset of the
N file signatures: where

Each checksum, is integrated with (i – 1) other file signatures to
compute another signature. We propose two algorithms to determine the
elements of these subsets. One is a deterministic approach, using
methodology proposed by Albert and Sandler [1]. The other is a randomized
strategy that has been previously used to compare file copies in [2].

3.1 Deterministic Signatures

Consider the N files (objects) in our system; from the contents of each,
the system generates a set, A, containing N elements, each a file signature Ck
(Fi), A set of subsets of A will have at most elements. We shall
not be concerned with every collection of subsets of the set A, but rather with
those sets which satisfy the specific properties, defined later in this section.

Protecting File Systems Against Corruption Using Checksums 119

The elements of each subset form the combination onto which the secret and
trusted function is applied to calculate the set of level signatures.

The goal is to produce subsets, which satisfy a pairwise non-null
intersection property: for any combination i and j where j

The fundamental idea of such sets stems from the Sperner sets
theorem, which provides existence of sets that follow the properties stated.
This provides assurance that when a change occurs in all the elements used
in the calculation of one signature it directly relates to changes every
other level signature. Each file signature appears in more than one subset
and there exists at least one common node between a pair of and In
essence, viewing all the signatures as nodes in a hyperplane, each file
signature node will be connected to every other signature node in the system.

Following are properties that the second level subsets satisfy. They
mimic the same structure as used by Maekawa [5] to create mutual exclusion
in decentralized systems.
– At least one common element between a pair of subsets, and
– = K for any i
– Any j is contained in the D where (i.e., D is the number of

subsets in which each element appears, number of duplications of each
distinct element)
Each member of can be contained in D-1 other subsets, and the

maximum number of subsets that satisfy the intersection property is (D -
1)K+1, where K is the size of the subset. It is shown in [5] that K and D are
such that K=D, and that N and K are related as follows

N = K(K -1) + 1 (1)
As described in [1], such a system of subsets is perceived as a projective

plane of N points with properties equating to the conditions stated above.
There exists a finite projective plane of order k if k is a power of a prime
p. This finite projective plane has k(k+l) +1 unique points. Hence in our
technique for creating subsets (considering K(K-1)+1 vs. k(k+l)+l) a
set of for the N files exists if (K-l) is a power of a prime. For other
values of k, the system can still create a set of by relaxing conditions
that each subset having same number of elements K, as well as relaxing the
property that each file signature must appear in K-l subsets. As Maekawa
[5] also concludes, K = with some fractional error.

Figure 5 illustrates an example for a file size of 13, where represents
the checksums using the subset The change of one file triggers K
level signature changes and if all K files of any subset are altered
simultaneously, then all N second level signatures change.

120 DATA AND APPLICATIONS SECURITY

N=13, K=4

Figure 5. 2nd level signature sets using combinations of file signatures 1-13. The intersection
of any two combinations is nonempty

When the values of N cannot be expressed as K(K -1) + 1, the subsets
are built making one of the following corrections [5]:
– Pad the file signature set with extra duplicate values, i.e., increase the

value of the N until N can be expressed as K(K-1) + 1.
– Create degenerated (nonequivalent number of elements) sets of by

temporarily assuming enough elements exist so that N = K(K -1) + 1.
The same process is repeated to construct the elements of a level of

signatures for added protection. These third level signatures are each
calculated using the set of second level signatures, The domain for the
hash functions calculating third layer signatures are the elements of the set of

from which the system generates the subsets, abiding by the above
stated properties, for the level. The system stores the N, or possibly more
if N can not be expressed as N = K(K-1)+1, third level signatures. With the
inclusion of this level, one file change causes all level signatures to
change. If only the contents of one file change, exactly (N + K) unique
signatures automatically change.

3.1.1 Diagnosis of deterministic signatures.

The structured design of the second and third level checksum produces a
set percentage of increase in system calculations during an authorized file
update. But, it forces an internal intruder to track and copy a precise chain of
signatures. With the predetermined subset algorithm, when one authorized
file changes, Check2 generally recomputed the K and N level
signatures; this causes the system to do at most N + K calculations. If N
K(K-1) + 1, then these quantities will be larger because of the increase in the
value of K, as displayed earlier above in (2). For the intruder to incur this
minimum copying cost, he/she must collect a stock of and level
signature values, corresponding to the appropriate files. Because all file
signature nodes are interleaved in the subsets, this stock must include every
variation of any previously occurring state of file contents of the entire
system. The general (assuming N can be expressed as K(K-1) +1), the
combined cost includes collecting all the stock, making K signature copies at

Protecting File Systems Against Corruption Using Checksums 121

the level, and N signature copies at the level, thus the cost of copying
becomes K + N.

In a crude analysis, it is possible that just one state of the system is
captured by the malicious user. For that one instance, this malicious user
copies all file contents, their file signatures, level and level signatures
of that one state into his/her stock and then copy over the entire system and
signatures. But, with such drastic and noticeable changes, the security
administrator would immediately flag such modifications.

Furthermore, the system is able to determine exactly which file is
corrupted. This is achieved by calculating the intersection of the K second
level subsets. These K subsets are those used in computing the level
signatures that were affected by a particular file modification. The system
captures the file signature, which is common in these K subsets causing
the level signature to change. The file corresponding to this file signature
is which has been modified.

3.2 Randomized Subsets

The randomized technique produces the subsets of the set of file
signatures by using a pseudorandom generating algorithm. This strategy uses
a notion of creating subsets whose elements are randomly determined each
time the Check2 is executed. This schema avoids malicious tampering, since
the system is programmed to randomly change the sets frequently by using a
new seed for the pseudorandom generator. Again, for each of the N files, we
compute a checksum:

The system's security administrators decide on the number of subsets, m
(m<N), where each set That is,
each subset is made up of a number of first-level checksums. The
composition of these subsets is decided in a randomized way (there are
actually many strategies to achieve this, and we will illustrate one later in the
paper). Each subset m may not necessarily have the same number of first-
level checksums. The signature for the i-th subset is constructed as the hash
or Exclusive OR of the first-level checksums in This combined signature
is the level Signature, If the original signature has b bits, the
combined signature will also have b bits. When a file, is altered, the
system generates the level signatures, compares them to the stored
signatures (which were computed using the same random sets) and with
authorization, automatically changes those signatures that utilize in its
computation.

This algorithm allows varying levels of security. The number of second
level signatures is variable, unlike in the deterministic approach, where each

signature is a function of K signatures. The number, m, of level

122 DATA AND APPLICATIONS SECURITY

signatures is directly proportional to the level of security the administration
wishes for the system. The more of level signatures computed, and
higher the security because the larger the stock necessary to make a valid
copy. By frequently recreating new a set of randomized subsets from the set
of N file signatures, there is an extremely low probability that the intruder
has acquired an exact copy with which to corrupt.

Once m is established, at the initialization of the algorithm, using a
pseudorandom number generator and a strategy to decide membership, we
can assign first-level checksums into the m subsets. At any update or
alteration of a file, the level signatures are recomputed and stored and at
times. Moreover, the system may randomly redistribute the N signatures by
applying again the pseudorandom generator and the strategy to the set of
files.

There are many strategies to randomly combine first-level signatures into
the second level signatures. A few of them are described and analyzed in the
context of the file comparison problem in [2].

To illustrate this, we include here one of their algorithms, called
Innocents. In this strategy, each first-level checksum is included in a set Si,
with probability 1/f, where f is a parameter of the algorithm. In the original
strategy, f meant the number of pages on the file that the algorithm was
designed to diagnose as being different in the two copies; in our technique it
represents the number of corrupted files that we are set to detect. Due to the
randomness of the algorithm, there is a probability of a page being left
out of all second level signature subsets. To resolve this issue, after the
random subsets have been chosen, the system checks whether every file has
been included in a subset. If it is not the case, it adds an additional set that
includes all files that have been left out.

Recall that the stock only contains old file copies and corresponding
signatures. In this approach, two exact same file systems may have a
different set of second level signatures. For a file the attacker's copy of a

level signature in his or her stock from time may not be the same
signature that is generated at time In the randomized approach, the
probability that the randomized distribution for the level combined
signatures corresponds to the copy in the intruder's stock is This
does not reflect any modifications to system files from the time of the old
copy. Thus, it is very unlikely the intruder process the correct signatures,
which the system would validate.

3.2.1 Diagnosis of probabilistic techniques.

Figure 6 shows the algorithm that diagnoses corruption in a file system
protected by the Innocents technique. This algorithm can be run periodically

Protecting File Systems Against Corruption Using Checksums 123

in order to alert the security officer from possible corruption in one or more
of the files. The algorithm proceeds as follows. First it computes all the
subset’s signatures and creates a syndrome matrix of elements (one per
subset) whose values can be 0 or 1, according to whether the signature of the
subset matches the stored signature or not. Once this matrix is built, the
algorithm examines those subsets whose signature matched and puts the
number of the files included in the subset in a set T. At the end, T will
contain the “innocent” files, i.e., those presumably uncorrupted. The
complement of that set is the set of files that might have been corrupted.

In diagnosing corrupted files by probabilistic means, one has to take into
account the possibility of false diagnosis. There are two ways in which a
false diagnose can happen: an uncorrupted file may be diagnosed as
corrupted (false positive), or a corrupted file may fail to be diagnosed as
corrupted (false negative). Fortunately, the probability for both of these
events can be made arbitrarily low by setting the algorithm parameters
(m,b,f) properly.

Create syndrome matrix with elements
if the second-level signature of subset i matches the one stored.

1 otherwise.
T =
For i = 1 to m

If
Then

For j = 1 to n if is in Si then
T =

T = S – {T}
Figure 6. Probablistic diagnosing algorithms for Innocents

In [2], the analysis of the probabilities for the false positive and false
negative diagnoses is presented. We only repeat the results here. The
probability of a false positive event can be made less than (which can be
fixed by the security officer) by insuring that the inequality in Equation 3 is
true.

Equation 3 establishes a lower bound for the number of bits in the
signature in order to guarantee that the probability of false positive diagnosis
is less that

On the other hand, the probability of a false negative will be bounded by
if the number of subsets m is such that the inequality in Equation 4 is true.

124 DATA AND APPLICATIONS SECURITY

For instance, selecting m = 500, f = 10, b > 7, and for a system with 100
files, we would achieve an upper bound for the false diagnosis of (or
0.00097).

4. CONCLUSIONS AND FUTURE DIRECTIONS

The file corruption addressed by our analysis involves copying of files by
intruders who gain write access to a file system protected by signatures. We
have presented Check2, a technique to protect a set of files against
corruption by insider intruders (or individuals who impersonate authorized
users). The system has two very desirable properties. First, it forces a
potential intruder to track and perform a string of precise changes, if he or
she wants to remain undetected. Secondly, if the attack is not performed
properly, Check2 is able to pinpoint the corrupted pages to the security
officer.

The foundation of Check2 is based on computing checksums for each
file, as other techniques such as Tripwire currently use. However, our
technique contributes the usage of two or more levels of signatures,
combining file signatures with a deterministic or probabilistic schema, in
order to increase the work of intruder. This includes calculating the exact
lengthy chain of alterations and successfully implementing the changes in a
dynamic real-time situation. In either strategy, an additional cost of copying
the actual contents of extra files, other than the corrupted file can be
integrated into each technique.

REFERENCES
[1] Albert, A.A and Sandler, R. An Introduction to Finite Projective Planes. Holt, Rinehart, and Winston, New York, 1968.
[2] Barbara, Daniel and Lipton, Richard, J. A class on randomized strategies for low-cost comparison of file copies. IEEE

Trans. Parallel and Distributed System, Vol. 2, No. 2, April 1991, pages 160-170.
[3] Kim, Gene. H., Spafford, Eugene, H., The design and implementation of Tripwire: A file system integrity checker. Proc. 2nd

ACM Conference on Computer and Communications Security, 1994.
[4] Kim, Gene. H., Spafford, Eugene, H., Experiences with Tripwire: Using integrity checkers for intrusion detection. Systems

Administration, Networking and Security Conference III. Usenix 1994.

[5] Maekawa, Mamoru. A algorithm for mutual exclusion in decentralized systems. ACM Transaction on Computer
Systems, Vol. 3, No. 2, May 1985, Pages 145-159.

[6] MD5 Message - Digest Algorithm, MIT Laboratory for Computer Science and RSA Data Security, April 1992.
[7] Merkle, R. C., A Fast Software One-way Hash Function. Journal of Cryptology,3(1):43-58,1990.
[8] Website: www.tripwiresecurity.com/vs.html as seen in January 2000.

CHAPTER 11

Web Security and Privacy
Panel 1

Bhavani Thuraisingham
MITRE Corporation, Bedford MA, USA

Abstract: This panel discussed various issues on web security and privacy including
XML security, data mining for intrusion detection, and various other aspects
including e-commerce security.

1. INTRODUCTION

The panel consisted of the following researchers.
* E. Bertino, University of Milan
* E. Damiani, George Mason University and University of Milan
* Kristin Nauta, SAS Institute
* Sushil Jajodia, George Mason University
The panel discusses essentially summarized the papers and research by

the authors presented mainly at the conference. In section 2 we summarize
the discussions and in section 3 we discuss future directions.

2. Panel Content

Bertino and Damiani discussed XML security. In particular, Berino's
discussion focussed on the paper she and co-author presented on access
control for XML. This was followed by Damiani's discussion on standards
work for XML. The panel also discussed the W3C work on XML security
and where one could get more information.

Nauta discussed summarized essentially her keynote presentation that was
to follow. This was on using intrusion detection techniques for intrusion
detection. This is a subject of much interest to the group these days and
Nauta presented various techniques they were applying. Jajodia provided his

126 DATA AND APPLICATIONS SECURITY

views on e-commerce security as well as integrity. E-commerce security is
also getting a lot of attention when we discuss web security.

Thuraisingham concluded the panel with privacy issues. The same
question that she has been repeating at various IFIP keynote presentations
and panels in 1996, 1997 and 1998 were repeated. While data mining helps
intrusion detection it does invade into the privacy of people. What can we do
about it? There were no solution, but interesting discussions.

The audience was very active and asked many questions on all aspects
covered by the panelists including XML security, data mining for intrusion
detection and e-commerce security. It was also mentioned that we need a
research agenda for web and e-commerce security.

3. Future Directions

As suggested by the audience, we need a research agenda. IFIP 11.3 is in
a good position to draft the agenda for web security. There is a lot of work
that is being done outside. WE need to survey what is being done and then
formulate a research plan. While data mining shows much promise, we are
still not sure what to do about privacy issues. Some say that there are no
technical solutions and that we need legal solutions. We still need to
investigate this area and hopefully in years to come we can come to some
acceptable solution. Everyone was convinced that we security is one of the
critical areas in computer science research today.

CHAPTER 12

Coordinating Policy for Federated Applications
Keynote II

Ken Moody
University of Cambridge Computer Laboratory
New Museum Site, Pembroke Street
Cambridge CB2 3QG, UK

Abstract At the start of its present term of office in 1997 the UK government pub-
lished a planning document promising ubiquitous access to Electronic
Health Records (EHRs) held within the National Health Service (NHS).
If such access is to become a reality then it is essential to guarantee
confidentiality, since otherwise the media and the privacy vigilantes will
prevent deployment. Among the rights included in the Patients’ Char-
ter is a promise that each individual may determine who may access
their health records and in what circumstances, and that every access
made shall be logged. In October 1999 the Cambridge Computer Labo-
ratory’s Opera group joined a consortium within the Eastern Regional
Health Authority to propose an experimental architecture that included
access control. Policy governing access to a particular set of records is
derived from many high-level sources, and must be updated when any
of these sources change. We outline an architecture to achieve this,
within the framework of access control policy for EHRs. The problems
of coordinating policy arise in many applications that span management
regimes, and the techniques outlined are more generally relevant. This
is work in progress.

1. Introduction
The thrust of the Opera group in the Computer Laboratory has been

to develop a Middleware architecture in which individual services re-
tain autonomy. Key components are the Cambridge Event Architecture
(CEA) [8], which offers support for generic registration and notification
of events, and the role-based access control model Oasis [5]. These com-
ponents are interdependent. An overview of the work of the Opera group
can be found in [1].

km@cl.cam.ac.uk

128 DATA AND APPLICATIONS SECURITY

It is one thing to propose an architecture for distributed applications,
quite another to evaluate such an architecture realistically. In Oasis
role names are defined and policies expressed on a service-by-service
basis, so providing for independent management of the individual ser-
vices involved. It is therefore possible to deploy policy while respecting
the autonomy of management domains, enabling complex wide-area ap-
plications to evolve without fine-grained coordination. In April 1999
members of the Opera group visited the Information Authority of the
UK National Health Service (NHS), and the group has since developed
a detailed architecture to support ubiquitous access to EHRs, including
role-based access control. We have learnt a lot from carrying out the
design, but we should learn a lot more by testing it in practice.

2. Electronic Health Records: a Federated
Management Problem

The UK NHS has been underfunded over a long period, and is rec-
ognized as being in crisis. The Labour government that took office in
1997 made reviving the NHS one of its prime goals [12]. [13] outlined
an implementation strategy intended to lead progressively to the inte-
grated storage of health data, with access from all health care points.
The strategy was based on bottom-up deployment, and there was no
clear explanation of the mechanisms that would ensure compatibility
across the country as a whole. The Opera group joined a consortium
(EREHRC) formed by health care providers within the Eastern Region,
coordinated by the Clinical and Biomedical Computing Unit (part of
the University of Cambridge), based at Addenbrooke’s Hospital. The
EREHRC included health professionals and academics based within the
region and from outside, among them Jane Grimson of Trinity College,
Dublin, who led the European Community Synapses project [10]. In
November 1999 the EREHRC submitted a proposal to the NHS for a
“pan-community demonstrator”, focussing on what we see as the main
obstacles to the introduction of EHRs: heterogeneity, local autonomy,
and above all continuing evolution - of hardware and software, manage-
ment structures, and medical practice and taxonomy.

The EREHRC proposal contained a separate technical appendix de-
veloped by the Opera group, together with a sabbatical visitor, John
Hine, from the Victoria University of Wellington, New Zealand. Spe-
cific proposals for a certificate authority suitable for supporting Oasis
in a health care environment are described in [6], An overview of the
architecture is given in Figure 1.

Coordinating Policy for Federated Applications 129

Figure 1. An Architecture for an Electronic Health Record Service

Figure 2. The Virtual Health Record (Index) Service

130 DATA AND APPLICATIONS SECURITY

A crucial feature of the design is the use of virtual health records
[3, 4], essentially index items structured according to a medical ontology.
Each such item contains references to all the patient records relating to
a given individual, see Figure 2. By law every access to an individual’s
EHR must be recorded, and we provide an audit trail asynchronously,
noting the principal reading the data, and the context. This context
must include information sufficient to identify the policy regime that was
current at the time of access, together with the credentials presented by
the principal in order to establish the right to access the data.

NHS thinking at that time was based on solutions involving a cen-
tralised database, and the proposal was not funded. Public opinion has
remained critical of the NHS, and after wide consultation the Labour
government presented a new national plan for the health service in July
2000 [14]. There is little emphasis on ubiquitous access to EHRs, and the
implementation strategy introduced in [13] has been quietly forgotten.

3. The requirements for managing access control
policy

Access to an individual’s EHR is regulated in a variety of ways. In
particular, EHRs must be identified, and they contain personal data;
EHRs are therefore subject to Data Protection legislation, as enacted in
both the UK and European parliaments. The Health Service is admin-
istered independently in England, Wales, Scotland and Northern Ire-
land, and each province has established its own Patient’s Charter [11].
Amongst other things, each charter makes explicit each patient's right to
determine who may access their health records. Health authorities will
express policies in terms of the role and seniority of their staff, and the
nature of the data that is to be accessed or service that is to be managed.
Specialist departments will recognize professional skills in addition to se-
niority. All of these sources of policy must be respected when generating
procedures (Java classes, in our case) to implement the access control
guards on databases which contain patient records. For each high-level
source non-specialists should be able to express policy intuitively, in a
language appropriate to the context. The large scale of an application
such as the NHS means that guards on the individual databases must be
generated automatically. Audit records must identify the policy regime
under which each access has been authorised.

4. Oasis Role-Based Access Control
In Oasis each named role is associated with a particular service. A

service that administers roles is responsible for authenticating its clients.

Coordinating Policy for Federated Applications 131

Figure 3. A service secured by Oasis access control

Rights to access a service are derived from membership of roles, either
of the service itself or of other services. Figure 3 shows a service secured
by Oasis access control. Policy is checked both on role activation and
when the service is used.

A client becomes authenticated in a particular role by presenting cre-
dentials that enable the service to prove that the client conforms to its
policy for activating that role, see [9] which describes the formal model.
The credentials presented can include parameters that are checked dur-
ing role activation. The client is then issued with a role membership
certificate (RMC). The RMC may include parameters derived from the
credentials that identify aspects of the client, for example a local user
identifier may be copied from a log-in certificate; a digital signature is
generated to protect the parameter values and to ensure that the certifi-
cate is useless if stolen.

Services authorise clients by specifying the privileges associated with
each role. The policy may require parameter values to satisfy constraints
which must be checked whenever access is attempted.

Role-based access control (RBAC) has a number of advantages. Per-
missions are expressed in terms of roles that may be adopted by princi-
pals. The policy governing role activation is decoupled from the rights
associated with each role, which may be modified at a generic level. This
leads to essentially scalable policy management, and incidentally enables
secure access by anonymous principals, should this be desired.

132 DATA AND APPLICATIONS SECURITY

A crucial practical advantage of making roles specific to a service is
that each service may specify its own policy for both role activation and
access control. In an environment such as a hospital it is likely that a
central registry service will act as the sole certificate issuing authority
[6], with individual hospital departments granting access on the basis
of the RMCs that have been issued. Policy within each hospital will
determine role membership hospital wide; once an appropriate policy
has been expressed, any departmental service can control access on the
basis of the RMCs issued by the central registry service. In this way both
hospitals and individual departments can be managed independently;
Oasis access control can thus be deployed incrementally. This is vital in
any application that comprises a federation of independent partners.

5. Expressing and enforcing policy
In the NHS application access control must respect both individual

preference and hospital policy. The former is determined at the index
service, the latter by guards established at each departmental patient
record service. A student on the MPhil course in Computer Speech and
Language Processing has defined a simple formal language for policy
expression [7, 2]. Successive translations generate Higher Order Logic,
First Order Predicate Calculus (FOPC), and finally target languages
specific to both Role Activation and Method Invocation (including data
access). Basic RBAC will not handle the negative permissions that pa-
tients may require, but in Oasis role activation conditions can also in-
clude environmental constraints [9]. Examples of such constraints are to
check on the time of day, or to evaluate a predicate in a local database.
Since parameters such as a local user identifier may be set during role
activation it is possible to handle patient preferences by consulting a list
of exceptions in some appropriate database.

The use of environmental constraints makes it possible to define generic
policies that can be tailored to each particular context. We are at present
setting up mappings between the names of predicates which express envi-
ronmental constraints and the names of database relations. For example,
a software package for primary health care can specify default policy us-
ing role-based access control. Any exceptions requested by individual
patients can be handled by consulting a locally maintained database,
provided that names are handled consistently from practice to practice.
Additional policy expression languages will be needed, but they will also
generate FOPC. It is vital to establish a common target representation
in order to check the overall consistency of policies.

Coordinating Policy for Federated Applications 133

6. Managing change
The high bandwidth and reliability of modern communications make

it inevitable that applications will be federated across a wide area, with
individual management domains interacting subject to a high-level reg-
ulatory framework. In the NHS application each of the four home coun-
tries has its own Patient’s Charter, and the access control policy effective
when health care is delivered must take account of the appropriate ver-
sion. Throughout the UK any policy must respect the provisions of the
Data Protection Act.

For the NHS EHR application we have implemented active database
support that should help us to automate policy deployment. The policy
effective at a health care point may derive from a number of sources;
national law, regulatory frameworks such as the Patient’s Charter, local
health authority access control policy and individual patient preference.
Any inconsistencies must be identified and resolved before deployment.
We are storing each such policy in an object-relational database, set-
ting triggers to alert all sites dependent on it whenever a change occurs.
What action is taken will vary from site to site. If no inconsistency
results then it should be possible to deploy a modified policy automat-
ically, otherwise local management must decide how to resolve the con-
flict. Many problems remain to be solved before automatic enforcement
of expressed policy can become a reality.

7. Risks of automated policy enforcement
An essential feature of the EREHRC architecture is that change can

be managed locally, with national decisions being implemented on a
time scale that is feasible within each environment. Policy is only one of
many sources of change. The structure of EHRs must be modified in the
light of medical research; advances in genetics are now threatening the
simplistic view of individual patient preference, as genetic counsellors are
confronted more and more frequently with differences of opinion between
siblings - the sister wishes to know the result of a test, but the brother
does not. This raises a dilemma. As the scale of electronic health data
increases it will become essential to automate the capture of both data
and policy, yet the computer is insensitive at best in matters such as
ethics.

Business to business dealings between multinationals are subject to
even worse problems; not only must contracts be interpreted within a
variety of legal frameworks, but any disputes arising may be subject to
multiple jurisdictions. In such a world there is a real danger of unstable
behaviour, with a consequent threat to secure economic growth.

134 DATA AND APPLICATIONS SECURITY

Acknowledgements
We acknowledge EPSRC’s support for the continuation of this work

under GR /N35786 “Access Control Policy Management”.

References
[1] Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Sei-

del, O., and Spiteri, M.: Generic Support for Asynchronous, Secure Distributed
Applications. IEEE Computer Vol. 33(3), 68–76, March 2000

[2] Bacon, J., Lloyd, M and Moody, K.: Translating role-based access control policy
within context. To appear in Policy 2001, Workshop on Policies for Distributed
Systems and Networks, Bristol, UK, January 2001. Lecture Notes in Computer
Science 1995, Springer-Verlag, Berlin, Heidelberg and New York, 105–117, 2001

[3] Grimson, J., Felton, E., Stephens, G., Grimson, W. and Berry, D.: Interoper-
ability issues in sharing electronic healthcare records - the Synapses approach.
Proceedings of Third IEEE International Conference on Engineering of Complex
Computer Systems, IEEE CS Press, Los Alamitos, Calif., 180–185, 1997

[4] Grimson, J., Grimson, W., Berry, D., Kalra, D., Toussaint, P. and Weier, O.:
A CORBA-based integration of distributed electronic healthcare records using the
Synapses approach. Special Issue of IEEE Transactions on Information Technol-
ogy in Biomedicine on EMERGING HEALTH TELEMATICS APPLICATIONS
IN EUROPE, Vol.2, No.3, IEEE CS Press, Los Alamitos, Calif., 1998

[5] Hayton, R., Bacon, J. and Moody, K.: OASIS: Access Control in an Open, Dis-
tributed Environment. Proceedings IEEE Symposium on Security and Privacy.
IEEE CS Press, Los Alamitos, Calif., 3–14, 1998

[6] Hine, J.H., Yao, W., Bacon, J. and Moody, K.: An Architecture for Distributed
OASIS Services. Proceedings Middleware 2000, Lecture Notes in Computer Sci-
ence, 1795. Springer-Verlag, Berlin, Heidelberg and New York, 107–123, 2000

[7] Lloyd, M.: Conversion of NHS Access Control Policy to Formal Logic. MPhil in
Computer Speech and Language Processing, University of Cambridge, 2000

[8] Ma, C., and Bacon, J.: COBEA: A CORBA-based Event Architecture.
In Proceedings of the 4th Conference on Object-Oriented Technologies and Sys-
tems (COOTS-98), USENIX Association, Berkeley, 117–132, April 1998

[9] W. Yao, K. Moody, J. Bacon. A Model of OASIS Role-Based Access Control and
its Support for Active Security. In Proceedings, Sixth ACM Symposium on Access
Control Models and Technologies (SACMAT), Chantilly, VA, May 2001

[10] Synapses Project Deliverables, Trinity College, Dublin
see http://www.cs.tcd.ie/synapses/public/html/projectdeliverables.html

[11] The Patients’s Charter (for England), January 1997
see http://www.doh.gov.uk/pcharter/patientc.htm

[12] UK Government White Paper, “The New NHS: Modern, Dependable”, December
1997, see http://www.doh.gov.uk/nnhsind.htm

[13] UK Government White Paper, “Information for Health”, September 1998,
see http://www.doh.gov.uk/nhsexipu/strategy/index.htm

[14] UK Government White Paper, “The NHS Plan - A Plan for Investment, A Plan
for Reform”, July 2000, see http://www.nhs.uk/nationalplan/

CHAPTER 13

Integrating Multilevel Security Policies in
Multilevel Federated Database Systems

Marta Oliva1 and Fèlix Saltor2

1Dept. Informàtica i Enginyeria Industrial, Universitat de Lleida, C. Jaume II, 69, E-25001
Lleida (Catalonia).

2Dept. Llenguatges i Sistemes Informatics, Universitat Politècnica de Catalunya, Campus
Nord-Mòdul C5, Jordi Girona Salgado, 1-3, E-08034 Barcelona (Catalonia).

Key words: Multilevel security, integration, interoperation, federated DBMS.

Abstract: This paper describes a multilevel security policies integration methodology to
endow tightly coupled federated database systems with a multilevel security
system. The proposal is based on a schema integration process. It obtains, in a
semi-automatic form, the ordered set of classification levels for the multilevel
security system of the federation, and the translation functions between each
ordered set belonging to each component database and the federated ordered
set as well. The proposed methodology also includes a way to solve the
problem of classification of the components of the Federated Schema
generated during the integration process.

1. INTRODUCTION

The growing need for information sharing, among independent entities
which have their own database systems, is often solved by a Federated
DataBase System (FDBS) ([SL90]). There are different aspects to take into
account when building and operating such a FDBS: one of them is data
protection.

136 DATA AND APPLICATIONS SECURITY

Although the independent entities, named Component DataBases
(CDBs), have their own access control mechanisms (based on Discretionary
Access Control (DAC) or Mandatory Access Control (MAC)), accesses to
the federated system need take into account not only security features of
CDBs, but also security features of the federation ([Per93]). The mechanism
used by our FDBS to protect data, and more particularly to allow or forbid
access, is MultiLevel Security (MLS, [BL75]), because its own operation not
only helps to control access but also to control information flow.

A FDBS can be tightly coupled or loosely coupled ([SL90]). Since we
deal with strict access control policies, such as MLS, we assume tightly
coupled FDBSs only, with administrators at the federated level. We present a
methodology of integration of security policies to be used in building tightly
coupled federated systems by MLS-CDBs integration.

The main concepts and notation used in this paper to describe the
methodology can be found in section 2. Section 3 presents the principal
characteristics of the schema integration methodology, upon which our
methodology of integration of MLS systems is based. The core of the paper
is in section 4 and contains the development of the proposed methodology.
The paper ends with a comparison with other research and conclusions in
section 5.

2. MAIN CONCEPTS AND NOTATION

A MLS system assigns a clearance level to each subject and a
confidentiality level to each object. Levels assigned to subjects and objects
should belong to either a partial or linear (total) ordered set, or a lattice of
classification levels (or labels). At this stage we assume that every system
uses a linear ordered set. The natural manner to represent an ordered set is
through a Hasse diagram ([SM77]). The cardinality of an ordered set is the
number of elements that are members of the set of classification levels.

When a FDBS is built it is necessary to take into account that although
different preexistent CDBs have a MLS system, it is impossible to presume
that their ordered sets of classification levels could coincide neither on the
number of levels (cardinality), nor on confidentiality meaning ([MLTS92,
DJ94]). That is why it is essential to have a mechanism that helps in
obtaining the ordered set of the federation MLS system itself (from now on
we will call it Federated Ordered Set (FOS)).

As accesses at the federated level are subject to the mechanisms that
CDBs have to protect data, the FOS of classification levels must take into
account the preexistent ordered sets. So the CDBs integration process has to

Integrating Multilevel Security Policies 137

make an integration process of ordered sets of classification levels of distinct
preexistent MLS systems.

As an integration of ordered sets of classification levels we understand
the process needed to deduce the equivalence among classification levels
belonging to different ordered sets. It is important to note that it is possible
that a level member of a specific ordered set does not coincide with any
levels belonging to whichever of the remainder ordered sets to integrate.

Taking into account that classifications at the component level must be
maintained at the federated level, the conclusion is that the FOS needs to
have at least the same number of classification levels as the ordered set
having the biggest number of classification levels of all ordered sets.
Moreover, in the worst case it is possible that the FOS has as many
classification levels as the sum of all ordered set cardinalities, due to the
possibility of lack of any equivalence among classification levels of distinct
ordered sets.

Given i = 1,...,N, the ordered sets of the N preexisting CDBs,
each represents the set of classification levels of its correspondent CDB,
and each is a binary relation that defines the order among elements of
Through integration process of ordered sets, we obtain a new ordered set

(FOS) where is the set of classification levels of the federated
MLS system and is the binary relation that indicates the order among
elements of The cardinality of is bounded by the cardinalities of

where
depending on the quantity of classification levels from an ordered set that
coincide with any classification level of another ordered set.

With the help of the integration process the FOS is obtained, and
also the translation functions A translation function allow us to
translate each classification level from an ordered set to the FOS with the
preservation of the order from original ordered set:

3. THE SCHEMA INTEGRATION METHODOLOGY

[GSSC95] describes a schema integration methodology based on
BLOOM (BarceLona Object Oriented Model, [CSGS94]) that allows
obtaining a Federated Schema (according [SL90], [ROSC97]). The BLOOM
data model is used because it is a semantically rich model (it has distinct
kinds of specializations and aggregations) capable of expressing not only
semantics already expressed in local schemas, but also additional semantics

138 DATA AND APPLICATIONS SECURITY

very useful for integration tasks. The schema integration methodology is
divided into three phases:

• Semantic Enrichment: enriches semantically local schemas of the CDBs,
which were expressed by some traditional models. It starts with a step
of knowledge acquisition and then local schemas augmented with the
knowledge previously discovered are converted into rich Component
Schemas expressed in our Canonical Data Model (CDM, [SL90])
BLOOM.

• Detection: identifies semantically related objects (that belong to different
CDBs), through a comparison process guided by a strategy. The
strategy operates at two levels: at the coarse level the strategy
identifies pairs of specializations to be compared, taking into account
the generalization dimension, and at the fine level the strategy
identifies pairs of classes to be compared based in the aggregation
dimension. Later, a criterion, based on aggregation dimension too, is
used to yield a degree of similarity between the pair of classes.

• Resolution: integrates the BLOOM schemas of the CDBs after
identification of semantically related objects using a discriminated
generalization. In this variant of generalization, the description of the
superclass inherits upwards the description of its subclasses (it takes
the union of their abstractions), and each object of a subclass, seen as
a member of the superclass, has a discriminant attribute. The
discriminant attribute is used for integration purposes and it takes as
value the name of the database where it comes from.

4. THE SECURITY POLICIES INTEGRATION
METHODOLOGY

Our security policies integration methodology complements the schema
integration methodology presented in the previous section, in such a way to
allow us to get:

• the FOS
• the translation functions between ordered sets
• the classification of the Federated Schema, which is a result of

integration process, according to the obtained FOS.
Our methodology produces, in a semi-automatic form, a FOS that only

needs to be validated by the federated system administrator, to be used as the
ordered set of the MLS system of the federation. If the ordered set does not
get the administrator’s validation, the integration process would generate a
new FOS proposal in order to be validated by the administrator. Validation
can be total or partial; so from a partial validation new proposals can be

Integrating Multilevel Security Policies 139

generated until total validation is obtained. This is because when different
ordered sets are integrated there are distinct combinations that can be used as
FOS.

The analysis and validation of all possible combinations among
classification levels of distinct ordered sets would require lots of
administrator’s effort. To reduce the number of combinations to analyze by
the administrator, our integration process takes advantage of the information
related to the data classification stored in Export Schemas (according to
[SL90, ROSC97]), as well as the information obtained by schema integration
process.

Although it is also necessary to complement the semantic enrichment
phase to reach a complete integration of CDBs, this paper focuses on the two
last phases of schema integration methodology. Particularly, the detection
phase, properly complemented, yields the FOS and the translation functions
(thanks to the validation of the administrator). Besides, after complementing
the resolution phase, this will allow classifying the components of the
Federated Schema.

4.1 Detection phase

The detection phase of the schema integration methodology (presented in
section 3) produces semantic relationships between components of different
Export Schemas. Semantic relationships are expressed by semantic
assertions and there are two kinds:

a) equivalence assertion (Equivalence Semantic Relationship, E-SR): the
two classes represent equivalent concepts

b) specialization assertion (Specialization Semantic Relationship, S-SR):
one class represents a superconcept of the concept represented by the
other class.

Figure 1 introduces a simple example that allows remembering the
operation of the schema integration methodology, and then it is used to
illustrate our security policies integration methodology.

Figure 1. CDB1 and CDB2

140 DATA AND APPLICATIONS SECURITY

Specifically, figure 1 describes the Export Schemas of CDB1 and CDB2,
their ordered sets of classification levels, and also the classification of each
component of the schemas as well.

The five semantic assertions obtained by means of the detection phase of
schema integration methodology are shown in figure 2.

Figure 2. Obtained assertions by detection phase

The ordered set integration process uses the information of the semantic
assertions. So, with the initial information of ordered sets of CDBs to
integrate and assertions obtained by detection phase, the proposal of a FOS
is originated in order to let administrator validate it.

Taking into account the hypothesis of homogeneous integration (CDBs
belong to the same universe of discourse) it is logical to presume that interest
in information privacy will be similar. For that:

1. in an E-SR it is assumed that classification levels of classes
which are considered equivalent concepts, are equivalent
classification levels.

2. in an S-SR it is assumed that the classification level of the
superconcept is than the classification level of the concept
(according to [ML92, IGQ94] a concept always has to be classified at
a level than the superconcept, because concept needs to inherit
superconcept characteristics).

For the analysis and representation of all information, needed by the
ordered set integration process, a multiple directed graph (digraph ([SM77])
where multiple arcs are allowed between two vertices, multidigraph) is used.
The multidigraph is built from Hasse diagrams, which define initial ordered
sets to integrate, and necessary arcs corresponding to different assertions
obtained by detection phase. The source and target of each arc belong to
distinct ordered sets. The representation of each semantic assertion is the
following:

Integrating Multilevel Security Policies 141

1. for each E-SR an arc from the classification level of a
class to the classification level of the other class is added to the
multidigraph; and also the inverse arc.

2. for each S-SR an arc from the classification level of the
superconcept to the classification level of the concept is added to the
multidigraph.

It is important to note that all assertions are taken into account, although
they seem redundant or produce conflicts, without any verification. The
reason for this is to ensure the use of the greater quantity of information,
because the feasibility study of each arc, originated from semantic
assertions, before its addition to the multidigraph, could produce a final
multidigraph with less quantity of information. Each arc produces some
conflict depending on the other arcs of the multidigraph, so if the
multidigraph is not complete the decision whether to add or to remove an arc
could affect further inclusions or removals of other arcs.

According to the example introduced in figures 1 and 2, from the Hasse
diagrams of ordered sets and arcs needed to represent
assertions (E-SR, People-Person), (E-SR, Unemployed-Unemployed), (E-
SR, Student-Student), (S-SR, Employee-Administrative) and (S-SR,
Employee-Worker) the multidigraph shown in figure 3 is obtained.

Figure 3. Multidigraph of our example

Once the multidigraph is obtained, it is necessary to analyze it to identify
possible incompatible arcs, because of the incorporation of arcs
corresponding to all semantic assertions. Two arcs are incompatible if their
existence does not permit maintaining the typical characteristics of initial
ordered sets. Because an arc can be incompatible with different arcs, and at
the same time these arcs can be incompatible with others, it is necessary to
use a mechanism to determine which is the more incompatible arc. As a
mechanism we use a penalization system based on the detection of cycles
with more than two participant vertices.

142 DATA AND APPLICATIONS SECURITY

Figures 4 (a) and (b) show the two kinds of cycles that can be detected in
a multidigraph. Every arc involved in a cycle has to be penalized. An arc
must accumulate as many penalizations as cycles in which it is involved.

Figure 4. (a) Cycle Figure 4. (b) Crossed cycle

Particularly, in the multidigraph of our example, there are the cycles:
L11-L12-L22-L11, L12-L13-L22-L12, L11-L12-L13-L22-L11, L22-L23-
L12-L22, and L13-L22-L23-L12-L13.

To obtain the FOS from the multidigraph it is necessary to do the
following steps:

1. To remove, iteratively, the more penalized arc from the multidigraph.
The elimination of an arc implies the updating of the penalization of
other arcs that were affected by the existence of the eliminated arc.

2. To replace cycles that have two participant vertices, belonging to
different ordered sets, by only one vertex. Two vertices participate in
a cycle if where

3. To convert the multidigraph obtained into an ordered set.

After calculating the corresponding penalizations of distinct arcs of the
multidigraph shown in figure 3, we obtain the next penalizations: (L22, L12)
has 1 penalization, (L22, L11), (L12, L22), (L23, L12) have 2 penalizations
and (L13, L22) has 3 penalizations. The arc which must be deleted is (L13,
L22), because it is the arc with larger penalization. When arc (L13, L22) is
deleted then the penalizations of others arcs change to the penalizations:
(L22, L11), (L23, L12) have 1 penalization and (L12, L22) has 2. This time,
the arc more penalized is (L12, L22), and after removing it the remaining
arcs do not have any penalization. So, the resultant multidigraph is that is in
figure 5.

Integrating Multilevel Security Policies 143

Figure 5. Resultant multidigraph Figure 6. Final digraph

After replacing vertices involved in a cycle by only one vertex, the
digraph shown in figure 6 is obtained. It is important to note that arc (L23-
L12, L24) is not necessary because they are deduced from the final digraph.
So, the obtained digraph defines the FOS to be used by MLS security system
of the federation (if it is validated by the administrator), where

The translation functions and obtained through the application of the
methodology are defined as:

To finalize the CDBs integration process it is necessary to solve the
classification of the components of the integrated schemas, taking into
account the classifications of the components of the initial schemas and the
FOS of classification levels as well as the translation functions obtained.
This resolution of classifications has to be carried out by the complemented
resolution phase of the schema integration methodology.

4.2 Resolution phase

The resolution phase of the schema integration methodology gets the
Federated Schema after the integration of the Export Schemas of the CDBs.
By use of the discriminant generalization similar classes are integrated
whenever specializations to which they belong are similar too.

144 DATA AND APPLICATIONS SECURITY

Figure 7. Federated Schema

Taking up again the example in figures 1 and 2, after the resolution
phase, the resultant Federated Schema corresponds with the schema shown
in figure 7. The class Employee_db2 has been created as a conformation of
CDB1 and CDB2. At the moment, in this schema only the classification of
the components of the initial schemas appears.

To classify the Federated Schema taking into account the FOS, it is
necessary to perform the following steps:
1. To update the original classifications of Federated Schema components,

which already appear in Export Schemas, applying the translation
functions obtained in the detection phase.

2. To classify components that were originated by the use of the
discriminant generalization, taking into account these conditions:
a) if the classification levels of all subclasses are the same then the

superclass is classified at the same level of the subclasses.
b) if subclasses are classified at different levels then the superclass is

classified at the least confidential level where subclasses are
classified.

c) it is important to note, as a special property of the discriminant
generalization, that when a superclass inherits upwards the union of
the abstractions of all its subclasses, a multilevel classified
superclass is obtained, although classes of CDBs were not multilevel
classified. If an abstraction only appears in a subclass then its
original classification level is maintained (with the corresponding
translation). Otherwise, an abstraction that appears in several
subclasses will be upward inherited depending on its semantics. If
classification levels of the subclass abstractions are distinct then
abstractions are semantically different, so they will be upward
inherited as different abstractions (maintaining its classification).

Integrating Multilevel Security Policies 145

Figure 8. Classified Federated Schema

Figure 8 shows the final result of resolution phase of our security policies
integration methodology, where it is possible to see the Federated Schema
totally classified according to the FOS.

Although our integration process takes into account only two ordered
sets, the integration of a large number of initial ordered sets is done by
repeating the same integration process in pairs. The strategy consists in using
a ladder integration sequence starting with two ordered sets of the highest
cardinality, or two of the larger cardinality, and later, the process is repeated
using the FOD obtained from the previous process and one of the larger
cardinality among remaining ordered sets ([OS00]).

According to [GQ96], a federated/interoperable system has to comply
with the following principles:
1. Principle of autonomy: any access permitted within an individual system

must be also permitted under secure interoperation.
2. Principle of security: any access not permitted within an individual

system must be also denied under secure interoperation.
Let’s see, by an example, how both principles are fulfilled if FDBS uses

the classified Federated Schema shown in figure 8. Remembering another
time the CDBs introduced in figure 1, a user of the CDB1 having the
clearance level L11 can only access class People. If the same user, having
the same clearance level, was a user of the federation, after applying the
corresponding translation function the equivalent clearance level obtained is
level L22-L11. So, through the federated system this user can also only
access the class People (from CDB1). Besides, the same user can access
the information of the federation related to Fpeople_person, Femployee,
Funemployed, Person, Unemployed_db2, Employee_db2, and Worker.

146 DATA AND APPLICATIONS SECURITY

5. COMPARISON WITH OTHER RESEARCH AND
CONCLUSIONS

Our security policies integration process methodology allows us to
integrate, in a semi-automatic form, different CDBs taking into account data
protection. This data protection aspect is only slightly studied in the
federated system field. The process of the methodology presented in this
paper integrates CDBs that have MLS as security systems, but the main
difference with the proposal presented in [IGQ94] is that the integration is
performed although ordered sets of classification levels of different systems
do not coincide. Besides, as in [IGQ94], the proposed methodology
complements a schema integration methodology, so it can offer a very
important support to the administrator of a federated system; contrary to the
proposals presented in [GQ96, BSS96] where an administrator, or somebody
else, has to establish mappings between distinct ordered sets.

References
[BSS96] P.A. Bonatti, M.L. Sapino and V.S. Subrahmanian. Merging Heterogeneous

Security Orderings. In E. Bertino, G. Kurth, H. Martella and E. Montolivo, editors,
Computer Security - ESORICS 96 (4th European Symposium on Research in Computer
Security, Rome, Italy, September 25-27, 1996, Proceedings), volume 1146 of LNCS, pages
183-197, Springer-Verlag, 1996.

[BL75] D.E. Bell and L.J. LaPadula. Secure computer systems: Unified exposition and
multics interpretation. Technical Report MTR-2997, (AY/W 020 445), The MITRE
Corporation, Bedford, MA, Jul 1975.

[CSGS94] M. Castellanos, F. Saltor and M. García-Solaco: A Canonical Data Model for
the Interoperability among Object-Oriented and Relational Databases. In Özsu, Dayal and
Valduriez (eds), Distributed Object Management, pages 309-314, Morgan
Kaufmann,1994.

[DJ94] K.R. Dittrich and D. Jonscher. Current Trends in Database Technology and Their
Impact on Security Concepts. In J. Biskup, M. Mongersten and C.E. Landwehr (eds),
Database Security VIII (A-60),. Elsevier Science B.V. (North Holland) IFIP, pages 11-33,
1994.

[GQ96] L. Gong and X. Qian. Computational Issues in Secure Interoperation. IEEE
Transactions on Software Engineering, 22(1):43-51, January 1996.

[GSSC95] M. García-Solaco, F. Saltor and M. Castellanos. A Structure Based Schema
Integration Methodology. In Proc. 11th Int. Conference on Data Engineering, Taipei.
IEEE-CS Press, 1995.

[IGQ94] N.B. Idris, W.A. Gray and M.A. Qutaishat. Integration of Secrecy Features in a
Federated Database Environment. In T.F. Keefe and C.E. Landwehr, editors, Database
Security VII (A-47), pages 89-109. Elsevier Science B.V. (North-Holland) IFIP, 1994.

[ML92] J.K. Millen and T.F. Lunt. Security for Object-Oriented Database Systems. In
Proceedings of the IEEE Computer Society Symposium on Research in Security and
Privacy, Oakland, California, pages 260-272, May, 1992.

[MLTS92] M. Morgenstern, T. Lunt, B. Thuraisingham and D. Spooner. Security issues in
federated database systems: panel contributions. In C.E. Landwehr and S. Jajodia, editors,

Integrating Multilevel Security Policies 147

Database Security V (A-6): Status and Prospects, pages 131-148. Elsevier Science B.V.
(North Holland) IFIP, 1992.

[OS00] M. Oliva & F. Saltor. Integrating Multilevel Security Policies in Multilevel Federated
Database Systems. In Proc. 14th Annual IFIP WG 11.3 Working Conference on Database
Security, Schoorl, The Netherlands, August 21-23, 2000.

[Per93] G. Pernul. Canonical Security Modeling for Federated Databases. In D.K. Hsiao,
E.J. Neuhold, and R. Sacks-Davis, editors, Interoperable Database Systems (DS-5) (A-25),
pages 207-222. Elsevier Science Publishers B.V. (North-holland) IFIP, 1993

[ROSC97] M.E. Rodríguez, M. Oliva, F. Saltor and B. Campderrich. On Schema and
Functional Architectures for Multilevel Secure and Multiuser Model Federated DB
Systems. In S. Conrad, W. Hasselbring, A. Heuer, G. Saake, editors, Proceedings of
the International CAiSE’97 Workshop on Engineering Federated Database Systems
(EFDBS’97, Barcelona), Otto-von-Guericke-Universität Magdeburg, Fakultät für
Informatik, preprint Nr. 6, pages 93-104, 1997.

[SL90] A.P. Sheth and J.A. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3): 183-236,
September 1990.

[SM77] D.F. Stanat and D.F. McAllister. Discrete Mathematics in Computer Science.
Prentice-Hall International Editions, 1977.

This page intentionally left blank

CHAPTER 14

Wrappers - A Mechanism to Support State-Based
Authorization in Web Applications

Martin S Olivier
Computer Science, Rand Afrikaans University, PO Box 524, Auckland Park, 2006, South Africa
molivier@rkw.rau.ac.za

Ehud Gudes
Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, 84105, Israel
ehud@cs.bgu.ac.il

Abstract The first premise of this paper is that security should ultimately be associated with
an application because application semantics have a direct influence on proper
protection. The second premise is that applications are generally too complex
to be trusted to implement security as specified by the given security policy.
These problems are aggravated if the application operates over normal time and
space constraints: The best example of such applications is workflow systems
where various actors — possibly from multiple organisations — interact on long
transactions to complete a given task.

The solution presented in this paper is an approach referred to as wrappers: a
wrapper is a simple program that has enough knowledge about a specific appli-
cation’s potential states and the actions that are permissible in each state. Using
this knowledge, it is able to filter requests that should not reach an application at
a given point. It is important to note that wrappers are not intended to subsume
the security functionality of an application, but serve as an additional check.

The paper presents its concepts in a World-wide Web environment that renders
it immediately useful.

1. Introduction
It is generally accepted that security should ideally be based on the concerned

application: Only when the application logic is considered, is it possible to pre-
cisely determine security-related concerns such as the need-to-know or context
sensitive security requirements. Such requirements have most notably been ex-
pressed in the workflow context where, for example, someone’s authorisation to
modify a given document depends on the current state of the workflow process.

150 DATABASE AND APPLICATION SECURITY

Such context-dependent security measures are clearly not restricted to work-
flow systems. Applications in general exhibit this requirement. As a simple
example note that in almost any sensitive application it should not be possible
to do any processing before proper user authentication has been performed.
Although such a simple requirement seems obvious, it is a generally accepted
fact that many complex applications do contain backdoors that enable the de-
veloper access to the system without going through the normal authentication
procedure [9]. Many forms of attack will also deviate from normal application
flow of logic. One well-known attack is to overflow buffers on the stack and
so take control of the system. This form of attack was, amongst others, used
in the Internet worm [9] and was again recently exposed as vulnerabilities in
well-known Microsoft and Netscape products [4].

It is our contention that application-layer security should be part of the design
process of any major application and that an appropriate security model should
be implemented as part of the application development process. It is, however,
a fact that real-world applications are complex by nature and that it is very hard
to ensure their correctness in general, and the implementation of their security
features in particular. Add to this the fact that application designers are often
not security experts and that weak methods are often employed to protect the
system (in addition to the fact that the system is complex to protect), concern
is indeed warranted.

The option that interests us in the current paper is the possibility to place a
‘wrapper’ around the application such that the user interface falls outside the
wrapper and all communication between the user interface and the application
has to occur via this wrapper. In some senses this wrapper is similar to a firewall
that protects the internal network of an organisation from the untrusted external
network. The wrapper is, however, fundamentally different from a firewall
since it is intended to wrap a specific application, possibly even on a single host
without any notion of networking.

Such a wrapper is obviously a much smaller system since it does not imple-
ment the application logic, but simply forms an additional security layer. Since
the wrapper is much simpler, it is much easier to verify that it does indeed
implement the required security policies and therefore much easier to trust. In
addition, since the primary concern of the wrapper is security, it is natural that
it may be developed by security experts rather man application experts that may
mean that common pitfalls will be avoided.

Although not the only (or necessarily the best) way to separate the applica-
tion from its user interface, we shall use a Web browser as the user interface
component and HTTP as the communication protocol.

This paper is structured as follows. Section 2 contains background material
about HTTP. Section 3 gives an overview of the approach that we present. Sec-
tion 4 discusses implementation issues associated with our approach. Section

Wrappers & State-based Authorisation 151

5 compares our approach to existing approaches while section 6 concludes the
paper.

2. Background
This paper assumes knowledge of the HTTP protocol. We therefore give a

very brief introduction to this protocol. Readers interested in a more detailed
treatment are referred to RFC 2616 [8].

The HTTP protocol is used to connect a client (typically a Web browser) to
a Web server. It establishes this connection using the TCP/IP protocol suite.

The primary request sent by a browser is aGET request. It may be formulated
in a number of ways but the following is typical when programs are to be
executed:
GET /cgi-bin/program.cgi?param1=val1¶m2=val2 HTTP/1.1
HOST: server.domain
The requested program is then executed and its output is sent to the browser.
The program has a standard mechanism to access the values of parameters sent
to it (such as param1 and param2 in the example above). The output of the
program is typically encoded in HTML and rendered by the browser.

HTTP is a stateless protocol where each request sent from the browser is
replied to by the server and then ‘forgotten’ — ie it does not influence further
operation of the protocol. Two mechanisms are typically used to add state
information when required. Firstly, cookies may be used. Cookies are short
files written to the disk of the client machine; the values of these files can be
obtained during subsequent requests and used to establish the current state of a
longer interaction. The second mechanism that is commonly used is a session
identifier. When a ‘session’ is initiated, the server sends some unique identifier
along with its response such that the identifier will be sent back to it with a
subsequent request. This identifier is then passed to and fro between the client
and server and used to keep track of the session state.

3. State-based security checking
The application wrapper proposed in this paper is intended to form a layer

between the application and the user interface such that the wrapper contains
enough information to verify state-based access controls. However, to be useful,
it is essential that the wrapper (1) is simple enough that it potentially has a much
higher level of trust than the application; and (2) does not have access to any
application data, so that if the wrapper is somehow compromised, the attacker
has gained very little.

The first goal will be reached by showing that it is possible to produce a
generic wrapper that may be configured for any application. Furthermore, it

152 DATABASE AND APPLICATION SECURITY

will be shown that this can indeed be done without giving this wrapper access
to sensitive information.

To accomplish this consider the data that is required by the wrapper. We
will assume that the user interface is a thin client that contains no application
specific logic. Requests are passed from this client, through the wrapper to the
application, which is implemented as a server. Responses are returned along
the same route in the opposite direction.

3.1. Wrappers and Firewalls
Note that wrappers are similar in many ways to application gateway firewalls.

Wrappers are, however, (1) intended for a more general class of applications than
the services to which application gateways have traditionally been applied, and
(2) wrappers are not intended as a defence between an organisation’s network
and the outside world, but all accesses to a wrapped application are forced to
go via its wrapper — even from the most trusted machines on a local network.

3.2. Basic access control
In order to keep the wrapper as simple as possible, we will assume that it is not

concerned with authentication: The user is expected to obtain a ‘ticket’ from an
authentication server and present it with every request relayed by the wrapper.
For simplicity we will assume that roles are used. Therefore, it is assumed that
every request will consist of a (certified) role r and the action q to be performed.
How the role will be ‘certified’ is not important for the discussion of the concept
and an explanation of such certification will be delayed until section 4. For the
current discussion it is only necessary to assume that an unauthorised user (ie
someone who is not authorised to operate in role r) will not be able to obtain
such a certification.

If the wrapper has access to a table that contains all valid (role, action) pairs,
it is simple for the wrapper to enforce the required checking.

3.3. The single-session case
More challenging than simple access control (and more relevant to the current

paper) is enforcement of state-based access control. State-based access controls
are useful whenever a partial ordering of actions exist in which they have to be
performed. (Consider the example where a customer is expected to supply credit
card details before being allowed to download software purchased online.)

The set of requests may be purely sequential or may represent a complex
partial order set of requests such as is customary in workflow applications (see
for example [1]).

The essential question that the wrapper needs to be able to answer is, is some
request t valid if it follows a series of requests This is, amongst

Wrappers & State-based Authorisation 153

others, a well-known problem addressed by formal languages: given two sen-
tential forms and is it possible to derive from ie Using
a grammar for state-based authorisation has been dicussed in detail by Biskup
and Eckert [2]. That paper also describes the translation of such specifications
to finite automata, that are used by monitors to enforce the specifications.

It is obvious that most existing online applications have a very simple state-
based security requirement, such as login must precede any further interaction
with the application and payment must precede download of purchased items
(assuming an online shop that sells ‘soft’ goods). The grammar based approach
has the potential to specify policies such as allow no further interaction from a
customer during the current session who has three times specified credit card
details that were not accepted by the bank; this may, for example be specified
using a grammar such as

l is the login request
X is any pre-payment request
Y is the downloading of purchased item

where P is the payment request
c is an accepted credit card specification
c' is a denied credit card specification, and
F is any request that is still allowed after failing
credit card verification, such as logoff

Exactly how a wrapper knows that credit card verification has failed will be dis-
cussed below. It is clear from the specification above that ‘payment’ only
succeeds if credit card verification occurs within three attempts.

The example above illustrates a crucial requirement of wrappers: it is essen-
tial to keep the wrapper synchronised with the application. Since the wrapper
is explicitly barred from accessing application data, a wrapper may allow an
operation that is denied by the application. Therefore the wrapper needs to be
able to monitor responses from the application to the client. The wrapper now
proceeds as depicted in figure 1.

3.4. The multi-session case
Thus far we have only considered ‘transactions’ that occur within a single

session. The ultimate challenge is to handle ‘long transactions’ that span mul-
tiple sessions (and that are potentially executed by more than one user). This
scenario is typical of workflow applications where one user submits a claim
during one session. During a subsequent session an approver works sequen-
tially through submitted claims and either approves or denies them. Finally,
during a third session, the cashier looks at approved claims and issues cheques.

In order to handle long transactions it becomes necessary to associate a
transaction identifier t with each long transaction. It is obviously necessary
to set and modify t when required: consider the approver who looks at one
transaction after the other — each time a different transaction is involved, and

154 DATABASE AND APPLICATION SECURITY

Figure 1. Pseudocode for wrapper

whether the transaction is a candidate for approval depends on the state of the
particular transaction. Obtaining t may be accomplished by identifying all
requests (to the wrapper) which may lead to an updated value of t; t may be
extracted from a parameter that accompanies a request and/or determined from
the response a. transaction that the algorithm above is now expected to return.

An interesting point to note is that a user’s behaviour may now be governed
by two distinct state-oriented policies. To illustrate, consider the familiar claim
example. When the client logs onto the claim system, the system may assign a
transaction identifier to this specific claim. From this point on the actions of the
client are governed by the rules for claim submission. Suppose that the client
completes submission of the claim, is the client now permitted to look at the
status of another claim during the same session? This is clearly a session-state
issue rather than a transaction-state issue.

We propose the following solution. Firstly, rules for transactions are spec-
ified. For the claim example this may involve specifying the sequence for
submitting and subsequently approving the claim, until it is eventually settled.
Different ‘sessions’ may then be identified. For this example a ‘client session’
may, for example, be specified as a session initiated by a client login request,
which may then be followed by a request to initiate submission or a status
request. The submission or status request is governed by the rules for the trans-
action, rather than the session. Consider

mc is a client menu request
Tc is a client transaction

where c is the first step of a claim submission
s is the first step of a status query; and
 is discussed below

is used in the specification above to indicate that the preceding request (c or

Wrappers & State-based Authorisation 155

s) is the start of a sequence that will be governed by a transaction specification.
This implies that a transaction has to be identified by c and s.

Note that it is simple to modify the session specification to or
even to express different policies.

At this point it becomes necessary to consider ordinary transactions. Con-
sider an on-line banking application where a client selects an account from
which money is to be transferred with one request and an account to which the
money should be transferred with a subsequent request. If the session fails at
this point, it is unlikely that the application will allow the client to continue
from this point at a (significantly) later stage: The basic actions are likely to
be grouped into a transaction that are to be executed as a unit. The question is
whether the wrapper needs to be aware of such transactions. We argue that it
is not the case, as long as the wrapper knows where a new session is allowed
to start: In the case of the banking example, a session is allowed to start at the
first account selection and nowhere else. We foresee that session specifications
will often be used merely to indicate such possible starting points.

Note that the rules for transaction state access control will typically not be
provided as a grammar by the security officer, but may be automatically derived
from the workflow specification.

4. Implementation
The use of the Web as a means to implement various applications has in-

creased tremendously over the last number of years. In addition, the separation
between user interface (in a browser) and an application server (as required by
our approach) is indeed present in the Web environment.

4.1. Filtering messages
It is relatively simple to write a wrapper that relays (filters) requests between

the client and application as required for wrappers.
To illustrate the operation of a wrapper in the Web environment, consider

the claim example again. The specification in figure 2 is not intended as an
illustration of a specification language, but rather to make some of the issues
previously discussed more concrete.

Lines beginning with a hash (#) are intended as comments. The initial sec-
tion of the configuration specifies all messages (or requests), along with the
parameters that are employed. The role parameter is implicit in all messages
and not shown. It will be discussed below.

When a parameter is marked with an asterisk (such as transaction* with
view-a-claim), it means that this value is not directly provided by the user, but
is typically retrieved from a response to a previous message. In the example case
view-a-claim is preceded by a view-claims message. The intention is that

156 DATABASE AND APPLICATION SECURITY

Figure 2. Illustrative wrapper specification

the response to the view-claims message is a list of claims ready for approval,
together with their associated (long) transaction identifiers. Therefore, when
the user clicks on a particular claim, the form is composed so that the ‘selected’
transaction identifier is sent as a parameter with the view-a-claim message.

We assume that the selected names of messages are clear enough for the
reader to interpret. However, keep in mind that the names refer to messages,
not screens. Therefore an approver may look at a screen of claims ready for
approval; when the approver clicks on one such claim, the view-a-claim
request is sent and this is followed by a screen with claim details. On this
screen the approver may click on approve or deny

The transaction rules should also be self-explanatory for this simple example.
Note that this specification is rather inflexible and that more flexibility will be
required for real-world applications. We contend that our approach is capable

Wrappers & State-based Authorisation 157

of handling more flexible requirements but do not illustrate it in the current
paper for lack of space.

In the case of specific sessions, ellipses have been used to indicate that a
portion of a session will be controlled according to a transaction specification
rather than a session specification. (In the previous section we used for this,
but this symbol is not available on keyboards for typical configuration files.)

It is now clearly simple for the wrapper to apply the algorithm given in
the previous section. When a message arrives (1) ensure that the message
may indeed be sent by a user as stated in the role parameter (see below for a
discussion of this parameter); (2) ensure that the message is valid in the current
session state, if the message forms part of a session state specification; and (3)
ensure that the message is valid in the current transaction state, if the message
forms part of a transaction state specification.

Transactions state needs additional consideration. In the single session/single
transaction case this is not a problem: the wrapper can maintain the state in
memory, and this way can easily check whether the next (role, action) pair is
valid or not.

In the multi session/multi-transaction case this is more complicated. one
option is for the wrapper to maintain in a local database all these states. This is
however too complex since it defeats the wrapper simplicity principle, and also
takes upon itself much application functionality. This is even more complex
when the multiple sessions are initiated in different sites and involving different
wrappers. The solution we advocate is the following. Using a specification
similar to the one discussed in section 3.4, the wrapper can know exactly which
(role, action) pairs are valid at the beginning of a session. The suitability of
such a pair to the specific transaction state will be tested by the application
itself. If the answer will be positive the wrapper can start to maintain the state
in memory so long as this transaction is active. Thus no local database and no
application database is required by the wrapper.

4.2. Role identifiers
The role parameter is different from other parameters since authorisation is

based on it. The following approach solves the major problems: Firstly, the user
requests a role identifier from an authentication server. Note that the authenti-
cation server is independent of wrappers. When requesting the identifier, the
user states the requested role and provides the required credentials, such as a
user name and password. The authentication server then compiles a certificate
containing role information such as the name of the role and its period of validity
and then signs this information with its (the authentication server’s) private key.
If we assume that an encrypted channel (such as SSL) is used between the user
and the authentication server, this certificate cannot be misappropriated by an

158 DATABASE AND APPLICATION SECURITY

eavesdropper. A similar argument shows that it cannot be misappropriated be-
tween the user and the wrapper or the wrapper and the application if encryption
is used. It is obviously simple for the wrapper (and the application) to verify
the authenticity of the role identifier by using the authentication server’s public
key. Note that this approach presents a simplified version of secure cookies as
presented by Park et al [13], but avoids the use of cookies.

4.3. Wrapper and Application Relationship
A major issue in the proposed scheme is the extraction of the state based

behaviour from the application in order to specify it precisely for the wrapper.
If one uses an external tool for such specification one runs the danger of creating
inconsistencies between the application and the wrapper, and maintaining the
wrapper specifications in case the application changes. An automatic or semi-
automatic tool is much more desirable.

Let us assume that the application consists of a set of CGI scripts. There
are several alternatives to generate the state-role/action sequences. Usually,
such CGI scripts are very simple and as was explained above retrieve com-
mands sent to them using GET or POST using some explicit mechanism. The
semi-automatic scheme we propose involves the insertion, by the application
developer statements which specify the desired role for each such GET/POST.
In addition the application developer can insert statements that assert that some
condition has been met (eg assert user_logged_on) in some scripts where
this condition has indeed been met and state that the condition is required to
execute other scripts (eg require user_logged_on). (Such statements may
be handled by a pre-processor.) Then a simple program-flow analyzer can gen-
erate all the possible sequences of action/role pairs. Later on the application
developer will need to maintain only such CGI scripts.

Another possibility is to write a simple parser which will scan the CGI scripts
and for each GET/POST it finds will inquire the application developer for the
relevant role/action pair. Then the generation of possible sequences will be
done as mentioned before. Yet, another possibility is to develop a high-level
tool for specifying states and actions (similar to State-charts [10] or Petri-nets
[1]) and from that tool to automatically generate both the state-based sequences
and skeletons for the CGI scripts required by the application.

5. Comparison with other work
The Wrappers idea is related to several other works which appeared in recent

years. The idea of extracting security policies from an application and enforce
and maintain them separately has appeared before. In [11] it is argued that in
a distributed object environment, one cannot leave the security enforcement to
monolithic components such as DBMSs. Since usually in such systems requests

Wrappers & State-based Authorisation 159

go through mediators or brokers like CORBA or DCOM we should associate
security enforcement with these mediators. [11] is very general and does not go
into the details of what kind of authorization should be handled by the brokers
and what should remain with the application or DBMS.

Our work differs from that of Biskup and Eckert cited earlier [2] since (1) a
greater emphasis is placed on isolation of the wrapper; (2) transactions where
multiple subjects cooperate are considered; and (3) it is set in the Web context.

The DOK system for federated databases proposed by Tari [15] has a complex
structure of agents enforcing security on behalf of the individual application or
local DBMS (he even uses the term “Wrapper”but for translating global to local
requests only). Our wrapper on the other hand is quite simple but has a focused
goal — providing state-based security for Web-based applications. Therefore,
issues such as translating queries are not handled by it.

The TIHI project by Wiederhold et al [16] is quite close to our ideas. It uses
an object called “Security Mediator” for enforcing the security policies of a
Web-based medical application. It is also implemented using CGI scripts. It is
however, application specific, and not generic like our wrapper. It also handles
all authorization and not only the state-based.

Another paper on Role-based security by Demurjian et al [6] is also related
to our work. They suggest the concept of an OSA (Object Security Officer)
which separates an object from the outside world like a firewall. However their
OSA is linked to the application object much tighter than our wrapper, since it
invokes the object methods directly.

Finally, in our own work on workflow security [7, 12] we showed how we
can specify and enforce history and dynamic authorization rules. All the au-
thorization is done by the workflow security administrator object. Thus it is
tightly coupled with the workflow specification. Again, the Wrapper idea here
is not as tightly coupled with the application. It must be synchronized with it
with respect to the major states and roles but it still leaves data dependent and
dynamic authorization checks to the application.

6. Conclusion
This paper has presented an approach to reinforce application security in an

environment such as the Web by introducing another layer of defence between
the firewall and the application itself. It is important to remember that this
layer is not intended to remove any responsibility from either the firewall or the
application, but rather provide additional security.

It has been demonstrated that the concept is indeed simple — a requirement
for trust — and can be based on a simple configuration approach. The paper
has not investigated suitable specification approaches in any detail but merely
posited that it should be possible to either specify the wrapper’s behaviour

160 DATABASE AND APPLICATION SECURITY

manually for a simple application (such as many current online stores) or to
create a tool that will automatically derive a specification from others such as
those used for workflow systems in general. This remains to be verified.

Further, exactly how the specification is converted to a wrapper has not been
considered in detail in this paper. Much work has been done over many years
to generate parsers for arbitrary grammars and this should therefore be simple.

References
[1] V Atluri and WK Huang, “An extended petri net model for supporting workflow in a

multilevel secure environment,” in P Samarati and RS Sandhu, Database Security X:
Status and Prospects, Chapman & Hall, 1997, pp. 240–258.

[2] J Biskup and C Eckert, “About the Enforcement of State Dependent Security Specifi-
cations,” in TF Keefe and CE Landwehr (eds), Database Security VII, Elsevier, 1994,
3–17

[3] F Casati, S Ceri, B Pernici, G Pozz, “Conceptual Modelling of Workflows” Proc. of the
Object-oriented and Entity-Relationship Conf., Australia, 1995.

[4] CERT, Buffer Overflow in MIME-aware Mail and News Clients, CERT Advisory CA-
98.10, 1998

[5] W Ford and MS Baum, Secure Electronic Commerce: Building the Infrastructure for
Digital Signatures and Encryption, Prentice Hall, 1997

[6] SA Demurjian, TC Ting and M Saba, “Agent approaches to enforce Role-based security in
distributed and web-based computing,” Proceedings IFIP WG 11.3 Workshop on Database
Security, Seattle, Washington, 1999, pp. 65-77.

[7] E Gudes, MS Olivier and RP van de Riet, “Modelling, Specifying and implementing
workflow security in Cyberspace”, Journal of Computer Security, Journal of Computer
Security, 7, 4, 287–315, 1999

[8] R Fielding, J Gettys, J Mogul, H Frystyk, L Masinter, P Leach, T Berners-Lee, Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616, Internet Society

[9] S Garfinkel and G Spafford, Practical Unix & Internet Security, 2nd ed, O’Reilly, 1996
[10] D Harel and M Politi, Modeling Reactive Systems with Statecharts: the STATEMATE

Approach, McGraw-Hill, 1998
[11] CD McCollum, DB Faatz, WR Herndon, EJ Sebes, RK Thomas, “Distributed object

technologies databases and security”, proceedings IFIP WG 11.3 Workshop on Database
Security, Lake Tahoe, Ca. 1997, pp. 17–33.

[12] MS Olivier, RP van de Riet and E Gudes “Specifying Application-level Security in Work-
flow Systems,” in R Wagner (ed), Proceedings of the Ninth International Workshop on
Security of Data Intensive Applications (DEXA 98), 346–351, IEEE, 1998

[13] J Park, R Sandhu and S Ghanta, “RBAC on the Web by secure cookies,” Proceedings IFIP
WG 11.3 Workshop on Database Security, Seattle, Washington, 1999, pp. 41-54.

[14] LD Stein, Web Security: A Step-by-Step Reference Guide, Addison-Wesley, 1998
[15] Z Tari, “Designing security agents for the DOK federated system,” Proceedings IFIP WG

11.3 Workshop on Database Security, Lake Tahoe, Ca. 1997, pp. 35-59
[16] G Wiederhold, M Billelo and C Donahue,, “Web implementation of a security mediator

for medical databases,” Proceedings IFIP WG 11.3 Workshop on Database Security, Lake
Tahoe, Ca. 1997, pp. 60-72.

CHAPTER 15

An Integrated Framework for Database Privacy
Protection

LiWu Chang and Ira S. Moskowitz
Center for High Assurance Computer Systems, Naval Research Laboratory, Washington, DC

Key words: database inference, Bayesian network, similarity measure, information
reduction, restoration

Abstract: One of the central objectives of studying database privacy protection is to protect
sensitive information held in a database from being inferred by a generic database
user. In this paper, we present a framework to assist in the formal analysis of the
database inference problem. The framework is based on an association network
which is composed of a similarity measure and a Bayesian network model.

1. INTRODUCTION

As the information explosion has grown, so has the trend of data sharing and
information exchange also grown. Accordingly, privacy concerns have
reached a critical level [13]. In his report [1], Anderson stated that the
combination of birth date and post code (zip code) with data from a health
database is sufficient to identify 98% of the UK population! It is certainly a
concern for the Icelandic patients' database [11]. Many existing efforts (e.g.,
[10][11]) have been geared towards the hiding of stored data items and
access control. It has been shown that even if the sensitive personal
information is hidden, it can be derived from publicly accessible data by
means of inference [2][5][14][15][16][17][21][22]. Denning [6] categorized
several different types of attacks and analyzed the protection methods where
query returns are statistical quantities (e.g., mean, variance). Hinke's work
on deterministically chained related attributes shows how the information can
be obtained from non-obvious links [9]. Duncan [5] [22] presented cell
suppression techniques where the marginal probability distributions are

162 DATA AND APPLICATIONS SECURITY

preserved by disturbing the probability mass of component variables.
Sweeney's work applies the aggregation operation to the merge of the
attribute values [20].

We wish to put the inference problem upon a firm theoretical foundation.
The main contribution of this paper is to categorize and discuss inference
from different perspectives and represent those different views in a coherent
framework. Among the above mentioned approaches, ours and [5] are similar
in that both attempt to minimize the information loss for a database user. The
difference is that our protection method evaluates values of each data item.
At the core of our model a structured representation of probabilistic
dependency among attributes is adopted.

Summarizing from previous work, we envision two perspectives of inference
characterized by attribute properties. One perspective is about the
probabilistic correlation among attributes. A complimentary perspective is
that of individuality which emphasizes the uniqueness of each individual data
item. For the former, a Bayesian network [18] can be used to model
correlation relationships among attributes. Let attributes whose information
we wish to protect be the target attributes. Based on this model, one can
evaluate the potential impact that impinges upon a target attribute from
information about other attributes, and decide the pertinent protection
strategies accordingly. Although the probabilistic method is useful in
describing the likelihood of the occurrence of an attribute value, it may be
ineffective for identifying which attribute value is unique to a data item. This
uniqueness can be deemed as the individuality of a data item. To protect such
an attribute value, it is necessary to determine whether other attribute values,
or their combinations, provide the same amount of information as the special
one does to the data item. Thus, the identification of individuality is separate
from the probabilistic correlation analysis. The proposed framework is the
first to integrate these two perspectives.

2. POLICY

We use data modification to ensure high privacy protection. Our concerns
are that a user (authorized for limited data access) might be able to combine
his/her information with other users, or to simply generate inferences on
his/her own, to glean knowledge about data that they should not have access
to. Of course we are not concerned with the data originator learning this
information. Our privacy policy can be phrased as follows:

• No sensitive information can be inferred from publicly released data.

An Integrated Framework for Database Privacy Protection 163

No false information is added to the database to increase privacy
protection.

Of course we are still allowing ourselves to hide data to increase privacy
protection --- we are only disallowing erroneous data. Since protection
always involves a certain level of modification to the data, some statistical
properties of a database will inevitably be affected --- this is good for privacy
concerns but bad for functionality. Our proposed model will incorporate
dynamic changes as a result of new attributes being added and new data
being collected.

3. INFERENCE

What information needs to be protected in a database? Consider the example
medical database as shown in Table 1, where attributes “address”, “age” and
“occupation” are the basic personal information, and “hepatitis”, “mental
depression”, “AIDS” and “thyroid (function)” are the personal medical
records. It is certain information about the unique user identification number
“uid” that we wish to protect (AIDS, suicide, etc.). Our proposed model
(referred to as an association network) is composed of two components. One
component is based on the probabilistic causal network model. The other
component describes the functional dependency or the similarity
relationships.

164 DATA AND APPLICATIONS SECURITY

3. 1 Identification of Similar Attributes

To prevent inference attacks, information such as a person's name should
automatically be removed from the database. However, the removal of the
name attribute is hardly adequate. Other attributes, such as a person's
address, may reveal essentially the same information and thus, should also be
hidden from general users. Consider two attributes in a database and the
natural relation given between their attribute values. If this relation is “close”
to being a bijection then we say that the attributes are similar. In Table 2 we
see the relation between “uid” and “address”. If one “uid” corresponds to one
“address” value, then “address” is congruent to “uid”, this is not the case.
However, the mapping between the two is almost a bijection so they are
similar (only three addresses correspond to more than one uid, and in those
cases they correspond to two uids). Intuitively, the less the spread of the
frequency count shown in the table, the higher the similarity between the
target and the candidate attributes.

The criterion of determining which attributes are similar to the target
attribute is quantified in terms of our information theoretical rule.

An Integrated Framework for Database Privacy Protection 165

Definition 1. (Dispersion V)

where N and M stand for the number of attribute values of the target attribute
T (with values tj) and candidate attribute C (with values ci), respectively. Vi
is the dispersion measure of the ith attribute value of C, and V gives the total
dispersion measure with normalization. A low V score is the selection criteria
for similar. Similar attributes are the ones that we want to modify because
they give us inference about the target attribute. In terms of the frequentist's
view, we have where nij denotes the frequency count at the
ith row and jth column, and ni is the sum of the ith row. Note that the range
of this dispersion measure is from 0 to logN. The minimum occurs when only
one entry in each row has a non-zero value. The maximum happens when the
mass ni is evenly distributed over ALL attribute values of T. Given that
T=“uid” the V-score for C=“address” (Table 2) is 3/17=0. 18. Note that if the
V-score of a candidate attribute C is less than 1, then there exists Vi-scores of
C that are equal to 0, for some i. Attribute values that correspond to low Vi-
scores are subject to modification.

A candidate attribute can be a combination of several attributes. For instance,
the combination of “address” and “mental depression” can uniquely identify
each item in the Table 1. Figure 12 shows such a combination. The fact is
that a merge of several attributes with high V-scores can yield a low V-score.
Using V-scores an indicator, the proposed search evaluates possible
combinations of different attributes until a bijection with the target attribute
is reached, or a desired V-score is reached. Attributes or their combination
with low V-scores are stored.

Figure 12: Example of Combination of Attributes. A node represents an
attribute. The dashed line denotes the combination and the straight line
denotes the similarity relationship.

166 DATA AND APPLICATIONS SECURITY

3. 2 Computation of Probabilistic Impact

The analysis of the probabilistic dependency is based on a Bayesian net
representation ([8][18]). As shown in Figure 13, either “AIDS” or “thyroid”
leads to “mental depression”, while “hepatitis” and “mental depression“
support the diagnosis of “AIDS”. Thus, “AIDS” can be inferred from
information about “hepatitis” and “mental depression”. Note that attributes
about a person's background are not included in this figure because of the
low statistical significance due to their large sets of attribute values.

Figure 13: Architecture of a Bayesian network. An attribute is denoted by a
node. An arrow indicates the probabilistic dependency between the two
attributes. A double circle denotes information associated with the attribute is
confidential.

As mentioned earlier, the combination of “address” and “mental depression”
will lead to the identification of “uid”. Thus, one may able to infer about
whether a particular person contracts AIDS by joining together the
information from Figure 12 and Figure 13. The joined network is shown in
Figure 14. To prevent the potential association of “uid” and “AIDS”,
information, in particular, “mental depression” (since it contributes to both
networks) must be reduced. To protect sensitive information, strategies of
blocking and aggregation are used.

Figure 14: Architecture of a joined network

An Integrated Framework for Database Privacy Protection 167

4. INFORMATION REDUCTION

In this paper, we consider the database modification strategies of blocking
and merging. The purpose of modification is to mitigate database inference.

4. 1 Reduction range

To give an objective quantitative description of the extent to which users are
willing to tolerate the potential error induced from database modification, we
invoke a quality index (QI) of a database. QI is generated during the data
collection phase. It is represented as the logarithm (base 2) of the sample
probability in our analysis:

Definition 2. (QI)

where D denotes the data set and m denotes a model. If m is a Bayesian
network model Bn then QI will be log QI is viewed as the lower
bound of the level of tolerance, below which the validity of inference drawn
from the modified database is in doubt. The operation range is defined in
terms of the rate of change,

Definition 3. (Ratio of Reduction)

For instance, if the original QI is -60 and the QI of the modified database is -
63, then the allowed rate of change, is 5%. Our assumption is that the
estimated inherent error in the original data and the tolerance measure of how
much we are allowed to perturb the data are tied together in some underlying
basic manner.

4. 2 Blocking

The approach of blocking is implemented by replacing certain attribute
values of some data items with a question mark --- this indicates total
ignorance of the preference [2]. The set of attribute values that maximally
change the posterior probability of the desired target value
with respect to the modified database Dm and the given Bn, are chosen for
blocking. If the modification can cause drastic change to the present belief, it
should be considered for hiding. The modification will stop when the change
reaches beyond the specified

Claim 1. The QI, is monotonically decreasing as more
attribute values are blocked.

168 DATA AND APPLICATIONS SECURITY

As an example, let the allowed rate of change be 3%. From Table 1, the 3%
change of QI whose value changes from to

can be best achieved by modifying
Data item 3: “hepatitis” = “y” as well as Data item 4: “mental depression”
=“dep”. The result of the released database is shown in Table 3. Since
modification inevitably weakens the probabilistic dependency, it may lead to
the change of network topology Bn. Thus, the causal dependency of the
target also needs to be re-evaluated.

4.3 Aggregation

We apply an aggregation operation [17] for combining different values of an
attribute of low Vi-score. Aggregation may be done according to the known
taxonomic structure imposed on attribute values (e. g., home address with
respect to zip code). One example is shown in Table 4, where home
addresses of Table 1 are merged into larger districts lexicographically.

An Integrated Framework for Database Privacy Protection 169

Aggregation amounts to the reduction of the complexity of a probability
space spanned by attributes [7] and therefore, increases the statistical
significance [4]. For the number of attribute values changing from 17 to 6,
the threshold of the confidence region is given by a finite number that is 11. 1
with the confidence level 0. 95 based on chi-square estimation. In the absence
of such structure, the concept clustering method with clustering criterion
based on will be used as the selection criterion.

5. ASSOCIATION NETWORK

As discussed, different data analysis methods are used in light of the different
statistical properties of attributes. We integrate the similarity relation and its
related taxonomy structure [18] with probabilistic causal (Bayesian) to form
what we call an association network as in Figure 15. It provides the basis for
privacy protection analysis. We envision the following steps for generation.

• Conduct the similarity selection and Bayesian network induction.
Attributes with low V-score will have their values be either
aggregated to increase significance level or replaced with pseudo-
code.

• Evaluate impact on target attributes from other attributes in
association networks.

• Modify attribute values according to a calculated priority.
• After modification, (randomly) check if other combinations still

violate the privacy protection criterion.

170 DATA AND APPLICATIONS SECURITY

Figure 15: Association network model. The double-dashed line denotes an
aggregated attribute. The aggregated attribute may have probabilistic
dependency with other attributes. Attributes outside the dashed line are not
included in the current database.

5. 1 Restoration

It is possible to (partially) restore hidden attribute values if the information of
the underlying Bayesian network structures of the database are known – this
is the worst case to defend against. As in [2] [8] [12], the restoration approach
primarily selects the set of instantiation x to the hidden values with respect to
log for Dm. With data of Table 3, one could obtain the values
of “AIDS” shown in Table 5. Note that the two blockings (i. e., data items 3
and 4) are also correctly restored to their original states.

Changes of the “AIDS” values occur in three places - a reasonably good
guess, but a bad outcome for privacy protection. If the number of blockings
increases to 4 with “mental depression” of data items 3, 8, 14 and 18 being
blocked, the restoration is disrupted. The result is shown in Table 6, where
changes in the restored values of “AIDS” increase to seven, a fairly random
outcome. In general, to ensure no restoration, one needs to modify associated
causes and evaluate their ramifications [3]. We will consider the combined
strategy with respect to the constraint

An Integrated Framework for Database Privacy Protection 171

5.2 Effectiveness Evaluation

The result of blocking will push the target probability toward the uniform
distribution. In fact,

Claim 3. The entropy measure of T with is monotonically
increasing w. r. t. blockings.

This property is in tune with our intuition that uniformity gives maximal
entropy, while specificity gives minimal entropy. The evaluation of the
effectiveness of modification in our framework is carried out by cross-
validation over Dm where effectiveness is measured in terms of the error rate
Ucf(e,s) [19], meaning the chance of having e errors with s test data at the
confidence level cf. For instance, in Table 3, with 3 misclassified test data
and 7 test data, the predicted error rate, Ucf(3, 7), is 0. 43 at cf=10%. The
result means that if the error rate is high, the network model is unreliable and
thus, the inference is mitigated.

6. CONCLUSION

Our results suggest that database privacy protection requires extensive
evaluation and analysis of data relationships. Our model requires two-tier
processing. First, a similarity analysis is carried out for examining similar
attributes. The second tier is based on the probabilistic dependency analysis
of attributes. Blocking and aggregation are used to prevent inference.
Inference is analyzed with an association network, which consists of the
probabilistic dependency structure, the taxonomy structure and the similarity
measure. This provides a unified framework for database inference analysis.

Acknowledgements We thank the anonymous reviewers for their helpful
comments and suggestions.

172 DATA AND APPLICATIONS SECURITY

References
[1] Anderson, R. (1998) “http: //www. cl. cam. ac. uk/simrjal4/caldicott/caldicott. html”.
[2] Chang, L. & Moskowitz, I. S. (1998) “Bayesian Methods Applied to the Database

Inference Problem, ” Database Security XII (ed. Jajodia), pp. 237-251, Kluwer.
[3] Chang, L & Moskowitz, I. S. (2001) “Analysis of Database Inference, ” in preparation.
[4] Cowan, G. (1998) “Statistical Data Analysis, ” Clarendon Press.
[5] Duncan, G. (1995) ”Restricted Data versus Restricted Access, “In Seminar on New

Directions in Statistical Methodology, OMB, pp 43-56.
[6] Denning, D. & Neumann, P. (1985) ”Requirements and Model for IDES-A Real-Time

Intrusion-Detection Expert System, “ # 83F83-01-00 CS SRI International.
[7] Freidman, J. (1996) “On Bias, Variance, 0&1 - Loss, and the Curse-of-

Dimensionality, ”Data Mining and Knowledge Discovery, 1, 55-77.
[8] Heckerman D. (1996) “Bayesian Networks for Knowledge Discovery, ” Advances in

Knowledge Discovery and Data Mining, AAAI Press/MIT Press, pp. 273-305.
[9] Hinke, T., Delugach, H. & Wolf, R. (1997) “Protecting Databases from Inference Attack, ”

Computers & Security, Vol. 16, No. 8, pp 687-708.
[10] HIPAA (1999) The Health Insurance Portability and Accountability Act seminar, NY.
[11] Iceland Database (1999) “http: //www. decode. is/ppt/protection/index. htm”.
[12] Kong, A., Liu, J. & Wong, W. (1994) “Sequential Imputation and Bayesian Missing Data

Problems, ” Journal of ASA, Vol. 89, No. 425, pp 278-288.
[13] Lewis, P. (2000) book review “Losing Privacy in the Age of the Internet” (author

Garfinkle) New York Times, Feb. 10, 2000.
[14] Lin, T. Y., Hinke, T. H., Marks, D. G., & Thuraisingham, B. (1996) “Security and Data

Mining, ” Database Security Vol. 9: Status and Prospects, IFIP.
[15] Marks, D. “Inference in MLS Database Systems, ” IEEE Trans. KDE, V 8, # 1, pp46-55.
[16] Moskowitz, I. S. & Chang, L. (2000) “A Computational Intelligence Approach to the

Database Inference Problem, ” Advances in Intelligent Systems: Theory and Applications
(ed M. Mohammadian) IOS Press, 2000.

[17] Office of Management and Budget (1994) “Report on Statistical Disclosure Limitation
Methodology, ” paper 22.

[18] Pearl, J. (1989) “Probabilistic Reasoning in Intelligent Systems, ” Morgan Kauffman.
[19] Quinlan, R. (1992) “C4. 5”, Morgan Kaufmann.
[20] Sweeney, L. (1997) “Maintaining anonymity when sharing medical data, ” MIT working

paper, AIWP-WP344.
[21] Thuraisingham, B. (1998) “Data Mining: Technologies, Tools and Trends:, CRC Press.
[22] Zayatz, L. & Rowland, S. (1999) ”Disclosure Limitation for American Factfinder, ”

Census Bureau report (manuscript).

CHAPTER 16
DISCOVERY OF MULTI-LEVEL SECURITY
POLICIES

Christina Yip Chung, Michael Gertz, Karl Levitt
Department of Computer Science, University of California, Davis, CA 95616, U.S.A.
{chungy|gertz|levitt}@cs.ucdavis.edu

Abstract With the increasing complexity and dynamics of database systems, it
becomes more and more difficult for administrative personnel to identify,
specify and enforce security policies that govern against the misuse of
data. Often security policies are not known, too imprecise or simply
have been disabled because of changing requirements.

Recently several proposals have been made to use data mining tech-
niques to discover profiles and anomalous user behavior from audit logs.
These approaches, however, are often too fine-grained in that they com-
pute too many rules to be useful for an administrator in implementing
appropriate security enforcing mechanisms.

In this paper we present a novel approach to discover security poli-
cies from audit logs. The approach is based on using multiple concept
hierarchies that specify properties of objects and data at different levels
of abstraction and thus can embed useful domain knowledge. A profiler,
attached to the information system’s auditing component, utilizes such
concept hierarchies to compute profiles at different levels of granularity,
guided by the administrator through the specification of an interesting-
ness measure. The computed profiles can be translated into security
policies and existing policies can be verified against the profiles.

1. INTRODUCTION
A major obstacle in securing todays information systems is not the

lack of appropriate security mechanisms (see, e.g., [4] for an overview of
access control models), but the lack of methods and concepts that allow
security administrators to identify security policies. This is because in
practice often only a very few policies are known at system design-time.
Furthermore, at system run-time existing security policies typically need
to be modified or new policies need to be added. In such cases, deter-
mining appropriate policy modifications is based on the normal behavior
of users. What is needed are concepts and tools that help administra-
tors in identifying security policies of interest and in verifying existing
security policies.

174 DATA AND APPLICATIONS SECURITY

Recently several proposals have been made to discover user profiles
from audit logs (see, e.g., [2, 7, 6, 9, 12, 13, 14]). Profiles describe the
normal behavior of users (groups) regarding the usage of the system and
associated applications. Discovered profiles can be used to derive specifi-
cations of security enforcing mechanisms based on, e.g., an access control
model. The ability to incorporate application specific domain knowledge
is critical to the success and usability of these approaches. In [7, 6] we
have shown how misuse detection, based on data mining techniques, can
benefit from domain knowledge that is incorporated into applications
associated with an information system. However, even these approaches
turn out to generate too many fine-grained policies. Administrators
typically do not want to deal with hundreds of closely related access
patterns, but prefer a representation of access patterns at an abstract,
more generalized level of description.

In this paper we describe an approach that tries to alleviate this short-
coming by discovering security policies at different levels of detail. The
approach is applicable to database systems as well as Web-based infor-
mation systems. We employ concept hierarchies [3] that describe proper-
ties (values) of data at different levels of granularity. Concepts modeled
in such hierarchies build descriptive parts of user profiles and thus se-
curity policies at different levels of detail. Such hierarchies are either
provided by the administrator (thus representing some kind of domain
knowledge) or can be discovered from data using clustering techniques
(see, e.g., [8, 10]). We propose an extension of the concept hierarchy
framework in which we organize feature/value pairs (representing con-
cepts) in trees. Our framework is more general than [11] in that it does
not impose an arbitrary partial order on the attributes (concepts) in a
concept hierarchy.

Our profiler is capable of considering multiple concept hierarchies in
discovering profiles. Multiple concept hierarchies have been introduced
in the data mining domain for deriving typical patterns of data at dif-
ferent levels of abstraction [3, 10, 11]. We extend the usage of multiple
concept hierarchies by allowing different types of concepts in a single
hierarchy. Depending on the security policies to discover or verify, the
administrator can choose among (combinations of) concept hierarchies
and abstract concepts (features) embedded in these hierarchies.

Finally, we introduce the notion of interestingness measure as an im-
portant means for administrators to guide the profile and policy discov-
ery process. This measurement can be specified by the administrator
depending on the type and granularity of policy she is interested in.
Our approach provides a valuable tool for security re-engineering which
utilizes audit logs generated by a database system at run-time.

Discovery of Multi-Level Security Policies 175

2. CONCEPT HIERARCHIES
Concept hierarchies represent application specific domain knowledge

about features of interest for the discovery of security policies. Starting
from auditable features, a concept hierarchy can be developed bottom-up
by the administrator or data clustering techniques.

In Section 2.1, we describe how concept hierarchies organize fea-
ture/value pairs in form of trees. In Section 2.2, we discuss a model
to determine whether a given itemset, consisting of feature/value pairs,
is of interest. Section 2.3 outlines the usage of concept hierarchies for
generalizing itemsets.

2.1. PRELIMINARIES
Objects and data are conceptualized through feature/value pairs in

which a feature is an object property and value is the value of the prop-
erty. A feature/value pair is denoted by , meaning that the value
of feature F is f. We use trees to model concept hierarchies organiz-
ing objects and data through feature/value pairs at different levels of
abstraction. Each node in the tree corresponds to a feature/value pair.
The root of the tree is a special node including all concepts.

While such a framework for a concept hierarchy is simple and intuitive,
it captures many real world examples. It is worth mentioning that a
concept hierarchy is not limited to only one type of feature. Features
can be abstracted to other features. Figure 1 shows a concept hierarchy
for the concept time, a feature that often is of interest in profiling.

Figure 1. Concept Hierarchy on Time

Note that leaf nodes represent auditable features (“raw data” in the
audit log), whereas inner nodes represent generalizations of these fea-
tures at different levels. Formally, a concept hierarchy is a tree where
nodes are labeled with feature/value pairs. A subtree with root ,
having n subtrees rooted with is denoted by

176 DATA AND APPLICATIONS SECURITY

Let be a set of concept hierarchies. Desc(n) denotes the set of
nodes that are descendants of node n in The depth of a node n
in T, denoted by Depth(n, T), is the number of nodes on the path from
the root to n. The depth of the root node is 0. The depth of T, denoted
by Depth(T), is the maximum depth of all nodes in the tree.

We say a feature/value pair may be generalized to
with respect to a hierarchy T if is an ancestor of in
T. Since may be different from a feature may be generalized to
another feature, e.g., a different type of concept, as indicated in Figure
1, where the feature hour has been generalized to the feature time.

2.2. INTERESTINGNESS MEASURE
For computing user profiles based on concept hierarchies, it is im-

portant to determine whether a set of feature/value pairs might be of
interest, i.e., is likely to lead to useful information regarding the usage
patterns an administrator is interested in. As a novelty to using concept
hierarchies, we introduce the notion of interestingness measure to guide
the discovery of interesting patterns in an audit session Audit containing
a set of itemsets. We consider four aspects, (1) support, (2) depth, (3)
distance, and (4) size of itemsets describing sets of feature/value pairs.

(1) Support The support of an itemset gives a measure of how fre-
quent that itemset occurs in an audit session. The higher the support
of an itemset, the more regular is the pattern in the audit session. Let
Audit be an audit session and an itemset.
An itemset in Audit satisfies I, denoted by , if

The support of an itemset I in Audit, denoted by Sup(I), is the number
of itemsets in Audit that satisfy I, normalized by the size of Audit:

(2) Depth We prefer feature/value pairs of lower level of abstraction
since they are more specialized and convey more detailed information.
This is captured by the depth of an itemset and describes the depths of
its feature/value pairs in a set of concept hierarchies. Let be a set
of concept hierarchies containing the feature/value pair Then

Discovery of Multi-Level Security Policies 177

Intuitively, the depth of a feature/value pair is its average depth
among all concept hierarchies that contain as a node. The depth
of an itemset I is the average depths of its feature/value pairs, i.e.

(3) Distance We conjecture that usage patterns of users typically
involve feature/value pairs that are semantically related. That is, users
typically access information that is semantically related. Whether and
how information is related is some kind of domain specific knowledge
that often can be obtained from the information structures underlying
the application, in particular the information schemas.

For example, in Web-based information systems, features such as IP
address (called src), URL (rsc) of a requested page, and time of request
(time) can often be organized into one or more hierarchies. For example,
the feature/value pair can be considered as the
parent of the feature/value pair and so on.

The distance between two feature/value pairs can be defined based
on their location in a concept hierarchy. Consider, for example, the fea-
ture/value pairs

and and
are more related than and or and because and
share a longer common path. Thus, the distance measure between

two feature/value pairs in a concept hierarchy T can be defined as

where the function gives the least common
ancestor of two nodes in a concept hierarchy T. The
higher the depth of the least common ancestor of two feature/value pairs,
the smaller is the distance measure, i.e. they are more related.

A similar notion of distance measure can be devised for queries against
relations and attributes in relational databases (see [5]).

(4) Size We prefer itemsets that contain more feature/value pairs
since they reveal correlated information between different feature/value
pairs. This is reflected by the size component of the interestingness
measure, i.e., the number of feature/value pairs the itemset I contains.

In sum, for the meaningful discovery of itemsets (and thus profiles
and policies) we prefer itemsets that are more regular, more specialized,
semantically closer and contain more feature/value pairs. Thus, the
interestingness measure M(I) of an itemset I should (1) increase with
its support, depth, size and (2) decrease with its distance. A simple

178 DATA AND APPLICATIONS SECURITY

formulation of M(I) that satisfies these criteria thus is

2.3. GENERALIZATION
An important feature of using concept hierarchies in policy discovery

is the usage of the abstraction mechanism embedded in the hierarchies.
For example, using concept hierarchies, access patterns of user can be
generalized to access patterns of user groups, accessed objects can be
generalized to classes of objects, depending on their attribute values,
and so on. A feature/value pair in an itemset I can be gen-
eralized to if it is replaced by in the itemset I and

is an ancestor of in some concept hierarchy. The sup-
port and depth components of the interestingness measure consider the
effect of generalizing an itemset in all concept hierarchies. We incor-
porate multiple concept hierarchies into the discovery process by using
the change of interestingness measure as a criteria to decide whether an
itemset should be generalized.

There are two opposing forces in deciding whether should be
generalized to . On one hand, more general itemsets have higher
support and hence a higher interestingness measure. On the other hand,
it loses depth and hence drives down its interestingness measure.

Let be the generalized itemset of I after generalizing to
with respect to some concept hierarchy. The change of in-

terestingness measure is reflected by the change of its four components
support, depth, distance, and size.

The change of interestingness measure of I to , denoted by
then is defined as:

As a general guideline for the discovery of profiles, an itemset I should
be generalized to an itemset if there is a gain in its change of inter-
estingness, i.e. if

3. ALGORITHM
In this section we outline the algorithm underlying the computation of

itemsets using concept hierarchies in a profiler. In Section 3.1, we present
the basic underlying data structures for managing itemsets. In Section
3.2, we describe the algorithm for computing interesting itemsets.

Discovery of Multi-Level Security Policies 179

3.1. DATA STRUCTURES
The auditing component associated with a database system records

audit data in an audit log implemented as relations in a database. At-
tributes of the audit log are the features audited and their values. Hence,
a tuple in the audit log can be viewed as a set of feature/value pairs,
called itemset, and a relation as a set of itemsets. Features to be audited
by the system are determined by the administrator prior to the user-
profiling and policy discovery. The administrator groups audit records
into audit sessions based on security policy she is interested in. Each
audit session consists of audit records sharing some property. For exam-
ple, an audit session might contain all audit records that correspond to
audited actions performed by a particular user. The profiler computes
a profile for each audit session.

In the following, we assume the following relations for recording audit
and features/value data. The relation Audit (L1 ,l1,... ,Ln,ln) stores
sets of feature/value pairs (itemsets). Each itemset corresponds to an
audit record from an audit session. The relations Lk(FIID,interest,
sup, depth, dist, size, A1,a1,... ,Ak,ak) record itemsets I =
{〈A1=a1〉,..., 〈Ak =ak〉} up to sizek and their interestingness measure
(interest). Values for the attribute interest are based on the com-
ponents sup[port], depth, dist[ance] and size (see Section 2.2).

Relation F(FIID, A, v) stores all interesting itemsets discovered from
tuples in relations L1... Ln. Finally, relation FMaster(FIID,size,
interest,sup,depth,dist) stores the interestingness measure infor-
mation about the itemsets in F. To relate itemsets in these two relations,
each itemset is given a unique identifier, named FIID.

3.2. BASIC ALGORITHM
The method to compute interesting itemsets based on multiple con-

cept hierarchies is divided into 6 steps, as described below

for k = 1 to n do (let n be the total number of features)
Step 0: check if we need to continue

if k>1 and Lk is empty then break end if
Step 1: Generate & store itemsets of size k from itemsets of size k-1

Lk <- generateltemsets(k)
Step 2: Compute interestingness measure for each tuple in relation Lk
Step 3: Generalize itemsets based on concept hierarchies

for each feature/value pair afv in a set of hierarchies do
generalizeToAFV(afv.Lk)

Step 4: Delete non-interesting itemsets from Lk
Step 5: Record interesting itemsets in relations F and FMaster

end do;
Step 6: Prune non-minimal itemsets

180 DATA AND APPLICATIONS SECURITY

Readers are referred to [7] for more details regarding steps 2, 4, 5 and
6. Here we will only briefly describe Step 3, which extends our previous
approach by generalizing itemsets in Lk for possible feature/value pairs
in concept hierarchies. The order of applying generalizeToAFV to a
feature/value pair afv is unspecified.

Procedure generalizeToAFV(afv, Lk) generalizes itemsets inLk to
feature/value pair afv (which stands for AncestorFeatureValue pair) if
there is a gain in interestingness measure. First, all itemsets in Lk that
consist of descendants of afv are copied to a temporary table Lgen.
These feature/value pairs are replaced by their ancestor afv with the
change in interestingness measure computed. Second, itemsets with a
gain in interestingness measure are generalized in Lk by updating them
according to Lgen. Since two or more feature/value pairs in an itemset
may be generalized to afv, care is taken to remove redundant pairs from
the generalized itemset. If afv is the root of the tree, the feature/value
pair is dropped. Third, after Lk is generalized, there may be redundant
itemsets which should be pruned. Redundant itemsets in Lk with FIID
in FIIDpair are deleted except one itemset. If the feature/value pairs
of an itemset are generalized to the root node, the itemset is empty
and deleted. In our prototype profiler, all the above computations are
performed on tables using SQL statements and stored procedures.

4. APPLICATION TO SECURITY
In this section, we describe a feasibility study on extending the profiler

by concept hierarchies and compare its effectiveness with a profiler not
employing concept hierarchies. We then give some guidelines on how to
convert profiles to policies and their usage in detecting misuse. More
details can be found in [5].

4.1. FEASIBILITY STUDY SETUP
We show the usefulness of our profiler, called Profiler CH (CH stands

for Concept Hierarchy), by running it over a web audit log gathered at an
institution offering online courses. Further, we illustrate the difference
of the profiles generated by using another profiler, called ProfilerNoCH,
which is based on the same technique, but does not consider concept
hierarchies. The web audit log records the access patterns of users over
four consecutive days. We consider three features in the audit log, src
(IP address of host requesting a web page), rsc (URL of requested page)
and hour (time page has been requested, see also Fig. 1).

There are two audit sessions. The session AuditSG contains audit
records whose feature src corresponds to the domain(s) *.sg and rsc to

Discovery of Multi-Level Security Policies 181

pages under/course/*. Another session AuditUIUC consists of records
whose feature values for src satisfy *.uiuc.edu and values for rsc corre-
spond to /spep-95/*. Due to space limitation, we only show the profile
discovered by ProfilerCH for audit session AuditSG:

4.2. DISCUSSION
We evaluate and compare the profilers based on the following criteria:

(1) Coverage: Can the profiler discover criteria to group audit records
into audit sessions? (2) Simplicity: How many itemsets are generated?
(3) Novelty: Can the profiler discover new patterns which are not spec-
ified by the criteria that groups audit records into audit sessions?

Coverage ProfilerNoCH discovers that requests often come from
src=ce.singnet.com.sg andsrc=po.pacific.net.sg. The other se-
lection criteria (values for rsc are under /course/*) are also covered
by those itemsets involving rsc=/course/*. However, the correlation
that rsc-/course/* is accessed from src=*. sg is not discovered. This
is because the data is sparse. Itemsets involving both rsc and src do
not have high enough support and are pruned. This is, however, dis-
covered by ProfilerCH as reflected in itemset 2-10. ProfilerCH discovers
the selection criteria because data are aggregated into a higher level of
abstraction based on the concept hierarchies. This makes the pattern
more prominent and hence is discovered. In sum, both profilers can dis-
cover the patterns used to select the data, whereas ProfilerCH does a
better job.

Simplicity There is a total of 74 itemsets discovered by Profiler-
NoCH. Those patterns are represented by only 11 itemsets discovered
by ProfilerCH, which is a significant reduction. The concise profile dis-
covered by ProfilerCH helps the administrator in better understanding
usage patterns of the user group *.sg (singapore).

Novelty ProfilerNoCH discovers patterns that were not expected,
namely users from user group singapore often access pages at specific
hours. Similarly, ProfilerCH discovers patterns that were unknown be-

182 DATA AND APPLICATIONS SECURITY

fore. For example, the hours of access are often TIME=noon, morning
(covered by TIME=day) and TIME=midnight. Hence, the administra-
tor can add a new security policy stating that users from the group
singapore are allowed to access the web pages during the aforemen-
tioned times. Alternatively, if someone from group singapore suddenly
accesses the web pages at hour=evening, this may be not normal.

Further, ProfilerCH discovers that the resources that are most often
accessed are actually /course/plb1/[rice/tomato] and /course/cant/
current/. This can aid the administrator in refining the security pol-
icy that users from group singapore can access resources /course/ to
a finer detail. Other novel patterns discovered include that users from
group singapore often access the web pages during day time (TIME=day)
and that pages accessed are likely to be /course/plb1/*.

Inter-User Group Behavior The conjecture that users from dif-
ferent user groups exhibit different usage behavior is confirmed by com-
paring the profiles discovered by ProfilerCH on AuditSG and AuditUIUC.
A comparison of the two profiles shows that users from group uiuc of-
ten access web pages during night (including midnight and late-night),
afternoon and late-evening as opposed to day time by users from group
singapore.This can be explained by the time zone difference between
the US and Singapore.

4.3. MAPPING PROFILES TO POLICIES
We consider a policy to be an if-then statement describing a charac-

teristic of a session, i.e., an interesting itemset in the profile. Here we
describe how to map an interesting itemset to a policy.

The criteria that aggregates audit records into an audit session gives
the precondition of the policy. Feature/value pairs in the interesting
itemset are literals in the consequent combined by ’and’s. A policy is
refined in the following ways: (1) Care is taken to remove literals in
the consequent that are logically implied by the precondition to avoid
trivial true policies. (2) A policy is simplified by removing literals in
the consequent that are descendants of some other literals in concept
hierarchies. (3) A refined policy can be obtained by replacing literals in
the precondition by those in the consequent that logically imply them.
(4) Policies with the same precondition can be aggregated into a single
policy by combining their consequents by ’or’s. Based on these guide-
lines, we can derive the following policies for session AuditSG:
if src=*.sg and rsc=/course/* then rsc=/course/plb1/rice/*

or rsc=/course/plb1/tomato/* or rsc=/course/cant/current/*
if src=*.sg and rsc=/course/* then TIME=day or TIME=midnight
if src=*.sg and rsc=/course/plb1/* then TIME=day

Discovery of Multi-Level Security Policies 183

Anomalies can be detected by comparing the policies derived from a
new session with the policies of the corresponding profile(s). A policy
from a new session whose precondition matches some policies, but its
consequent matches none of these policies is a violating policy. Violating
policies represent behavior deviating from normal. A policy from a new
session whose precondition matches none of the profile policies is a new
policy. New policies signal new usage and a high ratio of violating and
new policies in a new session indicates possible misuse of the system.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented an important practical extension to exist-

ing approaches for discovering user access patterns and security policies
from audit logs associated with diverse types of information systems.
We strongly believe that for todays complex databases and information
systems, it is vital to employ sophisticated concepts and tools that help
administrators in discovering and verifying security policies. Such tools
and concepts will play a major role in security (re-)engineering as part
of the administration of such complex systems.

We extended existing approaches to user profiling and policy discovery
in several ways. We use concept hierarchies that allow administrators
to embed domain specific knowledge at different levels of abstraction.
The discovery of access patterns and security policies, based on data
mining techniques, takes multiple such hierarchies into account, allow-
ing to relate different concepts of interest in the search for interesting
patterns. In particular, by introducing the notion of interestingness mea-
sure, which considers data semantics, the presented profiler is capable of
discovering interesting data access patterns at the right level of abstrac-
tion. By considering multiple concept hierarchies describing different
features at a time, more complex and non-trivial profiles and policies
can be discovered.

We have presented a simple formulation of interestingness measure
that satisfy certain criteria based on our experience with different types
of audit logs and applications. One direction of future research is to
explore other formulations of the interestingness measure, and also to
incorporate other aspects of domain knowledge available from applica-
tions. Currently, the administrator is responsible for choosing relative
weights of the components of the interestingness measure. It would be
useful if the system can automatically adjust and fine tune the parame-
ters. We demonstrated the effectiveness of our profiler by running it over
a web server access log. We also outlined guidelines on how discovered
profiles can be translated into policies.

184 DATA AND APPLICATIONS SECURITY

We also plan to automate the translation of profiles to policies and
enforcing mechanisms. For example, in case of relational database sys-
tems, profiles can be converted into either appropriate user roles (with
associated profiles) or user/application-specific views on data.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proceedings of the 20th VLDB Conference, 487–499, Morgan Kaufmann, 1994.

[2] R. Bueschkes, M. Borning, D. Kesdogan. Transaction-based anomaly detection.
In Proc. of the Workshop on Intrusion Detection & Network Monitoring, 1999.

[3] Y. Cai, N. Cercone, and J. Han, Attribute-oriented induction in relational data–
bases. In Knowledge Discovery in Databases, 213–228. AAAI/MIT Press, 1991.

[4] S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security.
Addison-Wesley, 1995.

[5] C.Y. Chung, M. Gertz, and K. Levitt. Discovery of multi-level security policies.
Technical Report, Department of Computer Science, University of California,
Davis, http://www.db.cs.ucdavis.edu/publications/CGL00a.ps

[6] C.Y. Chung, M. Gertz, and K. Levitt. DEMIDS: A misuse detection system for
database systems. In Third International IFIP TC-11 WG11.5 Working Conf. on
Integrity and Internal Control in Information Systems, 159–178, Kluwer, 1999.

[7] C.Y. Chung, M. Gertz, and K. Levitt. Misuse detection in database systems
through user-profiling. In 2nd Int. Workshop on Recent Advances in Intrusion
Detection (RAID’99), West Lafayette, Indiana, 1999.

[8] B. Everitt. Cluster Analysis. John Wiley & Sons - New York, 1973.

[9] T. Fawcett and F. Provost. Combining data mining and machine learning for
effective user profiling. In The Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), 8–13, 1996.

[10] J. Han and Y. Fu. Dynamic Generation and Refinement of Concept Hierar-
chies for Knowledge Discovery in Databases. AAAI’94 Workshop on Knowledge
Discovery in Databases, 157–168, July 1994.

[11] J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. Proc. of Int. Conf. on Very Large Data Bases, 420–431, 1995.

[12] W. Lee, S.J. Stolfo, and K.W. Mok. Mining audit data to build intrusion de-
tection models. In Proc. of the 14th International Conf. on Knowledge Discovery
and Data Mining (KDD-98), 66–72. AAAI Press, 1998.

[13] R. Mukkamala, J. Gagnon, and S. Jajodia. Integrating data mining techniques
with intrusion detection methods. In Proc. XIII Annual IFIP WG 11.3 Working
Conf. On Database Security, Seattle, WA, July 1999.

[14] R.S. Silken. Application intrusion detection. Technical Report CS-99-17, Uni-
 versity of Virginia, Computer Science Department, June 1999 .

Chapter 17

PROTECTING DEDUCTIVE DATABASES
FROM UNAUTHORIZED RETRIEVALS

Steve Barker

Abstract An approach is presented that addresses the problem of protecting de-
ductive databases from unauthorized disclosures of the information they
contain. Our treatment of this problem involves rewriting a database
in a form that is guaranteed to allow users to access only the subset
of the logical consequences of the database that they are authorized to
see. Security requirements can be seamlessly added to the database,
and decisions on the legitimacy of access requests can be made by using
efficient computational methods for which attractive technical results
exist. The approach enables the specification of security requirements
to be exploited to help to improve the efficiency of query evaluation, and
naturally extends to enable deductive databases to be protected against
unauthorized update and revision requests.

1. INTRODUCTION
Little attention has thus far been given to the problem of securing the

information contained in deductive databases. In part, this may have
been due to the hitherto limited use that has been made of deductive
databases in commercial environments. The practical value of deductive
databases is, however, increasingly being recognized [13], and deductive
databases are predicted to become increasingly important in the future
[11]. For deductive databases to become significant in practice, the prob-
lem of protecting the information they contain must be addressed.

In [6] and [9], modal logics are considered for specifying the confiden-
tiality of the information contained in a deductive database. However,
the suggested approaches are not especially compatible with the methods
of representation and computation that deductive databases typically
employ. In contrast, our approach uses specifications of security that
are consistent with the standard formulation of a deductive database

186 DATA AND APPLICATIONS SECURITY

as a function-free normal clause theory [10] and enables standard meth-
ods of computation to be exploited to protect deductive databases from
unauthorized access requests. Due to space limitations, in this paper we
only consider the protection of deductive databases from unauthorized
read requests. The extensions required to protect a deductive database
from unauthorized modifications are described in [4].

We use a role-based access control (RBAC) [14] policy to protect a
deductive database. More specifically, we formulate security policies that
are based on the RBAC1 model described in [14]. That is, we consider
RBAC models that permit user and permission assignments on objects to
be specified, and include role hierarchies. Amongst other attractions, we
believe that the “high-level” nature of authorizations in RBAC makes it
more suitable for protecting deductive databases than the discretionary
access control (DAC) policies that DBMSs have traditionally used to
protect other types of database.

The rest of this paper is organized thus. In Section 2, some basic
notions in deductive databases, theorem-proving and security are out-
lined. In Section 3, the representation of an RBAC model as a clause
form theory is discussed. Section 4 describes how a deductive database
may be specified as being protected from unauthorized read requests.
In Section 5, computational issues are considered. Finally, in Section 6,
some conclusions are drawn and suggestions for further work are made.

2. PRELIMINARIES
A deductive database, D, consists of a finite set of ground atomic

assertions (i.e., facts) and a finite set of deductive rules. The set of facts
is referred to as the extensional database (EDB) and the deductive rules
are referred to as the intentional database (IDB).

To protect D from unauthorized disclosures of information, our ap-
proach is to express D in a form (defined below) that ensures that re-
trievals of information are only possible if the RBAC1 security theory,
that defines authorized accesses, permits the read access on D. Hence-
forth, we will refer to the secure form of D protected from unauthorized
read requests as a read protected database and we denote an arbitrary
read protected database by To denote specific instances of D and

we use Di and respectively, where i is a natural number. We
also use to denote an arbitrary RBAC1 security theory and to
denote a specific instance of an RBAC1 theory where i is a natural
number. As we will see, theorem-proving techniques may be used on

Read Protection for Deductive Databases 187

to determine whether or not a user’s request to perform a read
operation on is authorized by or not.

The protected databases and RBAC1 security theories that we con-
sider consist of a finite set of function-free normal clauses [10]. A normal
clause takes the form: The head of the clause, H,
is an atom and L1,L2,...,Lm is a conjunction of literals that constitutes
the body of the clause. The conjunction of literals must be true (proved)
in order for H to be true (proved). A literal is an atomic formula or
its negation; in this context negation is negation as failure [10], and the
negation of the atom A is denoted by not A. A clause with an empty
body is an assertion or a fact.

Since we consider function-free theories, the only terms that appear
in are constants and variables. Henceforth, we will denote
the constants that appear in by symbols that appear in the
lowercase in literals. The variables that appear in the literals in

will be denoted by using uppercase symbols (possibly subscripted).
Since is expressed in normal clause logic, it follows that the

well-founded semantics [16] may be used for the associated declarative
semantics, and that SLG-resolution [8] may be used for the correspond-
ing procedural semantics.

When SLG-resolution is used with the normal clause theory
a search forest is constructed starting from the SLG-tree with its root
node labeled by the goal clause [8]. From the soundness and
(search space) completeness of SLG-resolution (for flounder-free compu-
tations), Q is true in (where is the
well-founded model of iff there is an SLG-derivation for
Q on that terminates with the answer clause That is,

iff the body of is reduced to an empty
set of literals. In contrast, Q is false in iff all possible
derivations of either finitely fail or fail infinitely due to positive
recursion; Q has an undefined truth value in all other cases. In the case
where Q has an undefined truth value, SLG-resolution produces condi-
tional answers of the form viz. Q is true if is true where is a
nonempty set of delayed negative literals [8].

The soundness of SLG-resolution is important from a security per-
spective since it ensures that no unauthorized access request is permitted
from an SLG-derivation on completeness is important since
it implies that non-floundering SLG-resolution is sufficiently strong to
ensure that no authorized access request is ever denied.

Given that the only terms that are included in are constants
and variables, it follows that satisfies the bounded-term-size
property [17]; SLG-resolution is guaranteed to terminate for theories

188 DATA AND APPLICATIONS SECURITY

that satisfy this property [8]. Moreover, SLG-resolution has polynomial
time data complexity [17] for function-free normal theories [15].

We assume that a security administrator (SA) is responsible for spec-
ifying We also assume that a closed policy [7] is to be used for
protecting a deductive database. It is, however, entirely straightforward
to modify our approach to implement an open policy [7] or any number
of hybrid (i.e., open/closed) policies for protected databases.

Whilst we recognize that the session concept [14] is an important as-
pect of RBAC, we will not consider role activation/deactivation in the
discussion below. In the examples of the evaluation of access requests
that we consider later, we simply assume that a user has active the set
of roles that is necessary to read from a protected database. However,
it should be noted that role activation/deactivation can be naturally ac-
commodated in the approach we describe (see [5]).

3. RBAC1 AS A LOGICAL THEORY
The minimum requirements of any RBAC model are that it provides

means for specifying that users are assigned to roles and permissions
to perform operations on database objects are associated with a role.
The database objects to be protected in a deductive database are n-ary
predicates.

The assignment of users and permissions to roles is represented in our
approach by an SA including definitions of ura(U,R) and rpa(R,P,O)
predicates in a clause form theory that represents an application-specific
RBAC1 security policy, an RBAC1 theory.

In the ura(U,R) relation, the predicate name ura is shorthand for
user-role assignment; instances of ura are used in an RBAC1 theory
to represent that user U is assigned to a role R. Similarly, rpa(R,P,O)
stands for role-permission assignment; instances of rpa in an RBAC1

theory are used to specify that the role R is assigned the permission to
perform a P operation on a database object O. Since we only consider
protection against unauthorized retrieval requests, P=read in this paper.

The ura(U,R) and rpa(R,P,O) relations are defined by a SA using
normal clauses. For example, specifies that the user Bob
is assigned to the role r1; specifies that
role r1 is assigned read permission on any instance of q(V,Y,Z) such
that V is not equal to a; specifies that all roles
are permitted to read all instances of r (i.e., read access on r is publicly
accessible); and specifies that the role

Read Protection for Deductive Databases 189

r1 has the read permission on instances of s such that the first argument
of s(V,Y,Z) is constrained to be a and Z values are less than 20.

Additional authorization rules can be straightforwardly specified by
formulating ura or rpa definitions in terms of ura, rpa, not ura or not rpa
conditions. Since constants and variables are used in their specification,
ura and rpa definitions can be as specific or as general as is required.

In addition to user-role and permission-role assignments, role hier-
archies are the other key component of RBAC1. Role hierarchies are
used to represent the idea that, unless constraints are imposed, “senior
roles” (more powerful roles) inherit the (positive) permissions assigned
to roles that are “junior” (less powerful) to them in a hierarchy (but not
conversely). In cases where the unconstrained upward inheritance of
positive permissions is not appropriate, only minor modifications of our
representation of RBAC1 are required to enforce alternative policies.

To represent an RBAC1 role hierarchy, a SA uses ground instances
of a binary relation to describe the pairs of roles that are involved in a
“seniority” relationship in the partial order (R,>) that represents a role
hierarchy; R is a set of roles; and > is a “senior to” relation.

In more formal terms, a role R1 is senior to role R2 in a role hierar-
chy, RH, iff there is a path from R1 to R2 in RH such that R1 > R2
holds in the partial order describing RH. The reflexive, antisymmetric
and transitive senior to relation (i.e. >) may be defined in terms of an
irreflexive and intransitive relation, “directly senior to”. The directly
senior to relation, denoted by may be defined (since > is not dense)
in the following way (where is logical ‘and’, is classical negation,
and is an arbitrary role):

A SA uses ground instances of a binary d-s predicate in an RBAC1

theory to record the pairs of roles that are involved in a “directly senior
to” relationship. That is, the assertion d-s(ri,rj) is used to record that
role ri is directly senior to the role rj in an RBAC1 role hierarchy.

The following set of clauses define the senior to relation (where ‘_’ is
an anonymous variable):

190 DATA AND APPLICATIONS SECURITY

The senior-to predicate is used in the definition of the permitted clause
that follows:

The permitted clause expresses that a user U is authorized to perform
the read operation on an object O if U is assigned to a role R1 that is
senior to the role R2 in an RBAC1 role hierarchy associated with the
RBAC1 theory, and R2 has been assigned the read permission on O.

In implementations of our approach, senior-to should be stored as a
persistent relation [1] that is recomputed only when changes are made
to the set of d-s assertions in an RBAC1 theory; it is not computed each
time permitted(U,read,O) is evaluated.

The clauses defining senior-to are included in every instance of an
RBAC1 theory; the application-specific d-s, ura and rpa clauses define a
particular instance of an RBAC1 theory. For all “meaningful” RBAC1

theories, the application-specific d-s, ura, and rpa clauses will be acyclic
[2]. Although senior-to violates the acyclicity property, it is neverthe-
less negation-free. It follows therefore that any instance of an RBAC1

theory is locally stratified and has a unique 2-valued perfect model [12]
that coincides with the total well-founded model of the theory [8]. An
important corollary of RBAC1 theories being categorical and having a
2-valued model is that RBAC1 theories define a consistent and unam-
biguous set of authorizations.

4. READ PROTECTED DATABASES
To see what is involved in protecting a deductive database D from

unauthorized read requests, consider an IDB clause in D having the fol-
lowing general form:

This type of clause is interpreted declaratively as stating that: H is
true (or provable) in D iff Ai is true (or provable) in
D and Bj is false (or not provable) in D.

When a clause defining H is to be included in the protected form, D*,
of D, the required reading of the protected form of H is that: H is true
(or provable) in as far as a user U of is concerned if

Ai is true in D* and U is authorized (from) to know that Ai
is true in D* and either Bj is not true (not provable)

Read Protection for Deductive Databases 191

in or U is not authorized (from) to know that Bj is true in
If U is not authorized to know that a literal C is true in then we
regard C as being false in as far as U is concerned.

To define the read protection on H we use the following form of the
holds predicate:

The holds(U,read,H,) definition expresses that U can read H
(i.e., can know that H is true) from a protected database iff U has
the read permission on H from and H is true in

From the definition of holds we also have:

This equivalence is consistent with our declarative reading of a read
protected clause. That is, U cannot read H from if U is not authorized
to read H in by or if H is not true (provable) in

Assuming that the 5-ary holds predicate is used with respect to a
given instance of the read protected form of the IDB predicate
H may be expressed in clausal form thus:

That is, U reads H from (i.e., U knows that H is true in) iff U is
permitted to read H and for all Ai literals U is authorized
to know that Ai is true in and Ai is true in U’s view of and for
all Bj is either not in U’s authorized view of or Bj
is false in

The read protection for each of the predicates A1,...,Am,B1,...,Bn
that appears in the body of holds(U,read,H) is defined in essentially the
same way as that for H.

In the case of an n-ary IDB predicate I appearing in the body of
holds(U,read,H), the head of the read protected form of I in will be
holds(U,read,I(t1,t2,...,tn)) (where tj (j=(1,..,n)) is a term) and the body
of the protected form of I will include a permitted(U,read,I(t1,t2,...,tn))
condition. The rest of the body of I in will be a conjunction of
holds(U,read,Ak) or not holds(U,read,Bl) conditions where Ak (Bl) is a
positive (negative) literal appearing in the body of I in D.

192 DATA AND APPLICATIONS SECURITY

In the case where the predicate to be protected in the body of holds(U,
read,H) is an n-ary EDB relation, E, the head of the protected clause
for E is holds(U,read,E(X1,..,Xn)) and the body of this clause includes
a permitted(U,read,E(X1,...,Xn)) condition together with E(X1,...,Xn)
itself. That is, for every n-ary EDB relation E the read protected form
of E is:

The set of assertions that appear in the EDB of D do not change when
D is rewritten in its protected form, As such, to simplify the ex-
amples of protected databases that follow, we will omit assertions in

Example 1 (The representation of a read protected databases)
Consider the database,

where s and t are EDB
relations and ‘;’ separates clauses. The protected form of is:

An example of an RBAC1 security theory applicable to is:

5. COMPUTATIONAL ISSUES
Since is a function-free normal clause theory it follows

that SLG-resolution may be used with to decide whether a
user U has the read permission on an instance of an n-ary predicate
p(t1,t2,...,tn) in D (where tj (j=(1..n)) is a term). To simplify the ensu-
ing discussion we will assume that D* is locally stratified. In this case,
answer clauses generated by SLG-resolution will have an empty set of
delayed literals. Our approach naturally extends to the case where
is not locally stratified and where answer clauses may not have a non-
empty set of delayed literals.

Read Protection for Deductive Databases 193

In our approach, a query Q that includes holds(U,read,p(t1,t2,...,tn))
(not holds(U,read,p(t1,t2,...,tn)) literals may be directly posed by U and
will be evaluated on iff U is authenticated to be the specifier of
the holds (not holds) subgoals in Q. It follows from the discussion above
that holds(U,read,p(t1,t2,...,tn)) will be true in iff p(t1,t2,...,tn)
is true in D and U is authorized to know that p(t1,t2,...,tn) is true
in D. If an SLG-tree with the root where Q is holds(U,read,
p(t1,t2,...,tn)) terminates with as an answer clause and is an
answer substitution then is true in D and U is autho-
rized to know that is true in D by If Q is not
holds(U,read,p(c1,c2,...,cn)) (where ci (i=(1..n)) is a constant to en-
sure safe evaluation [10]) and is an an-
swer clause by SLG-resolution on then U is authorized to
know that p(c1,c2,..,cn) is true (provable) from
is true (provable) in D and not is failed
by SLG-resolution. That is, is false in U’s view of
D since p(c1,c2,...,cn) is true in U’s authorized view of Con-
versely, if Q is holds(U,read,p(t1, t2,...,tn)) and is failed by SLG-
resolution on then either p(t1,t2,...,tn) is false in D or U
is not permitted to know that p(t1,t2,...,tn) is true in D; either way,
p(t1,t2,...,tn) is false in D from U’s perspective. If the evaluation of
not holds(U,read,p(c1,c2,...,cn)) succeeds by SLG-resolution then U is
either not authorized to know that p(c1,c2,...,cn) is true in D from
U S* or p(c1,c2,...,cn) is false in D. In either case, is
true in U’s view of D.

Example 2 (Read Protection)
Suppose that Bob poses the query to retrieve all instances of p from D1

in Example 1 and that (also from Example 1) is the RBAC1 the-
ory for In this case, SLG-resolution produces the following set of
answers: {X=a, Y=b, Z=10}. That is, only p(a,b,10) may be disclosed
to Bob. Though is
not an answer clause by SLG-resolution since Bob is not authorized to
know that p(b,b,10) is true in D1.

Query evaluation on may appear to be more expensive than
on D since the clauses in include additional permitted conditions.
Moreover, is part of the theory on which query evaluation is per-
formed. However, the security information in has the effect of
partitioning D into a number of subsets. An individual user can retrieve
information from the one subset of that authorizes them to re-
trieve from. Hence, a user’s queries are evaluated with respect to “their”

194 DATA AND APPLICATIONS SECURITY

subset of D, and since this subset is typically a smaller theory than D,
a user’s queries may be more efficiently performed on than D. From
a computational perspective, constants or restricting conditions (i.e.,
those involving comparison operators) from may be introduced at an
early stage in the evaluation of a user’s query to constrain the search
space of authorized solutions. Moreover, may cause computations to
fail early if a user has insufficient read permission to evaluate a query.

In all cases of failure of a goal clause, G, the user, U, receives a “no”
response. From this, U cannot infer that is true in the database D;
G may have failed because U is not permitted to know that G is true in
D.

Example 3 (Queries involving negation)
Consider the database, where q is an
EBD relation, protected by the security theory, where:

For we have:

Now, suppose that Sue wishes to know whether p(a) is true in D2.
Since may be generated from by SLG-
resolution, Sue is permitted to know that p(a) is true in D2.

The next example shows that recursive databases require no special
treatment to protect them from unauthorized disclosures of information.

Example 4 (Recursive query evaluation)
Consider the database,

where r is an EDB relation, and suppose that the
security theory, applies to D3 where:

For we have:

Read Protection for Deductive Databases 195

Now, suppose that Jim poses the query to list all instances of q(X, Y)
such that X=a. By SLG-resolution, with respect to the an-
swer Y=b is generated. It follows that only the answer Y=b is revealed
to Jim. Although and Jim is permitted to see any
instance of q(X,Y) if X=a, for q(a,c) to be disclosed to Jim, Jim must
be permitted to know that both and

However, since Jim does not have read access on q(X, Y) where
X=b the fact that cannot be divulged to him.

6. CONCLUSIONS AND FURTHER WORK
By adopting the approach that we have described, it is possible to

protect any normal deductive database from unauthorized reads of its
data by specifying a user’s access permissions in the same language that
is ordinarily used to describe deductive databases. Moreover, no spe-
cial methods of computation are required for query evaluation on read
protected databases.

Our approach may be used to protect the information in databases
defined in subsets of normal clause logic (e.g., relational databases),
and may be used to protect the information contained in other types
of “logic-based” databases (e.g., abductive databases). What is more,
the approach enables RBAC to be directly represented in candidate de-
ductive DBMSs (e.g., XSB [15]) without requiring any security-specific
features.

In future work, we intend to investigate how our recent work on tem-
poral RBAC [3] may be combined with the ideas presented here.

References

[1] Abiteboul, S., Hull, R., and Vianu, V., Foundations of Databases,
Addison-Wesley, 1995.

[2] Apt, K., and Bezem, M., Acyclic Programs, New Generation Com-
puting, 1990.

[3] Barker, S., Data Protection by Logic Programming, 1st International
Conference on Computational Logic, LNAI 1861, Springer, 2000.

196 DATA AND APPLICATIONS SECURITY

[4] Barker, S., Secure Deductive Databases, 3rd International Workshop
on Practical Applications of Declarative Languages (PADL’01), 2001.

[5] Barker, S., Access Control by Constraint Satisfaction, To Appear.
[6] Bonatti, P., Kraus, S., and Subrahmanian, V., Foundations of Secure

Deductive Databases, IEEE TKDE, 7(3), 1995.
[7] Castano, S., Fugini, M., Martella, G., and Samarati, P., Database

Security, Addison Wesley, 1995.

[8] Chen, W., and Warren, D., Tabled Evaluation with Delaying for
General Logic Programs, J. ACM, 43(1), 1996.

[9] Cuppens, F., and Demolombe, R., A Modal Logical Framework for
Security Policies, ISMIS’97, 1997.

[10] LLoyd, J., Foundations of Logic Programming, Springer, 1987.
[11] Minker, J., Logic and Databases: A 20 Year Retrospective, 1st I’nat.

Workshop on Logic in Databases, LNCS 1154, Springer, 1996.
[12] Przymusinski, T., Perfect Model Semantics, Proc. 5th ICLP, 1988.
[13] Ramakrishnan, R., Applications of Logic Databases, Kluwer, 1995.
[14] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C., Role-Based

Access Control Models, IEEE Computer, 1996.
[15] Sagonas, K., Swift, T., Warren, D., Freire, J., Rao. P., The XSB

System, Version 2.0, Programmer’s Manual, 1999.
[16] Van Gelder, A., Ross, K., and Schlipf, J., The Well-Founded Se-

mantics for General Logic Programs, J. ACM, 38(3), 1991.
[17] Vardi, M., The Complexity of Query Languages, ACM Symp. on

the Theory of Computing, May, 1982.

CHAPTER 18

Confidentiality vs Integrity in Secure Databases

Adrian Spalka and Armin B. Cremers
Department of Computer Science III, University of Bonn
Roemerstrasse 164, D-53117 Bonn, Germany
adrian@cs. uni-bonn.de

Key words: Databases, Security, Confidentiality, Integrity, Logic

Abstract: The problem of enforcing confidentiality in the presence of integrity
constraints in secure and, in particular, in multi level databases is still open. To
enforce confidentiality the majority of previous works either advocates a
violation of integrity or proposes pragmatically its preservation or restoration.
In this work we argue that there can never be a trade-off between these two
properties for integrity is a fundamental quality of every database, ie also a
secure one. Confidentiality always implies a kind of distortion of the open
database. We introduce a formally sound method for its enforcement which
relies on aliases, ie, additional tuples the only purpose of which is the
preservation of integrity of both the open database and each distortion of it.

1. INTRODUCTION

The two, by far, most controversial issues in the field of secure and multi
level databases are:
1. the handling of integrity constraints
2. the relationship of information at different security levels

The actual problems – and the failure to find a formally sound solution –
can be best explained by observing the evolution from an open, flat database
to a secure or multi level one.

In an open database the fact that a data set is the present database state
implies that it satisfies the database's integrity constraints. Formally, integrity
constraints represent invariant properties of any database state, ie, they play

198 DATA AND APPLICATIONS SECURITY

the role of boundary conditions which are as such given. From a practical
viewpoint, a database is expected to be an image of some real-world section.
A database state represents a snapshot of this section. The present state is
said to be accurate if it truthfully describes the present situation in the
section. Apart from the trivial case in which the real-world section is itself
static, the database has no means for deciding the present state's accuracy.
However, the database is very well able to separate all data sets into two
groups: the nonsensical sets, ie those that cannot possibly be accurate, and
the potentially accurate, ie the remaining ones. The separation criteria are the
integrity constraints. Thus to have an open database with an invalid present
state is an unmistakable indicator that the database is definitely not an image
of the real-world section. If the integrity constraints are correctly specified,
then the state is nonsensical and must be corrected. If the state is accurate,
then the integrity constraints are erroneous and must be corrected. In any
case, this unsatisfactory situation calls for a corrective action. This seems to
be not so if this open database becomes a secure or multi level one.

An open database permits every transaction that leads to a valid state,
there are no confidentiality demands and each user has unlimited powers.
The integrity constraints’ role is interpreted here as a voluntary protection
against inadvertent mistakes. At the same time, integrity constraints provide
an explanation to a user for a rejected transaction.

In a secure database, we assume that there is a global open database,
which captures the open intended state of the world section, and a distorted
local database for each user or group of users from which a part of the open
state should be kept confidential. Spalka/Cremers (1999) show that a
necessary precondition for the enforcement of confidentiality is the
determination of a user’s powers and an assessment of his assumed
knowledge with respect to the database.

Given that a database comprises a signature, a set of integrity constraints
and a state, there are at least three factors that can be manipulated in order to
satisfy a confidentiality demand. A change in the signature yields a
completely different database language, and a change in the integrity
constraints affects a lot of database states. Even if successful, these means
often incur a too radical distortion of a local database. The least obtrusive
encroachment inserts and deletes single elements of the state. These locally
distorted elements are called aliases for a confidentiality demand.

When a confidentiality demand is stated, the attempt to enforce it can
threaten integrity at two points. Firstly, let us call it the static case, it can
immediately violate the local database’s integrity. Or secondly, this is the
dynamic case, it leaves the local database in a valid state but the users with
access to this database can perform a transaction that leaves this local
database in a valid state but violates the integrity of the global database, ie,

Confidentiality vs Integrity in Secure Databases 199

the user’s transaction is rejected without a reason that is visible and
comprehensible to this user. Given that the integrity of both the global and
each local database must be preserved, our alias-based method examines the
integrity constraints and the present state and determines if and how a
confidentiality demand can be enforced. The distortion of a local database
dictated by the confidentiality demand is a necessary one. The use of aliases
– which can be both inserted or deleted of tuples – is an additional distortion,
which is necessary to enforce a confidentiality demand and, at the same
time, to preserve integrity of all databases.

In the static case our method picks the violated instances of the integrity
constraints and attempts to modify the local state in such a way, that:
– the violated instance becomes satisfied again (preservation of integrity)
– the modification cannot be modified or deleted by the users of the local

database (observation of the users’ powers)
– the modification cannot be recognised by the users of the local database

as a bogus one (observation of the users’ assumed knowledge)
In the dynamic case our method picks the instances of the integrity

constraints affected by the confidentiality demand and identifies those
instances among them which, after a local user’s authorised and valid
transaction, remain satisfied in the local database but become violated in the
global database, and attempts to modify the local state in such a way that
such a transaction will be rejected.

Whenever aliases are needed to enforce a confidentiality demand but no
suitable ones can be found, we reject it. The rejection is not a weakness of
our method – it is in parallel to the real life situation, where some things can
be kept secret and some not due to the person’s knowledge and ability.

To make the identification of integrity constraints at threat (ie those that
are or can become violated due to a confidentiality demand) tractable, we
assume that they have been transformed from a closed formula into a set of
normal clauses and possibly a set of rules, which needs to be included into
the database state. Such a transformation is always possible3.

Section 2 comprises quite a detailed and extensive discussion of previous
works. The main result, our attempt to enforce confidentiality in the presence
of integrity constraints, is presented in chapter 3. The conclusion comments
on our approach and mentions some further steps.

2. PREVIOUS AND RELATED WORK

Most algebraic approaches to bring confidentiality in line with integrity
are based on SeaView, a multi level relational data model introduced by

3 Cf, eg, Cremers/Griefahn/Hinze (1994):69.

200 DATA AND APPLICATIONS SECURITY

Denning et al (1987). The reason for classifying single attributes, according
to the authors' opinion, is that an element, ie a tuple's attribute value,
represents a fact4 – from the viewpoint of logic a simply wrong statement5. In
addition to it, a classification is also assigned to the whole relation scheme.
The primary-key and the foreign-key constraints are taken to be the only
integrity constraints. The authors note that: ‘Functional dependencies
correspond to real-world constraints; that is, they are not just a property of a
particular relation instance’6 and ‘The requirements for consistency [at each
security level] affect the integrity rules of the relational model, which are
formulated as global constraints on an entire database.’7 Yet their approach
to the handling of multi level integrity does not account for these semantic
facts. It relies on purely syntactical adjustments instead. In particular the
decision to redefine a multi level relation's primary key as a combination of
the standard relation's key and its classification is accompanied by semantic
havoc.

Meadows/Jajodia (1987) speak of a conflict between database security
and integrity because if there is an integrity constraint defined over data at
more than one security level, then a user at a low security level can use
accessible data and this constraint to infer information about data at a high
security level. In the authors' view one can either upgrade the low data, ie,
make them inaccessible to users at the low security level, or enforce the
constraint only at the high security level, ie, sacrifice global integrity but
preserve data availability.8 We believe that in the second case the low users
could as well stop using the database at all. In their consideration of the
primary-key constraint, the authors note that polyinstantiated objects can be
a source of ambiguity.9 But the question ‘How do we provide guidelines to
the user for choice of the best tuple?’10 remains unanswered. In general, the
proposals are made on the grounds of the opinion that

... the more likely it is that integrity can be restored in the future, the
more acceptable it is to sacrifice integrity in the present.11

Stachour (1988), Stachour (1989) and Haigh et al (1989) present LDV,
an implementation approach of the multi level data model. Although the

4 Denning et al (1987):220.
5 A fact, ie a ground atomic formula, has a truth value, but an element is a term and as such

has no truth value.
6 Denning et al (1987):222.
7 Denning et al (1987):221.
8 Meadows/Jajodia (1987):95.
9 In fact, they regard polyinstantiation as a means of reducing ambiguity and not as its

origin. Cf Meadows/Jajodia (1987):92.
10 Meadows/Jajodia (1987):93.
11 Meadows/Jajodia (1987):98.

An opinion hardly targeted at semantic soundness.

Confidentiality vs Integrity in Secure Databases 201

implementations of LDV and SeaView differ, the handling of
polyinstantiation is the same – increased user flexibility is seen as the
solution to semantic ambiguity.12 In the LDV data model of
Haign/O’Brien/Thomsen (1990) security levels are assigned to tuples only.
The authors recognise that ‘... if polyinstantiation is to be meaningful, it
must be done in a manner consistent with the semantics of the database. The
semantically significant entities in a relational database are tuples and
relations’13 This, admittedly, reduces ambiguity, yet does not eliminate it.
The authors also claim that the enforcement of referential integrity and
application integrity across access levels ‘... are problems for which no
complete solution is possible’14. They suggest to ‘... establish quotas for
each level and then enforce these quotas on a per level basis’15. Though
possibly over-restrictive, this suggestion is semantically sound.

Gajnak (1988) investigates the adaptability of entity-relationship
modelling to multi level security requirements. The author identifies three
fundamental principles of multi level databases which must not be violated16.
The important semantic determinacy principle states that ‘... factual
dependencies should be non-ambiguous’17. This property is violated by
Sea View's treatment of polyinstantiation. The author gives an example in
which polyinstantiation can mean that: one database entry is an alias for
another; a secret entry has been leaked; or the two entries refer to two real
world objects. He concludes aptly that in this situation referential integrity as
such must be ambiguous. Regrettably, the author's final advice – which we
strongly support – that ‘... the determinacy principle should be supported
directly by multilevel secure data models’18 has been given little attention in
the following years. Only Burns (1988) argues in direct support of Gajnak
(1988) and presents some more examples illustrating the semantic
inadequacy of SeaView's handling of polyinstantiation. She realises already
that this ‘... automatic polyinstantiation is in direct conflict with ... the
logical consistency of a database’19.

Following her conviction that the loss of semantics can be as disastrous
as the loss of confidentiality, Burns (1990a) undertakes an attempt to define
a data model, the referential secrecy model, in which integrity is given the

12 ‘For flexibility, the user should be allowed to specify which tuples are to be filtered away
from the response using time-oriented constructs and level-oriented constructs...’ Stachour
(1988):72.

13 Haigh/O’Brien/Thomsen (1990):268.
14 Haigh/O’Brien/Thomsen (1990):266.
15 Haigh/O’Brien/Thomsen (1990):277.
16 Gajnak (1988): 189.
17 Gajnak (1988): 183.
18 Gajnak (1988):189.
19 Burns (1988):230.

202 DATA AND APPLICATIONS SECURITY

same priority as confidentiality.20 The ideas of this rather pragmatic
approach are selective limitation of polyinstantiation and selective automatic
upgrade of inserted tuples. While clearly not semantically sound, any
solution limiting ambiguity should be regarded as an improvement. Burns
(1990b) claims that ‘... the fundamental problem is that either the secrecy of
the information within the database can be maintained, or the integrity of the
database can be maintained, but not both simultaneously’21. While we
strongly oppose this claim, we definitely sympathise with the author's
opinion that ‘Database integrity constraints are fundamentally invariant
properties of the state of a database’22 and with her conclusion that integrity
must not be sacrificed. In a pragmatic manner, the author proposes to allow
polyinstantiation and to audit it as an error so that the database administrator
is able to correct it later.

Several suggestions for resolving the conflict between security and
integrity are made in Maimone/Allen (1991). To prevent the duplicate
existence of primary keys, the authors propose to prevent a user with a low
access class from choosing a key existing at a high access class, eg, by
partitioning the key space (a solution also proposed by Jajodia/Sandhu
(1991)23) or by forcing the user to accept an application generated key – this
amounts to a restriction of the database functionality. Referential integrity is
not brought in accord with security but simply sacrificed24. To correct the
resulting inconsistencies, a garbage collection procedure should at some time
later remove the dangling tuples. The authors' proposal to replace value
integrity constraints with triggers because they ‘... are procedural and event-
based ... [and] say nothing about the current or consistent state of the
database’25 is clearly opposed to any attempt at defining an unambiguous
semantics of secure databases.

Sandhu/Jajodia (1993) deal also with referential integrity. This time the
authors note that entity polyinstantiation, viz, the existence of two tuples
with the same primary key value but different security levels, is responsible
for the problem of referential ambiguity. Here one cannot properly determine
which foreign key tuples correspond to which primary key tuples. In order to
avoid it, the authors simply disallow this kind of polyinstantiation. Again,
they suggest to partition the domain of the primary key. At the same time,
they present an example in which this measure leads in turn to new
problems.

20 Burns (1990a): 135.
21 Burns (1990b):37.
22 Burns (1990b):37.
23 Jajodia/Sandhu (1991c):70.
24 ‘Our approach is to allow the parent record to be deleted, and to leave the child records in

place.’ Maimone/Allen (1991):56.
25 Maimone/Allen (1991):58.

Confidentiality vs Integrity in Secure Databases 203

Qian (1994) studies the link between integrity constraints and inference
channels in multi level relational databases with tuple-level labelling.
Integrity constraints are defined as closed formulae, which also comprise
security level specifications. There is a static inference channel if data at a
low security level does not satisfy the integrity constraints, and there is a
dynamic channel if data with a high security level force an update operation
executed by a user with a low security level to be rejected even if the
resulting data with the low security level appear to be consistent. Based on a
constraint's security level, some formal results on the existence and removal
of inference channels are derived. First of all, this approach does not
contribute to a sound database semantics since integrity constraints should
be considered in the real-world context – here they express properties of the
data as such, ie without any security levels. Secondly, to suppress some
dynamic channels, the author proposes in a syntactical fashion to accompany
updates at a low security level with the insertion of data at a higher security
level. Yet she notes26 that even this move is in general ambiguous – let alone
its semantic consequences.

Garvey/Lunt (1991b) show that it is not always practical (possible?) to
close an inference channel by upgrading information. They suggest the use
of cover stories instead. The authors admit that cover stories will require
polyinstantiation of data. They note that

Polyinstantiation raises the issue of correctness of data inferred from
information stored at different levels of a database ... Is information inferred
by a high user ... from low data contradicted by high data?’27

Both the issue and the question are left open.
There are several logic-based works, eg Sicherman/de Jonge/van de Riet

(1983), Morgenstern (1987) and Bonatti/Kraus/Subrahmanian (1992). Yet
their database model is very simple, in the sense that it lacks the Closed
World Assumption, integrity constraints and update operations.

3. INTEGRITY RESPECTING ENFORCEMENT OF
CONFIDENTIALITY IN SECURE DATABASES

We use the definition of a database with confidentiality of
Spalka/Cremers (1999). To illustrate our approach we make the following
assumptions:
– there are three users: and
– all users have a common flat name-space, ie we do not need name-space

selectors

26 Qian (1994): 165.
27 Garvey/Lunt (1991b):377.

204 DATA AND APPLICATIONS SECURITY

– there are three groups of users: and

– a database is associated with each group: and is the open
database, ie nothing should be kept secret from and and are
distortions of such that – according to the group members – can
state confidentiality demands for and can state confidentiality
demands for
According to Spalka/Cremers (1999) a successful enforcement of a

confidentiality demand is a distortion of the truth value that yields a single
distorted model, eg if the tuple α should be kept secret from then
truth value in is opposite to its truth value in

3.1 Dynamic violation

Let us first have a look at this situation in a general database D and one of
its distortions D'. All elements of C, the integrity constraints, are universally
quantified clauses, ie a disjunction of literals.

In the dynamic case, the effect of a confidentiality demand stated for a
tuple α does not violate any integrity constraint. However, in order to respect
the user’s powers we must ensure that he cannot execute an authorised
transaction, ie one that is within his powers, that is valid in his local database
but invalid in the global database.

Given a possible dynamic violation, our idea to enforce confidentiality is
to try to ensure that whenever a transaction yields a violated instance of an
integrity constraint with respect to D it will also yield a violated instance of
an integrity constraint with respect to D'. Each such instance has the form

such that:
– each is a truthful literal
– each is a distorted literal
– or is among the distorted -literals

has the same truth value in D and in D', if k=n, ie all links of are
truthful and neither or is among them. This trivial case guarantees that
this instance of the integrity constraint will always have the same truth value
in both the global and local databases, ie a transaction accepted locally will
also be accepted globally and if it is rejected by the global database, then it
will also be rejected by local database and the user has a local explanation
for the failure.

Let and or is among the distorted links of The instance
is satisfied, ie at least one of its links is true. According to the

Confidentiality vs Integrity in Secure Databases 205

observation of powers and knowledge, none of the distorted is in or
Thus, the effect of every local transaction is limited to the state’s truthful,
undistorted part, that is, a local transaction can change only the links' truth
values (simultaneously in both the local and global databases). Therefore,
keeping in mind that each has in D the opposite truth value than in D', if
there is at least one the truth value of which in D' is False, then clearly
cannot become false in D while it remains true in D'. Again, integrity is not at
threat.

Let us finally turn our attention to the dangerous case. Let and all
be true in D'. The global database’s integrity can be threatened if there is a
single local transaction (or a sequence thereof) which sets all to False, for
then remains true in D' but turns false in D . To prevent this from
happening we can, firstly, try to find an we can force to stay true, or,
secondly, try to find an instance we can force to turn to False in D'
whenever turns to False in D . The first case is simple: check if there is an

which is true in D' and satisfies also the following conditions:
– is not in it respects the user’s knowledge, ie the user can only learn

the truth value of from the database
– is not in it respects the user’s powers, ie the user cannot alter our

distortion
– the change of the truth value of does not violate any other integrity

constraint
If there is none such literal we must examine the second way. We now

need a, not necessarily different, integrity constraint and a substitution
such that:

is ground
– coincides with in the truthful

links
– all are false in D'
– the confidentiality demand for all is satisfiable

If we can find such a and we make each an alias; if we can find
more than one combination, pick one or let the user choose one; if there is
none, the confidentiality demand for is not satisfiable.

3.2 Static violation

In the static case, the effect of a confidentiality demand stated for a tuple
violates a subset W of the integrity constraints C, ie, for all in W there is

a finite set of substitutions such that for all in is ground, or
is among the links of and is false in D', ie violated.
Given a static violation, the idea to enforce confidentiality is to try to

change the truth value of each instance in D to True. We are not allowed

206 DATA AND APPLICATIONS SECURITY

to change an truth value in D' for its distortion is a deliberate
consequence of a previous confidentiality demand. Thus we can only
achieve our goal by reversing the truth value of an However, our choice
is limited to those which also satisfy the conditions for truth-reversal in
the dynamic case.

Each such is called a candidate for an alias, and that actually
selected from among all the candidates is called an alias for and If the
set of candidates is empty, then the confidentiality demand for is not
satisfiable. Otherwise, we have again decided to let the user pick a candidate
he considers most appropriate.

3.3 Remark

This theory for secure databases supporting primary key and foreign key
constraints is already implemented in a prototype a copy of which can be
freely obtained by request to the authors.

4. CONCLUSION

When dealing with confidentiality and integrity in secure databases most
previous works took the view that one can or must be traded against the
other. We have shown that integrity is a fundamental property of all
databases, open and secure ones, and must never be violated or sacrificed.
Therefore, whenever a database acquires additional properties or abilities,
these must always be introduced in a manner that respects and preserves
integrity–there can be no trade-off. Confidentiality is always connected to a
distortion of the open database and there are two elements of the database
that can be distorted: its signature, viz its scheme, and its state. A distortion
of the scheme is a permanent one and, thus, it is useful, whenever the
confidentiality demands have a recurring pattern. This work focuses on
confidentiality demands which need not be anticipated in advance. Our
method to enforce them has two properties. Firstly, whenever the database
determines that a confidentiality demand cannot be brought into accord with
integrity it is rejected as unsatisfiable. And, secondly, if recognised by the
database as satisfiable, our method computes if and how many additional
distortions of the state, which we call aliases, are needed to enforce it in a
way that preserves present integrity and prevents future violation of
integrity. Since this method has a sound formal background, the statements
and results can be verified in a rigid proof. As an example, we have
demonstrated its application to a primary key constraint. We have a
complete proof for its application and limits to primary key and foreign key

Confidentiality vs Integrity in Secure Databases 207

constraints, although general constraints in databases with rules still lie
ahead.

5. REFERENCES

Bonatti, Piero, Sarit Kraus and V.S. Subrahmanian. (1992) ‘Declarative Foundations of
Secure Deductive Databases’. Ed Joachim Biskup and Richard Hull. 4th International
Conference on Database Theory – ICDT’92. LNCS, vol 646. Berlin, Heidelberg:
Springer-Verlag. pp 391-406. [Also in: IEEE Transactions on Knowledge and Data
Engineering 7.3 (1995):406-422.]

Burns, Rae K. (1988) ‘An Application Perspective on DBMS Security Policies'. Ed Teresa F.
Lunt. Research Directions in Database Security. 1st RADC Database Security Invitational
Workshop 1988. New York et al: Springer-Verlag, 1992. pp 227-233.

-----. (1990a) ‘Referential Secrecy'. 1990 IEEE Symposium on Research in Security and
Privacy. IEEE Computer Society Press. pp 133-142,

-----. (1990b) ‘Integrity and Secrecy: Fundamental Conflicts in the Database Environment'.
Ed Bhavani Thuraisingham. 3rd RADC Database Security Workshop 1990. Bedford,
Massachussets: Mitre, 1991. pp 37- 40.

Cremers, Armin B., Ulrike Griefahn and Ralf Hinze. (1994) Deduktive Datenbanken.
Braunschweig: Vieweg.

Das, Subrata Kumar. (1992) Deductive Databases and Logic Programming. Wokingham,
England: Addison-Wesley.

Denning, Dorothy E., Teresa F. Lunt, Roger R. Schell, Mark Heckman and William R.
Shockley. (1987) ‘A Multilevel Relational Data Model'. 1987 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press. pp 220-234.

Gajnak, George E. (1988) ‘Some Results from the Entity/Relationship Multilevel Secure
DBMS Project'. Ed Teresa F. Lunt. Research Directions in Database Security. 1st RADC
Database Security Invitational Workshop 1988. New York et al: Springer-Verlag, 1992. pp
173-190.

Garvey, Thomas D., and Teresa F. Lunt. (1991b) ‘Cover Stories for Database Security'. Ed
Carl E. Landwehr and Sushil Jajodia. Database Security V. IFIP WG11.3 Workshop on
Database Security 1991. Amsterdam: North-Holland, 1992. pp 363-380.

Haigh, J. Thomas, Richard C. O’Brien and Dan J. Thomsen. (1990) ‘The LDV Secure
Relational DBMS Model'. Ed Sushil Jajodia and Carl E. Landwehr. Database Security IV.
IFIP WG11.3 Workshop on Database Security 1990. Amsterdam: North-Holland, 1991. pp
265-279.

-----, -----, Paul D. Stachour and D.L. Toups. (1989) ‘The LDV Approach to Database
Security'. Ed David L. Spooner and Carl E. Landwehr. Database Security III. IFIP
WG11.3 Workshop on Database Security 1989. Amsterdam: North-Holland, 1990. pp
323-339.

Jajodia, Sushil, and Ravi S. Sandhu. (1991) ‘Enforcing Primary Key Requirements in
Multilevel Relations'. Ed Rae K. Burns. Research Directions in Database Security IV. 4th
RADC Multilevel Database Security Workshop 1991. Bedford, Massachussets: Mitre,
1992. pp 67-73.

Landwehr, Carl E. (1981) ‘Formal Models for Computer Security’. ACM Computing Surveys
13.3:247-278.

Maimone, Bill, and Richard Alien. (1991) ‘Methods for Resolving the Security vs. Integrity
Conflict’. Ed Rae K. Burns. Research Directions in Database Security IV. 4th RADC
Multilevel Database Security Workshop 1991. Bedford, Massachussets: Mitre, 1992. pp
55-59.

208 DATA AND APPLICATIONS SECURITY

Meadows, Catherine, and Sushil Jajodia. (1987) ‘Integrity Versus Security In Multi-Level
Secure Databases’. Ed Carl E. Landwehr. Database Security. IFIP WG11.3 Initial Meeting
1987. Amsterdam: North-Holland, 1988. pp 89-101.

Morgenstern, Matthew. (1987) ‘Security and Inference in Multilevel Database and
Knowledge-Base Systems’. 1987 ACM SIGMOD Conference / SIGMOD Record 16.3:357-
373.

-----.(1988) ‘Controlling Logical Inference in Multilevel Database Systems’. 1988 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press. pp 245-255.

Qian, Xiaolei. (1994) ‘Inference Channel–Free Integrity Constraints in Multilevel Relational
Databases'. 1994 IEEE Symposium on Research in Security and Privacy. IEEE Computer
Society Press. pp 158-167.

Reiter, Raymond. (1984) ‘Towards a Logical Reconstruction of Relational Database Theory’.
Ed Michael L. Brodie, John Mylopoulos and Joachim W. Schmidt. On Conceptual
Modeling. New York: Springer-Verlag. pp 191-238.

Sandhu, Ravi S., and Sushil Jajodia. (1993) ‘Referential Integrity in Multilevel Secure
Databases'. 16th National Computer Security Conference. NIST/NCSC. pp 39-52.

Sicherman, George L., Wiebren de Jonge and Reind P. van de Riet. (1983) ‘Answering
Queries Without Revealing Secrets’. ACM Transactions on Database Systems 8.1:41–59.

Spalka, Adrian, and Armin B. Cremers. (1997) ‘Structured name-spaces in secure databases’.
Ed T. Y. Lin and Shelly Qian. Database Security XI. IFIP TC11 WG11.3 Conference on
Database Security. London at al: Chapman & Hall, 1998. pp 291-306.

-----, -----. (1999) ‘The effect of confidentiality on the structure of databases’. Database
Security XIII. IFIP TC11 WG11.3 Conference on Database Security.

Stachour, Paul D. (1988) ‘LOCK Data Views'. Ed Teresa F. Lunt. Research Directions in
Database Security. 1st RADC Database Security Invitational Workshop 1988. New York
et al: Springer-Verlag, 1992. pp 63-80.

-----. (1989) ‘SCTC Technical Note: Organizing Secure Applications “by Name”'. Ed Teresa
F. Lunt. Research Directions in Database Security II. 2nd RADC Database Security
Workshop 1989. Menlo Park, CA: SRI.

Thuraisingham, Bhavani M. (1991) ‘A Nonmonotonic Typed Multilevel Logic for Multilevel
Secure Data/Knowledge Base Management Systems'. The Computer Security Foundations
Workshop IV. IEEE Computer Society Press. pp 127-138.

-----. (1992) ‘A Nonmonotonic Typed Multilevel Logic for Multilevel Secure
Data/Knowledge Base Management Systems – II'. The Computer Security Foundations
Workshop V. IEEE Computer Society Press. pp 135-146.

CHAPTER 19

Extending SQL's Grant Operation to Limit Privileges

Arnon Rosenthal, Edward Sciore
MITRE Corporation and Boston College
arnie@mitre.org, sciore@cs.bc.edu

Key words: Access controls, SQL, limited privilege, Grant/Revoke

Abstract: Privileges in standard SQL are unconditional, forcing the grantor to trust the
recipient’s discretion completely. We propose an extension to the SQL
grant/revoke security model that allows a grantor to impose limitations on how
the received privilege may be used. This extension also has a non-traditional
implication for view security. Although our examples are from DBMSs, most
results apply to arbitrary sets of privileges, in non-database software.

1. INTRODUCTION

Recent database security research has had distressingly little influence on
DBMS vendors. The SQL security model has had few extensions in the past
20 years, except for the recent addition of role-based access controls. This
paper extends SQL grant/revoke semantics to include a privilege-limitation
mechanism. Our goal is to present a model which has a small number of new
constructs (and thus has a reasonable chance at vendor implementation and
adoption), but covers significant unmet security needs.

In standard SQL, a user who has a privilege is able to use it in any
circumstance. By attaching limitation predicates to a grant, we refine this
“all or nothing” mechanism. For example, a limitation predicate may restrict
a command to certain days or hours, to members or non-members of certain
groups, to users above a certain rank, to tables above a threshold size, or to
requests that are received along a trusted path.

Limitations seem particularly important in large enterprise or multi-
enterprise systems, where it may be difficult to impose sanctions for

210 DATA AND APPLICATIONS SECURITY

improper use of a privilege. They also can reduce the scope for damage by
an intruder who misuses legitimate users’ privileges.

Our privilege limitation model is motivated by two principles:
• The system should have a unified, flexible means of limiting privileges,

rather than multiple overlapping mechanisms.
• The ability to grant (and to limit grants of others) should respect the

natural chains of authority.
The first principle implies that “revoking a privilege” and “imposing

additional limits on an existing grant” are facets of the same concept. For
example, imposing a limitation predicate of false should be equivalent to
revoking the privilege. More generally, modifying the predicate of an
existing grant should be equivalent to granting the privilege with the new
predicate and revoking the old one. We thus aim to simplify [Bert99], which
has separate treatments for SQL-like cascading revoke of entire privileges
(without reactivation) and negative authorizations (reactivate-able partial
limitations, without cascade).

The second principle guides how grant authority is passed. A user, when
granting a privilege, must pass on at least as many limitations as he himself
has. Moreover, by modifying the limitations on an existing grant G, a user
can propagate those modifications to all grants emanating from G. For
example, the creator of a table in a distributed system might authorize
remote administrators to grant access to their users, subject to some general
limitations; these administrators might further limit access by individual
users, as appropriate for each site. If the creator subsequently decides that
additional limitations are necessary, he only needs to modify his grants to the
remote administrators.

The second principle also implies that a subject x can limit only those
grants that emanate from a grant he has made. If user y has received grant
authority independently of x, then x cannot restrict y’s use of that power. To
see the need for this principle, imagine that the “Vote” privilege has been
granted (with grant option) to the head of each United Nations delegation.
Imagine the denial-of-service risk if, as in [Bert99], each could impose
limitations on others.

Section 2 describes the principles that underly our approach, and extends
SQL grant syntax to allow limitation predicates. Section 3 defines and
illustrates the semantics of predicate-limited grants. Section 4 extends the
theory to views. Section 5 briefly shows how our model addresses many of
the needs perceived in previous work. Section 6 summarizes and presents
open research problems.

Extending SQL's Grant Operation to Limit Privileges 211

2. ACCESS CONTROL BASICS

We present our new model gradually. In this section we state the SQL
model in terminology that will be useful in the general case. We also show
how SQL grants are a special case of limited grants.

A subject is a user, group, or role. We treat each subject as atomic;
inheritance among subjects (e.g., from a group to its members) is left for
future research. A database object is a portion of the database that requires
security control, such as a table or procedure. Each database object has a set
of operations. For example, table T will have operations such as “insert into
T”, “select from T”, etc.

There are two kinds of action associated with an operation: executing the
operation, and granting an authorization for it. A subject issues a command
to tell the system to perform an action.

Standard SQL has two forms of the grant command, “grant to s”,
authorizes s to perform execute commands for operation To authorize s to
perform both execute and grant commands for one issues the second form,

grant to s with grant option.

To specify grants with limitations, we extend the syntax to include two
(optional) predicates:

grant to s [executeif] [granti f]
called the execute-predicate (or exec_pred) of the grant, restricts the

conditions under which subject s can execute operation the
grantonward-predicate (or gr_pred) of the grant, restricts the conditions
under which s can grant onward to others.

Each operation has an authorization graph, a rooted labeled digraph
that represents the current (non-revoked) grants for We denote it or
just AG if is implied. The graph has one node for each subject; the root
node corresponds to the creator of There is one edge for each
unrevoked grant command G (and we refer interchangeably to G or); a
grant by to corresponds to an edge from node to Edge is labeled
with G’s two predicates.

A chain to s is an acyclic path in AG such that is the
root, each goes from to and is s. By convention, the predicates
associated with are denoted and

In the general case, G’s predicates can reference G’s command state (as
discussed in Section 3). In the special case of grants in standard SQL, the
exec_pred is always the constant true (that is, no restriction applied during

execution), and the gr_pred is either false (if no grant option) or true (if
with grant option). We call AG a SQL authorization graph if every
exec_pred is the constant predicate true and every gr_pred is one of {true,
false}.

212 DATA AND APPLICATIONS SECURITY

The authorization graph AG determines whether a subject s is allowed to
perform a command. In particular, AG must have a chain to s that justifies
performing the command. The general definition of justification appears in
Section 3. In the special case of standard SQL, a chain justifies a grant
command if all its edges have the grant option; a chain justifies an execute
command if all its edges (except possibly the last) have the grant option.
More formally:

Definition (for SQL grants): Let be a chain to s.
• C is SQL-valid if are all true. An edge is

SQL-valid if it is part of a SQL-valid chain.
• If C is SQL-valid, then C is said to SQL-justfy execute commands.
• If C is SQL-valid and is true, then C is said to SQL-justify

grant commands.
There are two purposes to these rather elaborate formalizations of a

simple concept. First, validity becomes non-trivial when we include general
limitation predicates, and we wish to introduce the terminology early.
Second, chains (and hence edges) can become invalid what a grant is
revoked. In this case, it is the responsibility of the system to automatically
revoke all invalid edges.

SQL grants correspond naturally to SQL authorization graphs. That is, if
every edge in AG came from a SQL grant, then the graph is an SQL
authorization graph. Also, when revoke deletes edges from a SQL
authorization graph, the result is still a SQL authorization graph. Section 3.7
will show that our general concepts of validity and justification reduce to the
above, on SQL authorization graphs.

3. PREDICATE-LIMITED GRANTS

Section 2 introduced authorization graphs, and defined, for the special
case of SQL (unrestricted) grants, how valid chains can justify commands
from a subject. This section considers the general case. In particular,
justification becomes command-specific – a chain can justify a command
only if the command’s state satisfies the appropriate limitation predicates.
Definitions are given in Sections 3.1 through 3.5. Section 3.6 considers
workarounds for an implementation difficulty that does not arise in standard
SQL. Section 3.7 shows that we cleanly extend SQL semantics.

3.1Command States
Each command has an associated state, which consists of:
• values for environment variables at the time the command was

issued;

Extending SQL's Grant Operation to Limit Privileges 213

• the contents of the database at the time the command was issued;
and

• values for the arguments of the command.

Example environment variables include $USER (the subject performing
the command), $TIME (the time of day when the command was submitted),
$LOCATION (from which the command was submitted),
$AUTHENTICITY (the certainty that the requestor is authentic),
$TRUSTEDPATH (whether the command arrived over a secure connection),
and $GLOBALSTATUS (e.g., whether the system is in “emergency mode”).

Example argument values are $NEW_TUPLE (for insert and modify
commands), $OLD_TUPLE (for modify), and $GRANTEE (for grant
commands). Interesting portions of the database state include group and role
memberships (is this worker on the night shift?), local status (is a particular
patient in emergency mode?), and cardinality (are the tables underlying an
aggregate view large enough to preserve anonymity?).

3.2 Limitation Predicates
A limitation predicate is a Boolean function without side effects. The

inputs to this function are references to a command state – arguments,
environmental variables, and database contents. If P is a limitation predicate
and C is a command, we write P(C) to denote the truth value of P given
inputs from the state of C.

We do not propose a particular syntax for predicates. For a DBMS, SQL-
like expressions (with embedded environment variables and functions) seem
appropriate.

Example. A predicate that evaluates to true if the time of the command is
during normal working hours or if the subject works the night shift:

($TIME between <8am, 6pm>) or ($USER in NightShift)
Example. A predicate that evaluates to false if the grant command is
between a particular pair of users: not ($USER = Boris and $GRANTEE =
Natasha)
Example. A predicate that restricts a user from inserting high-priced tuples
into a table: ($NEW_TUPLE.Price < 100)

3.3 Motivating Examples
Suppose the creator of table Items issues the following grant G1:

grant insert on Items to joe
executeif ($TIME between <8am, 6pm>)

214 DATA AND APPLICATIONS SECURITY

grantif ($USER in Manager) and (not $GRANTEE =
mary)

Let be the operation “insert on Items”. Subject joe is allowed to execute
only between 8am and 6pm. Joe is allowed to grant only when he is in the
Manager role, and the (potential) grantee is not mary.

In the above grant the table creator (who has unlimited authority on
its operations) issued the grant, and so Joe’s privileges are limited exactly by
the specified predicates. Now suppose that Joe issues the following grant
while he is a manager:

grant insert on Items to amy
executeif $DAY = monday
grantif $TRUSTEDPATH

We first note that Joe was allowed to issue because he was a manager
at the time of the grant, and the grantee is Amy, not Mary. Now suppose
that after issuing Joe is removed from the Manager role. Although Joe is
no longer able to issue grant commands, grant will not be invalidated –

predicates are evaluated using the state of which is taken from the
time the command was issued.

We next consider what privileges Amy has. Since Joe cannot give Amy
fewer restrictions than he has, his restrictions must be added to those of
Thus Amy’s effective exec_pred is ($TIME between <8am, 6pm>) and
($DAY=monday), and her effective gr_pred is ($USER in Manager) and (not
$GRANTEE = sue) and ($TRUSTEDPATH).

3.4 Semantics
As before, and throughout this section, let denote a chain

to subject s. Each has predicates and The definition
uses a subtle mutual recursion, and the theorem gives an alternative form.

Definition (general case for grants):
• C is valid if n=1 (that is, C consists of a single edge from the root).
• C is valid if for each i, the initial subchain justifies

 • C justifies a grant G from s if C is valid and for each edge in the
chain,

Theorem 1: C is valid iff for each for all its predecessors

Definition: An edge G is valid if it is justified by some chain. An
authorization graph is valid if all its edges are valid.

Extending SQL's Grant Operation to Limit Privileges 215

Theorem 2: In a valid authorization graph, all nodes with outgoing edges
have at least one incoming valid chain.

Definition (general case for execution): C justifies an execution command E
if C is valid and for each edge in the chain,

A grant G with an exec_pred of false is useless, regardless of the gr_pred.
The grant authorization can be passed on to others, but the effective
exec_pred along any chain involving G will be false, and thus the operation
can never be executed.

3.5 An Example to Illustrate the Subtleties
Privileges are passed along valid chains, each of which effectively carries

a pair of predicates, the conjunction of its gr_preds and the conjunction of its
exec_preds. Even in a valid graph, some chains can be invalid, and one
cannot then use them to justify commands. To illustrate this, consider the
following authorization graph:

The graph depicts two grants from x to y: gives limited execution
authorization but unlimited grantonward authorization; and gives
unlimited execution authorization but limited grantonward authorization.
is issued at midnight. To understand the privileges z holds, one must
consider the valid chains.

Each chain with a single edge is valid, i.e., and is
valid because justifies (since is the constant true).

is not valid, because is not justified by because the state of
has $time=midnight. Hence, commands by z can be justified only by

An execution command by z can be justified only if it satisfies the
exec_preds from i.e., arrived with $trustedpath=true. (If had
instead been issued at 10am, then would be valid, and the effective
exec_pred for z would be true.)

3.6 Maintaining Validity
To evaluate incoming commands, one needs to know which chains are

valid. Since grants’ states do not change, one can evaluate each relevant
predicate just once, at some time after the grant state is created. When w
executes a grant command each newly-created acyclic chain in
AG involving G needs to be tested for validity. There are two cases:

216 DATA AND APPLICATIONS SECURITY

• G is the last edge on the chain;
• G is in the middle of the chain.
In both cases, there are issues of algorithmic efficiency, which are

outside our scope. The first case is somewhat easier, because the command
state for G is currently available to be used in checking the chain’s gr_preds.
In the second case, there is a more basic complication: We cannot expect the
entire system state from the last grant on the chain to have been retained
(including the database of that time).

For example, consider the authorization graph of Section 3.5, and
suppose subject x issues the following grant command (call it G4):

grant to y executeif true grantif ($USER in Accountant)
In order to determine if the new chain is valid, we need to see
if justifies i.e., to evaluate whether satisfies the predicate $USER
in Accountant. To do so, we must have retained enough state of the earlier
grant to know whether y was in Accountant at the time G3 was issued.

Consequently, both the semantics and pragmatics need to adjust.
Pragmatically, an organizational policy could specify what portion of the
system state that will be retained, and writers of Grant predicates would
endeavor to use only that portion. The saved portion of the state may be
extended over time, as the need for additional information is better
understood.

Formally, if an edge predicate in references state information that
was not saved, then the system must determine how to assign a value to the
predicate. We propose that the system treats unknown state information as a
no-information SQL Null. If such grants are permitted, then the order in
which Grant commands are received affects what information is available to
evaluate predicate validity. To keep the system sound (i.e., not allowing
grants that users would not want), we require that predicates be monotonic in
information state – i.e., do not use “is Null”.

3.7 Standard SQL as a Special Case
We now consider the connection between limitation predicates and

standard SQL. An SQL grant without grant option gives arbitrary execute
privilege and no grant privilege; thus it should be equivalent to

grant to s executeif true grantif false
An SQL grant with grant option gives arbitrary execute and grant

privilege, and thus should be equivalent to
grant to s executeif true grantif true

This correspondence is confirmed in the following theorem:

Theorem 3: Consider a SQL authorization graph AG. Then:

Extending SQL's Grant Operation to Limit Privileges 217

• A grant or execute command, or an edge, or a graph, is valid iff it is
SQL-valid.

 • AG can be constructed by a sequence of SQL grants.
 • The validity of a grant or execute command is independent of the

command state. It depends only on the valid chains to the issuing
subject (i.e., the subject’s privileges).

If we use the conventions that an omitted executeif clause has a default
value of true, that “with grant option” is an alternate syntax for grantif true,
and an omitted grantif clause has a default value of false, then standard SQL
syntax is incorporated seamlessly into ours.

4. LIMITED PERMISSIONS ON VIEWS

Databases have a rich theory for views; in this respect, they are more
expressive than operating systems, information retrieval systems, and
middleware. Several guidelines drove our extension of “limited privileges”
theory to views. We wish again to satisfy the principles of Section 1,
notably, to have recognizable chains of authority. We also preserve the usual
amenities of view permissions: Grant/revoke from a view must behave as if
the view were an ordinary table, and one can grant access to a view but not
to the whole underlying table.

We present only an abbreviated treatment, largely through example, due
to page limits. Specifically, we examine only the privileges that the creator
has, and assume that only grants have limitation predicates (i.e., all
exec_preds are true). These restrictions, and the dictatorial power of the
view creator, will be relaxed in future work.

For each view, we define an authorization graph as if the view were an
ordinary table, except that the creator does not get unlimited privileges. Let

and suppose for the moment that the exec_pred of each is
simply true. Then the semantics are: the view creator (and the initial node of
the view’s authorization graph) is initialized with a grant limitation that is
the intersection of these predicates, (If a view creator were not subject to
these limitations, a user with limited access to table T could escape the
limitations by creating the view “Select * from T”.)

We now sketch several extensions for the model of view privileges.
First, consider the view V defined by “Select from T”. In

conventional SQL, a view creator may want to grant the privilege on the
operation select from view V to users who do not have authority on the base
table T. But suppose the creator suffers from a limitation predicate on T, and
hence also on V. Who is empowered to make grants that loosen the
limitations on the view? Thus far, nobody has this very useful right.

218 DATA AND APPLICATIONS SECURITY

To cure this (and several other ills), in future work we will move away
from treating a view as an object to be owned. Instead, it will be seen as
derived data, for which certain permissions are justifiable. To start with, any
possessor of a right on T can grant that right on V. (We are currently
assuming the view definitions to be readable by all interested parties. Under
this assumption, any subject with access to T could just define their own
view, identical to V, and then grant the privilege.)

Next, consider a view over multiple tables, e.g., “Select from
join ”. Oracle SQL specifies that the creator’s privileges on the view are
the intersection of the creator’s privileges on the input tables. In [Ro00] we
apply the same rule to non-creators. It extends easily to handle grants with
limitation predicates on just execute – the creator’s limitations are the
intersection of the limitations on all inputs. For the general case, a more
complex graphical treatment is needed to capture that a privilege on a view
requires a valid chain (appropriately generalized) on every one of the view’s
inputs.

5. COMPARISON WITH PREVIOUS WORK

We compare our work with several recent, ambitious approaches. We
consider only the part of each work that seems relevant to predicate-limited
grants.

[Bert99] is the culmination of a series of papers that offer powerful
alternatives to SQL. In [Bert99], two rather independent ways to lessen
privileges are proposed. First, there is SQL-like cascading Revoke, without
explicit predicates. Second, there are explicit negative authorizations, which
temporarily inactivate base permissions (node privileges, not grant edges)
that satisfy an explicit predicate p. (We can achieve the same effect by
ANDing a term (not p) to the execution predicate for edges out of the root.)
That model includes a large number of constructs, both for vendors to
implement and for administrators to learn and use. Administrators must
manage the additional privilege of imposing negative authorizations. The
negative authorizations can be weak or strong, and there are axioms about
overriding and about breaking ties. The model may be too complex to serve
as the basis for a practical facility.

We believe that limitation predicates provide a simpler model that still
meets the requirements identified in [Bert99], Our model also improves on
[Bert99] in two other areas – scoping of limitations, and views. Their
negative authorizations are global, while our limitation predicates apply only
along paths in the authorization graph. This scoping greatly reduces the
chance of inadvertent or malicious denial of service. For views, [Bert99
section 2.3] adopts a very strong semantics for negative authorization – that

Extending SQL's Grant Operation to Limit Privileges 219

absolutely no data visible in the view be accessible. Observing that
implementation will be very costly, they then specify that there should be no
limitations on views. By settling for less drastic controls, we are able to
provide several useful capabilities (as described in Section 3). [Bert98]
provides syntax for a special case of limitation predicates, namely those that
specify time intervals when the privilege can be exercised.

Another important predecessor to our work is [Sand99], which proposes
“prerequisites” (analogous to our limitation predicates) for onward
privileges. The model limits only onward privileges, not execution
privileges, and administrators must manage grants for the right to revoke
each privilege. [Glad97] also has an effective notion of prerequisites, but has
no direct support for granting privileges onward.

The Oracle 8i product supports “policy functions”, which allow
administrator-supplied code to add conjuncts to a query’s Where clause. This
mechanism is powerful, but difficult to understand. For example, it can be
quite difficult to determine: “Based on the current permissions, who can
access table T?”. There does not appear to be an analogous facility for
gr_preds.

Finally, limitation predicates can capture much of the spirit of Originator
Control (ORCON) restrictions, such as “You can must get the originator’s
prior permission before you ship a document outside some group G”
[McCo90]. (However, we assume commercial-style discretionary controls on
granting and using privileges, not on users’ outputs.) We thus assume that a
user s passes the information to s2 by Granting s2 the right to read the
original document (or a DBMS-controlled replicate located closer to s2). If s
has a right to pass information within a group FRIENDS but not outside, the
grant to s carries the gr_pred that “grantee FRIENDS”. We conjecture that
other ORAC policies in [McCo90] can be similarly approximated.

6. SUMMARY

This paper represents an initial theory that we believe deserves follow-
up. The main contributions of the work are to state principles for a
limitation model, and then to provide semantics that satisfy these principles.
We also extended limitation semantics to permissions on views. (Previous
work in non-database models naturally did not consider this issue.)

Our approach makes several advances over previous proposals.
 • Model Economy: The model integrates Grant and Execute privileges,

consistently. It cleanly extends SQL. An earlier (longer) version of this
work showed that it was modular, cleanly separable from reactivation.

 • Easy administration: The model naturally extends SQL concepts, and
accepts all SQL grants. No separate “Limit” privilege need be managed.

220 DATA AND APPLICATIONS SECURITY

• Limitations respect lines of authority: Only a grantor or a responsible
ancestor has the authority to limit or revoke a user’s privilege.

• Flexibility in limitations: Designers can give any degree of power to
limitation predicates. For a pure security system (unconnected to a
DBMS), one could have queries only over security information plus
request parameters (e.g., time, trusted path). For a DBMS, one could
allow any SQL predicate.

• Views: Limitations on underlying tables apply in a natural way to views.

Further work is necessary, of course. The top priority (beyond our
resources) would be to implement these features, both as proof of concept
and to gather users’ reactions. Traditional research questions include
extending the theory (to support roles, reactivation and dynamic reevaluation
of predicates, a fuller treatment of limitations on views, and policies that
modify operations’ execution), and efficient implementation.

The pragmatic questions are equally important. Would users see
limitations as important, and would they do the administrative work to
impose them? How much generality is needed? How does this model
compare with security policy managers for enterprises or for digital libraries
[Glad97], Finally, what tools are needed to make it all usable?

7. REFERENCES

[Bert98] E. Bertino, C. Bettini, E. Ferrari, P. Samarati, “An access control model supporting
periodicity constraints and temporal reasoning,” ACM Trans. Database Systems, Vol. 23,
No. 3, Sept. 1998, pp. 231 – 285.

[Bert99] E. Bertino, S. Jajodia, P. Samarati, “A Flexible Authorization Mechanism for
Relational Data Management Systems,” ACM Trans. Information Systems, Vol. 17, No. 2,
April 1999, pp. 101-140.

[Cast95] S. Castano, M. Fugini, G. Martella, P. Samarati, Database Security, ACM
Press/Addison Wesley, 1995.

[Glad97] H. Gladney, “Access Control for Large Collections,” ACM Trans. Information
Systems, Vol. 15, No. 2, April 1997, pp. 154-194.

[ISO99] ISO X3H2, SQL 99 Standard, section 4.35.
[McCo90] C. McCollum, J. Messing, L. Notargiacomo, “Beyond the Pale of MAC and DAC

– Defining new forms of access control,” IEEE Symp. on Security and Privacy, 1990.
[Ros00] A. Rosenthal, E. Sciore, “View Security as the Basis for Data Warehouse Security”,

CAiSE Workshop on Design and Management of Data Warehouses, Stockholm, 2000.
Also available at http://www.mitre.org/resources/centers/it/staffpages/arnie/

[Sand99] R. Sandhu, V. Bhamidipati, Q. Munawer, “The ARBAC97 Model for Role-Based

CHAPTER 20
LANGUAGE EXTENSIONS FOR
PROGRAMMABLE SECURITY

J. Hale, R. Chandia, C. Campbell, M. Papa and S. Shenoi

Abstract Software developers rely on sophisticated programming language pro-
tection models and APIs to manifest security policies for Internet ap-
plications. These tools do not provide suitable expressiveness for fine-
grained, configurable policies. Nor do they ensure the consistency of a
given policy implementation. Programmable security provides syntactic
and semantic constructs in programming languages for systematically
embedding security functionality within applications. Furthermore, it
facilitates compile-time and run-time security-checking (analogous to
type-checking). This paper introduces a methodology for programmable
security by language extension, as well as a prototype model and imple-
mentation of JPAC, a programmable access control extension to Java.

Keywords: Cryptographic protocols, simulation, verification, logics, process calculi

1. INTRODUCTION
Internet computing is a catalyst for the development of new program-

ming language protection models and security APIs. Developers rely
on protection models to check code integrity and guard memory bound-
aries at compile-time and run-time [4, 9]. Developers use security APIs
to manifest security policies tailored to their applications. Together, pro-
tection models and security APIs comprise the state of the art for safe-
guarding applications running in open environments. However, these
tools do not ensure that a security policy articulated with an API is
consistent or viable. Moreover, very little is available to programmat-
ically link elements in a protection model with a security API. As a
result, security APIs are commonly used in an ad hoc fashion yielding
unpredictable security policies.

Programmable security provides syntactic and semantic constructs in
programming languages for systematically embedding security function-
ality within applications [12]. Developers use special syntax to express
security policies within code in the same way that types are used to ex-

222 DATA AND APPLICATIONS SECURITY

press constraints on variable behavior. This approach facilitates compile-
time and run-time security-checking (analogous to type-checking) to ver-
ify that no potential security policy violations occur within a program.

This paper introduces a methodology for extending programming lan-
guages with programmable security services. The methodology is first
described, followed by the authorization model adopted for programmable
access control. Finally, the design and prototype implementation of our
programmable access control solution in Java is presented.

2. PROGRAMMABLE SECURITY
Programmable security links security services to programming lan-

guage syntax extensions to facilitate the expression and systematic im-
plementation of security policies in applications. Developers use pro-
grammable security expressions to specify authorization policies for prin-
cipals and data elements, authentication protocols for proxies, audit
procedures for program modules, and secure communication channels
for distributed systems.

The implementation of native programmable security services in new
languages offers language architects greater freedom, allowing them to
escape the “golden handcuffs” of compatibility. However, extending pop-
ular languages has the advantage of immediate relevance to a large au-
dience of developers.

Figure 1. Programmable security methodology.

Figure 1 illustrates an extensional methodology for implementing pro-
grammable security. This approach introduces two elements to a pro-
gramming system; a preprocessor (a similar preprocessing approach has
been taken to add genericity to the Java language [3]) and a security
service library. The preprocessor employs a parser designed with an
augmented grammar to accept expressions in the extended language.

Language Extensions for Programmable Security 223

The augmented grammar adds production rules and keywords to the
original grammar, binding security services to the programming system.
The preprocessor actually plays two roles; (i) checking for security viola-
tions within the extended source code and (ii) translating the extended
source code into native source code.

The preprocessor relies on the security service library API to derive
native source code implementing the specified security functionality. The
resulting source code is passed to a native compiler to produce an ex-
ecutable. The security service library can be linked at compile-time or
run-time to perform security violation checks during execution.

3. AUTHORIZATION MODEL
Our programmable access control solution relies on a simplified version

of the ticket-based authorization model originally described in [12, 13,
14] and refined in [6]. We adopt the ticket-based scheme because it
permits policy expression in a variety of authorization models and a
straightforward implementation in message passing systems.

Messages requesting access to remote resources are between nodes in
an object hierarchy (where any object can also play the role of a sub-
ject). Tickets embedded in messages as unforgeable tokens are analogous
to capabilities [7, 8, 16, 17], conveying privileges of message originators.
Message passing only occurs directly between two adjacent object nodes,
as formally specified with the following rule:

(1)
Adj s is true whenever objects and are adjacent in a

hierarchical object structure at a given state s. Parent s is true
when, in state s, is the parent of

Conceptually, tickets represent keys held by subjects that match locks
held by objects. Keys are checked for matching object locks to authorize
access requests.

Key s t is true when has a key named t in state s. Lock s t
is true when has a lock named t on object in state s. (The hierarchy
described below mandates that and be adjacent for to hold such
a lock.) We can define key/lock matching by an object as

(2) Match

This predicate defines when a message has permission to access on
behalf of in Every message must be authorized for delegation at
every inteverning object in the hierarchy. The access request itself is
checked only at the destination object.

224 DATA AND APPLICATIONS SECURITY

Another predicate represents the goal of a message. Access s
specifies that can access from its point of origin in state s. Now we
can complete the formalization by creating an inductive definition for
access between nodes in a hierarchy with the addition of two rules:

(3)

and

(4)

Rule 3 indicates that objects always have access to themselves, and
forms a base case for inductive access checking. Rule 4 provides the
inductive step, stating that if can access and if holds a key
matching a lock in for then can access

4. PACKAGE-BASED ACCESS CONTROL
This section presents a programmable package-based protection scheme

for Java. The system (JPAC) uses syntax extensions to provide develop-
ers with discretionary and fine-grained access control for Java applica-
tions. Note that JPAC extends, not replaces, the existing Java security
architecture. Developers can use JPAC to confine access to program
elements based on the package identity of requesting elements.

Figure 2 presents the JPAC syntax extensions used to express package-
based protection. Extensions are based on the syntax described in The
Java Language Specification documents [2, 21, 22, 23]. The EBNF pro-
ductions in Figure 2 change the way a compilation unit is named by
making PackageDeclaration mandatory and adding a Properties pro-
duction to it. Unnamed compilation units are specified by declaring a
nameless package.

Three examples of legal compilation units can be found at the bot-
tom of Figure 2. A package faculty specifies that its elements can be
accessed by a package named admin. Associating the keyword guarded
with the student package specifies that its elements can be accessed
by any other package using our ticket-based protection scheme. The
package other, using the keyword unsecured, specifies that any pack-
age can access its elements, even those that are not compiled under our
architecture (useful for interfacing with APIs or other external code).

Synchronization clauses or exceptions are not controlled in our de-
sign. Public, private, protected and package-level protection modes are
enforced as usual, with package-based protection specifications impart-
ing additional authorization constraints.

Language Extensions for Programmable Security 225

Figure 2. Extended syntax.

The JPAC semantics are derived from the ticket-based authorization
scheme and object hierarchy described earlier. Every JPAC system con-
sists of a root object, and within it a collection of objects mapped to
JPAC-protected packages – each associated with its own message han-
dler. Classes and instances are regarded as components of their enclosing
packages and use their package’s message handler to pass messages con-
veying access requests/replies across package boundaries.

A unique token is defined for each protected package. A lock/key
pair is generated from the token for each of the packages listed in the
protection declaration clause. The lock is held in the protected package’s
access control list, while keys are delivered to the packages for whom
access is granted. A special token representing “everyone” is defined to
build a key for distribution to all objects in the JPAC system. Packages
with guarded protection status hold the “everyone” lock, enabling access
by all JPAC objects, but not by external Java code.

JPAC program elements are organized into an object hierarchy. A
root object resides at the top of the hierarchy, below it are objects mod-
eling packages, classes and instances. Access requests are carried by
messages that flow from the message handler of the package represent-
ing the request source to the message handler of the destination package.

Our prototype implements package protection with filter operations
performed by message handlers. Messages contain fields identifying the
source, the destination and the keys of their originator. Each time a

226 DATA AND APPLICATIONS SECURITY

Figure 3. JPAC class hierarchy.

message is received by a message handler it verifies keys contained in
the message against locks held in a package access control list.

5. JPAC IMPLEMENTATION
JPAC integrates a set of classes to model a message passing hierarchy

for program elements, a preprocessor for extended source code transla-
tion, and a run-time ticket management software architecture. The class
hierarchy comprising the security service library is shown in Figure 3.

5.1. OBJECT HIERARCHY
The JPAC implementation adds a MessageHandler class and a class

stances of MessageHandler are associated with each of the newly cre-
ated package classes. Package classes hold package-specific data, guiding
MessageHandler initialization. All package classes inherit their behavior
from the JPACPackage abstract class.

Figure 4 shows the source code for a JPAC class Learn, including a
protection clause restricting access to the faculty package. Resulting
package classes are named as “Package_X”, where “X” is a flattened
version of the package name. This simple naming convention for package
classes helps avoid name clashes in JPAC.

5.2. PREPROCESSING
The preprocessor performs various transformations on program ele-

ments in extended source code to authenticate calling subjects, effect
secure method dispatch and respect all forms of variable access. Vari-
able and method access is validated with a certificate placed in an extra

for each package to dispatch access control in an object hierarchy. In-

Language Extensions for Programmable Security 227

Figure 4. Package-based Java protection code.

parameter generated by the preprocessor. Finally, the preprocessor must
successfully integrate Java interfaces and unsecured packages with JPAC
systems.

5.2.1 Methods. JPAC method calls are transformed to include
an authenticating certificate placed in the extra parameter generated by
the preprocessor. The method checkOut() in the MessageHandler of
the current package class checks if a message can reach the destination,
and returns a certificate for the callee method.

Extending Java’s protection model to permit discretionary access con-
trol provides a unique set of challenges to the preprocessor. For example,
protected classes may invoke unsafe methods in inherited classes. Pro-
tected classes in JPAC inherit from the JPACObject class, which provides
safe replacements for methods in java.lang. Object. If a method from
Object is used, a JPACAccesDeniedException exception is thrown.

Inheritance and dynamic linking in Java also produce an interesting
problem. Any call destined for a class in some package can arrive, due
to inheritance, to another class in a different package. If this is allowed,
legitimate calls could be denied just because inheritance was used. The
JPAC solution is to produce proxy methods in the inheriting class that
forward calls to the parent class.

Another complication results from the fact that all constructors call
their parent’s default constructor. When a call to the parent’s construc-
tor is missing in a JPAC constructor, one is placed with a fresh certificate
in the first statement of the constructor body.

5.2.2 Variables. Direct variable reads and writes are emulated
with accessor methods, which authorize access by validating certificates
in the same way as JPAC methods. These accessor methods inherit
protection levels from their variables. Furthermore, if a variable is static

228 DATA AND APPLICATIONS SECURITY

then the accessor method is made static as well. Variables in the JPAC
code are then set to private-level protection in the transformed Java
code, preventing unauthorized access.

JPAC accessor method names are chosen to reflect not only the name
of the variable, but also the class (or interface) that contains it. When
variable accesses are found in JPAC code, the preprocessor determines
the type where the variable is stored and generates the appropriate call
as needed.

5.2.3 Interfaces and Unprotected Packages. JPAC inter-
faces are translated similar to classes, except that interface variables are
implicitly static, public and final, making them impossible to “priva-
tize.” JPAC moves interface variables into specially constructed classes
making it possible to change their access level to private and to add ac-
cessor methods. Wherever a JPAC interface variable is referenced, a call
to the appropriate accessor method is substituted. Naming of interface
variables and accessor methods is performed in the same way as for class
variables.

Classes and interfaces in unsecured packages are considered unpro-
tected by the JPAC system extensions. Unsecured classes and interfaces
are useful in that they can directly subclass Object (the core Java system
class) and other unprotected classes. Classes and instances in unsecured
packages do not adopt the additional certificate parameter for meth-
ods or accessor methods for variables. The only modifications are the
transformation of calls to methods and variables in classes belonging to
protected packages and the addition of a package class.

5.3. TICKET MANAGEMENT
The ticket management software architecture in Figure 5 serves as

an execution model for the ticket-based access control scheme described
earlier. The architecture supports message passing in a hierarchy of
handlers to validate inter-package access.

5.3.1 Keys, Locks and Rings. Key and lock objects provide a
basis for constraining access, while messages encapsulate authorization
requests. Tokens, which model keys and locks, are characterized by an
abstract class (Token) containing a unique identifier and an abstract
method to match keys and locks. A simple protocol ensures that a
lock and its matching key are created simultaneously to guarantee their
authenticity.

The match() method checks keys and locks by computing an en-
crypted key value and comparing it to the value of the lock.

Language Extensions for Programmable Security 229

Figure 5. Software architecture.

Access control lists maintained within each package class store locks
and keys. The access control list class(ACL)provides methods to add and
remove keys from a key ring. Instances of the KeyRing class are passed
between message handlers to facilitate inter-package access by presenting
keys to match with locks in destination package access control lists.

To access a variable or method in another package, the key ring is
passed as a parameter to the match() method of the destination ACL.
The match() method passes each lock to a method of the key ring which
checks every key for a match. If a key fits, the key ring returns a copy
of the key to the ACL for verification, and access is granted. When a
foreign package attempts to gain access to a local package, the local
package receives a copy of the foreign key registry.

5.3.2 Message Handlers. The centerpiece of the software ar-
chitecture is the message handler, which effects message passing between
objects. Messages are used only for authorization and consist of a key
ring, a source and destination identifier, and a certificate. Key rings
that accompany messages embody the rights of the message originator.
Messages are passed between objects via resident message handlers, au-
thorized at each stop, until they reach their final destination.

Static methods in the MessageHandler model behavior for the root
JPAC domain. A static code block creates a new message handler for
each package class. TheMessageHandler constructor obtains a reference
to program units above it in the hierarchy. If such a reference is to a unit
that has not yet been instantiated, that unit’s static code will execute,
creating its parent object. The result of this domino effect is that when
any package is first accessed, message handlers for it and every other
package above it in the hierarchy are initialized.

230 DATA AND APPLICATIONS SECURITY

6. COMPARISONS WITH OTHER WORK
Object-oriented programming languages employ protection schemes

based on classes, variables and methods. Java 1.0 provides packages to
group program units (classes and interfaces), creating access boundaries
[2, 4]. Java 1.2 lets developers define protection domains to specify sets
of classes sharing identical permissions [10, 11]. The added functionality
is given in an API. Wallach et al. propose extensions to the Java security
model that employ capabilities and namespace management techniques
[26]. Java capabilities are implemented based on the fact that refer-
ences to objects cannot be fabricated due to Java’s type safety features.
The disadvantage of these approaches is that no significant compile-time
security checking can be performed.

Early work in [5] describes a compile-time mechanism to certify that
programs do not violate information flow policies, while [1] provides a
flow logic to verify that programs satisfy confinement properties. Static
analysis of security properties has re-emerged as a promising line of
research because it eliminates much of the need for costly runtime checks.
It also prevents information leakage that can occur at runtime.

In [25], Volpano et al. recast the information flow analysis model in
[5] within a type system to establish its soundness. This work led to a
sound type system for information flow in a multi-threaded language [20].
JPAC differs in that it promotes a foundational authorization model as
a common substrate for various access control schemes to support the
static analysis of secure program interoperability.

Van Doorn et al., extend Modula-3 network objects with security
features in [24]. Secure network objects (SNOs) bind programming lan-
guages into service for integrating security into objects and methods.
SNOs promote subtyping for specifying security properties of objects.

Myers and Liskov describe a decentralized information flow control
model in [19]. Security label annotations can be inferred and type-
checked by a special compiler to verify program information flow prop-
erties. Myers implemented these ideas in JFlow, a variant of Java that
integrates statically checked information flow annotations with advanced
programming language features such as objects, subclassing and excep-
tions [18].

The SLam calculus is a typed that tracks relevant security
information of programming elements [15]. A compiler that executes
static checks enforces the type system rules to guarantee program secu-
rity. Types in SLam are monomorphic and static, but the system has
been shown to be extensible to concurrent and imperative programming.

REFERENCES 231

7. CONCLUSIONS
Programmable security allows developers to express verifiable protec-

tion policies with special syntax. Preprocessors can be used to extend ex-
isting programming languages with syntactic constructs tied to security
service libraries, yielding a programmable solution that is interoperable
with systems developed in the original language. Our programmable ac-
cess control prototype, JPAC, extends the Java programming language
with syntax for expressing package-level discretionary policies. JPAC
classes and interfaces can be seamlessly integrated within native Java
applications, allowing developers to customize protection policies for se-
lected software components. In addition, the semantic foundation of the
JPAC architecture permits the design and implementation of more fine-
grained authorization models for class-based and instance-based protec-
tion.

References
[1] Andrews, G. and Reitman, R. (1980) An axiomatic approach to information flow

in programs. ACM Transactions on Programming Languages and Systems, 2(1),
56–76.

[2] Arnold, K. and Gosling, J. (1998) The Java Programming Language, 2nd Edition.
Addison-Wesley, Reading, Massachusetts.

[3] Bracha, G., Odersky, M., Stoutamire, D. and Wadler, P. (1998) Making the future
safe for the past: Adding genericity to the Java programming language Object
Oriented Programming: Systems, Languages and Applications (OOPSLA) ACM
SIGPLAN Notices 33(10), 183–200.

[4] Dean, D., Felten, E. and Wallach, D. (1996) Java security: From Hot Java to
Netscape and beyond. Proceedings of the IEEE Symposium on Research in Secu-
rity and Privacy, 190–200.

[5] Denning, D. and Denning, P. (1977) Certification of programs for secure infor-
mation flow. Communications of the ACM, 20(7), 504–513.

[6] Dionysiou, I. (2000) A Formal Semantics for Programmable Access Control, Mas-
ters Thesis, Washington State University.

[7] Fabry, R. (1974) Capability-based addressing. Communications of the ACM,
17(7), 403–412.

[8] Gilgor, V., Huskamp, J., Welke, S., Linn, C., and Mayfield, W. (1987) Tradi-
tional capability-based systems: An analysis of their ability to meet the trusted
computer security evaluation criteria, Institute for Defense Analyses, IDA Paper
P-1935.

[9] Gong, L. (1998) Secure Java class loading. IEEE Internet Computing, 2(6), 56–
61.

[10] Gong, L., Mueller, M., Prafullchandra, H. and and Schemers, R. (1997) Going
beyond the sandbox: An overview of the new security architecture in the Java
Development Kit 1.2. Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems, 103–112.

232 DATA AND APPLICATIONS SECURITY

[11] Gong, L. and Schemers, R. (1998) Implementing protection domains in the Java
Development Kit 1.2. Proceedings of the Internet Society Symposium on Network
and Distributed System Security, 125–134.

[12] Hale, J., Papa, M. and Shenoi, S. (1999) Programmable security for object-
oriented systems, in Database Security, XII: Status and Prospects (ed. S. Jajodia),
Kluwer, Dordrecht, The Netherlands, 109–126.

[13] Hale, J., Threet, J. and Shenoi, S. (1998) Capability-based primitives for access
control in object-oriented systems, in Database Security, XI: Status and Prospects
(eds. T.Y. Lin and X. Qian), Chapman and Hall, London, 134–150.

[14] Hale, J., Threet, J. and Shenoi, S. (1997) A framework for high assurance security
of distributed objects, in Database Security, X: Status and Prospects (eds. P.
Samarati and R. Sandhu), Chapman and Hall, London, 101–119.

[15] Heintze, N. and Riecke, J. (1998) The SLam calculus: Programming with secu-
rity and integrity. Proceedings of the Twenty-Fifth ACM SIGPLAN-SIGACT on
Principles of Programming Languages, 365–377.

[16] Karger, P. (1984) An augmented capability architecture to support lattice secu-
rity. Proceedings of the IEEE Symposium on Research in Security and Privacy,
2–12.

[17] Karger, P. (1988) Implementing commercial data integrity with secure capabil-
ities. Proceedings of the IEEE Symposium on Research in Security and Privacy,
130–139.

[18] Myers, A. (1999) JFlow: Practical mostly-static information flow control. Pro-
ceedings of the Twenty-Sixth ACM SIGPLAN-SIGACT on Principles of Program-
ming Languages, 229–241.

[19] Myers, A. and Liskov, B. (1997) A decentralized model for information flow con-
trol. Proceedings of the Sixteenth ACM Symposium on Operating System Princi-
ples, 129–142.

[20] Smith, G. and Volpano, D. (1998) Secure information flow in a multi-threaded
imperative language. Proceedings of the Twenty-Fifth ACM SIGPLAN-SIGACT
on Principles of Programming Languages, 355–364.

[21] Sun Microsystems. (1999) Clarifications and Amendments to The Java Language
Specification, http://www.java.sun.com/docs/books/jls/clarify.html.

[22] Sun Microsystems. (1997) Inner Classes Speci-
fication. http://java.sun.com/products/jdk/1.1/docs/
guide/innerclasses/spec/innerclasses.doc.html.

[23] Sun Microsystems. (1999) Clarifications and Amendments to the In-
ner Classes Specification, http://www.java.sun.com/docs/books/jls/nested-class-
clarify.html.

[24] Van Doorn, L., Abadi, M., Burrows, M. and Wobber, E. (1996) Secure network
objects. Proceedings of the IEEE Symposium on Research in Security and Privacy,
211–221.

[25] Volpano, D., Smith, G. and Irvine, C. (1996) A sound type system for secure
flow analysis. Journal of Computer Security, 4(3), 167–187.

[26] Wallach, D., Balfanz, D., Dean, D. and Felt en, E. (1997) Extensible security
architectures for Java. Proceedings of the 16th Symposium on Operating Systems
Principles, 116–128.

CHAPTER 21
PROTECTING PRIVACY FROM
CONTINUOUS HIGH-RESOLUTION
SATELLITE SURVEILLANCE

Soon Ae Chun and Vijayalakshmi Atluri
MSIS Department and CIMIC
Rutgers University, Newark, NJ 07102
{soon,atluri}@cimic.rutgers.edu

Abstract Privacy refers to controlling the dissemination and use of personal data,
including information that is knowingly disclosed, as well as data that
are unintentionally revealed as a byproduct of the use of information
technologies. This paper argues that the high resolution geospatial im-
ages of our earth’s surface, produced from the earth observing satellites,
can make a person visually exposed, resulting in a technological inva-
sion of personal privacy. We propose a suitable authorization model for
geospatial data (GSAM) where controlled access can be specified based
on the region covered by an image with privilege modes that include
view, zoom-in, overlay and identify.

1. INTRODUCTION
In the new millennium, 31 satellites, funded by both governments

and private corporations, will be capable of providing land cover data
at resolutions of 1 to 30 meters in orbit. As low-cost, highly respon-
sive commercial satellite systems become operational, high resolution
imagery is expected to become a regular input to consumer products
and information services. Remote sensing data sales and services are
predicted to grow into a $2 billion dollar market by the beginning of the
21st century [1].

There are numerous benefits to society in the constructive use of low
cost satellite imagery. Examples include environmental monitoring, map
making, disaster relief, infrastructure planning, national security, pin-
pointing of prospective sites to aid miners and drillers in planning ac-
cess to natural resources, and detecting distressed crops early before such
stress is visible to the human eye. Up-to-date satellite images can assist

234 DATA AND APPLICATION SECURITY

businesses in planning the placement of consumer outlets and manu-
facturing facilities, and help demographic analysts locate their target
markets. Images can be used to aid police and fire crews to respond
more quickly to distress calls, and to direct vehicle flows depending on
observed traffic situations.

Motivation: While high resolution low cost satellite imagery enjoys
many benefits, there are significant threats to privacy due to the com-
mercial availability of high-resolution imagery in near real-time fash-
ion. Public entities, such as local governments or public utility compa-
nies, collect, use and disseminate large amounts of personal information.
Combination of this publicly available personal data pool with high res-
olution image data coupled with the integration and analysis capabilities
of modern GIS systems providing geographic keys such as longitude and
latitude, can result in a technological invasion of personal privacy. A
person can not only be identified by name or address, but can be visu-
ally exposed. Therefore, in the near future, it may be technically feasible
for anyone to observe, record and measure the outdoor activities of any-
one, at any place in the world (from backyard pools to nuclear plants),
almost at any time. For example, one can clearly identify the objects
in the high-resolution image shown in figure 1. Many scenarios can be
envisioned that may threaten the privacy of individuals or organizations;
some are listed below.

Figure 1. A high resoultion image

1. Observation of military operations or movements of agents of foreign
countries can be achieved by the click of a mouse [7].

2. Unauthorized surveillance of a person’s outdoor activities by a stalker
or a burglar may help planning a break-in into a home. Tracking of res-
idents entering and leaving the house through observing high resolution
images over a period of time can simply be done on his computer.

PROTECTING PRIVACY FROM SATELLITE SURVEILLANCE 235

3. Tracking of the shipping volumes and patterns of a company by ob-
serving the number of trucks being loaded and unloaded can be valuable
for a competing business enterprise.

These are some scenarios that depict the need for access control for
high resolution geospatial image data. Although there are no policies or
laws in place yet, they appear to be inevitable [7]. Aside from protect-
ing privacy of individuals from near real-time high-resolution satellite
surveillance, the need for controlled access to images arises because of
different reasons:

1. Concept based filtering: Filtering of images is needed, for example,
to prevent children from accessing objectionable images available on the
web. While traditionally access control is provided at the server, filtering
requires access control at the client.
2. Controlled access to images: Prevention of unauthorized access may
be needed for providing controlled distribution of images to subscribers.
3. Content based access control: Prevention of access may be needed for
certain images based on their content, for example, to prevent the public
from accessing images of all vehicles with a color distribution used by
the military.

Related Work: While there exists no work on providing access con-
trol for geospatial images, recently, a number efforts have been made to
screen objectionable images using shape detection, object recognition,
people recognition, face recognition, and content-based image retrieval.
They include (1) filtering of images of naked people using a skin filter
and a human figure grouper [3, 4], and (2) using a content-based fea-
ture vector indexing where an image is matched against a small number
of feature vectors obtained from a training database [5, 6]. However,
these approaches filter all images that match a set of criteria, but do not
provide controlled access that facilitates access to images for legitimate
users.

Our Contribution: A suitable access control for protecting privacy due
to unauthorized high-resolution surveillance should not only be based on
the spatial extent of images but also be based on their resolution. While
a low resolution image may be revealed to the user regardless of its lo-
cation coordinates, a high resolution image may not be accessed, except
in the region where the user has access permission. For example, a fac-
tory owner may access every detail pertaining to his own operations, but
should be prohibited from accessing the images that reveal the details of
his competitor’s operations. To the best of our knowledge, there does not
exist any authorization model suitable for geospatial images. In this pa-
per, we propose an authorization model that can provide access control

236 DATA AND APPLICATION SECURITY

for geospatial images based on their spatial extent and resolution, called
Geo-Spatial Authorization Model (GSAM). Our access control model will
use publicly available user information, such as property ownership and
voter registration records to determine the spatial extent that the user
is allowed to access, which in turn is used to determine the appropriate
image(s), or a portion of it, from the image database. To accomplish
this, GSAM supports, in addition to the conventional privilege modes
such as read, insert, delete and modify, privilege modes such as
view, zoom-in, overlay and identify that can be defined based on
the allowed resolution level for a given user.

We provide access control in two ways. (1) We control the depth a
user can traverse, thereby controlling the resolution of the images (s)he
can access. For example, anyone can access a low resolution image such
as the New Jersey state map, but access to a 1 meter resolution image
of an individual’s house is prohibited as it may infringe on the privacy
of that individual. (2) We control the extent a user can view. That is,
a user is given access to high resolution images (say 1 meter), only for
certain regions (typically the property (s)he owns, public parks, etc.)
but not to all regions.

2. BACKGROUND ON GEOSPATIAL
IMAGES

Geospatial images can either be digital raster images that store images
as a number of pixels, or digital vector data that store images as points,
lines and polygons. Typically, satellite images, digital orthophoto quads
and scanned maps are raster images, while maps of vector type (e.g. a
Shape file), digital line graphs, or census TIGER data are vector images.
Other non-image geospatial data sets are data with locational informa-
tion, such as census data, voter registration, land ownership data, and
land use data.

Since the main focus of this paper concerns protecting privacy from
high-resolution satellite surveillance, we provide more details on satel-
lite imagery. Satellite images are a product of Remote Sensing. Remote
sensing is a technology for sampling radiation and force fields to acquire
and interpret geospatial data. Geospatial data are used to develop in-
formation about features, objects, and classes on Earth’s land surface,
oceans, and atmosphere. Remote sensing of the Earth traditionally has
used reflected energy in the visible and infrared regions and emitted en-
ergy in the thermal infrared and microwave regions. It gathers radiation
that can be analyzed numerically or used to generate images whose vari-
ations represent different intensities of photons associated with a range
of wavelengths that are received at the sensor. Satellite images are pic-

PROTECTING PRIVACY FROM SATELLITE SURVEILLANCE 237

torial representation of target objects and features in different spectral
regions. Each sensor (commonly with bandpass filters) is tuned to accept
and process the wave frequencies (wavelengths) that characterize each
region. Each region normally shows significant differences in the distri-
bution (patterns) of color or gray tones. A chief use of satellite image
data has been in classifying different features in a scene into meaning-
ful categories or classes. The image then becomes a thematic map (the
theme is selectable, e.g., land use; geology; vegetation types; rainfall).
Satellite data have the following characteristics:

1. The satellite’s orbital information is changing; hence it is hard to
obtain images whose spatial coverages are exactly the same.

2. There are variabilities of images coming from different satellites and
sensors, even if they observe the same region. Typically different sensors
capture different characteristics of earth surface, e.g. land coverage and
weather.

3. Different sensors provide images of different resolution levels, from
low to high. For example, the Advanced Very High Resolution Radiome-
ter (AVHRR) is a broad-band, four or five channel (depending on the
model) scanner, sensing the visible (red, green, blue), near-infrared, and
thermal infrared portions of the electro-magnetic spectrum. It produces
1km resolution images. Landsat Thematic Mapper (TM) provides multi-
spectral imagery at 25m ground resolution. Radar sensors can transmit
5 to 10 meter resolution images. Sensors from the IKONOS satellite
launched by Space Imaging/EOSAT promises to provide 1m Panchro-
matic and 4m Multispectral (blue, green, red, near-IR) data.

4. For any remotely sensed image, there is a trade-off between spatial
resolution, area of extent, and data volume. If the data volume is to be
held constant, a high-resolution image will cover a small area, while a
low-resolution image will cover a large area. The systems intended for
the identification of land cover and land use have focused on moderate
resolutions between 5 and 30 meters and swaths of 100 to 200 kilome-
ters, while the high resolution satellites are designed with 1 to 3 meters
resolution and 4 to 40 kilometer swaths.

5. Each satellite image undergoes the process of georectification which
involves two steps: georegistration and geocorrection. Geocorrection of
the image is needed since the distances and directions in satellite images
do not correspond to true distances and directions on the ground due to
the variability of satellite position. Georegistration registers each image
with a known coordinate system (e.g. longitude, latitude), reference
units (e.g. degrees) and coordinates of left, right, top and bottom edges
of the image.

238 DATA AND APPLICATION SECURITY

3. AUTHORIZATION MODEL FOR
GEOSPATIAL DATA (GSAM)

In this section, we formally present GSAM, an authorization model
suitable for providing controlled access to geospatial data. Let

denote a set of subjects, a set of objects, and
M={view, zoom-in ...} a finite set of privilege modes. In the following,
we describe in detail the image objects and privilege modes, and present
the formalism for authorization specification.

3.1. IMAGE OBJECTS
Image objects can either be raster or vector images. Vector objects

describe geographic map features such as roads, parcels, soil units, or
forest stands. It can contain several feature classes, such as arc, node,
polygon, label point, annotation, tic, and coverage extent. Each raster
image object is represented as a tuple, < id, l, g, h, w, r, t >, where id
is a unique identifier and l, g, h, and w are latitude, longitude, height,
and width, respectively, that represent the spatial extent of the image. r
is for resolution of while t represents the download timestamp. Each
vector object, is represented as a tuple, < id, l, g, h, w, t, k >, where
id is a unique identifier and l, g, h, and w are latitude, longitude, height,
and width, respectively, that represent the spatial extent of the vector
file. The symbol t denotes the last update timestamp. The symbol k
denotes a link that links tabular data of geographic features contained
in the vector object,

There is a set of access functions associated with each object. Given
an image object, the function rectangle(id) would retrieve the rect-
angular region (l, g, h, w) of the object. Similarly resolution(id) would
return r.

3.2. PRIVILEGE MODES
In our model, we support two types of privilege modes – viewing and

maintenance. The viewing modes include view, zoom-in, overlay,
and identify, and the maintenance modes are insert, delete and
update. The view privilege allows a user to see an image object covering
a certain geographic area within a permitted resolution level.

The zoom-in privilege allows a user to view an image covering a cer-
tain geographic area at a higher resolution. Unlike conventional priv-
ilege modes that allow or deny access, this privilege specifies the level
of zoom-in allowed, and is therefore expressed with an associated value,
called zoom level (for example, zoom-in: 10). The access control al-
gorithm interprets this value and determines the level of resolution of
the image that is allowed to be viewed by the user. Note that given an

PROTECTING PRIVACY FROM SATELLITE SURVEILLANCE 239

image, zooming-in can also be achieved using zoom-in algorithms, but
the quality of the image decreases so that the result becomes useless,
if zooming is done beyond a certain level. Thus the level of zoom-in a
user is allowed should be determined based on the level (s)he can attain
after applying the zoom-in algorithm. That is, if a user is allowed a
zoom-in level of the access control algorithm must make sure that
the user is given an image with a resolution of at most r that can not
be zoomed-in to a resolution higher than without losing its content.
The functionality of providing the desired level of zoom-in is achieved by
storing multiple images with different levels of resolution. Thus, if a user
is allowed to access a region at a certain level of resolution, zooming-in
is accomplished by retrieving a higher resolution image.

The overlay privilege allows users to generate composite images,
where a composite image is constructed by overlaying one image on top
of another. Although each individual image in isolation can be viewed
by a user, sometimes an overlayed image may reveal more information
than the user is allowed to access. Overlaying the street map on a high
resolution image may help pin-pointing a person’s private property and
viewing it in realtime.

The identify privilege allows the user to view the tabular data linked
to an image. The data linked to the image, for example the ownership in-
formation, when shown with a high resolution image may provide visual
exposure of a person’s private property.

While the insert privilege allows a user to insert an image object
into the database, the delete privilege allows her to remove images.
The update privilege allows a user to replace one image with another as
well as modify the attributes of the image, such as latitude, longitude,
resolution, and link. In addition, it allows the user to update the tabular
data linked to the image.

3.3. AUTHORIZATION
An authorization in GSAM is specified as follows:

Definition 1 An authorization a is a triple where
sub is a subject
obj is (i) an object id of an object

(ii) a region represented as a rectangle with (latitude, longitude,
height, width), or

(iii) a set of object ids, and
pr is (i) a single privilege mode or

(ii) a set of privilege modes

An object in our authorization specification can be a single image, a
set of images, or a region. Although the region could be any polygon,

240 DATA AND APPLICATION SECURITY

for the sake of simplicity, in this paper, we limit it to represent only
rectangles. The privilege pr in an authorization triple may be composite,
that is, may contain more than one privilege mode, which is especially
useful when used with overlay. That is the case because, a subject may
be allowed to overlay an image over another low resolution image, but
not over a high resolution image. In order to specify such access control
policies, we need a combination of both zoom-in and overlay.

In our model, as can be seen from the above definition, authorizations
will allow one to specify that a subject is allowed to view a specific
image or region with a specific resolution, or is allowed to overlay a set
of images with a specific resolution. Following are some examples of
authorizations.

Above authorizations can be interpreted as follows: specifies that
John is allowed to access a region centered at point (50, 60) with width
and height of 10, with a zoom-in level of 8. specifies that Mary can
view the object with the object id 123. specifies that Ann is allowed
to overlay objects 123 and 456. Finally, specifies that Tom is allowed
to overlay images 123 and 456 where the highest resolution level of object
456 is 8.

We use a(sub), a(obj) and a(pr) to denote the subject, object and
privilege of a, respectively. Moreover, to denote the attributes of each
component in a, we use the notation componentattribute. For example,

represents the zoom-in level specified in the privilege mode
of a. We denote the set of all authorizations as geo-spatial authorization
base, GSAB.

4. ACCESS CONTROL
When a subject requests to access images covering a specific geo-

graphic region at a specific resolution level, the access control mecha-
nism must evaluate whether such a request can be granted. We define
the Access Request by a user, ur, as follows:

Definition 2 [Access Request] An access request is a triple
where s is the subject, pr is the privilege mode, and o is the

object which can be either of the following two: (i) a tuple (l, g, h, w, r)
where (l, g, h, w) represents the requested rectangle that consists of lat-
itude, longitude, height and width, and r represents the level of resolu-
tion, or (ii) a set of object ids.

According to the above definition, a user may request to access an ob-
ject by specifying its object id, or may request to access a rectangular
region by specifying its latitude, longitude, height and width. We use

PROTECTING PRIVACY FROM SATELLITE SURVEILLANCE 241

Figure 2. The System Architecture

ur(s), ur(o) and ur(pr) to denote the subject, object and privilege mode
specified in ur, respectively.

When a subject requests to access images covering a specific geo-
graphic region at a certain resolution level, the access control module
(refer to figure 2) verifies whether there exists an authorization such
that the object region specified in the authorization overlaps with (or
contains) the requested object area. As a first step, it determines all
the authorizations relevant to the access request. Access is denied if no
relevant authorization exists. Then the authorization evaluation mod-
ule determines either a set of object ids or a rectangular region that is
allowed to be viewed by the subject and sends a request to the image
database. Since the region allowed to be viewed by the subject may not
match exactly with the image(s) returned, the images returned from the
image database need to be edited, namely assembled and/or cropped.
This function is performed by the image processing module. Given an
authorization base GSAB, the following algorithm describes how an ac-
cess request ur with view, zoom-in and overlay modes can be evaluated.

242 DATA AND APPLICATION SECURITY

PROTECTING PRIVACY FROM SATELLITE SURVEILLANCE 243

This algorithm considers three cases for evaluating each privilege
mode. In the first case, both the access request and authorization are
specified with image ids. In this case, evaluation of an access request is
done by testing whether the ids are the same. In the second case, the
access request is specified as a rectangular region, but the authorization
is specified with an image id. In this case, evaluation involves determin-
ing the overlapping region of the image specified in the authorization
with the requested region. If the overlapping region is empty, access is
denied. Otherwise, appropriate request is sent to the image database
to retrieve the image. The case where authorization is specified with a
region and the access request is specified as an id can be dealt with in
a similar manner. Therefore, this is not included in the algorithm. In
the third case, both the access request and the authorization are speci-
fied as rectangular regions. In this case, the overlapped region must be
determined first. The area is then used to retrieve the relevant images.

Further processing is done by the procedure PROCESS-IMAGES if
the area covered by the retrieved images does not coincide with the
region authorized to be viewed by the subject. In this case the image is
cropped. If more than one image are retrieved, they are first assembled
together before cropping.

5. CONCLUSIONS AND FUTURE
RESEARCH

In this paper, we have argued that near-continuous surveillance through
high resolution satellite images when combined with geographic infor-
mation could be a threat to privacy. In order to address this issue, we
presented a suitable access control model, called Geospatial Authoriza-
tion Model (GSAM). GSAM supports privilege modes including view,
zoom-in, overlay and identify that are essential for providing con-
strained access to geospatial data based on the region covered by an
image. Our future research spans a number of directions. We plan to
extend the authorization specification GSAM with temporal attributes.
Unlike conventional authorizations that can be implemented as lists,
authorizations in GSAM involve spatial attributes. In such a case, man-
aging the authorization base and searching for authorizations based on
the spatial extent is not trivial. Therefore, we intend to investigate tech-
niques to maintain the authorization base. We plan to devise methodolo-
gies to verify the consistency of the authorization specification, analyze
conflicts occurring due to simultaneous presence of contains, overlap
and other operations, and strategies to resolve these conflicts. We have
demonstrated in [2] how access control can be efficiently enforced using
a spatial indexing structure called MX-RS quadtree. In future research

244 DATA AND APPLICATION SECURITY

we will build an indexing structure suitable for image access control in
more general cases, where images at the same resolution level do not
have fixed spatial extents. In addition, we intend to consider includ-
ing the temporal aspects into the indexing structure. We also plan to
investigate methods for providing refined access control where different
geospatial information sets, such as health data and income data are
integrated with image and map data.

Acknowledgments
The concept of access control for high resolution satellite imagery

was conceived through discussions with Geoff Henebry. We acknowl-
edge Francisco Artigas for the information on geo-spatial images, their
analysis and processing. We thank James Geller for commenting on an
earlier draft of this paper. The work was partially supported by the
National Science Foundation under grant IRI-9624222 and the Meadow-
lands Environmental Research Institute as a grant from the Hackenack
Meadowlands Development Commission.

References
[1] Jonathan Ball. Satellite remote sensing. TCS Remote Sensing and GIS web page.
[2] Soon Ae Chun and Vijayalakshmi Atluri. Protecting privacy from continuous

high-resolution satellite surveillance. Technical report, CIMIC, Rutgers Univer-
sity, November 1999.

[3] M. Fleck, D. Forsyth, and C. Bregler. Finding naked people. In Proceedings of
4th European Conference on Computer Vision, pages 593–602, 1996.

[4] D. et al Forsyth. Finding pictures of objects in large collections of images. In
Proceedings of International Workshop on Object Recognition, pages 69 – 142,
1996.

[5] James Ze Wang, Jia Li, Gio Wiederhold, and Oscar Firschein. System for Classi-
fying Objectionable Websites. In Proceedings of the 5th International Workshop
on Interactive Distributed Multimedia Systems and Telcommunication Services
(IDMS ’98), volume LNCS 1483, pages 113–124. Springer Verlag, September 1998.

[6] James Ze Wang, Gio Wiederhold, and Oscar Firschein. System for Screening
Objectionable Images Using Daubechies’ Wavelets and Color Histograms. In
Proceedings of the 4th European Workshop on Interactive Distributed Multime-
dia Systems and Telcommunication Services (IDMS ’97), volume LNCS 1309.
Springer Verlag, September 1997.

[7] Robert Wright. Private Eyes. The New York Times Magazine, September 1999.

CHAPTER 22

Database Security Integration Using Role-Based
Access Control

Sylvia Osborn
Department of Computer Science, The University of Western Ontario
London, Ontario, Canada, N6A-5B7
svlvia@csd.uwo.ca

Abstract: Role-based access control provides very flexible mechanisms for managing
access control in complex systems. The role graph model of Nyanchama and
Osborn is one example of how role administration can be implemented. In
previous research, we have shown how the access control information of
existing systems can be mapped to a role graph. In this paper, we extend this
research by showing how, when two systems are being integrated, their role
graphs can also be integrated.

Keywords: role-based access control, database integration, security integration

1. INTRODUCTION

Database interoperability and federated databases have been the subject
of much research [13]. The architecture of federated databases requires each
participating database system to provide an export schema for the data it is
willing to share. Most research in this area has focused on the subsequent
integration of the database schemas into a federated schema. Much less work
has been done on integrating the access control information in a meaningful
way.

Recently, there has been a great deal of activity concerning role-based
access control (RBAC), for general system security as well as database
security. Database security, like systems security, falls into two broad
categories: discretionary access control (DAC), typically found in
commercial relational database packages, and mandatory access control
(MAC) typified by a security lattice and mandatory labelling of subjects and

246 DATA AND APPLICATIONS SECURITY

objects [2], Many systems today require access control, which has properties
somewhere between these two extremes. RBAC has been shown to be
capable of modelling this broad spectrum of security requirements. To date,
no one has examined interoperability of RBAC systems.

Research has been done on interoperability of security systems; some of
this work is cited here. Bonatti et al. has looked at merging two MAC
lattices [1]. [7,4] and [15] have examined the specification of authorisation at
both the local level and the federated level. Tari's DOK system is based on
constraint checking, and focuses on providing a secure architecture [14].
Jonscher and Dittrich's Argos system has roles, but the focus of the security
mechanism is to interpret individual queries in a consistent manner [6].

In this paper, we provide a first step in the integration of systems whose
access control is represented by role graphs [8]. Once two systems' role
graphs have been integrated, further design of the access control for the
federation can proceed by using RBAC administration algorithms to enhance
the initial federated role graph. The role graph model is introduced in the
next section. Section 3 contains a discussion of the integration of two role
graphs. Section 4 presents the algorithm. Two examples, one discretionary
and one mandatory, are presented in Section 5, followed by conclusions.

2. ROLE-BASED ACCESS CONTROL

Role-based access control facilitates the management of permissions in
systems with large numbers of users, objects and permissions [12]. Roles
correspond to job functions, and have names which reflect this.

2.1 The Role Graph Model

The role model of Nyanchama and Osborn [9] emphasises three
important entities in modelling access control in a complex system: users,
roles, and privileges. A privilege consists of an object and an access mode on
the object. Access modes could be as simple as read or write in traditional
security models, or very complex methods on objects. Roles are sets of
privileges. We use the term group to refer to sets of users. In our reference
model, we emphasise three planes: the user/group plane, the role plane and
the privileges plane.

As well as the three basic entities, there are relationships among the
entities which provide a rich way of modelling who is allowed to do what to
what. Implications can exist among privileges within the privileges plane:
for example, an update privilege might imply a read privilege. Users can be
assigned to groups, such as ``the Physics Department" or ``Project Alpha",

Database Security Integration Using Role-Based Access Control 247

and the groups can be related to each other in the user/group plane. Role-role
relationships can exist: the set of privileges assigned to the secretary role
might be a subset of those assigned to the manager role. As well as these
relationships, there are assignments of users/groups to roles, and assignments
of privileges to roles. Following through from a user to the roles the user is
assigned to, and the privileges assigned to these roles, one can then
determine the details of access control. At the same time, by being able to
create groups and roles that correspond to the application area, the flexibility
of management of access control is greatly enhanced.

In our role graph model [9], we model the role-role relationships by an
acyclic directed graph we call the role graph. In this graph, the nodes
represent roles and the edges represent the is-junior relationship. A role is
represented by a pair (rname, rpset), giving the role name and privilege set
respectively. Role is-junior to role iff We also say
that is senior to By specifying that role is-junior to one makes
available all the privileges of to any user or group authorised to role
We require that two roles have distinct privilege sets, i.e. that the graph be
acyclic, so that each role offers a unique set of privileges. We distinguish
between the direct privileges of a role, which are privileges not found in any
of the role's juniors, and effective privileges, which are all the privileges
contained in a role either as direct privileges or ``inherited" from one of the
junior roles. The model does not deal with negative privileges. We also
include in each role graph two distinguished roles: MaxRole and MinRole.
MaxRole contains all the privileges in the system. MinRole.rpset may be
empty. It is not necessary for every role to have users or groups assigned to
it.

Role graphs have the following Role Graph Properties: (1) There is a
single MaxRole. (2) There is a single MinRole. (3) The Role Graph is
acyclic. (4) There is a path from MinRole to every role (5) There is a path
from every role to MaxRole. (6) For any two roles and if

then there must be a path from to By convention, we draw the
role graphs with MaxRole at the top, MinRole at the bottom, all edges going
up the page, and without redundant edges.

We have, in our previous research, introduced algorithms for inserting
and deleting roles, edges, and privileges [8,9]. With these algorithms, role
management is a dynamic process, since roles can be altered quite easily,
and the structure of the role graph (i.e. the interactions between the roles)
can be changed quite frequently if required. All the algorithms run in time
polynomial in the size of the role graph and the size of the privilege sets [9].
In [10] we describe how to map a role graph onto the system tables for a
relational database system so that the same permissions described by the role
graph can be maintained by the resulting relational database. We also show

248 DATA AND APPLICATIONS SECURITY

how to take the permission tables from a relational database and form an
equivalent role graph. Going in this direction gives roles with system-
defined names, which can subsequently be given more meaningful names
using the role graph tools. We have also shown how to map Unix
permissions onto roles [5]. Oracle currently allows roles to be used to help
specify access control [3], although their mechanisms are not as rich as our
role-graph algorithms. It has even been shown that mandatory access control
can be modelled by roles [11]. So, it is reasonable to assume that if two
database systems or two other complex systems are to be integrated, their
access control portion can be represented by a role graph.

2.2 Some Algorithms

In [9], algorithms are given for a number of role graph operations. Of
interest in this paper are the two role insertion algorithms. The first, which
we will call Insert 1, takes a role graph, a role name, a set of what are to be
the direct privileges, the proposed immediate senior and junior roles. The
algorithm creates edges from these proposed juniors to the new role, edges
from the new role to the proposed seniors, computes the effective privileges
of the new role from the proposed direct privileges and the juniors' effective
privileges, and then reestablishes the role graph properties. The algorithm
aborts if a cycle would be created (which would create redundant roles),
leaving the graph unchanged.

The second role insertion algorithm, which we will call Insert2, takes a
role graph, a role name, a set of what are to be the effective privileges, and
inserts the role into the graph. It generates all edges to juniors and seniors, as
determined by comparing effective privileges, and reestablishes the role
graph properties. The algorithm aborts if the new role duplicates an existing
role.

Both of these algorithms are polynomial in the size of the role graph and
the number of privileges in the privilege sets [9].

3. INTEGRATING ACCESS CONTROL

Suppose we have two database systems each of whose access control is
described by a role graph. According to our reference model, we have three
different kinds of information: the users, the roles, and the privileges. Both
users and roles are represented by names. For the users, we assume that
either user names are universal or that a one-to-one mapping can be
constructed by the security administrator in a deterministic way. We ignore
user groups here, and just concentrate on individual user-role assignments.

Database Security Integration Using Role-Based Access Control 249

The role names involve the use of natural language with all its
ambiguities. For this reason, we propose that if two systems have matching
role names, they will be presented to a human being, whom we shall call the
security administrator or SA, to verify that they are intended to be the same.
As well, as described below, we will present roles which seem to have
similar privileges but different names to the SA to verify whether they
should be considered to be the same role, in which case they can be merged.
This decision will always be made by the SA.

Privileges are composed of an object name and an operator name. In
integrating two systems, there may be underlying data objects which should
be regarded as ``the same". We assume that database integration techniques
have been used to decide which objects from systems 1 and 2 should be
regarded as the same. We make a similar assumption concerning operator
names. If the operations are applications or packages, we assume that
database integration techniques can be used to decide, for example, the
``hire" application in one system is the same as the ``create-new-employee"
application in the other. In the worst case, every program and application can
be broken down into a set of reads and writes on individual database objects.
So if the integration of the database objects has been done, and the code for
the applications analysed, complex operations can be compared to see if they
represent the same privilege.

For the sake of the following discussion, if systems 1 and 2 are to be
integrated, then for any two database objects or operations deemed to be the
same, the object name or operation name in system 2 has been mapped onto
that of system 1. The following notation will be used: system 1,

and system 2, consist of three sets: users and roles
and and privileges and . As well as these, there are two role

graphs: and In turn, each consists of object-
operation pairs. There are 8 cases to consider:

1. and are disjoint; and are disjoint; and are disjoint
2. and are disjoint; and are disjoint; and not disjoint
3. and are disjoint; and not disjoint; and are disjoint
4. and are disjoint; and not disjoint; and not disjoint
5. and not disjoint; and are disjoint; and are disjoint
6. and not disjoint; and are disjoint; and not disjoint
7. and not disjoint; and not disjoint; and are disjoint
8. and not disjoint; and not disjoint; and not disjoint

We will first discuss isolated cases, and then the whole process.
Consider first cases 1 and 5. Since both the role sets and the privilege sets

are disjoint, the role graphs can be combined as shown in Figure 1.

250 DATA AND APPLICATIONS SECURITY

Once the new role graph is created, users in remain assigned to all the
roles they were assigned to in and similarly, users in can remain
assigned to all the roles they were assigned to in This user assignment is
the same whether or not and are disjoint. After the two role graphs are
merged, the role graph algorithms can be used to fine-tune the result. For
example, MaxRole and MinRole from the original graphs can be deleted if
they have no users assigned to them.

Figure 1. Disjoint Roles and Privilege Sets

Now consider cases 2 and 6. In both cases the privilege sets are not
disjoint (they have non-empty intersection). First, consider the result graph
to be For each role in insert with its rname and effective
privileges into using Insert2. Insert2 may report that a duplicate role
exists. Since duplicates are not allowed in our role graphs, this insertion will
be rejected. I.e., the two roles have equal effective privilege sets, and we can
treat this as merging the two roles. Role should be mapped to the role that
it is found to be equivalent to. The system must keep track of these
mappings. After the role graph merging is complete, the usual role graph
algorithms can be used to rename roles, etc.

Once the role graphs have been merged, the user assignments have to be
looked at. If and are disjoint, then the users from are assigned to
the roles they were assigned to in and the users from are assigned to
the roles they were assigned to in or whatever they got mapped into. If

and are not disjoint, then we begin by assigning the users from to
their original roles. For each user in a situation can arise as shown in
Figure 2. Suppose a user A in was assigned to role r3 in and to r8 in
Further suppose that roles r2 and r9 are merged. According to this user
should not be assigned to the privileges in r9. However, according to this
user was given these privileges. The merging makes it appear from point
of view that user A would receive new privileges (even though the

Database Security Integration Using Role-Based Access Control 251

integration has equated whatever privileges make up r2 and r9). In any case,
the SA should be notified so that a decision can be made regarding this user's
role assignments in the integrated system.

Figure 2. Merging two roles

Now consider cases 3 and 7: some duplicate role names, but no duplicate
privileges. In particular, consider one role name which corresponds to a role
in both graphs, but whose privilege sets are disjoint. This situation has to be
handled by the SA. There are two possibilities: (1) one of the (duplicate) role
names should be changed. If this is done, we are back to cases 1 and 5. (2)
the SA may want to keep this common role. An example of this is an
accounting role in two systems, say payroll and purchasing, which have no
duplicate objects and therefore no duplicate privileges. Let the two duplicate
roles be denoted by s from and r from and let the common name be n.
To keep a role with name n, insert a new role with n as its name, s and r as
its immediate juniors. The new role has no direct privileges. The immediate
seniors of the new role will be established by the algorithm. Roles s and r
need to be renamed (to some s' and r'). The new role, then, has the union of
the privileges of the roles, which had the same name in the two original
systems. The new role needs to be flagged for user assignment - users
assigned to the original r and s may or may not be assigned to the new role
instead of to s or r - this decision should be made by the SA.

252 DATA AND APPLICATIONS SECURITY

Figure 3. Common names with (a) disjoint privileges, (b) common privileges

Finally, cases 4 and 8: (some) duplicate role names, and (some) duplicate
privilege names. Two roles with distinct names and duplicate privileges were
handled by cases 2 and 6. Two roles with duplicate names and completely
disjoint privileges were handled by cases 3 and 7. Completely duplicate
privilege sets with duplicate role names can just be merged. The interesting
case is if we have duplicate role names and some overlap of the privileges.
Suppose we have two such roles, s from and r from What we suggest
here is to create a new role with the common name n, which contains all the
privileges of the intersection of the privileges of s and r, rename s and r (to
some and insert the new role with and as its immediate seniors.
This situation is shown in Figure 3. Each such role should be assigned to all
users who were assigned to s in and those assigned to r in The new
role will be implicitly assigned to all such users if the users assigned to s (r)
in the original role graph are assigned to in the merged graph.

The overall algorithm proceeds, then, by taking one of the input role
graphs and inserting the roles from the second graph one at a time into it,
taking the above cases into account.

Database Security Integration Using Role-Based Access Control 253

4. THE ALGORITHM

In the algorithm, we merge all the cases above by starting with one of the
role graphs, and inserting the roles from the second graph into it. One
problem that arises is that in the cases shown in Figure 3(a) and (b), when
the new role is inserted, not all of the seniors or juniors of the original role
from may have been inserted yet. This is handled by noting that the
graph itself has redundant information - the effective privileges can be
deduced from the edges, and vice versa. For Insert 1, the privileges given
with the new role are what are believed to be the direct privileges, but if they
are found to be redundant (present in an immediate junior), the role insertion
algorithm will clean this up. So, if, when we use Insert 1, we give it the
effective privileges as what we think will be the direct privileges, when all
the roles have been inserted, and the graph edges and paths cleaned up, the
required juniors or seniors will be connected as expected. The algorithm is
given next.

The output of the algorithm is a merged role graph that retains all of the
information contained in the original two role graphs. Specifically all of the
original roles are present, possibly with new names given by the mapping m,
and each of these roles retains its original effective privilege set.
Furthermore, any roles originally junior or senior to any role are still in this
relationship in the new graph.

254 DATA AND APPLICATIONS SECURITY

Figure 4. Role Graph Integration Algorithm

Database Security Integration Using Role-Based Access Control 255

5. AN EXAMPLE

We will illustrate the process by presenting an example showing two
traditional relational databases using standard (discretionary) access control.
System 1 is an Oracle database with relations Staff and Accounts. It has an
Admin role with rights: read Staff, update Accounts and read Accounts. A
Clerk role has rights: read Accounts and insert Accounts. User U1 has been
granted the right to update Staff, and to perform role Admin. User U2 has
been granted role Admin and users U3 and U4 have been granted role Clerk.

System 2 is a relational database whose access control has been specified
in a traditional relational database way, without roles. The method given in
[10] has been used to derive a role graph from the permission tables. As a
result, the roles have generic names.

Figure 5(a,b). Input role graphs

The two role graphs are shown in Figure 5(a) and (b). We have shown
the users in brackets beside the role names, and the effective privileges
(using rA for read Accounts, iS for insert to Staff, etc.) below the role
names. Both systems have a database administrator assigned to MaxRole.

When MaxRole from is inserted into NewRG, the SA will be asked
if one of them should be renamed. If the answer is yes, the role graph shown
in Figure 6 results. If the answer is no, the MaxRole from is inserted,
and then the altorithm will try to insert a role with the union of the privileges
of the rwo MaxRoles. This equals the privileges of MaxRole2, so this
second insert aborts. The only difference is the ultimate role names (which

256 DATA AND APPLICATIONS SECURITY

can be changed later). Note that the Admin role from and role R4 from
are merged.

Figure 6 shows the default user assignments. If U1 happens to be Sue
from System2, the SA will be notified and can decide whether or not she
should be assigned to Role1 or to R4/Admin in the integrated system.

Figure 6. Merged role graph

6. SUMMARY

We have shown how, using our role graph algorithms, we can devise an
algorithm for merging two role graphs. This algorithm is particularly useful
in integrating the security systems of two databases, which are to be
integrated. Because of the wide applicability of role-based access control,
this technique can be used in a wide variety of integration activities.

References
[1] P.A. Bonatti, M.L. Sapino, and V.S Subrahmanian. Merging heterogeneous security
orderings. In Martella Bertino, Kurth and Montolivo, editors, Computer Security -
ESORICS96, LNCS1146, pages 183-197. Springer-Verlag, 1996.
[2] S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison-Wesley,
1994.

[3] Oracle Corporation. Oracle Version 7, Chapters 6 & 7.
http://www.oracle.com/security/html/chap_6.html. 1995.

Database Security Integration Using Role-Based Access Control 257

[4] S. di Virmercati and P. Samarati. An authorization model for federated systems. In
Martella Bertino, Kurth and Montolivo, editors, ESORICS96, LNCS 1146, pages 99-117.
Springer-Verlag, 1996.
[5] L. Hua and S. Osborn. Modeling unix access control with a role graph. In Proc.
International Conference on Computers and Information, June 1998.

[6] D. Jonscher and K.R. Dittrich. Argos - a configurable access control system for
interoperable environments. In Database Security IX, Status and Prospects.

[7] D. Jonscher and K.R. Dittrich. An approach for building secure database federations. In
Proceedings of 20th VLDB Conference, pages 24-35,1994.

[8] M. Nyanchama and S. L. Osborn. Access rights administration in role-based security
systems. In J. Biskup, M. Morgenstem, and C. E. Landwehr, editors, Database Security, VIII,
Status and Prospects WG11.3 Working Conference on Database Security, pages 37-56.
North-Holland, 1994.

[9]M. Nyanchama and S. L. Osborn. The role graph model and conflict of interest. ACM
TISSEC, 2(1):3-33,1999.

[10] S.L. Osborn, L.K. Reid, and G.J. Wesson. On the interaction between role based access
control and relational databases. In Database Security X, Status and Prospects.

[11] R. Sandhu. Role hierarchies and constraints for lattice-based access controls. In
Computer Security - ESORICS 96, LNCS1146, pages 65-79. Springer Verlag, 1996.

[12] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman.
Role-based access control models. IEEE Computer, 29:38-47, Feb. 1996.

[13] A.P. Sheth and J.A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases.
ACM Computing Surveys, 22(3): 183-236, Sept. 1990.

[14] Z. Tari. Designing security agents for the dok federated system.
In Lin and Qian, editors, Database Security XI, pages 35-59. Chapman & Hall, 1997.
[15] M. Templeton, E. Lund, and P. Ward. Pragmatics of access control in mermaid. IEEE-CS
TCData Engineering, pages 33-38, Sept. 1987.

This page intentionally left blank

CHAPTER 23

USER ROLE-BASED SECURITY MODEL
FOR A DISTRIBUTED ENVIRONMENT *

S. Demurjian, T.C. Ting, J. Balthazar, H. Ren, and C. Phillips
Computer Science & Engineering Department, The University of Connecticut
steve@engr.uconn.edu, ting@engr.uconn.edu

P. Barr
The Mitre Corporation, Eatontown, New Jersey
poobarr@mitre.org

Abstract A distributed resource environment (DRE) allows distributed compo-
nents (i.e., servers, legacy systems, databases, COTs, printers, scan-
ners, etc.) to be treated akin to OS resources, where each component
(resource) can publish services (an API), that are then available for use
by clients and resources alike. DREs have lagged in support of secu-
rity. To address this deficiency, this paper concentrates on proposing
a technique for seamlessly integrating a role-based security model, au-
thorization, authentication, and enforcement into a DRE, including our
prototyping with the JINI DRE.

Keywords: Security, roles, distributed computing, authorization, authentication.

1. INTRODUCTION AND MOTIVATION
The emergence of distributed computing technology such as DCE [10],

CORBA [7], and DCOM [5], has enabled the parallel and distributed pro-
cessing of large, computation-intensive applications. The incorporation
of security has often been dependent on programmatic effort. For ex-
ample, while CORBA has confidentiality, integrity, accountability, and
availability services, there is no cohesive CORBA service that ties to-

*This work partially supported by the Mitre Corporation and a AFOSR grant.

260 DATA AND APPLICATIONS SECURITY

gether them with authorization and authentication. However, there has
been significant progress in distributed authentication in Kerberos [6]
and Cheron [3], security metric analysis and design [9], Internet security
via firewalls [8], role-based access control on Web-based intranets [12],
and security for mobile agents [14, 15].

Our specific interest is in distributed applications that plug-and-play,
allowing us to plug in (and subtract) new “components” or resources
where all of the resources (e.g., legacy, COTS, databases, servers, etc.)
have services that are published (via APIs) for use by distributed ap-
plication components. The resources, their services, and the clients,
interacting across the network, comprise a distributed resource environ-
ment (DRE). Our goal in this paper is to leverage the infrastructure of
a DRE to support and realize role-based security. In such a setting, we
propose specialized security resources that interact with non-security re-
sources and clients, to authorize, authenticate, and enforce security for
a distributed application in a dynamic fashion. To demonstrate the fea-
sibility of our approach, we exploit Sun’s DRE JINI [1]. JINI promotes
the construction and deployment of robust and scalable distributed ap-
plications. In JINI, a distributed application is conceptualized as a set
of services (of all resources) being made available for discovery and use
by clients. Resources in JINI discover and then join the Lookup Service,
registering their services for network availability. However, JINI lacks
the ability to restrict what a client can and cannot do, i.e., the services
of a resource are available to any and all clients without restriction.

Our main purpose of this paper is to examine the incorporation of
a role-based approach to security within a DRE, in general, and JINI,
in particular, which supports the selective access of clients to resources.
We propose security specific resources for authorization of clients based
on role, authentication of clients, and enforcement to insure that a client
only uses authorized services. We provide role-based access to services
based on our previous object-oriented efforts [2], without programmatic
changes to a resource, allowing the resource to dynamically discover se-
curity privileges from security resources. In the remainder of this paper,
Section 2 provides brief background on JINI, Section 3 proposes a role-
based security model for a DRE, Section 4 synopsizes our prototyping
with JINI, and Section 5 contains our conclusions.

2. JINI
JINI allows stakeholders to construct a distributed application by fed-

erating groups of users (clients) and the resources that they require [1].
In JINI, the resources register services which represent the methods (sim-

User Role-Based Security for a DRE 261

ilar to an API) that are provided for use by clients (and other resources).
A Lookup Service is provided, and operates as a clearinghouse for re-
sources to register services and clients to find services. The Lookup
Service arbitrates all interactions by resources (e.g., discovering Lookup
Services, registering services, renewing leases, etc.) and by clients (e.g.,
discovering Lookup Services, searching for services, service invocation,
etc.). After discovery has occurred, the resources register their services
on a class-by-class basis with the Lookup Service. The class is registered
as a service object which contains the public methods available to clients
coupled with a set of optional descriptive service attributes. The service
object is registered as a proxy, which contains all of the information that
is needed to invoke the service. One limitation of this process is that
once registered, a resource’s services are available to all clients. The
registration of services occurs via a leasing mechanism. With leasing,
the services of a resource can be registered with the Lookup Service for
a fixed time period or forever (no expiration). The lease must be re-
newed by the resource prior to its expiration, or the service will become
unavailable. From a security perspective, the lease that is given by a
resource to its services is not client specific. Once leased, a service is
available to all, even if the service was intended for a targeted client or
group of clients. Our work seeks to overcome this limitation.

3. A DRE ROLE-BASED SECURITY MODEL
In a DRE, all of the different resources are treated in a consistent

fashion, allowing all of the clients and resources to be seamlessly inte-
grated. Clients consult the Lookup Service to locate and subsequently
execute the services of the found resource that are necessary to carry out
their respective tasks. However, DREs are lacking in their support of
security. When a resource registers its services with the Lookup Service,
there is no way for the resource to dictate which service can be utilized
by which client. If the resource wants to control access to its services, it
must do so programmatically, putting in client-specific code within the
implementation of the service. We are extending the security capabili-
ties of a DRE to allow resources to selectively and dynamically control
who can access its services (and invoke their methods), based on the
role of the client. Our solution exploits the DRE, by defining dedicated
resources to authorize, authenticate, and enforce role-based security for
the distributed application. The remainder of this section is organized
to propose and discuss: a software architecture for role-based security
in a DRE (Section 3.1), the security resources and services for such an

262 DATA AND APPLICATIONS SECURITY

architecture (Section 3.2), and the usage of the solution by clients and
resources (Sections 3.3 and 3.4).

3.1. A SOFTWARE ARCHITECTURE
A software architecture for supporting role-based security in a DRE is

presented in Figure 1.1, and contains: a set of clients that seek to utilize
a set of resources, one or more Lookup Services that allow clients to
find resources (and their services), and three security-specific resources.

Figure 1.1. General Architecture of Clients and Resources.

The Role-Based Privileges resource tracks the services of each resource,
and for every service, the methods that are defined. Each user role
may be granted access at varying levels of granularity, allowing a role to
be assigned to a resource (able to use all services and their methods),
to a service (able to use all of its methods), or to individual methods
(restricted to specific methods of a service). The Authorization-List
resource maintains a list of all users, and for each user, tracks the roles
that they have been authorized to play. Finally, the Security Registration
resource tracks the current active users uniquely identified by a triad of
<name, IP address, user role>. The architecture supports:

1 Role-based authorization to grant and revoke resources, their ser-
vices, and their methods for use by clients. This is accomplished
using the Role-Based Privileges and Authorization-List resources.

User Role-Based Security for a DRE 263

A special security client (see Section 3.3) can be utilized by the
security officer to manage this security data.

2 Client authentication for the verification of the identity and role
of client. This is supported by the Security Registration resource,
which tracks all active clients (name, IP address, role), and is used
by resources whenever a client attempts to access a service.

3 Customized resource behavior so that the client and its role dy-
namically determines if a particular service of a resource can be
used. A resource utilizes all three security specific resources to
control access to its services by clients.

The term client is used in a general sense; resources can function as
clients to access other resources as needed to carry out their functions.

3.2. SECURITY RESOURCES/SERVICES
This section examines the Role-Based Privileges, Authorization List,

and Security Registration resources (see Figure 1.1) via a role-based
approach to discretionary access control [2, 4, 11, 13]. In a DRE, the
computational and abstraction model is to define, for each resource, a
set of one or more services, and for each of the services, to define a set
of one or more methods. However, there is no a priori way to selectively
control which client can utilize which resources (and its services and
their methods). We leverage our past work [2] on selectively allowing the
methods defined on object-oriented classes to be assigned on a role-by-
role basis as a basis to selectively control which clients can access which
services and methods of which resources. The role-based security model
presented herein will focus on the ability to grant and revoke privileges
on resources, services, and/or methods to clients playing roles.

3.2.1 Role-Based Privileges Resource. This resource is
utilized by the security officer to realize the defined security policy for
a distributed application to: define user roles; grant access of user roles
to resources, services, and/or methods; and, when appropriate, revoke
access. The Role-Based Privileges resource is utilized by the resources
(e.g., legacy, COTS, database, Java server, etc.) that comprise the dis-
tributed application to dynamically determine if a client has the required
permission to execute a particular service. To facilitate the discussion,
consider the definitions:

Definition 1: A Resource is a system (e.g., a legacy, COTS, database,
Web server, etc.) that provides functions for the distributed ap-
plication via a collection of n services,

264 DATA AND APPLICATIONS SECURITY

Definition 2: A Service, is composed of methods
where each method is similar to an

object-oriented method, and each method represents a subset of
the functionality provided by the service.

Definition 3: A Method of a service is defined by a
signature (method name, parameter names/type, and return type).

Definitions 4, 5, and 6: Each resource has a unique resource identifier
that allows the DRE to differentiate between replicated resources.
Each service has a unique service identifier to distinguish the ser-
vices within a particular resource. Each method has a unique
method signature that permits overloading of method names while
allowing the methods of the same service to be distinguished.

Each triple of <resource identifier, service identifier, method signature>
uniquely identifies the method across the distributed application.

Given these definitions, we can now define the concept of user role.
In our past work [2], we proposed a user-role definition hierarchy to
characterize the different kinds of individuals (and groups) who ail re-
quire different levels of access to an application. For the purposes of this
discussion, we focus on the leaf nodes of the hierarchy.

Definition 7: A user role, UR, is a uniquely named entity that repre-
sents a specific set of responsibilities against an application. Priv-
ileges are granted and revoked as follows:

UR can be granted access to resource R, denoting that UR can
utilize all of R’s services, and, for all
all of the methods
UR can be granted access to a subset of the services of re-
source R, denoting that UR can utilize all of the methods
defined by that subset.
UR can be granted specific access to a method via the triple
of <resource identifier, service identifier, method signature>.

Once granted, access to resources, services, and/or methods can be se-
lectively or entirely revoked by a security officer. The granularity of
user roles may be fine or coarse at the discretion of a security officer.
Given these definitions, the Role-Based Privileges resource maintains: a
resource list, indexed by <resource identifier> and for each resource, a
list of all user roles granted access; a service list, indexed by <resource
identifier, service identifier>, and for each service, a list of all user roles
granted access; a method list, indexed by <resource identifier, service

User Role-Based Security for a DRE 265

identifier, method signature>, and for each method, a list of all user
roles granted access; and a user-role list, indexed by <role name, role
identifier>, and for each user role, a list of all resources, services, and/or
methods, to which that user roles has been granted access. The infor-
mation of the Role-Based Privileges resource can be manipulated by the
different clients that are part of the distributed application:

 Each resource must register with the Role-Based Privileges re-
source, so that the master resource list, service list, and method
list, can be dynamically modified. Resources must be allowed to
register and un-register services/methods. The Register service in
Figure 1.2, supports these actions.

 Each resource, when consulted by a client (e.g., GUI, software
agent, another resource, etc.), asks the Security Registration re-
source if the client has registered, (see Section 3.2.3) and if so, asks
the Role-Based Privileges resource if the client has been granted
access to a service/method pair based on the role of the client.
The Query Privileges service in Figure 1.2 supports these actions.

 There is a Security Client (see Section 3.3), utilized by the security
officer to define and remove user roles and to grant and revoke priv-
ileges (resources, services, and/or methods). The Grant-Revoke-
Find service in Figure 1.2 supports these actions.

To simplify the presentation, we have omitted return types. For exam-
ple, the majority of the methods will return a success/failure flag, the
Check_Privileges will return a yes/no, and the Finds will return result
sets. Note that the services in Figure 1.2 represents a general character-
ization of the services for all three security specific resources.

3.2.2 Authorization-List Resource. This resource main-
tains profiles on the clients (e.g., users, tools, software agents, etc.)
that are actively utilizing services within the distributed application.
The identification of users is more problematic in a distributed setting,
since a user may not be an actual person, but may be a legacy, COTS,
database, agent, etc. This leads to the definition:

Definition 8: A client profile, CP, characterizes all of the pertinent
information needed by a resource to dynamically verify whether a
client can access the desired triple of <resource identifier, service
identifier, method signature>.

The Authorization-List resource maintains the client profiles using two
services (see Figure 1.2). The Client Profile service is utilized by the

266 DATA AND APPLICATIONS SECURITY

Figure 1.2. The Services and Methods for Security Resources.

security officer, via a Security Client (see Section 3.3), to create and
manage the profiles for clients. The Authorize Role service is also utilized
to verify whether a client has registered with a role (see Section 3.4).

3.2.3 Security Registration Resource. This resource is uti-
lized by clients for identity registration (client id, IP address, and user
role) and by the Security Client (see Section 3.3). The Register Client
service (see Figure 1.2), allows a client to have access to resources and
their services. Every non-security resource utilizes the Security Registra-
tion resource to dynamically determine if the client trying to invoke the
service has registered via the IsClient_Registered method. If the client
has not registered, the resource will deny service.

3.3. SECURITY CLIENT PROCESSING
To further explain the security processing in the DRE, Figure 1.3

contains a depiction of a Security Client and a General Resource (e.g.,
legacy, COTS, database, etc.). For the Security Client, Figure 1.3 con-
tains the services from the three security resources that can be used
to establish the security policy by creating/finding clients, authorizing
roles to clients, and granting, revoking, and finding the privileges that a
role has against a resource, service, and/or method. For the General Re-
source, there is the requirement to register itself, its services, and their

User Role-Based Security for a DRE 267

methods with the Role-Based Privileges resource (see Figure 1.3). Regis-
tration allows entries to be created on the resource, service, and method
lists that can then be accessed via the Security Client. Note that the
Security Client and General Resource must discover the services in Fig-
ure 1.3, prior to their invocation, as represented by the dashed arrows.

Figure 1.3. Security Client and Database Resource Interactions.

3.4. CLIENT PROCESSING
Finally, to fully illustrate the process, we present an example in Fig-

ure 1.4, with flow via the numbered service invocations and returned
results. To reduce the confusion in the figure, we have omitted all of the
discoveries and proxy returns that would be required for the actions la-
beled 1, 2, 5, 6, and 8. The actions that occur can be illustrated with the
method call represented by the arrow labeled 1. Register_Client. Prior
to this method call, the GUI Client would ask the Lookup Service for
a resource that provides the Register Client Service (part of the Secu-
rity Registration resource as shown in Figure 1.2). The Lookup Service
would return a proxy to the Register Client Service, and the GUI would
use this proxy to execute the Register_Client method.

With the discovery/proxy process described, the example begins by
the client making itself known by registering with the Security Reg-
istration resource. The arrows labeled 1, 2, 3, and 4 facilitate the
registration process, by requiring the client to register itself with the

268 DATA AND APPLICATIONS SECURITY

Figure 1.4. Client Interactions and Service Invocations.

Security Registration resource (arrow 1), which in turn interacts with
the Authorization-List resource to determine if the client has been au-
thorized to play the desired role (arrow 2). Arrows 3 and 4 complete
the process and will return either success or failure. For this discus-
sion, we assume that success is returned. Note that clients that have
not registered will still be able to discover resources and services via
the Lookup Service. But, they will be prohibited from executing those
services if they have not registered. After the Client has successfully
registered, it can then discover services via the Lookup Service. Sup-
pose that the Client has discovered the ModifyAttr method that is part
of the Update Database Service for the Database Resource (arrow 5 in
Figure 1.4). When the Database Resource receives the Modify Attr invo-
cation request, the first step in its processing is to verify if the client has
registered by interacting with the Security Registration resource (arrows
6 and 7). If so, then the Database Resource must then check to see if
the client playing the particular role has the required privileges to access
the Modify Attr method, which is accomplished via arrows 8 and 9 by
consulting the Role-Based Privileges resource. If the Database Resource
receives a response to indicate that the GUI Client has the privileges
to access the method, it will then execute the Modify Attr method and
return a status to the Client (arrow 10).

User Role-Based Security for a DRE 269

4. PROTOTYPING WITH JINI
This section reviews our prototyping efforts with JINI to support our

security model as presented in Section 3. We have implemented the pro-
totype on Windows NT 4.0, LINUX, and UNIX computing platforms,
using Java 1.3, MS Access and ORACLE for database management,
and JINI 1.3. To support the prototyping effort, we employ a university
application where students can query course information and enroll in
classes, and faculty can query and modify the class schedule. Our proto-
type has fully designed and implemented the security resources: Security
Registration, Role-Based Privileges, and Authorization-List. These re-
sources, along with two Security Client GUIs, one for policy making and
one for policy enforcement (authorizations), make up a reusable Secu-
rity Client (see Section 3.3) and its security services (Figure 1.2). A
security officer can now define, manage, and modify the security priv-
ileges dynamically in support of university security policy. Note that
additional details on our prototyping can be found at our web site for
this project [16].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed and explained an approach that can au-

thorize, authenticate, and enforce a role-based security solution that
operates within a DRE. As presented in Section 3, our architecture
(see Section 3.1) defined the basis of a role-based security model for
a DRE, specified Security Registration, Authorization-List, and Role-
Based Privileges resources and their services (see Section 3.2), and de-
tailed the processing of both clients and resources (see Sections 3.3 and
3.4). We prototyped our model from Section 3 using JINI as described
in Section 4, and including the clients, resources, security resources, and
a Security Client on heterogeneous hardware/OS platforms. The work
presented herein represents the first step in an ongoing effort with one
doctoral and two masters students. There are a number of issues under
investigation: negative privileges to specifically define which resources,
services, and/or methods are not available to a client based on role; in-
corporation of timing and timestamp to allow privileges to expire for
a client based on role, which is related to the JINI leasing mechanism;
definition and utilization of predicates to allow methods to be invoked
by clients only if parameter values are within authorized ranges; and,
investigation of the incorporation of our role-based security model and
concepts for a DRE into an agent-based environment. Overall, we are
concentrating our efforts to define security solutions for distributed ap-
plications operating within a DRE.

270 DATA AND APPLICATIONS SECURITY

References

[1] K. Arnold, et al., The JINI Specification, Addison-Wesley, 1999.
[2] S. Demurjian and T.C. Ting, “Towards a Definitive Paradigm for

Security in Object- Oriented Systems and Applications”, Journal
of Computer Security, Vol. 5, No. 4, 1997.

[3] A. Fox and S. Gribble, “Security on the Move: Indirect Authenti-
cation Using Kerberos”, ACM MOBICON 96, Rye, NY, 1996.

[4] F. H. Lochovsky and C. C. Woo, “Role-Based Security in Data Base
Management Systems”, in Database Security: Status and Prospects,
C. Landwehr (ed.), North-Holland, 1988.

[5] Microsoft Corporation, The Component Object Model (Technical
Overview), Microsoft Press, Redmond, WA, 1995.

[6] C. Nueman and T. Ts’o, “An Authorization Service for Computer
Networks”, Comm. of the ACM, Vol. 32, No. 9, Sept. 94.

[7] Object Management Group, The Common Object Request Broker:
Architecture and Specification, Rev. 2.0, MA, July 1995.

[8] Oppliger, R. “Internet Security: Firewalls and Beyond”, Comm. of
the ACM, Vol. 40, No. 5, May 1997.

[9] M. Reiter and S. Stubblebine, “Authentication Metric Analysis and
Design”, ACM Trans. On Information and System Security, Vol. 2,
No. 2, May 1999.

[10] W. Rosenberry, D. Kenney, and G. Fischer, Understanding DCE,
O’Reilly & Associates, 1992.

[11] R. Sandhu, et al., “Role-Based Access Control Models”, IEEE Com-
puter, Vol. 29, No. 2, Feb. 1996.

[12] R. Sandhu and J. Park, “Decentralized User-Role Assignment for
Web-based Intranets”, Proc. of the 3rd ACM Wksp. on Role-Based
Access Control, Fairfax, VA, Oct. 1998.

[13] D. Spooner, “The Impact of Inheritance on Security in Object-
Oriented Database Systems”, in Database Security, II: Status and
Prospects, C. Landwehr (ed.), North-Holland, 1989.

[14] V. Swarup, “Trust Appraisal and Secure Routing of Mobile Agents”,
Proc. of 1997 Workshop on Foundations for Secure Mobile Code
(DARPA), March 1997.

[15] Walsh, T., Paciorek, N., and Wong, D. “Security and Reliability in
Concordia”, Proc. of the 31st Hawaii Intl. Conf. on System Sciences
(HICSS’98), 1998.

[16] http://www.engr.uconn.edu/ steve/urbsdreproj.html

CHAPTER 24

WorkFlow Analyzed for Security and Privacy in
using Databases

Wouter Teepe, Reind van de Riet and Martin Olivier
1Department of Artificial Intelligence, State University of Groningen, Groningen, The
Netherlands, email: wouter@ teepe. com 2Department of Mathematics and Computer
Science, Vrije Universiteit, Amsterdam, The Netherlands, email: vdriet@cs.vu.nl
3Department of Mathematics and Computer Science, Rand University, Johannesburg, South
Africa, email: molivier@rkw.rau.ac.za

Key words: Security & Privacy and Database systems, Workflow, Cyberspace, Object-
Oriented Databases

Abstract: When companies interchange information about individuals, privacy is at
stake. On the basis of the purpose of the information interchange, rules can be
designed for an agent (Alter-ego) to determine whether the requested
information can be provided. This purpose can be derived from a WorkFlow
specification according to which employees (agents) of one company are
executing their tasks. Direct information flow as well as information which
might flow through private and covert channels is considered.

1. INTRODUCTION

In a study, being conducted for many years, we have introduced the
notion of Alter-ego, which is an object/agent, representing people in
Cyberspace and acting on behalf of these people (see [vdRB96b]). We are in
particular interested in the problem of protecting someone's privacy.

In choosing a company for certain services, like an insurance, an
individual will not only look at conditions such as financial costs and
benefits, but also at less tangible conditions such as privacy rules held in that
company. After inspection of these rules a client can decide to accept an
offer.

272 DATA AND APPLICATIONS SECURITY

In the near future we expect that the privacy conditions are treated even
more seriously, in that the client demands that an agent is placed in that
company which checks the behaviour of the employees in that company.
This agent may inspect WorkFlows according to which these employees are
working. Actually, the situation can be even more complicated by
considering the cooperation of this company (A) with another company (B),
who is interested in information about the individual. The agent may then
decide whether to give that information or not. Also in this case the agent
may inspect the WorkFlow according to which employees in company B are
working; in order to determine whether it is of the interest of the individual
or contrary to his/hers privacy concerns.

The main point of this paper is therefore to analyze a WorkFlow
specification to find out properties relevant for privacy protection. A simple
example will make clear what kind of properties we mean. Suppose the
company is an insurance company and the individual wants to be sure that
decisions within this company about policies and about claims are made
without taking into account specific properties of the individual, such as the
colour of the skin or marital and social status. Using the tools described in
this paper that individual can carry out this analysis.

It is assumed that two companies A and B have organized the work of all
their employees in the form of a WorkFlow (abbreviated in the following as
WF). Although WF systems have been in existence for a number of years,
the trend towards greater interconnection will greatly impact such systems.
On the one hand, interaction will involve more and more non-human
participants. On the other hand the participants in WF processes will become
more and more unrelated. The key to secure implementation of future
generation WF systems is proper authentication and authorization of
participants in a WF process. It is our contention that Alter-egos (see the
next section) are particularly suitable for authentication, while roles are
particularly suitable for authorization. We have presented these ideas in
[GRBO97].

These WFs are open for inspection. From them one can determine
whether employees have the proper information to perform their tasks, but
also whether they may have too much information about an individual, or
even when they can conspire/cooperate with other employees and then are
able to derive private information about the individual, using special
channels. For the agent or Alter-ego in company A it is possible to analyze
these WFs. The outcome can be used in two different ways:
1. To determine whether a company is trustworthy with respect to keeping

privacy rules the employees have (just) enough information about the
individual, and

WorkFlow Analyzed for Security and Privacy in using Databases 273

2. to decide whether to respond to a query which is sent to company A by
one of B's employees taking into account the information this employee
already has about the individual as derived from the WF; this is depicted
in figure 1.

Figure 1: A Company keeping information about person B asks it.

In the next section we will sketch a bit of the framework in which we are
doing our research, i.c. the notion of Alter-ego and introduce the COLOR-X
system which we use to specify WF diagrams. In the following section we
then shall see how the COLOR-X diagrams can be represented as a Prolog
database, so that analysis programs can be written in Prolog. The purpose is
to analyze beforehand what each agent in B knows about P; that is to say:
what s/he has to know in order to do the task specified, and what s/he may
know when using information sent by cooperating/conspiring colleagues,
flowing through a private and covert channels.

In the next section we will see how the privacy rules may use the
knowledge provided in the analysis of the WF diagram. Finally, we will give
some conclusions and hints for future work.

2. BACKGROUND

2.1 Alter-egos

For our research in Security & Privacy in Cyberspace, we assume that
individuals, either in an office environment, or in their homes, will be
represented in Cyberspace by objects, called Alter-egos, in the sense of
Object-Oriented Technology. The identifier of this object may be considered
a combination of Social Security Number and e-mail address. The contents
of these objects represent the properties of the persons for which they are
Alter-ego; their behaviour can be seen as the behaviour of agents acting on

274 DATA AND APPLICATIONS SECURITY

behalf of these persons. They were introduced in [GRBO97], where it was
shown how these Alter-egos can be structured and how Security and Privacy
(S&P) aspects can be dealt with questions around responsibility and
obligations of Alter-egos have been discussed in [vdRB96b, vdRB96a].

2.2 The WorkFlow system COLOR-X

In this section we briefly describe the COLOR-X system in which it is
possible to specify a WF diagram. In Workflow management (WFM)
applications there are tasks to be completed by some organization, but the
organization procedures require that this task will be carried out in steps
where each step is executed by a different individual and no step can be
performed before the steps it depends on are completed [GHS95]. We will
show how S&P rules can be derived from COLOR-X diagrams.

WFM tools are currently being used to specify how people and
information systems are cooperating within one organization. There are at
least three reasons why WFM techniques are also useful in Cyberspace.
First, organizations tend to become multi-national and communication takes
place in a global manner. Secondly, more and more commerce is being done
electronically. This implies that procedures have to be designed to specify
the behaviour of the participants. These procedures may be somewhat
different from ordinary WFM designs, where the emphasis is on carrying out
certain tasks by the users, while in commerce procedures are based on
negotiating, promises, commitments and deliveries of goods and money.
However, as we will see, these notions are also present in the WFM tool we
will use. Thirdly, people will be participants in all kinds of formalized
procedures, such as tax paying or home banking.

2.3 Workflow and Security

This being said, how can we derive security and privacy rules from the
Workflow diagrams (WFDs)? Specifying tasks and actions of people
working in an organization naturally also involves the specification of their
responsibilities [vdRB96b, vdRB96a, GRBO97]. This is what WFDs usually
do. Responsibility implies access to databases to perform certain actions on
data of individuals.

A Workflow Authorization Model is proposed in [AH96]. Authorization
Templates are associated with each Workflow task and used to grant rights
to subjects only when they require the rights to perform tasks. A Petri net
implementation model is also given.

WorkFlow Analyzed for Security and Privacy in using Databases 275

3. THE INSURANCE-CLAIM APPLICATION

The following example is about the treatment of a claim within an
Insurance Company IC, concerning a trip booked with a Travel Agent TA.
First we describe the processes in natural language, using numbers
identifying the actions for easy identification with the boxes used in the
COLOR-X diagram, following next.

There is an Insurance Company, IC, Furthermore there are persons,
which can be employees of the IC. An employee can be an approver, a travel
agent, an expert or a cashier. Also a person can be a submitter of a claim.
The static (incomplete) structure op the submitter is depicted in figure 2.

Figure 2: The static structure of submitter.

Next follows the text of the Claim example. The numbers refer to the
numbered boxes in the diagram.
1. A submitter SU sends in a triple of data (the trip TR, the incident IN, the

amount AM1) to the approver AP of the insurance company IC.
2. AP receives the message from SU and creates an object called claim, CL,

from the triple sent and asks the travel agent TA to verify the claim
(possibly) within one week.

3. TA tries to verify CL within one week and return the answer to AP
4. Upon not receiving an answer from TA, AP assumes the claim is not OK

and informs the submitter SU accordingly, (in a more realistic setting AP
would send a reminder to TA). Upon receiving an answer from TA,
which is "not OK", AP informs SU that the claim is not OK.

5. When TA's answer is positive and the amount is smaller than $100, AP
asks the cashier CA to transfer the money to SU's Bank and informs SU.

6. Upon receiving an answer from TA, which is "OK", and the amount not
being smaller than $100, AP asks an expert EX to look at the claim and
AP informs SU appropriately.

7. EX treats CL and reports the decision to AP, which, in case the claim is
found "not OK", handles as above in 4;

8. when "OK", AP determines the amount AM2 to be paid to SU and asks
the cashier CA to transfer the money to SU's Bank;

9. CA pays the amount AM2 to SU's Bank.
We now give some clarification of the COLOR-X specification in figure 3.
– each box of actions has a mode: PERMIT, NEC or MUST. MUST means

an obligation based on some negotiating in the past: as we are not sure

276 DATA AND APPLICATIONS SECURITY

i-

Figure 3: The claim example

– that the action is actually carried out within the prescribed time it is
necessary to define a counter measure indicated by the lightning arrow.
The mode NEC means we can be sure the action is necessarily carried

WorkFlow Analyzed for Security and Privacy in using Databases 277

out by the system. PERMIT means there are no pre-conditions: the
actions in the box can be executed;

– the actions are described in a formal language involving the participants
and their roles.
It is important to notice that in sending a message from an agent A to a

receiver R only the object identifiers are readable by R, not the contents.
Only when the Workflow specifies that R has to do something with the
contents of the object, it is allowed to read this.

4. THE REPRESENTATION OF COLOR-X
DIAGRAMS IN PROLOG

Before stating for what purpose the WorkFlow WF is going to be
analyzed we give three examples:
1. Suppose an agent like the travel agent TA asks information to company

A, say the marital status of the submitter SU. The submitter's agent in A
could refuse to respond because the analysis of WF shows that TA knows
the trip TR and SU's name. The agent may reason as follows: TA knows
TR, which was a trip for married people, if TA also knows that SU is
single, TA may sue SU for bringing with him/her a partner to which s/he
was not married.

2. Now the travel agent asks for the submitter's age. Although it is not
certain that TA knows the incident IN, it is possible that the approver AP
sends this information to TA using the message in which a reference to
the claim is written. In this case some kind of "private" channel is used
between AP and TA. When TA combines the contents of IN with the
knowledge of the age of SU, TR finds out that the incident concerned
illegally driving a car because SU was too young.

3. The cashier CA seems to know only the amount to be paid and the
submitter's bank and it seems that no privacy problem can occur,
however, suppose the amount is very high, so that CA may want to know
SU's name. By conspiring with the approver AP and the travel agent TA,
using a private channel, CA can get SU's name indeed.
The three examples show that the analysis has to reveal what each

employee knows about the individual, here the submitter SU. It also reveals
that we need to know what each employee might know about the individual,
by cooperating/conspiring with other employees, using private channels. So
lists have to be made for each employee in an action what s/he knows
according to the WF and what s/he may know additionally when another
agent sends him/her a message with more information than the information
prescribed in the WF.

278 DATA AND APPLICATIONS SECURITY

4.1 About the verbs being used

We have to say something about the verbs describing the actions.
Evidently, "send(ag=S, go=M, rec=R, ...)" means: S sends a message M to
R. M may a tuple, as in "(trip TR, incident IN, amount AM1)" or an object
identifier, as in: "go=CL", or an unspecified thing as in "go=answer". There
are also verbs denoting some specific action as: "verify", "treat", or "pay".
For these actions it is necessary that the contents of their parameter "goal" is
known on the basis of "need to know". The "create" and "fill_in" actions are
also special as they bring new objects into being. For these actions detailed
knowledge about their parameter "goal" is not needed. The computer can
carry out these actions without the agent knowing these details.

COLOR-X is a system which has been designed with Linguistics in
mind, in fact it is based on the linguistic theory Functional Grammar
[Dik89,Bur96], while the proper working of the COLOR-X system requires
a connection with a Lexicon, such as WordNet [Fel98], in which the
meaning of words and concepts is stored. In our case we would like the
Lexicon making the distinction between these different kinds of verbs:
"send" is a communicative verb, while "treat" and "verify" are verbs
connected with the notion of performing. To "create" and "fill_in" are verbs
connected to "making something new".

4.2 About the identifiers being used

In the WF many identifiers are being used. They may denote objects,
such as SU, the submitter, or CL a new object created to handle the claim.
They also may denote attributes, usually with information about the
submitter, in which case privacy may be a concern, or about the claim. Some
identifiers are made within the WF, such as AN, denoting an answer used
within a message, or TA being a shorthand for "TR.travel_agent". It is not
the case that only the identifiers belonging to information about the
submitter are important for privacy. Identifiers whose values are created in
the WF can also reveal important information about the submitter, like the
amount of money AM2, which says something about the trip and accident of
the submitter.

4.3 About the representation of the WorkFlow in Prolog

The representation of the WF is adapted to the above analysis; facts and
functors are used for: nodes, processes, actions, roles, identifiers, constraints,
comparisons, expressions, edges, types and attributes. As WFs can be run
through in different ways, these have to be administered in the form of

WorkFlow Analyzed for Security and Privacy in using Databases 279

flows. For our example there are five flows possible, given in figure 4. In
general there may be an infinite number of flows, so in order for the analysis
program not to loop, it is also necessary to find cycles in the WF. The
numbers in this figure are the index numbers of the nodes in the claim CEM,
the arrows are transitions. If there are multiple possibilities for following a
transition then this is indicated above the arrow. If there is only one
possibility then this is notated as a single Transitions that occur when a
"MUST" condition is violated, are notated as

Figure 4: Flows of the claim CEM.

In table 1 we see a list of the identifiers for the claim example. The
second column indicates the identifiers which have to be known by the agent
in order to do its work. Evidently, in order to be able to carry out the "pay"
action, CA must have access to the contents of "AM2" and "SU.bank". The
approver AP in node 8, however, who sends the tuple "(AM2, SU.bank)"
object to CA does not need to know the contents of this tuple, it is just
sufficient to know its object identifier. He can send this identifier to CA as if
it is put in a closed envelope. A special case is formed by identifiers like
"AM2", being sent by EX, as part of the message ME4. From the WF we
cannot see what is the contents of this identifier. In fact it is the outcome of
the "treat" action. Or it comes from the assignment "AM2=AM1". The
question is whether this identifier is also interesting from the standpoint of
SU's privacy. It seems that it is harmless when it is used by the cashier CA.
This is only seemingly the case: from the height of the amount the kind of
claim and incident could be deduced.

The third column reveals that CA could know also "SU.name", when
namely the approver AP would help him. Indeed AP could know "SU.name"
and send it unnoticed, using the message with the above tuple, to CA. On its
turn, AP needs TA to know "SU.name". This is called a private channel, the
existence of such channels is important as the second and third examples
have shown, presented in the beginning of this section. For communicative
actions, indicated by such verbs as: send, create and fill_in, only tokens are
used to indicate identifiers of pieces of information, such as an object
identifier or a pointer, and there is no threat for violating privacy rules. Only
when also a right to read or to write is needed, this threat exists, as the

280 DATA AND APPLICATIONS SECURITY

contents of objects and messages is at stake. This is the case with actions
such as "treat, verify and pay".

5. THE WORKFLOW ANALYZED

The Workflow can be analyzed for several reasons. They may have to do
with rather general properties such as: every agent who needs certain
information is provided with that information. This is a property concerning
the quality of the WF. Our analysis program provides this type of analysis.
For our interest in S&P we may see different aspects to be analyzed:

WorkFlow Analyzed for Security and Privacy in using Databases 281

– Are the employees of a company provided with the information needed
for their work (need-to-know) and don't have more information at their
disposal, which may be contrary to privacy rules/laws.

– The Alter-ego in company A, when deciding to answer a query Q coming
from an employee E of company B, can use the knowledge coming out of
the analysis in this way: Is the knowledge of E together with the answer
to Q enough to entail information about the individual that the individual
does not want E to know.
The first aspect is important when analyzing whether the insurance

company is making fair decisions, that is decisions which don't take the
specific individual into account (such as the information that the submitter
SU is a nephew of the approver AP) WF is analyzed whether a decision
maker in WF is not using personal information, such as name or address,
which he does not need. For our WF this analysis reveals that TA could
make use of some personal information, namely SU's name. It can do that
not directly, as its only information is the claim object CL, to which it does
not have reading access, but because it has reading access to GO2 and
because according to the constraint in node 3: "id GO2=(SU.name, TR)",
"SU.name" is part of GO2, indeed TA can see SU's name.

The second aspect is demonstrated by the existence of private channels.
We have seen in the second and third example how a private channel can be
used to jeopardize privacy rules involving conspiring employees. It may be
necessary that the management of the insurance company is notified that this
type of possible conspiracy exists. In fact it may be the task of an auditor to
signal these possible privacybreaches.

The analysis is based on table 1 which gives for each agent in an action
defined in a node two lists:
1. the identifiers it needs to know in order to do the work specified,
2. the identifiers it might know by conspiring with other employees (using

messages for which they are not meant, so creating private channels).
From this table the Alter-ego for our individual can easily determine

whether a certain query can be answered or not. Take the query in the first
example in the beginning of this section asked by the travel agent TA about
the individual's marital status. The table reveals that TA (needs to) know(s)
the trip TR, so the individual may want his Alter-ego to refuse the correct
answer. In the second example, TA is interested in the individual's age, and
if the individual does not trust the TA he can refuse to answer the query.

5.1 Real covert channels

The use of private channels such as we introduced them in the preceding
sections, can in principle be detected by the WorkFlow engine, i.e. the

282 DATA AND APPLICATIONS SECURITY

underlying machine which governs the carrying out of the WF. The
messages sent by all agents involved can be inspected, so that it can be seen
that agents are sending each other more pieces of information than is asked
for. In the study we describe here another form of using real covert channels
has been dealt with also. In this kind of covert channel an agent puts
information in some piece of information s/he has produced him/herself,
such as changing the amount AM2 from 2000 to 2000.22, where "22" is
some predefined code. Or when the information is a character string using
lower and uppercase letters in some predefined way. In another report
[Tee99] this kind of covert channels is fully analyzed.

6. CONCLUSIONS

We have shown how tools can be built by means of which WF diagrams
can be analyzed on privacy aspects. These tools can also be used to analyze
other aspects such as quality of the WF specification. Future work has to be
carried out around detection of other types of channels. Also the integration
of these tools in the Security part of ERP systems is an interesting area.

7. REFERENCES
[AH96] V. Atluri and W-K. Huang. An extended petri net model for supporting workflows in

a multilevel secure environment. In Proceedings of the 10th IFIP WG 11.3 Working
conference on Database Security, pages 199-216, July 1996.

[Bur96] J.F.M. Burg. Linguistic Instruments in Requirements Engineering. PhD thesis,
Department of Mathematics and Computer Science, Vrije Universiteit Amsterdam, 1996.

[Dik89] S.C. Dik. The Structure of the Clause, volume 1 of The Theory of Functional
Grammar. Floris Publications, Dordrecht, 1989.

[Fel98] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, MA, 1998.

[GHS95] D. Georgakopoulos, M. Homick, and A. Sheth. An overview of workflow
management: from process modelling to workflow automation infrastructure. Distributed
and Parallel Databases, 3(2): 119-154,1995.

[GRBO97] E. Gudes, R.P. van de Riet, J.F.M. Burg, and M.S. Olivier. Alter-egos and roles -
supporting workflow security in cyberspace. In Proceedings of the IFIP WG 11.3 Database
Security Conference (DBSec'97), Lake Tahoe, USA, 1997.

[Tee99] Wouter Teepe. Privacy-gerichte workflow analyse. Master's thesis, Rijksuniversiteit
Groningen, 1999.

[vdRB96a] R.P. van de Riet and J.F.M. Burg. Linguistic tools for modelling alter egos in
cyberspace: Who is responsible? Journal of Universal Computer Science, 2(9):623-636,
1996.

[vdRB96b] R.P. van de Riet and J.F.M. Burg. Modelling alter egos in cyberspace: Who is
responsible? In Proceedings of the World Conference of the Web Society (WebNet'96).
AACE, 1996.

CHAPTER 25

Identifying Security Holes in OLAP Applications

JÜRGEN STEGER, HOLGER GÜNZEL, ANDREAS BAUER
Department of Database System
University of Erlangen-Nuremberg
Martensstr. 3
D-91058 Erlangen
Germany

Key words: Data Warehouse, OLAP, Multidimensional Data Model, Inference

Abstract: A data warehouse system is a necessity for fundamental decisions in every
enterprise. The integration of data from several internal or external sources and
the functionality of modern decision support systems like OLAP tools not only
provide broad access to data but also raise security problems. Security
concerns are more or less the same as those of other database systems but
enriched especially with access and inference control in the multidimensional
model. This paper presents an integrated approach for inference and access
control not on the physical but on the conceptual level. The question is not
only the restriction of relations, but rather the identification and evaluation of
the inference problem of hierarchies and dimensions. The possibility to restrict
or perturbate data in general, is not an adequate solution. We present some
specific problems of a market research company and a solution with an
indicator to discover possible attacks and so be able to restrict the access by
mechanisms like aggregation, restriction or perturbation.

INTRODUCTION

Whenever managers of large enterprises prepare to make the right
decisions, they require detailed information on specific topics. In a dynamic
market environment it is crucial to have online information about one’s own
general business figures as well as detailed information on other companies.
Some of the required data come from independent services like market

284 DATA AND APPLICATIONS SECURITY

research companies. They provide an additional basis for efficiently making
decisions.

One of these third party data providers is the retail research department of
GfK AG in Nuremberg. They collect the turnover of goods in different shops
on a regular time base and sell this cleansed and aggregated data to
companies in the form of trend analysis, market concentration and price
class analyses. The market research companies themselves collect and store
the provided data in a data warehouse [1]. Typically, users navigate through
the data guided by a multidimensional data model which fits best for this
application context. Codd introduced the term “Online Analytical
Processing” (OLAP, [2]) for the interactive exploration of multidimensional
data.

The goal of data warehousing and OLAP is to provide integrated access
to data which resided in heterogeneous sources. Each user is able to analyze
data and create reports himself. But on the other side the user is now able to
receive data he is normally not allowed to. New access control mechanism
are required, because the variety of data cause security problems. Access
control depends on authorization of a specific user, i.e. not each user should
be allowed to see the same data. Commercial products already restrict access
to specific classification hierarchy nodes or provide only aggregated data or
only parts of a cube.

Beside these static problems, topics like inference come into
consideration. The schema and analysis is user-based and therefore inference
oriented. Inference stands for inferring new information from already known
data. Hence, a solution for an access control must include inference aspects
as well. An integrated approach for access and inference control is required
on a conceptual level. However, the main problem is not knowing which
query or answer is problematic with the available data. This question
primarily depends on the data provider. We summarize our work in three
steps: Search the data security holes on a conceptual level, illustrated with
the scenario of the GfK, give general indicators to address these problems
and fix it with restriction or perturbation. The indicators can be precalculated
and be integrated into an aggregation mechanism.

The remainder of this paper is organized as follows. In the next section,
the structure of the multidimensional data model in general as well as
specialities of the retail research at GfK is explained. In section 3, some
aspects of inference and access problems are presented. Our indicator
solution for these problems is proposed in section 4. The paper concludes
with a summary and an outlook on future work.

Identifying Security Holes in OLAP Applications 285

1. MULTIDIMENSIONAL DATA MODEL

A data warehouse is a database integrating several data sources for
analyses aspects. Data is often modelled on a conceptual level with a
multidimensional model. We distinguish between a classification schema
with the structure of a dimensions and the multidimensional schema which
combines several dimensions and measures for a data cube.

Figure 1: Classification schema and hierarchy of a product dimension

1.1 Classification Schemes and Classification
Hierarchies

A classification schema defines the structure of the classification
hierarchy. A classification schema CS is a partially ordered set of
classification levels where CL = {CL0,...,CLn}. Top is a
generic element which is maximal with respect to i.e. Top for
each CL. Figure 1 shows an example of a classification schema of the
product dimension. The partial order allows to place the classification
levels in a directed acyclic graph (DAG). Top is generic in the sense that it is
not modelled explicitly. CL0 is the basic level of the DAG and called
dimensional element.

Furthermore, each classification level SLi of a classification schema CS
has a finite domain dom(SLi). The instances of a classification level are
classification nodes CN like HomeVCR for the classification level Family.

286 DATA AND APPLICATIONS SECURITY

The classification nodes establish a tree structure. We assume the domains to
be mutually disjoint and dom(Top) is {”ALL”}.

Moreover, the dimensions contain features like video system or brand.
This information primarily depends on the instances of the dimensional
elements, but can build up an inheritance hierarchy like in figure 1 and also
depends on the classification nodes. Commonly, the features build another
alternative classification hierarchy.

1.2 Multidimensional Data Structures

After having defined the dimensional data structure, this section deals
with the formal definition of the multidimensional schema. A logical data
model should clearly separate intension and extension of a data cube ([3]).
Otherwise, logical schema design is not independent from the actual
instances.

OLAP data cubes in general contain numerical measures, like sales or
price. There are different types of measures with regard to their
summarizability.

In fact, a multidimensional schema is a collection of possibly aggregated
cube cells with a homogeneous structure. Homogeneous means, that all cube
cells have the same granularity, i.e. aggregation level, and they contain the
same measures. The multidimensional schema C is a structure C[G, M]
where G = (G1,...,Gn) is the granularity consisting of a set of classification
nodes, i.e. such that for each
Gj and M = (m1,…,mm) is a set of measures.

2. INFERENCE PROBLEMATIC

On the one hand, the multidimensional model supports the user in
making decisions with its structure and operations based on the classification
hierarchy. On the other hand, the user should not be allowed to ask all
questions he wants to. In commercial systems, it is possible to deny the
access for specific classification nodes or classification levels which can be
done along with aggregation. But, a static access control on conceptual level
is not enough, because the user is still able to bypass these reglementations
through tricky queries. Therefore problems between the user’s analysis focus
and the data provider’s limitations and dynamic aspects of querying in the
multidimensional model have to be discussed.

Identifying Security Holes in OLAP Applications 287

2.1 One-Query-Inference

In this chapter the question is discussed which data can be inferred by
one query, i.e. which single query leads to inference problems. The user
himself has to search for the explicit data. The gist of a disclosure is to get
sensitive data of an individual. In the multidimensional model, we call this a
multidimensional related disclosure, because many dimensions are involved
in one query. Besides, we distinguish between a refinement and a weighting
disclosure.

Refinement

The refinement disclosure is an exact disclosure, i.e. a query specifies a
query set. A query consists of measures and a combination of classification
nodes from different dimensions. This is used to calculate a value with an
aggregate function e.g. SUM over classification nodes. The result of a query
is composed of the tuples of the query set.

Two examples of the refinement disclosure will be discussed. The first is
called department store problem, the second query-set-smallness. The
department store problem relates to a specific case of the market research
company GfK. In this case a query set is specified by a query which results
in a sum over the sales of a product in only two shops within a period. If this
result is known by one of these two shops it can subtract its sales from the
result of the query. The difference are the sales of the other shop. In this
situation it is possible for one shop to determine the sales of its competitor.
Let us explain it with the competitors A and B which are the only
department stores in an specific area. The query ‘Give me the sales of the
department stores in Nuremberg of the TR-75 on the 15.04.1999’ asked by A
is a sensitive one, because the department store A can calculate the exact
result with the subtraction of its own sales in this area and time.

The query-set-smallness can be seen as a generalization of the
department store problem. It refers to each query that can be asked to the
system and whose query set contains a low number of tuples. For example
the query ‘Give me the number of all sold TR-75 at the Media market in
Nuremberg on the 15.04.1999’ is a sensitive query. Its query set contains
only one tuple and is therefore identifying.

Weighting

The weighting disclosure can be an exact or an approximative disclosure.
Likewise a query set is used to calculate a value. But the feature of this
approach is the domination of one or some tuples. They take a special
position within the aggregation of the query set.

Related to our case study we found three types: the trade brand, the
exclusive model and the weighting disclosure itself. Trade brands are brands

288 DATA AND APPLICATIONS SECURITY

whose producer and vendor is identical. Thus a trade brand is only
distributed via channels of its own company. An example of a trade brand is
Universum because the products of Universum are only sold by the vendor
Quelle itself. A problem arises if e.g. the sales of a Universum VR in
Nuremberg is known, then it is also known that the video recorder is sold by
Quelle in Nuremberg. We call these problems trade brand disclosure.

Figure 2: The weighting disclosure

Another issue is the exclusive model disclosure. Exclusive models are
products a manufacturer makes only available for one vendor. In contrast to
the trade brands the vendor can not be recognized by the vendor name but by
the name of the product. An example of an exclusive model is a jubilee
model, e.g. Sony delivers to Dixxon a special model with a designation only
used for Dixxon. The inference of the exclusive models is similar to the

Identifying Security Holes in OLAP Applications 289

trade brands. For both it is common that a query asking for sales of a trade
brand or an exclusive model leads to a disclosure provided by a 100%
domination of the tuples of the query set. A 100% domination is if all tuples
of the query set contribute to the sensitive result that must not be known.

Sometimes, the domination is not a 100% domination but a k%
domination. Logically a k% domination is the aggregation of some values of
a combination of classification nodes divided by the aggregation over the
same classification nodes of the whole query set. A more general type of
disclosure is required as the trade brand or exclusive model disclosure. We
call it weighting disclosure.

An example of the weighting disclosure is shown in figure 2. There is the
product and shop dimension. Each dimension has its own classification
hierarchies. The crosstable shows the number of sales. The query ‘Give me
the number of all sold TR-75 recorders in Nuremberg’ or ‘Give me the
number of all sold TR-75 in South-Germany’ results in a weighting
disclosure. Because the first query consists of a three tuple query set (TeVi-,
Media-, and Saturn), the TeVi result takes place a 400/403 = 99.3%
domination. The second query leads to a 99.6% domination because of the
domination of the two TeVi tuples within the query set. The weighting
disclosure obviously does not lead to an exact disclosure, but it gives an
impression of the sold products of a vendor if you know that domination.

Reducing the Result Set

Another trick to improve the result of a forbidden query is the parallel
classification disclosure. It appears if two or more classification nodes of
different parallel classifications are used to identify one dimensional element
of one dimension without using the name of the dimensional element itself.
In general the dimension element of a dimension is an unimportant
information. Everybody knows that an electronic product like TR-75 exists.
In all multidimensional data models the dimensional elements of all
dimensions are well known. But, if there is a parallel classification of a
dimension you can combine the classification nodes of different
classification hierarchies. With this element it is not apparent for the system
that you are on the forbidden level of the classification hierarchy.

In the example in figure 3, the product dimension has two parallel
classifications: the hierarchy of the classification nodes and the feature
classification. The product classification has a dimensional element which
identifies exactly one result in the product dimension (extensional
description [4]). The feature classification is not a dimensional classification,
but an intensional description. Normally, it classifies not exactly one result,
but you reduce the quantity of results. Both together are useful to determine
one result in the product dimension, without using the name of the
dimensional element. Universum color TV can be determined by an article

290 DATA AND APPLICATIONS SECURITY

number or as shown in figure 3 by using two intensional descriptions. The
classification node CTV of the product classification and a special feature
combination (68cm, stereo, 16:9, 100 Hertz, child prooflock) exists only for
a Universum color TV which is equal to a specific product.

Figure 3: The parallel hierarchies of the product dimension

2.2 Multiple-Query-Inference

The one-query-inference isn’t always successful because some static
restrictions are able to suppress them. A more efficient and powerful way of
getting sensitive data from a data warehouse is to go through a series of
queries whose results are combined in a knowledge base (audit based
approach). This memory is filled up until the search for sensitive data can be
fulfilled. We distinguish two approaches: the intuitive and the theoretical
approach.

Intuitive Approach

The intuitive approach is a combination of the parallel-classification- and
the multidimensional-related disclosure. Intuitive means that the user is in
the position to infer sensitive data without knowledge of mathematical
retrieval methods. The user only relies on his knowledge of the market and
combines it with the information of the reports to receive sensitive data. If
the result isn’t detailed enough, he uses the OLAP operations of the data
warehouse to refine it stepwise. For example it is possible to get the sales of

Identifying Security Holes in OLAP Applications 291

the trade brand Universum TV in Nuremberg by doing a drill down on the
shop dimension to the classification node Nuremberg and on the product
dimension to the classification node Color TV and then drill down the
feature hierarchy. As the user is aware of the trade brand Universum TV and
its characterizing features, he knows that he inferred the sales of the
Universum TV of the Quelle shop in Nuremberg. The usage of OLAP
operations in this approach bases on the knowledge of the user. They are
only tools to infer sensitive data. This kind is used very often in the
commercial area, because every manager has background knowledge about
the competitors.

Theoretical Approach

A more complex, but efficient way is the theoretical approach. Some
years ago, the area of scientific and statistical databases collected various
methods of inference techniques and restriction of access. To give a short
introduction, some ideas of revealing data are presented in the following.

A very efficient way of revealing particulars of an individual is shown by
Denning at al [5]. They use a special characteristic formula called ‘tracker’
that is composed of the splitting of an forbidden, sensitive statistical query
into smaller parts. Once found, a tracker is able to deduce the result of the
sensitive query by involving the tracker and the response of a few
answerable queries.

Rowe [6] does not try to gain sensitive information of an individual but
statistics on a database which may also be sensitive. His approach
‘diophantine inference’ uses a special kind of diophantine equations that has
to be solved to track down sensitive statistics. Palley and Simonoff [7]
suggest an algorithm to yield a statistical disclosure of a confidential
attribute. A synthetic database is created from the original statistical
database. Then regression analysis is applied to it to estimate the hidden
attribute. Delugach and Hinke [8] introduced an approach to automatically
retrieve sensitive knowledge from a database based on ‘Conceptual Graphs’.

All approaches have in common that the original usage was with
unstructured data and not focussed on access ideas. The data warehouse
environment and the multidimensional model contain the initial point for a
new and broad data specific search.

3. INDICATORS FOR VISUALIZATION OF THE
SECURITY HOLES

An overview of possible restrictions in statistical and scientific database
area is given in [5]. Their methods mainly base on restriction of data and

292 DATA AND APPLICATIONS SECURITY

perturbation. A general solution is hard to present, because a generic
perturbation contradicts the OLAP ideas and conflicts with economical
operations like the distribution analysis, which requires data on a specific
detail level. Otherwise a restriction of specific classification nodes, schemes
or parts of the cube could be bypassed through other queries.

The main problem is not the restriction or the perturbation but to find a
solution showing sensitive areas on the fly. We propose an indicator-based
recognition on the conceptual level which can be often precalculated and
used for an access control at runtime. Of course, only a small part of data is
critical, i.e. not every query contains risks. But, queries on a detailed
classification schema level should be handled with care.

An indicator is an inequation finding out that a query is sensitive and can
compromise the system. If the inequation is true, it means that a disclosure is
obtained; if it is false then the disclosure is not reached. These indicators can
be precalculated in conjunction with an aggregation mechanism.

3.1 Indicator for Parallel Classification and Smallness

First we devote on the parallel classification and the smallness disclosure.
Both use the same indicator, the smallness indicator:

N is the cardinality of the database and k is a threshold value. k depends
on the user conditions and the limitations of the data provider. In case of the
parallel classification disclosure |RG| is the cardinality of the used tuples of
the dimension G. It recognizes whether a query reaches the classification
level of the dimensional element of dimension G. A query is suppressed, if
in all dimensions the level of the dimensional elements is reached. Otherwise
|RG| is the cardinality of the query set RG of the query characterized through
its characteristic formula G. But, just as dangerous to find only a some
tupels, too much tupels should be suppressed as well, because of the chance
of building the compliment.

3.2 Department Store Indicator

The department store disclosure can’t be avoided by the smallness
indicator. We need a new indicator not to be dodged by a query. The
department store indicator is only useful if the competitor, itself a member of
the department stores, asks a department store query. Otherwise it should be
true if a none member asks it. Of course, problems are still remaining, if
other people do the search for these data.

Identifying Security Holes in OLAP Applications 293

This notation denotes a query for the sum of sales for a specific product

node in the shop dimension. A is a shop, and b its competitor, x is a product
e.g. TR-75, z is a shoptype e.g. department store and C is a node of the
classification hierarchy at which classification level the query is dangerous
or not, e.g. C = ‘Nuremberg’. The query in the denominator is the users
query. With the instantiation of the variables the users query leads to the
indicator s. So the system has to compute the query above - if the quotient is
larger or equal than s, determined through the formula s, the query has to be
suppressed.

3.3 Trade Brand or Exclusive Model Indicator

Trade brands imply a disclosure through the connection between the
producer’s and the vendor’s and exclusive models between the product’s and
the vendor’s name. The indicator below reveals a trade brand or an exclusive
model disclosure.

x is a trade brand or an exclusive model, for C see above and a is the
vendor of the trade brand or exclusive model. The query in the denominator
is the users query. The query in the numerator has to be computed by the
system and divided by the user’s query. If the result is 1 the indicator signals
that the user’s query is a sensitive one.

3.4 Weighting Indicator

As mentioned in chapter 3 there exists a more general disclosure
including the trade brand and exclusive model disclosure. The indicator for
the weighting problem is described as follows:

e difference to the trade brand or exclusive model indicator is that the
quotient need not be 1 but over a certain threshold s to indicate a disclosure.
The shop variable a need not be a shop of a trade brand or exclusive model
but a user determined shop. Again, the query in the denominator is the users
query.

294 DATA AND APPLICAT1ONS SECURITY

4. SUMMARY

To find security holes is a fairly complex project, because both the user
and the structure of the data model offer possibilities to achieve sensible
data. In this paper, we presented some inference aspects in a market research
company, to protect their data in a qualified way. Our indicator solution
offers both, to the user a non static limitation and to the data provider the
security not to disclose a secret. The next steps in our research will be
practical tests with our indicator solution and the examination of data mining
methods in this scenario.

REFERENCES

[1] Inmon, W.H.: Building the Data Warehouse, 2. edition. New York, Chichester, Brisbane,
Toronto, Singapur: John Wiley & Sons, Inc., 1996

[2] Codd, E.F.; Codd, S.B.; Salley, C.T.: Providing OLAP (On-Line Analytical Processing) to
User Analysts: An IT Mandate, White Paper, Arbor Software Cooporation, 1993

[3] Sapia, C.; Blaschka, M.; Höfling, G.; Dinter, B.: Finding Your Way through
Multidimensional Data Models, in: 9th International Workshop on Database and Expert
Systems Applications (DEXA’98 Workshop, Vienna, Austria, Aug. 24-28), 1998

[4] Lehner, W.; Albrecht, J.; Wedekind, H.: Multidimensional Normal Forms, in: 10th
International Conference on Scientific and Statistical Data Management (SSDBM'98,
Capri, Italy, July 1-3), 1998

[5] Denning, D.E., Denning, P.J., Schwartz, M.D.: The Tracker: A Threat to Statisical
Database Security, ACM Transactions on Database Systems, 4(1), March 1979, p. 76-96

[6] Rowe, N.C.: Diophantine Inference on a Statitical Database, Infromation Processing
Letters, 18, 1984, p. 25-31

[7] Palley, M.A., Simonoff, J.S.: The Use of Regression Methodology for the Compromise of
Confidential Infromation in Statistical Databases, ACM Transactions on Database
Systems, 12(4), December 1987, p. 593-608

[8] Delugach, H.S., Hinke, T.H.: Using Conceptual Graphs To Represent Database Inference
Secruity Analysis, Journal Computing und Information Technology, 2(4), 1994, p. 291-
307

CHAPTER 26

ALGORITHMS AND EXPERIENCE IN INCREASING
THE INTELLIGIBILITY AND HYGIENE OF ACCESS
CONTROL IN LARGE ORGANIZATIONS

Marc Donner - Morgan Stanley
David Nochlin - Morgan Stanley
Dennis Shasha - New York University
Wendy Walasek - Morgan Stanley

Abstract: Security managers in large organizations must manage the access of tens
of thousands of employees on diverse data. Databases store the access control
information but the security officers use essentially manual techniques to
determine who has too much access and why. We call this task the Audit
Problem. The security research community has offered promising
frameworks such as role-based access control, but these still leave open the
problems of designing the roles and determining group memberships and of
demonstrating that there are substantial benefits to be reaped from making a
change.

In this paper, we propose a data-mining approach that includes an
algorithm that starts with a set of atomic permissions of the form (user, asset,
privilege) and derives a smaller but equivalent set (user group, asset group,
privilege group). The asset and privilege groups so identified constitute
promising roles. The users so identified constitute useful groups.

In this paper we report on actual experience with actual corporate access
control data. We built a production role-based access control authorization
service, storing the tables in a relational database and transmitting queries as
XML 'documents' over MQ message queues.

Our experiments show that the proposed algorithm can reduce the
number of permission assertions by a factor of between 10 and 100. With
such a reduction, the Audit Problem is brought from the absurd to the
plausible.

296 DATA AND APPLICATIONS SECURITY

1. THE PROBLEM

1.1 The players
In any complex environment, there are three sets of players in the access

control arena. On the one hand there are the business managers who are
constrained by fiduciary responsibility and by specific regulations to
establish an appropriate control regime for information. On the other hand
there are the software implementers and support staff for whom success is
measured by the rapid deployment of powerful software and by its stable
operation. Between the two is a collection of auditors, both internal and
external, whose role is to ensure that the implementations are at least
approximately compliant with the regulations.

These relationships are illustrated in this figure:

Figure 1.

1.1.1 Enterprise Managers [Policy]

To senior enterprise managers the imperatives of security are risk
management and regulatory compliance. How, at minimal cost, can they
maintain an acceptable risk profile and comply with the various laws, rules,
and regulations governing the enterprise? Enterprise managers know that
complexity breeds failure, and so they want clear simple statements of
principle. An ideal policy is a one or two page statement in English that

Algorithims and Experience in Intelligibility of Access Control 297

unambiguously lays out the goals and objectives and establishes clear
guidance to employees seeking decisions.

1.1.2 Software Developers and Integrators [Application 1 and
Application 2]

Developers and integrators are typically faced with demands for rapid
delivery of software and systems that provide the maximum in functionality
and performance at the lowest cost. Most software is produced or procured
for a specialized purpose and serves a subset of the organization that is, by
nature of being smaller, naturally more coherent. This reduces the
perceived need by both the enterprise line staff and the developers for
stringent security machinery.

1.1.3 Security Administrators [Security Administration]

Low in the organizational food chain and often neglected in planning
access control systems, the security administrators are the keys to the day-
to-day interpretation of the security policies and their effective reduction to
practice. They have to understand the policies, they need tools that they can
use effectively, and their needs must be reflected in the overall access
control architecture if it is to be effective. To illustrate this point, imagine a
house with excellent locks on every window and door, but installed so
inconveniently that to lock or unlock them requires that the homeowner
carry a ladder and a box of tools to each window and door. How likely is it
that the doors and windows will be locked or unlocked at the appropriate
times?

1.1.4 Auditors

Senior managers and a wide variety of external parties, from customers
to industry regulators, look to the auditors to reconcile the ideally clear and
simple statements of policy and the necessarily complex and messy
implementations that emerge from day-to-day activities. Auditors, in turn,
look for powerful analytical tools to help them reduce the complexity of the
world they discover so that they may answer the questions that are put to
them.

298 DATA AND APPLICATIONS SECURITY

1.1.5 Related Work

To quote from a report on this problem at NIST [1], "one of the most
challenging problems in managing large networked systems is the
complexity of security administration. Today, security administration is
costly and prone to error because administrators usually specify access
control lists for each user on the system individually. The principle of role
based access control (RBAC) is that security should be mapped to an
organization's structure. With Role-based Access Control, security is
managed at a level that corresponds closely to the organization's structure.
Each user is assigned one or more roles, and each role is assigned one or
more privileges that are permitted to users in that role."

The notion of authorization hierarchies using roles is certainly present in
the SQL databases [2].

In SQL, the owner of a resource can give certain operational rights (e.g.
insert, delete, and update) to certain users or groups of users (called roles)
on certain objects where an object can be a column, table, or entire database,
or even can be defined as a query. The syntax is:

Non-SQL approaches to the problem include the product from Computer
Associates called TopSecret. That system allows positive and negative
authorizations, permitting grouping of users into collections, wild cards in
object names, and a hierarchy of privileges NONE > ALL > WRITE >
READ where > means "takes precedence over". Assets and permissions are
grouped into profiles that are distributed to users. Finally, there is a notion
of single and variable length wild card characters, so that for example
AB*C matches ABXYTC.

Jajoida et alia [3] have proposed a framework for positive and negative
access control policies. The framework consists of languages and
techniques for making positive and negative access control policies
consistent.

The novelty of our work derives mainly from the fact that we must
actually solve this problem on large data. In a large bank that originates
significant electronic funds transfers people who have excessive
permissions could cause significant financial harm. Existing approaches

Algorithims and Experience in Intelligibility of Access Control 299

within our organization to reducing such risks are manual and consist of
interviewing people and managers about their needs. Our approach here is
to aid that work by increasing the intelligibility of the permissions people
have.

Why could we define no previous experimental study of access control
or algorithms to increase the intelligibility of security? Here's what Prof.
Jajodia observed in a personal communication: "There is no study because
the general feeling is that groups and roles are helpful. Everybody accepts
that." In a way, this paper is meant to show how much help such a
technique can provide.

2. A DATA MODEL

2.1 Glossary

300 DATA AND APPLICATIONS SECURITY

2.2 The Central Data Structure

Historically, access control databases have provided the capability to
assign specific individuals specific rights to specific assets. Some have
provided the ability to aggregate one or another of these atomic entities, but
in general little aggregation has been available. This has resulted in
administrative and analytic headaches as the number of assertions in the
access control databases have grown. At Morgan Stanley Dean Witter in

Figure 2 [User_UserGroup and (p,r) is in Priv_PrivGroup]

Algorithims and Experience in Intelligibility of Access Control 301

the Institutional Securities business we use a product named "Top
Secret," now from Computer Associates, which permits the grouping of
asset-privilege combinations. The operational database for our Top Secret
environment has nearly 500,000 assertions. The number is so large that we
cannot practically analyze it.

It was our hypothesis when we undertook this work that by providing
aggregation for each of the three entities, users, assets, and privileges, we
could reduce the number of assertions in the central fact table. As you will
see in the result section below, that is exactly what we found.

3. ALGORITHMS AND PROOFS
The data model introduced in section 2 is a framework for grouping

assets into asset groups, users into user groups, and privileges into privilege
groups. The algorithm of this section transforms a set of atomic
relationships into the most economical possible set of groupings.

3.1 Reduction Algorithm for Inferring Molecular Rules:

Input: A set of rules at the atomic level (asset, user, and privilege). This
is called PermissionsAtom.

Output: A set of rules at the molecular level (asset group, user group,
and privilege group). This is called PermissionsMolecule.

A description of the groupings
 • From asset to asset group (Asset_AssetGroup),
 • From user to user group (User_UserGroup), and
 • From privilege to privilege group (Priv_PrivGroup).

Correctness Conditions:
If (a, u, p) is in PermissionsAtom, then there exists a row (c, g, r) in

PermissionsMolecule such that (a,c) is in Asset_AssetGroup, (u,g) is in
User_UserGroup, and (p,r) is in Priv_PrivGroup.

3.1.1

If (c,g,r) is in PermissionsMolecule then for all a, u, p such that (a,c) is
in Asset_AssetGroup, (u,g) is in User_UserGroup, and (p,r) is in
Priv_PrivGroup, (a, u, p) is in PermissionsAtom.

302 DATA AND APPLICATIONS SECURITY

3.2 Atom to Molecule Reduction Algorithm:

We explain this algorithm along with the following running example.
We start with the following atomic table.

Note: We now present the reduction steps in a particular order. As we
show later, the order of reduction matters, so this ordering is only one
among several (six, to be precise). But all reductions use the same basic
construction.

3.2.1 Asset Reduction Step

For each distinct user-privilege pair (u, p), find the set of assets:
S(u,p) = { PermissionsAtom.asset |

PermissionsAtom.User = u and
PermissionsAtom.Privilege = p

}
For each such set, create a new name, e.g. assetgroup_u_p. Then create

a new table, denoted tab1, consisting of these asset groups and their unique
user-privilege pairs. Formally, tab1 has three columns (asset group, user,
and privilege), where user-privilege together form a key.

In set theoretic notation:
tab1 (asset group, user, priv) =
{ (S(u, p), u, p) |

u belongs to PermissionsAtom.user and
p belongs to PermissionsAtom.priv

}
In words: create triples consisting of each possible user u, privilege p,

and the associated set of assets, which will be grouped into a new asset

Algorithims and Experience in Intelligibility of Access Control 303

group name. In addition create an association between each created set of
assets and an asset group name.

In our running example, this would give the following (here, we keep the
original sets instead of replacing them by asset group names):

Thus, c2 is the name for {a1} whereas c1 is the name for {a1, a2}. So,
replacing the sets by their names, we would get another form for tab1:

3.2.2 Privilege Reduction Step

The next step consists of grouping the privileges into privilege groups.
The strategy is to perform groupings based on user and asset group to create
sets of privileges.

tab2(asset group, user, privilege group) =
{ (c, u, { tab1.priv |

tab 1.user = u and

304 DATA AND APPLICATIONS SECURITY

tab1.asset_group = c
}

) |
u belongs to tab1.user and
c belongs to tab1.asset_group

}

Again, the constraint is that no two rows in tab2 may have the same asset
group and user combination of values.

In our running example, this does not diminish the number of rows:

3.2.3 User Reduction Step

The next step consists of grouping users into groups. This is the final
step and creates the molecular level of grouping that we seek.

PermissionsMolecule(
asset group,
user group,
privilege group) =

{ (c, { tab2.user |

tab2.privilege_group = r and
tab2.asset_group = c

}, r) |
r belongs to tab2.privilege_group and
c belongs to tab2.asset_group

}
In our running example, this does not diminish the number of rows

either:

Algorithims and Experience in Intelligibility of Access Control 305

3.3 Observations:

3.3.1
The general step of reducing based on C given a table T(G1, G2, C) is to

form the set
T' ={ (g1, g2, { T.C |

T.G1 =g1 and
T.G2 = g2

}
) |

g1 belongs to T.G1 and
g2 belongs to T.G2

}
with the constraint that no two rows in T' have the same g1 and g2

values, in combination. (So, many rows may have g1 in the G1 column and
many may have g2 in the G2 column, but only one row will have g1 and
g2.)

3.3.2

The transformation satisfies the correctness conditions. We will show
this through the use of generalized tables in which there are sets as field
values.

3.3.3 Definitions:

The atomic permission table has a single user, a single asset, and a
single privilege in each row.

A partly molecular table has a set of users, a set of assets, and a set of
privileges in each row. Any of these sets can be singleton, so even the

306 DATA AND APPLICATIONS SECURITY

atomic permission table can be modeled as a partly molecular table in which
every field in every row is singleton. A partly molecular table is isomorphic
to the intermediate tables in our construction. Each such table has atoms in
each field, but some of those atoms represent sets, (e.g. an asset group
represents a set of assets). Partly molecular tables are non-first-normal form
representations of those sets.

The row expansion of row r in a partly molecular table is the cross
product of its sets.

The expansion of a partly molecular table is the union of its row
expansions.

A row one-column expansion of row r on column C is a set of rows of
size ||r.C||, each row having one value of r.C and the values contained r for
the remaining columns.

The one-column expansion of a partly molecular table is the union of
its row one-column expansions.

Then the one-column expansion based on column User would
give:

Algorithims and Experience in Intelligibility of Access Control 307

Observation:
Any ordering of one-column expansions that includes all columns will

yield the same set of rows as an expansion.
The operation unsetting removes the curly brackets when all sets are

singleton. In the example, unsetting yields the following table:

308 DATA AND APPLICATIONS SECURITY

The operation setting is the inverse of unsetting.
Suppose that Ta is an atomic table and P is a partly molecular table. We

say that P conserves Ta if Ta = the unsetting of the expansion of P. That is,
up to reordering Ta is the same as the unsetting of the expansion of P.

Lemma: If P1 is a partly molecular table that conserves Ta and P2 is a
reduction of P1, then P2 also conserves Ta.

Proof: Our strategy is to show that reduction is the inverse of expansion.
(We assume three columns, though the same argument will apply to any
number of columns greater than one.)

When doing a reduction from P1 to P2, we partition P1 by its grouping
columns, e.g. user and asset, and compute the set in its grouped column, e.g.
privilege, corresponding to each partition. Call the grouping columns G1
and G2 and the grouped column C. Without loss of generality, assume that
G1 and G2 are the first two columns. In P2, no two rows have the same G1
and G2 values. Further, no two sets of rows have the same G1 and G2

Algorithims and Experience in Intelligibility of Access Control 309

values in P1 so we can treat the reduction that produces a single row of P2
independently from the reduction for any other row of P2.

Consider the row having values g1 in G1 and g2 in G2 and the
corresponding rows in P1 having g1 and g2 as members. Let set c of items
from column C be all the items from column C in rows having (g1, g2) as
the entries in G1 and G2, respectively.

So, the row (g1, g2, c) in P2 is the reduction of the set of rows in P1
having g1 and g2 as their first two field values. A row one-column
expansion of (g1, g2, c) based on C results in ||c|| rows all having g1 and g2
as their first two field values and having a different element in c in the third
field of each row.

A one-column expansion based on C is the inverse of reduction based on
C. This implies that P1 is the expansion of P2 based on C. Hence, the
expansion of P2 has the same set of rows as the expansion of P1.

Therefore P2 conserves Ta because P1 conserves Ta.
Theorem: The molecular Permissions Table that results from the

Reduction Algorithm conserves the atomic Permissions Table.
Proof: By induction on the column reductions and from the lemma.
Recursion on this procedure does not help.
It never helps, i.e. reduces the size of the permissions molecule, to do

further grouping beyond the above construction. We explain why by
concrete example, but the reader will be able to generalize the example.

Suppose that it were useful to group, say, privilege groups into bigger
privilege groups. Then there would have to be two rows in
PermissionsMolecule with values (g, c, r) and (g, c, r') where privilege
groups r and r' are distinct but group g and asset group c are the same.

When privilege groups are created, they are created based on a partition
of user-asset group pairs. Users from such pairs later are put into groups.
Therefore, no two privilege groups can be associated with the same user and
asset group or the same user group and asset group.

3.3.4 Choosing different orderings of reduction may help.

Recall our running example:

310 DATA AND APPLICATIONS SECURITY

If we reduce asset first, we get the following groupings after the first
step:

None of the other reductions shrinks this set any further.
However, if we reduce user first, we get:

Now, if we reduce privilege next, we get:

This gives us three rather than four rows in the result.

4. QUANTITATIVE RESULTS

Reducing atomic relationships to molecular relationships seems to be a
plausible idea, but does it really help? We set out to answer this question
using several actual sets of authorization data in daily use within Morgan
Stanley Dean Witter. The numbers we cite are:

Algorithims and Experience in Intelligibility of Access Control 311

4.1.1 the initial size of the atomic permissions table,

4.1.2 the size, following execution of the algorithm, of the molecular
permissions table,

4.1.3 the sizes of each of the grouped entities: assets, userids, and
privileges,

4.1.4 the number of groups: asset groups, user groups, and
privilege groups

312 DATA AND APPLICATIONS SECURITY

4.2 Experiment 1:

528 rows in PermissionsAtom became 1 row in Permissions Molecule.
 • 1 asset grouped into 1 asset group
 • 12 users grouped into 1 user group
 • 44 privileges grouped into 1 privilege group

4.3 Experiment 2:

 • 2540 rows in PermissionsAtom became
 • 3 rows in PermissionsMolecule with
 • 3 assets grouped into 3 asset groups
 • 20 users grouped into 1 user group
 • 81 privileges grouped into 3 privilege groups

Algorithims and Experience in Intelligibility of Access Control 313

4.4 Experiment 3:

 • 78,747 rows in Permissions Atom became
 • 554 rows in PermissionsMolecule with
 • 1029 assets grouped into 505 asset groups
 • 998 users grouped into 235 user groups
 • 108 privileges grouped into 403 privilege groups

4.5 Experiment 4: Top Secret Configuration

 • 354,598 rows in Permissions Atom became
 • 25,542 rows in PermissionsMolecule with
 • 59,713 assets grouped into 24,485 asset groups
 • 21,643 users grouped into 23,680 user groups
 • 28 privileges grouped into 35 privilege groups

314 DATA AND APPLICATIONS SECURITY

5. FUTURE WORK
We began this article by highlighting the plight of the auditors who must

reconcile the representation of a security policy with regulations. We
suggested that presenting a human being with hundreds of thousands of
permission facts (354,598 in our case) was simply too unwieldy. Our
algorithm reduced this number of facts to 25,542, definitely a step in the
right direction but not yet a solution.

Achieving a solution requires "improving the hygiene" of the
authorization data, i.e. data cleaning to eliminate typos, reduce
inconsistencies and so on. An algorithm for data cleaning is an open
problem, but we think the following ideas are worth exploring:

Suppose that our grouping to the molecular level produces several sets of
users that are large and are mutually similar. The fact that they are not
identical might be an indication of inconsistent treatment of these users.
The same holds for assets and for privileges.

Sometimes we may be able to infer that permissions are missing.
Consider the following example of atomic permissions:

As it stands this can be reduced to one row:

Algorithims and Experience in Intelligibility of Access Control 315

Now, we notice that any break in that symmetry, for instance by
removing one row, will cause the groups to break up quite a lot. For
instance, if we remove the last row to give:

Then grouping will lead to more rows in the result:

In this case, we'd want to infer that we were missing:

Additional information can also help the cleaning process. We have
found the following heuristics to be useful for example when the
organizational structure is supposed to imply homogeneous privileges: Find
people whose permissions are inconsistent with most (say 80%) of their co-
members in the supposedly homogeneous group. Alternatively, find
permissions that most members of a group have and consider those to be a
core. Question any permission outside the core.

316 DATA AND APPLICATIONS SECURITY

Human judgement plays the critical role in managing security. Our hope
is to provide tools that help people manage this sometimes-overwhelming
task. This paper is one step in that direction.

6. REFERENCES

[1] "Role Based Access Control," D. Ferraiolo and R. Kuhn, NIST,
http://hissa.ncsl.nist.gov/rbac/

[2] "Guide to the SQL Standard," H. Darwen and C. J. Date, 1997, Addison-Wesley, ISBN
0201964260.

[3] "A Unified Framework For Enforcing Multiple Access Control Policies," S. Jajoida, P.
Samarati, V. S. Subrahmanian, and E. Bertino, Proceedings of ACM SIGMOD International
Conference on Management of Data, 1997, pp 474-485

CHAPTER 27

Database Security 2000

John R. Campbell
National Security Agency, Fort Meade, MD 20755-6730

Abstract: Database systems are being more and more used, with larger sized databases,
and as components of very complex systems, that include numerous protocols.
Database security problems in the past have only partially been solved. Is there
any hope to provide adequate security for the new database systems? This
paper describes user and system requirements and provides a list of hints and
techniques to better secure this type of system.

1. INTRODUCTION

Have we solved the DBMS Security Problem? No, the DBMS
security problem was never completely solved. Parts of the problem were
solved, but, in many cases, were not implemented by the popular vendors.
Inference, aggregation and individual I&A in complex systems were never
completely solved. In addition, DBMS’s are constantly evolving to meet the
current expectations of users. Therefore the means of securing the data must
change with the changes in architectures, methodologies and applications.
Existing solutions are now even more insufficient. However, the overall
goals of database information security, that of information privacy, integrity,
availability and nonrepudiation remains the same. The data must be
protected.

2. Environment:

The environment continues to become more interesting and more
difficult to work in. Databases are more widely used than ever. More
formats and protocols are used to access and link to data sources. Web

318 DATA AND APPLICATIONS SECURITY

browser access is everywhere and interconnectivity is a keyword. But with
such configurations, can we assure that only authorized persons are
accessing the data? Do we have usable audit for such transactions? The
configuration today could be cell phone request to data source. The cell
phone or laptop could be located anywhere, possibly in an analog-only cell
area, as could the data source. At a recent conference in Maryland, an
attendee was accessing a California database during a break in the
conference via a cell phone/laptop client. No one thought this act was
unusual.

To make matters worse, there are now fewer trusted operating
systems to mount database systems on. This trend is likely to continue.
Trusted operating systems are not selling very well and few, if any potential
users, have made their use mandatory. Components, in general, have low
levels of assurance. What happens to security when you use low-assurance
components, that are now more complex, in both hardware and software, and
which are strung together in ever-larger strings?

Some of the old solutions may are not too useful anymore. Stand-
alone systems are infrequently used and simple client-server systems are
used less and less. New solutions and mechanisms may require new security
solutions. For example, a new switching and transfer mode, such as the
asynchronous transfer mode (ATM), may require new encryption equipment
to match the ATM’s format and speed. Fortunately some solutions exist for
ATM. How good are these solutions? Does the security equipment exist for
other new technical solutions? Is there an overall security policy? Is it
written? Does the system comply with the security policy?

The widespread use of ActiveX, Java and other mobile codes causes
more security concerns. Database management systems are using these
codes for connectivity, flexibility and applications. The future promises even
more use of these codes. While having many positive qualities, these codes
also may have capabilities that the user, or database administrator may not
be aware of, such as rebooting a target computer, or capturing passwords and
files. Here the selection and proper use of an appropriate product may ease
some of the security problems.

Database architectures have become more varied. In addition to 2-
tier architectures, such as client/server architecture, there exist 3-tier
architectures, that could include a transaction server, and n-tier architectures
that may have multiple presentation, application and data tiers as well as a
transaction manager. Is your security solution appropriate for the
architecture that you are working with? Further considerations include
whether the Distributed Component Object Model (DCOM) or Common
Object Request Broker Architecture (CORBA) is being used.

Database Security 2000 319

Bigger databases, terabytes in length, exist. Data warehouses and
marts are common. Data mining is in. Inference and aggregation, using a
variety of techniques, is a prime goal. How do you prevent some and allow
others to use these techniques?

What do users desire? They desire much more functionality, with
widely distributed systems over varying communications, while preserving
ease-of-use. These systems are complex, requiring the use and integration of
many protocols. E-commerce has increased the perception of the user that
data has real value, and with the additional perception that their systems may
be vulnerable, users are requesting strong Identification and Authentication.
Non-repudiation is now very important. In part, to satisfy these goals, smart
cards, PCM cards, certificates or biometrics devices may be used. Users also
want strong access controls to determine who accesses their database or file
and what portion of a database an individual can see. Very important to the
user is ease-of-use with many hoping for a single signon. The easiest way to
have security bypassed is to make it too hard or complicated. Multiple, hard
to remember, frequently changed passwords, which although in theory is
good security, is a good example of a methodology that is frequently
circumvented.

3. Tools/Solutions

Considering all these problems and complexities, what do we have to
work with to build a secure system? First, we can look to mechanisms in
existing commercial database management systems. The traditional roles,
passwords, privilege settings, audit logs and backups still exist and are
usable. New features have been added in some systems to make use of, for
example, smart cards, Kerberos, CORBA compliance, encryption,
certificates, including X.509 certificates, public key directories, and
biometric authenticators.

Second, network and component operating systems still have security
mechanisms and may also use some of the newer ones mentioned in the
previous paragraph. In addition, OS and DBMS may be coupled in Trust
relationships between the two.

Third, there has been a tremendous growth in firewalls of various types,
intrusion detection systems, hashing integrity schemes to insure file
integrity, public keys including infrastructure, virtual private networks,
stronger encryption, and better use of encryption, including public key
encryption. A potential problem is how well the Database System can use
these improvements. Are the security features transparent to the user? Has
the database vendor provided appropriate interfaces to “seamlessly” use
these features? How easy are they to use? Do I have to write my own

320 DATA AND APPLICATIONS SECURITY

interfaces, or other code? How much assurance can I place in each feature
and in the system security as a composable whole?

Fourth, one practical method to improve security is to limit the
functionality of the system. A system that just needs to answer HTTP queries
can be built more securely than a system that has to handle many protocols
as protocol filtering is easier. A “read only” system is easier to protect than
one where users can write into the database. If necessary, the users could
enter data into another system, where it can be checked and verified before
being copied over to the database. Or, I could use a one way mechanism,
such as one way fiber, to fill a database, and then periodically refresh the
database, a means of “throwing the data over the fence”?

Fifth, an Extranet or Intranet is easier to protect than the Internet,
because I only have to worry, about “insiders”, who can be screened and
more easily disciplined. One level systems are easier to protect than multi-
level systems. With one-level systems, I worry less about write-downs or
spillage as I do with multilevel systems.

Sixth, If I need a multilevel system, because, say, ease of use, I could
form a composite system based on risk. If the group that is putting
information into the database is known and trusted to me, I may be willing to
let them work at multiple levels, in effect, using a MLS system to input into
a database. I may force each submitter to sign his data entry. If the groups
that is obtaining data from the database only require it at one level, then I
may restrict them to that level and to read only. If the groups that read the
data read it in only one format, then I can protect even further.

Seventh, system configuration, as usual, is a weak point. Does system
configuration for the system exist? Is the system baselined? Is there system
configuration documentation? What documentation exists? What are the
procedures for changing hardware or software? Have all the relevant patches
been applied? How do you know? How does the next person, who replaces
you, know? Are you using the latest version of virus detecting software?
How do you know? And so on. It is very easy to get into problems at this
point.

Eighth, defense in depth, using intrusion detection, operating systems
with differing architectures, filters, firewalls, guards and encryption may
increase security, if the system is designed properly.

Ninth, the entire system must be looked at. Remember we are protecting
the data. In one system, I was asked to look at the security of a database
server, and I did. But you can not stop with just looking at a component. An
input to the system was downgraded data, and there was, in my opinion,
much more risk associated with the downgrading equipment and procedures
than there was with the single-level database server.

Database Security 2000 321

Tenth, as systems become more complex, standards, at all levels,
become even more important. Levels of software, including security
software have to interface, as do the various components. It’s great if all
hardware and software can be purchased from one vendor, both for
compatibility and accountability reasons, and, also, hopefully, for security
policy consistency. However, it has been my experience that we usually have
to use multiple vendors, and, often, provide custom code to complete the
system solution.

Eleventh, try to avoid projects where security is thought of as an after-
thought. The ideal system is built from a pre-established list of functional
and security requirements. I’ve had the good fortune of doing this once.
However, the later in the system development security is regarded as needed,
the poorer the security result is likely to be.

Finally, the physical, personnel, and procedural techniques that we have
used in the past to secure systems are all the more important now, in this
new era of complex, buggy yet critical systems.

This page intentionally left blank

CHAPTER 28
DECLARATIVE SEMANTICS OF
BELIEF QUERIES IN
MLS DEDUCTIVE DATABASES

Hasan M. Jamil
Department of Computer Science
Mississippi State University, USA
jamil@cs.msstate.edu

Abstract A logic based language, called MultiLog, for multi level secure relational
databases has recently been proposed. It has been shown that MultiLog
is capable of capturing the notion of user belief, of filtering unwanted
and “useless” information in its proof theory. Additionally, it can guard
against a previously unknown security breach – the so called surprise
stories. In this paper, we outline a possible approach to a declarative
characterization of belief queries in MultiLog in a very informal manner.
We show that for “simple programs” with belief queries, the semantics
is rather straight forward. Semantics for the general Horn programs
may be developed based on the understanding of the model theoretic
characterization of belief queries developed in this paper.

Keywords: Multi level security, belief queries, declarative semantics, completeness.

Introduction
In a recent research, Jukic and Vrbsky [8] demonstrate that users in the rela-

tional MLS model potentially have a cluttered view and ambiguous belief of “visible
data”, and that the extraction process of knowledge and belief about data from such
databases is manual and thus, error prone. In an earlier research [4], we showed that
ad hoc knowledge extraction is quite an undertaking in such models, and understand-
ing what others believe is not easily possible. We also showed that a special form of
security breach, called surprise stories, is still possible in the MLS models and thus,
have devised ways to guard against such breaches in MultiLog, a query language for
deductive MLS databases. We continue to argue that it is imperative for users to
theorize about the beliefs of other users at different visible levels. Current models,
unfortunately, do not provide any support to this end. We have addressed some of
the issues we perceive as bottlenecks for contemporary proposals in [4], We will not
elaborate on those issues here for the sake of conciseness. We refer the readers to [3]
for an introduction to MLS data model, and to [2, 8, 4] for a discussion of its short-
comings and possible enhancements. We also do not include a detailed discussion on

324 DATA AND APPLICATIONS SECURITY

the syntax and the proof theory of MultiLog in this paper due to space limitations.
Interested readers may refer to [4] for a preparatory reading. But for the sake of
completeness, we present the syntax of all types of atoms of MultiLog below. The
formulas and clauses of MultiLog are constructed in a way similar to classical logic
programs.

MultiLog syntax includes a variety of atoms constructed from the alphabet of
MultiLog language In this alphabet (i) p is a predicate symbol, and order and level
are two distinguished predicates, (ii) v and k are terms, (iii) a is an attribute
name, (iv) l, h, s and c are symbols representing security levels, (v) and finally, m
is a belief mode representing firm (fir), cautious (cau) or optimistic (opt) belief of
a user. The so called m-atoms are of the form and the b-atoms
are constructed from m-atoms as The p-atoms (or general
predicates) are of the form while two distinguished predicates called the
l-atoms and h-atoms are respectively of the form level(s), and order (l, h).

Our goals for this paper are two-fold: (i) to develop a direct Herbrand semantics
for a subset of definite Horn clause fragment of MultiLog, called the simple programs
by defining a model theory and a fixpoint theory, and (ii) to demonstrate on intu-
itive grounds that the equivalence of MultiLog’s three characterizations – proof the-
ory, model theory and fixpoint theory can be easily established for simple programs.
Through this equivalence, we hope to convince readers that MultiLog’s unique fea-
tures and modeling capabilities, many of which are non-monotonic in nature, do not
compromise the soundness and completeness of the language. This development is
significant from a theoretical perspective, as it gives insight into the understanding of
the logical behavior and mathematical foundations of the language. Complete details
of the ideas discussed in this paper may be found in an extended version [6] elsewhere.

1. DECLARATIVE SEMANTICS OF
MULTILOG

The Herbrand semantics of MultiLog databases can be defined in terms of a com-
posite set-theoretic structure which provides a model for each of the security levels
in the language of MultiLog, including the level the system level which is not
part of any database universe. In other words, each model in the composite structure
interprets formulas pertaining to the corresponding levels in the security hierarchy.
The notion of “belief” in such a structure is then captured using a function level se-
mantics over the sets in the Herbrand structure, not as a set membership. The notion
of Herbrand universe and base is defined in a manner similar to the classical
case. Formally, an Herbrand structure H of is a tuple such that

for every When H(s) contains only m-atoms, otherwise
contains only p-, 1- and h-atoms. Intuitively, every H(s), in H inter-

prets the associated data items belonging to the level s as ground m-atoms that are
true with respect to level s in H. To make a distinction between an interpretation
corresponding to a security level and the interpretation structures for our language

we henceforth call them interpretations and T-interpretations respectively, since
the latter is actually a tuple of simple interpretations or sets.

Definition 1.1 (Satisfaction of Formulas) Let H be a T-interpretation, be a
user clearance level, H(s) be any arbitrary interpretation in H where s is a security
level in H, and let n be the number of such security levels. Furthermore, let A
and B denote ground atomic formulas, and F and G denote any arbitrary ground

Declarative Semantics of Belief Queries in MLS Deductive Databases 325

formulas. Then, the satisfaction of ground formulas with respect to H(s) in H,
denoted or is defined as follows:

Finally, we say that A if and only if where l = depth(A).

In the definition above, is a belief function defined as follows. Let S be an
arbitrary set of m-atoms, be a clearance level, be a ground
m-atom, and m be a belief mode in Then, the belief function

where S is a set of all possible m-atoms and S is the set
of all security symbols, such that:

Furthermore, the depth of a p-, 1- or h-atom is defined to be and as s for m-
or b-atoms of the forms and respectively.
The notion of models (T-models to be precise) can be developed using the machinery
above. We explain the idea through a couple of examples. In the examples that
follow, a database D is said to be in level l, denoted if a user with a clearance
level l accesses the database that sets a context for the queries and the responses
returned by the database.

Example 1.1 Consider the following database below. In this example, and
also throughout this paper, we consider only four security levels for simplicity. Namely,

u, c, and s with a total order That is, we have in our database
the atoms order(u,c), and order(c,s), and that order is implicit.

For the database above, let the T-model be as shown below:

In the T-model above, the first set in the interpretation belongs to level i.e.,
The second set belongs to u, the third to level and the last to s. Now,

326 DATA AND APPLICATIONS SECURITY

several observations can be made here. Note that the database is at level c. Also
note that to be precise. Still This
is because as it does not satisfy condition 1 of definition
1.1 of formula satisfaction, i.e., But and also

Yet, it is interesting to verify that
but This observation follows from the definition of
cautious belief in for Herbrand sets.

But not every T-model is “intended” and the construction of an intended T-model
is not so straightforward. Recall that the satisfaction of b-atoms depends on the
belief function which makes use of the Herbrand sets in H. Also recall that the
set computed by depends on the elements in the Herbrand sets corresponding
to security levels dominated by user clearance (alternatively, by the level of the
database). While the satisfaction of b-atoms is not affected by elements not required
for a structure to be a T-model for a database it potentially affects the beliefs
of users as unwanted models may result. The following example helps clarify this
point.

Example 1.2 Consider a level s database Assume that database is
derived from database of example 1.1 by replacing rule with
rule by cau, and finally by deleting rule
and adding two rules and Now for database

as defined, the intended T-model may be identified as follows:

However, it is easy to verify that or below are not intended although they
are T-models for

and are not intended because they make false, i.e.,
and for similar but different reasons (for
being in and as well as in that made satisfaction of

not possible, instead forced to be believed, but
cautiously, at level c). If either one of these T-models were minimal, it would have
modeled as dictated by logical entailment and implication. A careful
observation will reveal that if the component models are the smallest (no extra atoms
present than needed to be a model), then the composite T-interpretation stands a
chance to be an intended T-model.

Declarative Semantics of Belief Queries in MLS Deductive Databases 327

1.1. FIXPOINT THEORY
The issue now is – can the intended model of a database be constructed algorith-

mically? In this section, we present a constructive way of defining the least T-model
for a MultiLog database . The key idea is to construct the least T-model
of a database by means of a bottom-up least fixpoint computation based on
an immediate consequence operator Since our T-interpretations are tuples of
interpretations, we define in terms of the immediate consequence transformation
of each of the levels in

Definition 1.2 (Fixpoint Operator) Let be a “closed” database and let
be its Herbrand instantiation defined as usual. Let I be an Herbrand

interpretation for We define to be the immediate consequence operator such
that The operator for each component is
defined similar to the classical case as such that

Unfortunately, the fixpoint of does not yield the the intended model of in
general. This is because the belief function is non-monotonic in nature (recall the
case of overriding of less strict data item in a cautious mode), and thus the behavior
of depends on the stage of computation. While it does not affect the monotonicity
of the operator, it does spoil the intended model computation process. The
following example exposes the unscrupulous nature of

Example 1.3 Consider the database derived from database in example
1.2 by adding the rule : q(j) in For the database the intended
T-model may be identified as follows:

However, if we consider the sets computed at every stage of we have the following
sequence,

giving us the T-model

which is not intended as the component model is not minimal, i.e.,
As such the query returns the answer true.

It turns out that if b-atoms are allowed only in the queries, and not in the clauses,
then the intended models can be constructed fairly easily. Such restricted databases

328 DATA AND APPLICATIONS SECURITY

(or programs) are called simple databases (or programs). For simple databases it is
easy to prove the following results.

Proposition 1.1 (Existence and Uniqueness of Intended Models) For any
consistent database [4, 6] and a least consistent T-model I of [6],
I is the unique intended model of if is simple.

Theorem 1.1 (Least T-models) Let be a database and be its least
T-model. Then,

The equivalence between the model theoretic semantics and the proof theory can now
be established as follows.

Theorem 1.2 (Equivalence) Let be a database, be its least T-model,
and G be a ground goal. Then, we have

2. CONCLUSION
For simplicity of presentation, we have assumed that our databases are simple,

and have essentially made them free from b-atoms while we still allowed b-atoms in
the queries. This restriction can be removed by considering a more elaborate model
theoretic treatment similar to stratification [1], or by taking an approach similar to
the overriding concept developed in [7]. Our recent work on parametric inheritance
[5] also provides additional formal basis for the belief function we have introduced in
[4], and used in this paper. Intuitively, the rules containing b-atoms should be placed
at the highest possible stratum so that the belief computation kicks off when the m-
atoms are completely computed. But if the computation of m-atoms depends upon
b-atoms, the scenario will become complicated and we will possibly have to settle for
multiple minimal models. These are some of the issues we seek to investigate in our
future research. The details may be found in an extended version of this paper in [6].

References
[1] M. Bugliesi and H. M. Jamil. A stable model semantics for behavioral inheritance

in deductive object oriented languages. In Proc ICDT, pages 222–237, 1995.
[2] F. Cuppens. Querying a multilevel database: A logical analysis. In VLDB Proc.,

pages 484–494, 1996.
[3] S. Jajodia and R. Sandhu. Toward a multilevel secure relational data model. In

ACM SIGMOD, pages 50–59, 1991.
[4] Hasan M. Jamil. Belief reasoning in MLS deductive databases. In ACM SIGMOD,

pages 109–120, 1999.
[5] H. M. Jamil. A logic based language for parametric inheritance. In Proc KR ’2000.
[6] Hasan M. Jamil and Gillian Dobbie. Logical characterization of multi-level secure

databases. Technical report, Department of Computer Science, Mississippi State
University, USA, October 2000.

[7] Hasan M. Jamil and L. V. S. Lakshmanan. A declarative semantics for behavioral
inheritance and conflict resolution. In Proc ILPS, pages 130–144, December 1995.

[8] N. A. Jukic and S. V. Vrbsky. Asserting beliefs in MLS relational models. In
SIGMOD Record, pages 30–35, Ithaca, NY, 1997.

CHAPTER 29

Trust Management in Distributed Databases

James B. Michael and Leonard T. Gaines
Naval Postgraduate School, Computer Science Department, Monterey, CA

Key words: Trust, Trust Management, Internet Security, Distributed Databases

Abstract: Businesses and the military must be able to incorporate information from a
number of sources in different formats to remain competitive. As the need for
information increases, more applications are utilizing distributed databases.
Data is collected from multiple sources in multiple formats and is combined
into data warehouses or datamarts. For example, military applications are
incorporating distributed databases to combine sensor information for use in
command and control. Intelligent agents can already search the web for
information sources. However, issues of interconnectivity among the agents
and information sources, data overflow, data validity, and security remain to
be addressed. This article addresses the security and data validity issues.
Specifically, the article addresses trust management and its application to
obtaining information utilizing an inherently untrustworthy medium.

1. INTRODUCTION

The Internet has created an opportunity for organizations to gather more
quantitative and qualitative information for decision makers. The ability to
analyze information faster and more efficiently than the competition permits
organizations to better position themselves in the marketplace so as to react
quickly to changes in the business environment.

As applications such as online analytical processing (OLAP) tools be-
come more sophisticated, the need to gather and filter information will
become crucial. Soon these tools will begin to incorporate intelligent agents
to gather information. These agents can search a distributed system for in-
formation, or they can monitor sites, reporting on significant or changing

330 DATA AND APPLICATIONS SECURITY

information. Once the agents obtain data, they can pass it to a data ware-
house that can be accessed by the application tools.

The use of intelligent agents and distributed databases raises a number of
concerns about trust. The Internet and other distributed systems that encom-
pass two or more administrative domains for security (i.e., enclaves) are
inherently untrustworthy. Authentication of users and nodes (e.g., web sites)
can be difficult, and the paths that data packets traverse are not always
owned or controlled by entities that use them. The presence of viruses, Tro-
jan horses, and hackers also adds to the public’s mistrust of distributed
systems. How does user know that the information retrieved by a system is
from a reputable source? How can a system verify the legitimacy of a node?
Can a user trust the owners or users of a particular node in a distributed sys-
tem?

Concerns associated with trust in distributed databases can be ad-
dressed, to some extent, by utilizing a trust-management system. Members
of an organization tend not to want to use data and information from sources
that they do not trust. The motivation for the work reported here is to ex-
plore the extent to which trust-management systems can assist the members
of an organization, to decide, based on consideration of policy about trust,
whether to access data or information from a particular source in a distrib-
uted database system.

2. TRUST AND DISTRIBUTED SYSTEMS

Many believe that cryptography is the key to security on the Internet, but
it does not address all of the pertinent security issues. When connecting with
a server and exchanging information utilizing secure socket layer (SSL),
how do you know that you have connected to the correct server? Site
spoofing involves using URLs that are similar to popular web pages in the
hopes that people will incorrectly type a URL and land on the rogue site. A
good example is Whitehouse.com, which is a pornography site instead of the
government site located at Whitehouse.gov. The site may look exactly like
the site you want, but unless you open the certificate and compare the name
on the certificate to the site, SSL will allow you to transact business with the
rogue site.

Intelligent agents can check certificates to validate sites, but how can they
determine the accuracy of the information located at the sites? Additionally,
how does the agent verify whether a reputable organization issued the cer-
tificate? The Internet Information Server can create its own certificate.
When downloading information from a web site, how does the agent know
whether the information contains malicious code? Additionally, if a client
downloads Java applets or Active X code, how does the client know whether

Trust Management in Distributed Databases 331

the mobile code is malicious until it is too late to prevent the malicious code
from executing?

In summary, the user must form an opinion concerning the extent to
which he or she trusts the developers of the downloadable program and the
web site that is distributing the program. However, a user must be able to
analyze the risks and be knowledgeable enough to make an informed deci-
sion on matters of trust, which can be difficult when dealing with complex
technical issues. Trust-management systems are designed to assist the user
by evaluating the action to be taken, gathering the information required to
form a decision, and determining whether the action to be taken is consistent
with a policy about trust.

3. TRUST MANAGEMENT

In order for intelligent agents to interact with the Internet, in a secure
manner, a methodology must be developed for identifying and validating
web sites and their information. One of the methods to accomplish this is to
add labels to the web sites that contain their certificates and outline the in-
formation contained in each site. Additional labels can attest to a form of
validation similar to the Trusted Computer Security Evaluation Criteria
(TCSEC) model. These validations can consist of a level of security, or-
ganization of data, an evaluation of the sources of information, and possibly
insurance information covering the site. Utilizing these labels, organizations
would be better able to evaluate the information they are receiving from the
Internet. However, a trust-management system would still need to be im-
plemented to ensure that the information gathered from a distributed
database system met with certain organization-wide and user-defined trust
criteria.

Trust models have been used to mimic human trust, dissect trust into ele-
ment parts, categorize trust, and assign metrics to trust. The designers of the
trust models try to communicate a notion of trust from one entity to another.
Since trust is a subjective belief, one must assign a metric to beliefs that will
have value when evaluating trust.

According to Gaines, trust management has a number of definitions.
(Gaines, L., 2000) Some believe it is the process of translating a trust model
into a practical application by combining trust variables associated with
authentication with those of integrity and confidentiality. Others believe it is
a system for protecting open, decentralized systems by analyzing, codifying,
and managing trust decisions.

The authors of the REFEREE trust-management system argue that trust
management provides a systematic means for deciding whether a requested
action, supported by credentials, conforms to a specific policy. (Chu, Y.,
Feigenbaum, J., LaMacchia, B., Resnick, P., and Strauss, M., 1997) Another

332 DATA AND APPLICATIONS SECURITY

view of trust management is that it is a new philosophy for codifying, ana-
lyzing, and managing decisions about trust, with regarding to the overarch-
ing question “Is someone trusted to take action on some object?” (Khare, R.
and Rifkin, A., June, 1998, p. 2)

In order to implement a trust-management system with OLAP tools, we
must first develop a way to identify all of the principals (i.e., the entities in-
volved). The use of digital certificates within a public-key infrastructure
(PKI) is an example of one way to accomplish this. The second step is to list
the various elements of the system, and for instance, use external metadata
labels. These labels can be bound by a URL to a specific web-based re-
source. These labels can be in a Platform for Internet Content Selection
(PICS) format. The final step is to specify the authorization decisions ac-
cording to some policy. The REFEREE trust-management system
(discussed later) addresses these steps. In addition, REFEREE makes trust
decisions based upon a target, a principal, a proposed action, and policy.
(Khare, R. and Rifkin, A., June, 1998)

Trust management systems such as REFEREE take as input a subject, ac-
tion, and statements about the subject, matching these to a module con-
taining the corresponding policy. For each action, there are specific policies
that govern which statements are valid.

Khare and Rifkin discuss three types of approaches to framing policies.
The first approach based on principal-centric policies, which forward a no-
tion that only certain people can be trusted. The policy-enforcement mecha-
nism checks the clearance of each principal to determine whether that
principal can perform an action on an object. Another approach is based on
object-centric policy. Handles, tokens, combinations, and cryptographic
keys are the essence of object-centric policy. A principal must have a
trusted object that represents permission to execute actions on another ob-
ject. The third approach relies on action-centric policy, that is, policy that
specifies that only certain actions can be trusted: the policy-enforcement
mechanism must ensure that any action taken by a principal on an object is
approved. (Khare, R. and Rifkin, A., 30 November, 1997.)

REFEREE has four major components: the metadata format, the trust pro-
tocol, the trust-policy languages, and the execution environment. The
REFEREE system was designed to incorporate these four components. (Chu,
Y., June 1997) PICS labels contain metadata about the site. The metadata
can be queried. The information contained in the metadata is applied to heu-
ristics and trust protocols to determine whether an action is permitted by
policy.

The trust-policy languages must be capable of interpreting the various
forms of metadata and applying the information to internal trust protocols.
The trust protocols consist of gathering all of the necessary information or
assertions to determine if a given request complies with a trust policy. The
trust protocols process the query on the metadata.

Trust Management in Distributed Databases 333

The execution environment is the place where a request is evaluated against a trust policy and
the pertinent metadata information. It accepts requests and interprets the truth policies that pertain
to the requests. It also triggers the trust protocols to gather the necessary information to make a de-
cision. Then it provides an answer to the request along with an explanation.

For a given user request, REFEREE invokes the appropriate user policy
and interpreter module and returns to the host application an answer of
whether or not the request complies with the policy. The basic computing
unit is a module. It is an executable block of code that processes the input
arguments, compares the input to policies, and outputs an answer. The mod-
ule consists of a policy and zero or more interpreters. Modules can delegate
tasks to other modules if necessary. Modules can also be easily added or
deleted; they are contained in a module database that cross-references the
requested action with the appropriate module and interpreter.

REFEREE is a good trust management system in that it is one of the first
to combine all of the categories of trust management into one system. The
other system, Microsoft’s Authenticode, also combines all of the categories
into one system, but its application is limited. Authenticode does not have
the flexibility that is inherent in REFEREE. (Chu, Y., 13 June 1997)

4. JØSANG’S TRUST MODEL

An important part of REFEREE is authentication through the use of cer-
tificates. However, cryptography does not address issues of trust associated
with the public-key infrastructure (PKI).

Jøsang’s trust model was developed for use in the authentication of
public keys. In an open environment such as the Internet, certificates alone
cannot validate authenticity. The trust in the binding of a certificate key and
its owner is essential in providing a level of legal culpability (i.e., digital
certificates and non-repudiation). The certification authority that created the
certificate must also be assessed for trustworthiness. Do they properly check
identification before issuing a certificate? The authenticity of a key can be
validated with its corresponding public or private key. However, the certifi-
cate that holds the key is what needs to be validated.

Jøsang defined trust as a subjective measure: the belief that a system
will resist malicious attacks. Trust in humans was defined as the belief that
he or she will cooperate and not defect. (Jøsang, A., 1999) In his model, he
assumes that the outcome of a transaction depends on whether an agent de-
fects or cooperates. Thus, probabilities are not assigned to possible
outcomes. Instead, trust measures are used as input to a decision mecha-
nism.

In Jøsang’s trust model the truth-value of a statement must be crisp
(i.e., they are either true or false). Whenever the truth of a statement is as-
sessed, it is always done by an individual, and therefore represents a subjec-
tive determination of trust. The belief in a statement cannot be purely bi-

334 DATA AND APPLICATIONS SECURITY

nary. Humans do not have perfect knowledge, so it is impossible to know
with certainty whether a statement is true or false. We can only have “opin-
ions” about the veracity of a statement. These opinions represent degrees of
belief, disbelief, and uncertainty. Jøsang expresses “opinions” mathemati-
cally as b + d+u=1 and b,d,u [0,1], where b, d, and u represent belief,
disbelief, and uncertainty, respectively.

Jøsang’s trust model is founded on subjective logic. Subjective logic
defines the various logical operators for combining opinions. These opera-
tors are conjunction, disjunction, negation, recommendation, and consensus:
they are the same operators as those found in classical and subjective logics,
but they are applied to trust.

A conjunction of two opinions combines an individual’s opinions on two
distinct binary statements into one opinion that reflects the belief in the truth
of both statements. If x and y are two distinct statements, the conjunction of
the belief in x, represented by and y represented by

represents an individual’s opinion about both x and y being true.
If we represent the conjunction of an individual’s opinions on statements

x and y as then In order to compute the con-
junction, the individual values of belief, disbelief, and uncertainty must be
combined for the opinions on both statements. In contrast, the disjunction
operation represents an individual’s opinion about statements x or y or both
being true, that is,

A negation of an opinion represents the belief that a statement is false.
If Wx represents an opinion, represents the negation of such that

Subjective logic can also be used to convey values for recommenda-
tion. Recall that trust in humans is the belief that the human will cooperate
and not defect. Agent A has an opinion about B’s willingness to cooperate
and not defect. Agent B has an opinion about a statement or proposition x.
A recommendation consists of combining B’s opinion about x with A’s opin-
ion about B’s cooperation, so A can form an opinion about statement x.

An assumption underlying the recommendation operator is that the
agents do not defect or change their recommendations depending on whom
they interact with. In addition, there is an assumption that the opinions that
are recommended are independent. If a chain of recommenders is needed to
gain information about a proposition x, it is assumed that only first-hand
knowledge is transmitted. If second-hand knowledge is passed as a recom-
mendation, opinion independence is violated. Additionally, the order in
which the opinions are combined is significant.

Subjective logic has consensus operators. A consensus operator allows
two independent agents to form a consensus opinion based on each agent’s
individual opinions concerning a proposition x.

Trust Management in Distributed Databases 335

Jøsang provides an example of how subjective logic can be used to
measure the trust in a certificate. In some PKI architectures, a certificate
authority issues certificates containing an individual’s public key. If agent A
knows certification authority B’s public key and B knows agent C’s public
key then B can send C’s public key to A signed by B’s private key
Agent A will verify the certificate with B’s public key, and if correct, will
know that it has received a correct copy of C’s public key.

Unfortunately, this exchange does not convey A’s trust that it has re-
ceived a correct copy of C’s public key. In order to trust in a certificate, A
must have an opinion about the validity of B’s public key. A must also form
an opinion on agent cooperation, which measures A’s trust in B to properly
certify other keys. A must also evaluate the recommendation of B as to the
validity of C’s public key.

In order to validate the authenticity of the certificate, A must first
evaluate the recommendation from certification authority B. A will combine
its opinion of B’s key authentication with its opinion about B’s agent coop-
eration. This will determine A’s opinion about B’s capability as a
recommender. Then A must combine its opinion about B’s recommendation
ability with B’s recommendation about C’s public key. (Jøsang, A., 1998)

Jøsang has demonstrated the versatility of his model by showing that it
is capable of chaining trust and certificate relationships using multiple rec-
ommendation operators. The model also supports measuring trust along
multiple trust-paths and combining them into a single representation, and
assigning utility values (i.e., weights) to levels of trust.

5. PRACTICAL APPLICATION

In order to provide trust-based decision-making support for
applications that rely on distributed databases a combination of Jøsang’s
public-key-authentication trust model and REFEREE can be used. Such a
combination can permit an application to validate a web site and utilize
metadata to determine whether the data can be trusted. This section contains
a practical application utilizing an OLAP tool. The discussion here is based
on a portion of the thesis research conducted by Gaines. (Gaines, L., 2000)

In response to a request generated by the front-end, the OLAP server
queries the data source. If additional information is needed, intelligent
agents are deployed to collect the pertinent data. When an agent arrives at a
web site, it examines the site’s metadata; contained in this metadata is the
site’s certificate. In order to authenticate this site, the certificate is passed to
the OLAP server.

The OLAP server, when receiving a certificate, can utilize Jøsang’s
model to compute a level of trust in the certificate. If a chain of trust is

336 DATA AND APPLICATIONS SECURITY

needed to validate the certificate, then the system can generate the queries
necessary to collect recommender information. The OLAP server can com-
pute a probability-expectation value and compare this value to a value in
user-defined policy. If the certificate is trusted, then additional metadata will
need to be collected. Otherwise, the agent will not access that site.

In this scenario, metadata includes a rating level from an outside entity
that evaluates the way data is organized, evaluates data sources, and judges
an organization’s reputation. The agent passes the metadata to the referee
system along with a statement such as “can this agent access this web site?”
The trust protocol can collect the necessary metadata and pass it to the exe-
cution environment. The trust-policy language can then be used to select the
syntax to apply so that a policy can be compared to the metadata. The exe-
cution environment analyzes the statement, the metadata information, and
compares both to a corresponding preset policy about trust. The execution
environment returns an answer: access permitted or denied.

Suppose that two different agents pose the same query to different web
sites. The query results turn out to be different, even partially inconsistent
with one another. The agents each have their own opinions as to the trust-
worthiness of the sources. However, by combining their opinions using the
consensus operator in Jøsang’s model, it may be possible for the agents to
reduce their combined level of uncertainty about the trustworthiness of the
sources.

REFEREE is designed to determine whether an agent should perform a
potentially dangerous task, such as downloading unknown Java applets. The
agent asks the system for permission to execute a particular task. The sys-
tem evaluates the task and the metadata information and compares it to a
policy about trust. If the REFEREE system trusts the site or the software
being downloaded, then it will allow the agent to perform some action on
that site or use the software that was downloaded.

The foregoing example is somewhat oversimplified. For example, we
ignored the complexities associated with composing heterogeneous trust-
management systems. In addition to the need for semantic interoperability
between heterogeneous database systems, Hansen, for instance, points out
the necessity for both technical and functional interoperability between the
public-key infrastructures that are used by the U.S. Department of Defense
and other branches of government to manage trust. (Hansen, A., 1999)

6. CONCLUSION

Users of distributed database systems can rely to some extent on trust-
management systems, in conjunction with their portfolio of other types of
security services, to partially automate both reasoning about and enforcing
policy about trust. Instead of placing universal trust in an object or node

Trust Management in Distributed Databases 337

within a distributed database system, the decision-maker can take steps to
gauge the trustworthiness of the object or node, in addition to passing his or
her trust in the object or node to another party.

Trust-management systems provide applications with the ability to make
informed decisions about actions performed by their distributed databases,
including the actions of intelligent agents. Trust-management systems are
not a silver bullet for addressing all of the challenges associated with trust-
based decision-making in distributed database systems, but they do provide
an avenue for managing trust, and hence, managing risk associated with
trusting a source of data and information.

Disclaimer
The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. Government. The
U.S. Government is authorized to reproduce and distributed reprints for
Government purposes not withstanding any copyright annotations thereon.

List of References
Chu, Y., “Trust Management for the World Wide Web,” Master’s thesis, Massachusetts

Institute of Technology, 1997.
Chu, Y., Feigenbaum, J., LaMacchia, B., Resnick, P., and Strauss, M., “REFEREE: Trust

Management for Web Applications,” [http://www.research.att.com/~bal/papers/www6-refe-
ree/www6-referee.html], 1997.

Dousette, P., Danesh, A., and Jones, M., “Command and Control using World Wide Web
Technology,” [http://turing.acm.org:8005/pubs/citations/proceedings/ada/289524/p212-
dousette], 1998.
Gaines, L. T., “Trust and its Ramifications for the DOD Public Key Infrastructure,” Master’s

Thesis, Naval Postgraduate School, 2000.
Hansen, A. P., “Public Key Infrastructure Interoperability: A Security Services Approach to

Support Transfer of Trust,” Master’s thesis, Naval Postgraduate School, 1999.
Jøsang, A., “An Algebra for Assessing Trust in Certification Chains,” in Proceedings of

the Network and Distributed Systems Security (NDSS’99) Symposium, Internet Society, 1999.
Jøsang, A., “A Subjective Metric of Authentication,” in Proceedings of the Fifth

European Symposium on Research in Computer Securit), Springer-Verlag, 1998.
Jøsang, A., “Trust-Based Decision Making for Electronic Transactions,” in Proceedings

of the Fourth Nordic Workshop on Secure Computer Systems, 1999.
Khare, R., and Rifkin, A., “Trust Management on the World Wide Web,”

[http://www.firstmonday.dk/issue3_6/khare/], June 1998.

Khare, R. and Rifkin. A., “Weaving a Web of Trust,”
[http://www.cs.caltech.edu/-adam/local/trust.html], 30 November 1997.

This page intentionally left blank

CHAPTER 30

Active Authorization as High-level Control

Daniel
PhD. student on DCSE, Brno University of Technology

2, 61266 Brno
Czech Republic
cvrcek@dcse.fee. vutbr. cz

Key words: authorization system, workflow, active authorization

Abstract: The paper introduces several issues that have one common target - secure
cooperation of autonomous information systems. We show that Active
authorization model may be an abstract layer that allows simple, efficient and
secure management of heterogeneous system's security properties.

1. INTRODUCTION

Nowadays commercial sector demands possilibity to specify well-defined
tasks that represent usual business processes. It means that users may work
with intuitive tasks like process customer order or prepare contract of
insurance and so on.

The tasks' definitions may be divided into two abstract levels. The lower
level contains tasks representing atomic (relatively simple) actions. The
higher level comprises workflows, tasks that may be invoked by external
subjects (e.g. users) or other applications.

Commercial environment implies existence of users that can not be fully
trusted and will never be experts in security. Communication among
physically distant information systems is usually performed via insecure
channels and quality of access controls and used models differs. Those facts
demand existence of very tight security permissions that allow application of
need-to-know and need-to-do principles. Ideal seems to be authorization

340 DATA AND APPLICATIONS SECURITY

model that preservers and joins one security state with each particular task.
General properties of such a model have been given in [6].

2. OVERVIEW OF SECURITY IN DISTRIBUTED
SYSTEMS

The first thing we have to do for solving security issues is to split the
distributed system into homogenous (from the security point of view) parts
that are centrally administered. We shall call them autonomous information
system or s-node. At this moment, we may solve secure cooperation among s-
nodes. The identified problems are:
a) Access control in s-node - this problem comprises access control to

resources local in s-node and is solved by access control model
implemented in the local platform. Each autonomous system may have
implemented other access control model.

b) Global administration of system - distributed system has to solve
problems with heterogeneity of its s-nodes and enforce uniform
administration of security properties.

c) Flow control - we are talking about systems that allow space
distributivity of computational tasks. Those tasks use data with different
sensitivity, stored on many s-nodes. Flow control enforces uniformity
throughout the system - reference monitor [1].

We may control several different types of resource accesses (with
increasing abstraction).
1. Access to resources on s-node
2. Access to resources in workflow
3. Access to workflows
4. Data flow in workflows

It is clear that discretionaryon control is sufficient for the lowest level of
access control. The mandatory or some other type of axiomatic access
control (e.g. RBAC [2,3,4]) has to be on the other side used for access
control to workflows and their resources (e.g. RBAC) when a common
security policy is to be enforced.

3. COOPERATION WITH ACCESS CONTROL

Cooperation between global authorization model (AAM) [5] see items
2-4 above and local authorization models (item 1) is the crucial aspect of

Active Authorization as High-level Control 341

successful enforcement of access control rules throughout the distributed
system. We do not know about any work that solves problems rising from
this cooperation. Existing papers explicitly use only RBAC model for
determination of subjects able to activate tasks.

We try to generalize cooperation between AAM and s-nodes' access
control systems. The basic condition is made by introducing general function

that allows determination of subjects - initiators, able to run
a task, from the set of all subjects according to the set of privileges necessary
for initialization of the task.

We do not say which way is the set obtained. We do not say what model
is used for that purpose. It may be a function that finds all users that are
specified in a given UNIX group or a function cooperating with RBAC
model that uses much more sophisticated ways for the purpose.

3.1 Examples of Local Access Control Models

There are vital differences among different access models. Because of the
lack of space we only name the most important. DAC models such as HRU,
Take-Grant, Acten. MAC models Bell-LaPadula, Biba or Dion and also
object oriented models ORION, Iris.

Generally, one may say that basic DAC (discretionary access control)
models do not offer any properties that can be used for generalization of
access control and there are problems with centralized administration. To
solve those problems we have to create layer isolating system with DAC
model from external subjects (users).

MAC (mandatory access control) models contain general axioms that
may be used for common security. Those axioms express certain general
rules that may be used for centralized administration.

The first problem that has to be solved is general architecture of
authorization system as a whole. We are interested in heterogeneous
distributed systems composed from s-nodes that are able to communicate
among themselves. Each s-node contains resources it is able to work with
(files, peripheral devices, ...). It also has a system that manages access to
resources (operational system, database management system) and there is an
access (or authorization) control model that is used for managing access to
resources. The control model has to be a part of authorization system.

3.2 Basic Layering of Authorization System

It is useful to create a basic layering of authorization system based on the
architecture of the distributed system.

342 DATA AND APPLICATIONS SECURITY

We have already said that s-nodes contain (or use) access control model.
This is the first layer and we call it Local Access Control. This layer should
be able to create new users or user groups and provide instruments that allow
authentication of more abstract systems (or its users).
Definition 1: Local Access Control is n-tuple that
consists of set of users set of resources (or objects) set of access modes

and authorization function that is defined as follows:

The function is able to decide access requests.
The second layer of our architecture should be able to convert global

definition of privileges into a form applicable in Local Access Controls and
vice versa. This layer shall be called Conversion Layer. This is the first
element that creates some general (global) framework.
Definition 2: Conversion Layer represents two functions and that
take set of users and set of resources from the underlying Local Access
Control set of resource categories and returns subset of
users that are authorized to access specified resources.

and of course the function to determine the final subset of users with
privileges to access all elements from the set of resources

Next layer should allow specification of tasks executable in the
distributed system. We distinguish two types of tasks.
– Tasks that are executed on one s-node and by one user. We call those

tasks atomic tasks. The description of those tasks is dependent on the
particular s-node.

– Tasks that may be executed on several s-nodes and/or by several users.
We call them workflows and their specification is platform independent.

Atomic tasks are described by means of given s-node. Particular layer is
Atomic Task Manager. The last one, Workflow Manager is completely s-
node independent. It allows its implementation by means satisfying
execution on various systems. Workflow Manager may be split into two
parts, one concerning static authorizations of workflows (authorizations that
are specified during workflow creation) and one concerning dynamic
authorizations.

3.3 Communication of Security Layers

Authorization system of any distributed system has to be active. We do
not know all users of the distributed system in one central place and s-nodes

uses to translate resource categories into the set of resources

Active Authorization as High-level Control 343

have to be able to determine whether and where are users able to run
particular task or workflow step.

How to perform a workflow? Imagine that someone on s-node has
started a workflow and executed the first step of it. We need to find all s-
nodes that are potentially able to execute next step of the workflow.

(1) We have to address all s-nodes in the distributed system. (2) Each s-
node identifies users that are able to continue the workflow and wait until
one of the identified users initiates execution of the task. (3) When the active
user is on the s-node then responds to (4) S-node recalls its
request on all s-nodes except And (5) execution of the workflow moves to
the new s-node and the active user may execute next step.

The most important is step (2). Communication among layers of the
authorization system on particular s-nodes is performed here. The Workflow
Manager receives the first impulse. It has to ask the Atomic Task Manager,
if the particular task is defined there. In the case of success, the Atomic Task
Manager has to determine set of users authorized (static rights) to run the
task (either directly with Local Access Control or in cooperation with
Conversion Layer). The same task but with the dynamic authorization is
done by Workflow Manager, Conversion Layer and Local Access Control.
There are received two sets of users. Their intersection is a set of users
authorized to execute the workflow's task.

3.4 The Conversion Layer

Conversion Layer is the place, where two considerably different models
are in touch. Very important is to find criterion for general specification of
authorization requirements. The following possibilities were identified.
– Hierarchy in the organization.
– Name of subject (user).
– Privilege for data access (analogy with MAC).
– Reference to a common hierarchy (absolute or relative (from-to)).
– Reference to another predefined role (group) structure.
– Types of resources that have to be accessed.

The classification we shall use has to be very stable and must be applicable
for all s-nodes. We have assumed that the most general and stable
classification should be based on resource categories (defined according to
data content) that form a non-hierarchical set of elements that depends on
the environment.

When using just category of resource, subject is able to perform all
possible operations over accesible resources. We have got no information to

344 DATA AND APPLICATIONS SECURITY

restrict set of operations. The restriction in this direction is enforced through
the tasks' definitions.

Resource categorization is the fixed point that allows global definition of
workflows. All task definitions use categorization (or classification) to
specify security requirements for data access (resources and workflows).
During execution of particular task step are categories converted into form
that the s-node's Local Access System is able to use to determine authorized
users and to determine needed resources (functions and Atomic Task
Manager performs this conversion especially in Conversion Layer and
partially.

4. CONCLUSION

We have proposed base ideas of the problem of unification of security
administration and secure cooperation among autonomous information
systems. The offered approach consists of two cornerstones. The first one is
existence of uniform security classification (or categorization) of resources.
This fact constitutes fixed point that consolidates security administration of
s-nodes. The second one is design of authorization system in such a way that
allows separation of particular platforms from active subjects (especially
users). This structure allows uniform definition of workflows on any s-node
in the distributed system.

The result is the architecture of authorization system that allows secure
execution of workflows, centralized administration of the whole distributed
system and decentralized definition of workflows.

5. BIBLIOGRAPHY

[1] D.E. Bell and L.J. LaPadula, Secure computer systems: Unified exposition and multics
interpretation Technical Report MTR-2997, Bedford (MA), The Mitre Corporation, March
1976.

[2] E. Bertino, E. Ferrari, and V. Atluri, A Flexible Model Supporting the Specification and
Enforcement of Role-based Authorizations in Workflow Management Systems,
Proceedings of the Second ACM Workshop on Role-Based Access Control (Fairfax, VA),
November 1997.

[3] R. S. Sandhu et al., Role-based Access Control Models, IEEE Computer, February 1996,
p. 38-47.

[4] R.S. Sandhu, Role Hierarchies and Constraints for Lattice-Based Access Controls, Proc.
Fourth European Symposium on Research in Computer Security, September 1996.

[5] D. Cvrcek, Mandatory access control in workflow systems, Knowledge-based Software
Engineering - Proc. of the JCKBSE - Conference, 2000, pp. 247-254.

Active Authorization as High-level Control 345

[6] R.K. Thomas and R.S. Sandhu, Towards a Task-based Paradigm for Flexible and
Adaptable Access Control in Distributed Applications, Proceedings of the Second New
Security Paradigms Workshop (Little Compton, Rhode Island), IEEE Press, 1993.

This page intentionally left blank

CHAPTER 31

Conference Key Agreement Protocol using Oblivious
Transfer

Ari Moesriami Barmawi, Shingo Takada, Norihisa Doi
Department of Computer Science, The Graduate School of Science and Technology, Keio
University, JAPAN

Key words: conference key, individual key, oblivious transfer

Abstract: The basic idea of our protocol is establishing a conference key based on
oblivious transfer which can be used in either asymmetric or symmetric
cryptography, such that we can reduce the number of decryptions for the key
confirmation without sacrificing the level of security. In our proposed method,
we break the conference key into several individual secret keys in accordance
with the amount of members within the group. This individual key will be used
by each member to sign (encrypt (asymmetrically)) the established conference
key in the key confirmation procedure. Then, each member multiplies all
signed conference keys and decrypting (asymmetrically) the multiplied signed
conference key using the multiplicative inverse of his locally calculated
conference key.
Thus, each member only needs to perform one decryption for the key
confirmation. Furthermore, by using the individual secret key, each member can
directly communicate with each other by a support of the leader, while the leader
does not gain any knowledge of messages which is exchanged between the
communicating members. The last features can not be found in the previous
method except in Li-Pieprzyk's. However, for the key generation we need only a
less modular exponentiations than the former.

1 INTRODUCTION

There are many key agreement protocols which have been proposed for
establishing session key between more than two users, such as those
proposed by Burmester-Desmedt [1], Mike Just et. al. [2], Colin Boyd [3,4],
Li-Pieprzyk [5], etc. Suppose for the key confirmation, each member signed

348 DATA AND APPLICATIONS SECURITY

the conference key which is calculated by himself. To verify whether all
members are holding the same conference key, each member of the group
needs to verify all members signed keys. In this case, the previous
protocols need several decryptions which increase computational burden to
the group. Besides, the previous proposed protocols except Li-Pieprzyk's,
did not provide any facilities for the two members in the group to
communicate securely with each other (i.e. other members of the group
outside the communicating members learn nothing about messages that have
been exchanged between the two communicating members). Our protocol
provides this facility, but it is more efficient than the Li-Pieprzyk's, since for
the key generation, our protocol needs less modular exponentiations than
Li-Pieprzyk's..

We propose a protocol for generating the conference and the individual
secret keys at once, using oblivious transfer. Using our method, we can
establish a conference key which can be used in either symmetric or
asymmetric cryptography.
At the end of our proposed protocol each member of the group can calculate
the conference and his individual keys (i.e., a key which has to be kept
secret between the leader and a certain member of the group). The
conference key is used to encrypt (symmetrically and asymmetrically)
messages which can be decrypted by all members of the group. The
individual key of member is used to encrypt (symmetrically) messages
which can be decrypted (symmetrically) only by member itself and the
leader of the group. In the key confirmation, this individual key is used for
signing the established conference key. Then, each member can verify that
all members have the same conference key by multiplying all signed keys
and decrypt (asymmetrically) the result using the multiplicative inverse of
his locally calculated conference key. Hence, for the key confirmation, each
member has to perform only one decryption. Thus, instead of being used for
encrypting/decrypting message symetrically, the conference key can be used
for encrypting message asymmetrically as well.
This individual key can be used for signing a contract. Suppose there is a
contract which has to be signed by all members. The leader broadcasts a
message, then each member signs this message using his individual key and
sends it back to the leader. Furthermore, the leader can verify whether the
message he sent has been signed by all members only by multiplying all
signed messages and decrypting (asymmetrically) it with the multiplicative
inverse of the conference key, instead of decrypting each message (one by
one). Thus, in this case the computational burden of the leader will be
decreased.

This paper first describes the features of the supporting protocols. Section 2
describes the detailed proposed protocol. Section 3 describes the security

Conference Key Agreement Protocol Using Oblivious Transfer 349

analysis. And the comparison with the previous protocols. Section 4 makes
concluding remarks.

2 The Proposed Protocol

In order to realize our proposed protocol, we invoke oblivious transfer [6]
and multiplicative-additive share converter proposed by Gilboa [7].
However, due to space we will not describe the detail of these protocols. In
our proposed protocol we assumed that the group is predetermined and one
of the users is the leader whose commands must be authenticated and has
public and secret keys. Thus, the leader's public key should be publicly
known.

2.1 Detailed Proposed Protocol

Suppose a group has r members (including the group leader) who are honest.
Furthermore, the conference key is actually the product of r individual keys.
The individual key of each member is determined by each member's
randomly chosen number and the leader's one. For obtaining the conference
and individual keys the group has to execute the following protocol:
1. All members and the leader have to agree on the size of their randomly

chosen numbers that will determine the conference and their
individual keys (suppose the size of each is l bit) and a large strong
prime Let (where is the Euler Totient Function of
Furthermore, they choose a number which is the generator of

2. Let be the group leader, and (for i=2,...,r) are members. Suppose
each member as well as the leader has their own public and secret keys,
where the public key of each member is known only by the leader.

3. Each member chooses any integer encrypts it with the leader's
public key, and sends it to the leader.

4. Each member privately chooses a number
5. Suppose chooses as his multiplicative share whose size is l (we set

as the bit of for and He then sets l pairs of
where and Each member

has his own multiplicative share which consists of l bits
and all members invokes one out of two oblivious transfer, such that

(where and are the secret additive shares of user
(for i=2,...,r) and respectively) using Gilboa's method. In this case,

and
6. Each member broadcasts encrypted with his

secret key and itself.

350 DATA AND APPLICATIONS SECURITY

7. The leader verifies whether comes from by decrypting the
encrypted message using the member's public key and comparing the
value of which is obtained from the signed message and the plaintext
one. If they are equal (i.e. the leader verifies that this message was
signed by the legitimate sender) then he executes the following
procedure:
• Calculating
• Calculating The leader chooses a

number such that (where mod is not
congruent to mod The individual key of the leader is
defined as follows: where
Then the conference key K is

where t should be agreed upon in advance by all members of the
group and t is not congruent to 0 mod (where is the
Carmichael Function [8]).

• Broadcasting the size of denotes as
u
along with and the signed

(where H has to be agreed upon in advance by all members
and the leader). Otherwise, he will interrupt the protocol execution,
and then repeat the protocol from the beginning.

8. sends by executing u one out of two
obli-vious transfer.

9. Each member verifies whether the leader is a legitimate one by
comparing the values of the conference key K by using the following
equation:

10. Each member can calculate its individual key as follows:

and the leader can calculate individual key by using the following
equa-tion:

11. To verify whether all members (including the leader) hold the same
conference key, each party broadcasts whose value is equal to

Then each member calculates

If the value of equation (6) and the value of K which is locally
calculated by a member are equal then the member can verify that all
members hold an equal value of K.

2.2 Communication Among the Members

Conference Key Agreement Protocol Using Oblivious Transfer 351

Our proposed protocol provides the facility for each member to be able to
commu-nicate with other member securely via the leader using the
individual key. In this case, the leader helps the members to communicate
with each other, but he does not any knowledge concerning the messages.
The procedure is as follows:
1. First of all we assume that the leader is honest. During the

communication, the two communicating members and the leader use
asymmetric crypto-system.

2. Suppose member will send a message M (where to member

are any integer chosen by and respectively, and
Besides, and should not be congruent to (0 mod

3. The leader sends message
4. Member calculates for obtaining

and calculate Furthermore, member
sends G to

6. obtains M by calculating:

sent by the leader and If they are equal then
is the legitimate member, otherwise he is an adversary.

guess t and after eavesdropping and u.
If we assume that all members are honest and the size of t is bits, then
there are 2 possible values of t. Thus, the probability for obtaining the

Then, sends and the leader where and

5. then calculates: and sends it to along
with

7. To verify whether is the legitimate member, compares the values
of

Since the leader does not know the values of and it is not possible for
him to obtain M.

3 Security Analysis

This section discusses the security of our proposed scheme against passive
and active intruder.

3.1 Passive Attacks

First, we assume that all members of the group (including the leader) are
honest. Passive attacks whose aim is key recovery for a given session
involves eavesdropping on message passed between participants for that
session.
Then, the conference key recovery will be successful if the adversary can

352 DATA AND APPLICATIONS SECURITY

value of K is equal to (where is the Carmichael
Function of But since the largest possible order of an integer modulo

is while
the probability for obtaining K is equal to

1). Thus, the protocol will be secure if we choose a large strong prime of
such that is large as well.

3.2 Active Attack

Active attack is usually defined as an impersonation attack. Recall that a
key agreement protocol is successful if each of the members accept the
identity of the other and terminate with the same key. In our proposed
protocol, the adversary who will impersonate a member of the group (for
example member) may choose his/her random number performing
Gilboa's method with the leader for obtaining his/her additive share and
calculating Thus, the probability for impersonating the legitimate
member depends on the probability of finding t and the secret key of

then the probability for breaking the protocol is

4 Comparison with Previous Proposed Protocols

Suppose that for the key confirmation each member of the group and the
leader has to broadcast the conference key signed (asymmetrically) with
each mem-ber's secret key. Thus, for verifying that all members of the group
and the leader hold the same conference key, each member has to decrypt all
encrypted messages which are sent by the other members. Using the
previous protocols, this will contribute a higher computational burden for all
members of the group in the key confirmation if they use signature such as
RSA signature to sign the conference key, because each member has to
decrypt several signed messages. In our proposed protocol each member
signs/encrypts (asymmetrically) the established conference key using his
individual key and broadcasts it. A member can verify whether all members
have an equal value of conference key by comparing the conference key
which is signed by all members and the one he has calculated. This will
reduce the computational burden of each member for the key confirmation,
since using our proposed protocol each member needs to perform only
(asymmetric) decryption.

Suppose a member of a group is going to propose a project, and he asks
other members for approval of the proposal. Using the previous schemes,
has to do (r-1) verifications to check whether all members of the group
agree or not. It means that has to do (r-1) (asymmetric) decryptions. This

Suppose the size of t is and the probability for finding secret key is

Conference Key Agreement Protocol Using Oblivious Transfer 353

will increase the com-putational burden for In our proposed scheme, each
member of the group has his/her own individual secret key which can be
used to sign his/her agreement. So, all members will sign the agreement and

will verify all members agreement by doing one verification which means
that he/she needs to perform only one (asymmetric) decryption for verifying
all members' agreements.

Compared with Li-Pieprzyk’s protocol our proposed protocol is more
efficient, since using Li-Pieprzyk protocol, for establishing the conference
key, each member has to perform about exponentiations, but
using our proposed method each member needs to perform not more than 10
exponentiations (roughly) and l+u oblivious transfers.

5 Conclusion

We proposed a new key agreement protocol which is based on oblivious
transfer. Our proposed scheme introduced individual keys which can be
used by each user to sign a common message, which is not included in the
previously proposed protocols. By using individual keys, we can reduce the
number of verifications and also redu-ce the computational burden for the
verifier. Besides, using this individual key a member can communicate
securely with the other members via the leader, while the leader can not gain
any knowledge about the message sent among his members.

Our proposed scheme will be secure as long as the value of t and the secret
num-ber chosen by each member are kept secret.

References

[1] Burmester, M. and Desmedt, Y. G., Efficient and Secure Conference Key Distribution,
Proceeding of Security Protocols International Workshop Cambridge, United Kingdom,
Springer-Verlag, LNCS 1189, April 1996, pp. 119-129.

[2] Just, M. and Vaudenay, S., Authenticated Multy-Party Key Agreement, Advances in
Cryptology ASIACRYPT '96, Springer-Verlag, LNCS 1163, 1996.

[3] Boyd, C., On key agreement and Conference Key Agreement, Proceeding of Information
Security and Privacy Australasian Conference (ACISP), Springer-Verlag, LNCS 1270,
1997, pp 294-302,

[4] Boyd, C., Towards a Classification of Key Agreement Protocols, Proceeding of Computer
Security Foundation Workshop, 1995, pp. 38-43.

[5] Li, C. and Pieprzyk, J., Conference Key Agreement from Secret Sharing, Proceeding of
ACISP 1999, Springer-Verlag, pp 64-76.

[6J Goldreich, O., Secure Multy-Party Computation, Working Draft, Download from the
Internet, June 1998.

[7] Gilboa, N., Two RSA Key Generation, Crypto 99, LNCS1666, Springer Verlag, 1999, pp.
116-129.

[8] Adler, A. and Coury, John E., The Theory of Numbers, Jones and Barlett, 1995.

This page intentionally left blank

CHAPTER 32

An Integration Model of Role-Based Access Control
and Activity-Based Access Control Using Task

Sejong Oh, Soeg Park
Sogang University

Key words: Access control, RBAC, Task, Role, Enterprise environment

Abstract: Role-based access control (RBAC) and activity-based access control (ABAC)
models are well known and recognized as a good security model for enterprise
environment. (ABAC model is represented as 'workflow'). But these models
have some limitations to apply to enterprise environment. Furthermore,
enterprise environment needs application both RBAC and ABAC models.

In this paper we propose integration model of RABC and ABAC. For this we
describe basic concept and limitations of RBAC and ABAC models. And we
introduce concept of classifications for tasks. We use task by means of
connection RBAC and ABAC models. Also we discuss the effect of new
integration model.

1. INTRODUCTION

In general, today’s companies manage business information with
computer systems. Access control is an important security issue in the
enterprise environment. Access means the ability to perform work such as
reading, writing, and the execution of the system resources. Access control is
the way to control the ability for performing the work.

From an access control point of view, enterprise environment can be
expressed in Figure 1. In general, users in the company belong to the
organization structure and they are performing their assigned job functions
according to their job positions. Organization structure reflects authorization
structure. Users read or write information resources for executing their job
functions. There are two ways that users access information resources. First,

356 DATA AND APPLICATIONS SECURITY

users can access information resources directly for their some job functions.
Second, some job functions are connected with others in the business
process, and direct access of information resources is restricted by the status
of business process. Passive access control applies to the first case, and
active access control applies to the second case.

Figure 1. Enterprise Environment

Note. We will use the term 'task' instead of 'job function'. In this paper,
task has a meaning of unit of job that accesses information resources.

Researchers have developed some access control models such as
discretionary access control (DAC)[1], mandatory access control (MAC)[2],
and role-based access control (RBAC). Activity-based access control
(ABAC) model, which was motivated by workflow environment, was
introduced recently. RBAC and ABAC are more suitable for enterprise
environment than MAC and DAC. RBAC and ABAC have a good point of
security, but also have constraints about applications for enterprise
environment. So it is necessary to investigate more proper model for
enterprise environment.

The purpose of this paper is to propose an improved access control model
for enterprise environment through the integration of the RBAC and ABAC
models. At first we reviews the limitations of RBAC and ABAC models, and
then introduces our improved access control model.

2. RBAC AND ABAC MODELS

Role-based access control (RBAC)[5][6] has the central notion of preventing
users from accessing company information discretionarily. Instead, access
rights are associated with roles, and users are assigned to appropriate roles.

An Integration Model ofRole-Bases Acess Control Using Task 357

RBAC model has limitations as follows.

– RBAC supports passive access control. For example, if an access right is
assigned to a user, then he/she can use the access right at any time. But
enterprise environment include workflow, and it needs a dynamic
activation of access right. RBAC cannot support dynamic activation of
access right.

– Basic RBAC model has a role hierarchy concept that higher role inherits
all access rights of lower role in the role hierarchy, and it is not suitable
for real world. For example, manager is a higher job position than that of
clerk, however, manager doesn’t automatically inherit the ‘register
purchase’ job function of clerk. Full inheritance of role hierarchy has
undesirable side effects by violating ‘need-to-do’ principle.

Activity-based access control (ABAC) model [3] [8][9] is investigated for
a collaborative work environment represented as 'workflow'. Workflow is
defined as a set of activities (tasks) that are connected to achieve a common
goal. ABAC separates access right assignment for users and access right
activation. Even if a user was allocated access rights on the workflow
template, he/she can exercise his rights during the activation of the task in
the specific workflow instance. ABAC model has limitations in the
enterprise environment as follows.
– There exist many tasks that don't belong to workflow in the company, and

ABAC model doesn't deal with them. So extra access control methods
should be added to ABAC model.

– In the real world, a superior officer supervises and reviews execution of
tasks of his/her inferior clerks. It's important for security and integrity;
however, ABAC model doesn't take review and supervision into
consideration.

3. INTEGRATION MODEL OF RBAC & ABAC

3.1 Problems in the Integration of RBAC & ABAC Models

As we can see, enterprise environment needs both passive and active access
controls. (See Figure 1). We choose RBAC for passive access control model.
Some researchers proposed injection of RBAC to workflow security [4] [7],
But their approach doesn’t deal with RBAC and ABAC models on an equal
footing. Their approach is based on ABAC model, and adopts concept of
‘role’ as a meaning of group. There are some problems in the integration of
RBAC and ABAC models as follows.

First, task is a unit of permission in the ABAC model. But RBAC, as a
passive access control model, assigns information objects such as file or

358 DATA AND APPLICATIONS SECURITY

record to role. Task is higher level than information object. Integration
model needs consistent unit of permission between RBAC and ABAC
models.

Second, as we pointed out in section 3, there exist many tasks that don't
belong to workflow in the company. In this case passive access control is
more proper than active access control.

Third, as we pointed out in section 2, full inheritance of role hierarchy in
RBAC has undesirable side effects. These side effects bring about serious
security problems in active access control such as domination of ‘need to do’
principle.

3.2 Task Classification Concept
Before we propose integration model RBAC and ABAC that solves above
problems, we introduce task classification concept. We will use a task
concept as a connecter of RBAC and ABAC model.

By observation of the enterprise environment, we found that there are
three classes of tasks such as in Table 1. If a user has tasks that belong to
class S, their related access rights are inherited to user Un who has a higher
job position than in the organization structure. But class W and class P do
not have such inheritance characteristics. Tasks belong to class W, which has
a relation with workflow and show the characteristics of an ABAC model.
Passive security model is applied to class S and class P. Access control of
the enterprise environment needs a proper method to deal with three classes
of tasks through different ways. Our suggested model is based on the
classification of tasks.

An Integration Model of Role-Bases Acess Control Using Task 359

3.3 Integration of RBAC and ABAC

Now we propose the integration model of RBAC and ABAC models based
on task classification. (Note. We will call new integration model as T-RBAC.
It means that Task-Role-Based Access Control). Figure 2 shows a brief of T-
RBAC. The most difference between T-RBAC and RBAC is that the access
rights are assigned to task in T-RBAC, rather than access rights are assigned
to role in RBAC. In the real world access rights are needed for the user to
perform tasks. So assignment of access rights to task is reasonable. Another
difference is role hierarchy. We use supervision role hierarchy (S-RH)
instead of general role hierarchy. In the S-RH, higher role doesn’t inherit all
access rights of lower role in the role hierarchy. Only access rights of class S
are inherited from lower role to higher role.

Tasks in the class W are used to compose workflow. Workflow creates the
workflow instances that are set of task instances. Access rights are assigned
to tasks in the class W statically. But the access rights are bound and
activated during execution of task instance. Task instance has three attributes
such as activation condition, time constraint, and cardinality. Time constraint
is an available time after the task is activated. Cardinality is the number of
specific task instance at the same time. How to specify and manage security
constraint is remained research issue.

Figure 2. T-RBAC : Integration model of RABC and ABAC models

The step of authority check in T-RBAC is as follows. When a user request
accessing to some information objects, RBAC system checks the validity of
the user’s role, task. If the user’s role and task are correct, then RBAC
system checks the validity of permission. If the task belongs to class S or
class P, RBAC system checks that permission is assigned to the task or not.
If the task belongs to class W, RBAC system specifies task instance and
checks activation condition, time constraint, and cardinality of the task
instance. After checking permission, RBAC system checks security and

360 DATA AND APPLICATIONS SECURITY

integrity constraints. And RBAC system decides to accept or reject user’s
request.

In T-RBAC model, the concept of session and user-role assignment
(URA) follows RBAC.

4. CONCLUSION

There are two central ideas in the T-RBAC. One is the classification of enterprise
tasks (job functions) according to their characteristics. The other is to use
intermediate tasks between access rights and roles instead of assigning access rights
to roles. It makes possible that roles can be linked to access rights through
intermediate tasks. Moreover, it makes the point of contact that RBAC could be
integrated to ABAC model. The T-RBAC model has following effect from their
characteristics.

– T-RBAC can support more elaborate access control. In the RBAC model,
the unit of separation of duty and delegation is a role unlike in the T-
RBAC where the unit is task. Task unit has more small scope of access
rights than role unit

– It offers the criterion that which task/access rights can be inherited to
higher roles from lower roles on the supervision role hierarchy (S-RH).
Only the tasks belong to class S has an inheritance characteristic. It solves
problems of general role hierarchy in RBAC.

– T-RBAC deals each class by different way according to its class. It is also
possible to apply active security model to tasks that belong to class W and
apply the general passive security model to tasks that belong to class S or
P. Thus, task is a base concept for the integration of RBAC and ABAC.

REFERENCES
[1] C.P.Pfleeger, Security in Computing, second edition, Prentice-Hall International Inc.,1997.
[2] E.G.Amoroso, Fundamentals of Computer Security Technology, PTR Prentice Hall, 1994,
253-257.
[3] Dagstull, G.Coulouris, and J.Dollimore, “A Security Model for Cooperative work : a
model and its system implications”, Position paper for ACM European SIGOPS Workshop,
September 1994.
[4] G.J.Ahn, R.S.Sandhu, M.Kang, and J.Park, “Injecting RBAC to Secure a Web-based
Workflow System”, Proc. of 5th ACM Workshop on Role-Based Access Control. 2000.
[5] R.S.Sandhu, E.J.Coyne, H.L.Feinstein, and C.E.Youman, “Role-Based Access Control
Method”, IEEE Computer, vol.29, Feb. 1996.
[6] D.Ferraio, J.Cugini, and R.Kuhn, “Role-based Access Control (RBAC): Features and
motivations”, Proc. of 11th Annual Computer Security Application Conference, 1995.12.
[7] W.K.Huang and V.Atluri, “SecureFlow: A Secure Web-enabled Workflow Management
System”, Proc. of 4th ACM Workshop on Role-Based Access Control, 1999.
[8] G.Herrmann and G.Pernul, “Towards Security Semantics in Workflow Management”,
Proc. of the 31st Hawaii International Conference on System Sciences, 1998.
[9] R.K.Thomas and R.S.Sandhu, “Task-based Authorization Controls (TBAC): A Family of
Models for Active and Enterprise-oriented Authorization Management”, Proc. of the IFIP
WG11.3 Workshop on Database Security, 1997.

CHAPTER 33

Authorization Model in Object-Oriented Systems

Keiji Izaki, Katsuya Tanaka, and Makoto Takizawa
Dept. of Computers and Systems Engineering Tokyo Denki University
{ izaki, katsu, taki}@takilab.k.dendai.ac.jp

Abstract In object-oriented systems, data and methods of a class are inherited by
lower-level classes according to the is-a hierarchy. It is difficult to specify
access rules for every class and object, because the system is composed
of various types of classes, and objects which are dynamically created
and dropped. If access rules on some class could be reused for other
classes, the access rules are easily specified. This paper discusses how
to inherit access rules in hierarchical structure of classes and objects.

Keywords: Access Control, Inheritance, Object-oriented systems

Introduction
Various kinds of distributed applications (Dittrich et al. 1989) are

required to be realized in secure information systems. Various kinds of
access control models are discussed so far, e.g. basic model (Lampson et
al. 1971) and lattice-based model (Bell et al. 1975, Denning et al. 1982).
An access rule means that a subject s is allowed to manipulate
an object o by an operation op. An access rule which a subject granted
can be granted the to another subject in the discretionary model like
relational database systems (Oracle et al. 1999). In the role-based model
(Sandhu et al. 1996), a role is modeled to be a collection of access rights.
A subject is granted a role.

Distributed systems are now being developed according to object-
oriented frameworks like CORBA (Object et al. 1997). The papers
(Dittrich et al. 1989, Samarati et al. 1997) discuss a message filter
in an object-oriented system to prevent illegal information flow. The
paper (Spooner et al. 1989) points out some problems to occur in the
inheritance hierarchy, but does not discuss to make the system secure.

362 DATA AND APPLICATIONS SECURITY

The paper (Yasuda et al. 1989) discusses the purpose-oriented access
control model in an object-based system.

The object-oriented system is composed of various kinds of classes and
objects which are dynamically created and destroyed. It is cumbersome
to specify access rules for all classes and objects. If access rules for a class
are inherited by subclasses, access rules are easily specified for classes.
We discuss how to inherit access rules on classes and objects structured
the is-a relation in a discretionary way.

In section 2, we briefly review the object-oriented model. In section
3, we discuss how to inherit access rules in the object-oriented model.

1. OBJECT-ORIENTED MODEL
The object-oriented system is composed of multiple classes and ob-

jects. A class c is composed of a set of attributes
and a set of methods An object o is cre-

ated from the class c by allocating memory area for storing values of the
attributes. Let be a set of methods of o. The methods are inherited
from c, i.e. The object o is allowed to be manipulated only
through methods in o is referred to as instance of the class c.

Figure 1 Classes and objects. Figure 2 Part-of relation.

Classes and objects are hierarchically structured with is-a and part-
of relations. A new class d is derived from an existing class c, where
d inherits attributes and methods from c. Here, d is in an is-a relation
with c, i.e. d is a subclass of c. Additional methods and attributes
can be defined for the subclasses. Furthermore, attributes and methods
inherited from c can be overridden for d. Figure 1 shows an is-a relation
between a pair of classes c and d, i.e. d is a subclass of c. d inherits
attributes and methods from c. In addition, the object y is in an is-a
relation with x, i.e. the values of x are inherited by y. and

Let y.c denote values of y inherited from x. The object y in fact
does not have the value of x, in order to reduce the storage space. A
class c can be composed of other classes Here, each class is
a part or component class of c. Let d be a component class of a class c
[Figure 2], Let x and y be objects of the classes c and d, respectively.

Authorization Model in Object-Oriented Systems 363

y is also a component object of x. However, there is neither is-a nor
part-of relation between objects in the traditional systems.

A manipulation method manipulates values of attributes in the ob-
ject. Another one is a schema method, by which classes and objects are
created and destroyed, e.g. create object.

2. INHERITANCE OF ACCESS RULES

2.1. INSTANCE-OF RELATION
First, suppose an object x is created from a class c. An owner of the

class c grants a subject an access right to create an object from c. Then,
the subject creates an object x from c and is an owner of x. Suppose a
set of access rules are specified for c. The object x inherits the access
rules from c in addition to the attributes and methods. Here, a set

of access rules for the object x is and op is
manipulation method}.

Every subject s granted an access right is granted for
every objet x of the class c. Only access rules on manipulation methods
are inherited by the object x. The owner of x can define additional
access rules and can revoke the access rules inherited from c.

There are class and object access rules. A class access rule
is specified for a class c. Here, every object x of c inherits the rule

If is revoked from s, is automatically revoked
from s. If a new class rule is specified, is also inherited
by every object x of c. The class access rules are allowed to be changed
only by the owner of the class c. On the other hand, the object access
rules of a class c are inherited by the objects created from c, but can be
changed by the owner of the object. In fact, the object access rules of
c are copied to the object x while the class rules are maintained in the
class c [Figure 4(1)].

Figure 3 Access rules. Figure 4 Inheritance of access rules.

2.2. IS-A RELATION OF CLASSES
Suppose a class d is a subclass of a class c as shown in Figure 1.

The access rules of c are inherited by d. Let and be sets of access

364 DATA AND APPLICATIONS SECURITY

rules of c and d, respectively. There are following ways on how to inherit
access rules from c to d [Figure 4]; (1) the access rules are inherited
by d, (2) the access rules are copied to d, and (3) no access rule is
inherited by d. In the first case, the access rules inherited by the subclass
d depend on c. Values of attributes of c are manipulated through a
manipulation method op. Here, op is also performed on the attribute d.c
in the class d. If the access rules in are changed in c, the access rules
in d are also changed. If a new rule is specified for c, is
automatically authorized. The access rules are in fact maintained only
in the class c and are not in the subclass d. c is referred to as home class
of the access rule. Next, let us consider how to inherit access rights on
a schema method op of the class c. For example, suppose an access rule

is specified for the class c. Here, is inherited by d. If
d is derived from c, the subject s can create an object from d.

In the second case, the access rules of the class c are copied in the
subclass d [Figure 4 (2)]. The access rules of d are independent of c. For
example, even if a new access rule is authorized for c, the access rule
is not authorized for d. In the last case, the access rules of c are not
inherited by d. The access rules of d are defined independently of c.

Suppose an access rule is specified for a class c. There are
mandatory and optional access rules. Suppose a class d is derived from
c. If an access rule is mandatory, d is required to inherit an
access rule from c. The rule cannot be changed for
d. Each time the class d and its objects are manipulated, the access
rules of the class c are checked. Next, let us consider an optional rule

Here, every subclass d of the class c can decide whether or not
d inherits The rule can be one of the types inherit
and copy in the subclass d. If is inherit type, cannot
be changed. is not maintained in d as discussed for mandatory
inheritance for c. If is a copy type, is independent of

Every mandatory rule cannot be specified as copy in
d. The mandatory access rule is automatically an inherit type in d.

In Figure 5, an access rule is mandatory while and are normal
for the class c. The classes d and e inherit from c. c is the home class
of is a copy type and is an inherit type for d. If and are
changed for c, for d and e and for d are also changed. However, even
if is changed for c, of d is not changed. If of d is changed, of e
is changed. The home class of of e is d.

Authorization Model in Object-Oriented Systems 365

Figure 6 Multiple inheritance.
Figure 5 Types of Inheritance.

2.3. MULTI-INHERITANCE
Let us consider novel and science-book classes each of which supports

a manipulation method reading. An SF (science fiction) class is de-
rived from novel and science-book. SF inherits reading from novel and
science-book. Suppose a subject s is granted an access right

but not Question is whether or not s
can read SF. The subject s cannot read science-book while it can read
novel. Thus, the access rights from science-book and novel conflict.
Here, let show that an access rule is not authorized
for a class c. is negative rule of a positive one If
a subclass c inherits a pair of access rules and from
classes, the inheritance is referred to as conflict.

If is not specified for a class c, a negative rule is as-
sumed to be authorized. There are two types of inheritance of negative
rules as discussed for positive rules. We have to specify which nega-
tive rules are mandatory. In addition, negative rules can be explicitly
specified for each class. If is mandatory in a class c, every
subclass d is required to inherit from c. Here, if d inherits
both and through the mandatory type of classes,
the inheritances conflict in d. Suppose a subclass d is derived for classes

and d inherits an access rule for and for Suppose
and conflict. If is mandatory in and is optional in d

inherits If and are optional in and the subclass d can
inherit either or but not both. If and are mandatory in c
and d cannot be defined from and

3. CONCLUDING REMARKS
This paper discussed a discretionary access control model in the object-

oriented system. The object-oriented system supports inheritance of

366 DATA AND APPLICATIONS SECURITY

properties. We made clear how to inherit the access rules in the instance-
of and is-a relations. By using the inheritance of the access rules, it is
easy to grant and revoke access rules in systems which are composed of
various kinds of classes and objects.

References
Bell, D. E. and LaPadula, L. J., “Secure Computer Systems: Mathe-

matical Fousdations and Model,” Mitre Corp. Report, No.M74-244,
1975.

Dittrich K R, Haertig M, Pfefferle H., “Discretionary Access Control in
Structurally Object-Oriented Database Systems,” Database Security
2, ppl05-121, 1989.

Grosling, J. and McGilton, H., “The Java Language Environment,” Sun
Microsystems, Inc., 1996.

Lampson, B. W., “Protection,” Proc. of the 5th Princeton Symp. on
Information Sciences and Systems, 1971, pp.437-443.

Thuraisingham, M. B., “Mandatory Security in Object-Oriented Database
Systems,” ACM Sigplan Note, Vol. 24, No. 10, 1989 pp.203-210.

Object Management Group Inc., “The Common Object Request Broker
: Architecture and Specification,” Rev. 2.1, 1997.

Oracle Corporation,“Oracle8i Concepts”, Vol. 1, Release 8.1.5, 1999.
Samarati, P., Bertino, E., Ciampichetti, A., and Jajodia, S., “Infor-

mation Flow Control in Object-Oriented Systems,” IEEE Trans. on
Knowledge and Data Engineering, Vol. 9, No. 4, 1997, pp. 254–238.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E., “Role-
Based Access Control Models,” IEEE Computer, Vol. 29, No. 2, 1996,
pp. 38–47.

Spooner, D., “The Impact of Inheritance on Security in Object-Oriented
Database System,” Database Security 2, 1989, pp. 141–150

Stroustrup, B., “The C++ Programming Language (2nd ed.),” Addison-
Wesley, 1991.

Yasuda, M., Higaki, H., and Takizawa, M., “A Purpose-Oriented Access
Control Model for Information Flow Management,” Proc of 14th IFIP
Int’l Information Security Conf. (IFIP’98), 1998, pp. 230–239.

CHAPTER 34

Panel 2

Reind van de Riet, Raban Serban, Sylvia Osborn, Arnie Rosenthal, Vijay
Atluri, Joachim Biskup, Gio Weiderhold
Moderator: Reind van de Riet, Vrije Universiteit, Amsterdam
Members of the panel:
Arnie Rosenthal, Mitre, USA
Radu Serban, Vrije Universiteit, Amsterdam
Sylvia Osborn The University of Western Ontario, Canada
Vijay Atluri, Rutgers University, USA
Joachim Biskup, University of Dortmund, Germany
Gio Wiederhold, Stanford University, California

Contribution by: Reind van de Riet, vdriet@cs.vu.nl
The Panel discussed two themes: 1. Are there better ways to protect data
from misuse? and 2. Should security be built in at the Applications level?
For item 1, in our group we worked on: a) fire walls, objects which are
agents, which explode when misused (See Serban's contribution). b) other
ways to define access rules: protection in Mokum is provided indirectly by
structuring the objects: persons, doctors, nurses, insurance company
employees. In this way 90\% of all security is defined. This in contrast to the
way security in an ERP system is defined with hundreds of class definitions
for thousands of certificates. Another advantage is that security can be
proved correct. Item 2 leads in the direction of ERP and WorkFlow systems.
In current ERP systems security rules are enforced using a variety of
certificates, the possession of which depends on roles persons have in the
organization. Using WorkFlows, one can use them for security and privacy
protection (See Atluri's contribution).

368 DATA AND APPLICATIONS SECURITY

Contribution by: Radu Serban, serbanr@cs.vu.nl
Privacy protection depends on informedness (awareness of threats and
vulnerabilities, trust in the technical infrastructure and in the other
participants and strict regulations. Apart from legal and technical measures
to increase privacy, the designers of future Cyberspace protocols have to
consider self-regulatory measures, such as an awareness mechanism based
on reputation, a language for specifying scenarios and policies and the
adoption of preventive measures. Several principles have been suggested to
be enforced by the privacy assistant of an individual: purpose-binding,
informed consent, need-to-know (control by source) and appropriate value
exchange. In order to increase the informedness of the individual, a model
for privacy analysis would require more formal definitions for key notions
such as ownership, visibility, responsibility, vulnerability, and provability. In
future Cyberspace it is likely that agents representing an individual in an
electronic transaction will encapsulate a great deal of personal information
and will have more autonomy. Such a privacy assistant has the role of
monitoring online transactions, ensuring personal management and keeping
the individual informed with respect to his privacy status. It also assesses
privacy violation risks, investigates privacy violations and takes corrective
measures. We have proposed an architecture of such a privacy assistant, that
assists an individual to fine tune the control of his own personal data and
keeps him informed with respect to his privacy status. To protect personal
information, the privacy assistant has to create and coordinate several user
agents, termed fireballs, which encapsulate personal information together
with their policies for specific applications. The fireballs cannot enforce
protection by themselves, but only function in special trusted environments
in which commitments for privacy compliance hold. In this respect, the
barriers to effective privacy protection seem to be social, more than
technical: the collectors of personal data have to make binding commitments
to protect privacy, otherwise software solutions for privacy protection are
fundamentally limited.

Contribution by: Sylvia Osborn, sylvia@csd.uwo.ca
As a reaction to both themes, I would like to pose the following question:
how do different existing software architectures interact with security
mechanisms? I think that many newly proposed techniques will not be
adopted unless they can be used with existing platforms, existing software
architectures and existing software practices. A related question is: can the
same security models or mechanisms be used at different stages of the
software lifecycle? Is any attention being paid to mechanisms that are
appropriate during software development? What tools should be available

Panel 2 369

and incorporated into software once it is deployed? Are current
models/mechanisms adequate for all of these stages?

Contribution by: Arnie Rosenthal, arnie@mitre.org
The Grand Challenge is: How can we make enterprise-level administration
of security so simple that *ordinary* organizations will do it well? A
subsidiary challenge is: How do we modularize the technology, so that
vendors will build it? And, what would it take to administer a distributed,
heterogeneous, redundant, semi-autonomous system (e.g., databases,
business objects, ERP objects) as much as possible as an ordinary system?
Discussion: Large enterprises are trying to build systems that make data
widely available, in terms of objects that the recipient can interpret (which
are rarely the same as those naturally produced by sources). In such
architectures, security policies will be specified in detail), examined, and
enforced in many positions in a system-databases, object managers,
applications (e.g., ERP). Policies will be needed for many derived objects.
We need a technical approach that places responsibility where there are both
the needed skills (or tools) and the motivation. The best way forward on
administration is to provide automated aids for policy propagation and
integration and a modular service for each kind of information to be
administered (e.g., access permissions, grant permissions, roles, groups, both
"info" and "physical" access permissions.

Contribution by: Vijay Atluri, atluri@cimic3.rutgers.edu
Workflow management systems (WFMSs) are today used in numerous
application domains. The various tasks in a workflow are carried out by
several users according to the organizational rules relevant to the process
represented by the workflow. Security policies of a given organization are
usually expressed in terms of the roles within the organization rather than
individuals. With traditional role-based access control (RBAC), roles are
assigned to users based on their qualifications, and tasks in turn are assigned
to roles, thereby assigning permissions to users. Such a simple model of
RBAC is not adequate in WFMS as a full-fledged authorization system
should consider the following additional requirements: (1) Permissions
should be granted only during the execution of a task, that is, authorization
flow must be synchronized with the workflow. (2) Need to assign different
roles to tasks based on the outcome of the prior task. (3) Need to grant
different permissions to roles based on the outcome of the prior task. (4)
Need to deal with authorization constraints such as separation of duties at
runtime. (5) Capable to specify different authorizations for different
instances of the same workflow. (6) Authorization specification need to be
based on the context and based on the responsibilities to be performed by

370 DATA AND APPLICATIONS SECURITY

individuals, and therefore need to be driven by the application. (7) Need for
temporal and dynamic role-permission assignment and user-role assignment.

Contribution by: Joachim Biskup, biskup@ls6.cs.uni-dortmund.de
We all see the need to build computing systems that are "more secure" than
the present ones. We should be careful with our expectations: there is no
linear order for "degrees of security", rather we have to deal with several
coordinates, governed by specific questions. The most important questions
are: 1. Whose security is meant? 2. Which security interests (availability,
integrity, authenticity, confidentiality) are affected? and 3. In which
application contexts do these interests arise? Further questions deal with
costs (in terms of time, space) and willingness of participants to accept the
burden of using the security mechanisms? The corresponding coordinates
(participants, interests, contexts, costs, acceptance) have to be studied in a
common framework. This view on the security problem has some immediate
consequences: * Each participant (or each group of participants) needs a
toolbox consisting of technical mechanisms each of them is suitable to
enforce specific interests in specific application contexts. Unfortunately,
such a toolbox is not available yet. * The technical enforcement mechanisms
should be composable, interoperable and combinable with application
systems. * The effectiveness of the above mechanisms should be founded on
a selection of trusted agencies, in order to provide the necessary
informational infrastructure. The toolbox must contain "multi-party"-
primitives. There are already a few examples, for instance "fair exchange" or
"cooperative access rights".

Contribution by: Gio Wiederhold, gio@cs.stanford.edu
A novel issue in the security arena deals with protecting children from
receiving inappropriate, typically pornographic, content. A law, passed in
1998 by the US Congress, the Children On-line Protection act (COPA), not
yet implemented, which makes Internet Service Providers liable for failing to
control such transmissions. Hearings on the social, legal, and technical issues
have taken place under aegis of a specially constituted commission, which
invited a wide range of comments, including organizations outside of the
US. Its web page is http://www.copacommission.org/. In October 2000 a
final report was released. My testimony can be found at my website. Part of
the recommendation included the establishment of green and red top-level
Internet domains (TLDs): .kids and .xxx. This November, ICANN (the
Internet Corporation for Assigned Names and Numbers) rejected those
proposals, mainly because of the problem of assigning authority for those
TLDs. For the green TLD, a candidate was the Internet Content Rating
Association (http://www.icra.org/), who collects input from volunteer raters.

Panel 2 371

I know of no such organization for the proposed red TLD. By providing
tools for parents and other organizations the actually filtering decisions
(who, what, when, how and to whom) can be devolved on people taking a
specific and beneficial interest in the issue. At Stanford we have developed a
very effective filtering program that recognizes classes of images: WIPE.
This technology can support identification of candidates sites for the red
TLD. WIPE uses wavelet analysis to extract features from images, and has
been trained on pornographic and benign images that are available on the
web. WIPE has a recognition rate of 95\% for individual images, and over
99% when identifying porno websites where there are multiple such images.

This page intentionally left blank

CHAPTER 35

Conference Summary

Bhavani Thuraisingham
The MITRE Corporation, Bedford, MA, USA

Abstract: This report summarizes the IFIP 11.3 Working Conference on Database
Security held in Schoorl, The Netherlands from August 21 to August 23, 2000.

1. INTRODUCTION

This conference was the 14th IFIP Working Conference on Database
Security. It had presentations and panels on a variety of topics including
traditional ones such as Multilevel Security as well as emerging technologies
such as XML security. Section 2 summarizes the papers and Section 3
provides directions.

2. SUMMARY OF PAPERS AND PANELS

One of the major focus areas of this conference was XML security and
web security. The keynote presentation the first day was on related policy
issues followed by papers on XML as well as web security. In addition, the
first day consisted of papers on distributed object security and secure
architectures as well as on encryption. The day ended with a lively panel on
web security. This was followed by an interesting cultural event with a
presentation on paintings related to Schoorl as well as musical concerts by
conference participants.

The second day started with a keynote on privacy issues related to
medical applications and was followed by papers on federated systems
security and policies. In addition, we also had a session on multilevel
security. To keep up with the traditions, we had the afternoon of the second

374 DATA AND APPLICATIONS SECURITY

day off and we enjoyed an organ recital by the conference chair at the local
church followed by a bicycle ride and then dinner by North Sea. We also had
a business meeting after lunch on the second day.

The third day started with a keynote on applying data mining for
intrusion detection. This was followed by papers on workflow security and
language security. The afternoon of the third day considered of several short
paper presentations followed by a closing panel that discussed directions.

3. DIRECTIONS

Everyone was very enthusiastic about the conference and felt that we
must continue with this conference for many more years. We discussed the
2001 conference to be held near Niagara Falls, and then for 2002 there was
strong support to have this conference in South Africa. Participants felt that
while web and e-commerce security will be dominant over the next several
years, we cannot forget about the traditional areas and need to continue
research in these areas. There was record attendance at this conference with
over 50 participants. The participants thoroughly enjoyed the atmosphere in
Schoorl, The Netherlands.

Index

Access Control
4-6, 15-17, 19, 23, 34-7, 48, 58, 77-9,
84, 92, 106, 118, 126, 132-6, 146,
157, 163-5, 179, 175, 186-9, 193-5,
203, 220, 235, 243, 257, 265-7, 274,
279, 286-8, 298, 309, 317, 328-9,
338, 347, 359, 360

Application Security
8, 27, 43, 73, 84, 104, 118, 102, 135,
146, 159, 162, 175, 186, 194, 203,
216, 228, 237, 243, 259, 263, 279,
285, 291, 302, 317, 325-7, 336, 359

Authorization
15, 17-9, 21, 23, 27, 35, 48, 54, 63,
78, 85, 92, 105, 128, 137, 144, 153,
162, 178, 185, 192, 207, 210, 223,
237, 247, 256, 278, 298, 204, 215,
237, 249, 357

Authentication
16, 27, 38, 43, 57, 64, 73, 89, 93,
105, 118, 128, 135, 142, 159, 160,
179, 193, 207, 226, 238, 241, 253,
268, 273, 284, 290, 305, 316, 326,
338, 357

Confidentiality
6, 17, 27, 37, 58, 79, 97, 115, 137,
153, 176, 194, 210, 226, 228, 229,
331, 335

Cryptographic Protocol
104, 106, 108, 156, 178, 228, 256,
276, 298, 315, 328, 352

Database Security
3-6, 8-11, 15, 19, 21-26, 36-9, 48-9,
54-8, 67-9, 78, 83, 94, 105-7, 112,
114, 124-6, 132-4, 138, 142, 146,
157, 163, 176, 189, 193-5, 202-5,
215, 228, 235, 242-5, 257, 269, 273-
5, 279, 284-6, 289, 291, 298, 302,
312-4, 338, 345, 352, 360

Distributed Object Security
78, 147, 228, 265, 273, 320, 349,
356,

E-commerce Security
33-5, 38-9, 42-3, 65, 89, 103, 128,
159, 210, 256, 278, 295, 312, 343,
358, 362

Encryption
105, 107, 109, 128, 142, 163, 187,
215, 235, 275, 297, 301, 335, 362

Federated Security
127, 134, 146, 151, 158, 161, 164,
179, 186, 192, 214, 238, 258, 279,
315

Inference Problem
5, 8, 35, 54, 112, 125, 143, 157, 167,
186, 195, 212, 234, 257, 278, 289,
315

Integrity
6, 24, 32, 43, 74, 134, 224, 228, 231,
233, 265, 287, 315

Multilevel Security
84, 97, 112, 135, 142, 156, 158, 161,
165, 199, 203, 216, 360, 362, 378

Object Security
74, 78, 172, 174, 284, 286, 296, 305,
316

Privacy
5, 12, 29, 68, 79, 98, 106, 128, 145,
178, 193, 228, 239, 253, 268, 273

Role-based Security
16, 25, 38, 78, 135, 154, 178, 235,
283, 285, 287, 291, 297, 299, 301,
303, 325

Security Architectures
61, 53, 68, 71, 78, 89, 93, 95, 104,
112, 128, 134, 142, 155, 168, 172,
189, 197, 202, 215, 228, 237, 245,
257, 261, 274, 283, 290, 315, 337,
348

376 DATA AND APPLICATIONS SECURITY

Security Mediators
8, 91, 94, 108, 137, 156, 179, 212,
238, 269

Security Policies
6, 8, 23, 35, 48, 54, 64, 74, 84, 95,
105, 114, 126, 138, 149, 158, 163,
175, 184, 198, 208, 221, 228, 234,
249, 256, 261, 276, 287, 293, 304,
311, 328, 339, 345, 361, 368

SQL Security
241,243,247

Web Security
21, 35, 49, 65, 87, 97, 135, 145, 158,
167, 210, 227, 269, 310, 338

Workflow Security
110, 135, 146, 189, 191, 225, 245,
257, 259, 261-3, 271-5, 277-9, 281-
4, 287-9, 291, 298-9, 301, 302, 304,
306, 313-9, 325, 328-31, 355-8

XML Security
20, 23, 26, 48, 52, 54, 68, 125

