

Lecture Notes in Computer Science 3011
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board:

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Oscar Nierstrasz
University of Berne, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
Dortmund University, Germany

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California at Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Jean-Charles Régin Michel Rueher (Eds.)

Integration
of AI and OR Techniques
in Constraint Programming
for Combinatorial
Optimization Problems

First International Conference, CPAIOR 2004
Nice, France, April 20-22, 2004
Proceedings

Springer

http://www.springerlink.com

eBook ISBN: 3-540-24664-9
Print ISBN: 3-540-21836-X

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

http://ebooks.springerlink.com
http://www.springeronline.com

Preface

This volume contains the proceedings of the 1st International Conference on Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimisation Problems. This new conference follows the series of CP-AI-OR In-
ternational Workshops on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems held in Ferrara (1999),
Paderborn (2000), Ashford (2001), Le Croisic (2002), and Montreal (2003). The
success of the previous workshops has demonstrated that CP-AI-OR is becom-
ing a major forum for exchanging ideas and methodologies from both fields. The
aim of this new conference is to bring together researchers from AI and OR, and
to give them the opportunity to show how the integration of techniques from AI
and OR can lead to interesting results on large-scale and complex problems.

The integration of techniques from artificial intelligence and operations re-
search has provided effective algorithms for tackling complex and large-scale
combinatorial problems with significant improvements in terms of efficiency,
scalability and optimality. The benefit of this integration has been shown in
applications such as hoist scheduling, rostering, dynamic scheduling and vehicle
routing. At the programming and modelling levels, most constraint languages
embed OR techniques to reason about collections of constraints, so-called global
constraints. Some languages also provide support for hybridization allowing the
programmer to build new integrated algorithms. The resulting multi paradigm
programming framework combines the flexibility and modelling facilities of con-
straint programming with the special purpose and efficient methods from oper-
ations research.

CP-AI-OR 2004 was intended primarily as a forum to focus on the integration
of the approaches of CP, AI and OR technologies. A secondary aim was to provide
an opportunity for researchers in one area to learn about techniques in the
others. Fifty-six papers were submitted in response to the call for papers. After
the reviewing period and some online discussions, the program committee met
physically at Nice on January 30 and 31, 2004. The program committee decided
to accept 23 technical papers and 7 short papers. Short papers present interesting
recent results or novel thought-provoking ideas that are not quite ready for a
regular full-length paper. Both types of papers were reviewed rigorously and held
to a very high standard.

CP-AI-OR 2004 was fortunate to attract outstanding invited talks. Heinrich
Braun and Thomas Kasper discussed the challenges of optimization problems
in supply chain management. Ignacio Grossmann proposed a hybrid framework
that uses mathematical and constraint programming for the scheduling of batch
chemical processes. Michel Minoux told us about strengthened relaxations for
some CP-resistant combinatorial problems and their potential usefulness.

We wish to thank our generous sponsors who allowed us to offer substantial
allowances to students attending the conference in order to cover their expenses.

VI Preface

We extend our gratitude to the outstanding program committee who worked
very hard under tight deadlines. We are deeply grateful to Claude Michel who
worked in the trenches in preparing the CP meeting at Nice and who dealt with
all the difficult organization aspects of this conference.

April 2004 Jean-Charles Régin and Michel Rueher

Organization

CPAIOR 2004 was organized by INRIA (Institut National de Recherche en In-
formatique et en Automatique) Sophia Antipolis.

Executive Committee

Conference and Program Chairs Jean-Charles Régin (ILOG S.A.) and
Michel Rueher (Univ. of Nice-Sophia Antipolis)
Claude Michel (Univ. of Nice-Sophia Antipolis)Organization Chair

Program Committee

Abderrahmane Aggoun, Cosytec, France
Philippe Baptiste, École Polytechnique, France
Roman Bartak, Charles University, Czech Republic
Chris Beck, Cork Constraint Computation Centre, Ireland
Mats Carlsson, SICS, Sweden
Alain Colmerauer, Univ. of Marseille, France
Hani El Sakkout, Parc Technologies, UK
Bernard Gendron, CRT and Univ. of Montreal, Canada
Carmen Gervet, IC-Parc, UK
Carla Gomes, Cornell University, USA
Narendra Jussien, École des Mines de Nantes, France
Stefan Karisch, Carmen Systems, Canada
François Laburthe, Bouygues, France
Olivier Lhomme, ILOG, France
Michela Milano, Univ. of Bologna, Italy
George Nemhauser, Georgia Tech, USA
Gilles Pesant, CRT and École Polytechnique de Montreal, Canada
Jean-Charles Régin (chair), ILOG, France
Michel Rueher (chair), Univ. of Nice-Sophia Antipolis, France
Christian Schulte, KTH, Sweden
Meinolf Sellmann, Cornell University, USA
Sven Thiel, Max Planck Institute, Germany
Gilles Trombettoni, Univ. of Nice-Sophia Antipolis, France
Michael Trick, Carnegie Mellon University, USA
Pascal van Hentenryck, Brown University, USA
Mark Wallace, IC-Parc, UK

VIII Preface

Referees

Abderrahmane Aggoun
Philippe Baptiste
Roman Bartak
Chris Beck
Nicolas Beldiceanu
Pascal Brisset
Mats Carlsson
Alain Colmerauer
Miguel Constantino
Romuald Debruyne
Hani El Sakkout
Andrew Eremin
Marco Gavanelli
Bernard Gendron
Carmen Gervet
Carla Gomes
Idir Gouachi

Brahim Hnich
Narendra Jussien
Stefan Karisch
Irit Katriel
Yahia Lebbah
François Laburthe
Olivier Lhomme
Vassilis Liatsos
Andrea Lodi
Michela Milano
George Nemhauser
Bertrand Neveu
Stefano Novello
Gilles Pesant
Nikolai Pisaruk
Steven Prestwich
Philippe Refalo

Guillaume Rochart
Louis-Martin Rousseau
Christian Schulte
Meinolf Sellmann
Paul Shaw
Josh Singer
Helmut Simonis
Neil Yorke-Smith
Francis Sourd
Sven Thiel
Gilles Trombettoni
Michael Trick
Pascal van Hentenryck
Willem Jan van Hoeve
Mark Wallace
Jean-Paul Watson

Sponsors

Bouygues, France
Cosytec S.A., France
Carmen System
CoLogNET
ESSI (École Supérieure en Sciences Informatiques), Sophia Antipolis, France
I3S/CNRS–Université de Nice-Sophia Antipolis, France
IISI (Intelligent Information Systems Institute), USA
ILOG S.A., Paris

Table of Contents

Invited Paper

Using MILP and CP for the Scheduling of Batch Chemical Processes
Christos T. Maravelias and Ignacio E. Grossmann

Technical Papers

1

SIMPL: A System for Integrating Optimization Techniques
 John N. Hooker, and Tallys H. Yunes

A New Exact Solution Algorithm for the Job Shop Problem
with Sequence-Dependent Setup Times
Christian Artigues, Sana Belmokhtar, and Dominique Feillet

Simple Rules for Low-Knowledge Algorithm Selection
J. Christopher Beck and Eugene C. Freuder

Filtering Algorithms for the Same Constraint
Nicolas Beldiceanu, Irit Katriel, and Sven Thiel

Cost Evaluation of Soft Global Constraints
Nicolas Beldiceanu and Thierry Petit

SAT-Based Branch & Bound and Optimal Control
of Hybrid Dynamical Systems
Alberto Bemporad and Nicolò Giorgetti

21

37

50

65

80

96

Solving the Petri Nets Reachability Problem Using
the Logical Abstraction Technique and Mathematical Programming
Thomas Bourdeaud’huy, Saïd Hanafi, and Pascal Yim

Generating Benders Cuts for a General Class
of Integer Programming Problems
Yingyi Chu and Quanshi Xia

A Constraint Programming Model for Tail Assignment
Mattias Grönkvist

Super Solutions in Constraint Programming
Emmanuel Hebrard, Brahim Hnich, and Toby Walsh

112

127

142

157

X Table of Contents

Local Probing Applied to Network Routing
Olli Kamarainen and Hani El Sakkout

Dynamic Heaviest Paths in DAGs with Arbitrary Edge Weights
Irit Katriel

Filtering Methods for Symmetric Cardinality Constraint
Waldemar Kocjan and Per Kreuger

Arc-Consistency Filtering Algorithms
for Logical Combinations of Constraints
Olivier Lhomme

Combining Forces to Solve the Car Sequencing Problem
Laurent Perron and Paul Shaw

Travelling in the World of Local Searches
in the Space of Partial Assignments
Cédric Pralet and Gérard Verfaillie

A Global Constraint for Nesting Problems
Cristina Ribeiro and Maria Antónia Carravilla

173

190

200

209

225

240

256

Models and Symmetry Breaking for ‘Peaceable Armies of Queens’
Barbara M. Smith, Karen E. Petrie, and Ian P. Gent

A Global Constraint for Graph Isomorphism Problems
Sébastien Sorlin and Christine Solnon

Echelon Stock Formulation of Arborescent Distribution Systems:
An Application to the Wagner-Whitin Problem
S. Armagan Tarim and Ian Miguel

Scheduling Abstractions for Local Search
Pascal Van Hentenryck and Laurent Michel

Filtering Algorithms for Unary Resource Constraint
Petr Vilím

Problem Decomposition for Traffic Diversions
Quanshi Xia, Andrew Eremin, and Mark Wallace

271

287

302

319

335

348

Short Papers

LP Relaxations of Multiple all-different Predicates
Gautam Appa, Dimitris Magos, and Ioannis Mourtos 364

Table of Contents XI

Dispatching and Conflict-Free Routing of Automated Guided Vehicles:
A Hybrid Approach Combining Constraint Programming
and Mixed Integer Programming
Ayoub Insa Corréa, André Langevin, and Louis Martin Rousseau

Making Choices Using Structure at the Instance Level within
a Case Based Reasoning Framework
Cormac Gebruers, Alessio Guerri, Brahim Hnich, and Michela Milano

370

380

The Challenge of Generating Spatially Balanced
Scientific Experiment Designs
Carla Gomes, Meinolf Sellmann, Cindy van Es, and Harold van Es

Building Models through Formal Specification
Gerrit Renker and Hatem Ahriz

Stabilization Issues
for Constraint Programming Based Column Generation
Louis-Martin Rousseau

A Hybrid Branch-And-Cut Algorithm
for the One-Machine Scheduling Problem
Ruslan Sadykov

Author Index

387

395

402

409

415

This page intentionally left blank

Using MILP and CP for the Scheduling
of Batch Chemical Processes

Christos T. Maravelias and Ignacio E. Grossmann

Department of Chemical Engineering
Carnegie Mellon University, Pittsburgh, PA 15213, USA

{ctm,ig0c}@andrew.cmu.edu

Abstract. A hybrid framework that uses Mathematical and Constraint
Programming for the scheduling of batch chemical processes is proposed.
Mathematical programming is used for the high-level optimization decisions
(number and type of tasks, and assignment of equipment units to tasks), and
Constraint Programming is used for the low-level sequencing decisions. The
original problem is decomposed into an MILP master problem and a CP
subproblem. The master MILP is a relaxation of the original problem, and given
a relaxed solution, the CP subproblem checks whether there is a feasible
solution and generates integer cuts. The proposed framework is based on the
hybrid algorithm of Maravelias and Grossmann ([1],[2]), and can be used for
different objective functions and different plant configurations. In this paper we
present the simplifications and enhancements that allow us to use the proposed
framework in a variety of problems, and report computational results.

1 Introduction

Scheduling of operations is a common and very important problem in the chemical
industry. While related problems have been extensively studied in the Operations
Research literature (see [3]), this area has only been addressed recently in process
systems engineering (see [4], [5], [6], [7] for reviews).

In terms of plant configurations, problems in chemical industry can be classified
into four major categories. In multiple-unit or single-stage plants (Figure 1.a), there
are N orders to be scheduled in M units. In flow-shop multi-stage plants (Figure 1.b),
there are N orders to be processed in K stages, following the same order. Each stage

consists of units, and each order must be processed by one unit in each
stage. In general multi-stage plants (Figure 1 .c), each order must be processed in all
stages but not in the same order. Multipurpose batch plants (Figure 1.d), finally, can
be viewed as a generalization of all previous configurations, where batch splitting and
mixing, as well as recycle streams are present. It should be noted that the original
work in process scheduling concentrated mostly on flow-shop and general multi-stage
batch plants (see [3], [5]). The study of general multipurpose plants was largely
promoted by the work of Kondili et al. [8].

Preemption is usually not allowed, and utility constraints (e.g. manpower, cooling
water, etc.), and release/due times may be present in all configurations. Different
storage policies, such as unlimited intermediate storage (UIS), finite intermediate

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 1-20, 2004.

© Springer-Verlag Berlin Heidelberg 2004

2 Christos T. Maravelias and Ignacio E. Grossmann

storage (FIS), no intermediate storage (NIS) and zero-wait (ZW), are used in multi-
purpose and multi-stage plants, while in singe-stage plants it is usually assumed that
unlimited storage is available. Furthermore, the batch size of a task may be variable,
which in many cases leads to variable duration and utility requirements. In terms of
objective functions, the most common ones: maximization of production over a fixed
time horizon, minimization of makespan for given demand and minimization of cost
for given demand with due dates.

A feature that makes scheduling problems in chemical industry hard to solve is that
usually the type and number of tasks (jobs) are not uniquely defined, and moreover, a
specific task can be performed in more than one unit. These problems are hard to
solve because of the large number of different solutions, and have not been studied
extensively. Problems where the number and type of tasks are fixed and each task can
be assigned to only one machine, on the other hand, have been extensively studied in
OR community and efficient algorithms exist for many of these problems.

Fig. 1. Common plant configurations in chemical industry

Using MILP and CP for the Scheduling of Batch Chemical Processes 3

Due to the different plant configurations and process specifications, a wide variety
of optimization models, mainly MILP models, have been proposed in the process
systems engineering literature. In multipurpose batch plants, for instance, where the
level of inventories and the level of resource consumption should be monitored and
constrained, the time horizon is partitioned into a sufficiently large number of periods,
and variables and constraints are defined for each time period. In single-stage plants,
on the other hand, where no batch splitting, mixing and recycle streams are allowed,
batch sizes are usually assumed to be constant and this, in turn means that mass
balance equations need not be included in the formulation. If, in addition, there are no
utility constraints the time horizon is not partitioned into common time periods, and
hence, assignment binaries are indexed by tasks and unit time slots, which are
generally fewer than time periods. When the number of tasks and the assignments of
tasks to units are known, assignments binaries and constraints are dropped, and
sequencing binaries are used instead.

In an effort to develop a general representation that can be used in the majority of
scheduling problems of chemical industry, Kondili et al. [8] proposed the discrete-
time State Task Network (STN) representation, and the equivalent Resource Task
Network (RTN) representation was proposed by Pantelides [9]. To overcome some
limitations of discrete-time models, several authors proposed continuous-time
STN/RTN models ([10], [11], [12], [13], [14]). While being very general, STN and
RTN-based models are computationally inefficient for many classes of problems. The
computational performance of both models is very poor, for instance, when the
objective is the minimization of makespan for a given demand. Finally, STN-based
models do not exploit the special structure of simple configurations, being orders of
magnitude slower than special purpose MILP models.

To address these issues, Maravelias and Grossmann proposed a general hybrid
MILP/CP iterative algorithm ([1], [2]) for the scheduling of multipurpose plants that
exploits the complementary strengths of Mathematical and Constraint Programming.
In this paper we show how this hybrid algorithm can be modified to address
scheduling problems in multi-stage and single-stage plants. It is shown that the same
idea can be used in all these configurations: use MILP to find a partial solution that
includes the type and number of tasks and the assignments of units to tasks, and use
CP to check feasibility, generate integer cuts and derive complete schedules.

In the section 2 we briefly present the hybrid algorithm of Maravelias and
Grossmann. In section 3 we present the different types of problems, and in sections 4
and 5 we present how this algorithm can be modified to address these problems.
Finally, we report computational results to show that order-magnitude reductions in
computation time are possible with the proposed hybrid schemes.

2 Hybrid MILP/CP Algorithm

The main idea of the proposed algorithm is to use MILP to optimize (identify partial,
potentially good solutions), and CP to check feasibility and derive complete, feasible
schedules. Specifically, an iterative scheme where we iterate between a MILP master
problem and a CP subproblem is proposed. The type and number of tasks to be
performed and the assignment of tasks to equipment units are determined in the

4 Christos T. Maravelias and Ignacio E. Grossmann

master MILP problem, while the CP subproblem is used to derive a feasible schedule
for the partial solution obtained by the master problem. At each iteration, one or more
integer cuts are added to the master problem to exclude infeasible or previously
obtained assignments. For a maximization problem, the relaxed master problem
provides an upper bound and the subproblem, when feasible, provides a lower bound.
The algorithm terminates when the bounds converge. To enhance the performance of
the algorithm, preprocessing is used to determine Earliest Start Times (EST) and
Shortest Tails (ST) of both tasks and units Strong integer cuts that are
added a priori in the cut-pool of the master problem are also developed during
preprocessing. A simplified flow diagram of the proposed algorithm for the
maximization of profit is shown in Figure 2.

The proposed decomposition can also be applied as a branch-and-cut algorithm,
where the master problem is viewed as a relaxation of the original problem. When a
relaxed solution is obtained, the CP solver is called to obtain a complete solution and
generate cuts that are added in the MILP relaxation.

2.1 Master Problem

For the master MILP problem an aggregated STN representation with no time periods
has been used. Resource constraints and big-M time matching constraints (that lead to
poor LP relaxations) have been eliminated and only assignment, batch size and mass
balance constraints are included. Mass balance constraints are expressed once (for the
total amounts) at the end of the scheduling horizon. Integer cuts are added to exclude
previously found or infeasible integer solutions of the master problem.

Fig. 2. Hybrid MILP/CP iterative scheme

Using MILP and CP for the Scheduling of Batch Chemical Processes 5

To decouple units from tasks we use the following rule. If a task i can be
performed in both units j and then two tasks i (performed in unit j) and
(performed in unit are defined. Thus, by choosing which tasks are performed we
also make assignment decisions. For each task i we postulate a set of copies, i.e. an
upper bound on the number of batches of task i that can be carried out in any feasible
solution.

where H is an upper bound on the length of the time horizon and is the
minimum duration of task i. In practice, however, a smaller number of copies can be
used based on our knowledge of the process network,

For each copy c of task i we define the binary which is equal to 1 if the copy
of task i is carried out. We also define its duration and batch size For each
state, we define its inventory level at the end of the scheduling horizon. The master
MILP problem (MP) consists of constraints (1) to (10):

Eq. (1) is a relaxed assignment constraint which enforces that the sum of the
durations of the tasks assigned to a unit does not exceed the maximum available
processing time of machine j, where I(j) is the set of tasks that can be assigned to unit
j. When the scheduling horizon is fixed (maximization of production over a fixed time
horizon or problems with deadlines) MS is a parameter equal to the fixed time horizon

6 Christos T. Maravelias and Ignacio E. Grossmann

H. When the objective is the minimization of the makespan, MS is a variable equal to
the makespan. Parameter represents the earliest time that any task can be
assigned to start on unit j, while parameter represents the shortest time needed for
any material processed in unit j to be transformed into a final product. Both and

are calculated during preprocessing. The duration of copy c of task i is a function
of its batch size, as in eq. (2), and the batch size of copy c of task i is bounded through
eq. (3). The amount of state s at the end of the time horizon is calculated by (4) to
be equal to the initial amount plus the amount produced, minus the amount
consumed, where and are the mass fractions for consumption and production,
respectively, of state s by task i, and O(s)/I(s) is the set of tasks producing/consuming
state s. In eq. (5), the inventory of the final product must be greater than the
demand while in eq. (6) the inventory of intermediate must be less than the
capacity of the storage tank of state s. Eq. (7) is used to eliminate symmetric
assignments, while eq. (8) is used to model special characteristics of a process
network (see [1], [2] for details). At a specific iteration k, constraints in (9) include all
the integer cuts that have been added during preprocessing and in previous iterations.
Various objective functions can be accommodated. The master problem (MP) is a
relaxation of the original problem because it does not account for the interconnections
between tasks and states and does not enforce feasibility throughout the time horizon.
Hence, the assignments obtained by (MP) may be infeasible in reality. The feasibility
check and the derivation of a complete feasible schedule, if possible, are performed
by the CP subproblem.

2.2 CP Subproblem

The modeling language of ILOG’s OPL Studio 3.5 ([15], [16]) has been used for the
modeling of the CP subproblem. For each equipment unit j we define a unary resource
Unit[j] and for each resource r (e.g. cooling water) we define a discrete resource
Utility[r] with a maximum capacity Furthermore, for each state s we define a
reservoir State[s] with capacity and initial level For each binary that is
equal to 1 in the current optimal solution of the master problem (i.e. copy c of task i is
carried out) we define an activity Task[i,c] with duration We also define a
dummy activity MS with zero duration and no resource requirements. We also define

activities, Order[d], with zero duration, where D is the set of orders for final
products, D(s) is the set of orders for state and for each is
the amount due and is the due date. The CP subproblem consists of constraints
(11) to (26):

Using MILP and CP for the Scheduling of Batch Chemical Processes 7

The batch size of activity Task[i,c] is bounded by eq. (11) and its duration is
calculated via eq. (12). Constraint (13) enforces tasks in I(j) to be assigned to unary
resource Unit[j]. The amount of reservoir State[s] consumed/ produced by
activity Task[i,c] is calculated by eq. (14)/(15), and the consumption/production of

units of reservoir State[s] by Task[i,c] is enforced by eq. (16)/(17). The
amount of discrete resource Utility[r] required by activity Task[i,c], throughout
its execution, is calculated in eq. (18), and the consumption of units of discrete
resource Utility[r] by activity Task[i,c] is enforced by eq. (19). The condition that the
amount of final products should meet the demand is enforced by (20), where is the
total demand for state s. Parameter is either given (in the case of fixed demand with
no due dates) or calculated as a sum of for all Each order is executed at
its due time (eq. (21)), and the amount delivered is equal to the amount due (eq. (22)).
In eq. (23) the end time of all activities is restricted to be smaller than the start of
activity MS, and MS is, (a) fixed finish time when the time horizon is fixed, and (b) a
variable finish time when the objective is the minimization of makespan. Constraint
(24) is a symmetry-breaking constraint that reduces the number of possible
configurations by imposing a sequence between copies of the same task. Constraints
that describe some special features of the process network are included in (25).
Depending on the nature of the problem (constant vs. variable processing times) and

8 Christos T. Maravelias and Ignacio E. Grossmann

the objective function, we may want to solve the CP subproblem as one feasibility
problem, as successive feasibility problems or as an optimization problem. If the CP
is an optimization problem we add constraint (26). Details can be found in [2].

2.3 Preprocessing

The performance of the proposed model depends on how fast we solve models (MP)
and (SP), and the number of iterations needed to generate solutions and prove
optimality. It is crucial, therefore, to exclude infeasible or suboptimal solutions as
soon as possible. Preprocessing enhances the performance of the algorithm by (a)
tightening existing constraints, and (b) creating strong cuts that are added in the cut-
pool of the master problem and are used to eliminate a priori a number of potential
configurations. Parameters and that are used to tighten constraint (1) are
calculated in preprocessing (see [1] and [2] for details). Depending on the
characteristics of the problem, different preprocessing can be performed. As will be
shown in section 5, for instance, integer cuts can be generated in problems with
release and due times.

2.4 Integer Cuts

Another way to reduce the number of iterations is by generating integer cuts that
forbid more than one infeasible or suboptimal solutions. While a simple, “no-good”
integer cut can always be added at each iteration, in some cases stronger integer cuts
that exclude more than one assignment can also be added. The form of the integer
cuts is problem specific. Two new classes of integer cuts were proposed in [2] for
multi-purpose batch plants. In general, the quality of the integer cuts is crucial for the
effectiveness of the proposed scheme, and how to generate effective cuts is an open
question.

3 Scheduling Problems

As explained in section 1, a wide variety of scheduling problems appear in chemical
industry. While models (MP) and (CP) are very general, they do not exploit the
special structure of these problems. A very interesting feature of models (MP) and
(CP), however, is that they can be readily reduced to models that accurately describe
other plant configurations. The reduced models result from models (MP) and (CP) by
removing some of the constraints, changing the notation and in some cases adding
constraints that describe details of a specific problem and tighten the formulations.
Note, however, that no new constructs, variables or types of constraints need to be
defined. Another advantage of this reduction is that the form and functionality of the
two models remain practically the same: the decisions about the number and type of
tasks and the assignment of tasks to units (or some of these decisions) are made by the
master problem, while the subproblem is used to check feasibility, yield complete
schedules and generate integer cuts.

The exact form of the two problems depends on the configuration of the plant, the
objective function and the special characteristics of the instance at hand (demand,

Using MILP and CP for the Scheduling of Batch Chemical Processes 9

release/due times, etc.). In terms of plants configurations, the most common are the
ones shown in Figure 1. Note that the flow-shop plant is a special case of the multi-
stage plant and that the single-stage plant is a special case of the flow-shop plant. In
terms of objective functions, the most common are the maximization of production or
profit over a fixed time horizon, the minimization of makespan for given demand and
the minimization of cost for given demand with due dates. To give an example, if the
objective is to maximize the production or profit over a fixed time horizon, the type
and number of tasks are unknown, whereas if the objective is to minimize the
makespan for a fixed demand expressed in orders for which no batch splitting and
mixing is allowed, the type and number of tasks is fixed and only the assignment of
units to tasks is determined by the master problem.

A characteristic that differentiates scheduling problems significantly is how the
demand for final products is expressed. If it is expressed in terms of fixed quantities,
called the fixed-demand problem, more than one batches can be combined to meet the
demand and thus batch mixing and splitting is allowed. If it is expressed in terms of
orders, called the order problem, no batch mixing and splitting is allowed throughout
the production. Note that in some cases a fixed-demand problem can be reduced to an
order problem by pre-calculating how many and what type of batches are needed to
meet the demand. When the demand is expressed in amounts, the number of tasks to
be performed is unknown. When the demand is expressed in terms of orders, the
number of tasks is fixed and a number of simplifications can be applied. In
multipurpose batch plants demand is usually expressed in fixed amounts of final
products, while in multi- and single-stage plants demand can be expressed either as
fixed amounts or as orders. Next, we present a general fixed-demand formulation for
the multi-stage plant and reduced order formulations for the multi- and single-stage
plant (the fixed-demand formulation for the single-stage plant is a special case of the
multi-stage formulation). When the objective is the maximization of production over
a fixed time horizon, the number of tasks is unknown, and thus the fixed-demand
formulation, without the demand satisfaction constraints, is used.

4 Master Problem Reductions

4.1 Multi-stage Plant: Fixed Demand

In the master problem we use a reduced formulation to determine the number and
type of tasks as well as the assignment of units to tasks. A task i corresponds to the
processing of a chemical s at a unit j of a stage k. Compared to the multi-purpose
plant, in multi-product plants each task consumes and produces only one state and
thus the mass fractions for consumption and production in equation (5) are equal to 1:

All other constraints remain the same. The master problem for the general multi-
stage plant consists of equations (1) – (4), (27) and (6) – (10). When units operate at
constant batch-size, processing times are parameters and constraints (3) and (4) are
dropped, and is equal to where is the fixed batch-size of task i.

10 Christos T. Maravelias and Ignacio E. Grossmann

4.2 Multi-stage Plant: Demand in Orders

When demand is expressed in terms of orders, the number of batches is fixed: each
order has to be processed at each stage exactly once, i.e. the number of tasks that take
place is where and is the number of orders and stages respectively.
Moreover, each order will be processed once at each stage in one of the units of this
stage. Thus, we can drop index c for copies, and replace the tuple (i,c) by the triplet
(o,k,j), where o, k and j are the indices for orders, stages and units.

Since demand is expressed in orders, constraint (6) is dropped, and since an order
corresponds to a certain amount of a final product, batch-sizes are fixed and
constraints (2) and (3) are also dropped. Since no batch splitting and mixing is
allowed, there are no intermediate chemicals at the end of the horizon. Moreover, we
can assume that appropriate storage is available for the finished goods, and thus we
can also drop constraints (4) and (5). Since there are no copies of the same task,
constraint (7) is dropped, and since tasks are indexed by (o,k,j) instead of (i,c),
constraint (1) is written as in (28). The master problem for the multi-stage plant when
the demand is expressed in orders consists of equations (8) - (10), (28) and (29).

Binary is equal to 1 if order o is assigned to unit j of stage k (i.e. and
is the fixed duration of task (o,k,j). Constraint (28) enforces that each order is

processed at exactly one unit of stage k. Constraint (29) ensures that the sum of
processing times of the durations of tasks assigned to unit does not exceed the
maximum processing time available on unit j. Constraints in (8) can include forbidden
and processing paths (i.e. if order o cannot be processed in unit if
previously processed in unit then

4.3 Single-stage Plant: Demand in Orders

The single-stage plant is a special case of the multi-stage plant. Each order has to be
processed only in one stage, and thus the index k is dropped. The master problem
consists of equations (8) – (10), (30) and (31).

Using MILP and CP for the Scheduling of Batch Chemical Processes 11

5 Subproblem Reductions

In the reduced formulation for the master problem we do not take into account utility
constraints. In the subproblem, however, we use constraints (18) and (19) to model
utility restrictions. Utility constraints are always the same, i.e. independent of the
plant configuration. Furthermore, constraints (20) – (22) are used for the satisfaction
of the demand and they are also independent of the plant configuration. Hence, we
will refer to utility constraints (18) – (19), and demand satisfaction constraints (20) –
(22) as follows:

Hence, the CP subproblem for the multipurpose batch plant consists of constraints
(11) – (17), (23) – (26) and (32) – (33).

5.1 Multistage Plant: Fixed-Demand

In multi-stage plants there are no recycle streams and all mass fractions are equal to 1,
so we can eliminate variables and drop constraints (14) and (15) and use
constraints (34) and (35) instead of constraints (16) and (17), respectively:

where SI(i) and SO(i) are the sets of the input and output states, respectively, of task i.
The CP subproblem for the fixed-demand multipurpose batch plant consists of

equations (11) – (13), (23) – (26), and (32) – (35).

5.2 Multipurpose Plants: Demand in Orders

When the demand is expressed in terms of orders, the number of tasks is fixed, and
thus we can drop the index c for copies, and replace index i by the triplet (o,k,j), as in
the master problem. This implies that constraint (24) is dropped, and that constraints
(13) and (23) are rewritten as in (36) and (37), respectively:

Furthermore, the batch-sizes are fixed, so we can remove constraints (11) and (12),
and re-write utility constraint (31) as in (38), and constraints (34) – (35) as in (39) and
(40), respectively. Since the demand is expressed in orders, any feasible solution of
the problem will satisfy the demand, so constraint (33) is not needed.

12 Christos T. Maravelias and Ignacio E. Grossmann

where is the size of order o, is the amount of utility r required by order o at
stage k when processed at unit and SI(o,k) and SO(o,k) are the sets of input
and output states, respectively, of order o at stage k. The CP subproblem consists of
equations (25) and (36) – (40).

The redundant constraint (41) that enforces a sequence between tasks of the same
order can be added, where S(o,k) is an index set that for order o gives the stage that
follows stage k. Note that the sequence between tasks of the same order is also
enforced by constraints (39) and (40): a task in stage k can only be performed if the
input state is available.

If we assume that appropriate dedicated storage is available for all intermediate
states, we need not use the construct State and we can drop constraints (39) and (40).
In that case, constraint (41) is necessary to impose the sequencing among tasks of the
same order. In this case, the CP subproblem consists of constraints (25), (36) – (38)
and (41).

5.3 Single-stage Plant: Demand in Orders

In single-stage plants each order has to be processed in only one stage and storage is
usually not taken into account. Thus, index k for stages is dropped, the construct State
is not used and sequencing constraints are not needed. The CP model consists of
constraints (25) and (42) – (44), where binary is 1 if order o is assigned to unit j.

6 Remarks

6.1 Integration with Other Algorithms

An interesting feature of the proposed decomposition framework is that it can be used
as a general platform for the integration of two different solution paradigms. In
general, the master problem is a relaxation of the original problem. A solution of this
relaxed problem defines a subspace that is searched by the subproblem. The main idea
of the proposed decomposition, thus, is to use a solution paradigm that is good at
identifying promising partial solutions (i.e. use MILP for optimization) and a solution
technique that is good at searching the constrained subspace (i.e. use CP for
scheduling problems with fixed tasks and fixed assignments).

Using MILP and CP for the Scheduling of Batch Chemical Processes 13

In general, however, any two solution techniques can be combined, provided that
the solution of the master problem can be translated into a meaningful problem for the
subproblem. This is particularly useful when the subproblem corresponds to a
problem that has been extensively studied by the OR community, and there are
efficient algorithms for its solution. When the demand is expressed in orders the
subproblem of multi-stage plants (i.e. the reduced problem where the assignments are
fixed), for instance, is equivalent to the widely studied job-shop scheduling problem.
Thus, for the solution of the subproblem we can use a problem-specific algorithm
instead of CP. For the multi-stage problem, specifically, we developed an iterative
scheme where we use the Shifting Bottleneck procedure ([17], [18]) (SBP) for the
solution of the job-shop problem that arises when the assignment of tasks to specific
units is fixed by the master problem.

6.2 Preprocessing and Integer Cuts

Pre-processing algorithms that exploit the special structure of the problem or the
specific instance at hand can be used to tighten the models presented above. For the
minimization of processing cost of single-stage plants with orders that have release
and due times, for instance, we developed a very efficient pre-processing algorithm
that generates cover cuts that can be added to the cut pool of the master problem a
priori. These cover cuts are generated from knapsack constraints of the form,

where and are the release and due time of order o, and O* is a subset of orders.
The proposed pre-processing algorithm was applied in a set of instances studied in
[19] and [20] reducing the computational effort by one order of magnitude.

The effectiveness of the proposed framework depends also on the “quality” of the
integer cuts. Good integer cuts include only the binary variables that are responsible
for the infeasibility of a solution, and it is usually very difficult to generate, mainly
because the source of infeasibility is usually not revealed when the CP subproblem is
found infeasible. Depending on the configuration of the plant and the algorithm that is
used for the solution of the subproblem, it might be possible to derive effective cuts.
In Example 2, we present how we used SBP to derive strong integer cuts, based on
the fact that successive one-machine problems are solved. This allowed us to detect
one-machine infeasible assignments, which is not always possible with CP.

7 Examples and Computational Results

We are currently testing the proposed framework for various plant configurations and
objective functions. While the computational performance varies significantly and the
hybrid approach does not always outperform other methods, we have found that if
problem-specific information is exploited, through pre-processing and the generation
of strong integer cuts, the proposed algorithm can be significantly faster than
standalone MILP or CP models. In Example 1 we show how pre-processing can be
used to eliminate solutions of the master problem, while in Example 2 we show the

14 Christos T. Maravelias and Ignacio E. Grossmann

advantages of the integration of Mathematical Programming with a heuristic method.
Example 3, finally, is a multipurpose batch plant with batch splitting and mixing.

7.1 Example 1: Minimization of Processing Cost in Single-stage Plant

Here we study the problem reported in Jain and Grossmann [19]: there are N jobs to
be processed in M machines. The processing of job i can start after its release time
and must finish before its due time Job i can be processed in any machine j. The
processing cost and the processing time of job i in machine j are and
respectively, and the objective is to minimize the total processing cost. The original
master problem consists of constraints (8) – (10) and (30) – (31). For this problem,
specifically, we can develop a pre-processing algorithm that uses the release and due
time data and generates a set of valid inequalities that are a priori added in the cut
pool of the master problem.

To illustrate consider the example of Table 1, where three jobs 1, 2 and 3 have to
be scheduled on two machines A and B. The processing time of all jobs in both
machines is 2 hours, but the processing cost in machine A is much lower, and thus,
the objective favors an assignment where all jobs are assigned to machine A, if
feasible.

Constraint (31) for machine A reads:

Constraint (31), as well as all other constraints of (MP), is satisfied if
although, such an assignment is infeasible because job 2 has to start at t=1

which means that there is not enough time for job 1 to be performed before job 2 and
there is not enough time for jobs 1 and 3 to be performed after job 2. This observation
led us to develop a pre-processing algorithm that considers subsets of jobs and checks
whether the jobs of these subsets can all be assigned on the same machine, using a
knapsack inequality of the form of constraint (45). If the knapsack inequality is
violated, the violated knapsack constraint or cover cuts ([21], [22]) of the violated
knapsack constraint are added in the master problem (MP). In the example of Table 1,
the knapsack inequality for the subset of jobs 2 and 3 reads:

Since the above constraint is violated, we can add the following cover inequality,
which forbids the simultaneous assignment of jobs 2 and 3 in machine A:

Using MILP and CP for the Scheduling of Batch Chemical Processes 15

A straightforward implementation of a pre-processing algorithm that generates
some of the violated knapsack constraints or cover cuts is presented in Table 2. While
a more efficient algorithm that takes into account the ordering of tasks by ascending
release time and descending due time can be developed, the computational time
required for this step is negligible and thus we implemented as is. The constraints
generated are a priori added in the cut pool of (MP). The algorithm can be further
enhanced if all cover inequalities of a given knapsack are generated.

Another interesting case is the one illustrated through the example of Table 3.
In this example, the knapsack constraints for sets {1,2,3}, {1,2}, {1,3} and {2,3}

are the following:

All knapsacks are satisfied if all binaries are 1, which means that none of these
assignments can be excluded by the pre-processing described in Table 2. However, in
any assignment job 2 must start at t=1 and finish at t=3, which means that job 1
cannot be assigned in the same machine as job 2 because its due time is at t=4. This
assignment could have been excluded if we had adjusted the RHS of (47) to account
for the fact that both the maximum due time and the minimum release time for subset
{1,2} correspond to the same job, namely job 1. Whenever this is the case, the RHS
must be adjusted as follows:

where i* is the task in subset S with the smallest release and largest due time.

16 Christos T. Maravelias and Ignacio E. Grossmann

For the subset {1,2}, constraint (50) gives knapsack inequality (51), which in turn
gives the cover cut (52). Both inequalities exclude the infeasible assignment
AND

The pre-processing routine that generates cuts for the exclusion of infeasible
assignments that exhibit the feature described above is given in Table 4 (Phase II).
The two phases of the preprocessing and the iterative hybrid MILP/CP algorithm
were implemented in OPL Studio 3.6, on a PIII PC at 1GHz. For the solution of the
master MILP model (MP) we used CPLEX 8.0.

The proposed method was tested in a set of problems by Jain and Grossmann
([19]). The authors showed that standalone MILP and CP models are not
computationally efficient and proposed an iterative MILP/CP algorithm. Bockmayr
and Pisaruk [20] proposed a branch-and-cut scheme where CP is used for the
derivation of integer cuts. Computational results of standalone MILP and CP
approaches, of the MILP/CP hybrid schemes of Jain and Grossmann (J & G) and
Bockmayr and Pisaruk (B & P) and the proposed approach are given in Table 5.

As shown, all hybrid schemes are more efficient that the standalone MILP and CP
models. Using the proposed pre-processing we were able to solve all problems in less
than three CPU seconds. Note that the pre-processing algorithm generates a large
number of integer cuts that are added in the cut pool of the master problem, and thus
very few iterations are needed.

Using MILP and CP for the Scheduling of Batch Chemical Processes 17

7.2 Example 2: Minimization of Processing Cost in Multi-stage Plant

In the multi-stage problem addressed in [23] there are N orders with release and due
times to be processed in K stages, where each stage k has machines. The
assignment of a job to a machine has a processing cost and a processing time and the
objective is to find the assignment with the minimum cost that satisfies the release
and due times of jobs, subject to forbidden job-machine assignments and production
paths. For the solution of this problem the authors proposed a hybrid MILP/CP
scheme. While the decomposition into a master MILP and a subproblem CP model
has the advantages discussed above, in this specific problem it was not clear how to
develop effective integer cuts. The results with only the “no-good” cuts were poor,
and the authors had to relax the CP subproblem (i.e. allow for violation of the due
dates) and use the information about the late orders to develop two classes of heuristic
cuts that enhanced the performance of their algorithm.

It became clear, thus, that having an efficient algorithm for the solution of the
flow-shop subproblem with fixed assignments which can additionally provide us with
information that can be used for the generation of strong cuts would be very useful.
Such an algorithm is the SBP algorithm because in its first stage checks whether a
feasible schedule can be obtained given the assignments for each single machine; i.e.
it detects infeasibilities that are due to the assignments on a single machine. Thus, if
infeasibility is detected at this stage, we can add a strong integer cut that forbids the
current assignment on this machine. The MILP/SBP integration was implemented in
Mosel 1.2, using XPRESS-MP 14.2 for the solution of the master MILP and the SBP
for the solution of the subproblem, on a 1GHz Pentium III. The computational results
of standalone MILP and CP models, of the MILP/CP hybrid scheme of Harjunkoski
and Grossmann ([23]) and the proposed MILP/SBP heuristic are shown in Table 6.
Note that the SBP is a heuristic algorithm for the solution of job-shop problems,
which means that a feasible partial solution of the master problem may be found
infeasible by the SBP. In such a case, the iterative algorithm will not terminate when
the optimal solution is found, yielding a suboptimal solution. Thus, the proposed
scheme is a heuristic. However, note that for all ten instances the proposed scheme
obtained the optimal solution.

18 Christos T. Maravelias and Ignacio E. Grossmann

While the computational times are not directly comparable due to differences in the
software and hardware, note that the MILP/SBP integration requires fewer iterations
and cuts. As shown, when additional integer cuts are used, problems that were not
solvable in 1,000 CPU seconds are solved in 8 to 320 seconds, and the number of
iterations is significantly reduced.

7.3 Example 3: Minimization of Makespan in Multi-purpose Plant

Finally, we present computational results from Maravelias and Grossmann [2] for the
batch plant shown in Figure 3. The objective is to find the schedule of minimum
makespan for the production of 5 tons of products P1, P2, P3 and P4. When
formulated as a continuous time MILP model [2] with 10 time points, this problem
was intractable as it could not be solved in 10 hours of CPU-time with CPLEX7.5.
With the proposed hybrid scheme, assuming that we can have at most 4 copies of
each task, the optimal solution of 15 hours is found in 5 iterations. The assignment
that gives the optimal solution is found in the first iteration with a lower bound of 14
hours. Successive feasibility CP problems are solved for this assignment, and a
feasible schedule with a makespan of 15 hours is found in the second subproblem.
The subsequent master problems give solutions with a lower bound on the makespan
equal to 14 hours, but none of these assignments yields a feasible schedule with
makespan shorter than 15 hours. The fifth MILP is infeasible, which means that there
are no more assignments that can meet the given demand. The total computational
time is 1.80 CPU seconds, from which 0.03 seconds are spent in preprocessing, 0.70
seconds are spent for the master problem (approximately 0.14 sec for each MILP),
and 1.07 seconds are spent for all the CP subproblems.

Generally, the modeling of multipurpose batch plants is a complex task, and the
solution of the resulting MILP models is hard. Existing models are moderately
effective when the objective function is the maximization of profit or production over
a fixed time horizon, but very slow when the objective is the minimization of
makespan. To our experience, the proposed hybrid scheme seems to be moderately
effective for the maximization of profit and very effective for the minimization of
makespan, enabling us to solve problems that were previously unsolvable.

Fig. 3. Process network of multipurpose batch plant

Using MILP and CP for the Scheduling of Batch Chemical Processes 19

8 Conclusions

A general decomposition framework, which uses Mathematical and Constraint
Programming techniques, for the solution of scheduling problems in chemical
industry is presented. The number and type of tasks performed, as well as the
assignment of units to tasks are determined by the master MILP model, while the CP
subproblem is used to check feasibility and derive complete schedules. The advantage
of the proposed framework is that it can be readily applied to many classes of
problems. Furthermore, the underlying decomposition idea can also be used to
integrate Mathematical Programming with scheduling algorithms other than CP.

The computational efficiency of the proposed model varies significantly. There is
good evidence, however, that for some classes of problems it outperforms existing
methods. In general, if the structure of the problem at hand is exploited by efficient
preprocessing and the generation of strong integer cuts, it is expected that hybrid
schemes will be more effective because they combine the complementary strengths of
two solution techniques. Finally, we showed how the special structure or
characteristics of a problem can be exploited by simple additions (pre-processing in
Example 1) and modifications (solution of subproblem using SBP in Example 2) of
the proposed scheme. Furthermore, in Example 3 the proposed hybrid scheme was
able to solve in few seconds a complex scheduling problem that proved to be
intractable when solved as an MILP problem.

Acknowledgements

We would like to thank Dr. Alkis Vazacopoulos for making the SBP code available to
us, and his helpful comments on how to generate cuts from the SBP. The authors
would also like to acknowledge financial support from the National Science
Foundation under Grant ACI-0121497.

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

Maravelias, T.C.; Grossmann, I.E. A Hybrid MILP/CP Decomposition Approach for the
Scheduling of Batch Plants. In Proceedings of CP-AI-OR 2003, Montreal, Canada
(2003).
Maravelias, C.T.; Grossmann, I.E. A Hybrid MILP/CP Decomposition Approach for the
Short Term Scheduling of Multipurpose Batch Plants. (2004) To appear in Comput.
Chem. Eng.
Pinedo, M. Scheduling: Theory, Algorithms, and Systems. Prentice Hall (2001).
Reklaitis, G.V. Overview of scheduling and planning of batch process operations,
NATO Advanced Study Institute- Batch Process Systems Engineering, Antalya, Turkey
(1992).
Rippin, D.W.T. Batch process systems engineering: a retrospective and prospective
review. Comput. Chem. Eng. (1993) 17, S1-S13.
Pinto, J. & Grossmann, I.E. Assignment and Sequencing Models for the Scheduling of
Chemical Processes. Annals of Operations Research (1998) 81, 433-466.
Shah, N. (1998). Single- and multisite planning and scheduling: Current status and
future challenges. AIChE Symposium Series, 94, 75.

20 Christos T. Maravelias and Ignacio E. Grossmann

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

Kondili, E.; Pantelides, C. C.; Sargent, R. A General Algorithm for Short-Term
Scheduling of Batch Operations – I. MILP Formulation. Comput. Chem. Eng. (1993)
17, 211-227.
Pantelides, C. C. Unified Frameworks for the Optimal Process Planning and Scheduling.
In Proceedings on the Second Conference on Foundations of Computer Aided
Operations. (1994) 253-274.
Schilling, G.; Pantelides, C. C. A Simple Continuous-Time Process Scheduling
Formulation and a Novel Solution Algorithm. Comput. Chem. Eng. (1996) 20, S1221-
1226.
Zhang, X.; Sargent, R. W. H. The Optimal Operation of Mixed Production Facilities –
General Formulation and Some Approaches for the Solution. Comput. Chem. Eng.
(1996) 20, 897-904.
Mockus, L.; Reklaitis, G.V. Continuous Time Representation Approach to Batch and
Continuous Process Scheduling. 1. MINLP Formulation. Ind. Eng. Chem. Res. (1999)
38, 197-203.
Castro, P.; Barbosa-Povoa, A. P. F. D.; Matos, H. An Improved RTN Continuous-Time
Formulation for the Short-term Scheduling of Multipurpose Batch Plants. Ind. Eng.
Chem. Res. (2001) 40, 2059-2068.
Maravelias, C.T.; Grossmann, I.E. A New General Continuous-Time State Task
Network Formulation for the Short-Term Scheduling of Multipurpose Batch Plants. Ind.
Eng. Chem. Res. (2003) 42 (13), 3056-3074.
ILOG OPL Studio 3.5: The Optimization Language, ILOG Inc. (2001).
ILOG OPL Studio 3.5: The User’s Manual, ILOG Inc. (2001).
Adams, J.; Balas, E.; Zawack, D. The Shifting Bottleneck Procedure for Job Shop
Scheduling. Management Science (1988) 34, 391-401.
Balas, E.; Vazacopoulos,A. Guided Local Search with Shifting Bottleneck for Job Shop
Scheduling, Management Science (1998) 44(2), 262-275.
Jain, V; Grossmann, I. E. Resource-constrained Scheduling of Tests in New Product
Development. Ind. Eng. Chem. Res. (1999) 38, 3013-3026.
Bockmayr, A.; Pisaruk, N. Detecting Infeasibility and Generating Cuts for MIP Using
CP. In Proceedings of CP-AI-OR 2003, Montreal, Canada (2003).
Balas, E. Facets of the Knapsack Polytope. Mathematical Programming (1975) 8, 146-
164.
Wolsey, L.A. Faces for a Linear Inequality in 0-1 Variables. Mathematical
Programming (1975) 8, 165-178.
Harjunkoski, I.; Grossmann, I.E. Decomposition Techniques for Multistage Scheduling
Problems Using Mixed-Integer and Constrained Programming Methods. Comput. Chem.
Eng. (2002) 26, 1533-1552.

SIMPL: A System for Integrating
Optimization Techniques*

John N. Hooker, and Tallys H. Yunes

Graduate School of Industrial Administration
Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

{iaron, jh38, thy}@andrew.cmu.edu

Abstract. In recent years, the Constraint Programming (CP) and Op-
erations Research (OR) communities have explored the advantages of
combining CP and OR techniques to formulate and solve combinatorial
optimization problems. These advantages include a more versatile mod-
eling framework and the ability to combine complementary strengths
of the two solution technologies. This research has reached a stage at
which further development would benefit from a general-purpose mod-
eling and solution system. We introduce here a system for integrated
modeling and solution called SIMPL. Our approach is to view CP and
OR techniques as special cases of a single method rather than as sep-
arate methods to be combined. This overarching method consists of
an infer-relax-restrict cycle in which CP and OR techniques may in-
teract at any stage. We describe the main features of SIMPL and
illustrate its usage with examples.

1 Introduction

In recent years, the Constraint Programming (CP) and Operations Research
(OR) communities have explored the advantages of combining CP and OR tech-
niques to formulate and solve combinatorial optimization problems. These ad-
vantages include a more versatile modeling framework and the ability to combine
complementary strengths of the two solution technologies. Examples of existing
programming languages that provide mechanisms for combining CP and OR
techniques are [32, 35], OPL [34] and Mosel [8].

Hybrid methods tend to be most effective when CP and OR techniques in-
teract closely at the micro level throughout the search process. To achieve this
one must often write special-purpose code, which slows research and discourages
broader application of integrated methods. We address this situation by intro-
ducing here a system for integrated modeling and solution called SIMPL (Pro-
gramming Language for Solving Integrated Models). The SIMPL modeling lan-
guage formulates problems in such a way as to reveal problem structure to the
solver. The solver executes a search algorithm that invokes CP and OR tech-
niques as needed, based on problem characteristics.

* This work has been supported by the National Science Foundation under grant ACI-
0121497 and by the William Larimer Mellon Fellowship.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 21–36, 2004.
© Springer-Verlag Berlin Heidelberg 2004

22 et al.

The design of such a system presents a significant research problem in itself,
since it must be flexible enough to accommodate a wide range of integration
methods and yet structured enough to allow high-level implementation of specific
applications. Our approach, which is based partly on a proposal in [14, 16], is to
view CP and OR techniques as special cases of a single method rather than as
separate methods to be combined. This overarching method consists of an infer-
relax-restrict cycle in which CP and OR techniques may interact at any stage.

This paper is organized as follows. In Sect. 2, we briefly review some of the
fundamental ideas related to the combination of CP and OR that are relevant
to the development of SIMPL. We describe the main concepts behind SIMPL in
Sect. 3 and talk about implementation details in Sect. 4. Section 5 presents
a few examples of how to model optimization problems in SIMPL, explaining the
syntax and semantics of the language. Finally, Sect. 6 outlines some additional
features provided by SIMPL, and Sect. 7 discusses directions for future work.

2 Previous Work

A comprehensive survey of the literature on the cooperation of logic-based, Con-
straint Programming (CP) and Operations Research (OR) methods can be found
in [15]. Some of the concepts that are most relevant to the work presented here
are: decomposition approaches (e.g. Benders [3]) that solve parts of the problem
with different techniques [10,14, 19, 21, 24, 33]; allowing different models/solvers
to exchange information [32]; using linear programming to reduce the domains of
variables or to fix them to certain values [4, 11, 32]; automatic reformulation of
global constraints as systems of linear inequalities [30]; continuous relaxations of
global constraints and disjunctions of linear systems [1, 14, 18, 22, 28, 36, 37, 38];
understanding the generation of cutting planes as a form of logical inference [6, 7];
strengthening the problem formulation by embedding the generation of valid cut-
ting planes into CP constraints [12]; maintaining the continuous relaxation of
a constraint updated when the domains of its variables change [29]; and using
global constraints as a key component in the intersection of CP and OR [27].

Ideally, one would like to incorporate all of the above techniques into a single
modeling and solving environment, in a clean and generic way. Additionally,
this environment should be flexible enough to accommodate improvements and
modifications with as little extra work as possible. In the next sections, we
present the concepts behind SIMPL that aim at achieving those objectives.

3 SIMPL Concepts

We first review the underlying solution algorithm and then indicate how the
problem formulation helps to determine how particular problems are solved.

3.1 The Solver

SIMPL solves problems by enumerating problem restrictions. (A restriction is
the result of adding constraints to the problem.) Each node of a classical branch-

SIMPL: A System for Integrating Optimization Techniques 23

and-bound tree, for example, can be viewed as a problem restriction defined by
fixing certain variables or reducing their domains. Local search methods fit into
the same scheme, since they examine a sequence of neighborhoods, each of which
is the feasible set of a problem restriction. Thus SIMPL implements both exact
and heuristic methods within the same architecture.

The search proceeds by looping through an infer-relax-restrict cycle: it infers
new constraints from the current problem restriction, then formulates and solves
relaxations of the augmented problem restriction, and finally moves to another
problem restriction to be processed in the same way. The user specifies the overall
search procedure from a number of options, such as depth-first branching, local
search, or Benders decomposition. The stages in greater detail are as follows.

Infer. New constraints are deduced from the original ones and added to the cur-
rent problem restriction. For instance, a filtering algorithm can be viewed
as inferring indomain constraints that reduce the size of variable domains.
A cutting plane algorithm can generate inequality constraints that tighten
the continuous relaxation of the problem as well as enhance interval propa-
gation.

Relax. One or more relaxations of the current problem restriction are formu-
lated and solved by specialized solvers. For instance, continuous relaxations
of some or all of the constraints can be collected to form a relaxation of
the entire problem, which is solved by a linear or nonlinear programming
subroutine. The role of relaxations is to help direct the search, as described
in the next step.

Restrict. The relaxations provide information that dictates which new restric-
tions are generated before moving to the next restriction. In a tree search, for
example, SIMPL creates new restrictions by branching on a constraint that
is violated by the solution of the current relaxation. If several constraints are
violated, one is selected according to user- or system-specified priorities (see
Sect. 4.3). Relaxations can also influence which restriction is processed next,
for instance by providing a bound that prunes a branch-and-bound tree.

If desired, an inner infer-relax loop can be executed repeatedly before moving
to the next problem restriction, since the solution of the relaxation may indi-
cate further useful inferences that can be drawn (post-relaxation inference). An
example would be separating cuts, which are cutting planes that “cut off” the
solution of the relaxation (see Sect. 4.3).

The best-known classical solution methods are special cases of the infer-relax-
restrict procedure:

In a typical CP solver, the inference stage consists primarily of domain re-
duction. The relaxation stage builds a (weak) relaxation simply by collecting
the reduced domains into a constraint store. New problem restrictions are
created by splitting a domain in the relaxation.
In a branch-and-bound solver for integer programming, the inference stage
can be viewed as “preprocessing” that takes place at the root node and pos-
sibly at subsequent nodes. The relaxation stage drops the integrality con-
straints and solves the resulting problem with a linear or perhaps nonlinear

24 et al.

programming solver. New problem restrictions are created by branching on
an integrality constraint; that is, by branching on a variable with a fractional
value in the solution of the relaxation.
A local search procedure typically chooses the next solution to be exam-
ined from a neighborhood of the current solution. Thus local search can
be regarded as enumerating a sequence of problem restrictions, since each
neighborhood is the feasible set of a problem restriction. The “relaxation” of
the problem restriction is normally the problem restriction itself, but need
not be. The restriction may be solved to optimality by an exhaustive search
of the neighborhood, as in tabu search (where the tabu list is part of the
restriction). Alternatively, a suboptimal solution may suffice, as in simulated
annealing, which selects a random element of the neighborhood.
In Branch-and-Infer [7], the relaxation stage is not present and branching
corresponds to creating new problem restrictions.

An important advantage of SIMPL is that it can create new infer-relax-restrict
procedures that suit the problem at hand. One example is a hybrid algorithm,
introduced in [14, 21], that is obtained through a generalization of Benders de-
composition. It has provided some of the most impressive speedups achieved by
hybrid methods [10, 16, 17, 19, 24]. A Benders algorithm distinguishes a set of
primary variables that, when fixed, result in an easily-solved subproblem. So-
lution of an “inference dual” of the subproblem yields a Benders cut, which is
added to a master problem containing only the primary variables. Solution of
the master problem fixes the primary variables to another value, and the pro-
cess continues until the optimal values of the master problem and subproblem
converge. In typical applications, the master problem is an integer program-
ming problem and the subproblem a CP problem. This method fits nicely into
the infer-relax-restrict paradigm, since the subproblems are problem restrictions
and master problems are relaxations. The solution of the relaxation guides the
search by defining the next subproblem.

The choice of constraints in a SIMPL model can result in novel combinations
of CP, OR and other techniques. This is accomplished as described in Sect. 3.2.

3.2 Modeling

SIMPL is designed so that the problem formulation itself determines to a large
extent how CP, OR, and other techniques interact. The basic idea is to view each
constraint as invoking specialized procedures that exploit the structure of that
particular constraint. Since some of these procedures may be from CP and some
from OR, the two approaches interact in a manner that is dictated by which
constraints appear in the problem.

This idea of associating constraints with procedures already serves as a pow-
erful device for exploiting problem substructure in CP, where a constraint typ-
ically activates a specialized filtering algorithm. SIMPL extends the idea by
associating each constraint with procedures in all three stages of the search.
Each constraint can (a) activate inference procedures, (b) contribute constraints

SIMPL: A System for Integrating Optimization Techniques 25

to one or more relaxations, and (c) generate further problem restrictions if the
search branches on that particular constraint.

If a group of constraints exhibit a common structure—such as a set of linear
inequalities, flow balance equations, or logical formulas in conjunctive normal
form—they are identified as such so that the solver can take advantage of their
structure. For instance, a resolution-based inference procedure might be applied
to the logical formulas.

The existing CP literature typically provides inference procedures (filters)
only for CP-style global constraints, and the OR literature provides relaxations
(cutting planes) only for structured groups of linear inequalities. This poses the
research problem of finding specialized relaxations for global constraints and
specialized filters for structured linear systems. Some initial results along this
line are surveyed in [15].

Some examples should clarify these ideas. The global constraint element is
important for implementing variable indices. Conventional CP solvers associate
element with a specialized filtering algorithm, but useful linear relaxations, based
on OR-style polyhedral analysis, have recently been proposed as well [20]. Thus
each element constraint can activate a domain reduction algorithm in the in-
ference stage and generate linear inequalities, for addition to a continuous re-
laxation, in the relaxation stage. If the search branches on a violated element
constraint, then new problem restrictions are generated in a way that makes
sense when that particular constraint is violated.

The popular all-different and cumulative constraints are similar in that they
also have well-known filters [31, 2] and were recently provided with linear re-
laxations [36, 22]. These relaxations are somewhat weak and may not be useful,
but the user always has the option of turning off or on the available filters and
relaxations, perhaps depending on the current depth in the search tree.

Extensive polyhedral analysis of the traveling salesman problem in the OR
literature [13, 25] provides an effective linear relaxation of the cycle constraint. In
fact, SIMPL has the potential to make better use of the traditional OR literature
than commercial OR solvers. Structured groups of inequalities can be represented
by global constraints that trigger the generation of specialized cutting planes,
many of which go unused in today’s general-purpose solvers.

4 From Concepts to Implementation

SIMPL is implemented in C++ as a collection of object classes, as shown in
Fig. 1.

This makes it easy to add new components to the system by making only
localized changes that are transparent to the other components. Examples of
components that can be included are: new constraints, different relaxations for
existing constraints, new solvers, improved inference algorithms, new branch-
ing modules and selection modules, alternative representations of domains of
variables, etc. The next sections describe some of these components in detail.

26 et al.

Fig. 1. Main components of SIMPL

4.1 Multiple Problem Relaxations

Each iteration in the solution of an optimization problem P examines a restric-
tion N of P. In a tree search, for example, N is the problem restriction at
the current node of the tree. Since solving N can be hard, we usually solve a
relaxation1 of N, or possibly several relaxations.

In an integrated CP-IP modeling system, the linear constraints in the hybrid
formulation are posted to a Linear Programming (LP) solver, and some (or all) of
them may be posted to a CP solver as well. The CP solver also handles the con-
straints that cannot be directly posted to the LP solver (e.g. global constraints).
Notice that each solver only deals with a relaxation of the original problem P
(i.e. a subset of its constraints). In this example, each problem restriction N has
two relaxations: an LP relaxation and a CP relaxation. Extending this idea to
more than two kinds of relaxations is straightforward.

In general, we say that problem is a relaxation of problem Q if the feasible region
of contains the feasible region of Q.

1

SIMPL: A System for Integrating Optimization Techniques 27

In principle, the LP relaxation of N could simply ignore the constraints that
are not linear. Nevertheless, this relaxation can be strengthened by the addition
of linear relaxations of those constraints, if available (see Sect. 4.2).

4.2 Constraints and Constraint Relaxations

In SIMPL, the actual representation of a constraint of the problem inside any
given relaxation is called a constraint relaxation. Every constraint can be asso-
ciated with a list of constraint relaxation objects, which specify the relaxations
of that constraint that will be used in the solution of the problem under consid-
eration. To post a constraint means to add its constraint relaxations to all the
appropriate problem relaxations. For example, both the LP and the CP relax-
ations of a linear constraint are equal to the constraint itself. The CP relaxation
of the element constraint is clearly equal to itself, but its LP relaxation can be
the convex hull formulation of its set of feasible solutions [14]. Besides the ones
already mentioned in Sect. 3.2, other constraints for which linear relaxations are
known include cardinality rules [37] and sum [38].

For a branch-and-bound type of search, the problem relaxations to be solved
at a node of the enumeration tree depend on the state of the search at that
node. In theory, at every node, the relaxations are to be created from scratch
because constraint relaxations are a function of the domains of the variables of
the original (non-relaxed) constraint. Nevertheless, this can be very inefficient
because a significant part of the constraints in the relaxations will be the same
from node to node. Hence, we divide constraint relaxations in two types:

Static: those that change very little (in structure) when the domains of its vari-
ables change (e.g. relaxations of linear constraints are equal to themselves,
perhaps with some variables removed due to fixing);

Volatile: those that radically change when variable domains change (e.g. some
linear relaxations of global constraints).

To update the problem relaxations when we move from one node in the search
tree to another, it suffices to recompute volatile constraint relaxations only. This
kind of update is not necessary for the purpose of creating valid relaxations, but
it is clearly beneficial from the viewpoint of obtaining stronger bounds.

Fig. 2. The main search loop in SIMPL

28 et al.

Fig. 3. The node exploration loop in branch-and-bound

4.3 Search

The main search loop in SIMPL is implemented as shown in Fig. 2. Here, N
is again the current problem restriction, and A is the current list of restric-
tions waiting to be processed. Depending on how A, N and their subroutines
are defined, we can have different types of search, as mentioned in Sect. 3.1.
The routine N .explore() implements the infer-relax sequence. The routine
N .generateRestrictions() creates new restrictions, and A.addNodes()
adds them to A. Routine A.getNextNode()implements a mechanism for se-
lecting the next restriction, such as depth-first, breadth-first or best bound.

In tree search, N is the problem restriction that corresponds to the current
node, and A is the set of open nodes. In local search, N is the restriction that de-
fines the current neighborhood, and A is the singleton containing the restriction
that defines the next neighborhood to be searched. In Benders decomposition, N
is the current subproblem and A is the singleton containing the next subprob-
lem to be solved. In the case of Benders, the role of N.explore() is to infer
Benders cuts from the current subproblem, add them to the master problem,
and solve the master problem. N.generateRestrictions() uses the solution
of the master problem to create the next subproblem.

In the sequel, we will restrict our attention to branch-and-bound search.

Node Exploration. Figure 3 describes the behavior of N .explore()for
a branch-and-bound type of search. Steps 1 and 4 are inference steps where we
try to use the information from each relaxation present in the model to the
most profitable extent. Section 4.4 provides further details about the types of
inference used in those steps. The whole loop can be repeated multiple times, as
long as domains of variables keep changing because of step 4, and the maximum
number of iterations has not been reached. This process of re-solving relaxations
and looking for further inferences behaves similarly to a fix point calculation.

Branching. SIMPL implements a tree search by branching on constraints. This
scheme is considerably more powerful and generic than branching on variables
alone. If branching is needed, it is because some constraint of the problem is
violated and that constraint should “know” what to do. This knowledge is em-
bedded in the so called branching module of that constraint. For example, if
a variable has a fractional value in the current LP, its indomain
constraint is violated. The branching module of will then output two con-
straints: and meaning that two subproblems should be created

SIMPL: A System for Integrating Optimization Techniques 29

by the inclusion of those two new constraints. In this sense, branching on the
variable can be interpreted as branching on In general, a branching module
returns a sequence of sets of constraints This sequence means that
subproblems should be created, and subproblem can be constructed from the
current problem by the inclusion of all constraints present in the set There
is no restriction on the types of constraints that can be part of the sets

Clearly, there may be more than one constraint violated by the solution of the
current set of problem relaxations. A selection module is the entity responsible
for selecting, from a given set of constraints, the one on which to branch next.
Some possible criteria for selection are picking the first constraint found to be
violated or the one with the largest degree of violation.

4.4 Inference

We now take a closer look at the inference steps of the node exploration loop
in Fig. 3. In step 1 (pre-relaxation inference), one may have domain reduc-
tions or the generation of new implied constraints (see [18]), which may have
been triggered by the latest branching decisions. If the model includes a set of
propositional logic formulas, this step can also execute some form of resolution
algorithm to infer new resolvents. In step 4 (post-relaxation inference), other
types of inference may take place, such as fixing variables by reduced cost or the
generation of cutting planes. After that, it is possible to implement some kind
of primal heuristic or to try extending the current solution to a feasible solution
in a more formal way, as advocated in Sect. 9.1.3 of [14].

Since post-relaxation domain reductions are associated with particular re-
laxations, the reduced domains that result are likely to differ across relaxations.
Therefore, at the end of the inference steps, a synchronization step must be exe-
cuted to propagate domain reductions across different relaxations. This is shown
in Fig. 4. In step 6, denotes the domain of inside relaxation and works
as a temporary domain for variable where changes are centralized. The initial
value of is the current domain of variable By implementing the changes
in the domains via the addition of indomain constraints (step 8), those changes
will be transparently undone when the search moves to a different part of the
enumeration tree. Similarly, those changes are guaranteed to be redone if the
search returns to descendents of the current node at a later stage.

Fig. 4. Synchronizing domains of variables across multiple relaxations

30 et al.

5 SIMPL Examples

SIMPL’s syntax is inspired by OPL [34], but it includes many new features.
Apart from the resolution algorithm used in Sect. 5.3, SIMPL is currently

able to run all the examples presented in this section. Problem descriptions and
formulations were taken from Chapter 2 of [14].

5.1 A Hybrid Knapsack Problem

Let us consider the following integer knapsack problem with a side constraint.

To handle the all-different constraint, a pure MIP model would need auxiliary
binary variables: if and only if A SIMPL model for the above
problem is shown in Fig. 5. The model starts with a DECLARATIONS section
in which constants and variables are defined. The objective function is defined
in line 06. Notice that the range over which the index i takes its values need
not be explicitly stated. In the CONSTRAINTS section, the two constraints of the
problem are named totweight and distinct, and their definitions show up in
lines 09 and 12, respectively. The RELAXATION statements in lines 10 and 13
indicate the relaxations to which those constraints should be posted. The linear
constraint will be present in both the LP and the CP relaxations, whereas the
alldiff constraint will only be present in the CP relaxation. In the SEARCH
section, line 15 indicates we will do branch-and-bound (BB) with depth-first
search (DEPTH). The BRANCHING statement in line 16 says that we will branch
on the first of the x variables that is not integer (remember from Sect. 4.3 that
branching on a variable means branching on its indomain constraint).

Fig. 5. SIMPL model for the Hybrid Knapsack Problem

SIMPL: A System for Integrating Optimization Techniques 31

Initially, bounds consistency maintenance in the CP solver removes value 1
from the domain of and the solution of the LP relaxation is
After branching on bounds consistency determines that
and At this point, the alldiff constraint produces further domain
reduction, yielding the feasible solution (2,4,3). Notice that no LP relaxation
had to be solved at this node. In a similar fashion, the CP solver may be able
to detect infeasibility even before the linear relaxation has to be solved.

5.2 A Lot Sizing Problem

A total of P products must be manufactured over T days on a single machine of
limited capacity C, at most one product each day. When manufacture of a given
product begins, it may proceed for several days, and there is a minimum run
length Given a demand for each product on each day it is usually
necessary to hold part of the production of a day for later use, at a unit cost
of Changing from product to product implies a setup cost Frequent
changeovers allow for less holding cost but incur more setup cost. The objective
is to minimize the sum of the two types of costs while satisfying demand.

Let if and only if product is chosen to be produced on day and
let be the quantity of product produced on day In addition, let
and represent, respectively, for day the holding cost, the changeover cost
and the ending stock of product Figure 6 exhibits a SIMPL model for this
problem. We have omitted the data that initializes matrices and We
have also left out the statements that set and for

In line 07, we use the predefined continuous range nonegative. Notice the
presence of a new section called RELAXATIONS, whose role in this example is
to define the default relaxations to be used. As a consequence, the absence of

Fig. 6. SIMPL model for the Lot Sizing Problem

32 et al.

Fig. 7. (a) Network superstructure

RELAXATION statements in the declaration of constraints means that all con-
straints will be posted to both the LP and CS relaxations. The holding and
stock constraints define, respectively, holding costs and stock levels in the usual
way. The setup constrains make use of variable indexing to obtain the desired
meaning for the variables. The CS relaxation of these constraints uses element
constraints, and the LP relaxation uses the corresponding linear relaxation of
element. The symbol -> in lines 16 and 18 implements a one-way link constraint
of the form (see [18]). This means that whenever condition A is true, B is
imposed as a constraint of the model, but we do not worry about the contrapos-
itive. Condition A may be a more complicated logical statement and B can be
any collection of arbitrary constraints. There are also two-way link constraints
such as “implies” (=>) and “if and only if” (<=>) available in SIMPL. Here, the
linkyx constraints ensure that can only be positive if and the minrun
constraints make production last the required minimum length. The statements
in lines 21 and 22 define a branch-and-bound search with best-bound node selec-
tion, and branching on the most violated of the setup constraints, respectively.

5.3 Processing Network Design

This problem consists of designing a chemical processing network. In practice
one usually starts with a network that contains all the processing units and
connecting links that could eventually be built (i.e. a superstructure). The goal
is to select a subset of units that deliver the required outputs while minimizing
installation and processing costs. The discrete element of the problem is the
choice of units, and the continuous element comes in determining the volume of
flow between units. Let us consider the simplified superstructure in Fig. 7(a).
Unit 1 receives raw material, and units 4, 5 and 6 generate finished products. The
output of unit 1 is then processed by unit 2 and/or 3, and their outputs undergo
further processing. For the purposes of this example, we will concentrate on the
selection of units, which is amenable to the following type of logical reasoning. Let
the propositional variable be true when unit is installed and false otherwise.
From Fig. 7(a), it is clearly useless to install unit 1 unless one installs unit
2 or unit 3. This condition can be written as Other rules of
this kind can be derived in a similar way. SIMPL can take advantage of the
presence of such rules in three ways; it can relax logical propositions into linear
constraints; it can use the propositions individually as two-way link constraints

(b) The INFERENCE statement in SIMPL

SIMPL: A System for Integrating Optimization Techniques 33

(see Sect. 5.2); and it can use the propositions collectively with an inference
algorithm to deduce stronger facts. The piece of code in Fig. 7(b) shows how
one would group this collection of logical propositions as a constraint in SIMPL.
In addition to the known RELAXATION statement, this example introduces an
INFERENCE statement whose role is to attach an inference algorithm (resolution)
to the given group of constraints. This algorithm will be invoked in the pre-
relaxation inference step, as described in Sect. 4.4. Newly inferred resolvents can
be added to the problem relaxations and may help the solution process.

5.4 Benders Decomposition

Recall from Sect. 4.3 that Benders decomposition is a special case of SIMPL’s
search mechanism. Syntatically, to implement Benders decomposition the user
only needs to include the keyword MASTER in the RELAXATION statement of each
constraint that is meant to be part of the master problem (remaining constraints
go to the subproblem), and declare TYPE = {BENDERS} in the SEARCH section.
As is done for linear relaxations of global constraints, Benders cuts are generated
by an algorithm that resides inside each individual constraint. At present, we
are in the process of implementing the class Benders in the diagram of Fig. 1.

6 Other SIMPL Features

Supported Solvers. Currently, SIMPL can interface with CPLEX [23] and
LP_SOLVE [5] as LP solvers, and with [35] as a CP solver. Adding
a new solver to SIMPL is an easy task and amounts to implementing an interface
to that solver’s callable library, as usual. The rest of the system does not need to
be changed or recompiled. One of the next steps in the development of SIMPL is
the inclusion of a solver to handle non-linear constraints.

Application Programming Interface. Although SIMPL is currently a purely
declarative language, it will eventually include more powerful (imperative) search
constructs, such as loops and conditional statements. Meanwhile, it is possible to
implement more elaborate algorithms that take advantage of SIMPL’s paradigm
via its Application Programming Interface (API). This API can be compiled
into any customized C++ code and works similarly to other callable libraries
available for commercial solvers like CPLEX or XPRESS [9].

Search Tree Visualization. Once a SIMPL model finishes running, it is possi-
ble to visualize the search tree by using Leipert’s VBC Tool package [26]. Nodes
in the tree are colored red, green, black and blue to mean, respectively, pruned
by infeasibility, pruned by local optimality, pruned by bound and branched on.

34 et al.

7 Conclusions and Future Work

In this paper we introduce a system for dealing with integrated models called
SIMPL. The main contribution of SIMPL is to provide a user-friendly framework
that generalizes many of the ways of combining Constraint Programming (CP)
and Operations Research (OR) techniques when solving optimization problems.
Although there exist other general-purpose systems that offer some form of hy-
brid modeling and solver cooperation, they do not incorporate various important
features available in SIMPL.

The implementation of specialized hybrid algorithms can be a very cumber-
some task. It often involves getting acquainted with the specifics of more than
one type of solver (e.g. LP, CP, NLP), as well as a significant amount of com-
puter programming, which includes coordinating the exchange of information
among solvers. Clearly, a general purpose code is built at the expense of perfor-
mance. Rather than defeating state-of-the-art implementations of cooperative
approaches that are tailored to specific problems, SIMPL’s objective is to be
a generic and easy-to-use platform for the development and empirical evaluation
of new ideas in the field of hybrid CP-OR algorithms.

As SIMPL is still under development, many new features and improvements
to its functionality are the subject of ongoing efforts. Examples of such enhance-
ments are: increasing the vocabulary of the language with new types of con-
straints; augmenting the inference capabilities of the system with the generation
of cutting planes; broadening the application areas of the system by supporting
other types of solvers; and providing a more powerful control over search. Fi-
nally, SIMPL is currently being used to test integrated models for a few practical
optimization problems such as the lot-sizing problem of Sect. 5.2.

References

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

E. Balas. Disjunctive programming: Properties of the convex hull of feasible
points. Discrete Applied Mathematics, 89:3–44, 1998.
P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling. Kluwer,
2001.
J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.
H. Beringer and B. de Backer. Combinatorial problem solving in constraint logic
programming with cooperating solvers. In C. Beierle and L. Plümer, editors, Logic
Programming: Formal Methods and Practical Applications. Elsevier Science, 1995.
M. Berkelaar. LP_SOLVE. Available from ftp://ftp.ics.ele.tue.nl/pub/lp_solve/.
A. Bockmayr and F. Eisenbrand. Combining logic and optimization in cutting
plane theory. In H. Kirchner and C. Ringeissen, editors, Proceedings of the Third
International Workshop on Frontiers of Combining Systems (FroCos), LNAI1794,
1–17. Springer-Verlag, 2000.
A. Bockmayr and T. Kasper. Branch and infer: A unifying framework for integer
and finite domain constraint programming. INFORMS Journal on Computing,
10(3):287–300, 1998.
Y. Colombani and S. Heipcke. Mosel: An Overview. Dash Optimization, 2002.

SIMPL: A System for Integrating Optimization Techniques 35

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Dash Optimization. XPRESS-MP. http://www.dashoptimization.com.
A. Eremin and M. Wallace. Hybrid Benders decomposition algorithms in con-
straint logic programming. In Toby Walsh, editor, Proceedings of the Seventh
International Conference on Principles and Practice of Constraint Programming
(CP), LNCS 2239, 1–15. Springer-Verlag, 2001.
F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In J. Jaffar, ed-
itor, Proceedings of the Fifth International Conference on Principles and Practice
of Constraint Programming (CP), LNCS 1713, 189–203. Springer-Verlag, 1999.
F. Focacci, A. Lodi, and M. Milano. Cutting planes in constraint programming:
A hybrid approach. In R. Dechter, editor, Proceedings of the Sixth International
Conference on Principles and Practice of Constraint Programming (CP), LNCS
1894, 187–201. Springer-Verlag, 2000.
G. Gutin and A. P. Punnen, editors. Traveling Salesman Problem and Its Varia-
tions. Kluwer, 2002.
J. N. Hooker. Logic-Based Methods for Optimization. Wiley-Interscience Series in
Discrete Mathematics and Optimization, 2000.
J.N. Hooker. Logic, optimization and constraint programming. INFORMS Jour-
nal on Computing, 14(4):295–321, 2002.
J. N. Hooker. A framework for integrating solution methods. In H. K. Bhargava
and M. Ye, editors, Computational Modeling and Problem Solving in the Net-
worked World, pages 3–30. Kluwer, 2003. Plenary talk at the Eighth INFORMS
Computing Society Conference (ICS).
J. N. Hooker. Logic-based benders decomposition for planning and scheduling.
Manuscript, GSIA, Carnegie Mellon University, 2003.
J. N. Hooker and M. A. Osorio. Mixed logical/linear programming. Discrete Ap-
plied Mathematics, 96–97(1–3):395–442, 1999.
J. N. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96:33–60, 2003.
J.N. Hooker, G. Ottosson, E. Thorsteinsson, and H.-J. Kim. On integrating
constraint propagation and linear programming for combinatorial optimization.
In Proceedings of the 16th National Conference on Artificial Intelligence, pages
136–141. MIT Press, 1999.
J. N. Hooker and H. Yan. Logic circuit verification by Benders decomposition. In
V. Saraswat and P. Van Hentenryck, eds., Principles and Practice of Constraint
Programming: The Newport Papers, MIT Press (Cambridge, MA, 1995) 267-288.
J.N. Hooker and H. Yan. A relaxation for the cumulative constraint. In
P. Van Hentenryck, editor, Proceedings of the Eighth International Conference on
Principles and Practice of Constraint Programming (CP), LNCS 2470, 686–690.
Springer-Verlag, 2002.
ILOG S. A. The CPLEX mixed integer linear programming and barrier optimizer.
http://www.ilog.com/products/cplex/.
V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP models for a class
of optimization problems. INFORMS Journal on Computing, 13(4):258–276, 2001.
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization. John
Wiley & Sons, 1985.
S. Leipert. The tree interface version 1.0: A tool for drawing trees. Available at
http://www.informatik.uni-koeln.de/old-ls_juenger/projects/vbctool.html.
M. Milano, G. Ottosson, P. Refalo, and E. S. Thorsteinsson. The role of in-
teger programming techniques in constraint programming’s global constraints.
INFORMS Journal on Computing, 14(4):387–402, 2002.

36 et al.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

G. Ottosson, E. S. Thorsteinsson, and J. N. Hooker. Mixed global constraints and
inference in hybrid CLP-IP solvers. In CP’99 Post Conference Workshop on Large
Scale Combinatorial Optimization and Constraints, pages 57–78, 1999.
P. Refalo. Tight cooperation and its application in piecewise linear optimization.
In J. Jaffar, editor, Proceedings of the Fifth International Conference on Principles
and Practice of Constraint Programming (CP), LNCS 1713, 375–389. Springer-
Verlag, 1999.
P. Refalo. Linear formulation of constraint programming models and hybrid
solvers. In R. Dechter, editor, Proceedings of the Sixth International Confer-
ence on Principles and Practice of Constraint Programming (CP), LNCS 1894,
369–383. Springer-Verlag, 2000.
J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings of the National Conference on Artificial Intelligence, pages 362–367, 1994.
R. Rodošek, M. Wallace, and M. T. Hajian. A new approach to integrating mixed
integer programming and constraint logic programming. Annals of Operations
Research, 86:63–87, 1999.
E. S. Thorsteinsson. Branch-and-Check: A hybrid framework integrating mixed
integer programming and constraint logic programming. In Toby Walsh, editor,
Proceedings of the Seventh International Conference on Principles and Practice
of Constraint Programming (CP), LNCS 2239, 16–30. Springer-Verlag, 2001.
P. Van Hentenryck. The OPL Optimization Programming Language. MIT Press,
1999.
M. Wallace, S. Novello, and J. Schimpf. A platform for constraint logic
programming. ICL Systems Journal, 12:159–200, 1997.
H. P. Williams and H. Yan. Representations of the all_different predicate of con-
straint satisfaction in integer programming. INFORMS Journal on Computing,
13(2):96–103, 2001.
H. Yan and J. N. Hooker. Tight representations of logical constraints as cardinality
rules. Mathematical Programming, 85:363–377, 1999.
T. H. Yunes. On the sum constraint: Relaxation and applications. In P. Van
Hentenryck, editor, Proceedings of the Eighth International Conference on Princi-
ples and Practice of Constraint Programming (CP), LNCS 2470, 80–92. Springer-
Verlag, 2002.

A New Exact Solution Algorithm
for the Job Shop Problem

with Sequence-Dependent Setup Times

Christian Artigues1, Sana Belmokhtar2, and Dominique Feillet1

1 Laboratoire d’Informatique d’Avignon, FRE CNRS 2487
Université d’Avignon, Agroparc BP 1228, 84911 Avignon Cedex 9, France

2 MSGI-G2I, Ecole des Mines de Saint Etienne 158
cours Fauriel, 42023 Saint Etienne Cedex 2, France

Abstract. We propose a new solution approach for the Job Shop Prob-
lem with Sequence Dependent Setup Times (SDST-JSP). The problem
consists in scheduling jobs, each job being a set of elementary opera-
tions to be processed on different machines. The objective pursued is to
minimize the completion time of the set of operations. We investigate
a relaxation of the problem related to the traveling salesman problem
with time windows (TSPTW). Our approach is based on a Branch and
Bound procedure, including constraint propagation and using this relax-
ation. It compares favorably over the best available approaches from the
literature on a set of benchmark instances.

1 Introduction

In this work, we consider the Job Shop Problem with Sequence Dependent Setup
Times (SDST-JSP). The Job Shop Problem is used for modeling problems where
a set of jobs, consisting of a sequence of elementary operations to be executed
on distinct machines, has to be scheduled. This problem is widely investigated
in the literature and many efficient approaches exist for its resolution (see, e.g.,
Blazewicz et al. [5], Nowicki and Smutnicki [13] or Vaessens et al. [15]). The
SDST-JSP is a variant problem where machines have to be reconfigured be-
tween two successive operations. The most common objective is to minimize the
completion time of the set of operations, i.e., the so-called makespan.

The SDST-JSP is trivially NP-hard in the strong sense since it admits the
Job Shop Problem as a special case, which is also NP-hard in the strong sense.
However, despite its similarities with the Job Shop Problem, few works have been
devoted to its solution. Some heuristic solution approaches have been proposed
in the literature (Choi and Choi [8], Artigues and Buscaylet[3], Artigues et al [2]),
but no exact solution algorithm strictly addresses this problem. Actually, Brucker
and Thiele [6] describe a Branch and Bound algorithm for the General-Shop
Problem (GSP), which admits the SDST-JSP as a special case. Also, Focacci
et al. [9] propose a Branch and Bound scheme for a variant problem where the
machines used for operations are not fixed but to be chosen in a given subset.

J.-C. Régin and M. Rueher (Eds.): GPAIOR 2004, LNCS 3011, pp. 37–49, 2004.
© Springer-Verlag Berlin Heidelberg 2004

38 Christian Artigues et al.

In this paper, we also propose a Branch and Bound procedure using constraint
propagation techniques. A relaxation is introduced, based on the search of fea-
sible solutions for Traveling Salesman Problem with Time Windows (TSPTW)
instances. Note that our approach presents many similarities with Focacci et
al. [9]’s one, except that Focacci et al. [9] prefer to relax subtour constraints and
tackle assignment problems. Indeed assignment problems can be solved in poly-
nomial time, while the TSPTW is NP-hard in the strong sense. The assignment
problem relaxation is embedded into a global constraint associated with a re-
duced cost-based filtering algorithm. In our algorithm the TSPTW is considered
without relaxation but a long term memory is introduced for limiting comput-
ing times. It memorizes TSPTW instances solved throughout the search tree and
permit the quick obtaining of feasible solutions in many cases. The relaxation
is used to compute an initial lower bound and to test feasibility at the nodes of
the search in a dichotomy framework, but it does not provide additional domain
filtering.

The problem and the model used are described in section 2. Section 3 then
presents the backbone of the algorithm, i.e., the Branch and Bound scheme. The
relaxation is described in section 4. Numerical experiments conclude the paper
in section 5.

2 Presentation and Mathematical Formulation
for the SDST-JSP

We consider a set of jobs. Jobs have to be processed on
a set of resources (machines). Each job is made up
of operations to be processed in this order, without overlapping
or preemption. The set of all operations is noted O and its size is

Operation requires machine and necessitates processing
time Machines admit at most one operation at a time.

A set of setup types is defined, with a matrix of setup
times noted To each operation is associated setup type A setup
time is then necessary between two consecutive operations and
on the same machine. Also, an initial setup times is necessary if is the
first operation on machine Finally, we assume that setup times satisfy the
triangle inequality.

The objective pursued in this work is the minimization of the makespan, that
is the completion time of the last operation processed, even if other objectives
could have been considered.

A solution of the SDST-JSP can be represented with the help of the so-
called job and machine Gantt’s diagrams. An example of such diagrams is given
in figure 1 for some instance of the SDST-JSP with 3 jobs and 3 machines.

On these diagrams, we represent setup times with hatched rectangles. Full
rectangles stand for idle times. The two diagrams respectively represent a solu-
tion from both machine and job views.

A New Exact Solution Algorithm for the Job Shop Problem 39

Fig. 1. Gantt’s diagrams

Using the constraint programming framework, a simple model can easily be
proposed for the SDST-JSP. For each operation we introduce a variable
indicating the starting time of the operation. A variable is also introduced
to represent the value of the makespan. The model is then:

subject to

Constraints (2) state as the makespan in optimal solutions. Constraints
(3) represent the precedence constraints between the successive operations of
the same job. Disjunctive constraints between operations processed on a same
machine are enforced with constraints (4). Setup times between operations on
a same machine appear in these constraints, while initial setup times require
a last set of constraints (5).

A useful tool for the solution of scheduling problems is the so-called disjunc-
tive graph. This graph provides an efficient representation of the decisions, while
limiting the solution space. It is defined as follows.

40 Christian Artigues et al.

Let G = (X, U, E) be the disjunctive graph. The set of vertices X is made
up of the set of operations plus two dummy vertices representing the beginning
and the end of the schedule. Thus, X has vertices. A set of arcs U
and a set of edges E are defined. Arcs in U represent precedence constraints
between operations and are called conjunctive arcs. They are weighted with the
processing time of the origin vertex of the arc. Edges in E represent disjunctive
constraints between operations on a same machine and are called disjunctive
arcs. Actually, disjunctive arcs can be interpreted as the union of two exclusive
arcs with opposite directions.

By definition, a selection is a state of the disjunctive graph where a direction
is chosen for some disjunctive arcs. A selection is said to be complete when every
arc has a direction. A complete selection coresponds to a unique semi-active
schedule if the resulting graph is acyclic. Once they are directed, disjunctive
arcs are weighted with the sum of the processing time of the origin vertex of the
arc plus the setup time required between the origin and the destination vertices.
Minimizing the makespan then reduces to the search of the longest path in
the graph, the makespan being the length of such a path. Hence, the SDST-
JSP reduces exactly to the problem of finding a complete acyclic selection for
which the longest path is minimum. This standpoint relies on the property that
it is possible to consider only semi-active scheduling, that is scheduling where
operations are started as soon as possible (when disjunctive and conjunctive
constraints are satisfied), to find an optimal solution. An example of a disjunctive
graph is presented in figure 2.

Fig. 2. Disjunctive graph for the SDST-JSP

A New Exact Solution Algorithm for the Job Shop Problem 41

3 Branch and Bound Scheme

The Branch and Bound technique is an approach based on a non-exhaustive
enumeration of the solutions of a problem. Two main features of the technique are
the branching scheme and the bounding scheme. Branching replaces a problem
(represented by a node of the search tree) with several new problems of reduced
sizes (included in the tree as descendant nodes). Bounding permits the pruning
of nodes for which it appears that the associated problems do not contain any
optimal solution.

Our algorithm is based on a Branch and Bound embedded in a dichotomy
framework, the Branch and Bound being limited to the search of a feasible
solution. An initial lower bound LB is obtained by the relaxation of precedence
constraints (3) - see section 4 for details. An initial upper bound UB is obtained
using an existing heuristic solution approach. At each step of the dichotomy
a value L is chosen in the interval [LB, UB] that sets an upper limit for
Depending whether a solution is found or not using the Branch and Bound,
UB is fixed to the value of this solution or LB is fixed to L and the algorithm
iterates.

In the following subsections, we focus on the Branch and Bound algorithm
implemented in the dichotomy framework.

3.1 Branching Scheme

Brucker and Thiele [6] base their branching scheme for the solution of the Gen-
eral Shop Problem on the disjunctive graph. Branching corresponds to choosing
a direction for a disjunctive arc, until a complete selection is obtained.

We also base our branching on the disjunctive graph, but choosing a machine
randomly and then the operations to be assigned on this machine. Each node
of the search tree then provides a partial selection, where the direction of every
disjunctive arcs issued from the chosen operation is fixed. The operations are
taken in the increasing order of earliest start times and, in case of a tie, in
the increasing order of latest finishing time. In our implementation, the selected
machine is scheduled entirely before selecting the next one.

3.2 Constraint Propagation

The main objective of constraint propagation is to determine disjunctive arcs for
which a single direction is met in every feasible solutions (issued from the current
node of the search tree). Indeed, propagation will permit to drop from decision
variable domains values leading to unfeasible solutions. We perform propagation
using the following filtering algorithms, that are detailed in Baptiste et al. [4].

Precedence Constraints. Each node of the search tree corresponds to a partial
selection in the disjunctive graph G = (V, U, E), where U is the set of conjunctive
arcs and disjunctive arcs for which a direction has been chosen. Consistency is

42 Christian Artigues et al.

Fig. 3. Disjunctive constraints

ensured at the bounds of the domains of variables using
constraints where is the
weight of the arc in the graph. This propagation is performed by computing
longest paths in (V, U).

Disjunctive Constraints. Using domains of variables
and disjunctive constraints between operations on a same machine, it might be
possible to deduce that an operation is necessarily processed before another one.
Such a deduction corresponds to setting a direction of a disjunctive arc in the
disjunctive graph.

For every operation we respectively note and
the earliest starting time, latest starting time, earliest finishing time and latest
finishing time of the operation, that are directly deduced from Let
and be two operations requiring the same machine. If

can not be processed before This possibility is illustrated on
figure 3, where

Propagation is activated as soon as the bounds of the domain of a variable
are changed, for all the operations requiring the same machine

Edge Finding. This propagation scheme is a generalization of the preceding
one. It permits to determine that an operation has to be processed before or
after a set of other operations using the same machine. This propagation scheme
is illustrated on figure 4, where operation has to be processed after opera-

A New Exact Solution Algorithm for the Job Shop Problem 43

Fig. 4. Edge Finding

tions and which cannot be deduced using the preceding propagation
scheme.

It is worth mentioning that setup times penalize the effectiveness of this
scheme. Indeed, while estimating the finishing time of a set of operations, the
last operation of the set is not known and the setup time considered after the
last operation of the set is the minimum setup time among all the operations
of the set. Hence, some extensions of edge finding have been proposed [6, 16].
However, the classical version of edge finding ignoring setup times is considered
in this study.

4 TSPTW Relaxation

In this section, we describe the TSPTW relaxation used to compute an initial
lower bound and, at the nodes of the dichotomizing search, for pruning as soon
as unfeasibility is detected. This is performed through the relaxation of the
precedence constraints in the model (1-7) of section 2. The new problem then
decomposes into several TSPTWs.

The TSPTW consists in finding a route visiting one and only one time each
vertex of a graph with a minimum cost, a travel cost being associated with the
arcs of the graph. The visit of customers (vertices) is constrained to take place
within given time windows. In the context of the SDST-JSP, customers stand
for operations.

When relaxing precedence constraints in the model (1)-(7), independent
TSPTW instances appear, one for each machine. In the disjunctive graph, this
relaxation is characterized by the elimination of the conjunctive arcs and by the
appearance of connected components. Hence, noting
the TSPTW instance associated to machine finding such that is
unfeasible ensures that the current selection admits no feasible solution.

Figure 5 provides an example of this relaxation scheme with 3 jobs and 3
machines (where arcs issued from vertex 0 are omitted)

44 Christian Artigues et al.

Fig. 5. Relaxation of the SDST-JSP into TSPTWs

For every in we address the solution of with the
following model. Let be the subset of operations to be considered in
subproblem (operations on machine Variables of model (1)-
(7) are used for operations Note that the domain of these variables is
reduced through the branching decisions and the constraint propagation, which
corresponds to time windows. We introduce a new variable for the objec-
tive function.

subject to

Before running the dichotomy, all are solved to optimality to com-
pute a lower bound equal to the greatest optimal solution among the problems.

A New Exact Solution Algorithm for the Job Shop Problem 45

Fig. 6. Example of a dictionary for a

At each node of the dichotomizing search, a feasible solution for each is
searched for using a commercial constraint programming package. In our imple-
mentation, each TSPTW is solved in turn as a one-machine scheduling problem
with sequence-dependent setup times, release dates and deadlines. The disjunc-
tive constraint and edge finding are set. A second dichotomizing binary search
is used, as described in the chapter 7 of [12].

As soon as a is found such that is unfeasible, the node is pruned.
Otherwise, branching occurs and the search continues.

The main drawback using this relaxation is for computing time. It might
be detrimental to solve TSPTW at each node of the search tree, even if it
provides a strong tool for pruning. In order to limit this drawback, we propose
to memorize solutions of obtained so far during the search. Indeed,
one might have to solve instances of the TSPTW for which only some time
windows have changed and for which sequences of customers previously found
feasible might still be feasible.

Each time a solution is found, the ordered sequence of visited customers
is memorized as a word in a dictionary. Then, when solving a the
dictionary associated to machine is first scanned to determine whether one
of the sequences memorized is feasible for the current instance. If not, constraint
programming is applied as explained above.

For each subproblem the dictionary is defined as a forest, as il-
lustrated in figure 6. On this example, the dictionary contains sequences

and This structure is
convenient as well for adding new words than for checking words for feasibility.
For this last case especially, a simple depth first search can be implemented.
When nodes are attained, earliest arrival times are computed, which permits
to eventually backtrack. Hence, sequences beginning with the same unfeasible
subsequence can be discarded simultaneously.

5 Computational Results

In this section, we present computational experiments conducted to evaluate
the quality of our approach. For this purpose, we use benchmark instances from
Brucker and Thiele [6]. These instances are issued from the classical Adams

46 Christian Artigues et al.

et al.’s [1] instances devoted to the Job Shop Problem, introducing setup. Each
instance is characterized by a number of machines, a number of jobs to be sched-
uled and a number of setup types for the operations. These three parameters
define a triplet with the format machines × jobs × type. Computational ex-
periments are realized on two sets of 5 × 10 × 5 and 5 × 15 × 5 instances. For
comparison purpose, we use also two large 5 × 20 × 10 instances.

Algorithms are implemented in C++ on a Pentium IV 2 GHz computer.
ILOG Scheduler 5.2 [12] and ILOG Solver 5.2 [11] are used for constraint prop-
agation and Branch and Bound.

Tables 1 and 2 compare the value of the bound we obtained at the root of
the tree with the value obtained by Brucker and Thiele [6], respectively for the
sets of 5 × 10 × 5 and 5 × 15 × 5 instances. Note that Brucker and Thiele [6]
compute a lower bound by relaxing the GSP into a one machine problem and
by using Jackson preemptive scheduling principle (JPS) and results from Carlier
and Pinson [7]. Columns of these tables indicate successively the name of the
instance, the value of Brucker and Thiele’s bound, the value of our bound and
an upper bound provided by Artigues et al. [2]. These two last values define
the initial interval for dichotomy. In table 2, the computing time of the lower
bound is given in seconds. These tables show that solving TSPTWs provide
better bounds than the approach of Brucker and Thiele [6] for most of the
instances. Although Focacci et al [9] do not explicitely provide a lower bound,
the Assignment Problem solved in [9] is a relaxation of the TSPTW considered
in the present paper and would consequently give a weaker (but faster) bound.

A New Exact Solution Algorithm for the Job Shop Problem 47

Table 3 compare the value of the makespan computed with our approach
(ABF) with the value obtained by Brucker and Thiele [6] (BT) and Focacci et
al [9] (FNL) for the smallest instances. A time limit of 7200 seconds is set for
the computations for BT and ABF whereas a time limit of 1800 seconds is set
for FNL. Columns indicate the name of the instance and, for each approach,
the value obtained with the computing times. A last column ABF* indicates
computing times when dictionaries are not used to memorize TSPTW solutions.
Times are indicated in seconds. Times indicated for Brucker and Thiele [6]’s
results are obtained on a Sun 4/20 station. Times indicated for Focacci et al [6] ’s
results are obtained on a Pentium II 200 MHz. Proven optimal solutions are
indicated in bold. The table show that all 5 × 10 × 5 instances are solved by our
method in less than 500 seconds. The benefit of using the dictionary is clear.
The comparison with BT and FNL approaches is not easy according to the
considerable difference between the speeds of the computers. However, applying
factors of 3 and 10 for CPU time comparisons with FNL and BT, respectively,
our approach remains competitive.

Table 4 compare the results of our approach with BT on the 5 × 15 × 5
instances. The results of Focacci et al [9] are not available on these instances.
We also indicate the current value of the lower bound when the algorithm is
stopped, for our approach. For 5 × 15 × 5 instances, all the results from Brucker
and Thiele [6] are improved. Two new instances of this size are closed for the first
time (t2-ps10 and t2-ps07), with additional CPU time requirements for the latter
one. A comparison with BT is here even more difficult for two reasons. First,
it would be necessary to test the BT Branch and Bound on a recent computer.
Second, as shown in table 2 all upper bounds given in a few seconds by the fast
heuristic proposed in [2] are better than the ones provided by BT after 2 hours
of computation. Hence, a better heuristic should be used before running the BT
algorithm.

To compare our approach on large instances with the one of Brucker and
Thiele [6] and Focacci et al [9], we give in table 5 the results on the two SDST-
JSP 5 × 20 × 10 used in [9]. The limits of our approach is reached since after
2 hours the dichotomizing search is unable to increase the initial lower bound
displayed in column ABF/LB and does not improve the initial upper bound

48 Christian Artigues et al.

displayed in column ABF/Cmax. However the initial upper bound is here again
surprisingly better than the results obtained by FNL and BT and the proposed
lower bound still improves the BT lower bound.

6 Conclusion

In this paper, we propose a new algorithm for the exact solution of the SDST-
JSP. The main framework of the algorithm is a Branch and Bound strategy
embedding constraint propagation at each node of the search tree. In order to
prune nodes effectively, we introduce a global constraint by relaxing precedence
constraints between operations. Filtering algorithm for this global constraint re-
duces to solving a TSPTW instance for each machine. The principle is to detect
infeasible TSPTW instances, indicating unfeasibility for the global problem as-
sociated to the current node of the search tree. In order to improve computing
time, we use a long term memory by storing feasible solutions of TSPTW in-
stances found so far. This permits to limit significantly the negative impact of
the global constraint on computing time.

This approach is competitive with the approaches of Brucker and Thiele [6]
and Focacci et al [9] and permits to close some new instances. Possible im-
provements in the future are the introduction of a Lagrangian relaxation type
penalization of the precedence constraints relaxed within the bounding scheme
and the implementation of more efficient algorithms for the solution of TSPTW
instances (as the ones proposed in Pesant et al. [14] or Focacci and Lodi [10]).

A New Exact Solution Algorithm for the Job Shop Problem 49

Acknowledgements

The authors would like to thank Sophie Demassey for her help as a LaTex
specialist. We would like also to thank the anonymous referees for their helpful
comments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

Adams J., Balas E. and Zawack D. (1988) The Shifting Bottleneck Procedure for
Job-Shop Scheduling. Manag Sci 34:391-401.
Artigues C., Lopez P. and Ayache P. D. (2003), Schedule generation schemes and
priority rules for the job-shop problem with sequence dependent setup times: Dom-
inance properties and computational analysis. to appear in Annals of Operations
Research.
Artigues C. and Buscaylet F. (2003), A fast tabu search method for the job-shop
problem with sequence-dependent setup times. Proceedings of the Metaheuristic
International Conference MIC’2003, Kyoto 2003.
Baptiste P., Le Pape C. and Nuijten W. (2001), Constrained-Based scheduling,
Applying constraint programming to Scheduling Problems, Kluwer’s International
Series, 19-37.
Blazewicz J. ,Domschke W. and Pesch E. (1996), The job shop scheduling prob-
lem: Conventional and new solution techniques. European Journal of Operational
Research, 93(1):1–33.
Brucker P. and Thiele O. (1996), A branch and bound method for the general-shop
problem with sequence-dependent setup times, Operations Research Spektrum,
18, 145-161.
Carlier J. and Pinson E. (1989), An algorithm for solving the Job-Shop Problem.
Management Science 35, 164-176.
Choi I.-N. and Choi D.-S. (2002), A local search algorithm for jobshop scheduling
problems with alternative operations ans sequence-dependent setups, Computers
and Industrial Engineering 42, 43-58.
Focacci F., Laborie P. and Nuijten W. (2000), Solving scheduling problems with
setup times and alternative resources. In Fifth International Conference on Arti-
ficial Intelligence Planning and Scheduling, Breckenbridge, Colorado, 92-101.
Focacci F. and Lodi, A. (1999), Solving TSP with Time Windows with Con-
straints, International Conference on Logic Programming 515-529.
ILOG SOLVER 5.2 User’s Manuel (2000), ILOG.
ILOG SCHEDULER 5.2 User’s Manuel (2000), ILOG.
Nowicki E. and Smutnicki C. (1996), A fast taboo search algorithm for the job
shop problem, Management Science 42, 797-813.
Pesant G., Gendreau M., Potvin J-Y. and Rousseau J-M. (1999), An Exact Con-
straint Logic Programming Algorithm for the Traveling Salesman Problem with
Time Windows, European Journal of Operational Research 117, 253-263.
Vaessens R. J.M., Aarts E. H.L. and Lenstra J. K. (1996), Job Shop Scheduling
by Local Search, INFORMS Journal on Computing 8, 302-317.
Vilím P. and Barták, R. (2002), Filtering Algorithms for Batch Processing with
Sequence Dependent Setup Times, In Ghallab, Hertzberg, and Traverso (eds.)
Proceedings of The Sixth International Conference on Artificial Intelligence Plan-
ning and Scheduling (AIPS 2002). AAAI Press, Toulouse, p. 312-320.

Simple Rules for Low-Knowledge
Algorithm Selection*

J. Christopher Beck and Eugene C. Freuder

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Cork, Ireland

{c.beck,e.freuder}@4c.ucc.ie

Abstract. This paper addresses the question of selecting an algorithm
from a predefined set that will have the best performance on a scheduling
problem instance. Our goal is to reduce the expertise needed to apply
constraint technology. Therefore, we investigate simple rules that make
predictions based on limited problem instance knowledge. Our results
indicate that it is possible to achieve superior performance over choosing
the algorithm that performs best on average on the problem set. The
results hold over a variety of different run lengths and on different types
of scheduling problems and algorithms. We argue that low-knowledge
approaches are important in reducing expertise required to exploit opti-
mization technology.

1 Introduction

Using constraint technology still requires significant expertise. A critical area
of research if we are to achieve large scale adoption is the reduction of the skill
required to use the technology. In this paper, we adopt a low-knowledge approach
to automating algorithm selection for scheduling problems. Specifically, given an
overall time limit T to find the best solution possible to a problem instance, we
run a set of algorithms during a short “prediction” phase. Based on the quality
of the solutions returned by each algorithm, we choose one of the algorithms to
run for the remainder of T. A low-knowledge approach is important in actually
reducing the expertise required rather than simply shifting it to another portion
of the algorithm selection process. Empirical analysis on two types of scheduling
problems, disjoint algorithm sets, and a range of time limits demonstrates that
such an approach consistently achieves performance no worse than choosing
the best pure algorithm and furthermore can achieve performance significantly
better.

The contributions of this paper are the introduction of a low-knowledge ap-
proach to algorithm selection, the demonstration that such an approach can
achieve performance better than the best pure algorithm, and the analysis of
the empirical results to characterize limits on the performance of any on-line
algorithm selection technique.

* This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075 and ILOG, SA.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 50–64, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Simple Rules for Low-Knowledge Algorithm Selection 51

2 The Algorithm Selection Problem

The algorithm selection problem consists of choosing the best algorithm from
a predefined set to run on a problem instance [1]. In AI, the algorithm selection
problem has been addressed by building detailed, high-knowledge models of the
performance of algorithms on specific types of problems. Such models are gener-
ally limited to the problem classes and algorithms for which they were developed.
For example, Leyton-Brown et al. [2] have developed strong selection techniques
for combinatorial auction algorithms that take into account 35 problem features
based on four different representations. Other work applying machine learning
techniques to algorithm generation [3] and algorithm parameterization [4, 5, 6] is
also knowledge intensive, developing models specialized for particular problems
and/or search algorithms and algorithm components.

Our motivation for this work is to lessen the expertise necessary to use opti-
mization technology. While existing algorithm selection techniques have shown
impressive results, their knowledge-intensive nature means that domain and al-
gorithm expertise is necessary to develop the models. The overall requirement
for expertise has not been reduced: it has been shifted from algorithm selection
to predictive model building. It could still be argued that the expertise will have
been reduced if the predictive model can be applied to different types of prob-
lems. Unfortunately, so far, the performance of a predictive model tends to be
inversely proportional to its generality: while models accounting for over 99% of
the variance in search cost exist, they are not only algorithm and problem spe-
cific, but also problem instance specific [7]. While the model building approach
is general, the requirement for expertise remains: an in-depth study of the do-
main and of different problem representations is necessary to identify features
that are predictive of algorithm performance. To avoid shifting the expertise
to model building, we examine models that require no expertise to build. The
feature used for prediction is the solution quality over a short period of time.

The distinction between low- and high-knowledge (or knowledge-intensive)
approaches focuses on the number, specificity, and computational complexity
of the measurements of a problem instance required to build a model. A low-
knowledge approach has very few, inexpensive metrics, applicable to a very wide
range of algorithms and problem types. A high-knowledge approach has more
metrics, that are more expensive to compute, and are more specific to particular
problems and algorithms. This distinction is independent of the model build-
ing approach. In particular, sophisticated model building techniques based on
machine learning techniques are consistent with low-knowledge approaches.

3 On-Line Scenario and Prediction Techniques

We use the following on-line scenario: a problem instance is presented to
a scheduling system and that system has a fixed CPU time of T seconds to
return a solution. We assume that the system designer has been given a learning
set of problem instances at implementation time and that these instances are

52 J. Christopher Beck and Eugene C. Freuder

representative of the problems that will be later presented. We assume that there
exists a set of algorithms, A, that can be applied to the problems in question.
Algorithm selection may be done off-line by, for example, using the learning set
to identify the best pure algorithm overall and running that on each problem
instance. Alternatively, algorithm selection can be done on-line, choosing the
algorithm only after the problem instance is presented. In the latter case, the
time to make the selection must be taken into account. To quantify this, let
represent the prediction time and the subsequent time allocated to run the
chosen pure technique. It is required that

For the low-knowledge techniques investigated here, each pure algorithm,
is run for a fixed number of CPU seconds, on the problem instance.

The results of each run are then used to select the algorithm that will achieve
the best performance given the time remaining. We require that
The learning set is used to identify which is the value of that leads to the
best system performance.

Three simple prediction rules each with three variations are investigated:

pcost - Selection is based on the cost of the best solution found by each
algorithm. The three variations are: the algorithm that has
found the minimum cost solution over all algorithms by time is selected;

the algorithm with the minimum mean of the best solutions
(sampled at 10 second intervals) is selected; identical to

except the median is used in place of the mean.
pslope - Selection is based on the change in the cost of the best solutions
found at 10 second intervals. The three variations are: the al-
gorithm that has the minimum slope between and seconds is selected;

the algorithm with minimum mean slope for each pair of
consecutive 10 second intervals is selected; identical to

except the median is used in place of the mean.
pextrap - Selection is based on the extrapolation of the current cost
and slope to a predicted cost at T. As above, the three variations are:

the best solutions for an algorithm at time and are
used to define a line which is used to extrapolate the cost at time T; the al-
gorithm that has the minimum extrapolated cost is chosen;
the algorithm with the minimum mean extrapolated cost over each interval
of 10 seconds from 20 seconds to seconds is selected;
identical to except the median is used in place of the mean.

For all rules ties are broken by selecting the algorithm with the best mean so-
lution quality on the learning set at time T. The sampling interval was arbitrarily
set to 10 seconds as it allowed time for a reasonable amount of search.

4 Initial Experiment

Our initial experiment divides a set of problem instances into a learning set
and a test set, uses the learning set to identify for each prediction rule and

Simple Rules for Low-Knowledge Algorithm Selection 53

variation, and then applies each rule variation using to the test
problems.

4.1 Problem Sets and Algorithms

Three sets of 20 × 20 job shop scheduling (JSP) problems are used. A total of
100 problem instances in each set were generated and 20 problems per set were
chosen as the learning set. The rest were placed in the test set. The problem sets
have different structure based on the generation of the activity durations.

Rand: Durations are drawn randomly with uniform probability from the
interval [1, 99].
MC: Durations are drawn randomly from a normal distribution. The distri-
butions for activities on different machines are independent. The durations
are, therefore, machine-correlated (MC).
JC: Durations are drawn randomly from a normal distribution. The distri-
butions for different jobs are independent. Analogously to the MC set, these
problems are job-correlated (JC).

These different problem structures have been studied for flow-shop schedul-
ing [8] but not for job shop scheduling. They were chosen based on the intuition
that the different structures may differentially favor one pure algorithm and
therefore the algorithms would exhibit different relative performance on the dif-
ferent sets. Such a variation is necessary for on-line prediction to be useful: if
one algorithm dominates on all problems, the off-line selection of that algorithm
will be optimal.

Three pure algorithms are used. These were chosen out of a set of eight
algorithms because they have generally comparable behavior on the learning
set. The other techniques investigated performed much worse (sometimes by an
order of magnitude) on every problem. The three algorithms are:

tabu-tsab: a sophisticated tabu search due to Nowicki & Smutnicki [9]. The
neighborhood is based on swapping pairs of adjacent activities on a subset
of a randomly selected critical path. An important aspect of tabu-tsab is the
use of an evolving set of the five best solutions found. Search returns to one
of these solutions and moves in a different direction after a fixed number
(1000 in our experiments) of iterations without improvement.
texture: a constructive search technique using texture-based heuristics [10],
strong constraint propagation [11, 12], and bounded chronological backtrack-
ing. The bound on the backtracking follows the optimal, zero-knowledge
pattern of 1, 1, 2, 1, 1, 2, 4, . . . [13]. The texture-based heuristic identi-
fies a resource and time point with maximum competition among the the
activities and chooses a pair of unordered activities, branching on the two
possible orders. The heuristic is randomized by specifying that the resource
and time point is chosen with uniform probability from the top 10% most
critical resources and time points.

54 J. Christopher Beck and Eugene C. Freuder

settimes: a constructive search technique using the SetTimes heuristic [14],
the same propagation as texture, and slice-based search [15], a type of
discrepancy-based search. The heuristic chronologically builds a schedule by
examining all activities with minimal start time, breaking ties with minimal
end time, and then breaking further ties arbitrarily. The discrepancy bound
follows the pattern: 2, 4, 6, 8,

4.2 Experimental Details

For these experiments, the overall time limit, T, is 1200 CPU seconds. Each
pure algorithm is run for T seconds with results being logged whenever a better
solution is found. This design lets us process the results to examine the effect of
different settings for the prediction time, and different values for
As noted, the number of algorithms, is 3.

To evaluate the prediction rules, we process the data as follows. Given a pure
algorithm time of seconds, we examine the best makespans found by
each algorithm on problem instance up to seconds. Based on the prediction
rule, one algorithm, is chosen. We then examine the best makespan found
by for at where This evaluation means that we are
assuming that each pure algorithm can be run for CPU seconds, one can be
chosen, and that chosen one can continue from where it left off.

4.3 Results

Learning Set. Table 1 displays the fraction of learning problems in each subset
and overall for which each algorithm found the best solution. It also shows the
mean relative error (MRE), a measure of the mean extent to which an algorithm
finds solutions worse than the best known solutions. MRE is defined as follows:

Where:

K is a set of problem instances
is the lowest cost solution found by algorithm on

is the lowest cost solution known

Tabu-tsab finds the best solution for slightly more problems than texture and
produces the lowest MRE. These differences are slight as in 50% of the problems,
texture finds the best solution. As expected, there are significant differences
among the problems sets: while tabu-tsab clearly dominates in the MC problem
set, the results are more uniform for the random problem set and texture is
clearly superior in the JC set.

The best variation of each prediction rule are shown in Figure 1. This graph
presents the relative MRE (RMRE) found by the prediction rule as we varied the
prediction time, The RMRE displayed for each prediction

Simple Rules for Low-Knowledge Algorithm Selection 55

rule, is the MRE relative to the MRE of best pure algorithm, in this case
tabu-tsab, calculated as follows:
Values below represent performance better than the best pure algorithm.
For example, the RMRE for pextrap_mean(50) is 0.736: the MRE achieved by
the pextrap_mean rule at is 73.6% that achieved by tabu-tsab.

It is possible that the pure algorithms have such similar performance that
any prediction rule would perform well. Therefore, two additional “straw men”
prediction rules are included in Figure 1: and The
algorithm whose best solution at is the maximum over all algorithms is cho-
sen in the former and a random algorithm is chosen in the latter. These two
techniques perform substantially worse than the real prediction rules, lending
support to the claim that the observed results are not due to a floor effect.

The best performance for each prediction rule is seen with pcost_min(110),
pslope_mean(50), and pextrap_mean(120). The differences between the MRE of
each prediction rule and tabu-tsab are not statistically significant.1

A Static Prediction Technique. The existence of widely differing pure al-
gorithm performance on the different problem subsets (Table 1) suggests that a
high-knowledge, static prediction technique could be built based on categorizing
a problem instance into one of the subsets and then using the algorithm that
1 All statistical results in this paper are measured using a randomized test [16]

and a significance level of

Test Set. Table 2 displays the fraction of the problems in the test set for which
each algorithm found the best solution (Fraction Best) and the MRE for each
pure algorithm and for the best variation and prediction time, of each pre-
diction rule. On the basis of the fraction of best solutions, all prediction rules
are worse than the best pure algorithm (texture) however none of these differ-
ences are statistically significant. Based on MRE, while tabu-tsab and texture
are very closely matched, settimes performs significantly worse and each predic-
tion rule performs better than each pure algorithm. Statistically, however, only
pcost_min(110) achieves performance that is significantly better than the best
pure algorithm. In fact, is robust to changes in as a difference at
the same level of significance is found for all

56 J. Christopher Beck and Eugene C. Freuder

Fig. 1. The performance of the best variation of each prediction rule at prediction
time on the JSP learning set. The graph shows the MRE relative
to the MRE achieved by the best pure algorithm, tabu-tsab

performed best on that subset in the learning phase. The static prediction tech-
nique uses texture on the JC problems and tabu-tsab on the other two sets. The
results for static presented in Table 2 make two strong assumptions: the mapping
of a problem instance to a subset is both infallible and takes no CPU time. These
assumptions both favor the static technique over the low-knowledge prediction
techniques. The results indicate that the static technique outperforms all the
other prediction techniques and the pure algorithms in terms of the fraction of
problems solved and does the same as pcost_min on MRE.

The static technique is knowledge-intensive: one has to know to look for
the specific duration structure before algorithm performance correlations can be
developed. Therefore, we are not interested specifically in the static technique. It
is included to demonstrate that a high-knowledge technique, even under idealized
assumptions, may not significantly out-perform a low-knowledge technique.

5 Investigations of Generality

Our initial experiment demonstrates that, at least for the problem sets, algo-
rithms, and time limit used, it is possible to use low-knowledge prediction and
simple rules to do algorithm selection. Furthermore achieves MRE
performance that is significantly better than the best pure algorithm and com-
parable to an idealized high-knowledge approach. A number of questions are
raised with respect to the generality of these results. How sensitive are the re-
sults to different choices of parameters such as the overall time limit? Can such
simple rules be successfully applied to other problems and algorithms? Can we

Simple Rules for Low-Knowledge Algorithm Selection 57

develop a characterization of the situations in which such methods are likely to
be successful? Can we evaluate the results of the prediction rules in an absolute
sense and therefore provide intuitions as to the likelihood that more sophisti-
cated prediction techniques may be able to improve upon them? In this section,
we will address these questions.

5.1 Other Time Limits

In all experiments presented above, the overall CPU time limit, T, was 1200
seconds. Table 3 reports a series of experiments with
For each time limit, we repeated the experiment: the prediction time with the
lowest MRE on the learning set for the best variation of each prediction rule, was
identified, each problem in the test set was solved with each prediction rule using
its value, and the MRE was compared against the best pure algorithm. There
were no significant differences between the MRE of the best pure technique and
those of the prediction rules across all the T values on the learning set. The
results for the test set are displayed in the final four columns. For time limits

performs significantly better than the best pure
technique. For T = 100 the best pure technique (texture) has a significantly lower
MRE than and For T = 100, the static technique
is able to find significantly lower RMREs than pcost_min. No other time limits
showed any difference between static and pcost_min. These results indicate that
the results using T = 1200 are relatively robust to different T values.

5.2 Other Problems

Earliness/tardiness scheduling problems (ETSPs) define a set of jobs to be sched-
uled on a set of resources such that each job has an associated due date and costs
associated with finishing the last activity in a job before or after that due date.
The activities within jobs are completely ordered and the resources can only
execute a single activity at any time. Three ETSP algorithms are used here:

58 J. Christopher Beck and Eugene C. Freuder

hls: a hybrid local search algorithm combining tabu search with linear pro-
gramming.
mip: a pure mixed-integer programming approach using the default search
heuristics in CPLEX 7.2 with an emphasis on good solutions over optimal.
probeplus: a probe-based algorithm combining linear programming and
constraint programming search.

Details of these algorithms, problems sets, and results can be found in Beck
& Refalo [17].

We divided the 90 ETSP problems into a learning set of 36 problems and
a test set of 54 problems. The experimental design is identical to our first exper-
iment. In particular, the overall time, T = 1200, and the number of algorithms,

Instead of makespan minimization, the optimization criteria on ETSPs is
the minimization of weighted earliness/tardiness cost. It is possible for problems
to have a optimal cost of 0 and a number of the easier problem instances do.
Therefore, MRE is not well-formed as it would require a division by 0. Instead,
we calculate the normalized cost (NC) for each problem and use the mean nor-
malized cost (MNC) as one of our evaluation criteria. NC is commonly used in
work that has applied genetic algorithms to ETSPs [18]. In that literature, the
cost of a solution is divided by the sum of the durations of all activities in the
problem weighted by the earliness/tardiness cost of each job. In our problems,
the earliness and tardiness weights for a single job are independent. Therefore,

Simple Rules for Low-Knowledge Algorithm Selection 59

Fig. 2. The performance of the best variations of the three prediction rules at different
prediction times on the ETSP learning set. The graph plots the mean normalized costs
of each rule at each value relative to the mean normalized cost achieved by the best
pure algorithm

we have modified this normalization to weight the duration sum with the mean
of the two cost weights. The NC for algorithm on problem instance is

Where:

is the lowest cost for algorithm on problem instance
is the set of jobs in problem instance

is the set of activities in job
and are respectively the earliness and tardiness costs for job

Figure 2 presents the MNC of the three best prediction rule variations (rela-
tive to the best pure technique, hls for the learning set) with
The plot is analogous to Figure 1. For each prediction rule the “min” variations
results in the best performance with the following values: pcost_min(160),
pslope_min(160), and pextrap_min(170). As with the JSP problem set, how-
ever, none of these results are significantly different from those found by hls on
the learning set.

Table 4 presents the fraction of the test problems for which each pure and
prediction-based technique found the best solution and the MNC over all prob-
lem instances in the test set. The prediction rules perform very well on both
measures. However, none of them achieve performance on either measure that
is significantly different from the best pure technique. The pure technique that

60 J. Christopher Beck and Eugene C. Freuder

achieves the best solution on the highest number of problem instances (hls) is
worst on the basis of MNC. The reverse is also true, as mip finds the lowest
MNC but finds the best solution on the fewest number of instances.

5.3 Characterizations of Prediction Techniques

Clearly, two interacting factors determine the performance of the prediction rules
tested in this paper and, indeed, any on-line prediction technique: the accuracy
of prediction and the computation time required to make the prediction.

We expect prediction accuracy to increase as is increased since more com-
putation time will result in better data regarding algorithm performance. Fur-
thermore, since we have a fixed time limit, the larger the closer it is to this
time limit and the less far into the future we are required to predict. To evaluate
the data underlying the accuracy of predictions for the pcost rule, in Figure 3 we
present the mean Spearman’s rank correlation coefficient between and
for the learning sets of both the JSP and the ETSP problems. For a problem
instance, and prediction time, we rank each of the pure algorithms in as-
cending order of the best makespan found by time We then create the same
ranking at time the total run-time of the chosen algorithm. The corre-
lation between these rankings is calculated using Spearman’s rank correlation
coefficient and the mean coefficient over all the problems in the set is plotted. It
is reasonable to expect that the accuracy of depends on the extent
to which the algorithm ranking at time is correlated with that at We
can see in the graph that the lower the value of the lower the correlation and,
therefore, the lower the accuracy of the predictions. Both from the graph and
from the reasoning above, to achieve a greater accuracy, prediction should be as
late as possible.

For the JSP rankings are negatively correlated. The appropriate
heuristic for choosing a pure algorithm at is to choose the algorithm whose
best makespan is largest. This is exactly plotted in Figure 1 and
in that graph, pcost_max (10) does indeed perform better than pcost_min(10).

The second factor is the time required to measure the instance and make
the prediction. In an on-line context, more time spent predicting means less

Simple Rules for Low-Knowledge Algorithm Selection 61

Fig. 3. The mean Spearman’s rank correlation coefficient between rankings of the
pure algorithms at prediction time, and for problems in the JSP learning set
and the ETSP learning set

spent solving the problem with the chosen algorithm. If T = 1200 and
then means that 600 seconds have expired when the algorithm choice
is made. Only 600 additional seconds are available to run the chosen algorithm.
This has a large implication for performance of prediction-based techniques. This
is illustrated in Figure 4. The plot is the MRE of a perfect prediction
on the test set. For example, for the effective run time of the chosen
technique is 800 seconds: 200 seconds during the prediction phase and then the
remaining 600 seconds. The perfect MRE for therefore is found using the
lowest makespan found by any pure technique by time 800 and calculating the
error compared to the best known makespan. When is very small, the MRE
of is very small too. This reflects the fact that the pure algorithms
do not find large improvements extremely late in the run. As the increases
however, the best case MRE increases: the time used in prediction instead of
solving results in worse performance even with perfect prediction.

These graphs demonstrate the trade-off inherent for any on-line prediction
technique: for accuracy the prediction time should be as late as possible but to
allow time for the pure algorithm to run after it is chosen, it should be as early
as possible. While the correlation graph presents data specific to a prediction
rule used in this paper, we expect a similar graph of accuracy vs. the prediction
time for all prediction techniques. The perfect prediction graphs clearly have a
general interpretation since, by definition, no prediction technique can achieve
better performance.

62 J. Christopher Beck and Eugene C. Freuder

Fig. 4. The MRE on the JSP test set for and when we assume perfect
prediction

6 Discussion

We have shown that low-knowledge metrics of pure algorithm behavior can be
used to form a system that performs as well, and sometimes better, than the
best pure algorithm. If our goal was to win the algorithmic “track meet” and
publish better results, our results are not spectacular. However, our goal was
not to build a better algorithm through applying our expertise. Our goal was to
exploit existing techniques with minimal expertise. From that perspective, the
fact that applying simple rules to an instance-specific prediction phase is able to
outperform the best pure algorithm is significant. We believe this study serves
as a proof-of-concept of low-knowledge approaches and indicates that they are
an important area of study in their own right.

Beyond the importance of low-knowledge approaches to reduce expertise,
a prosaic reason to develop these approaches is that they can provide guid-
ance in deciding whether the effort and expense of applying human expertise is
worthwhile. Figure 3 shows that at a prediction time of the mean

for on the JSP learning set is 0.543. This is a relatively low
correlation, providing support for the idea that a more informed approach can
significantly increase prediction accuracy. On the other hand, if we expected the
on-line computation required for a high-knowledge approach to take more time
(e.g., the return on an investment in a high-knowledge approach seems
less likely: the mean is 0.775 so there is less room for improvement in pre-
diction accuracy. Similarly, Figure 4 shows that at a prediction time of
the MRE of pcost_min on the JSP test set is 0.0046. Based on the plot,
any predictive approach can only reduce this MRE to 0.0013. Is the development

Simple Rules for Low-Knowledge Algorithm Selection 63

of a high-knowledge model worth the maximum theoretical reduction in MRE
from 0.46% to 0.13%? In high cost domains (e.g., airline scheduling) such an
effort would be worthwhile. In other domains (e.g., a manufacturing plant with
uncertainty) such a difference is irrelevant. The results of easy to implement
low-knowledge techniques can therefore guide the system development effort in
the more efficient allocation of resources.

7 Future Work

We intend to pursue two areas of future work. The first, directly motivated by
existing high-knowledge approaches, is the application of machine learning tech-
niques to low-knowledge algorithm selection. The variety of features that these
techniques can work with will be much more limited, but we expect that better
grounded techniques can improve prediction accuracy and system performance
over the simple rules. The second area for future work is to move from “one-
shot” algorithm selection to on-line control of multiple algorithms. The decision
making could be extended to allow the ability to dynamically switch among pure
algorithms based on algorithm behavior.

Another consideration is the types of problems that are appropriate for pre-
diction techniques or control-level reasoning. A real system is typically faced
with a series of changing problems to solve: a scheduling problem gradually
changes as new orders arrive and existing orders are completed. As the problem
or algorithm characteristics change, prediction-based techniques may have the
flexibility to appropriately change the pure algorithms that are applied.

8 Conclusion

We have shown that a low-knowledge approach based on simple rules can be used
to select a pure algorithm for a given problem instance and that these rules can
lead to performance that is as good, and sometimes better, than the best pure
algorithm. We have argued that while we expect high-knowledge approaches will
result in better performance, low-knowledge techniques are important from the
perspective of reducing the expertise required to use optimization technology
and have a useful role in guiding the expert in deciding when high-knowledge
approaches are likely to be worthwhile.

References

[1]

[2]

Rice, J.: The algorithm selection problem. Advances in Computers 15 (1976)
65–118
Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness
of optimization problems: The case of combinatorial auctions. In: Proceedings
of the Eighth International Conference on Principles and Practice of Constraint
Programming (CP02). (2002) 556–572

64 J. Christopher Beck and Eugene C. Freuder

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Minton, S.: Automatically configuring constraint satisfaction programs: A case
study. CONSTRAINTS 1 (1996) 7–43
Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., Chickering, M.:
A bayesian approach to tacking hard computational problems. In: Proceedings of
the Seventeenth Conference on uncertainty and Artificial Intelligence (UAI-2001).
(2001) 235–244
Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies.
In: Proceedings of the Eighteenth National Conference on Artifiical Intelligence
(AAAI-02). (2002) 674–681
Ruan, Y., Horvitz, E., Kautz, H.: Restart policies with dependence among runs:
A dynamic programming approach. In: Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Programming (CP-2002),
Springer-Verlag (2002) 573–586
Watson, J. P.: Empirical Modeling and Analysis of Local Search Algorithms for the
Job-Shop Scheduling Problem. PhD thesis, Dept. of Computer Science, Colorado
State University (2003)
Watson, J.P., Barbulescu, L., Whitley, L., Howe, A.: Constrasting structured
and random permutation flow-shop scheduling problems: search-space topology
and algorithm performance. INFORMS Journal on Computing 14 (2002)
Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop prob-
lem. Management Science 42 (1996) 797–813
Beck, J. C., Fox, M.S.: Dynamic problem structure analysis as a basis for
constraint-directed scheduling heuristics. Artificial Intelligence 117 (2000) 31–
81
Nuijten, W. P. M.: Time and resource constrained scheduling: a constraint satisfac-
tion approach. PhD thesis, Department of Mathematics and Computing Science,
Eindhoven University of Technology (1994)
Laborie, P.: Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artificial Intelligence 143 (2003)
151–188
Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Processing Letters 47 (1993) 173–180
Scheduler: ILOG Scheduler 5.2 User’s Manual and Reference Manual. ILOG,
S.A. (2001)
Beck, J. C., Perron, L.: Discrepancy-bounded depth first search. In: Proceedings
of the Second International Workshop on Integration of AI and OR Technologies
for Combinatorial Optimization Problems (CPAIOR’00). (2000)
Cohen, P. R.: Empirical Methods for Artificial Intelligence. The MIT Press,
Cambridge, Mass. (1995)
Beck, J. C., Refalo, P.: Combining local search and linear programming to solve
earliness/tardiness scheduling problems. In: Proceedings of the Fourth Interna-
tional Workshop on Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (CPAIOR’02). (2002)
Vazquez, M., Whitley, L. D.: A comparision of genetic algorithms for the dynamic
job shop scheduling problem. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), Morgan Kaufmann (2000) 1011–1018

Filtering Algorithms for the Same Constraint

Nicolas Beldiceanu1, Irit Katriel2*, and Sven Thiel2**

1 Ecole des Mines de Nantes, Nantes, France
nicolas.beldiceanu@emn.fr

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{irit,sthiel}@mpi-sb.mpg.de

Abstract. We define the Same and UsedBy constraints. UsedBy takes two sets
of variables X and Z such that and assigns values to them such that
the multiset of values assigned to the variables in Z is contained in the multiset
of values assigned to the variables in X. Same is the special case of UsedBy in
which In this paper we show algorithms that achieve arc consistency
and bound consistency for the Same constraint and in its extended version we
generalize them for the UsedBy constraint.

1 Introduction

As a motivating example, we consider simple scheduling problems of the following
type. The organization Doctors Without Borders [8] has a list of doctors and a list of
nurses, each of whom volunteered to go on one rescue mission in the next year. Each
volunteer specifies a list of possible dates and each mission should include one doctor
and one nurse. The task is to produce a list of pairs such that each pair includes a doctor
and a nurse who are available on the same date and each volunteer appears in exactly
one pair. Since the list of potential rescue missions at any given date is infinite, it does
not matter how the doctor-nurse pairs are distributed among the different dates.

We model such a problem by the constraint
which is defined on two sets X and Z of distinct variables such that and each

has a domain D(v). A solution is an assignment of values to the variables
such that the value assigned to each variable belongs to its domain and the multiset of
values assigned to the variables of X is identical to the multiset of values assigned to
the variables of Z.

This problem can be generalized to the case in which there are more nurses than
doctors and the task is to create a list of pairs as above, with the requirement that every
doctor appears in exactly one pair and every nurse in at most one pair (naturally, not all
of the nurses will be paired). For this version we use the general case of the

constraint where and a solution is an
assignment of values to the variables such that the multiset of values assigned to the
variables of Z is contained in the multiset of values assigned to the variables of X.

In this paper we show filtering algorithms for the Same constraint and in the full
version [1] we generalize them to solve the UsedBy constraint. Let Y be the union of

*

**
Partially supported by DFG grant SA 933/1-1.
Partially supported by the EU IST Programme, 1ST-1999-14186 (ALCOM-FT).

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 65–79, 2004.
© Springer-Verlag Berlin Heidelberg 2004

66 Nicolas Beldiceanu et al.

the domains of the variables in and let The arc consistency algorithms run
in time and the bound consistency algorithms in time
where is the inverse of Ackermann’s function1.

The general approach we take resembles the flow-based filtering algorithms for the
AllDifferent [5, 6] and Global Cardinality (GCC) [4, 7] constraints: We construct a bi-
partite variable-value graph, find a single solution in it and compute the strongly con-
nected components (SCCs) of the residual graph. We show that an edge is consistent iff
both of its endpoints are in the same SCC.

The main difference compared to the previous constraints that were solved by the
flow-based approach is that we now have three sets of nodes. One set for each set of
variables and a third set for the values. This significantly complicates the bound con-
sistency algorithms, in particular the SCC computation compared to the corresponding
stage in the AllDifferent and GCC cases. Our contribution is therefore not only in pro-
viding a solution to these constraints but also in showing that the ideas that appear in
the previous algorithms can be extended to much more complex variable-value graphs.

In Section 2 we define the variable-value graph for the Same constraint and charac-
terize the solutions to the constraint in terms of subsets of the edges in this graph. In
Section 3 we show the arc consistency algorithm and in Section 4 we show the bound
consistency algorithm. Source code for the bound consistency algorithm is available by
request from the authors.

2 The Same Constraint

We represent the Same constraint as a bipartite graph which we call
the variable-value graph, where That is,
the nodes on one side represent the variables and the nodes on the other represent the
values and every variable is connected by an edge to all values in its domain. We now
characterize the set of all solutions to the constraint in terms of subsets of edges of B.

Definition 1. Let be a set of edges of B. For any node let
be the set of nodes which are neighbors of v in We say that M is

Since for all all of the assignments are well defined. In addition,
for each edge (v, y) in B, and in particular in M, Finally, since

for all each value is assigned the same number of times to variables
of X and Z. Hence, the constraint is satisfied.
Given a solution where y(v) is the value

1 For all practical purposes, can be regarded as a small constant.

a parity matching (PM) in B iff and

Lemma 1. There is a one to one correspondence between the solutions to the Same
constraint and the PMs in B.

Proof. Given a PM M in B, we can construct the solution

Filtering Algorithms for the Same Constraint 67

assigned to v, define Since for all v,
we have Since y(v) is determined for all variables, for all
and since each appears the same number of times in and in

so M is a PM.

In the next sections we show the filtering algorithms for Same, first arc consistency
and then bound consistency. We will illustrate them with the aid of the following exam-
ple, and the domains of the variables of are as in Table 1.

3 Arc Consistency

Inspired by Régin [7], we convert the graph B into a capacitated and directed graph
B = (V,E), as follows. We direct the edges from X to Y and from Y to Z and assign
a capacity requirement of [0,1] to each of these edges. We add two nodes s and t, an
edge with capacity [1,1] from s to each and from each to t and an edge
with capacity [n,n] from t to s (see Figure 1). A flow in B is feasible iff there is a flow
of value n on the arc from t to s. This implies that one unit of flow goes through every
node in By flow conservation, every node in Y is connected by edges that carry
flow to the same number of nodes from X and from Z. The correspondence between
PMs in B and feasible flows in B should be obvious.

The algorithm uses Ford and Fulkerson’s augmenting paths method to find a feasible
flow f in B. If there is no such flow it reports that the constraint is not satisfiable.
Otherwise, it removes the nodes s and t and builds the residual graph
where and That is,
all edges appear in their original orientation and the edges that carry flow appear also in

Fig. 1. The capacitated graph for the example in Table 1

68 Nicolas Beldiceanu et al.

Fig. 2. A feasible flow in the graph of Figure 1 (left) and the corresponding residual graph (right)

reverse direction (see Figure 2). We now show that can be used to determine which
of the edges of B are consistent.

Lemma 2. An edge is consistent iff u and v belong to the same SCC.

Proof. Suppose that u and v are in the same SCC. Let be the PM that
corresponds to the flow If then e participates in the solution M and is therefore
consistent. Assume that Then there is a cycle P in that uses e. Starting at any y
node on the cycle, number its nodes: where and

for all Let be the symmetric difference between the PM M
and the cycle P. That is, If we look at and
its two neighbors, we have four possibilities:If or
then in each of remains matched and is matched with the same
number of nodes from each of X and Z as it was in
The other two options are that and or and
Then the edges and are either both in M or both in To see
that this is true, note that the cycle can only enter a node by an edge in M and
leave it by an edge which is not in M. On the other hand, it can only enter a node

by an edge which is not in M and leave it by an edge in M. This implies that
either and and both edges are in M or and
and both edges are in In either case either lost or gained a neighbor from each
of X and Z, so it is still matched with the same number of nodes from each of these sets.

Each of is adjacent on P to one edge from M and one edge which is
not in M. Hence, in it is still matched with exactly one y-node. We get that is
a PM that contains e, so e is consistent.

It remains to show that an edge e which is not in an SCC of (which implies
f (e) = 0) is not consistent. Let be the SCCs of Since all edges in M
appear in both directions, any edge between two SCCs is not in M. For any node v, let
C(v) be the SCC that v belongs to and let be the edges for
which both endpoints are in the same SCC. Assume that an edge is consistent
and let be a PM such that Consider the graph That is,

contains all edges within SCCs plus the edges between SCCs which are in If
we shrink each SCC of into a single node, we get a DAG (directed acyclic graph).
Let be the connected component of this DAG which contains e and let C be a root
of i.e., there are only outgoing edges from C. Let be the edges and the

Filtering Algorithms for the Same Constraint 69

Fig. 3. The SCCs of the residual graph of Figure 2

edges out of C. Since C is not an isolated node, Let be the set
of y nodes in the SCC represented by C. Then and

contradicting the assumption that is a PM.

Figure 3 shows the SCCs of for the example in Table 1. The nodes of each SCC
have a distinct shape and the inconsistent edges are dashed.

Let denote the number of edges in B and recall that and
Clearly, The running time of the algorithm is dominated by the time
required to find a flow, which is [3,7].

4 Bound Consistency

The bound consistency algorithm does the same as the arc consistency algorithm, but
achieves faster running time by exploiting the simpler structure of the graph B: As the
domain of every is an interval, B is convex, which means that the neighborhood
of every variable node is a consecutive sequence of value nodes. We will show that in
a convex graph we can find a PM in time and compute the SCCs of the
residual graph in time

4.1 Finding a Parity Matching

Figure 4 shows the algorithm for finding a PM in the graph B. It uses two priority
queues, for the nodes in X and for the nodes in Z. In both queues the nodes are
sorted by the upper endpoints of their domains.

For any let and denote the lower and upper endpoints of D(v),
respectively. The algorithm traverses the value nodes from to and for each
inserts to the respective queue all variable nodes with It then checks
whether there is a node in one of the queues (the node with minimum priority) whose
domain ends at i. If so, it tries to match this node and a node from the other queue
with If the other queue is empty, it declares that there are no PMs in B. The PM
obtained by the algorithm for the example in Table 1 corresponds to the flow shown in
Figure 2.

Lemma 3. If there is a PM in B then the algorithm in Figure 4 finds one.

70 Nicolas Beldiceanu et al.

Fig. 4. Algorithm to find a parity matching in a convex graph

Proof. We show by induction on i that if there is a PM M then for all
there is a PM in B which matches with the same matching mates as the
algorithm.

For i = 0, the claim holds with For larger i, given a PM M, we can as-
sume by the induction hypothesis that there is a PM that matches the nodes in

with the same matching mates as the algorithm. We show how to con-
struct from As long as the matching mates of are not the same as the ones
determined by the algorithm, perform one of the following transformations:

If is matched with a pair such that neither one of and was matched
with by the algorithm, then since and were not matched by the algorithm with
any of they both remained in the queues after iteration i, which implies

and In we match both of them with
The other option is that the algorithm matched with a pair which are not

both matched with in Since the algorithm extracted them from the queues,
we know that at least one of them has upper domain endpoint equal to i. Assume
w.l.o.g. that Since agrees with the algorithm on the matching mates
of we get that in is matched with and is matched with
for some Hence, there is some other node which is matched with in
and which was matched by the algorithm with for some When the algorithm
extracted from the queue, was in the queue because it is a neighbor of Hence,

so we can exchange and That is, we can match with and
with

Each time we apply one of the transformations above to we decrease the num-
ber of differences between the set of matching mates of in and in the matching

Filtering Algorithms for the Same Constraint 71

generated by the first i iterations of the algorithm. So we can continue until we obtain
a matching that agrees with the algorithm on the matching mates of

Lemma 4. If the algorithm in Figure 4 reports success then it constructs a PM in B.

Proof. If the algorithm reports success then and are empty at the end, which means
that all nodes in were extracted and matched with y nodes. In addition, since the
algorithm did not report failure during the extractions, whenever was matched
with For all whenever is matched with some node
from X it is also matched with a node from Z, and vice versa. Hence, we get that the
matching that was constructed is a PM.

4.2 Finding Strongly Connected Components

Having found a PM in B, which we can interpret as a flow in B, we next wish to find
the SCCs of (cf. Figure 3). Mehlhorn and Thiel [5] gave an algorithm that does this
in the residual graph of the AllDifferent constraint in time O(n) plus the time required
for sorting the variables according to the lower endpoints of their domains. Katriel and
Thiel [4] enhanced this algorithm for the GCC constraint, in which a value node can be
matched with more than one variable node. For our graph, we need to construct a new
algorithm that can handle the distinction between the nodes in X and in Z and the more
involved structure of the graph.

As in [4, 5], the algorithm in Figure 6 begins with initial components, each con-
taining a node and its matching mates (if any). It then merges these components
into larger ones. While the algorithm used for the AllDifferent graph can do this in
one pass over the y nodes from our algorithm makes two such passes for
reasons that will be explained in the following. The first pass resembles the SCC algo-
rithm for the AllDifferent graph. It traverses the y nodes from to and uses a stack
to merge components which are strongly connected and are adjacent to each other. It
maintains a list Comp of completed components and a stack CS of temporary compo-
nents. The components in both Comp and CS are not guaranteed to be SCCs of
They are strongly connected but may not be maximal. However, a component in Comp
is completed with respect to the first pass, while the components in CS may still be
merged with unexplored components and with other components in CS.

Let be the graph induced by and their matching mates. The first pass
begins with the empty graph and in iteration i moves from the graph to
as follows. As long as the topmost component in CS does not reach any with
by a single edge, this component is popped from CS and appended to Comp, Then the
algorithm creates a new component C with and its matching mates. It repeatedly
checks if C and the topmost component in CS reach each other by a single edge in each
direction. If so, it pops the component from CS and merges it into C. Finally, it pushes C
onto CS and proceeds to the next iteration.

The reason that this pass is enough for the AllDifferent graph but not for ours is that
in our case the outgoing edges of a y-node do not fulfil the convexity criteria: It could
be that there is an edge from to a node which is matched with for some
while there is no edge from to any of matching mates. In the AllDifferent case,

72 Nicolas Beldiceanu et al.

Fig. 5. Example of components that will not be merged by the first pass of the SCC algorithm

this could not happen: If a matching mate of can reach any by a single edge then
convexity implies that it can reach all y nodes between and This means that in our
graph, there could be two components C, in CS such that C reaches by a single
edge and reaches C by a single edge, but this is not detected when the second of
them was inserted into CS because the first was not the topmost in the stack (see, e.g.,
Figure 5). The second pass, which merges such components, will be described later.

In the following, whenever we speak of a component C of we refer to a set
of nodes such that for every node in C, all of its matching mates are also in C. This
means that a component C is strongly connected, but may not be maximal. We say that
a component C reaches a component if there is a path in from a node in C to
a node in In addition, two components C and are linked if there is an edge from C
to and there is an edge from to C. They are linked by (linked by edges
if the edges in both directions are edges.

The pseudo-code in Figure 6 uses the following shortcuts. In the full version of this
paper [1] we show how to implement them with linear-time preprocessing. Let C, be
two components.

MinY[C] (MaxY[C]) is the minimum (maximum) index of a y node in C.
ReachesRight[C] is the largest index i such that or one of its matching mates can
be reached by a single edge from a node in C.
xyLeftLinks[C] (yzLeftLinks[C]) is true iff C is linked with some component to its
left by edges.

is true iff C and are linked.
is true iff C and are linked by edges.

The following lemmas examine the components that are generated by the first pass
of the algorithm, first with respect to their order and connectivity in CS and then with
respect to the SCCs of that they compose. They will help us to show that the SCCs
of when viewed as combinations of components that are generated by the first pass
of the algorithm, have a relatively simple structure which enables to identify them in
the second pass.

Lemma 5. Let be the components in CS at the end of iteration i
of the first pass (ordered from bottom to top). Then for all
In other words, no component is nested in another and the components appear in CS in
increasing order of the indices of their y nodes.

Filtering Algorithms for the Same Constraint 73

Fig. 6. Algorithm to find the SCCs of the residual graph

74 Nicolas Beldiceanu et al.

Proof. Initially, CS is empty and the claim holds. Assume that it holds after iteration
i –1 and consider the changes made to the stack during iteration i. First some of the
topmost components are popped from the stack; this does not affect the correctness of
the claim. Then some of the topmost components are merged with each other and with
the new component C and the result is pushed to the top of the stack. By the induction
hypothesis, all components that were popped and merged contain y nodes with larger
indices than the components that remained in CS. In addition, all y nodes in CS after
iteration i – 1 have indices smaller than i. So the claim holds after iteration i.

Lemma 6. Let be as in Lemma 5. Then for all ,K and are
not linked.

Proof. Again, the claim clearly holds for the empty stack. Assume that it is true after
iteration i — 1. By the induction hypothesis, the claim holds for every adjacent pair
of components that remained in CS after popping the completed components. If the
new component C that is pushed onto CS is linked with the component which is
immediately below it, then the algorithm would have popped and merged it with C.
Hence, the claim holds at the end of iteration i.

Lemma 7. If is as in Lemma 5 and is a maximal
set of components in CS which belong to the same SCC of such that
then and are linked.

Proof. Assume that there is such a set of components in CS where
are not linked.

Case 1: does not reach by a single edge. Then it must reach a component
with by a single edge. This edge must be a edge because otherwise
convexity and Lemma 5 would imply that it also reaches by an edge, in
contradiction to our assumption. Let be the target of this edge and be its match-
ing mate. Assume that is maximal among such that is in one of the compo-
nents and it has a matching mate which is reachable from by a
edge. There is a path from to If the path includes an edge from a match-
ing mate of to with then and so the algorithm in
Figure 4 could not have matched and with a contradiction. If the path includes
a edge from with to a node which is matched with where
then was in when was extracted, so by convexity and Lemma 5 it is reachable
from by a edge, in contradiction to the maximality of We get that the path
must go from to the left and then bypass by an edge such that
is matched with and We can assume w.l.o.g. that the path from to
does not go to the left of if it does then one can show that either Lemma 6 is violated
or there also exists a path that shortcuts the part that goes to the left of If the path
ends with a edge into a matching mate of followed by the matching edges

then and so the algorithm in Figure 4 could
not have matched and with a contradiction. So the path ends with an
edge followed by the edge where is matched with for some

was in when was extracted, so it also reaches by an
edge. By continuing backwards along the path and applying the same considerations,

Filtering Algorithms for the Same Constraint 75

we get that there is an edge from to hence again and
so the algorithm in Figure 4 could not have matched and with a contradiction.
Case 2: does not reach by a single edge. Then is reached from another com-
ponent by an edge Assume that is matched with and that is
maximal among such that is in one of the components and has a
matching mate which reaches by an edge. There is a path from to
If there is an edge from which is matched with for some
then by convexity and Lemma 5, reaches by an edge, in contradiction to
the maximality of If there is an edge such that is matched with and

then and so the algorithm in Figure 4 could not have
matched and with a contradiction. We get that the path must bypass by
a edge such that is matched with for some and
then return from to With arguments similar to the ones used in case 1, we get
that the path from to must consist of edges, which implies that there is
a edge from to hence again and so the algorithm in
Figure 4 could not have matched and with a contradiction.

Corollary 1. Let and be as in Lemma 7. Then
and are either linked by edges or linked by edges.

Proof. Lemma 7 guarantees that and are linked. Assume that these edges are
not of the same type. That is, one is an edge and the other is a edge. Then
by convexity and Lemma 5 we get that either and or and are
linked, and this contradicts Lemma 6.

Lemma 8. Let and be as in Lemma 7 and as-
sume that there is at least one unexplored node which is in the same SCC of as

Then there is an edge from to an unexplored node.

Proof. Assume the converse. Then there is an edge from one of the components in
to an unexplored node. Let j be maximal such that

has an edge to an unexplored node. If this is a edge then by convexity and
Lemma 5 is also connected by a edge to an unexplored node. So it must
be an edge. Let be its source. With arguments similar to the ones used in
the proof of Lemma 7 we can show that there cannot be a path from back to This
contradicts the assumption that and are in the same SCC of

Corollary 2. If are the components found by the first pass of the al-
gorithm and is a maximal subset of these components which are strongly
connected between them such that Then (1) No compo-
nent in is nested in another. That is, for all such that

(2) and are linked. Furthermore, they are either
linked by edges or linked by edges.

Proof. Assume that there is a component in the set which is nested in another com-
ponent Then consists of nodes which are both to the left and to the right of
This means that at some point, the algorithm merged these nodes into one component.

76 Nicolas Beldiceanu et al.

At this point in time, the topmost component in CS consisted only of nodes which are
to the left of and it was merged with a component that contains only nodes to the
right of By Lemma 5, this means that was popped before this iteration, but this
contradicts Lemma 8, so we have shown that (1) holds.
By Lemma 8, we know that none of were popped from CS before
was pushed onto it. At a certain iteration, was pushed onto CS and stayed there at
least until the next iteration. This, together with Corollary 1, implies (2).

To sum up, the first pass partitions the nodes into components such that the compo-
nents that compose an SCC of are not nested and the two rightmost components of
each SCC are linked by edges of the same type. The second pass merges components
that belong to the same SCC. It starts with an empty stack CS and an empty list SCCs
and traverses the components found in the first pass by increasing order of MinY[C].
When considering a new component C, it first pops from CS all topmost components
that cannot reach C or beyond it. For each such component it first checks if is
linked with a component to its left by edges. If so, there are components in CS
that it needs to be merged with. So the algorithm pushes to a second stack CSxy.
Otherwise, it checks if is linked with a component to its left by edges and if
so, pushes it to a third stack CSyz. Otherwise, it appends to SCCs because is not
linked with any component in CS and it does not reach unexplored components.

Before popping the next component, it checks whether the topmost component in
CS and the topmost component in CSxy are linked by edges. If so, it pops each
from its stack and merges them. It then repeatedly checks if the merged component
is linked with the topmost component on CS. If so, the two are merged. Finally, the
component which is the result of the merges is pushed back onto CS. The algorithm
then checks whether the topmost component in CS and the topmost component in CSyz
are linked by edges and if so, handles this in a similar way.

In the remaining part of this section we show that this algorithm finds the SCCs of
Denote the set of components found in the first pass of the algorithm by Comp =

such that for all Since each of
these components is strongly connected but is not necessarily an SCC of the com-
ponents in Comp are partitioned into sets of components such that the components of
each set compose an SCC of

Definition 2. A subset of Comp is an SCC set if the union of the
components in S is an SCC of In the following we will use this notation while
assuming that

Definition 3. Let and be distinct SCC sets.
Then is nested in if there exists such that for all

and are interleaved if there exist
and such that

The SCC sets of Comp can be interleaved in one another, but in the following lemma
we show that this can only occur in a restricted form. This will help us to show that the
second pass of Algorithm 6 identifies all SCC sets in Comp.

Filtering Algorithms for the Same Constraint 77

Fig. 7. Two interleaved SCC sets

Lemma 9. Let and be interleaved SCC sets. If
then there are links between

and and there are links between
and These links can be of one of two forms: (1) and are

linked by edges; and are linked by edges. (2) and are linked by
edges; and are linked by edges.

Proof. We show that any other option is not possible. If and are linked by an
edge from to and a edge from to then by convexity and Lemma 5,
and are also linked, which means that the components of and belong to the
same SCC of contradicting the assumption that and are distinct SCC sets. The
same follows if and are linked by a edge from to and an edge
from to and if and are linked by an edge in one direction and a
edge in the other.
Assume that each of the pairs and is linked by edges in both direc-
tions. Then by convexity and Lemma 5, and are also linked by edges and
again the components of and are in the same SCC of The same holds if the
pairs and are both linked by edges.

Figure 7 shows an example of two interleaved SCC sets and
For clarity, some of the edges were not drawn but the reader should assume

that all edges that are implied by convexity exist in the graph. The SCCs of are linked
by edges and the SCCs of are linked by edges.
The following resemble Lemmas 5 and 8 but refer to the second pass.

Lemma 10. Let be the components in CS at the end of iteration i of
the second pass (ordered from bottom to top). Then for all

Proof. At the beginning CS is empty and the claim clearly holds. Assume that the claim
holds after iteration i – 1 and consider the changes made to the stack during iteration i.
When a topmost component of the stack is popped it does not affect the correctness
of the claim. When a new component is pushed onto the stack it is the result of merg-
ing some of the topmost components in the stack with components from the tempo-
rary stacks CSxy and CSyz. Since the temporary stacks contain only components with
higher y nodes than CS, the merged component contains indices which are all higher
than what is in components which are below it in CS.

78 Nicolas Beldiceanu et al.

Lemma 11. Let be an SCC set. Then for all
reaches at least one of by a single edge.

Proof. By Lemmas 5 and 10, the components of S appear in CS in the second pass in
the same order in which they appear in the first pass. This implies that after a certain
iteration of the second pass, are in CS and are unexplored.
Since there is an edge from one of to one of we can show
the claim by arguments which are similar to the ones used in the proof of Lemma 8.

We can now show that the second pass of the algorithm identifies the SCCs of

Lemma 12. Let be an SCC set. Then in the second pass of the algo-
rithm, the components of S will be merged.

Proof. Let S be an SCC set such that all SCC sets which are nested in S were merged.
We show by induction that all components of S are merged in the second pass. That is,
we show that for all i from to will be merged. For we know
by Corollary 2 that and are linked by either edges in both directions
(case 1) or edges in both directions (case 2). By Lemma 11, we know that
is not popped from CS before is pushed onto it. When is popped from CS for
the first time, it is pushed onto the stack where is CSxy (case 1) or CSyz (case
2). Assume that when became the topmost component in CS, was not the
topmost component in If it was popped from before that time, this is because
a component above in CS is linked with it. Since this component is not in S,
this contradicts the assumption that 5 is an SCC set. On the other hand, if there was
another component above in then by Lemma 9 this is because is linked
by edges (case 1) or edges (case 2) with another component which was
above in CS. If and were not merged, we get that there must have been
a component above in when was the topmost component on CS. Applying the
same argument recursively, we get that the number of components is infinite. Hence,
and were merged before was the topmost component in CS, so could not
have been above in

Assume that were merged by the algorithm into a larger component C.
By Lemma 11 we know that reaches C by a single edge and this implies that it was
not popped from CS before any of In addition, since C and are in the
same SCC, there is a path from C to This path does not go through components
that are between C and in the stack because that would place these components in
the same SCC as C and contradicting the assumption that S is an SCC set. Assume
that the path begins with an edge from C to or a component below it in CS.
Then by convexity there is also an edge from C to If the edge from to C is
a edge then by convexity and Lemma 10, C is linked with and all components
which are above it in the stack and will be merged with them by the algorithm. If this
edge is an edge then C will be pushed onto CSxy and as in the base case, it will
be merged with when the later will become the topmost component in CS.

If the path from C to begins with a edge from C to a component below
then arguments similar to the ones used in the proof of Lemma 7 imply that C also
reaches by a edge. If the edge from to C is an edge then again by

Filtering Algorithms for the Same Constraint 79

convexity and Lemma 10 and all components above it in CS are linked with C and
will be merged with it. If it is a edge then C will be pushed onto CSyz and will be
merged with when the later will become the topmost component in CS.

4.3 Complexity Analysis

The PM algorithm traverses the y nodes and performs 2n priority queues operations.
This takes time In the SCC computation everything takes linear time
except for maintaining the component list. We wish to be able to merge components
and to find which component a node belongs to. For this we use a Union-Find[2] data
structure over the y nodes, on which we perform operations that take a total of

time. Narrowing the domains of the variables can then be done in time
as in [4]. So the total running time is

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

N. Beldiceanu, I. Katriel, and S. Thiel. Filtering algorithms for the Same and UsedBy
constraints. Research Report MPI-I-2004-1-001, Max-Planck-Institut für Informatik,
Saarbrücken, Germany, 2004.
H. N. Gabow and R. E. Tarjan. A Linear-Time Algorithm for a Special Case of Disjoint Set
Union. Journal of Computer and System Sciences, 30(2):209–221, 1985.
L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
I. Katriel and S. Thiel. Fast bound consistency for the global cardinality constraint. In
Proceedings of the 9th International Conference on Principles and Practice of Constraint
Programming (CP 2003), volume 2833 of LNCS, pages 437–451, 2003.
K. Mehlhorn and S. Thiel. Faster Algorithms for Bound-Consistency of the Sortedness and
the Alldifferent Constraint. In Proceedings of the 6th International Conference on Principles
and Practice of Constraint Programming (CP 2000), volume 1894 of LNCS, pages 306–319,
2000.
J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI-94), pages 362–367, 1994.
J.-C. Régin. Generalized Arc-Consistency for Global Cardinality Constraint. In Proceedings
of the 13th National Conference on Artificial Intelligence (AAAI-96), pages 209–215, 1996.
Médecins sans Frontières. http://www.doctorswithoutborders.org/.

Cost Evaluation of Soft Global Constraints

Nicolas Beldiceanu and Thierry Petit

LINA FRE CNRS 2729
École des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes Cedex 3, France

{nicolas.beldiceanu,thierry.petit}@emn.fr

Abstract. This paper shows that existing definitions of costs associ-
ated with soft global constraints are not sufficient to deal with all the
usual global constraints. We propose more expressive definitions: refined
variable-based cost, object-based cost and graph properties based cost. For
the first two ones we provide ad-hoc algorithms to compute the cost
from a complete assignment of values to variables. A representative set
of global constraints is investigated. Such algorithms are generally not
straightforward and some of them are even NP-Hard. Then we present
the major feature of the graph properties based cost: a systematic way
for evaluating the cost with a polynomial complexity.

1 Introduction

Within the context of disjunctive scheduling, Baptiste et al. [4] have extended
the concept of global constraint to over-constrained problems. Such soft global
constraints involve a cost variable used to quantify the violation. This concept
has been initially investigated in a generic way in [21]. However, the question of
violation costs associated with global constraints still contains many challenging
issues:

As it has been shown for the AllDifferent constraint in [21] there is no
one single good way to relax a global constraint and the choice is essentially
application dependent. Moreover, existing definitions of costs associated with
soft global constraints are not sufficient to deal with all the usual global
constraints.
Defining how to relax a global constraint is not sufficient from an operational
point of view. One has also to at least provide an algorithm to compute the
cost that has been defined. As we will see this is usually not straightforward.
Finally we would like to address the two previous issues in a systematic way
so that each global constraint is not considered as a special case.

Our main motivation is to deal with over-constrained problems. Further, provid-
ing global constraints with generic definitions of costs and algorithms to com-
pute them constitute a necessary step to unify constraint programming and local
search techniques [24]. It would allow to use systematically global constraints as
higher level abstractions for describing the problem, together with local search
techniques. This again requires evaluating the constraint violation cost.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 80–95, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Cost Evaluation of Soft Global Constraints 81

1.1 Context

A Constraint Network is a triple is a set of variables.
Each has a finite domain of values that can be assigned
to it. is a set of constraints. A constraint links a subset of variables

by defining the allowed combinations of values between them. An
assignment of values to a set of variables is an instantiation of
(denoted simply by I when it is not confusing). An instantiation may satisfy or
violate a given constraint. The Constraint Satisfaction Problem (CSP) consists
of finding a complete instantiation such that I satisfies C.

A problem is over-constrained when no instantiation satisfies all constraints
(the CSP has no solution). Such problems arise frequently when real-world ap-
plications are encoded in terms of CSPs. In this situation, the goal is to find
a compromise. Violations are allowed in solutions, providing that such solutions
retain a practical interest. A cost is generally associated with each constraint
to quantify its degree of violation [11]. For instance if is violated then
a natural valuation of the distance from the satisfied state is [21].

It is natural to integrate the costs as new variables of the problem [20]. Then
reductions in cost domains can be propagated directly to the other variables,
and vice-versa. Furthermore, soft global constraints [4, 21] can be defined. They
extend the concept of global constraint [8, 22, 5, 10] to over-constrained prob-
lems. The use of constraint-specific filtering algorithms associated with global
constraints may improve significantly the solving process as their efficiency can
be much higher.

In [21] two definitions of the cost associated with a global constraint were
proposed. The first one is restricted to global constraints which have a primal
representation [12, 17],i.e., that can be directly decomposed as a set of binary
constraints without adding new variables. The other one is more generic: the
variable-based cost. It consists of counting the minimum number of variables
that should change their value in order to return to a satisfied state. We do not
place restrictions w.r.t. constraints. Therefore we focus on the generic definition.
Consider the constraint [22]. It enforces all values assigned to
variables in to be pairwise different. For instance if
the cost of the tuple (3,7,8,2,19) is 0 (satisfied) while the cost of the tuple
(3,7,8,7,7) is 2 (it is required to change the value of at least two variables to
turn it satisfied).

Although the purpose of this definition is to be generic, some important
questions remain open in regards to practical applications. The first one is related
to the meaning of such a cost. Consider the
constraint [19, 6]. It holds if variable N is equal to the number of distinct values
assigned to variables in For any assignment the maximal possible cost is 1: it
is always sufficient to change the value of N. Such a limited cost variation is not
satisfying. The second question is related to the complexity of the algorithms
which evaluate the cost. Depending on constraints, it may be hard to compute
the cost. We aim at providing generic answers to these two questions.

82 Nicolas Beldiceanu and Thierry Petit

1.2 Contributions

The first contribution of this paper is related to expressiveness. We propose
three new definitions of cost. They should allow to deal with most of soft global
constraints.

1.

2.

3.

Refined variable-based cost: we partition variables in two sets to dis-
tinguish changeable variables from fixed ones in the cost computation. The
motivation is to deal with a common pattern of global constraints where one
or several variables express something computed from a set of variables.
Object-based cost: application-directed constraints deal with high level
objects, for instance activities in scheduling. The information provided by
a cost related to the minimum number of objects to remove instead of the
minimum number of variables to change should be more exploitable.
Graph properties based cost: we introduce a definition based on the
graph properties based representation of global constraints [5]. The impor-
tant point of this definition is to have a systematic way to evaluate the cost
with a polynomial complexity.

The second contribution is to provide algorithms to compute the cost from
a complete instantiation of variables. With respect to the first two definitions we
study ad-hoc algorithms for a set of well-known constraints: the GlobalCardi-
nality [23], OneMachineDisjunctive [1], and NonOverlappingRectangles [1].
Concerning the GlobalCardinality constraint, algorithms are provided for sev-
eral types of costs. For the other ones we selected only the cost that makes sense.
Through these examples we point out that the cost computation is generally not
obvious and may even be NP-Hard. Then, we present a systematic way to eval-
uate the graph properties based cost with a polynomial complexity according to
the number of variables occurring within the global constraint under considera-
tion.

2 Soft Global Constraints

In an over-constrained problem encoded trough a constraint network
we denote by the set of hard constraints that must necessarily

be satisfied. is the set of soft constraints. Let I be an instantiation
of X. If I is a solution then I satisfies C. We search for the solution that
respects as much as possible the set of constraints A cost is associated with
each constraint. A global objective related to the whole set of costs is usually
defined. For instance, the goal can be to minimize the sum of elementary costs.
While in Valued and Semi-Ring CSPs [11] costs are defined trough an external
structure (that is, the CSP framework has to be augmented), a model has been
presented in [20] to handle over-constrained problems directly as classical op-
timization problems. In this model costs are represented by variables. Features
of classical constraint solvers can be directly used, notably to define soft global

Cost Evaluation of Soft Global Constraints 83

constraints including the cost variable. For sake of clarity, we consider in this
paper only positive integer costs1.

Definition 1. Let The cost constraint of C, denoted by is a con-
straint involving at least the cost variable (denoted by cost). This constraint
should both express the negation of C and give the semantics of the violation.

Generally

Definition 2. Let be a soft constraint. A disjunctive relaxation of C
is a constraint of the form:

This definition imposes explicitly to value 0 for variable cost to be not consistent
with a violated state. In many cases 0 should not be consistent with Then the
statement [cost > 0] is not necessary. This is the case in the following example.

Example 1. Let such that We define the cost constraint
of C by: The corresponding disjunctive relaxation
of C is:

This example illustrates directly what expresses: the negation of C,
and the semantics of the violation,

From Definition 2 it is simple to turn an over-constrained problem into a clas-
sical optimization problem [20]. We add the set of cost variables to (one per
soft constraint) and we replace each by its disjunctive relaxation, defined
as a hard constraint. The optimization criterion involves the whole set of cost
variables. It is shown in [20] that this formulation entails no penalty in terms
of space or time complexity compared with the other reference paradigms. In
the next sections the term soft global constraint will denote the cost constraint
of a global constraint. One can also use the term “relaxed version” of a global
constraint.

3 Generic Definitions of Violation Costs

This section presents definitions of the semantics of the violation of a global con-
straint. We formalize the notions which are necessary to handle in a generic way
violation costs. Definitions above should allow to relax most global constraints.

3.1 Refined Variable-Based Cost

Definition 3. Variable-Based Violation Cost [21]
Let C be a global constraint. The cost of the violation of C is defined as the
minimum number of values assigned to variables in var(C) that should change
in order to make C satisfied.
1 This assumption implies that costs are totally ordered. It is a minor restriction [20].

84 Nicolas Beldiceanu and Thierry Petit

The cost is expressed by a variable cost such that where
denotes the number of variables in Given we will deduce the cost

constraint from this definition. Such a definition is theoretically valid for any
global constraint. However, in practice, it is not suited to all global constraints.
For instance, consider the NumberOfDistinctValues constraint which
holds if the variable N is equal to the number of distinct values assigned to a set
of variables If this constraint is violated, by changing the value assigned to N
to the effective number of distinct values in we make it satisfied. That is,
in any case at most one variable has to be changed. The information provided
by the cost value is poor. Therefore the user would prefer to have a finer way
to evaluate the cost. We propose to count the minimum number of variables
to change in in order to make the current value assigned to N equal to the
effective number of distinct values. In other terms, we isolate N as a variable
having a fixed value, that cannot be changed. In this way we can deal with
a common pattern of global constraints where one variable expresses something
computed from a set of variables. For some constraints a subset of variables has
to be fixed instead of one. Therefore Definition 4 is more general.

Definition 4. Refined Variable-Based Violation Cost
Let C be a constraint. Let us partition var(C) in two sets (fixed variables)
and (changeable variables). The cost of the violation of C can be defined as
the minimum number of values assigned to variables in that should change in
order to make C satisfied. If this is not possible the cost is defined as

We may use in the same problem both Definition 3 and Definition 4 and ag-
gregate directly the different costs because the two definitions are related to
a minimum number of variables to change.

3.2 Object-Based Cost

At the user level, some application-oriented constraints handle objects which are
not simple variables. For instance in scheduling, the Cumulative constraint [1]
deals with tasks which are defined by four variables (origin, end, duration, re-
quired amount of resource) and a variable equal to the maximum peak of resource
utilization. In this case providing the constraint with a violation cost related to
variables may give a poor information. A higher level cost directly related to tasks
should be more convenient. The definitions are similar to Definitions 3 and 4.
Instead of taking into account the minimum number of variables to change we
consider the minimum number of objects to remove2. The interested reader can
refer to [4] where a soft global constraint handling a variant of the One-Machine
problem [16] is described. Dealing with task-based costs in a solver dedicated to
scheduling problems makes sense.
2 This definition is valid for global constraints where removing an object makes it

easier to satisfy the constraint. This is the case, for instance, for the Cumulative
and Diffn [8] constraints, but not for AtLeast.

Cost Evaluation of Soft Global Constraints 85

3.3 Graph Properties Based Cost

As we will see in section 4, one of the main difficulty related to soft global
constraints is that, even if one defines in a generic way the violation cost, it is
usually far from obvious to come up with a polynomial algorithm for evaluating
the cost for a specific global constraint. This is a major bottleneck if one wants to
embed in a systematic way global constraints within local search or if one wants
to allow relaxing global constraints. Therefore this section presents a definition
of the cost based on the description of global constraints in terms of graph
properties introduced in [5]. We first need to recall the principle of description
of global constraints. For general notions on graphs we invite the reader to refer
to [9].

A global constraint C is represented as an initial directed graph
to each vertex in corresponds a variable involved in C, while to each arc
in corresponds a binary constraint involving the variables at both endpoints
of Unlike what is done in conventional constraints networks [13] we do not ask
anymore all binary constraints to hold. We consider and remove all binary
constraints which do not hold. This new graph is denoted by We enforce
a given property on this graph. For instance, we ask for a specific number of
strongly connected components.

Let us now explain how to generate A global constraint has one or
more parameters which usually correspond to a domain variable or to a col-
lection of domain variables. Therefore we discuss the process which allows to
go from the parameters of a global constraint to For this purpose we came
up with a set of arcs generators described in [5]. We illustrate with a concrete
example this generation process. Consider the

constraint where We first depict We then give
the binary constraint associated to each arc. Finally we introduce the graph
characteristics. The left and right parts of Figure 1 respectively show the
initial graph generated for the NumberOfDistinctValues constraint with

as well as the graph associated to the instantiation
NumberOfDistinctValues(3,{5,8,1,5}).

Fig. 1. Initial graph associated with the con-
straint where and final graph of the ground solution
NumberOfDistinctValues(3,{5,8,1,5})

86 Nicolas Beldiceanu and Thierry Petit

We indicate for each vertex of its corresponding variable. In we show
the value assigned to the corresponding variable. We have removed from all
the arcs corresponding to the equality constraints which are not satisfied. The
NumberOf DistinctValues(3,{5,8,1,5}) holds since contains three strongly
connected components, which can be interpreted as the fact that N is equal to
the number of distinct values taken by the variables and

As shown in [5], most global constraints can be described as a conjunction of
graph properties where each graph property has the form P op I; P is a graph
characteristic, I is a fixed integer and op is one of the comparison operator
=, <, >,

Definition 5. Violation Cost of a Graph Property Consider the graph
property P op I. Let denotes the effective value of the graph characteristic P
on the final graph associated to the instantiated global constraint we consider.
Depending on the value of op, the violation cost of P op I is (abs denotes the
absolute value):

Definition 6. Graph Properties Based Violation Cost Consider a global
constraint defined by a conjunction of graph properties. The violation cost of
such a global constraint is the sum of the violation costs of its graph properties.

The most common graph characteristics used for defining a global constraint
are for instance:

NVERTEX the number of vertices of
NARC the number of arcs of
NSINK the number of vertices of which don’t have any successor.
NSOURCE the number of vertices of which don’t have any predecessor.
NCC the number of connected components of
MIN_NCC the number of vertices of the smallest connected component
of
MAX_NCC the number of vertices of the largest connected component of
NSCC the number of strongly connected components of
MIN_NSCC the number of vertices of the smallest strongly connected com-
ponent of
MAX_NSCC the number of vertices of the largest strongly connected com-
ponent of
NTREE the number of vertices of that do not belong to any circuit and
for which at least one successor belongs to a circuit.

As a first concrete illustration of the computation of the cost, consider again
the constraint. N is defined as the number
of strongly connected components of the final graph stem from the different
variables in and from their assigned values. Therefore the violation cost is
defined as the absolute value of the difference between the effective number of

Cost Evaluation of Soft Global Constraints 87

strongly connected components and the value assigned to N. For instance the
cost of NumberOf DistinctValues(3,{5, 5,1,8,1,9, 9,1, 7}) is equal to abs(5 –
3) = 2 which can be re-interpreted as the fact that we have two extra distinct
values. In section 5 we highlight the fact that for all global constraints which are
representable as a conjunction of graph properties, the graph-based cost can be
computed with a polynomial complexity according to the number of variables of
the considered global constraint.

In order to further illustrate the applicability of the graph based cost we
exemplify its use on three other examples. For the last one we show its ability
for defining various violation costs for a given global constraint.

Consider the [7] constraint where N is the number of times
that the disequality constraint holds between consecutive variables of

To each variable of corresponds a vertex of To each pair
of consecutive variables of corresponds an arc of labelled by
the disequality constraint Since the Change constraint is defined
by the graph property NARC= N, its violation cost is cost(NARC,=,N) =
abs(NARC– N). For instance the cost of Change(1, {4,4,8,4,9,9}) is equal to
abs(3 – 1) = 2 which can be re-interpreted as the fact that we have two extra
disequalities which hold.

Consider now the Cycle constraint [8] which, unlike the previous examples,
is defined by two graph properties. The constraint holds when

is a permutation with N cycles. To each variable of corresponds
a vertex of To each pair of variables of corresponds an arc of
labelled by the equality constraint The Cycle constraint is defined by the
conjunction of the following two graph properties NTREE= 0 and NCC= N.
The first one is used in order to avoid having vertices which both do not belong
to a circuit and have at least one successor located on a circuit. The second one
counts the number of connected components of which, when NTREE= 0,
is the number of cycles. From these properties we have that the violation cost
associated to the Cycle constraint is cost(NTREE, =, 0) + cost(NCC, =, N) =
NTREE+ abs(NCC– N). For instance the cost of Cycle(1, {2,1,4,5,3,7,8,7})
is equal to 1+ abs(3 – 1) = 3 which can be re-interpreted as the fact that we
have one vertex which does not belong to a cycle as well as two extra cycles (see
Figure 2.).

A given constraint may have several graph representations, leading to dif-
ferent ways to relax it. For instance consider the constraint
where The Alldifferent constraint holds when all the vari-
ables of are assigned to distinct values.

Fig. 2. Cycle(1,{2,1,4,5,3,7,8,7})

88 Nicolas Beldiceanu and Thierry Petit

It may be represented first by an initial directed graph where each node is
a distinct variable and between each ordered pair of variables (the order is used
to avoid counting twice an elementary violation) there is an arc representing
the binary constraint To obtain we remove all arcs where the binary
constraint is violated. The AllDifferent constraint is defined by the graph
property This definition leads to the following violation
cost This corresponds
to the number of binary constraints violated, that is, the primal graph based cost
introduced in [21].

A second way to describe the constraint is to build a graph
where all arcs are defined between pairs of variables like the initial graph of
the NumberOfDistinctValues constraint (see the left part of Figure 1). The
binary constraints will then be = and the graph property The pre-
vious graph property enforces to contain strongly connected components.
Since has vertices this forbid having a strongly connected component with
more than one vertex. This second definition of Alldifferent leads to the vi-
olation cost – NSCC. This corresponds in fact to the
variable-based cost introduced in [21].

Finally a third way to model the constraint is to define
the initial graph as in our second model and to use the graph property
MAX_NSCC= 1. This imposes the size of the largest strongly connected com-
ponent of to be equal to 1. This third definition of Alldifferent leads to
the violation cost cost(MAX_NSCC, =, 1) = MAX_NSCC – 1. This can be in-
terpreted a the difference between the number of occurrences of the value which
occurs the most in and 1.

4 Cost Computation Algorithms

This section presents algorithms to compute the cost from a complete assignment
of value to variables for a representative set of global constraints. We focus
on variable-based and object-based costs. A systematic way to compute graph-
based costs will be provided in the next section. Let us recall the context of this
work. When we define a soft global constraint it is necessary to be able:
(1) To compute the cost from a complete assignment. This is the basic step to
evaluate how much the constraint is violated.
(2) To compute a lower bound of the cost from a partial assignment. This step
is useful to have a consistency condition, based on the bounds of D(cost).
(3) To provide the constraint with a filtering algorithm which deletes values
that can not belong to any assignment with an acceptable cost (i.e.,
A first algorithm can always be deduced from step (2) by applying for each
value the consistency condition with

This section focuses on step (1). We show that computing a cost from a com-
plete assignment is generally not obvious and even may be hard in the algorith-
mic sense. Well-known constraints which were selected differ significantly one

Cost Evaluation of Soft Global Constraints 89

another. For a given constraint, several definitions of the cost are considered
when it makes sense.

4.1 GlobalCardinality : Variable-Based Cost

In a constraint, is a set of variables, T an
array of values, and a set of positive integer variables one-to-one mapped with
values in T. This constraint enforces each in T to be assigned in a number
of times equal to the value assigned to the variable in which represents

To turn the constraint from a violated
state to a satisfied one, it is necessary to change variables (in or in order to
make the cardinalities equal to the corresponding occurrences of values in We
assume in this section that the maximum value of the domain of a cardinality
variable does not exceeds Given a complete assignment of we have
a possibly empty subset of cardinalities that do not correspond to
the current number of occurrences of their values in the assignment of
A way to make the constraint satisfied is to change the value of each variable in

to the effective cardinalities relatively to Unfortunately, as shown
by example 2, is not necessarily the cost value of Definition 3.

Example 2. Let and
with The assignment

violates the constraint.
We can turn it satisfied by changing the value of to that

is the minimum number of variables to change is cost = 1. Thus

We have to solve the following problem: how many variables should change
their value to reduce to the empty set? As a short cut we say that
“saves” one variable from when by changing we can turn
to the effective number of occurrences of in

Notation 1 Let be a value of its effective number of occurrences
in and the value assigned to its cardinality variable
and respectively denote and

Lemma 1 If no in saves one variable in then for any value as-
signed to variables in such that we have

Proof If then by changing one variable it is possible to
turn to 0, i.e., to the effective number of occurrences of in

Lemma 2 Changing the value of one variable in changes the value assigned
to at most two variables in and may save at most those two variables.

Proof If changes from to only two cardinalities change: the ones of and

Lemma 3

90 Nicolas Beldiceanu and Thierry Petit

Proof it is possible to change all variables in to make the constraint satisfied,
and then obtain a cost equal to

Theorem 1. If no in save variables in then

Proof Hypothesis H: no in can be changed to save in Assume cost
By Lemma 3, We consider the number of steps to turn

to by changing one variable at each step, either in or in Let the current step
be Changing saves 0 and is supposed to lead in a next step to a better
result than turning variables in From Lemma 2, at two variables
and in have been changed and from H none were saved
Thus by Lemma 2, at step at most two variables can be saved in (distance
= 1). Let us detail the 3 cases at 1. Two variables in are saved. From
H and Lemma 1 they are and (if not we could have saved the other ones at

contradiction with H). The situation remains equivalent to step except
is considered (we made 2 saves, 2 variables have been changed). 2. One

variable in is saved. It is necessarily or which is removed from
The consequence can be in the better case to have a new distance becoming 1 when
saving or In this case at step we return to this situation. In this way it
will never be possible to compensate the loss of one of step 3. No variables
can be saved. No is such that The situation at is equivalent
to the one of step and no variables were saved. Conclusion: no case can lead to
a better situation at next steps. The cost is

Notation 2 Given a complete instantiation we define:

ordered by increasing
ordered by increasing

such that
such that

Figure 3. represents the two sets and for a GlobalCardinality
constraint where the current instantiation has wrong cardinalities.
The cost is equal to the minimal number of changes to remove each column,
provided that:

If we change with initial value v and we remove one column in
If we change to a new value with we remove one column in
From these two first rules, if we change with initial value to and

then we remove two columns in one step.
Finally, if we change the value of one cardinality to the real number of

occurences of in then we remove its corresponding column.
To remove all columns with a minimal number of changes, one can select,

while either or a variable assigned to value with minimal
in and change its value to value with minimal in In this

Cost Evaluation of Soft Global Constraints 91

Fig. 3. Graphical representation of the two sets and with corresponding
distances from real number of occurences of values in an instantiation

way, if the two minima verify we remove two columns in one step. If
not we tend to the most favourable next state. When the two minima and
are such that and by Theorem 1 the remaining minimal number
of changes to make is From this process, Theorem 2 gives the exact cost
of an instantiation

Theorem 2. Let be the positive integer defined as follows:

If is the smallest possible number of first elements of

satisfying

If is the smallest possible number of first elements of

satisfying

The exact cost of the instantiation is

4.2 GlobalCardinality : Refined Variable-Based Cost (1)

We consider a first refined variable-based definition of the cost where fixed vari-
ables are the cardinalities and changeable ones are

Basic Notions on Flows

Flow theory was originally introduced by Ford and Flukerson [14]. Let G =
(X, U) be a directed graph. An arc leaves and enters is the set
of edges entering a vertex is the set of edges leaving
Consider a graph G = (X, U) such that each arc is associated with two pos-
itive integers and is called the upper bound capacity of

and the lower bound capacity. A flow in G is a function satisfying
the two following two conditions: 1. For any arc represents the
amount of commodity which flows along the arc. Such a flow is allowed only in
the direction of the arc that is, from to 2. A conservation law is ob-
served at each of the vertices: :

92 Nicolas Beldiceanu and Thierry Petit

The feasible flow problem is the problem of the existence of a flow in G which sat-
isfies the capacity constraint, that is: :

Application to the GlobalCardinality Constraint

We aim to take into account the fact that modifying one changes two
cardinalities. The problem can be formulated as a feasible flow with minimum
cost (Min Cost Flow [18]) on the bipartite variable-values graph defined below.

In this graph we consider for the GlobalCardinality constraint one arc with
a specific cost is defined for each pair variable-value for values belonging to each
initial domain. We assume that the constraint has intially at least one feasible
soltion. Arcs corresponding to the current assignment have cost 0, other have
cost 1.

Definition 7. where denotes the set of
initial domains of is defined by:

 a vertex such that These arcs have a capacity equal
[1,1] and are valued by
a vertex such that The capacity of each arc is

(see Notation 1 in previous subsection). The valuation is
capacity

and one arc E. Capacity [0,1], equal
to 0 if is assigned to in 1 otherwise.

return the cost of a minimum cost flow in

Complexity: from [2] the complexity is
where and maxC is a maximum
cost of an arc, that is in our problem maxC = 1.

4.3 GlobalCardinality: Refined Variable-Based Cost (2)

We consider a second refined variable-based definition of the cost where fixed
variables are and changeable ones are the cardinalities

Complexity: O(1), assuming that is incrementally maintained when
assigning variables in and

4.4 OneMachineDisjunctive: Object-Based Refined Cost

The OneMachineDisjunctive constraint is defined on a set of tasks
and a makespan variable M. Each task is defined by two variables: a start

Cost Evaluation of Soft Global Constraints 93

and a duration Its purpose is to enforce all the tasks to be pairwise disjoint
and executed before M We consider the object-based
refined cost where fixed objects reduce to {M} and changeable ones are
the set

We search for the minimum number of tasks to remove to make the con-
straint satisfied. The optimal number can be found by a greedy algorithm de-
rived from [3]. The principle is to sort tasks by increasing and use
a greedy algorithm which adds at each step a task of minimum end
time after if and only if This is done until the makespan is
reached. In this way a maximal number of tasks are added, as it is proven in [3]
by a simple induction.

Complexity: where

4.5 NonOverlappingRectangles: Object-Based Cost

The NonOverlappingRectangles constraint holds if the set of two dimen-
sional rectangles parallel to axis and defined by their respective left-up origin
and sizes is such that all the rectangles do not pairwise overlap.

The cost is the minimum number of rectangles to remove in order to make
them disjoint one another. This number is equal to minus the size of a maxi-
mum independent set of a rectangle intersection graph. A rectangle intersection
graph is a graph where vertices are rectangles and an edge exists between two
rectangles if and only if these rectangles intersect.

Complexity: finding the maximum independent set of a rectangle intersection
graph is known to be NP-Hard [15].

5 Computation of the Graph Properties Based Cost

Computing the cost requires evaluating different graph characteristics on the
final graph This graph is computed in the following way: we discard all the
arcs of the initial graph for which the corresponding elementary constraints do
not hold. We assume that it is possible to check in polynomial time whether
a ground instance of an elementary constraint holds. Since all the characteristics
we mentioned in [5] can be evaluated in a polynomial time according to the num-
ber of vertices of evaluating the cost can also be performed in a polynomial
time.

6 Perspectives

This paper presents generic definitions of costs and the related computation
algorithms. Such definitions are required to define soft global constraints. We
directed the paper to over-constrained problems but our cost definitions are also
useful to mix local search based techniques and constraint programming.

94 Nicolas Beldiceanu and Thierry Petit

6.1 Incremental Algorithms

When a move is made on a given assignment of values to variables it is necessary
to quantify its impact on the constraints. As a perspective of this work a detailed
study of incremental cost computation algorithms should be made, depending
on their definition and the moves that are supposed to be performed. For some
constraints and some costs this step is easy. This was done in COMET [24]
for the AllDifferent and the GlobalCardinality. An atomic move consists of
modifying a given instantiation by changing the value assigned to one variable.

6.2 Filtering Algorithms

The other main perspective is related to the variable-based and object-based
definitions of cost: for all the usual global constraints it may be interesting to
provide filtering algorithms, like the ones proposed for the AllDifferent in [21].
Finally, with respect to the graph properties based cost, filtering algorithms
provided for the different graph characteristics would be directly suitable to soft
global constraints.

7 Conclusion

We pointed out that cost definitions presented in [21] for soft global constraints
are not sufficient. We introduced three new definitions. For the first two ones
we investigated algorithms to compute the cost of a complete instantiation for
a representative set of global constraints. The last definition is based on graph
properties representation of constraints [5]. Its major feature is to come up with
a systematic way for evaluating the cost with a polynomial complexity. We dis-
cussed the perspectives of this work, notably with respect to combination of the
expressive power of global constraints with the local search frameworks.

Acknowledgements

The authors thank the reviewers for the helpful comments they provided. This
work also benefited from early discussions with Markus Bohlin.

References

[1]

[2]

[3]

A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing and placement problems. Mathl. Comput. Modelling, 17(7):57–73, 1993.
R. K. Ahuja, J. B. Orlin, C. Stein, and R. E. Tarjan. Improved algorithms for
bipartite network flow. SIAM Journal on Computing, 23:5:906–933, 1994.
J-C. Bajard, H. Common, C. Kenion, D. Krob, J-M. Muller, A. Petit, Y. Robert,
and M. Morvan. Exercices d’algorithmique : oraux d’ENS. International Thomson
Publishing, in French, pages 72–74, 1997.

Cost Evaluation of Soft Global Constraints 95

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. Baptiste, C. Le Pape, and L. Peridy. Global constraints for partial CSPs:
A case-study of resource and due date constraints. Proceedings CP, pages 87–102,
1998.
N. Beldiceanu. Global constraints as graph properties on a structured network of
elementary constraints of the same type. Proceedings CP, pages 52–66, 2000.
N. Beldiceanu. Pruning for the minimum constraint family and for the number
of distinct values constraint family. Proceedings CP, pages 211–224, 2001.
N. Beldiceanu and M. Carlsson. Revisiting the cardinality operator and introduc-
ing the cardinality-path constraint family. Proceedings ICLP, 2237:59–73, 2001.
N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Journal
of Mathematical and Computer Modelling, 20(12):97–123, 1994.
C. Berge. Graphs and hypergraphs. Dunod, Paris, 1970.
C. Bessière and P. Van Hentenryck. To be or not to be... a global constraint.
Proceedings CP, pages 789–794, 2003.
S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier.
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints, 4:199–240, 1999.
R. Dechter. Constraint networks. Encyclopedia of Artificial Intelligence, pages
276–285, 1992.
R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence, 34:1–38, 1987.
L. Ford and D. Flukerson. Flows in networks. Princeton University Press, 1962.
R. J. Fowler, M.S. Paterson, and S.L. Tanimoto. Optimal packing and covering
in the plane are np-complete. Inform. Processing Letters, 12(3):133–137, 1981.
M. R. Garey and D. S. Johnson. Computers and intractability : A guide to the
theory of NP-completeness. W. H. Freeman and Company, ISBN 0-7167-1045-5,
1979.
I. Gent, K. Stergiou, and T. Walsh. Decomposable constraints. Artificial Intelli-
gence, 123:133–156, 2000.
E. Lawler. Combinatorial optimization: Networks and matroids. Holt, Rinehart
and Winston, 1976.
F. Pachet and P. Roy. Automatic generation of music programs. Proceedings CP,
pages 331–345, 1999.
T. Petit, J-C. Régin, and C. Bessière. Meta constraints on violations for over
constrained problems. Proceedings IEEE-ICTAI, pages 358–365, 2000.
T. Petit, J-C. Régin, and C. Bessière. Specific filtering algorithms for over con-
strained problems. Proceedings CP, pages 451–463, 2001.
J-C. Régin. A filtering algorithm for constraints of difference in CSPs. Proceedings
AAAI, pages 362–367, 1994.
J-C. Régin. Generalized arc consistency for global cardinality constraint. Pro-
ceedings AAAI, pages 209–215, 1996.
P. Van Hentenryck and L. Michel. Control abstractions for local search. Proceed-
ings CP, pages 66–80, 2003.

SAT-Based Branch & Bound and Optimal
Control of Hybrid Dynamical Systems

Alberto Bemporad and Nicolò Giorgetti

Dip. Ingegneria dell’Informazione
University of Siena, via Roma 56, 53100 Siena, Italy

{bemporad,giorgetti}@dii.unisi.it

Abstract. A classical hybrid MIP-CSP approach for solving problems
having a logical part and a mixed integer programming part is presented.
A Branch and Bound procedure combines an MIP and a SAT solver to
determine the optimal solution of a general class of optimization prob-
lems. The procedure explores the search tree, by solving at each node
a linear relaxation and a satisfiability problem, until all integer variables
of the linear relaxation are set to an integer value in the optimal solu-
tion. When all integer variables are fixed the procedure switches to the
SAT solver which tries to extend the solution taking into account logical
constraints. If this is impossible, a “no-good” cut is generated and added
to the linear relaxation. We show that the class of problems we consider
turns out to be very useful for solving complex optimal control problems
for linear hybrid dynamical systems formulated in discrete-time. We de-
scribe how to model the “hybrid” dynamics so that the optimal control
problem can be solved by the hybrid MIP+SAT solver, and show that
the achieved performance is superior to the one achieved by commercial
MIP solvers.

1 Introduction

In this paper we consider the general class of mixed logical/convex problems:

where are convex functions, :
are affine functions, and

is a Boolean function.
An MIP solver provides the solution to (1) after solving a sequence of relaxed

convex problems, typically standard linear or quadratic programs (LP, QP).
A potential drawback of MIP is (a) the need for converting the logic constraints

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 96–111, 2004.
© Springer-Verlag Berlin Heidelberg 2004

SAT-Based Branch & Bound 97

(1d) into mixed-integer inequalities, therefore losing most of the original discrete
structure, and (b) the fact that its efficiency mainly relies upon the tightness of
the continuous LP/QP relaxations.

Such a drawback is not suffered by techniques for solving constraint satis-
faction problems (CSP), i.e., the problem of determining whether a set of con-
straints over discrete variables can be satisfied. Under the class of CSP solvers
we mention constraint logic programming (CLP) [1] and SAT solvers [2], the
latter specialized for the satisfiability of Boolean formulas.

While CSP methods are superior to MIP approaches for determining if
a given problem has a feasible (integer) solution, the main drawback is their
inefficiency for solving optimization, as they do not have the ability of MIP ap-
proaches to solve continuous relaxations (e.g., linear programming relaxations)
of the problem in order to get upper and lower bounds to the optimum value.

For this reason, it seems extremely interesting to integrate the two approaches
into one single solver. Some efforts have been done in this direction [3, 4, 5, 6, 7],
showing that such mixed methods have a tremendous performance in solv-
ing mathematical programs with continuous (quantitative) and discrete (log-
ical/symbolic) components, compared to MIP or CSP individually. Such suc-
cessful results have stimulated also industrial interest: ILOG Inc. is currently
distributing OPL (Optimization Programming Language), a modeling and pro-
gramming language which allows the formulation and solution of optimization
problems, using both MIP and CSP techniques, combining to some extent the
advantages of both approaches; European projects with industrial participants,
such as LISCOS [8], developed and are developing both theoretical insights and
software tools for applying the combined approach of MIP and CSP to industrial
case studies.

In this paper, we focus on combinations of convex programming (e.g., lin-
ear, quadratic, etc.) for optimization over real variables, and of SAT-solvers
for determining the satisfiability of Boolean formulas. The main motivation for
our study stems from the need for solving complex optimal control problems of
theoretical and industrial interest based on “hybrid” dynamical models of pro-
cesses that exhibit a mixed continuous and discrete nature. Hybrid models are
characterized by the interaction of continuous models governed by differential or
difference equations, and of logic rules, automata, and other discrete components
(switches, selectors, etc.). Hybrid systems can switch between many operating
modes where each mode is governed by its own characteristic continuous dy-
namical laws. Mode transitions may be triggered internally (variables crossing
specific thresholds), or externally (discrete commands directly given to the sys-
tem) . The interest in hybrid systems is mainly motivated by the large variety of
practical situations where physical processes interact with digital controllers, as
for instance in embedded control systems.

Several authors focused on the problem of solving optimal control problems
for hybrid systems. For continuous-time hybrid systems, most of the literature
either studied necessary conditions for a trajectory to be optimal, or focused

98 Alberto Bemporad and Nicolò Giorgetti

on the computation of optimal/suboptimal solutions by means of dynamic pro-
gramming or the maximum principle [9, 10, 11].

The hybrid optimal control problem becomes less complex when the dynamics
is expressed in discrete-time, as the main source of complexity becomes the
combinatorial (yet finite) number of possible switching sequences. In particular,
in [12, 13, 14] the authors have solved optimal control problems for discrete-time
hybrid systems by transforming the hybrid model into a set of linear equalities
and inequalities involving both real and (0-1) variables, so that the optimal
control problem can be solved by a mixed-integer programming (MIP) solver.

At the light of the benefits and drawbacks of the previous work in [12, 13, 14]
for solving control and stability/safety analysis problems for hybrid systems
using MIP techniques, we follow a different route that uses the aforementioned
approach combining MIP and CSP techniques.

We build up a new modeling approach for hybrid dynamical systems di-
rectly tailored to the use of the hybrid MIP+SAT solver for solving optimal con-
trol problems, and show its computational advantages over pure MIP methods.
A preliminary work in this direction appeared in [15], where generic constraint
logic programming (CLP) was used for handling the discrete part of the optimal
control problem.

The paper is organized as follows. In Section 2.1 optimal control problems of
discrete-time hybrid models are introduced and in Section 2.2 are reformulated
to the general class (1). Section 3 introduces the new solution algorithm for
the general class (1). An example of optimal control problem of a hybrid model
showing the benefits of the solution algorithm, compared to pure MIP approaches
[12, 14] is shown in section 4.

2 Motivating Application

2.1 Optimal Control of Discrete-Time Hybrid Systems

Following the ideas in [14], a hybrid system can be modeled as the intercon-
nection of an automaton (AUT) and a switched affine system (SAS) through
an event generator (EG) and a mode selector (MS). The discrete-time hybrid
dynamics is described as follows [14]:

SAT-Based Branch & Bound 99

The automaton (or finite state machine) describes the logic dynamics of the
hybrid system. We will only refer to “synchronous automata”, where transitions
are clocked and synchronous with the sampling time of the continuous dynamical
equations. The dynamics of the automaton evolves according to the logic update
functions (2a) where is the time index, is the logic
state, is the exogenous logic input, is the
logic output, is the endogenous input coming from the EG,
and are deterministic boolean
functions.
The SAS describes the continuous dynamics and it is a collection of affine systems
(2b) where is the continuous state vector,
is the exogenous continuous input vector, is the continuous
output vector, is the “mode”
in which the SAS is operating, is the number of elements of and

is a collection of matrices of opportune dimensions.
The mode is generated by the mode selector, as described below. A SAS of
the form (2b) preserves the value of the state when a switch occurs. Resets can
be modeled in the present discrete-time setting as detailed in [14].
The event generator (EG) is a mathematical object that generates a Boolean
vector according to the satisfaction of a set of threshold events (2c) where
denotes the component of the vector, and define
the hyperplane in the space of continuous states and inputs.
The mode selector (MS) selects the dynamic mode also
called the active mode, of the SAS and it is described by the logic function (2d)
where is a Boolean function of the logic state of
the logic input and of the active mode at the previous sampling
instant. We say that a mode switch occurs at step if Note
that contrarily to continuous time hybrid models, where switches can occur at
any time, in our discrete-time setting a mode switch can only occur at sampling
instants.

A finite-time optimal control problem for the class of hybrid systems is for-
mulated as follows:

where T is the control horizon, is a nonnegative convex function,
are given reference trajectories to

be tracked by the state and input vectors, respectively.
The constraints of the optimal control problem can be classified as dynamical
constraints (3b), representing the discrete-time hybrid system, design constraints
(3c), artificial constraints imposed by the designer to fulfill the required spec-

100 Alberto Bemporad and Nicolò Giorgetti

ifications, and ancillary constraints (3d), an a priori additional and auxiliary
information for determining the optimal solution which does not change the
solution itself, rather help the solver to find it more easily.

2.2 Problem Reformulation

Problem (3) can be solved via MILP when the costs are convex piecewise linear
functions, for instance where are full-
rank matrices and denotes the infinity-norm
where is the row of Q) [13], or via MIQP (mixed integer quadratic
programming) when where are positive
(semi)definite matrices [12]. In this paper we wish to solve problem (3) by using
MIP and SAT techniques in a combined approach, taking advantage of SAT for
dealing with the purely logic part of the problem. In order to do this, we need
to reformulate the problem in a suitable way.
The automaton and mode selector parts of the hybrid system are described as
a set of Boolean constraints so they do not require transformations. The event
generator and SAS parts can be equivalently expressed, by adopting the so-called
“big-M” technique [16], as a set of continuous and mixed constraints. Problem
(3) can be cast as the mixed logical/convex program

where are the continuous optimization variables,
are the binary optimization variables,

is a given initial state, constraints (4b), (4c) represent the EG and SAS
parts (2c), (2b), and the purely continuous or mixed constraints from (3c), (3d),
while (4d) represents the automaton (2a), the mode selector (2d), possible purely
Boolean constraints from (3c), (3d). Matrices are obtained by
the big-M translation.

Problem (4) belongs to the general class (1) in which all constraints depend
on the state initial condition of the hybrid system. In the hybrid
optimal control problem at hand, collects all the continuous variables

the auxiliary variables needed for expressing the
SAS dynamics, possibly slack variables for upper bounding the cost function
in (4a) [13], collects the integer variables that appear in mixed constraints

and collects the integer variables
such as that only appear in logic constraints. Note that in general if

SAT-Based Branch & Bound 101

the objective function in the the form we could consider the new objective
function and an additional constraint which is a mixed
convex constraint that could be included in (1c).

3 SAT-Based Branch&Bound

3.1 Constraint Satisfaction and Optimization

While optimization is primarily associated with mathematics and engineering,
CSP was developed (more recently) in the computer science and artificial in-
telligence communities. The two fields evolved more or less independently until
a few years ago. Yet they have much in common and are applied to solve similar
problems. Most importantly for the purposes of this paper, they have comple-
mentary strengths, and the last few years have seen growing efforts to combine
them [4, 3, 17, 5, 18].

The recent interaction between CSP and optimization promises to affect both
fields. In the following subsections we illustrate an approach for merging them
into a single problem-solving technology, in particular by combining convex op-
timization and satisfiability of Boolean formulas (SAT).

Convex Optimization. Convex optimization is very popular in engineering,
economics, and other application domains for solving nontrivial decision prob-
lems. Convex optimization includes linear, quadratic, and semidefinite program-
ming, for which several extremely efficient commercial and public domain solvers
are nowadays available. An excellent reference to convex optimization is the book
by Boyd and Vandenberghe [19].

SAT Problems. An instance of a satisfiability (SAT) problem is a Boolean
formula that has three components:

A set of variables:
A set of literals. A literal is a variable or a negation of a variable

A set of distinct clauses: Each clause consists of only
literals combined by just logical or connectives.

The goal of the satisfiability problem is to determine whether there exists an
assignment of truth values to variables that makes the following Conjunctive
Normal Form (CNF) formula satisfiable:

where is a logical “and” connective. For a survey on SAT problems and related
solvers the reader is referred to [2].

102 Alberto Bemporad and Nicolò Giorgetti

3.2 A SAT-Based Hybrid Algorithm

The basic ingredients for an integrated approach are (1) a solver for convex
problems obtained from relaxations over continuous variables of mixed integer
convex programming problems of the form (4a)-(4b)-(4c), and (2) a SAT solver
for testing the satisfiability of Boolean formulas of the form (4d). The relaxed
model is used to obtain a solution that satisfies the constraint sets (1b) and (1c)
and optimizes the objective function (1a). The optimal solution of the relaxation
may fix some of the (0-1) variables to either 0 or 1. If all the (0-1) variables in the
relaxed problem have been assigned (0-1) values, the solution of the relaxation is
also a feasible solution of the mixed integer problem. More often, however, some
of the (0-1) variables have fractional parts, so that further “branching” and
solution of further relaxations is necessary. To accelerate the search of feasible
solutions one may use the fixed (0-1) variables to “infer” new information on
the other (0-1) variables by solving a SAT problem obtained by constraint (1d).
In particular, when an integer solution of is found from convex programming,
a SAT problem then verifies whether this solution can be completed with an
assignment of that satisfies (1d).

The basic branch&bound (B&B) strategy for solving mixed integer problems
can be extended to the present “hybrid” setting where both convex optimization
and SAT solvers are used. In a B&B algorithm, the current best integer solution
is updated whenever an integer solution with an even better value of the objective
function is found. In the hybrid algorithm at hand an additional SAT problem
is solved to ensure that the integer solution obtained for the relaxed problem
is feasible for the constraints (1d) and to find an assignment for the other logic
variables that appear in (1d). It is only in this case that the current best
integer solution is updated.

The B&B method requires the solution of a series of convex subproblems
obtained by branching on integer variables. Here, the non-integer variable to
branch on is chosen by selecting the variable with the largest fractional part
(i.e., the one closest to 0.5), and two new convex subproblems are formed with
that variable fixed at 0 and at 1, respectively. When an integer feasible solution
of the relaxed problem is obtained, a satisfiability problem is solved to complete
the solution. The value of the objective function for an integer feasible solution
of the whole problem is an upper bound (UB) of the objective function, which
may be used to rule out branches where the optimum value attained by the
relaxation is larger than the current upper bound.

Let P denote the set of convex and SAT subproblems to be solved. The
proposed SAT-based B&B method can be summarized as follows:

1.

2.

Initialization. The convex subproblem is
generated by using (la),(lb), (1c) along with the relaxation and
the SAT subproblem is generated by using (1d).
Node selection. If then go to 7.; otherwise select and remove a

SAT) problem from the set P; The criterion for selecting a problem is
called node selection rule.

SAT-Based Branch & Bound 103

3.
4.

5.

Logic inference. Solve problem SAT. If it is infeasible go to step 2.
Convex reasoning. Solve the convex problem and:
4.1.

4.2.

If the problem is infeasible or the optimal value of the objective function
is greater than UB then go to step 2.
If the solution is not integer feasible then go to step 6.

Bounding. Let be the integer part of the optimal solution
found at step 4.; to extend this partial solution, solve the SAT problem
finding such that If the SAT problem is feasible then
update UB; otherwise add to the LP problems of the set P the “no-good”
cut [3]

6.

7.

Branching. Among all variables that have fractional values, select the one
closest to 0.5. Let be the selected non-integer variable, and generate two
subproblems and
add them to set P; go to step 2.
Termination. If then the problem is infeasible. Otherwise, the
optimal solution is the current value UB.

where and Go to step 2.

Remark 1. At each node of the search tree the algorithm executes a three-step
procedure: logic inference, solution of the convex relaxation, and branching. The
first step and the attempted completion of the solution do not occur in MIP ap-
proaches but they are introduced here by the distinction of mixed (0-1) variables

and pure (0-1) variables The logic inference and the attempted completion
steps do not change the correctness and the termination of the algorithm but
they improve the performance of the algorithm because of the efficiency of the
SAT solver in finding a feasible integer solution.

Remark 2. The class of problems (1) is similar to the MLLP framework intro-
duced by Hooker in [20],

where (5b) is the continuous part, and (5c)
is the logic part. If we consider the only variables as discrete variables and
a liner cost function, constraints (1b), (1c) represent the linearization of (5b),
and constraints (1d) are equivalent to (5c).
There are however a few differences between frameworks (1) and (5). First, the
relaxation problem of (1) is the same for each node in the search tree, while in
(5) the relaxation depends on which left-hand side of (5b) is true. Second, in the
class of problems (1) constraints of type

104 Alberto Bemporad and Nicolò Giorgetti

can not be introduced and they have to be converted into inequalities, becoming
part of constraints (1c). Inference is done only in the logic part, by the SAT
solver, and no information is derived by the continuous part. In the MLLP
framework, instead, inferences are made in both ways.

Remark 3. The modeling framework (1) can also be solved by using a combined
approach of MIP and CLP [15]. The role of constraint propagation is obviously to
reduce as much as possible the domain sets of the variables that appear in the
constraints managed by the CLP solver. In this way, the constraint propagation
can reduce the search space removing some branches in the search tree that can
not have feasible solutions. Moreover the constraint propagation together with
choice points can help to find a completion of the solution trying to fix the
variables.
The SAT solver behaves in a similar way to CP solver. The SAT inference is a
feasibility check. If a partial assignment of the variables is infeasible for the set
of constraints (1d) SAT is able to find the infeasibility easier and more quickly
than a CLP solver. SAT solvers are also more efficient for finding a feasible
assignment for the variables with respect to CLP solvers.
However the efficiency of SAT solvers relies upon the representation of the logic
part of the problem. While CLP can be used both with logic formulas and linear
constraints, as well as global constraints, SAT turns out to be useful only with
Boolean formulas.

4 Numerical Results

In this section we show on an example of hybrid optimal control problem that
the hybrid solution technique described in the previous sections has a better
performance compared to commercial MIP solvers.

4.1 “Hybrid” Model

Consider a room with two bodies with temperatures and let be
the room temperature (this example is an extension of the example reported
in [21]). The room is equipped with a heater, close to body 1, delivering thermal
power and an air conditioning system, close to body 2, draining thermal
power These are turned on/off according to some rules dictated by the
closeness of the two bodies to each device. We want guarantee that the bodies
are not cold or hot.

The discrete-time continuous dynamics of each body is described by the
difference equation

where are suitable constants, is the sampling time, and
is an exogenous input that can be used to deliver or drain thermal power manu-
ally (e.g. by opening a window or by changing the water flow from a centralized
heating system).

SAT-Based Branch & Bound 105

Fig. 1. Automaton regulating the heater

Fig. 2. Air conditioning system automaton

The automaton part of the system is described by the two automata rep-
resented in Figures 1 and 2, where and for are logic
variables defined as follows

and where are constant thresholds. The automaton for
the heater (Figure 1) sets the heater in the “ready to heat” state if body 2 is
cold, and will go in “heat” state if body 2 is very cold. If body 1 is cold or very
cold the heater is turned on immediately. The automaton of the air conditioning
(A/C) system (Figure 2) sets the air conditioning system in the “ready to cool”
state if body 1 is hot, unless body 2 is cold, in other words, the A/C system is
turned on only when body 1 is very hot. However, the draining thermal power

106 Alberto Bemporad and Nicolò Giorgetti

is half of the full power. The A/C system is set to the maximum power if the
body 2 is very hot but it is immediately switched to half power as soon as body
2 is only hot (due to energy consumptions of the A/C system).

The heater delivers thermal power and the A/C system drains thermal power
according to the following rules:

By following the notation of (2a), we have
and

The system has six modes:
The mode selector function is defined as follows

which only depends on logic states.
The SAS dynamics (6), i.e., the continuous part of the hybrid system, is

translated into a set of inequalities using the Big-M technique, which provides
the set of constraints

where contains the auxiliary continuous vari-
ables needed to represent the conditions
and Constraints (9) are obtained by
employing the HYSDEL compiler [14], a dedicated “hybrid” system descrip-
tion language and compiler which translates a description of the problem into
the mathematical mixed+logical dynamical (MLD) representation introduced
in [12], a mathematical framework useful for defining optimal control problems
as pure MIP problems.

Finally, the event generator is represented by (7a) and (7b). These are trans-
lated by HYSDEL into a set of linear inequalities:

where

4.2 Optimal Control Problem

The goal is to design an optimal control profile for the continuous input that
minimizes subject to the hybrid dynamics and the following
additional constraints:

SAT-Based Branch & Bound 107

Continuous constraints on temperatures to avoid that they assume unac-
ceptable values

These constraints may be interpreted as dynamical constraints due to phys-
ical limitations of the bodies.
A continuous constraint on exogenous input to avoid excessive variations:

This constraint may be interpreted as a design constraint of the form (3c)

4.3 Results

The above dynamics and constraints are also modeled in HYSDEL [14] to ob-
tain an MLD model of the hybrid system in order to compare the performance
achieved by the hybrid solver with the one obtained by employing a pure MILP
approach.

The optimal control problem is defined over horizon of T steps as:

where

Each part of the optimal control problem is managed by either the SAT solver
or the LP solver: the cost function (13a), the inequalities (13b), (13d), and the
additional constraints (13e) are managed by the LP solver, the logic part (13c)
is managed by the SAT solver. Our simulations have been done describing and
solving the problem within the Matlab environment and calling, through MEX
interfaces, respectively, zCHAFF [22] for SAT and CPLEX [23] for LP.

In all our simulations we have adopted depth first search as the node selection
rule, to reduce the amount of memory used during the search.

For the initial condition and for
we have done simulations for different horizons (the obtained optimal solution
is clearly the same both using the SAT-based B&B and the MILP), reported in
Table 1.

We can see that the performance of the SAT-based B&B is always better than
the one obtained by using the commercial MILP solver of CPLEX. In Table 1, we

108 Alberto Bemporad and Nicolò Giorgetti

also compare the performance of a “naive MILP” solver, that is obtained from
the SAT-based B&B code by simply disabling SAT inference. The main reason
is that the SAT B&B algorithm solves a much smaller number of LPs than an
MILP solver. The “cuts” performed by the SAT solver, i.e. the infeasible SAT
problems, obtained at step 3 of the algorithm turn out very useful to exclude
subtrees containing no integer feasible solution, see Figure 3. Moreover, the time
spent for solving the integer feasibility problem at the root node of the search
treee described as SAT problem is much smaller than solving a pure integer
feasibility problem, see Table 2. We can also see from Table 1 that the number
of feasible SAT solved equals the number of LP solved plus one. This one more
SAT is used to complete a feasible solution and it is very useful to further reduce
the computation time.

SAT-Based Branch & Bound 109

Fig. 3. Comparison of the trees generated by the SAT-based and naive MILP algo-
rithms (T=30)

The results were simulated on a PC Pentium IV 1.8 GHz running CPLEX
9.0 and zCHAFF 2003.12.04.

5 Conclusions

In this paper we have proposed a new unifying framework for MIP and CSP
techniques based on the integration of convex programming and SAT solvers for
solving optimal control problems for discrete-time hybrid systems. The approach
consists of a logic-based branch and bound algorithm, whose performance in
terms of computation time can be superior in comparison to pure mixed-integer
programming techniques, as we have illustrated on an example.
Ongoing research is devoted to the improvement of the logic-based method by
including relaxations of the automaton and MS parts of the hybrid system in
the convex programming part, to the investigation of alternative relaxations of
the SAS dynamics that are tighter than the big-M method, and to the use of
SAT solvers for also performing domain reduction (cutting planes).

Acknowledgement

This research was supported by the European Union through project IST-2001-
33520 “CC-Computation and Control”.

110 Alberto Bemporad and Nicolò Giorgetti

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

K. Marriot and P. J. Stuckey. Programming with constraints: an introduction.
MIT Press, 1998.
J. Gu, P. W. Purdom, J. Franco, and B. Wah. Algorithms for the satisfiabil-
ity (SAT) problem: A survey. In DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, number 35, pages 19–151. American Mathematical
Society, 1997.
J. Hooker. Logic-based methods for Optimization. Wiley-Interscience Series, 2000.
A. Bockmayr and T. Kasper. Branch and infer: A unifying framework for integer
and finite domain constraint programming. INFORMS Journal on Computing,
10(3):287–300, Summer 1998.
R. Rodosek, M. Wallace, , and M. Hajian. A new approach to integrating mixed
integer programming and constraint logic programming. Annals of Oper. Res.,
86:63–87, 1997.
F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In J. Jaffar,
editor, Principle and Practice of Constraint Programming, volume 1713 of Lecture
Notes in Computer Science, pages 189–203. Springer Verlag, 2001.
I. Harjunkoski, V. Jain, , and I. E. Grossmann. Hybrid mixed-integer/constraint
logic programming strategies for solving scheduling and combinatorial optimiza-
tion problems. Comp. Chem. Eng., 24:337–343, 2000.
Large scale integrated supply chain optimisation software. A European Union
Funded Project, 2003. http://www.liscos.fc.ul.pt/.
X. Xu and P. J. Antsaklis. An approach to switched systems optimal control based
on parameterization of the switching instants. In Proc. IFAC World Congress,
Barcelona, Spain, 2002.
B. Lincoln and A. Rantzer. Optimizing linear system switching. In Proc. 40th
IEEE Conf. on Decision and Control, pages 2063–2068, 2001.
F. Borrelli, M. Baotic, A. Bemporad, and M. Morari. An efficient algorithm for
computing the state feedback optimal control law for discrete time hybrid systems.
In Proc. American Contr. Conf., Denver, Colorado, 2003.
A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and
constraints. Automatica, 35(3):407–427, March 1999.
A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear optimal controllers for
hybrid systems. In Proc. American Contr. Conf., pages 1190–1194, Chicago, IL,
June 2000.
F. D. Torrisi and A. Bemporad. HYSDEL - A tool for generating computational
hybrid models. IEEE Transactions on Control Systems Technology, 12(2), March
2004.
A. Bemporad and N. Giorgetti. A logic-based hybrid solver for optimal control
of hybrid systems. In Proc. 43th IEEE Conf. On Decision and Control, Maui,
Hawaii, USA, Dec. 2003.
H. P. Williams. Model Building in Mathematical Programming. John Wiley &
Sons, Third Edition, 1993.
G. Ottosson. Integration of Constraint Programming and Integer Programming
for Combinatorial Optimization. PhD thesis, Computing Science Department,
Information Technology, Uppsala University, Sweden, 2000.
E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
S. Boyd and L. Vandenberghe. Convex Optimization. In press., 2003.
http://www.stanford.edu/\char126\relaxboyd/cvxbook.html.

SAT-Based Branch & Bound 111

[20]

[21]

[22]

[23]

J. N. Hooker and M. A. Osorio. Mixed logical/linear programming. Discrete Ap-
plied Mathematics, 96-97(1-3):395–442, 1999.
A. Bemporad. Efficient conversion of mixed logical dynamical systems into an
equivalent piecewise affine form. IEEE Trans. Automatic Control, 2003. In Press.
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineer-
ing an efficient sat solver. In 39th Design Automation Conference, June 2001.
http://www.ee.princeton.edu/\char126\relaxchaff/zchaff.php.
ILOG, Inc. CPLEX 8.1 User Manual Gentilly Cedex, France, 2002.

Solving the Petri Nets Reachability Problem
Using the Logical Abstraction Technique and

Mathematical Programming

Thomas Bourdeaud’huy1, Saïd Hanafi2, and Pascal Yim1

1 L.A.G.I.S., Ecole Centrale de Lille
Cité Scientique, B.P. 48, 59651 Villeneuve d’Ascq Cedex, France

{thomas.bourdeaud_huy,pascal.yim}@ec-lille.f r
2 L.A.M.I.H., Université de Valenciennes

59313 Valenciennes Cedex 9, France
said.hanafi@univ-valenciennes.fr

Abstract. This paper focuses on the resolution of the reachability prob-
lem in Petri nets, using the logical abstraction technique and the mathe-
matical programming paradigm. The proposed approach is based on an
implicit exploration of the Petri net reachability graph. This is done by
constructing a unique sequence of partial steps. This sequence represents
exactly the total behavior of the net. The logical abstraction technique
leads us to solve a constraint satisfaction problem. We also propose dif-
ferent new formulations based on integer and/or binary linear program-
ming. Our models are validated and compared on large data sets, using
Prolog IV and Cplex solvers.

1 Introduction

The operational management of complex systems is characterized, in general,
by the existence of a huge number of solutions. Decision-making processes must
be implemented in order to find the best results. These processes need suit-
able modelling tools offering true practical resolution perspectives. Among them,
Petri nets (PN) provide a simple graphic model taking into account, in the same
formalism, concurrency, parallelism and synchronization.

In this paper, we consider the PN reachability problem. Indeed, it seems
very efficient to model discrete dynamic systems in a flexible way, as can be
seen from the fact that many operations research problems have been defined
using reachability between states (e.g. scheduling problems [13], railway traffic
planning [2] or car-sequencing problems [5]). Furthermore, a large number of
PN analysis problems such as deadlock freeness or liveness, are equivalent to the
reachability problem, or to some of its variants or sub-problems [10].

Various methods have been suggested to handle the PN reachability prob-
lem. In this paper, we study more precisely the PN logical abstraction technique
proposed initially by Benasser [1]. This method consists in developing a unique
sequence of partial steps corresponding to the total behavior of the system. It

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 112–126, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Solving the Petri Nets Reachability Problem 113

was validated on several examples using logical constraint programming tech-
niques. Numerical results using Prolog IV have shown that the method can be
more effective than other generic solvers, and can even compete with heuristics
dedicated to particular classes of problems [1]. However, its resolution perfor-
mance is limited in practice by the incremental search mechanism used: memory
overflows appear soon when the size of the problem grows.

We propose an alternative based on a mathematical programming formula-
tion. We model the problem as an integer linear program, then we solve it with
a branch-and-bound technique, using the Cplex optimization software. We show
that the performances achieved are better than those of the initial technique in
terms of speed and memory.

The paper is organized as follows. In section 2, after the introduction of the
PN terminology, we define the reachability problem to be solved. In section 3,
we recall the notions of partial markings and partial steps used in the Petri nets
logical abstraction technique, and the main results presented in [1]. In the section
4, we use firstly the logical abstraction technique to model the PN reachability
problem as a constraint satisfaction problem. Then we propose new formula-
tions based on integer linear programming. Computational results on a set of
benchmarks are presented and compared in section 5. Finally, as a conclusion,
we describe a few promising research directions.

2 Petri Net Reachability Problem

2.1 Petri Net Structure

A Petri net [16] can be defined as a bipartite directed graph
where:

is a finite set of places, with Places are represented
as circles;

is a finite set of transitions, with Transitions are
represented as rectangles;

is the weighted flow relation representing the arcs. It
associates to each pair (place, transition) or (transition, place) the weight
of the corresponding arc in the net;

associates to each place an integer called the
marking of the place Markings are represented as full disks called tokens
inside the place.

The matrices which are defined below (precondition (Pre: postcon-
dition (Post: and incidence (C: are useful in PN analysis:

An example of Petri net is presented in figure 1.

114 Thomas Bourdeaud’huy et al.

Fig. 1. A Petri net and its Pre, Post and Incidence matrices

2.2 Token Game

In a Petri net, the markings of the places represent the state of the correspond-
ing system at a given moment. This marking can be modified by the firing
of transitions. A transition is fireable for a marking (denoted by
when If this condition is satisfied, a new marking
is produced from the marking (denoted by

The previous equations can be generalized to the firing of fireable transition
sequences. Given a sequence of transitions of (R, we define
the firing count vector associated to where is the number of times
the transition has been fired in Formally, where
represents the characteristic vector of Therefore we have:

The equation (2) is called the fundamental (or state) equation. One will
denote by the set of all sequences of elements of and the set of
all transitions sequences fireable from

2.3 Reachability Problem

The firing rule can be used to define a reachability graph associated with the Petri
net. The reachability graph corresponds to the usual formal representation of the
behavior of the net. The reachability graph of a net R, denoted by is
defined by:

A set of nodes which represent all the markings reachable by any
fireable transition sequence. Formally,
s.t.

Solving the Petri Nets Reachability Problem 115

A set of arcs, where an arc labelled connects nodes representing
the markings and iff

For a given initial marking, the reachability graph and the corre-
sponding reachability set are not necessarily finite. For example, the
set of markings reachable from for the net of the figure 1 is infinite. To
prove this assertion, consider repetitions of the sequence of transitions
which reach the marking The figure 2 presents the beginning of the
construction of the corresponding reachability graph.

A net is called bounded iff The
reachability set of bounded nets is finite (it is clearly limited by

The reachability problem is defined as follows: “ Given a Petri net R with
the initial marking and a final marking decide if is reachable
from (i.e. if ” . To solve this problem, we need to find
a fireable sequence of transitions from such that A “ naive ”
approach consists in exploring the reachability graph exhaustively. It has been
shown that the reachability problem is decidable [11]. However it is EXP–TIME
and EXP–SPACE hard in the general case ([15]).

Practically, it is not possible to explore the reachability graph exhaustively
due to the well known problem of combinatorial explosion; the size of the state-
space may grow exponentially with the size of a system configuration. Many
methods have been studied to limit this explosion. Let us mention the three
main ones. The first manages the combinatorial explosion without modifying
the studied reachability graph. Classical approaches are graph compressions,
particularly bdd encoding [7]) and forward checking [6]. Some other techniques
construct a reduced reachability graph associated to the original, based on some
properties to preserve: symmetries [8], reductions [3] and partial order (covering
step graphs [19], stubborn sets [18]) are the main approaches. The last ones are
based on the state equation: we can distinguish parametrized analysis [14] and
algebraic methods [12].

Fig. 2. Reachability graph for the PN fig. 1 starting

116 Thomas Bourdeaud’huy et al.

In the following sections, we propose new approaches to find fireable transi-
tions sequences leading to a target marking. Our methods are based on the Petri
net logical abstraction and mathematical programming techniques.

3 Petri Net Logical Abstraction Technique

3.1 Steps and Steps Sequences

We generalize the notion of transition firing to step firing. A step corresponds
to the simultaneous firing of several transitions, the same transition can be fired
several times (we call this reentrance). We represent a step as a multi-set over
transitions, i.e. a set which can contain several copies of the same element, for
example which we would note simply

A step where is fireable from a mark-
ing iff The marking must contain enough
marks so that each transition of the step may consume its own tokens. We asso-
ciate a step and a characteristic vector in the classical manner, as a linear
combination with positive coefficients of the characteristic vectors of each tran-
sition, i.e.

Equations (1) and (2) can be generalized to steps and step sequences. In
the following sections, we will use the notations already used previously:

and to indicate that a step or a step
sequence is fireable, and the marking obtained in each case. We denote by the
set of steps built over and the set of steps fireable from

3.2 Partial Steps and Markings

Steps and step sequences capture parallel executions in a unique step fire. In this
section, we present briefly the notions of partial steps and markings introduced
in [1]. These new structures will capture the total behavior of the Petri net in
a unique sequence of partial steps. Informally, intermediate steps and markings
are considered as vectors of variables, which are associated to a formula. Formu-
lae correspond to constraints required for variables so as to guarantee that all
possible instantiations will always represent valid concrete steps and markings.

Let be a first order logic whose domain is we denote respectively
and the set of expressions and formulae of

A partial marking (resp. partial step) is a pair (resp.
where:

(resp. is a mapping associating to each place (resp.
transition) an expression of the language

(resp. is a formula from

We denote and the sets of partial steps and markings, respec-
tively. The firing properties can be extended easily to partial steps and markings.

Solving the Petri Nets Reachability Problem 117

Of course, concrete steps and markings are particular cases of partial ones as-
sociated to the truth formula, so that the extension can be made in a natural
way.

Let be a Petri net, be a partial mark-
ing from and be a partial step from The
partial step is called fireable from (denoted by iff the for-

mula is satisfiable.

Within these conditions, the firing of the partial step creates a new
partial marking (denoted by such that:

3.3 Complete Partial Steps Sequences

With some additional hypothesis on the constraints linked to the partial
steps, we can define a complete sequence of partial steps. This complete partial
steps sequence will be used to find all the concrete steps sequences of a given
size.

Let be a Petri net. Let be a partial
steps sequence from such that Let

be partial markings from s.t. We
note the variables embedded in the partial marking
and those corresponding to for

If a sequence of partial steps SSP satisfies the following conditions, then it
is complete from the marking

The symbols of variables for and are different;

Benasser [1] proved that a complete sequence of partial steps of length
captures exactly all the concrete fireable sequences of steps of the same length.
More exactly:

Any sequence of concrete steps of length corresponds to an instantiation
of a complete sequence of partial steps;
Every possible instantiation of a complete sequence of partial steps corre-
sponds to a valid sequence of concrete steps.

118 Thomas Bourdeaud’huy et al.

On the other hand, from the point of view of the reachable markings, the
partial markings produced by the complete sequence of partial steps represent
all the markings reachable in at most steps and only those markings. It is thus
equivalent to build the reachability graph generated by the fire of steps, or to
build the complete sequence of partial steps of length

4 Resolution of the Reachability Problem

4.1 Formulations

According to the previous section, a complete sequence of partial steps can cap-
ture the behavior of a Petri net from the point of view of step sequences as well
as of reachable markings. One can use this partial sequence to search for con-
crete fireable sequences which can produce a given marking from the initial
marking in order to solve the reachability problem defined as follows:

In fact, it is sufficient to use K partial steps, to replace the formula
concerning the last partial marking by the formula defined by:

and to solve the associated system of equations.

In this way, the exploration of the reachability graph and the resolution of
the corresponding reachability problem are reduced to the resolution of a system
of equations. The interest of this technique is to avoid the exploration of the
branches of the graph which do not lead to the desired final marking.

In table 1, we present in a condensed way two formulations of the reachability
problem. The first column describes the problem in the form of a constraint sat-
isfaction program (CSP). The second column corresponds to a model described
as an integer linear program (ILP). We split the vectors of logical expressions
and the associated formulae: vectors become vectors of variables, and logical for-
mulae are expressed as constraints using variables defined in these vectors. The
corresponding formulations are directly deduced from the equations to
defined previously.

4.2 Constraint Satisfaction Approach

Benasser [1] proposed an algorithm to solve the reachability problem using the
logical abstraction and constraint programming techniques. This algorithm iter-
ates the number of partial steps used, adding one new step at each iteration, in
order to test all the lengths of complete sequences of partial steps lower than K.

Solving the Petri Nets Reachability Problem 119

This algorithm is correct since the sequences found are effectively sequences
of steps which produce the desired final marking. It is also complete since it
can enumerate all the solutions of length smaller than a given integer. In each
iteration, the algorithm uses a mechanism of linear constraints solving. It has
been implemented using the constraint logic programming software Prolog IV.

120 Thomas Bourdeaud’huy et al.

The interest using Prolog IV is that its constraints resolution mechanism
is incremental [9]. Indeed, it is not necessary to redefine in each iteration the
constraints incorporated into the previous stage. The constraints are added in
the constraints solver so that it can reuse the results of the previous constraints
propagation. The search for the concrete results is made at the end by an enu-
meration of all the possible integer solutions.

The corresponding results are presented in the benchmarks of section 5. As all
the lengths of steps are tested in the iterative algorithm, an additional constraint
is introduced to exclude empty steps, so as to reduce the search space.

4.3 Mathematical Programming Approach

It is clear that the complexity of the problem grows as the length of the se-
quence of steps used increase. In this section, we are interested in finding the
smallest value of the parameter from which a solution exists, denoted by
Hence, we define a new reachability problem in the following way:

In this section, we solve the reachability problem using logical abstrac-
tion and mathematical programming techniques based on the ILP formulation
described in the second column of table 1.

To solve it, we operate a jump search. This technique consists of increasing
progressively the size of the sequences tried (not necessarily by one unit) until
we find a solution. The amplitude of jumps is defined so as to find a compromise
between the search space growth and the consecutive combinatorial difficulty.
It depends on the number of variables added for each new step used and thus
directly on the size of the network (N supplementary variables are needed for
each new step used). We do not use a dichotomic search because we do not have
an upper bound on the value.

In contrast with a constraint satisfaction problem, an optimization problem
requires the definition of a criterion to be optimized. For our problem we
studied several types of objectives to minimize, among which:

A function vanishing identically:

The norm of steps

The number of empty steps:

To define we introduce new binary variables where
if the step is empty, and otherwise. Furthermore, we incorporate in the
ILP model the following additional constraints:

Solving the Petri Nets Reachability Problem 121

where B is a sufficiently big number, chosen much bigger than the number
of transitions and tokens in the net.

We propose also a 0 – 1 linear programming (0 – 1LP) formulation of the
reachability problem. The binary variables used in the 0 – 1LP means to “ for-
bid ” transition reentrance. The 0 – 1LP model is obtained from the ILP for-
mulation by replacing the integrality constraints by

Compared to the ILP model, the usefulness of the 0 – 1LP model, is that
we can model a notion of partial order in the steps by linear constraints. The
partial order considered is obtained by integrating into the 0 – 1LP model the
following constraints:

The constraints express that the empty steps have to appear at the end
of the sequence searched.

4.4 Relaxations

In the algorithms described previously to determine we have to check
the feasibility of a family of NP-hard optimization problems. For all the values

we know that the associated problem has no solution. In this section,
we propose to use relaxation techniques in order to decrease the necessary time
needed to conclude to the infeasibility of the system of equations.

Relaxation techniques are useful in the field of combinatorial optimization.
The principle of these techniques is to replace the complex original problem by
one or several simpler ones. A relaxation of an optimization problem P of type
maximisation is an optimization problem R such as:

Each feasible solution for P is also a feasible one for R;
The value of the objective function of any solution of R is greater than or
equal to the value of the objective function of the same solution for P.

One of the useful properties of a relaxation in our context is that if the relaxed
problem does not admit a solution, then the initial problem would not admit it
either. For the values of it can be sufficient to study a relaxed problem
to conclude.

In the literature [17], there are several techniques of relaxation. We distin-
guish:

The LP-relaxation which consists in relaxing integrality constraints;
The Lagrangean relaxation which consists in relaxing a set of constraints
by integrating them via penalties in the objective function. In our context,
we can relax for example the step firability constraints and and/or
reachability ones

122 Thomas Bourdeaud’huy et al.

The surrogate relaxation which consists in replacing a set of constraints by
only one constraint which is a linear combination of the relaxed constraints.
In our problem, we can aggregate the step firability constraints.

We have tested these various relaxations, we discuss about LP-relaxation in
section 5.

5 Computational Results

The numerical experiments were carried out on an Intel Pentium 1Ghz computer
with 512 megabytes of RAM. Constraint satisfaction problems were solved using
the PrologIV software. Mathematical programming models were solved using the
Cplex 7.1 optimization library, the algorithms were coded usingVisual C++ 6.
The CPU times are shown in milliseconds.

We compared the practical efficiency of the proposed approaches for several
classes of problems: the problem studied in [1], the problem of saturation of
a railway point presented in [2], and two classical problems of Petri nets analy-
sis. In this section, we present some preliminary results for the classic problems
illustrated in figure 3: the token ring protocol and the dining philosophers. Addi-
tional results are presented in [4]. The first problem represents a communication
protocol in a closed ring where computers are passing from hand to hand a to-
ken which gives them the right to send data across the network. The second one
represents philosophers around a table, who spend time eating spaghettis and
thinking. To eat, each one needs two forks, but there is only one available for two
people. Each of the entities (computer or philosopher) is provided with a control
place, allowing us to quantify how many times it has been active. The presence
of this unbounded place makes the corresponding reachability graph unbounded
too.

The size of each Petri net depends on the number of entities used, more pre-
cisely, for the philosophers PN, and
for the token ring PN. In the examples below, we vary this parameter from 3
to 7. A second parameter is used to define the benchmarks. It corresponds
to the number of tokens in the control place at the final marking, all the other
places keeping their initial values. Our choice of those classic problems is moti-
vated by the knowledge of the optimal value For the philosophers
PN, is equal to if the number of philosophers is odd, and oth-
erwise. For the token ring PN, is equal to

We present in table 2 the results of a fixed depth search for examples of
increasing difficulty. They were obtained using the formulations described in
sections 4.2 and 4.3. The words ho and tms stand for heap overflow and too
many scols, meaning a memory overflow from PrologIV.

Firstly we should remark that the respective efficiency of the two approaches
considered depends on the family of problems. No approach dominates the other
one, each has its own skill domain.

Solving the Petri Nets Reachability Problem 123

Fig. 3. The PN used for the numerical experiments

Concerning the dining philosophers class, mathematical programming dom-
inates easily. The Prolog memory overflows for small values of whileCplex
does not seem affected by the increasing difficulty. Even for values where Prolog
does not explode, experimental results shows that it is more than 50 times slower
thanCplex.

On the opposite, the token ring problems family is a class for which con-
straint programming technique seem well suited. Computed experiments show
that Prolog gives the results approximately 30 times faster than Cplex. Unfor-
tunately, memory issues eventually surface again.

A reasonable explanation for those particular behaviors remains is the par-
ticular structure of the reachability graphs corresponding to each family. Indeed,
the dining philosophers example is characterized by the presence of deadlocks
whereas on the other hand, the token ring PN is characterized by a weak behav-
ioral parallelism. Each of those specificities benefits from a different approach.

These experiments allow us to compare the first two objective functions
and One should remarks that gives the better results: ILP using the
first formulation terminate about 2.5 times faster. Again, a simple explanation
can be advanced: since vanishes identically, the optimization ends as soon
as a solution has been found, without needing supplementary iterations.

The same case studies have been used to compare the performances of itera-
tive searches for We present in table 3 the corresponding results. As above,
constraint programming techniques were better when dealing with the token ring
protocol. Thus, we present only the experiments regarding dining philosophers,
for which we can compare the influence of relaxations. The amplitude used is 1,
the objective function is

124 Thomas Bourdeaud’huy et al.

Surprisingly, relaxations do not bring interesting improvements. Further at-
tention helps to understand this phenomenon. Relaxed solutions occur very early
in every experiment, typically for sequences of less than 5 steps. The profit that
can be made by using continuous techniques instead of integer ones is mini-
mal for those lengths. Sometimes, it has even the inverse effect since the use of
relaxation simply adds one supplementary iteration.

6 Conclusion and Future Work

In this paper, we have presented two approaches for solving the Petri nets reach-
ability problem using Petri nets logical abstraction. Our method is based on an
implicit exploration of the PN reachability graph by constructing a single se-
quence of partial steps. This sequence represents exactly the behavior of the
net. The first formulation reformulates the problem as a constraint satisfaction
program. It has been used to enumerate all the reachability sequences of fixed
length leading to a final marking. We have adapted it in order to use mathemati-
cal programming. This technique allowed us to search for the shortest reachability

Solving the Petri Nets Reachability Problem 125

sequence leading to the final marking. These formulations have been validated
and compared on large data sets, using Prolog IV and Cplex solvers.

Our results have shown that the two approaches are complementary. For
some classes of problems (e.g. token ring), constraint programming presents
a better efficiency because it is able to solve large problems (3000 variables,
7000 constraints) in a very short time. For other classes of problems (e.g. din-
ing philosophers), mathematical programming is the only way to cope with the
complexity of the system without producing memory overflows.

Preliminary techniques aiming at the improvement of the efficiency of ILP-
based explorations, such as relaxations, have not revealed significant advantages
for the considered examples. We propose to improve them in order to handle
pathological cases like the token ring with performances as close as possible to
those of constraint programming. For this purpose, we are currently following
three promising directions:

To test the use of binary variables coupled to an appropriate objective func-
tion like
To refine our relaxations in order to use the preceding results in the next
stage, just like CSP incremental features;
To decompose the problem exploiting the state equation. This last technique
could also help us to develop enumeration techniques.

References

[1]

[2]

A. Benasser. L’accessibilité dans les réseaux de Petri : une approche basée sur la
programmation par contraintes. PhD thesis, Université des sciences et technologies
de Lille, 2000.
A. Benasser and P. Yim. Railway traffic planning with petri nets and constraint
programming. JESA, 33(8-9):959–975, 1999.

126 Thomas Bourdeaud’huy et al.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

G. Berthelot. Transformations and decompositions of nets. In Brauer, W., Reisig,
W., and Rozenberg, G., editors, Advances in Petri Nets 1986 Part I, Proceedings
of an Advanced Course, volume 254, pages 359–376, 1986.
T. Bourdeaud’huy, S. Hanafi, and P. Yim. Résolution du problème d’accessibilité
dans les réseaux de Petri par l’abstraction logique et la programmation
mathématique. Technical report, L. A. G. I. S., Ecole Centrale de Lille, 2004.
C. Briand. Solving the car-sequencing problem using petri nets. In International
Conference on Industrial Engineering and Production Management, volume 1,
pages 543–551, 1999.
Jean-CLaude Fernandez, Claude Jard, Thierry Jéron, and Laurent Mounier. “on
the fly” verification of finite transition systems. Formal Methods in System Design,
1992.
J. Gunnarsson. Symbolic tools for verification of large scale DEDS. In Proc. IEEE
Int. Conf. on Systems, Man, and Cybernetics (SMC’98), 11-14 October 1998, San
Diego, CA, pages 722–727, 1998.
P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. Towards reachability trees
for high-level petri nets. Lecture Notes in Computer Science: Advances in Petri
Nets 1984, 188:215–233, 1985.
J. Jaffar, Michaylov, P. Stuckey, and R. Yap. The clp(r) language and system.
ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.
R. M. Keller. Formal verification of parallel programs. Comm. of the ACM,
19(7):371–384, 1976.
S. R. Kosaraju. Decidability and reachability in vector addition systems. In Proc.
of the 14th Annual ACM Symp. on Theory of Computing, pages 267–281, 1982.
K. Lautenbach. Linear algebraic techniques for place/transition nets. In Advances
in Petri Nets 1986, Part I, Proceedings of an Advanced Course, volume 254, pages
142–167, 1987.
D.Y. Lee and F. DiCesare. Scheduling flexible manufacturing systems using
petri nets and heuristic search. IEEE Transactions on Robotics and Automation,
10(2):123–132, 1994.
M. Lindqvist. Parameterized reachability trees for predicate/transition nets. Lec-
ture Notes in Computer Science; Advances in Petri Nets 1993, 674:301–324, 1993.
Richard Lipton. The reachability problem requires exponential space. Technical
report, Computer Science Dept., Yale University, 1976.
T. Murata. Petri nets : properties, analysis ans applications. In proceedings of the
IEEE, volume 77, pages 541–580, 1989.
R. G. Parker and R. L. Rardin. Discrete Optimization. Academic Press, 1988.
Antti Valmari. Stubborn sets for reduced state space generation. Lecture Notes
in Computer Science; Advances in Petri Nets 1990, 483:491–515, 1991.
F. Vernadat, P. Azéma, and P. Michel. Covering steps graphs. In 17 th Int. Conf
on Application and Theory of Petri Nets 96, 1996.

Generating Benders Cuts for a General Class
of Integer Programming Problems

Yingyi Chu and Quanshi Xia

IC-Parc
Imperial College London, London SW7 2AZ, UK

{yyc,q.xia}@imperial.ac.uk

Abstract. This paper proposes a method of generating valid integer
Benders cuts for a general class of integer programming problems. A
generic valid Benders cut in disjunctive form is presented first, as a basis
for the subsequent derivations of simple valid cuts. Under a qualification
condition, a simple valid Benders cut in linear form can be identified.
A cut generation problem is formulated to elicit it. The simple valid
Benders cut is further generalized to a minimally relaxed Benders cut,
based on which a complete Benders decomposition algorithm is given,
and its finite convergency to optimality is proved. The proposed algo-
rithm provides a way of applying the Benders decomposition strategy to
solve integer programs. The computational results show that using the
Benders algorithm for integer programs to exploit the problem structures
can reduce the solving time more and more as the problem size increases.

1 Introduction

Benders decomposition is a strategy for solving large-scale optimization prob-
lems [1]. The variables of the problem are partitioned into two sets: master
problem variables and subproblem variables. The Benders algorithm iteratively
solves a master problem, which assigns tentative values for the master problem
variables, and a subproblem, obtained by fixing the master problem variables to
the tentative values. In every iteration, the subproblem solution provides certain
information on the assignment of master problem variables. Such information is
expressed as a Benders cut, cutting off some assignments that are not accept-
able. The Benders cut is then added to the master problem, narrowing down the
search space of master problem variables and eventually leading to optimality.
On one hand, Benders method is employed to exploit the problem structure:
the problem is decomposed into a series of independent smaller subproblems,
reducing the complexity of solving it [2]. On the other hand, Benders method
opens a dimension for ‘hybrid algorithms’ [3, 4] where the master problem and
the subproblems can be solved with different methods.

The generation of Benders cuts is the core of Benders decomposition algo-
rithm. Indeed, valid Benders cuts guarantee the convergence of the iterations to
the optimal solution of the original problem, and also the cuts determine how
fast the algorithm converges.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 127–141, 2004.
© Springer-Verlag Berlin Heidelberg 2004

128 Yingyi Chu and Quanshi Xia

The classic Benders decomposition algorithm [5] was proposed for linear pro-
gramming problems, the cut generation of which is based on the strong duality
property of linear programming [2]. Geoffrion has extended it to a larger class
of mathematical programming problems [6].

For integer programming, however, it is difficult to generate valid integer
Benders cut, due to the duality gap of integer programming in subproblems.
One possible way is to use the no-good cut to exclude only the current tentative
assignment of master problem variables that is unacceptable. Such no-good Ben-
ders cuts will result in an enumerative search and thus a slow convergence. For
some specific problems, better Benders cuts can be obtained [7]. For example, in
the machine scheduling application, the cut that limits the incompatible jobs in
the same machine is generally stronger. For more general integer programming,
logic-based Benders decomposition [8] was proposed to generate valid integer
Benders cuts, but these cuts contain a large number of disjunctions [9], the
linearization of which leads to huge cuts with many auxiliary variables, compli-
cating the master problem significantly.

This paper proposes a new method of generating valid Benders cuts for a class
of integer programs, in which the objective function only contains the master
problem variables.

As a foundation of our derivation, a generic valid integer Benders cut is
firstly presented. However it is difficult to use due to its exponential size and
nonlinearity. Instead, we can pick only one linear inequality from the disjunction
of the generic cut, while preserving the validity. A qualification condition is then
given, with which such a simple valid cut can be identified. A cut generation
problem is formulated to determine the simple linear valid cut.

However, such an integer Benders cut is not always available. The minimally
relaxed cut is then proposed as a generalization of it, obtainable in all cases. The
simple integer Benders cut is just a special case of the minimally relaxed cut with
‘zero’ relaxation. Based on this, a complete Benders decomposition algorithm is
presented, and its finite convergency to optimality is proved.

The paper is organized as follows. Section 2 introduces the integer programs
under consideration and the principle of the Benders decomposition algorithm.
Section 3 derives the integer Benders cut. Section 4 generalizes to the minimally
relaxed integer Benders cut. Section 5 presents the complete Benders decompo-
sition algorithm that could be used in practice. Section 6 gives computational
results. Section 7 concludes the paper. The appendix gives the proofs of all the
lemmas.

2 Preliminaries

2.1 Integer Programs

The programs we consider in the paper are written as the following form (Such
programs arise from our study on a path generation application in network traffic
engineering [10]):

Generating Benders Cuts 129

The problem variables are partitioned into two vectors (master problem vari-
ables) and (subproblem variables), and the objective function only contains
the master problem variables.

By the use of Benders decomposition, the problem P is decomposed into
the master problem (MP) that solves only the variables and the subproblem

that solves only the variables, by fixing the variables to the master
problem solution, denoted by

where the Benders cuts in MP are gradually added during the iterations. Note
that the subproblem is a feasibility problem with a dummy objective.

2.2 Principle of Benders Decomposition Algorithm

The Benders decomposition algorithm iteratively solves the master problem and
the subproblem. In each iteration the master problem sets a tenta-
tive value for the master problem variables with which the subproblem

is formed and solved. Using the subproblem solution, a valid Ben-
ders cut over the variables is constructed and added to the master problem in
the next iteration The Benders cut added in every iteration cuts off
some infeasible assignments, thus the search space for the variables is gradually
narrowed down as the algorithm proceeds, leading to optimality.

Algorithm 1. Benders Decomposition Algorithm

1.

2.

Initialization. Construct the initial master problem without any Ben-
ders cut. Set
Iteration.
(a)

(b)

(c)

Solve If it is feasible, obtain the optimal solution and the
optimal objective Otherwise, the original problem is infeasible; set

and go to exit.
Construct the subproblem If the subproblem is feasible, then
optimality is found; obtain the optimal solution and go to exit.
Cut Generation Procedure. Generate a valid integer Benders cut and add
it to the master problem to construct Set and go
back to step 2.

130 Yingyi Chu and Quanshi Xia

3. Exit. Return the current as the optimal objective. If then
the problem P is infeasible. If not, return the current as the
optimal solution of problem P.

The Cut Generation Procedure 2(c) is not specified. This is the key step for
the algorithm, which must be selected carefully so that the algorithm eventually
converges to the optimality of the original problem in finite iterations.

2.3 Always Feasible Subproblem

The subproblem can be reformulated to an equivalent one that is always
feasible:

which simply introduces slack variables to the constraints of Obvi-
ously, is feasible iff has 0 optimal value. In the Algorithm 1, once
the objective of equals 0 during iteration, the algorithm terminates (at
step and the optimal solution is found.

Dual values are very useful in the cut generation for linear programming. For
integer programming, however, we need to introduce the fixed subproblems and
their duals. A fixed subproblem is constructed from any feasible assignment
of subproblem It just constrains the variables to be equal to a given
feasible

The dual of fixed subproblem is:

The optimal solution of depends on the value of (while the feasible
region of it does not). Let denote the corresponding optimal solution of

Since any value is feasible for possible
combinations), there are possible fixed subproblems, each with its dual.

Given the fixed subproblem is itself a linear program. Therefore,
strong duality holds for and Furthermore, if is an
optimal solution of then and have the
same optimal value.

Generating Benders Cuts 131

Relations between the optimal primal and dual solutions of and
can be established via the complementary condition, that is, the

Karush-Kuhn-Tucker (KKT) [2] constraints:

together with the primal and dual constraints, (1) and (2).
Consider the complementary condition constraints. First, with the equation

of (1) and the equation of (2), variables and can be
replaced by and Secondly, the equation of (3) means that

Putting this into the equation of (3),
we get The complementary condition constraints
can then be simplified to:

Finally, we can show the redundancy of in the following lemma
(Note that the proofs of all the lemmas are given in the appendix):

Lemma 1. The constraint is redundant in the presence of the
constraints:

Thus, the complementary condition constraints are finally simplified to (4).

3 Integer Benders Cut Generation

3.1 Generic Valid Integer Benders Cut

In general, the Benders cut is a logic expression over the variables, generated
using the information from the subproblem solution. The valid Benders cut must
guarantee that Algorithm 1 finitely converges to the optimal solution. We define
the valid Benders cut for integer programming.

Definition 1. In a certain iteration of the Benders algorithm, a valid Benders
cut is a logic expression over the master problem variables that satisfies:

Condition 1. if the current master problem solution is infeasible, then the cut
must exclude at least

Condition 2. any feasible assignment of variables must satisfy the cut.

132 Yingyi Chu and Quanshi Xia

Condition 1 guarantees finite convergence since has a finite domain. Condition
2 guarantees optimality since the cut never cuts off feasible solutions.

Lemma 2. If a valid Benders cut is generated in every iteration (at step 2(c)),
then Algorithm 1 finitely converges to the optimality of the original program P.

Using the solutions of all N fixed subproblems (denoted by
a generic integer Benders cut can be obtained as the disjunction of N

linear inequalities:

where are the list of all the possible values (i.e. an enumeration
of For each are the corresponding optimal dual solutions
from

Similar to the Benders cut for linear programming, each linear inequality in
the disjunction follows the expression of the objective function of
However, for integer programming, where a duality gap exists, we use a large
number of dual fixed subproblem solutions, instead of a single dual subproblem
solution for linear programming where no duality gap exists.

Lemma 3. The generic integer Benders cut (5) is a valid cut.

The generic cut (5) is valid, but it has a nonlinear (disjunctive) form and
intrinsically contains all possible combinations. Although it has theoretical
value, it is difficult to use it directly in practical algorithms.

3.2 Integer Benders Cut

Under certain conditions, one of the linear inequalities from the disjunction (5)
can still be a valid cut. In such cases the valid integer Benders cut becomes
a simple linear inequality and the nonlinear disjunction disappears. We give
the following sufficient condition under which such a simple valid cut can be
identified:

Theorem 1. If there exists a solution such that and the
corresponding dual satisfy

then the linear inequality

is a valid integer Benders cut.

Generating Benders Cuts 133

Proof. (for the valid cut condition 1) If is infeasible for the subproblem,
then has positive objective value. Thus, any possible

has a positive objective value, and so do all There-
fore, all linear inequalities in (5) are violated by In particular,

is violated by that is, the cut (7) excludes the infeasible
(for the valid cut condition 2) Let be any feasible solution. There must exist
a corresponding such that and has 0 objective
value as Since the feasible region of all are
identical and independent of the values of and the values of which are
the optimal solution for are also a feasible solution for
Therefore,

From the condition (6), we have Therefore,

which means that the feasible is not cut off by (7).

If one can find an such that the condition (6) holds, then the single lin-
ear inequality from the disjunction (5) that corresponds to is a valid integer
Benders cut by itself. However, the condition (6) involves not only the selected

but also all other possible assignments of making it difficult to express (6)
as a simple constraint. But the sufficient condition (6) can be converted to an
equivalent sign condition.

Lemma 4. Inequalities (6) are satisfied iff the following holds:

The above sign condition can be enforced as the constraints:

Unlike the condition (6), the sign condition (9) only involves the selected itself
and the corresponding

3.3 Integer Benders Cut Generation

The integer Benders cut generation problem is to find a such that the sign
condition (9) is satisfied. We formulate a Cut Generation Program (CGP) to
elicit it.

The sign condition relates an assignment that determines and
the optimal dual solution from The constraints between them

134 Yingyi Chu and Quanshi Xia

are established by (4). Therefore, the program CGP is composed of constraints
(4), the sign condition (9) and a dummy objective function.

Note that in CGP (together with is a variable. The CGP solves for
a value for which, together with the dual values, satisfies the sign condition.
If such a solution is found, a corresponding Benders cut is immediately obtained
as (7).

Because all the bilinear terms in the CGP can be linearized
by introducing the variables as:

Thus, CGP can be in practice solved with MIP solvers such as XPRESS [12].
Note that the CGP is not necessarily feasible due to the enforcement of the

additional sign condition constraints (9), and hence the integer Benders cut (7)
is not always available in each iteration. Therefore, we need to generalize the cut
in order to give a complete Benders decomposition Algorithm 1.

4 Relaxed Integer Benders Cut

4.1 Relaxation

When the sign condition (8) does not hold, one cannot directly use an inequality
from (5) as the valid cut. However, we can still select one inequality but relax it
to some extent so that the sign condition is satisfied. This provides a generalized
way of constructing a valid Benders cut.

In fact, any inequality from the disjunction (5):

can be relaxed by inverting the values for those elements that violate the sign
condition (8) as follows:

In such way and satisfy the sign condition, and the relaxed cut is given by:

Generating Benders Cuts 135

Lemma 5. The relaxed cut (12) satisfies the valid cut condition 2, and the
relaxation gap from (11) to (12) is

Note that (12) does not necessarily satisfy the valid cut condition 1, that is,
it may not cut off the infeasible in the current iteration due to the relaxation.
In this case, however, it can be easily remedied by adding a no-good cut that
excludes only one point (the infeasible

4.2 Relaxed Cut Generation

Since any inequality from the disjunction (5) can produce a relaxed cut, one can
even avoid solving the CGP during iterations. Only the subproblem is
solved to find a solution and is solved to find the duals and
Then a relaxed cut (12), derived from this can be generated. To ensure that
the valid cut condition 1 is met, the value of is checked against the relaxed cut
(12). If it does violate (12), then (12) itself is a valid Benders cut that satisfies
valid cut condition 1 and 2. If not, the conjunction of (12) and (13) constitutes
a valid Benders cut.

The advantage of such a way of cut generation is its simplicity, since no CGP
is involved. The disadvantage is that the selection of the inequality to be relaxed
is rather arbitrary, and the generated cut can be loose. In particular, cut (7),
which is a tight cut that needs no relaxation, may exist but not be found.

Therefore it is desirable to find a minimally relaxed cut, that is, its corre-
sponding relaxation gap (as is given in Lemma 5) is made as small as possible,
and thus the cut is as tight as possible. This is indeed a generalization of the
valid Benders cut (7), which is just the special case when the minimum relaxation
needed is zero.

The minimally relaxed cut can be generated by solving a Relaxed Cut Gen-
eration Program constructed by introducing slack variables to the
sign condition constraints of CGP.

As the program CGP, after simple linearization this program is solvable in
practice with MIP solvers.

136 Yingyi Chu and Quanshi Xia

Lemma 6. If the optimal solution of is and the optimal objec-
tive value is then:

Since the right hand side of the above equation is just the relaxation gap and
it is minimized, the derived cut (12) is a minimally relaxed cut. In particular, if
the optimal objective value of is 0, then all the sign condition constraints
are satisfied, and no relaxation is necessary. In this case the minimally relaxed
cut is reduced to the basic valid Benders cut (7).

In practice, the is solved in every iteration (provided the algorithm
does not terminate from step 2(a) or 2(b) before the cut generation). Its optimal
solution gives a minimally relaxed cut as (12). According to Lemma 5, cut (12)
satisfies the valid cut condition 2. If the optimal value is greater than 0, then the
current (infeasible) assignment of master problem variables is checked against
the cut. If the cut is violated, then (12) by itself satisfies both the valid cut
conditions. If not, the conjunction of (12) and the no-good cut (13) constitutes
a valid Benders cut.

5 Complete Algorithm

Based on the proposed integer Benders cut, the unspecified cut generation step
2(c) in Algorithm 1 can now be given as:

Procedure 1. Cut Generation Procedure (step 2(c) of Algorithm 1)
Construct the cut generation program . Solve it to obtain the optimal
solution and its optimal objective value Generate the
minimally relaxed cut:

There are three cases:

A.

B.

C.

if then the above cut is reduced to (7), which is the
valid Benders cut.
if and the current violates the above cut, then this cut is the
valid Benders cut by itself.
if and the current satisfies the above cut, then this cut, in
conjunction with the no-good cut (13), is the valid Benders cut.

Add the generated Benders cut to the master problem to construct Set
and go back to step 2 of Algorithm 1.

Replacing step 2(c) of Algorithm 1 with the above procedure, we have a complete
Benders decomposition algorithm.

Generating Benders Cuts 137

Theorem 2. The Benders Decomposition Algorithm 1, with its step 2(c) in-
stantiated by the Cut Generation Procedure 1, terminates in finite steps and
returns the optimal solution of the original program P.

The proof is trivial according to Lemma 2, since in all the three cases the cut
being generated satisfies the valid cut condition 1 and 2.

6 Computational Experiments

This section presents computational results of using Benders decomposition with
the proposed integer cuts in integer programming problems. The algorithm is
implemented using the ECLiPSe [11] platform. The test problems have bordered
block structure in their coefficient matrices, so that the Benders algorithm can
decompose the subproblem. The coefficients are generated randomly, and 20
cases are computed for each problem size configuration. The minimally relaxed
cut derived from the (14) of Sect. 4.2 is used in the tests.

Table 1 summarizes the computational results for different problem sizes.
The number of constraints is fixed to 300 and the number of blocks in the
subproblem matrix is fixed to 10. Thus, the subproblem is decomposed into 10
smaller independent problems, each of which can generate a Benders cut in every
iteration. We vary the number of master problem variables (MPV) and that of
subproblem variables (SPV). For each problem size configuration, the average
and maximum number of iterations (#Iter: avr, max) of the 20 test instances,
and the average number of no-good cuts that have to be added (#NG) are
recorded. Also the average and maximum solving time (Sol.Time: avr, max) of
the 20 test instances, and the average percentages of solving time spent in the
solution of master problem, subproblem and relaxed cut generation program
(MP%, SP%, CGP%), are recorded. All the solving times are in seconds. For

138 Yingyi Chu and Quanshi Xia

comparison purpose, every problem is also directly solved with MIP solver. The
last two columns summarize the average MIP solving time (MIP.Time), and in
how many cases (out of the total 20 cases) the Benders algorithm outperforms
the directly solving (#WIN). The external solver used in both the decomposition
algorithm and the direct solving is XPRESS 14.21 [12].

Table 1 shows that as the problem size increases, the number of iterations
and the solving time both increase. But throughout the test instances, no-good
cuts being added are rare, which means that the generated cuts are usually
tight enough to exclude the infeasible assignment in each iteration. It is also
notable that a significant portion of the total solving time is spent in solving the
relaxed cut generation program. However, in spite of the time spent in the cut
generation, the Benders algorithm still wins over directly solving the problem
in more cases when the problem size becomes larger. This shows the benefits
of using Benders decomposition for integer programs to exploit the problem
structures, that is, a problem is decomposed into a master problem and a series
of smaller independent subproblems, reducing the complexity of solving it.

We observed that the decomposition algorithm is especially better for the
hard instances. For those problems that take long time by direct solving, the
Benders decomposition with integer cuts usually achieves high speedup in terms
of solving time. Table 2 shows the comparison. Five hardest instances (in terms
of direct MIP solving time) for each fixed subproblem size are recorded.

We also observed that, for all the test instances that take more than 200
seconds by directly solving, the decomposition algorithm invariably consumes
less solving time than the direct solving.

Generating Benders Cuts 139

7 Conclusions

This paper studied the generation of valid Benders cuts for a general class of
integer programming problems. The valid Benders cuts in the form of linear
inequalities were derived, based on which a complete Benders algorithm was
presented. The (relaxed) cut generation program was proposed to determine the
valid cuts in practice. In theoretical aspect, the paper extended the application
scope of Benders decomposition method to integer programming problems. In
computational experiments, the results showed the benefits of using Benders
algorithm with the proposed cut for integer programs.

The master problem discussed in the paper need not be restricted to linear
integer programs. In fact, it can be any formulation and can be solved with
any proper algorithm (such as Constraint Programming). More specifically, the
linear objective function in problem P (i.e. can be replaced with a general
function The first constraint in P (i.e. can be replaced with
a general constraint (even need not be arithmetic). Since the generalized
objective and constraint are only handled in the master problem, they do not
affect the theory and method proposed in the paper. Furthermore, the second
constraint of P can be generalized to that is, the part that
relates to the master problem variables can be any function on (i.e.
in place of the linear one, Accordingly, all the occurrences of in the
derivations are changed to and the derivations remain valid. As the master
problem is generalized as above, different modelling and solution methods could
be combined via the method of Benders decomposition to cooperatively solve
a given optimization problem.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Flippo, O. E., Rinnoy Can, A. H. G.: Decomposition in General Mathematical Pro-
gramming. Math. Programming. 60 (1993) 361–382
Lasdon, L. S.: Optimization Theory for Large Systems. MacMillan, New York.
(1970)
Schimpf, J., Wallace, M.: Finding the Right Hybrid Algorithm: A Combinatorial
Meta-Problem. Annals of Mathematics and Artificial Intelligence. 34 (2002) 259–
269
Eremin, A., Wallace, M.: Hybrid Benders Decomposition Algorithms in Constraint
Logic Programming. In T. Walsh, editor, Principles and Practice of Constraint
Programming - CP 2001, Springer. (2001) 1–15
Benders, J. F.: Partitioning Procedures for Solving Mixed-Variables Programming
Problems. Numerische Mathematik. 4 (1962) 238–252
Geoffrion, A.M.: Generalised Benders Decomposition. Journal of Optimization
Theory and Application. 10 (1972) 237–260
Jain, V., Grossmann, I.E.: Algorithms for Hybrid MILP/CP Models for a Class
of Optimisation Problems. INFORMS Journal on Computing. 13 (2001) 258–276
Hooker, J. N., Ottosson, G.: Logic-Based Benders Decomposition. Math. Program-
ming. 96 (2003) 33–60

140 Yingyi Chu and Quanshi Xia

[9]

[10]

[11]
[12]

Eremin, A.: Using Dual Values to Integrate Row and Column Generation into
Constraint Logic Programming. PhD Thesis. Imperial College London. (2003)
Xia, Q., Simonis, H., Chu, Y.: Generating Primary/Secondary Path by Ben-
ders Decomposition Technique. IC-Parc Internal report, Imperial College London.
(2003)
Imperial College London: ECLiPSe 5.6 User’s Manual. (2003)
Dash Inc: Dash XPRESS 14.21 User’s Manual. (2003)

Appendix: Proofs of Lemmas

Lemma 1:

Proof. It suffices to show that any feasible solution of (4) automatically satisfies
Suppose constitute a feasible solution of (4).

The first constraint of (4) implies

The second constraint of (4) implies

Consider two cases on the non-negative value of
Case 1: Then the constraint is trivially satisfied.
Case 2: Then we have (otherwise, Then from (16)

which contradicts (15)). Since
the constraint is again satisfied.

Lemma 2:

Proof. In every iteration, if is feasible then the algorithm terminates from
step Otherwise a valid cut is added. Due to the valid cut condition 1, the
feasible space of must be smaller than that of at least reduced
by one point. Since the feasible space of master problem is finite domain, the
algorithm terminates finitely. Due to the valid cut condition 2, the feasible space
of is always a relaxation of that of the original program P. If the algorithm
terminates from then is infeasible, and so is the original program P.
If the algorithm terminates from step the current optimal solution of
is proved to be feasible for the subproblem and thus feasible for P. Since

Lemma 3:

Proof. For the valid cut condition 1, if is infeasible for the subproblem, then
has positive objective value. Thus any possible has positive

objective value, and so do all Therefore all inequalities in cut (5)
are violated, that is, cut (5) excludes For the valid cut condition 2, consider
any feasible There must exist one value such that has 0 objective
value, and so do its dual that is, is satisfied,
which means the disjunctive cut (5) does not cut off the feasible

is a relaxation of P. this solution is optimal for P.

Generating Benders Cuts 141

Lemma 4:

Proof. For necessity, we show that if (8) is violated, then (6) must be violated.
Suppose the element and (The case where the second condition
of (8) is violated can be proved similarly). Then Consider another
assignment with the element and with all other elements the same
as It is easy to see that which means that (6) is violated.

For sufficiency, we suppose (8) is satisfied for every element. Then the in-
equality holds no matter is 0 or 1. Therefore, for every element of
any we have which implies that (6) holds.

Lemma 5:

Proof. We first prove that the relaxed cut satisfies the valid cut condition 2.
Following the same reasoning as the proof of Theorem 1, we have:

According to the construction of relaxed cut, we have for any binary
value In particular, Therefore,

which means that the feasible is not cut off by (12).
The relaxation gap is directly obtained by subtracting the left hand side

of (12) from that of (11). Because the relaxation gap

Lemma 6:

Proof. Consider the program Since the constraint
in (14) becomes and becomes

For each element and its corresponding there are three cases.
Case 1: and satisfy the sign condition. Then the optimal slack variable
and are 0, and Therefore,
Case 2: and violates the sign condition as which implies that

and The optimal slack variable and equals 0.
Since the sign condition is violated, the value of will be changed from 1 to 0

to construct the relaxed cut, and thus equals Therefore,

Case 3: and violates the sign condition as which implies
that and The optimal slack variable and equals
0. Since the sign condition is violated, the value of will be changed from 0
to 1 to construct the relaxed cut, and thus equals
Therefore,

In all cases the equation holds. Therefore,

A Constraint Programming Model
for Tail Assignment

Mattias Grönkvist

Carmen Systems AB
Odinsgatan 9, S-411 03 Göteborg, Sweden

mattias@carmensystems.com

Abstract. We describe a Constraint Programming model for the Tail
Assignment problem in airline planning. Previous solution methods for
this problem aim at optimality rather than obtaining a solution quickly,
which is often a drawback in practice, where quickly obtaining solutions
can be very important. We have developed constraints that use strong
reachability propagation and tunneling to a column generation pricing
problem to form a complete and flexible constraint model for Tail As-
signment which is able to quickly find solutions. Results on real-world
instances from a medium size airline are presented.

1 Introduction

Tail Assignment is a problem from the airline planning field. The problem con-
sists in creating individual aircraft routes for a set of flights and ground activities,
subject to a number of operational rules. The problem lies in the boundary region
between planning and operations control, and it is therefore crucial to quickly be
able to provide working solutions. In a longer perspective, e.g. when integrating
the aircraft routes with crew planning, optimization also becomes important. For
example, minimizing the number of aircraft swaps by flying crews can greatly
improve the robustness of the complete solution in light of disruptions. Here, we
will only be interested in finding a solution, ignoring the cost aspect altogether.

We have previously shown [11] how constraint programming can be used to
improve the performance of a mathematical programming model for the Tail
Assignment problem. One problem with the mathematical programming model,
which is based on column generation, is that it is not directly suited to finding
solutions quickly. It rather puts optimization in focus, and is therefore very suit-
able indeed for the longer-term planning, but less suitable when a quick solution
is desired. It is possible to obtain initial solutions more quickly with this model
by integrating it with constraint programming, and forcing the mathematical
model to work very aggressively.

However, it would be desirable to have a method that is more aimed at find-
ing solutions quickly. Such a method could be used alone, but also to provide
the initial solution to the column generator for further improvement, and thus
make it possible to first provide an initial solutions very quickly, and then more

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 142–156, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Constraint Programming Model for Tail Assignment 143

optimized solutions after some more time. Finding a solution to Tail Assignment
is a very hard problem, and practice has shown that greedy construction meth-
ods have problems finding solutions. We have therefore focused on constraint
programming as a means to find initial solutions quickly. We have already had
a partial constraint model before [14], to use for integration with the column
generator. But this model is not able to handle some of the more complicated
constraints, and can therefore not be used to find proper solutions. Attempts
have been made to complete the model [6], but unfortunately the results were
not that successful.

In this article we describe the development of new constraints and ordering
heuristics to build a complete constraint model for Tail Assignment. Section 2
we start by introducing Tail Assignment, and in Section 3 we describe the basic
constraint model, and some simple extensions of it. Sections 4, 5 and 6 describe
the new constraints and ordering heuristics introduced to complete and solve the
model, and Section 7 show computational results on real-world Tail Assignment
instances. In Section 8 we conclude.

2 Tail Assignment

Tail Assignment is the problem of deciding which individual aircraft (identified
by its tail number) should cover which flight. Each aircraft is thus assigned
a route consisting of a sequence of flights, and possibly other activities such
as maintenance, to perform. Tail Assignment deals with individual constraints,
flights which are fixed in time, as well as individual rules for each tail. The
planning period is typically one month. The purpose is to really create a solution
that is possible to operate, satisfying all rules and regulations. The most basic
rules are rules which only depend on two flights, so-called connection-based rules.
For example, there must be a certain minimum buffer time between a landing
and the next take-off.

Another important set of constraints are the flight restriction rules, which
forbid certain aircraft to operate certain flights. There can be many reasons for
the restriction – there can be a curfew for the arrival airport and some aircraft,
because the aircraft violates noise or environmental restrictions. But there can
also be more down-to-earth reasons, like the aircraft not having the required in-
flight entertainment system or extra fuel tanks required for a long flight. Either
way, the result is that an aircraft is restricted from operating a flight.

Finally, there are the maintenance rules. Aviation authorities require that
all aircraft undergo various types of maintenance activities regularly. There are
many maintenance types, depending om aircraft type, registration country, and
airline. Typically, the rules specify that aircraft must undergo maintenance ev-
ery X hours, or every Y landings. Airlines often also require that their aircraft
return to a maintenance base frequently, even if no maintenance is done, to in-
crease robustness in case disruptions occur. These rules typically specify that
aircraft must come back to a maintenance base every Z days.

144 Mattias Grönkvist

The normal representation of the Tail Assignment problem is in terms of
a flight network. In the flight network, each node represents a flight, or some
other activity such as a preassigned maintenance activity for specific aircraft, and
each arc represents a connection between two flights or activities. For example,
if operating flight followed by flight is allowed according to connection
rules, the connection from to is considered legal, and the flight network will
contain an arc between nodes and Since we are solving a dated problem,
where flights are fixed in time, there are carry-in activities in the beginning of
the period representing the last flights operated by each aircraft in the previous
planning period, and the network is acyclic. The goal is now to find paths (routes)
through the network for all aircraft, starting at the carry-in activities, such that
all flight nodes are covered exactly once, and all rules are satisfied.

Variations of the Tail Assignment problem exist, for example the Aircraft
Routing [9] and Aircraft Rotation [1, 5] Problems. [11] contains a more thor-
ough review of the literature about Tail Assignment and similar problems. Prob-
lems similar to Tail Assignment have been subject to constraint programming
research, for example the Crew Scheduling Problem [7, 12], and the Vehicle
Routing Problem [2, 16].

3 The Basic Model

This model was first described by Kilborn in [14]. The model has three sets of
variables. Let us call the set of flights F and the set of aircraft A. First, there
are successor variables for all flights containing the possible successors
(legal connections) of the flight which we denote by Since the rules related
to flight-to-flight connections are already modeled in the successor variables,
no such constraints need to be explicitly added to the model. Then there are also
vehicle variables for all flights, initially containing the aircraft in A that are
allowed to operate the flight, These variables model preassigned activities
as well as curfew rules.

Only two constraints are present. Firstly, since all flights must have unique
successors to form disjoint routes through the network, all successor variables
must take unique values. Therefore an all_different [15] constraint over all
successors is added. Flight nodes which can represent route endings reconnect
back to the carry-in activities. Secondly, to maintain consistency between the
successor and vehicle variables, a special tunneling constraint is added. Ob-
serve that once completely instantiated, the successor and vehicle variables
both describe the solution completely. The successor variables obviously give
a direct route for an aircraft, and the vehicle variables specify which flights are
assigned to a certain aircraft. Since the flights are fixed in time, simply sorting
all flights assigned to an aircraft gives the route for this aircraft. The tunneling
constraint is implemented as a single constraint that is propagated each time
a variable is fixed, and takes appropriate action to keep the variables consistent:

A Constraint Programming Model for Tail Assignment 145

The constraints are thus not posted all at once, but rather on demand when-
ever a vehicle or successor variable is fixed. It could have been possible to
propagate each time a variable is changed, rather than fixed, but for simplicity
and effectiveness we only propagate when variables are fixed. Observe that while
the expressions above state the necessary actions to keep the variable consistent,
other things can be enforced as well, to accelerate the propagation. For example,
it is possible to directly remove from the domains of overlapping flights when
vehicle[i] == j. The constraints will make these assignments impossible, but
from a performance point of view it is often beneficial to remove them directly.
The element(b,A,c) constraint forces the bth value in vector A to take value c,
i.e. A[b] = c.

3.1 Ordering Heuristics

To make this model behave properly is to crucial to define good variable and
value ordering heuristics. Only successor variables are instantiated. The reason
is that these variables are propagated much more than the others, thanks to
the strong consistency algorithm for all_different due to Régin [15]. The
successor variables are fixed in order of increasing domain size, i.e. using the
well-known first-fail ordering, with the exception of preassigned flights, which
are fixed first. Values are chosen in increasing connection time order, except
for long connections. If a connection is long, for example over night, we try to
connect to the next preassigned activity first, rather than the next possible flight.

The result is a model that captures all Tail Assignment constraints except
the maintenance rules. The model works very well for problems without many
curfew rules, showing almost linear time behavior for problems of increasing
size. For more results we refer the reader to [14]. Unfortunately the model does
not work well at all in the presence of many curfew rules. The reason is simply
that the propagation for these constraints, which are embedded in the vehicle
variables, is very weak. Simply put, we cannot get the partial routes we create
to fit together, because the aircraft are incompatible with them.

3.2 Improvements of the Basic Model

It is fairly straightforward to improve the basic model above with a few more
variables and constraints. Observe that the improvements in this section are
only added to improve propagation, and as an effect the solution speed, of the
basic model. Improvements to make the model more complete will be the topic
of Sections 4 and 5.

Firstly, we can observe that since flights are fixed in time, flights which over-
lap in time can never be operated by the same aircraft. When we fix the vehicle
of some flight we can therefore remove the fixed vehicle from the domains of all
overlapping flights, as mentioned above. Also, we can add all_different con-
straints over all flights which pass a certain point in time. Observe that adding
an all_different for all flights overlapping another flight is not a good idea, as
an aircraft operating a flight overlapping only the beginning of the flight might

146 Mattias Grönkvist

be able to also operate a flight that overlaps only the end. The problem with
adding all_different constraints is to decide where to add them. Since each
all_different is only valid for one specific time, there is an infinite number
of such constraints that could be added. Our strategy is to initially add one
all_different for the start time of each flight which has some restriction, i.e.
which cannot be operated by all aircraft:

Secondly, we add predecessor variables, representing the possible predeces-
sor flights of a flight. Considering predecessors explicitly has the benefit of
finding flights that only has one predecessor, but whose predecessor has multi-
ple successors. To keep the successor and predecessor variables consistent,
we add an inverse constraint. The inverse(f,f’) constraint, which has been
implemented as a single constraint, simply ensures that f exists as a predecessor
to f’ if and only if f’ exists as a successor to f:

We also include treatment for predecessor variables in the tunneling con-
straint, to keep it consistent with vehicle variables. These simple improvements
have very positive effects on the model, decreasing the number of backtracks used
and increasing the propagation.

4 Handling the Flight Restriction Rules

As we have already discussed, the flight restriction rules are in fact modeled
already in the basic model, but when several restrictions are present, the perfor-
mance of the search deteriorates. Since the propagation for the vehicle variables
is poor, we end up generating partial routes, which do not fit together because
of the restrictions. The effect is excessive backtracking, so-called thrashing. It is
quite obvious that one way to deal with this problem is improved propagation
for the vehicle variables. The introduction of all_different constraints over
vehicle variables overlapping certain times in the previous section is an attempt
at improving this, but it is not enough.

Instead, the key is to switch from the local ‘successor-view’ of the problem
to a more route-oriented view. As our ultimate goal is to create routes for all
aircraft, it seems like a good idea to introduce this point of view into the model.
Since we want all flights to be operated by exactly one aircraft, we need to make
sure at all times that each flight is contained in at least one route which satisfies
the flight restrictions, for one of the aircraft. We do this by keeping track of the
number of successor and predecessor flights that can be reached by each aircraft.
That a flight can be reached by aircraft means that a route from the carry-in
of to the flight exists. A flight can be reached in the forward direction, via

A Constraint Programming Model for Tail Assignment 147

Fig. 1. An example of forward and backward labels with only two vehicles. Labels
depending on flights not in the figure have been replaced by X

successors, and in the backward direction, via predecessors. The number of
reachable neighbors is relatively cheap to update, and gives the information that
we need. If no successor of a flight can be reached by aircraft flight itself
can obviously not be reached, and thus not operated, by aircraft Similarly, if
no predecessor can be reached by neither can But if at least one predecessor
and one successor can be reached by and then can be operated by

For each flight, we maintain two labels for each aircraft. One label, called the
forward label, counts how many predecessors have a non-zero forward label for
the aircraft, i.e. how many predecessors can be reached, in the forward direction,
by the aircraft. The other (the backward label) counts how many successor flights
have a non-zero backward label for the vehicle. Let us call the forward label of
flight for aircraft and the backward label Let us further denote the
set of carry-in flight by and let be 1 if is the carry-in flight of aircraft
and 0 otherwise. Now, the labels have the following relationship:

In the example in Figure 1, all of the predecessors have non-zero forward
labels for vehicle 1, and the forward label is thus 4. Since none of the successors
have non-zero backward labels for vehicle 2, the backward label is 0, and so on.
As a consequence, the flight cannot be covered by vehicle 2.

148 Mattias Grönkvist

4.1 Maintaining the Labels During Search

To initially set the forward and backward labels to their correct values is simple:
Just set the forward labels by counting labels for predecessors, starting with
the carry-ins and ending with the flight with the latest departure time. The
backward labels are set in the opposite direction. The carry-in activities always
have one forward and one backward label, and aircraft restricted from flying
a flight of course always get forward and backward labels 0. More complicated
is maintaining the correct labels once successor, predecessor and vehicle
domains shrink, and in case backtracking occurs, increases in size.

Let us first assume that is removed from successor(f). In case is
a carry-in activity, nothing happens, as we want to maintain one single label on
carry-ins. If not, apply the following algorithm (in C-style pseudocode):

A Constraint Programming Model for Tail Assignment 149

What happens is that we first decrease the forward label on flight by 1
if both and have non-zero forward labels, as one of the routes to flight
is now removed. If this makes the forward label go to 0, this will potentially
affect all successors of and we must call forward_remove_aircraft(). This
function iteratively decreases forward labels as long as some label becomes 0
when decreased. The use of a queue makes sure that we treat the labels in
the proper order, i.e. we treat all predecessors of before we treat Upon
termination of successor_removal, all forward labels are correct with respect
to the variables. Backward labels are treated analogously.

Now instead imagine that aircraft is removed from flight The algorithm
for this case is shown below, and should be self-explanatory in light of the dis-
cussion above.

Value insertions are treated much the same way as the removals, except that
instead of updating forward/backward when the label becomes 0, we update
when the label is increased from 0 to 1. We call this propagation algorithm the
reachability algorithm.

Looking at the complexity of the propagation algorithm, the worst case is
when we are forced to update all labels for all flights each time a value is removed
or inserted. If we have aircraft, flights and each flight has successors in
average, the worst-case complexity of each successor removal is thus
which is not that good. However, in practice we will not experience this behavior
at all. The reason is that in the initial stage of the search, most flights can be
reached via several routes, so most labels will have high values. Labels will thus
seldom become 0, which means we will only have to update one or a few flights
at each removal. As the problem gets more fixed, more labels take values close
to 0. But on the other hand, each flight does not have as many successors at
this stage, which means we will still not have to update that many labels. So in
practice, this propagation algorithm works well, as Section 7 will show.

It should be observed that this propagation algorithm could probably have
been stated in terms of simpler constraints rather than as a ‘global’ propaga-
tion algorithm. The propagation algorithm does not provide extra propagation
because of the fact that it is implemented as a global algorithm. The decision to
model it this way is rather motivated by performance. Also, the algorithm has
been implemented as a constraint in the sense that it reacts to domain changes
as a constraint, but it really only consists of the propagation algorithm.

150 Mattias Grönkvist

5 Handling the Maintenance Rules

As discussed in Section 2, maintenance constraints are expressed as ‘each aircraft
must return to a maintenance base every X flying hours/Y landings/Z days for
maintenance taking T hours’. Observe that several such rules can apply simul-
taneously, as there are several types of maintenance, which might take different
time to perform, and might not all be possible to perform at the same base.
Here, we will only require that the aircraft are provided maintenance opportu-
nities with the proper intervals, and we will assume that whenever there is an
opportunity the aircraft will be maintained. In practice an aircraft returning to
base e.g. 3 nights in a row might not be (fully) maintained every night. But as
long as there are enough opportunities, it will be possible to maintain all aircraft
enough.

Before describing the constraints to handle the maintenance rules, let us
briefly review the column generation approach to Tail Assignment [10], as we
will make use of it later. Column generation is a well-known mathematical pro-
gramming technique [3, 7, 8, 13], used e.g. when the number of columns (vari-
ables) for a linear program are too many to enumerate. Instead, columns are
generated dynamically, using dual cost information, until no more improving
column exist. In the case of the Tail Assignment model, the columns are routes
for individual aircraft. We have thus previously developed a module that given
a set of dual costs can find a set1 of minimum cost routes, satisfying all flight
restriction and maintenance rules. In this module, which is called the column
generation pricer, the maintenance rules are modeled as resource constraints,
making the pricing problem a resource-constrained shortest path problem. The
implementation follows roughly that described in [4].

Now, since we already have an implementation of the maintenance rules in
the pricer module, and would like to avoid implementing the same thing twice, it
seems reasonable to try to re-use the pricer for the constraint model as well. The
pricer implementation is highly tuned and general, as it is user-customizable
via the domain-specific Rave language [10], making it possible to model any
kind of rule that can be modeled as a resource constraint, not only maintenance
rules. Completely re-implementing this functionality in the CP model would be
cumbersome indeed. However, as the pricer is labeling-based [4], it can easily
allows us to check feasibility by checking whether

1.
2.

Each flight is reachable, i.e. there is at least one route arriving at each flight
There exists at least one legal route per aircraft

Unfortunately, this check is incomplete, in the sense that a partially fixed net-
work can pass the feasibility check even if it is infeasible, e.g. if a flight is the
only possible successor of several flights. However, for a fully fixed network it is
complete, so we will never allow solutions violating the maintenance constraints.

1 The least cost column is found, along with a predefined number of other low-cost
columns, but not necessarily the least cost ones.

A Constraint Programming Model for Tail Assignment 151

By creating a constraint that tunnels the changes in the variable domains to
the internal structures used in the pricer, and does the above feasibility check, we
have created a constraint that makes sure that a solution must be maintenance
feasible. The constraint (which we call the pricing constraint) is not very strong
in terms of propagation, but fortunately experience tells us that the maintenance
rules are seldom very tight, so this is not be a huge problem in practice. The
only propagation done by the constraint is that in case no route for a certain
aircraft exists to a flight, this aircraft is removed from the vehicle domain.

One major concern with this constraint is that fact that it is fairly expensive
to check. One of the drawbacks of using code ‘unrelated’ to the rest of our
CP model is that it is difficult to customize it perfectly to our needs. We can
customize it to a large extent by deciding on the number of labels, number of
generated routes etc, but doing the check still takes too long for it to be done
at every domain change. Instead, we have to settle for checking/propagating
the constraint with a certain interval during the search, and at the very end.
However, as the next section will show, this fits rather well into the full picture.

6 Ordering Heuristics

We have now described all necessary constraints to form the Tail Assignment
model. However, as Section 7 will show, this is not enough unless well-working
variable and value ordering heuristics are used. Unfortunately, the old variable
ordering heuristic of instantiating preassigned activities first, and then fix ac-
cording to increasing successor domain size, does not work well at all. Instead,
we must again resort to routes. Instead of fixing single variables based on their
local properties, e.g. domain size, we create an entire route, which we know
satisfies all flight restrictions and maintenance rules, and let the route set the
order in which the successor variables are instantiated. Once we have fixed all
successors in a route, we create another route, and so on, until all aircraft have
routes.

This goes hand-in-hand with the feasibility check performed in the pricing
constraint, as this provides access to the necessary routes. When checking feasi-
bility using the pricer, we do a labeling run which results in routes for all aircraft,
if such exist. This suggests the following variable ordering strategy:

Whenever all successors in a previous route have been fixed
Check feasibility of the pricing constraint
If infeasible, backtrack
If feasible, take one of the generated routes as the next route to fix

One question is which route to choose to fix. Our strategy is to fix the aircraft
in order of decreasing number of flight restrictions. That is, to avoid them getting
trapped when most of the network is fixed, we start by fixing routes for the
aircraft which have the largest number of flight restrictions, i.e. the aircraft
for which where is 1 if flight can be operated by aircraft and 0
otherwise, is minimal. Also, to avoid the last few aircraft we fix from getting

152 Mattias Grönkvist

stuck because there are no maintenance opportunities left, we want to use as
few maintenance opportunities as possible each time we fix a route. This can
be at least approximately achieved by setting the dual costs properly for the
pricing constraint. Remember that the pricer finds a set of least-cost routes with
respect to the provided duals2. Since long, typically overnight, connections are
used to perform maintenance, we want to penalize the use of such connections.
This is done by putting a large negative dual cost on using long connections.
We therefore set the dual cost of all flights to the negation of the sum of the
connection times to successors.

Finally, to speed up the search, in case we need to backtrack, we backtrack
the entire route we are currently fixing instead of backtracking a single step.
This makes the whole search incomplete, but is only done to avoid excessive
backtracking, and excessive checking of the pricing constraint. If we find a con-
flict half-way through fixing a route, backtracking by single steps until we find
a feasible node could potentially force us to check the pricing constraint far too
many times to be efficient. So instead we backtrack all the way to the beginning
of the route, where we know the pricing constraint has been checked. To avoid
the same route from being re-generated, we add a penalty to the ‘dual cost’ of
all flights we attempt to fix.

7 Computational Results

We have implemented the constraints and ordering heuristics as described above,
and in this section we will present computational results for a set of real-world
test instances. The instances come from different planning months at the same
medium size airline. The aircraft included are a mix of M82, M83 and M88
aircraft. The underlying CSP solver is one designed in-house.

Table 1 presents the instances, and shows the running times of a fixing heuris-
tic method [10] based on column generation, which was the best known method
for quickly producing solutions prior to this work, and the constraint model. It
should be observed that the performance of the fixing heuristic also relies heavily
on constraint propagation, as it uses the basic CP model to check that fixes pro-
posed by the fixing heuristic do not lead to conflicts. The pure column generation
fixing heuristic is not included in the comparison, as it has the property that it
can leave flights unassigned. This is even more likely to occur if the algorithm
is tuned so as to compete with the running times of the approaches presented
here. Comparing running times of a heuristic that can leave flight unassigned
with heuristics that cannot do this simply does not make sense, and hence this
comparison was skipped.

The running times in the table, which are all rounded to even integer seconds,
include problem setup and some preprocessing and bound-calculation steps as
presented in [10]. The number of flights reported is the number of activities given
to the constraint model. Due to the preprocessing, each activity might consist

 In fact with respect to the reduced cost. But if real costs are set to 0, the optimization
will only be over the duals.

2

A Constraint Programming Model for Tail Assignment 153

of several atomic flights (legs). The actual number of flight legs is therefore
roughly twice the number reported in table 1. The ‘Rules’ column gives the
number of maintenance rules that are present for each instance. For all instances,
a rule specifying that the aircraft should return to base with regular intervals
in present. For some instances, so-called ‘A-check’ and lubrication maintenance
rules are also present. It is clear that the constraint model produces solutions
significantly faster than the old method. Roughly speaking, the constraint model
is about twice as fast.

Table 2 shows the benefit of the reachability propagation. The table shows
the behavior of the basic model compared to the basic model with reachability
propagation. When the reachability propagation is included, the variable order
is changed by simply taking the first non-fixed flight from the most restricted
aircraft first. We thus do not generate and fix entire routes, but still use the
reachability labels to help guide the search. Entries marked with a star means
that no solution was found within the predefined limits, which were set to max-
imum 1800 seconds or as many backtracks as there are flights in the problem.
The measured times are in these cases the times to reach this many backtracks.
The reachability propagation clearly helps, as without it only two instances can
be solved within the limits, while when it is added, all but two instances are
solved.

Table 3 shows the importance of the ordering heuristics. The first columns
show the full model using the old ordering heuristics, i.e. first-fail and short-
connections-first, while the last columns show the full model with the route-fixing
ordering. When using the old heuristics, we have applied the pricing constraint

154 Mattias Grönkvist

propagation every #flights/#aircraft search nodes, to approximately apply is
once for every fixed aircraft. This was to get a fair comparison with the route-
fixing odering, which applies the propagation exactly once per route. It is clear
from the table that the old ordering heuristics do not work well at all, even in
the presence of reachability propagation and the pricing constraint. No solution
is found, and for all problems the excessive thrashing gives rise to very long
running times.

8 Conclusions

We have presented a full constraint model for the Tail Assignment problem.
The model includes a reachability algorithm that provides efficient propaga-
tion required to capture the flight restriction rules. The model also uses the
pricing module from a column generation approach to Tail Assignment [10] to
model maintenance rules, which would otherwise require substantial effort to
re-implement. It has previously been shown how constraint programming tech-
niques can improve the performance of column generation for this problem [11],
and this model, by re-using a column generation pricing problem to check fea-
sibility and improve ordering heuristics, shows that the reverse is also possible.
Further integration between the approaches will likely benefit a lot from the
results presented here, and will be researched further. We also conjecture that
adding future constraints to a Tail Assignment model will often be easier for
the constraint model than for the full column generation model, making it an
excellent tool for experimentation.

A Constraint Programming Model for Tail Assignment 155

One potential drawback of the maintenance rule handling is that the propa-
gation is not that strong. However, since these constraints are seldom extremely
tight in practice, the limited propagation is enough to achieve reasonable perfor-
mance. And the fact that the handling of these rules has not been re-implemented
in the constraint model is immensely important, since the described implemen-
tation is part of a production system.

It is possible that the reachability algorithm, as well as the idea of re-using
a column generartion pricing problem, could be of use also for other types of
applications, similar to Tail Assignment. Finally, it should be mentioned again
that this model is not designed to work alone to solve the Tail Assignment
problem. It is primarily designed to quickly produce a feasible initial solution
that can then be improved, given a cost function, using a combination of column
generation and constraint propagation.

References

[1]

[2]

[3]

L. W. Clarke, E. L. Johnson, G. L. Nemhauser, and Z. Zhu. The Aircraft Rotation
Problem. Annals of Operations Research, 69:33–46, 1997.
B. de Backer, V. Furnon, P. Kilby, P. Prosser, and P. Shaw. Solving Vehicle
Routing Problems using Constraint Programming and Metaheuristics. Journal of
Heuristics, 1(16), 1997.
G. Desaulniers, J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Daily
Aircraft Routing and Scheduling. Management Science, 43(6):841–855, July 1997.

156 Mattias Grönkvist

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Desrochers and F. Soumis. A generalized permanent labelling algorithm for
the shortest path problem with time windows. INFOR, 26(3):191–212, 1988.
M. Elf, M. Jünger, and V. Kaibel. Rotation Planning for the Continental Service
of a European Airline. In W. Jager and H.-J. Krebs, editors, Mathematics – Key
Technologies for the Future. Joint Projects between Universities and Industry,
pages 675–689. Springer Verlag, 2003.
G. Erling and D. Rosin. Tail Assignment with Maintenance Restrictions - A Con-
straint Programming Approach. Master’s thesis, Chalmers University of Technol-
ogy, Gothenburg, Sweden, 2002.
T. Fahle, U. Junker, S. Karisch, N. Kohl, M. Sellmann, and B. Vaaben. Con-
straint Programming Based Column Generation for Crew Assignment. Journal
of Heuristics, 8(1):59–81, 2002.
M. Gamache, F. Soumis, G. Marquis, and J. Desrosiers. A Column Genera-
tion Approach for Large-Scale Aircrew Rostering Problems. Operations Research,
47(2) :247–263, April-March 1999.
R. Gopalan and K. T. Talluri. The Aircraft Maintenance Routing Problem. Op-
erations Research, 46(2):260–271, March-April 1998.
M. Grönkvist. Tail Assignment – A Combined Column Generation and Con-
straint Programming Approach. Lic. Thesis, Chalmers University of Technology,
Gothenburg, Sweden, 2003.
M. Grönkvist. Using Constraint Propagation to Accelerate Column Generation
in Aircraft Scheduling. In Proceedings of CPAIOR’03, May 2003.
C. Halatsis, P. Stamatopoulos, I. Karali, T. Bitsikas, G. Fessakis, A. Schizas,
S. Sfakianakis, C. Fouskakis, T. Koukoumpetsos, and D. Papageorgiou. Crew
Scheduling Based on Constraint Programming: The PARACHUTE Experience.
In In Proceedings of the 3rd Hellenic-European Conference on Mathematics and
Informatics HERMIS ’96, pages 424–431, 1996.
C. Hjorring and J. Hansen. Column generation with a rule modelling language for
airline crew pairing. In Proceedings of the 34th Annual Conference of the Opera-
tional Research Society of New Zealand, pages 133–142, Hamilton, New Zealand,
December 1999.
E. Kilborn. Aircraft Scheduling and Operation – a Constraint Programming Ap-
proach. Master’s thesis, Chalmers University of Technology, Gothenburg, Sweden,
2000.
J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Pro-
ceedings of AAAI-94, pages 362–367, 1994.
L.-M. Rousseau, M. Gendreau, and G. Pesant. Using Constraint-Based Operators
to Solve the Vehicle Routing Problem with Time Windows. Journal of Heuristics,
8(1):43–58, 2002.

Super Solutions in Constraint Programming

Emmanuel Hebrard, Brahim Hnich, and Toby Walsh*

Cork Constraint Computation Centre, University College Cork
{e.hebrard,brahim,tw}@4c.ucc.ie

Abstract. To improve solution robustness, we introduce the concept
of super solutions to constraint programming. An solution
is one in which if variables lose their values, the solution can be re-
paired by assigning these variables with a new values and at most
other variables. Super solutions are generalization of supermodels in
propositional satisfiability. We focus in this paper on (l,0)-super solu-
tions, where if one variable loses its value, we can find another solution
by re-assigning this variable with a new value. To find super solutions, we
explore methods based both on reformulation and on search. Our refor-
mulation methods transform the constraint satisfaction problem so that
the only solutions are super solutions. Our search methods are based on
a notion of super consistency. Experiments show that super MAC, a novel
search-based method shows considerable promise. When super solutions
do not exist, we show how to find the most robust solution. Finally,
we extend our approach from robust solutions of constraint satisfaction
problems to constraint optimization problems.

1 Introduction

Where changes to a solution introduce additional expenses or reorganization,
solution robustness is a valuable property. A robust solution is not sensitive
to small changes. For example, a robust schedule will not collapse immediately
when one job takes slightly longer to execute than planned. The schedule should
change locally and in small proportions, and the overall makespan should change
little if at all. To improve solution robustness, we introduce the concept of su-
per solutions to constraint programming (CP). An solution is one in
which if the values assigned to variables are no longer available, the solution
can be repaired by assigning these variables with new values and at most
other variables. An solution is a generalization of both fault tolerant
solutions in CP [18] and supermodels in propositional satisfiability (SAT) [12].
We show that finding solutions for any fixed is NP-Complete in
general. Super solutions are computed offline and do not require knowledge about
the likely changes. A super solution guarantees the existence of a small set of
repairs when the future changes in a small way.

In this paper, we focus on the algorithmic aspects of finding (1,0)-super solu-
tions, which are the same as fault tolerant solutions [18]. A (1,0)-super solution

* All authors are supported by the Science Foundation Ireland and an ILOG grant.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 157–172, 2004.
© Springer-Verlag Berlin Heidelberg 2004

158 Emmanuel Hebrard et al.

is a solution where if one variable loses its value, we can find another solution by
re-assigning this variable with a new value, and no other changes are required
for the other variables. We explore methods based both on reformulation and on
search to find (1,0)-super solutions. Our reformulation methods transform the
constraint satisfaction problem so that the only solutions are super solutions. We
review two reformulation techniques presented in [18], and introduce a new one,
which we call the cross-domain reformulation. Our search methods are based
on notions of super consistency. We propose two new search algorithms that
extend the maintaining arc consistency algorithm (MAC [9, 8]). We empirically
compare the different methods and observe that one of them, super MAC shows
considerable promise. When super solutions do not exist, we show how to find
the most robust solution closest to a super solution. We propose a super Branch
& Bound algorithm that finds the most robust solution, i.e., a solution with the
maximum number of repairable variables. Finally, we extend our approach from
robust solutions of constraint satisfaction problems to constraint optimization
problems. We show how an optimization problem becomes a multi-criterion op-
timization problem, where we optimize the number of repairable variables and
the objective function.

2 Super Solutions

Supermodels were introduced in [12] as a way to measure solution robustness.
An of a SAT problem is a model (a satisfying assignment)
with the additional property that if we modify the values taken by the variables
in a set of size at most (breakage variables), another model can be obtained
by flipping the values of the variables in a disjoint set of size at most (repair
variables).

There are a number of ways we could generalize the definition of supermodels
from SAT to CP as variables now can have more than two values. A break could
be either “losing” the current assignment for a variable and then freely choosing
an alternative value, or replacing the current assignment with some other value.
Since the latter is stronger and potentially less useful, we propose the following
definition.

Definition 1. A solution to a CSP is solution iff the loss of the
values of at most a variables can be repaired by assigning other values to these
variables, and modifying the assignment of at most other variables.

Example 1. Let us consider the following CSP: X, Y, Z {1,2,3}
Z. The solutions to this CSP are shown in Figure 1, along with the subsets of
the solutions that are (1, 1)-super solutions and (1,0)-super solutions.

The solution is not a (1,0)-super solution. If X loses the value 1,
we cannot find a repair value for X that is consistent with Y and Z since
neither nor are solutions. Also, solution is not a (1,1)-
super solution since when X loses the value 1, we cannot repair it by changing the
value assigned to at most one other variable, i.e., there exists no repair solution

Super Solutions in Constraint Programming 159

Fig. 1. solutions, (1, 1)-super solutions, and (1, 0)-super solutions for the

when X breaks since none of and
is a solution. On the other hand, is a (1,0)-super solution since

when X breaks we have the repair solution when Y breaks we have the
repair solution and when Z breaks we have the repair solution
We therefore have a theoretical basis to prefer the solution to
as the former is more robust.

A number of properties follow immediately from the definition. For example,
a solution is a solution if and
Deciding if a SAT problem has an is NP-complete [12]. It is
not difficult to show that deciding if a CSP has an solution is also
NP-complete, even when restricted to binary constraints.

Theorem 1. Deciding if a CSP has an solution is NP-complete for
any fixed

Proof. To see it is in NP, we need a polynomial witness that can be checked in
polynomial time. This is simply an assignment which satisfies the constraints,
and, for each of the (which is polynomial for fixed possible breaks, the

repair values.
To show completeness, we show how to map a binary CSP onto a new binary

problem in which the original has a solution iff the new problem has an
solution. Our reduction constructs a CSP which, if it has any solution, has

an solution for any The problem will even have a
solution. It is possible to show that if we have a solution then

we also have an solution for any However, we will argue
directly that the original CSP has a solution iff the constructed problem has an

solution.
We duplicate the domains of each of the variables, and extend the constraints

so that the behave equivalently on the new values. For example, suppose we have
a constraint C(X, Y) which is only satisfied by Then we extend the
constraint so that is satisfied by just and
where and are the duplicated values for and Clearly, this binary
CSP has a solution iff the original problem also has. In addition, any break of
variables can be repaired by replacing the corresponding values with their
primed values (or unpriming them if they are already primed) as well as any
other values.

160 Emmanuel Hebrard et al.

A necessary but not sufficient condition to find supermodels in SAT or su-
per solutions in CSPs is the absence of backbone variables. A backbone variable
is a variable that takes the same value in all solutions. As a backbone variable
has no alternative, a SAT or CSP problem with a backbone variable cannot have
any or solutions.

Another important factor that influences the existence of super solutions is
the way the problem is modeled. For instance, the direct encoding into SAT
(i.e., one Boolean variable for each pair variable-value in the CSP [15]) of the
problem in Example 1 has no (1,0)-supermodels, even though the original CSP
had a (1,0)-super solution. Moreover, the meaning of a super solution depends
on the model. For example, if a variable is a job and a value is a machine,
the loss of a value may mean that the machine has now broken. On the other
hand, if a variable is a machine and the value is a job, the loss of a value may
mean that the job is now not ready to start. The CP framework gives us more
freedom than SAT to choose what variables and values stand for, and therefore
to the meaning of a super solution. For the rest of the paper, we just focus on
(1,0)-super solutions and refer to them as super solutions when it is convenient.

3 Finding (1,0)-Super Solutions via Reformulation

Fault tolerant solutions [18] are the same as (1,0)-super solutions. The first
reformulation approach in [18] allows only fault tolerant solutions, but not all of
them (see [3] for a counter example). The second approach in [18] duplicates the
variables. The duplicate variables have the same domain as the original variables,
and are linked by the same constraints. A not equals constraint is also posted
between each original variable and its duplicate. The assignment to the original
variables is a super solution, where the repair for each variable is given by its
duplicate. We refer to the reformulation of a CSP P with this encoding as P+P.

We now present a third and new reformulation approach. Let be
part of a (1,0)-super solution on two variables X and Y. If is lost, then there
must be a value that can repair that is is a compatible
tuple. Symmetrically, there must exists such that is allowed. Now
consider the following subproblem involving two variables:

Since it satisfies the criteria above, is a super solution whilst any
other tuple is not. One may try to prune the values and as they do not
participate in any super solution. However and are essential for providing
support to and On the other hand, and are simply not supported
and can thus be pruned. So, we cannot simply reason about extending partial
instantiations of values, unless we keep the information about the values that can
be used as repair. So, let us instead think of the domain of the variables as pairs

Super Solutions in Constraint Programming 161

of values the first element corresponding to the super value (which is part
of a super solution), the second corresponding to the repair value (which can
repair the former). Our cross-domain reformulation exploits this. We reformulate
a CSP such that any domain becomes its own cross-product
(less the doubletons),i.e. becomes The
constraints are built as follows. Two pairs and are compatible iff

and are compatible (the solution must be consistent at the first place);
and are compatible (in case of a break involving can be a repair);
and are compatible (in case of a break involving can be a repair).

The new domain and of variable X and Y are:

The only one allowed tuple is We refer to the cross-domain
reformulation of a problem P as P×P.

4 Finding (1, 0)-Super Solutions via Search

We first introduce the notion of super consistency for binary constraints, and
then use it to build some new search algorithms.

4.1 Super Consistency

Backtrack-based search algorithms like MAC use local consistency to detect un-
satisfiable subproblems. Local consistency can also be used to develop efficient
algorithms for finding super solutions. We shall introduce three ways of incorpo-
rating arc consistency (AC) into a search algorithm for seeking super solutions.

AC+ is a naive approach that augments the traditional AC by a further con-
dition, achieving a very low level of filtering.

AC(P×P) maintains AC on the cross-domain reformulation of P. This method
allows us to infer all that can be inferred locally, just as AC does in a regular
CSP [5]. However, this comes at a high polynomial cost.

Super AC gives less inference than AC(P×P), but is a good tradeoff between
the amount of pruning and complexity.

Informally, the consistent closure of a CSP contains only partial solutions
for a given level of locality. However, the situation with super solutions is more
complex because values that do not get used in any local super solution can still
be essential as a repair and thus cannot be simply pruned.

162 Emmanuel Hebrard et al.

AC+. If S is a super solution, then for every variable, at least two values are
consistent with all the others values of S. Consequently, being arc consistent
and having non-singleton domains is a necessary condition for the existence of
super solution. AC+ is therefore defined as follows: for a CSP

Whilst AC+ is usually too weak to give
good results, it is the basis for an algorithm for the associated optimization
problem (discussed in section 5).

AC (P×P). AC on P×P is the tightest local domain filtering possible. Note
that P×P also has the same constraint graph topology as the original problem P.
As a corollary, if the constraint graph of P is a tree, we can use AC on P×P to
find (1,0)-super solutions in polynomial time.

Super AC. AC on PxP allows us to infer all that can be inferred locally.
In other words, we will prune any value in a cross-domain that is not locally
consistent. However, this comes at high cost. Maintaining AC will be
where is the initial domain size. We therefore propose an alternative that does
less inference, but at just cost.

The main reason for the high cost is the size of the cross-domains. A cross-
domain is quadratic in the size of the original domain since it explicitly represents
the repair value for each super value. Here we will simulate much of the inference
performed by super consistency, but will only look at one value at a time, and
not pairs. We will divide the domain of the variable into two separate sets of
domains:

The “super domain” (SD) where only super values are represented;
The “repair domain” (RD) where repair values are stored.

We propose the following definition for super AC:

A value is in the super domain of X iff for any other variable Y, there
exists in super domain of Y and in repair domain of Y such that
and are allowed and
A value is in repair domain of X iff for any other variable Y, there exists
in super domain of Y such that is allowed.

The definition of super AC translates in a straightforward way into a filtering
algorithm. The values are marked as either super or repair, and when looking
for support of a super value, an additional and different support marked either
as super or repair is required. The complexity of checking the consistency of an
arc increases only by a factor of 2 and thus remains in

Theoretical Properties. We now show that maintaining AC on P×P achieves
more pruning than maintaining super AC on P, which achieve more pruning than
maintaining AC on P+P or AC+ on P (which are equivalent). For the theorem
and the proof below, we use the notation (x) (P) to denote that the problem P
is “consistent” for the filtering (x).

Super Solutions in Constraint Programming 163

Fig. 2. The first graph shows the microstructure of a simple CSP, two variables and
three values each, allowed combinations are linked. P is AC+ since the network is
arc consistent and every domain contains 3 values. However, P is not super AC since
the grayed values (in the second graph) are not in super domains, they have only
one support. In the second step, the whitened variables (in the third graph) are also
removed from both repair and super domains since they do not have a support in
a super domain

Theorem 2 (level of filtering). For any problem P,

Proof. (1) AC(P+P) AC+(P): Suppose that P is not AC+, then in the
arc consistent closure of P, there exists at least one domain such that

P+P contains P. In its arc consistent closure, we have as well,
is linked to a duplicate of itself in which the domain is then equal to
and therefore singleton (with the same value) or empty. However, recall that we
force thus P+P is not AC.

(2) AC+(P) AC (P+P): Suppose we have AC(P) and any domain D
in P is such that now consider P+P. The original constraints are AC
since P is AC. The duplicated constraints are AC since they are identical to
the original ones. The not equals constraints between original and duplicated
variables are AC since any variable has at least 2 values.

(3) super AC(P) AC+(P): Suppose that P is not AC+, then there
exists two variables X, Y such that any value of X has at most one support on Y,
therefore the corresponding super domain is wiped-out, and P is not super AC.

(4) super AC(P) AC+(P): See counter-example in Figure 2.
(5) AC(P×P) super AC(P): Suppose that AC(P×P), then for any two

variables X, Y there exist two pairs
such that and are allowed tuples. Therefore

belongs to the super domain of X and and belong to the repair domain
of X. Thus, the super domain of X is not empty and the repair domain of X is
not singleton. Therefore, P is super AC.

(6) AC(P×P) super AC(P): See counter-example in Figure 3.

4.2 Super Search Algorithms

We now present two new search algorithms: MAC+ and super MAC.

MAC+. This algorithm establishes AC+ at each node. That is, it maintains
AC and backtracks if a domain wipes out or becomes singleton. In the MAC
algorithm, we only prune future variables, since the values assigned to past
variables are guaranteed to have a support in each future variable. Here, this

164 Emmanuel Hebrard et al.

Fig. 3. The first graph shows the microstructure of a simple CSP, three variables and
four values each, allowed combinations are linked. P is super AC since the black values
have each one “black” support, and another “gray” or “black” for every neighbor, and
all gray values have one “black” support. The super domains thus contain “black”
values (size 2), and repair domains contain “black” and “gray” values (size 4). The
second graph shows P×P, which is not AC

also holds, but the condition on the size of the domains may be violated for an
assigned variable because of an assignment in the future. Therefore, AC is first
established on the whole network, and not only on the future variables. Second,
variables are not assigned in a regular way (e.g. by reducing their domains to
the chosen value) but one value is marked as super value, that is added to
the current partial solution, and unassigned values are kept in the domain as
potential repairs. The algorithm can be informally described as follows:

Choose a variable X.
Mark a value as assigned, but keep the unassigned values.
For all backtrack if Y has less than two supports for
Revise the constraints as the MAC algorithm, and backtrack if the size of
any domain falls bellow 2.

Super MAC. We give the pseudo code of super MAC in Figure 4. The algo-
rithm is very similar to the MAC algorithm. Most of the differences are grouped
in the procedure revise-Dom. The super domains and repair domains
are both equal to the original domains for the first call. The values are pruned
by maintaining super AC (revise-dom, loop 1). The algorithm backtracks if
a super domain wipes out or a repair domain becomes singleton (line 2). Note
that, as for MAC+, super AC is also maintained on the domains of the assigned
variables (super AC, loop 1).

We have established an ordering relation on the different filterings. However,
for the two algorithms above, assigning a value to a variable in the current solu-
tion does not give the same subproblem as in a regular algorithm. For a regular
backtrack algorithm, the domains of assigned variables are reduced to the chosen
value, whilst unassigned values are still in their domain for the algorithms above.
We have proved that a problem P is AC+ iff P+P is AC. However, consider
the subproblem induced by the assignment of X by MAC+. may have
more than one value in the domain of X, whereas the corresponding assignment
in P+P leaves only one value in the domain of X (see Figure 5). Therefore
the ordering on the consistencies does not lift immeditately to an ordering on
the number of backtracks of the algorithms themselves. However, MAC(P×P)
always backtracks when one of the other algorithms does, whilst MAC+ never

Super Solutions in Constraint Programming 165

Fig. 4. super MAC algorithm

backtracks unless all the other algorithms do. Therefore any solution found by
MAC(P×P) will eventually be found by the others, and MAC+ will only find
solutions found by one of the other algorithms. We prove that MAC+ is correct
and MAC(P×P) is complete. Hence all four algorithms are correct and complete.

Theorem 3. For any given CSP P, the sets of solutions of MAC+(P), of su-
per MAC(P), of MAC(P×P), and of MAC(P+P) are identical and equal to the
super solutions of P.

Proof. MAC+ is correct: suppose that S is not a super solution, then there exists
a variable X assigned to in S, such that cannot replace
in S. Therefore when all the variables are assigned, and so there remain in the
domains only the values that are AC, and thus S is not returned
by MAC+.

166 Emmanuel Hebrard et al.

Fig. 5. Left: A CSP P, P is still AC+ after assigning X to 1. Middle: P+P, each
variable has a duplicate which must be different, the constraints linking those variables
are not represented here, the constraints on are exactly the same as the ones on X.
Right: When the same assignment, X = 1 is done in P+P, we have the following
propagation Now consider and
(Z : 2). They are not allowed, and the network is no longer AC

MAC(P×P) is complete: let S be a super solution, for any variables X, Y, let
be the value assigned to X in S, and one of its possible repairs. Similarly
is the value assigned to Y and its repair. It is easy to see that the pairs

and are super arc-consistent, i.e, and
are allowed tuples.

5 Extensions

Finding the Most Robust Solutions. Often super solutions do not exist.
First, from a theoretical perspective, the existence of a backbone variable guaran-
tees that super solutions cannot exist. Second, from an experimental perspective
(see next section), it is quite rare to have super solutions in which all variables
can be repaired. To cure both problems, we propose finding the “most robust”
solution that is as close as possible to a super solution.

For a given solution S, a variable is said to be repairable iff there exists
at least a value in its domain different from the one assigned in S, and is
compatible with all other values in S. The most robust solution is a solution
where the number of repairable variables is maximal. Such a robust solution is
guaranteed to exist if the problem is satisfiable. In the worst case, none of the
variables are repairable. We hope, of course, to find some of the variables are
repairable. For example, our experiments show that satisfiable instances at the
phase transition and beyond have a core of roughly repairable variables.

To find the most robust solutions, we propose a branch and bound algorithm.
The algorithm implemented is very similar to MAC+ (see 4.2), where AC is es-
tablished on the non-assigned as well as on the assigned variables. The current
lower bound computed by the algorithm is the number of singleton domains.
The initial upper bound is Indeed, each singleton domain corresponds to an
un-repairable variable, since no other value is consistent with the rest of the so-
lution. The rest of the algorithm is a typical branch and bound procedure. The
first solution (or the proof of unsatisfiability) needs exactly the same time as

Super Solutions in Constraint Programming 167

Fig. 6. Results at the phase transition. only 50 instances of this class were given
to MAC+)

the underlying MAC algorithm. Afterward, it will continue branching and dis-
covering more robust solutions. It can therefore be considered as an incremental
anytime algorithm. We refer to this algorithm as super Branch & Bound.

Optimization Problems. For optimization problems, the optimal solution
may not be a super solution. We can look for either the most repairable optimal
solution or the super solution with the best value for the objective function. More
generally, an optimization problem then becomes a multi-criterion optimization
problem, where we are optimizing the number of repairable variables and the
objective function.

6 Experimental Results

We use both random binary CSPs and job shop scheduling problems. Random
CSP instances are generated using the 4 parameters of Bessière’s
generator [1], where is the number of variables, is the domain size, is the
constraint density, and is the constraint tightness. The job shop scheduling
problem consist of jobs and machines. Each job is a sequence of activities
where each activity has a duration and a machine. The problem is satisfiable
iff it is possible to schedule the activities such that their order is respected and
no machine is required by two activities that overlap, within a given makespan

Instances were generated with the generator of Watson et al. [17]. We define
an instance with five parameters where is the number
of jobs, the number of machine, the minimum duration of an activ-
ity, the maximum duration and the makespan. The actual duration of
any activity is a random number between and

Comparison. We compared the different solution methods using two samples
of 100 random instances of the classes and at
the phase transition. We observe, in Figure 6, that MAC on P×P prunes most,
but is not practical when the domain size is large. As the problem size increases,
super MAC outperforms all other algorithms in terms of runtimes.

168 Emmanuel Hebrard et al.

Constrainedness and Hardness. We locate the phase transition of finding su-
per solutions both experimentally and by an approximation based on the Kappa

framework [10].

Empirical Approach. We fixed and and we varied from
0.1 to 0.9 by steps of 0.02 and from 0.1 to 0.32 by steps of 0.012. For every
combination of density/tightness, a sample of 100 instances were generated and
solved by MAC and super MAC, with dom/deg as a variable ordering heuristic
for MAC and (super_dom)/deg for super MAC. The number of visited nodes
are plotted in Figure 7 (a) for MAC and in Figure 7 (b) for super MAC. As
expected, the phase transition for super MAC happens earlier. Also, the phase
transition peak is much higher (two orders of magnitude) for super CSP than
for CSP.

Probabilistic Approximation Approach. For a CSP the
expected number of solutions is:

Where is the domain size of and the tightness of the constraint
A phase transition typically occurs around In our case, domain
sizes and constraint tightness are uniform, therefore the formula can be simplified
as follows:

We assume that the P × P reformulation behaves like a random CSP. Note that
P×P has one solution iff P has a single super solution. We can derive the
values and of the CSP P × P:

Moreover, we can see as the probability that a given tuple of val-
ues on a pair of constrained variables satisfies the constraint. For a given pair

this pair satisfies the reformulated constraint iff
and and which has a probability of Hence,
we have:

The formula thus becomes:

In Figure 7 (c), we plotted those equations along with the values gathered from
the empirical study. To do so, we considered, for every the minimal value
such that the sample has more than half of its instances unsat-
isfiable. We observe that our approximations are very close to the empirical
findings.

Super Solutions in Constraint Programming 169

Fig. 7. Respective hardness to find a solution or a super solution

Job Shop Scheduling. We formulate the jobshop scheduling problem as a CSP,
with one variable for each activity, and a domain size equal to the makespan mk
minus its duration. We wish to minimize the makespan. We do so by iteratively
increasing the makespan (mk) and solving the resulting decision problem. When
a solution is found, we stop. We solved a sample of 50 problem instances for

and Each sample was solved with
MAC, super MAC, and with super Branch & Bound. MAC and super Branch
& Bound stopped at the same value of mk for which the problem is satisfiable.
Whilst super MAC continued until the problem has a (1,0)-super solution and
then we optimize the makespan.

Makespan: In Figure 8 (a) we plot the makespan of the optimal solution
found by MAC, the makespan of the optimal (1,0)-super solution returned
by super MAC, and the worst possible makespan in case of a break to the
optimal (1,0)-super solution. We observe that we have to sacrifice optimality
to achieve robustness. Nevertheless, the increase in the makespan appears to
be independent of the problem size and is almost constant.
Search Effort: In Figure 8(b), we plot the time needed by MAC to find the
optimal solution, by super MAC to find the optimal (1,0)-super solution, and
by super Branch & Bound to find the most robust solution with the optimal
makespan as found by MAC. As expected, more search is needed to find
more robust solutions. Super MAC is on average orders of magnitude worse
than MAC. Super Branch & Bound requires little effort for small instances,
but much more effort when the problem size increases.
Repairability: In Figure 8(c), we compare the percentage of repairable vari-
able for the optimal solution found by MAC and the most robust optimal
solution returned by super Branch & Bound. The optimal solutions returned

 In Figure 8, for every sample the first three histograms stand for
the three following for etc.

1

170 Emmanuel Hebrard et al.

by MAC have on average 33% of repairable variables, whilst the most re-
pairable optimal solutions found by super Branch & Bound have 58% on
average.

Minimal Core of Repairable Variables. We generated two sets of 50,000
random CSPs with 100 variables, 10 values per variable, 250 constraints for-
bidding respectively 56 and 57 tuples. Those problems are close to the phase
transition, which is situated around 54 or 55 disallowed tuples, and at 58, no
satisfiable instances were found among the 50,000 generated. The satisfiable in-
stances (a total of 2407 for the first set, and 155 for the second) have in average
22% and 19% of repairable variables, respectively. The worst cases being 9% and
11%, respectively.

7 Related Work

Supermodels [12] and fault tolerant solutions [18] have been discussed earlier.
The notions of neighborhood interchangeability [7] and substitutability are

closely related to our work, but whereas, for a given problem, interchangeability
is a property of the values and works for all solutions, repairability is a property
of the values in a given solution.

Uncertainty and robustness have been incorporated into constraint solving
in many different ways. Some have considered robustness as a property of the
algorithm, whilst others as a property of the solution (see, for example, dynamic
CSPs [2] [11] [14], partial CSPs [6], dynamic and partial CSPs [13], stochastic
CSPs [16], and branching CSPs [4]). In dynamic CSPs, for instance, we can reuse
previous work in finding solutions, though there is nothing special or necessarily
robust about the solutions returned. In branching and stochastic CSPs, on the
other hand, we find solutions which are robust to the possible changes. However
both these frameworks assume significant information about the likely changes.

Fig. 8. super solutions for the jobshop scheduling problem

Super Solutions in Constraint Programming 171

8 Conclusion

To improve solution robustness in CP, we introduced the notion of super solu-
tions. We explored reformulation and search methods to finding (l,0)-super solu-
tions. We introduced the notion of super consistency, and develop a search algo-
rithm, super MAC based upon it. Super MAC outperformed the other methods
studied here. We also proposed super Branch & Bound, an optimization algo-
rithm which finds the most robust solution that is as close as possible to a (1,0)-
super solution. Finally, we extended our approach to deal with optimization
problems as well.

The problem of seeking super solutions becomes harder when multiples re-
pairs are allowed, i.e, for solutions. We aim to generalize the idea
of super consistency to solutions. In a similar direction, we would
like to explore tractable classes of CSPs. Furthermore, as with dy-
namic CSPs, we wish to consider the loss of n-ary no-goods and not just unary
no-goods.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

R. Dechter D. Frost, C Bessière and J. C. Régin. Random uniform CSP generator.
url: http://www.ics.uci.edu/~dfrost/csp/generator.html, 1996.
A. Dechter and R. Dechter. Belief maintenance in dynamic constraint networks.
In Proceedings AAAI-88, pages 37–42, 1988.
E. Hebrard B. Hnich and T. Walsh. Super CSPs. Technical Report APES-66-2003,
APES Research Group, 2003.
D.W. Fowler and K. N. Brown. Branching constraint satisfaction problems for
solutions robust under likely changes. In Proceedings CP-00, pages 500–504, 2000.
E. C. Freuder. A sufficient condition for backtrack-bounded search. Journal of
the ACM, 32:755–761, 1985.
E. C. Freuder. Partial Constraint Satisfaction. In Proceedings IJCAI-89, pages
278–283, 1989.
E. C. Freuder. Eliminating Interchangeable Values in Constraint Satisfaction
Problems. In Proceedings AAAI-91, pages 227–233, 1991.
J. Gaschnig. A constraint satisfaction method for inference making. In Proceedings
of the 12th Annual Allerton Conference on Circuit and System Theory. University
of Illinois, Urbana-Champaign, USA, 1974.
J. Gaschnig. Performance measurement and analysis of certain search algorithms.
Technical report CMU-CS-79-124, Carnegie-Mellon University, 1979. PhD thesis.
I. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search.
In Proceedings AAAI-96, pages 246–252, 1996.
N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency within
dynamic backtracking. In Proceedings CP-00, pages 249–261, 2000.
A. Parkes M. Ginsberg and A. Roy. Supermodels and robustness. In Proceedings
AAAI-98, pages 334–339, 1998.
I. Miguel. Dynamic Flexible Constraint Satisfaction and Its Application to AI
Planning. PhD thesis, University of Edinburgh, 2001.
T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problem. IJAIT, 3(2):187–207, 1994.

172 Emmanuel Hebrard et al.

[15]
[16]
[17]

[18]

T. Walsh. SAT v CSP. In Proceedings CP-2000, pages 441–456, 2000.
T. Walsh. Stochastic constraint programming. In Proceedings ECAI-02, 2002.
J. P. Watson, L. Barbulescu, A. E. Howe, and L. D. Whitley. Algorithms per-
formance and problem structure for flow-shop scheduling. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence (AAAI-99), pages 688–
695, 1999.
R. Weigel and C. Bliek. On reformulation of constraint satisfaction problems. In
Proceedings ECAI-98, pages 254–258, 1998.

Local Probing Applied to Network Routing

Olli Kamarainen1 and Hani El Sakkout2

1 IC-Parc
Imperial College London, London SW7 2AZ, UK

okl@icparc.ic.ac.uk
2 Parc Technologies Ltd

Tower Building, 11 York Road, London SE1 7NX, UK
hani@parc-technologies.com

Abstract. Local probing is a framework that integrates (a) local search
into (b) backtrack search enhanced with local consistency techniques, by
means of probe backtrack search hybridization. Previously, local probing
was shown effective at solving generic resource constrained scheduling
problems. In this paper, local probing is used to solve a network routing
application, where the goal is to route traffic demands over a communi-
cation network. The aim of this paper is (1) to demonstrate the wider
applicability of local probing, and (2) to explore the impact of certain
local probing configuration decisions in more detail. This is accomplished
by means of an experimental evaluation on realistic networking scenarios
that vary greatly in their characteristics. This paper yields a better un-
derstanding of local probing as well as a versatile local probing algorithm
for network routing.

1 Introduction

1.1 Local Probing

Due to its systematic nature and support of constraint propagation, backtrack
search enhanced with local consistency techniques (BT+CS) is effective at solv-
ing tightly-constrained problems with complex constraints. On the other hand,
the quality of local search’s (LS) total assignment is more easily measurable, by
comparison with the quality of conventional BT+CS’s partial assignments. Also,
the absence of systematicity allows LS’s assignments to be modified in any order,
and so early search moves do not necessarily skew search to focus only on partic-
ular sub-spaces. This leads to LS’s superiority at optimizing loosely constrained
problems. However, while BT+CS algorithms are usually sat-complete (i.e. in
a finite number of steps, it either generates a solution, or proves that no solutions
exist) and can be made opt-complete (i.e. in a finite number of steps, it either
generates an optimal solution, or proves that no solutions exist), LS algorithms
are incomplete in both senses.

Local probing [10] is a sat-complete probe backtrack search framework (PBT,
[6]) that executes a slave LS procedure at the nodes of the master BT+CS search

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 173–189, 2004.
© Springer-Verlag Berlin Heidelberg 2004

174 Olli Kamarainen and Hani El Sakkout

tree. Local probing is designed to tackle practical constraint satisfaction prob-
lems (CSPs) and constraint satisfaction and optimization problems (CSOPs)
that are difficult solve by pure BT+CS or pure LS algorithms. Its strength is
derived from the combination of LS’s non-systematic search characteristic with
BT+CS’s search systematicity. This enables local probing to satisfy complex con-
straints and prove infeasibility, while achieving good optimization performance,
as well as (in some configurations) prove optimality.

In local probing, the constraints of the CSP or the CSOP to be solved must
be divided into two sets, namely ‘easy’ constraints and ‘hard’ constraints.1 The
slave LS procedure — the LS prober — solves sub-problems containing only
the ‘easy’ constraints, at the nodes of a master BT+CS search tree. The mas-
ter BT+CS procedure eliminates possible violations of ‘hard’ constraints by
incrementally posting and backtracking additional ‘easy’ constraints.

The LS prober algorithm will return a solution to the ‘easy’ sub-problem.
If the LS prober’s solution happens to be feasible with ‘hard’ constraints also,
a feasible solution to the entire problem is found. If the LS solution for the ‘easy’
sub-problem violates any ‘hard’ constraints, one of them must be selected for
repair: A new ‘easy’ constraint, forcing the LS prober to avoid returning solutions
that violate the constraint in the same way, is posted to the ‘easy’ sub-problem.
If this leads to a failure (i.e. the new ‘easy’ sub-problem is unsatisfiable), the
negation of the selected ‘easy’ constraint is imposed instead. Then, the new
‘easy’ sub-problem is solved with LS, and in the case of further ‘hard’ constraint
violations, other ‘easy’ constraints are recursively imposed. This continues until
a solution is found, or until all possibilities of posting ‘easy’ constraints are
explored (i.e. a proof that no solutions exist is obtained). In the case of a CSOP,
the search can be continued again by using a cost bound like in other branch
and bound (B&B) methods.

A sat-complete local probing algorithm must satisfy the following conditions:

1. (a) Any ‘hard’ constraint must be expressible as a disjunction of sets of ‘easy’
constraints that apply to its variables such that
every solution that satisfies one of the ‘easy’ constraint sets is guaranteed
to also satisfy the ‘hard’ constraint.

(b) No solution exists that satisfies the ‘hard’ constraint, but does not satisfy
any of the ‘easy’ constraint sets in this disjunction.2

For efficiency only, the next condition is also useful:
(c) No solution to an ‘easy’ constraint set in the disjunction is also

a solution to another ‘easy’ constraint set in the disjunction.
2. If a ‘hard’ constraint is violated, it must be detected and scheduled for repair

by the master BT+CS procedure within a finite number of steps.

1 This decomposition should not be confused with hard/soft constraints.
2 We are theoretically guaranteed to find at least one partition satisfying 1 for any

finite CS(O)P (define ‘easy’ constraints to be variable assignments or their nega-
tions).

Local Probing Applied to Network Routing 175

3.

4.

5.

The master BT+CS procedure must be capable of (eventually) unfolding all
possible sets of ‘easy’ constraints whose satisfiability would guarantee that
the ‘hard’ constraint is also satisfied.
It must systematically post ‘easy’ constraints (and on backtracking, their
negations) to the LS prober until either the ‘hard’ constraint is satisfied, or
it is proved impossible to satisfy.
The neighbourhood operator of the LS prober must guarantee to satisfy the
posted ‘easy’ constraints if this is possible (and indicate infeasibility if it is
not), by being sat-complete w.r.t. the ‘easy’ constraints.

Additionally, opt-completeness can be achieved if (a) the cost bound con-
straint generated by a B&B process at the master BT+CS level can be captured
as an ‘easy’ constraint that is satisfied by the LS prober; or (b) the cost bound
constraint can be dealt with at the master BT+CS level as a ‘hard’ constraint,
ensuring the cost bound will be satisfied by the search if that is possible (which,
in fact, is the case in the local probing algorithm detailed in this paper).3

Related Work. Local probing belongs to the LS/BT+CS hybridization class
where LS is performed in (all or some) search nodes of a BT+CS tree.4 In most
of these hybrids, the task of the LS procedure is to support somehow the master
BT+CS. They can be classified further as follows: A. Improving BT+CS partial
assignments using LS, e.g. [5, 15]. B. Enhancing pruning and filtering by LS at
BT+CS tree nodes, e.g. [7, 17]. C. Selecting variables by LS in a master BT+CS,
e.g. [14, 19]. D. Directing LS by a master BT+CS, e.g. [3]5. Local probing has
aspects of B, C and D, although D is the key classification, since it is LS that
creates assignments, and the task of BT+CS is to modify the sub-problem that
LS is solving, directing LS to search regions where good solutions can be found.

In addition to LS/BT+CS hybrids, local probing belongs to the family of
PBT hybrid algorithms [1, 2, 6, 12] (related ideas also in [8]). Typically, they
use LP or MIP, instead of LS, as the prober method to be hybridized with
BT+CS.

1.2 Objectives of the Paper

In earlier work [10], we demonstrated that local probing can be effective at solv-
ing a generic scheduling problem. We showed how the local probing hybridization
framework can successfully marry the optimization strengths of LS and the con-
straint satisfaction capabilities of BT+CS, and we learned how it is possible
to construct an effective sat-complete local probing hybrid that performs well

3

4

5

The local probing algorithm presented in [10] was not opt-complete.
Other LS/BT+CS hybridizations either (a) perform BT+CS and LS serially as
“loosely connected”, relatively independent algorithms (dozens of published hy-
brids); or (b) use BT+CS in the neighbourhood operator of LS (including operators
of GAs), e.g. [9, 16]. An important sub-class of (b) is “shuffling” hybrids, e.g. [4, 18].
The results presented in [3] are particularly promising to local probing research.

176 Olli Kamarainen and Hani El Sakkout

when compared to alternative algorithms. However, several questions remained
unanswered.

Firstly, how readily applicable is local probing in different application do-
mains? In particular, is it possible to build efficient sat-complete local probing
hybrids for other applications?

Secondly, problem constrainedness can vary greatly. Can local probing be
easily configured to trade-off satisfaction performance against optimization per-
formance by changing the balance of effort between BT+CS and LS? Also, for
problem instances with similar levels of constrainedness, it is likely that certain
local probing configurations are more effective than others. However, could a sin-
gle configuration remain competitive over problem instances that vary greatly
in constrainedness, or are adaptive configuration mechanisms necessary?

The main objective of this paper is to address these questions by means of
a detailed investigation of local probing performance on the selected network
routing problem. In the process of doing so, we will establish a new and ver-
satile family of algorithms based on local probing for solving this commercially
important problem.

Next, we introduce the application domain. Section 2 details the algorithm
to be used in the investigation study of Section 3. Section 4 concludes the paper.

1.3 Application Domain

The network routing problem solved here (NR) involves constraints including
capacity, propagation delay, and required demands. In the NR, we have:

a network containing a set of nodes N and a set of directed links E between
them — each link from a node to a node has a limited bandwidth
capacity and a propagation delay that is experienced by traffic passing
through it;
a set of demands K, where each is defined by:

a source node i.e. where the data is introduced into the network;
a destination node i.e. where the data is required to arrive;
a bandwidth i.e. the bandwidth that must be reserved from every
link the demand is routed over; and
a maximum propagation delay i.e. the maximum source-to-
destination delay that is allowed for the demand

a subset of the demands specifying which demands must have
paths in any solution.

The aim is to assign paths over the network to demands such that:

1.

2.

the total unplaced bandwidth, i.e. the sum of the bandwidth requirements
of the demands not assigned to a path, is minimized;
the following constraints are satisfied:

If a demand belongs to the set of required demands RK, it must have
a path.

Local Probing Applied to Network Routing 177

Every link in the network has sufficient bandwidth to carry the
demands that traverse it.
For any path assigned to a demand the sum of the propagation
delays of the links in the path does not exceed the maximum propagation
delay for

Note that, when the set of required demands is exactly the set of all the
problem demands, i.e. RK = K, the problem is a pure CSP without any opti-
mization dimension: each demand must have a feasible path. On the other hand,
if RK is empty, it is always possible to find a trivial solution, because even an
empty set of paths is a solution.

For each demand we use a boolean to denote whether is routed
or not Another set of booleans indicate whether a demand is

routed through a link or not Next, we formally state
the problem.

The objective function (1) to be minimized is the sum of the bandwidths of
the non-routed demands (i.e. those demands with The constraints of

178 Olli Kamarainen and Hani El Sakkout

(2) force demands in the set of required demands RK to have a path, and the
remaining demands can either have a path or not (3). The path constraints (5)
and (6) force, for any placed demand its path to be a connected loop-free
sequence of links from the source node to the destination node and for
any non-routed demand, its path to be empty. The constraints in (7) and (8)
tie the link-demand booleans with the paths. The capacity constraints in
(9) ensure that for each link the bandwidth reserved for demands passing
through it does not exceed its capacity The delay constraints (10) restrict
for each demand the total delay of the links in its path to be no more than its
maximum propagation delay

2 Algorithm Description

The problem decomposition and the master BT+CS of local probing are intro-
duced first. Then the LS prober and its neighbourhood operator are described.

2.1 Problem Constraint Decomposition into ‘Easy’ and ‘Hard’

The NR is a typical large-scale combinatorial optimization problem (LSCO) in
that it can be divided into different sub-problems. The constraints of the problem
are divided into the ‘easy’ and ‘hard’ constraints here as follows:

‘Hard’ constraints (not guaranteed to be satisfied by the prober):
Capacity constraints: the sum of the bandwidth requirements of the de-
mands routed via a link must not exceed the bandwidth of the link (9)

‘Easy’ constraints (guaranteed to be satisfied by the prober):
The sum of the propagation delays of the links in a path is less than or
equal to the maximum propagation delay of the demand (10)
‘Easy’ constraints that the master BT+CS procedure can impose during
search (but might also exist in the original problem):

If the demand is dropped it cannot have a path (6).
If the demand is required it must have a valid path (5).
If a link is forbidden from a demand, its path is not
allowed to contain the forbidden link (8).
If a link is forced for a demand, its path must contain the
forced link (7).

2.2 Master BT+CS Level

The last four of the constraints above are used by the master BT+CS proce-
dure to repair violations on ‘hard’ constraints, i.e. link capacity constraints, in
the following way. Assume that the prober returns a probe (a set of paths for
all non-dropped demands), and the master BT+CS procedure detects that the
bandwidth usage on link exceeds its capacity, and then selects this link to
be repaired (see Fig. 1). 1. The algorithm picks one demand traversing

Local Probing Applied to Network Routing 179

Fig. 1. Illustration of local probing for NR

and drops it, i.e. posts a constraint This first search branch does not
subsequently allow a path for the demand 2. If dropping does not lead to
a solution in the subsequent nodes, a constraint that requires that demand has
a path, i.e. and a constraint that forbids the link from the demand
i.e. are posted to the sub-problem, and local probing continues having
these constraints present in all the search nodes within this second branch. 3. If
forbidding the link from the demand does not lead to a feasible solution,
the third choice is to require and force it to use the link i.e. at
the child nodes in the third branch. If this decision leads to failure as well, the
search backtracks to higher choice points in the tree. These three choices:

1.
2.
3.

drop demand
require demand but forbid it from using link and
require demand and force it to use link

fully partition the search space of the sub-problem at the master BT+CS tree
node.6 This decomposition allows us to build a local probing algorithm that
satisfies the conditions for sat-completeness and also for opt-completeness. When
a solution is found, a B&B cost bound CB, enforcing
is imposed, and local probing is continued from the root of the search tree. Due
to the ‘easy’ constraint decisions and (drop/require demand) and
the form of the objective function, we can immediately prune branches that are
infeasible w.r.t. the cost bound. Because the algorithm can deal with the cost
bound constraint as a ‘hard’ constraint, opt-completeness is achieved.
6 The PBT decomposition above for network routing was initially suggested by Liatsos

et al, and it is used in a MIP-based PBT application. A version (that does not include
the first branch) of their algorithm is published in [12], which tackles a related
problem to NR (having all demands required and a different objective function).

180 Olli Kamarainen and Hani El Sakkout

Several heuristics can be used in selecting the link to be repaired among
the violated links at a BT+CS search node, as well as in selecting the demand
to be dropped/required. In this implementation, the procedure selects (1) the
link that is most violated, i.e. its bandwidth availability is exceeded most;
and (2) the demand (a) routed via and (b) having the largest bandwidth
requirement from the set of demands passing over that are not forced to
use the link (i.e. the set of demands that are not treated by an imposed
constraint at the master BT+CS tree nodes). These heuristics were
chosen because they tend to lead the search quickly towards a feasible solution
or a failure, thus reducing the size of the master BT+CS tree. Also various
consistency checks are made before the local probing search is allowed to continue
in the branches (reasoning with the capacity constraints and the imposed master
level decisions for dropping/requiring demands and forbidding/forcing links).

2.3 Local Search Prober

The LS prober returns a probe, which is a set of paths to all non-dropped
demands.7 As an LS strategy, simulated annealing (SA, [11]) is used because
it is easy to implement and can avoid local minima. At each search step, the
neighbourhood operator suggests for the sub-problem a candidate neighbour
that satisfies all the ‘easy’ constraints (recall Section 2.1).

2.4 Neighbourhood Operator of LS Prober

The neighbourhood operator procedure applies a “shuffle” approach.8 First,
a subset of demands to be re-routed are selected, and heuristically ordered for
re-routing. Then, before evaluation, the selected demands are routed separately
by utilizing Dijkstra’s shortest path first algorithm. The neighbourhood operator
gives us the neighbour candidate in two sets of paths: (1) the first set is a set
of paths that together satisfy all the constraints - including capacity constraints,
and (2) the second set is a set of paths that satisfy all the ‘easy’ constraints
but were left outside of by the LS heuristics because they caused capacity
constraints to be violated. The procedure includes the following four steps:9

1. Select Demands to be Re-routed. From the current assignment, the paths
of (1) all the demands that had paths in and (2) a percentage fraction P of the
demands that had paths in are chosen for re-routing. In the latter case, paths
are selected in three stages, depending on how many demands the percentage
fraction allows us to select: for a randomly selected bandwidth-violated link,
randomly select paths from from the following sets until P paths have been
selected (start with the set and move to the next set when it is empty):
1. Set Paths traversing the selected link. 2. Set Paths traversing any
7

8

9

Note that demands can be be dropped only by the master BT+CS search decisions.
Another “shuffle”-based LS algorithm for network routing is presented in [13].
The LS initialization includes slightly modified Steps 1 and 2, and Step 3 as it is.

Local Probing Applied to Network Routing 181

of the links of the paths in This tends to free bandwidth in the vicinity of
the problematic link. 3. Set All the other paths in The demands to be
re-routed are the demands of the selected paths.

2. Order Demands to be Re-routed. The selected demands to be re-routed
are ordered for routing in three groups (the order within each group is random-
ized): (1) required demands; (2) non-required demands that were in in the
current assignment; and (3) non-required demands that were in in the cur-
rent assignment. This robust heuristic is used, since we prefer finding feasible
solutions (routing required demands first) to optimization (minimizing unplaced
total bandwidth).

3. Re-route Demands. Routing is carried out in two phases. Although capac-
ity constraints are relaxed in the LS sub-problem, the local probing performance
is dependent on the LS prober producing good quality probes. Therefore, the
first routing phase tries to route demands such that the links that do not have
enough bandwidth available are not seen by the single-demand routing procedure
used. If a path is found, the bandwidth availabilities of the links are updated
immediately, and the path is placed in If a path is not found, the routing is
postponed to the second phase.

In the second phase, all the selected demands, still without a path, are routed
again in the same order as in the first routing phase, but now without taking the
capacity constraints into account, i.e. also bandwidth-infeasible links are seen
by the single-demand routing procedure used.10 This phase is guaranteed, for
each demand, to find a feasible path w.r.t. all constraints except the capacity
constraints. The set of paths generated in the second phase is

4. Evaluate. The value of the neighbour candidate is the sum of (1) the un-
placed bandwidth, which is the sum of the bandwidth requirements of the de-
mands that have paths in and (2) the penalty component, which is the number
of required demands in multiplied by a large constant. According to this value
and the SA strategy, the assignment may or may not be accepted as the new LS
assignment. (When the termination condition is met, the LS prober returns the
best set of paths found throughout this prober search (the best

Single-Demand Routing Component of Neighbourhood Operator. At
Step 3 of the neighbourhood operator, a single demand is routed by using Dijk-
stra’s shortest path first algorithm (SPF) that finds the shortest path between
two nodes in a graph. The “length” of a path is the sum of the metric costs
of the links in the path. The shortest path is the path where the sum of the
edge costs is the lowest. Here, SPF is run over a network that excludes (1) the
links that are forbidden for the demand to be routed, and (in the case the path

10 This causes capacity constraint violations.

182 Olli Kamarainen and Hani El Sakkout

must made bandwidth-feasible) (2) the links that do not have sufficient capac-
ity. The default metric used for the cost of a link is the propagation
delay of the link. Since this may leave some areas of the sub-problem search
space unexplored during the LS prober,11 the propagation delays of the links are
occasionally replaced by random metrics in the first routing phase of Step 3 of
the neighbourhood operator (a resulting bandwidth-feasible path is immediately
re-calculated with the default metric if it is infeasible with the delay constraints).

Routing demands with forced links. On its own, SPF cannot guarantee to
satisfy forced link constraints. If SPF is run to get a path, and this path does not
contain all the forced links, then an additional procedure is applied as follows.
First, the forced links that are already in the path are identified. Then, the
ordering they are in the path is used to define a “partial forced-link sequence”
Seq. The remaining forced links are incrementally inserted in randomly selected
positions in Seq such that the insertion is backtracked on failure (all possible
positions in Seq are explored in the worst case). After each insertion of a forced
link, SFP is applied to connect the disconnected path segments. If the completed
path violates the delay constraint, backtracking to the previous insertion node
occurs. The first delay-feasible path containing all the forced links is returned. If
all extensions to Seq lead to failure, the same extension process is repeated for
other possible permutations of Seq (in random order). The complexity of this
procedure is exponential, even though the resulting path is not guaranteed to
be the shortest possible. However, the average complexity is low due to the high
probability of obtaining a valid path before the space is exhaustively searched.

3 Local Probing Configuration Investigation

The previous section showed a way of constructing a sat- and opt-complete
local probing algorithm for the NR problem. In this section, we seek answers to
the following questions: Q1: Can local probing be easily configured to trade-off
satisfaction performance against optimization performance? Q2: What is the
best computational balance between the BT+CS and LS components in terms
of satisfaction and optimization behaviour? For problem instances with similar
level of constrainedness, it is likely that certain local probing configurations are
more effective than others. Q3: Could a single configuration remain competitive
over problem instances that vary greatly in constrainedness, or are adaptive
configuration mechanisms necessary?

3.1 Algorithm Parameters

Controlling the Computational Balance between the BT+CS and LS
Components. Over all the generated instances, we compared 12 local probing
algorithms with different prober termination conditions that vary the balance

11 Although they would eventually be explored due to the master BT+CS decisions.

Local Probing Applied to Network Routing 183

of search effort between BT+CS and LS. The maximum number of neighbour
candidate evaluations in the LS prober was set to {1, 2, 3, 6, 12, 25, 50, 100, 200,
400, 800, 1600}. We denote the local probing algorithms with these termination
conditions by Probe(SA1), Probe(SA2), Probe(SA3), ... , Probe(SA1600), respec-
tively. This range of termination conditions covers a whole range of behaviours
from low (small amount of effort spent optimizing the probe by LS) to high
(large amount of effort spent optimizing the probe by LS). Within the timeout
selected, these configurations lead to thousands LS steps (see the averages in
Tables 1 and 2). Note that there is a key difference between Probe(SA1) and all
the other configurations. In Probe(SA1) the prober restores probe consistency
w.r.t. the ‘easy’ constraints, but does nothing else. However, all other variants
additionally perform a “shuffle” on heuristically selected demand subsets. At high
temperatures, the neighbours are always accepted. As temperature decreases SA
is more selective. Other parameters: In the experiments, we used a timeout
of 1000 seconds. The initial temperature for the SA prober is 1000000000, and
after each neighbour evaluation, the temperature is reduced by multiplying it
by the cooling factor 0.9.12 The multiplier for the penalty term for penalizing
infeasible paths for required demands is the sum of the bandwidth requirements
of all the demands in the instance. The probability of using randomized met-
rics in the first routing phase of the LS neighbourhood operator is 0.0001, and
the percentage affecting the neighbourhood size is 0.1%. The algorithms were
implemented on 5.5, and the test were run on Pentium IV 2GHz PCs.

3.2 Problem Instances

The experiments are carried out on two different real-world network topologies,
named Network 1 and Network 2, with artificially generated demand data
that is based on realistic demand profiles. The Network 1 topology contains 38
nodes and 86 bi-directional links, whereas the Network 2 topology is larger: 208
nodes and 338 bi-directional links. The demands are generated randomly by
respecting a realistic bandwidth profile; features of the network topology; and
the network load factor. For each network, we apply three network load factors
(affecting the average bandwidth requirement), and generate 20 different sets of
demands for each factor, creating 60 demand sets. For the Network 1 instances,
a demand exists between each pair of nodes, ending up with 1406 demands. The
used network load factors were {0.6, 1.0, 1.4}. For the Network 2 instances, the
demands are generated for fewer pairs of nodes, resulting in 182 demands. The
network load factors used were {0.3, 0.4, 0.5}. The bandwidth profile used for
generating relative bandwidth requirements of demands was different for the net-
works. For Network 2, it resulted in more combinatorial problems: most demands
have a significant impact on the result, unlike in Network 1 whose results are

12 A neighbour candidate is accepted if it is better than the current assignment or
where: is a random number between 0 and 1; is the

cost of the neighbour candidate; is the cost of the current assignment; and T
is the temperature.

184 Olli Kamarainen and Hani El Sakkout

dominated by a small set of demands with very large bandwidth requirements.
Finally, for each demand instance we vary the proportion of required demands.
The number of required demands is the number of all the demands multiplied
by a constrainedness factor in the set {0, 0.1, 0.2, ... 1}. With these 11 factors
for each of the 60 instances, we end up with 660 instances for each network, and
a total of 1320 problem instances.

3.3 Constraint Satisfaction Results

Overall Constraint Satisfaction Performance. First, we look at the overall
constraint satisfaction characteristics over all instances. We are interested in 1.
how often a configuration found a solution; 2. how often a configuration proved
infeasibility; and 3. how often an instance remained unsolved, i.e. how often the
algorithm was terminated because of a timeout before any solutions were found
(i.e. neither a solution nor a proof of infeasibility). The third measure is the
most revealing, since it represents what is left after the first two. We therefore
rank the algorithm configurations in terms of the number of timeouts. These are
shown over the Network 1 and Network 2 instances in Tables 1 and 2.

1. Solutions Found. In terms of solutions found for Network 1 (Table 1),
there is only a small variation between the best and worst configurations (21

Local Probing Applied to Network Routing 185

Fig. 2. Timeouts without a solution (percentage of unsolved instances), Network 1

Fig. 3. Timeouts without a solution (percentage of unsolved instances), Network 2

instances). For Network 2 (Table 2), the variation is greater (114 instances). 2.
Infeasibility proofs. For the Network 1 instances, among the local probing
algorithms, the best configuration for proving infeasibility is Probe(SA3) (116
instances). The Network 2 results indicate the same: Probe(SA3) is the best
with 42 infeasibility proofs. For the Network 2 instances, Probe(SA1600) is able
to prove infeasibility only in 2 cases. 3. Timeouts without a solution. As
explained above, this is the best measure for ranking constraint satisfaction
performance, since it is an accurate measure of algorithm constraint satisfaction
failure. In Network 1 cases, the best algorithm is Probe(SA3) leaving 44 instances
unsolved. Probe(SA1) is seventh best, the worst configuration is Probe(SA1600).
Probe(SA3) is the best configuration for constraint satisfaction also in Network 2
cases, with 123 instances unsolved. In general, the main reason for Probe(SA3)’s
success in both networks, is its superiority on proving infeasibility rather than
on finding solutions when there are fewer differences between configurations.

Robustness of Constraint Satisfaction Performance as Constrained-
ness Varies. First, we want to know the the percentage of unsolved instances,
when the proportion of required demands vary. These are illustrated in

186 Olli Kamarainen and Hani El Sakkout

Figs. 2 and 3.13 The results indicate that, from constraint satisfaction per-
spective, hybridization is useful since performance degrades at the extremes
Probe(SA1) and Probe(SA1600), but that only a limited investment in LS is
sufficient to obtain the best performance from a constraint satisfaction perspec-
tive (the same is not true for optimization). The figures indicate that the best
performing configuration, Probe(SA3), remains effective as problem constrained-
ness varies.

The network load factor is another way of varying problem constrained-
ness. Table 3 shows the numbers of unsolved instances (out of 220) for each
network load factor. In the Network 1 instances, all local probing configurations
up to Probe(SA100) can find a solution or prove infeasibility for all instances
that have a network load of 0.6. The number of unsolved instances increases
with instances of larger network loads. The bigger the network load, the more
variation there is between the configurations, and fewer LS steps per prober are
required to obtain the best constraint satisfaction performance. This is true also
for Network 2 instances. However, the best constraint satisfaction configuration,
Probe(SA3), appears to be reasonably robust also in terms of network load.

3.4 Optimization Results

The solution quality graphs in Figs. 4 and 5 show the average unplaced band-
width14 for each constrainedness (proportion of required demands) subset over
the instances where all algorithm configurations found a solution, to enable a fair
comparison for optimization performance.15 In total, there were 477 such in-
stances for Network 1, and 372 for Network 2, each out of 660.

As expected, Probe(SA1) performs worst on optimization due to the loss of
LS’s optimization characteristic. In the Network 1 instances, the more LS neigh-
bour candidate evaluations performed during a prober, the better the results.
13

14

15

The rightmost graphs represent top-down views of the surfaces in the left graphs.
The quality is scaled to the interval [0,1] such that 0 represents the best quality (all
configurations routed all the demands), and 1 represents the worst quality.
As constrainedness increases, more demands are required, and the costs of solutions
fall because less bandwidth can be left unplaced.

Local Probing Applied to Network Routing 187

Fig. 4. Optimization, restricted subset of Network 1

Fig. 5. Optimization, restricted subset of Network 2

However, in the Network 2 instances, the results start to get worse again when
the prober evaluation limit increases beyond 12. This is due to the fact that,
in terms of the demand bandwidth distribution profile, the Network 2 instances
are more combinatorial (more demands significantly impact solution quality),
and therefore the differences between local minima are greater. The Network 2
instances indicate that local probing’s ability to force local search away from local
minima leads to significant improvements in the optimization characteristics. As
the interaction of LS with BT+CS decreases, by increasing the number of the
LS prober steps beyond 12, optimization performance degrades.

4 Conclusion

The main objective of this paper was to address questions on the applicability
and configuration of local probing, by means of a detailed investigation of local
probing performance on a new application, the NR. In the process of doing so,
we established a new and versatile family of algorithms based on local probing
for solving this commercially important problem.

188 Olli Kamarainen and Hani El Sakkout

This paper presented a sat- and opt-complete local probing hybrid for solving
the NR. The local probing configurations were evaluated in a detailed experimen-
tal investigation. The hybridization balance between BT+CS and LS compo-
nents was investigated by controlling the configuration of the LS prober termi-
nation condition. This successfully traded-off satisfaction performance against
optimization performance (Q1).16 Relatively low LS settings (Probe(SA3) for
satisfaction & Probe(SA12) for optimization) performed best overall — several
thousand LS steps were sufficient per run (Q2). In terms of either satisfaction
only or optimization only, each configuration’s relative performance remained
robust over different constrainedness levels (Q3). However, introducing adap-
tive behaviour for local probing may prove useful, because the (more BT+CS
oriented) configuration that was best for pure satisfaction performance was dif-
ferent from the (more LS oriented) configuration that was best for pure opti-
mization performance. Future research will investigate alternative local probing
neighbourhood operators and compare performance with alternative strategies
for the NR problem.

Acknowledgements

We would like to thank Vassilis Liatsos, Neil Yorke-Smith and Wided Ouaja for
their helpful input to this work.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

F. Ajili and H. El Sakkout. A probe based algorithm for piecewise linear opti-
mization in scheduling. Annals of Operations Research, 118:35–48, 2003.
C. Beck and P. Refalo. A hybrid approach to scheduling with earliness and tar-
diness costs. Annals of Operations Research, 118:49–71, 2003.
T. Benoist and E. Bourreau. Improving global constraints support by local search.
In Proc. of CoSolv’03, 2003.
Y. Caseau and F. Laburthe. Disjunctive scheduling with task intervals. Technical
Report LIENS-95-25, École Normale Supérieure, Paris, France, 1995.
Y. Caseau and F. Laburthe. Heuristics for large constrained vehicle routing prob-
lems. Journal of Heuristics, 5(3):281–303, 1999.
H. El Sakkout and M. Wallace. Probe backtrack search for minimal perturbation
in dynamic scheduling. Constraints, 5(4):359–388, 2000.
F. Focacci and P. Shaw. Pruning sub-optimal search branches using local search.
In Proc. of CP-AI-OR’02, 2002.
J. N. Hooker, H.-J. Kim, and G. Ottosson. A declarative modeling framework
that integrates solution methods. Annals of Operations Research, 104:141–161,
2001.
N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence, 139:21–45, 2002.
O. Kamarainen and H. El Sakkout. Local probing applied to scheduling. In Proc.
of CP’02, pages 155–171, 2002.

16 Q1, Q2 and Q3 were described in the beginning of Section 3.

Local Probing Applied to Network Routing 189

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.
V. Liatsos, S. Novello, and H. El Sakkout. A probe backtrack search algorithm
for network routing. In Proc. of CoSolv’03, 2003.
S. Loudni, P. David, and P. Boizumault. On-line resources allocation for ATM
networks with rerouting. In Proc. of CP-AI-OR’03, 2003.
B. Mazure, L. Saïs, and É. Grégoire. Boosting complete techniques thanks to
local search. Annals of Mathematics and Artificial Intelligence, 22:319–331, 1998.
S. Prestwich. A hybrid search architecture applied to hard random 3-sat and
low-autocorrelation binary sequences. In Proc. of CP’00, pages 337–352, 2000.
L. Rousseau, M. Gendreau, and G. Pesant. Using constraint-based operators to
solve the vehicle routing problem with time windows. J. Heuristics, 8:45–58, 2002.
M. Sellmann and W. Harvey. Heuristic constraint propagation: Using local search
for incomplete pruning and domain filtering of redundant constraints for the social
golfer problem. In Proc. of CP-AI-OR’02, 2002.
P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Proc. of CP’98, pages 417–431, 1998.
M. Wallace and J. Schimpf. Finding the right hybrid algorithm - a combinatorial
meta-problem. Annals of Mathematics and Artificial Intelligence, 34:259–269,
2002.

Dynamic Heaviest Paths in DAGs
with Arbitrary Edge Weights

Irit Katriel*

Max-Planck-Institut für Informatik
Saarbrücken, Germany
irit@mpi-sb.mpg.de

Abstract. We deal with the problem of maintaining the heaviest paths
in a DAG under edge insertion and deletion. Michel and Van Henten-
ryck [2] designed algorithms for this problem which work on DAGs with
strictly positive edge weights. They handle edges of zero or negative
weight by replacing each of them by (potentially many) edges with pos-
itive weights. In this paper we show an alternative solution, which has
the same complexity and handles arbitrary edge weights without graph
transformations. For the case in which all edge weights are integers, we
show a second algorithm which is asymptotically faster.

1 Introduction

The Heaviest Paths (HP) problem is as follows. Given a Directed Acyclic Graph
(DAG) G = (V, E) with a weight for each edge compute for each node

the weight of the heaviest path from the source of G to where the weight
of a path is the sum of the weights of its edges. The Dynamic Heaviest Paths
(DHP) problem is to efficiently update this information when a small change is
performed on G. Here “efficient” means that the running time is proportional to
the size of the portion of the graph that is affected by the change [3].

Formally, for each denote by the weight of the heaviest path
in G from the source of G to Let be the graph obtained by performing an
operation on G (such as adding or deleting an edge) and let be the weight
of the heaviest path to in We define to be the
set of nodes that were affected by the operation. That is, the nodes for whom
the weight of the heaviest path changed. We define to be the number of nodes
in and to be plus the number of edges that are adjacent to at least one
node in Assuming that any algorithm would have to do something for each
node in and to examine each edge adjacent to a node we use and
as the parameters for the complexity of an update.

Michel and Van Hentenryck [2] recently studied the DHP problem. Their re-
search was motivated by scheduling applications, where one wishes to represent
the current solution by a DAG and to perform tasks such as to evaluate the

Partially supported by DFG grant SA 933/1-1.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 190–199, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

Dynamic Heaviest Paths in DAGs with Arbitrary Edge Weights 191

makespan and update it upon a small change to the DAG. They present algo-
rithms that solve the DHP problem on DAGs with strictly positive edge weights.
Their algorithms run in time for an edge insertion and
for an edge deletion. They show that it is possible to replace edges with zero or
negative weights by edges with positive weights and then apply their algorithm.
However, the number of edges added may be large. They conclude by asking
whether there is an efficient algorithm that can handle arbitrary edge weights
without graph transformations.

We answer their question by showing such an algorithm. In fact, their al-
gorithm for updating the graph upon the deletion of an edge works also in the
presence of non-positive edge weights. So what we need to show is an algorithm
for edge insertion that can handle arbitrary weights. Our solution has the same
asymptotic complexity as theirs and is not more complicated to implement.

In addition, we discuss the case in which the edge weights are integers and
show an algorithm that runs in time where

is the maximum change to the heaviest path value
of a node due to the edge insertion.

2 Fibonacci Heaps

Our algorithms use Fibonacci Heaps [1]. A min-sorted (max-sorted) Fibonacci
Heap is a data structure that supports the following operations:

inserts the item with priority
If is not in the heap, performs If is in the

heap and has priority its priority is updated to
ExtractMin (ExtractMax) returns the item with minimal (maximal) priority
and removes it from the heap.

Any sequence of Insert operations, UpdatePriority operations and
ExtractMin(ExtractMax) operations on an initially empty Fibonacci Heap can
be performed in time where is the maximal number of
items in the heap at any point in time. Certainly,

3 Intuition

Figure 1 shows the impact of adding the dashed edge to the DAG. The nodes in
are the ones inside the rectangle and the changes to their values are shown.

Clearly, these changes propagate along paths in the graph. That is, if we add
an edge then for a node can only change if changed
for a predecessor of Furthermore, the changes propagate in a monotonous
manner. That is, the change to is not larger than the maximum of the
changes at predecessor.

The algorithm in [2] would proceed from in topological order and update
the value for each node only after the updated values for all of its predecessors

192 Irit Katriel

Fig. 1. The impact of inserting the dashed edge to the DAG

are known. This is possible when edge weights are strictly positive because the
previous values provide us with the relative topological order of the nodes.
When zero or negative edge weights exist in the graph, it may be the case that

while precedes in the topological order (see [2], Section 6 for an
example). In other words, we do not know the topological order of the nodes so
we need a different method to traverse them, which would still guarantee that
we do not traverse the same subgraph more than once.

The rule we use is as follows. We begin by updating
This is the final value for because it can only change due to the

edge so we label as processed. Then we go over the edges outgoing from
and for each such edge we insert the node into a set which we call
the frontier and which contains the nodes which are not processed but have
a processed predecessor. In addition, we compute the change that would
occur to by advancing along the edge
We select for which is maximal, update remove
from the frontier and mark it as processed. As we will show later, we have
found the final value for We then continue in the same manner: for each
successor of we insert into the frontier if it is not already there and
compute Since may have already been in the frontier, we set

is processed}. We then select the node from the frontier with
maximal value and advance on an edge such that
We repeat this until there is no node in the frontier with

The only point to add is that when we process a node and compute the
value for an edge might already belong to the frontier. In that
case, we do not want to add it again but rather to update if necessary. For
this reason, we use a max-sorted Fibonacci Heap for the nodes in the frontier,
where the priority of a node is

Dynamic Heaviest Paths in DAGs with Arbitrary Edge Weights 193

Fig. 2. Algorithm for updating values upon an edge insertion

4 The Algorithm

Figure 2 shows the algorithm for updating the heaviest path values of the affected
nodes upon insertion of an edge to the DAG. It receives a DAG G = (V, E), the
function for G, an edge which is to be inserted to G and the weight
of this edge. It updates the function for the graph

Initially, it inserts the node into the Fibonacci Heap with priority equal
to It then enters the while loop, which continues
as long as is not empty. It extracts from a node with maximal priority
and updates for this node. Then it traverses the edges outgoing from
and updates the values for the target of each of these edges. Recall that the
operation inserts to if it is not already there, and
otherwise sets its priority to the maximum among and its previous priority.

4.1 Example

Before turning to the correctness proof, we show how this algorithm operates on
the example shown in Figure 1. Figure 3 reproduces the part of the graph that
the algorithm explores, with labels on the nodes.

Initially, is inserted to with priority
Then the algorithm enters the while loop and performs five

iterations.
Iteration 1: and Next, the
successors of are checked. is inserted to with priority

and is inserted with priority

194 Irit Katriel

Fig. 3. The portion of the graph of Figure 1 that the algorithm explores

Iteration 2: is inserted to
with priority
Iteration 3: The priority
of is updated from 1 to and

so is not inserted to
Iteration 4: is inserted to
with priority
Iteration 5:

so is not inserted to
Now, is empty so the algorithm terminates.

4.2 Proof of Correctness

For a node let be the weight of the heaviest path to in the input
DAG G and let be the weight of the heaviest path to in the DAG that
we get by adding the edge to G. Let be the change
that occurs in the heaviest path value for due to the insertion of this edge. To
show that the algorithm computes the correct value for for all we
will show that (1) If then is inserted to and when it is extracted
from its priority is equal to (2) If then is not inserted to

It is easy to see that if (1) and (2) hold then the algorithm computes the
correct value of for all nodes.

Lemma 1. For all if then is inserted into and when it
is extracted from its priority is equal to

Proof. Assume the converse and let be minimal w.r.t. the topological order
such that and the claim does not hold for By construction, the
priority of a node in can never be higher than its value. So we need to
show that is inserted into the queue and that its priority when it is extracted
is not less than

Dynamic Heaviest Paths in DAGs with Arbitrary Edge Weights 195

By definition of there must be a predecessor of such that
There are two cases.

Case 1: and and is the edge that was inserted to the graph.
Then is inserted into at the beginning with priority and is extracted
immediately afterwards.
Case 2: Then there is a predecessor of such that

Since the edge was in the graph before the insertion,
hence Since precedes in the topological order, and by the

minimality of w.r.t. the topological order, we know that was inserted to
and was extracted with priority equal to If was not extracted from
before then after was extracted, was either inserted with priority
(if it was not already in the queue) or its priority was updated to (if it
was already in Hence, was inserted to and when it was extracted, its
priority was

Assume that was extracted before Let be a heaviest
path in from to through That is, and and for
each Clearly, for all

Let be maximal such that was extracted from before
Since precedes in the topological order and by the minimality of w.r.t. the
topological order, we know that was extracted when its priority was
Hence, after it was extracted, priority became

Since
was extracted before but when was in with priority the
priority of when it was extracted was at least

Lemma 2. For all if then is not inserted to

Proof. If this means that for every predecessor of
If none of the predecessors of were inserted to then was never

a candidate for insertion. If there are predecessors of which were inserted to
then whenever one of them was extracted and the edge leading from it to

was examined, so was not inserted.

Corollary 1. The algorithm in Figure 2 correctly updates for all

4.3 Complexity Analysis

By Lemma 1, when a node is extracted from its priority is equal to
so is updated to its final value. This implies that will never be inserted to

again; whenever another of its predecessors will be extracted from will
not be positive. In addition, each edge outgoing from a node in is examined
once to determine whether its target should be inserted into (or its priority
updated if it is already there). We get that throughout the algorithm, needs
to support a total of insertions, extractions and at most UpdatePriority
operations. The total running time is therefore

196 Irit Katriel

5 Integer Edge Weights

In this section we show an alternative algorithm which works for general inputs,
but its advantages come to play when all edge weights are integers.

Again, for every node let be the heaviest path value of before the
change to the graph and the value after the edge insertion. Let

be the change that occurred at
For every edge let Note that

Intuitively, measures by how much the change in the
values decreases as the update propagates along the edge Formally,

Lemma 3. For each node

Proof. By definition, So

We define a new weight function over the edges of the DAG where
This function enables us to prove Lemma 4 which char-

acterizes the set In the following a path is a directed path in the DAG and for
a path is the weight of the path
with respect to For a pair of nodes is the minimal over
all paths P from to

Lemma 4. Assume that an edge was inserted into G. A node is in iff
That is, there is a path P from to such that

Proof. Assume that there is such a path By
definition, for each we have So

which implies
For the other direction, we show by induction that if which means

that then there is a path P from to with
By definition we know that there is a predecessor of such that

If then since we have that the edge is
a path from to such that

Assume that Then by the induction hypothesis, there is a path
from to such that Let be the path from to that
we get by appending the edge to Then

We now know how to identify the nodes of We begin at and compute
shortest paths w.r.t. the weight function to nodes that are reached from
but only as long as the length of the path is less than The following lemma
states that once we have found the length of the shortest path from to we
also know and can update

Lemma 5. Assume that an edge was inserted into G. Let be a node in
and let Then

Dynamic Heaviest Paths in DAGs with Arbitrary Edge Weights 197

Proof. We have shown in the proof of Lemma 4 that if then there is
a path P from to with Assume that it is not minimal.
That is, there is a path with
For all let and let be minimal such that

Note that because
so

By substituting for
and we get that

contradicting the definition of

This leads to the algorithm in Figure 4 as an alternative to the one in Figure 2.
In this version, the nodes of the frontier are inserted into a min-sorted Fibonacci
Heap where the priority of a node at any point in time is the length of the
minimal path leading to it which was discovered so far.

We now prove correctness of this algorithm.

Lemma 6. For all if then is inserted into and
when it is extracted from its priority is equal to

Proof. Assume the converse and let be minimal w.r.t. the topological order
such that and the claim does not hold for By construction,
the priority of a node in can never be lower than So we need to
show that is inserted into and that its priority when it is extracted is not
higher than

Since was extracted with priority By definition of
there must be a predecessor of such that

Fig. 4. Alternative algorithm for updating values upon an edge insertion

198 Irit Katriel

Since precedes in the topological order, and by the minimality of w.r.t. the
topological order, we know that was inserted to and was extracted with
priority equal to If was not extracted from before then after
was extracted, was either inserted with priority (if it was not already
in or its priority was updated to (if it was already in Hence,

was inserted to and when it was extracted, its priority was
Assume that was extracted before Let be a path

from to through such that That is,
and and for each
Clearly, for all Let
be maximal such that was extracted from before Since precedes
in the topological order and by minimality of w.r.t. the topological order, we
know that was extracted when its priority was Hence, after it was
extracted, priority became Since
was extracted before but when was in with priority
the priority of when it was extracted was at most

Lemma 7. For all if then is not inserted to

Proof. If this means that for every predecessor of
If none of the predecessors of were inserted to

then was never a candidate for insertion. If there are predecessors of
which were inserted to then by Lemma 6 whenever one of them (say was
extracted from its priority was so was not inserted into

Lemma 8. The algorithm in Figure 4 correctly updates for all

Proof. If then by Lemma 4, so and by
Lemma 7, is never inserted to so is never updated.

If then by Lemma 6, is inserted into and when it is
extracted its priority is So the algorithm sets to

which by Lemma 5 is equal to

5.1 Example

To illustrate how the algorithm works, we include here a trace of its execution
on the example in Figure 3. Initially, is computed and
is inserted to with priority 0. Then the algorithm enters the while loop and
performs five iterations.
Iteration 1: and
Next, the successors of are checked. is inserted to with priority

and is inserted with priority
Iteration 2: is
inserted to with priority
Iteration 3: The priority
of is updated from 2 to
so is not inserted to

Dynamic Heaviest Paths in DAGs with Arbitrary Edge Weights 199

Iteration 4: is
inserted to with priority
Iteration 5:

so is not inserted to
Now, is empty so the algorithm terminates.

5.2 Complexity Analysis

When all edge weights are integers, we have that all values are non-negative
integers and all priorities in the queue are in the interval This means
that we can use buckets for the nodes and place the buckets in the
queue instead of the individual nodes. Since we get that if we use
a Fibonacci Heap, the algorithm runs in time

If we use Thorup’s integer priority queue [4] we can achieve an asymptotic
running time of However, this priority
queue is more complicated to implement.

References

[1]

[2]

[3]

[4]

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. Assoc. Comput. Mach., 34:596–615, 1987.
Laurent Michel and Pascal Van Hentenryck. Maintaining longest paths incre-
mentally. In Proceedings of the 9th International Conference on Principles and
Practice of Constraint Programming (CP 2003), volume 2833 of LNCS, pages
540–554, 2003.
G. Ramalingam and Thomas Reps. On the computational complexity of dynamic
graph problems. Theor. Comput. Sci., 158(1-2):233–277, 1996.
Mikkel Thorup. Integer priority queues with decrease key in constant time and
the single source shortest paths problem. In Proc. 35th ACM Symp. on Theory
of Computing (STOC), pages 149–158, 2003.

Filtering Methods
for Symmetric Cardinality Constraint

Waldemar Kocjan1 and Per Kreuger2

1 Mälardalen University, Västerås, Sweden
waldemar.kocjan@mdh.se

2 Swedish Institute Of Computer Science, Kista, Sweden
piak@sics.se

Abstract. The symmetric cardinality constraint is described in terms of
a set of variables which take their values as subsets of
values It constraints the cardinality of the set assigned
to each variable to be in an interval and at the same time it
restricts the number of occurrences of each value in the sets
assigned to variables in X to be in an other interval In this
paper we introduce the symmetric cardinality constraint and define set
constraint satisfaction problem as a framework for dealing with this type
of constraints. Moreover, we present effective filtering methods for the
symmetric cardinality constraint.

1 Introduction

The symmetric cardinality constraint is specified in terms of a set of variables
which take their values as subsets of The

cardinality of the set assigned to each variable is constrained by the interval
where and are non-negative integers. In addition, it constraints

the number of occurrences of each value in the sets assigned to variables
in X to be an interval Both and are non-negative integers.

The symmetric cardinality constraint problems arise in many real–life prob-
lems. For example, consider an instance of a project management problem. The
main task of the problem is to assign personnel with possibly multiple specialized
competences to a set of tasks, each requiring a certain number of people (possi-
bly none) of each competence. In this instance we consider a project consisting
of 7 activities numbered from 1 to 7, each demanding a number of persons to be
accomplished. An activity which demands minimum 0 persons is optional.

There are 6 members of personnel which can be assigned to this project.
Each of those persons, here referred to as with a respective index, is qualified
to perform respective activities as shown in Fig.1. A non-zero value of a lower
bound indicates that members of the staff represented by the variable must be
assigned to some activities in the project.

The goal is to produce an assignment which satisfy the following constraints:

every member of staff must be assigned to a minimum and maximum number
of activities in the project,

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 200–208, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Filtering Methods for Symmetric Cardinality Constraint 201

Fig. 1. Project assignment specification. In the left table, a 1 indicates that a person
represented by is qualified to perform corresponding activity in the project. The
table in the center and to the right specifies the number of activities each person can
perform and the number of persons required by each activity

every activity must be performed by a minimum and maximum number of
persons,
each person can be assign only to an activity he/she is qualified to perform
and, by symmetry, each activity must be performed by qualified personnel.

In this paper we show how such problem can be modeled as a constraint
satisfaction problem. First, in Section 2 we give some preliminaries on graphs
and flows. Then, in Section 3 we define set constraint satisfaction problem and
give a formal definition of the symmetric cardinality constraint. The follow-
ing section, 4, gives a method for checking consistency of symmetric cardinality
constraint. Finally, we describe a filtering method for symmetric cardinality con-
straint.

2 Preliminaries

2.1 Graph

The following definitions are mainly due to [1].
A directed graph G = (X , U) consists of a set of nodes (vertices) X and

arcs (edges) U, where every pair is an ordered pair of distinct nodes. An
oriented graph is a directed graph having no symmetric pair of arcs.

A directed network is a directed graph whose nodes and/or arcs have associ-
ated numerical values. In this paper we do not make distinction between terms
“network” and “directed network”.

An arc connects node with node i.e. in directed graph it is an arc
oriented from node to node A path in a graph G from to is a sequence
of nodes such that each is an arc for The
path is simple if all its nodes are distinct. A path is a cycle if and

A subgraph of a directed graph G, which contains at least one directed path
from every node to every other node is called a strongly connected component
of G.

202 Waldemar Kocjan and Per Kreuger

2.2 Flows

Let N be a directed network in which each arc is associated with two non–
negative integers and representing lower bound and a capacity of flow
on A flow on arc represents the amount of commodity that the arc
accommodates. More formally:

Definition 1. A flow in a network N is a function that assigns to each arc
of the network a value in such way that

1.

2.

where is a lower bound of the flow in the arc and
is a capacity of

for each node in the network N it is true that
where is an arc from node to

The second property is known as a conservation law and states that the
amount of flow of some commodity incoming to each node in N is equal the
amount of that commodity leaving each node.

Three problems from the flow theory are referred to in this paper:

the feasible flow problem which resolves if there exists a flow in N which
satisfies lower bound and capacity constraints for all arcs in N.
the problem of maximum flow from to which consists of finding a feasible
flow in N such that the value is maximum
the problem of minimum flow from to which consists of finding a feasible
flow in N such that the value is minimum.

It is a well known fact that if the lower bounds and capacities of a flow
problem are integral and there exists a feasible flow for the network, then the
maximum and minimum flows between any two nodes flows are also integral on
all arcs in the network. Hence, if there exists a feasible flow in a network there
also exists an integral feasible flow. In this paper when we refer to a feasible flow
we always mean an integral feasible flow.

We refer in this paper also to the residual network, which is a network rep-
resenting the utilization and remaining capacity in the network with respect to
a flow

Definition 2. Given a flow from to in the network N, the residual network
for denoted by consists of the same set of nodes as N. The arc set of

is defined as follows. For all arcs in N

if then is an arc of with residual capacity

if then is an arc of with residual capacity

Filtering Methods for Symmetric Cardinality Constraint 203

3 Set Constraint Satisfaction Problem

We define a set constraint satisfaction problem as follows.

Definition 3. A set constraint satisfaction problem (sCSP) is a triple (X, D,
Cs) where

1.
2.

3.

is a finite set of variables.
is a set of finite sets of elements such that for each

takes as value a subset of
is a set of constraints on the values particular subsets of the variables

in X can simultaneously take. Each constraint constrains the values
of a subset of the variables in X and may be thought
of as a subset T(C) of the where
each

Let

be the set of values that can be taken by any variable in X(C). Furthermore, for
a given assignment P, let denote the value assigned to the variable by P
and the cardinality of the set and for any constraint C
and element denote the number of occurrences of in
the values assigned by P to the variables in X(C), i.e:

Definition 4. A sCSP is consistent if and only if there exists an
assignment P with the following properties:

1.

2.

For each variable with domain the value assigned to
by P must be a subset of
For each constraint and each variable in the
tuple

Moreover, a value for is consistent with C iff
such that is an element in the value

An constraint can be seen in terms of its value graph ([2]), i.e the bipar-
tite graph G(C) = (X (C) , D(C), E), where for all

iff This graph establishes an immediate correspondence between any
assignment P and a special set of edges in a value graph.

We formulate this notion in the following proposition.

Proposition 1. For any every P(X(C)) corresponds to a subset of
edges in G(C) and the number of edges connecting with any

is equal to the cardinality of the subset

204 Waldemar Kocjan and Per Kreuger

4 Consistency of the Symmetric Cardinality Constraint

We define the symmetric cardinality constraint as follows.

Definition 5. A symmetric cardinality constraint is a constraint C over a set of
variables X(C) which associates with each variable two non-negative
integers and and with each value two other non-negative
integers and such that a restriction of an assignment P to the variables
in X(C) is an element in T(C) iff

and

From the symmetric cardinality constraint we propose to build a particular
oriented graph, which we denote N(C). This extends the value network of the
global cardinality constraint as described in [3] to handle sets of nonnegative
cardinality assigned to the variables. Then, we will show an equivalence between
the existence of a feasible flow in such graph and the consistency of the symmetric
cardinality constraint.

Let C be a symmetric cardinality constraint, the value network N(C) of C
is an oriented graph with a capacity and a lower bound on each arc. The value
network N(C) is obtained from the value graph G(C) by

orienting each edge of G(C) from values to variables. Since each value can
occur in a subset assigned to a variable at least 0 and at most 1 time for
each arc
adding a source node and connecting it which each value. For every arc

adding a sink node and an arc from each variable to For each such arc

adding an arc with and

Proposition 2. Let C be a symmetric cardinality constraint and N(C) be the
value network of C. The following properties are equivalent:

C is consistent;
there exists a flow from to which satisfies lower bounds and capacities of
the arcs in N(C).

Proof. Suppose that C is consistent then Consider We
can build a function in N(C) as follows:

1.
2.

3.

if appears in the subset otherwise

Actually, the orientation of the graph has no importance. Here, we have chosen the
same orientation as in [3].

1

1

Filtering Methods for Symmetric Cardinality Constraint 205

Fig. 2. Value graph for assignment problem from Figure 1 and its value network

Since C is consistent then and
which satisfies the lower bound and ca-

pacity constraint for the flow Furthermore from (1)- (3) follows that
must appear times in P(X(C)), which means that

which satisfies the conservation law for all From this and (2)
follows that for each the number of arcs with flow value 1 entering
is equal to According to which
satisfies the conservation law for all

On the other hand, suppose there exists a feasible flow from to
Since or and by the conservation law

then for each the number of edges with the flow of value 1
leaving is equal Consequently, the number of connected
with each by an arc with a flow equal to 1 is equal to Further-
more, due to the conservation law, the number of arcs for which
entering each is equal the value of Thus the set of arcs such that

corresponds to a set of edges in the value graph. By the ca-
pacity constraint and by the conserva-
tion law therefore Sim-
ilarly, and by the conservation law

therefore thus C is con-
sistent.

This proposition gives a way of checking the consistency of a symmetric
cardinality constraint by computing a feasible flow in N(C). Different algorithms
for computing feasible flows are given in the literature on flow theory, e.g. in [1].

In the next section we will show how to implement filtering of symmetric
cardinality constraint by considering certain properties common to all feasible
flows in the value graph.

206 Waldemar Kocjan and Per Kreuger

5 Filtering Algorithm
for Symmetric Cardinality Constraint

Let be a feasible flow in a network N, be a residual graph for If
there is a simple path from to in then we can obtain
a new feasible flow in N such that (see [4]). We call such
a path an augmenting path. Similarly, if there exists a simple path from
to in then we can obtain a new feasible flow such that

We refer to such simple path as a reducing path.
Moreover, the maximum and minimum flow are defined as follows ([3]).

Definition 6. A flow from to is maximum if and only if there is no
augmenting path from to for

A flow from to is minimum if and only if there is no reducing path
from to for

The following Theorem 1 gives a way of determining if an arbitrary arc in N is
contained in any feasible flow in the network. The theorem is similar to Theorem
4 from [3], but here the computation is performed on the residual graph of
which includes both and, in the case when also

Theorem 1. Let N be a network for which each arc is associated with two
non-negative integers, be an arbitrary feasible flow in N, be the residual
graph for and be an arbitrary arc in N. For all feasible flows in N,

if and only if neither nor are contained in any
simple cycle in involving at least three nodes.

Proof. If is not contained in a simple cycle in involving at least three
vertices it means that there is no augmenting path from to for By the
definition 6, the flow is the maximum flow from to

If is not contained in a simple cycle in which involves at least
three nodes then there is no reducing path from to in N, so by the defini-
tion 6 is the minimum flow from to

Similarly, if is not contained in a simple cycle in with at least 3
nodes, then there is no augmenting path from to and by Definition 6 is
a maximum flow in N. Moreover, if is not contained in a simple cycle in

involving at least three nodes then there is no reducing path for in
and by Definition 6 is a minimum flow in N.

Let be a symmetric cardinality constraint and be an arbitrary fea-
sible flow in N(C). By Proposition 2 a value of a variable is not consistent
with C if and only if there exists no feasible flow in N(C) which contains
So, by the Theorem 1 if and is not contained in a simple cycle
in involving at least three nodes then the value of a variable is not
consistent with C. Furthermore since two nodes and can be contained in
the such a cycle only if they belong to the same strongly connected component

Filtering Methods for Symmetric Cardinality Constraint 207

in we can determine if a value for a variable is consistent with a symmet-
ric cardinality constraint using an algorithm that search for strongly connected
components in a graph, e.g. the algorithm described in [6].

This leads to the following corollary:

Corollary 1. The consistency of any value of variable with symmetric car-
dinality constraint C can be computed by finding an arbitrary feasible flow
from to in N(C) and by computing strongly connected components in

6 Notes on Complexity

The complexity of the proposed filtering algorithm is dominated by the com-
putation of a feasible flow in the value network of the symmetric cardinality
constraint. Methods for finding feasible flows have in the worst case the same
complexity as that of finding a maximum flow, which is (see e.g. [1, 5]),
where is the number of nodes (i.e. number of variables, plus the number
values, and is the number of arcs which, for a bipartite graph of the
type used in the value graph, is bounded by

The complexity of finding strongly connected components in the residual
graph using the method proposed in [6] is This gives worst case com-
plexity for filtering of the symmetric cardinality constraint of
which is the same as for the global cardinality constraint introduced in [3].

7 Conclusion

In this paper we have introduced the symmetric cardinality constraint derived
from the global cardinality constraint. Moreover, we have formalized set con-
straint satisfaction problem and defined symmetric cardinality constraint in the
context of this problem. We have also presented efficient methods for filtering
domains of symmetric cardinality constraint.

Acknowledgement

The work on this paper was supported by Swedish Institute of Computer Science
and Mälardalen University. The authors wish to thank Nicolas Beldiceanu, Irit
Katriel, Markus Bohlin and the anonymous reviewers for their helpful comments
on this paper.

References

[1]

[2]

Ahuja, R. K., Magnanti, T. L., Orlin, J. B.: Network flows. Theory, algorithms and
applications. Prentice–Hall Inc. (1993)
Laurière, J.-L.: A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10 (1978) 29–127

208 Waldemar Kocjan and Per Kreuger

[3]

[4]

[5]

[6]

Régin, J.-Ch.: Generalized Arc Consistency for Global Cardinality Con-
straint.Proc. of the Fourteenth National Conference on Artificial Intelligence
(AAAI-96) (1996)
Lawler, E.: Combinatorial Optimization: Network and Matroids, Holt, Rinehart
and Winston (1976)
Ahuja, R. K., Kodialam, A., Mishra, A.K., Orlin, J. B.: Computational Investiga-
tions of Maximum Flow Algorithms. European Journal of Operational Research,
97 (1997) 509–542
Tarjan, R. E.: Depth–First Search and Linear Graph Algorithms. SIAM J. Com-
puting, 1 (1972) 146–160

Arc-Consistency Filtering Algorithms
for Logical Combinations of Constraints

Olivier Lhomme

ILOG
1681, route des Dolines, F-06560 Valbonne

olhomme@ilog.fr

Abstract. The logical connectives between constraints, sometimes
called meta-constraints, although extremely useful for modelling prob-
lems, have either poor filtering algorithms or are not very efficient.
We propose in this paper new filtering algorithms that achieve arc-
consistency over those logical connectives. The principle is to export
supports from a constraint.

1 Introduction

A conventional wisdom is that Constraint Programming is strong in making
different algorithms work together: a subproblem can be solved by a specific
technique (e.g. an OR algorithm) encapsulated in a constraint, and the propa-
gation through the domains of variables is responsible for communicating with
the other parts of the problem. Nevertheless, in practice, this is not so true. The
first constraint model of experienced people does not work so often, and interac-
tion between constraints in general does not work as well as it should. Improving
interactions needs a lot of know-how and algorithmic skills from the developper.
The final working model typically adds redundant constraints and/or specifically
developped constraints that improve the interaction of some of the constraints
in the first model.

In this paper, we focus on improving the interaction of constraints in a log-
ical combination of constraints. Such logical combinations occur frequently in
the first constraint models of unexperienced constraint programmers. Unfortu-
nately, the logical connectives between constraints, although extremely useful
for modelling problems, have either poor filtering algorithms or are not very
efficient.

We propose new filtering algorithms for logical combinations of constraints.
We mainly focus on constraints given in extension. Constraints given in extension
occur frequently in some kinds of applications. For example, solving configuration
problems needs to deal with potentialy huge tables of data, which express dif-
ferent kinds of compatibility or incompatibility relations, between variables that
can be classical integer variables, set variables or multiset variables (see [1]).

Consider a simple example: Let be five integer variables. Let C be
the constraint: must have the value excepted for some given combinations of

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 209–224, 2004.
© Springer-Verlag Berlin Heidelberg 2004

210 Olivier Lhomme

values for and, in this case, has a value that can be computed from the
values of Thus, assuming there is a table with the given combinations
for and the corresponding value for the constraint can be expressed
as: (1) or (2), where (1) is is in the table” and (2) is is
not in the subtable that corresponds to the first four columns of the table, and

In general, it is not realistic to give this constraint fully in extension. For
example, assume the number of the given combinations of values for
is 10000, and that each variable can take a value in [1..100]. These 10000 given
combinations are a compact form for representing the constraint, but if the
constraint is given fully in extension, this compactness is lost: for each possible
combination of values for (given or not), there is a value for and
thus the cardinality of the allowed set of combinations of values for
is

It is possible to design a specific constraint for this problem but this will
need time and constraint programming expertise. The approach we propose in
this paper allows a user to express the constraint exactly as it is defined above
(i.e. “(1) or (2)”), while achieving the same pruning than a specific constraint,
and with the same efficiency.

Our approach is based on the concept of support, which is a crucial concept
for constraints given in extension. The common idea of the filtering algorithms
we propose is exporting supports from constraints. Then, supports are combined
to build supports for the combination of constraint. For the disjunction, this
idea leads to a filtering algorithm that is more efficient than constructive dis-
junction while keeping the same domain reduction (an earlier work appeared
in [2]). For the conjunction of constraints, the idea of exporting the supports is
combined with an additional improvement that accelerates drastically the search
for a support in a table.

The paper is organized as follows. In Section 2 we give background on con-
straint networks. We then present algorithms to achieve arc consistency on a dis-
junction of constraints (Section 3), negation of a constraint (Section 4) and
conjunction of constraints (Section 5). Section 6 addresses arbitrary logical com-
binations of constraints and Section 7 gives some perspectives.

Although the implication constraint occurs frequently for certain kinds of
application (like configuration, or time-tabling problems), it does not deserve
a specific study in this paper as the classical transformation1 in terms of dis-
junction and negation can be applied without loss of property.

2 Background

Constraint Network. A (constraint network) is defined as
a set of variables a set of domains
where is the finite set of possible values for variable and a set of
constraints between variables. Let be a total ordering on

(if a then b) is equivalent to (not a or b)1

Arc-Consistency Filtering Algorithms 211

Constraint. A constraint C on the ordered set of variables
is a subset of the Cartesian product that specifies the allowed
combinations of values for the variables

Tuple. An instantiation of the variables in X(C) is called a tuple on X(C).
Two tuples and on X(C) can be ordered by the natural lexicographic order

in which iff and
being the prefix of size of and the value of

The value of variable in a tuple is denoted by By extension, if V is
a subset of X(C), denotes the values of the variables of V in the tuple

A tuple on X(C) is valid iff

Support and Conflict. Let be a constraint network, and let C
be a constraint in A value for a variable is often denoted by

Let be a value, let be a valid tuple on X(C), such that
is called a support for on C iff it is allowed by C. is called a conflict

for on C iff it is not allowed by C.

Arc Consistency. Let be a constraint network, C a constraint
in A value is consistent with C iff or such that
is a support for on C. C is arc consistent iff and

is consistent with C.

3 Disjunction of Constraints

This section first reviews two existing approaches of dealing with the disjunction
of constraints, and then presents a new filtering algorithm.

3.1 Existing Approaches

The standard implementation for the constraint consists in applying
the following propagation rules:

if is false on the current domains then to the solver.
if is false on the current domains then to the solver.

A side-effect of such a propagation rule is that, as long as both constraints
can be true, the or constraint will not be able to prune anything.

Example 1. Let be a variable and its domain be Let us
consider the constraint It is easy to see that the value 3 is
not possible for Nevertheless, the above propagation rule will not be able to
prune the value 3 since the two constraints and can be true.

212 Olivier Lhomme

Indeed, using the standard propagation rule does not ensure arc-consistency
for the variables in the disjunction. Instead it ensures arc-consistency for an
equivalent constraint system in which some boolean variables appear. The aux-
iliary variables are constrained to be equal to the truth value of the constraints in
the disjunction. The equivalent system is the following:

In this equivalent constraint system, is supported by in the
constraint and is itself supported by in the
constraint Thus the value is arc-consistent in this equiv-
alent constraint system. In some sense, the standard propagation rule loses the
globality of the or constraint.

Another approach to implement the or constraint is the use of constructive
disjunction [3]. The idea is to propagate independently each term of the disjunc-
tion. The domains of the variables are the union of their domains in the different
branches of the disjunction. In our example, we have:

Then the union of and can be computed:
Thus can be reduced to

Whereas the standard propagation rule for the or constraint in general leads
to a simple generate-and-test behavior, with no pruning at all, the constructive
disjunction performs a very good pruning of the domains. In fact it is easy to
show the following proposition:

Proposition 1. Let and be constraints whose filtering algorithms
achieve arc-consistency. Then constructive disjunction applied on
achieves arc-consistency.

Proof. Consider a variable whose domain after reduction is The do-
main is, by definition, the union of the domains of in the different
branches Thus if value is in it is also in
one domain at least. In the branch we know that is arc-consistent.
Thus is arc-consistent in the branch For a disjunction, to be consis-
tent, it suffices that one branch is consistent, thus is arc-consistent for

Constructive disjunction thus performs an optimal reduction of the domains.
Nevertheless, constructive disjunction is not so often used in constraint pro-
gramming applications. This may be explained by the following drawbacks of
constructive disjunction:

Constructive disjunction needs a local backtrack between the different con-
straints in the disjunction, and this is not very efficient.
Maintaining arc-consistency during search with a constructive disjunction in
an incremental way is not simple to do.

and:

Arc-Consistency Filtering Algorithms 213

Another problem is the lack of generality of constructive disjunction: it
cannot handle complex logical combinations of constraints like

Indeed, the main reason of the limited use of constructive disjunction in
constraint applications seems to be that it is much more expensive in term of
CPU time than the standard filtering for disjunction, and, even if its pruning
may be much stronger, constructive disjunction does not always pay off [4].

3.2 A New Filtering Algorithm for the Disjunction of Constraints

In this section, we introduce a filtering algorithm for or constraint that performs
the same pruning as constructive disjunction, and thus achieves arc-consistency,
but which is much more efficient. Furthermore, it does not have the drawbacks
of constructive disjunction which are listed in the previous section.

Constructive disjunction needs arc consistency on each constraint in the dis-
junction to be achieved. In this section, we show that it is not necessary in
general to performs so much work. The intuition of the ideas presented in this
section can be given as follows:

A variable that is shared by all the constraints in the disjunction needs
only one support per value to be found. When a support for the value
is found on the constraint we know that this constraint can be true.
Thus, the disjunction can be true for the value Thus, it is useless to find
the supports for the value on the other constraints.
When any support for a constraint in the disjunction can be found, then
this constraint can be true. Thus, all the other constraints of the disjunction
can be false. Therefore, the variables of the disjunction that are not in the
constraint cannot be pruned at all. Thus, it is useless to find supports
for their values.

Let us consider the following example:

Example 2. Let be three variables, let their respective domains be
and let C be the constraint

where corresponds to the constraint given in extension, and cor-
responds to the constraint given in extension. The tuple is
a support for the constraint That is to say, when and the con-
straint is true, and thus C is true, even if the constraint is false. In other
words, for any value of in the tuple is a support
on the constraint C.

Symmetrically, is a support on the constraint and thus
is a support on C for every value

Indeed, the two above support checks are sufficient to prove arc-consistency
of the constraint C.

If one wants to use constructive disjunction to prove arc-consistency of C, it
will first compute arc-consistency for constraint and then for constraint
doing at least 1000 constraints checks for each constraint.

214 Olivier Lhomme

Example 2 should have given to the reader the intuition of the new filtering
algorithm for the or constraint. Proposition 2 formalizes this intuition.

Proposition 2. Let C be the constraint or Let be the variables of
that are not in let be the variables of that are not in and let be
the variables that are shared by and That is:

Let be a support on Let be a tuple on C such that:
1.
2. for all variable in
Then is a support on C.

Let be a support on Let be a tuple on C such that:
1.
2. for all variable in
Then is a support on C.

Proof. we give the proof for the first assertion, the other one is symmetric. The
values of variables in are in the domains since is a support and thus
is valid. Then, in the values of variables are in the domains. As, by
construction the values of variables in are also in the domains, we know
that is valid. As makes the constraint true, the constraint is
true, and thus is an allowed tuple, hence it is a support.

Then, a support on C can be simply derived from a support on (resp.
on It suffices to complete (resp. by adding values for the variables

in (resp. any value in their domains can be taken.

Corollary 1. For the variables that are in it suffices to find one support per
value, either in or in

Indeed, corollary 1 uses for the meta-constraint level the principle of lazy support
that was introduced in AC-6 [5]. Whereas AC-4 [6] needs to compute all supports
for a given value, AC-6 introduces the idea that only one support is sufficient.
As AC-4, constructive disjunction computes several supports for a value: one for
each constraint in the disjunction. Corollary 1 tells us that only one support is
sufficient.

Corollary 2. When a support on is found, we can derive directly a support
on C for all the values where is a variable in and Thus,
plays the role of a generic support for the variables in and there is no reason
to waste time in searching individual supports in for the variables in (A
symmetric argument holds for a support in and variables in

The filtering algorithm in Figure 1 simply applies those principles. Once we
know there exists a support of on C, it is clearly a waste of time to try to
find another one.

Arc-Consistency Filtering Algorithms 215

Fig. 1. A global filtering algorithm for

Description of the Algorithm. The algorithm first computes any support
for thanks to the method which is supposed to exist. In
other terms, a support is exported from If such a support can be found, then
it is a generic support for every variable in If none exists, then is false;
thus must be true, it is added to the constraint solver (and the constraint

can be removed from the constraint solver).
A similar generic support is sought for
Then the algorithm has to find a support for each value of each variable

in It suffices to find one support of this pair variable/value in or in
If none exists, the value can be removed from the domain of the variable. The
method is supposed to exist for each constraint and

The following proposition is a direct consequence of the proposition 2:

Proposition 3. The filtering algorithm globalOr achieves arc-consistency for
the constraint

Following the GAC-schema [7], two important characteristics for arc-
consistency algorithms are:

incrementality of arc-consistency maintenance during search;
taking into account multidirectionality of supports (i.e., a support for a given
pair variable/value is also a support for every pairs variable/value that com-
pose the support)

It is easy to modify the algorithm of Figure 1 to take into account incremen-
tality: this can be done by storing supports, reconsidering only supports that

216 Olivier Lhomme

are made invalid, and starting the search for a new support from the old one
thanks to a methodgetNextSupport(). Taking into account multidirectionnal-
ity is also easy to do. But, in this paper, for clarity we have decided to present the
algorithms without incrementality and multidirectionality. The reader is referred
to [7] where incrementality and multidirectionality are well described. However,
it should be noted that incrementality will be still more efficient on this algo-
rithm than with constructive disjunction since incrementality is directly related
to the number of supports that are maintained, which are much less numerous
as the next paragraph will show.

Complexity of the Algorithm. Let us assume a general model with con-
straints in disjunction There is no difference in complexity
if we write a specific code for the p-ary disjonction constraint, or if we write

since the globalOr implements the protocol (see
Section 6). Assume that:

there are variables that are shared in the constraints.
all the variables have values in their domains,
all the constraints have the same arity
we do not take into account multidirectionnality of support in our analysis
since its impact on the complexity is quite complex to measure and depends
on the tuples of the constraints and on the supports that are considered first.

Constructive disjunction will find supports. The globalOr filtering algo-
rithm will find supports. As globalOr save at least a factor of in
CPU time. The gain may be much larger, for example, if there are two variables
that are shared by 100 constraints whose arity is 10, and with domains of size
20: there are 40 supports to find in one case and 20000 in the other case.

4 Negation of a Constraint

In a given solver, the negation of a primitive constraint is sometimes a primi-
tive constraint. For example, the negation of is both these con-
straints are generally primitive constraints of a given solver. Nevertheless, there
generally exist in a solver primitive constraints whose negation is not a primi-
tive constraint. Furthermore, the negation of a combination of constraints like

is generally not a primitive constraint.
The usual filtering algorithm for the non primitive constraint is to

check whether is entailed, i.e., whether it is always true for the given domains.
If this is the case, the constraint is false and thus the filtering algorithm
return a failure. That means that the usual filtering algorithm never reduces the
domains of the variables, except to raise a failure.

We propose a new filtering algorithm for the negation of a constraint that is
able to achieves arc-consistency and thus to prune the search tree.

The principle is that a support for a value on the constraint
is a conflict for on the constraint

Arc-Consistency Filtering Algorithms 217

Fig. 2. A global filtering algorithm for not(C)

Let us assume there exists a function that returns a con-
flict. The filtering algorithm we propose for the not constraint is the following:

Indeed, this algorithm is not so new. It corresponds, in another form, to the
GAC-Schema for a constraint expressed by forbidden tuples [7].

5 Conjunction of Constraints

5.1 Filtering Algorithm

Now, let us consider the constraint Achieving arc-consistency
over C generally reduces more the domains than achieving arc-consistency for
the constraint system but is more costly.

Let denote the variables that are in but not in the variables
that are in but not in and the variables that are shared by and

Each support for the constraint C can be obtained by joining two compatible
supports for and i.e. two supports that share the same values for the
shared variables. This is formalized in the following proposition:

Proposition 4. If is a support for and is a support for such that
then such that

is a support for C.
Conversely, if is a support for C, then is a support for

is a support for

Thus to find a support for C, one can try to find two compatible supports in
and This may be costly. However note this is not always a difficult task:

Corollary 3. if or arc-consistency over the constraint system
is equivalent to arc-consistency over

A possible algorithm that achieves arc-consistency on the conjunction of two
constraints is given in Figure 3: it focuses on the difficult and more interesting
case, and assumes there are at least two variables that are shared between
and i.e.,

The algorithm achieves arc-consistency for the three sets of variables
It first achieves arc-consistency for each constraint independently (note this

first step is not necessary, this is only an optimization).

218 Olivier Lhomme

Fig. 3. A global filtering algorithm for and

Then, the algorithm loops over the pairs variable/value to be supported.
For each pair it tries to find a support on and then tries to
find a support on which is compatible with That is, the vari-
ables in have to take the same values in and in This is done
thanks to a function getCommonSupport(), which is supposed to exist. Func-
tion getCommonSupport() seeks a supportion which is common for different
pairs variable/value. If such a common support does not exist on another
support for on is generated by the function getNextSupport(),
which is also assumed to exist.

5.2 Efficient Search of Compatible Supports

The key function in the algorithm of Figure 3 is the function getCommonSupport(),
which takes as parameters a constraint C and a set of pairs variable/value

It returns a support on the constraint C such that

This is in general a quite expensive function. In this section we propose an
efficient method when the constraint is given in extension as a set of tuples.

A good data structure for representing allowed tuples in a constraint is the
following:

Arc-Consistency Filtering Algorithms 219

The values are stored in the field value, and nextValue [i] contains a pointer
to the next tuple where the i-th variable is assigned to values[i]. This data
structure allows efficient implementation of getNextSupport () to be done.

Nevertheless, for the function getCommonSupport(), even with only two com-
mon values as parameters, say and this data structure is not suf-
ficient to reach a good efficiency. We could iterate over the list of supports of

and check each support to see whether it is also a support of The
problem is that this algorithm may lead to a complete exploration of the list of
supports of as shown in the following example.

Example 3. Consider the constraint over that ensures that

Assume the allowed values for and are the integers in [1, 100]. As the
constraint is given in extension, values for variables and also appear in the
tuples. The allowed tuples are:

Assume we want to find a support where and Thus, we iterate
over the list of supports of and check each support to see whether it is also
a support of This needs 100*100=10000 support checks in this case. The
same problem occurs if we want to iterate over the list of supports of and
check each support to see whether it is also a support of

The example should have convinced the reader that iterating over the list
of supports of a given value and checking the other value may have poor per-
formance. Thus, we need to improve the search for a common support. First
of all, assume a total order on the tuples of the constraint, for example the
lexicographic order and assume the lists of supports of a given value are
ordered.

220 Olivier Lhomme

If we know that there is no common support smaller than a support of
then seeking for a common support smaller than in the list of supports

of is useless. (The symmetric argument also holds.)
Thus, a good idea would be to perform an interleaved exploration of both the

list of supports of and the list of supports of we select at each step
the tuple which is the greatest among the current tuple of the list of supports
of and the current tuple of the list of supports of Then is taken
as the starting point for the next iteration: i.e. the next tuple from the list of
supports of and the next tuple from the list of supports of should
both be greater or equal to In the above example, this method needs only 3
supports checks instead of 10000.

Now, assume the greatest tuple comes from the list of supports of
and does not have value but, say, value It is easy to find the next
support of from since it suffices to follow the pointer nextValue[x]. But,
the pointer nextValue[y] points to the next tuple of So, how can we find
the next support of from Indeed, this algorithm needs to have in each
tuple not only a pointer to the next tuple of every pair variable/value in the
current tuple, but also the next tuple of every possible pair variable/value. The
field nextValue thus becomes a bi-dimensional array, indexed by variables and
values. That is to say, we will pay this algorithmic improvement with an increase
in space consumption for storing the tuples. The increase in space is a factor
of where is the size of the domains. Generally, the tuple set of a constraint
is large, is also large, and in that case, this approach is not possible.

We propose in this section a better approach. With a small and constant
increase in the consumption space it will be able to use the starting point as
above in time linear with

For doing this, we introduce a data structure, called hologram-tuples: it adds
to the above tuple data structure two additional arrays, whose indexes range
over the variables of the constraint, and an additional pointer:

Assume all the tuples are stored in an increasing order in a global list, thanks
to the pointer nextTuple. Assume also that nextValue [i], that links a sub-list
of this global list, preserves that order.

Assume the possible values for the variable in the set of tuples are
The value redundantValue [i] is a value among

It is precomputed in the following way:

first tuple in the global list has value 0 in redundantValue[i];
second tuple in the global list has value 1 in redundantValue[i];
j-th tuple in the global list has value modulo in redundantValue[i];

Arc-Consistency Filtering Algorithms 221

The field redundantNextValue[i] is a pointer to the next tuple in the
global list where

Then, we can state the following proposition which is the core of the method:

Proposition 5. Let a tuple. Let the smallest tuple that is greater
than and which is a support of With the hologram-tuples, we can find

in a time linear with

Proof: It suffices to iterate over the global list starting from Each explored
tuple is checked to see if it contains If this is the case, we have found

Otherwise, we check if the redundant value redundantValue[x]
is equal to If this is the case, redundantNextValue[x] contains a pointer
to Otherwise, we continue iterating over the global list. As by
construction each tuple, we know we explore at
most tuples.

The proof directly leads to an algorithm. Different uses more or less complex
of the hologram-tuples data structure are possible to keep a good complexity
in every case, but they are out of the scope of this paper. Nevertheless, in the
worst case we can explore all the tuples, thus the upper bound of the algorith-
mic complexity is not improved, it remains linear in the number of tuples, and
thus exponential in the arity of the constraint. But, the key point is that this
data structure may save a number of iterations over the list of tuples that is
exponential in the arity of the constraint.

6 Arbitrary Logical Combinations of Constraints

The previous three sections assume the existence of some functions over the
constraints that can appear in the not, or, and constraints. Those functions
(getSupport(),getNextSupport(),getCommonSupport(),getConflict,...)
defines a protocol to export supports and conflicts from constraints. This pro-
tocol is quite simple to implement for constraints given in extension. For those
constraints, we only detailed the most interesting functiongetCommonSupport ().
The other functions already exist in the literature; for example, ourgetConflict
is nothing else than the seekSupport of [7] over a constraint whose forbidden
tuples instead of allowed tuples are given in extension.

Thus, for now, we are able to use not,or,and constraints over constraints
given in extension, but we can have only flat logical combinations. Now we
address the question of an arbitrary logical combinations of constraints given in
extension like

Indeed, it suffices that the not,or,and constraints themselves implement
the protocol to export supports. This protocol is not difficult to implement over
those constraints. Consider the function It can be derived
immediately from the filtering algorithms we gave, since a filtering algorithm is
typically a loop over the values to get their supports.

As for the function getConflict, there is no more difficulty. GetConflict
over a constraint not(C) amounts to finding a support over C. GetConflict

222 Olivier Lhomme

over a constraint is equivalent to get a support over constraint
GetConflict over a constraint is equivalent

to get a support over constraint
Thanks to this protocol, the not, or, and constraints can themselves be

combined through logical connectives, and thus arbitrary logical combinations
of constraints can benefit from the filtering algorithms we propose. Thus, by
recurrence we can show the following proposition:

Proposition 6. Arc-consistency over an arbitrary complex logical formula on
constraints given in extension can be computed.

Of course, the problem of solving an arbitrary complex logical formula on
constraints given in extension is an NP-complete problem, and so arc-consistency
filtering for such a formula is also NP-complete.

7 Related Work and Perspectives

As for related work on conjunctions of constraints, an interesting point is raised
in [8]: they remark that it is sometimes worthwhile to solve independently a sub-
problem, that is a given conjunction of constraints, in order to solve the whole
problem more efficiently. Thus, they propose to estimate the benefits of devel-
opping a new constraint that corresponds to a subproblem by first solving the
subproblem “on the fly”. In our approach it will be more simple to try to solve
some subproblems (just put a and() around the constraints of the subproblem).
Furthermore, sometimes our approach will be as efficient as a specific constraint,
thus the developement of a new constraint may be avoided.

Among the perspectives of this work we can cite:

For constraints that are not given in extension but in intension like
the protocol can still be used if a support can be provided. Nevertheless, it is
much better to generalize this protocol to exploit for example the structure
of monotonic or arithmetic constraints as in AC-5 [9].
An arbitrary formula is an NP-complete problem, and several equivalent log-
ical formulas are possible for a given constraint. An interesting open problem
is to find a formula that gives the best efficiency of the filtering algorithms.
This problem is very important in databases and is known as query opti-
mization.
The hologram-tuples data structure is applicable in other contexts. We al-
ready mentioned databases algorithms, where the join operator on relations
is quite close to the and constraint. To stay in CP, the AC filtering algorithms
can be improved with the getCommonSupport() method and the hologram-
tuples: when seeking for a support for we can take into account the
values that remain in the domains of the other variables. For each other
variable whose values in the domain are noted we know that a sup-
port for should be also a support for at least one value of Let

the min over the of the smallest supports common with
and Then, all the tuples that are less than the max of
over all variables can be skipped.

Arc-Consistency Filtering Algorithms 223

8 Conclusion

The usual logical connectives between constraints have poor filtering algorithms.
Some simply do not filter at all the domains (as the standard filtering algorithms
for not, or and imply). Other are costly in CPU time, difficult to implement
and cannot be combined (as constructive disjunction).

In this paper, we propose new filtering algorithms over those logical connec-
tives. More precisely, the contributions are the following:

We propose filtering algorithms that achieve arc-consistency for the or, and
and not constraints.
The filtering algorithm we propose for the or constraint is always better than
constructive disjunction in efficiency for the same pruning. It improves con-
structive disjunction in the same way AC-6 [5] improved AC-4 [6]. Further-
more, the approach can be generalized to all meta constraints on cardinality
like: atmost (or at least) constraints are true among
We introduce the hologram-tuples data structure for constraints defined in
extension. It allows to drastically reduce the number of supports checks in
the filtering algorithm for the and.
Another contribution is the definition of a protocol to be implemented by
constraints to export supports. Thanks to this protocol, the constraints com-
bined through logical connectives can benefit from the filtering algorithms
we propose for not, or, and. Thus, arc-consistency over an arbitrary complex
logical formula can be computed.

We think that some applications that suffer from poor performance due to
the lack of domain reduction of logical connectives may be improved by the use
of the new filtering algorithms proposed in this paper. Furthermore, developpers
generally know the poor domain reductions performed by standard filtering al-
gorithms over logical connectives. Thus, they try to avoid them, by designing
specific constraints or trying to design more complex models. We hope that,
thanks to those new filtering algorithms, a first step is done that will make the
use of logical connectives in constraint programming much more frequent and
successful.

References

[1]
[2]

[3]

ILOG: ILOG JConfigurator 2.0 User’s Manual. ILOG S.A. (2003)
Lhomme, O.: An efficient filtering algorithm for disjunction of constraints. In:
Proc. of the the Conference on Principles and Practice of Constraint Program-
ming. (2003) 904–908
Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(FD). In Podelski, A., ed.: Constraint Pro-
gramming: Basics and Trends. LNCS 910. Springer (1995) (Châtillon-sur-Seine
Spring School, France, May 1994)

224 Olivier Lhomme

[4]

[5]

[6]

[7]

[8]

[9]

Würtz, J., Müller, T.: Constructive disjunction revisited. In Görz, G., Hölldobler,
S., eds.: 20th German Annual Conference on Artificial Intelligence. Volume 1137.,
Dresden, Germany, Springer-Verlag (1996) 377–386
Bessière, C.: Arc-consistency and arc-consistency again. Artificial Intelligence 65
(1994) 179–190
Mohr, R., Henderson, T. C.: Arc and path consistency revisited. Artificial Intel-
ligence 28 (1986) 225–233
Bessière, C., Régin, J. C.: Arc consistency for general constraints networks: pre-
liminary results. In: IJCAI’97, Nagoya (1997) 398–404
Bessière, C., Régin, J. C.: Enforcing arc consistency on global constraints by
solving subproblems on the fly. In: CP’99, Alexandria, VA, USA (1999) 103–117
Van Hentenryck, P., Deville, Y., Teng, C.: A generic arc-consistency algorithm
and its specializations. Artificial Intelligence 57 (1992) 291–321

Combining Forces to Solve
the Car Sequencing Problem

Laurent Perron and Paul Shaw

ILOG SA
9 rue de Verdun, 94253 Gentilly cedex, France

{lperron,pshaw}@ilog.fr

Abstract. Car sequencing is a well-known difficult problem. It has re-
sisted and still resists the best techniques launched against it. Instead of
creating a sophisticated search technique specifically designed and tuned
for this problem, we will combine different simple local search-like meth-
ods using a portfolio of algorithms framework. In practice, we will base
our solver on a powerful LNS algorithm and we will use the other local
search-like algorithms as a diversification schema for it. The result is an
algorithm is competitive with the best known approaches.

1 Introduction

Car sequencing [1, 2, 3, 4, 5, 6] is a standard feasibility problem in the Constraint
Programming community. It is known for its difficulty and there exists no defini-
tive method to solve it. Some instances are part of the CSP Lib repository.

As with any difficult problem, we can find two approaches to solve it. The
first one is based on complete search and has the ability to prove the existence
or the non-existence of a solution. This approach uses the maximum amount
of propagation [5]. The second approach is based on local search methods and
derivatives. These methods are, by nature, built to find feasible solutions and
are not able to prove the non-existence of feasible solutions. Recent efforts have
shown important improvements in this area [7].

Structured Large Neighborhood Search methods have been proved to be suc-
cessful on a variety of hard combinatorial problems, e.g., vehicle routing [8, 9],
scheduling (job-shop: shuffle [10], shifting bottleneck [11], forget-and-extend [12];
RCPSP: block neighborhood [13]), network design [14], frequency allocation [15].
It was natural to try structured LNS on the car sequencing problem.

The first phase of our work was rewarded by mixed results. Even with the
implementation of special improvements (or tricks), the Large Neighborhood
Search Solver was not giving satisfactory results as the search was stuck in local
minima. At this point, we saw two possible routes. The first one involved creating
dedicated and complex neighborhoods. The second one relied on the portfolio of
algorithms [16] and uses specific search algorithms as diversification routines on
top of the LNS solver. We chose the second route as it required much less effort
and, to this effect, we designed two simple and specific local search improvement
routines.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 225–239, 2004.
© Springer-Verlag Berlin Heidelberg 2004

226 Laurent Perron and Paul Shaw

In the end, we ended up with a effective solver for the car sequencing problem,
built with pieces of rather simple search algorithms.

The rest of the article is divided as follows: section 2 describes the car se-
quencing problem in more detail, section 3 describes the LNS solver and all the
improvements we tried to add to it, the successful ones as well as the unsuc-
cessful ones. We then present the block swapping method in section 4 and the
sequence shifting method in section 5. These three methods are combined using
an algorithm portfolio. We give experimental results in section 6.

2 The Car Sequencing Problem

The car sequencing problem is concerned with ordering the set of cars to be
fed along a production line so that various options on the cars can be installed
without over-burdening the production line. Options on the cars are things like
air conditioning, sunroof, DVD player, and so on. Each option is installed by
a different working bay. Each of these bays has a different capacity which is
specified as the proportion of cars on which the option can be installed.

2.1 The Original Problem

The original car sequencing problem is stated as follows: We are given a set of
options O and a set of configurations For each configuration

we associate a demand which is the number of cars to be built with
that configuration. We denote by the total number of cars to be built:

For each option we define a sequence length and a capacity
which state that no more than cars in any sequence of cars can have option
installed. The throughput of an option is given as a fraction Given
a sequence of configurations on the production line we can
state that:

where if and 0 otherwise.
This statement of the problem seeks to produce a sequence of cars which

violates none of the capacity restrictions of the installation bays; it is a decision
problem.

2.2 From a Decision Problem to an Optimization Problem

In this paper, we wish to apply local search techniques to the car sequencing
problem. As such, we need available a notion of quality of a sequence even if it
does not satisfy all the capacity constraints. Approaches in the past have softened
the capacity constraints and added a cost when the capacity of any installation
bay is exceeded; for example, see [7, 17]. Such an approach then seeks a solution
of violation zero by a process of improvement (or reduction) of this violation.

Combining Forces to Solve the Car Sequencing Problem 227

However, when Constraint Programming is used, this violation-based repre-
sentation can be undesirable as it results in little propagation until the violation
of the partial sequence closely approaches or meets its upper bound. (This upper
bound could be imposed by a local search, indicating that a solution better than
a certain quality should be found.) Only at this point does any propagation into
the sequence variables begin to occur.

We instead investigate an alternative model which keeps the capacity con-
straints as hard constraints but relaxes the problem by adding some additional
cars of a single new configuration. This additional configuration is an ‘empty’
configuration: it requires no options and can be thought of as a stall in the
production line. Such configurations can be inserted into a sequence when no
‘real’ configurations are possible there. This allows capacity restrictions to be
respected by lengthening the sequence of real configurations. The idea, then, is
to process all the original cars in the least possible number of slots. If all empty
configurations come at the end of the sequence, then a solution to the original
decision problem has been found. We introduce a cost variable which is defined
to be the number of slots required to install all cars minus So, when
no empty configurations are interspersed with real ones, and a solution to the
original decision problem has been found.

3 Large Neighborhood Search

Large Neighborhood Search (LNS) is a technique which is based upon a combi-
nation of local and tree-based search methods. As such, it is an ideal candidate
to be used when one wishes to perform local search in a Constraint Programming
environment. The basic idea is that one iteratively relaxes a part of the problem,
and then re-optimizes that part, hoping to find better solutions at each iteration.
Constraint programming can be used to add bounds on the search variable to
ensure that the new solution found is not worse than the current one.

Large Neighborhood Search has its roots in the shuffling procedures of [10],
but has become more popular of late thanks to its successes [8, 18, 19].

The main challenge in Large Neighborhood Search is knowing which part of
the problem should be relaxed and re-optimized. A random choice rarely does as
well as a more reasoned one, as was demonstrated in [8], for example. As such, in
this paper, much of the investigation will be based on exactly how LNS can be
used successfully on this car sequencing model, and what choices of relaxation
need to be made to assure this.

3.1 Basic Model

A LNS Solver is based on two components: the search part and the neighbor-
hood builder. Here, the search part is a depth-first search assignment procedure
that instantiates cars in one direction from the beginning to the end of the se-
quence. The values are chosen randomly with a probability of choosing a value
proportional to the number of unassigned cars for the same configuration

228 Laurent Perron and Paul Shaw

We have implemented two types of LNS neighborhoods. The solver chooses
one of them randomly at each iteration of the improvement loop with the same
probability. They both rely on a size parameter The first one is a purely
random one that freezes all cars except for the randomly chosen ones. The
second one freezes all cars except cars in an interval of length randomly placed
on the sequence, and except cars in the tail. Cars in the tail are defined as all cars
beyond the initial number of cars. (These cars are in fact pushed there by stalls.)
We have observed that removing one neighborhood degrades performances.

The solver is then organized in the following way. Given an intermediate
solution, we try to improve it with LNS. Thus, we choose one neighborhood
randomly and freeze all variables that do not appear in the neighborhood. Then
we choose a small search limit (here a fail limit), and we start a search on the
unfrozen variables with the goal described above. At each iteration, we select
the first acceptable solution (strictly better or equal in case of walking).

Finally, the goal is written in such a way that it will never insert a stall in
the sequence, thus stalls only appears through propagation and not through goal
programming.

3.2 Improvements and Non-improvements

In the first phase of our work, we tried to improve the performance of our solver
by adding special techniques to the base LNS solver. We briefly describe them
and indicate how successful these modifications were.

Walking. This improvement is important as we can see at the end of the ex-
perimental results section. Walking implies accepting equivalent intermedi-
ate solutions in a search iteration instead of requiring a strictly better one.
Intuitively, it allows walking over plateaus.

Tail Optimization. We tried to periodically fully re-optimize the tail of the se-
quence. As this tail is generally small, this is not computationally expensive.
Unfortunately, no improvements came from this method.

Swap-based Local Search. We also tried to apply a round of moves by swap-
ping cars. Unfortunately, the space of feasible solutions is sparse and to find
possible moves with this method, we had to relax the objective constraint.
This allowed the local search to diverge towards high cost solutions and it
never came back. We did not keep this method.

Circle Optimization. When there is only one stall remaining in the sequence,
we can try to re-optimize a section around this stall. Thus, given a distance

we can freeze all cars whose distance to the stall is greater than Then we
can try to re-optimize the unfrozen part. Unfortunately, this never worked.
Even with around 15, meaning 31 cars to re-optimize, this method just
wasted time and never found one feasible solution to the problem.

Growing the Neighborhood. We also tried to grow the size of the neighbor-
hood slowly after repeated failures. Unfortunately, this did not allow the
solver to escape the local minimum and just slowed down each iteration.
Thus the system was slower and was not finding new solutions. We did not
keep this change.

Combining Forces to Solve the Car Sequencing Problem 229

4 Block Swapping Methods

Following the long sequence of unsuccessful attempts at improving the LNS
solver, we thought of inserting between each LNS iteration another improvement
technique that would have the same characteristics in terms of running time, and
that would perform a search that would be orthogonal. Thus we would not spend
too much time on this method while it could act as a diversification schema for
the LNS solver.

The first diversification schema we implemented was a method that cuts the
sequence into blocks and tries to rearrange them.

The current solution is cut into blocks of random length (the minimum and
the maximum of this length are parameters of this method). We also make sure
there are no ‘empty’ configurations in the block and we remove the portions
before the first and after the last empty configuration. Then we try to rearrange
these blocks without changing the sequence inside a block.

This method is simple but describes moves that are not achievable with our
LNS neighborhood and with the LNS approach in general, as it may changes
many (and potentially all) variables if we insert a block near the beginning of
the sequence.

There are many improvements that can be added to this simple block swap-
ping schema.

4.1 Walking

Walking is always possible as a meta-heuristic on top of the block swapping
routine. We will show the effect of block swapping on the performance of the
complete solver in the experimental section.

4.2 Changing the Order of Instantiations of Blocks

As we have a limited number of fails, only a small number of swaps will be tried
in a call to the block swapping improvement method. We have tried different
block instantiation heuristics. The first one is simply to assign them from the
beginning to the end of the sequence and to do a simple depth first search. This
heuristic can be improved by using SBS [20] instead of depth-first search.

We can also change the order of blocks when they are assigned, trying to
prioritize the small blocks or to give a random order. These two orders did not
improve the performance of the solver.

However, we kept the SBS modification as it did improve the results of our
solver a little. This is compatible with the results we obtained in [19].

4.3 Changing the Size of Blocks

We also tried to change the size of blocks dynamically during the search in case of
repeated failure to improve the current solution. We found no interesting results

230 Laurent Perron and Paul Shaw

when doing so and thus we did not keep any block size modification schema in
our solver.

Yet, we did experiment with different maximum block sizes. The results are
reported in the experimental section. The minimum block size is set to three.

5 Sequence Shifting Methods

The block swapping method did improve the performance of the solver a lot as
can be seen in the experimental section phase. Unfortunately, there were still
soluble problems that were not solved with the combination of LNS and block
swapping. We then decided to implement another improvement method that
would also add something to the block swapping and the LNS methods.

We decided to implement a basic improvement schema that tries to shift the
sequence of cars towards the beginning, leaving the tail to be re-optimized.

Here is another search method that could be seen as a specialized kind of
LNS. We shift the cars towards the start of the sequence by a given amount and
re-optimize the unassigned tail using the default search goal.

As with the other two methods, we tried different modifications to this
method.

5.1 Walking

At this point in our work, walking was a natural idea to try. Strangely, it did not
improve our solver and even degraded its performance. Thus it was not kept.

5.2 Growing

The conclusion here is the same as with the block swapping phase. During all
our experiments, we did not find any simple length changing schema that would
improve the results of the solver. Thus, we did not keep any in our solver.

Yet, we did experiment with different fixed maximum lengths and these re-
sults are visible in the experimental results section. In those experiments, the
minimum shift length is set to one.

6 Experimental Results

We will give two kinds of results in this section. The first part deals with compar-
ative results between our solver and a re-implementation of the Comet article [7].
The second part describes the effect of parameter tuning on the performance of
our solver.

Combining Forces to Solve the Car Sequencing Problem 231

6.1 Experimental Context

In order to compare ourselves with the competition, we used what we thought
was the best competitor, namely the Comet code from [7]. Unfortunately, at
the time of writing the article, we did not have access to the comet solver, thus
we re-implemented the algorithm described in Pascal and Laurent’s article from
scratch (hereafter, we refer to this algorithm as RComet, for “re-implemented
Comet”). While this was helpful, it is not completely satisfactory and we plan to
do a comparison with the real thing (the real Comet code) as soon as possible.

Note that the Comet optimizer code uses a different optimization criterion
from us: namely violations of the capacity constraints. To perform a more reason-
able comparison, we decoded the order obtained by RComet to produce a number
of empty configurations. This comparison is more meaningful than comparing
violations to empty configurations, but it is far from perfect. The main problem
is that RComet code has no incentive to minimize stalls, and it is possible to have
two solutions and where has lower violations but has lower stalls. Thus,
although we give figures in terms of stalls for the RComet code, comparisons
only have real merit between run times for which both solvers found a solution
of cost 0.

All tests were run on a Pentium-M 1.4 GHz with 1 GB of RAM. The code
was compiled with Microsoft Visual Studio .NET 2003. Unless otherwise speci-
fied, the LNS approach uses block swapping with minimum size 3 and maximum
size 10 and sequence shifts with minimum shift 1 and maximum shift 30. Fur-
thermore, as we have tried avoid the addition of more control parameters, all
three basic methods use the same fail limit, and are applied in sequence with
the same number of calls.

All our experiments rely on randomness. To deal with unstable results, we
propose to give results of typical runs. By typical, we mean that, given a seed
for the random generator, we run all instances with the same seed and then we
do multiple full runs with different seeds. Then we select the results for the seed
that produced the median of the results. We applied this methodology to both
the RComet runs and runs from our solver.

All tests use a time limit of ten minutes. The tables report the time to get
to the best solution in the median run.

6.2 Results on the CSP Lib Data Set

Table 1 presents the result we obtained on all the randomly generated instances
of the CSP library. Unfortunately, except for one notable exception (90-05), all
are easy and most can be solved in a few seconds. Thus, except for the 90-05
instance, we will not use these problems in the rest of the article.

Table 2 presents our results on the hard problems from the CSP Lib.
This result demonstrates the competitiveness of the LNS approach. In par-

ticular, our implementation find solutions where RComet does and, on average,
finds solutions for problem 16-81, when RComet does not. On the other hand,
when both solvers find a solution, the RComet is significantly faster than our
solver.

232 Laurent Perron and Paul Shaw

6.3 Results on Randomly Generated Hard Instances

As we can see from the previous section, nearly all instances of the CSP Lib are
easy and all except one are solved in less than one minute of CPU time. Thus
we decided to generate hard instances. The random generator is described in the
next section. The following section describes the results we obtained on these
instances.

The Random Generator. The random generator we created takes three pa-
rameters: the number of cars the number of options and the number of
configurations We first generate the options, without replacement on the set
of option throughputs:

We then generate the configurations. The first configurations are struc-
tured, the configuration involving only one option: option We generate the
remaining configurations independently of each other, except for the stipu-
lation that no duplicate nor empty configurations are created. Each of these con-
figurations is generated by including each option independently with probability
1/3. Finally, the set of cars to construct is generated by choosing a configuration
randomly and uniformly for each car.

Problems are then rejected on two simple criteria: too easy, or trivially in-
feasible. A problem is considered too easy if more than half of its options are
used at less than 91%, and trivially infeasible if at least one of its options is

Combining Forces to Solve the Car Sequencing Problem 233

used at over 100%. The use of an option is defined as:
where is the minimum length sequence needed to accommodate option
occurring times:

This approach can take a long time to generate challenging instances due
to the large number of instances that are rejected. However, it does have the
advantage that there is little bias in the generation, especially when it comes
to the distribution of configurations. The random generator and the generated
instances are freely available from the authors. For this paper, we generated
problems with

The Results. Table 3 give results on the 20 instances we have created with the
previous problem generator with

On this problem suite, again our solver finds solutions to all five problems
solved by RComet, plus three more. On the problems where both methods find
solutions, RComet is again faster, but to a much lesser extent than on the CSP
Lib problems.

The conclusion from our experiments is that our solver is more robust and
provides solutions to harder problems when RComet cannot. However, for the
easier of the problems, RComet’s local search approach is more efficient.

234 Laurent Perron and Paul Shaw

6.4 Analysis of the Portfolio of Algorithms

We measure the effect of each method on the overall results. To achieve this, we
test all combinations of algorithms on a selected subset of problems.

Focus on Hard Feasible Instances. In this section, we focus on 12 hard
feasible instances. We will try to evaluate the effect of different parameters on
our search performance. We will consider instances 16-81, 26-92, 4-72, 41-22,
90-05 of the CSP Lib and instances 00, 04, 06, 08, 11, 18, 19 of our generated
problems. For these problems and each parameter set, we will give the number
of feasible solutions found with a cost of 0 (feasible for the original problem)
and the running time, setting the time of a run to 600 seconds if the optimal
solution is not found.

Experimental Results. Table 4 shows the results of all combinations of the
three methods (LNS, Block Swapping and Shift) on the twelve hard feasible
instances. The following table shows, for a given time, the number of problems
solved in a time below the given time.

The results are clear. None of the extra methods (Block Swapping and Se-
quence Shifting) are effective solving methods as they are not able to find one
feasible solution on the twelve problems.

Furthermore, block swapping is much better at improving our LNS imple-
mentation than sequence shifting. Furthermore, only the combination of the
three methods is able to find results for all twelve problems.

Finally, we can see that LNS + shift is slower than LNS alone. Thus sequence
shifting can only be seen as an extra diversification routine and not as a stand-
alone improvement routine at all.

6.5 Tuning the Search Parameters

We keep the same twelve hard feasible instances to investigate the effect of
parameter tuning on the result of the search. In particular, we will check the effect
of changing the maximum size of blocks used in block swapping, of changing the

Combining Forces to Solve the Car Sequencing Problem 235

maximum length of a shift, and the effect of LNS walking, block walking or shift
walking.

In order to conduct our experiments, we fix all parameters except one and
see the effect of changing one parameter only.

Changing Block Swapping Maximum Size. By changing the maximum size
of the block built in the block swapping phase, we can influence the complexity
of the underlying search and we can influence the total number of blocks. The
bigger the blocks, the fewer they are and the smaller the search will be.

With small blocks, we can better explore the effect of rearranging the end of
the sequence using block swapping. Thus we find easy solutions more quickly.
However, due to the depth-first search method employed, the search is concen-
trated at the end of the sequence. Thus if a non-optimal group of cars is located
early in the sequence, it is likely it will not be touched by the block swapping
routine as the maximum block size is small. Thus we will find easy solutions
faster and may not find the hard solutions at all.

On the other hand, if the maximum block size is big, then we add diversi-
fication at the expense of intensification; more tries will be unsuccessful, thus
slowing down the complete solver. For example, the number of solutions found
around 200s goes down as the maximum size of the blocks increases. Further-
more, the number of solutions found after fifty seconds slowly decreases from
four to two as the maximum block size grows from four to twenty-two.

Changing the Fail Limit. By changing the fail limit used in the small searches
of each loop, we explore the trade off between searching more and searching
more often. Our experience tell us that above a given threshold which gives poor
results, the performance of the LNS system degrades rapidly as we allow more
breadth in the inner search loops.

We see a peak at around eighty fails per inner search. There is also a definite
trend indicating that having too small a search limit is better than having a too
large one, which is consistent with our expectations. Also interesting is the fact
that a larger fail limit results in more solutions earlier, but is overtaken by

236 Laurent Perron and Paul Shaw

smaller limit after around three minutes of search. Thus, it would appear that
a larger fail limit can be efficient on easier problems, by tends to be a burden
on more difficult ones.

Changing the Sequence Shifting. By modifying the maximum length of
a shift, we can quite radically change the structure of the problem solved. Indeed,
the space filled by the shift is solved rather naively by the default search goal.
Thus a longer shift allows a fast recycling of a problematic zone by shifting it out
of the sequence, at the expense of creating long badly optimized tails. A shorter
shift sequence implies less freedom in escaping a local minima while keeping
quite optimized tails.

Changing the maximum length of a shift is hard to interpret. There is a
specific improvement around thirty where we can find solutions for all twelve
problems. But we lack statistical results to offer a definitive conclusion.

Combining Forces to Solve the Car Sequencing Problem 237

Forbidding LNS Walking. We can make the same tests with LNS and walking
meta-heuristics. These results are shown in table 8.

LNS walking is a mandatory improvement to the LNS solver. Without it,
our solver is not able to find any solution to the twelve problems. This is quite
different from our experience with other problems as this parameter was not so
effective. This is probably due to structure of the cost function: in car sequencing
problems, there are large numbers of neighboring solutions with equal cost.

Forbidding Block Walking. As we have seen in the basic Large Neighborhood
Search approach, walking in the LNS part is a key feature with regard to the
robustness of the search. We can wonder if this is the case with block swapping,
because if walking allows the solver to escape plateau areas, it also consumes
time and walking too much may in the end consume too much time and degrade
search performance. These results are shown in table 9.

Walking is a plus for the block swapping routine as it allows the solver to
find more solutions more quickly. In particular, we are able to find all twelve
solutions with it while we find only ten of them without it.

Allowing Shift Walking. We can make the same tests with shift and walking
meta-heuristics. These results are shown in table 9.

Strangely enough, allowing shift walking does not improve the results of our
solver and even degrades its performance. We do not have any clear explanation
at this time. We just report the results.

238 Laurent Perron and Paul Shaw

7 Conclusion and Future Work

The main contribution of this article is the different usage of the portfolio of
algorithms framework. Instead of combining multiple competing search tech-
niques to achieve robustness, we combine a master search technique (LNS) with
other algorithms whose purpose is not to solve the problem, but to diversify and
create opportunities for the master search. This approach means that several
simple searches can be used instead of one complicated search, leading to a more
modular and easily understood system. We also investigated many possible im-
provements and modifications to the base LNS architecture and report on them,
even if most of them were not successful.

Our method works well on the car sequencing problem, especially harder
instances. We have achieved good results by being able to solve all twelve hard
instances. In the future, we hope to compare against the Comet solver itself
when it becomes available.

examples in order to have real statistics on the performance of our solver.
In the future, we would like to further study our model based on insertion

of stalls vs. the more standard violation-based model. Good algorithms for one
model may not carry over into the other, and the full consequences of the mod-
eling differences warrant further analysis and understanding.

Finally, we would like to examine the effect of the introduction of problem-
specific heuristics into the LNS search tree, such as those explored in [17]. These
heuristics are reported to work well, even using a randomized backtracking
search, and such a comparison merits attention.

We would like to thank our referees for taking the the time to provide excel-
lent feedback and critical comment.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Parrello, B., Kabat, W., Wos, L.: Job-shop scheduling using automated reasoning:
a case study of the car-sequencing problem. Journal of Automated Reasoning 2
(1986) 1–42
Dincbas, M., Simonis, H., Hentenryck, P. V.: Solving the car-sequencing problem
in constraint logic programming. In Kodratoff, Y., ed.: Proceedings ECAI-88.
(1988) 290–295
Hentenryck, P. V., Simonis, H., Dincbas, M.: Constraint satisfaction using con-
straint logic programming. Artificial Intelligence 58 (1992) 113–159
Smith, B.: Succeed-first or fail-first: A case study in variable and value ordering
heuristics. In: Proceedings of PACT’97. (1997) 321–330 (Presented at the ILOG
Solver and ILOG Scheduler 2nd International Users’ Conference, Paris, July 1996)
Regin, J. C., Puget, J. F.: A filtering algorithm for global sequencing constraints.
In Smolka, G., ed.: Principles and Practice of Constraint Programming - CP97,
Springer-Verlag (1997) 32–46 LNCS 1330
Gent, I: Two results on car sequencing problems. Technical Report APES-02-
1998, University of St. Andrews (1998)
Michel, I., Hentenryck, P. V.: A constraint-based architecture for local search.
In: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, ACM Press (2002) 83–100

Combining Forces to Solve the Car Sequencing Problem 239

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In Maher, M., Puget, J. F., eds.: Proceeding of CP ’98, Springer-
Verlag (1998) 417–431
Bent, R., Hentenryck, P. V.: A two-stage hybrid local search for the vehicle routing
problem with time windows. Technical Report CS-01-06, Brown University (2001)
Applegate, D., Cook, W.: A computational study of the job-shop scheduling
problem. ORSA Journal on Computing 3 (1991) 149–156
J. Adams, E. B., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Management Science 34 (1988) 391–401
Caseau, Y., Laburthe, F.: Effective forget-and-extend heuristics for scheduling
problems. In: Proceedings of the First International Workshop on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimisation
Problems (CP-AI-OR’99). (1999)
Palpant, M., Artigues, C., Michelon, P.: Solving the resource-constrained project
scheduling problem by integrating exact resolution and local search. In: 8th In-
ternational Workshop on Project Management and Scheduling PMS 2002. (2002)
289–292
Le Pape, C., Perron, L., Régin, J. C., Shaw, P.: Robust and parallel solving of
a network design problem. In Hentenryck, P. V., ed.: Proceedings of CP 2002,
Ithaca, NY, USA (2002) 633–648
Palpant, M., Artigues, C., Michelon, P.: A heuristic for solving the frequency
assignment problem. In: XI Latin-Iberian American Congress of Operations Re-
search (CLAIO). (2002)
Gomes, C.P., Selman, B.: Algorithm Portfolio Design: Theory vs. Practice. In:
Proceedings of the Thirteenth Conference On Uncertainty in Artificial Intelligence
(UAI-97), New Providence, Morgan Kaufmann (1997)
Gottlieb, J., Puchta, M., Solnon, C.: A study of greedy, local search and ant
colony optimization approaches for car sequencing problems. In: Applications of
evolutionary computing (EvoCOP 2003), Springer Verlag (2003) 246–257 LNCS
2611
Chabrier, A., Danna, E., Le Pape, C., Perron, L.: Solving a network design
problem. To appear in Annals of Operations Research, Special Issue following
CP-AI-OR’2002(2003)
Perron, L.: Fast restart policies and large neighborhood search. In: Proceedings
of CPAIOR 2003. (2003)
Beck, J. C., Perron, L.: Discrepancy-Bounded Depth First Search. In: Proceedings
of CP-AI-OR 00. (2000)

[8]

[9]

Travelling in the World of Local Searches
in the Space of Partial Assignments*

Cédric Pralet and Gérard Verfaillie

LAAS-CNRS, Toulouse, France
{cpralet,gverfail}@laas.fr

Abstract. In this paper, we report the main results of a study which
has been carried out about the multiple ways of parameterising a local
search in the space of the partial assignments of a Constraint Satisfaction
Problem (CSP), an algorithm which is directly inspired from the decision
repair algorithm [1]. After a presentation of the objectives of this study,
we present the generic algorithm we started from, the various parame-
ters that must be set to get an actual algorithm, and some potentially
interesting algorithm instances. Then, we present experimental results
on randomly generated, but not completely homogeneous, binary CSPs,
which show that some specific parameter settings allow such a priori in-
complete algorithms to solve almost all the consistent and inconsistent
problem instances on the whole constrainedness spectrum. Finally, we
conclude with the work that remains to do if we want to acquire a better
knowledge of the best parameter settings for a local search in the space
of partial assignments.

1 Local Search in the Space of Partial Assignments

1.1 Depth-First Tree Search in Constraint Satisfaction

The basic algorithm, designed to solve Constraint Satisfaction Problems
(CSP [2]), consists of a depth first search in the space of the partial assignments,
organised into a tree the root of which is the empty assignment, leaves are com-
plete assignments, and each node, except the root, results from the assignment of
an unassigned variable in its father node. Variable and value heuristics are used
to choose pertinently the next variable to assign and the value to assign to it [3].
Constraint propagation algorithms are also used to enforce any local consistency
property, like for example arc consistency, at each node of the tree [4, 5]. These
algorithms allow domains of the unassigned variables to be reduced and eventu-
ally wiped out. In the latter case, inconsistency of the associated subproblem is
proven and another value for the last assigned variable is chosen. Producing and
recording value removal explanations allow other forms of backtracking than this
chronological one to be performed, like for example conflict directed backjumping
[6].

* The study reported in this paper has been initiated when both authors were working
at ONERA, Toulouse, France.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 240–255, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Travelling in the World of Local Searches 241

The main advantage of such a tree search is its completeness: if the problem
instance is consistent, a solution is found; if not, inconsistency is established.
Another advantage is its limited space complexity, which is only a linear function
of the instance size. But its lack of scalability in terms of CPU-time prevents
it from being used for solving large instances: at least for the hardest instances
at the frontier between consistency and inconsistency, its time complexity is an
exponential function of the instance size.

1.2 Local Search in Constraint Satisfaction

On the contrary, local search algorithms perform an unordered search in the
space of the complete assignments: each move goes from a complete assignment
to another one in its neighbourhood, generally randomly chosen with a heuristic-
biased probability distribution (choice of the variable to unassign and of the new
value to assign to it). When solving CSPs, each neighbour assignment is eval-
uated via constraint checking [7]. Meta-heuristics, such as simulated annealing,
tabu search, or others, allow various search schemes to be defined, including
restart mechanisms [8].

A first advantage of local search is its limited space complexity, which is,
as with depth first tree search, only a linear function of the instance size. Its
main advantage is however its far better scalability in terms of CPU-time. But
it suffers from at least three shortcomings:

its incompleteness: if the problem instance is consistent, there is no guarantee
that a solution will be found; if not, there is no mechanism which allows
inconsistency to be established;
its non deterministic behaviour: when random choice mechanisms are used,
running twice the same algorithm on the same instance may give different
results;
its difficulty handling constraints: on the one hand, because local search is
basically an optimisation method, it has some difficulty handling correctly
together constraints and criterion; on the other hand, because only com-
plete assignments are considered, constraint propagation is not used and is
replaced by a simple constraint checking.

1.3 Hybridisations between Tree Search, Local Search, and
Constraint Propagation

This landscape, which has been recognised for a long time [9], pushed researchers
and practitioners to explore combinations of tree search, local search, and con-
straint propagation and to propose various hybridisation schemes.

Many of these schemes led to loose combinations: two kinds of search on the
same problem in sequence or in parallel [10, 11]; a kind of search on a mas-
ter subproblem and another kind on the complementary slave subproblem [12].
Stronger combinations have been however proposed with large neighbourhood
local searches [13, 14, 15]: when neighbourhoods become large, they can no longer

242 Cédric Pralet and Gérard Verfaillie

be enumerated, as they are in basic local search; combinations of tree search and
constraint propagation become thus good candidates for exploring them.

1.4 A Stronger Hybridisation Scheme between Local Search and
Constraint Propagation

Under the name of decision repair, a stronger hybridisation scheme has been
proposed in [1]. It originated from the following observations: strong combination
between search and deduction, such as exists between tree search and constraint
propagation, is not possible with basic local search, because it manages only
complete assignments; but, it is possible as soon as one considers a local search
which manages partial assignments.

More precisely, decision repair starts from any assignment A (empty, partial,
or complete). It applies any local consistency enforcing algorithm (constraint
propagation) on the associated subproblem. In case of consistency, the neigh-
bourhood is the set of assignments that result from the assignment of any unas-
signed variable in A, In case of inconsistency, it is on the contrary the set of
assignments that result from the unassignment of any assigned variable in A.
This procedure is iterated until a complete consistent assignment (a solution)
has been found, inconsistency has been proven, or a time limit has expired.

1.5 Expected Gains and Costs

Expected gains and costs can be analysed from the local search and tree search
starting points.

From the local search starting point, constraint propagation from partial as-
signments may avoid either exploring uselessly locally inconsistent subprob-
lems, or considering inconsistent values in locally consistent subproblems.
But, because constraint propagation from a partial assignment is far more
costly than constraint checking on a complete assignment, it is certain that
the time taken by a local move will increase. In fact, we hope that, as it has
been observed for the combination between tree search and constraint prop-
agation, the decrease in number of moves will compensate for the increase in
the cost of each move. To get this result, it is necessary to design constraint
propagation algorithms which are both incremental and decremental, that
is which support efficiently variable assignments as well as unassignments1.

With depth first tree search, we need only incremental algorithms which support
variable assignments, because the search is performed in a tree. Any backtrack, even
in case of backjumping, comes back to a previously visited partial assignment for
which constraint propagation has been already performed and its results recorded
for example on a stack. If we allow any assigned variable to be unassigned in case of
backtrack, the search is performed no more in a tree, but in a neighbourhood graph.
The partial assignment that results from a backtrack may have never been visited.
Results of constraint propagation are not available and must be decrementally com-
puted. This is what occurs with dynamic backtracking [16, 17], which is a particular
case of decision repair.

1

Travelling in the World of Local Searches 243

Fig. 1. Various forms of backtracking

From the tree search starting point, the main novelty is the complete free-
dom of choice of the variable to unassign. With chronological backtracking,
the last assigned variable is systematically unassigned. With conflict directed
backjumping [6], all the assigned variables from the last one to the last one
involved in the current conflict are unassigned. With dynamic backtrack-
ing [16], which is no longer a tree search, only the last one involved in the
current conflict is unassigned. With partial order backtracking [18, 19], still
more freedom is available by following only a partial order between variables.
In fact, decision repair is similar to incomplete dynamic backtracking [20].
As does incomplete dynamic backtracking, it lays down completeness for effi-
ciency and scalability. Potentially, this freedom allows the main shortcoming
of depth first tree search (the possibility of getting stuck in an inconsistent
subtree because of wrong assignments of the first variables) to be fixed (see
Figure 1). But, as it has been already said, the need for incremental and
decremental constraint propagation algorithms may lead to more costly as-
signments and unassignments. We hope that the more intelligent search will
compensate for that.

1.6 Study Objectives and Article Organisation

In [1], N. Jussien and O. Lhomme proposed a specific instance of decision repair,
called tabu decision repair, and evaluated it on open-shop scheduling problems.
The objective of our study was slightly different: starting from a minimal decision
repair scheme, we aimed at listing all the parameters that must be set to get an
actual algorithm, and at exploring and evaluating a priori interesting algorithm
instances. In other words, our main objective was not to exhibit an efficient
instance, but to acquire knowledge about all the possible parameter settings
and their relative efficiency, with the long-term objective of acquiring about local

244 Cédric Pralet and Gérard Verfaillie

Fig. 2. A generic decision repair algorithm

search in the space of partial assignments of CSPs the same level of knowledge
as has been acquired about depth-first tree search.

After a presentation of the generic algorithm we started from in Section 2,
we present its degrees of freedom in Section 3, some possible algorithm instances
in Section 4, the results of the experiments we carried out in Section 5, and
directions for future work in Section 6.

In this paper, we only consider satisfaction problems (no optimisation crite-
rion) involving unary and binary constraints, although decision repair can deal
with constraints of any arity.

2 A Generic Algorithm

We started from a very generic version of decision repair (see Figure 2) derived
from the first algorithm presented in [1].

The starting assignment A may be empty, partial, or complete. Function
Initial_Filter uses constraint propagation to enforce any local consistency prop-
erty on the problem P restricted by A. It returns True if P is locally consistent
and False if not. Function Extend_Assignment chooses a variable which is not
assigned in the current assignment A and extends A by choosing a value for
It returns if there is no such variable. It is the case when A is complete.
Conversely, function Repair_Assignment chooses a variable which is assigned
in the current assignment A and repairs A by unassigning It returns 0 if
there is no such variable. It is the case when A is empty or when inconsistency
explanations (sets of assigned variables the assignments of which imply inconsis-
tency) are produced and recorded and the current inconsistency explanation is
empty. Functions Incremental_Filter and Decremental_Filter use respectively

Travelling in the World of Local Searches 245

Fig. 3. Possible outputs on consistent and inconsistent problem instances

incremental and decremental algorithms to enforce local consistency, without
computing everything again from scratch. As does Initial_Filter, they return
True if the current subproblem is locally consistent and False if not. Function
Stop implements any stopping criterion. The algorithm ends with a proof of
consistency of P and an associated solution (answer yes), with a proof of incon-
sistency of P (answer no), or with nothing in case of activation of the stopping
criterion (answer ?). See Figure 3 for a comparison with the outputs of classical
tree or local searches. Note the complete symmetry of the algorithm, with regard
to extension and repair and to consistency and inconsistency.

To put things in a more concrete form, we show in Figures 5 and 6 possible
traces of a decision repair algorithm on a consistent graph colouring problem
and on an inconsistent one (see Figure 4).

In both cases, after each assignment of a variable the algorithm performs
forward checking from to the current domains of the unassigned variables.
For each removed value, the singleton is recorded as a removal explanation.
When the domain of a variable is wiped out, a variable is chosen to be
unassigned in the current inconsistency explanation, that is in the union of the
value removal explanations in the domain of After unassignment of a value
removal explanation is created for its previous value (the previous inconsistency
explanation minus Irrelevant value removal explanations, those that involve

are then removed. The associated values are restored. But forward checking
must be performed again from the assigned variables to the current domains
of the unassigned ones. For assignment, the variable of lowest index among the
variables of smallest current domain is chosen. Values are tried in the order
{R, G,B} for and {R, B} for For unassignment, a variable is randomly
chosen in the current inconsistency explanation.

Because decision repair in not a tree search but a local search in the space
of partial assignments, its trace is only a sequence of states, each state being

Fig. 4. A consistent graph colouring problem and an inconsistent one

246 Cédric Pralet and Gérard Verfaillie

Fig. 5. A possible execution of decision repair on

composed of a partial assignment and of a set of value removal explanations.
In each state, initially forbidden values are pointed out in dark grey, current
assignments by a small black square, and currently removed values by the in-
dices of the variables that are involved in their removal explanation. Values the
removal explanation of which is empty, those that are inconsistent whatever the
assignment of the other variables is, are pointed out in light grey.

For example, on (see Figure 5), in state the domain of variable is
wiped out and all the other variables are involved in the inconsistency expla-
nation. We assume that variable is chosen to be unassigned. This is what is
done in state Value G is removed from the domain of with as
an explanation. The value removal explanations in which was involved are
forgotten and associated values restored: value G for and But forward
checking the current domain of removes value B with as an explanation.

On in state (see Figure 6), the domain of variable is wiped out
with as an explanation. Variable is unassigned and its previous value R
is removed with an empty explanation. It is thus sure that value R for does
not take part to any solution and can be removed from its domain. Similarly,
when, in state the domain of variable is also wiped out with as an
explanation, variable is unassigned and its previous value B is removed with
an empty explanation. It is thus sure that value B for does not take part to
any solution and can be removed from its domain. Because the domain of is
now empty, inconsistency of is proven.

3 Parameter Settings

We can now list all the parameters that take place in such an algorithm:

1. the local consistency property which is enforced via constraint check-
ing or constraint propagation at each step of the algorithm (functions
Initial_Filter, Incremental_Filter, and Decremental _Filter). If a partial
assignment is considered as consistent when all the completely assigned con-
straints are satisfied, we get the local search counterpart of backward check-
ing. If it is considered as consistent when no domain of any unassigned vari-

Travelling in the World of Local Searches 247

Fig. 6. A possible execution of decision repair on

2.

3.

4.

able is wiped out by forward checking, we get the local search counterpart
of forward checking [4]. If it is considered as consistent when no domain of
any unassigned variable is wiped out by arc consistency enforcing, we get
the local search counterpart of MAC [5]. Other forms of local consistency
may be obviously considered;
the way local consistency is enforced at the beginning of the search and at
each step of the search after variable assignment or unassignment. Questions
arise particularly about variable unassignments (function Decrementa_
Filter) and the way of avoiding propagating constraints again from scratch
after each unassignment. If no information is recorded when propagating con-
straints, constraint graph information can be used to limit the work to do in
case of unassignment [21, 22]. If the variable assignment order is recorded,
it can also be used to limit this work. In [20], conflict counts associate with
any value of any variable the number of current conflicting assignments and
are used with forward checking to know at each step of the algorithm if
a value of a variable belongs or not to its current domain (null or not null
counter). Finally, if value removal justifications or explanations are recorded
when propagating constraints, more value removals can be saved in case of
unassignment [23, 24, 25, 17];
the way these value removal explanations are handled when they are pro-
duced and recorded. Can more than one removal explanation be recorded
per value (functions Incremental_Filter and Decremental_Filter)? Must
irrelevant removal explanations (inconsistent with the current assignment)
be maintained (function Decremental_Filter)? When irrelevant removal ex-
planations are maintained, how should the learning memory size be limited?
the variables and values that are affected by constraint propagation (func-
tions Initial_Filter, Incremental_Filter, and Decremental_Filter). With
depth first tree search, only the variables that are not assigned yet and the
values in their domains that have not been removed yet are affected by con-
straint propagation. This is justified by the fact that the search goes always
forward: more variables are assigned, more values are removed in the do-
mains of the unassigned variables. The backward moves are not free and use

248 Cédric Pralet and Gérard Verfaillie

5.

6.

7.

a stack to recover previous states. With decision repair, the search goes freely
forward and backward: any variable can go at any step from the unassigned
to the assigned state and inversely; the same way, any value of any variable
can go at any step from the present to the removed state and inversely. In
such conditions, it may be interesting both for the sake of efficiency and of
information quality to perform constraint propagation on all the variables
(unassigned and assigned) and all the values of the initial domains (present
or removed). Such a systematic computing is obviously more costly, but can
make the computing at each step easier and provide information for better
heuristic choices (see below);
the heuristics that are used by function Extend_Assignment to choose the
variable to assign in case of local consistency and the value to assign to it.
All the studies that have been carried out about that in the context of depth
first tree search [3] are a priori reusable in this larger local search context;
the heuristics that are used by function Repair_Assignment to choose the
variable to unassign in case of inconsistency. Because this choice is the main
novelty of decision repair with regard to depth first tree search, completely
new heuristics must be designed and experimented for that. Various criteria
should be a priori taken into account to judge the interest in unassigning
a variable of current value initial domain and current domain

(i) the fact that is involved in the current inconsistency, whatever
the way this inconsistency is computed (constraint graph information, value
removal explanations . . .) , (ii) the number of constraints in which is in-
volved (its degree in the constraint graph), (iii) the number of values in the
domains of the other variables that are inconsistent with (in the con-
sistency graph), (iv) the quality of with regard to any static heuristic
ordering of (v) the size of and (vi) the removal explanations
already produced and recorded for the values in (vii) the rank
of in the current assignment order, (viii) the value removal explanations
that would be destroyed and forgotten in the domains of the other variables
in case of unassignment of Note that we can build from these criteria
unassignment heuristics which aim at building a consistency proof (a solu-
tion) by removing bad choices (for example, to unassign a variable the value
of which is inconsistent with the greatest number of values in the domains
of the other variables) and other ones which aim at building an inconsis-
tency proof (for example, to unassign a variable the domain size of which is
the smallest, or a variable for which the number of destroyed value removal
explanations in the domains of the other variables would be the smallest
in case of unassignment, in order to destroy as less as possible the proof in
progress);
the presence or absence of priority for assignment (resp. unassignment) to
the variable that has been unassigned (resp. assigned) just before, when
an assignment (resp. unassignment) immediately follows an unassignment
(resp. assignment). See for example [26]. Such priorities limit the choice
of the variable to assign or to unassign in these situations, but favour the

Travelling in the World of Local Searches 249

8.

production of inconsistency proofs. When both priorities are present, we say
that the associated algorithm perseveres.
finally, the stopping criterion which is used by function Stop when no result
yes or no has been already produced: CPU-time, number of assignment
extensions or repairs . . .

4 Some Algorithm Instances

This very generic algorithm scheme includes many known instances.

Depth first tree search with chronological backtracking is an instance of de-
cision repair where the last assigned variable is systematically chosen to be
unassigned in case of inconsistency. In such conditions, the current state of
the algorithm is a partial assignment equipped with an assignment order and
the neighbourhood graph becomes a tree. A stack can be used to avoid per-
forming constraint propagation again in case of unassignment. Completeness
is guaranteed without the help of any inconsistency explanation.
Dynamic backtracking [16, 17] is another instance where value removal ex-
planations are produced and recorded as long as they remain relevant (con-
sistent with the current assignment) and where, in case of inconsistency, the
last assigned variable involved in the current inconsistency explanation is sys-
tematically chosen to be unassigned. The neighbourhood graph is no more
a tree. A stack cannot be used anymore. But completeness is guaranteed.
Partial order backtracking [18, 19] is an extension of dynamic backtracking
where, in case of inconsistency, an assigned variable, involved in the current
inconsistency explanation and following a partial order between variables
which results from the previously recorded value removal explanations, is
chosen to be unassigned. Completeness is still guaranteed.
Incomplete dynamic backtracking [20] is another instance where constraint
propagation is performed via forward checking on all the variables (assigned
or not) and all their values (removed or not), where conflict counts associate
with any value of any variable the number of current conflicting assignments,
and where the choice of the variable to unassign2 in case of inconsistency is
free (either random or following a given heuristics). As a consequence of this
complete freedom, completeness is no more guaranteed.
Even min conflicts [7] can be considered as an instance of decision repair
where constraint checking is only performed on complete assignments (all the
partial assignments are assumed to be consistent), where the explanation for
the inconsistency of a complete assignment is the union of the variables of the
unsatisfied constraints, where, in case of inconsistency, a variable is randomly
chosen in the current inconsistency explanation to be unassigned, and where

In fact, incomplete dynamic backtracking allows several variables to be unassigned at
the same time. The number of unassigned variables at each backtrack step is a new
algorithm parameter. This option could be introduced in the generic decision repair
scheme.

2

250 Cédric Pralet and Gérard Verfaillie

a new value is randomly chosen among those that minimise the number
of unsatisfied constraints if they were selected. In absence of inconsistency
explanation recording, completeness is not guaranteed.

Beyond these known algorithms and without any exhaustivity intention, new
potentially interesting algorithm instances could be considered round specific
unassignment heuristics.

A first obvious option consists in choosing the variable to unassign randomly
in the current inconsistency explanation, as in min conflicts, whatever the
way this explanation is built. Such a heuristic we refer to as UHrand could
be profitably integrated into a global randomisation and restart scheme,
inspired from [27].
A second option consists in choosing the variable to unassign randomly
among the variables of the current inconsistency explanation the assignment
of which is the most doubtful. If a static heuristic value is associated with
each value of each variable, we can for example consider that the doubtful
nature of an assignment is measured by the difference between the heuristic
values of the first and of the second value. Such a heuristic we refer to as
UHmostdoubt aims at undoing quickly doubtful choices in order to produce
solutions.
A third option consists in choosing the variable to unassign randomly among
the variables of the current inconsistency explanation that are the least in-
volved in value removal explanations in the domains of the other variables.
Such a heuristic we refer to as UHmindestroy aims at keeping recorded as
long as possible value removal explanations in order to build inconsistency
proofs. It can be improved by giving higher weights to removal explanations
that have been built by backtrack than to removal explanations that have
been directly built by constraint propagation, because the first ones gen-
erally needed more work to be produced, and by giving higher weights to
smaller removal explanations. It can be also improved by performing con-
straint propagation on all the variables and not only on the unassigned ones
in order to get more precise heuristic information.

5 Experiments

We carried out experiments on many problems and instances, with many al-
gorithmic variants, but we report in this paper only the ones that have been
carried out on randomly generated, but not completely homogeneous, binary
CSPs, with a limited number of algorithmic variants: the ones that appeared to
be potentially more efficient than the classical tree or local search algorithms.

5.1 Problem Instances

We considered binary CSPs, randomly generated with the usual four parameters:
number of variables domain size (the same for all the variables), graph

Travelling in the World of Local Searches 251

connectivity and constraint tightness (the same for all the constraints),
but we broke their homogeneity by partitioning the set of variables into nc
clusters of the same size and by introducing a graph connectivity inside each
cluster (the same for all the clusters) and a lower one between clusters.

The experimental results that are shown in Figures 7 and 8 have been ob-
tained with nc = 5, and varying between
30 and 40 around the complexity peak. 10 instances have been generated for each
value of Note that, for all the generated instances are consistent,
that, for all of them are inconsistent, and that, for only one
generated instance out of 10 is inconsistent.

5.2 Algorithms

The algorithms we compared are backtrack (BT), conflict directed backjump-
ing (CBJ), dynamic backtracking (DBT), min conflicts (MC), and four vari-
ants of decision repair (DR(rand), DR(mostdoubt), DR(mindestroy,uvar), and
DR(mindestroy,avar)).

Except MC, all of these algorithms perform forward checking. Except MC and
BT, all of them compute and record value removal explanations, and maintain
only those that remain relevant. Forward checking is only performed on the
current domains. Except for the fourth variant of DR (DR(mindestroy,avar)), it
is only performed on the unassigned variables. Except MC, all of these algorithms
persevere. Except for MC, the assignment heuristics consists in choosing an
unassigned variable of smallest ratio between its current domain size and its
degree in the constraint graph. Except for MC and the second variant of DR
(DR(mostdoubt)), the value heuristic is random. The four variants of DR have
in common the choice of the variable to unassign inside the current inconsistency
explanation. However, they differ mainly in the way of making this choice.

DR(rand) uses UHrand as an unassignment heuristic (see Section 4).
DR(mostdoubt) uses UHmostdoubt as an unassignment heuristic (see Sec-
tion 4) and VHmineff as a static value heuristic. This value heuristic results
from the pre-computing for each value of each variable of the number of
values it removes in the domains of the other variables. Values are ordered
in each domain according to an increasing value of this number.
DR(mindestroy,uvar) uses UHmindestroy as an unassignment heuristic (see
Section 4).
DR(mindestroy,avar) differs from DR(mindestroy,uvar) only in that forward
checking is performed on all the variables.

5.3 Experimental Results

Because all the considered algorithms involve random choices, each of them has
been run 20 times on each instance. Each run has been given a maximum CPU-
time of 120 seconds. A CPU-time of 120 seconds is associated with any run
which did not finish by the deadline. Figure 7 reports the median CPU-time as

252 Cédric Pralet and Gérard Verfaillie

Fig. 7. Median CPU-time on randomly generated problem instances

a function of Figure 8 reports the number of runs which did not finish by the
deadline, among the 200 (20 · 10) for each value of These results allow us to
make the following observations.

If MC may be efficient on consistent instances, it becomes quickly inefficient
when approaching the consistency/inconsistency frontier. It is, as other clas-
sical local search algorithms, unable to solve inconsistent instances.
BT, CBJ, and DBT present the same usual behaviour with a peak of com-
plexity at the consistency/inconsistency frontier. Results of CBJ and DBT
are similar and both clearly better than those of BT.
DR(rand) and DR(mostdoubt) produce quasi identical results and present
a behaviour which is similar to that of MC. Although they are the most
efficient on consistent instances at the consistency/inconsistency frontier,
they are, as MC and other classical local search algorithms, unable to solve
inconsistent instances.
Although they are basically local search algorithms in the space of par-
tial assignments, and thus a priori incomplete, DR(mindestroy,uvar) and
DR(mindestroy,avar) present the same behaviour as do complete algorithms
such as BT, CBJ, and DBT. Moreover they are the most efficient on inconsis-
tent instances at the consistency/inconsistency frontier and allow the great-
est number of instances to be solved by the deadline. Note a small advan-
tage for DR(mindestroy,uvar) when compared with DR(mindestroy,avar) in
terms of CPU-time on consistent instances at the consistency/inconsistency
frontier: performing forward checking on all the variables is too costly. On
the contrary, note a small advantage for DR(mindestroy,avar) when com-

Travelling in the World of Local Searches 253

Fig. 8. Number of unsolved problem instances within 120 seconds

pared with DR(mindestroy,uvar) in terms of number of solved instances at
this frontier: performing forward checking on all the variables provides the
algorithm with a better unassignment heuristic.

6 Future Work

Beyond these first results, many questions remain unanswered and need further
experimental and theoretical studies. Among them:

Are there unassignment heuristics that can better solve consistent instances
and other ones that can better solve inconsistent ones? If we know nothing
about consistency or inconsistency, would it be profitable to run two algo-
rithms concurrently, one with the objective of building a solution and the
other one with the objective of building an inconsistency proof?
What must be the unassignment heuristics to allow inconsistent instances to
be solved? Can we define sufficient conditions on these heuristics to guarantee
algorithm termination without any stopping criterion, and thus algorithm
completeness? Can we, still better, define necessary conditions?
What is the influence of the level of local consistency, checked on each partial
assignment, on the efficiency of this kind of local search (forward checking,
arc consistency . . .) , and, beyond that, the precise influence of all the pa-
rameters listed in section 3?

254 Cédric Pralet and Gérard Verfaillie

Acknowledgements

Many thanks to Narendra Jussien and Olivier Lhomme for the decision repair
algorithm and particularly to Narendra for fruitful discussions about this algo-
rithm.

References

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Jussien, N., Lhomme, O.: Local Search with Constraint Propagation and Conflict-
based Heuristics. Artificial Intelligence 139 (2002)
Tsang, E.: Foundations of Constraint Satisfaction. Academic Press Ltd. (1993)
Dechter, R., Pearl, J.: Network-based Heuristics for Constraint Satisfaction Prob-
lems. Artificial Intelligence 34 (1987)
Haralick, R., Elliot, G.: Increasing Tree Search Efficiency for Constraint Satisfac-
tion Problems. Artificial Intelligence 14 (1980)
Sabin, D., Freuder, E.: Contradicting Conventional Wisdom in Constraint Satis-
faction. In: Proc. of ECAI (1994)
Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problems. Com-
putational Intelligence 9 (1993)
Minton, S., Johnston, M., Philips, A., Laird, P.: Minimizing Conflicts: a Heuristic
Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial
Intelligence 58 (1992)
Aarts, E., Lenstra, J., eds.: Local Search in Combinatorial Optimization. John
Wiley & Sons (1997)
Langley, P.: Systematic and Nonsystematic Search Strategies. In: Proc. of AAAI
(1992)
Kask, K., Dechter, R.: GSAT and Local Consistency. In: Proc. of IJCAI (1995)
Schaerf, A.: Combining Local Search and Look-Ahead for Scheduling and Con-
straint Satisfaction Problems. In: Proc. of IJCAI (1997)
Zhang, J., Zhang, H.: Combining Local Search and Backtracking Techniques for
Constraint Satisfaction. In: Proc. of AAAI (1996)
Pesant, G., Gendreau, M.: A View of Local Search in Constraint Programming.
In: Proc. of CP (1996)
Shaw, P.: Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems. In: Proc. of CP (1998)
Lobjois, L., Lemaître, M., Verfaillie, G.: Large Neighbourhood Search using Con-
straint Propagation and Greedy Reconstruction for Valued CSP Resolution In:
Proc. of the ECAI Workshop on “Modelling and Solving with Constraints” (2000)
Ginsberg, M.: Dynamic Backtracking. Journal of Artificial Intelligence Research
1 (1993)
Jussien, N., Debruyne, R., Boizumault, P.: Maintaining Arc-Consistency within
Dynamic Backtracking. In: Proc. of CP (2000)
Ginsberg, M., McAllester, D.: GSAT and Dynamic Backtracking. In: Proc. of KR
(1994)
Bliek, C.: Generalizing Partial Order and Dynamic Backtracking. In: Proc. of
AAAI (1998)
Prestwich, S.: Combining the Scalability of Local Search with the Pruning Tech-
niques of Systematic Search. Annals of Operations Research 115 (2002)

Travelling in the World of Local Searches 255

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Berlandier, P., Neveu, B.: Maintaining Arc Consistency through Constraint Re-
traction. In: Proc. of ICTAI (1994)
Georget, Y., Codognet, P., Rossi, F.: Constraint Retraction in CLP(FD): Formal
Framework and Performance Results. Constraints : An International Journal 4
(1999)
Bessière, C.: Arc-Consistency in Dynamic Constraint Satisfaction Problems. In:
Proc. of AAAI (1991)
Debruyne, R.: Arc-Consistency in Dynamic CSPs is no more Prohibitive. In:
Proc. of ICTAI (1996)
Fages, F., Fowler, J., Sola, T.: Experiments in Reactive Constraint Logic Pro-
gramming. Journal of Logic Programming 37 (1998)
Sabin, D., Freuder, E.: Understanding and Improving the MAC Algorithm. In:
Proc. of CP (1997)
Gomes, C., Selman, B., Kautz, H.: Boosting Combinatorial Search Trough Ran-
domization. In: Proc. of AAAI (1998)

A Global Constraint for Nesting Problems*

Cristina Ribeiro1,2 and Maria Antónia Carravilla1,2

FEUP — Faculdade de Engenharia da Universidade do Porto
2 INESC — Porto

Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
{mcr,mac}@fe.up.pt

Abstract. Nesting problems are particularly hard combinatorial prob-
lems. They involve the positioning of a set of small arbitrarily-shaped
pieces on a large stretch of material, without overlapping them. The
problem constraints are bidimensional in nature and have to be imposed
on each pair of pieces. This all-to-all pattern results in a quadratic num-
ber of constraints.
Constraint programming has been proven applicable to this category of
problems, particularly in what concerns exploring them to optimality.
But it is not easy to get effective propagation of the bidimensional con-
straints represented via finite-domain variables. It is also not easy to
achieve incrementality in the search for an improved solution: an avail-
able bound on the solution is not effective until very late in the position-
ing process.
In the sequel of work on positioning non-convex polygonal pieces using
a CLP model, this work is aimed at improving the expressiveness of con-
straints for this kind of problems and the effectiveness of their resolution
using global constraints.
A global constraint “outside” for the non-overlapping constraints at the
core of nesting problems has been developed using the constraint pro-
gramming interface provided by Sicstus Prolog. The global constraint
has been applied together with a specialized backtracking mechanism to
the resolution of instances of the problem where optimization by Integer
Programming techniques is not considered viable.
The use of a global constraint for nesting problems is also regarded as
a first step in the direction of integrating Integer Programming tech-
niques within a Constraint Programming model.

Keywords: Nesting, Constraint programming, Global constraints

1 Introduction

Nesting problems are particularly hard combinatorial optimisation problems,
belonging to the more general class of cutting and packing problems where one
or more pieces of material or space must be divided into smaller pieces.

Partially supported by FCT, POSI and FEDER (POSI/SRI/40908/2001
(CPackMO))

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 256–270, 2004.
© Springer-Verlag Berlin Heidelberg 2004

1

*

A Global Constraint for Nesting Problems 257

Fig. 1. A solution of a nesting problem

In nesting problems a given set of small pieces must be placed over a large
stretch of material (the large plate) while trying to minimise the total length
used (see Figure 1). A more detailed description of nesting problems and cutting
and packing problems can be found in [1, 2].

The input data in a nesting problem are the width and an upper bound
on the length of the plate, together with the description of the small pieces
(polygons). The output data are the positioning points of all the pieces.
The objective is to determine all the positioning points, such that the pieces do
not overlap and the length of the plate used to place them is minimised. In the
variant of the problem that will be handled rotation of the pieces will not be
considered.

Nesting problems have been tackled by several approaches, ranging from
simple heuristics to local optimisation techniques and meta-heuristics [3, 4, 5, 6,
7, 8]. Another traditional way of tackling combinatorial optimization problems,
building mixed integer programming models and solving them with appropriate
software, allows only the resolution of nesting problems of very small size.

Constraint programming has been proven applicable to this category of prob-
lems, particularly in what concerns exploring them to optimality. A CLP ap-
proach has been developed by the authors since 1999. In [9, 10] only convex
shapes were considered. The focus of [11], was on the development and applica-
tion of some ideas for handling non-convex polygons.

Applying Constraint Programming to nesting has been a good demonstra-
tion of the strengths and weaknesses of the constraint models for combinatorial
problems. Constraint programming provides the means to keep the formulation
of a problem close to its natural expression, with variables that are meaning-
ful in the problem domain and a wealth of built-in specialized algorithms for
handling widely used combinatorial constraints. The general-purpose nature of
constraint programs makes it easy to include any extra constraints that, al-
though not strictly required to define the solution, may contribute to pruning
the search space. This is the case of redundant constraints, symmetry constraints,

258 Cristina Ribeiro and Maria Antónia Carravilla

and those that incorporate information on partial solutions which are known not
to be viable.

On the other hand, the flexibility provided by the general-purpose nature of
constraint programming may have a high efficiency cost. The problems may re-
quire the combination of built-in constraints in a manner that originates little or
no propagation, reducing the constraint program to a generate-and-test one. On
the other hand, as noted in [12], constraint programs for optimisation problems
frequently exhibit a loose coupling between the constraints and the objective
function, therefore lacking an efficient form of optimality reasoning.

In the nesting problem the constraints are bidimensional in nature and have
to be imposed on each pair of pieces. This all-to-all pattern results in a quadratic
number of constraints. It is not easy to get effective propagation of the bidimen-
sional constraints represented via finite-domain variables. It is also not easy to
achieve incrementality in the search for an improved solution: an available bound
on the solution is not effective until very late in the positioning process.

The right structure for the constrained variables in the nesting problem would
be points in a 2-D space, but current constraint programming systems do not
offer such structures. The expression of the constraints in integer finite-domain
variables requires some geometrical manipulations of the representations for the
pieces. On the optimisation side, point coordinates are also not the more natural
support. Although the optimisation criterium is strictly unidimensional (mini-
mum length of the plate), most of the indicators that can be used for evaluating
the quality of a partial positioning (waste area, area required for the remaining
pieces) are bidimensional in nature.

In the sequel of the work on positioning non-convex polygonal pieces using
a CLP model, this work is aimed at improving the expressiveness of constraints
for this kind of problems and the effectiveness of their resolution using global
constraints. A global constraint “outside” for the non-overlapping constraints
(the core of nesting problems) has been developed using the constraint pro-
gramming interface provided by Sicstus Prolog [13, 14]. The constraint has been
applied together with a specialized backtracking mechanism to the resolution of
instances of the problem where optimization by Integer Programming techniques
is not considered viable.

It has been argued that global constraints are a suitable basis for the in-
tegration of Constraint Programming and Integer Programming [12] and the
development of a global constraint for nesting problems can be seen as a first
step in this direction [15, 16].

The paper is organized as follows. In the next section the basic concept to
satisfy the geometric constraints between poligonal pieces, the nofit polygon, is
introduced. This concept is used in the following section, where the evolution of
the CLP approach to the nesting problem is described. The first approach was
based on reification of constraints and a naive strategy to search the solution
space. Section 4 explains the limitations of the reified constraints, the develop-
ment of a global constraint for the nesting problem and the replacement of the

A Global Constraint for Nesting Problems 259

naive search by selective backtracking. The final section points out relations with
ongoing work and future developments.

2 The Nofit Polygon

In the nesting problem, the pieces to be positioned are non-convex polygons
represented as lists of vertex coordinates. For each polygon an arbitrary vertex is
chosen as a reference for positioning (the positioning point). For two polygons A
and B the nofit polygon of B with respect to A, identifies the region
in the plane where the positioning point of B may not be located in order to
avoid the overlap of A and B. In Figure 2 the construction of a nofit polygon
is represented. In this construction A is fixed and B circulates around it; B’s
positioning point draws the

The concept of nofit polygon was first introduced by Art [17]; Mahadevan [18]
has presented a comprehensive description of an algorithm to build it.

The nofit polygon is a convenient geometric transformation for handling the
constraints of the nesting problem. Instead of stating that each point in the inte-
rior of polygon A may not coincide with any point in the interior of polygon B, it
is possible to reason on the basis of a single point for polygon B (its positioning
point) using the nofit polygon instead of polygon A itself. Imposing the original
constraints would amount to calculating pairwise intersections for the edges of A
and B. Using the nofit polygon this reduces to calculating the relative positions
of B’s positioning point with respect to each of the edges of the nofit polygon.

Using the nofit polygon concept, the fact that polygon B does not overlap
polygon A is equivalent to the positioning point of polygon B being over or
outside the nofit polygon of B with respect to A (see Figure 3).

Handling the constraints based on the nofit polygon reduces the number of
operations from quadratic on the number of edges of the polygons to linear on
the number of edges of the nofit polygon, which is no larger than the sum of
the number of edges of the two polygons. The nofit polygons can be obtained
once for each set of polygons and therefore influence only the setup part of
the running time. The complexity of computing nofit polygons is estimated as

where and are the number of vertices of the polygons, [18].

Fig. 2. Nofit polygon construction

260 Cristina Ribeiro and Maria Antónia Carravilla

Fig. 3. and the positioning point of polygon B

3 Solving Nesting Problems
with CLP and Reified Constraints

The prototype applications described here use CLP-FD of Sicstus Prolog [13,14],
which handles constraints on finite domains. Although the nesting problems are
not intrinsically finite domain problems, it is common to solve them with some
predefined granularity. This is also convenient for benchmarking and comparison,
as many state-of-the-art approaches to the solution of nesting problems adopt
discrete models for the positioning space.

In the approach used, the input is the width of the big piece, an estimate
of its total length and the piece specifications. The output is a list of 4-tuples,
one for each piece, describing the type of the piece, its identifier and the X and
Y coordinates of the positioning points. The type of the piece and the identifier
are constants, and the X and Y coordinates are fd-variables.

For identical pieces (pieces with the same shape), symmetric positionings are
avoided. This is accomplished by imposing additional constraints on their X
and Y coordinates. Identical pieces are assigned in an ‘a priori’ arbitrary or-
der. For identical pieces A and B such that piece A precedes piece B, the con-
straint is imposed. In case then the constraint is
imposed.

3.1 Geometric Constraints Based on the Nofit Polygon

If polygon B does not overlap polygon A, the positioning point of B is over
or outside the nofit polygon of B with respect to A. This can be turned into
a relation between the positioning point of B and the edges of the nofit polygon.

If both pieces are convex, the nofit polygon is also convex. Considering that
the contour of is travelled clockwise, then piece B does not intersect
piece A if the positioning point of B is over or on the left-hand side of at least
one of the edges of

If the nofit polygon is non-convex, the same strategy can be applied, provided
that the nofit polygon is decomposed into convex subpolygons [19]. In this case,
the above condition must be verified for each subpolygon, with just a slight

A Global Constraint for Nesting Problems 261

Fig. 4. Nofit polygon decomposition

adjustment: edges resulting from the decomposition (“false edges” of the nofit
polygon) are not valid positioning points (see Figure 4).

3.2 CLP Implementation with Reified Constraints

The order in which the pieces are chosen is given by a list with a sequence of pairs
of variables representing their positioning points. For each piece, it is sufficient
to state the non-overlapping constraint with respect to the following pieces in
the sequence. This is due to the fact that labelling is performed according to the
same piece ordering. Taking into account the decompositions of the non-convex
nofit polygons, stating the non-overlapping constraint of a pair of pieces A and B
amounts to constraining the positioning point of B to be over or outside each
of the sub-polygons of As the NFPs are calculated with coordinates
relative to the positioning point of piece A, as soon as piece A is positioned its
N F Ps are subject to the same translation.

The core constraint involves one positioning point and one polygon (possibly
resulting from a decomposition). To express the fact that the positioning point is
over or outside the polygon, we may say that it must be over or on the left-hand
side of at least one of the edges of the polygon. The polygon is represented as
a list of vertex coordinates. Between each pair of coordinates there is a flag to
indicate whether the corresponding edge is a “true” edge (an edge of the original
nofit polygon) or a “false” one (an extra edge issued by the decomposition).

An elementary constraint to be considered involves one positioning point and
one edge. To express the fact that the positioning point is over or on the left-

262 Cristina Ribeiro and Maria Antónia Carravilla

hand side of a particular edge, it suffices to impose a “less than” or “less than or
equal” constraint using the vertex coordinates and the expression for the edge’s
slope. Note that the adopted coordinate system has its origin in the upper left
corner of the plate (see Figure 1).

The core constraint for B’s positioning point and polygon A is based on the
reification of the elementary constraints of B with respect to A’s edges, imposing
that at least one of them holds.

Let be the coordinates of the positioning points of pieces A
and B, and assume that there is a list of sub-polygons generated by the decom-
position of For each sub-polygon the set of vertices is fetched and a list
of 0,1 values resulting from the reified edge constraints is obtained. The Sicstus
global constraint “sum” is used to constrain this list to contain at least one 1
value.

3.3 Exploring the Search Space

Solutions to nesting problems are obtained and improved using a systematic
search for positioning patterns that satisfy the non-overlapping constraints. The
naive approach is to merely try the possible values for the x and y coordinates
of the positioning point for each individual piece. In what follows, we assume
that the necessary constraints are in force and describe the labelling process in
its more basic form: general backtracking is used and no early pruning strategy
exists.

The input for the labelling predicate is a “layout” list with unbound fd-
variables. The output is the total length of the layout; the fd-variables repre-
senting the positioning points of the pieces become bound.

Positioning of the pieces starts using the order in which pieces are sequenced
in the data input, searching for alternative layouts each time a complete one is
generated.

The Labelling Strategy. The main part of the labelling module is a loop that
binds the coordinates of each piece. The x-coordinate is chosen first, selecting
a value from its domain, in ascending order. The same strategy is used for the
y-coordinate. Choosing values for the x and y-coordinates of the positioning
points explores the bidimensional domain for each positioning point. This can
be viewed as an exploration of a search tree, where the path from the root to
each leaf is a possible layout, with a length.

A Global Constraint for Nesting Problems 263

Optimization. For each complete layout, the total length is registered. A
failure-driven loop is used to force backtracking and try to find better solutions
with alternative piece positions.

The search space is not explored exhaustively. Instead, paths that do not lead
to improved solutions are avoided. The knowledge of the length of the best path
obtained so far is used to cut some branches of the search space. At any point in
a labelling path, if the x-positioning of the current piece results in a total length
greater or equal to the recorded best solution, a failure occurs and backtrack
generates an alternate positioning for the previous piece.

Pruning should occur as a result of the constraints imposed on the variable
domains. The propagation of constraints is expected to remove from the domain
of one variable those values for the coordinates which are known to be no longer
feasible due to the labelling of some other variable.

4 A Global Constraint and Improved Search Strategy

The use of built-in constraints and reification has proven not to produce effective
propagation for this problem. As expected, the reified constraints detect unfeasi-
ble locations late in the process of positioning a piece. The generic backtracking
strategy for obtaining a solution has also shown poor performance, exploring
parts of the search tree where no solutions could be expected.

Constraint programming is a natural paradigm for building an operational
environment where both the constraints required for defining solutions and the
extra knowledge on the problem nature can be put to work in the search for
a solution. Experimenting with the basic approach has been very useful for
identifying features of the problem that helped solving it better.

Constraints were the first aspect that has received our attention. It is possible
to express “non-overlappedness”, in a bidimensional space, in a form that can be
made operationally interesting, cutting off branches of the tree where overlapping
occurs. This is done through the definition of a “global constraint” that is used
in programs to solve nesting problems and works by reducing the domains of the
Y coordinates. The “outside” global constraint is described next. This kind of
domain reduction can be related to the sweepline approach of [20]; it operates
after some piece has been positioned and is specialized for non-convex polygons.

The second aspect that called for improvement was the search strategy. Due
to the nature of the problem, it is possible to make a choice for the position
of some piece that leads to an increased cost (because the piece becomes the
rightmost one) and then position several other pieces without affecting the cost
(they fit in the available space up to the rightmost X). If, at some point down the
tree, we backtrack to the intermediate pieces (the ones that have been positioned
without affecting maximum length), it is superfluous to explore alternative loca-
tions for them: at this point only changes in the position of the original piece can
improve the current solution. This feature comes from the nature of the problem
and the way in which it has been used is detailed in the next section.

264 Cristina Ribeiro and Maria Antónia Carravilla

Fig. 5. Global Constraint outside

4.1 The Global Constraint “outside”

The global constraint “outside” expresses the non-overlapping of a pair of polyg-
onal pieces. For pieces A and B, “outside” states that the positioning point of
piece B must be outside the nofit polygon of B with respect to A,
The constraint has been implemented with the global constraint programming
interface of Sicstus Prolog [14].

The inputs of the global constraint are the fd-variables and
the coordinates of the positioning points of pieces A and B, and the correspond-
ing nofit polygon represented as a list of vertex coordinates.

The constraint is activated when piece A is already positioned and
are ground) and a value has been chosen for The activation of the constraint
leads to the reduction of the domain of by the points inside (see
Figure 5).

To determine the points at coordinate inside it is necessary to
find the intersections of (positioned according to the location of A) with
the vertical line

The problem of finding the intersections of a convex polygon with a vertical
line is rather straightforward. There can be 0, 1, 2 or an infinite number of
intersections, as follows:

the vertical line does neither intersect nor touch the polygon;
the vertical line is tangent to the polygon in one point;
the vertical line intersects the polygon in two points;
the vertical line is tangent to an edge of the polygon.

The third case is the only one that may lead to a reduction in the domain
of

If the polygon is non-convex, there are many more different situations to
be analyzed. In our approach, the problem of finding the intersections of .the
polygon with a vertical line is dealt with in two steps.

A Global Constraint for Nesting Problems 265

Fig. 6. Two interpretations of the subset of intersection points

In the first step, the polygon is traversed edge by edge and the intersections
are collected in a list, together with annotations on their nature. We have iden-
tified 12 different cases that have to be distinguished to be able to preserve the
context and decide, after obtaining all the intersections, the correct ranges of
values to be excluded.

In the second step, the list obtained in the first step is sorted and organized
in intervals (pairs of Y-values) that will be cut from the domain of

The need to collect more than the location of the intersection points is il-
lustrated in Figure 6, where two situations that have an identical subset of
intersection points give raise to different interpretations of the intervals to be
excluded, based on the context in which they appear.

Figure 7 represents two situations involving polygons with vertical edges,
that we have named vertical edge—limit and vertical edge—crossing and the
intersection of these polygons with a vertical line.

In both these cases, we have two successive vertices with an X-value equal
to In the first one the Y values for the two vertices are kept in the intersec-
tion list, annotated as extremes of a vertical edge. In the second, they are kept
with an annotation meaning that any of them might be an interval extreme, but
not both.

Those two situations are detected by the following code.

Fig. 7. Two types of vertical edges: vertical edge—limit and vertical edge—crossing

266 Cristina Ribeiro and Maria Antónia Carravilla

A more involved case occurs when a piece fits tightly and vertically in a con-
cave region of another piece. The corresponding nofit polygon has a spike. In the
example in Figure 8 we can see the two pieces in gray, and the contour of the
resulting nofit polygon. The nofit is non-convex and has a spike corresponding
to the position where the cross-shaped piece exactly fits into the concave region
of the U-shaped piece. The following code snippet handles the corresponding
situation.

We will not go into the details of the extra information associated to the
intersection points to preserve their context of occurrence in the original polygon.
When all the intersections have been determined, it is necessary to decide the
right pairing of intersection points to define the intervals to be excluded. Figure 6
shows that this decision can be easily made if we consider points in ascending
or descending order. With the intervals obtained it is possible to remove from
the domain of values that would cause the pieces to overlap, and therefore
prune branches of the search tree where no solutions can be found.

Fig. 8. Nofit polygon with a spike

A Global Constraint for Nesting Problems 267

4.2 Selective Backtracking

Generically, the labelling process is similar to the one used in the basic approach,
differing only in the strategy used to prune the search space.

Avoiding Branches with no Improved Solutions. There are now two ways
to prune the search space in the labelling process.

1.

2.

At any point in a labelling path, if the X-positioning of the current piece
results in a total length greater or equal to the recorded best solution, a fail-
ure occurs and backtrack generates an alternate positioning for the previous
piece.
Upon completion of a labelling path, i.e. when a solution has been found,
backtracking is forced to the node in the tree that immediately precedes the
piece responsible for the total length.
To achieve this, a fact is added to the database for each X-positioning, keep-
ing the identification number of each piece, a state value and the current
X-value for the positioning point of the piece.
The state of a piece is “guilty” in the recorded facts, if the current value of
the X-coordinate of the piece results in at least one of its vertices becoming
the rightmost vertex of the layout. The piece is marked “innocent” otherwise.

It is necessary to distinguish, when traversing the tree, between two situa-
tions:

Going down the tree – labelling proceeds as described
Going up the tree – failing the labelling in all the nodes up to the node in
the tree that immediately precedes the piece responsible for the total length
(first guilty piece in the backtracking path).

The rationale for this pruning procedure is as follows: If piece P is responsible
for the total length in a layout (meaning that one of its vertices is one of the
rightmost vertices in the layout), keeping this piece in place does never improve
the solution. Therefore all backtracking in nodes down that path is guaranteed
not to produce an improved solution.

Several pieces may be marked “guilty” along a given path, however the place
to stop when going up the tree is the most recent one, i.e. the one located deeper
in the tree. No alternative solutions for this node are considered, because the
X-domain is explored in ascending order and so no improvement could result.

4.3 An Example for the Labelling Strategy

The labelling strategy is now illustrated based on an example where 4 non-convex
pieces are positioned in a rectangular big piece. The pieces are positioned in the
same order in which they are sequenced in the data input. Figure 9 shows the
data input, with 4 pieces and their sequencing.

268 Cristina Ribeiro and Maria Antónia Carravilla

Fig. 9. Input: 4 pieces and their sequencing

Figure 10 is the labelling tree, where each node represents the positioning
of a single piece, involving the choice of its X and Y coordinates. A depth-first
left-to-right traversal of the tree shows the sequence of positionings that are
actually generated. A path from the root to a leaf node represents a complete
layout, with a total length which is recorded. Nodes at the same level in the tree
represent positionings for the same piece at different phases in the positioning
process.

There are branches in the tree that do not lead to a leaf; these are paths that
have been abandoned as a result of pruning. A branch is abandoned if the best
result that can be obtained from exploring it does not improve over an existing
solution.

Some branches of the tree are not explored as a result of the constraints
imposed on the variable domains. The propagation of constraints has the effect
of removing from the domain of one variable those values for the coordinates
which are known to be no longer feasible due to the labelling of some other
variable in the course of positioning some piece. The positionings that would
result from binding variables to values which are removed from the domain
are not shown in the search tree because they are not actually explored in the
labelling.

Fig. 10. The labelling tree

A Global Constraint for Nesting Problems 269

5 Conclusions and Ongoing Work

Nesting problems are a challenging example for the application of Constraint
Programming to combinatorial problems. The geometrical bidimensional con-
straints are difficult to capture in a CP system using built-in constraints and
the bounds on the solution do not effectively contribute to cut the search space,
compromising an effective optimisation strategy.

We presented a global constraint for nesting problems that was built on
the experience obtained with an early prototype where nesting problems were
modelled in a finite-domain constraint logic programming system with built-in
constraints and solved with a basic backtracking strategy. This global constraint
achieves a better propagation action and, together with a selective backtracking
strategy, provides a better solution for this kind of problems.

With global constraints it is possible to keep the model closer to the prob-
lem, simplifying both modelling and maintenance [12]. Global constraints have
been shown to be a convenient level of modelling for integrating constraint pro-
gramming and integer programming techniques. We are in the course of further
exploring global constraints and the possibilities of integrating MIP techniques
for achieving a more optimisation-oriented strategy. For this kind of problems
this will possibly involve the decomposition of the problem into subproblems of
manageable size for MIP. Another aspect that has not yet been handled with
the constraint approach is piece rotation, which is relevant in many problem
instances.

This work has been developed within a group where approaches to the same
problem using heuristics and local optimisation techniques are producing rele-
vant results. Constraint programming will contribute to this line of research by
providing an environment where feasibility of solutions is accounted for by the
global constraint, allowing a better focus on the optimisation techniques.

References

[1]

[2]

[3]

[4]

[5]

Dowsland, K., Dowsland, W.: Packing problems. European Journal of Operational
Research 56 (1992) 2–14
Dowsland, K., Dowsland, W.: Solution approaches to irregular nesting problems.
European Journal of Operational Research 84 (1995) 506–521
Dowsland, K., Dowsland, W., Bennell, J.: Jostling for position: Local improvement
for irregular cutting patterns. Journal of the Operational Research Society 49
(1998) 647–658

 Hawryluk, P., Walkowiak, R.: Using tabu search approach for
solving the two-dimensional irregular cutting problem in tabu search. In Glover,
F., Laguna, M., Taillard, E., de Werra, D., eds.: Tabu Search. Volume 41 of Annals
of Operations Research. J. C. Baltzer AG (1993)
Stoyan, Y., Yaskov, G.: Mathematical model and solution method of optimiza-
tion problem of placement of rectangles and circles taking into account special
constraints. International Transactions on Operational Research 5 (1998) 45–57

270 Cristina Ribeiro and Maria Antónia Carravilla

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

Milenkovic, V., Daniels, K.: Translational polygon containment and minimal en-
closure using mathematical programming. International Transactions in Opera-
tional Research 6 (1999) 525–554
Bennell, J. A., Dowsland, K. A.: Hybridising tabu search with optimization tech-
niques for irregular stock cutting. Management Science 47 (2001) 1160–1172
Gomes, A. M., Oliveira, J. F.: A 2-exchange heuristic for nesting problems. Euro-
pean Jornal of Operational Research 141 (2002) 359–370
Ribeiro, C., Carravilla, M. A., Oliveira, J. F.: Applying constraint logic program-
ming to the resolution of nesting problems. In: Workshop on Integration of AI
and OR techniques in Constraint Programming for Combinatorial Optimization
Problems. (1999)
Ribeiro, C., Carravilla, M. A., Oliveira, J. F.: Applying constraint logic program-
ming to the resolution of nesting problems. Pesquisa Operational 19 (1999) 239–
247
Carravilla, M. A., Ribeiro, C., Oliveira, J. F.: Solving nesting problems with non-
convex polygons by constraint logic programming. International Transactions in
Operational Research 10 (2003) 651–663
Milano, M., Ottosson, G., Refalo, P., Thorsteinsson, E. S.: The Role of Integer
Programming Techniques in Constraint-Programming’s Global Constraints. IN-
FORMS Journal on Computing 14 (2002) 387–402
Swedish Institute of Computer Science: SICStus Prolog User’s Manual. (1995)
Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Con-
straint Solver. In Glaser, H., Hartel, P., Kucken, H., eds.: Programming Lan-
guages: Implementations, Logics, and Programming. Volume 1292 of Lecture
Notes in Computer Science., Southampton, Springer-Verlag (1997) 191–206
Ottosson, G., Thorsteinsson, E. S., Hooker, J. N.: Mixed Global Constraints and
Inference in Hybrid CLP-IP Solvers. Annals of Mathematics and Artificial Intel-
ligence 34 (2002) 271–290
Bockmayr, A., Kasper, T.: Branch-and-Infer: A Unifying Framework for Integer
and Finite Domain Constraint Programming. INFORMS Journal on Computing
10 (1998) 287–300
Art, R.: An Approach to the Two-Dimensional, Irregular Cutting Stock Problem.
Technical Report 36.008, IBM Cambridge Centre (1966)
Mahadevan, A.: Optimization in Computer-Aided Pattern Packing. PhD thesis,
North Carolina State University (1984)
Fernandéz, J., Cánovas, L., Pelegrín, B.: Algorithms for the decomposition of
a polygon into convex polygons. European Journal of Operational Research 121
(2000) 330–342
Beldiceanu, N., Carlsson, M.: Sweep as a Generic Pruning Technique Applied
to the Non-Overlapping Rectangles Constraint. In Walsh, T., ed.: CP’2001, Int.
Conf. on Principles and Practice of Constraint Programming. Volume 2239 of
Lecture Notes in Computer Science., Pisa, Springer-Verlag (2001)

Models and Symmetry Breaking
for ‘Peaceable Armies of Queens’

Barbara M. Smith1, Karen E. Petrie1, and Ian P. Gent2

1 School of Computing & Engineering
University of Huddersfield, Huddersfield, West Yorkshire HD1 3DH, U.K.

{b. m.smith,k.e.petrie}@hud.ac.uk
2 School of Computer Science

University of St. Andrews, St Andrews, Fife KY16 9SS, U.K.
ipg@dcs.st–and.ac.uk

Abstract. We discuss a difficult optimization problem on a chess-board,
requiring equal numbers of black and white queens to be placed on the
board so that the white queens cannot attack the black queens. We show
how the symmetry of the problem can be straightforwardly eliminated
using SBDS, allowing a set of non-isomorphic optimal solutions to be
found. We present three different ways of modelling the problem in con-
straint programming, starting from a basic model. An improvement on
this model reduces the number of constraints in the problem by intro-
ducing ancillary variables representing the lines on the board. The third
model is based on the insight that only the white queens need be placed,
so long as there are sufficient unattacked squares to accommodate the
black queens. We also discuss variable ordering heuristics: we present
a heuristic which finds optimal solutions very quickly but is poor at
proving optimality, and the opposite heuristic for which the reverse is
true. We suggest that in designing heuristics for optimization problems,
the different requirements of the two tasks (finding an optimal solution
and proving optimality) should be taken into account.

1 Introduction

Robert Bosch introduced the “Peaceably Coexisting Armies of Queens” problem
in his column in Optima in 1999 [1]. It is a variant of a class of problems requiring
pieces to be placed on a chessboard, with requirements on the number of squares
that they attack: Martin Gardner [3] discusses moreexamples of thisclass. In the
“Armies of Queens” problem, we are required to place two equal-sized armies of
black and white queens on a chessboard so that the white queens do not attack
the black queens (and necessarily v.v.) and to find the maximum size of two such
armies. Bosch asked for an integer programming formulation of the problem and
how many optimal solutions there would be for a standard 8×8 chessboard.

Here we discuss a range of possible models of the problem as a CSP, and show
how Symmetry-Breaking During Search (SBDS) [4] can be used to eliminate the
symmetry in each model, and hence find all non-isomorphic optimal solutions.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 271–286, 2004.
© Springer-Verlag Berlin Heidelberg 2004

272 Barbara M. Smith et al.

We have implemented some of the models in both and ILOG Solver.
Constraint programming tools can differ, for instance in the way that apparently
equivalent constraints propagate: by comparing two different implementations
of our models, we can draw conclusions that are independent of a particular
constraint programming tool.

2 Basic Model

In a later issue of Optima, Bosch gives an IP formulation due to Frank Plastria.
This has two binary variables for each square of the board:

if there is a black queen on square
= 0 otherwise

if there is a white queen on square
= 0 otherwise

For the general case of an board:

maximize

subject to

for all
for all

where M is the the set of ordered pairs of squares that share a line (row, column
or diagonal) of the board. Bosch reported that finding an optimal solution for
an 8 × 8 board (with value 9) took just over 4 hours using CPLEX on a 200
MHz Pentium PC.

A straightforward model of the problem as a CSP is similar to this IP for-
mulation. There is no difficulty in having variables with more than 2 values, so
the number of variables can be reduced to

if there is a white queen on square

= 1 if there is a black queen on square
= 0 otherwise

We can express the ‘non-attacking’ constraints as:

and for all

Models and Symmetry Breaking for ‘Peaceable Armies of Queens’ 273

or more compactly as:

In both and Solver, the single constraint gives the same number of
backtracks as the two implication constraints, but is faster.

Constrained variables count the number of white and black queens re-
spectively (using the counting constraints provided in constraint programming
tools such as and Solver). We then have the constraint and
the objective is to maximize This is achieved by adding a lower bound on
whenever a solution is found, so that future solutions must have a larger value
of when there are no more solutions, the last one found has been proved
optimal.

The model has search variables and approximately binary constraints,
as well as the counting constraints which have arity

3 Symmetry

The problem has the symmetry of the chessboard, as in the familiar
problem; in addition, in any solution we can swap all the white queens for all
the black queens, and we can combine these two kinds of symmetry. Hence
the problem has 16 symmetries. It is well-known that symmetry in CSPs can
result in redundant search, since subtrees may be explored which are symmetric
to subtrees already explored. If only one solution is required, these difficulties
do not always arise in practice. However, if a complete traversal of the search
tree is required, either because there is no solution, or because all solutions are
wanted, symmetry must lead to wasted search unless dealt with. This means
that symmetry will cause difficulties in optimization problems, where proving
optimality entails a complete search to prove that there is no better solution.

Symmetry Breaking During Search [4] is ideal for problems such as this since
it only requires a simple function to describe the effect of each symmetry (other
than identity) on the assignment of a value to a variable. Hence, in this case,
just 15 such functions are required. Briefly, on backtracking to a choice point in
the search, represented by the two constraints var = val and SBDS
adds a constraint to the second branch for any symmetry which has not yet
been broken along the path from the root of the search tree to this node. The
constraint is the symmetric equivalent of var # val and prevents exploration of
partial solutions equivalent under this symmetry to those which have already
been explored following the choice If the effect of each individual
symmetry is described, SBDS will eliminate all symmetry: all solutions produced
are non-isomorphic to each other, and the search never explores any part of the
search tree which is symmetric to a subtree already explored.

The seven board symmetries for which symmetry functions are required can
be labelled x, y, d1, d2, r90, r180 and r270 (reflection in the horizontal, vertical
and both diagonal axes, and rotations through 90°, 180° and 270°, respectively).

274 Barbara M. Smith et al.

An assignment is passed to each function as a constraint, and the equiv-
alent constraint under the relevant symmetry is returned. For instance, if the
rows and columns of the board are numbered is the constra-
int The symmetry which interchanges the black and white queens,
bw, returns where if and otherwise We also need
to describe the 7 symmetries which combine a board symmetry with interchang-
ing black and white: for instance, the symmetry returns

4 Basic Model: Results

The square variables are assigned in a predefined (static) order: top row, left to
right, 2nd row, left to right, and so on. To ensure that good solutions are found
early, values are assigned in descending order; otherwise, the first solution found
has 0 assigned to every variable, corresponding to no queens of either colour,
which is valid but far from optimal. The running times given relate to a 1.6GHz
Pentium 4 PC for and a 1.7GHz Celeron PC with 128MB RAM for
Solver. The implementation of SBDS in used in these experiments is
due to Warwick Harvey.

Tables 1 and 2 show that using SBDS makes a huge difference to the time
required to prove optimality, although not to the time to find the optimal solu-
tion. There is a more than 10-fold reduction in the number of fails, except for the
smallest values of though the reduction in running time is less. It would be
possible to achieve some of the speed-up without SBDS, by adding constraints
to the model, for instance that the top half of the board contains more white
queens than the bottom, but simple constraints of this kind cannot remove all
the symmetry. Table 3 compares finding all solutions with and without symme-
try breaking using SBDS. It proved impracticable to find all solutions for the
8×8 board without any symmetry breaking: there are evidently hundreds of
possible solutions, although only 71 are distinct.

Models and Symmetry Breaking for ‘Peaceable Armies of Queens’ 275

5 Combining Squares and Lines

The basic model has a constraint between two variables if they represent squares
which are on the same line (row, column or diagonal) of the board. We could
consider an alternative model in which the lines are also represented by variables
in the CSP. Any line must have either only white queens on it, or only black
queens, or be empty, so we could create the line variables with three values
corresponding to these possibilities. More compactly, we can have two possible
values for each line variable: 0 means that there is no white queen on the line,
and 1 means that there is no black queen on the line (unoccupied lines can have
either value).

The advantage of adding the line variables is that we can reduce the number
of constraints. Whenever a queen is placed on a square the values of the corre-
sponding line variables are set accordingly. Thereafter, a queen of opposite colour
cannot be placed on any of these lines, and we no longer need the constraints
between square variables to enforce this.

Taking the rows as an example, we have variables and constraints:

276 Barbara M. Smith et al.

Fig. 1. Constraints in the two encodings of the ‘armies of queens’ problem

As before, we can reduce the pair of constraints to a single constraint:

The combined model has more variables than the basic model (another
approximately), but we can still use just the square variables as the search
variables. There are approximately constraints, each between a line vari-
able and a square variable, rather than constraints between pairs of square
variables as before.

Adding the line variables to the model makes no difference to the number of
fails in (there are some differences in Solver), but reduces the running
time to solve the problems optimally by about one-third in Solver and about
one-sixth in for

Note that since the search variables, and hence the branching decisions made
during search, are unchanged, SBDS is unaffected by the change in the model.

6 Combined Model: Discussion

Figure 1 compares the constraints required in the two models: it shows the
constraints required to express that row cannot have queens of different colours,
in the case The solid lines show the clique of constraints required between
the variables corresponding to the squares on row in the basic model. The
dotted lines are the constraints that replace them in the combined model: we
have replaced an of constraints by just

In addition to the constraints expressing that we cannot have queens of differ-
ent colours on any line, we also need constraints on the number of queens of each
colour. These would be difficult if not impossible to express solely in terms of the
line variables. Hence, adding the line variables to the basic model is not exactly
analogous to the idea of redundant modelling [2]: in redundant modelling, two
models are combined, either of which could be used independently. Moreover, the

Models and Symmetry Breaking for ‘Peaceable Armies of Queens’ 277

claimed advantage of redundant modelling is that constraint propagation within
either model can feed through to the other, via the channelling constraints which
link them. Here, there are no constraints between the line variables, and in the
combined model, the only constraints between the square variables are those
counting the number of queens. We are replacing all other constraints of the
basic model by the channelling constraints linking the line and square variables.
This is somewhat similar to combining models of permutation problems, where
the benefit comes from propagation of the channelling constraints, which in that
case can replace constraints between the variables of the original model [5].

Although we cannot have a model with line variables alone, we could in theory
have a model with both line and square variables in which we search on the line
variables and not the square variables. This is an attractive idea, since there
would only be search variables, approximately, rather than However, in
practice it leads to a number of difficulties. It would introduce new symmetries,
since the values 0 and 1 are interchangeable if a line is unoccupied. We could
avoid this by having three values rather than two for the line variables, but
even then, a complete assignment to the line variables does not always uniquely
determine the values of the square variables, so that not all non-isomorphic
optimal solutions would be found.

7 Counting Unattacked Squares

In trying to solve the armies of queens problem by hand, it becomes apparent
that we need only place the queens of one colour, say white, provided that we
check as each queen is placed that the number of squares not so far attacked
is at least equal to the number of white queens on the board. A black queen
can be placed on any square which is not attacked by any white queen; hence
if there are white queens on the board and at least unattacked squares, we
can extend the current assignment to a complete solution with value

This leads to a new model of the problem. As in the basic model, there is
a variable for each square on the board, but now with possible values 0 and
1, where 0 signifies that the square is either empty or occupied by a black queen
and 1 that it contains a white queen. For each square, we also construct the set of
squares, that a queen placed on this square would attack. A set variable U
represents the unattacked squares on the board. If but square

must be empty.
The constraints are:

The minimum of the number of white queens and the number of unattacked
squares gives the size of the two equal-sized armies; this minimum is the objective
to be maximised, as before.

The unattacked squares model does not affect the optimal value, but it does
lead to a different way of counting distinct optimal solutions. The earlier models

278 Barbara M. Smith et al.

produce solutions with equal numbers of white and black queens, but now solu-
tions with different numbers of the two colours can be produced. For example, it
is possible to place 9 white queens and 10 black queens on an 8 × 8 board: such
a solution leads to 10 distinct solutions with exactly 9 of each colour, all obtained
by omitting one black queen. In the new model we count such a configuration as
just one solution, but we note that an unequal number of queens appear. That is
to say, we report only solutions in which no queen of either colour can be added
to any square, even if this unbalances the numbers. All previous solutions can be
obtained from the smaller number of solutions we now find. Unfortunately, the
number of solutions in the previous model cannot be calculated trivially from
the number in the new model, a point we will discuss further below.

Optimal solutions with different numbers of black and white queens led to
other subtle problems that we had to address in implementation. We added
constraints so that a square being unattacked by a white queen is equivalent
to having a black queen on it, and v.v. Without these constraints, the model
produces spurious solutions in which an unattacked square does not have a black
queen on it. This is incorrect as we seek only solutions in which no queens of
either colour can be added to the solution. The constraints are implemented by
introducing a matrix of Boolean variables to indicate if a black queen is on
square and a set variable W to represent the squares occupied by white
queens. We then add the constraints:

The first two constraints simply give the intended meanings to the sets W
and U, while the last (together with the primary constraint given above) equates
squares occupied by black queens with squares not attacked by white queens.

These additional constraints are expensive to reason with and rarely have an
effect during search. To save runtime, we only add them when an assignment
satisfying all the other constraints has been found, backtracking if this then
causes a failure. For example, when these constraints eliminated just one
solution out of 46 candidates; thus, they are not important except to get an
exact count of genuinely non-isomorphic solutions.

The model has binary constraints, as opposed to for the squares
model and about for the combined model with line and square variables.
However, as just described, only of these constraints are active during
most of the search. The search variables are the variables. This is the same
number as in the previous models, but now each variable has only two possible
values rather than three.

It is easy to implement SBDS in the unattacked squares model. The functions
for the seven board symmetries are exactly as in the previous models. For sym-
metries that swap the black and white queens, we could obviously make

Models and Symmetry Breaking for ‘Peaceable Armies of Queens’ 279

equivalent to However, this would necessitate the inclusion of the ineffi-
cient constraints throughout search, so instead we make map to
That is, since black queens are on all unattacked squares, the symmetric version
of a white queen existing on a square is that the same square is unattacked by
any white queen. This combines with the symmetries of the board to give eight
more functions.

Table 4 shows the results for this model using ILOG Solver. In reporting
the number of solutions, we give the total number of distinct solutions found,
but also note how many of these have unbalanced numbers of queens of each
colour. As discussed above, in these cases the number of solutions in this table
is different to that reported in Table 3. We can obtain a set of solutions with
equal numbers of each by dropping any extra queens in all possible ways, but we
cannot guarantee these are all symmetrically distinct without further checking.
For example, for there are two distinct ways to have two queens of one
colour and one of the other, but when the extra queen is removed in both possible
ways, the four resulting solutions are all symmetrically equivalent to the unique
solution with one of each colour. In short, there is no trivial way to match the
numbers of solutions in Table 3 and Table 4, although it would be possible to
generate all solutions with equal numbers of queens from the set of solutions in
the unattacked squares model and discard symmetric duplicates.

In comparison with the previous models, the number of fails is almost quar-
tered for and the running time also greatly improved compared to the
model combining square and line variables (171 sec. to 60 sec.). The difference
is still larger when the combined model takes over 31 million fails and
5500 sec. to find and prove the optimal solution.

280 Barbara M. Smith et al.

Fig. 2. (Left) the optimal solution for an 8 × 8 board that is closest to having 10
queens of each colour. A white queen could be placed on the square marked × or
a black queen on the square marked but not both, since they would then attack each
other. (Right) a possible chess position, with the king and all nine possible queens of
each colour

7.1 A Puzzle for the Standard Chessboard

In the solution set for the standard chessboard, we noticed how remarkably close
to placing 10 queens of each colour we can get. Of the three solutions with 10
of one colour and 9 of the other, two differ in just one place, as illustrated in
Figure 2 (left).

From this layout we can derive that shown on the right of Figure 2, containing
the king and all nine possible queens of each colour, i.e. the original queen and
eight promoted pawns. Thus, the figure solves the following puzzle, and in fact
gives the unique solution up to symmetry: Put the king and the 9 queens of each
colour on a chessboard in such a way that no queen is on the same row, column
or diagonal as any piece of the opposite colour.

8 Variable Ordering

The unattacked squares model was derived from trying to solve the problem by
hand. This also led to an algorithm for constructing a solution and from that
a variable ordering heuristic. The algorithm places a white queen on the square
attacking fewest squares that are not already attacked; hence, it tries to keep
the number of unattacked squares as large as possible. The algorithm termi-
nates when no more white queens can be placed without reducing the number
of unattacked squares below the number of white queens. Often, the solution
found is optimal or near optimal. The first white queen placed is in a corner
square, and the lexicographic ordering used so far assigns the variable repre-
senting the top left corner first. However, after assigning the first variable, the
lexicographic ordering diverges from the algorithm. We have therefore experi-
mented with a dynamic variable ordering heuristic that chooses next the variable

Models and Symmetry Breaking for ‘Peaceable Armies of Queens’ 281

representing a square which is already attacked itself and where a white queen
would attack fewest unattacked squares.

The fewest-unattacked-squares heuristic finds optimal solutions very quickly,
but is worse than lexicographic ordering at proving optimality. For instance,
when it finds an optimal solution immediately, with no backtracking, but
then takes more than 320,000 fails and 78 sec. to prove optimality. It is also
poor at enumerating solutions: for and 9 it takes 118 sec. and 2,020 sec.
respectively, again both worse than lexicographic ordering.

Since this heuristic is so poor at proving optimality, it seemed worthwhile to
try exactly the opposite heuristic, i.e. choose the square where a white queen
will attack most unattacked squares. Not surprisingly, this takes much longer
to find the optimal solution (though not as long as lexicographic ordering for
the larger values of but it is overall much faster than either the fewest-
unattacked-squares heuristic or lexicographic ordering. The results are shown in
Table 5. For 8×8 and 9×9, this heuristic runs more than 10 times faster than
lexicographic ordering.

The 10×10, 11×11 and 12×12 problems can now be solved, although the lat-
ter takes more than a week of cpu time. In the first two cases, we have found all
optimal solutions; there are solutions with an extra queen of one colour, and a so-
lution with two extra queens in the 11×11 case. The fewest-unattacked-squares
heuristic again finds optimal solutions very quickly for these two problems.

Since the most-unattacked-squares heuristic performs so much better than
either of the other variable orderings considered, and yet is not especially good at
finding optimal solutions, it is worth trying to explain why it does well. Figure 4
shows a configuration with 6 white queens attacking all but 6 squares on a 11 ×
11 board, and an optimal solution with 17 queens of each colour.

282 Barbara M. Smith et al.

Fig. 3. An optimal solution for a 12 × 12 board, with 21 queens of each colour

The most-unattacked-squares heuristic is biased towards producing configu-
rations with a few white queens attacking all but a few squares, as on the left of
Figure 4. However, once an optimal solution has been found, such configurations
become infeasible. In fact, it would no longer be possible to place 6 white queens
as shown: a branch of the search tree leading to this configuration would be
pruned as soon as fewer than 17 unattacked squares are left. Hence, we conjec-
ture that the heuristic is successful because it can prune branches of the search
tree when only a few variables have been assigned, i.e. it tends to find small no-
goods. On the other hand, a heuristic which tries to place as many white queens
as possible before leaving fewer than the optimal number of unattacked squares
(as the fewest-unattacked-squares heuristic does) will tend to prune the search
much lower down the tree.

Both heuristics could be used with the earlier models, but would be expensive
to implement, since the information on unattacked squares is not readily avail-
able. Here, we compute for each unassigned variable and choose
the variable for which this is smallest or largest, depending on the heuristic.

Models and Symmetry Breaking for ‘Peaceable Armies of Queens’ 283

Fig. 4. Equal sized armies of queens on a 11 × 11 board. Left, 6 white queens attack
all but 6 squares on the board. Right, an optimal solution with 17 queens of each colour

9 Discussion

The peaceable armies of queens problem is a difficult optimization problem that
was hard to solve using an integer programming model. The constraint program-
ming models considered here have all done reasonably well in solving the 8 ×
8 problem; even so, problems larger than 10 × 10 are taking a very long time
to solve, even for the best model we have found. Related problems have been
investigated by Velucchi [6]. His results give optimal solutions for the armies of
queens problem up to 10 × 10 and for 12×12, but it is unclear if optimality was
proved, and certainly the number of optimal solutions is not reported. This sug-
gests that constraint programming is competitive with other methods that have
been tried for this problem, and indeed is capable of obtaining new results in the
field. However, the problem has no practical importance and it is the experience
of trying to solve it that is useful, rather than the solutions themselves.

Starting from a basic constraint programming model with no symmetry
breaking, we have shown that the time to solve the 8 × 8 problem can be
reduced from 1,660 sec. to 15 sec. (using ILOG Solver), a more than 100-fold
improvement. The results for 8×8 and 9×9 are summarized in Table 9. Note
that even our initial technique is similar in speed to Plastria’s IP solution, al-
lowing for differences in machine, so our final technique is literally a hundred
times better. With increasing size the improvement ratio gets better: for 9 × 9
we saw a 400-fold runtime improvement from the first model (65,300sec.) to the
last (141sec.), using the same environment on the same machine.

A major part of the improvement is due to eliminating the symmetry using
SBDS. Given an implementation of SBDS, it requires no ingenuity on the part
of the user to write the 15 functions to describe the effects of the individual

284 Barbara M. Smith et al.

symmetries of the problem. For the 8 × 8 problem, eliminating the symmetry
reduces the time to solve the problem optimally from 1,660 sec. to 331 sec.; it also
allows a set of non-isomorphic solutions to be found, whereas without symmetry
breaking, it took too long to find all the possible solutions, which would in any
case have been uninformative.

Further reductions in running time are due to remodelling the problem. We
have described three different ways of modelling it, starting from a basic model
not very different from an integer programming formulation.The combined model
introduces ancillary variables (one for each row, column or diagonal) in order to
reduce the number of constraints, from to approximately. This signifi-
cantly reduces running time, although the search effort is largely unaffected.

The unattacked squares model has the same number of search variables as
the other models, but with fewer possible values, so that the number of possible
assignments is reduced. The model also has fewer constraints than the previous
models, which probably contributes to the reduction in running time. However,
the binary constraints are between an integer variable and a set variable, so that
constraint propagation may be more expensive than with binary constraints
involving two integer variables.

Devising new models does require ingenuity. The different models we have
presented can be seen as viewing the problems at different levels. The basic
model expresses that a single white queen and a single black queen are inconsis-
tent if they are on the same row, column or diagonal. The combined model takes
the perspective of a line (row, column or diagonal) of the board: any number of
queens can be placed on a line provided that they are all the same colour. The
unattacked squares model expresses that any number of white queens can be
placed anywhere on the board, as long as there are at least as many unattacked
squares as white queens. Hence, each model takes a broader view of the prob-

Models and Symmetry Breaking for ‘Peaceable Armies of Queens’ 285

lem than the previous model. Moreover, whereas the first two models are only
concerned with whether the white and black queens attack each other, the fi-
nal model also has something of the optimization criterion built into it: not
only must the white and black queens not attack each other, but there must
be enough of each of them. Trying to view the problem from several different
angles is likely to be a fruitful source of ideas for remodelling; we found that
constructing solutions by hand facilitated this and gave useful insights into key
features of the problem.

The final improvement in modelling the problem came from a variable order-
ing heuristic. We have presented two: one finds optimal or near-optimal solutions
very quickly, but is poor at proving optimality. The other is its exact opposite
and takes much longer to find an optimal solution, but then is much better at
proving optimality. Although it is intuitively clear that finding optimal solutions
and proving optimality are different in nature, it is surprising to see it demon-
strated in such a clear-cut way. Again, the first heuristic was inspired by trying
to construct solutions by hand. There may be other problems where a good
heuristic for proving optimality is the exact opposite of a good heuristic for find-
ing an optimal solution, and this will be investigated further. Variable ordering
heuristics have hitherto mainly been investigated in the context of constraint
satisfaction rather than optimization: our experience with this problem suggests
that variable ordering heuristics for satisfaction problems and for optimization
problems may need to be designed separately. For some optimization problems,
it may be better to use two different heuristics, the first to find a good solution
and the second to improve that solution if possible and to prove optimality.

Acknowledgements

We are extremely grateful to Warwick Harvey for his advice and help in using
and for his implementation of SBDS. The authors are members of

the APES and CP Pod research groups (http://www.dcs.st-and.ac.uk/~apes
andhttp://www.dcs. st-and. ac. uk/~cppod) and would like to thank the other
members, as well as Graeme Bell. This work is supported by EPSRC grants
GR/R29666 and GR/R29673, as well as a Royal Society of Edinburgh SEELLD
Support Fellowship to the third author.

References

[1]

[2]

[3]

[4]

R. A. Bosch. Peaceably Coexisting Armies of Queens. Optima (Newsletter of the
Mathematical Programming Society), 62:6–9, 1999.
B. M. W. Cheng, K. M. F. Choi, J. H. M. Lee, and J. C. K. Wu. Increasing con-
straint propagation by redundant modeling: an experience report. Constraints,
4:167–192, 1999.
M. Gardner. Chess Queens and Maximum Unattacked Cells. Math Horizon, pages
12–16, November 1999.
I. P. Gent and B. M. Smith. Symmetry Breaking During Search in Constraint
Programming. In W. Horn, editor, Proceedings ECAI’2000, pages 599–603, 2000.

286 Barbara M. Smith et al.

[5]

[6]

B.M. Smith. Dual Models of Permutation Problems. In Proceedings of CP’01:
the 7th International Conference on Principles and Practice of Constraint Pro-
gramming, LNCS 2239, pages 615–619. Springer, 2001.
M. Velucchi. For me, this is the best chess-puzzle: Non-dominating queens
problem. http://anduin.eldar.org/~problemi/papers.html. Accessed January
2004.

A Global Constraint
for Graph Isomorphism Problems

Sébastien Sorlin and Christine Solnon

LIRIS, CNRS FRE 2672, bât. Nautibus
University of Lyon I

43 Bd du 11 novembre, 69622 Villeurbanne cedex
France

{sebastien.sorlin,Christine.solnon}@liris.cnrs.fr

Abstract. The graph isomorphism problem consists in deciding if two
given graphs have an identical structure. This problem can be mod-
eled as a constraint satisfaction problem in a very straightforward way,
so that one can use constraint programming to solve it. However, con-
straint programming is a generic tool that may be less efficient than
dedicated algorithms which can take advantage of the global semantic of
the original problem.
Hence, we introduce in this paper a new global constraint dedicated to
graph isomorphism problems, and we define an associated filtering al-
gorithm that exploits all edges of the graphs in a global way to narrow
variable domains. We then show how this global constraint can be decom-
posed into a set of “distance” constraints which propagate more domain
reductions than “edge” constraints that are usually generated for this
problem.

1 Introduction

Graphs provide a rich mean for modeling structured objects and they are widely
used in real-life applications to represent, e.g., molecules, images, or networks. In
many of these applications, one has to compare graphs to decide if their structure
is identical. This problem is known as the Graph Isomorphism Problem (GIP).

More formally, a graph is defined by a pair (V, E) such that V is a finite
set of vertices and is a set of edges. In this paper, we shall restrict
our attention to graphs without self-loops, i.e., Two graphs
G = (V, E) and are isomorphic if there exists a bijective function

such that if and only if We shall say
that is an isomorphism function. The GIP consists in deciding if two given
graphs are isomorphic.

There exists many dedicated algorithms for solving GIPs, such as [21, 17, 7].
These algorithms are often very efficient (eventhough their worst case complex-
ities are exponential). However, such dedicated algorithms can hardly be used
to solve more general problems, such as isomorphism problems with additional
constraints, or larger problems that include GIPs.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 287–301, 2004.
© Springer-Verlag Berlin Heidelberg 2004

288 Sébastien Sorlin and Christine Solnon

An attractive alternative to these dedicated algorithms is to use Constraint
Programming (CP), which provides a generic framework for solving any kind of
Constraint Satisfaction Problems (CSPs). Indeed, GIPs can be transformed into
CSPs in a very straightforward way [16], so that one can use generic constraint
solvers to solve them. However, when transforming a GIP into a CSP, the global
semantic of the problem is lost and replaced by a set of binary constraints. As
a consequence, using CP to solve isomorphism problems may be less efficient
than using dedicated algorithms which have a global view of the problem.

Outline of the Paper. The goal of this paper is to allow constraint solvers
to handle GIPs in a global way so that they can solve them efficiently without
loosing CP’s flexibility. To this aim, we introduce a new global constraint for
modeling GIPs, and we show how one can take benefit of this globality to solve
more efficiently GIPs.

Section 2 gives some complexity results for GIPs and an overview of existing
approaches for solving these problems. Section 3 presents some properties of the
GIP which are used to define our filtering algorithm. In section 4, we introduce a
new global constraint for modeling GIPs on non directed graphs, and we define
filtering technics for this global constraint. In section 5, we discuss the extension
of our work to directed graphs and to the subgraph isomorphism problem.

2 Solving Graph Isomorphism Problems

Complexity. The theoretical complexity of the GIP is not exactly stated: the
problem is in NP but it is not know to be in P or to be NP-complete [10] and its
own complexity class, isomorphism-complete, has been defined. However, some
topological restrictions on graphs (e.g., planar graphs [12], trees [2] or bounded
valence graphs [15]) make this problem solvable in a polynomial time.

Dedicated Algorithms. To solve a GIP, one has to find a one to one mapping
between the vertices of the two graphs. The search space composed of all possible
mappings can be explored in a “Branch and Cut” way: at each node of the search
tree, some graph properties (such as edges distribution, vertices neighbourhood)
can be used to prune the search space [7, 21]. This kind of approach is rather
efficient and can be used to solve GIPs up to 1000 vertices very quickly (less
than 1 second).

originally used to detect graph automorphisms (i.e., non trivial isomorphisms
between a graph and itself). The idea is to compute for each vertex a unique
label that characterizes the relationships between and the other vertices of
the graph, so that two vertices are assigned with a same label if and only if
they can be mapped by an isomorphism function. This approach is implemented
in the system nauty which is, to our knowledge, the most efficient solver for
the graph isomorphism problem. The time needed to solve a GIP with nauty is
comparable to “Branch and Cut” methods but nauty is often the quickest for
large graphs [9].

A Global Constraint for Graph Isomorphism Problems 289

Hence dedicated algorithms are very efficient to solve GIPs in practice, even-
though their worst case complexities are exponential. However, they are not
suited for solving more general problems, such as GIPs with additional con-
straints. In particular, vertices and edges of graphs may be associated with labels
that characterize them, and one may be interested in finding isomorphisms that
satisfy particular constraints on these labels. This is the case, e.g., in [19] where
graphs are used to represent molecules, or in computer aided design (CAD)
applications where graphs are used to represent design objects [6].

Constraint Programming. CP is a generic tool for solving constraint satis-
faction problems (CSPs), and it can be used to solve GIPs. A CSP [20] is defined
by a triple (X, D, C) such that :

X is a finite set of variables,
D is a function that maps every variable to its domain i.e.,
the finite set of values that can be assigned to
C is a set of constraints, i.e., relations between some variables which restrict
the set of values that can be assigned simultaneously to these variables.

Binary CSPs only have binary constraints, i.e., each constraint involves two
variables exactly. We shall note the binary constraint holding between
the two variables and and we shall define this constraint by the set of
couples that satisfy the constraint.

Solving a CSP (X, D, C) involves finding a complete assignement, which as-
signs one value to every variable such that all the constraints
in C are satisfied.

CSPs can be solved in a generic way by using constraint programming lan-
guages (such as CHOCO [14], Ilog solver [13], or CHIP [1]), i.e., programming
languages that integrate algorithms for solving CSPs. These algorithms (called
constraint solvers) are often based on a systematic exploration of the search
space, until either a solution is found, or the problem is proven to have no so-
lution. In order to reduce the search space, this kind of complete approach is
combined with filtering techniques that narrow variables domains with respect
to some partial consistencies such as Arc-Consistency [20, 18, 5].

Using CP to Solve GIPs. Graph isomorphism problems can be formulated
as CSPs in a very straightforward way, so that one can use CP languages to
solve them [11, 19]. Given two graphs G = (V, E) and we define
the CSP (X, D, C) such that :

a variable is associated with each vertex i.e.,
the domain of each variable is the set of vertices of that have the same
number of entering and leaving edges than i.e.,

290 Sébastien Sorlin and Christine Solnon

there is one binary constraint between every pair of different variables. The
constraint holding between two different variables is denoted
by and expresses the fact that the vertices of that are as-
signed to and must be connected by an edge in if and only if the
two vertices and are connected by an edge in G, i.e.,

if
otherwise and

Once a GIP has been formulated as a CSP, one can use constraint programming
to solve it in a generic way, and additional constraints, such as constraints on
vertex and edge labels, can be added very easily.

Discussion. When formulating a GIP into a CSP, the global semantic of the
problem is decomposed into a set of binary “edge” constraints, each of them
expressing locally the necessity either to maintain or to forbid one edge. As
a consequence, using CP to solve GIPs will often be less efficient than using
a dedicated algorithm.

To improve the solution process of CSPs associated with GIPs, one can add
an allDiff global constraint, in order to constrain all variables to be assigned to
different vertices [19]. This constraint is redundant as each binary edge constraint
only contains couples of different vertices, so that it will not be possible to
assign a same vertex to two different variables. However, adding this global
constraint allows a constraint solver to prune the search space more efficiently,
and therefore to solve GIPs quicker. Hence, with respect to the definition of
globality introduced in [4], this allDiff constraint is not semantically global, as
it can be decomposed into a semantically equivalent set of binary constraints,
but it is AC-operationally global, as an AC-filtering on the global constraint is
stronger than an AC-filtering on the equivalent set of binary constraints.

In this paper, we introduce a new global constraint to define GIPs. This
global constraint is not semantically global, as it can be decomposed into a set
of binary edge constraints as described above. However, by considering all edges
of the graphs in a global way, we can prune more efficiently the search space.
Note that this GIP global constraint can be combined with an allDiff constraint
to filter even more values.

3 Some Properties of the GIP

When looking for an isomorphism function between two given graphs, one can
use vertex properties to reduce the search space. For example, one can compute
the degree of each vertex, or the number of adjacent triangles to each vertex,
and use these “vertex invariants” to prune every mapping which violates them.
More generally, a vertex invariant is a label assigned to each vertex such
that if there exists an isomorphism function which links to then
(but the converse is not necessary true). The most famous exemple of vertex

A Global Constraint for Graph Isomorphism Problems 291

Fig. 1. A graph G = (V, E) and distances between any pair of its vertices

invariants is the degree of a vertex (i.e., the number of incoming and outgoing
edges) : if is an isomorphism function between G = (V, E) and
then for each vertices the vertices and have the same degree.

We introduce in this section some definitions and theorems that will be used
to define a new vertex invariant based on distances. We shall restrict our atten-
tion to undirected graphs, i.e., graphs with undirected edges so that and

are considered to be the same edge. The extension of our work to directed
graphs is discussed in section 5.1. We shall assume that graphs are connected,
so that every vertex is reachable from any other vertex.

3.1 Definitions and Theorems

Definition 1. Given a graph G= (V,E), a path between two vertices and
is a sequence of vertices such that and for all

The length of a path noted is the number of its
edges.

Definition 2. Given a graph G =(V, E), a shortest path between two vertices
and is a path between and the length of which is minimal. The length of
the shortest path between and is noted We shall say that
is the distance between and

Theorem 1. Given two graphs G = (V,E) and such that
and a bijective function the two following properties are

equivalent

292 Sébastien Sorlin and Christine Solnon

Proof. (1) (2); if is an isomorphism function, then is an edge of G
iff is an edge of so that is a path in G iff

is a path in and therefore is
a shortest path in iff is a shortest path in and
property (2) holds.

For any pair of vertices if is an edge of G, then
is the shortest path between and so that and therefore

so that is an edge of (and vice versa).

Theorem 1 will be used to define “distance” constraints for propagating do-
main reductions when solving GIPs. We now introduce some more definitions
that will be used to define a partial consistency and a filtering algorithm for
GIPs.

Definition 3. Given a graph G = (V, E), a vertex and a distance
we note the set of vertices that are at a distance of

from and the number of vertices that are at a distance of from
i.e.,

For example, for the graph G of Fig. 1, we compute:

Definition 4. Given a graph G = (V, E) and a vertex we note
the sequence composed of numbers respectively corresponding to the number
of vertices that are at a distance of 0, 1, ... from i.e.,

We shall omit zeros at the end of sequences.
For example, the sequences of the vertices of the graph G of Fig. 1 are

Each sequence characterizes the relationships of the vertex with the
other vertices of G by means of distances. Hence, when looking for a graph

A Global Constraint for Graph Isomorphism Problems 293

isomorphism, one can use these sequences as a vertex invariant to reduce the
search space by pruning all mappings that associate two vertices with differ-
ent sequences. However, many different vertices within a same graph may have
a same sequence so that this criterion will not narrow much the search space.
For example, on the graph example of Fig. 1, there are five different vertices
the sequence of which is < 1,3,4,2 >. Definition 6 will go one step further in
order to characterize more precisely the relationships of a vertex with the other
vertices of the graph.

Definition 5. Given a graph G = (V,E), we note the set of all different
sequences associated with the vertices of G, i.e.,

For example, the set of all different sequences for the graph G of fig 1 is

Definition 6. Given a vertex we note the set of all tuples
such that is a distance, is a sequence, and is the number of vertices

that are at a distance of from and the sequence of which is i.e.,

We shall omit the tuples such that
For example, for the graph G of Fig. 1, we compute

as there is one vertex (A) that is at a distance of 0 from A and which sequence
is < 1,4,4,1 >, two vertices (B and C) that are at a distance of 1 from A and
which sequence is < 1,3,4,2 >, two vertices (D and F) that are at a distance
of 1 from A and which sequence is < 1,4,4,1 >, etc...

Theorem 2. Given two graphs G = (V,E) and if there exists an
isomorphism function that matches the two graphs then, for each
vertex

Proof. is a bijection, and the distance between two vertices and in G is
equal to the distance between their associated vertices and in (see
theorem 1). Therefore, the number of vertices of G that are at a distance of

294 Sébastien Sorlin and Christine Solnon

from is equal to the number of vertices of that are a distance of from
so that As a consequence, the set of sequences of the two
graphs are equals, i.e., Then, for each sequence and for
each vertex the number of vertices that are at a distance of from and
which sequence is is equal to the number of vertices that are at a distance of
from and which sequence is also and therefore

3.2 Algorithms and Complexities

We discuss in this section time and space complexities required to compute the
different values introduced in 3.1. These complexities are given for a non directed
connected graph G = (V, E) such that and with

All definitions introduced in section 3.1 are based on distances be-
tween couples of vertices. A Breadth First Search (BFS) [8] from each vertex of
G is needed to compute them all: BFS are needed, each of them performing

operations, so that the time complexity is in The space needed to
store these informations is in

and All these values can be computed in an
incremental way while computing shortest paths: each time a distance
is computed, the vertex (resp. is added to the set (resp.

both and are incremented,
and the sequences and are updated by incrementing their

component. All these operations can be done in constant time. The
space needed to store these informations is in

To compute and compare labels efficiently, we first sort the set of
all sequences, so that a unique integer is associated with each different sequence.
This is done in operations as there is at most different sequences,
and the comparison of two sequences is in Then, the computation of all
labels can be done in operations (as there are labels to compute, each of
them containing at most different triples), and requires space. Finally,
the comparison of two labels can be done in operations, provided that the
set of triples contained in each label is sorted.

As a consequence, the computation of all values introduced in section 3.1 for
a graph G = (V, E) requires operations and
space.

4 A Global Constraint for GIPs

We now introduce a new global constraint for tackling GIPs efficiently. Syntac-
tically, this constraint is defined by the relation where

V and are 2 sets of values such that
is a set of pairs of values from V,

A Global Constraint for Graph Isomorphism Problems 295

is a set of pairs of values from
L is a set of couples which associates one different variable of the CSP to
each different value of V, i.e., L is a set of couples of the form
where is a variable of the CSP and is a value of V, and such that for
any pair of different couples and of L, both and are
different variables and

Semantically, the global constraint is consistent if and only
if there exists an isomorphism function such that for each couple

there exists a value so that
This global constraint is not semantically global as it can be represented

by a semantically equivalent set of binary constraints as described in section 2.
However, the gip constraint allows us to exploit the global semantic of GIPs to
solve them more efficiently. We now define a partial consistency, and an associ-
ated filtering algorithm (section 4.1); we shall then describe how to propagate
constraints (section 4.2).

4.1 Label-Consistency and Label-Filtering for gip Constraints

Theorem 2 establishes that an isomorphism function always maps vertices that
have identical labels. Hence, we can define a partial consistency for the gip
constraint, called label-consistency, that ensures that for each couple
each value in the domain of has the same label than

Definition 7. The global constraint is label-consistent iff

To achieve label-consistency, one just has to compute the label of each vertex of
the two graphs, as described in section 3.2, and remove from the domain of each
variable associated with a vertex every value such that

This label-filtering often drastically reduces variable domains. Let us consider
for example the graph G of Fig. 1. The first three triples (sorted by increasing
distance, and then by increasing sequence number) of the label of each vertex
are:

296 Sébastien Sorlin and Christine Solnon

Fig. 2. A circular graph G = (V, E) and vertex sequences and labels

Actually, all vertices of G have different labels. As a consequence, for any gip
constraint between G and another graph label-filtering will allow one either
to detect an inconsistency (if some label of G is not in or to reduce the
domain of each variable to a singleton so that global consistency can be easily
checked.

On this example, we can compare label-consistency of a gip constraint with
arc consistency of the CSP defined in section 2. Let us define another graph

that is isomorphic to the graph G = (V,E) of Fig. 1, and such
that each vertex is renamed into in Let us consider the CSP which
modelizes the problem of finding an isomorphism between these two graphs, as
defined in section 2. For this CSP, the domain of each variable contains
every vertex such that and have a same number of incident edges,
so that :

This CSP already is arc consistent so that an AC-filtering will not reduce any
domain. Note also that, on this example, adding an allDiff constraint does not
allow to filter more domains.

4.2 Propagating Constraints

Label-filtering does not always reduce every domain to a singleton so that it
may be necessary to explore the search space. Let us consider for example the
graph displayed in Fig. 2. This graph has many symetries (it is isomorphic to
any graph obtained by a circular permutation of its vertices), so that all vertices
are associated with a same sequence and a same label. In this case, label-filtering
does not narrow any domain.

When label-filtering does not reduce the domain of each variable to a single-
ton, one has to explore the search space composed of all possible assignments by
constructing a search tree. At each node of this search tree, the domain of one
variable is splitted into smaller parts, and then filtering technics are applied to
narrow variable domains with respect to some local consistencies. These filter-
ing technics iteratively use constraints to propagate the domain reduction of one

A Global Constraint for Graph Isomorphism Problems 297

variable to other variable domains until either a domain becomes empty (the
node can be cut), or a fixed-point is reached (a solution is found or the node
must be splitted).

To propagate the domain reductions implied by a gip constraint, a first pos-
sibility is to use the set of constraints as defined in section 2. However,
we can take advantage of results obtained while achieving label-consistency to
define “tighter” constraints. By tighter, we mean that each constraint is defined
by a smaller (or equal) number of allowed couples of values so that propagating
them may narrow domains more strongly.

The idea is to constrain each pair of variables associated with a pair
of vertices of the first graph to take their values within the set of pairs of
vertices of the second graph such that the distance between and is
equal to the distance between and Indeed, Theorem 1 proves that a bijec-
tive function between two graphs is an isomorphism function if and only if this
function preserves the distances between every pair of vertices in each graph.
Therefore, the global constraint is semantically equivalent to
a set of “distance” constraints defined as follows: for all
such that

One can easily show that each binary constraint is tighter
than (or equal to) the corresponding binary constraint defined in
section 2:

if the vertices of G associated with the variables and are connected by
an edge in G, then
otherwise, as contains all
pairs of vertices of that are not connected by an edge whereas

only contains the pairs of vertices of such that the distance be-
tween them is equal to the distance between the vertices of G associated
with and

As a consequence, propaging a constraint will always remove at least
as many values as propaging the corresponding constraint, and in some
cases it will remove more values.

For example, let us consider the graph G of Fig. 2 and let us define another
graph that is isomorphic to G and such that each vertex V
is renamed into in We note the variable associated with each vertex

The edge constraint between and contains every pair of vertices
of that are not connected by an edge, i.e.,

whereas the distance constraint between and only contains pairs of vertices
of that are at a distance of 3 one from each other as the distance between 1

298 Sébastien Sorlin and Christine Solnon

and 4 is 3, i.e..

As the distance constraint between and is tighter than the corresponding
edge constraint, it can propagate more domain reductions. For example, if
is assigned to a forward-checking propagation of reduces
the domain of to the singleton whereas a forward-checking propagation
of only reduces the domain of to that is, the set of
vertices that are not connected to by an edge.

Also, after the suppression of value from the domain of an AC propaga-
tion of will remove the value from the domain of whereas
an AC propagation of will not remove any value.

5 Extensions to Directed Graphs
and Subgraph Isomorphism Problems

5.1 Directed Graphs

All definitions and theorems introduced in section 3 actually hold for directed
graphs, provided that paths respect edge directions. However, in this case, there
may exist many couples of vertices which are not connected by a path respecting
edge directions, so that the sequences describing vertices may be very short. In
this case, label-filtering may not reduce much the search space.

Another way to extend our work to directed graphs is to first consider the
corresponding non-directed graph (by ignoring edge directions), and to compute
sequences and labels on this non-directed graph. Then, constraints can be added
to express edge directions.

Finally, a last way to extend our work to directed graphs is to consider to-
gether several kinds of paths, each one having a corresponding kind of distance,
e.g. directed paths, which respect edge directions, non directed paths, which ig-
nore edge directions... We can then use these different kinds of paths to compute,
for each vertex as many labels as defined distances. Two vertices can then be
linked together if and only if, for each defined distance, the two vertices have
the same label.

Obviously, the third possibility should allow one to narrow more tightly do-
mains. However, it is also more expensive to achieve. Hence, we shall experimen-
tally compare these three different possibilities.

5.2 Subgraph Isomorphism Problems

A graph G = (V, E) is a subgraph of another graph denoted by
if and A graph G = (V, E) is an isomorphic

subgraph of another graph if there exists a subgraph
that is isomorphic to G. The Subgraph Isomorphism Problem (SGIP) consists

A Global Constraint for Graph Isomorphism Problems 299

in deciding if a graph G = (V , E) is an isomorphic subgraph of another graph

If the theoretical complexity of the GIP is not yet completely stated, the
SGIP clearly is an NP-complete problem [11]. Actually, the SGIP is a more
challenging problem for which rather small instances still cannot be solved within
a reasonable amount of time.

One can modelize a SGIPs as CSPs, in a very similar way than for GIPs. How-
ever, like for GIPs, one could take benefit of the global semantic of the problem
to define more powerful filtering algorithms. However, a subgraph isomorphism
function does not preserve distances between vertices like a graph
isomorphism function, as stated in Theorem 1: for every path
in G, there exists a path in but the opposite is not
always true is not a bijection and it may exist some vertices of which are
not linked to a vertex of V). As a consequence, the distance between two
vertices and of G may be greater than the distance between

and
Hence, filtering technics for handling efficiently SGIPs, could be based on the

following property: given two undirected graphs G = (V, E) and
if is an isomorphism function between G and a subgraph of then

This property could be used to define a partial consistency, and an associated
filtering algorithm. The idea would be to check that, for every vertex of G,
the domain of the variable associated with only contains vertices such
that, for every distance the number of vertices for which

is lower or equal to the number of vertices for which

We could also use this property to define distance constraints for propagating
domain reductions while exploring a search tree.

6 Conclusion

We have introduced in this paper a new global constraint for defining graph
isomorphism problems. To tackle efficiently this global constraint, we have first
defined a partial consistency, called label-consistency, and an associated filtering
algorithm, that can be used to narrow variable domains before solving the CSP.
This label-consistency is based on the computation, for each vertex of a label
which characterizes the global relationship between and the other vertices
of the graph by means of shortest paths and which can be viewed as a vertex
invariant. In many cases, achieving label-consistency will allow a constraint solver
to either detect an inconsistency, or reduce variable domains to singletons so that
the global consistency can be easily checked.

Then, for cases such that label-consistency does not allow to solve the graph
isomorphism problem, we have defined a set of distance constraints that is se-
mantically equivalent to the global GIP constraint and that can be used to

300 Sébastien Sorlin and Christine Solnon

propagate domain reductions. We have shown that these distance constraints
are tighter than edge constraints, that simply check that edges are preserved
by the mapping, so that propagating distance constraints remove more (or as
many) values than propagating edge constraints. Note that this set of distance
constraints can be combined with a global allDiff constraint to propagate even
more domain reductions.

Both label-filtering and the generation of distance constraints can be done
in operations for graphs having vertices and edges (such
that As a comparison, achieving arc consistency with AC2001
on a CSP describing an isomorphism problem with edge constraints will require

operations [3] where is the number of constraints, i.e.,
and is the size of the largest domain, i.e., Hence, the complexity
of achieving label-consistency on the global constraint is an order lower than
the complexity of achieving AC-consistency on a semantically equivalent set
of edge constraints. However, one should note that these two consistencies are
not comparable: for some graphs, such as the graph of Fig. 1, label-consistency
is stronger and actually solves the problem, whereas AC-consistency on edge
constraints does not reduce any domain; for some other graphs, such as the
graph of Fig. 2, label-consistency does not reduce any domain, whereas AC-
consistency on edge constraints can reduce some variable domains as soon as
one variable is assigned to a value.

Further work will first concern the integration of our filtering algorithm into
a constraint solver (such as CHOCO [14]), in order to experimentally validate
and evaluate it. A distance constraint can be seen like an invariant of a couple
of vertices : it is a label assigned to a couple of vertices such that,
if there exists an isomorphism function which links vertices to vertices

then One could choose stronger invariants i.e., defining
more “tighter” constraints than the one based on the distance between the two
vertices. For example, one could choose a label of a couple of vertices
of a graph G which describes the distances between and all vertices of the
graphs more than only the distance between and The label should be
then a set of triples each one expressing the fact that there is vertices
of G which are respectively at distance of from vertex and at distance of
from vertex Using stronger invariants can prune more efficiently the search
space but can also be more expensive to compute and to compare. One has
to find the best compromise between the time needed to compute it and the
efficiency of the filtering, and experiments should be performed to determine
this. Finally, we shall clarify relationships between different levels of partial
consistencies on and constraints. In particular, for all examples
we have experimented, we have noticed that after the assignment of a variable,
a forward checking propagation of constraints always reduces domains
as much as an AC propagation of constraints. Hence, we shall try to prove
this property, or find a counter example to it.

A Global Constraint for Graph Isomorphism Problems 301

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to
solve complex and scheduling and placement problems. In Actes des Journées
Francophones de Programmation et Logique, Lille, France, 1992.
Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis
of computer algorithms. Addison Wesley, 1974.
Christian Bessière and Marie-Odile Cordier. Arc-consistency and arc-consistency
again. In Proceedings of the 11th National Conference on Artificial Intelligence,
pages 108–113, Menlo Park, CA, USA, July 1993. AAAI Press.
Christian Bessière and Pascal Van Hentenryck. To be or not to be... a global
constraint. CP’03, Kinsale, Ireland, pages 789–794, 2003.
Christian Bessière and Jean-Charles Régin. Refining the basic constraint propa-
gation algorithm. In Bernhard Nebel, editor, Proceedings of the seventeenth In-
ternational Conference on Artificial Intelligence (IJCAI-01), pages 309–315, San
Francisco, CA, August 4–10 2001. Morgan Kaufmann Publishers, Inc.
Pierre-Antoine Champin and Christine Solnon. Measuring the similarity of labeled
graphs. 5th International Conference on Case-Based Reasoning (ICCBR 2003),
Lecture Notes in Artificial Intelligence No. 2689 - Springer-Verlag:80–95, 2003.
Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. An
improved algorithm for matching large graphs. In 3rd IAPR-TC15 Workshop on
Graph-based Representations in Pattern Recognition, pages 149–159. Cuen, 2001.
Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 1990.
Pasquale Foggia, Carlo Sansone, and Mario Vento. A performance comparison of
five algorithms for graph isomorphism. In 3rd IAPR-TC15 Workshop on Graph-
based Representations in Pattern Recognition, pages 188–199. Cuen, 2001.
Scott Fortin. The graph isomorphism problem. Technical report, Dept of Com-
puting Science, Univ. Alberta, Edmonton, Alberta, Canada, 1996.
Michael R. Garey and David S. Johnson. Computers and Intractability : A Guide
to The Theory of NP-Completness. W. H. Freeman, San Francisco, 1979.
John E. Hopcroft and Jin-Kue Wong. Linear time algorithm for isomorphism of
planar graphs. Annu. ACM Symp. theory of Comput., pages 172–184, 1974.
ILOG,S. A. ILOG Solver 5.0 User’s Manual and Reference Manual. 2000.
François Laburthe and the OCRE project team. CHOCO: implementing a CP ker-
nel. In Proc. of the CP’2000 workshop on techniques for implementing constraint
programming systems, Singapore, 2000.
Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of Computer System Science, pages 42–65, 1982.
James J. McGregor. Relational consistency algorithms and their applications in
finding subgraph and graph isomorphisms. Information Science, 19:229–250, 1979.
Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45–87, 1981.
Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28:65–74, 1986.
Jean-Charles Régin. Développement d’Outils Algorithmiques pour l’Intelligence
Artificielle. Application á la Chimie Organique. PhD thesis, Univ. Montpellier II,
1995.
Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
Jeffrey D. Ullman. An algorithm for subgraph isomorphism. Journal of the As-
sociation of Computing Machinery, 23(1):31–42, 1976.

[15]

[16]

[17]

[18]

[19]

[20]
[21]

Echelon Stock Formulation
of Arborescent Distribution Systems:

An Application to the Wagner-Whitin Problem

S. Armagan Tarim1 and Ian Miguel2

1 Hacettepe University
Department of Management

Ankara, Turkey
armagan.tarim@hacettepe.edu.tr

2 University of York
Department of Computer Science

York, U.K.
ianm@cs.york.ac.uk

Abstract. An arborescent distribution system is a multi-level system
in which each installation receives input from a unique immediate pre-
decessor and supplies one or more immediate successors. In this paper,
it is shown that a distribution system with an arborescent structure can
also be modelled using an echelon stock concept where at any instant the
total echelon holding cost is accumulated at the same rate as the total
conventional holding cost. The computational efficiency of the echelon
model is tested on the well-known Wagner-Whitin type dynamic inven-
tory lot-sizing problem, which is an intractable combinatorial problem
from both mixed-integer programming (MIP) and constraint program-
ming (CP) standpoints. The computational experiments show that the
echelon MIP formulation is computationally very efficient compared to
the conventional one, whereas the echelon CP formulation remains in-
tractable. A CP/LP hybrid yields a substantial improvement over the
pure CP approach, solving all tested instances in a reasonable time.

1 Introduction

Inventory theory provides methods for managing and controlling inventories un-
der different policy constraints and environmental situations. A basic distribu-
tion system consists of a supply chain of stocking points arranged in levels. Cus-
tomer demands occur at the first level, and each level has its stock replenished
from the one above. Typically, a holding cost per unit of inventory is associated
with each stocking point, under the assumption that a parent stocking point has
a lower holding cost than any of its children. A procurement cost per order is also
associated with each stocking point. Given customer demands for each stocking
point in the first level over some planning horizon of a number of periods, the
problem is then to find an optimal policy: a set of decisions as to when and
how much to order for each stocking point, such that cost is minimised. This is

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 302–318, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Echelon Stock Formulation of Arborescent Distribution Systems 303

a difficult combinatorial problem, to which this paper considers mixed integer
programming (MIP), constraint programming (CP) and hybrid approaches.

An important consideration in the performance of all of these approaches
is the model, i.e. the choice of decision variables and constraints used to repre-
sent the problem. For each stocking point, at each time period in the planning
horizon, the conventional model employs one variable for the ordering decision
and another for the closing inventory level. An alternative model of inventory
views the distribution structure in echelons [8]. An echelon comprises a stocking
point and all of its descendants, with an associated echelon inventory level cor-
responding to the combined inventories of the constituent stocking points. The
echelon holding cost [9] captures the incremental cost of holding a unit of stock
at a particular stocking point instead of at its parent.

The echelon stock formulation, with an inventory variable per echelon, has
been shown to be valid for serial distribution systems [14]. This paper extends the
proof of validity to arborescent systems, showing that the total echelon holding
cost accumulates at the same rate as the total conventional holding cost.

The complexity of multi-echelon inventory problems has in the past required
the use of a sequential approach to calculating the optimal policy [12, 13]. Clark
and Scarf [8] demonstrated that, using the echelon formulation, under certain
inventory control policy and cost assumptions, the optimal policy for a serial
system can be determined sequentially by first determining the optimal policy at
the lowest level and then proceeding sequentially to the higher levels. This paper
demonstrates empirically, via a multi-echelon version of the well-known Wagner-
Whitin problem [16], that the echelon stock formulation may still improve on
the conventional formulation without resorting to the sequential approach.

The paper is organised as follows. In Section 2, the concepts of arborescence
and echelon stock, and in Section 3, the notation and basic definitions are given.
The conventional and echelon formulations of arborescent distribution systems
are presented in Section 4 and their equivalence is proved in Section 5. Sec-
tion 6 illustrates the echelon MIP formulation of the Wagner-Whitin problem
by a numerical example. Section 7 is devoted to numerical tests concerning the
computational efficiency of echelon and conventional formulations of Wagner-
Whitin problem. Conclusions are presented in the final section.

2 Multi-Echelon Systems and Echelon Stock

Figure 1 presents an illustrative multi-echelon inventory system. A multi-echelon
inventory system can also be viewed as a directed network, where the nodes
represent the stocking points and the linkages represent flows of goods. If the
network has at most one incoming link for each node and flows are acyclic it is
called an arborescence or inverted tree structure. More complex interconnected
systems of facilities can exist; however, most of the work in multi-echelon inven-
tory theory has been confined to arborescent structures [12].

Consider the following distinction between an installation stock and an ech-
elon stock. In a serial system, the stock at installation refers only to the stock

304 S. Armagan Tarim and Ian Miguel

Fig.1. An arborescent system

physically at that location; however, the echelon stock at level refers to the
sum of all the stocks at installations 1 plus all the stock in transit
between installations ..., 2, 1. This definition permits useful simplifica-
tions [8]. Under certain assumptions, a multi-stage problem can be decomposed
into a set of interconnected one-stage problems, one for each echelon. In Afentakis
et al. [2], Clark and Armentano [6, 7], Axsater and Rosling [3], and Chen and
Zheng [5], the echelon concepts are used to reformulate production/inventory
systems. Silver et al. [15] give a full chapter treatment of the topic.

3 Notation and Definitions

Consider a level of an arborescent structure and let the number
of stocking points in this level be For each stocking point, is the
set of descending or immediate ascending stocking points
that are in level and connected to the stocking point of
the level. is the set of all successors of stocking point of level
(i.e., is the set of all stocking points
that are in the first level and originate from stocking point of the level
(i.e., Each stocking point is defined by a pair of numbers

where and denote the stocking point and level numbers respectively.
For illustration, consider the 3-level distribution system shown in Figure 1,

where refers to stocking point A, to stocking
point B, to stocking point C, to stocking point D,

to stocking point E, and to stocking point F:

Echelon Stock Formulation of Arborescent Distribution Systems 305

Set of immediate successors,
W(1, 2, 1) = {A, B}, W (2, 2, 1) = {C}, W (1, 3, 2) = {D, E}
Set of all successors,
G(1, 3) = {A, B, C, D, E}, G(1, 2) = {A, B}, G(2, 2) = {C}, G(1,1) = G(2,1) =

Immediate predecessors,
W(1, 1, 2) = D, W(2,1, 2) = D, W(3, 1, 2) = E, W(1, 2, 3) = F, W(2, 2, 3) = F
Set of successors in the lowest level,
V(1, 2) = {A, B}, V(2, 2) = {C}, V(1, 3) = {A, B, C}

The echelon stock at stocking point in level at the end of period is
denoted by and is the echelon holding cost. The echelon holding cost at
a given stocking point is the incremental cost of holding a unit of inventory
at this stocking point instead of at predecessor thereof, The formal
definitions of and are as follows:

where is the conventional unit inventory holding cost at stocking point
and is the closing inventory level at the end of period

4 Conventional vs Echelon Formulations

In this section, inventory holding cost expressions and balance equations for
multi-echelon inventory systems are presented under both conventional and ech-
elon holding cost charging schemes. First, the conventional scheme is addressed
under the assumption that a fixed holding cost is incurred on any unit carried
in inventory over from one period to the next. Under this scheme, the conven-
tional single period total holding cost expression can be written as in Eq.(2),

The pertinent inventory balance equations show that the closing inventory in
any stocking point in any period is the opening inventory plus the order received
minus the demand met (or the amount supplied to the other stocking points of
the multi-echelon system),

and

306 S. Armagan Tarim and Ian Miguel

where is the stock replenishment amount received at stocking point
in period In Eq.(3), without loss of generality, delivery lead-time is taken as
zero. This formulation, in which Eq.(2) is the cost expression and Eqs.(3)–(4)
are the balance equations, is called Model I (or the conventional model).

It is shown in Section 5 that, by means of the linear transformations given
in Eq.(1), Model I of multi-echelon systems can be rewritten as Eqs.(5)–(7),

where customer demands, occur only at stocking points in level 1. By def-
inition, and are equivalent. This alternative formulation
is called Model II (or the echelon model). The concept behind this transforma-
tion is known in the MRP literature (for assembly systems) as “explosion” (see
Afentakis and Gavish [1]).

5 Equivalence of Models I and II

The validity of echelon stock and echelon holding cost concepts in arborescent
structures is now addressed and the equivalence of Models I and II is proved.
To serve this purpose, we show that at any instant a policy under the echelon
stock charging scheme gives the same total cost as a charging scheme based on
stock physically at each installation in an arborescent structure.

Lemma 1. Given the inventory balance equations
of Models I and II are equivalent.

Proof. Consider level of Model I. For all stocking points in the
set of all successors, adding up the inventory balance equations of Eq.(3),

Echelon Stock Formulation of Arborescent Distribution Systems 307

yields

Thereby, using the equivalence of and and adding Eq.(3)
to Eq.(8) give the general expression,

Making use of Eq.(1) (i.e., the definition of Eq.(9) leads to

Hence, the equivalence of Eq.(3) and Eq.(6) is shown.

Eq.(1) can be rearranged for giving

and

from which the nonnegativity constraints of lead directly to Eq.(7).
In what follows, the equivalence of conventional and echelon holding cost

charging schemes is addressed. The echelon holding cost, is calculated from
the conventional holding cost, by the rule:

Schwarz and Schrage [14] show that in a serial system, at any instant

that is, total echelon holding cost is accumulated at the same rate as total
conventional holding cost.

Here, we show that conventional and echelon charging schemes are identical
not only in serial systems, but also in arborescent systems. Hence their proof is
extended to cover arborescent systems.

Lemma 2. Given the cost expressions of
Models I and II are equivalent.

308 S. Armagan Tarim and Ian Miguel

Proof. Assume that an arborescent system is comprised of only a single level of
stocking points. In other words, the stocking points are independent. Then

and for and Now assume that
a new stocking point is introduced as level 2, and all independent stocking points
of level 1 are connected to this new stocking point as successors. Then it follows

from which the conventional inventory cost increase may be calculated as

Since this is the actual amount of increase in the conventional inventory
cost, one can conclude that the echelon cost charging scheme gives the correct
conventional inventory cost for a 2-echelon system.

Now assume an inventory system of independent level systems.
A new level, level is introduced and all level systems are connected to
it as successors. Such a restructuring does not affect the echelons of the lowest

levels. However, the following modifications take place:

Thus, the echelon holding cost expression increases by

Since the actual amount of increase in the echelon cost is equal to the amount
of increase in the conventional inventory cost for an arborescent structure with
levels, this finishes the induction step, which completes the proof.

Theorem 1. An alternative formulation of arborescent distribution systems
follows from the echelon stock and echelon holding cost definitions.

Proof. From Lemmas (1) and (2).

Echelon Stock Formulation of Arborescent Distribution Systems 309

6 An Illustrative Example: Wagner-Whitin Problem

The Wagner-Whitin problem [16] describes the single stocking point planning of
ordering and stocking a certain product over a discrete time planning horizon.
The deterministic demand for all periods is to be satisfied, and the total sum of
fixed procurement and linear holding costs is to be minimised. In this section a
multi-echelon version of the Wagner-Whitin type dynamic inventory lot-sizing
problem (problem 040 at www.csplib.org) is formulated using both conventional
and echelon approaches. To serve this purpose, the multi-echelon structure given
in Figure 1 is used assuming the period demands presented in Table 1.

The initial inventory level is taken as zero and the replenishment lead-time is
set to zero in all stocking points. A fixed procurement cost, is incurred when
a replenishment order is placed, irrespective of order size. Table 2 gives the other
parameters of the problem. Both conventional and echelon type formulations for
the multi-echelon Wagner-Whitin problem are presented below. In these mod-
els, M denotes a large number and is a binary decision variable that takes
the value of 1 if a replenishment order is placed in period and 0 otherwise.

Conventional Model:

min
Echelon Model:

min

subject to subject to

The optimal inventory replenishment policy, with a total cost of 135,700
units, is presented in Table 2. The difference between two models is significant.
In the conventional case, the search tree includes 531 nodes, whereas the corre-
sponding search tree for the echelon model has only 213 nodes.

310 S. Armagan Tarim and Ian Miguel

7 Computational Experiments

To get a better indication of the difference between the two models, in this
section computational tests are performed on a wider set of problems, using
different solution techniques. The tests are performed on a 1.2GHz Pentium-3
machine using mathematical programme solvers Xpress-MP 2003B [10] and Ilog
Cplex 8.1 and constraint solver Ilog Solver 5.3. Xpress-MP and Cplex are both
used with their default settings. The models are tested on problems generated
for 6-stocking point multi-level systems with three different structures, namely:
arborescent systems; serial systems, and warehouse-retailer systems.

In the test problems, the structure given in Figure 1 is used as a design of
arborescent systems. Serial systems are represented by a 6-level structure, in
which A is the lowest level stocking point where the external demand is met
and F is the highest level (level 6) stocking point where the external supply is
received. In a warehouse-retailer system, a single second level warehouse sup-
plies a number of first level retailers. The computational tests are performed on
a 1-warehouse (denoted by F) 5-retailer (denoted by A to E) structure. The
pertinent demand data for arborescent, serial and warehouse-retailer systems
are presented in Table 3.

Three different planning horizon lengths –10, 12 and 18 periods– are used in
the experiments. The number of test problems, generated for different structures
and costs, totals to 35. The instances are given in Table 4.

7.1 Implied Constraints

During numerical experiments a number of implied constraints (IC) are incorpo-
rated into the conventional and echelon models to enhance performance. These
constraints are detailed below:

IC1 All stocking points must have zero inventory at the end of the last period
in an optimal solution. Hence, the corresponding inventory variables are
pre-set.

Echelon Stock Formulation of Arborescent Distribution Systems 311

IC2

IC3

IC4

In an optimal solution, if a parent node places an order, at least one of its
children must also. Consider that, if no children make an order, the parent
node incurs a holding cost that can be removed by delaying the order until
a subsequent period when at least one child does place an order.
An upper bound can be derived for the inventory variables in the con-
ventional formulation by considering that it is only worth holding stock
at a node if it is cheaper than ordering it at the next period. That is:

which simplifies to:
This can easily be applied to the echelon model by substituting in the equal-
ity:
Similarly, an upper bound can be derived for the order variables at the
leaf nodes. The principle is the same: it is only worth ordering stock not
absorbed by demand at the current period if it is cheaper than waiting and
ordering in a subsequent period. Consider first a bound based on deferring
an order into the next period:
which can be re-arranged: This can be generalised
to consider deferring an order into any of the following periods up to the
planning horizon:

7.2 MIP

The solution times obtained to test problems using Xpress–MP and Cplex under
conventional and echelon formulations, with and without implied constraints,
are given in Table 5. The results indicate that, irrespective of problem structure,
costs involved, or MIP solver used, for the Wagner-Whitin problem the echelon
formulation of a multi-echelon system is more tractable than the conventional
one. The only exception to this remark is the warehouse-retailer type distribution
systems which are solved by using Cplex. In these problems the computational
performance of conventional and echelon models are very close and mixed.

312 S. Armagan Tarim and Ian Miguel

E
chelon S

tock F
orm

ulation of A
rborescent D

istribution S
ystem

s
313

314 S. Armagan Tarim and Ian Miguel

In almost half of the cases (30 out of 70) examined, the conventional model
without ICs cannot produce the optimal solution in 1 hour. However, using the
echelon formulation we were able to determine the optimal solution within an
hour in all cases. The maximum solution time required by Xpress–MP (for 10
and 12 period problems) is less than 4 minutes, whereas this value is almost 11
minutes for Cplex (for 18 period problems).

The introduction of implied constraints IC1 and 2 dramatically improves the
computational performance of both models. The improvement is especially sig-
nificant in the serial systems where IC2, is very strong. How-
ever, when the design of distribution system exhibits a warehouse-retailer char-
acteristic with many successors, the IC gets weaker,
A further substantial improvement results from adding IC3 and 4. However,
these constraints are observed to be weaker compared to IC1 and 2. In cer-
tain instances, it is even observed that IC3 and 4 have adverse effects on the
computational performance.

The above observations clearly show that although in the Wagner-Whitin
type problem an arborescent system cannot be interpreted as a nested set of
echelons, the echelon formulation is still favoured to the conventional formula-
tion. It should also be noted that the implied constraints play a significant role
in the computational performance.

7.3 CP and CP/LP Hybrid

Initial experimentation with a pure constraint satisfaction model yielded dis-
appointing results, with the solver unable to solve the arborescent problems in
a reasonable time. Therefore, experiments were also performed with a hybrid
CP/LP solver using Ilog Hybrid 1.3.1 to combine Solver and Cplex. The mod-
els used for the hybrid are essentially the same as the MIP models presented
in Section 6. It is possible to remove the delta variables from both the conven-
tional and echelon models by reifying the constraint This reification
can be used in the echelon holding cost expressions as follows (and similarly
for the conventional model): How-
ever, the delta variables are a crucial part of the linear program. Preliminary
experiments show that the hybrid performs very poorly without them. Therefore
the delta variables are kept in the hybrid model, but the following constraints
are added: By inspection, this is stronger than the big-M
inequality and can be used by the constraint solver component of the hybrid for
propagation.

Implied Constraints: Both formulations are enhanced through the addition
of implied constraints IC1-4. Two further non-linear implied constraints are also
added. The first (IC5) exploits the fact that, in an optimal solution, an order
is only made at a node when the inventory is 0. This principle is also known as
the zero-inventory ordering policy of Wagner-Whitin solution. This can be seen
by considering that if an order is made at a node with some stock at period

Echelon Stock Formulation of Arborescent Distribution Systems 315

the cost incurred by holding that stock from period to can be removed
by increasing the size of the order at period

The second (IC6) reduces the domains of the X (order) variables by exploit-
ing the fact that, in an optimal solution, the sizes of all orders made are composed
from the demands of the children of the associated node for a continuous stretch
of time from between the current period to the end of the planning horizon [17].
It is therefore possible to enumerate the domain elements for each X variable,
replacing the simple upper/lower bounds representation. The time complexity
of this process is exponential in the number of leaves beneath the order node in
question, but can usefully be applied when the number of leaves is small.

Results: Experiments were performed on the same problems as those used with
Xpress–MP (see Tables 4 and 5). The results are presented in Table 6. Due to the
branching factor, it is not feasible to use IC6 on the warehouse problems. The
delta variables were used to branch on after preliminary experimentation showed
that this was more effective than using the X variables. The branching variable
was selected by preferring variables with a fractional value (in the solution to
the linear relaxation) as close to 0.5 as possible [11]. Having selected a variable,
branching was performed using four heuristics. The first (H1) always tries 1
before 0 in order to encourage propagation based on a decision having been
made to place an order. Heuristics H2 and H3 branch on the smallest and
largest variation in pseudo-cost [4] respectively. Finally, heuristic (H4) branches
on the value farthest away from that assigned by the relaxation. Cuts are added
via Cplex at the root node.

Compared with the MIP solvers, it is immediately clear that the hybrid takes
longer to solve the instances tested. One of the chief reasons for this is that the
pure MIP solvers can search many more nodes per second (around five times)
than the hybrid. Particularly when domain reduction (IC6) is used, the search
tree when using the conventional model is often smaller than that of Xpress–MP.
The fact that this is not reflected in the time taken means that the reduction in
search is not sufficient to compensate for the overhead of maintaining the hybrid.

The echelon model does not provide the clear advantage for the hybrid that
it does for the MIP models. For the serial problems, the effect is largely positive,
with a smaller search tree often explored when using the echelon model. For
the arborescent problems, the echelon model is able to exploit domain reduction
better than the conventional model, resulting in the echelon model performing
better for a greater proportion of the instances. Performance of the echelon model
versus the conventional model on the warehouse problems is dependent on the
heuristic used. Sometimes an echelon model results in a smaller search tree, but
longer time taken. This suggests that the use of the echelon model incurs some
overhead.

Since, as confirmed in the MIP experiements, the echelon model provides
a tighter relaxation, the occasions where the echelon model inhibits performance
are probably due to the effects of constraint propagation. Specifically, constraint
propagation will act to assign variables in the linear program, thus influencing

316 S. Armagan Tarim and Ian Miguel

the branching heuristic. This suggests that not only the model but the branch-
ing heuristic should be a hybrid, considering both the linear program and the
constraint program.

8 Conclusion

This paper has extended Schwarz and Schrage’s [14] proof of the validity of the
echelon formulation for serial distribution systems to arborescent systems. The
utility of this formulation in a MIP setting was confirmed in an empirical analysis
using the well known Wagner-Whitin problem. The success of the echelon formu-
lation was less clear-cut in conjunction with the hybrid CP/LP solver. This was
ascribed to the influence of constraint propagation on the branching heuristic,
which considers the linear relaxation only. An important piece of future work is
to develop a branching heuristic that considers both the linear program and the
constraint program. Further future work will consider the echelon formulation
in other arborescent structures and in different operating environments, such as
backlogging of unsatisfied demand at the lowest echelon

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Afentakis, P., Gavish, B. Bill of material processor algorithms -time and storage
complexity analysis. Technical report, Graduate School of Management, Univer-
sity of Rochester (1983).
Afentakis, P., Gavish, B., Karmarkar, U. Computationally efficient optimal so-
lutions to the lot-sizing problem in assembly systems. Management Science 30
(1984) 222–239.
Axsater, S., Rosling, K. Notes: Installation vs. echelon stock policies for multilevel
inventory control. Management Science 39 (1993) 1274–1279.
Benichou, M., Gauthier, J. M., Hentges, G., Ribiere, G. Experiments in mixed
integer linear programming. Mathematical Programming 1 (1971) 76-94.
Chen, F., Zheng, Y. S. One-warehouse multiretailer systems with centralized stock
information. Operations Research 45 (1997) 275–287.
Clark, A.R., Armentano, V. A. Echelon stock formulations for multi-stage lot-
sizing with lead-times. International Journal of Systems Science 24 (1993) 1759–
1775.
Clark, A. R., Armentano, V. A. A heuristic for a resource-capacitated multi-stage
lot-sizing problem with lead times. Journal of the Operational Research Society
46 (1995) 1208–1222.
Clark, A.J., Scarf, H. Optimal policies for a multi-echelon inventory problem.
Management Science 6 (1960) 475–490.
Crowston, W. B., Wagner, M. H., Williams, J. F. Economic lot size determination
in multi-stage assembly systems. Management Science 19 (1973) 517–527.
Optimization, D. Xpress-MP Essentials: An Introduction to Modeling and Opti-
mization. Dash Associates, New Jersey (2002).
Padberg, M. W., Rinaldi, G. A branch-and-bound algorithms for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review, 33(1) (1991)
60–100.

Echelon Stock Formulation of Arborescent Distribution Systems 317

[12]

[13]

[14]

[15]

[16]

[17]

Schwarz, L. B. Multi-Level Production/Inventory Control Systems: Theory and
Practice. North-Holland, Amsterdam (1981).
Schwarz, L. B. Physical distribution: The anaylsis of inventory and location. AIIE
Transactions 13 (1981) 138–150.
Schwarz, L. B., Schrage, L. On echelon holding costs. Management Science 24
(1978) 865–866.
Silver, E. A., Pyke, D.F., Peterson, R. Inventory Management and Production
Planning and Scheduling. John-Wiley and Sons, New York (1998).
Wagner, H. M., Whitin, T. M. Dynamic version of the economic lot size model.
Management Science 5 (1958) 89–96.
Zangwill, W. I. A backlogging model and a multi-echelon model of a dynamic
economic lot size production system – a network approach. Management Science
15(9) (1969) 506–527.

318 S. Armagan Tarim and Ian Miguel

Scheduling Abstractions for Local Search

Pascal Van Hentenryck1 and Laurent Michel2

1 Brown University
Box 1910, Providence, RI 02912

USA
2 University of Connecticut

Storrs, CT 06269-3155
USA

Abstract. COMET is an object-oriented language supporting
a constraint-based architecture for local search. This paper presents
a collection of abstractions, inspired by constraint-based schedulers,
to simplify scheduling algorithms by local search in COMET. The
main innovation is the computational model underlying the abstrac-
tions. Its core is a precedence graph which incrementally maintains
a candidate schedule at every computation step. Organized around
this precedence graph are differentiable objects, e.g., resources and
objective functions, which support queries to define and evaluate local
moves. The abstractions enable COMET programs to feature declarative
components strikingly similar to those of constraint-based schedulers
and search components expressed with high-level modeling objects and
control structures. Their benefits and performance are illustrated on
two applications: minimizing total weighted tardiness in a job-shop and
cumulative scheduling.

1 Introduction

Historically, most research on modeling and programming tools for combinato-
rial optimization has focused on systematic search, which is at the core of branch
& bound and constraint satisfaction algorithm. It is only recently that more at-
tention has been devoted to programming tools for local search and its variations
(e.g., [2, 20, 15, 5, 8, 19]). Since constraint programming and local search exhibit
orthogonal strengths for many classes of applications, it is important to design
and implement high-level programming tools for both paradigms.

COMET [9, 18] is a novel, object-oriented, programming language specifically
designed to simplify the implementation of local search algorithms. Comet sup-
ports a constraint-based architecture for local search organized around two main
components: a declarative component which models the application in terms of
constraints and functions, and a search component which specifies the search
heuristic and meta-heuristic. Constraints, which are a natural vehicle to express
combinatorial optimization problems, are differentiable objects in COMET: They
maintain a number of properties incrementally and they provide algorithms to

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 319–334, 2004.
© Springer-Verlag Berlin Heidelberg 2004

320 Pascal Van Hentenryck and Laurent Michel

evaluate the effect of various operations on these properties. The search compo-
nent then uses these functionalities to guide the local search using multidimen-
sional, possibly randomized, selectors and other high-level control structures [18].
The architecture enables local search algorithms to be high-level, compositional,
and modular. It is possible to add new constraints and to modify or remove
existing ones, without having to worry about the global effect of these changes.
COMET also separates the modeling and search components, allowing program-
mers to experiment with different search heuristics and meta-heuristics without
affecting the problem modeling. COMET has been applied to many applications
and can be implemented to be competitive with tailored algorithms, primarily
because of its fast incremental algorithms [9].

This paper focuses on scheduling and aims at fostering the modeling fea-
tures of COMET for this important class of applications. It is motivated by the
remarkable success of constraint-based schedulers (e.g., [13]) in modeling and
solving scheduling problems using constraint programming. Constraint-based
schedulers, CB-schedulers for short, provide high-level concepts such as activ-
ities and resources which considerably simplify constraint-programming algo-
rithms. The integration of such abstractions within COMET raises interesting
challenges due to the fundamentally different nature of local search algorithms
for scheduling. Indeed, in constraint-based schedulers, the high-level modeling
abstractions encapsulate global constraints such as the edge finder and provide
support for search procedures dedicated to scheduling. In contrast, local search
algorithms move from (possibly infeasible) schedules to their neighbors in order
to reduce infeasibilities or to improve the objective function. Moreover, local
search algorithms for scheduling typically do not perform moves which assign
the value of some decision variables, as is the case in many other applications.
Rather, they walk from schedules to schedules by adding and/or removing sets
of precedence constraints.1 This is the case in algorithms for job-shop scheduling
where makespan (e.g., [6, 12]) or total weighted tardiness (e.g., [3]) is minimized,
flexible job-shop scheduling where activities have alternative machines on which
they can be processed (e.g., [7]), and cumulative scheduling where resources are
available in multiple units (e.g., [1]) to name only a few.

This paper addresses these challenges and shows how to support traditional
scheduling abstractions in a local search architecture. Its main contribution is
a novel computational model for the abstractions which captures the specificities
of scheduling by local search. The core of the computational model is an incre-
mental precedence graph, which specifies a candidate schedule at every computa-
tion step and can be viewed as a complex incremental variable. Once the concept
of precedence graph is isolated, scheduling abstractions, such as resources and
tardiness functions, become differentiable objects which maintain various prop-
erties and how they evolve under various local moves.

The resulting computational model has a number of benefits. From a pro-
gramming standpoint, local search algorithms are short and concise, and they
are expressed in terms of high-level concepts which have been shown robust

 We use precedence constraints in a broad sense to include distance constraints.1

Scheduling Abstractions for Local Search 321

in the past. In fact, their declarative components closely resemble those of
CB-schedulers, although their search components radically differ. From a com-
putational standpoint, the computational model smoothly integrates with the
constraint-based architecture of COMET, allows for efficient incremental algo-
rithms, and induces a reasonable overhead. From a language standpoint, the
computational model suggests novel modeling abstractions which explicit the
structure of scheduling applications even more. These novel abstractions make
scheduling applications more compositional and modular, fostering the main
modeling benefits of COMET and synergizing with its control abstractions.

The rest of this paper first describes the computational model and provides
a high-level overview of the scheduling abstractions. It then presents two schedul-
ing applications in COMET: minimizing total weighted tardiness in a job-shop
and cumulative scheduling. For space reasons, we do not include a traditional
job-shop scheduling algorithm. The search component of one such algorithm [6]
was described in [18] and its declarative component is essentially similar to the
first application herein. Reference [18] also contains experimental results. Other
applications, e.g., flexible scheduling, essentially follow the same pattern.

2 The Computational Model

The main innovation underlying the scheduling abstractions is their computa-
tional model. The key insight is to recognize that most local search algorithms
move from schedules to their neighbors by adding and/or removing precedence
constraints. Some algorithms add precedence constraints to remove infeasibil-
ities, while others walk in between feasible schedules by replacing one set of
precedence constraints by another. Moreover, the schedules in these algorithms
always satisfy the precedence constraints, but may violate other constraints. As
a consequence, the core of the computational model is an incremental prece-
dence graph which collects the set of precedence constraints between activities
and specifies a candidate schedule at every computation step. The candidate
schedule associates with each activity its earliest starting date consistent with
the precedence constraints. It is incrementally maintained during the compu-
tation under insertion and deletion of precedence constraints using incremental
algorithms such as those in [10].

Once the precedence graph is introduced as the core concept, it is natural
to view traditional scheduling abstractions (e.g., cumulative resources) as dif-
ferentiable objects. A resource now maintains its violations with respect to the
candidate schedule, i.e., the times where the demand for the resource exceeds
its capacity. Similarly, COMET features differentiable objects for a variety of ob-
jective functions such as the makespan and the tardiness of an activity. These
objective functions maintain their values, as well as a variety of additional data
structures to evaluate the effect of a variety of local moves.

Although it is a significant departure from traditional local search in COMET,
this computational model smoothly blends in the overall architecture of the lan-
guage. Indeed, the precedence graph can simply be viewed as an incremental

322 Pascal Van Hentenryck and Laurent Michel

variable of a more complex type than integers or sets. Similarly, the scheduling
abstractions are differentiable objects built on top of the precedence graph and
its candidate schedule. Each differentiable object can encapsulate efficient incre-
mental algorithms to maintain its properties and to implement its differentiable
queries, exploiting the problem structure.

The overall computational model shares some important properties with CB-
schedulers, including the distinguished role of precedence constraints in both
architectures. Indeed, CB-schedulers can also be viewed as being implicitly or-
ganized around a precedence graph obtained by relaxing the resource constraints.
(Such a precedence graph is now explicit in some CB-schedulers [4].) The funda-
mental difference, of course, lies in how the precedence graph is used. In COMET,
it specifies the candidate schedule and the scheduling abstractions are differen-
tiable objects maintaining a variety of properties and how they vary under local
moves. In CB-schedulers, the precedence graph reduces the domain of variables
and the scheduling abstractions encapsulate global constraints, such as the edge
finder, which derive various forms of precedence constraints.

3 Overview of the Scheduling Abstractions

This section briefly reviews some of the scheduling abstractions. Its goal is not
to be comprehensive, but to convey the necessary concepts to approach the al-
gorithms described in subsequent sections. As mentioned, the abstractions were
inspired by CB-schedulers but differ on two main aspects. First, although the
abstractions are the same, their interfaces are radically different. Second, COMET

features some novel abstractions to expose the structure of scheduling applica-
tions more explicitly. These new abstractions often simplify search components,
enhance compositionality, and improve performance.

Scheduling applications in COMET are organized around the traditional con-
cepts of schedules, activities, and resources. The snippet

introduces the most basic concepts. It declares a schedule sched using the local
search manager mgr, two activities a and b of duration 4 and 5, and a precedence
constraint between a and b. This excerpt highlights the high-level similarity be-
tween the declarative components of COMET and constraint-based schedulers.
What is innovative in COMET is the computational model underlying these mod-
eling objects, not the modeling concepts themselves. In constraint-based schedul-
ing, these instructions create domain-variables for the starting dates of the ac-
tivities and the precedence constraints reduce their domains. In COMET, these
instructions specify a candidate schedule satisfying the precedence constraints.
For instance, the above snippet assigns starting dates 0 and 4 to activities a

Scheduling Abstractions for Local Search 323

and b. The expression a.getESD() can be used to retrieve the starting date of
activity a which typically vary over time.

Schedules in COMET always contain two basic activities of zero duration:
the source and the sink. The source precedes all other activities, while the sink
follows every other activity. The availability of the source and the sink often
simplifies the design and implementation of local search algorithms.

Jobs: Many local search algorithms rely on the job structure to specify their
neighborhood, which makes it natural to include jobs as a modeling object for
scheduling. This abstraction is illustrated in Section 4, where critical paths are
computed. A job is simply a sequence of activities linked by precedence con-
straints. The structure of jobs is specified in COMET through precedence con-
straints. For instance, the snippet

1.

2.
3.
4.

5.

Schedule sched(mgr);
Job j(sched);
Activity a(sched , 4); Activity b(sched , 5);
a.precedes(b ,j);
sched.close();

specifies a job j with two activities a and b, where a precedes b. This snippet
also highlights an important feature of COMET: Precedence constraints can be
associated with modeling objects such as jobs and resources (see line 4). This
polymorphic functionality simplifies local search algorithms which may retrieve
subsets of precedence constraints easily. Since each activity belongs to at most
one job, COMET provides methods to access the job predecessors and succes-
sors of each job. For instance, the expressionb.getJobPred() returns the job
predecessor of b, while j.getFirst() returns the first activity in job j.

Cumulative Resources: Resources are traditionally used to model the pro-
cessing requirements of activities. For instance, the instruction

CumulativeResource cranes(sched ,5);

specifies a cumulative resource providing a pool of 5 cranes, while the instruction

a.requires(cranes ,2)

specifies that activity a requires 2 cranes during its execution. Once again,
COMET reuses traditional modeling concepts from CB-scheduling and the nov-
elty is in their functionalities. Resources in COMET are not instrumental in prun-
ing the search space: They are differentiable objects which maintain invariants
and data structures to define the neighborhood. In particular, a cumulative re-
source maintains violations induced by the candidate schedule, where a viola-
tion is a time where the demands of the activities executing on at in the
candidate schedule exceeds the capacity of the resource. Cumulative resources
can also be queried to return sets of tasks responsible for a given violation.
As mentioned, precedence constraints can be associated with resources, e.g.,
a.precedes(b , crane), a functionality illustrated later in the paper.

324 Pascal Van Hentenryck and Laurent Michel

Precedence Constraints: It should be clear at this point that precedence
constraints are a central concept underlying the abstraction. In fact, precedence
constraints are first-class citizens in COMET. For instance, the instruction

set{Precedence} P = cranes.getPrecedenceConstraints();

can be used to retrieve the set of precedence constraints associated with crane.

Disjunctive Resources: Disjunctive resources are special cases of cumulative
resources with unit capacity. Activities requiring disjunctive resources cannot
overlap in time and are strictly ordered in feasible schedules. Local search algo-
rithms for applications involving only disjunctive resources (e.g., various types of
jobshop and flexible scheduling problems) typically move in the space of feasible
schedules by reordering activities on a disjunctive resource. As a consequence,
COMET provides a number of methods to access the (current) disjunctive se-
quence. For instance, method d.getFirst() returns the first activity in the
sequence of disjunctive resource d, while method a.getSucc(d) returns the suc-
cessor of activity a on d. COMET also provides a number of local moves for
disjunctive resources which can all be viewed as the addition and removal of
precedence constraints. For instance, the move d.moveBackward(a) swaps ac-
tivity a with its predecessor on disjunctive resource d. This move removes three
precedence constraints and adds three new ones. Note that such a move does
not always result in a feasible schedule: activity a must be chosen carefully to
avoid introducing cycles in the precedence graph.

Objective Functions: One of the most innovative scheduling abstractions fea-
tured in COMET is the concept of objective functions. At the modeling level, the
key idea is to specify the “global” structure of the objective function explicitly.
At the computational level, objective functions are differentiable objects which
incrementally maintain invariants and data structures to evaluate the impact
of local moves. The ubiquitous objective function in scheduling is of course the
makespan which can be specified as follows:

Makespan makespan(sched);

Once declared, an objective function can be evaluated (i.e., makespan.eval())
and queried to determine the impact of various local moves. For instance, the
expression makespan.evalAddPrecedenceDelta(a , b) evaluates the makespan
variation of adding the precedence Similarly, the effect on the makespan
of swapping activity a with its predecessor on disjunctive resource d can be
queried using makespan.evalMoveBackwardDelta(a , d). Note that COMET sup-
ports many other local moves and users can define their own moves using the
data and control abstractions of COMET.

The makespan maintains a variety of interesting information besides the to-
tal duration of the schedule. In particular, it maintains the latest starting date
of each activity, as well as the critical activities, which appears on a longest path

Scheduling Abstractions for Local Search 325

from the source to the sink in the precedence graph. These information are gen-
erally fundamental in defining neighborhood search and heuristic algorithms for
scheduling. They can also be used to estimate quickly the impact of a local move.
For instance, the expression makespan.estimateMoveBackwardDelta(a,d) re-
turns an approximation to the makespan variation when swapping activity a
with its predecessor on disjunctive resource d.

Although the makespan is probably the most studied objective function in
scheduling, there are many other criteria to evaluate the quality of a schedule.
One such objective is the concept of tardiness which has attracted increasing
attention in recent years. The instruction

Tardiness tardiness(sched,a,dd);

declares an objective function which maintains the tardiness of activity a with
respect to its due date dd, i.e., where is the finishing date of
activity in the candidate schedule. Once again, a tardiness object is differen-
tiable and can be queried to evaluate the effect of local moves on its value. For
instance, the instruction tardiness.evalMoveBackwardDelta(a,d) determines
the tardiness variation which would result from swapping activity a with its
predecessor on disjunctive resource d.

The objective functions share the same differentiable interface, thus enhanc-
ing their compositionality and reusability. In particular, they combine naturally
to build more complex optimization criteria. For instance, the snippet

1.
2.
3.
4.

Tardiness tardiness[j in Job](sched ,job[j].getLast(),dd[j]);
ScheduleObjectiveSum totalTardiness(sched);
forall(j in Job)
totalTardiness.add(tardiness[j]);

defines an objective function totalTardiness, another differentiable function,
which specifies the total tardiness of the candidate schedule. Line 1 defines the
tardiness of every job j, i.e., the tardiness of the last activity of j. Line 2 defines
the differentiable object totalTardiness as a sum of objective functions. Lines
3 and 4 adds the job tardiness functions to totalTradiness to specify the total
tardiness of the schedule. Queries on the aggregate objective totalTardiness,
e.g., totalTardiness.evalMoveBackwardDelta(a.d), are computed by query-
ing the individual tardiness functions and aggregating the results. It is easy to
see how similar code could define maximum tardiness as an objective function.

Disjunctive Schedules: We conclude this brief overview by introducing dis-
junctive schedules which simplify the implementation of various classes of ap-
plications such as job-shop, flexible-shop, and open-shop scheduling problems.
In disjunctive schedules, activities require at most one disjunctive resource, al-
though they may have the choice between several such resources. Since activities
are requiring at most one resource, various methods can now omit the specifi-
cation of the resource which is now identified unambigously. For instance, the
methodtardiness.evalMoveBackwardDelta(a) evaluates the makespan vari-
ation of swapping activity a with its predecessor on its disjunctive resource.

326 Pascal Van Hentenryck and Laurent Michel

Fig. 1. Minimizing Total Weighted Tardiness: The Declarative Component

4 Minimizing Total Weighted Tardiness in a Job Shop

This section describes a simple, but effective, local seach algorithm for minimiz-
ing the total weighted tardiness in a job shop.

The Problem: We are given a set of jobs J, each of which being a sequence
of activities linked by precedence constraints. Each activity has a fixed duration
and a fixed machine on which it must be processed. No two jobs scheduled on
the same machine can overlap in time. In addition, each job is given a due
date and a weight The goal is to find a schedule satisfying the precedence
and disjunctive constraints and minimizing the total weighted tardiness of the
schedule, i.e., the function where is the completion
of job i.e., the completion time of its last activity. This problem has received
increasing attention in recent years. See, for instance, [3, 16, 17].

The Declarative Component: The declarative component of this application
is depicted in Figure 1. For simplicity, it assumes that the input data is given
by a number of ranges and arrays (e.g., duration) which are stored in instance
variables. Lines 2-6 declare the modeling objects of the application: the schedule,

Scheduling Abstractions for Local Search 327

the activities, the disjunctive resources, the jobs, and the tardiness array. The
actual tardiness functions are created later in the method. Lines 8 and 9 specify
the resource constraints. Lines 10-18 specify both the precedence constraints
and the tardiness functions. Lines 11-16 declare the precedence constraints for
a given job j, while line 17 creates the tardiness function associated with job
j. Lines 19 defines the objective function as a summation. Lines 20-21 specify
the various elements of the summation. Of particular interest is line 21 which
defines the weighted tardiness of job j by multiplying its tardiness function
by its weight. This multiplication creates a differentiable object which can be
queried in the same way as the tardiness functions. Line 22 closes the schedule,
enforcing all the precedence constraints and computing the objective function. It
is worth highlighting two interesting features of the declarative statement. First,
the declarative component of a traditional job-shop scheduling problem can be
obtained by replacing lines 6, 17, and 19-21 by the instruction

obj = new Makespan(sched);

Second, observe the high-level nature of this declarative component and its inde-
pendence with respect to the search algorithms. It is indeed conceivable to define
constraint-based schedulers which would recognize this declarative specification
and generate appropriate domain variables, constraints, and objective function.
Of course, this strong similarity completely disappears in the search component.

The Search Component: Figure 2 depicts the search component of the ap-
plication. It specifies a simple Metropolis algorithm which swaps activities that
are critical for some tardiness function. The top-level method localSearch is
depicted in Lines 1-13. It first creates an initial schedule (line 2) and an exponen-
tial distribution. Lines 6-9 are the core of the local search and they are executed
for maxTrials iterations. Each such iteration selects a job j which is late (line
6), computes a set of critical activities responsible for this tardiness (line 7), and
explores the neighborhood for these activities. Line 12 restores the best solution
found during the local search.

Method exploreNeighborhood (lines 15-30) explores the moves that swap
a critical activity with its machine predecessor. These moves are guaranteed to
be feasible by construction of the critical path. The algorithm selects a critical
activity (line 18) and evaluates the move (line 19) using the objective function.
The move is executed if it improves the candidate schedule or if it is accepted
by the exponential distribution (lines 20-21) and the best solution is updated if
necessary (lines 22-25). These basic steps are iterated until a move is executed
or for some iterations.

Method selectCriticalPath (lines 32-45) is the last method of the compo-
nent. The key idea is to start from the activity a of the tardiness object (i.e.,
the last activity of its associated job) and to trace back a critical path from a
to the source. Lines 37 to 43 are the core of the method. They first test if the
job precedence constraint is tight (lines 37-38), in which case the path is traced
back from the job predecessor. Otherwise, activity a is inserted in C as a critical

328 Pascal Van Hentenryck and Laurent Michel

Fig. 2. Minimizing Total Weighted Tardiness: The Local Search

Scheduling Abstractions for Local Search 329

activity due to the disjunctive arc where is the disjunctive predecessor
and the path is traced back from the disjunctive predecessor.

This concludes the description of the algorithm. The COMET program is
concise (its core is about 70 lines of code), it is expressed in terms of high-level
scheduling abstractions and control structures, and it automates many of the
tedious and error-prone aspects of the implementation.

Experimental Results: Table 1 depicts the experimental results of the COMET

algorithm (algorithm CT), on a Pentium IV (2.1mhz) and contrasts them briefly
with the large step random algorithm of [3] (algorithm LSRW) which typically
dominates [17]. These results are meant to show the practicability of the ab-
stractions, not to compare the algorithms in great detail. The parameters were
set as follows: maxIterations is set to 600,000 iterations (which roughly cor-
responds to the termination criteria in [3] when machines are scaled), T = 225
andmaxLocalterations=5. The initial solution is a simple insertion algorithm
for minimizing the makespan [21]. Algorithm CT was evaluated on the stan-

330 Pascal Van Hentenryck and Laurent Michel

dard benchmarks from [3, 16, 17], where the deadline for job is given by
([3, 16, 17] specify in their papers but actually

use the given formula.) We used the value 1.3 for which produces the hardest
problems in [3] and ran each benchmark 50 times. The table reports the optimal
value (O), the number of times CT finds the optimum (#O), the best, average,
and worst values found by CT, as well as the average CPU time to the best so-
lution. The table also reproduces the result given in [3], which only reports the
average of LSRW over 5 runs and the number of times the optimum was found.

The results are very interesting. CT found the optimal solutions on all but
one benchmark and generally with very high frequencies. Moreover, its averages
generally outperform, or compare very well to, LSRW. This is quite remarkable
since there are occasional outliers on these runs which may not appear over 5
runs (see, e.g., la18). The average time to the best solution is always below 14
seconds. Overall, these results clearly confirm the jobshop results [18] as far as
the practibility of the scheduling abstractions is concerned.

5 Cumulative Scheduling

This section describes the implementation of the algorithm IFLATIRELAX [11],
a simple, but effective, extension of iterative flattening [1].

The Problem: We are given a set of jobs J, each of which consisting of a se-
quence of activities linked by precedence constraints. Each activity has a fixed
duration, a fixed machine on which it executes, and a demand for the capacity of
this machine. Each machine has an available capacity The problem
is to minimize the earliest completion time of the project (i.e., the makespan),
while satisfying all the precedence and resource constraints.

The Declarative Component: Figure 3 depicts the declarative component
for cumulative scheduling. The first part (lines 1-11) is essentially traditional
and solver-independent. It declares the modeling objects, the precedence and
resource constraints, as well as the objective function. The second part (Lines
12-13) is also declarative but it only applies to local or heuristic search. Its
goal is to specify invariants which are used to guide the search. Line 12 collects
the violations of each resource in an array of incremental variables, while line 13
states an invariant which maintains the total number of violations. This invariant
is automatically updated whenever violations appear or disappear.

The Search Component: The search component of iterative flattening is
particularly interesting and is depicted in Figure 4. Starting from an infeasible
schedule violating the resource constraints (i.e., the candidate schedule induced
by the precedence constraints), IFLATIRELAX iterates two steps: a flattening
step (line 6) which adds precedence constraints to remove infeasibilities and
a relaxation step (line 7) which removes some of the added precedence constraints

Scheduling Abstractions for Local Search 331

Fig. 3. Cumulative Scheduling: The Declarative Component

to provide a new starting point for flattening. These two steps are executed for a
number of iterations (i.e., maxIterations) or until no improved feasible schedule
has been found for a number of iterations (i.e., maxStable). The algorithm returns
the best feasible schedule found after the flattening step (step 1). Note that
iterative flattening can be seen as a large step local search, where each step
removes (relaxation) and adds (flattening) a large set of precedence constraints.

The flattening step is performed by method flatten in lines 12-25. Flat-
tening aims at removing all violations of the cumulative constraints by adding
precedence constraints. It selects a violated cumulative constraint (line 15) and
chooses the time with the largest violation (line 16). To remove this violation,
the flattening algorithm queries the resource to obtain a number of minimal con-
flicts (line 18). The minimal conflicts are given by arrays of activities, potentially
of different sizes. From these critical sets, the algorithm selects two activities
and (lines 19 and 20) and inserts a precedence constraint (line 21).
The two activities are chosen carefully in order to minimize the impact on the
makespan. More precisely, the flattening algorithm selects the two activities
and maximizing where denotes the latest starting
date of and is the earliest finishing date of in the candidate sched-
ule. This heuristics choice aims at keeping as much flexibility as possible in the
schedule. Lines 15-23 are iterated until all violations are removed. The candidate
schedule then satisfies all constraints and method updateBestSolution in line
24 possibly updates the best solution and the number of stable iterations.

After the flattening step, the algorithm has a feasible schedule and its set S
of precedence constraints. Instead of restarting from scratch, the key idea be-
hind the relaxation step is to consider the precedence constraints introduced
by the flattening step and removes them with some probability. Only critical

332 Pascal Van Hentenryck and Laurent Miachel

Fig. 4. Cumulative Scheduling: The Search Component

precedence constraints (i.e., constraints which correspond to critical arcs) are
considered during relaxation, since only these may decrease the makespan. This
relaxation is iterated for a number of iterations to avoid introducing bottlenecks
early in the schedule. The relaxation step is implemented by method relax in
lines 27-35. The algorithm collects all the critical precedence constraints intro-
duced by flattening (line 30) and iterates over them (line 31). Line 32 flips a coin
(the distribution is created in line 3) for each precedence constraint and removes
the precedence constraint with some probabibility (lines 32-33). Line 29-33 are
iterated for a small number of iterations. Once again, observe the conciseness and
high-level description of algorithm IFLATIRELAX, which uses high-level model-
ing concepts both to state the problem and to specify the search procedure.

Scheduling Abstractions for Local Search 333

Experimental Results: Algorithm IFLATIRELAX was discovered when imple-
menting and analyzing the original iterative flattening algorithm [1] in COMET.
A detailed description of its performance results is available in [11] and only
a brief summary is presented here, since the main purpose is to illustrate the
scheduling abstractions of COMET. Algorithm IFLATIRELAX found 21 new best
upper bounds to standard benchmarks (with as much as 900 activities) [1, 14]
and quickly delivers solutions that are typically within 1% of the best available
upper bounds. Table 2 summarizes the results. For each class of benchmarks,
the table reports the best and average deviation (in percentage) from the upper
bounds on the various classes of problems, as well as the computation times in
seconds on Pentium 4 (2.4Ghz). The averages are computed over 100 runs, except
for the larger classes (C and D). These results clearly indicate the practicability
and benefits from the scheduling abstractions.

6 Conclusion

This paper presented a collection of scheduling abstractionsto simplify the im-
plementation, and enhance the compositionality and reusability, of local search
algorithms. The main innovation is the computational model underlying the ab-
stractions. Its core is a precedence graph which incrementally maintains a can-
didate schedule at every computation step. Organized around this precedence
graph are differentiable objects which are encapsulated in the scheduling ab-
stractions such as resources and objective functions. These differentiable objects
maintain various properties incrementally and support differentiable queries to
evaluate the effect of local moves. The resulting abstractions and computational
model nicely integrate into the COMET architecture, allows declarative compo-
nents to be strikingly similar to those featured in CB-schedulers, and provides
high-level concepts to specify the local search. The abstractions were illustrated
with two applications, minimizing of total weighted tardiness in a jobshop and
cumulative scheduling. For both applications, the COMET code is short and con-
cise, it uses high-level scheduling concepts, and it exhibits excellent performance.

Acknowledgements

This work was partially supported by NSF ITR Awards DMI-0121495 and ACI-
0121497.

334 Pascal Van Hentenryck and Laurent Michel

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

A. Cesta, A. Oddi, and S.F. Smith. Iterative flattening: A scalable method for
solving multi-capacity scheduling problems. In AAAI/IAAI, pages 742–747, 2000.
L. Di Gaspero and A. Schaerf. Optimization Software Class Libraries, chapter
Writing Local Search Algorithms Using EasyLocal++. Kluwer, 2002.
W. Kreipl. A large step random walk for minimizing total weighted tardiness in
a job shop. Journal of Scheduling, 3:125–138, 2000.
P. Laborie. Algorithms for propagating resource constraints in ai planning and
scheduling: Existing approaches and new results. AIJ, 143(2):151–188, 2003.
F. Laburthe and Y. Caseau. SALSA: A Language for Search Algorithms. In
CP’98, Pisa, Italy, October 1998.
M. Dell’Amico and M. Trubian. Applying Tabu Search to the Job-Shop Scheduling
Problem. Annals of Operations Research, 41:231–252, 1993.
M. Mastrolilli and L. Gambardella. Effective neighborhood functions for the flex-
ible job shop problem. Journal of Scheduling, 3(1):3–20, 2000.
L. Michel and P. Van Hentenryck. Localizer. Constraints, 5:41–82, 2000.
L. Michel and P. Van Hentenryck. A constraint-based architecture for local search.
In OOPSLA ’00, Seattle, WA, 2002.
L. Michel and P. Van Hentenryck. Maintaining longest path incrementally. In
CP’03, Cork, Ireland, 2003.
L. Michel and P. Van Hentenryck. Iterative relaxations for iterative flattening in
cumulative scheduling. In ICAPS’04, Whistler, BC, Canada, 2004.
E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop
problem. Management Science, 42(6):797–813, 1996.
W. Nuijten and C. Le Pape. Constraint-based job shop scheduling with ilog
scheduler. Journal of Heuristics, 3:271–286, 1998.
W. P. M. Nuijten and E. H. L. Aarts. A computational study of constraint satis-
faction for multiple capacitated job shop scheduling. EJOR, 90(2):269–284, 1996.
P. Shaw, B. De Backer, and V. Furnon. Improved local search for CP toolkits.
Annals of Operations Research, 115:31–50, 2002.
M. Singer and M. Pinedo. A computational study of branch and bound tech-
niques for minimizing the totalweighted tardiness in job shops. IIE Scheduling
and Logistics, 30:109–118, 1997.
M. Singer and M. Pinedo. A shifting bottleneck heuristic for minimizing the
totalweighted tardiness in job shops. Naval Research Logistics, 46(1):1–17, 1999.
P. Van Hentenryck and L. Michel. Control abstractions for local search. In CP’03,
Cork, Ireland, 2003. (Best Paper Award).
S. Voss and D. Woodruff. Optimization Software Class Libraries. Kluwer, 2002.
J. Walser. Integer Optimization by Local Search. Springer Verlag, 1998.
F. Werner and A. Winkler. Insertion Techniques for the Heuristic Solution of the
Job Shop Problem. TR, Technical Universitaet Magdebourg, 1992.

Filtering Algorithms
for Unary Resource Constraint

Petr Vilím

Charles University
Faculty of Mathematics and Physics

2/25, Praha 1
Czech Republic

vilim@kti.mff.cuni.cz

Abstract. So far, edge-finding is the only one major filtering algorithm
for unary resource constraint with time complexity This pa-
per proposes versions of another two filtering algorithms: not-
first/not-last and propagation of detectable precedences. These two al-
gorithms can be used together with the edge-finding to further improve
the filtering. This paper also propose new implementation of
fail detection (overload checking).

1 Introduction

In scheduling, unary resource is an often used generalization of a machine (or
a job in openshop). Unary resource models a set of non-interruptible activities T
which must not overlap in a schedule.

Each activity has following requirements:

earliest possible starting time
latest possible completion time
processing time

A (sub)problem is to find a schedule satisfying all these requirements. One
of the most used technique to solve this problem is a constraint programming.

In the constraint programming, we associate an unary resource constraint
with each unary resource. A purpose of such a constraint is to reduce a search
space by tightening the time bounds and This process of elimination
of infeasible values is called a propagation, an actual propagation algorithm is
often called a filtering algorithm.

Naturally, it is not efficient to remove all infeasible values. Rather we use
several fast but not complete algorithms which can find only some impossible
assignments. These filtering algorithms are repeated in every node of a search
tree, therefore their speed and filtering power are crucial.

Today, edge-finding and not-first/not-last are the mainly used filtering algo-
rithms for the unary resource constraint. The edge-finding algorithm has time
complexity [4], whereas time complexity of the not-first/not-last [2, 9]

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 335–347, 2004.
© Springer-Verlag Berlin Heidelberg 2004

336 Petr Vilím

algorithm is (where is the number of activities). This paper intro-
duce a new version of the not-first/not-last algorithm and also a third

filtering algorithm. All these three algorithms can be used together
to join their filtering powers.

Let us establish a notation concerning a subset of activities. Let be an
arbitrary non-empty subset of activities. An earliest starting time a latest
completion time and a processing time of the set are:

Often we need to estimate an earliest completion time of a set When com-
puting such an estimation we relax the restriction that activities are not inter-
ruptible. The resulting estimation of the earliest completion time of the set
is:

To extend the definitions also for let and

2

Algorithms in this paper are based on an idea of organizing a set in
a balanced binary tree. Because the set represented by the tree will always be
named we will call the tree The purpose of a is to quickly
recompute when an activity is inserted or removed from the set

A is a balanced binary search tree with respect to Each activity
is represented by a single node. In the following we do not make a difference

between an activity and the tree node representing that activity.
Notice that so far does not require any particular way of balancing.

Any type of balanced binary tree (AVL-tree, black-red-tree etc.) is possible. The
only requirement is a time complexity for inserting or deleting a node,
and time complexity O(1) for finding a root node.

It is also possible to start with a perfect balanced tree built from all activi-
ties T with “empty” nodes1. Inserting an activity means to fill an empty node
reserved for that activity, deleting a node makes it empty over again. Note that
building such perfect balanced tree costs time because activities have
to be sorted first.

Let be a left son of an activity (if it has one), similarly let
be a right son of the activity We will also need a notation for subtrees:

1 This is the implementation chosen by the author.

Filtering Algorithms for Unary Resource Constraint 337

Fig. 1. An example of a for

let be a set of all activities in the subtree rooted in

A is a balanced binary tree with respect to and so:

Besides the activity itself, each node of a holds following two values:

Values and can be computed from direct descendants of the node

The rule for computing comes from the following observation. From
the definition (1) is the maximum of of all
With respect to the node we will split the sets into the following three
categories:

and Clearly
and In this case starts by the activity and

the maximum duration of the set is Therefore

338 Petr Vilím

The schedule of can end at most at
and the processing of the rest of the set can take maximum.
Thus

Thanks to their recursive nature, values ECT and can be computed within
the usual operations with balanced binary search trees without changing their
time complexities. The following table summarizes time complexities of different
operations with a

3 Overload Checking Using

Let us consider an arbitrary set Overload rule says that if the set
cannot be processed within its time bounds then no solution exists:

Let us suppose for a while that we are given an activity and we want to
check this rule only for these sets which have Now consider
a set

Overloaded set with exists if and only if The
idea of an algorithm is to gradually increase the set by increasing the
For each we check whether or not.

Time complexity of this algorithm is the activities have to be
sorted and an activity is inserted into the set

4 Not-First/Not-Last Using

Not-first and not-last are two symmetric propagation algorithms for a unary
resource. From these two, we will consider only the not-last algorithm.

Filtering Algorithms for Unary Resource Constraint 339

Let us consider a set and an activity The activity
cannot be scheduled after the set (i.e. is not last within if:

In that case, at least one activity from the set must be scheduled after the
activity Therefore the value can be updated:

There are two versions of the not-first/not-last algorithms: [2] and [9]. Both of
them have time complexity The first algorithm [2] finds all the reductions
resulting from the previous rules in one pass. Still, after this propagation, next
run of the algorithm may find more reductions (not-first and not-last rules are not
idempotent). Therefore the algorithm should be repeated until no more reduction
is found (i.e. a fixpoint is reached). The second algorithm [9] is simpler and faster,
but more iterations of the algorithm may be needed to reach a fixpoint.

The algorithm presented here can also need more iteration to reach a fixpoint
then the algorithm [2] maybe even more than the algorithm [9]. However, time
complexity is reduced from to

Let us suppose that we have chosen a particular activity and now we want
to update the according to the rule not-last. To really achieve some change
of using the rule (3), the set must fulfil the following property:

Therefore:

We will use the same trick as [9]: lets not slow down the algorithm by search-
ing for the best update of Rather, find some update: if can be updated
better, let it be done in the next run of the algorithm. Therefore our goal is to
update to

Let us define the set

Thus: the can be changed according to the rule not-last if and only if
there is some set for which the inequality (2) holds:

The only problem is to decide whether such a set exists or not.
Let us recall the definition (1) of ECT and use it on the set

Notice, that is exactly the maximum value which can be on the left
side of the inequality (4). Therefore there is a set for which the inequality (4)
holds if and only if:

340 Petr Vilím

The algorithm proceeds as follows. Activities are taken in the ascending
order of For each one activity the set is computed using the set of
previous activity Then is checked and is eventually updated:

Lines 9–11 are repeated times maximum, because each time an activity is
removed from the queue. Check on the line 13 can be done in Therefore
the time complexity of the algorithm is

Without changing the time complexity, the algorithm can be slightly im-
proved: the not-last rule can be also checked for the activity just before the
insertion of the activity into the set (i.e. after the line 6):

This modification can in some cases save few iterations of the algorithm.

5 Detectable Precedences

An idea of detectable precedences was introduced in [10] for a batch resource
with sequence dependent setup times, which is an extension of a unary resource.

The figure 2 is taken from [10]. It shows a situation when neither edge-
finding nor the not-first/not-last algorithm can change any time bound, but
a propagation of detectable precedences can.

Edge-finding algorithm recognizes that the activity A must be processed be-
fore the activity C, i.e. and similarly Still, each of these prece-
dences alone is weak: they do not enforce any change of any time bound. However,
from the knowledge we can deduce

Filtering Algorithms for Unary Resource Constraint 341

Fig. 2. A sample problem for detectable precedences

A precedence is called detectable, if it can be “discovered” only by
comparing the time bounds of these two activities:

Notice that both precedences and are detectable.

There is a simple quadratic algorithm, which propagates all known prece-
dences on a resource. For each activity build a set
Note that precedences can be of any type: detectable precedences, search
decisions or initial constraints. Using such set can be adjusted:

because

A symmetric algorithm adjusts

However, propagation of only detectable precedences can be done within
Let be the following set of activities:

Thus is a set of all activities which must be processed before the activity
because of detectable precedences. Using the set the value can be
adjusted:

There is also a symmetric rule for precedences but we will not consider
it here, nor the resulting symmetric algorithm.

342 Petr Vilím

An algorithm is based on an observation that the set does not have to be
constructed from scratch for each activity Rather, the set can be computed
incrementally.

Initial sorts takes Lines 5 and 6 are repeated times maximum,
because each time an activity is removed from the queue. Line 8 can be done in

Therefore the time complexity of the algorithm is

6 Properties of Detectable Precedences

There is an interesting connection between edge-finding algorithm and detectable
precedences:

Proposition 1. When edge-finding is unable to find any further time bound
adjustment then all precedences which edge-finding found are detectable.

Proof. First, brief introduction of the edge-finding algorithm. Consider a set
and an activity The activity has to be scheduled after all

activities from if:

Once we know that the activity must be scheduled after the set we can
adjust

Edge-finding algorithm propagates according to this rule and its symmet-
ric version. There are several implementations of edge-finding algorithm, two
different quadratic algorithms can be found in [7, 8], [4] presents a
algorithm.

Let us suppose that edge-finding proved We will show that for an ar-
bitrary activity edge-finding made big enough to make the precedence

detectable.

Filtering Algorithms for Unary Resource Constraint 343

Edge-finding proved so the condition (6) was true before the filtering:

However, increase of any est or decrease of any lct cannot invalidate this condi-
tion, therefore it has to be valid now. And so:

Because edge-finding is unable to further change any time bound, according to
(7) we have:

In this inequality, can be replaced by the right side of the inequality (8):

And because

So the condition (5) holds and the precedence is detectable.
The proof for the precedences resulting from is symmetrical.

Previous proposition has also one negative consequence. Papers [5, 9, 11]
mention the following improvement of the edge-finding: whenever is
found, propagate also for all (i.e. change also However, these
precedences are detectable and so the second run of the edge-finding would
propagate them anyway. Therefore such improvement can save some iterations
of the edge-finding, but do not enforce better pruning in the end.

Several authors (e.g. [3, 6]) suggest to compute a transitive closure of prece-
dences. Detectable precedences has also an interesting property in such transitive
closure.

Lets us call a precedence propagated iff the activities and fulfill
following two inequalities:

Note that edge-finding and precedence propagation algorithm make all known
precedences propagated. Thus all detectable precedences become propagated,
but not all propagated precedences have to be detectable.

The following proposition has an easy consequence: detectable precedences
can be skipped when computing a transitive closure.

344 Petr Vilím

Proposition 2. Let and one of these precedences is detectable
and the second one propagated. Then the precedence is detectable.

Proof. We distinguish two cases:

1.

2.

is detectable and is propagated. Because the precedence
is propagated:

and because the precedence is detectable:

Thus the precedence is detectable.
is propagated and is detectable. Because the precedence

is propagated:

And because the second precedence is detectable:

Once again, the precedence is detectable.

7 Experimental Results

A reduction of a time complexity of an algorithm is generally a “good idea”.
However for small a simple and short algorithm can outperform a compli-
cated one with better time complexity. Therefore it is reasonable to ask whether
it is the case of the new not-first/not-last algorithm. Another question is a filter-
ing power of the detectable precedences. The following benchmark should bring
answers to these questions.

The benchmark is based on a computation of destructive lower bounds for
several jobshop benchmark problems taken from OR library [1]. Destructive
lower bound is a minimum length of the schedule, for which we are not able to
proof infeasibility without backtracking. Lower bounds computation is a good
benchmark problem because there is no influence of a search heuristic. Four dif-
ferent destructive lower bounds where computed. Lower bound LB1 is computed
using edge-finding algorithm [7]2 and new version of not-first/not-last:

2 Note that it is a quadratic algorithm.

Filtering Algorithms for Unary Resource Constraint 345

Detectable precedences were used for computation of LB2:

Note that the order of the filtering algorithms affects total run time, however
it does not influence the resulting fixpoint. The reason is that even after an
arbitrary propagation, all used reduction rules remain valid and propagates the
same or even better.

Another two lower bounds where computed using shaving technique as sug-
gested in [7]. Shaving is similar to the proof by a contradiction. We choose an
activity limit its or and propagate. If an infeasibility is found, then
the limitation was invalid and so we can decrease or increase Binary
search is used to find the best shave. To limit CPU time, shaving was used for
each activity only once.

Often detectable precedences improve the filtering, however do not increase
the lower bound. Therefore a new column R is introduced. After the propagation
with LB as upper bound, domains are compared with a state when only binary
precedences were propagated. The result is an average domain size in percents.

CPU3 time was measured only for shaving (columns T, T1-T3 in seconds). It
is the time needed to proof the lower bound, i.e. propagation is done twice: with
the upper bound LB and LB-1. Times T1-T3 shows running time for different
implementations of the algorithm not-first/not-last: T1 is the new algorithm, T2
is the algorithm [9] and T3 is the algorithm [2].

To improve the readability, when LB1=LB2, then a dash is reported in LB2.
The same rule was applied to shaving lower bounds and columns R.

The table shows that detectable precedences improved the filtering, but not
much. However there is another interesting point: detectable precedences speed
up the propagation, compare T and T1 e.g. for ta21. The reason is that de-
tectable precedences are able to “steal” a lot of work from edge-finding and do
it faster.

Quite surprisingly, the new not-first/not-last algorithm is about the same
fast as [9] for for bigger it begins to be be faster. Note that the most
filtering is done by the detectable precedences, therefore the speed of the not-
first/not-last algorithm has only minor influence to the total time. For
time T1 is approximately only one half of T.
3 Benchmarks were performed on Intel Pentium Centrino 1300MHz.

346 Petr Vilím

Acknowledgements

Author would like to thank Roman Barták and to the three anonymous refer-
ees for their helpful comments and advises. The work of the author has been
supported by the Grant Agency of the Czech Republic under the contract no.
201/04/1102.

Filtering Algorithms for Unary Resource Constraint 347

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

OR library. URLhttp://mscmga.ms.ic.ac.uk/info.html.
Philippe Baptiste and Claude Le Pape. Edge-finding constraint propagation
algorithms for disjunctive and cumulative scheduling. In Proceedings of the
Fifteenth Workshop of the U. K. Planning Special Interest Group, 1996.
Peter Brucker. Complex scheduling problems, 1999. URL
http://citeseer.nj.nec.com/brucker99complex.html.
Jacques Carlier and Eric Pinson. Adjustments of head and tails for the
job-shop problem. European Journal of Operational Research, 78:146–161,
1994.
Yves Caseau and Francois Laburthe. Disjunctive scheduling with task in-
tervals. In Technical report, LIENS Technical Report 95-25. Ecole Normale
Supérieure Paris, Françe, 1995.
W. Nuijten, F. Foccaci, P. Laborie. Solving scheduling problems with setup
times and alternative resources. In Proceedings of the 4th International
Conference on AI Planning and Scheduling, AIPS’00, pages 92–101, 2000.
Paul Martin and David B. Shmoys. A New Approach to Computing Op-
timal Schedules for the Job-Shop Scheduling Problem. In W. H. Cunning-
ham, S.T. McCormick, and M. Queyranne, editors, Proceedings of the 5th
International Conference on Integer Programming and Combinatorial Opti-
mization, IPCO’96, pages 389–403, Vancouver, British Columbia, Canada,
1996.
Claude Le Pape, Philippe Baptiste and Wim Nuijten. Constraint-Based
Scheduling: Applying Constraint Programming to Scheduling Problems.
Kluwer Academic Publishers, 2001.
Philippe Torres and Pierre Lopez. On not-first/not-last conditions in dis-
junctive scheduling. European Journal of Operational Research, 1999.
Petr Vilím. Batch processing with sequence dependent setup times: New
results. In Proceedings of the 4th Workshop of Constraint Programming for
Decision and Control, CPDC’02, Gliwice, Poland, 2002.
Armin Wolf. Pruning while sweeping over task intervals. In Principles and
Practice of Constraint Programming - CP 2003, Kinsale, Ireland, 2003.

[10]

[11]

Problem Decomposition for Traffic Diversions

Quanshi Xia1, Andrew Eremin1, and Mark Wallace2

1 IC-Parc
Imperial College London
London SW7 2AZ, UK

{q.xia,a.eremin}@imperial.ac.uk
2 School of Business Systems

Monash University
Clayton, Vic 3800

Australia
mark.wallace@infotech.monash.edu.au

Abstract. When a major road traffic intersection is blocked, vehicles
should be diverted from the incoming roads in such a way as to avoid
the roads on the diversions from also becoming over-congested. Assuming
different diversions may use partly the same roads, the challenge is to
satisfy the following traffic flow constraint: ensure that even in the worst
case scenario, the diversions can accommodate the same volume of traffic
as the blocked intersection.
The number of diversions increases quadratically with the number of
roads at the intersection. Moreover any road may be used by any subset
of the diversions - thus the number of worst cases can grow exponentially
with the number of diversions.
This paper investigates two different approaches to the problem, de-
scribes their implementation on the hybrid MIP/CP software platform

and presents benchmark results on a set of test cases.

1 Introduction

Cities are becoming more congested, but luckily road management technology -
sensing, signs, lights etc. - is improving dramatically. We now have the oppor-
tunity to apply planning and optimisation techniques to road management to
reduce congestion and optimise journey times.

The problem of diversions tackled in this paper is an artificial one, in that
some of the assumptions do not hold on the ground. However the problem ap-
pears in the context of a larger system for traffic management, and its solution
is in practical use today.

The problem focuses on planning diversions to get around a blocked junction
or interchange, where a number of routes meet each other. Assuming no infor-
mation about the destinations of vehicles on the road, the aim is to ensure that
every incoming route is linked to every outgoing route by a diversion.

However the requirement is also to ensure that whatever traffic might have
been flowing through the junction, the diversion routes are sufficiently major to

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 348–363, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Problem Decomposition for Traffic Diversions 349

Fig. 1. A Simple Junction

cope with them. For the purposes of this problem, we ignore any traffic that
happens to be using the diversion roads for other journeys, that would not have
passed through the blocked junction.

The problem is scientifically interesting because, until all the diversions have
been specified, it is not possible to tell what is the maximum possible traffic flow
that could be generated along any given road on a diversion.

Let us illustrate this with an example: The junction j has three incoming
roads, from a, b and c and three outgoing, to d, e and f. Each road has a grade,
which determines the amount of traffic it can carry. These amounts are 5 for aj
and jd, 10 for bj and je and 20 for cj and j f.

The diversion cf from c to f clearly needs to be able to carry a traffic quantity
of 20. Assume that this diversion shares a road kl with the diversion bf from
b to f. The total traffic on both diversions, in the worst case, is still only 20
because the diverted routes both used the road j f , which has a capacity of 20.

However if the diversion ce from c to e also uses the road kl, then in the
worst case the traffic over kl goes up to 30. This case arises when there is a flow
of 10 from b to j, a flow of 20 from c to j, a flow of 10 from j to e, and another
flow of 20 from j to f. This means that there may potentially be end-to-end flows
of 10 from b to f, from c to e and from c to f.

The total number of diversions that must be set up in this case is 9, a diver-
sion from each incoming origin to each outgoing destination. In general, then,
the number of diversions grows quadratically in the size of the junction. More-
over any subset of these diversions may intersect, so the number of worst case
scenarios to be calculated is potentially exponential in the number of diversions!

The final aspect of the problem is to find actual routes for all the diver-
sions, which satisfy all the worst case scenarios. Given all the above possibilities,
a generate and test approach may need to explore a huge number of routes.

In this paper we present several approaches to solving the problem. The first
is a global integer/linear model, which can solve smaller problem instances but
grows in memory usage and execution time for larger problem instances which
limits its scalability. The next three are increasingly sophisticated versions of

350 Quanshi Xia et al.

a problem decomposition. The efficient handling of the master and subprob-
lems, and addition of new rows to the master problem are supported by the

constraint programming system. The most sophisticated model solves
all the benchmark problem instances with less than 50 iterations.

2 Problem Model

The road network is broken down into junctions, and road segments connecting
them. Each diversion is mapped to a path from the origin to the destination,
avoiding the blocked junction. To model the block, we simply drop the junction
and its connected roads from the network.

The challenge is to model the capacity constraints on each road segment in
each path in the network. For each road segment, the sum of the traffic flows
on all the routes whose diversions pass through that road segment must be
accommodated. The road segment is over-congested if, in the worst case, this
sum exceeds the capacity of the road segment.

In this paper we shall write constants in lower case (e.g. edge), we shall write
variables starting with an upper case letter (e.g. Q, Quantity), variable arrays are
subscripted (e.g. with a single subscript, or with multiple subscripts
we shall write functions using brackets (e.g. We use bold identifiers to
denote sets (e.g. E). For example, to say that edge belongs to the set of edges
E, we write Set-valued variables and functions are also written in bold
font.

We formalism the problem in terms of a network, with edges representing
road segments, and nodes representing junctions.

The network comprises a set of edges, E and a set of nodes, N. Each edge
has a capacity Allowing for one-way traffic, we associate a direction

with each edge (two way roads are therefore represented by two edges, one in
each direction). The edge from origin into the junction has capacity
and the edge leaving the junction and entering the destination has capacity

For each node there is a set of edges entering and a set of edges
leaving

The set of traffic flows to be diverted is F. Each flow has an origin
a destination and a maximum flow quantity

is limited by the size of the roads of the diverted flow, into the
junction from the origin and out from the junction to the destination. Thus,

The diversion for the flow is a path joining its origin to its
destination (Assuming no cycles, we model the path as a set of edges,
thus is a set-valued variable.)

The awkward constraints are the capacity constraints. For this purpose we
elicit the worst case for each edge, using an optimisation function.

Consider the total flow diverted through an edge for each flow there is
a non-negative flow quantity diverted through For all flows

Problem Decomposition for Traffic Diversions 351

that are not diverted through the edge this quantity is 0, while for all flows
in the set of flows diverted through an edge there is
a non-negative flow quantity.

The total diverted flow through the edge is therefore
Clearly it must be within the edge capacity:

The maximum total diverted flow through an edge is in general less than
the sum of the maxima, of all the individual flows. Indeed the maxi-
mum quantity of the sum of all the flows which have the same origin is con-
strained by Similarly for destination

The worst case for capacity constraint on edge is when is maximized,
by changing the flows through the original junction. The resulting constraint is

3 Formulation as a MIP Problem

For the MIP model binary (0/1) variables and continuous variables are
introduced. For each flow and edge if and only if flow is diverted
through edge Thus,

The problem is to choose diversions (by setting the values of the vari-
ables such that all the worst case capacity constraints are satisfied. We
introduce an optimisation expression: which precludes
cycles in any diversion since optimisation would set the flow through any cycle
to zero and minimizes the total diversion path length.

The embedded optimisation for each edge can be linearized by using the
Karush-Kuhn-Tucker condition [1]. First we dualise it, introducing dual vari-
ables and

352 Quanshi Xia et al.

Note that the upper bounds on the variables are implicit from the origin and
destination constraints and variable non-negativity; in forming the dual problem
we have dropped these redundant bounds. Further since the coefficients of the
variables in the cost function to be minimized in the dual are strictly
positive and the variables non-negative an upper bound of 1 can be deduced
for the value of all dual variables in any dual optimal solution, and thus in any
feasible solution to the original problem, from the dual constraints and the upper
bounds of Moreover since the constraints of (2) are totally unimodular any
basic feasible solution and hence any basic optimal feasible solution is integral,
and reduce to binary variables.

We introduce slack variables and for the constraints in the primal,
and dual slack variables in the dual. We can now replace the embedded
maximization problem for each edge by the following constraints:

Since are binary (0/1) variables, the complementarity constraints
can be linearized to obtain the mixed integer linear programming model which
can be solved by MIP solvers:

Problem Decomposition for Traffic Diversions 353

The resulting performance is summarized in Table 1 under the column of MIP.

4 Formalization Using Decomposition

Most real resource optimisation problems involve different kinds of constraints,
which are best handled by different kinds of algorithms. Our traffic diversions
problem can be decomposed into parts which are best handled by different con-
straint solvers.

Both different problem decompositions and the use of different solvers for
the resulting components were tried on this problem. For reasons of space, we
present just one decomposition, into a master problem and a set of (similar)
subproblems. The master problem is a pure integer linear programming which is
best handled by a MIP solver. The subproblems are very simple linear programs
and well-suited to a linear solver, although they could equally be solved by CP
as in [2, 3]. In our approach, CP provides the modelling language and the glue
which enables the solvers to communicate, though not the solvers themselves.

4.1 Informal Description of the Decomposition

The original problem (1) can be treated instead by decomposing it into a multi-
commodity flow master problem, and a maximization subproblem for each edge
in the network.

354 Quanshi Xia et al.

The master problem simply assigns a path to each flow. Initially these paths
are independent. However as a result of solving the subproblems new constraints
are, later, added to the master problem which preclude certain combinations of
flows from being routed through the same edge.

Each subproblem takes as an input the path assigned to each flow by the
latest solution of the master problem. If the edge associated with the subproblem
is the relevant flows are those whose paths are routed through edge The
subproblem then maximizes the sum of the flows in If this maximum sum
exceeds the capacity of the edge, then a new constraint is created and passed
back to the master problem precluding any assignment which routes all the flows
in through the edge Although the cuts added to the master problem are
formed differently the principle behind this approach is closely related to that
of classic Benders decomposition [4] or its logic-based extension [5].

4.2 Model Specification

The formalization of this decomposed model uses the same binary variables
as the MIP model. Each time the master problem is solved it assigns values (0
or 1) to all these binary variables. For the assignment to returned by the
solution of the master problem, we write

The subproblems in the current model are linear maximization problems
of the kind that typically occurs in production planning, which use the same
continuous variables as the original problem formulation in Section 2 above.

Accordingly the subproblem associated with edge is simply:

The solution to the subproblem associated with edge is a set of flow
quantities, which we can write as for each flow

Suppose the subproblem associated with edge indeed returns a maximum
sum of flows which exceeds ie. Then the constraint
passed to the master problem from this subproblem is

This constraint ensures that at least one of the flows previously routed through
edge will no longer be routed through Therefore, it simply rules out the
previous assignment and those assignments with previous assignment as the
subset [2].

Problem Decomposition for Traffic Diversions 355

The master problem has the form:

This model can be solved by completing a branch and bound search at every
iteration of the master problem, in order to return the shortest feasible paths,
satisfying all the cuts returned from earlier subproblems. If only feasible, rather
than shortest, diversions are required, optimality of the master problem solution
is not necessary, and the master problem solution can be stopped as soon as
an integer feasible solution is found. However, the path constraints, as they
stand, admit non-optimal solutions in which there might be cyclic sub-paths
in (or even disjoint from) the path. Whilst it is not incorrect to admit such
irrelevant cyclic sub-paths, in fact such cycles can easily be eliminated by a pre-
processing step between master and subproblem solution since the path produced
by removing cycles from a feasible solution to the master problem remains
feasible. Such a pre-processing step would make the diversion problem be solved
more efficiently.

After the current master problem returns a feasible solution, it is then checked
by running one or more subproblems, associated with different edges. Naturally if
none of the subproblems produced a maximum flow which exceeded the capacity
of its edge, then the master problem solution is indeed a solution to the original
diversion problem. In this case the algorithm succeeds. If, on the other hand,
after a certain number of iterations, the master problem has no feasible solution
then the original diversion problem is unsatisfiable. There is no way of assigning
diversions to flows that have the capacity to cope with the worst case situation.

The experimental evaluation of this algorithm is given in Table 1 under the
column of D(naive).

5 An Enhanced Decomposition

Under certain circumstances the previous decomposition leads to a very large
number of iterations of the master problem, with many cuts added during the
iterations. The result is that the master problem becomes bigger and more dif-
ficult to solve. Moreover, the master problem has to be solved by branch and
bound search at each of a large number of iterations. This has a major impact
on run times, as shown in column D(naive) of the experiments in Table 1.

356 Quanshi Xia et al.

5.1 Generating Fewer Cuts

A cut that only removes the previous assignment is easy to add, but typically
not very strong: a different cut has to be added for each assignment that is ruled
out. This may require a very large number of cuts. Instead, for the diversion
problem, one could reduce the number of cuts by considering the flow quantities
of the diverted flows whose diversion is routed by the master problem solution
through the relevant edge.

Now instead of posting the cut (6) which simply rules out the previous as-
signment of diversions to edge we can explicitly use the flow quantities and
return the constraint

Using this set of cuts, the master problem then has the form:

The resulting performance is summarized in Table 1 under the column of D(0).

5.2 Generating Tighter Cuts

The optimisation function in (5) gives zero weight to any flows for
which For any optimal subproblem solution with for some

there exists an equivalent optimal solution with Thus the flow
quantities in optimal solutions to the subproblem may be zero
rather than non-zero. The cut (8) thus may only constrain variables for
which

Instead, for the diversion problem, one could reduce the number of cuts by
considering the flow quantities of all the diverted flows, not just the ones whose
diversion is routed by the master problem solution through the relevant edge.

To extract the tightest cut from this subproblem, we therefore change the
optimisation function so as to first optimise the flow through the relevant edge,
and then, for any other flows which are still free to be non-zero, to maximize
those flows too. This is achieved by simply adding a small multiplier to the

Problem Decomposition for Traffic Diversions 357

other flows in the optimisation function:

Now all the variables will take their maximum possible values (denoted as
ensuring that (8) expresses as tight a cut as possible.

This cut not only constrains variables for which but also constrains
the value of for other flows which may not have used this edge in the
subproblem.

Accordingly the master problem then has the form:

The experimental results on the enhanced decomposition model are given in
Table 1 under the column of where

5.3 Comparison of Cuts Tightness

The 3 different cut generation formulations, (6),(8) and (11) have been presented.
The tightness for these cuts, generated by different cut formulations are different
too. For simple example, supposed that the assignment to returned by the
solution of the master problem as

The flow quantities returned by the subproblem (5) solution as

358 Quanshi Xia et al.

and one returned by the solution of the subproblem (10) as

Notice that can also take 0 as optimal subproblem (5) solution be-
cause

By using of the cut generation formulation (6) we will obtain a cut

and the cut generated by the cut formulation (8) is

and the cut formulation (11) generated a cut of

It is trivial to show that these cuts are getting tighter and tighter!

6 Implementation

The problem was solved using the constraint programming plat-
form [6]. provides interfaces both to CPLEX [7] and to Xpress-MP [8]
for solving MIP problems. The current application comprises either a single MIP
problem for the model presented in Section 3 or for the decomposed models pre-
sented in Sections 4–5 an MIP master problem and, in principle, LP subproblems
for each edge in the network.

The MIP master problem and LP subproblems were run as separate external
solver instances using the facility to set up multiple external solver
matrices. enables different instances to be modified and solved at will.
However the implementation does not run - or even set up - subproblems asso-
ciated with edges which do not lie on any path returned by the master problem
since the capacity constraints on these edges cannot, of course, be exceeded.

In the implementation we may choose how many cuts to return to the master
problem after each iteration. One extreme is to run the subproblems individually
and stop as soon as a new cut has been elicited while the other is to run all
subproblems. These choices will respectively result in only one cut or all possible
cuts being added to the master problem at each iteration. The additional cuts
will tend to result in fewer iterations at the cost of more time spent per iteration
on subproblem solution.

Preliminary experiments showed that it was substantially more efficient in
general to run all the subproblems and add all the cuts at every iteration. This
result is unsurprising for the current application since the cost of solving the
master problem far outweighs that for each subproblem. The subproblems for
each edge are LPs involving variables and constraints,

Problem Decomposition for Traffic Diversions 359

and are solved very quickly. The master problem however is a pure integer prob-
lem involving variables and constraints plus any cuts added so
far. The initial master problem constraints are totally unimodular. As cuts are
added in further iterations the unimodularity of the master problem is destroyed
requiring solution by branch-and-bound search.

The interface enables the user to solve a single problem instance
using different optimisation functions. In the current application, the subproblem
associated with each edge and each iteration has the same constraints. The
difference lies only in the optimisation function. Therefore, only one subproblem
needs to be set up when the algorithm is initialized: our implementation uses the
same problem instance for each subproblem, simply running it with a different
optimisation function for each edge.

Accordingly, in our implementation, the decomposition model was
set up using two different problem instances, one for the master problem and
one for all the subproblems. In the following code, these instances are
named master and sub. First we create the master problem and the subproblem
template:

At lines 1 and 2 a master and subproblem solver instance are declared. They will
later be filled with linear (and integer) constraints. Line 3 names the procedure
that the user can invoke to solve the problem.

The problem constraints are entered next. These constraints are problem-
instance-specific. Typically they are automatically generated from a data file
holding the details of the network.

Line 5 sets up the master problem, reading in the constraints added previ-
ously, and posting a default optimisation function (minimize the total number
of edges used in all the diversions).

The problem-instance-specific edge capacity constraints are now entered.
Then the subproblem is set up at line 7, again with a default optimisation
function. Finally at line 8 the iteration procedure is invoked.

We now write down the code which controls the iteration.

360 Quanshi Xia et al.

At each iteration, the program solves the master problem (line 10), extracts
the solution (values of all the variables), (line 11), finds which edges are on
diversions (code not given) and then builds, for each edge (line 13), an optimisa-
tion function expression for the subproblem (code not given). The subproblem
is solved (line 17), and if the maximal solution exceeds the capacity of the edge
(line 18), a constraint is created.

As a result of solving the subproblem for each edge, a set of constraints are
collected. Each constraint (line 19) is then added to the master problem (line
21).

If no constraints were collected (line 22), this means that no edge had its
capacity exceeded, even in the worst case. Consequently the iteration terminates.
If any constraints were added to the master problem, however, the iteration is
repeated, with the newly tightened master problem.

The language and implementation makes this decomposition very
easy to state and to solve. also supports many other solvers and hy-
bridisation techniques. A description of the Benders Decomposition
library, for example, is available in [9].

7 Results and Discussion

implementations of the models described in Sections 3–5 were run
on a number of test instances on road networks of differing sizes, the smallest
involving 38 junctions and 172 road segments and the largest 365 junctions and
1526 road segments. Our data is industrial and cannot be published in detail.
For each road network the choice of blocked junctions with different in- and out-
degrees results in problem instances having different numbers of flows to divert.

For each test instance the first 3 columns of Table 1 show each example
road network with the number of nodes (junctions) and edges (road segments),

Problem Decomposition for Traffic Diversions 361

the number of flows to reroute and optimal objective value (or Fail if no feasible
solution exists). The remaining 4 columns show solution time for the four models
with additionally the total number of variables and number of constraints in
the original MIP model and the number of master problem iterations for the
decomposed models.

While there is some variation in the difficulty of individual instances for the
different methods, the decomposed models outperform the MIP by at least an
order of magnitude on average. It is striking how poorly MIP scales for this
problem: while the MIP is able to solve only 9 of the instances within reasonable
limits on execution time and memory usage, even the initial naive decomposition
solves all but 8 instances within these limits, and the improved decomposed

362 Quanshi Xia et al.

models solve all instances within a relatively small number of master problem
iterations and relatively short time periods.

MIP focuses on integer inconsistencies which do not necessarily correlate
closely with the real causes of inconsistency (i.e. overflow on an edge). CP enables
us to solve a problem relaxation with whatever scalable solver is available (e.g.
LP, or in the current master problem, MIP), and then to select the inconsisten-
cies/bottlenecks at the problem level rather than at the encoded linear/integer
level. This yields a much more problem-focused search heuristic.

This is reflected in the results obtained: all instances solvable by the MIP
approach required only a few master problem iterations in the decomposed ap-
proach. In particular the 3 infeasible instances in data sets and for which
MIP outperforms the decomposed approach are very over-constrained. Conse-
quently they require little search in the MIP and few iterations in the decom-
posed models to prove infeasibility. Similarly the 6 feasible instances in data
sets and are relatively loosely constrained and easily soluble by all
methods. Even here however the combination of smaller component problem
size and more problem-focused search in the decomposed approach yield order
of magnitude improvements. Conversely the remaining instances which are nei-
ther very loosely constrained nor very over-constrained are very difficult for both
the MIP approach and the naive decomposition due to the looseness of the cuts
provided, but much more amenable to solution by the problem-focused tight cuts
of the improved decomposition approaches.

Although this may suggest that MIP may be preferable for problems display-
ing certain characteristics, it is precisely those problems which are feasible but
tightly constrained or infeasible but only slightly over-constrained that are most
interesting in practice.

8 Conclusion

The diversion problem is very awkward in that the constraints involve a sub-
sidiary optimisation function. The problem can be expressed as a single MIP,
using the KKT condition to transform the embedded optimisation function into
a set of constraints. Nevertheless the resulting MIP problem is very large and
scales poorly.

A much better approach is presented by use of the decomposition strategy.
In particular, tight cuts are created to improve the efficiency and scalability. The
experimental evaluation shows that decomposition can solve much larger scale
problem instances.

References

[1]

[2]

Nemhauser, G.L., Wolsey, L. A.: Integer and Combinatorial Optimization, John
Wiley & Sons, New York. (1988)
Jain, V., Grossmann, I.E.: Algorithms for Hybrid MILP/CP Models for a Class
of Optimisation Problems. INFORMS Journal on Computing. 13 (2001) 258–276

Problem Decomposition for Traffic Diversions 363

[3]

[4]

[5]

[6]

[7]
[8]

[9]

Thorsteinsson, E. S.: Branch-and-Check: A Hybrid Framework Integrating Mixed
Integer Programming and Constraint Logic Programming. In T. Walsh, editor,
Principles and Practice of Constraint Programming – CP 2001, Springer. (2001)
16–30
Benders, J. F.: Partitioning Procedures for Solving Mixed-Variables Programming
Problems. Numerische Mathematik. 4 (1962) 238–252
Hooker, J. N., Ottosson, G.: Logic-Based Benders Decomposition. Mathematical
Programming. 96 (2003) 33–60
Cheadle, A.M., Harvey, W., Sadler, A., Schimpf, J., Shen, K., Wallace, M.:

Technical Report 03-1, IC-Parc, Imperial College London, (2003)
ILOG: ILOG CPLEX 6.5 User’s Manual, http://www.cplex.com (1999)
Dash Optimization: Dash Optimization Xpress–MP 14.21 User’s Manual,
http://www.dashoptimization.com (2003)
Eremin, A., Wallace, M.: Hybrid Benders Decomposition Algorithms in Constraint
Logic Programming. In T. Walsh, editor, Principles and Practice of Constraint
Programming – CP 2001, Springer. (2001) 1–15

LP Relaxations
of Multiple all_different Predicates

Gautam Appa1, Dimitris Magos2, and Ioannis Mourtos1

1 London School of Economics
London WC2A 2AE, UK.

{g.appa,j.mourtos}@lse.ac.uk
2 Technological Educational Institute of Athens

12210 Egaleo, Greece.
dmagos@teiath.gr

Abstract. This paper examines sets of all_different predicates that ap-
pear in multidimensional assignment problems. It proposes the study
of certain LP relaxations as a prerequisite of integrating CP with IP
on these problems. The convex hull of vectors satisfying simultaneously
two predicates is analysed and a separation algorithm for facet-defining
inequalities is proposed.

1 Introduction and Motivation

The role of a useful relaxation in Constraint Programming (CP) has been ex-
tensively discussed ([6]) and appears to be critical for problems that possibly
do not accept a polynomial algorithm. A strong reason for integrating CP with
Integer Programming (IP) is that IP offers a global problem view via its Linear
Programming (LP) relaxation. It is common to strengthen the LP relaxation by
adding implicit constraints in the form of cutting planes. This can become use-
ful for feasibility problems, where the LP-relaxation may establish infeasibility
early in the search (e.g. [1]), but mostly for optimisation problems where LP can
provide a bound on the optimal solution. For optimization models, LP is able to
establish an algebraic proof of optimality, which can arise from CP only through
enumeration.

In this context, research has focused on representing CP predicates in the
form of linear inequalities. For example, the convex hull of the solutions to the
all_different predicate and to cardinality rules has been analysed in ([10]) and
([9]), respectively. This paper works in the same direction by examining sets
of all_different predicates. The all_different predicate arises in problems that
embed an assignment structure. Hence, our motivation comes from the class
of multidimensional assignment problems, which exhibit both theoretical and
practical interest.

The remainder of this paper is organised as follows. Section 2 introduces
multidimensional assignment problems and presents their CP formulation. LP-
relaxations of this formulation are illustrated and discussed in Section 3. A sep-
aration algorithm for the inequalities defining the polytope associated with the

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 364–369, 2004.
© Springer-Verlag Berlin Heidelberg 2004

LP Relaxations of Multiple all_different Predicates 365

all_different predicate ([10]) is given in Section 4. Finally, we examine the convex
hull of the solutions to two overlapping all_different constraints in Section 5 and
discuss further research in Section 6.

2 CP Models for Assignment Problems

The simplest case of an assignment problem is the well-known 2-index assign-
ment, which is equivalent to weighted bipartite matching. Extensions of the
assignment structure to entities give rise to multidimensional (or multi-index)
assignment problems ([7]). A assignment problem is defined on sets,
usually assumed to be of the same cardinality The goal is to identify a collec-
tion of disjoint tuples, each including a single element from each set. This is
the class of axial assignment problems ([3]), hereafter referred to as
A different structure appears, if the aim is, instead, to identify a collection of

tuples, partitioned into disjoint sets of disjoint tuples. These assignment
problems are called planar and are directly linked to Mutually Orthogonal Latin
Squares (MOLS) ([5]). We denote planar problems as (see also
[2]).

Axial assignment structures have received substantial attention, because of
their applicability in problems of data association. ([8]). The planar problems
share the diverse application fields of MOLS, e.g. multivariate design, error cor-
recting codes ([5]). Both types of assignment appear in problems of timetabling,
scheduling and cryptography ([10]).

It is easy to derive the CP formulation of

A solution to the above formulation provides pairs
Recall that a solution to is a set of disjoint Hence,

define variables We wish to form tuples
for Evidently, variables must be

pairwise different for each The formulation follows.

This formulation includes variables and all_different constraints.
Concerning we are looking for that can be par-

titioned into sets of tuples. Each set of disjoint tuples is denoted as
Each of the distinct values

of index corresponds to a different set of disjoint tuples. Clearly, variables
and must be pairwise different for

each of the sets to contain disjoint tuples.
In addition, define the auxilliary variables where and

including also the constraints Variables and

366 Gautam Appa et al.

have domains of cardinality and respectively. Observe that an all_different
constraint must be imposed on all variables to ensure that no two tuples can
contain the same value for both indices and The following model involves

variables and constraints.

Notice that the CP formulation of contains all_different constraints
with one variable in common, in contrast to the CP formulation of
that contains non-overlapping all_different constraints.

3 LP Relaxations

A relaxation can be derived from the IP models of and
To illustrate these IP models, some notation should be introduced. Let

and assume sets each of cardinality For assume
and let Also let where

A is denoted as
Define the binary variable written also as according to the

above notation. Clearly, iff tuple is included
in the solution. It is not difficult to see that the IP formulation for is
obtained by summing over all possible subsets of out of indices (consider
as an example the 2-index assignment).

Similarly, the IP formulation for is obtained by summing over all
possible subsets of out of indices. As an example, consider the formulation
of the Orthogonal Latin Squares problem, which is the ([1]).

Both models are special cases of the model discussed in [2]. The LP-relaxation
arises from these models by simply replacing the integrality constraints with non-
negativities. This relaxation, however, involves a large number of binary vari-
ables, therefore becoming impractical as grows. The relaxation can be further
strengthened by introducing facet-defining inequalities, although known families
of facets remain limited, except for small orders, e.g. and

LP Relaxations of Multiple all_different Predicates 367

A family of facets for all axial problems, i.e. is presented
in [2].

A different relaxation is implied by the CP formulations, if each all_different
predicate is replaced with an equality constraint. It is easy to see that the
predicate where implies the equal-
ity

For example, constraints (2) imply the validity of the equalities:

This second relaxation is weaker in the sense that it allows for infeasible
integer values to be assigned to variables Given however that the convex
hull of all vectors satisfying an all_different predicate is known ([10]), the above
relaxation can be tightened by adding valid inequalities, which are facets of this
convex hull. If all facets are included, the solution to the augmented LP will
be integer feasible. The problem lies in the exponential number of these facets
and can be resolved only via an efficient separation algorithm, i.e. a polynomial
algorithm that adds these inequalities only when violated by the current LP
solution. Such an algorithm is presented next.

4 A Separation Algorithm

Let and consider the constraint
where Let all indices belong to N and be
pairwisedifferent. Let The convex hull
of all non-negative integer that contain pairwise different values is the
polytope It was proved
in [10] that is the intersection of the following facet-defining inequalities:

Although the number of these inequalities is exponential in i.e. equals
the separation problem for these inequalities can be solved in polynomial time.

Algorithm 1 Let
Step I: Order in an ascending order
Step II: For if

return;
Step III: For if

return;

368 Gautam Appa et al.

Proposition 1. Algorithm 1 determines in steps whether a facet of
is violated.

Proof. Because of the ordering, it holds that

Therefore, if no inequality of the form is violated, none of the
inequalities (3) will be either. The case is similar for inequalities (4). This proves
the correctness of the algorithm. Furher, it is not difficult to establish that the
algorithm runs in steps in the worst case.

This algorithm is a necessary step towards solving an all_different constraint
via Linear Programming, without any enumeration. One should solve an initial
LP containing a subset of the facet-defining inequalities and then repetitively
add violated cuts and re-optimise until a feasible integer solution is identified.
Evidently, any linear objective function could be included, therefore this method
is also appropriate for the optimisation version of the problem.

5 The Convex Hull
of Two Overlapping all_different Constraints

Since multidimensional assignment problems include more than one all_different
predicates, it is important to analyse the convex hull of vectors satisfying si-
multaneously multiple all_different constraints. The simplest case to consider is
that of two all_different constraints of cardinality having common variables,
where For this reduces to discussed in [3].

Define the variables with domain
The constraints are:

Let
and

The following results are illustrated without giving extensive proofs.

Theorem 2.

Proof. There are two implied equalities, satisfied by all

Given that the above two equalities are linearly independent, the minimum
equality system for has rank 2. Therefore,
Since it holds that Equality is proved by illustrating

affinely independent points.

LP Relaxations of Multiple all_different Predicates 369

It can be proved that the inequalities defining facets of the polytope associ-
ated with a single all_different constraint, i.e. (3) and (4), remain facet-defining
for Whether these are the only facets of i.e. they define a minimal poly-
hedral description of the problem, remains an open question. Experiments with
the PORTA software ([4]) show that no other facets of exist for and

(PORTA provides the convex hull of an input set of vectors).
Given these polyhedral aspects, the applicability of the separation algorithm

of Section 4 to the case of two overlapping all_different constraints is direct. CP
and IP techniques can also be combined with CP handling a certain subset of
the variables and applying a tightened LP relaxation thereafter.

6 Further Research

One obvious extension of the presented work is to examine 2 all_different con-
straints having (a) different cardinalities and (b) variable domains of cardinal-
ity larger than the number of variables. Further, dealing with and

implies solving sets of more than 2 all_different constraints. Compu-
tational results are also required in order to assess the efficiency of our approach
in comparison to existing methods for the

References

Appa G., Mourtos I., Magos D.: Integrating Constraint and Integer Programming
for the Orthogonal Latin Squares Problem. In van Hentenryck P. (ed.), Principles
and Practice of Constraint Programming (CP2002), Lecture Notes in Computer
Science 2470, Springer-Verlag, 17-32 (2002).
Appa G., Magos D., Mourtos I.: Polyhedral resuls for as-
signment problems. LSE CDAM Workin Paper Series (URL:
http://www.cdam.lse.ac.uk/Reports/Files/cdam-2002-01.pdf).
Balas E., Saltzman M. J.: Facets of the three-index assignment polytope. Discrete
Applied Mathematics 23, 201-229 (1989).
Christoff T., Löbel A.: Polyhedral Representation Transformation Algorithm
v.1.4.0 (2003) (URL: http://www.zib.de/Optimization/Software/Porta).
Dénes J., Keedwell A. D.: Latin Squares: New developments in the Theory and
Applications. North-Holland (1991).
Hooker, J.N.: Logic Based Methods for Optimization, Wiley, NY (2000).
Pierskalla W. P.: The multidimensional assignment problem. Operations Research
16, 422-431 (1968).
Spieksma F. C. R.: Multi-index assignment problems: complexity, approximation,
applications. In Pitsoulis L., Pardalos P. (eds.), Nonlinear Assignment Problems,
Algorithms and Applications, 1-12, Kluwer Academic Publishers (2000).
Yan H., Hooker J.N. : Tight Representation of Logic Constraints as Cardinality
Rules. Mathematical Programming 85 (2), 363-377 (1999).
Williams H. P., Yang H.: Representations of the all-different Predicate of Con-
straint Satisfaction in Integer Programming. INFORMS Journal on Computing
13, 96-103 (2001).

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

Dispatching and Conflict-Free Routing
of Automated Guided Vehicles:
A Hybrid Approach Combining

Constraint Programming
and Mixed Integer Programming

Ayoub Insa Corréa, André Langevin, and Louis Martin Rousseau

Département de Mathématiques et de Génie Industriel
École Polytechnique de Montréal and GERAD

C.P 6079, Succ. Centre-ville
Montréal, Canada, H3C 2A7

{iacorrea, andre.langevin, louis-martin.rousseau}@polymtl.ca

Abstract: This paper reports on the on-going development of a hybrid
approach for dispatching and conflict-free routing of automated guided vehicles
used for material handling in manufacturing. The approach combines Constraint
Programming for scheduling and Mixed Integer Programming for routing
without conflict. The objective of this work is to provide a reliable method for
solving instances with a large number of vehicles. The proposed approach can
also be used heuristically to obtain very good solution quickly.

Keywords: Automated guided vehicles, hybrid model, constraint programming,
material handling systems, routing.

1 Introduction

This study focuses on automated guided vehicles (Agvs) in a flexible manufacturing
system (FMS). An Agv is a material handling equipment that travels on a network of
paths. The FMS is composed of various cells, also called working stations, each with
a specific function such as milling, washing, or assembly. Each cell is connected to
the guide path network by a pick-up / delivery (P/D) station where the pick-ups and
deliveries are made. The guide path is composed of aisle segments with intersection
nodes. The vehicles are assumed to travel at a constant speed and can stop only at the
ends of the guide path segments. The guide path network is bidirectional and the
vehicles can travel forward or backward. The unit load is one pallet. The number of
available vehicles and the duration of loading and unloading at the P/D stations are
known. As many vehicles travel on the guide path simultaneously, collisions must be
avoided. There are two types of collisions: the first type may appear when two
vehicles are moving toward the same node. The second type of collision occurs when
two vehicles are traveling on a segment in opposite directions. Every day, a list of
orders is given, each order corresponding to a specific product to manufacture (here,
product means one or many units of the same product). Each order determines a

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 370-379, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Dispatching and Conflict-Free Routing of Automated Guided Vehicles 371

sequence of operations on the various cells of the FMS. Then, the production is
scheduled. This production scheduling sets the starting time for each order. Pallets of
products are moved between the cells by the Agvs. Hence, each material handling
request is composed of a pickup and a delivery with their associated earliest times. At
each period, the position of each vehicle must be known. Time is in fifteen second
periods. A production delay is incurred when a load is picked up or delivered after its
planned earliest time. The problem is thus defined as follows: Given a number of Agvs
and a set of transportation requests, find the assignment of the requests to the vehicles
and conflict-free routes for the vehicles in order to minimize the sum of the
production delays.

2 Literature Review

For a recent general review on Agvs problems and issues, the reader is referred to the
survey of Qiu et al. (2002). These authors identified three types of algorithms for
Agvs problems: (1) algorithms for general path topology, (2) path layout optimization
and (3) algorithms for specific path topologies. In our study, we work on algorithms
for general path topology. Methods of this type can be divided in three categories: (1)
static methods, where an entire path remains occupied until a vehicle completes its
route; (2) time-window based methods, where a path segment may be used by
different vehicles during different time-windows; and (3) dynamic methods, where
the utilization of any segment of path is dynamically determined during routing rather
than before routing as with categories (1) and (2). Our method belongs to the third
category and we focus on bidirectional networks and conflict-free routing problems
with an optimization approach. Furthermore we have a static job set, i.e., all jobs are
known a priori. Krishnamurthy et al. (1993) proposed first an optimization approach
to solve a conflict-free routing problem. Their objective was to minimize the
makespan. They assumed that the assignment of tasks to Agvs is given and they
solved the routing problem by column generation. Their method generated very good
solutions in spite of the fact that it was not optimal (column generation was performed
at the root node of the search tree only). Langevin et al. (1996) proposed a dynamic
programming based method to solve exactly instances with two vehicles. They solved
the combined problem of dispatching and conflict-free routing. Désaulniers et al.
(2003) proposed an exact method that enabled them to solve instances with up to four
vehicles. They used slightly the same data set as Langevin et al. Their approach
combined a greedy search heuristic (to find a feasible solution and set bound on
delays), column generation and a branch and cut procedure. Their method presents
however some limits since its efficiency depends highly on the performance of the
starting heuristic. If no feasible solution is found by the search heuristic, then no
optimal solution can be found. The search heuristic performs poorly when the level of
congestion increases and the system considers at most four Agvs.

372 Ayoub Insa Corréa et al.

Fig. 1

3 A Constraint Programming/Mixed Integer Programming
Approach

The decisions for dispatching and conflict-free routing of automated guided vehicles
can be decomposed into two parts: first, the assignment of requests to vehicles with
the associated schedule, then, the simultaneous routing of every vehicle. The hybrid
approach presented herein combines a Constraint Programming (CP) model for the
assignment of requests to the vehicles with their actual pick-up or delivery times (in
order to minimize the delays) and a Mixed Integer Programming (MIP) model for the
conflict-free routing. The two models are imbedded in an iterative procedure as
shown in Fig. 1. For each assignment and schedule found by the CP model, the MIP
model tries to find conflict-free routes satisfying the schedule. CP is used to deal with
the first part because it is very efficient for scheduling and, in the present case, it
allows identifying easily all optimal solutions. Here optimal solutions that are
equivalent in terms of value but represent different assignment might yield very
different routing solution. The routing part is addressed with MIP since it can be
modeled with a time-space network with some interesting sub-structures that allow
fast solutions.

Dispatching and Conflict-Free Routing of Automated Guided Vehicles 373

The method can be described in three steps:

Step 1: find an optimal solution x* (i.e., an assignment of requests to vehicles) to
the CP model. Let z* be the optimal objective function value (the total delay).
Step 2: use x* in the MIP model to find a conflict-free routing. If there exists any,
the optimal solution to the entire model is found. Otherwise (no feasible solution
found), go to step 3.
Step 3: find another optimal solution to the CP model different from x* but with
the same objective function value. If there exists any, return to step 2. If no
feasible solution has been found with any of the optimal solutions of the CP
model, go to step 1 and add a lower bound to the objective function (f(x) > z*)
before solving anew the CP model. This lower bound is set to z* and is always
updated when returning to step 1.

3.1 The CP Model

The model answers the question “Which vehicle is processing what material handling
task and when?” by yielding an ordered assignment of tasks to Agvs. The total
amount of delays is measured by summing the difference between the actual start time
and the earliest start time of all deliveries. In this model, the distance (time) matrix is
obtained by using shortest paths between nodes. Thus, the delays calculated (which
don’t take into account the possible conflicts) are an approximation (a lower bound) of
the actual delays.

Sets and Parameters Used:

DummyStartTasks: set of dummy starting tasks. Each of them is in fact the starting
node of a vehicle corresponding to the last delivery node of a vehicle in the
previous planning horizon.

Start[k]: starting node of Agv k.

Pickups: set of pick-up tasks.

SP [.,.]: length of the shortest path between a couple of nodes

Node (p): node for task p. It is used here to alleviate the notation.

nbRequests: number of requests to perform.

nbChar: number of vehicles available.

Requests: set of requests. Each request contains two fields: the pick-up task and the
associated delivery task.

DummyStartRequests: set of dummy starting requests.

Inrequest: set of dummy start requests and real requests.

Pick [·]: pick-up field of a request.

Del [·]: delivery field of a request. Each task (dummy or not) is defined by three
fields: the node where the task is to be performed, the processing time at this work
station and the earliest starting time of the task.

374 Ayoub Insa Corréa et al.

Duration [·]: duration of a task.

Priorities: set of couples of tasks linked by a precedence relationship (the first task is
to be performed before the other).

Tasks: set of all tasks with a (mandatory) successor. This model uses the three
following variables:

Alloc[i] = k if task i is performed by vehicle k. The index lower than 1
represent dummy requests.

Succ[u] = v if request v is the successor of request u on the same vehicle.

Starttime[j] is the start time of task j.

For each vehicle a couple of dummy tasks are created, a starting task and an end
task. The starting task has the following characteristics: its node is the starting node of
the Agv, its duration and earliest starting time are set to zero. We define the set Tasks
by the set of dummy start tasks and real pickups and deliveries tasks. A request
consists of a pickup and a delivery tasks. The constraints used in the model are the
following:

Dispatching and Conflict-Free Routing of Automated Guided Vehicles 375

Constraints (1) ensure that a dummy starting task and its dummy end task are
performed by the same Agv. Constraints (2) ensure that the successor of a dummy
start request is either a real request or a dummy end request (in this case the vehicle is
idle during the entire horizon but can move to avoid collisions). Constraints (3) ensure
that every request and its successor must be performed by the same Agv. Constraints
(4) ensure that, at the beginning of the horizon (period zero), each vehicle is located at
its starting node. Constraints (5) specify that each vehicle must have enough time to
reach its first pick-up node. Constraints (6) imply that the successor of each request is
unique. Constraints (7) specify that each vehicle processing a request must have
enough time to go from the pick-up node to the delivery node of the request.
Constraints (8) ensure that if one request is the successor of another request on the
same vehicle, the Agv must have enough time to make the trip from the delivery node
of the first request to the pick-up node of the second request. They link the tasks that
must be processed at the same nodes so that there is no overlapping. Constraints (9)
enforce that, for every couple of tasks linked by precedence relationship, the first task
must start and be processed before the beginning of the second task. Constraints (10)
ensure that for each couple of tasks that must be performed on the same node, one
must start one period after the beginning of the other.

3.2 The MIP Model

For a given schedule obtained from the CP model, the MIP model allows to find
whether there exists a feasible routing without conflict. This could be seen as a
Constraint Satisfaction Problem since we only search for a feasible routing without
conflict. However, the inherent network structure of the routing problem allows using
a MIP model where only the first feasible integer solution is searched for, thus
preventing a potentially time consuming search for the optimal solution of the MIP.
The MIP corresponds to a time-space network which defines the position of every
vehicle at anytime (see Fig. 2.). The original guide path network is composed of
segments of length 1, 2 and 3. This network has been transformed into a directed
network where all arcs are of length 1 by incorporating dummy nodes on segments of
length 2 or 3. At every time period, there is a node for each intersection node
(including the dummy nodes) of the guide paths. An arc is defined between two
nodes of two successive time periods if the corresponding intersection nodes are
adjacent on the guide path layout. Each vehicle enters the network at a given node at
period 0. The time-space network model has the following characteristics:

One unit of flow is equivalent to one vehicle present in the system.
The total amount of entering flow at each period is equal to the total number of
Agvs (busy or idle).
At most one unit of flow can enter in a node (no collision can occur at a node).
There is flow conservation at each node.
An arc whose origin and destination are the same node at two successive periods
corresponds to waiting at that node.
A vehicle can move without having a task to perform, just for avoiding conflicts.

See Figure 2 for time-space network description.

376 Ayoub Insa Corréa et al.

Fig. 2. Description of the time-space network (MIP)

Several versions of MIPs are presently under investigation. Here, we present one that
has given interesting results up to now.

Sets and Parameters of the MIP Model:

Char: the set of agvs

Nodes: the set of nodes

Periods: the set of periods.

ArcsPlus: the set of all arcs (including those with dummy nodes), represented as an
interval of integers.

M is the length of the horizon (number of periods). The variables Alloc [·] and
Starttime [·] obtained from the CP model are used as input.

Segment[a] is a record having two fields. The first field (Segment[a].orig) is the
origin of the arc whereas the second field (Segment[a].dest) is the destination of a.

The variables of the MIP model:

Y [k, t,p] = 1 if vehicle Char is on node Nodes at period Periods.

Z [k, t, a] = 1 if vehicle Char starts visiting arc ArcsPlus at period [0 ...
M-1].

Dispatching and Conflict-Free Routing of Automated Guided Vehicles 377

The MIP model is defined as follows:

Constraints (1) specify that every vehicle must be present at its starting node at
period 0. Constraints (2-3) enforce the presence of vehicles at their task node in due
time. Constraints (4-5) ensure that every vehicle stays at least one period at its task
node to load or unload. Constraints (6) ensure that every vehicle has a unique position
at each period. Constraints (7) imply that if a vehicle starts visiting the origin of an arc

378 Ayoub Insa Corréa et al.

at period t, it will visit the destination at period t+1. Constraints (8) enforce that if a
vehicle is on a node at period t, it means that it has started visiting an arc (waiting arc
or not) at period t-1. Constraints (9) enforce that if a vehicle is on a node at period
t+1, it means that it has started visiting an incoming arc (waiting arc or not) at period
t. Constraints (10) ensure that every vehicle starts running on a unique arc (real or
waiting arc) at each period. Constraints (11) forbid the presence of two vehicles on
the same node except the case where one vehicle is finishing its task while another is
starting its task on a work station. In a certain sense, these are anti-collision
constraints on nodes. Constraints (10) are anti-collision constraints on arcs: no two
vehicles can travel at the same time on the same arc in opposite directions.

4 Preliminary Results

The method has been implemented in OPL Script. We compared our method to the
approach of Desaulniers et al. and we not only gain on flexibility by using CP but we
were able to solve formerly unsolved cases (their algorithm failed in two instances).
We also solved some new cases with five and six Agvs (the maximum number of
Agvs in Desaulniers et al. was four). The number of Agvs used was limited to six
since it didn’t make sense to increase the number of Agvs with regards to the number
of requests. However, larger applications like container terminal operations use
dozens of agvs and no optimization automated solutions exist. Presently, the size of
the MIP model for the routing part is very large. It depends largely on the size of the
horizon. Then larger time horizons will likely be more difficult to handle. We need to
test our method on problems of larger number of tasks or Agvs with the idea of
rolling horizons.

Our method took more computing time than that of Desaulniers et al. even though
the computation times found are below the limit of ten minutes that we set. Our tests
were done on a Pentium 4, 2.5 GHz. Desaulniers et al. did their tests on a SUNFIRE
4800 workstation (900 MHz).

Our approach can be transformed into a heuristic version by limiting the time of
each scheduling solution to 30 seconds. Experiments are planned to see if this
technique can yield quickly very good solutions.

Conclusion5

This article reports on the development of a flexible hybrid algorithm based on the
decomposition into CP and MIP components. We were able to solve some formerly
unsolved cases of a complex AGV dispatching and routing problem. Tests on
problems with a greater number of tasks or Agvs are needed to fully evaluate the
effectiveness of the proposed method. It would be interesting to analyze the impact of
the number and the diversity of precedence relationships between tasks. This research
is an ongoing project as we are now working on refining the presented models and the
iterative loop that guides them. As future work, an adaptation of our approach to a
mining context should be very interesting due to the high level of congestion present
in these problems.

Dispatching and Conflict-Free Routing of Automated Guided Vehicles 379

References

[1]

[2]

[3]

[4]

Desaulniers, G., Langevin, A. and Riopel, D. 2003. Dispatching and conflict-free
routing of automated guided vehicles: an exact approach. International Journal of
Flexible Manufacturing Systems. To appear.
Krishnamurthy, N.N., Batta, R. and Karwan, M.H. 1993. Developing Conflict-free
Routes for Automated Guided Vehicles. Operations Research, vol. 41, no. 6, 1077-10-
90.
Langevin, A., Lauzon, D. and Riopel, D., 1996 Dispatching, routing and scheduling of
two automated guided vehicles in a flexible manufacturing system. International
Journal of Flexible manufacturing Systems, 8, 246-262.
Qiu, L., Hsu, W-J., Huang, S-Y. and Wang, H. 2002 Scheduling and routing algorithms
for Agvs: a survey. International Journal of Production Research, vol. 40, no 3, 745-
760.

Making Choices
Using Structure at the Instance Level

within a Case Based Reasoning Framework*

Cormac Gebruers1, Alessio Guerri2, Brahim Hnich1, and Michela Milano2

1 Cork Constraint Computation Centre
University College Cork, Cork, Ireland
{c.gebruers,b.hnich}@4c.ucc.ie

2 DEIS
University of Bologna

Viale Risorgimento 2, 40136 Bologna, Italy.
{aguerri,mmilano}@deis.unibo.it

Abstract. We describe using Case Based Reasoning to explore structure
at the instance level as a means to distinguish whether to use CP or IP
to solve instances of the Bid Evaluation Problem.

1 Introduction

Constraint programming (CP) and Integer Linear Programming (IP) are both
highly successful technologies for solving a wide variety of combinatorial op-
timization problems. When modelling a combinatorial optimization problem,
there is often a choice about what technology to use to solve that problem. For
instance in the Bid Evaluation problem (BEP) –a combinatorial optimization
problem arising in combinatorial auctions– both CP and IP can successfully be
used [3]. While there exist domains where one can easily predict what technology
will excel, in many domains it is not clear which will be more effective. The BEP
falls into the latter case.

How do we choose among technologies when all instances share the same
problem structure? We are currently investigating machine learning methodolo-
gies to explore structure at the instance level as a means to distinguish whether
to use CP or IP to solve instances of the BEP.

In [4] a Decision Tree technique is used to select the best algorithm for
a BEP instance. In this paper, we use another Artificial Intelligence technique,
Case Based Reasoning (CBR), as a framework within which to carry out this
same exploration. CBR utilises similarity between problems to determine when
to reuse past experiences to solve new problems. An experience in this context is
what technology to use to solve an instance of the BEP. Using a representation

* This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075. This work was partially supported by the SOCS project, funded by
the CEC, contract IST-2001-32530.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 380–386, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Making Choices Using Structure at the Instance Level 381

that distinguishes problems at the instance level, and a similarity function to
compare problems expressed in this representation, enables us to determine what
technology to use on a new problem instance. We present a preliminary result
showing this methodology can predict 80% of the time whether to use CP or IP
to solve the BEP.

2 Bid Evaluation Problem

Combinatorial auctions are an important e-commerce application where bidders
can bid on combination of items. The Winner Determination Problem WDP is
the task of choosing, from among bids, the best bids that cover all items
at a minimum cost or maximum revenue. The winner determination problem is
NP-hard. The Bid Evaluation Problem BEP, is a time constrained version of the
WDP and consequently involves temporal and precedence constraints. Items in
a bid are associated with a time window (and hence duration) and are inter-
connected by precedence constraints. A solution to the BEP involves solving
the WDP and additionally satisfying the temporal and precedence constraints.
In [3], different approaches based on pure CP, pure IP and hybrid approaches
mixing the two have been developed and tested. Furthermore, variants of these
technologies are considered involving different parameter settings for each tech-
nology. In this work we concern ourselves with a sub-problem of deciding whether
to use CP or IP as a solution technology for the BEP. Due to lack of space, we
refer the reader to [3] for detailed information about the CP and IP models
developed for the BEP.

3 What Technology?

As a consequence of dominant structure apparent in a problem domain, there
are situations where clear predictions about whether to use CP or IP can be
made. For instance, when side constraints complicate the problem, CP can take
advantage of them. When the problem is highly structured, polyhedral analysis
can be highly effective. When the problem has a loose continuous relaxation,
CP can overcome this weakness. If, instead, relaxations are tight and linear con-
straints tidily represent the problem, IP should most probably be used. However
deciding whether to use IP or CP to solve a particular combinatorial optimi-
sation problem is often an onerous task. Experimental results evaluating the
performance of the two strategies considered for the BEP, show that neither CP
nor IP is a clear winner [3]. These results further indicate that there isn’t any
simplistic structure or problem feature, that correlates with choice of suitable
technology. Hence we propose to explore whether structure at the instance level
can be used to discriminate between CP and IP for the BEP.

382 Cormac Gebruers et al.

Fig. 1. 3 Methodology Overview

4 CBR Framework

CBR enables past problem solving experiences to be reused to solve new prob-
lems [5]. CBR has been successfully used in the context of e.g. diagnosis and
decision support [6], design and configuration [1], etc.

Experiences are stored along with the problems they solve as cases. A case is
a representative example of a cluster of instances (a cluster can contain from 1
to instances) that are similar to one another, but different from other clusters
of instances. A particular technology (CP or IP in this work), is associated with
one or more clusters of instances i.e. cases.

A CBR system consists of a four step cycle; retrieve, reuse, revise, and retain.
To solve a new problem, we retrieve a case from the casebase, whose problem
part is most similar to the new problem. We then reuse the experience part of the
case to solve the new problem. The casebase may be revised in light of what has
been learned during this most recent problem solving episode and if necessary
the retrieved experience, and the new problem, may be retained as a new case.
Every time a new problem instance is presented to the system, this cycle enables
a CBR system to both learn new experiences and to maintain or improve the
quality of the cases.

We now describe a CBR system called SELECTOR that enables us explore the
use of structure at the instance level to predict whether to use CP or IP for BEP
instances. Firstly, consider a case in SELECTOR. For now we will simply refer to
the problem part of a case in abstract terms. We do this because the choice of
how to represent a problem instance is one aspect to be explored. The experience
part of a case corresponds to the appropriate technology for that instance (de-
termined by experimentation) i.e. CP or IP. A case is thus a tuple composed of

Making Choices Using Structure at the Instance Level 383

an abstract representation of an instance, and an appropriate technology (either
CP or IP) that efficiently solves that instance. The final element of the system is
a function to compute the similarity between two problem instances. The
choice of is inextricably linked to the problem representation and hence is
the other aspect we wish to explore in this work.

SELECTOR has two modes of operation; a training mode and a testing mode.
A dataset is randomly divided into two sub-sets for training and testing purposes.
Initially, the casebase is seeded with a random instance. In training mode, a
casebase is assembled using the training problems. We expect that the instances
retained in the casebase constitute examples of when to use the appropriate
technology. The training mode consists of the following activities:

Retrieval: The current training instance is compared with every case in the
casebase and the most similar case (established using an is returned;

Reuse: The current training instance is solved using the technology identified
by the case retrieved during the retrieval step;

Training Evaluation: The current training instance is solved using the other
technologies that could have been chosen. The results of this step and the
reuse step are recorded in preparation for the next step.

Revise & Retain: If the retrieved case has predicted incorrectly, then a new
case is assembled consisting of the current training instance and the most
appropriate technology (rather than the retrieved technology). This case is
then saved to the casebase.

Once the casebase is non-empty, we can enter testing mode. For each testing
problem, test mode does the following:

Retrieval: As for training mode;
Reuse: As for training mode;
Testing Evaluation: if the system correctly predicts the appropriate technol-

ogy, we increment the good prediction score. Otherwise we increment the
failure score. No new cases are added to the casebase in testing mode.

The training and testing phases can be intertwined at an interval of the
user’s choosing. The system continues in training mode until new cases have
been added, then switches to testing mode. Once the testing set has been ex-
hausted, the system reverts to training mode until a further cases have been
added... and so on until there are no instances left in the training set. This
approach of intertwining training and testing enables us to identify learning be-
havior as casebases grow, and to consider the impact of an individual or group
of cases on casebase performance. These factors are important for examining the
impact of structure at the instance level.

This methodology is based on the intuition that if two instances are similar,
then it follows that the same technology should be appropriate for both problems.
Whether this approach works or not depends on two critical factors; how to
represent problem instances and how we decide they are similar. In the next
section, we give an example of representations and similarity measures.

384 Cormac Gebruers et al.

5 Case Study

5.1 Problem Representations and Similarity Measures

Feature Based Approaches. We consider representations based on four features
of the BEP that fully describe the problem; the number of bids the number
of tasks the number of includes constraints and the number of precedence
constraints All these features can be determined from the problem instance
in polynomial time.

We explore different similarity measures between two BEP instances p1 and
p2 with feature vectors and respectively:

Weighted Block City: If then we refer
to following family of block city similarity measures as weighted similarity
functions:

where and and are the minimum and the maximum
values for feature respectively. Note that we use normalization to remove
the effects of different problem sizes.

Euclidean Distance: The similarity measure between two feature vectors is
defined as the Euclidean distance between these two vectors.

Structural Approach: Should the feature based representations prove insufficient
to distinguish between IP and CP, we also propose to examine structural rep-
resentations such as graphs. The principle graph representation we adopt for
this purpose is a minor natural extension of the bid-good graph1, where we add
precedent edges between task vertices to represent the precedence constraints
that exist between tasks. We compute similarity between problem instances us-
ing a graph matching technology based on an incomplete branch and bound
approach. However, due to space limitations, the details of the algorithms are
not shown.

5.2 Preliminary Results

We generated a large variety of instances, spacing from easiest with 5 tasks and
15 bids to hardest with 30 tasks and 1000 bids, and with variable tasks-per-bid
values and precedence graph structures. In this work, we applied CBR only to
harder instances, where the difference between search times of the algorithms
becomes considerable. This considered data set is composed of 90 instances, the
easiest of which has 15 tasks, about 400 bids and a mean tasks-per-bid value
little higher than 1.

1 a common way to represent the BEP, where vertices represent bids and tasks, and
edges between bids and tasks represent the inclusion of tasks in bids. See [7].

Making Choices Using Structure at the Instance Level 385

Fig. 2. Prediction using Includes constraints Block City Similarity Measure

The 90 problems were randomly divided 10 times into pairs of training and
testing sets. The ratio of training to testing problems was training and
testing. Each experiment was repeated 10 times using the 10 pairs of training
and testing sets and results averaged over these 10 trials.

We observe it is possible to achieve an average prediction rate across 10 trials
of 80% by using the number of Includes constraints However, it is very mis-
leading to draw any further conclusions based on such elementary experiments.
No significant difference in prediction ability was observed between using a sim-
ilarity measure based on Block-City or Euclidean Distance, hence we show the
Block City result only. The representations and similarity measures considered
thus far may appear quite basic, however it is informative to see how effective
relatively simple measures can be [2].

6 Conclusion

In this paper, we propose an investigation of instance structure as a discriminat-
ing factor among solution technologies for the BEP within a CBR framework. In
our future work, we plan to perform extensive exploration of both feature based
and more complex structure based representations.

386 Cormac Gebruers et al.

References

[1]

[2]

[3]

[4]

[5]
[6]

[7]

S. Craw, N. Wiratunga, and R. Rowe. Case-based design for tablet formulation.
In Proc. 4th European Workshop on CBR, pages 358–369, 1998. Springer.
R. C. Holte. Very Simple Classification Rules Perform Well on Most Commonly
Used Datasets. Machine Learning, vol. 3, pp. 63-91, 1993.
A. Guerri and M. Milano, IP-CP techniques for the Bid Evaluation in Combina-
torial Auctions, in Proc. CP2003, 2003.
A. Guerri and M. Milano, Learning techniques for Automatic Algorithm Portfolio
Selection, Submitted.
J. Kolodner, Case-Based Reasoning, Morgan Kaufmann, 1993.
M. Lenz, H.-D. Burkhard, P. Pirk, E. Auriol, M. Manago: CBR for Diagnosis and
Decision Support. AI Commun. 9(3): 138-146 (1996)
K. Leyton-Brown, E. Nudelman and Y. Shoham, Learning the Empirical Hardness
of Optimization Problems: The Case of Combinaorial Auctions, Proc CP02, 2002.

The Challenge of Generating Spatially Balanced
Scientific Experiment Designs*

Carla Gomes, Meinolf Sellmann, Cindy van Es, and Harold van Es

Cornell University
{gomes,sello}@cs.cornell.edu

{clv1,hmv1}@cornell.edu

The development of the theory and construction of combinatorial designs orig-
inated with the work of Euler on Latin squares. A Latin square on symbols
is an matrix is the order of the Latin square), in which each sym-
bol occurs precisely once in each row and in each column. Several interesting
research questions posed by Euler with respect to Latin squares, namely regard-
ing orthogonality properties, were only solved in 1959 [3]. Many other questions
concerning Latin squares constructions still remain open today.

From the perspective of the Constraint Programing (CP), Artificial Intelli-
gence (AI), and Operations Research (OR) communities, combinatorial design
problems are interesting since they possess rich structural properties that are
also observed in real-world applications such as scheduling, timetabling, and er-
ror correcting codes. Thus, the area of combinatorial designs has been a good
source of challenge problems for these research communities. In fact, the study
of combinatorial design problem instances has pushed the development of new
search methods both in terms of systematic and stochastic procedures. For ex-
ample, the question of the existence and non-existence of certain quasigroups
(Latin squares) with intricate mathematical properties gives rise to some of the
most challenging search problems in the context of automated theorem prov-
ing [16]. So-called general purpose model generation programs, used to prove
theorems in finite domains, or to produce counterexamples to false conjectures,
have been used to solve numerous previously open problems about the existence
of Latin squares with specific mathematical properties. Considerable progress
has also been made in the understanding of symmetry breaking procedures using
benchmark problems based on combinatorial designs [5, 6, 9, 13]. More recently,
the study of search procedures on benchmarks based on Latin squares has led
to the discovery of the non-standard probability distributions that characterize
complete (randomized) backtrack search methods, so-called heavy-tailed distri-
butions [8].

In this paper we study search procedures for the generation of spatially bal-
anced Latin squares. This problem arises in the design of scientific experiments.
For example, in agronomic field experiments, one has to test and compare dif-
ferent soil treatments. Two different soil treatments may correspond to two dif-
ferent fertilizers or two different ways of preparing the soil. Most agronomic

This research was partially supported by AFOSR grants F49620-01-1-0076 (Intelli-
gent Information Systems Institute) and F49620-01-1-0361 (MURI).

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 387–394, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

388 Carla Gomes et al.

field experiments are implemented through randomized complete block designs
(RCBD) where each block has as many experimental units as treatments [4]. Use
of blocks is in most cases justified by spatial variability in fields, and this layout
is an attractive way to organize replications. This approach to experimental de-
sign uses random allocation of treatments to plots, which is used to ensure that
a treatment is not continually favored or handicapped in successive replications
by user bias or some extraneous source of variation [2]. Although this random-
ization approach is intuitively attractive, it has been shown to cause biases and
imprecision under most field conditions [15]. The reason for this is that under-
lying soil characteristics are typically non-random and show field trends, spatial
autocorrelation, or periodicity [14]. For example, fertility patterns in fields often
exhibit high and low areas due to, among others, erosion, drainage variability,
and management history. The classical randomization process does not explic-
itly account for such field patterns, and many realizations of such RCBD designs
may result in undesirable outcomes.

To address the limitations of the traditional RCBD designs, van Es and van
Es [15] proposed spatially balanced experimental designs that are inherently ro-
bust to non-random field variability. This approach uses dummy indicators and
the treatments are randomly assigned to the indicators. In other words, treat-
ments are randomly allocated to optimized designs, rather than to plots. Such
designs may be spatially-balanced complete block designs or spatially-balanced
Latin squares, the latter being a special case of the former where the number of
treatments equal the number of replications.

We report our preliminary results concerning the generation of spatially-
balanced Latin squares. In a spatially-balanced Latin square all pairs of symbols
(treatments, in agronomic terms) have the same total distance in the Latin
square. The distance of two symbols in a given row is the difference between
the column indices of the symbols. The existence of spatially-balanced Latin
squares is an open question in combinatorics, and no polynomial time construc-
tions for the generation of spatially-balanced Latin squares have been found yet.
Therefore, in order to get some insights into the structure of spatially-balanced
Latin squares we used general local and complete search methods. We discov-
ered that local search methods do not scale well on this domain, failing to find
the global optimum for instances larger than order 6. This result was somehow
surprising, especially given that local search methods perform well on generating
(regular) Latin squares. Note that generating spatially-balanced Latin squares is
considerably more difficult than generating regular Latin squares.1 On the other
hand, our results with a CP based approach were very promising and we could
generate totally spatially-balanced Latin squares up to order 18. Furthermore

1 While the current state of the art of local search and backtrack search methods can
easily generate Latin squares of order 100 or larger, the largest spatially-balanced
Latin squares that we can generate is 18, using considerably more sophisticated
techniques. There are constructions for generating Latin squares of arbitrary order.
Our comparison considers only the generation of Latin squares using local search or
backtrack search methods.

Generating Spatially Balanced Scientific Experiment Designs 389

the CP based models provided us with interesting insights about the structure
of this problem that allowed us to conjecture the existence of polynomial time
constructions for generating spatially-balanced Latin squares. We are currently
working on finding such efficient constructions.

The structure of the paper is as follows. In the next section we provide basic
definitions. In section 2 we describe our simulated annealing approach and we
present our main CP based model. In section 3 we provide empirical results.

1 Preliminaries

Definition 1. [Latin square and conjugates] Given a natural number
a Latin square L on symbols is an matrix in which each of the

symbols occurs exactly once in each row and in each column. We denote each
element of L by is the order of the Latin square.

Given a Latin square L of order its row (column) conjugate R (C) is also
a Latin square of order with symbols, Each element of R
(C) corresponds to the row (column) index of L in which the symbol occurs in
column (row)

Definition 2. [Row distance of a pair of symbols] Given a Latin square
L, the distance of a pair of symbols in row denoted by is the
absolute difference of the column indices in which the symbols and appear in
row

Definition 3. [Average distance of a pair of symbols in a Latin square]
Given a Latin square L, the average distance of a pair of symbols in L is

We make the following important observation:

Remark 1. Given a Latin square L of order the expected distance of any
pair in any row is (Proof omitted due to lack of space. See also [15].)

Proof. (See [15]) When we denote the probability that a random pair has dis-
tance with the expected distance is It holds

and therefore, Simplification yields

Clearly, a Latin square L of order is totally spatially balanced if
every pair of symbols has an average distance
Consequently, we define:

Definition 4. Given a natural number Totally Spatially Balanced
Latin Square (TBLS) is a Latin square in which

390 Carla Gomes et al.

Since it follows that:

Remark 2. If there exists a TBLS of order then

In the following section, we present different computational approaches for
the generation of Totally Spatially Balanced Latin Squares. We refer to this
problem as the TBLS problem.

2 Totally Spatially Balanced Latin Square Models

2.1 Simulated Annealing

We started by developing a simulated annealing approach for the TBLS problem.
Our work borrows ideas from a successful simulated annealing approach for the
Traveling Tournament Problem [1].

Objective Function: Given that we are interested in the research question
of the existence of Totally Spatially Balanced Latin Squares, our problem be-
comes a decision problem. Therefore, we first relax some of its constraints and
try to minimize the constraint violation. We relax both the balancedness and
the Latin square constraints. In case we cannot find a totally balanced Latin
square, we would like to balance both the worst case pair of symbols as well as
the average over all pairs. Therefore, we penalize the unbalancedness of a square
with the term,

The second term of the objective function penalizes a symbol if it occurs
more than once in the same column. Denoting with the number of times
that symbol occurs in column the Latin square penalty is defined as

The overall objective then is to minimize whereby is a variable
factor that oscillates during the optimization. It allows us to guide the search
towards or away from the search region containing Latin squares. For more
details on strategic oscillation we refer the reader to [7, 1].

Neighborhood: As with every local search technique, the other fundamen-
tal design decision regards the neighborhood. We experimented with different
neighborhoods, finding that a rather simple type of moves gives smoother walks
and results in better performance than more complicated neighborhoods. In our
approach, there is just one simple move allowed: Swap a random pair of symbols
in a random row, whereby we only consider such pairs that will result in a change
in the number of Latin square constraints that are fulfilled.2

2.2 Constraint Programming Approach

In our basic CP model every cell of our square is represented by a variable
that takes the symbols as values. We use an AllDifferent constraint [11] over all
cells in the same column as well as all cells in the same row to ensure the Latin
2 We would like to thank an anonymous reviewer for suggesting this neighborhood!

Generating Spatially Balanced Scientific Experiment Designs 391

square requirement. We also keep a dual model in form of the row conjugate that
is connected to the primal model via channeling constraints for the quasi-group
completion problem [10, 12]. This formulation is particularly advantageous given
that by having the dual variables at hand it becomes easier to select a “good”
branching variable as well as to perform symmetry checks, as we will see shortly.
In order to enforce the balancedness of the Latin squares, we introduce variables
for the values and enforce that they are equal to

Variable Selection: As with many discrete problems, it turns out that the
selection of the branching variable has a severe impact on the performance of
our algorithm. For Latin square type problems it has been suggested to use
a strategy that minimizes the options both in terms of the position as well as
the value that is chosen. In our problem, however, we must also be careful that
we can detect unbalancedness very early in the search. Therefore, we traverse
the search space symbol by symbol by assigning a whole column in the row
conjugate before moving on to the next symbol. For a given symbol, we then
choose a row in which the chosen symbol has the fewest possible cells that it
can still be assigned to. Finally, we first choose the cell in the chosen row that
belongs to the column in which the symbol has the fewest possible cells left.

Symmetry Breaking: In order to avoid that symmetric search regions are
explored repeatedly, we implemented Symmetry Breaking by Dominance Detec-
tion (SBDD) (see [5, 6]). According to our strategy for the variable selection, we
try all different mappings of symbols in the current search node to the symbols
of the previously explored nodes. Given that mapping, using the dual model we
can easily check in linear time whether there exists a permutation of the rows
such that the current search node is dominated. However, since there exist
different permutations of the symbols, this symmetry check is rather costly. In
order to reduce the computational effort, it is important to treat unassigned sym-
bols implicitly, which gives great advantages especially when comparing against
previously expanded search nodes that are located high up in the search tree.
Still, symmetry breaking is expensive. In the following section we will therefore
evaluate whether this enhanced symmetry breaking procedure pays off.

Composition of TBLS: We also developed a very promising strategy for
generating TBLS instances using as building blocks TBLS instances of smaller
orders. Given a TBLS instance of order our model generates TBLS instances
of orders (and by making 1 (or 2) copies of the initial TBLS instance
of order and appropriately renaming the symbols of the copy (or 2 copies).
In this approach we only manipulate entire columns of the building blocks and
therefore the number of variables is reduced to the number of columns of the
composed TBLS. The domain of each variable in this model corresponds to the
different columns of the building blocks.

3 Computational Results

We now present preliminary computational results obtained with our implemen-
tations of the local search as well as the constraint programming algorithm. The

392 Carla Gomes et al.

simulated annealing approaches were implemented in C++ compiled with the
gnu g++ compiler version 3.2.2 on an Intel XEON 2.0 GHz CPU and 1.0 GB
RAM. The CP approaches were implemented using ILOG Solver 5.1 and the
gnu g++ compiler version 2.91 on an Intel Pentium III 550 MHz CPU and 4.0
GB RAM.

Table 1 shows our results for the two approaches. Comparing the two CP
variants, the first (CPI) using an initialization of the first row and the second
(CPS) using SBDD, we find that sophisticated symmetry breaking does not pay
off for the problem sizes that we can tackle so far. Note that we cannot initialize
the first row when using the traversal strategy without spending a lot of time in
the symmetry checks since then all symbol permutations must be checked from
the beginning. Instead, we can initialize the first column in the row dual, thus
fixing the traversal of symbol 0.

Next, we see that the local search approach can also find optimal solutions
for orders up to 9 if we do not use strategic oscillation (LSN). However, strategic
oscillation (LSO) helps us to obtain feasible Latin square solutions (see order 12
for example), which is why we favor this approach for higher orders for which we
are unable to provide totally balanced Latin squares so far. Table 1 also gives
the maximum and the average deviation from the perfect balance in these cases.

As mentioned in the previous section, we also developed a CP based model
for the generation of spatially-balanced Latin squares by means of composition
of columns of spatially-balanced Latin squares. In this approach we use spatially-
balanced Latin squares of order as building blocks to produce spatially-
balanced Latin squares of order or order Using such a strategy we were
able to generate, for example, a spatially-balanced Latin square of order 18, by
composing spatially-balanced Latin squares of order 9. We are currently work-
ing on streamlining this approach in order to produce efficient constructions for
the generation of totally spatially-balanced Latin square instances of order

or While we do not see how the local search ap-
proach could be further improved so that it can provide optimal solutions for

Generating Spatially Balanced Scientific Experiment Designs 393

much larger orders, the idea of composing squares can be stated naturally as
a constraint program.

4 Conclusions and Future Work

We present several models for the generation of totally spatially-balanced Latin
squares. While it is unclear at this stage how the local search approach could be
tuned to give optimal solutions for orders greater than 9, our results with CP
based models were very encouraging; We could find totally spatially-balanced
Latin instances up to order 18. Moreover, our different CP based models pro-
vided us with good insights about the structure of the problem. In fact, we
conjecture that totally spatially-balanced Latin squares can be generated us-
ing a polynomial time construction, based on a representation that exploits the
underlying traversal structure of Latin squares corresponding to matchings in
bipartite graphs, as well as the duality between rows, columns, and symbols in
a balanced Latin square. We also conjecture that, for certain orders, spatially-
balanced Latin squares can be generated by means of composition, in polynomial
time. If some symbols are pre-assigned to specific cells of the Latin square, our
conjecture is that the problem of deciding if a partially filled Latin square can
be completed into a balanced Latin square is an NP-complete problem. We hope
that our results will further stimulate research on this interesting and challenging
problem.

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]
[8]

[9]

A. Anagnostopoulos, L. Michel, P. van Hentenryck, and Y. Vergados. A Simulated
Annealing Approach to the Traveling Tournament Problem. In Proc. CPAIOR ’03,
2003.
A. Atkinson and R. Bailey. One hundred years of design of expriements on and
off the pages of biometrika. Biometrika, 88:53–97, 2001.
R. Bose and S. Shrikhande. On the falsity of euler’s conjecture about the nonex-
istence of two orthogonal latin squares of order 4t+2. In Proc. Nat. Ac. of Sc. 45.
1959.
W. Cochran and G. Cox. Experimental design. John Wiley and Sons, Inc., 1950.
T. Fahle, S. Schamberger, and M. Sellmann. Symmetry Breaking. In Princi-
ples and practice of Constraint Programming (CP01) Lecture Notes in Computer
Science, pages 93–107. Springer-Verlag, 2001.
F. Focacci and M. Milano. Global Cut Framework for Removing Symmetries.
In Principles and practice of Constraint Programming (CP01) Lecture Notes in
Computer Science, pages 77–92. Springer-Verlag, 2001.
F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. J. of Automated Reasoning,
24(1–2):67–100, 2000.
W. Harvey. Symmetry Breaking and the Social Golfer Problem. In Proc. Sym-
Con’01, 2001.

394 Carla Gomes et al.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B. Hnich, B. M. Smith, and T. Walsh. Dual modelling of permutation and injection
problems. 2003.
J. Regin. A Filtering Algorithm for Constraints of Difference in CSPs. In Proc. of
AAAI, pages 362–367, 1994.
I. J. D. Rodriguez, A. del Val, and M. CebriÃín. Redundant Modeling for the
QUasigroup Completion Problem. In F. Rossi, editor, Principles and practice
of Constraint Programming (CP03) Lecture Notes in Computer Science, pages
288–302. Springer-Verlag, 2003.
B. Smith. Reducing Symmetry in a Combinatorial Design Problem. In Proc.
CPAIOR’01, pages 351–360, 2001.
H. van Es. Sources of soil variability. In Methods of Soil Analysis, Part 4: Physical
Properties. Soil Sci. Soc. Am, 2002.
H. van Es and C. van Es. The spatial nature of randomization and its effects on
outcome of field experiments. Agron. J., (85):420–428, 1993.
H. Zhang. Specifying latin square problems in propositional logic. In Automated
Reasoning and Its Applications. MIT Press, 1997.

Building Models through Formal Specification

Gerrit Renker and Hatem Ahriz

School of Computing
The Robert Gordon University

Aberdeen. Scotland, UK.
{gr,ha}@comp.rgu.ac.uk

Abstract. Over the past years, a number of increasingly expressive lan-
guages for modelling constraint and optimisation problems have evolved.
In developing a strategy to ease the complexity of building models for
constraint and optimisation problems, we have asked ourselves whether,
for modelling purposes, it is really necessary to introduce more new lan-
guages and notations. We have analyzed several emerging languages and
formal notations and found (to our surprise) that the already existing Z
notation, although not previously used in this context, proves to a high
degree expressive, adaptable, and useful for the construction of problem
models. To substantiate these claims, we have both compiled a large
number of constraint and optimisation problems as formal Z specifica-
tions and translated models from a variety of constraint languages into
Z. The results are available as an online library of model specifications,
which we make openly available to the modelling community.

1 Motivation

Formal methods and notations are most commonly associated with software
development in procedural and object-oriented implementation languages. We
are developing a strategic software engineering approach for modelling constraint
and optimisation problems (CSOPs); one of the main underlying objectives is to
integrate the notion of such problems into the standard software design cycle [8].
For this purpose, we have been investigating the use of formal notation in general
and of Z in particular, coming to the conclusion that advantages are to be had
in at least four areas.

The first concerns the inception phase of building an initial or conceptual
model. A modeller must first come up with an understanding of the problem
requirements before being able to exploit its specific features. Quoting Smith,
a recognized expert in the area of modelling: “Hence, although constraint pro-
gramming does require an understanding of search and constraint propagation,
it is by understanding the problem and building in that understanding that we
can develop a successful model.” [9, sec. 13]

Secondly, as larger-scale software is mostly developed in a (possibly dis-
tributed) team context and problem-solving strategies are shared across the
modelling community, we see the importance of formal notation as a means

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 395–401, 2004.
© Springer-Verlag Berlin Heidelberg 2004

396 Gerrit Renker and Hatem Ahriz

of communication which is not constrained by and tied to the specifics of a par-
ticular implementation language. Specifications of constraint and optimisation
problems in the scientific literature are often either based on the use of non-
standardized (sometimes informal) mathematical notation, or in form of source-
code descriptions at implementation level. The importance of not committing
to a certain implementation format was also one of the crucial insights real-
ized by the founders of CSPLib,1 as “representation remains a major issue in
the success or failure to solve constraint satisfaction problems. All problems are
therefore specified in natural language . . .” [3]

The third aspect lies in proving and verifying that a constraint problem at
hand is indeed syntactically and semantically covered by a given model. Formal
specification languages here allow the interaction with computer tools (figure 1)
for simplifying, reducing and rewriting statements, thus allowing to generate
(canonical) forms of expressions which are either more general or more suitable
for the problem at hand. The notion of debugging in constraint programming
fundamentally differs from that in procedural programming, a verified model
specification reduces the need for debugging by highlighting conceptual errors
at an early stage of development. We support the argumentation of Law and Lee
in [6] in that we would like to reason about properties of CSP models without
actually having to solve these. Modelling in constraint programming is further,
like mathematical modelling, a rather abstract mental activity, and so the veri-
fication2 of a model can provide concrete evidence, reassuring the modeller that
a chosen concept is indeed correct.

Finally, and in keeping with evolving concepts of constraint problem mod-
elling, formal specifications allow higher-level abstractions of model formula-
tions. Over the past years increasingly more expressive and abstract modelling
languages have evolved. OPL [4] innovated a uniform abstraction to deal with
both CP and OR problems at the same language level. The language [5] in-
troduced useful model abstractions based on function variables, which is being
developed further in the ESRA language for relational modelling of constraint
problems [2]. Work on automated model refinement [1] has provided substantial
support for the conjecture that constraint problem models can be constructed by
compositional refinement of abstract specifications. Such compositionality is also
at the heart of introducing algebraic CSP model operators to support a modular
design of constraint problem formulations [6]. Furthermore, Law and Lee speak
in that study of “reusable model components” and “model patterns” [6, sec. 5].
The latter recently stirred interest in form of an invited lecture [12].

From the above considerations we have chosen Z [10, 11], due to the fact that
its style is generic and not geared towards a certain programming paradigm. The
schema format, as introduced in section 2, proved a natural match for express-
ing the main bodies of constraint and optimisation problems. To substantiate
our claims and to evaluate Z, we have compiled a large number of well-known
constraint and optimisation problems, which we make openly available as online
1 http://www.csplib.org
2 A formal specification can also prototypically be verified through animation.

Building Models through Formal Specification 397

Fig. 1. Further processing of model specifications

library of specifications to the modelling community (cf. section 5). The remain-
der of this document is structured as follows. After a brief summary of relevant
Z features in section 2, we show how to use Z for the specification of CSOPs in
section 3, followed by an example in section 4 and conclusions in section 5.

2 A Brief Recapitulation of Z Features

Z is a typed formal specification language based on first-order logic and Zermelo-
Fraenkel set theory. It provides a precise syntax and a semantics based on clas-
sical mathematics for the abstract specification of systems in a model-oriented
way. The language has been standardized as ISO/IEC standard 13568:2002, and
its reference manual [11] comes with a mathematical toolkit of common oper-
ations on sets and numbers. Main elements of a Z specification are given sets,
axiomatic definitions and schemas. Given sets are introduced as further unspec-
ified global names within square brackets, e.g.

[Warehouses]

This allows to reference the set Warehouses as type throughout the specification.
Axiomatic definitions also have global scope and are often used to introduce
constants or constant mappings. An axiomatic definition consists of a declaration
part and an optional predicate part, separated by a horizontal line.

The example3 introduces a total function square on Several type constructors,
e.g. tuples, Cartesian product and (finite) power-sets, are provided by default, as
well as common mathematical data types such as relations, functions, sequences
and bags. Composite and heterogeneous data types can be introduced using
schemas, which are one of the most powerful features of Z. A schema is an ele-
mentary building block of a Z specification. Like axiomatic definitions, schemas
divide into a declaration and optional predicate part, the difference being that
all declared constants and variables are locally-scoped. For example,
3 This example first appeared in [10, pp. 123/24].

398 Gerrit Renker and Hatem Ahriz

Here, are local to SQPAIR and is assigned the value of applying the global
function square. The elements in the declaration part are called components of
the schema. A schema can therefore be viewed as a set of named components
that are constrained by predicates. Schemas can be combined into new ones using
the operations of the schema calculus such as inclusion, composition, projection,
conjunction, disjunction, negation and hiding. A schema can also be seen as
a mere abbreviation for the text it contains. Instead of

we can equivalently write The type of a schema is the
signature of its components, where the order of appearances is irrelevant. The
type of the above schema is Likewise, the term {SQPAIR} is the
set of all schema bindings which have the type and contain exactly
those values for such that More sophisticated variants of
schemas in Z allow generic and parameterised definitions that specify entire
families of schemas rather than sets of complying objects [11].

3 Adapting Z for Constraint and Optimisation Problems

Constraint satisfaction problems are usually defined as a triple of
variables X, domains D and constraints C formulated over X. In the majority
of constraint (logic) programming languages, the constraints in C can be ex-
pressed as quantified formulae of first-order logic. This allows a representation
of constraint satisfaction problems in Z by single schemata, named e.g. CSP,4

where the elements of X and D are contained in the declaration part and the
constraints in C in the predicate part. In cases of complex domains the base
type (e.g.) appears in the declaration part in combination with additional
unary constraints on in the predicate block. These concepts are illustrated by
the example in section 4. Following the semantics of Z [10], the solution set of
constraint problems defined in the aforementioned way is simply the set {CSP}
(wrt. the above schema name), since it is the set containing all objects of type

such that the constraints C of the predicate block hold.
This permits the definition of a template for specifying optimisation problems.
In constrained optimisation problems, we are interested in selecting the ‘best’
out of a set of solutions to a problem, where the evaluation criterion is deter-
mined by an objective function mapping solutions into numerical values. As is
customary in IP and many CP languages, we will here assume that objective
functions range over Using the above format for expressing constraint satis-
faction problems, let the constraints of the problem be given as a schema CSOP.
4 Besides, we can also make modular use of other and auxiliary schemata.

Building Models through Formal Specification 399

We can then define the objective function in a separate schema, as a function
from CSOP to and express the solution of the problem in terms of optimising
the value of this function. This is also illustrated in section 4. The procedure for
unconstrained optimisation problems is the same as for the constrained variants,
the difference being that the predicate block of the main constraint schema re-
mains empty. As Z itself does not make restrictions on the domains to use, we
can in principle extend the concept also to the domain of Real (or even complex)
numbers, although we would need to supply an appropriate toolkit.

4 An Example Specification

We now illustrate the main concepts of the last section on a small example,5 the
bus driver scheduling problem (prob022 in CSPLib). We are a given set of tasks
(pieces of work) and a set of shifts, each covering a subset of the tasks and each
with an associated, uniform cost. The shifts need to be partitioned such that
each task is covered exactly once, the objective is to minimise the total number
of shifts required to cover the tasks. The sets of interest are pieces and shifts,

defined here as sets of natural numbers. The function coverage is part of the
instance data and denotes the possible subsets of pieces. The only decision

variable is allocate, an injective6 sequence of shifts. Composition of allocate with
coverage yields a sequence of subsets of pieces. The built-in partition operator of
Z [11, p. 122] asserts that this sequence of subsets is a partition of the set pieces.
We continue with the optimisation part, which illustrates the template format
for modelling optimisation problems we mentioned in section 3. The objective
function maps each element from the solution set Driver_Schedule into a natural
number, in this case the number of shifts represented as the cardinality of the
allocate variable.

5

6

As one reviewer rightly pointed out, the set-based nature of this small example is
not very indicative of Z’s abstraction facilities, but this example shows how succinct
a formulation is possible. We refer to the more than 50 online examples.
Shifts can appear at most once.

400 Gerrit Renker and Hatem Ahriz

The last expression states that the element solution of the solution set must have
a minimal value of the objective function. For this purpose, we use relational
image of the entire solution set Driver_Schedule through objective.

5 Conclusion and Further Work

In this paper we have summarized the successful use of Z as a precise modelling
notation for CSOPs. With regards to expressivity, we had positive results in
mapping constructs and models from OPL, ESRA and [7]. We initially wrote the
specifications without any tool support, subsequent verification (using the fuzz
type checker7 and the Z-Eves8 prover) however proved so helpful in ironing out
inconsistencies and improving the understanding of the problems that now all
models are electronically verified prior to documentation. Our main focus at
the moment is the modelling strategy and formal analysis of models. Aspects
of further investigation are the translation of Z models into an implementation
language, model animation and further tool support. The online repository is at
http://www.comp.rgu.ac.uk/staff/gr/ZCSP/.

Acknowledegment

We kindly thank the reviewers for their constructive criticism.

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

A. Bakewell, A. M. Frisch, and I. Miguel. Towards Automatic Modelling of Con-
straint Satisfaction Problems: A System Based on Compositional Refinement. In
Proceedings of the Reform-03 workshop, co-located with CP-03, pages 2–17, 2003.
P. Flener, J. Pearson, and M. Ågren. Introducing ESRA, a Relational Language
for Modelling Combinatorial Problems. In Proc. Reform-03, pages 63–77, 2003.
I. P. Gent and T. Walsh. CSPLib: A Benchmark Library for Constraints. In
J. Jaffar, editor, Proceedings of CP’99, pages 480–481. Springer, 1999.
P. V. Hentenryck. The OPL Optimization Programming Language. MIT, 1999.
B. Hnich. Function Variables for Constraint Programming. PhD thesis, Depart-
ment of Information Science, Uppsala University, Sweden, 2003.
Y. C. Law and J. H. M. Lee. Algebraic Properties of CSP Model Operators. In
Proceedings of Reform-02, co-located with CP’02, pages pp. 57–71, 2002.
G. Renker. A comparison between the F language and the Z notation. Technical
report, Constraints Group, Robert Gordon University, Aberdeen, November 2003.
G. Renker, H. Ahriz, and I. Arana. A Synergy of Modelling for Constraint Prob-
lems. In Proc. KES’03, volume 2773 of LNAI, pages 1030–1038. Springer, 2003.
B. Smith. Constraint Programming in Practice: Scheduling a Rehearsal. Technical
Report APES-67-2003, APES Research Group, September 2003.

7

8
http://spivey.oriel.ox.ac.uk/mike/fuzz/
http://www.ora.on.ca/z-eves/

Building Models through Formal Specification 401

[10]

[11]
[12]

J. M. Spivey. Understanding Z: A specification language and its formal semantics,
volume 3 of Cambridge tracts in theoretical computer science. CUP, 1988.
J. M. Spivey. The Z Notation: A Reference Manual. Oriel College, Oxford, 1998.
T. Walsh. Constraint Patterns. In Proc. CP’03, pages 53–64. Springer, 2003.

Stabilization Issues
for Constraint Programming Based

Column Generation

Louis-Martin Rousseau

École Polytechnique de Montréal
C.P. 6079, succ. centre-ville, Montréal

Canada H3C 3A7
louism@crt.umontreal.ca

Abstract. Constraint programming based column generation is a hy-
brid optimization framework recently proposed that uses constraint pro-
gramming (CP) to solve column generation subproblems. In the past,
this framework has been successfully used to solve both scheduling and
routing problems. Unfortunately the stabilization problems well known
with column generation can be significantly worse when CP, rather than
Dynamic Programming (DP), is used at the subproblem level. Since DP
can only be used to model subproblem with special structures, there has
been strong motivation to develop efficient CP based column generation
in the last five years. The aim of this short paper is to point out poten-
tial traps for these new methods and to propose very simple means of
avoiding them.

Introduction

Column generation was introduced by Dantzig and Wolfe [4] to solve linear
programs with decomposable structures. It has been applied to many problems
with success and has become a leading optimization technique to solve Routing
and Scheduling Problems [5, 1]. However column generation methods often show
very slow convergence due to heavy degeneracy problems.

Constraint programming based column generation can be particulary affected
by convergence problems since its natural exploration mechanisms, such as Depth
First Search (DFS), do not tend to generate sufficient information for the master
problem. The main contribution of this paper is to explain why constraint pro-
gramming can yield more unstable column generation processes than dynamic
programming and to discuss how the use of known techniques, such as LDS [9],
can improve the behavior this hybrid decomposition method.

The next section, which gives a brief overview of the column generation
framework, is followed by a description of the stabilization problem. Section 3
then discusses constraint programming based column generation with respect to
convergence and stabilization. Some preliminary results on the Vehicle Routing
with Time Windows are reported in section 4.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 402–408, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Stabilization Issues for Constraint Programming Based Column Generation 403

1 Column Generation

Column generation is a general framework that can be applied to numerous
problems. However, since an example is often useful to give a clear explanation,
all results in this paper will be presented with respect to the Vehicle Routing
Problem with Time Windows (VRPTW). This is done without loss of generality
nor restrictions to deal with this particular problem. The VRP can be described
as follows: given a set of customers, a set of vehicles, and a depot, find a set
of routes of minimal length, starting and ending at the depot, such that each
customer is visited by exactly one vehicle. Each customer having a specific de-
mand, there are usually capacity constraints on the load that can be carried by
a vehicle. In addition, there is a maximum amount of time that can be spent
on the road. The time window variant of the problem (VRPTW) imposes the
additional constraint that each customer must be visited during a specified time
interval. One can wait in case of early arrival, but late arrival is not permitted.

In the first application of column generation to the field of Vehicle Routing
Problems with Time Windows, presented by Desrochers et al. [5], the basic idea
was to decompose the problem into sets of customers visited by the same vehicle
(routes) and to select the optimal set of routes between all possible ones. Let be
a feasible route in the original graph (which contains N customers), R be the set
of all possible routes be the cost of visiting all the customers in
be a Boolean matrix expressing the presence of a particular customer (denoted
by index in route and be a Boolean variable specifying whether
the route is chosen or not The full Set Partitioning Problem,
denoted S, is usually insolvable since it is impractical to construct and to store
the set R (due to its very large size. It is thus usual to work with a partial set
that is enriched iteratively by solving a subproblem. This is why, in general, the
following relaxed Set Covering formulation is used as a Master Problem (M):

To enrich it is necessary to find new routes that offer a better way to visit
the customers they contain, that is, routes with a negative reduced cost. The
reduced cost of a route is calculated by replacing the cost of an arc (the distance
between two customers) by the reduced cost of that arc where

is the dual value associated with the covering constraint (2) of customer
The dual value associated with a customer can be interpreted as the marginal
cost of visiting that customer in the current optimal solution (given The
objective of the subproblem is then the identification of a negative reduced cost
path, i.e., a path for which the sum of the travelled distance is inferior to the

404 Louis-Martin Rousseau

Fig. 1. Path Depot – B – C – Depot has a negative reduced cost of -5

sum of the marginal costs (dual values). Such a path represents a new and better
way to visit the customers it serves.

The optimal solution of (M) has been identified when there exists no more
negative reduced cost path. This solution can however be fractional, since (M) is
a relaxation of (S), and thus does not represent the optimal solution to (S) but
rather a lower bound on it. If this is the case, it is necessary to start a branching
scheme in order to identify an integer solution.

2 Stabilization Problems

Most column generation frameworks depend heavily on marginal costs to guide
the search at the subproblem level. In the first iterations of the optimization
process, it is possible that the marginal costs associated with each customer are
not appropriately estimated by the dual values. For instance, it is possible that
in some routes some customers pick up most of the total dual value. If this is
the case (as illustrated in figure 1), then in the subproblem a path that visits
each of those overweighed customers (B, C) will be considered a good route
(with reduced cost of -5), even though it is not the case. With a more realistic
distribution of dual values, all nodes would have been given a value of 15 and no
more reduced cost path would have been found, thus saving the need for a last
iteration.

This problem occurs because the Set Covering problem is degenerate and
thus its dual has an infinite number of optimal solutions. The standard function
that returns dual values in most LP codes usually returns an extreme point of
the dual polyhedron. This behavior encourages dual variables to take either very
large or very small values. This behavior led to the introduction of a stabiliza-
tion method by du Merle et al. [6] which defines a box around the dual values to
prevent them from taking extreme values. Rousseau, Gendreau and Feillet [12]
recently proposed an Interior Point Stabilization (IPS) method that allows to
select dual values inside their interval rather than on their boundaries. Stabiliza-

Stabilization Issues for Constraint Programming Based Column Generation 405

tion methods attempt to accelerate convergence by limiting the negative effects
of degeneracy.

During column generation the bounds on the dual values are tightened at
each iteration when columns are added to These columns, in the dual repre-
sentation of M, represent cuts that limit and define the marginal costs of each
nodes. That is why most column generation frameworks will try to generate
a large number of columns at each iteration in order to refine the marginal costs
intervals and get as much precise values as possible for the next iteration.

3 CP Based Column Generation

There have been few attempts to combine column generation and constraint pro-
gramming. Chabrier [2] presented a framework that uses constraint programming
search goals to guide the column generation process that was recently packaged
as a software library called Maestro [3]. Junker et al. [10] have proposed a frame-
work they call constraint programming based column generation (which led to
Fahle et al. [7]) which uses CP to solve constrained shortest path subproblems in
column generation. Fahle and Sellmann [8] later enriched the CP based column
generation framework with a Knapsack constraint for problems which present
knapsack subproblems. This framework however required that the underlying
graph be acyclic. Rousseau et al. [11] then proposed a shortest path algorithm,
based on CP and dynamic programming, that allowed the solution of problems
presenting a cyclic structure like the routing problem.

The general idea of CP based column generation is to use specialized oper-
ations research (OR) algorithms, such as non elementary resource constrained
shortest paths or knapsacks, both as relaxation and branching heuristics for
a CP model. The subproblem model defined with constraint programming thus
uses these OR techniques to achieve efficient pruning and search with respect
to the optimization component of the subproblem (identifying the best nega-
tive reduced costs paths). Traditional CP mechanisms are used to deal with the
other more messy side constraint that can be present in the model. The columns
that should be added to are thus identified by solving the CP model with
traditional techniques such as DFS branching.

That is the trap that can lead to unstable behavior and slow convergence.
Depending on the branching strategy, DFS can tend to generate solutions that
are very similar to one another i.e. paths with a lot of nodes in common. Fur-
thermore, when the total number of columns needed for one iteration have been
identified, it is possible that a significant portion of the nodes remained uncov-
ered with the new columns. This means that no new information (cuts) has been
provided to the master problem M about these nodes and that their marginal
cost can be left unchanged for another iteration.

In contrast, when dynamic programming traverses its state space graph to
identify negative reduced cost paths, it does so by traversing the whole graph
simultaneously. This means that, in general, it tends to generate columns that

406 Louis-Martin Rousseau

are more diverse in terms of the nodes they cover. The set of possible marginal
cost is then reduced for a larger number of node at each iterations.

Although it was not presented form the stand point of stabilization, this
notion of diversity was raised by Sellman et al.in [13] as technique which would
allow more profitable combination in the master problem. The authors present
a simple modification to the value selection heuristic that forbids each variable
from taking the same value too many times.

Particular care must thus be taken to make sure that the search strategy
used to solve the CP model will tend to cover the largest possible set of nodes.
Limited Discrepancy Search (LDS) [9] is an interesting alternative to DFS since
it limits the search effort that is spent in one particular region of the solution
space. Other techniques can also be used, for instances rejecting columns that
are too similar to the ones already generated or devising branching heuristics
that maximize the scope of the search.

4 Preliminary Results

We compare the number of iterations needed to reach optimality using DFS,
LDS and Interior Point Stabilization (IPS) [12] a very simple and efficient sta-
bilization method. The idea behind Interior Point Stabilization is to generate
a dual solution that is an interior point of the optimal dual space rather than
an extreme point. The proposed way to achieve this goal is to generate several
extreme points of the optimal dual polyhedron and to generate an interior point
corresponding to a convex combination of all these extreme points. We report
in table 1 the figures averaged by problem class.

The observed CPU times were larger for LDS than DFS due to the naive
implementation of LDS. Each time the LDS level was augmented, all columns
previously generated at a lower LDS level were regenerated but ignored (not
added to Results being encouraging, a more efficient implementation should
be devised. However the IPS method is considerably faster then DFS, which is
encouraging for a better implemented LDS. Since at this point CPU times do not
provide valid information to perform a real efficiency comparison, we preferred
not to include them in the results.

Since the aim of these first experiments was to assess the impact of LDS as
a stabilization method and that improvements can be well observed at the root
node of M, we did not perform the Branch and Price search for integer solutions.

The column generation framework used for comparison is the one presented
in [11] and the experiment were run on the 56 VRPTW instances of Solomon
of size 25. These problems are classified into three categories: randomly (R)
distributed customers, clustered (C) customers, and a mix of the two (RC). At
each iteration we ask the subproblem to generate 100 columns and the maximum
allowed time to prove optimality was set to 3600 seconds.

LDS does seem to improve the method convergence speed since it reduces
the needed number of iteration to reach optimality. LDS seems to be sufficient

Stabilization Issues for Constraint Programming Based Column Generation 407

in stabilizing the R and C classes of the Solomon Problems, however it is not as
efficient as a true stabilization method (IPS) on the RC instances.

5 Conclusion

Slow convergence is a well known problem to OR researchers working with col-
umn generation and a number of methods to address this problem have been
developed. The objective of this short paper was to stress that, by nature, CP
based column generation can be even more affected by slow convergence than
traditional column generation methods that use dynamic programming. Prelim-
inary experiments tend to show that LDS can serve as a remedy to this problem
but that a dedicated stabilization technique is still needed to accelerate conver-
gence.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M.W. P. Savelsbergh, and P.H.
Vance. Branch-and-Price: Column Generation for Huge Integer Programs. Op-
erations Research, 46:316–329, 1998.
A. Chabrier. Using Constraint Programming Search Goals to Define Column Gen-
eration Search Procedures. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems, pages 19–27, 2000.
A. Chabrier. Maestro: A column and cut generation modeling and search frame-
work. Technical report, ILOG SA, 2002. http://chabrier.free.fr/work.html.
G. B. Dantzig and P. Wolfe. Decomposition principles for linear programs. Oper-
ations Research, 8:101–111, 1960.
J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Time Constrained Rout-
ing and Scheduling. In M. O. Ball, T. L. Magnanti, C. L. Monma, and Nemhauser
G.L., editors, Network Routing, volume 8 of Handbooks in Operations Research
and Management Science, pages 35–139. North-Holland, Amsterdam, 1995.
O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized Column
Generation. Discrete Mathematics, 194:229–237, 1999.
T. Fahle, U. Junker, S. E. Karisch, N. Kohl, M. Sellmann, and B. Vaaben. Con-
straint Programming Based Column Generation for Crew Assignment. Journal
of Heuristics, (8):59–81, 2002.
T. Fahle and M. Sellmann. Constraint Programming Based Column Generation
with Knapsack Subproblems. Annals of Operations Research, 115:73–94, Septem-
ber 2002.

408 Louis-Martin Rousseau

[9]

[10]

[11]

[12]

[13]

W. Harvey and M. Ginsberg. Limited Discrepancy Search. In Proc. of the Four-
teenth International Joint Conference on Artificial Intelligence (IJCAI-95), pages
607–615, Montréal, Canada, 1995. Morgan Kaufmann.
U. Junker, S.E. Karisch, N. Kohl, B. Vaaben, T. Fahle, and M. Sellmann. A
Framework for Constraint Programming Based Column Generation. In Principles
and Practice of Constraint Programming, Lecture Notes in Computer Science,
pages 261–274, 1999.
L.-M. Rousseau, Focacci F., M. Gendreau, and G. Pesant. Solving VRPTWs
with Constraint Programming Based Column Generation. Annals of Operations
Research, 2004. to appear.
L.-M. Rousseau, M. Gendreau, and D. Feillet. Interior Point Stabilization for
Column Generation. Technical report, Centre de recherche sur les transports,
2003.
M. Sellmann, K. Zervoudakis, P Stamatopoulos, and T Fahle. Crew Assignment
via Constraint Programmging: Integrating Column Generation and Heuristic Tree
Search. Annals of Operations Research, 115:207–225, 2002.

A Hybrid Branch-And-Cut Algorithm
for the One-Machine Scheduling Problem

Ruslan Sadykov

CORE
Université Catholique de Louvain

34 voie du Roman Pays, 1348 Louvain-la-Neuve
Belgium

sadykov@core.ucl.ac.be

Abstract. We consider the scheduling problem of minimizing the
weighted sum of late jobs on a single machine A hy-
brid Branch-and-Cut algorithm is proposed, where infeasibility cuts are
generated using CP. Two ways are suggested to increase the strength of
cuts. The proposed approach has been implemented in the Mosel mod-
elling and optimization language. Numerical experiments showed that
the algorithm performs at least as well as the best to our knowledge
exact approach [8] on sets of public test instances.

1 Introduction

A set of jobs has to be processed on a single machine. The
machine can only process one job at a time and preemptions are not allowed.
Each job has a release date a processing time a due date and
a weight For a given schedule job is on time if where
is the completion time of in the schedule and otherwise job is late. The
objective is to minimize the sum of the weights of the late jobs. Using standard
scheduling notation, this problem is denoted as The problem
is in the strong sense.

Recently several approaches to solve this problem have appeared in the liter-
ature. First, the method, based on the notion of master sequence, i.e. a sequence
that contains at least one optimal sequence of jobs on time, was suggested by
Dauzère-Pérès and Sevaux [6]. A Lagrangean relaxation algorithm is used to
solve an original MIP formulation, derived from the master sequence. Another
exact approach, based on a time-indexed Lagrangean relaxation of the problem,
has been proposed by Péridy, Pinson and Rivreau [8]. This method is able to
solve to optimality 84.4% of a set of 100-job test instances in 1 hour. To tackle
larger instances, some genetic algorithms have been suggested by Sevaux and
Dauzère-Pérès [10].

2 A Hybrid Branch-And-Cut Method

Recently some hybrid IP/CP algorithms have been applied to the multi-machine
assignment scheduling problem (MMASP). In this problem jobs with release

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 409–414, 2004.
© Springer-Verlag Berlin Heidelberg 2004

410 Ruslan Sadykov

dates and deadlines are processed on unrelated machines and the total assign-
ment cost is minimized (the cost of each job depends on the machine, to which
the job is assigned). Jain and Grossmann [7] have proposed an iterative hybrid
algorithm for the MMASP. Later Bockmayr and Pisaruk [3] have improved it
using a Branch-and-Cut approach. Finally, Sadykov and Wolsey [9] have intro-
duced valid inequalities to tighten the “machine assignment” IP relaxation. This
allowed them to solve to optimality significantly larger instances.

The problem is a special case of the MMASP. Therefore we
can apply the algorithm described above to it. Now we give some details about
the algorithm. We use a binary variable which takes value one if job is on
time, and value zero if it is late. Let and Then
we can write the following formulation for the problem:

Here if and only if the corresponding set of jobs
is feasible. This means that the set J of jobs can be processed on the machine
without violating release and due dates. The tightened inequalities (2) were
introduced in [9].

The hybrid Branch-and-Cut algorithm works in the following way. First, the
formulation (1), (2) and (4) is fed to a MIP solver. Whenever an integer solution

is found at some node of the global search tree, it is checked for feasibility. This
can be done either by using a CP algorithm, typically the so-called “disjunctive”
global constraint. Otherwise one can use any algorithm that checks if or
not. If is infeasible, we cut it off by adding a so called “no-good” cut:

where
However, the direct application of this hybrid Branch-and-Cut algorithm to

the problem has its limits. The method does not work well when
the number of jobs per machine is sufficiently large (about 50 jobs and more).
This is because a large number of cuts are required to cut off infeasible solutions,
produced by the IP part of the algorithm. This fact can be partly explained by
the weakness of the “no-good” cuts.

The goal of this paper is to look for ways to overcome this weakness, which
one can also expect to encounter when tackling other similar problems.

A Hybrid Branch-And-Cut Algorithm 411

3 The Ways to Improve Infeasibility Cuts

Here we examine ways to improve the hybrid Branch-and-Cut algorithm by
suggesting two approaches to produce stronger infeasibility cuts.

First, the following fact can be observed. When the solution produced by
the IP part of the algorithm is infeasible (i.e. the set of jobs
is infeasible), it is usually possible to isolate a smaller infeasible subset of jobs S,

which is also infeasible. Obviously, a “no-good” cut, based on such
a smaller subset of variables S, is stronger than a standard cut, which involves
all the variables from the set J.

However, isolating a minimum, or even a minimal infeasible subset of jobs
seems to be a very hard task, as even checking feasibility is NP-hard. Thus
our aim is not necessarily to find a minimal infeasible subset, but as small one
as possible. To do this we suggest a modification of the Carlier algorithm [4].
This algorithm is used to find a schedule with minimum maximum lateness
(or tardiness) for a set of jobs with release and due dates. The lateness of
job in schedule is the difference between its completion time in and
its due date: Clearly, there exists schedule such that

if and only if the set J of jobs is feasible.
Here we present the main ideas of the modified Carlier algorithm. At each

node of the search tree, it constructs a schedule using the Schrage heuristic
in time. If is feasible (i.e. then the set J of jobs is
feasible and the algorithm terminates. If then in certain cases one
can determine in linear time that it is impossible to reduce maximum lateness
below zero for a certain subset In this case the current node is pruned.
Otherwise we proceed as in the Carlier algorithm. One has available job and
a set such that cannot be processed inside P in a feasible schedule.
Thus two descendant nodes are created in one of which is processed before P
and after P in the other. To introduce these additional precedence relations,
respectively, the due date or the release date of job is changed.

If Carlier’s algorithm fails to find a feasible schedule for the set J of jobs,
each leaf of the tree has associated with it an infeasible subset. Then we begin to
ascent sequentially from the leaves to the root of the tree. Each node receives the
infeasible subsets and from its descendants. Notice, that if job does not
belong to the subset or then the corresponding subset is also infeasible for
the current node, as only the parameters of job are changed in the descendant

412 Ruslan Sadykov

nodes. The infeasible subset for the current node is determined the following
way.

If and then if then else
If and then
If and then set
If and then set Job can be scheduled before,
inside or after P. In these cases, respectively, or is infeasible,
and all three of them are included in S.

After returning to the top node, the modified algorithm returns a required
infeasible subset

Now we consider another way to generate infeasibility cuts. The tightened
inequalities (2) can be generalized in the following manner. Notice, that con-
straints (2) exist for each pair of release and due dates for
which The basic idea is to try to use one or more CP propagation al-
gorithms to reduce certain time windows and adjust respective release and due
dates according to some precedence relations, which can be deduced by prop-
agation. Then after such adjustments more inequalities similar to (2) can be
obtained.

We propose to use the “Edge-Finding” constraint propagation technique to
develop such cuts. For some set of jobs S, let
and The “Edge-Finding” propagation rule for release dates is the
following [2, p. 22]:

The rule for due dates is symmetric.
Let and From (6) and (7) we can obtain

the following. If there are jobs and set of jobs such
that and then the inequality

is valid for the formulation (1)-(4).
This can be easily shown as follows. When then the

inequality (8) is a relaxation of the inequality (2) for the pair When
all the jobs from are on time and from (7) job can be

executed only from the time moment Inequalities for due dates are similar.
Of course, we cannot add all the inequalities of type (8) to the initial for-

mulation because of their exponential number. But we can add them as cuts.
Thus we need a separation algorithm to check whether a solution violates any

A Hybrid Branch-And-Cut Algorithm 413

inequality of type (8). Such a separation algorithm can be obtained by adapting
the “Edge-Finding” propagation algorithm. We use the algorithm of complexity

described in the book by Baptiste et al. [2, p. 24]. The propagation al-
gorithm considers the set of jobs and whenever it finds
a pair which satisfies (6), the inequalities of type (8) for this pair
and all jobs such that are checked whether one of them is
violated by The complete separation algorithm has complexity

So, the improved hybrid Branch-and-Cut algorithm for the
problem can be described in the following way. First, the formulation (1),(2),(4)
is fed to the IP solver. Whenever an integer solution is found on some node
of the global search tree, we check if violates an inequality of type (8) using
the separation algorithm. If a violated inequality is found, then it is added to
the formulation as a cut. If not, then we run the modified Carlier algorithm for
the set of jobs We interrupt it after a certain number
of iterations (1000 in the experiments), because in some cases it takes a lot of
time. If the algorithm terminates before the limit, a strengthened “no-good” cut
is added in case of infeasibility, else we run the standard Carlier algorithm to
check the feasibility of J and add a standard “no-good” cut if J is infeasible.

4 Numerical Experiments

Numerical experiments have been carried out on the same sets of test instances,
as in the paper by Péridy, Pinson and Rivraux [8]. To our knowledge the best
results for the problem are presented there, and we compare our
results with theirs.

The hybrid Branch-and-bound method described here was implemented in
the Mosel modelling and optimization language [5], using XPress-MP as the IP
solver. In Table 1 we present our results, as well as results from [8] for comparison.

414 Ruslan Sadykov

In the first column there are the sets of instances with number of jobs (‘b’ - the
sets from the paper by Baptiste et al. [1] with 90 instances for each dimension,
‘s’ - the sets from the paper by Dauzére-Pérès and Sevaux [6] with 320 instances
for each dimension). The next three columns display results from [8]: percentage
of instances solved to optimality in 1 hour, average and maximum computing
times (excluding not solved instances), respectively. In the last four columns
we present our results: percentage of instances solved to optimality in 1 hour,
1000 seconds, average and maximum computing times (also excluding not solved
instances). Notice, that the experiments in [8] have been carried out done on a
450 MHz computer, whereas we have used a 2 GHz computer, so we included a
column with time limit of 1000 seconds to provide a reasonable comparison.

It appeared that our method is always superior or has the same efficiency,
even with taking into account the difference in speed of the computers. The
suggested algorithm hasn’t solved to optimality only 2 instances from 1820 con-
sidered in 1 hour and only 7 instances in 1000 seconds.

Notice, that the method presented here can be extended to the multi-machine
case. For this the column generation approach is suggested, where the subprob-
lem is exactly the one-machine problem considered here. For details see [9].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Baptiste, Ph., A. Jouglet, C. Le Pape, W. Nuijten. 2000. A constraint-based ap-
proach to minimize the weighted number of late jobs on parallel machines. Re-
search Report UTC 2000/288.
Baptiste, Ph., C. Le Pape, W. Nuijten. Constraint-based scheduling: applying con-
straint programming to scheduling problems. Kluwer Academic Publishers (2001).
Bockmayr, A., N. Pisaruk. 2003. Detecting infeasibility and generating cuts for
MIP using CP. In 5th International Workshop on Integration of AI and OR tech-
niques in Constraint Programming for Combinatorial Optimization Problems, CP-
AI-OR’03, Montreal, Canada.
Carlier, J. 1982. The one machine sequencing problem. European J. of Oper. Res.
11:42-47.
Colombani, Y., T. Heipcke. 2002. Mosel: an extensible environment for model-
ing and programming solutions. 4th International Workshop on Integration of AI
and OR techniques in Constraint Programming for Combinatorial Optimization
Problems, CP-AI-OR’02, Le Croisic, France, 277-290.
Dauzére-Pérès, S., M. Sevaux. 2003. Using Lagrangean relaxation to minimize the
weighted number of late jobs on a single machine. Naval Res. Logistics. 50(3) :273-
288.
Jain, V., I.E. Grossman. 2001. Algorithms for hybrid MILP/CLP models for a
class of optimization problems. INFORMS Journal on Computing. 13(4):258-276.
Péridy L., E. Pinson, D. Rivraux. 2003. Using short-term memory to minimize
the weighted number of late jobs on a single machine. European J. of Oper. Res.
148:591-603.
Sadykov, R., L. Wolsey. 2003. Integer Programming and Constraint Programming
in Solving a Multi-Machine Assignment Scheduling Problem with Deadlines and
Release Dates. CORE Discussion Paper 2003/81.
Sevaux M., S. Dauzére-Pérès. 2003. Genetic algorithms to minimize the weighted
number of late jobs on a single machine. European J. of Oper. Res. 151:296-306.

Author Index

Ahriz, Hatem 395
364Appa, Gautam

Aron, 21
37Artigues, Christian

Beck, J. Christopher 50
Beldiceanu, Nicolas 65, 80
Belmokhtar, Sana 37
Bemporad, Alberto 96
Bourdeaud’huy, Thomas 112

Carravilla, Maria Antónia 256
Chu, Yingyi 127
Corréa, Ayoub Insa 370

Eremin, Andrew 348
Es, Cindy van 387
Es, Harold van 387

Feillet, Dominique 37
50Freuder, Eugene C.

Gebruers, Cormac 380
Gent, Ian P. 271
Giorgetti, Nicolò 96
Gomes, Carla 387

142Grönkvist, Mattias
Grossmann, Ignacio E. 1
Guerri, Alessio 380

Hanafi, Saïd 112
Hebrard, Emmanuel 157
Hentenryck, Pascal Van 319
Hnich, Brahim 157, 380
Hooker, John N. 21

Kamarainen, Olli 173
Katriel, Irit 65, 190
Kocjan, Waldemar 200
Kreuger, Per 200

Langevin, André 370
Lhomme, Olivier 209

Magos, Dimitris 364
Maravelias, Christos T. 1
Michel, Laurent 319
Miguel, Ian 302
Milano, Michela 380

364Mourtos, Ioannis

Perron, Laurent 225
Petit, Thierry 80
Petrie, Karen E. 271
Pralet, Cédric 240

395
256
402

409
173
387
225
271
287
287

302
65

240
335

348
157

127, 348

112
21

Renker, Gerrit
Ribeiro, Cristina
Rousseau, Louis Martin

Sadykov, Ruslan
Sakkout, Hani El
Sellmann, Meinolf
Shaw, Paul
Smith, Barbara M.
Solnon, Christine
Sorlin, Sébastien

Tarim, S. Armagan
Thiel, Sven

Verfaillie, Gérard
Vilím, Petr

Wallace, Mark
Walsh, Toby

Xia, Quanshi

Yim, Pascal
Yunes, Tallys H.

370,

This page intentionally left blank

Lecture Notes in Computer Science

For information about Vols. 1–2896

please contact your bookseller or Springer-Verlag

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3015: C. Barakat, I. Pratt (Eds.), Passive and Active
Network Measurement. XI, 300 pages. 2004.

Vol. 3011: J.-C. Régin, M. Rueher (Eds.), Integration of AI
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 415 pages. 2004.

Vol. 3010: K.R. Apt, F. Fages, F. Rossi, P. Szeredi, J.
Váncza (Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004. (Subseries LNAI).

Vol. 3009: F. Bomarius, H. Iida (Eds.), Product Focused
Software Process Improvement. XIV, 584 pages. 2004.

Vol. 3007: J.X. Yu, X. Lin, H. Lu, Y. Zhang (Eds.), Ad-
vanced Web Technologies and Applications. XXII, 936
pages. 2004.

Vol. 3006: M. Matsui, R. Zuccherato (Eds.), Selected Ar-
eas in Cryptography. XI, 361 pages. 2004.

Vol. 3005: G.R. Raidl, S. Cagnoni, J. Branke, D.W. Corne,
R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G.D. Smith, G. Squillero (Eds.), Ap-
plications of Evolutionary Computing. XVII, 562 pages.
2004.

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-
ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XIII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. XI, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Vol. 2997: S. McDonald, J. Tait (Eds.), Advances in Infor-
mation Retrieval. XIII, 427 pages. 2004.

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. XVI,
658 pages. 2004.

Vol. 2995: C. Jensen, S. Poslad, T. Dimitrakos (Eds.), Trust
Management. XIII, 377 pages. 2004.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004. (Subseries LNBI).

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Böhm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2989: S. Graf, L. Mounier (Eds.), Model Checking
Software. X, 309 pages. 2004.

Vol. 2988: K. Jensen, A. Podelski (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. XIV,
608 pages. 2004.

Vol. 2987: I. Walukiewicz (Ed.), Foundations of Software
Science and Computation Structures. XIII, 529 pages.
2004.

Vol. 2986: D. Schmidt (Ed.), Programming Languages and
Systems. XII, 417 pages. 2004.

Vol. 2985: E. Duesterwald (Ed.), Compiler Construction.
X, 313 pages. 2004.

Vol. 2984: M. Wermelinger, T. Margaria-Steffen (Eds.),
Fundamental Approaches to Software Engineering. XII,
389 pages. 2004.

Vol. 2983: S. Istrail, M.S. Waterman, A. Clark (Eds.),
Computational Methods for SNPs and Haplotype Infer-
ence. IX, 153 pages. 2004. (Subseries LNBI).

Vol. 2982: N. Wakamiya, M. Solarski, J. Sterbenz (Eds.),
Active Networks. XI, 308 pages. 2004.

Vol. 2981: C. Müller-Schloer, T. Ungerer, B. Bauer (Eds.),
Organic and Pervasive Computing – ARCS 2004. XI, 339
pages. 2004.

Vol. 2980: A. Blackwell, K. Marriott, A. Shimojima (Eds.),
Diagrammatic Representation and Inference. XV, 448
pages. 2004. (Subseries LNAI).

Vol. 2978: R. Groz, R.M. Hierons (Eds.), Testing of Com-
municating Systems. XII, 225 pages. 2004.

Vol. 2977: G. Di Marzo Serugendo, A. Karageorgos, O.F.
Rana, F. Zambonelli (Eds.), Engineering Self-Organising
Systems. X, 299 pages. 2004. (Subseries LNAI).

Vol. 2976: M. Farach-Colton (Ed.), LATIN 2004: Theo-
retical Informatics. XV, 626 pages. 2004.

Vol. 2973: Y. Lee, J. Li, K.-Y. Whang, D. Lee (Eds.),
Database Systems for Advanced Applications. XXIV, 925
pages. 2004.

Vol. 2972: R. Monroy, G. Arroyo-Figue roa, L.E. Sucar, H.
Sossa (Eds.), MICAI 2004: Advances in Artificial Intelli-
gence. XVII, 923 pages. 2004. (Subseries LNAI).

Vol. 2971: J.I. Lim, D.H. Lee (Eds.), Information Security
andCryptology -ICISC 2003. XI, 458 pages. 2004.

Vol. 2970: F. Fernández Rivera, M. Bubak, A. Gómez Tato,
R. Doallo (Eds.), Grid Computing. XI, 328 pages. 2004.

Vol. 2964: T. Okamoto (Ed.), Topics in Cryptology – CT-
RSA 2004. XI, 387 pages. 2004.

Vol. 2963: R. Sharp, Higher Level Hardware Synthesis.
XVI, 195 pages. 2004.

Vol. 2962: S. Bistarelli, Semirings for Soft Constraint
Solving and Programming. XII, 279 pages. 2004.

Vol. 2961: P. Eklund (Ed.), Concept Lattices. IX, 411
pages. 2004. (Subseries LNAI).

Vol. 2960: P.D. Mosses (Ed.), CASL Reference Manual.
XVII, 528 pages. 2004.

Vol. 2958: L. Rauchwerger (Ed.), Languages and Compil-
ers for Parallel Computing. XI, 556 pages. 2004.

Vol. 2957: P. Langendoerfer, M. Liu, I. Matta, V. Tsaous–
sidis (Eds.), Wired/Wireless Internet Communications.
XI, 307 pages. 2004.

Vol. 2954: F. Crestani, M. Dunlop, S. Mizzaro (Eds.), Mo-
bile and Ubiquitous Information Access. X, 299 pages.
2004.

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.
(Subseries LNAI).

Vol. 2952: N. Guelfi, E. Astesiano, G. Reggio (Eds.), Sci-
entific Engineering of Distributed Java Applications. X,
157 pages. 2004.

Vol. 2951: M. Naor (Ed.), Theory of Cryptography. XI,
523 pages. 2004.

Vol. 2949: R. De Nicola, G. Ferrari, G. Meredith (Eds.),
Coordination Models and Languages. X, 323 pages. 2004.

Vol. 2948: G.L. Mullen, A. Poli, H. Stichtenoth (Eds.),
Finite Fields and Applications. VIII, 263 pages. 2004.

Vol. 2947: F. Bao, R. Deng, J. Zhou (Eds.), Public Key
Cryptography – PKC 2004. XI, 455 pages. 2004.

Vol. 2946: R. Focardi, R. Gorrieri (Eds.), Foundations of
Security Analysis and Design II VII, 267 pages. 2004.

Vol. 2943: J. Chen, J. Reif (Eds.), DNA Computing. X,
225 pages. 2004.

Vol. 2941: M. Wirsing, A. Knapp, S. Balsamo (Eds.), Rad-
ical Innovations of Software and Systems Engineering in
the Future. X, 359 pages. 2004.

Vol. 2940: C. Lucena, A. Garcia, A. Romanovsky, J. Cas-
tro, P.S. Alencar (Eds.), Software Engineering for Multi-
Agent Systems II. XII, 279 pages. 2004.

Vol. 2939: T. Kalker, I.J. Cox, Y.M. Ro (Eds.), Digital
Watermarking. XII, 602 pages. 2004.

Vol. 2937: B. Steffen, G. Levi (Eds.), Verification, Model
Checking, and Abstract Interpretation. XI, 325 pages.
2004.

Vol. 2936: P. Liardet, P. Collet, C. Fonlupt, E. Lutton, M.
Schoenauer (Eds.), Artificial Evolution. XIV, 410 pages.
2004.

Vol. 2934: G. Lindemann, D. Moldt, M. Paolucci (Eds.),
Regulated Agent-Based Social Systems. X, 301 pages.
2004. (Subseries LNAI).

Vol. 2930: F. Winkler (Ed.), Automated Deduction in Ge-
ometry. VII, 231 pages. 2004. (Subseries LNAI).

Vol. 2929: H. de Swart, E. Orlowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments. VII, 273 pages.
2003.

Vol. 2926: L. van Elst, V. Dignum, A. Abecker (Eds.),
Agent-Mediated Knowledge Management. XI, 428 pages.
2004. (Subseries LNAI).

Vol. 2923: V. Lifschitz, I. Niemelä (Eds.), Logic Program-
ming and Nonmonotonic Reasoning. IX, 365 pages. 2004.
(Subseries LNAI).

Vol. 2919: E. Giunchiglia, A. Tacchella (Eds.), Theory and
Applications of Satisfiability Testing. XI, 530 pages. 2004.

Vol. 2917: E. Quintarelli, Model-Checking Based Data
Retrieval. XVI, 134 pages. 2004.

Vol. 2916: C. Palamidessi (Ed.), Logic Programming. XII,
520 pages. 2003.

Vol. 2915: A. Camurri, G. Volpe (Eds.), Gesture-Based
Communication in Human-Computer Interaction. XIII,
558 pages. 2004. (Subseries LNAI).

Vol. 2914: P.K. Pandya, J. Radhakrishnan (Eds.), FST TCS
2003: Foundations of Software Technology and Theoret-
ical Computer Science. XIII, 446 pages. 2003.

Vol. 2913: T.M. Pinkston, V.K. Prasanna (Eds.), High Per-
formance Computing - HiPC 2003. XX, 512 pages. 2003.
(Subseries LNAI).

Vol. 2911: T.M.T. Sembok, H.B. Zaman, H. Chen, S.R.
Urs, S.H. Myaeng (Eds.), Digital Libraries: Technology
and Management of Indigenous Knowledge for Global
Access. XX, 703 pages. 2003.

Vol. 2910: M.E. Orlowska, S. Weerawarana, M.M.P. Pa-
pazoglou, J. Yang (Eds.), Service-Oriented Computing -
ICSOC 2003. XIV, 576 pages. 2003.

Vol. 2909: R. Solis-Oba, K. Jansen (Eds.), Approximation
and Online Algorithms. VIII, 269 pages. 2004.

Vol. 2908: K. Chae, M. Yung (Eds.), Information Security
Applications. XII, 506 pages. 2004.

Vol. 2907: I. Lirkov, S. Margenov, J. Wasniewski, P.
Yalamov (Eds.), Large-Scale Scientific Computing. XI,
490 pages. 2004.

Vol. 2906: T. Ibaraki, N. Katoh, H. Ono (Eds.), Algorithms
and Computation. XVII, 748 pages. 2003.

Vol. 2905: A. Sanfeliu, J. Ruiz-Shulcloper (Eds.), Progress
in Pattern Recognition, Speech and Image Analysis. XVII,
693 pages. 2003.

Vol. 2904: T. Johansson, S. Maitra (Eds.), Progress in
Cryptology - INDOCRYPT 2003. XI, 431 pages. 2003.

Vol. 2903: T.D. Gedeon, L.C.C. Fung (Eds.), AI 2003: Ad-
vances in Artificial Intelligence. XVI, 1075 pages. 2003.
(Subseries LNAI).

Vol. 2902: F.M. Pires, S.P. Abreu (Eds.), Progress in Artifi-
cial Intelligence. XV, 504 pages. 2003. (Subseries LNAI).

Vol. 2901: F. Bry, N. Henze, J. Ma luszynski (Eds.), Prin-
ciples and Practice of Semantic Web Reasoning. X, 209
pages. 2003.

Vol. 2900: M. Bidoit, P.D. Mosses (Eds.), Casl User Man-
ual. XIII, 240 pages. 2004.

Vol. 2899: G. Ventre, R. Canonico (Eds.), Interactive Mul-
timedia on Next Generation Networks. XIV, 420 pages.
2003.

Vol. 2898: K.G. Paterson (Ed.), Cryptography and Coding.
IX, 385 pages. 2003.

Vol. 2897: O. Balet, G. Subsol, P. Torguet (Eds.), Virtual
Storytelling. XI, 240 pages. 2003.

	Table of Contents
	Invited Paper
	Using MILP and CP for the Scheduling of Batch Chemical Processes

	Technical Papers
	SIMPL: A System for Integrating Optimization Techniques
	A New Exact Solution Algorithm for the Job Shop Problem with Sequence-Dependent Setup Times
	Simple Rules for Low-Knowledge Algorithm Selection
	Filtering Algorithms for the Same Constraint
	Cost Evaluation of Soft Global Constraints
	SAT-Based Branch & Bound and Optimal Control of Hybrid Dynamical Systems
	Solving the Petri Nets Reachability Problem Using the Logical Abstraction Technique and Mathematical Programming
	Generating Benders Cuts for a General Class of Integer Programming Problems
	A Constraint Programming Model for Tail Assignment
	Super Solutions in Constraint Programming
	Local Probing Applied to Network Routing
	Dynamic Heaviest Paths in DAGs with Arbitrary Edge Weights
	Filtering Methods for Symmetric Cardinality Constraint
	Arc-Consistency Filtering Algorithms for Logical Combinations of Constraints
	Combining Forces to Solve the Car Sequencing Problem
	Travelling in the World of Local Searches in the Space of Partial Assignments
	A Global Constraint for Nesting Problems
	Models and Symmetry Breaking for ‘Peaceable Armies of Queens’
	A Global Constraint for Graph Isomorphism Problems
	Echelon Stock Formulation of Arborescent Distribution Systems: An Application to the Wagner-Whitin Problem
	Scheduling Abstractions for Local Search
	O(n log n) Filtering Algorithms for Unary Resource Constraint
	Problem Decomposition for Traffic Diversions

	Short Papers
	LP Relaxations of Multiple all_different Predicates
	Dispatching and Conflict-Free Routing of Automated Guided Vehicles: A Hybrid Approach Combining Constraint Programming and Mixed Integer Programming
	Making Choices Using Structure at the Instance Level within a Case Based Reasoning Framework
	The Challenge of Generating Spatially Balanced Scientific Experiment Designs
	Building Models through Formal Specification
	Stabilization Issues for Constraint Programming Based Column Generation
	A Hybrid Branch-And-Cut Algorithm for the One-Machine Scheduling Problem

	Author Index

