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Preface

This volume contains the proceedings of the 1st International Conference on Inte-
gration of Al and OR Techniques in Constraint Programming for Combinatorial
Optimisation Problems. This new conference follows the series of CP-AI-OR In-
ternational Workshops on Integration of Al and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems held in Ferrara (1999),
Paderborn (2000), Ashford (2001), Le Croisic (2002), and Montreal (2003). The
success of the previous workshops has demonstrated that CP-AI-OR is becom-
ing a major forum for exchanging ideas and methodologies from both fields. The
aim of this new conference is to bring together researchers from Al and OR, and
to give them the opportunity to show how the integration of techniques from Al
and OR can lead to interesting results on large-scale and complex problems.

The integration of techniques from artificial intelligence and operations re-
search has provided effective algorithms for tackling complex and large-scale
combinatorial problems with significant improvements in terms of efficiency,
scalability and optimality. The benefit of this integration has been shown in
applications such as hoist scheduling, rostering, dynamic scheduling and vehicle
routing. At the programming and modelling levels, most constraint languages
embed OR techniques to reason about collections of constraints, so-called global
constraints. Some languages also provide support for hybridization allowing the
programmer to build new integrated algorithms. The resulting multi paradigm
programming framework combines the flexibility and modelling facilities of con-
straint programming with the special purpose and efficient methods from oper-
ations research.

CP-AI-OR 2004 was intended primarily as a forum to focus on the integration
of the approaches of CP, Al and OR technologies. A secondary aim was to provide
an opportunity for researchers in one area to learn about techniques in the
others. Fifty-six papers were submitted in response to the call for papers. After
the reviewing period and some online discussions, the program committee met
physically at Nice on January 30 and 31, 2004. The program committee decided
to accept 23 technical papers and 7 short papers. Short papers present interesting
recent results or novel thought-provoking ideas that are not quite ready for a
regular full-length paper. Both types of papers were reviewed rigorously and held
to a very high standard.

CP-AI-OR 2004 was fortunate to attract outstanding invited talks. Heinrich
Braun and Thomas Kasper discussed the challenges of optimization problems
in supply chain management. Ignacio Grossmann proposed a hybrid framework
that uses mathematical and constraint programming for the scheduling of batch
chemical processes. Michel Minoux told us about strengthened relaxations for
some CP-resistant combinatorial problems and their potential usefulness.

We wish to thank our generous sponsors who allowed us to offer substantial
allowances to students attending the conference in order to cover their expenses.
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We extend our gratitude to the outstanding program committee who worked
very hard under tight deadlines. We are deeply grateful to Claude Michel who
worked in the trenches in preparing the CP meeting at Nice and who dealt with
all the difficult organization aspects of this conference.

April 2004 Jean-Charles Régin and Michel Rueher
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Using MILP and CP for the Scheduling
of Batch Chemical Processes

Christos T. Maravelias and Ignacio E. Grossmann

Department of Chemical Engineering
Carnegie Mellon University, Pittsburgh, PA 15213, USA

{ctm,ig0c}@andrew.cmu.edu

Abstract. A hybrid framework that uses Mathematical and Constraint
Programming for the scheduling of batch chemical processes is proposed.
Mathematical programming is used for the high-level optimization decisions
(number and type of tasks, and assignment of equipment units to tasks), and
Constraint Programming is used for the low-level sequencing decisions. The
original problem is decomposed into an MILP master problem and a CP
subproblem. The master MILP is a relaxation of the original problem, and given
a relaxed solution, the CP subproblem checks whether there is a feasible
solution and generates integer cuts. The proposed framework is based on the
hybrid algorithm of Maravelias and Grossmann ([1],[2]), and can be used for
different objective functions and different plant configurations. In this paper we
present the simplifications and enhancements that allow us to use the proposed
framework in a variety of problems, and report computational results.

1 Introduction

Scheduling of operations is a common and very important problem in the chemical
industry. While related problems have been extensively studied in the Operations
Research literature (see [3]), this area has only been addressed recently in process
systems engineering (see [4], [5], [6], [7] for reviews).

In terms of plant configurations, problems in chemical industry can be classified
into four major categories. In multiple-unit or single-stage plants (Figure 1.a), there
are N orders to be scheduled in M units. In flow-shop multi-stage plants (Figure 1.b),
there are N orders to be processed in K stages, following the same order. Each stage
ke{l,..K} consists of M; units, and each order must be processed by one unit in each
stage. In general multi-stage plants (Figure 1 .c), each order must be processed in all
stages but not in the same order. Multipurpose batch plants (Figure 1.d), finally, can
be viewed as a generalization of all previous configurations, where batch splitting and
mixing, as well as recycle streams are present. It should be noted that the original
work in process scheduling concentrated mostly on flow-shop and general multi-stage
batch plants (see [3], [5]). The study of general multipurpose plants was largely
promoted by the work of Kondili et al. [8].

Preemption is usually not allowed, and utility constraints (e.g. manpower, cooling
water, etc.), and release/due times may be present in all configurations. Different
storage policies, such as unlimited intermediate storage (UIS), finite intermediate

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 1-20, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Christos T. Maravelias and Ignacio E. Grossmann

storage (FIS), no intermediate storage (NIS) and zero-wait (ZW), are used in multi-
purpose and multi-stage plants, while in singe-stage plants it is usually assumed that
unlimited storage is available. Furthermore, the batch size of a task may be variable,
which in many cases leads to variable duration and utility requirements. In terms of
objective functions, the most common ones: maximization of production over a fixed
time horizon, minimization of makespan for given demand and minimization of cost
for given demand with due dates.

A feature that makes scheduling problems in chemical industry hard to solve is that
usually the type and number of tasks (jobs) are not uniquely defined, and moreover, a
specific task can be performed in more than one unit. These problems are hard to
solve because of the large number of different solutions, and have not been studied
extensively. Problems where the number and type of tasks are fixed and each task can
be assigned to only one machine, on the other hand, have been extensively studied in
OR community and efficient algorithms exist for many of these problems.

(a) Single-stage Plant
One stage; multiple units

|
Ov—-—-—bl —
o= | bl | —
[ rem— | —

0—-—--+| —

(b) Multi-stage Plant

o 00 0

Multiple stages; multiple units per Stage; sequential pro essing
| |
o_ﬂ_,‘ M|l M|, i s
| .
o— | [zl — || — D]l —2
O — | — — E— ] —_— 0
O ——| | MI3 E——~| M23 ‘—- —--3 — 0
L Stage' 2n Stage e Tk stage

(c) Multi-product Plant
Multiple stages; multiple units per Stage; non-sequential processing

:
o «—|[ M3 M23 i °
1¢ Stage 2 Stage o0 k* stage
(d) Multi-purpose Plant
Batch sphttmg}mmng, recycle streams
F1 INTI 3
. Pl

Fig. 1. Common plant configurations in chemical industry
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Due to the different plant configurations and process specifications, a wide variety
of optimization models, mainly MILP models, have been proposed in the process
systems engineering literature. In multipurpose batch plants, for instance, where the
level of inventories and the level of resource consumption should be monitored and
constrained, the time horizon is partitioned into a sufficiently large number of periods,
and variables and constraints are defined for each time period. In single-stage plants,
on the other hand, where no batch splitting, mixing and recycle streams are allowed,
batch sizes are usually assumed to be constant and this, in turn means that mass
balance equations need not be included in the formulation. If, in addition, there are no
utility constraints the time horizon is not partitioned into common time periods, and
hence, assignment binaries are indexed by tasks and unit time slots, which are
generally fewer than time periods. When the number of tasks and the assignments of
tasks to units are known, assignments binaries and constraints are dropped, and
sequencing binaries are used instead.

In an effort to develop a general representation that can be used in the majority of
scheduling problems of chemical industry, Kondili et al. [8] proposed the discrete-
time State Task Network (STN) representation, and the equivalent Resource Task
Network (RTN) representation was proposed by Pantelides [9]. To overcome some
limitations of discrete-time models, several authors proposed continuous-time
STN/RTN models ([10], [11], [12], [13], [14]). While being very general, STN and
RTN-based models are computationally inefficient for many classes of problems. The
computational performance of both models is very poor, for instance, when the
objective is the minimization of makespan for a given demand. Finally, STN-based
models do not exploit the special structure of simple configurations, being orders of
magnitude slower than special purpose MILP models.

To address these issues, Maravelias and Grossmann proposed a general hybrid
MILP/CP iterative algorithm ([1], [2]) for the scheduling of multipurpose plants that
exploits the complementary strengths of Mathematical and Constraint Programming.
In this paper we show how this hybrid algorithm can be modified to address
scheduling problems in multi-stage and single-stage plants. It is shown that the same
idea can be used in all these configurations: use MILP to find a partial solution that
includes the type and number of tasks and the assignments of units to tasks, and use
CP to check feasibility, generate integer cuts and derive complete schedules.

In the section 2 we briefly present the hybrid algorithm of Maravelias and
Grossmann. In section 3 we present the different types of problems, and in sections 4
and 5 we present how this algorithm can be modified to address these problems.
Finally, we report computational results to show that order-magnitude reductions in
computation time are possible with the proposed hybrid schemes.

2 Hybrid MILP/CP Algorithm

The main idea of the proposed algorithm is to use MILP to optimize (identify partial,
potentially good solutions), and CP to check feasibility and derive complete, feasible
schedules. Specifically, an iterative scheme where we iterate between a MILP master
problem and a CP subproblem is proposed. The type and number of tasks to be
performed and the assignment of tasks to equipment units are determined in the
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master MILP problem, while the CP subproblem is used to derive a feasible schedule
for the partial solution obtained by the master problem. At each iteration, one or more
integer cuts are added to the master problem to exclude infeasible or previously
obtained assignments. For a maximization problem, the relaxed master problem
provides an upper bound and the subproblem, when feasible, provides a lower bound.
The algorithm terminates when the bounds converge. To enhance the performance of
the algorithm, preprocessing is used to determine Earliest Start Times (EST) and
Shortest Tails (ST) of both tasks (i€l) and units (f&€J). Strong integer cuts that are
added a priori in the cut-pool of the master problem are also developed during
preprocessing. A simplified flow diagram of the proposed algorithm for the
maximization of profit is shown in Figure 2.

The proposed decomposition can also be applied as a branch-and-cut algorithm,
where the master problem is viewed as a relaxation of the original problem. When a
relaxed solution is obtained, the CP solver is called to obtain a complete solution and
generate cuts that are added in the MILP relaxation.

2.1 Master Problem

For the master MILP problem an aggregated STN representation with no time periods
has been used. Resource constraints and big-M time matching constraints (that lead to
poor LP relaxations) have been eliminated and only assignment, batch size and mass
balance constraints are included. Mass balance constraints are expressed once (for the
total amounts) at the end of the scheduling horizon. Integer cuts are added to exclude
previously found or infeasible integer solutions of the master problem.

Preprocessing
Calculate EST, ST Wi, bj
Derive Integer Cuts from subnetworks

A

Solve MILP Master Problem
max profit
st Assignment constraints
Total mass balances
Integer Cuts
Obtain UB

S

Fix: No/type of tasks

Unit-tasks assignments Add Integer Cuts

\ 4 NO
Solve CP Subproblem

max profit YES
s.t.  ALL CONSTRAINTS

w/ fixed tasks/assignments UBS<LB ?
Obtain LB

Fig. 2. Hybrid MILP/CP iterative scheme
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To decouple units from tasks we use the following rule. If a task i can be
performed in both units j and j’, then two tasks i (performed in unitj) and i’
(performed in unit j°) are defined. Thus, by choosing which tasks are performed we
also make assignment decisions. For each task i we postulate a set of copies, i.e. an
upper bound on the number of batches of task i that can be carried out in any feasible
solution.

c|=H /DM | vi

where H is an upper bound on the length of the time horizon and DM is the
minimum duration of task i. In practice, however, a smaller number of copies can be
used based on our knowledge of the process network,

For each copy c oftask i we define the binary Z, which is equal to 1 ifthe ¢* copy
of task i is carried out. We also define its duration D, and batch size B,. For each
state, we define its inventory level S; at the end of the scheduling horizon. The master
MILP problem (MP) consists of constraints (1) to (10):

> D.D, <(MS-ST))-EST, Vj 1
i€I(j) ¢

D,=a,Z,+ BB, ViVceC(, 2
Bz .<B,<B"™7Z_ ViVceC, 3)
S,=50,+> > p°B,-> > p'B, Vs @)

i€0(s) ¢ iel(s) ¢

S, 2d, VseFP %)
S,<C, VselINT (6)
Z,ySZ, ViNceC,c<|C| )
Process Network Specific Cuts (8)
Integer Cuts 9
Objective Function (10)

Eq. (1) is a relaxed assignment constraint which enforces that the sum of the
durations of the tasks assigned to a unit does not exceed the maximum available
processing time of machine j, where (j) is the set of tasks that can be assigned to unit
J. When the scheduling horizon is fixed (maximization of production over a fixed time
horizon or problems with deadlines) MS is a parameter equal to the fixed time horizon
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H. When the objective is the minimization of the makespan, MS is a variable equal to
the makespan. Parameter EST; represents the earliest time that any task can be
assigned to start on unit j, while parameter ST; represents the shortest time needed for
any material processed in unit j to be transformed into a final product. Both EST; and
ST; are calculated during preprocessing. The duration of copy c¢ oftask i is a function
of its batch size, as in eq. (2), and the batch size of copy ¢ oftask i is bounded through
eq. (3). The amount of state s at the end of the time horizon S; is calculated by (4) to
be equal to the initial amount SO, plus the amount produced, minus the amount
consumed, where p;s and p;° are the mass fractions for consumption and production,
respectively, of state s by task i, and O(s)/I(s) is the set of tasks producing/consuming
state 5. In eq. (5), the inventory S; of the final product se FP must be greater than the
demand d;, while in eq. (6) the inventory of intermediate s€INT must be less than the
capacity C; of the storage tank of state s. Eq. (7) is used to eliminate symmetric
assignments, while eq. (8) is used to model special characteristics of a process
network (see [1], [2] for details). At a specific iteration k, constraints in (9) include all
the integer cuts that have been added during preprocessing and in previous iterations.
Various objective functions can be accommodated. The master problem (MP) is a
relaxation of the original problem because it does not account for the interconnections
between tasks and states and does not enforce feasibility throughout the time horizon.
Hence, the assignments obtained by (MP) may be infeasible in reality. The feasibility
check and the derivation of a complete feasible schedule, if possible, are performed
by the CP subproblem.

2.2 CP Subproblem

The modeling language of [LOG’s OPL Studio 3.5 ([15], [16]) has been used for the
modeling of the CP subproblem. For each equipment unit j we define a unary resource
Unitfj] and for each resource r (e.g. cooling water) we define a discrete resource
Utility[r] with a maximum capacity RMX Furthermore, for each state s we define a
reservoir State[s] with capacity C; and initial level S0;. For each binary Z, that is
equal to 1 in the current optimal solution of the master problem (i.e. copy ¢ oftask i is
carried out) we define an activity Task[i,c] with duration D,. We also define a
dummy activity MS with zero duration and no resource requirements. We also define
|D| activities, Order[d], with zero duration, where D is the set of orders for final
products, D(s) is the set of orders for state s (D=t D(s)), and for each deD, AD, is
the amount due and 7Dj is the due date. The CP subproblem consists of constraints
(11) to (26):

B™ <B_<BM* ViVc|Z,=1 (11)
D, =a,+pBB, ViVclZ, =1 (12)
Task[i,c] requires Unit[j] Vi, Viel(), Vc|Z,.=1 (13)

Bl =plB, Vs ViVc|Z, =1 (14

ics
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B2 =p?B, Vs,ViVc|Z, =1 (15)
Task[i,c] consumes B’y State[s] Vs, Vi, ve|Z,.=1 (16)
Task[i,c] produces B, State[s] Vs, Vi, Ve|Z.=1 (17
R, =v,+0,B, VrNiVc|Z, =1 (18)
Task(i,c] requires R, Utility[r] VI, Vc|Z,.=1 (19)
> D Bl =2d, VseFP (20)
i dZ,=l
Order/[d].start = TD,; Vd v @21
Order[d] consumes AD, State[s] Vs, VdeD(s) 22)
Taskfi,c].end < MS.start Vi, Vc|Z,.=1 23)
Task(i,c] precedes Task[i,c+1] Wi, YeeC; c<|C| (24)
Special Network Specific Constraints (25)
(Optional) Objective Function (26)

The batch size of activity Task[i,c] is bounded by eq. (11) and its duration is
calculated via eq. (12). Constraint (13) enforces tasks in /(j) to be assigned to unary
resource Unit[j]. The amount BIiCJBoics of reservoir State[s] consumed/ produced by
activity Task[i,c] is calculated by eq. (14)/(15), and the consumption/production of
B/ BCis units of reservoir State[s] by Task[i,c] is enforced by eq. (16)/(17). The
amount Ry, of discrete resource Utility[r] required by activity Task[i,c], throughout
its execution, is calculated in eq. (18), and the consumption of R, units of discrete
resource Utility[r] by activity Task[i,c] is enforced by eq. (19). The condition that the
amount of final products should meet the demand is enforced by (20), where d; is the
total demand for state s. Parameter d; is either given (in the case of fixed demand with
no due dates) or calculated as a sum of ADy for all deD(s). Each order is executed at
its due time (eq. (21)), and the amount delivered is equal to the amount due (eq. (22)).
In eq. (23) the end time of all activities is restricted to be smaller than the start of
activity MS, and MS is, (a) fixed finish time when the time horizon is fixed, and (b) a
variable finish time when the objective is the minimization of makespan. Constraint
(24) is a symmetry-breaking constraint that reduces the number of possible
configurations by imposing a sequence between copies of the same task. Constraints
that describe some special features of the process network are included in (295).
Depending on the nature of the problem (constant vs. variable processing times) and
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the objective function, we may want to solve the CP subproblem as one feasibility
problem, as successive feasibility problems or as an optimization problem. If the CP
is an optimization problem we add constraint (26). Details can be found in [2].

2.3 Preprocessing

The performance of the proposed model depends on how fast we solve models (MP)
and (SP), and the number of iterations needed to generate solutions and prove
optimality. It is crucial, therefore, to exclude infeasible or suboptimal solutions as
soon as possible. Preprocessing enhances the performance of the algorithm by (a)
tightening existing constraints, and (b) creating strong cuts that are added in the cut-
pool of the master problem and are used to eliminate a priori a number of potential
configurations. Parameters EST; and ST; that are used to tighten constraint (1) are
calculated in preprocessing (see [1] and [2] for details). Depending on the
characteristics of the problem, different preprocessing can be performed. As will be
shown in section 5, for instance, integer cuts can be generated in problems with
release and due times.

2.4 Integer Cuts

Another way to reduce the number of iterations is by generating integer cuts that
forbid more than one infeasible or suboptimal solutions. While a simple, “no-good”
integer cut can always be added at each iteration, in some cases stronger integer cuts
that exclude more than one assignment can also be added. The form of the integer
cuts is problem specific. Two new classes of integer cuts were proposed in [2] for
multi-purpose batch plants. In general, the quality of the integer cuts is crucial for the
effectiveness of the proposed scheme, and how to generate effective cuts is an open
question.

3 Scheduling Problems

As explained in section 1, a wide variety of scheduling problems appear in chemical
industry. While models (MP) and (CP) are very general, they do not exploit the
special structure of these problems. A very interesting feature of models (MP) and
(CP), however, is that they can be readily reduced to models that accurately describe
other plant configurations. The reduced models result from models (MP) and (CP) by
removing some of the constraints, changing the notation and in some cases adding
constraints that describe details of a specific problem and tighten the formulations.
Note, however, that no new constructs, variables or types of constraints need to be
defined. Another advantage of this reduction is that the form and functionality of the
two models remain practically the same: the decisions about the number and type of
tasks and the assignment of tasks to units (or some of these decisions) are made by the
master problem, while the subproblem is used to check feasibility, yield complete
schedules and generate integer cuts.

The exact form of the two problems depends on the configuration of the plant, the
objective function and the special characteristics of the instance at hand (demand,
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release/due times, etc.). In terms of plants configurations, the most common are the
ones shown in Figure 1. Note that the flow-shop plant is a special case of the multi-
stage plant and that the single-stage plant is a special case of the flow-shop plant. In
terms of objective functions, the most common are the maximization of production or
profit over a fixed time horizon, the minimization of makespan for given demand and
the minimization of cost for given demand with due dates. To give an example, if the
objective is to maximize the production or profit over a fixed time horizon, the type
and number of tasks are unknown, whereas if the objective is to minimize the
makespan for a fixed demand expressed in orders for which no batch splitting and
mixing is allowed, the type and number of tasks is fixed and only the assignment of
units to tasks is determined by the master problem.

A characteristic that differentiates scheduling problems significantly is how the
demand for final products is expressed. Ifit is expressed in terms of fixed quantities,
called the fixed-demand problem, more than one batches can be combined to meet the
demand and thus batch mixing and splitting is allowed. Ifit is expressed in terms of
orders, called the order problem, no batch mixing and splitting is allowed throughout
the production. Note that in some cases a fixed-demand problem can be reduced to an
order problem by pre-calculating how many and what type of batches are needed to
meet the demand. When the demand is expressed in amounts, the number of tasks to
be performed is unknown. When the demand is expressed in terms of orders, the
number of tasks is fixed and a number of simplifications can be applied. In
multipurpose batch plants demand is usually expressed in fixed amounts of final
products, while in multi- and single-stage plants demand can be expressed either as
fixed amounts or as orders. Next, we present a general fixed-demand formulation for
the multi-stage plant and reduced order formulations for the multi- and single-stage
plant (the fixed-demand formulation for the single-stage plant is a special case of the
multi-stage formulation). When the objective is the maximization of production over
a fixed time horizon, the number of tasks is unknown, and thus the fixed-demand
formulation, without the demand satisfaction constraints, is used.

4 Master Problem Reductions

4.1 Multi-stage Plant: Fixed Demand

In the master problem we use a reduced formulation to determine the number and
type of tasks as well as the assignment of units to tasks. A task i corresponds to the
processing of a chemical s at a unit j of a stage k. Compared to the multi-purpose
plant, in multi-product plants each task consumes and produces only one state and
thus the mass fractions for consumption and production in equation (5) are equal to 1:

§,=80,+ > > B.-> D> B, Vs Q7)

€0(s) ¢ iel(s) ¢

All other constraints remain the same. The master problem for the general multi-
stage plant consists of equations (1) — (4), (27) and (6) — (10). When units operate at
constant batch-size, processing times are parameters and constraints (3) and (4) are
dropped, and B;, is equal to Z;.B;, where B; is the fixed batch-size of task i.
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4.2 Multi-stage Plant: Demand in Orders

When demand is expressed in terms of orders, the number of batches is fixed: each
order has to be processed at each stage exactly once, i.e. the number of tasks that take
place is |O|*K]|, where |O] and |K] is the number of orders and stages respectively.
Moreover, each order will be processed once at each stage in one of the units of this
stage. Thus, we can drop index ¢ for copies, and replace the tuple (i,c) by the triplet
(0,k,j), where o, k and j are the indices for orders, stages and units.

Since demand is expressed in orders, constraint (6) is dropped, and since an order
corresponds to a certain amount of a final product, batch-sizes are fixed and
constraints (2) and (3) are also dropped. Since no batch splitting and mixing is
allowed, there are no intermediate chemicals at the end of the horizon. Moreover, we
can assume that appropriate storage is available for the finished goods, and thus we
can also drop constraints (4) and (5). Since there are no copies of the same task,
constraint (7) is dropped, and since tasks are indexed by (o,k,j) instead of (i,c),
constraint (1) is written as in (28). The master problem for the multi-stage plant when
the demand is expressed in orders consists of equations (8) - (10), (28) and (29).

>Z,,=1 YoVk (28)
JjeJ (k)
> Z,;D,; <(MS—ST,)—EST, Vk,Nje J(k) (29)

Binary Z,; is equal to 1 if order o is assigned to unit j of stage k (i.e. jeJ(k}), and
D,y is the fixed duration of task (o,k,j). Constraint (28) enforces that each order is
processed at exactly one unit of stage k. Constraint (29) ensures that the sum of
processing times of the durations of tasks assigned to unit jeJ(k) does not exceed the
maximum processing time available on unitj. Constraints in (8) can include forbidden
and processing paths (i.e. if order o cannot be processed in unit j2eJ(k+1) if
previously processed in unit jI eJ(k) then Z, 2441 <1 - Zyj1.6)-

4.3 Single-stage Plant: Demand in Orders
The single-stage plant is a special case of the multi-stage plant. Each order has to be
processed only in one stage, and thus the index k is dropped. The master problem

consists of equations (8) — (10), (30) and (31).
>Z,=1 Yo (30)
J

> Z,D, <(MS-ST,)-EST, Vj €3]



Using MILP and CP for the Scheduling of Batch Chemical Processes 11

5 Subproblem Reductions

In the reduced formulation for the master problem we do not take into account utility
constraints. In the subproblem, however, we use constraints (18) and (19) to model
utility restrictions. Utility constraints are always the same, i.e. independent of the
plant configuration. Furthermore, constraints (20) — (22) are used for the satisfaction
of the demand and they are also independent of the plant configuration. Hence, we
will refer to utility constraints (18) — (19), and demand satisfaction constraints (20) —
(22) as follows:

Utility Constraints (32)

Demand Satisfaction Constraints (33)

Hence, the CP subproblem for the multipurpose batch plant consists of constraints
(11) = (17), (23) — (26) and (32) — (33).

5.1 Multistage Plant: Fixed-Demand

In multi-stage plants there are no recycle streams and all mass fractions are equal to 1,
so we can eliminate variables B’y and B%,, drop constraints (14) and (15) and use
constraints (34) and (35) instead of constraints (16) and (17), respectively:

Task[i,c] consumes B, State[s] VseSI(i), Vi, vc|Z,.=1 (34)

Task[i,c] produces B, State[s] VseSO(i), Vi, Vc|Z,.=1 35)

where SI(i) and SO(i) are the sets of the input and output states, respectively, of task i.
The CP subproblem for the fixed-demand multipurpose batch plant consists of
equations (11) — (13), (23) — (26), and (32) — (35).

5.2 Multipurpose Plants: Demand in Orders

When the demand is expressed in terms of orders, the number of tasks is fixed, and
thus we can drop the index ¢ for copies, and replace index i by the triplet (o,k,j), as in
the master problem. This implies that constraint (24) is dropped, and that constraints
(13) and (23) are rewritten as in (36) and (37), respectively:

Task[o,k,j] requires Unit[j] Vo, Vk, VieJ(k)|Zyy=1 (36)

Task[o,k,j].end S MS Vo, Yk, VieJ(k)| Zoy=1 37

Furthermore, the batch-sizes are fixed, so we can remove constraints (11) and (12),
and re-write utility constraint (31) as in (38), and constraints (34) — (35) as in (39) and
(40), respectively. Since the demand is expressed in orders, any feasible solution of
the problem will satisfy the demand, so constraint (33) is not needed.

Task(o,k j] requires Z,gR,.i; Utility[r] V¥, Vo, Vk, Vi€ J(k)|Zo=1 (38)
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Task{o,k,j] consumes B, State[0,5I(0,k)] Vo, Vk, VieJ(k)|Zy=1 39)

Task{o,k,j] produces B, State[0,SO(o,k)] Vo, Vk, VieJ(k)|Z,,;=1 (40)

where B, is the size of order o, R, is the amount of utility r required by order o at
stage k when processed at unit j€J(%), and SI(0,k) and SO(o,k) are the sets of input
and output states, respectively, of order o at stage k. The CP subproblem consists of
equations (25) and (36) — (40).

The redundant constraint (41) that enforces a sequence between tasks of the same
order can be added, where S(0,k) is an index set that for order o gives the stage that
follows stage k. Note that the sequence between tasks of the same order is also
enforced by constraints (39) and (40): a task in stage k can only be performed if the
input state is available.

Task[o,k,j] preceeds Task[o,S(0,k),j'] Vo, Yk VieJk), Vf'eJ(S(0.0))| Zoy=1 72y so ;=1 (41)

If we assume that appropriate dedicated storage is available for all intermediate
states, we need not use the construct State and we can drop constraints (39) and (40).
In that case, constraint (41) is necessary to impose the sequencing among tasks of the
same order. In this case, the CP subproblem consists of constraints (25), (36) — (38)
and (41).

5.3 Single-stage Plant: Demand in Orders

In single-stage plants each order has to be processed in only one stage and storage is
usually not taken into account. Thus, index k for stages is dropped, the construct State
is not used and sequencing constraints are not needed. The CP model consists of
constraints (25) and (42) — (44), where binary Z,; is 1 iforder o is assigned to unit j.

Task[o,j] requires Unit[j] Vo, Vj|Zy=1 (42)

Task[oj].end <MS Vo, Vj|Z;=1 (43)

Task{o,j] requires R, Utility[r] Vo, Vf|Zy=1 (44)
6 Remarks

6.1 Integration with Other Algorithms

An interesting feature of the proposed decomposition framework is that it can be used
as a general platform for the integration of two different solution paradigms. In
general, the master problem is a relaxation of the original problem. A solution of this
relaxed problem defines a subspace that is searched by the subproblem. The main idea
of the proposed decomposition, thus, is to use a solution paradigm that is good at
identifying promising partial solutions (i.e. use MILP for optimization) and a solution
technique that is good at searching the constrained subspace (ie. use CP for
scheduling problems with fixed tasks and fixed assignments).
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In general, however, any two solution techniques can be combined, provided that
the solution of the master problem can be translated into a meaningful problem for the
subproblem. This is particularly useful when the subproblem corresponds to a
problem that has been extensively studied by the OR community, and there are
efficient algorithms for its solution. When the demand is expressed in orders the
subproblem of multi-stage plants (i.e. the reduced problem where the assignments are
fixed), for instance, is equivalent to the widely studied job-shop scheduling problem.
Thus, for the solution of the subproblem we can use a problem-specific algorithm
instead of CP. For the multi-stage problem, specifically, we developed an iterative
scheme where we use the Shifting Bottleneck procedure ([17], [18]) (SBP) for the
solution of the job-shop problem that arises when the assignment of tasks to specific
units is fixed by the master problem.

6.2 Preprocessing and Integer Cuts

Pre-processing algorithms that exploit the special structure of the problem or the
specific instance at hand can be used to tighten the models presented above. For the
minimization of processing cost of single-stage plants with orders that have release
and due times, for instance, we developed a very efficient pre-processing algorithm
that generates cover cuts that can be added to the cut pool of the master problem a
priori. These cover cuts are generated from knapsack constraints of the form,

Zdojzoj SmaX o {d,} —min . {r,} Vj (45)

where #, and d, are the release and due time of order o, and O* is a subset of orders.
The proposed pre-processing algorithm was applied in a set of instances studied in
[19] and [20] reducing the computational effort by one order of magnitude.

The effectiveness of the proposed framework depends also on the “quality” of the
integer cuts. Good integer cuts include only the binary variables that are responsible
for the infeasibility of a solution, and it is usually very difficult to generate, mainly
because the source of infeasibility is usually not revealed when the CP subproblem is
found infeasible. Depending on the configuration of the plant and the algorithm that is
used for the solution of the subproblem, it might be possible to derive effective cuts.
In Example 2, we present how we used SBP to derive strong integer cuts, based on
the fact that successive one-machine problems are solved. This allowed us to detect
one-machine infeasible assignments, which is not always possible with CP.

7 Examples and Computational Results

We are currently testing the proposed framework for various plant configurations and
objective functions. While the computational performance varies significantly and the
hybrid approach does not always outperform other methods, we have found that if
problem-specific information is exploited, through pre-processing and the generation
of strong integer cuts, the proposed algorithm can be significantly faster than
standalone MILP or CP models. In Example 1 we show how pre-processing can be
used to eliminate solutions of the master problem, while in Example 2 we show the
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advantages of the integration of Mathematical Programming with a heuristic method.
Example 3, finally, is a multipurpose batch plant with batch splitting and mixing.

7.1 Example 1: Minimization of Processing Cost in Single-stage Plant

Here we study the problem reported in Jain and Grossmann [19]: there are Njobs to
be processed in M machines. The processing of job i can start after its release time r;
and must finish before its due time d;. Job i can be processed in any machine;j. The
processing cost and the processing time of job i in machine j are Cy and dy
respectively, and the objective is to minimize the total processing cost. The original
master problem consists of constraints (8) — (10) and (30) — (31). For this problem,
specifically, we can develop a pre-processing algorithm that uses the release and due
time data and generates a set of valid inequalities that are a priori added in the cut
pool of the master problem.

To illustrate consider the example of Table 1, where three jobs 1, 2 and 3 have to
be scheduled on two machines A and B. The processing time of all jobs in both
machines is 2 hours, but the processing cost in machine A is much lower, and thus,
the objective favors an assignment where all jobs are assigned to machine A, if
feasible.

Constraint (31) for machine A reads:

ZZM + ZZZA + 223,4 <max {6,3,4} - min {0,1,2} -:5221,4 + 222,4 + ZZ_;A <6

Constraint (31), as well as all other constraints of (MP), is satisfied if Z;4 = Z;4
=734 = 1, although, such an assignment is infeasible because job 2 has to start at t=1
which means that there is not enough time for job 1 to be performed before job 2 and
there is not enough time forjobs 1 and 3 to be performed afterjob 2. This observation
led us to develop a pre-processing algorithm that considers subsets ofjobs and checks
whether the jobs of these subsets can all be assigned on the same machine, using a
knapsack inequality of the form of constraint (45). If the knapsack inequality is
violated, the violated knapsack constraint or cover cuts ([21], [22]) of the violated
knapsack constraint are added in the master problem (MP). In the example of Table 1,
the knapsack inequality for the subset ofjobs 2 and 3 reads:

2224 + 2734 Smax {3,4} —min {1,2} =274 + 2734 £4-1=3

Since the above constraint is violated, we can add the following cover inequality,
which forbids the simultaneous assignment of jobs 2 and 3 in machine A:

Zuy+Z3y <1
Table 1. Motivating Example 1
I dia dip Cia Cip I d;
1 2 2 2 5 0 6
2 2 2 3 6 1 3
3 2 2 3 7 2 4
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Table 2: Pre-processing algorithm — Phase I

forall GeL el adi<dy)
S =union (kel|r; <. A d < dy)
forall (jeI)
if (( Zyes dkj > d; — ;) then
Add Knapsack T zkes dkj ij < dil =T}
or add Cover :=2X,.5 Zi;<|[S|- 1

A straightforward implementation of a pre-processing algorithm that generates
some of the violated knapsack constraints or cover cuts is presented in Table 2. While
a more efficient algorithm that takes into account the ordering of tasks by ascending
release time and descending due time can be developed, the computational time
required for this step is negligible and thus we implemented as is. The constraints
generated are a priori added in the cut pool of (MP). The algorithm can be further
enhanced if all cover inequalities of a given knapsack are generated.

Another interesting case is the one illustrated through the example of Table 3.

In this example, the knapsack constraints for sets {1,2,3}, {1,2}, {1,3} and {23}
are the following:

2714 + 224 + 2234 Smax {4,3,6} —min {0,1,3} = 6 (46)
2714 + 2234 Smax (4,3} —min {0,1} = 2Z4 + 2254 <4 (47)
2714 + 2Z34 Smax {4,6) — min {0,3} =274 + 223, S6 (48)
2Z34 + 2234 Smax {3,6} — min {1,3} = 224 + 2234 S5 (49)

All knapsacks are satisfied if all binaries are 1, which means that none of these
assignments can be excluded by the pre-processing described in Table 2. However, in
any assignment job 2 must start at =/ and finish at =3, which means that job 1
cannot be assigned in the same machine as job 2 because its due time is at /=4. This
assignment could have been excluded if we had adjusted the RHS of (47) to account
for the fact that both the maximum due time and the minimum release time for subset
{1,2} correspond to the same job, namely job 1. Whenever this is the case, the RHS
must be adjusted as follows:

z dij Zij Sdu—r.— min{di‘ —MaX 5wy min esviry ™ Fir } (50)
€S

where i* is the task in subset S with the smallest release and largest due time.

Table 3. Motivating Example 2

i dia dip Cia Cie I d;
1 2 2 2 5 0 4
2 2 2 3 6 1 3
3 2 2 3 i 3 6
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Table 4. Pre-processing algorithm — Phase II

forall (iel)
S =union (k€l| r; S¥y Ady £d))

forall (jeJ)
A := mingesyp{ri)-ri; B 1= d; - maxiesp{dil
C :=min{A, B}

if ( Zyes diy > dy—r; ) then
Add Knapsack = EI(ES dk; ij _<d;" —Fp— C
or add Cover ;=25 Z; <|S] -1

For the subset {1,2}, constraint (50) gives knapsack inequality (51), which in turn
gives the cover cut (52). Both inequalities exclude the infeasible assignment Z;4 = /
AND Z,, = 1.

ZZIA+2ZZA S4-0- mm{4-max{3},mln{1}-0} =4-] DZZ]A + ZZZA <3 (51)

Zig+ 2y <1 (52)

The pre-processing routine that generates cuts for the exclusion of infeasible
assignments that exhibit the feature described above is given in Table 4 (Phase II).
The two phases of the preprocessing and the iterative hybrid MILP/CP algorithm
were implemented in OPL Studio 3.6, on a PIII PC at 1GHz. For the solution of the
master MILP model (MP) we used CPLEX 8.0.

The proposed method was tested in a set of problems by Jain and Grossmann
([19]). The authors showed that standalone MILP and CP models are not
computationally efficient and proposed an iterative MILP/CP algorithm. Bockmayr
and Pisaruk [20] proposed a branch-and-cut scheme where CP is used for the
derivation of integer cuts. Computational results of standalone MILP and CP
approaches, of the MILP/CP hybrid schemes of Jain and Grossmann (J & G) and
Bockmayr and Pisaruk (B & P) and the proposed approach are given in Table 5.

As shown, all hybrid schemes are more efficient that the standalone MILP and CP
models. Using the proposed pre-processing we were able to solve all problems in less
than three CPU seconds. Note that the pre-processing algorithm generates a large
number of integer cuts that are added in the cut pool of the master problem, and thus
very few iterations are needed.

Table 5. Computational Results

Problem Obj MILP CP J& G B &P Proposed Approach
M N Time Time Iter's Time Nodes Time Iter's Cuts Time
312 101 220 3.8 31 127 78 05 2 108 0.6
3 12 83 1.8 0.4 1 0.5 149 0.9 1 20 0.2
5 15 115 180.4 553.5 18 R | 144 0.7 3 303 1.5
5 15 102 61.8 9.3 1 43 177 0.9 1 113 0.2
5 20 158 =20000 68854 31 41.5 924 4.0 2 581 2.7
) 20 140 106.3 26739 6 162 38303 2458 1 302 0.3
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7.2 Example 2: Minimization of Processing Cost in Multi-stage Plant

In the multi-stage problem addressed in [23] there are N orders with release and due
times to be processed in K stages, where each stage k has M, machines. The
assignment of a job to a machine has a processing cost and a processing time and the
objective is to find the assignment with the minimum cost that satisfies the release
and due times ofjobs, subject to forbidden job-machine assignments and production
paths. For the solution of this problem the authors proposed a hybrid MILP/CP
scheme. While the decomposition into a master MILP and a subproblem CP model
has the advantages discussed above, in this specific problem it was not clear how to
develop effective integer cuts. The results with only the “no-good” cuts were poor,
and the authors had to relax the CP subproblem (i.e. allow for violation of the due
dates) and use the information about the late orders to develop two classes of heuristic
cuts that enhanced the performance of their algorithm.

It became clear, thus, that having an efficient algorithm for the solution of the
flow-shop subproblem with fixed assignments which can additionally provide us with
information that can be used for the generation of strong cuts would be very useful.
Such an algorithm is the SBP algorithm because in its first stage checks whether a
feasible schedule can be obtained given the assignments for each single machine; i.e.
it detects infeasibilities that are due to the assignments on a single machine. Thus, if
infeasibility is detected at this stage, we can add a strong integer cut that forbids the
current assignment on this machine. The MILP/SBP integration was implemented in
Mosel 1.2, using XPRESS-MP 14.2 for the solution of the master MILP and the SBP
for the solution of the subproblem, on a 1GHz Pentium III. The computational results
of standalone MILP and CP models, of the MILP/CP hybrid scheme of Harjunkoski
and Grossmann ([23]) and the proposed MILP/SBP heuristic are shown in Table 6.
Note that the SBP is a heuristic algorithm for the solution of job-shop problems,
which means that a feasible partial solution of the master problem may be found
infeasible by the SBP. In such a case, the iterative algorithm will not terminate when
the optimal solution is found, yielding a suboptimal solution. Thus, the proposed
scheme is a heuristic. However, note that for all ten instances the proposed scheme
obtained the optimal solution.

Table 6. Computational Results for Multi-stage Plants

Obj MIP CP MIP/CP: CUT H MIP/SBH
CPU s CPUs Iter's/Cuts CPUs Iter's/Cuts CPUs
PID1 39 0.1 0.1 5/4 0.1 2/1 0.2
P1ID2 112 0.1 0.1 32 0.1 2/1 0.2
P2D1 153 44 0.1 16/19 0.7 4/4 1.3
P2D2 188 0.8 0.3 4/3 0.1 1/0 0.2
P3ID1 56 446.6 42 29/45 8.7 26/32 16.9
P3D2 1113 04 1375.0 5/5 0.4 2/2 1.1
P4D1 149 273 4472 17/22 28.8 12/15 7.8
P4D2 946 1.4 359.0 20/26 11.0 6/14 9.8
P5SD1 111 4041.7 293.0 43/56 3184 19/25 17.2

P5D2 704 27678 7126 272 13.7 2/1 0.4
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While the computational times are not directly comparable due to differences in the
software and hardware, note that the MILP/SBP integration requires fewer iterations
and cuts. As shown, when additional integer cuts are used, problems that were not
solvable in 1,000 CPU seconds are solved in 8 to 320 seconds, and the number of
iterations is significantly reduced.

7.3 Example 3: Minimization of Makespan in Multi-purpose Plant

Finally, we present computational results from Maravelias and Grossmann [2] for the
batch plant shown in Figure 3. The objective is to find the schedule of minimum
makespan for the production of 5 tons of products P1, P2, P3 and P4. When
formulated as a continuous time MILP model [2] with 10 time points, this problem
was intractable as it could not be solved in 10 hours of CPU-time with CPLEX7.5.
With the proposed hybrid scheme, assuming that we can have at most 4 copies of
each task, the optimal solution of 15 hours is found in 5 iterations. The assignment
that gives the optimal solution is found in the first iteration with a lower bound of 14
hours. Successive feasibility CP problems are solved for this assignment, and a
feasible schedule with a makespan of 15 hours is found in the second subproblem.
The subsequent master problems give solutions with a lower bound on the makespan
equal to 14 hours, but none of these assignments yields a feasible schedule with
makespan shorter than 15 hours. The fifth MILP is infeasible, which means that there
are no more assignments that can meet the given demand. The total computational
time is 1.80 CPU seconds, from which 0.03 seconds are spent in preprocessing, 0.70
seconds are spent for the master problem (approximately 0.14 sec for each MILP),
and 1.07 seconds are spent for all the CP subproblems.

Generally, the modeling of multipurpose batch plants is a complex task, and the
solution of the resulting MILP models is hard. Existing models are moderately
effective when the objective function is the maximization of profit or production over
a fixed time horizon, but very slow when the objective is the minimization of
makespan. To our experience, the proposed hybrid scheme seems to be moderately
effective for the maximization of profit and very effective for the minimization of
makespan, enabling us to solve problems that were previously unsolvable.
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Fig. 3. Process network of multipurpose batch plant
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8 Conclusions

A general decomposition framework, which uses Mathematical and Constraint
Programming techniques, for the solution of scheduling problems in chemical
industry is presented. The number and type of tasks performed, as well as the
assignment of units to tasks are determined by the master MILP model, while the CP
subproblem is used to check feasibility and derive complete schedules. The advantage
of the proposed framework is that it can be readily applied to many classes of
problems. Furthermore, the underlying decomposition idea can also be used to
integrate Mathematical Programming with scheduling algorithms other than CP.

The computational efficiency of the proposed model varies significantly. There is
good evidence, however, that for some classes of problems it outperforms existing
methods. In general, if the structure of the problem at hand is exploited by efficient
preprocessing and the generation of strong integer cuts, it is expected that hybrid
schemes will be more effective because they combine the complementary strengths of
two solution techniques. Finally, we showed how the special structure or
characteristics of a problem can be exploited by simple additions (pre-processing in
Example 1) and modifications (solution of subproblem using SBP in Example 2) of
the proposed scheme. Furthermore, in Example 3 the proposed hybrid scheme was
able to solve in few seconds a complex scheduling problem that proved to be
intractable when solved as an MILP problem.
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Abstract. In recent years, the Constraint Programming (CP) and Op-
erations Research (OR) communities have explored the advantages of
combining CP and OR techniques to formulate and solve combinatorial
optimization problems. These advantages include a more versatile mod-
eling framework and the ability to combine complementary strengths
of the two solution technologies. This research has reached a stage at
which further development would benefit from a general-purpose mod-
eling and solution system. We introduce here a system for integrated
modeling and solution called SIMPL. Our approach is to view CP and
OR techniques as special cases of a single method rather than as sep-
arate methods to be combined. This overarching method consists of
an infer-relax-restrict cycle in which CP and OR techniques may in-
teract at any stage. We describe the main features of SIMPL and
illustrate its usage with examples.

1 Introduction

In recent years, the Constraint Programming (CP) and Operations Research
(OR) communities have explored the advantages of combining CP and OR tech-
niques to formulate and solve combinatorial optimization problems. These ad-
vantages include a more versatile modeling framework and the ability to combine
complementary strengths of the two solution technologies. Examples of existing
programming languages that provide mechanisms for combining CP and OR
techniques are ECL*PS® [32, 35], OPL [34] and Mosel [8].

Hybrid methods tend to be most effective when CP and OR techniques in-
teract closely at the micro level throughout the search process. To achieve this
one must often write special-purpose code, which slows research and discourages
broader application of integrated methods. We address this situation by intro-
ducing here a system for integrated modeling and solution called SIMPL (Pro-
gramming Language for Solving Integrated Models). The SIMPL modeling lan-
guage formulates problems in such a way as to reveal problem structure to the
solver. The solver executes a search algorithm that invokes CP and OR tech-
niques as needed, based on problem characteristics.

* This work has been supported by the National Science Foundation under grant ACI-
0121497 and by the William Larimer Mellon Fellowship.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 21-36, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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The design of such a system presents a significant research problem in itself,
since it must be flexible enough to accommodate a wide range of integration
methods and yet structured enough to allow high-level implementation of specific
applications. Our approach, which is based partly on a proposal in [14, 16], is to
view CP and OR techniques as special cases of a single method rather than as
separate methods to be combined. This overarching method consists of an infer-
relax-restrict cycle in which CP and OR techniques may interact at any stage.

This paper is organized as follows. In Sect. 2, we briefly review some of the
fundamental ideas related to the combination of CP and OR that are relevant
to the development of SIMPL. We describe the main concepts behind SIMPL in
Sect. 3 and talk about implementation details in Sect. 4. Section 5 presents
a few examples of how to model optimization problems in SIMPL, explaining the
syntax and semantics of the language. Finally, Sect. 6 outlines some additional
features provided by SIMPL, and Sect. 7 discusses directions for future work.

2 Previous Work

A comprehensive survey of the literature on the cooperation of logic-based, Con-
straint Programming (CP) and Operations Research (OR) methods can be found
in [15]. Some of the concepts that are most relevant to the work presented here
are: decomposition approaches (e.g. Benders [3]) that solve parts of the problem
with different techniques [10,14, 19, 21, 24, 33]; allowing different models/solvers
to exchange information [32]; using linear programming to reduce the domains of
variables or to fix them to certain values [4, 11, 32]; automatic reformulation of
global constraints as systems of linear inequalities [30]; continuous relaxations of
global constraints and disjunctions of linear systems [1, 14, 18, 22, 28, 36, 37, 38];
understanding the generation of cutting planes as a form of logical inference [6, 7];
strengthening the problem formulation by embedding the generation of valid cut-
ting planes into CP constraints [12]; maintaining the continuous relaxation of
a constraint updated when the domains of its variables change [29]; and using
global constraints as a key component in the intersection of CP and OR [27].
Ideally, one would like to incorporate all of the above techniques into a single
modeling and solving environment, in a clean and generic way. Additionally,
this environment should be flexible enough to accommodate improvements and
modifications with as little extra work as possible. In the next sections, we
present the concepts behind SIMPL that aim at achieving those objectives.

3 SIMPL Concepts

We first review the underlying solution algorithm and then indicate how the
problem formulation helps to determine how particular problems are solved.

3.1 The Solver

SIMPL solves problems by enumerating problem restrictions. (A restriction is
the result of adding constraints to the problem.) Each node of a classical branch-
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and-bound tree, for example, can be viewed as a problem restriction defined by
fixing certain variables or reducing their domains. Local search methods fit into
the same scheme, since they examine a sequence of neighborhoods, each of which
is the feasible set of a problem restriction. Thus SIMPL. implements both exact
and heuristic methods within the same architecture.

The search proceeds by looping through an infer-relax-restrict cycle: it infers
new constraints from the current problem restriction, then formulates and solves
relaxations of the augmented problem restriction, and finally moves to another
problem restriction to be processed in the same way. The user specifies the overall
search procedure from a number of options, such as depth-first branching, local
search, or Benders decomposition. The stages in greater detail are as follows.

Infer. New constraints are deduced from the original ones and added to the cur-
rent problem restriction. For instance, a filtering algorithm can be viewed
as inferring indomain constraints that reduce the size of variable domains.
A cutting plane algorithm can generate inequality constraints that tighten
the continuous relaxation of the problem as well as enhance interval propa-
gation.

Relax. One or more relaxations of the current problem restriction are formu-
lated and solved by specialized solvers. For instance, continuous relaxations
of some or all of the constraints can be collected to form a relaxation of
the entire problem, which is solved by a linear or nonlinear programming
subroutine. The role of relaxations is to help direct the search, as described
in the next step.

Restrict. The relaxations provide information that dictates which new restric-
tions are generated before moving to the next restriction. In a tree search, for
example, SIMPL creates new restrictions by branching on a constraint that
is violated by the solution of the current relaxation. If several constraints are
violated, one is selected according to user- or system-specified priorities (see
Sect. 4.3). Relaxations can also influence which restriction is processed next,
for instance by providing a bound that prunes a branch-and-bound tree.

If desired, an inner infer-relax loop can be executed repeatedly before moving
to the next problem restriction, since the solution of the relaxation may indi-
cate further useful inferences that can be drawn (post-relaxation inference). An
example would be separating cuts, which are cutting planes that “cut off” the
solution of the relaxation (see Sect. 4.3).

The best-known classical solution methods are special cases of the infer-relax-
restrict procedure:

~ In a typical CP solver, the inference stage consists primarily of domain re-
duction. The relaxation stage builds a (weak) relaxation simply by collecting
the reduced domains into a constraint store. New problem restrictions are
created by splitting a domain in the relaxation.

~ In a branch-and-bound solver for integer programming, the inference stage
can be viewed as “preprocessing” that takes place at the root node and pos-
sibly at subsequent nodes. The relaxation stage drops the integrality con-
straints and solves the resulting problem with a linear or perhaps nonlinear
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programming solver. New problem restrictions are created by branching on
an integrality constraint; that is, by branching on a variable with a fractional
value in the solution of the relaxation.

~ A local search procedure typically chooses the next solution to be exam-
ined from a neighborhood of the current solution. Thus local search can
be regarded as enumerating a sequence of problem restrictions, since each
neighborhood is the feasible set of a problem restriction. The “relaxation” of
the problem restriction is normally the problem restriction itself, but need
not be. The restriction may be solved to optimality by an exhaustive search
of the neighborhood, as in tabu search (where the tabu list is part of the
restriction). Alternatively, a suboptimal solution may suffice, as in simulated
annealing, which selects a random element of the neighborhood.

- In Branch-and-Infer [7], the relaxation stage is not present and branching
corresponds to creating new problem restrictions.

An important advantage of SIMPL is that it can create new infer-relax-restrict
procedures that suit the problem at hand. One example is a hybrid algorithm,
introduced in [14, 21], that is obtained through a generalization of Benders de-
composition. It has provided some of the most impressive speedups achieved by
hybrid methods [10, 16, 17, 19, 24]. A Benders algorithm distinguishes a set of
primary variables that, when fixed, result in an easily-solved subproblem. So-
Iution of an “inference dual” of the subproblem yields a Benders cut, which is
added to a master problem containing only the primary variables. Solution of
the master problem fixes the primary variables to another value, and the pro-
cess continues until the optimal values of the master problem and subproblem
converge. In typical applications, the master problem is an integer program-
ming problem and the subproblem a CP problem. This method fits nicely into
the infer-relax-restrict paradigm, since the subproblems are problem restrictions
and master problems are relaxations. The solution of the relaxation guides the
search by defining the next subproblem.

The choice of constraints in a SIMPL model can result in novel combinations
of CP, OR and other techniques. This is accomplished as described in Sect. 3.2.

3.2 Modeling

SIMPL is designed so that the problem formulation itself determines to a large
extent how CP, OR, and other techniques interact. The basic idea is to view each
constraint as invoking specialized procedures that exploit the structure of that
particular constraint. Since some of these procedures may be from CP and some
from OR, the two approaches interact in a manner that is dictated by which
constraints appear in the problem.

This idea of associating constraints with procedures already serves as a pow-
erful device for exploiting problem substructure in CP, where a constraint typ-
ically activates a specialized filtering algorithm. SIMPL extends the idea by
associating each constraint with procedures in all three stages of the search.
Each constraint can (a) activate inference procedures, (b) contribute constraints
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to one or more relaxations, and (c) generate further problem restrictions if the
search branches on that particular constraint.

If a group of constraints exhibit a common structure—such as a set of linear
inequalities, flow balance equations, or logical formulas in conjunctive normal
form—they are identified as such so that the solver can take advantage of their
structure. For instance, a resolution-based inference procedure might be applied
to the logical formulas.

The existing CP literature typically provides inference procedures (filters)
only for CP-style global constraints, and the OR literature provides relaxations
(cutting planes) only for structured groups of linear inequalities. This poses the
research problem of finding specialized relaxations for global constraints and
specialized filters for structured linear systems. Some initial results along this
line are surveyed in [15].

Some examples should clarify these ideas. The global constraint element is
important for implementing variable indices. Conventional CP solvers associate
element with a specialized filtering algorithm, but useful linear relaxations, based
on OR-style polyhedral analysis, have recently been proposed as well [20]. Thus
each element constraint can activate a domain reduction algorithm in the in-
ference stage and generate linear inequalities, for addition to a continuous re-
laxation, in the relaxation stage. If the search branches on a violated element
constraint, then new problem restrictions are generated in a way that makes
sense when that particular constraint is violated.

The popular all-different and cumulative constraints are similar in that they
also have well-known filters [31, 2] and were recently provided with linear re-
laxations [36, 22]. These relaxations are somewhat weak and may not be useful,
but the user always has the option of turning off or on the available filters and
relaxations, perhaps depending on the current depth in the search tree.

Extensive polyhedral analysis of the traveling salesman problem in the OR
literature [13, 25] provides an effective linear relaxation of the cycle constraint. In
fact, SIMPL has the potential to make better use of the traditional OR literature
than commercial OR solvers. Structured groups of inequalities can be represented
by global constraints that trigger the generation of specialized cutting planes,
many of which go unused in today’s general-purpose solvers.

4 From Concepts to Implementation

SIMPL is implemented in C++ as a collection of object classes, as shown in
Fig. 1.

This makes it easy to add new components to the system by making only
localized changes that are transparent to the other components. Examples of
components that can be included are: new constraints, different relaxations for
existing constraints, new solvers, improved inference algorithms, new branch-
ing modules and selection modules, alternative representations of domains of
variables, etc. The next sections describe some of these components in detail.
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Fig. 1. Main components of SIMPL

4.1 Multiple Problem Relaxations

Each iteration in the solution of an optimization problem P examines a restric-
tion N of P. In a tree search, for example, N is the problem restriction at
the current node of the tree. Since solving N can be hard, we usually solve a
relaxation' Ng of N, or possibly several relaxations.

In an integrated CP-IP modeling system, the linear constraints in the hybrid
formulation are posted to a Linear Programming (LP) solver, and some (or all) of
them may be posted to a CP solver as well. The CP solver also handles the con-
straints that cannot be directly posted to the LP solver (e.g. global constraints).
Notice that each solver only deals with a relaxation of the original problem P
(i.e. a subset of its constraints). In this example, each problem restriction N has
two relaxations: an LP relaxation and a CP relaxation. Extending this idea to
more than two kinds of relaxations is straightforward.

' In general, we say that problem Qg is a relaxation of problem Q if the feasible region
of @r contains the feasible region of Q.
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In principle, the LP relaxation of N could simply ignore the constraints that
are not linear. Nevertheless, this relaxation can be strengthened by the addition
of linear relaxations of those constraints, if available (see Sect. 4.2).

4.2 Constraints and Constraint Relaxations

In SIMPL, the actual representation of a constraint of the problem inside any
given relaxation is called a constraint relaxation. Every constraint can be asso-
ciated with a list of constraint relaxation objects, which specify the relaxations
of that constraint that will be used in the solution of the problem under consid-
eration. To post a constraint means to add its constraint relaxations to all the
appropriate problem relaxations. For example, both the LP and the CP relax-
ations of a linear constraint are equal to the constraint itself. The CP relaxation
of the element constraint is clearly equal to itself, but its LP relaxation can be
the convex hull formulation of its set of feasible solutions [14]. Besides the ones
already mentioned in Sect. 3.2, other constraints for which linear relaxations are
known include cardinality rules [37] and sum [38].

For a branch-and-bound type of search, the problem relaxations to be solved
at a node of the enumeration tree depend on the state of the search at that
node. In theory, at every node, the relaxations are to be created from scratch
because constraint relaxations are a function of the domains of the variables of
the original (non-relaxed) constraint. Nevertheless, this can be very inefficient
because a significant part of the constraints in the relaxations will be the same
from node to node. Hence, we divide constraint relaxations in two types:

Static: those that change very little (in structure) when the domains of its vari-
ables change (e.g. relaxations of linear constraints are equal to themselves,
perhaps with some variables removed due to fixing);

Volatile: those that radically change when variable domains change (e.g. some
linear relaxations of global constraints).

To update the problem relaxations when we move from one node in the search
tree to another, it suffices to recompute volatile constraint relaxations only. This
kind of update is not necessary for the purpose of creating valid relaxations, but
it is clearly beneficial from the viewpoint of obtaining stronger bounds.

procedure Search(A)
If A # () and stopping criteria not met
N = A.getNextNode()
N .explore()
A.addNodes (N ,generateRestrictions())
Search(A4)

Fig. 2. The main search loop in SIMPL
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Pre-relaxation inference
Repeat
Solve relaxations
Post-relaxation inference
Until (no changes) or (iteratiom limit)

L S

Fig. 3. The node exploration loop in branch-and-bound

4.3 Search

The main search loop in SIMPL is implemented as shown in Fig. 2. Here, N
is again the current problem restriction, and A is the current list of restric-
tions waiting to be processed. Depending on how A, N and their subroutines
are defined, we can have different types of search, as mentioned in Sect. 3.1.
The routine N .explore () implements the infer-relax sequence. The routine
N .generateRestrictions () creates new restrictions, and A.addNodes ()
adds them to A. Routine A.getNextNode ()implements a mechanism for se-
lecting the next restriction, such as depth-first, breadth-first or best bound.

In tree search, N is the problem restriction that corresponds to the current
node, and A is the set of open nodes. In local search, N is the restriction that de-
fines the current neighborhood, and A is the singleton containing the restriction
that defines the next neighborhood to be searched. In Benders decomposition, N
is the current subproblem and A is the singleton containing the next subprob-
lem to be solved. In the case of Benders, the role of N.explore () is to infer
Benders cuts from the current subproblem, add them to the master problem,
and solve the master problem. NgenerateRestrictions () uses the solution
of the master problem to create the next subproblem.

In the sequel, we will restrict our attention to branch-and-bound search.

Node Exploration. Figure 3 describes the behavior of N .explore () for
a branch-and-bound type of search. Steps 1 and 4 are inference steps where we
try to use the information from each relaxation present in the model to the
most profitable extent. Section 4.4 provides further details about the types of
inference used in those steps. The whole loop can be repeated multiple times, as
long as domains of variables keep changing because of step 4, and the maximum
number of iterations has not been reached. This process of re-solving relaxations
and looking for further inferences behaves similarly to a fix point calculation.

Branching. SIMPL implements a tree search by branching on constraints. This
scheme is considerably more powerful and generic than branching on variables
alone. If branching is needed, it is because some constraint of the problem is
violated and that constraint should “know” what to do. This knowledge is em-
bedded in the so called branching module of that constraint. For example, if
a variable z € {0,1} has a fractional value in the current LP, its indomain
constraint I; is violated. The branching module of I will then output two con-
straints: z € {0} andz € {1}, meaning that two subproblems should be created
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by the inclusion of those two new constraints. In this sense, branching on the
variable z can be interpreted as branching on I. In general, a branching module
returns a sequence of sets of constraints Ci,. .., Ck. This sequence means that &
subproblems should be created, and subproblem % can be constructed from the
current problem by the inclusion of all constraints present in the set C;. There
is no restriction on the types of constraints that can be part of the sets Cj.

Clearly, there may be more than one constraint violated by the solution of the
current set of problem relaxations. A selection module is the entity responsible
for selecting, from a given set of constraints, the one on which to branch next.
Some possible criteria for selection are picking the first constraint found to be
violated or the one with the largest degree of violation.

4.4 Inference

We now take a closer look at the inference steps of the node exploration loop
in Fig. 3. In step 1 (pre-relaxation inference), one may have domain reduc-
tions or the generation of new implied constraints (see [18]), which may have
been triggered by the latest branching decisions. If the model includes a set of
propositional logic formulas, this step can also execute some form of resolution
algorithm to infer new resolvents. In step 4 (post-relaxation inference), other
types of inference may take place, such as fixing variables by reduced cost or the
generation of cutting planes. After that, it is possible to implement some kind
of primal heuristic or to try extending the current solution to a feasible solution
in a more formal way, as advocated in Sect. 9.1.3 of [14].

Since post-relaxation domain reductions are associated with particular re-
laxations, the reduced domains that result are likely to differ across relaxations.
Therefore, at the end of the inference steps, a synchronization step must be exe-
cuted to propagate domain reductions across different relaxations. This is shown
in Fig. 4. In step 6, D, denotes the domain of v inside relaxation r, and D, works
as a temporary domain for variable v, where changes are centralized. The initial
value of D, is the current domain of variable v. By implementing the changes
in the domains via the addition of indomain constraints (step 8), those changes
will be transparently undone when the search moves to a different part of the
enumeration tree. Similarly, those changes are guaranteed to be redone if the
search returns to descendents of the current node at a later stage.

V=0
. For each problem relaxation r
Vi := variables with changed domains in r
Vi=Vui

For each v € V.
D, := D, N D}
For each v € V
Post constraint v € D,

Lol B+ I L T VU S

Fig. 4. Synchronizing domains of variables across multiple relaxations
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S SIMPL Examples

SIMPL’s syntax is inspired by OPL [34], but it includes many new features.

Apart from the resolution algorithm used in Sect. 5.3, SIMPL is currently
able to run all the examples presented in this section. Problem descriptions and
formulations were taken from Chapter 2 of [14].

5.1 A Hybrid Knapsack Problem
Let us consider the following integer knapsack problem with a side constraint.

min 5z; 4 8z2 + 4z3
subject to 3z + 5x2 + 223 > 30
all-different(z1, x2,x3)
z; € {1,2,3,4}, for all j

To handle the all-different constraint, a pure MIP model would need auxiliary
binary variables: y;; = 1 if and only if z; = j. A SIMPL model for the above
problem is shown in Fig. 5. The model starts with a DECLARATIONS section
in which constants and variables are defined. The objective function is defined
in line 06. Notice that the range over which the index i takes its values need
not be explicitly stated. In the CONSTRAINTS section, the two constraints of the
problem are named totweight and distinct, and their definitions show up in
lines 09 and 12, respectively. The RELAXATION statements in lines 10 and 13
indicate the relaxations to which those constraints should be posted. The linear
constraint will be present in both the LP and the CP relaxations, whereas the
alldiff constraint will only be present in the CP relaxation. In the SEARCH
section, line 15 indicates we will do branch-and-bound (BB) with depth-first
search (DEPTH). The BRANCHING statement in line 16 says that we will branch
on the first of the x variables that is not integer (remember from Sect. 4.3 that
branching on a variable means branching on its indomain constraint).

01. DECLARATIONS

02. n = 3; cost[1..n] = [5,8,4]); weight[1..n] = [3,5,2]; limit = 30;
03. DISCRETE RANGE xRange = 1 TO 4;

04. x[1..n] N xRange;

05. OBJECTIVE

06, MIN SUM i OF cost[il#*x[i]

07. CONSTRAINTS

08. totweight MEANS {

09, SUM i OF weight[i]l=*x[i] >= limit
10, RELAXATION = {LP, cs} }

11. distinct MEANS {

12 alldiff (x)

13. RELAXATION = {cs} }

14. SEARCH

15. TYPE = {BB:DEPTH}

16. BRANCHING = {x:FIRST}

Fig. 5. SIMPL model for the Hybrid Knapsack Problem
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Initially, bounds consistency maintenance in the CP solver removes value 1
from the domain of z2 and the solution of the LP relaxation is z = (2%,4, 1).
After branching on z; < 2, bounds consistency determines that z; > 2, z2 > 4
and z3 > 2. At this point, the alldiff constraint produces further domain
reduction, yielding the feasible solution (2,4,3). Notice that no LP relaxation
had to be solved at this node. In a similar fashion, the CP solver may be able
to detect infeasibility even before the linear relaxation has to be solved.

5.2 A Lot Sizing Problem

A total of P products must be manufactured over T days on a single machine of
limited capacity C, at most one product each day. When manufacture of a given
product ¢ begins, it may proceed for several days, and there is a minimum run
length ;. Given a demand d;; for each product ¢ on each day t, it is usually
necessary to hold part of the production of a day for later use, at a unit cost
of h;. Changing from product 4 to product j implies a setup cost g;;. Frequent
changeovers allow for less holding cost but incur more setup cost. The objective
is to minimize the sum of the two types of costs while satisfying demand.

Let y: = 4 if and only if product ¢ is chosen to be produced on day t, and
let z;; be the quantity of product ¢ produced on day ¢. In addition, let wus, v:
and s;; represent, respectively, for day ¢, the holding cost, the changeover cost
and the ending stock of product i. Figure 6 exhibits a SIMPL model for this
problem. We have omitted the data that initializes matrices d, h, ¢ and . We
have also left out the statements that set yo = 0 and s;o = 0for € {1,..., P}.

In line 07, we use the predefined continuous range nonegative. Notice the
presence of a new section called RELAXATIONS, whose role in this example is
to define the default relaxations to be used. As a consequence, the absence of

0i. DECLARATIONS

02. P=25; T=10; C = 50;

03. df{1..P,1..T} = ; n{1..P,1..7] = ; ql0..P,1..P] = ; r[1..P] = ;
04. CONTINUOUS RANGE xRange = 0 TO C;

05. DISCRETE RANGE yRange = 0 TO P;

06. x{1..P,1..T] IN xRange; y[0..T] IN yRange;

07. u1..T), v[1..T}, s[1..P,0..T] IN nonegative;

08. OBJECTIVE

09. MIN SUM t OF ult] + v(t]

10. RELAXATIONS

11. LP, CS

12. CONSTRAINTS

13. holding MEANS { ult] >= sum i OF hli,t]*s[i,t] FORALL t }
14. setup MEANS { v[t} >= q[y[t-1),y[t]] FORALL t }

15. stock MEANS { sfi,t-1] + x[i,t] = d[i,t) + s{i,t] FORALL i,t }
16. linkyx MEANS { y[t] <> i -> x[i,t] = 0 FORALL i,t }

17. minrun MEANS { -

18, ylt-1] <> i and y[t] = 1 ->

18. (y[t+k] = i FORALL k IN 1 TO r[i]~1) FORALL i,t }

20. SEARCH

21, TYPE = {BB:BEST}

22. BRANCHING = {setup:MOST}

Fig. 6. SIMPL model for the Lot Sizing Problem
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build MEANS {
y1 => (y2 or y3), y3 => y4, y2 => y1,
y3 => (yb or y6), y2 => (y4 or yb),
y4 => (y2 or y3), y2 => y6, y3 => y1,
y5 => (¥2 or y3), y6 => (y2 or y3)
RELAXATION = {LP, CS}
INFERENCE = {RESOLUTION} }

Fig. 7. (a) Network superstructure (b) The INFERENCE statement in SIMPL

RELAXATION statements in the declaration of constraints means that all con-
straints will be posted to both the LP and CS relaxations. The holding and
stock constraints define, respectively, holding costs and stock levels in the usual
way. The setup constrains make use of variable indexing to obtain the desired
meaning for the v; variables. The CS relaxation of these constraints uses element
constraints, and the LP relaxation uses the corresponding linear relaxation of
element. The symbol -> in lines 16 and 18 implements a one-way link constraint
of theform A — B (see [18]). This means that whenever condition A is true, B is
imposed as a constraint of the model, but we do not worry about the contrapos-
itive. Condition A may be a more complicated logical statement and B can be
any collection of arbitrary constraints. There are also two-way link constraints
such as “implies” (=>) and “if and only if” (<=>) available in SIMPL. Here, the
linkyx constraints ensure that z;; can only be positive if y; = ¢, and the minrun
constraints make production last the required minimum length. The statements
in lines 21 and 22 define a branch-and-bound search with best-bound node selec-
tion, and branching on the most violated of the setup constraints, respectively.

5.3 Processing Network Design

This problem consists of designing a chemical processing network. In practice
one usually starts with a network that contains all the processing units and
connecting links that could eventually be built (i.e. a superstructure). The goal
is to select a subset of units that deliver the required outputs while minimizing
installation and processing costs. The discrete element of the problem is the
choice of units, and the continuous element comes in determining the volume of
flow between units. Let us consider the simplified superstructure in Fig. 7(a).
Unit 1 receives raw material, and units 4, 5 and 6 generate finished products. The
output of unit 1 is then processed by unit 2 and/or 3, and their outputs undergo
further processing. For the purposes of this example, we will concentrate on the
selection of units, which is amenable to the following type of logical reasoning. Let
the propositional variable y; be true when unit 4 is installed and false otherwise.
From Fig. 7(a), it is clearly useless to install unit 1 unless one installs unit
2 or unit 3. This condition can be written as y1 = (y2 V y3). Other rules of
this kind can be derived in a similar way. SIMPL can take advantage of the
presence of such rules in three ways; it can relax logical propositions into linear
constraints; it can use the propositions individually as two-way link constraints
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(see Sect. 5.2); and it can use the propositions collectively with an inference
algorithm to deduce stronger facts. The piece of code in Fig. 7(b) shows how
one would group this collection of logical propositions as a constraint in SIMPL.
In addition to the known RELAXATION statement, this example introduces an
INFERENCE statement whose role is to attach an inference algorithm (resolution)
to the given group of constraints. This algorithm will be invoked in the pre-
relaxation inference step, as described in Sect. 4.4. Newly inferred resolvents can
be added to the problem relaxations and may help the solution process.

5.4 Benders Decomposition

Recall from Sect. 4.3 that Benders decomposition is a special case of SIMPL’s
search mechanism. Syntatically, to implement Benders decomposition the user
only needs to include the keyword MASTER in the RELAXATION statement of each
constraint that is meant to be part of the master problem (remaining constraints
go to the subproblem), and declare TYPE = {BENDERS} in the SEARCH section.
As is done for linear relaxations of global constraints, Benders cuts are generated
by an algorithm that resides inside each individual constraint. At present, we
are in the process of implementing the class Benders in the diagram of Fig. 1.

6 Other SIMPL Features

Supported Solvers. Currently, SIMPL can interface with CPLEX [23] and
LP_SOLVE [5] as LP solvers, and with ECL*PS® [35] as a CP solver. Adding
a new solver to SIMPL is an easy task and amounts to implementing an interface
to that solver’s callable library, as usual. The rest of the system does not need to
be changed or recompiled. One of the next steps in the development of SIMPL is
the inclusion of a solver to handle non-linear constraints.

Application Programming Interface. Although SIMPL is currently a purely
declarative language, it will eventually include more powerful (imperative) search
constructs, such as loops and conditional statements. Meanwhile, it is possible to
implement more elaborate algorithms that take advantage of SIMPL’s paradigm
via its Application Programming Interface (API). This API can be compiled
into any customized C++ code and works similarly to other callable libraries
available for commercial solvers like CPLEX or XPRESS [9].

Search Tree Visualization. Once a SIMPL model finishes running, it is possi-
ble to visualize the search tree by using Leipert’s VBC Tool package [26]. Nodes
in the tree are colored red, green, black and blue to mean, respectively, pruned
by infeasibility, pruned by local optimality, pruned by bound and branched on.
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7 Conclusions and Future Work

In this paper we introduce a system for dealing with integrated models called
SIMPL. The main contribution of SIMPL is to provide a user-friendly framework
that generalizes many of the ways of combining Constraint Programming (CP)
and Operations Research (OR) techniques when solving optimization problems.
Although there exist other general-purpose systems that offer some form of hy-
brid modeling and solver cooperation, they do not incorporate various important
features available in SIMPL.

The implementation of specialized hybrid algorithms can be a very cumber-
some task. It often involves getting acquainted with the specifics of more than
one type of solver (e.g. LP, CP, NLP), as well as a significant amount of com-
puter programming, which includes coordinating the exchange of information
among solvers. Clearly, a general purpose code is built at the expense of perfor-
mance. Rather than defeating state-of-the-art implementations of cooperative
approaches that are tailored to specific problems, SIMPL’s objective is to be
a generic and easy-to-use platform for the development and empirical evaluation
of new ideas in the field of hybrid CP-OR algorithms.

As SIMPL is still under development, many new features and improvements
to its functionality are the subject of ongoing efforts. Examples of such enhance-
ments are: increasing the vocabulary of the language with new types of con-
straints; augmenting the inference capabilities of the system with the generation
of cutting planes; broadening the application areas of the system by supporting
other types of solvers; and providing a more powerful control over search. Fi-
nally, SIMPL is currently being used to test integrated models for a few practical
optimization problems such as the lot-sizing problem of Sect. 5.2.
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Abstract. We propose a new solution approach for the Job Shop Prob-
lem with Sequence Dependent Setup Times (SDST-JSP). The problem
consists in scheduling jobs, each job being a set of elementary opera-
tions to be processed on different machines. The objective pursued is to
minimize the completion time of the set of operations. We investigate
a relaxation of the problem related to the traveling salesman problem
with time windows (TSPTW). Our approach is based on a Branch and
Bound procedure, including constraint propagation and using this relax-
ation. It compares favorably over the best available approaches from the
literature on a set of benchmark instances.

1 Introduction

In this work, we consider the Job Shop Problem with Sequence Dependent Setup
Times (SDST-JSP). The Job Shop Problem is used for modeling problems where
a set of jobs, consisting of a sequence of elementary operations to be executed
on distinct machines, has to be scheduled. This problem is widely investigated
in the literature and many efficient approaches exist for its resolution (see, e.g.,
Blazewicz et al. [5], Nowicki and Smutnicki [13] or Vaessens et al. [15]). The
SDST-JSP is a variant problem where machines have to be reconfigured be-
tween two successive operations. The most common objective is to minimize the
completion time of the set of operations, i.e., the so-called makespan.

The SDST-JSP is trivially NP-hard in the strong sense since it admits the
Job Shop Problem as a special case, which is also NP-hard in the strong sense.
However, despite its similarities with the Job Shop Problem, few works have been
devoted to its solution. Some heuristic solution approaches have been proposed
in the literature (Choi and Choi [8], Artigues and Buscaylet[3], Artigues et al [2]),
but no exact solution algorithm strictly addresses this problem. Actually, Brucker
and Thiele [6] describe a Branch and Bound algorithm for the General-Shop
Problem (GSP), which admits the SDST-JSP as a special case. Also, Focacci
et al. [9] propose a Branch and Bound scheme for a variant problem where the
machines used for operations are not fixed but to be chosen in a given subset.

J.-C. Régin and M. Rueher (Eds.): GPAIOR 2004, LNCS 3011, pp. 3749, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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In this paper, we also propose a Branch and Bound procedure using constraint
propagation techniques. A relaxation is introduced, based on the search of fea-
sible solutions for Traveling Salesman Problem with Time Windows (TSPTW)
instances. Note that our approach presents many similarities with Focacci et
al. [9]’s one, except that Focacci et al. [9] prefer to relax subtour constraints and
tackle assignment problems. Indeed assignment problems can be solved in poly-
nomial time, while the TSPTW is NP-hard in the strong sense. The assignment
problem relaxation is embedded into a global constraint associated with a re-
duced cost-based filtering algorithm. In our algorithm the TSPTW is considered
without relaxation but a long term memory is introduced for limiting comput-
ing times. It memorizes TSPTW instances solved throughout the search tree and
permit the quick obtaining of feasible solutions in many cases. The relaxation
is used to compute an initial lower bound and to test feasibility at the nodes of
the search in a dichotomy framework, but it does not provide additional domain
filtering.

The problem and the model used are described in section 2. Section 3 then
presents the backbone of the algorithm, i.e., the Branch and Bound scheme. The
relaxation is described in section 4. Numerical experiments conclude the paper
in section 5.

2 Presentation and Mathematical Formulation
for the SDST-JSP

We consider a set J = {Ji,...,Jn} of n jobs. Jobs have to be processed on
aset M = {My,...,Mp} of m resources (machines). Each job is made up
of m operations Ui, ..., 0O;m, to be processed in this order, without overlapping

or preemption. The set of all operations is noted O and its size is N = n X
m. Operation O;; € O requires machine m;; € M and necessitates processing
time p;; > 0. Machines admit at most one operation at a time.

A set of setup types o is defined, with a matrix (|o| + 1} x (|o]) of setup
times noted s. To each operation O;; is associated setup type gi; € 0. A setup
time sy, is then necessary between two consecutive operations O;; and Ok
on the same machine. Also, an initial setup times sqo,; is necessary if O;; is the
first operation on machine m;;. Finally, we assume that setup times satisfy the
triangle inequality.

The objective pursued in this work is the minimization of the makespan, that
is the completion time of the last operation processed, even if other objectives
could have been considered.

A solution of the SDST-JSP can be represented with the help of the so-
called job and machine Gantt’s diagrams. An example of such diagrams is given
in figure 1 for some instance of the SDST-JSP with 3 jobs and 3 machines.

On these diagrams, we represent setup times with hatched rectangles. Full
rectangles stand for idle times. The two diagrams respectively represent a solu-
tion from both machine and job views.
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Machine Gantt’s diagram

'
Ms | Mi |
T »v. [ "W M [

Job Gantt’s diagram

Fig. 1. Gantt’s diagrams

Using the constraint programming framework, a simple model can easily be
proposed for the SDST-JSP. For each operation O;;, we introduce a variable S;;
indicating the starting time of the operation. A variable Cpqz is also introduced
to represent the value of the makespan. The model is then:

minimize Crmax (1)
subject to

CmazZSim + Dim (’l,=1,,TL) (2)
Sij +pij < Sigg+1) (Oij € 055 <m) (3)

(S‘L 2 Shl +phl + Scrhla'ij) or
(Sht 2 Sij + pij + Soi50n,) (Oij, Opi € O;miy; = mpy) (4)
Sij 2 Sooy; (045 € 0) (5)
Sij €N (Oij & O) (6)
Crmaz € N (M)

Constraints (2) state Cp,q5 as the makespan in optimal solutions. Constraints
(3) represent the precedence constraints between the successive operations of
the same job. Disjunctive constraints between operations processed on a same
machine are enforced with constraints (4). Setup times between operations on
a same machine appear in these constraints, while initial setup times require
a last set of constraints (5).

A useful tool for the solution of scheduling problems is the so-called disjunc-
tive graph. This graph provides an efficient representation of the decisions, while
limiting the solution space. It is defined as follows.
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Let G = (X, U, E) be the disjunctive graph. The set of vertices X is made
up of the set of operations plus two dummy vertices representing the beginning
and the end of the schedule. Thus, X has n x m + 2 vertices. A set of arcs U
and a set of edges E are defined. Arcs in U represent precedence constraints
between operations and are called conjunctive arcs. They are weighted with the
processing time of the origin vertex of the arc. Edges in E represent disjunctive
constraints between operations on a same machine and are called disjunctive
arcs. Actually, disjunctive arcs can be interpreted as the union of two exclusive
arcs with opposite directions.

By definition, a selection is a state of the disjunctive graph where a direction
is chosen for some disjunctive arcs. A selection is said to be complete when every
arc has a direction. A complete selection coresponds to a unique semi-active
schedule if the resulting graph is acyclic. Once they are directed, disjunctive
arcs are weighted with the sum of the processing time of the origin vertex of the
arc plus the setup time required between the origin and the destination vertices.
Minimizing the makespan then reduces to the search of the longest path in
the graph, the makespan being the length of such a path. Hence, the SDST-
JSP reduces exactly to the problem of finding a complete acyclic selection for
which the longest path is minimum. This standpoint relies on the property that
it is possible to consider only semi-active scheduling, that is scheduling where
operations are started as soon as possible (when disjunctive and conjunctive
constraints are satisfied), to find an optimal solution. An example of a disjunctive
graph is presented in figure 2.

Machine m,,

Fig. 2. Disjunctive graph for the SDST-JSP
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3 Branch and Bound Scheme

The Branch and Bound technique is an approach based on a non-exhaustive
enumeration of the solutions of a problem. Two main features of the technique are
the branching scheme and the bounding scheme. Branching replaces a problem
(represented by a node of the search tree) with several new problems of reduced
sizes (included in the tree as descendant nodes). Bounding permits the pruning
of nodes for which it appears that the associated problems do not contain any
optimal solution.

Our algorithm is based on a Branch and Bound embedded in a dichotomy
framework, the Branch and Bound being limited to the search of a feasible
solution. An initial lower bound LB is obtained by the relaxation of precedence
constraints (3) - see section 4 for details. An initial upper bound UB is obtained
using an existing heuristic solution approach. At each step of the dichotomy
a value L is chosen in the interval [LB, UB] that sets an upper limit for Cpqz.
Depending whether a solution is found or not using the Branch and Bound,
UB is fixed to the value of this solution or LB is fixed to L and the algorithm
iterates.

In the following subsections, we focus on the Branch and Bound algorithm
implemented in the dichotomy framework.

3.1 Branching Scheme

Brucker and Thiele [6] base their branching scheme for the solution of the Gen-
eral Shop Problem on the disjunctive graph. Branching corresponds to choosing
a direction for a disjunctive arc, until a complete selection is obtained.

We also base our branching on the disjunctive graph, but choosing a machine
randomly and then the operations to be assigned on this machine. Each node
of the search tree then provides a partial selection, where the direction of every
disjunctive arcs issued from the chosen operation is fixed. The operations are
taken in the increasing order of earliest start times and, in case of a tie, in
the increasing order of latest finishing time. In our implementation, the selected
machine is scheduled entirely before selecting the next one.

3.2 Constraint Propagation

The main objective of constraint propagation is to determine disjunctive arcs for
which a single direction is met in every feasible solutions (issued from the current
node of the search tree). Indeed, propagation will permit to drop from decision
variable domains values leading to unfeasible solutions. We perform propagation
using the following filtering algorithms, that are detailed in Baptiste et al. [4].

Precedence Constraints. Each node of the search tree corresponds to a partial
selection in the disjunctive graph G = (V, U, E), where U is the set of conjunctive
arcs and disjunctive arcs for which a direction has been chosen. Consistency is
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Fig. 3. Disjunctive constraints

ensured at the bounds of the domains of variables S;; (with Oz; € O) using
constraints Si,j, > Sij, + Wiyjyizjs (Oiggis Oiggs) € U, where w;,j, 4,5, 18 the
weight of the arc in the graph. This propagation is performed by computing
longest paths in (V, U).

Disjunctive Constraints. Using domains of variables S;; (with Oy € O)
and disjunctive constraints between operations on a same machine, it might be
possible to deduce that an operation is necessarily processed before another one.
Such a deduction corresponds to setting a direction of a disjunctive arc in the
disjunctive graph.

For every operation O;; € O, we respectively note ES;;, LS;;, EF;; and LF;;
the earliest starting time, latest starting time, earliest finishing time and latest
finishing time of the operation, that are directly deduced from S;;. Let O;;
and Op; be two operations requiring the same machine. If EFp; + Sop0:; >
LS;5, On can not be processed before O;;. This possibility is illustrated on
figure 3, where $85,,0,; = 5.

Propagation is activated as soon as the bounds of the domain of a variable S;;
are changed, for all the operations requiring the same machine ;.

Edge Finding. This propagation scheme is a generalization of the preceding
one. It permits to determine that an operation has to be processed before or
after a set of other operations using the same machine. This propagation scheme
is illustrated on figure 4, where operation O1; has to be processed after opera-
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Fig. 4. Edge Finding

tions Og2 and Os;, which cannot be deduced using the preceding propagation
scheme.

It is worth mentioning that setup times penalize the effectiveness of this
scheme. Indeed, while estimating the finishing time of a set of operations, the
last operation of the set is not known and the setup time considered after the
last operation of the set is the minimum setup time among all the operations
of the set. Hence, some extensions of edge finding have been proposed [6, 16].
However, the classical version of edge finding ignoring setup times is considered
in this study.

4 TSPTW Relaxation

In this section, we describe the TSPTW relaxation used to compute an initial
lower bound and, at the nodes of the dichotomizing search, for pruning as soon
as unfeasibility is detected. This is performed through the relaxation of the
precedence constraints in the model (1-7) of section 2. The new problem then
decomposes into several TSPTWs.

The TSPTW consists in finding a route visiting one and only one time each
vertex of a graph with a minimum cost, a travel cost being associated with the
arcs of the graph. The visit of customers (vertices) is constrained to take place
within given time windows. In the context of the SDST-JSP, customers stand
for operations.

When relaxing precedence constraints in the model (1)-(7), m independent
TSPTW instances appear, one for each machine. In the disjunctive graph, this
relaxation is characterized by the elimination of the conjunctive arcs and by the
appearance of m connected components. Hence, noting TSPTW; (k= 1,...,m)
the TSPTW instance associated to machine k, finding k such that TSPTWj is
unfeasible ensures that the current selection admits no feasible solution.

Figure 5 provides an example of this relaxation scheme with 3 jobs and 3
machines (where arcs issued from vertex O are omitted)
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SDST-JSP

Fig. 5. Relaxation of the SDST-JSP into lm TSPTWs

For every k in {1,...,m}, we address the solution of TSPTWj with the
following model. Let O C O be the subset of operations to be considered in
subproblem T'SPTW}, (operations on machine My). Variables S;; of model (1)-
(7)are used for operations O;; € O. Note that the domain of these variables is
reduced through the branching decisions and the constraint propagation, which
corresponds to time windows. We introduce a new variable Tour for the objec-
tive function.

minimize Toury (8)

subject to
Tourk > Si; + pij (Os5 € Ok) 9)
Sij > S00y; (Oij € Ok) (10)

Sij 2 Shi+ Pri + Sopoy;
or Sy, > Sij + Dij + Soijom (Oij,Ohl S Ok;mi]‘ = mp = Mg) (11)
Si; €N (Oij € 0) (12)
Toury € N (13)

Before running the dichotomy, all T'S PT'W;, are solved to optimality to com-
pute a lower bound equal to the greatest optimal solution among the m problems.
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At each node of the dichotomizing search, a feasible solution for each T'SPTW, is
searched for using a commercial constraint programming package. In our imple-
mentation, each TSPTW is solved in turn as a one-machine scheduling problem
with sequence-dependent setup times, release dates and deadlines. The disjunc-
tive constraint and edge finding are set. A second dichotomizing binary search
is used, as described in the chapter 7 of [12].

As soon as a k is found such that T'SPTWj, is unfeasible, the node is pruned.
Otherwise, branching occurs and the search continues.

The main drawback using this relaxation is for computing time. It might
be detrimental to solve m TSPTW at each node of the search tree, even if it
provides a strong tool for pruning. In order to limit this drawback, we propose
to memorize solutions of TS PTW), obtained so far during the search. Indeed,
one might have to solve instances of the TSPTW for which only some time
windows have changed and for which sequences of customers previously found
feasible might still be feasible.

Each time a solution is found, the ordered sequence of visited customers
is memorized as a word in a dictionary. Then, when solving a TSPTWy, the
dictionary associated to machine My is first scanned to determine whether one
of the sequences memorized is feasible for the current instance. If not, constraint
programming is applied as explained above.

For each subproblem 7'SPTWy, the dictionary is defined as a forest, as il-
lustrated in figure 6. On this example, the dictionary contains sequences Jz <
Ji = Jo < Jy, J3<J1 <Jg < Jyand J3 < Jo < Jg < J1. This structure is
convenient as well for adding new words than for checking words for feasibility.
For this last case especially, a simple depth first search can be implemented.
When nodes are attained, earliest arrival times are computed, which permits
to eventually backtrack. Hence, sequences beginning with the same unfeasible
subsequence can be discarded simultaneously.

5 Computational Results

In this section, we present computational experiments conducted to evaluate
the quality of our approach. For this purpose, we use benchmark instances from
Brucker and Thiele [6]. These instances are issued from the classical Adams
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Table 1. Bound value at the root of the search tree for instances 5 x 10 x 5

Instance| BT96| LB |UB|
t2-ps01 | 756 796|818
£2-ps02 | 705 |715/829)
| t2-ps03 | 658 |678782
t2-ps04 | 627 647|745
t2-ps05 | 653 |671|704

Table 2. Bound value at the root of the search tree for instances 5 x 15 x 5

Instance|BT96| LB | UB |[CPU LB
t2-ps06 | 986 | 996 {1026 1
t2-psO7 | 940 | 927 {1033| 0.9
t2-ps08 | 913 | 923 {1002 3
t2-ps09 | 1001 {1012{1060 19
t2-psl0 | 1008 [1018(1036] 141

et al’s [1] instances devoted to the Job Shop Problem, introducing setup. Each
instance is characterized by a number of machines, a number of jobs to be sched-
uled and a number of setup types for the operations. These three parameters
define a triplet with the format machines x jobs x type. Computational ex-
periments are realized on two sets of 5 x 10 x 5 and 5 x 15 x 5 instances. For
comparison purpose, we use also two large 5 x 20 x 10 instances.

Algorithms are implemented in C++ on a Pentium IV 2 GHz computer.
ILOG Scheduler 5.2 [12] and ILOG Solver 5.2 [11] are used for constraint prop-
agation and Branch and Bound.

Tables 1 and 2 compare the value of the bound we obtained at the root of
the tree with the value obtained by Brucker and Thiele [6], respectively for the
sets of 5 x 10 x 5 and 5 x 15 x 5 instances. Note that Brucker and Thiele [6]
compute a lower bound by relaxing the GSP into a one machine problem and
by using Jackson preemptive scheduling principle (JPS) and results from Carlier
and Pinson [7]. Columns of these tables indicate successively the name of the
instance, the value of Brucker and Thiele’s bound, the value of our bound and
an upper bound provided by Artigues et al. [2]. These two last values define
the initial interval for dichotomy. In table 2, the computing time of the lower
bound is given in seconds. These tables show that solving TSPTWs provide
better bounds than the approach of Brucker and Thiele [6] for most of the
instances. Although Focacci et al [9] do not explicitely provide a lower bound,
the Assignment Problem solved in [9] is a relaxation of the TSPTW considered
in the present paper and would consequently give a weaker (but faster) bound.
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Table 3. Makespan value for instances 5 x 10 x 5

Instance BT FNL ABF ABF*
Cmax|CPU (sec.)|Cmax|[CPU (sec.)|Cmax|CPU (sec.)
t2-ps01 | 798 502.1 798 >1800 798 522 1168.5
t2-ps02 | 784 157.8 T84 88.4 784 ol 14.8

t2-ps03 | 749 1897.7 749 144.2 749 47.8 111.7
t2-ps04 | 730 188.8 730 388.3 730 34.3 93.6

t2-ps05 | 691 770.1 691 30.4 691 30.2 136.7

Table 3 compare the value of the makespan computed with our approach
(ABF) with the value obtained by Brucker and Thiele [6] (BT) and Focacci et
al [9] (FNL) for the smallest instances. A time limit of 7200 seconds is set for
the computations for BT and ABF whereas a time limit of 1800 seconds is set
for FNL. Columns indicate the name of the instance and, for each approach,
the value obtained with the computing times. A last column ABF* indicates
computing times when dictionaries are not used to memorize TSPTW solutions.
Times are indicated in seconds. Times indicated for Brucker and Thiele [6]’s
results are obtained on a Sun 4/20 station. Times indicated for Focacci et al [6] s
results are obtained on a Pentium II 200 MHz. Proven optimal solutions are
indicated in bold. The table show that all 5 x 10 x 5 instances are solved by our
method in less than 500 seconds. The benefit of using the dictionary is clear.
The comparison with BT and FNL approaches is not easy according to the
considerable difference between the speeds of the computers. However, applying
factors of 3 and 10 for CPU time comparisons with FNL and BT, respectively,
our approach remains competitive.

Table 4 compare the results of our approach with BT on the 5 x 15 x 5
instances. The results of Focacci et al [9] are not available on these instances.
We also indicate the current value of the lower bound when the algorithm is
stopped, for our approach. For 5 x 15 x 5 instances, all the results from Brucker
and Thiele [6] are improved. Two new instances of this size are closed for the first
time (t2-ps10 and t2-ps07), with additional CPU time requirements for the latter
one. A comparison with BT is here even more difficult for two reasons. First,
it would be necessary to test the BT Branch and Bound on a recent computer.
Second, as shown in table 2 all upper bounds given in a few seconds by the fast
heuristic proposed in [2] are better than the ones provided by BT after 2 hours
of computation. Hence, a better heuristic should be used before running the BT
algorithm.

To compare our approach on large instances with the one of Brucker and
Thiele [6] and Focacci et al [9], we give in table 5 the results on the two SDST-
JSP 5 x 20 x 10 used in [9]. The limits of our approach is reached since after
2 hours the dichotomizing search is unable to increase the initial lower bound
displayed in column ABF/LB and does not improve the initial upper bound
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Table 4. Makespan and lower bound value for instances 5 x 15 x 5

Instance BT ABF

Cmax|CPU (sec.)| Cmax BInf | CPU (sec.)
t2-ps06 | 1056 7200 1026 996 7200
£2-ps07 [ 1087 [ 7200  [970 (970)|966 (970)|7200 (16650)
t2-ps08 | 1096 7200 1002 923 7200
t2-ps09 | 1119 7200 1060 1037 7200
t2-psl0 | 1058 7200 1018 1018 498

Table 5. Makespan and lower bound value for instances 5 x 20 x 10

Instance BT FNL ABF

Cmax|CPU (sec.)| LB |Cmax|CPU (sec.)|Cmax|CPU (sec.)| LB
t2-psl2 | 1528 7200  |1139] 1448 120 1319 7200 |1159
t2-psl3 | 1549 7200 |1250] 1658 120 1439 7200 |1250

displayed in column ABF/Cmax. However the initial upper bound is here again
surprisingly better than the results obtained by FNL and BT and the proposed
lower bound still improves the BT lower bound.

6 Conclusion

In this paper, we propose a new algorithm for the exact solution of the SDST-
JSP. The main framework of the algorithm is a Branch and Bound strategy
embedding constraint propagation at each node of the search tree. In order to
prune nodes effectively, we introduce a global constraint by relaxing precedence
constraints between operations. Filtering algorithm for this global constraint re-
duces to solving a TSPTW instance for each machine. The principle is to detect
infeasible TSPTW instances, indicating unfeasibility for the global problem as-
sociated to the current node of the search tree. In order to improve computing
time, we use a long term memory by storing feasible solutions of TSPTW in-
stances found so far. This permits to limit significantly the negative impact of
the global constraint on computing time.

This approach is competitive with the approaches of Brucker and Thiele [6]
and Focacci et al [9] and permits to close some new instances. Possible im-
provements in the future are the introduction of a Lagrangian relaxation type
penalization of the precedence constraints relaxed within the bounding scheme
and the implementation of more efficient algorithms for the solution of TSPTW
instances (as the ones proposed in Pesant et al. [14] or Focacci and Lodi [10]).
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Abstract. This paper addresses the question of selecting an algorithm
from a predefined set that will have the best performance on a scheduling
problem instance. Our goal is to reduce the expertise needed to apply
constraint technology. Therefore, we investigate simple rules that make
predictions based on limited problem instance knowledge. Our results
indicate that it is possible to achieve superior performance over choosing
the algorithm that performs best on average on the problem set. The
results hold over a variety of different run lengths and on different types
of scheduling problems and algorithms. We argue that low-knowledge
approaches are important in reducing expertise required to exploit opti-
mization technology.

1 Introduction

Using constraint technology still requires significant expertise. A critical area
of research if we are to achieve large scale adoption is the reduction of the skill
required to use the technology. In this paper, we adopt a low-knowledge approach
to automating algorithm selection for scheduling problems. Specifically, given an
overall time limit 7 to find the best solution possible to a problem instance, we
run a set of algorithms during a short “prediction” phase. Based on the quality
of the solutions returned by each algorithm, we choose one of the algorithms to
run for the remainder of 7. A low-knowledge approach is important in actually
reducing the expertise required rather than simply shifting it to another portion
of the algorithm selection process. Empirical analysis on two types of scheduling
problems, disjoint algorithm sets, and a range of time limits demonstrates that
such an approach consistently achieves performance no worse than choosing
the best pure algorithm and furthermore can achieve performance significantly
better.

The contributions of this paper are the introduction of a low-knowledge ap-
proach to algorithm selection, the demonstration that such an approach can
achieve performance better than the best pure algorithm, and the analysis of
the empirical results to characterize limits on the performance of any on-line
algorithm selection technique.

* This work has received support from Science Foundation Ireland under Grant
00/PI1.1/C075 and ILOG, SA.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 50-64, 2004.
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2 The Algorithm Selection Problem

The algorithm selection problem consists of choosing the best algorithm from
a predefined set to run on a problem instance [1]. In Al, the algorithm selection
problem has been addressed by building detailed, high-knowledge models of the
performance of algorithms on specific types of problems. Such models are gener-
ally limited to the problem classes and algorithms for which they were developed.
For example, Leyton-Brown et al. [2] have developed strong selection techniques
for combinatorial auction algorithms that take into account 35 problem features
based on four different representations. Other work applying machine learning
techniques to algorithm generation [3] and algorithm parameterization [4, 5, 6] is
also knowledge intensive, developing models specialized for particular problems
and/or search algorithms and algorithm components.

Our motivation for this work is to lessen the expertise necessary to use opti-
mization technology. While existing algorithm selection techniques have shown
impressive results, their knowledge-intensive nature means that domain and al-
gorithm expertise is necessary to develop the models. The overall requirement
for expertise has not been reduced: it has been shifted from algorithm selection
to predictive model building. It could still be argued that the expertise will have
been reduced if the predictive model can be applied to different types of prob-
lems. Unfortunately, so far, the performance of a predictive model tends to be
inversely proportional to its generality: while models accounting for over 99% of
the variance in search cost exist, they are not only algorithm and problem spe-
cific, but also problem instance specific [7]. While the model building approach
is general, the requirement for expertise remains: an in-depth study of the do-
main and of different problem representations is necessary to identify features
that are predictive of algorithm performance. To avoid shifting the expertise
to model building, we examine models that require no expertise to build. The
feature used for prediction is the solution quality over a short period of time.

The distinction between low- and high-knowledge (or knowledge-intensive)
approaches focuses on the number, specificity, and computational complexity
of the measurements of a problem instance required to build a model. A low-
knowledge approach has very few, inexpensive metrics, applicable to a very wide
range of algorithms and problem types. A high-knowledge approach has more
metrics, that are more expensive to compute, and are more specific to particular
problems and algorithms. This distinction is independent of the model build-
ing approach. In particular, sophisticated model building techniques based on
machine learning techniques are consistent with low-knowledge approaches.

3 On-Line Scenario and Prediction Techniques

We use the following on-line scenario: a problem instance is presented to
a scheduling system and that system has a fixed CPU time of T seconds to
return a solution. We assume that the system designer has been given a learning
set of problem instances at implementation time and that these instances are
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representative of the problems that will be later presented. We assume that there
exists a set of algorithms, A, that can be applied to the problems in question.
Algorithm selection may be done off-line by, for example, using the learning set
to identify the best pure algorithm overall and running that on each problem
instance. Alternatively, algorithm selection can be done on-line, choosing the
algorithm only after the problem instance is presented. In the latter case, the
time to make the selection must be taken into account. To quantify this, let ¢,
represent the prediction time and %, the subsequent time allocated to run the
chosen pure technique. It is required that T =, + ¢..

For the low-knowledge techniques investigated here, each pure algorithm,
a € A, is run for a fixed number of CPU seconds, ¢, on the problem instance.
The results of each run are then used to select the algorithm that will achieve
the best performance given the time remaining. We require that ¢, = |A] x t.
The learning set is used to identify ¢* which is the value of ¢ that leads to the
best system performance.

Three simple prediction rules each with three variations are investigated:

— peost - Selection is based on the cost of the best solution found by each
algorithm. The three variations are: pcost.min(t): the algorithm that has
found the minimum cost solution over all algorithms by time t is selected;
peost_mean(t): the algorithm with the minimum mean of the best solutions
(sampled at 10 second intervals) is selected; pcost-median(t): identical to
peost.mean(t) except the median is used in place of the mean.

— pslope - Selection is based on the change in the cost of the best solutions
found at 10 second intervals. The three variations are: pslope.min(t): the al-
gorithm that has the minimum slope between ¢—10 and ¢ seconds is selected,;
pslope_mean(t): the algorithm with minimum mean slope for each pair of
consecutive 10 second intervals is selected; pslope.median(t): identical to
pslope_mean(t) except the median is used in place of the mean.

— pextrap - Selection is based on the extrapolation of the current cost
and slope to a predicted cost at 7. As above, the three variations are:
pextrap_min(t): the best solutions for an algorithm at time ¢ and ¢ — 10 are
used to define a line which is used to extrapolate the cost at time 7; the al-
gorithm that has the minimum extrapolated cost is chosen; peztrap-mean(t)
the algorithm with the minimum mean extrapolated cost over each interval
of 10 seconds from 20 seconds to t seconds is selected; pextrap-median(t)
identical to pextrap-mean(t) except the median is used in place of the mean.

For all rules ties are broken by selecting the algorithm with the best mean so-
lution quality on the learning set at time 7. The sampling interval was arbitrarily
set to 10 seconds as it allowed time for a reasonable amount of search.

4 Initial Experiment

Our initial experiment divides a set of problem instances into a learning set
and a test set, uses the learning set toidentify ¢* for each prediction rule and
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variation, and then applies each rule variation using t, = |A| x ¢t* to the test
problems.

4.1 Problem Sets and Algorithms

Three sets of 20 x 20 job shop scheduling (JSP) problems are used. A total of
100 problem instances in each set were generated and 20 problems per set were
chosen as the learning set. The rest were placed in the test set. The problem sets
have different structure based on the generation of the activity durations.

— Rand: Durations are drawn randomly with uniform probability from the
interval [1, 99].

— MC: Durations are drawn randomly from a normal distribution. The distri-
butions for activities on different machines are independent. The durations
are, therefore, machine-correlated (MC).

— JC: Durations are drawn randomly from a normal distribution. The distri-
butions for different jobs are independent. Analogously to the MC set, these
problems are job-correlated (JC).

These different problem structures have been studied for flow-shop schedul-
ing [8] but not for job shop scheduling. They were chosen based on the intuition
that the different structures may differentially favor one pure algorithm and
therefore the algorithms would exhibit different relative performance on the dif-
ferent sets. Such a variation is necessary for on-line prediction to be useful: if
one algorithm dominates on all problems, the off-line selection of that algorithm
will be optimal.

Three pure algorithms are used. These were chosen out of a set of eight
algorithms because they have generally comparable behavior on the learning
set. The other techniques investigated performed much worse (sometimes by an
order of magnitude) on every problem. The three algorithms are:

— tabu-tsab: a sophisticated tabu search due to Nowicki & Smutnicki [9]. The
neighborhood is based on swapping pairs of adjacent activities on a subset
of a randomly selected critical path. An important aspect of tabu-tsab is the
use of an evolving set of the five best solutions found. Search returns to one
of these solutions and moves in a different direction after a fixed number
(1000 in our experiments) of iterations without improvement.

— texture: a constructive search technique using texture-based heuristics [10],
strong constraint propagation [11, 12], and bounded chronological backtrack-
ing. The bound on the backtracking follows the optimal, zero-knowledge
pattern of 1, 1, 2, 1, 1, 2, 4, ... [13]. The texture-based heuristic identi-
fies a resource and time point with maximum competition among the the
activities and chooses a pair of unordered activities, branching on the two
possible orders. The heuristic is randomized by specifying that the resource
and time point is chosen with uniform probability from the top 10% most
critical resources and time points.
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— settimes: a constructive search technique using the SetTimes heuristic [14],
the same propagation as texture, and slice-based search [15], a type of
discrepancy-based search. The heuristic chronologically builds a schedule by
examining all activities with minimal start time, breaking ties with minimal
end time, and then breaking further ties arbitrarily. The discrepancy bound
follows the pattern: 2, 4, 6, 8, .. ..

4.2 Experimental Details

For these experiments, the overall time limit, 7, is 1200 CPU seconds. Each
pure algorithm is run for 7 seconds with results being logged whenever a better
solution is found. This design lets us process the results to examine the effect of
different settings for the prediction time, t,, and different values for T < 1200.
As noted, the number of algorithms, |4|, is 3.

To evaluate the prediction rules, we process the data as follows. Given a pure
algorithm time of ¢ = ¢,/|A]| seconds, we examine the best makespans found by
each algorithm on problem instance k up to ¢ seconds. Based on the prediction
rule, one algorithm, a*, is chosen. We then examine the best makespan found
by a*for kat t-+ ¢ where t, =T —t x |A|. This evaluation means that we are
assuming that each pure algorithm can be run for ¢ CPU seconds, one can be
chosen, and that chosen one can continue from where it left off.

4.3 Results

Learning Set. Table 1 displays the fraction of learning problems in each subset
and overall for which each algorithm found the best solution. It also shows the
mean relative error (MRE), a measure of the mean extent to which an algorithm
finds solutions worse than the best known solutions. MRE is defined as follows:

cla,k)—c"(k
MRE(a,K) = Drer 255 Q)

K|

Where:

— K is a set of problem instances
— ¢(a, k) is the lowest cost solution found by algorithm a on &
— ¢*(k) is the lowest cost solution known k.

Tabu-tsab finds the best solution for slightly more problems than texture and
produces the lowest MRE. These differences are slight as in 50% of the problems,
texture finds the best solution. As expected, there are significant differences
among the problems sets: while tabu-tsab clearly dominates in the MC problem
set, the results are more uniform for the random problem set and texture is
clearly superior in the JC set.

The best variation of each prediction rule are shown in Figure 1. This graph
presents the relative MRE (RMRE) found by the prediction rule as we varied the
prediction time, ¢t € {10,20,...,400}. The RMRE displayed for each prediction
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Table 1. Fraction of problems in each learning problem set for which the best solution
was found by each algorithm (Frac. Best) and their mean relative error (MRE)

MC Rand l JG All
Frac. Best| MRE ||Frac. Best| MRE ||Frac. Best| MRE ||[Best| MRE
|tabu-tsab 0.7 0.00365 0.6 0.00459 0.3 0.00688(/0.53]0.00504
texture 0.2 0.01504 0.4 0.00779 0.9 0.00092(| 0.5 |0.00792
settimes || 0.1 0.03752 0 0.03681 0.5 0.00826|| 0.2 {0.02753||

rule, p, is the MRE relative to the MRE of best pure algorithm, in this case
tabu-tsab, calculated as follows: RMRE(p(t)) = MRE(p(t))/ MRE(tabu-tsab).
Valuesbelow y = 1 represent performance better than the best pure algorithm.
For example, the RMRE for pextrap_mean(50) is 0.736: the MRE achieved by
the pextrap_mean rule att = 50 is 73.6% that achieved by tabu-tsab.

It is possible that the pure algorithms have such similar performance that
any prediction rule would perform well. Therefore, two additional “straw men”
prediction rules are included in Figure 1: pcost-maz(t) and pcost.rand(t). The
algorithm whose best solution at ¢ is the maximum over all algorithms is cho-
sen in the former and a random algorithm is chosen in the latter. These two
techniques perform substantially worse than the real prediction rules, lending
support to the claim that the observed results are not due to a floor effect.

The best performance for each prediction rule is seen with pcost_min(110),
pslope_mean(50), and pextrap_mean(120). The differences between the MRE of
each prediction rule and tabu-tsab are not statistically significant.'

Test Set. Table 2 displays the fraction of the problems in the test set for which
each algorithm found the best solution (Fraction Best) and the MRE for each
pure algorithm and for the best variation and prediction time, ¢*, of each pre-
diction rule. On the basis of the fraction of best solutions, all prediction rules
are worse than the best pure algorithm (texture) however none of these differ-
ences are statistically significant. Based on MRE, while tabu-tsab and texture
are very closely matched, settimes performs significantly worse and each predic-
tion rule performs better than each pure algorithm. Statistically, however, only
pcost_min(110) achieves performance that is significantly better than the best
pure algorithm. In fact, pcost_min(t) is robust to changes in ¢ as a difference at
the same level of significance is found for all ¢ € {80;...,260}.

A Static Prediction Technique. The existence of widely differing pure al-
gorithm performance on the different problem subsets (Table 1) suggests that a
high-knowledge, static prediction technique could be built based on categorizing
a problem instance into one of the subsets and then using the algorithm that

! All statistical results in this paper are measured using a randomized paired-t test [16]
and a significance level of p < 0.005.
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Fig. 1. The performance of the best variation of each prediction rule at prediction
time ¢ € {10, 20, ...,400} on the JSP learning set. The graph shows the MRE relative
to the MRE achieved by the best pure algorithm, tabu-tsab

performed best on that subset in the learning phase. The static prediction tech-
nique uses texture on the JC problems and tabu-tsab on the other two sets. The
results for static presented in Table 2 make two strong assumptions: the mapping
of a problem instance to a subset is both infallible and takes no CPU time. These
assumptions both favor the static technique over the low-knowledge prediction
techniques. The results indicate that the static technique outperforms all the
other prediction techniques and the pure algorithms in terms of the fraction of
problems solved and does the same as pcost_min on MRE.

The static technique is knowledge-intensive: one has to know to look for
the specific duration structure before algorithm performance correlations can be
developed. Therefore, we are not interested specifically in the static technique. It
is included to demonstrate that a high-knowledge technique, even under idealized
assumptions, may not significantly out-perform a low-knowledge technique.

5 Investigations of Generality

Our initial experiment demonstrates that, at least for the problem sets, algo-
rithms, and time limit used, it is possible to use low-knowledge prediction and
simple rules to do algorithm selection. Furthermore pcost_min(t) achieves MRE
performance that is significantly better than the best pure algorithm and com-
parable to an idealized high-knowledge approach. A number of questions are
raised with respect to the generality of these results. How sensitive are the re-
sults to different choices of parameters such as the overall time limit? Can such
simple rules be successfully applied to other problems and algorithms? Can we
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Table 2. The performance of each pure algorithm and the prediction techniques on
the test set. ‘*’ indicates that the prediction technique achieved an MRE significantly
lower or found the best solution in a significantly higher fraction of problem instances
than the best pure algorithm. ‘f’ indicates that the static prediction technique found
the best solution in a significantly greater fraction of problems than pcost_min

|Algorithm t* |Fraction Best] MRE
tabu-tsab - 0.5125 0.00790

[[texture - 0.5458 0.00859

||settimes - 0.125 0.02776

pcost_min 110 0.5292 0.00474%*
pslope_mean || 50 0.5208 0.00726
pextrapmean||120 0.475 0.00577
[static [ - | 0.725%; [0.00460%]|

develop a characterization of the situations in which such methods are likely to
be successful? Can we evaluate the results of the prediction rules in an absolute
sense and therefore provide intuitions as to the likelihood that more sophisti-
cated prediction techniques may be able to improve upon them? In this section,
we will address these questions.

5.1 Other Time Limits

In all experiments presented above, the overall CPU time limit, 7, was 1200
seconds. Table 3 reports a series of experiments with T € {100,200, ...,1200}.
For each time limit, we repeated the experiment: ¢*, the prediction time with the
lowest MRE on the learning set for the best variation of each prediction rule, was
identified, each problem in the test set was solved with each prediction rule using
its ¢* value, and the MRE was compared against the best pure algorithm. There
were no significant differences between the MRE of the best pure technique and
those of the prediction rules across all the 7 values on the learning set. The
results for the test set are displayed in the final four columns. For time limits
500 < T < 1200, peost_min(t*) performs significantly better than the best pure
technique. For T = 100 the best pure technique (texture) has a significantly lower
MRE than pcost.min(t*) and pslope.min(t*). For T = 100, the static technique
is able to find significantly lower RMREs than pcost_min. No other time limits
showed any difference between static and pcost_min. These results indicate that
the results using 7 = 1200 are relatively robust to different 7' values

5.2 Other Problems

Earliness/tardiness scheduling problems (ETSPs) define a set of jobs to be sched-
uled on a set of resources such that each job has an associated due date and costs
associated with finishing the last activity in a job before or after that due date.
The activities within jobs are completely ordered and the resources can only
execute a single activity at any time. Three ETSP algorithms are used here:
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Table 3. The results of the best variations of the prediction rules relative to the best
pure technique for different run-time limits for the JSP problems. ‘*’ indicates that the
prediction rule achieved an RMRE significantly lower than the best pure algorithm, ‘t’
indicates that the best pure technique is significantly better than the prediction rule,
and ‘}’ indicates a time limit where static is significantly better than pcost_-min

Learning Set Test Set
Time| pcost pslope | pextrap | pcost |pslope [pextrap| static
Limit|RMRE| ¢* | RMRE| t"|[RMRE| t* RMRE

100 || 1.114 |20 1.139 |20 1.094 |20 |[1.1107[1.134%] 1.062 |0.821%}
200 || 1.138 |40 | 1.004 |30] 0.992 |30 || 1.001 | 1.103 | 0.990 | 0.793%
300 || 1.048 |60 | 0.967 |30] 0.935 |30 || 0.925 | 1.067 | 1.012 | 0.782*
400 || 0.969 |90 | 0.879 |30] 0.895 | 50 || 0.914 | 1.039 | 0.912 | 0.783%
500 || 0.849 |90 | 0.761 |30] 0.730 |50 ||0.814*| 1.043 | 0.920 | 0.776*
600 || 0.815 |110] 0.751 |50| 0.740 | 50 ||0.799*| 1.024 | 0.964 | 0.738%
700 || 0.824 [110] 0.683 [50] 0.683 |50 ||0.752*| 0.926 | 0.882 | 0.707*
800 || 0.772 |100| 0.668 |50| 0.668 | 50 ||0.683%| 0.921 | 0.877 | 0.689*
900 || 0.748 [110] 0.702 [30] 0.679 |120|[0.650*| 0.977 | 0.772 |0.660 *
1000 || 0.681 | 90 | 0.663 |50 0.646 |120||0.625%| 0.878 | 0.635 | 0.633*
[1100 || 0.680 |90 | 0.671 |50] 0.600 |120|[0.630%| 0.909 | 0.724 | 0.618*
[1200 || 0.754 [110] 0.736 [50] 0.642 |120[[0.600*%| 0.919 | 0.730 | 0.583*

— hls: a hybrid local search algorithm combining tabu search with linear pro-
gramming.

— mip: a pure mixed-integer programming approach using the default search
heuristics in CPLEX 7.2 with an emphasis on good solutions over optimal.

— probeplus: a probe-based algorithm combining linear programming and
constraint programming search.

Details of these algorithms, problems sets, and results can be found in Beck
& Refalo [17].

We divided the 90 ETSP problems into a learning set of 36 problems and
a test set of 54 problems. The experimental design is identical to our first exper-
iment. In particular, the overall time, 7 = 1200, and the number of algorithms,
|A] = 3.

Instead of makespan minimization, the optimization criteria on ETSPs is
the minimization of weighted earliness/tardiness cost. It is possible for problems
to have a optimal cost of 0 and a number of the easier problem instances do.
Therefore, MRE is not well-formed as it would require a division by 0. Instead,
we calculate the normalized cost (NC) for each problem and use the mean nor-
malized cost (MNC) as one of our evaluation criteria. NC is commonly used in
work that has applied genetic algorithms to ETSPs [18]. In that literature, the
cost of a solution is divided by the sum of the durations of all activities in the
problem weighted by the earliness/tardiness cost of each job. In our problems,
the earliness and tardiness weights for a single job are independent. Therefore,
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Fig. 2. The performance of the best variations of the three prediction rules at different
prediction times on the ETSP learning set. The graph plots the mean normalized costs
of each rule at each ¢ value relative to the mean normalized cost achieved by the best
pure algorithm

we have modified this normalization to weight the duration sum with the mean
of the two cost weights. The NC for algorithm a on problem instance & is

c(a, k)

EjGJobs(k)(SEJT—CL X D e Job; durg)

NC(a, k) = 2)

Where:

— c(a, k) is the lowest cost for algorithm a on problem instance &k

— Jobs(k) is the set of jobs in problem instance k

— Job; is the set of activities in job j

— ec; and tc; are respectively the earliness and tardiness costs for job j

Figure 2 presents the MNC of the three best prediction rule variations (rela-
tive to the best pure technique, hls for the learning set) with ¢ € {20, 30, .. .,400}.
The plot is analogous to Figure 1. For each prediction rule the “min” variations
results in the best performance with the following t* values:pcost_min(160),
pslope_min(160), and pextrap_min(170). As with the JSP problem set, how-
ever, none of these results are significantly different from those found by hls on
the learning set.

Table 4 presents the fraction of the test problems for which each pure and
prediction-based technique found the best solution and the MNC over all prob-
lem instances in the test set. The prediction rules perform very well on both
measures. However, none of them achieve performance on either measure that
is significantly different from the best pure technique. The pure technique that
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Table 4. The mean normalized cost (MNC) for each pure technique and the best pre-
diction rules on the ETSP test set. None of the prediction rules achieve a significantly
different MNC or fraction best than the best pure technique

Algorithm t* |Fraction Best| MNC

mip - 0.4259 0.02571
hls il - 0.6481 0.02908
probeplus ] - 0.5 0.02645

pcost_min  ||160 0.6296 0.01721
pslope_min ||160 0.7407 0.01753
|pextrap_min||170 0.6667 0.01825

achieves the best solution on the highest number of problem instances (hls) is
worst on the basis of MNC. The reverse is also true, as mip finds the lowest
MNC but finds the best solution on the fewest number of instances.

5.3 Characterizations of Prediction Techniques

Clearly, two interacting factors determine the performance of the prediction rules
tested in this paper and, indeed, any on-line prediction technique: the accuracy
of prediction and the computation time required to make the prediction.

We expect prediction accuracy to increase as t, is increased since more com-
putation time will result in better data regarding algorithm performance. Fur-
thermore, since we have a fixed time limit, the larger {,, the closer it is to this
time limit and the less far into the future we are required to predict. To evaluate
the data underlying the accuracy of predictions for the pcost rule, in Figure 3 we
present the mean Spearman’s rank correlation coefficient between ¢ and t + ¢
for the learning sets of both the JSP and the ETSP problems. For a problem
instance, k, and prediction time, ¢, we rank each of the pure algorithms in as-
cending order of the best makespan found by time t. We then create the same
ranking at time t 4 ¢, the total run-time of the chosen algorithm. The corre-
lation between these rankings is calculated using Spearman’s rank correlation
coefficient and the mean coefficient over all the problems in the set is plotted. It
is reasonable to expect that the accuracy of pcost.min(t) depends on the extent
to which the algorithm ranking at time £ is correlated with that at t + t.. We
can see in the graph that the lower the value of ¢, the lower the correlation and,
therefore, the lower the accuracy of the predictions. Both from the graph and
from the reasoning above, to achieve a greater accuracy, prediction should be as
late as possible.

For t = 10 the JSP rankings are negatively correlated. The appropriate
heuristic for choosing a pure algorithm at ¢ = 10 is to choose the algorithm whose
best makespan is largest. This is exactly pcost-maxz(t) plotted in Figure 1 and
in that graph, pcost_max (10) does indeed perform better than pcost_min(10).

The second factor is the time required to measure the instance and make
the prediction. In an on-line context, more time spent predicting means less
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Fig. 3. The mean Spearman’s rank correlation coefficient between rankings of the
pure algorithms at prediction time, ¢, and ¢ + ¢, for problems in the JSP learning set
and the ETSP learning set

spent solving the problem with the chosen algorithm. If 7 = 1200 and |A| = 3,
then ¢t = 200 means that 600 seconds have expired when the algorithm choice
is made. Only 600 additional seconds are available to run the chosen algorithm.
This has a large implication for performance of prediction-based techniques. This
is illustrated in Figure 4. The pperf(t) plot is the MRE of a perfect prediction
on the test set. For example, for ¢ = 200, the effective run time of the chosen
technique is 800 seconds: 200 seconds during the prediction phase and then the
remaining 600 seconds. The perfect MRE for ¢ = 200 therefore is found using the
lowest makespan found by any pure technique by time 800 and calculating the
error compared to the best known makespan. When ¢ is very small, the MRE
of pperf(t) is very small too. This reflects the fact that the pure algorithms
do not find large improvements extremely late in the run. As the ¢ increases
however, the best case MRE increases: the time used in prediction instead of
solving results in worse performance even with perfect prediction.

These graphs demonstrate the trade-off inherent for any on-line prediction
technique: for accuracy the prediction time should be as late as possible but to
allow time for the pure algorithm to run after it is chosen, it should be as early
as possible. While the correlation graph presents data specific to a prediction
rule used in this paper, we expect a similar graph of accuracy vs. the prediction
time for all prediction techniques. The perfect prediction graphs clearly have a
general interpretation since, by definition, no prediction technique can achieve
better performance.
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Fig. 4. The MRE on the JSP test set for pcost-min(t) and when we assume perfect
prediction

6 Discussion

We have shown that low-knowledge metrics of pure algorithm behavior can be
used to form a system that performs as well, and sometimes better, than the
best pure algorithm. If our goal was to win the algorithmic “track meet” and
publish better results, our results are not spectacular. However, our goal was
not to build a better algorithm through applying our expertise. Our goal was to
exploit existing techniques with minimal expertise. From that perspective, the
fact that applying simple rules to an instance-specific prediction phase is able to
outperform the best pure algorithm is significant. We believe this study serves
as a proof-of-concept of low-knowledge approaches and indicates that they are
an important area of study in their own right.

Beyond the importance of low-knowledge approaches to reduce expertise,
a prosaic reason to develop these approaches is that they can provide guid-
ance in deciding whether the effort and expense of applying human expertise is
worthwhile. Figure 3 shows that at a prediction time of { = 100 the mean r-
value for pcost.min(t) on the JSP learning set is 0.543. This is a relatively low
correlation, providing support for the idea that a more informed approach can
significantly increase prediction accuracy. On the other hand, if we expected the
on-line computation required for a high-knowledge approach to take more time
(e.g., t = 250), the return on an investment in a high-knowledge approach seems
less likely: the mean r-value is 0.775 so there is less room for improvement in pre-
diction accuracy. Similarly, Figure 4 shows that at a prediction time of £ = 100
the MRE of pcost_min on the JSP test set is 0.0046. Based on the pperf(t) plot,
any predictive approach can only reduce this MRE to 0.0013. Is the development
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of a high-knowledge model worth the maximum theoretical reduction in MRE
from 0.46% to 0.13%? In high cost domains (e.g., airline scheduling) such an
effort would be worthwhile. In other domains (e.g., a manufacturing plant with
uncertainty) such a difference is irrelevant. The results of easy to implement
low-knowledge techniques can therefore guide the system development effort in
the more efficient allocation of resources.

7 Future Work

We intend to pursue two areas of future work. The first, directly motivated by
existing high-knowledge approaches, is the application of machine learning tech-
niques to low-knowledge algorithm selection. The variety of features that these
techniques can work with will be much more limited, but we expect that better
grounded techniques can improve prediction accuracy and system performance
over the simple rules. The second area for future work is to move from “one-
shot” algorithm selection to on-line control of multiple algorithms. The decision
making could be extended to allow the ability to dynamically switch among pure
algorithms based on algorithm behavior.

Another consideration is the types of problems that are appropriate for pre-
diction techniques or control-level reasoning. A real system is typically faced
with a series of changing problems to solve: a scheduling problem gradually
changes as new orders arrive and existing orders are completed. As the problem
or algorithm characteristics change, prediction-based techniques may have the
flexibility to appropriately change the pure algorithms that are applied.

8 Conclusion

We have shown that a low-knowledge approach based on simple rules can be used
to select a pure algorithm for a given problem instance and that these rules can
lead to performance that is as good, and sometimes better, than the best pure
algorithm. We have argued that while we expect high-knowledge approaches will
result in better performance, low-knowledge techniques are important from the
perspective of reducing the expertise required to use optimization technology
and have a useful role in guiding the expert in deciding when high-knowledge
approaches are likely to be worthwhile.
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Abstract. We define the Same and UsedBy constraints. UsedBy takes two sets
of variables X and Z such that |X| > |Z| and assigns values to them such that
the multiset of values assigned to the variables in Z is contained in the multiset
of values assigned to the variables in X. Same is the special case of UsedBy in
which |X| = |Z]. In this paper we show algorithms that achieve arc consistency
and bound consistency for the Same constraint and in its extended version we
generalize them for the UsedBy constraint.

1 Introduction

As a motivating example, we consider simple scheduling problems of the following
type. The organization Doctors Without Borders [8] has a list of doctors and a list of
nurses, each of whom volunteered to go on one rescue mission in the next year. Each
volunteer specifies a list of possible dates and each mission should include one doctor
and one nurse. The task is to produce a list of pairs such that each pair includes a doctor
and a nurse who are available on the same date and each volunteer appears in exactly
one pair. Since the list of potential rescue missions at any given date is infinite, it does
not matter how the doctor-nurse pairs are distributed among the different dates.

We model such a problem by the Same(X = {x1,...,x},Z={z1,...,2x}) constraint
which is defined on two sets X and Z of distinct variables such that |X| = |Z| and each
v € X UZ has a domain D(v). A solution is an assignment of values to the variables
such that the value assigned to each variable belongs to its domain and the multiset of
values assigned to the variables of X is identical to the multiset of values assigned to
the variables of Z.

This problem can be generalized to the case in which there are more nurses than
doctors and the task is to create a list of pairs as above, with the requirement that every
doctor appears in exactly one pair and every nurse in at most one pair (naturally, not all
of the nurses will be paired). For this version we use the general case of the UsedBy(X =
{x1,..-,xn},Z = {21,...,2m}) constraint where |X| =n > m = |Z] and a solution is an
assignment of values to the variables such that the multiset of values assigned to the
variables of Z is contained in the multiset of values assigned to the variables of X.

In this paper we show filtering algorithms for the Same constraint and in the full
version [1] we generalize them to solve the UsedBy constraint. Let Y be the union of
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the domains of the variables in X UZ and letn’ = |Y'|. The arc consistency algorithms run
in time O(n?n’) and the bound consistency algorithms in time O(n’cy(n’,n’) + nlogn),
where o is the inverse of Ackermann’s function'.

The general approach we take resembles the flow-based filtering algorithms for the
AllDifferent [5, 6] and Global Cardinality (GCC) [4, 7] constraints: We construct a bi-
partite variable-value graph, find a single solution in it and compute the strongly con-
nected components (SCCs) of the residual graph. We show that an edge is consistent iff
both of its endpoints are in the same SCC.

The main difference compared to the previous constraints that were solved by the
flow-based approach is that we now have three sets of nodes. One set for each set of
variables and a third set for the values. This significantly complicates the bound con-
sistency algorithms, in particular the SCC computation compared to the corresponding
stage in the AllDifferent and GCC cases. Our contribution is therefore not only in pro-
viding a solution to these constraints but also in showing that the ideas that appear in
the previous algorithms can be extended to much more complex variable-value graphs.

In Section 2 we define the variable-value graph for the Same constraint and charac-
terize the solutions to the constraint in terms of subsets of the edges in this graph. In
Section 3 we show the arc consistency algorithm and in Section 4 we show the bound
consistency algorithm. Source code for the bound consistency algorithm is available by
request from the authors.

2 The Same Constraint

We represent the Same constraint as a bipartite graph B = (X UZ,Y,E), which we call
the variable-value graph, where E = {{v,y}|[v€ XUZ Ay € Y Ay € Dom(v)}. That is,
the nodes on one side represent the variables and the nodes on the other represent the
values and every variable is connected by an edge to all values in its domain. We now
characterize the set of all solutions to the constraint in terms of subsets of edges of B.

Definition 1. Let M C E be a set of edges of B. For any node v € XUY UZ, let Ny(v)
be the set of nodes which are neighbors of vin B' = (X UZ,Y,M). We say that M is
a parity matching (PM) in B iff Vyexuz|Nu (v)| = 1and Vyey [Nu(y) N X | = [Ny (y) N Z).

Lemma 1. There is a one to one correspondence between the solutions to the Same
constraint and the PMs in B.

Proof. Given aPM M in B, we can construct the solution
Same({Ny(x1),...,Nor(xa) },{Nu(z1), ..., Nu(24) })-

Since |Np(v)| = 1 for all v € X UZ, all of the assignments are well defined. In addition,
for each edge (v, y) in B, and in particular in M, y € Dom(v). Finally, since |[Nap(y)NX| =
[Ny (y)NZ| for all y € Y, each value is assigned the same number of times to variables
of X and Z. Hence, the constraint is satisfied.

Given a solution Same({y(x1),...,¥(xx)},{¥(z1),...,¥(2x)}) where y(v) is the value

! For all practical purposes, &/(n’,n') can be regarded as a small constant.
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Table 1. Domains of the variables for our example

LJl[ D(xj) [D(z;)
{12} [{2.3
(3.4} [{4.5
{45.6Y{4.5})

| ba| —

assigned to v, define M = {{v,y}lv€ X UZ Ay = y{(v)}. Since y(v) € Dom(v) for all v,
we have M C E. Since y(v) is determined for all variables, [Ny(v)[ =1 for all v € XUZ
and since each y € Y appears the same number of times in {y(x1),...,y{(x»)} and in
{¥(z1)y--,¥(@z)})s [N () NX| = [Ny (y) N Z|, so Mis a PM. ]

In the next sections we show the filtering algorithms for Same, first arc consistency
and then bound consistency. We will illustrate them with the aid of the following exam-
ple, |X| = |Z| =3, |Y| = 6 and the domains of the variables of X UZ are as in Table 1.

3 Arc Consistency

Inspired by Régin [7], we convert the graph B into a capacitated and directed graph
B = (V,E), as follows. We direct the edges from X to Y and from Y to Z and assign
a capacity requirement of [0,1] to each of these edges. We add two nodes s and ¢, an
edge with capacity [1,1] from s to each v € X and from each v € Z to ¢ and an edge
with capacity [n,n] from ¢ to s (see Figure 1). A flow in B is feasible iff there is a flow
of value n on the arc from ¢ to s. This implies that one unit of flow goes through every
node in X UZ. By flow conservation, every node in Y is connected by edges that carry
flow to the same number of nodes from X and from Z. The correspondence between
PMs in B and feasible flows in B should be obvious.

The algorithm uses Ford and Fulkerson’s augmenting paths method to find a feasible
flow fin B. If there is no such flow it reports that the constraint is not satisfiable.
Otherwise, it removes the nodes s and ¢ and builds the residual graph Bf = (V¢,Ef)
where Vy=XUYUZ and Ef = EU{(v,u)|u,v € VA (u,v) € EA f(e) = 1}. That is,
all edges appear in their original orientation and the edges that carry flow appear also in

Fig. 1. The capacitated graph for the example in Table 1
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Fig. 2. A feasible flow in the graph of Figure 1 (left) and the corresponding residual graph (right)

reverse direction (see Figure 2). We now show that By can be used to determine which
of the edges of B are consistent.

Lemma 2. An edge e = (u,v) € By is consistent iffu and v belong to the same SCC.

Proof. Suppose that u and v are in the same SCC. Let M = {¢’|f(e') = 1} be the PM that
corresponds to the flow f. If e € M then e participates in the solution M and is therefore
consistent. Assume that e € M. Then there is a cycle P in By that uses e. Starting at any y
node on the cycle, number its nodes: yo,vg,y0,v0,..-,Yp—-1,Vp—1 Where y; €Y and v; €
XUZ forall 0 <i < p. Let M’ = M & P be the symmetric difference between the PM M
and the cycle P. Thatis, M’ = {e'|le’ e MNe' € PAe € MNP}. If we look aty; € P and
its two neighbors, we have four possibilities:If V(;_1) mod p»Vi € X OT V(i_1) mod psVi €Z
then in M’ each of V(i~1) mod p»¥i Temains matched and y; is matched with the same
number of nodes from each of X and Z as it was in M’.

The other two options are that v(;—1) modp € X and vi € Z 0rv(;_1) modp € Z and v; € X.
Then the edges (V(i_1) mod p,¥i) and (¥i,v;) are either both in M or both in M’. To see
that this is true, note that the cycle can only enter a node v € X by an edge in M and
leave it by an edge which is not in M. On the other hand, it can only enter a node
v € Z by an edge which is not in M and leave it by an edge in M. This implies that
either v(;_1) mod p € Z and v; € Xand both edges are in M or V(;_1) modp € X and v; €Z
and both edges are in M'. In either case y; either lost or gained a neighbor from each
of X and Z, so it is still matched with the same number of nodes from each of these sets.

Each of v(;_1) mod ps Vi is adjacent on P to one edge from M and one edge which is
not in M. Hence, in M’ it is still matched with exactly one y-node. We get that M’ is
a PM that contains e, so e is consistent.

It remains to show that an edge e which is not in an SCC of By (which implies
f(e) =0) is not consistent. Let Cj,...,C; be the SCCs of By. Since all edges in M
appear in both directions, any edge between two SCCs is not in M. For any node v, let
C(v) be the SCC that v belongs to and let Ej, = {{(u,v)|C(1) = C(v)} be the edges for
which both endpoints are in the same SCC. Assume that an edge e € E \ Ejy, is consistent
and let M’ be a PM such that e € M’. Consider the graph B} = (V 7, Ein UM"). That is,
B’f contains all edges within SCCs plus the edges between SCCs which are in M’. If
we shrink each SCC of B} into a single node, we get a DAG (directed acyclic graph).
Let D, be the connected component of this DAG which contains e and let C be a root
of D,, i.e., there are only outgoing edges from C. Let Ey, be thex — y edges and Ey, the
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xl x2 x3 zl z2 3

Fig. 3. The SCCs of the residual graph of Figure 2

y — z edges out of C. Since C is not an isolated node, |Ey,| -+ |Ey,| > 1. Let Yc be the set
of y nodes in the SCC represented by C. Then |M'(Yc)NX| = [M(Yc)NX|—|Ex| and
M'(Yc)NZ| = |M(Yc) N Z| + |Ey,|, contradicting the assumption that M’ is a PM. O

Figure 3 shows the SCCs of By for the example in Table 1. The nodes of each SCC
have a distinct shape and the inconsistent edges are dashed.

Let |E| denote the number of edges in B and recall thatn = |X| = |Z| and n’ = |Y]|.
Clearly, |E| = O(nn'). The running time of the algorithm is dominated by the time
required to find a flow, which is O(n|E|) = O(n?n') [3,7].

4 Bound Consistency

The bound consistency algorithm does the same as the arc consistency algorithm, but
achieves faster running time by exploiting the simpler structure of the graph B: As the
domain ofevery v € X UZ is an interval, B is convex, which means that the neighborhood
of every variable node is a consecutive sequence of value nodes. We will show that in
a convex graph we can find a PM intime O(n’ + nlogn) and compute the SCCs of the
residual graph in time O(n'a(n’,n’)).

4.1 Finding a Parity Matching

Figure 4 shows the algorithm for finding a PM in the graph B. It uses two priority
queues, P, for the nodes in X and P, for the nodes in Z. In both queues the nodes are
sorted by the upper endpoints of their domains.

For any v € X UZ, let D(v) and D(v) denote the lower and upper endpoints of D(v),
respectively. The algorithm traverses the value nodes from y; to y, and for each y;
inserts to the respective queue all variable nodes v € X UZ with D(v) = i. It then checks
whether there is a node in one of the queues (the node with minimum priority) whose
domain ends at i. If so, it tries to match this node and a node from the other queue
with y;. If the other queue is empty, it declares that there are no PMs in B. The PM
obtained by the algorithm for the example in Table 1 corresponds to the flow shown in
Figure 2.

Lemma 3. If there is a PM in B then the algorithm in Figure 4 finds one.
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(* Assumption: X and Z are sorted according to D. *)
Py « ] (* priority queue containing x nodes sorted by D *)
P, « [] (* priority queue containing z nodes sorted by D *)
j=0
fori=1to n'do
forall x; with D(x;) =ido P.Insert x
forall zj, with D(z,) =ido P,Insert gz,
(* Assume that MinPriority of an empty queue is e *)
while P MinPriority = { or P,.MinPriority = { do
if P..IsEmpty or P;.IsEmpty then report failure
Je=Jj+1
X + Py.ExtractMin; match x with y;
z « P, .ExtractMin; match z with y;
end while
endfor
if P, and P, are both empty then report success
else report failure

Fig. 4. Algorithm to find a parity matching in a convex graph

Proof. We show by induction on i that if there is a PM M then for all 0 < i < r/,
there is a PM M; in B which matches {y1,...,y;} with the same matching mates as the
algorithm.

For i = 0, the claim holds with My = M. For larger i, given a PM M, we can as-
sume by the induction hypothesis that there is a PM M;_ that matches the nodes in
{y1,--+,¥i-1} with the same matching mates as the algorithm. We show how to con-
struct M; from M;_1. As long as the matching mates of y; are not the same as the ones
determined by the algorithm, perform one of the following transformations:

If y; is matched with a pair x;,z; such that neither one of x; and z; was matched
with y; by the algorithm, then since x; and z; were not matched by the algorithm with
any of {y1,...,¥i—1}, they both remained in the queues after iteration i/, which implies
D(x;) > iand D(zg) > i. In M; we match both of them with yi41.

The other option is that the algorithm matched y; with a pair xj,zx which are not
both matched with y; in M;. Since the algorithm extracted them from the queues,
we know that at least one of them has upper domain endpoint equal to i. Assume
w.l.0.g. that D_()Cj) = i. Since M;—; agrees with the algorithm on the matching mates
of {y1,...,yi-1}, we get that in M;_y, x; is matched withy; and zx is matched with yy
for some i’ > i. Hence, there is some other node zy € Z which is matched with y; in M;_1
and which was matched by the algorithm with y; for some i > i. When the algorithm
extracted z; from the queue,zp was in the queue because it is a neighbor ofy;. Hence,
D(zy) > D(zx) so we can exchange z; and zy. That is, we can match z¢ with y; and zg
with yir.

Each time we apply one of the transformations above to M;_1, we decrease the num-
ber of differences between the set of matching mates of y; in M;-1 and in the matching
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generated by the first i iterations of the algorithm. So we can continue until we obtain
amatching M; that agrees with the algorithm on the matching mates of {y1,...,yi}. O

Lemma 4. Ifthe algorithm in Figure 4 reports success then it constructs a PM in B.

Proof. Ifthe algorithm reports success then Py and P, are empty at the end, which means
that all nodes in X UZ were extracted and matched with y nodes. In addition, since the
algorithm did not report failure during the extractions, whenever v € X UZ was matched
with y;, D(v) <i < D(v). For all 1 < i< n/,whenever y; is matched with some node
from X it is also matched with a node from Z, and vice versa. Hence, we get that the
matching that was constructed is a PM. O

4.2 Finding Strongly Connected Components

Having found a PM in B, which we can interpret as a flow in B, we next wish to find
the SCCs of By (cf. Figure 3). Mehlhorn and Thiel [5] gave an algorithm that does this
in the residual graph of the AllDifferent constraint in time O(n) plus the time required
for sorting the variables according to the lower endpoints of their domains. Katriel and
Thiel [4] enhanced this algorithm for the GCC constraint, in which a value node can be
matched with more than one variable node. For our graph, we need to construct a new
algorithm that can handle the distinction between the nodes in X and in Z and the more
involved structure of the graph.

As in [4, 5], the algorithm in Figure 6 begins with »’ initial components, each con-
taining anode y; € ¥ and its matching mates (if any). It then merges these components
into larger ones. While the algorithm used for the AllDifferent graph can do this in
one pass over the y nodes from yi,...,yy, our algorithm makes two such passes for
reasons that will be explained in the following. The first pass resembles the SCC algo-
rithm for the AllDifferent graph. It traverses the y nodes from y; to y,» and uses a stack
to merge components which are strongly connected and are adjacent to each other. It
maintains a list Comp of completed components and a stack CS of temporary compo-
nents. The components in both Comp and CS are not guaranteed to be SCCs of By.
They are strongly connected but may not be maximal. However, a component in Comp
is completed with respect to the first pass, while the components in CS may still be
merged with unexplored components and with other components in CS.

Let B} be the graph induced by {y1,...,y;} and their matching mates. The first pass
begins with the empty graph BS)C and in iteration i moves from the graph B}‘l to B;},
as follows. As long as the topmost component in CS does not reach any yy with & > i
by a single edge, this component is popped from CS and appended to Comp, Then the
algorithm creates a new component C with y; and its matching mates. It repeatedly
checks if C and the topmost component in CS reach each other by a single edge in each
direction. If so, it pops the component from CS and merges it into C. Finally, it pushes C
onto CS and proceeds to the next iteration.

The reason that this pass is enough for the AllDifferent graph but not for ours is that
in our case the outgoing edges of a y-node do not fulfil the convexity criteria: It could
be that there is an edge from y; to a z node which is matched with y; for some & > i+ 1
while there is no edge from y; to any of y;+1’s matching mates. In the AllDifferent case,
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B Node(s) in X Each "node" represents

@ Node(s)inY all nodes of its type in
- : the component.

A Node(s)inZ

C1 and C2 are strongly connected but will not be merged in
the first pass because C2 (and not C1) is the topmost
component in CS when C3 is created and pushed onto CS.

Fig. 5. Example of components that will not be merged by the first pass of the SCC algorithm

this could not happen: If a matching mate of y; can reach any yy by a single edge then
convexity implies that it can reach all y nodes between y; and yy. This means that in our
graph, there could be two components C, C’ in CS such that C reaches C’ by a single
edge and C' reaches C by a single edge, but this is not detected when the second of
them was inserted into CS because the first was not the topmost in the stack (see, e.g.,
Figure 5). The second pass, which merges such components, will be described later.

In the following, whenever we speak of a component C of By, we refer to a set
of nodes such that for every node in C, all of its matching mates are also in C. This
means that a component C is strongly connected, but may not be maximal. We say that
a component C reaches a component C’ if there is a path in By from a node in C to
anode in C'. In addition, two components C and C’ are linked if there is an edge from C
to C' and there is an edge from C’ to C. They are linked by x — y (linked by y — z) edges
if the edges in both directions are x — y (y — z) edges.

The pseudo-code in Figure 6 uses the following shortcuts. In the full version of this
paper [1] we show how to implement them with linear-time preprocessing. Let C, C’ be
two components.

~ MinY[C] (MaxY[C]) is the minimum (maximum) index of a y node in C.

— ReachesRight[C] is the largest index i such that y; or one of its matching mates can
be reached by a single edge from a node in C.

~ xyLeftLinks[C] (yzLeftLinks[C])is true iff C is linked with some component to its
leftby x — y (y — z) edges.

— Linked|C,C'] is true iff C and C’ are linked.

- xyLinks[C,C'] (yzLinks[C,C"]) is true iff C and C’ are linked by x — y (y — z) edges.

The following lemmas examine the components that are generated by the first pass
of the algorithm, first with respect to their order and connectivity in CS and then with
respect to the SCCs of By that they compose. They will help us to show that the SCCs
of By, when viewed as combinations of components that are generated by the first pass
of the algorithm, have a relatively simple structure which enables to identify them in
the second pass.

Lemma 5. Let CS =< C1,Ca,--- > be the components in CS at the end of iteration i
of the first pass (ordered from bottom to top). Then for all x, Max¥|[C¢) < MinY [C41)]-
In other words, no component is nested in another and the components appear in CS in
increasing order of the indices oftheiry nodes.
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(* Pass 1: Start with singleton components and merge adjacent ones *)
Comp +— empty list
CS§ +— empty stack
fori=1to n' do
while CS not empty AReachesRight(Top(CS)) < i do (* Top(CS) cannot reach yy with i’ > i. ¥)
C'" — Pop(CS)
append C' to Comp
end while
C— {yit UNm (i)
while CS not empty ALinked(TOP(CS),C)
C' — Pop(CS)
C « C'oC (* Merge components *)
end while
push C onto CS
endfor
while CS not empty do
C' — Pop(CS)
append C' to Comp
end while
(* Pass 2: merge non-adjacent components ¥)
SCCs +— empty list
CS§ +— empty stack
for i = 1 to |Comp| do (* Traverse the components of Comp by MinY[C] order *)
while CS not empty AReachesRight(Top(CS)) < MinY[C;] do (* Top(CS) cannot reach Cy with i’ > i. *)
C « Pop(CS)
if xyLeftLinks|C] then push C onto CSxy
else if yzLeftLinks[C] then push C onto CSyz
else append C to SCCs
if xyLinks[Top(CS), Top(CSxy)] then
C — Pop(CS)
C' — Pop(CSxy)
C « C'oC (* Merge components *)
while Linked|C, Top(CS)| do
C' — Pop(CS)
C « C' oC (* Merge components *)
end while
push C onto C§
end if
if yzLinks[Top(CS), Top(CSyz)] then
C «— Pop(CS)
C' — Pop(CSyz)
C « C'oC (* Merge components *)
while Linked|C, Top(C5)] do
C'" — Pop(CS)
C + C' oC (* Merge components *)
end while
push C onto C§
end if
end while
push C; onto CS
endfor
return SCCs

Fig. 6. Algorithm to find the SCCs of the residual graph
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Proof. Initially, CS is empty and the claim holds. Assume that it holds after iteration
i —1 and consider the changes made to the stack during iteration i. First some of the
topmost components are popped from the stack; this does not affect the correctness of
the claim. Then some of the topmost components are merged with each other and with
the new component C and the result is pushed to the top of the stack. By the induction
hypothesis, all components that were popped and merged contain y nodes with larger
indices than the components that remained in CS. In addition, all y nodes in CS after
iteration i — 1 have indices smaller than i. So the claim holds after iteration i. ]

Lemma 6. Let CS =< Cy,Cy, -+ > be as in Lemma 5. Then for all K Cx and Ccy1 are
not linked.

Proof. Again, the claim clearly holds for the empty stack. Assume that it is true after
iteration i — 1. By the induction hypothesis, the claim holds for every adjacent pair
of components that remained in CS after popping the completed components. If the
new component C that is pushed onto CS is linked with the component C' which is
immediately below it, then the algorithm would have popped C' and merged it with C.
Hence, the claim holds at the end of iteration i. ]

Lemma 7. IfCS =< C1,Ca,-- > is as in Lemma 5 and {C;,,...,Ci.} is a maximal
set of components in CS which belong to the same SCC of By such that iy < --+ < i
then C;_, and C; are linked.

Proof. Assume that there is such a set of components {C;,,...,C;} in CS where Cj,_1,
C;. are not linked.

Case 1: C;, does not reach Cj,_, by a single edge. Then it must reach a component C;;
with i; < ix—1 by a single edge. This edge must be a y — z edge because otherwise
convexity and Lemma 5 would imply that it also reaches C;_; by an x — y edge, in
contradiction to our assumption. Let zy be the target of this edge and yg be its match-
ing mate. Assume that B is maximal among B’ such that yg is in one of the compo-
nents Cj;,...,C;_, and ithas a matching mate Zy which is reachable from C; by ay — z
edge. There is a path from zy to C;,_, . If the path includes an x — y edge from a match-
ing mate xq of yp to yg: with B > B, then D(xy,) > B and D(zy) > B so the algorithm in
Figure 4 could not have matched xq and zy with yg, a contradiction. If the path includes
ay - z edge from yg: with B’ < to anode zy» which is matched with yg» where B” > B,
then zy was in P, when zy was extracted, so by convexity and Lemma 5 it is reachable
from C;, by a y — zedge, in contradiction to the maximality of B. We get that the path
must go from zy to the left and then bypass yg by an x — y edge (Xar»ypr) such that xor
is matched with ygr and B’ < B < B”. We can assume w.Lo.g. that the path from zy to xo/
does not go to the left of xy; if it does then one can show that either Lemma 6 is violated
or there also exists a path that shortcuts the part that goes to the left of xy. If the path
ends with a y — z edge into a matching mate zy of yg followed by the matching edges
(2y,y8') 0 (¥, %o ) then D(xgr) > B’ and D(zy) > P’ so the algorithm in Figure 4 could
not have matched xo and zy with yg, a contradiction. So the path ends with an x —y
edge (xqm,yp) followed by the edge (yp,xo ), Where xgw is matched with ygw for some
B’ < B” < B. xqm was in Py when xos Was extracted, so it also reaches ygr by anx —y
edge. By continuing backwards along the path and applying the same considerations,
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we get that there is an x — y edge from xq to ygr, hence again D(xy) > B and D(zy) > B,
so the algorithm in Figure 4 could not have matched xq and zy with yg, a contradiction.
Case 2: C;_, does notreach C;, by a single edge. Then C;, is reached from another com-
ponent C;; by an x — y edge (xa,ypr). Assume that x is matched with yg and that 3 is
maximal among " such that yg is in one of the components {Cj,,...,Ci._,} and has a
matching mate xo» which reaches Cj, by an x — y edge. There is a path from C;,_, to yg.
If there is an edge (xy,yg) from xo» Which is matched with ygr for some B < B < ',
then by convexity and Lemma 5, xo» reaches C;, by an x — y edge, in contradiction to
the maximality of B. If there is an edge (ygr,zy) such that zy is matched with yg and
B” > B then D(xq) > P and D(zy) > B so the algorithm in Figure 4 could not have
matched xq and zy with yg, a contradiction. We get that the path must bypass yg by
ay -z edge (ygv,zy») such that zyv is matched with ygw for some p” < B < p”, and
then return from zy» to yg. With arguments similar to the ones used in case 1, we get
that the path from zy» to yg must consist of y — z edges, which implies that there is
ay — z edge from ygr to zy, hence again D(x¢) > B and D(zy) > B so the algorithm in
Figure 4 could not have matched xq and zy with yg, a contradiction. (m}

Corollary 1. Let CS =< Cy,Cy,--- > and {Cyy,...,Ci } be as in Lemma 7. Then C;,_,
and Cj, are either linked by x — y edges or linked by y — z edges.

Proof. Lemma 7 guarantees that C;_, and C;, are linked. Assume that these edges are
not of the same type. That is, one is an x — y edge and the other is a y - z edge. Then
by convexity and Lemma 5 we get that either C;,_, and C;_,+1 or Ci.—1 and C;, are
linked, and this contradicts Lemma 6. O

Lemma 8. Ler CS =< C,Ca,-+- > and {Cil,...,CiK} be as in Lemma 7 and as-
sume that there is at least one unexplored node which is in the same SCC of By as
{Ci,,...,Ci.}. Then there is an edge from C; to an unexplored node.

Proof. Assume the converse. Then there is an edge from one of the components in
{Cy,...,Ci._, } to an unexplored node. Let j be maximal such that Cj € {C;,,...,Ci_, }
has an edge to an unexplored node. If this is a y — z edge then by convexity and
Lemma 5 C;, is also connected by a y — z edge to an unexplored node. So it must
be an x - y edge. Letx; € C; be its source. With arguments similar to the ones used in
the proof of Lemma 7 we can show that there cannot be a path from C;, back to x;. This
contradicts the assumption that C;, and C; are in the same SCC of By. O

Corollary 2. If{Ci,Cs,...,Cp,} are the componentsfound by the first pass of the al-
gorithm and {Cy,...,Ci.} is a maximal subset ofthese components which are strongly
connected between them such that MinY[C;;] < --- < MinY[C;). Then (1) No compo-
nent in {Cy,...,Ci .} is nested in another. That is, for all j,j' € {i1,...,ix} such that
J<J MaxY[C;] < MinY[Cy).(2) Ci—1 and C; are linked. Furthermore, they are either
linked by x — y edges or linked by y — z edges.

Proof. Assume that there is a component C; in the set which is nested in another com-
ponent Cy. ThenCjr consists of nodes which are both to the left and to the right of C;.
This means that at some point, the algorithm merged these nodes into one component.
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At this point in time, the topmost component in CS consisted only of nodes which are
to the left of C; and it was merged with a component that contains only nodes to the
right of Cj. By Lemma 5, this means that C; was popped before this iteration, but this
contradicts Lemma 8, so we have shown that (1) holds.

By Lemma 8, we know that none of {Cj,...,C;_,} were popped from CS before C;,
was pushed onto it. At a certain iteration, C;, was pushed onto CS and stayed there at
least until the next iteration. This, together with Corollary 1, implies (2). O

To sum up, the first pass partitions the nodes into components such that the compo-
nents that compose an SCC of By are not nested and the two rightmost components of
each SCC are linked by edges of the same type. The second pass merges components
that belong to the same SCC. It starts with an empty stack CS and an empty list SCCs
and traverses the components found in the first pass by increasing order of MinY[C].
When considering a new component C, it first pops from CS all topmost components
that cannot reach C or beyond it. For each such component C’, it first checks if C’ is
linked with a component to its left by x — y edges. If so, there are components in CS
that it needs to be merged with. So the algorithm pushes C’ to a second stack CSxy.
Otherwise, it checks if C' is linked with a component to its left by y — z edges and if
s0, pushes it to a third stack CSyz. Otherwise, it appends C’ to SCCs because C' is not
linked with any component in CS and it does not reach unexplored components.

Before popping the next component, it checks whether the topmost component in
CS and the topmost component in CSxy are linked by x — y edges. If so, it pops each
from its stack and merges them. It then repeatedly checks if the merged component
is linked with the topmost component on CS. If so, the two are merged. Finally, the
component which is the result of the merges is pushed back onto CS. The algorithm
then checks whether the topmost component in CS and the topmost component in CSyz
are linked by y — z edges and if so, handles this in a similar way.

In the remaining part of this section we show that this algorithm finds the SCCs of
By. Denote the set of components found in the first pass of the algorithm by Comp =
{C1,C3,...,Cp, }, such that for all 1 < i < p1, MaxY|[C;] < MinY[Ci41]. Since each of
these components is strongly connected but is not necessarily an SCC of By, the com-
ponents in Comp are partitioned into sets of components such that the components of
each set compose an SCC of By.

Definition 2. A subset § = {C;,,...,Ci} of Comp is an SCC set if the union of the
components in S is an SCC of By. In the following we will use this notation while
assuming that MinY[C;)] < --- < MinY[C;,].

Definition 3. Let Sy = {Cy;,...,Ci } and S2 = {Cj;,...,Cj} be distinct SCC sets.
Then S1is nested in Sy if there exists j € {j1,-..,jx—1} such that for all C; € S,
MinY[Cj] < MinY[C;} < MinY[Cj;1). Si and Sy are interleaved if there exist i,i’ €
{it,...,ix=1} and j, j' € {j1,..., jw—1} such that MinY|C;] < MinY[C;] < MinY|Cy] <
Min¥[Cy).

The SCC sets of Comp can be interleaved in one another, but in the following lemma
we show that this can only occur in a restricted form. This will help us to show that the
second pass of Algorithm 6 identifies all SCC sets in Comp.
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Fig.7. Two interleaved SCC sets

Lemma 9. Let S1 = {Cy,...,Ci } and S = {C},,...,C;, } be interleaved SCC sets. If
MinY[Cj] < MinY[C;] < MinY[Ciy1) < MinY|[Cj+1] then there are links between St =
{Cy,...,Ci} and St = {Cit1,...,Cic} and there are links between Si- = {Cy,...,C;}
and S? = {Cj+1,...,CjK, }. These links can be of one of two forms: (1) Sl’- and Sf‘ are
linked by x — y edges; Sﬁ- and S? are linkedby y — 7z edges. (2) Sf and Sf‘ are linked by
¥y — Z edges; Sﬁ- and S? are linked by x — y edges.

Proof. We show that any other option is not possible. If Sf and Sf’ are linked by an x — y
edge from S! to S and a y — z edge from S” to S! then by convexity and Lemma 5, S!
and S; are also linked, which means that the components of §; and S, belong to the
same SCC of By, contradicting the assumption that Sy and S5 are distinct SCC sets. The
same follows if Sf and Sﬁ’ are linked by a y — z edge from Sf to Sﬁ’ and an x — y edge
from S to S! and if Sﬂ- and S;? are linked by an x — y edge in one direction anday — z
edge in the other.

Assume that each of the pairs Sf,Sf’ and S§,S§? is linked by x — y edges in both direc-

tions. Then by convexity and Lemma 5, Sﬁ- and S? are also linked by x — y edges and
again the components of 1 and S are in the same SCC of By. The same holds if the
pairs Sf,Sﬁ' and S&,S? are both linked by y — z edges. |

Figure 7 shows an example of two interleaved SCC sets S; = {C1,C3,Cs} and Sp =
{C3,C4}. For clarity, some of the edges were not drawn but the reader should assume
that all edges that are implied by convexity exist in the graph. The SCCs of Sy are linked
by x — y edges and the SCCs of S, are linked by y — z edges.

The following resemble Lemmas 5 and 8 but refer to the second pass.

Lemma 10. Let CS =< C1,Cs, - -+ > be the components in CS at the end ofiteration i of
the second pass (ordered from bottom to top). Then for all X, Max¥ [Cx] < MinY [Cx+1).

Proof. Atthe beginning CS is empty and the claim clearly holds. Assume that the claim
holds after iteration i — 1 and consider the changes made to the stack during iteration i.
When a topmost component of the stack is popped it does not affect the correctness
of the claim. When a new component is pushed onto the stack it is the result of merg-
ing some of the topmost components in the stack with components from the tempo-
rary stacks CSxy and CSyz. Since the temporary stacks contain only components with
higher y nodes than CS, the merged component contains indices which are all higher
than what is in components which are below it in CS. O
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Lemma 11. Let S = {C;,,...,Ci} be an SCC set. Thenforall £ € {1,...,x—1}, G,
reaches at least one of {Ci,,,,...,Ci.} by a single edge.

Proof. By Lemmas 5 and 10, the components of S appear in CS in the second pass in
the same order in which they appear in the first pass. This implies that after a certain
iteration of the second pass, {Ci,,...,C;,} arein CSand {C;,, ,,...,C;.} are unexplored.
Since there is an edge from one of {C;,...,C;,} to one of {Cj,, ,...,Cj.}, we can show
the claim by arguments which are similar to the ones used in the proof of Lemma 8. O

We can now show that the second pass of the algorithm identifies the SCCs of By.

Lemma 12. Let S = {C;,...,Cic} be an SCC set. Then in the second pass ofthe algo-
rithm, the components of S will be merged.

Proof. Let S be an SCC set such that all SCC sets which are nested in S were merged.
We show by induction that all components of § are merged in the second pass. That is,
we show that for all i from ix—; to i1, C;, . ..,C;, will be merged. For i = ix_;, we know
by Corollary 2 that C;__, and C;, are linked by either x — y edges in both directions
(case 1) or y — z edges in both directions (case 2). By Lemma 11, we know that C;,_,
is not popped from CS before C;, is pushed onto it. When C;, is popped from CS for
the first time, it is pushed onto the stack CS’ where CS’ is CSxy (case 1) or CSyz (case
2). Assume that when C;,_, became the topmost component in CS, C;, was not the
topmost component in CS'. If it was popped from CS’ before that time, this is because
a component above C;_, in CS is linked with it. Since this component is not in S,
this contradicts the assumption that 5 is an SCC set. On the other hand, if there was
another component C’' above C;, in CS’, then by Lemma 9 this is because C’ is linked
by x — y edges (case 1) ory — z edges (case 2) with another component C” which was
above Cj,_, in CS. If C" and C" were not merged, we get that there must have been
a component above C' in CS’ when C” was the topmost component on CS. Applying the
same argument recursively, we get that the number of components is infinite. Hence, C’
and C” were merged before C;_, was the topmost component in CS, so C’ could not
have been above C;, in CS'.

Assume that Ci; 41, ..., G, were merged by the algorithm into a larger component C.
By Lemma 11 we know that Cj; reaches C by a single edge and this implies that it was
not popped from CS before any of Cj;+1,...,Ci. In addition, since C and C;; are in the
same SCC, there is a path from C to C;;. This path does not go through components
that are between C and Cj; in the stack because that would place these components in
the same SCC as C and Cj;, contradicting the assumption that S is an SCC set. Assume
that the path begins with an x — y edge from C to C;; or a component below it in CS.
Then by convexity there is also an x — y edge from Cto C;;. If the edge from C;; to C'is
ay — z edge then by convexity and Lemma 10, C is linked with C;; and all components
which are above it in the stack and will be merged with them by the algorithm. If this
edge is an x — y edge then C will be pushed onto CSxy and as in the base case, it will
be merged with C;; when the later will become the topmost component in CS.

If the path from C to C;; begins with a y — z edge from C to a component below Ci;
then arguments similar to the ones used in the proof of Lemma 7 imply that C also
reaches C;; by ay — z edge. If the edge from Cj; to Cis an x — y edge then again by
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convexity and Lemma 10 C;; and all components above it in CS are linked with C and
will be merged with it. If it is a y — z edge then C will be pushed onto CSyz and will be
merged with Cj; when the later will become the topmost component in CS. O

4.3 Complexity Analysis

The PM algorithm traverses the y nodes and performs 2n priority queues operations.
This takes time O(n’ + nlogn). In the SCC computation everything takes linear time
except for maintaining the component list. We wish to be able to merge components
and to find which component a node belongs to. For this we use a Union-Find[2] data
structure over the y nodes, on which we perform O(n’) operations that take a total of
O(n'a(n’,n’)) time. Narrowing the domains of the variables can then be done in time
O(n+n') as in [4]. So the total running time is O(n'a(n’,n’) + nlogn).
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Abstract. This paper shows that existing definitions of costs associ-
ated with soft global constraints are not sufficient to deal with all the
usual global constraints. We propose more expressive definitions: refined
variable-based cost, object-based cost and graph properties based cost. For
the first two ones we provide ad-hoc algorithms to compute the cost
from a complete assignment of values to variables. A representative set
of global constraints is investigated. Such algorithms are generally not
straightforward and some of them are even NP-Hard. Then we present
the major feature of the graph properties based cost: a systematic way
for evaluating the cost with a polynomial complexity.

1 Introduction

Within the context of disjunctive scheduling, Baptiste et al. [4] have extended
the concept of global constraint to over-constrained problems. Such soft global
constraints involve a cost variable used to quantify the violation. This concept
has been initially investigated in a generic way in [21]. However, the question of
violation costs associated with global constraints still contains many challenging
issues:

- As it has been shown for the Al1Different constraint in [21] there is no
one single good way to relax a global constraint and the choice is essentially
application dependent. Moreover, existing definitions of costs associated with
soft global constraints are not sufficient to deal with all the usual global
constraints.

— Defining how to relax a global constraint is not sufficient from an operational
point of view. One has also to at least provide an algorithm to compute the
cost that has been defined. As we will see this is usually not straightforward.

— Finally we would like to address the two previous issues in a systematic way
so that each global constraint is not considered as a special case.

Our main motivation is to deal with over-constrained problems. Further, provid-
ing global constraints with generic definitions of costs and algorithms to com-
pute them constitute a necessary step to unify constraint programming and local
search techniques [24]. It would allow to use systematically global constraints as
higher level abstractions for describing the problem, together with local search
techniques. This again requires evaluating the constraint violation cost.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 80-95, 2004.
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1.1 Context

A Constraint Network is a triple R = (X,D(X),C). X is a set of variables.
Each z; € X has a finite domain D; € D(X) of values that can be assigned
to it. C is a set of constraints. A constraint C' € C links a subset of variables
var(C) € X by defining the allowed combinations of values between them. An
assignment of values to a set of variables J C X is an instantiation Z(}) of ¥
(denoted simply by / when it is not confusing). An instantiation may satisfy or
violate a given constraint. The Constraint Satisfaction Problem (CSP) consists
of finding a complete instantiation I(X) such that VC € C, I satisfies C.

A problem is over-constrained when no instantiation satisfies all constraints
(the CSP has no solution). Such problems arise frequently when real-world ap-
plications are encoded in terms of CSPs. In this situation, the goal is to find
a compromise. Violations are allowed in solutions, providing that such solutions
retain a practical interest. A cost is generally associated with each constraint
to quantify its degree of violation [11]. For instance if z < y is violated then
a natural valuation of the distance from the satisfied state is (z — y)? [21].

It is natural to integrate the costs as new variables of the problem [20]. Then
reductions in cost domains can be propagated directly to the other variables,
and vice-versa. Furthermore, soft global constraints [4, 21] can be defined. They
extend the concept of global constraint [8, 22, 5, 10] to over-constrained prob-
lems. The use of constraint-specific filtering algorithms associated with global
constraints may improve significantly the solving process as their efficiency can
be much higher.

In [21] two definitions of the cost associated with a global constraint were
proposed. The first one is restricted to global constraints which have a primal
representation [12, 17],i.e., that can be directly decomposed as a set of binary
constraints without adding new variables. The other one is more generic: the
variable-based cost. It consists of counting the minimum number of variables
that should change their value in order to return to a satisfied state. We do not
place restrictions w.r.t. constraints. Therefore we focus on the generic definition.
Consider the A11Different (X') constraint [22]. It enforces all values assigned to
variables in X to be pairwise different. For instance if X = {z1, 22, z3, %4, %5},
the cost of the tuple (3,7,8,2,19) is O (satisfied) while the cost of the tuple
(3,7,8,7,7) is 2 (it is required to change the value of at least two variables to
turn it satisfied).

Although the purpose of this definition is to be generic, some important
questions remain open in regards to practical applications. The first one is related
to the meaning of such a cost. Consider the Number0fDistinctValues(N, &)
constraint [19, 6]. It holds if variable N is equal to the number of distinct values
assigned to variables in X. For any assignment the maximal possible cost is 1: it
is always sufficient to change the value of N. Such a limited cost variation is not
satisfying. The second question is related to the complexity of the algorithms
which evaluate the cost. Depending on constraints, it may be hard to compute
the cost. We aim at providing generic answers to these two questions.
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1.2 Contributions

The first contribution of this paper is related to expressiveness. We propose
three new definitions of cost. They should allow to deal with most of soft global
constraints.

1. Refined variable-based cost: we partition variables in two sets to dis-
tinguish changeable variables from fixed ones in the cost computation. The
motivation is to deal with a common pattern of global constraints where one
or several variables express something computed from a set of variables.

2. Object-based cost: application-directed constraints deal with high level
objects, for instance activities in scheduling. The information provided by
a cost related to the minimum number of objects to remove instead of the
minimum number of variables to change should be more exploitable.

3. Graph properties based cost: we introduce a definition based on the
graph properties based representation of global constraints [5]. The impor-
tant point of this definition is to have a systematic way to evaluate the cost
with a polynomial complexity.

The second contribution is to provide algorithms to compute the cost from
a complete instantiation of variables. With respect to the first two definitions we
study ad-hoc algorithms for a set of well-known constraints: the GlobalCardi -
nality [23], OneMachineDisjunctive [1], and NonOverlappingRectangles [1].
Concerning the GlobalCardinality constraint, algorithms are provided for sev-
eral types of costs. For the other ones we selected only the cost that makes sense.
Through these examples we point out that the cost computation is generally not
obvious and may even be NP-Hard. Then, we present a systematic way to eval-
uate the graph properties based cost with a polynomial complexity according to
the number of variables occurring within the global constraint under considera-
tion.

2 Soft Global Constraints

In an over-constrained problem encoded trough a constraint network R = (X,
D(X), C), we denote by C, C C the set of hard constraints that must necessarily
be satisfied. C; = C \ Cp, is the set of soft constraints. Let / be an instantiation
of X. If I is a solution then VC &€ Cy, I satisfies C. We search for the solution that
respects as much as possible the set of constraints C. A cost is associated with
each constraint. A global objective related to the whole set of costs is usually
defined. For instance, the goal can be to minimize the sum of elementary costs.
While in Valued and Semi-Ring CSPs [11] costs are defined trough an external
structure (that is, the CSP framework has to be augmented), a model has been
presented in [20] to handle over-constrained problems directly as classical op-
timization problems. In this model costs are represented by variables. Features
of classical constraint solvers can be directly used, notably to define soft global
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constraints including the cost variable. For sake of clarity, we consider in this
paper only positive integer costs'.

Definition 1. Let C € C;. The cost constraint of C, denoted by C, is a con-
straint involving at least the cost variable (denoted by cost). This constraint
should both express the negation of C and give the semantics of the violation.

Generally var(C) = var(C) U {cost}.

Definition 2. Let C € C, be a soft constraint. A disjunctive relaxation of C
is a constraint of the form: [C A [cost = 0]] V [C A [cost > 0]].

This definition imposes explicitly to value O for variable cost to be not consistent
with a violated state. In many cases 0 should not be consistent with C. Then the
statement [cost > 0] is not necessary. This is the case in the following example.

Example 1. Let C € C, such that C : [z < y]. We define the cost constraint C
of Cby: [[z > y] A[cost = (z — y)?]]. The corresponding disjunctive relaxation
of Cis: [[z < y] Aleost =0]] V [[z > y] A[cost = (z — y)?]].

This example illustrates directly what ¢ expresses: the negation of C, [z > y],
and the semantics of the violation, [cost = (z — y)2].

From Definition 2 it is simple to turn an over-constrained problem into a clas-
sical optimization problem [20]. We add the set of cost variables to X (one per
soft constraint) and we replace each C' € C; by its disjunctive relaxation, defined
as a hard constraint. The optimization criterion involves the whole set of cost
variables. It is shown in [20] that this formulation entails no penalty in terms
of space or time complexity compared with the other reference paradigms. In
the next sections the term soft global constraint will denote the cost constraint
of a global constraint. One can also use the term “relaxed version” of a global
constraint.

3 Generic Definitions of Violation Costs

This section presents definitions of the semantics of the violation of a global con-
straint. We formalize the notions which are necessary to handle in a generic way
violation costs. Definitions above should allow to relax most global constraints.

3.1 Refined Variable-Based Cost

Definition 3. Variable-Based Violation Cost [21]

Let C be a global constraint. The cost of the violation of C is defined as the
minimum number of values assigned to variables in var(C) that should change
in order to make C satisfied.

' This assumption implies that costs are totally ordered. It is a minor restriction [20].
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The cost is expressed by a variable cost such that maz(D(cost)) < |X|+1, where
|| denotes the number of variables in X. Given C € C,, we will deduce the cost
constraint C from this definition. Such a definition is theoretically valid for any
global constraint. However, in practice, it is not suited to all global constraints.
For instance, consider the NumberOfDistinctValues (N, &X’) constraint which
holds if the variable N is equal to the number of distinct values assigned to a set
of variables X. If this constraint is violated, by changing the value assigned to N
to the effective number of distinct values in X we make it satisfied. That is,
in any case at most one variable has to be changed. The information provided
by the cost value is poor. Therefore the user would prefer to have a finer way
to evaluate the cost. We propose to count the minimum number of variables
to change in & in order to make the current value assigned to N equal to the
effective number of distinct values. In other terms, we isolate N as a variable
having a fixed value, that cannot be changed. In this way we can deal with
a common pattern of global constraints where one variable expresses something
computed from a set of variables. For some constraints a subset of variables has
to be fixed instead of one. Therefore Definition 4 is more general.

Definition 4. Refined Variable-Based Violation Cost

Let C be a constraint. Let us partition var(C) in two sets Xy (fixed variables)
and X, (changeable variables). The cost of the violation of C can be defined as
the minimum number of values assigned to variables in X, that should change in
order to make C satisfied. If this is not possible the cost is defined as |X.| + 1.

We may use in the same problem both Definition 3 and Definition 4 and ag-
gregate directly the different costs because the two definitions are related to
a minimum number of variables to change.

3.2 Object-Based Cost

At the user level, some application-oriented constraints handle objects which are
not simple variables. For instance in scheduling, the Cumulative constraint [1]
deals with tasks which are defined by four variables (origin, end, duration, re-
quired amount of resource) and a variable equal to the maximum peak of resource
utilization. In this case providing the constraint with a violation cost related to
variables may give a poor information. A higher level cost directly related to tasks
should be more convenient. The definitions are similar to Definitions 3 and 4.
Instead of taking into account the minimum number of variables to change we
consider the minimum number of objects to remove®. The interested reader can
refer to [4] where a soft global constraint handling a variant of the One-Machine
problem [16] is described. Dealing with task-based costs in a solver dedicated to
scheduling problems makes sense.

2 This definition is valid for global constraints where removing an object makes it
easier to satisfy the constraint. This is the case, for instance, for the Cumulative
and Diffn [8] constraints, but not for AtLeast.
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3.3 Graph Properties Based Cost

As we will see in section 4, one of the main difficulty related to soft global
constraints is that, even if one defines in a generic way the violation cost, it is
usually far from obvious to come up with a polynomial algorithm for evaluating
the cost for a specific global constraint. This is a major bottleneck if one wants to
embed in a systematic way global constraints within local search or if one wants
to allow relaxing global constraints. Therefore this section presents a definition
of the cost based on the description of global constraints in terms of graph
properties introduced in [5]. We first need to recall the principle of description
of global constraints. For general notions on graphs we invite the reader to refer
to [9].

A global constraint C is represented as an initial directed graph G; = (X, Us):
to each vertex in &; corresponds a variable involved in C, while to each arc e
in U; corresponds a binary constraint involving the variables at both endpoints
of e. Unlike what is done in conventional constraints networks [13] we do not ask
anymore all binary constraints to hold. We consider G; and remove all binary
constraints which do not hold. This new graph is denoted by Gs. We enforce
a given property on this graph. For instance, we ask for a specific number of
strongly connected components.

Let us now explain how to generate G;. A global constraint has one or
more parameters which usually correspond to a domain variable or to a col-
lection of domain variables. Therefore we discuss the process which allows to
go from the parameters of a global constraint to G;. For this purpose we came
up with a set of arcs generators described in [5]. We illustrate with a concrete
example this generation process. Consider the NumberOfDistinctValues(XN,
X) constraint where X = {z1,...,zm}. We first depict G;. We then give
the binary constraint associated to each arc. Finally we introduce the graph
characteristics. The left and right parts of Figure 1 respectively show the
initial graph G; generated for the NumberOfDistinctValues constraint with
X = {z1,...,z4} as well as the graph Gy associated to the instantiation
NumberOfDistinctValues(3,{5,8,1,5}).

& Qg

Fig. 1. Initial graph associated with the NumberOfDistinctValues(N, X) con-
straint where X = {z1,..,24} and final graph of the ground solution
NumberOfDistinctValues(3,{5,8,1,5})
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We indicate for each vertex of Gj its corresponding variable. In Gy we show
the value assigned to the corresponding variable. We have removed from Gy all
the arcs corresponding to the equality constraints which are not satisfied. The
NumberOf DistinctValues(3,{5,8,1,5}) holds since Gy contains three strongly
connected components, which can be interpreted as the fact that N is equal to
the number of distinct values taken by the variables z, z3,z3 and z4.

As shown in [5], most global constraints can be described as a conjunction of
graph properties where each graph property has the form P op I; P is a graph
characteristic, / is a fixed integer and op is one of the comparison operator

=, 7éa<, 2a>, <.

Definition 5. Violation Cost of a Graph Property Consider the graph
property P op I Let p denotes the effective value of the graph characteristic P
on the final graph Gy associated to the instantiated global constraint we consider.
Depending on the value of op, the violation cost of P op I is (abs denotes the
absolute value): cost(p,=,I) = abs(p—1I), cost(p,#,I) = 1 —min(1, abs(p—1)),
cost(p, <,I) = maz(0,p+ 1 — I), cost(p,>,I) = max(0,I — p), cost(p,>,I) =
maz{0,I + 1 —p), cost(p, <, I} = maz(0,p—I).

Definition 6. Graph Properties Based Violation Cost Consider a global
constraint defined by a conjunction of graph properties. The violation cost of
such a global constraint is the sum of the violation costs of its graph properties.

The most common graph characteristics used for defining a global constraint
are for instance:

— NVERTEX the number of vertices of Gy.

— NARC the number of arcs of Gy.

— NSINK the number of vertices of G which don’t have any successor.

— NSOURCE the number of vertices of Gy which don’t have any predecessor.

— NCC the number of connected components of Gy.

— MIN_NCC the number of vertices of the smallest connected component
of G 7

— MAX_NCC the number of vertices of the largest connected componentof G .

— NSCC the number of strongly connected components of G.

— MIN_NSCCthe number of vertices of the smallest strongly connected com-
ponent of Gy.

— MAX_NSCC the number of vertices of the largest strongly connected com-
ponent of Gy.

— NTREE the number of vertices of G that do not belong to any circuit and
for which at least one successor belongs to a circuit.

As a first concrete illustration of the computation of the cost, consider again
the NumberOfDistinctValues(N, &) constraint. N is defined as the number
of strongly connected components of the final graph stem from the different
variables in X and from their assigned values. Therefore the violation cost is
defined as the absolute value of the difference between the effective number of
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strongly connected components and the value assigned to N. For instance the
cost of NumberOf Distinctvalues(3,{5, 5,1,8,1,9, 9,1, 7}) is equal to abs(5 —
3) = 2 which can be re-interpreted as the fact that we have two extra distinct
values. In section 5 we highlight the fact that for all global constraints which are
representable as a conjunction of graph properties, the graph-based cost can be
computed with a polynomial complexity according to the number of variables of
the considered global constraint.

In order to further illustrate the applicability of the graph based cost we
exemplify its use on three other examples. For the last one we show its ability
for defining various violation costs for a given global constraint.

Consider the Change(N, X) [7] constraint where N is the number of times
that the disequality constraint holds between consecutive variables of X =
{z1,...,2m}. To each variable of X corresponds a vertex of G;. To each pair
of consecutive variables (z;,z;+1) of X corresponds an arc of G; labelled by
the disequality constraint z; # z;4+1. Since the Change constraint is defined
by the graph property NARC= N, its violation cost is cost(NARC,=N) =
abs(NARC- N). For instance the cost of Change(l, {4,4,8,4,9,9}) is equal to
abs(3 — 1) = 2 which can be re-interpreted as the fact that we have two extra
disequalities which hold.

Consider now the Cycle constraint [8] which, unlike the previous examples,
is defined by two graph properties. The Cycle(N, X) constraint holds when X =
{z1,...,zm} is a permutation with N cycles. To each variable of X corresponds
a vertex of G;. To each pair of variables (z;,zx) of X corresponds an arc of G;
labelled by the equality constraint z; = k. The Cycle constraint is defined by the
conjunction of the following two graph properties NTREE= 0 and NCC= N.
The first one is used in order to avoid having vertices which both do not belong
to a circuit and have at least one successor located on a circuit. The second one
counts the number of connected components of G¢ which, when NTREE= 0,
is the number of cycles. From these properties we have that the violation cost
associated to the Cycle constraint is cost(NTREE, =, 0) + cost(NCC, =, N) =
NTREE+ abs(NCC- N). For instance the cost of Cycle(l, {2,1,4,5,3,7,8,7})
is equal to 1+ abs(3 — 1) = 3 which can be re-interpreted as the fact that we
have one vertex which does not belong to a cycle as well as two extra cycles (see
Figure 2.).

A given constraint may have several graph representations, leading to dif-
ferent ways to relax it. For instance consider the Al11Different (X) constraint
where &' = {z1,...,zm}. The Alldifferent constraint holds when all the vari-
ables of X are assigned to distinct values.

Q0 QO 0D

Fig. 2. Cycle(1,{2,1,4,5,3,7,8,7})
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It may be represented first by an initial directed graph G; where each node is
a distinct variable and between each ordered pair of variables (the order is used
to avoid counting twice an elementary violation) there is an arc representing
the binary constraint #. To obtain Gy we remove all arcs where the binary
constraint is violated. The AllDifferent constraint is defined by the graph
property NARC= mx (m — 1)/2. This definition leads to the following violation
cost cost(NARC,=,mx*(m —1)/2) =m=*(m—1)/2— NARC. This corresponds
to the number of binary constraints violated, that is, the primal graph based cost
introduced in [21].

A second way to describe the A11Different (X') constraint is to build a graph
where all arcs are defined between pairs of variables like the initial graph of
the NumberOfDistinctValues constraint (see the left part of Figure 1). The
binary constraints will then be = and the graph property NSCC= m. The pre-
vious graph property enforces Gy to contain m strongly connected components.
Since Gy has m vertices this forbid having a strongly connected component with
more than one vertex. This second definition of Alldifferent leads to the vi-
olation cost cost(NSCC,=,m) = m — NSCC. This corresponds in fact to the
variable-based cost introduced in [21].

Finally a third way to model the A11Different (X) constraint is to define
the initial graph G; as in our second model and to use the graph property
MAX_NSCC= 1. This imposes the size of the largest strongly connected com-
ponent of G¢ to be equal to 1. This third definition of Alldifferent leads to
the violation cost cost(MAX_NSCC, =, 1) = MAX_NSCC — 1. This can be in-
terpreted a the difference between the number of occurrences of the value which
occurs the most in & and 1.

4 Cost Computation Algorithms

This section presents algorithms to compute the cost from a complete assignment
of value to variables I(X') for a representative set of global constraints. We focus
on variable-based and object-based costs. A systematic way to compute graph-
based costs will be provided in the next section. Let us recall the context of this
work. When we define a soft global constraint it is necessary to be able:
(1) To compute the cost from a complete assignment. This is the basic step to
evaluate how much the constraint is violated.
(2) To compute a lower bound of the cost from a partial assignment. This step
is useful to have a consistency condition, based on the bounds of D(cost).
(3) To provide the constraint with a filtering algorithm which deletes values
that can not belong to any assignment with an acceptable cost (i.e., € D{cost)).
A first algorithm can always be deduced from step (2) by applying for each
value v the consistency condition with D(z) = {v}.

This section focuses on step (1). We show that computing a cost from a com-
plete assignment is generally not obvious and even may be hard in the algorith-
mic sense. Well-known constraints which were selected differ significantly one
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another. For a given constraint, several definitions of the cost are considered
when it makes sense.

4.1 GlobalCardinality : Variable-Based Cost

In a GlobalCardinality(X, T, N) constraint, X is a set of variables, T an
array of values, and NV a set of positive integer variables one-to-one mapped with
values in 7. This constraint enforces each v in 7 to be assigned in X a number
of times equal to the value assigned to the variable in A which represents v.

To turn the GlobalCardinality(X, T', N) constraint from a violated
state to a satisfied one, it is necessary to change variables (in X’ or A) in order to
make the cardinalities equal to the corresponding occurrences of values in X'. We
assume in this section that the maximum value of the domain of a cardinality
variable does not exceeds |X]. Given a complete assignment of X U N we have
a possibly empty subset Nfqise € A of cardinalities that do not correspond to
the current number of occurrences of their values in the assignment I(X) of &.
A way to make the constraint satisfied is to change the value of each variable in
Ntaise to the effective cardinalities relatively to I(&’). Unfortunately, as shown
by example 2, |Nyqse| is not necessarily the cost value of Definition 3.

Example 2. Let X = {z1,22}, D(z1) = D(z2) = {a,b}, T = Ja,b], and
N = {cq, e} with D(c,) = D(cp) = [0,2]. The assignment Z(X) = {(z1,a),
(z2,b), (ca,0), (cb,2)} violates the GlobalCardinality(X, T, N) constraint.
Ntaise = {ca,cp}. We can turn it satisfied by changing the value of z1 to b, that
is the minimum number of variables to change is cost = 1. Thus [Ngase] > cost.

We have to solve the following problem: how many variables should change
their value to reduce Nyqse to the empty set? As a short cut we say that z € X
“saves” one variable ¢, from Nyq1sc When by changing z we can turn ¢, € Naise
to the effective number of occurrences of vin I(X).

Notation 1 Letv be a value of D(X), oce, its effective number of occurrences
inZ(X) and req,,req, < |X|, the value assigned to its cardinality variable ¢, . dy
and s, respectively denote abs{occ, — req,) and occ, — regy.

Lemma 1 If no z in X saves one variable in Nyqise then for any value v as-
signed to variables in X such that ¢, € Nyqise we have dy, > 2.

Proof ¢, € Nsqise = dv > 0. If dy, = 1 then by changing one variable it is possible to
turn dy to 0, i.e., ¢, to the effective number of occurrences of v in I(X).

Lemma 2 Changing the value of one variable in X changes the value assigned
to at most two variables in Ntaise and may save at most those two variables.

Proof If z changes from v: to vz only two cardinalities change: the ones of v1 and va.

Lemma 3 cost < |Nyqisel
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Proof it is possible to change all variables in Msqise to make the constraint satisfied,
and then obtain a cost equal to |[Nfgisel-

Theorem 1. Ifno x in X save variables in Nqise then cost = |Nyaisel

Proof Hypothesis H: no = in X can be changed to save ¢, in Nqise. ASSume cost #
[Naise|- By Lemma3, cost < [Nyaise|- We consider the number of steps to turn AMaise
to @ by changing one variable at each step, either in Nyqse Orin X. Let the current step
be n. Changing z € X saves 0 and is supposed to lead in a next step n+ k to a better
result than turning & variables in Nfaise. From Lemma 2, at n + 1 two variables cy:
and cv2 in Nyase have been changed and from H none were saved (distances > 2).
Thus by Lemma 2, at step n+ 2 at most two variables can be saved in Nase (distance
= 1). Let us detail the 3 cases at n+ 2: o 1. Two variables in Nya1se are saved. From
H and Lemma 1 they are c,1 and cve (if not we could have saved the other ones at
n+ 1, contradiction with H). The situation remains equivalent to step n except Nyaise
\ {cv1,cv2} is considered (we made 2 saves, 2 variables have been changed). o 2. One
variable in Naise is saved. It is necessarily c.1 Or cyz, Which is removed from Naise.
The consequence can be in the better case to have a new distance becoming 1 when
saving cw1 Or cw2. In this case at step n» + 3 we return to this situation. In this way it
will never be possible to compensate the loss of one of step n + 1. ¢ 3. No variables
can be saved. No ¢y € Nyaise is such that d, < 2. The situation at n + 2 is equivalent
to the one of step n and no variables were saved. ¢ Conclusion: no case can lead to
a better situation at next steps. The cost is [Nfaisel-

Notation 2 Given a complete instantiation we define:
Nfise = {¢o € Naise such that s, > 0}

f—alse = {cy € Nfalse such that s, < 0}
D;-alse = {d, such that c, € N ;:zlse} ordered by increasing d,
taise = v such that ¢, € N} ordered by increasing dy,
ny ={d, € D}"alse such that d, = 1},
ni = {dy € Dfy,, such that dy = 1}|.

Figure 3. represents the two sets D}"alse and Dy, for a GlobalCardinality
constraint where the current instantiation has [Nyqse| = 13 wrong cardinalities.
The cost is equal to the minimal number of changes to remove each column,
provided that:

— If we change z with initial value v and d,, = 1 we remove one column in D;’alse.
— If we change z to a new value w with dy, = 1 we remove one column in Dj,,..
— From these two first rules, if we change z with initial value v to w and d, =
dw =1 then we remove two columns in one step.
— Finally, if we change the value of one cardinality ¢, to the real number of
occurences of v in & then we remove its corresponding column.

To remove all columns with a minimal number of changes, one can select,
while either d, = 1 or d,, = 1, a variable z assigned to value v with minimal d,
in D}ralse and change its value v to value w with minimal dy in Dj,,,. In this
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dv dw
_';_!:‘_ 1 3 I
24 2 .
I “‘ T 1
T T O
+ —
Dfa!se Dfalse

Fig. 3. Graphical representation of the two sets D}["al se and D}‘al se With corresponding

distances from real number of occurences of values in an instantiation I{X)

way, if the two minima verity d,, = d, = 1 we remove two columns in one step. If
not we tend to the most favourable next state. When the two minima d, and d,,
are such that d, > 1 and d,, > 1, by Theorem 1 the remaining minimal number
of changes to make is [ANfqise|- From this process, Theorem 2 gives the exact cost
of an instantiation I(X).

Theorem 2. Let k be the positive integer defined as follows:

o If ni" 2 ny, k is the smallest possible number of first elements of Djyse

. . = — . '=|N—a sal
satisfying Zz;lcdvi > nf’ (or k= | fa.lsel +14f Z§=1 fels'd,, < ).

o If n]" < ni, k is the smallest possible number of first elements of D;_alse

i= - . i=|NF,
satisfying Zizlfdm >n] (ork=|NL,  |+1if Z:zll sotsel

false

dy, < n7 ).

The exact cost of the instantiation is |Nyaise| — k + 1.

4.2 GlobalCardinality : Refined Variable-Based Cost (1)

We consider a first refined variable-based definition of the cost where fixed vari-
ables are the cardinalities M and changeable ones are X.

Basic Notions on Flows

Flow theory was originally introduced by Ford and Flukerson [14]. Let G =
(X, U) be a directed graph. An arc (u,v) leaves u and enters v. I'~(v) is the set
of edges entering a vertex v. I'" (v) is the set of edges leaving v. I'(v) = ['""UI't.
Consider a graph G = (X, U) such that each arc (u,v) is associated with two pos-
itive integers !b(u,v) and ub(u,v). ub(u,v) is called the upper bound capacity of
(u,v) and lb(u,v) the lower bound capacity. A flow in G is a function f satisfying
the two following two conditions: ¢ 1. For any arc {(u,v), f(u,v) represents the
amount of commodity which flows along the arc. Such a flow is allowed only in
the direction of the arc (u,v), that is, from u to v. ¢ 2. A conservation law is ob-
served at each of the vertices: Yo € X : 3~ e p— () f(1,v) = X e pe(v) f(0,w). ©
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The feasible flow problem is the problem of the existence of a flow in G which sat-
isfies the capacity constraint, that is: Y(u,v) € U : Ib(u,v) < f{u,v) < ubu,v).

Application to the GlobalCardinality Constraint

We aim to take into account the fact that modifying one z € X changes two
cardinalities. The problem can be formulated as a feasible flow with minimum
cost (Min Cost Flow [18]) on the bipartite variable-values graph defined below.

In this graph we consider for the GlobalCardinality constraint one arc with
a specific cost is defined for each pair variable-value for values belonging to each
initial domain. We assume that the constraint has intially at least one feasible
soltion. Arcs corresponding to the current assignment have cost 0, other have
cost 1.

Definition 7. Ggee = (XU Do(X) U {s,t}, E), where Do(X) denotes the set of
initial domains of X, is defined by:

— s, avertex such that Yz € X, (s,z) € E. These arcs have a capacity equal
to [1,1]1 and are valued by cost(s,z) =0,

— t, a vertex such that Vv € Do(X), (v,t) € E. The capacity of each arc (v,t) is
reqy (see Notation 1 in previous subsection). The valuation is cost(v,t) =0,

— (8,8) € E, capacity {|X], |X|], cost(s,t) =0,

-V (z,v), z € X andv € Do(X) one arc € E. Capacity [0,1], cost(z,v) equal
to 0 ifv is assigned to z in I(X), 1 otherwise.

computeCost(I(X))
return the cost of a minimum cost flow in Ggee;

Complexity: from [2] the complexity is O(n; * m *log(n?/m) * log(n; * mazC))
whereny = |X|, n = |X|+|U; D(z;),z; € X|, m = |E| and maxC is a maximum
cost of an arc, that is in our problem maxC = 1.

4.3 GlobalCardinality: Refined Variable-Based Cost (2)

We consider a second refined variable-based definition of the cost where fixed
variables are X and changeable ones are the cardinalities A

computeCost{I (X))
return |Nyaisel;

Complexity: O(1), assuming that |Nyqse| is incrementally maintained when
assigning variables in X and N.
4.4 OneMachineDisjunctive: Object-Based Refined Cost

The OneMachineDisjunctive (7, M) constraint is defined on a set of tasks 7°
and a makespan variable M. Each task T; is defined by two variables: a start s;
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and a duration d;. Its purpose is to enforce all the tasks to be pairwise disjoint
and executed before M (Vs;,d;,s; + di < M). We consider the object-based
refined cost where fixed objects Oy reduce to {M} and changeable ones O, are
the set 7.

We search for the minimum number of tasks to remove to make the con-
straint satisfied. The optimal number can be found by a greedy algorithm de-
rived from [3]. The principle is to sort tasks by increasing f; = s; + d; and use
a greedy algorithm which adds at each step ¢+ 1 a task T;4+; of minimum end
time fiyy after T; if and only if s,43 > f;. This is done until the makespan is
reached. In this way a maximal number of tasks are added, as it is proven in [3]
by a simple induction.

Complexity:O(nlog(n)) where n = |T|.

4.5 NonOverlappingRectangles: Object-Based Cost

The NonOverlappingRectangles(R) constraint holds if the set R of two dimen-
sional rectangles parallel to axis and defined by their respective left-up origin
and sizes is such that all the rectangles do not pairwise overlap.

The cost is the minimum number of rectangles to remove in order to make
them disjoint one another. This number is equal to |R| minus the size of a maxi-
mum independent set of a rectangle intersection graph. A rectangle intersection
graph is a graph where vertices are rectangles and an edge exists between two
rectangles if and only if these rectangles intersect.

Complexity: finding the maximum independent set of a rectangle intersection
graph is known to be NP-Hard [15].

5 Computation of the Graph Properties Based Cost

Computing the cost requires evaluating different graph characteristics on the
final graph G¢. This graph is computed in the following way: we discard all the
arcs of the initial graph for which the corresponding elementary constraints do
not hold. We assume that it is possible to check in polynomial time whether
a ground instance of an elementary constraint holds. Since all the characteristics
we mentioned in [5] can be evaluated in a polynomial time according to the num-
ber of vertices of Gy, evaluating the cost can also be performed in a polynomial
time.

6 Perspectives

This paper presents generic definitions of costs and the related computation
algorithms. Such definitions are required to define soft global constraints. We
directed the paper to over-constrained problems but our cost definitions are also
useful to mix local search based techniques and constraint programming.
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6.1 Incremental Algorithms

When a move is made on a given assignment of values to variables it is necessary
to quantify its impact on the constraints. As a perspective of this work a detailed
study of incremental cost computation algorithms should be made, depending
on their definition and the moves that are supposed to be performed. For some
constraints and some costs this step is easy. This was done in COMET [24]
for the AllDifferent and the GlobalCardinality. An atomic move consists of
modifying a given instantiation by changing the value assigned to one variable.

6.2 Filtering Algorithms

The other main perspective is related to the variable-based and object-based
definitions of cost: for all the usual global constraints it may be interesting to
provide filtering algorithms, like the ones proposed for the A11Different in [21].
Finally, with respect to the graph properties based cost, filtering algorithms
provided for the different graph characteristics would be directly suitable to soft
global constraints.

7 Conclusion

We pointed out that cost definitions presented in [21] for soft global constraints
are not sufficient. We introduced three new definitions. For the first two ones
we investigated algorithms to compute the cost of a complete instantiation for
a representative set of global constraints. The last definition is based on graph
properties representation of constraints [5]. Its major feature is to come up with
a systematic way for evaluating the cost with a polynomial complexity. We dis-
cussed the perspectives of this work, notably with respect to combination of the
expressive power of global constraints with the local search frameworks.
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Abstract. A classical hybrid MIP-CSP approach for solving problems
having a logical part and a mixed integer programming part is presented.
A Branch and Bound procedure combines an MIP and a SAT solver to
determine the optimal solution of a general class of optimization prob-
lems. The procedure explores the search tree, by solving at each node
a linear relaxation and a satisfiability problem, until all integer variables
of the linear relaxation are set to an integer value in the optimal solu-
tion. When all integer variables are fixed the procedure switches to the
SAT solver which tries to extend the solution taking into account logical
constraints. If this is impossible, a “no-good” cut is generated and added
to the linear relaxation. We show that the class of problems we consider
turns out to be very useful for solving complex optimal control problems
for linear hybrid dynamical systems formulated in discrete-time. We de-
scribe how to model the “hybrid” dynamics so that the optimal control
problem can be solved by the hybrid MIP+SAT solver, and show that
the achieved performance is superior to the one achieved by commercial
MIP solvers.

1 Introduction

In this paper we consider the general class of mixed logical/convex problems:

min f(z) (Convex function) (1a)
Z,v,p

8.t gc(2) <0, he(z) =0 (Continuous constraints)  (1b)

gm{z, 1) <0, hp(z,u) =0 (Mixed constraints) (1¢)

g1 (v, u) = TRUE (Logic constraints) (1d)

z €R™, ve{0,1}™, p€{0,1}™,

where g, : R™* — R%¢, g,, : R®»™™ — R%m are convex functions, he :
R™: — Rt h,, : R?=t7 — R are affine functions, and gz, : {0,1}™*™ —
{0,1}™c? is a Boolean function.

An MIP solver provides the solution to (1) after solving a sequence of relaxed
convex problems, typically standard linear or quadratic programs (LP, QP).
A potential drawback of MIP is (a) the need for converting the logic constraints

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 96-111, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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(1d) into mixed-integer inequalities, therefore losing most of the original discrete
structure, and (b) the fact that its efficiency mainly relies upon the tightness of
the continuous LP/QP relaxations.

Such a drawback is not suffered by techniques for solving constraint satis-
faction problems (CSP), i.e., the problem of determining whether a set of con-
straints over discrete variables can be satisfied. Under the class of CSP solvers
we mention constraint logic programming (CLP) [1] and SAT solvers [2], the
latter specialized for the satisfiability of Boolean formulas.

While CSP methods are superior to MIP approaches for determining if
a given problem has a feasible (integer) solution, the main drawback is their
inefficiency for solving optimization, as they do not have the ability of MIP ap-
proaches to solve continuous relaxations (e.g., linear programming relaxations)
of the problem in order to get upper and lower bounds to the optimum value.

For this reason, it seems extremely interesting to integrate the two approaches
into one single solver. Some efforts have been done in this direction [3, 4, 5, 6, 7],
showing that such mixed methods have a tremendous performance in solv-
ing mathematical programs with continuous (quantitative) and discrete (log-
ical/symbolic) components, compared to MIP or CSP individually. Such suc-
cessful results have stimulated also industrial interest: ILOG Inc. is currently
distributing OPL (Optimization Programming Language), a modeling and pro-
gramming language which allows the formulation and solution of optimization
problems, using both MIP and CSP techniques, combining to some extent the
advantages of both approaches; European projects with industrial participants,
such as LISCOS [8], developed and are developing both theoretical insights and
software tools for applying the combined approach of MIP and CSP to industrial
case studies.

In this paper, we focus on combinations of convex programming (e.g., lin-
ear, quadratic, etc.) for optimization over real variables, and of SAT-solvers
for determining the satisfiability of Boolean formulas. The main motivation for
our study stems from the need for solving complex optimal control problems of
theoretical and industrial interest based on “hybrid” dynamical models of pro-
cesses that exhibit a mixed continuous and discrete nature. Hybrid models are
characterized by the interaction of continuous models governed by differential or
difference equations, and of logic rules, automata, and other discrete components
(switches, selectors, etc.). Hybrid systems can switch between many operating
modes where each mode is governed by its own characteristic continuous dy-
namical laws. Mode transitions may be triggered internally (variables crossing
specific thresholds), or externally (discrete commands directly given to the sys-
tem). The interest in hybrid systems is mainly motivated by the large variety of
practical situations where physical processes interact with digital controllers, as
for instance in embedded control systems.

Several authors focused on the problem of solving optimal control problems
for hybrid systems. For continuous-time hybrid systems, most of the literature
either studied necessary conditions for a trajectory to be optimal, or focused
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on the computation of optimal/suboptimal solutions by means of dynamic pro-
gramming or the maximum principle [9, 10, 11].

The hybrid optimal control problem becomes less complex when the dynamics
is expressed in discrete-time, as the main source of complexity becomes the
combinatorial (yet finite) number of possible switching sequences. In particular,
in [12, 13, 14] the authors have solved optimal control problems for discrete-time
hybrid systems by transforming the hybrid model into a set of linear equalities
and inequalities involving both real and (0-1) variables, so that the optimal
control problem can be solved by a mixed-integer programming (MIP) solver.

At the light of the benefits and drawbacks of the previous work in [12, 13, 14]
for solving control and stability/safety analysis problems for hybrid systems
using MIP techniques, we follow a different route that uses the aforementioned
approach combining MIP and CSP techniques.

We build up a new modeling approach for hybrid dynamical systems di-
rectly tailored to the use of the hybrid MIP+SAT solver for solving optimal con-
trol problems, and show its computational advantages over pure MIP methods.
A preliminary work in this direction appeared in [15], where generic constraint
logic programming (CLP) was used for handling the discrete part of the optimal
control problem.

The paper is organized as follows. In Section 2.1 optimal control problems of
discrete-time hybrid models are introduced and in Section 2.2 are reformulated
to the general class (1). Section 3 introduces the new solution algorithm for
the general class (1). An example of optimal control problem of a hybrid model
showing the benefits of the solution algorithm, compared to pure MIP approaches
[12, 14] is shown in section 4.

2 Motivating Application

2.1 Optimal Control of Discrete-Time Hybrid Systems

Following the ideas in [14], a hybrid system can be modeled as the intercon-
nection of an automaton (AUT) and a switched affine system (SAS) through
an event generator (EG) and a mode selector (MS). The discrete-time hybrid
dynamics is described as follows [14]:

(AUT) zi(k+ 1) = fl(xl(k)aul(k)ye(k))v

yi(k) = gi(zi(k), wi(k), e(k)), (2a)
(SAS) zo(k + 1) = Aywyze(k) + Bigryue(k) + fiky»
Ye(k) = Ci(k)~730(k) + Di(k)uc(k) + Gik)> (2b)
(EG)  [ej(k) = 1] «— [a] zc(k) + b] u(k) < ¢;] (2c)
&
(MS) i(k) = | ¢ | = fus(@i(k),w(k),i(k — 1)) (2d)

ds
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The automaton (or finite state machine) describes the logic dynamics of the
hybrid system. We will only refer to “synchronous automata”, where transitions
are clocked and synchronous with the sampling time of the continuous dynamical
equations. The dynamics of the automaton evolves according to the logic update
functions (2a) where k € Z* is the time index, z; € X; € {0,1}™ is the logic
state, u; € Uy C {0,1}™ is the exogenous logic input, y; € Y; C {0,1}** is the
logic output, e € € € {0,1}™ is the endogenous input coming from the EG,
and fi: A xUy X E — Xy, g1 : Xy x Uy x E — Y, are deterministic boolean
functions.
The SAS describes the continuous dynamics and it is a collection of affine systems
(2b) where z, € X, € R" is the continuous state vector, v, € U, T R™*
is the exogenous continuous input vector, y. € V. € RPe is the continuous
output vector, i(k) € T £ {[1 g--- O]T,m ,{0---0 I]T} C {0, 1}* is the “mode”
in which the SAS is operating, §Z = s is the number of elements of Z, and
{4, B, [i,Cs, Di, gi }iez is a collection of matrices of opportune dimensions.
The mode i(k) is generated by the mode selector, as described below. A SAS of
the form (2b) preserves the value of the state when a switch occurs. Resets can
be modeled in the present discrete-time setting as detailed in [14].
The event generator (EG) is a mathematical object that generates a Boolean
vector according to the satisfaction of a set of threshold events (2c) where ;
denotes the j-th component of the vector, and a; € R™¢, b; € R™<, ¢; € R define
the hyperplane in the space of continuous states and inputs.
The mode selector (MS) selects the dynamic mode i(k) € Z C {0,1}°, also
called the active mode, of the SAS and it is described by the logic function (2d)
where fups: X x U, x T — Tis a Boolean function of the logic state z;(k),of
the logic input u;(k), and of the active mode ¢(k — 1) at the previous sampling
instant. We say that a mode switch occurs at step k if i(k) # i(k — 1). Note
that contrarily to continuous time hybrid models, where switches can occur at
any time, in our discrete-time setting a mode switch can only occur at sampling
instants.

A finite-time optimal control problem for the class of hybrid systems is for-
mulated as follows:

T-1
min > (@l +1) = ro(k + 1), u(k) - ru(k)) (3a)
{z(k+1),2(0)} 20 o
s.t. dynamics (2a), (2b), (2¢), (2d) (3b)

hp(z(0), {z(k +1),u(k),e(k),i(k)}g 1) <0 (3¢)
ha(2(0), {z(k + 1), u(k),e(k),i(k)}5 1) <0 (3d)

where T is the control horizon, £ : R**™ — R is a nonnegative convex function,
n=n;+n, m=me+my, r, € R"?, r, € R™ are given reference trajectories to
be tracked by the state and input vectors, respectively.

The constraints of the optimal control problem can be classified as dynamical
constraints (3b), representing the discrete-time hybrid system, design constraints
(3c¢), artificial constraints imposed by the designer to fulfill the required spec-
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ifications, and ancillary constraints (3d), an a priori additional and auxiliary
information for determining the optimal solution which does not change the
solution itself, rather help the solver to find it more easily.

2.2 Problem Reformulation

Problem (3) can be solved via MILP when the costs ¢, are convex piecewise linear
functions, for instance £x(z,u) = ||Qzz]loo + [|Qutlloo, Where Qq, @, are full-
rank matrices and || - ||oo denotes theinfinity-norm (||Qz}le = max;=1,...n |@’ =],
where @7 is the j-th row of Q) [13], or via MIQP (mixed integer quadratic
programming) when {x(z,u) = z'Q.z + u'Quu, where Qg, @, are positive
(semi)definite matrices [12]. In this paper we wish to solve problem (3) by using
MIP and SAT techniques in a combined approach, taking advantage of SAT for
dealing with the purely logic part of the problem. In order to do this, we need
to reformulate the problem in a suitable way.

The automaton and mode selector parts of the hybrid system are described as
a set of Boolean constraints so they do not require transformations. The event
generator and SAS parts can be equivalently expressed, by adopting the so-called
“big-M” technique [16], as a set of continuous and mixed constraints. Problem
(3) can be cast as the mixed logical/convex program

T-1
{z(k inf? u(k) Z fulall 4 1) = rolk + 1), u(k) = ru(k) e
w(k), 5(k)}  F=°
=0,...,T~1
sit. Azo(k) < b, ze(k+1) Zw,(k) (4b)
M1:L’c(k‘) + Mauc(k) + M3w(k) < M46(k) + Msd(k) + Mse (40)
g(zi(k + 1), zi(k), ui(k), e(k), 8(k)) = TRUE (4d)

w(k) = [w1(k) ...ws(k)]' wi(k) € R™, §(k) € {0,1}°,

where {zc(k + 1), uc(k), w(k)}I-) are the continuous optimization variables,
{zi(k + 1), wi(k), 6(k), e(k) z;ol are the binary optimization variables, z.(0),
z1(0) is a given initial state, constraints (4b), (4c) represent the EG and SAS
parts (2¢), (2b), and the purely continuous or mixed constraints from (3c), (3d),
while (4d) represents the automaton (2a), the mode selector (2d), possible purely
Boolean constraints from (3c), (3d). Matrices M;, ¢ =1 ... 6, are obtained by
the big-M translation.

Problem (4) belongs to the general class (1) in which all constraints depend
on the state initial condition [z.(0) z;(0)']" of the hybrid system. In the hybrid
optimal control problem at hand, z collects all the continuous variables (z.(k +
1), uclk), k = 0,...,T — 1), the auxiliary variables needed for expressing the
SAS dynamics, possibly slack variables for upper bounding the cost function
in (4a) [13], u collects the integer variables that appear in mixed constraints
(e(k), 6;(k), k=0,...,T—1,4=1,...,s), and v collects the integer variables
such as z;(k), v (k) that only appear in logic constraints. Note that in general if
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the objective function in the the form f(z, 1} we could consider the new objective
function €, € € R, and an additional constraint f(z, ) < € which is a mixed
convex constraint that could be included in (1c).

3 SAT-Based Branch&Bound

3.1 Constraint Satisfaction and Optimization

While optimization is primarily associated with mathematics and engineering,
CSP was developed (more recently) in the computer science and artificial in-
telligence communities. The two fields evolved more or less independently until
a few years ago. Yet they have much in common and are applied to solve similar
problems. Most importantly for the purposes of this paper, they have comple-
mentary strengths, and the last few years have seen growing efforts to combine
them [4, 3, 17, 5, 18].

The recent interaction between CSP and optimization promises to affect both
fields. In the following subsections we illustrate an approach for merging them
into a single problem-solving technology, in particular by combining convex op-
timization and satisfiability of Boolean formulas (SAT).

Convex Optimization. Convex optimization is very popular in engineering,
economics, and other application domains for solving nontrivial decision prob-
lems. Convex optimization includes linear, quadratic, and semidefinite program-
ming, for which several extremely efficient commercial and public domain solvers
are nowadays available. An excellent reference to convex optimization is the book
by Boyd and Vandenberghe [19].

SAT Problems. An instance of a satisfiability (SAT) problem is a Boolean
formula that has three components:

— A set of n variables: z1,Z2,...,2Zn.

— A set of literals. A literal is a variable (Q = z) or a negation of a variable
(Q =—x).

— A set of m distinct clauses: C1,Cp,...,Cn. Each clause consists of only
literals combined by just logical or (V) connectives.

The goal of the satisfiability problem is to determine whether there exists an
assignment of truth values to variables that makes the following Conjunctive
Normal Form (CNF) formula satisfiable:

CiANCoA...ANCn,

where A is a logical “and” connective. For a survey on SAT problems and related
solvers the reader is referred to [2].
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3.2 A SAT-Based Hybrid Algorithm

The basic ingredients for an integrated approach are (1) a solver for convex
problems obtained from relaxations over continuous variables of mixed integer
convex programming problems of the form (4a)-(4b)-(4c), and (2) a SAT solver
for testing the satisfiability of Boolean formulas of the form (4d). The relaxed
model is used to obtain a solution that satisfies the constraint sets (1b) and (1c)
and optimizes the objective function (1a). The optimal solution of the relaxation
may fix some of the (0-1) variables to either O or 1. If all the (0-1) variables in the
relaxed problem have been assigned (0-1) values, the solution of the relaxation is
also a feasible solution of the mixed integer problem. More often, however, some
of the (0-1) variables have fractional parts, so that further “branching” and
solution of further relaxations is necessary. To accelerate the search of feasible
solutions one may use the fixed (0-1) variables to “infer” new information on
the other (0-1) variables by solving a SAT problem obtained by constraint (1d).
In particular, when an integer solution of x4 is found from convex programming,
a SAT problem then verifies whether this solution can be completed with an
assignment of v that satisfies (1d).

The basic branch&bound (B&B) strategy for solving mixed integer problems
can be extended to the present “hybrid” setting where both convex optimization
and SAT solvers are used. In a B&B algorithm, the current best integer solution
is updated whenever an integer solution with an even better value of the objective
function is found. In the hybrid algorithm at hand an additional SAT problem
is solved to ensure that the integer solution obtained for the relaxed problem
is feasible for the constraints (1d) and to find an assignment for the other logic
variables v that appear in (1d). It is only in this case that the current best
integer solution is updated.

The B&B method requires the solution of a series of convex subproblems
obtained by branching on integer variables. Here, the non-integer variable to
branch on is chosen by selecting the variable with the largest fractional part
(i.e., the one closest to 0.5), and two new convex subproblems are formed with
that variable fixed at O and at 1, respectively. When an integer feasible solution
of the relaxed problem is obtained, a satisfiability problem is solved to complete
the solution. The value of the objective function for an integer feasible solution
of the whole problem is an upper bound (UB) of the objective function, which
may be used to rule out branches where the optimum value attained by the
relaxation is larger than the current upper bound.

Let P denote the set of convex and SAT subproblems to be solved. The
proposed SAT-based B&B method can be summarized as follows:

1. Initialization. UB = oo, P = {(p°, SAT®)}. The convex subproblem p° is
generated by using (l1a),(1b), (1¢) along with the relaxation & € [0, 1]+, and
the SAT subproblem SAT? is generated by using (1d).

2. Node selection. If P = @ then go to 7.; otherwise select and remove a
(p, SAT) problem from the set P; The criterion for selecting a problem is
called node selection rule.
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3. Logic inference. Solve problem SAT. If it is infeasible go to step 2.

4. Convex reasoning. Solve the convex problem p, and:

4.1. Ifthe problem is infeasible or the optimal value of the objective function
is greater than UB then go to step 2.
4.2. If the solution is not integer feasible then go to step 6.

5. Bounding. Let p* € {0,1}™ be the integer part of the optimal solution
found at step 4.; to extend this partial solution, solve the SAT problem
finding v such that g(v,p*) =TRUE. If the SAT problem is feasible then
update UB; otherwise add to the LP problems of the set P the “no-good”

cut [3]
domi— D w<B -1,
i€T* JEF>
where T* = {i|u; =1}, F* = {j|u} = 0}, and B* = |T™*|. Go to step 2.

6. Branching. Among all variables that have fractional values, select the one
closest to 0.5. Let p; be the selected non-integer variable, and generate two
subproblems (p U {u; = 0}, SAT&{-u}), (pU {p; = 1}, SAT&{u}) and
add them to set P; go to step 2.

7. Termination. If UB = oo, then the problem is infeasible. Otherwise, the
optimal solution is the current value UB.

Remark 1. At each node of the search tree the algorithm executes a three-step
procedure: logic inference, solution of the convex relaxation, and branching. The
first step and the attempted completion of the solution do not occur in MIP ap-
proaches but they are introduced here by the distinction of mixed (0-1) variables
u and pure (0-1) variables v. The logic inference and the attempted completion
steps do not change the correctness and the termination of the algorithm but
they improve the performance of the algorithm because of the efficiency of the
SAT solver in finding a feasible integer solution.

Remark 2. The class of problems (1) is similar to the MLLP framework intro-
duced by Hooker in [20],

min ¢’z (5a)
s.b. pj(y, h) — [A7(z) > 7], jeJ (5b)
Q'i(ya h)a i€ Iy (5C)

wherez € R"=, y € {0,1}", h € D C Z™*», (5b) is the continuous part, and (5¢)
is the logic part. If we consider the only y variables as discrete variables and
a liner cost function, constraints (1b), (1c) represent the linearization of (5b),
and constraints (1d) are equivalent to (5c¢).

There are however a few differences between frameworks (1) and (5). First, the
relaxation problem of (1) is the same for each node in the search tree, while in
(5) the relaxation depends on which left-hand side of (5b) is true. Second, in the
class of problems (1) constraints of type

=1 — [z21+ 22 > a,
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can not be introduced and they have to be converted into inequalities, becoming
part of constraints (1c). Inference is done only in the logic part, by the SAT
solver, and no information is derived by the continuous part. In the MLLP
framework, instead, inferences are made in both ways.

Remark 3. The modeling framework (1) can also be solved by using a combined
approach of MIP and CLP [15]. The role of constraint propagation is obviously to
reduce as much as possible the domain sets of the u variables that appear in the
constraints managed by the CLP solver. In this way, the constraint propagation
can reduce the search space removing some branches in the search tree that can
not have feasible solutions. Moreover the constraint propagation together with
choice points can help to find a completion of the solution trying to fix the v
variables.

The SAT solver behaves in a similar way to CP solver. The SAT inference is a
feasibility check. If a partial assignment of the p variables is infeasible for the set
of constraints (1d) SAT is able to find the infeasibility easier and more quickly
than a CLP solver. SAT solvers are also more efficient for finding a feasible
assignment for the v variables with respect to CLP solvers.

However the efficiency of SAT solvers relies upon the representation of the logic
part of the problem. While CLP can be used both with logic formulas and linear
constraints, as well as global constraints, SAT turns out to be useful only with
Boolean formulas.

4 Numerical Results

In this section we show on an example of hybrid optimal control problem that
the hybrid solution technique described in the previous sections has a better
performance compared to commercial MIP solvers.

4.1 “Hybrid” Model

Consider a room with two bodies with temperatures 71, T3 and let Tgmp be
the room temperature (this example is an extension of the example reported
in [21]). The room is equipped with a heater, close to body 1, delivering thermal
power upot and an air conditioning system, close to body 2, draining thermal
power ucola. These are turned on/off according to some rules dictated by the
closeness of the two bodies to each device. We want guarantee that the bodies
are not cold or hot.

The discrete-time continuous dynamics of each body is described by the
difference equation

Ti(k +1) - Ti(k)
T,

wherei = 1,2, ay, ki, ¢ are suitable constants, T is the sampling time, and u.(k)

is an exogenous input that can be used to deliver or drain thermal power manu-

ally (e.g. by opening a window or by changing the water flow from a centralized
heating system).

= _ai(Ti(k) - Tamb) + ki(uhot(k) - ucold(k)) + Cue(k)a (6)
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6c2 M _‘6c1

Fig. 1. Automaton regulating the heater

Yh1 A TYh2

REFRIGERATE

Fig. 2. Air conditioning system automaton

The automaton part of the system is described by the two automata rep-
resented in Figures 1 and 2, where dci,0uci,yYhs and Yuni, for ¢ = 1,2, are logic
variables defined as follows

[buei(k) = 1] «— [T3(k) < Tveil, (7a)
[6ci(k) = 1] e [Ti(k) < Tuil, (7b)
(Yhi(k) = 1] e [T3(k) > Thal, (7c)
[Yori(k) = 1] & [Ti(k) > Tynil, (7d)

and where Tye; < Ty < Thy < Tyni are constant thresholds. The automaton for
the heater (Figure 1) sets the heater in the “ready to heat” state if body 2 is
cold, and will go in “heat” state if body 2 is very cold. If body 1 is cold or very
cold the heater is turned on immediately. The automaton of the air conditioning
(A/C) system (Figure 2) sets the air conditioning system in the “ready to cool”
state if body 1 is hot, unless body 2 is cold, in other words, the A/C system is
turned on only when body 1 is very hot. However, the draining thermal power
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is half of the full power. The A/C system is set to the maximum power if the
body 2 is very hot but it is immediately switched to half power as soon as body
2 is only hot (due to energy consumptions of the A/C system).

The heater delivers thermal power and the A/C system drains thermal power
according to the following rules:

uc ifacy =1

. (753 if h3 =1 _ ug _
Uhot = {0 otherwise Ucold = | 5 if acs = 1. (8)
0 otherwise

By following the notation of (2a), we have z; = [h1 hy hs ac1 ace acs acs)’ €
{0,1}7, w; = 0 and e(k) = [6ve1 Sve2 b1 G2 Yh1 Yra Yohi Yunz) € {0,1}5.

The system has six modes: (Unot, Ucord) € {(0,0), (um,0), (0,uc), (0,uc/2),
(um, ue), (um, ue/2)}. The mode selector function is defined as follows

r"!}1.3(16) A —laC4(k) A —|a03(lc)-1
hg(k) A —|a04(k) A =acs (k)
—hg(k) A acs(k) A —acs(k)
=hz(k) A —aca(k) A acs(k)
hs(k) A aca(k) A —acs(k)

L h3(k) A ‘|G.C4(k) A ac;;(k:) |

i(k) = € {0,1}%,

which only depends on logic states.

The SAS dynamics (6), i.e., the continuous part of the hybrid system, is
translated into a set of inequalities using the Big-M technique, which provides
the set of constraints

Az,(k) + Buo(k) + Cw(k) < D3(k) + E, (9)

where z, = [T} T}, uc = ue, w(k) € R® contains the auxiliary continuous vari-
ables needed to represent the conditions Upet = UH, Ucold = UC, Ucold = Uc/2,
and §(k) = [ha(k) acs(k) aca(k)] € {0,1}3. Constraints (9) are obtained by
employing the HYSDEL compiler [14], a dedicated “hybrid” system descrip-
tion language and compiler which translates a description of the problem into
the mathematical mixed+logical dynamical (MLD) representation introduced
in [12], a mathematical framework useful for defining optimal control problems
as pure MIP problems.

Finally, the event generator is represented by (7a) and (7b). These are trans-
lated by HYSDEL into a set of linear inequalities:

Gz (k) + G uc(k) + D'e(k) < E, (10)

where e(k) = [ye1 vez e1 G2 Yr1 Yh2 Yon1 Ywn2)’ € {0,135

4.2 Optimal Control Problem

The goal is to design an optimal control profile for the continuous input %e that
minimizes $;_,, |Ti (k) — Tams| subject to the hybrid dynamics and the following
additional constraints:



SAT-Based Branch & Bound 107

— Continuous constraints on temperatures to avoid that they assume unac-
ceptable values

~10 < Ty (k) < 50 ~10 < Ty(k) < 50. (11a)

These constraints may be interpreted as dynamical constraints due to phys-
ical limitations of the bodies.
- A continuous constraint on exogenous input to avoid excessive variations:

~10 < ue(k) < 10. (12)

This constraint may be interpreted as a design constraint of the form (3c)

4.3 Results

The above dynamics and constraints are also modeled in HYSDEL [14] to ob-
tain an MLD model of the hybrid system in order to compare the performance
achieved by the hybrid solver with the one obtained by employing a pure MILP
approach.

The optimal control problem is defined over horizon of T steps as:

T-1
o8By 2 r®) (132)
s.t. €T(k2) [1 2 i(TZ(k}) - Tamb)a (13b)
i
automata Figures 1, 2, (13c)
(9), (10) (13d)
(11), (12) (13e)

where {z,u, 2,4, ET}:{z(k),u(k)az(k), 8(k), er(k) :;017 er =[6T1(0)» €T2(0)a- )
er1(T — 1), ero(T — 1)) € R*T.

Each part of the optimal control problem is managed by either the SAT solver
or the LP solver: the cost function (13a), the inequalities (13b), (13d), and the
additional constraints (13e) are managed by the LP solver, the logic part (13c)
is managed by the SAT solver. Our simulations have been done describing and
solving the problem within the Matlab environment and calling, through MEX
interfaces, respectively, ZCHAFF [22] for SAT and CPLEX [23] for LP.

In all our simulations we have adopted depth first search as the node selection
rule, to reduce the amount of memory used during the search.

For the initial condition T7(0) = 5° C, T5(0) = 2° C and for Toms = 25° C
we have done simulations for different horizons (the obtained optimal solution
is clearly the same both using the SAT-based B&B and the MILP), reported in
Table 1.

We can see that the performance of the SAT-based B&B is always better than
the one obtained by using the commercial MILP solver of CPLEX. In Table 1, we
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Table 1. Optimal control solution: comparison among SAT-based B&B, naive MILP,
and CPLEX MILP

T Bool. SATbhbB&:B CPLEX | Naive MILP
Vars| (s) LPsSATs| (s) LPs| (s) LPs
5 8 009 5 6 0.03 18 0.48 23
10 157 | 0.18 5 6 0.13 79| 3.7150 119
15 2321033 5 6 0.42 199| 83.69 943
20 307 |0.5110 6 8 [0.5410 243|109.0870 2181
8
9

25 382 |0.7620 10 ]0.8210 286 (503.0030 3833
30 457 |1.0520 12 [1.0110 333| 1072.3 6227
35 532 (1.4420 10 13 |1.7170 341| > 1200 -
40 607 |1.8630 13 16 |2.5030 374| > 1200 -—
45 682 |2.7740 15 20 |3.8320 475| > 1200 -

Table 2. Computation time for solving a pure integer feasibility problem: comparison
between SAT (zCHAFF) and MILP (CPLEX)

T Bool. Constr SAT MILP
Vars (s) (s)
5 82 460 0 0.02
10 157 920 0.01 0.02
15 232 1380 0.02 0.03
20 307 1840 0.03 0.03
25 382 2300 0.04 0.05
30 457 2760 0.05 0.06
35 532 3220 0.06 0.07
40 607 3680 0.08 0.10
45 682 4140 0.09 0.13

also compare the performance of a “naive MILP” solver, that is obtained from
the SAT-based B&B code by simply disabling SAT inference. The main reason
is that the SAT B&B algorithm solves a much smaller number of LPs than an
MILP solver. The “cuts” performed by the SAT solver, i.e. the infeasible SAT
problems, obtained at step 3 of the algorithm turn out very useful to exclude
subtrees containing no integer feasible solution, see Figure 3. Moreover, the time
spent for solving the integer feasibility problem at the root node of the search
treee described as SAT problem is much smaller than solving a pure integer
feasibility problem, see Table 2. We can also see from Table 1 that the number
of feasible SAT solved equals the number of LP solved plus one. This one more
SAT is used to complete a feasible solution and it is very useful to further reduce
the computation time.



SAT-Based Branch & Bound 109

[TEEE

03 #jjnoascs_—_f-jll (%] 0 ¥ :'?f:

(a) SAT-based algorithm (circle: (b) Naive MILP algorithm
feasible, square: integer feasible,

diamond: infeasible, triangle (up):

Bound phase, triangle (down):

SAT cut)

Fig. 3. Comparison of the trees generated by the SAT-based and naive MILP algo-
rithms (T=30)

The results were simulated on a PC Pentium IV 1.8 GHz running CPLEX
9.0 and zCHAFF 2003.12.04.

5 Conclusions

In this paper we have proposed a new unifying framework for MIP and CSP
techniques based on the integration of convex programming and SAT solvers for
solving optimal control problems for discrete-time hybrid systems. The approach
consists of a logic-based branch and bound algorithm, whose performance in
terms of computation time can be superior in comparison to pure mixed-integer
programming techniques, as we have illustrated on an example.

Ongoing research is devoted to the improvement of the logic-based method by
including relaxations of the automaton and MS parts of the hybrid system in
the convex programming part, to the investigation of alternative relaxations of
the SAS dynamics that are tighter than the big-M method, and to the use of
SAT solvers for also performing domain reduction (cutting planes).
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Abstract. This paper focuses on the resolution of the reachability prob-
lem in Petri nets, using the logical abstraction technique and the mathe-
matical programming paradigm. The proposed approach is based on an
implicit exploration of the Petri net reachability graph. This is done by
constructing a unique sequence of partial steps. This sequence represents
exactly the total behavior of the net. The logical abstraction technique
leads us to solve a constraint satisfaction problem. We also propose dif-
ferent new formulations based on integer and/or binary linear program-
ming. Our models are validated and compared on large data sets, using
Prolog IV and Cplex solvers.

1 Introduction

The operational management of complex systems is characterized, in general,
by the existence of a huge number of solutions. Decision-making processes must
be implemented in order to find the best results. These processes need suit-
able modelling tools offering true practical resolution perspectives. Among them,
Petri nets (PN) provide a simple graphic model taking into account, in the same
formalism, concurrency, parallelism and synchronization.

In this paper, we consider the PN reachability problem. Indeed, it seems
very efficient to model discrete dynamic systems in a flexible way, as can be
seen from the fact that many operations research problems have been defined
using reachability between states (e.g. scheduling problems [13], railway traffic
planning [2] or car-sequencing problems [5]). Furthermore, a large number of
PN analysis problems such as deadlock freeness or liveness, are equivalent to the
reachability problem, or to some of its variants or sub-problems [10].

Various methods have been suggested to handle the PN reachability prob-
lem. In this paper, we study more precisely the PN logical abstraction technique
proposed initially by Benasser [1]. This method consists in developing a unique
sequence of partial steps corresponding to the total behavior of the system. It

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 112-126, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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was validated on several examples using logical constraint programming tech-
niques. Numerical results using Prolog IV have shown that the method can be
more effective than other generic solvers, and can even compete with heuristics
dedicated to particular classes of problems [1]. However, its resolution perfor-
mance is limited in practice by the incremental search mechanism used: memory
overflows appear soon when the size of the problem grows.

We propose an alternative based on a mathematical programming formula-
tion. We model the problem as an integer linear program, then we solve it with
a branch-and-bound technique, using the Cplex optimization software. We show
that the performances achieved are better than those of the initial technique in
terms of speed and memory.

The paper is organized as follows. In section 2, after the introduction of the
PN terminology, we define the reachability problem to be solved. In section 3,
we recall the notions of partial markings and partial steps used in the Petri nets
logical abstraction technique, and the main results presented in [1]. In the section
4, we use firstly the logical abstraction technique to model the PN reachability
problem as a constraint satisfaction problem. Then we propose new formula-
tions based on integer linear programming. Computational results on a set of
benchmarks are presented and compared in section S. Finally, as a conclusion,
we describe a few promising research directions.

2 Petri Net Reachability Problem

2.1 Petri Net Structure

A Petri net [16] (R = (P, T,W), mo) can be defined as a bipartite directed graph
where:

— P ={p1,...,pu} is a finite set of places, with |P| = M. Places are represented
as circles;
— T = {t1,...,tx} is a finite set of transitions, with |T| = N. Transitions are

represented as rectangles;

— W:PxTUT x P — N is the weighted flow relation representing the arcs. It
associates to each pair (place, transition) or (transition, place) the weight
of the corresponding arc in the net;

— mg : P — N associates to each place p € P an integer mo(p) called the
marking of the place p. Markings are represented as full disks called fokens
inside the place.

The matrices which are defined below (precondition (Pre: m X m), postcon-
dition (Post: m x n) and incidence (C: m x n)) are useful in PN analysis:

- VpeP,VteT, Pre(p,t) =k & W(p,t) =k;
— Vp e P, vVt €T, Post(p,t) = k & W(t,p) = k;
— VpeP,VieT,C(p,t) = Post(p,t) — Pre(p,t).

An example of Petri net is presented in figure 1.
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-1-10 1

1 1 -10

0 2 -10

0 0 1 -1

Incidence
1100 0001
0010 1100
0010 0200
0001 0010

Precondition Postcondition

Fig. 1. A Petri net and its Pre, Post and Incidence matrices

2.2 Token Game

In a Petri net, the markings of the places represent the state of the correspond-
ing system at a given moment. This marking can be modified by the firing
of transitions. A transition ¢t is fireable for a marking mg (denoted by mglt)),
when Vp € P, mg(p) > W (p,t). If this condition is satisfied, a new marking m;
is produced from the marking mg (denoted by my[tym1): Vp € P,m;i(p) =
mo(p) = W(p,t) + W(t,p).

The previous equations can be generalized to the firing of fireable transition
sequences. Given g = t,,t,, ...t,, asequence of transitions of (R, mg), we define
the firing count vector @ associated to o, where @ (t) is the number of times
the transition t has been fired in o, V¢ € T. Formally, & = 37_,; &, where &;
represents the characteristic vector of t;. Therefore we have:

o is fireable from myq gek molo)=>Pre. o < ]—V_fg (1)
moloymy = My = Mo + C. 7 (2)

The equation (2) is called the fundamental (or state) equation. One will
denote by T the set of all sequences of elements of T, and 7 (R, mo) the set of
all transitions sequences fireable from mg.

2.3 Reachability Problem

The firing rule can be used to define a reachability graph associated with the Petri
net. The reachability graph corresponds to the usual formal representation of the
behavior of the net. The reachability graph of a net R, denoted by G(R,mp), is
defined by:

— A set of nodes A(R,mg) which represent all the markings reachable by any
fireable transition sequence. Formally, A(R,mg) = {my | 30 € T(R,mq)
s.t. mo[o)mys};
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— A set of arcs, where an arc (m;,m;) labelled ¢ connects nodes representing
the markings m; and m;iff m;{tym;.

For a given initial marking, the reachability graph G(R,mg) and the corre-
sponding reachability set A(R, mg) are not necessarily finite. For example, the
set of markings reachable from (1,0,0,0)* for the net of the figure 1 is infinite. To
prove this assertion, consider n repetitions of the sequence of transitions t2fsts,
which reach the marking (1,0, n,0). The figure 2 presents the beginning of the
construction of the corresponding reachability graph.

A net is called bounded iff 3k € N,Ym € A(R,mq),Vp € P, m(p) < k. The
reachability set of bounded nets is finite (it is clearly limited by k™).

The reachability problem is defined as follows: “ Given a Petri net R with
the initial marking mo and a final marking my € N™, decide if my is reachable
from mqg (ie. if my € A(R,mq))”. To solve this problem, we need to find
a fireable sequence of transitions from 7 (R, mg) such that mo[o)my. A “naive ”
approach consists in exploring the reachability graph exhaustively. It has been
shown that the reachability problem is decidable [11]. However it is EXP-TIME
and EXP-SPACE hard in the general case ([15]).

Practically, it is not possible to explore the reachability graph exhaustively
due to the well known problem of combinatorial explosion,; the size of the state-
space may grow exponentially with the size of a system configuration. Many
methods have been studied to limit this explosion. Let us mention the three
main ones. The first manages the combinatorial explosion without modifying
the studied reachability graph. Classical approaches are graph compressions,
particularly bdd encoding [7]) and forward checking [6]. Some other techniques
construct a reduced reachability graph associated to the original, based on some
properties to preserve: symmetries [8], reductions [3] and partial order (covering
step graphs [19], stubborn sets [18]) are the main approaches. The last ones are
based on the state equation: we can distinguish parametrized analysis [14] and
algebraic methods [12].

Fig. 2. Reachability graph for the PN fig. 1 starting (1,0,0,0)*
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In the following sections, we propose new approaches to find fireable transi-
tions sequences leading to a target marking. Our methods are based on the Petri
net logical abstraction and mathematical programming techniques.

3 Petri Net Logical Abstraction Technique

3.1 Steps and Steps Sequences

We generalize the notion of transition firing to step firing. A step corresponds
to the simultaneous firing of several transitions, the same transition can be fired
several times (we call this reentrance). We represent a step as a multi-set over
transitions, i.e. a set which can contain several copies of the same element, for
example {2t1,¢2}, which we would note simply 2t; + t.

A step @ = a1 + ... + ayly, where oa,...,ay € N, is fireable from a mark-
ing miff Vp € P,m(p) > 2?21 a;W (p,t;). The marking must contain enough
marks so that each transition of the step may consume its own tokens. We asso-
ciate a step ¢ and a characteristic vector @ in the classical manner, as a linear
combination with positive coefficients of the characteristic vectors of each tran-
sition, i.e. ¥ = i, ;.

Equations (1) and (2) can be generalized to steps and step sequences. In
the following sections, we will use the notations already used previously: m[y),
molp)ma, mo[p1p2...ox) and molp1p2...0k)mi to indicate that a step or a step
sequence is fireable, and the marking obtained in each case. We denote by T* the
set of steps built over T, and S(P, T, W, myg), the set of steps fireable from mg.

3.2 Partial Steps and Markings

Steps and step sequences capture parallel executions in a unique step fire. In this
section, we present briefly the notions of partial steps and markings introduced
in [1]. These new structures will capture the total behavior of the Petri net in
a unique sequence of partial steps. Informally, intermediate steps and markings
are considered as vectors of variables, which are associated to a formula. Formu-
lae correspond to constraints required for variables so as to guarantee that all
possible instantiations will always represent valid concrete steps and markings.

Let £ be a first order logic whose domain is Z, we denote respectively £
and F. the set of expressions and formulae of L.

A partial marking (resp. partial step) is a pair M P = (m, Fp,) (resp. SP =
(¢, F,) ) where:

—m:Pr— & (resp. ¢: T — £) is a mapping associating to each place (resp.
transition) an expression of the language £;
— F, (resp. F,,) is a formula from L.

We denote SP(R) and MP(R) the sets of partial steps and markings, respec-
tively. The firing properties can be extended easily to partial steps and markings.
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Of course, concrete steps and markings are particular cases of partial ones as-
sociated to the truth formula, so that the extension can be made in a natural
way.

Let R = (P,T,W) be a Petri net, MPy = (mqg, Fm,) be a partial mark-
ing from MP(R) and SP; = (¢1,F,,) be a partial step from SP(R). The
partial step SP; is called fireable from M Py (denoted by M Py[SP;)) iff the for-

mula Fp, A Fy, A ( A (mo(p) > 5 W(p, t)gol(t))> is satisfiable.
peP teT

Within these conditions, the firing of the partial step SP; creates a new
partial marking M P, = (m1, F,) (denoted by M Py[SP;)M P;) such that:

— Vp € P, mi(p)  mo(p) — ZWEHaO + T Wtpe); (E1)
- le dEemeo/\Fsm A (/\ (mo(p) Z Z W(pvt)(pl(t)))' (Ez)
pEP teT

3.3 Complete Partial Steps Sequences

With some additional hypothesis on the constraints F,,, linked to the partial
steps, we can define a complete sequence of partial steps. This complete partial
steps sequence will be used to find all the concrete steps sequences of a given
size.

Let R = (P,T,W)be a Petri net. Let SSP = SP; SP, ... SP;be a partial
steps sequence from SP(R), such that Vi € [1,k], SP; = (g5, Fy,). Let MPy, ...,
M Py be partial markings from MP(R) s.t. Vi € [1,k], MP;_1[SP,)MPF,;. We
note @o1,o2,--.,%on the variables embedded in the partial marking M P,
and Vj, those corresponding to SP;,for i € [1,k].

If a sequence of partial steps SSP satisfies the following conditions, then it
is complete from the marking M Fy:

- Vie ﬂla k]}a V«p«, = {‘Pﬂ,(PiZ, ey WzN},
- Vi€ ﬁlvleVJ € III)NB’¢i(tj) = Pijs
— The symbols of variables ;;, for ¢ € [0,k] and j € [1,N] are different;
N
- Vi € [[1,](2]],F : = /\ (‘Pz’j Z 0) (E3)

J=1

Benasser [1] proved that a complete sequence of partial steps of length &
captures exactly all the concrete fireable sequences of steps of the same length.
More exactly:

— Any sequence of concrete steps of length & corresponds to an instantiation
of a complete sequence of k partial steps;

— Every possible instantiation of a complete sequence of partial steps corre-
sponds to a valid sequence of concrete steps.
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On the other hand, from the point of view of the reachable markings, the
partial markings produced by the complete sequence of partial steps represent
all the markings reachable in at most k steps and only those markings. It is thus
equivalent to build the reachability graph generated by the fire of k& steps, or to
build the complete sequence of partial steps of length k.

4 Resolution of the Reachability Problem

4.1 Formulations

According to the previous section, a complete sequence of partial steps can cap-
ture the behavior of a Petri net from the point of view of step sequences as well
as of reachable markings. One can use this partial sequence to search for con-
crete fireable sequences which can produce a given marking my from the initial
marking mg, in order to solve the reachability problem defined as follows:

“ Let (P, T, W, mg) be a Petrinet, K € N and my be a marking from
N™. Find oll steps sequences allowing to reach the marking my from (P1)
the marking mg in ot most K steps ”.

In fact, it is sufficient to use K partial steps, to replace the formula Fp,,
concerning the last partial marking (mg, Fin, ) by the formula F’ defined by:

F' = Fpp N(mg =my) (E4)
and to solve the associated system of equations.

In this way, the exploration of the reachability graph and the resolution of
the corresponding reachability problem are reduced to the resolution of a system
of equations. The interest of this technique is to avoid the exploration of the
branches of the graph which do not lead to the desired final marking.

In table 1, we present in a condensed way two formulations of the reachability
problem. The first column describes the problem in the form of a constraint sat-
isfaction program (CSP). The second column corresponds to a model described
as an integer linear program (ILP). We split the vectors of logical expressions
and the associated formulae: vectors become vectors of variables, and logical for-
mulae are expressed as constraints using variables defined in these vectors. The
corresponding formulations are directly deduced from the equations E; to E4
defined previously.

4.2 Constraint Satisfaction Approach

Benasser [1] proposed an algorithm to solve the reachability problem using the
logical abstraction and constraint programming techniques. This algorithm iter-
ates the number of partial steps used, adding one new step at each iteration, in
order to test all the lengths of complete sequences of partial steps lower than K.
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Table 1. Formulations of the reachability problem using partial steps and markings

Given an integer K and two markings mo and my € N™,

let X = (¢1,...,0x)" be the vector of variables where
wi = (pir,.-, )" € &N, Vi € [1,K]. The problem consists of
finding the values of X such that the following constraints are satisfied:

CSP Formulation | ILP Formulation
Step firability constraints (E1 and E3)

® Finy =True

e Vi€ [1, K], o Vi € [1, K], Mi-1[:)

B & Vi € [1,K], Pre.5! < Mi—:
my = My . L —_— —
. & Vi€ [1,K], Pre.p; < My + C.o1 +...+C.<p_’3-_1__>
p‘gp m‘_l(p) - = Vie {1, K]], —Pr‘e.@ + C‘(F{ +...+ C-QO&-J_ > —Mjy
[—Pre 0 0
= W0 o). _
teT C —-Pre . (0) 0
e Vie [l K] . —
! LI . X > —M,
mi(p) = mi—1(p) = C —Pre . = 0
- w ,t it 2 G5 %
= W e T
+ 3 W(t,p)ei(t). | ¢ C ... C —Pre]
t€T

Positivity and Integrality Constraints (Es)

eViec [1,K],Vje[l,N],pi; €Z
e The langage L (1. K1, v5 € (LN e

has the domain Z e Vic H]-, K]],Vj = ﬁl, N]]:ﬁoij 2 0
e Vi€ [1, K], Ii ... (0)
~ T . =
For = A (05 20) el ] X20
= 11 .

Final marking reachability constraints (E4)

TPy
ﬁm+6,zp_ﬁ=ﬁ
ﬁﬁo'fole"E:E
s[cC...C] . X=M;-M

omK=mf

This algorithm is correct since the sequences found are effectively sequences
of steps which produce the desired final marking. It is also complete since it
can enumerate all the solutions of length smaller than a given integer. In each
iteration, the algorithm uses a mechanism of linear constraints solving. It has
been implemented using the constraint logic programming software Prolog IV.



120 Thomas Bourdeaud’huy et al.

The interest using Prolog IV is that its constraints resolution mechanism
is incremental [9]. Indeed, it is not necessary to redefine in each iteration the
constraints incorporated into the previous stage. The constraints are added in
the constraints solver so that it can reuse the results of the previous constraints
propagation. The search for the concrete results is made at the end by an enu-
meration of all the possible integer solutions.

The corresponding results are presented in the benchmarks of section 5. As all
the lengths of steps are tested in the iterative algorithm, an additional constraint
is introduced to exclude empty steps, so as to reduce the search space.

4.3 Mathematical Programming Approach

It is clear that the complexity of the problem grows as the length k of the se-
quence of steps used increase. In this section, we are interested in finding the
smallest value of the parameter k& from which a solution exists, denoted by kmis.
Hence, we define a new reachability problem in the following way:

“ Let (R,mq) be a Petri net, and my be a marking from N reach-
able from mg. Find the minimal length, denoted by kmin, of a se-
quence of steps allowing to reach the marking my from the mark-
ing mo ”.

(Ps)

In this section, we solve the reachability problem P, using logical abstrac-
tion and mathematical programming techniques based on the ILP formulation
described in the second column of table 1.

To solve it, we operate a jump search. This technique consists of increasing
progressively the size & of the sequences tried (not necessarily by one unit) until
we find a solution. The amplitude of jumps is defined so as to find a compromise
between the search space growth and the consecutive combinatorial difficulty.
It depends on the number of variables added for each new step used and thus
directly on the size of the network (N supplementary variables are needed for
each new step used). We do not use a dichotomic search because we do not have
an upper bound on the Ky, value.

In contrast with a constraint satisfaction problem, an optimization problem
requires the definition of a criterion to be optimized. For our problem Pz, we
studied several types of objectives to minimize, among which:

— A function vanishing identically: obji(X) = 0;
N

K
— The Ly norm of steps p;: 0bja(X) = 3. 3 vij;

i=1j=1
— The number of empty steps: objz(X).
To define objs, we introduce new binary variables o1, a2, . . ., o5, wherea; =0

if the step 4 is empty, and «; = 1 otherwise. Furthermore, we incorporate in the
ILP model the following additional constraints:

N
Vie [[l’k]]’ 1+ (ai - I)B < Z Pij < aiB; (ES)
Jj=1
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where B is a sufficiently big number, chosen much bigger than the number
of transitions and tokens in the net.

We propose also a 0 — 1 linear programming (0 — 1LP) formulation of the
reachability problem. The binary variables used in the 0 — 1LP means to “ for-
bid ” transition reentrance. The 0 — 1LP model is obtained from the ILP for-
mulation by replacing the integrality constraints by

Vi € [1,k],Y5 € [1,N], i € {0,1}. (Es)

Compared to the /LP model, the usefulness of the 0 — 1LP model, is that
we can model a notion of partial order in the steps by linear constraints. The
partial order considered is obtained by integrating into the 0 — 1LP model the
following constralnts

Vi€ [1, K], N. 21 Pij 2 Z Pli+1);- (E7)

The constraints E7 express that the empty steps have to appear at the end
of the sequence searched.

4.4 Relaxations

In the algorithms described previously to determine kmin, we have to check
the feasibility of a family of NP-hard optimization problems. For all the values
k < kmin, we know that the associated problem has no solution. In this section,
we propose to use relaxation techniques in order to decrease the necessary time
needed to conclude to the infeasibility of the system of equations.

Relaxation techniques are useful in the field of combinatorial optimization.
The principle of these techniques is to replace the complex original problem by
one or several simpler ones. A relaxation of an optimization problem P of type
maximisation is an optimization problem R such as:

— Each feasible solution for P is also a feasible one for R;
— The value of the objective function of any solution of R is greater than or
equal to the value of the objective function of the same solution for P.

One of the useful properties of a relaxation in our context is that if the relaxed
problem does not admit a solution, then the initial problem would not admit it
either. For the values of k¥ < knmin, it can be sufficient to study a relaxed problem
to conclude.

In the literature [17], there are several techniques of relaxation. We distin-
guish:

— The LP-relaxation which consists in relaxing integrality constraints;

— The Lagrangean relaxation which consists in relaxing a set of constraints
by integrating them via penalties in the objective function. In our context,
we can relax for example the step firability constraints (E; and E») and/or
reachability ones (F4);
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— The surrogate relaxation which consists in replacing a set of constraints by
only one constraint which is a linear combination of the relaxed constraints.
In our problem, we can aggregate the step firability constraints.

We have tested these various relaxations, we discuss about LP-relaxation in
section 5.

5 Computational Results

The numerical experiments were carried out on an Intel Pentium 1Ghz computer
with 512 megabytes of RAM. Constraint satisfaction problems were solved using
the PrologIV software. Mathematical programming models were solved using the
Cplex 7.1 optimization library, the algorithms were coded using Visual C++ 6.
The CPU times are shown in milliseconds.

We compared the practical efficiency of the proposed approaches for several
classes of problems: the problem studied in [1], the problem of saturation of
a railway point presented in [2], and two classical problems of Petri nets analy-
sis. In this section, we present some preliminary results for the classic problems
illustrated in figure 3: the token ring protocol and the dining philosophers. Addi-
tional results are presented in [4]. The first problem represents a communication
protocol in a closed ring where computers are passing from hand to hand a to-
ken which gives them the right to send data across the network. The second one
represents philosophers around a table, who spend time eating spaghettis and
thinking. To eat, each one needs two forks, but there is only one available for two
people. Each of the entities (computer or philosopher) is provided with a control
place, allowing us to quantify how many times it has been active. The presence
of this unbounded place makes the corresponding reachability graph unbounded
too.

The size of each Petri net depends on the number e of entities used, more pre-
cisely, N(e) = 5e, M(e) = 6e for the philosophers PN, and N(e) = 4e, M(e) = Se
for the token ring PN. In the examples below, we vary this parameter from 3
to 7. A second parameter a is used to define the benchmarks. It corresponds
to the number of tokens in the control place at the final marking, all the other
places keeping their initial values. Our choice of those classic problems is moti-
vated by the knowledge of the optimal value ki, = f(a, €). For the philosophers
PN, kmin is equal to 6.a if the number of philosophers is odd, and 6.a + 1 oth-
erwise. For the token ring PN, kmin is equal to e.(3.a +1).

We present in table 2 the results of a fixed depth search for examples of
increasing difficulty. They were obtained using the formulations described in
sections 4.2 and 4.3. The words ho and tms stand for heap overflow and too
many scols, meaning a memory overflow from PrologIV.

Firstly we should remark that the respective efficiency of the two approaches
considered depends on the family of problems. No approach dominates the other
one, each has its own skill domain.
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A process e
P ,’C‘:’oun‘ex“\

Let Fark -, Dining philosophers . gight rork Token ring of processes_."

Fig. 3. The PN used for the numerical experiments

Concerning the dining philosophers class, mathematical programming dom-
inates easily. The Prolog memory overflows for small values of a, whileCplex
does not seem affected by the increasing difficulty. Even for values where Prolog
does not explode, experimental results shows that it is more than 50 times slower
than Cplex.

On the opposite, the token ring problems family is a class for which con-
straint programming technique seem well suited. Computed experiments show
that Prolog gives the results approximately 30 times faster than Cplex. Unfor-
tunately, memory issues eventually surface again.

A reasonable explanation for those particular behaviors remains is the par-
ticular structure of the reachability graphs corresponding to each family. Indeed,
the dining philosophers example is characterized by the presence of deadlocks
whereas on the other hand, the token ring PN is characterized by a weak behav-
ioral parallelism. Each of those specificities benefits from a different approach.

These experiments allow us to compare the first two objective functions obj;
and obja. One should remarks that obj; gives the better results: ILP using the
first formulation terminate about 2.5 times faster. Again, a simple explanation
can be advanced: since obj; vanishes identically, the optimization ends as soon
as a solution has been found, without needing supplementary iterations.

The same case studies have been used to compare the performances of itera-
tive searches for k,in. We present in table 3 the corresponding results. As above,
constraint programming techniques were better when dealing with the token ring
protocol. Thus, we present only the experiments regarding dining philosophers,
for which we can compare the influence of relaxations. The amplitude used is 1,
the objective function is obj;.
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Table 2. Fixed depth search

Families ”e| a‘ k IN{e,a)lM{e,a)l #v | #c ||C]:'1xe)':obj1 |Cplexobjg||Prologl

3|11 7 15 18 | 105 | 250 40 41 551

Dining 2(13] 15 18 | 195 | 448 180 971 17154
Philosophers||3| 3|19 | 15 18 | 285 | 646 832 4046 ||164447

4125| 15 18 | 375 | 844 82058 22413 ho

11 7] 25 30 | 175 | 416 130 260 1603

2113 25 30 |325| 746 570 501 85683

3119 25 30 | 4751076 2664 20099 ho

117 35 42 | 245 | 582 180 220 3094

2113] 35 42 | 455 | 1044 1271 6890 ho

10| 93| 12 15 |1116] 2527 || 44083 80646 1152

Token Ring 15138 12 15 |1656| 3742 || 92543 | 263259 || 3264

25[228| 12 15 |2736] 6172 || 814792 | 1508649 || 18808
40(363| 12 15 (4356|9817 || > 2.10% | > 2.10° || tms
5|80| 20 25 |1600| 3626 || 150847 | 195621 || 6269
10(155| 20 25 (3100|7001 || > 2.10° | > 2.10° || 84972
15/230 20 25 |4600{10376| > 2.10° | > 2.10° || tms

28 | 28 35 |784|1800|| 9934 21982 771

5112 28 35 [3136] 7092 || 934504 | > 2.10° || 60036
8 (175 28 35 14900{11061| > 2.10° | > 2.10° || tms

#v < nb. of variables, #c < nb. of constraints

~I|~|~|ojlo|lcjw|w|jw|w]|dga|ajGr || w]w
—

ho < heap overflow, tms & too many scols

Surprisingly, relaxations do not bring interesting improvements. Further at-
tention helps to understand this phenomenon. Relaxed solutions occur very early
in every experiment, typically for sequences of less than 5 steps. The profit that
can be made by using continuous techniques instead of integer ones is mini-
mal for those lengths. Sometimes, it has even the inverse effect since the use of
relaxation simply adds one supplementary iteration.

6 Conclusion and Future Work

In this paper, we have presented two approaches for solving the Petri nets reach-
ability problem using Petri nets logical abstraction. Our method is based on an
implicit exploration of the PN reachability graph by constructing a single se-
quence of partial steps. This sequence represents exactly the behavior of the
net. The first formulation reformulates the problem as a constraint satisfaction
program. It has been used to enumerate all the reachability sequences of fixed
length leading to a final marking. We have adapted it in order to use mathemati-
cal programming. This technique allowed us to search for the shortest reachability
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Table 3. Finding kmin for the dining philosophers

|ela| kmmlelexabjl Relaxed s, ]Prolog|

3|11 7 120 121 1312
3|12| 13 1021 981 41009
313 19 20950 19628 372155
3|4| 25 | 1924358 | 1849950 ho
5(1f 7 240 230 2443
5|2] 13 1993 2043 174651
5|13] 19 5849 5759 ho
7L 7 400 390 4647
712 13 3255 3275 ho

ho < heap overflow

sequence leading to the final marking. These formulations have been validated
and compared on large data sets, using Prolog IV and Cplex solvers.

Our results have shown that the two approaches are complementary. For
some classes of problems (e.g. foken ring), constraint programming presents
a better efficiency because it is able to solve large problems (3000 variables,
7000 constraints) in a very short time. For other classes of problems (e.g. din-
ing philosophers), mathematical programming is the only way to cope with the
complexity of the system without producing memory overflows.

Preliminary techniques aiming at the improvement of the efficiency of ILP-
based explorations, such as relaxations, have not revealed significant advantages
for the considered examples. We propose to improve them in order to handle
pathological cases like the token ring with performances as close as possible to
those of constraint programming. For this purpose, we are currently following
three promising directions:

— To test the use of binary variables coupled to an appropriate objective func-
tion like objs;

— To refine our relaxations in order to use the preceding results in the next
stage, just like CSP incremental features;

— To decompose the problem exploiting the state equation. This last technique
could also help us to develop enumeration techniques.
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Abstract. This paper proposes a method of generating valid integer
Benders cuts for a general class of integer programming problems. A
generic valid Benders cut in disjunctive form is presented first, as a basis
for the subsequent derivations of simple valid cuts. Under a qualification
condition, a simple valid Benders cut in linear form can be identified.
A cut generation problem is formulated to elicit it. The simple valid
Benders cut is further generalized to a minimally relaxed Benders cut,
based on which a complete Benders decomposition algorithm is given,
and its finite convergency to optimality is proved. The proposed algo-
rithm provides a way of applying the Benders decomposition strategy to
solve integer programs. The computational results show that using the
Benders algorithm for integer programs to exploit the problem structures
can reduce the solving time more and more as the problem size increases.

1 Introduction

Benders decomposition is a strategy for solving large-scale optimization prob-
lems [1]. The variables of the problem are partitioned into two sets: master
problem variables and subproblem variables. The Benders algorithm iteratively
solves a master problem, which assigns tentative values for the master problem
variables, and a subproblem, obtained by fixing the master problem variables to
the tentative values. In every iteration, the subproblem solution provides certain
information on the assignment of master problem variables. Such information is
expressed as a Benders cut, cutting off some assignments that are not accept-
able. The Benders cut is then added to the master problem, narrowing down the
search space of master problem variables and eventually leading to optimality.
On one hand, Benders method is employed to exploit the problem structure:
the problem is decomposed into a series of independent smaller subproblems,
reducing the complexity of solving it [2]. On the other hand, Benders method
opens a dimension for ‘hybrid algorithms’ [3, 4] where the master problem and
the subproblems can be solved with different methods.

The generation of Benders cuts is the core of Benders decomposition algo-
rithm. Indeed, valid Benders cuts guarantee the convergence of the iterations to
the optimal solution of the original problem, and also the cuts determine how
fast the algorithm converges.

J.-C. Régin and M. Rueher (Eds.): CPAIOR 2004, LNCS 3011, pp. 127-141, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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The classic Benders decomposition algorithm [5] was proposed for linear pro-
gramming problems, the cut generation of which is based on the strong duality
property of linear programming [2]. Geoffrion has extended it to a larger class
of mathematical programming problems [6].

For integer programming, however, it is difficult to generate valid integer
Benders cut, due to the duality gap of integer programming in subproblems.
One possible way is to use the no-good cut to exclude only the current tentative
assignment of master problem variables that is unacceptable. Such no-good Ben-
ders cuts will result in an enumerative search and thus a slow convergence. For
some specific problems, better Benders cuts can be obtained [7]. For example, in
the machine scheduling application, the cut that limits the incompatible jobs in
the same machine is generally stronger. For more general integer programming,
logic-based Benders decomposition [8] was proposed to generate valid integer
Benders cuts, but these cuts contain a large number of disjunctions [9], the
linearization of which leads to huge cuts with many auxiliary variables, compli-
cating the master problem significantly.

This paper proposes a new method of generating valid Benders cuts for a class
of integer programs, in which the objective function only contains the master
problem variables.

As a foundation of our derivation, a generic valid integer Benders cut is
firstly presented. However it is difficult to use due to its exponential size and
nonlinearity. Instead, we can pick only one linear inequality from the disjunction
of the generic cut, while preserving the validity. A qualification condition is then
given, with which such a simple valid cut can be identified. A cut generation
problem is formulated to determine the simple linear valid cut.

However, such an integer Benders cut is not always available. The minimally
relaxed cut is then proposed as a generalization of it, obtainable in all cases. The
simple integer Benders cut is just a special case of the minimally relaxed cut with
‘zero’ relaxation. Based on this, a complete Benders decomposition algorithm is
presented, and its finite convergency to optimality is proved.

The paper is organized as follows. Section 2 introduces the integer programs
under consideration and the principle of the Benders decomposition algorithm.
Section 3 derives the integer Benders cut. Section 4 generalizes to the minimally
relaxed integer Benders cut. Section 5 presents the complete Benders decompo-
sition algorithm that could be used in practice. Section 6 gives computational
results. Section 7 concludes the paper. The appendix gives the proofs of all the
lemmas.

2 Preliminaries

2.1 Integer Programs

The programs we consider in the paper are written as the following form (Such
programs arise from our study on a path generation application in network traffic
engineering [10]):
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P: max cTy
Y.
Dy <d,
st. ¢ Ay+ Bz <D,
ye {0,1}™,x € {0,1}" .

The problem variables are partitioned into two vectors y (master problem vari-
ables) and ® (subproblem variables), and the objective function only contains
the master problem variables.

By the use of Benders decomposition, the problem P is decomposed into
the master problem (MP) that solves only the y variables and the subproblem
(SP'(§)) that solves only the & variables, by fixing the y variables to the master
problem solution, denoted by §.

MP: max cTy SP'(§): max 0
T
Dy < d, s Bz < b- Ay,
s.t. { Benders cuts, xz € {0,1}",
y €{0,1}™,

where the Benders cuts in MP are gradually added during the iterations. Note
that the subproblem is a feasibility problem with a dummy objective.

2.2 Principle of Benders Decomposition Algorithm

The Benders decomposition algorithm iteratively solves the master problem and
the subproblem. In each iteration k, the master problem (M P(*)) sets a tenta-
tive value for the master problem variables (§*)), with which the subproblem
(SP'(g'®)) is formed and solved. Using the subproblem solution, a valid Ben-
ders cut over the y variables is constructed and added to the master problem in
the next iteration (M P®*+1)). The Benders cut added in every iteration cuts off
some infeasible assignments, thus the search space for the y variables is gradually
narrowed down as the algorithm proceeds, leading to optimality.

Algorithm 1. Benders Decomposition Algorithm

1. Initialization. Construct the initial master problem M P® without any Ben-

ders cut. Set k = 0.

2. Iteration.

(a) Solve MP¥) Ifit is feasible, obtain the optimal solution F® and the
optimal objective ¢§\Z)P. Otherwise, the original problem is infeasible; set
¢§(;)P = —00 and go to exit.

(b) Construct the subproblem SP'(§®*)). If the subproblem is feasible, then
optimality is found; obtain the optimal solution ¥, and go to exit.

(c) Cut Generation Procedure. Generate a valid integer Benders cut and add
it to the master problem to construct MP®D  Ser k= k+1 and go
back to step 2.
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3. Exit. Return the current ¢§{,})P as the optimal objective. If qbg,;) = —o0 then
the problem P is infeasible. If not, return the current (§*), %)) as the
optimal solution of problem P.

The Cut Generation Procedure 2(c) is not specified. This is the key step for
the algorithm, which must be selected carefully so that the algorithm eventually
converges to the optimality of the original problem in finite iterations.

2.3 Always Feasible Subproblem

The subproblem SP’(F) can be reformulated to an equivalent one that is always
feasible:

SP(g): min 177

. Bx—-r<b- Ajy,
8 z e {0,1}",r >0,

which simply introduces slack variables = to the constraints of SP’(§). Obvi-
ously, SP'(F) is feasible iff SP(§) has 0 optimal value. In the Algorithm 1, once
the objective of SP(g) equals O during iteration, the algorithm terminates (at
step 2(b)), and the optimal solution is found.

Dual values are very useful in the cut generation for linear programming. For
integer programming, however, we need to introduce the fixed subproblems and
their duals. A fixed subproblem is constructed from any feasible assignment &
of subproblem SP(F). It just constrains the @ variables to be equal to a given
feasible &.

SPs(g,x) : mi;1 17r

Bz —~r <b-— Ay, (1)
s.t T =z,

x:free, 7 >0 .

The dual of fixed subproblem SPy (g, &) is:
DSP;(§,%): max (A —b)Tu+zTv

—BTu+v=0, (2)
s.t u<l,

vifree,u > 0 .

The optimal solution of DS Py (g, &) depends on the value of & (while the feasible
region of it does not). Let (@, ¥) denote the corresponding optimal solution of
DSP¢(g,&). Since any value & € {0,1}" is feasible for SP(g) (2" possible
combinations), there are N = 2" possible fixed subproblems, each with its dual.

Given &, the fixed subproblem SPy (g, Z) is itself a linear program. Therefore,
strong duality holds for SPs(§,&) and DSP¢(g,&). Furthermore, if £* is an
optimal solution of SP(%g), then SP(Y), SP¢(F,&*) and DSPs (g, Z*) have the
same optimal value.
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Relations between the optimal primal and dual solutions of SP¢(g, &) and
DSP¢ (g, &) can be established via the complementary condition, that is, the
Karush-Kuhn-Tucker (KKT) [2] constraints:

ui(—Bz+r—~AG+b); =0 Vi, (3)
ri(u - 1)1; =0 Vi,

together with the primal and dual constraints, (1) and (2).

Consider the complementary condition constraints. First, with the equation
z = % of (1) and the equation —BTwu + v = 0 of (2), variables = and v can be
replaced by  and BT u. Secondly, the equation r;(u—1); = 0 of (3) means that
r; = r;u,. Putting this into the equation u;(—Bz + 7 — Ag + b); = 0 of (3),
we get u;(—B&); +7; = u;(A§ — b);. The complementary condition constraints
can then be simplified to:

Bz —r <b- Ay,
u;(—BZ); +7; = u;(AF — b)i Vi,
'r,-('u. - 1)1‘ =0 Vi,
r>00<u<1.

Finally, we can show the redundancy of r;(u — 1); = 0 in the following lemma
(Note that the proofs of all the lemmas are given in the appendix):

Lemma 1. The constraint r;(u — 1); = 0 is redundant in the presence of the
constraints:

B ~-r <b- Ay,

ui(~B:'i:)¢ +7r;= uz(Aﬂ - b)z Vi, (4)
r>00<u<l.

Thus, the complementary condition constraints are finally simplified to (4).

3 Integer Benders Cut Generation

3.1 Generic Valid Integer Benders Cut

In general, the Benders cut is a logic expression over the y variables, generated
using the information from the subproblem solution. The valid Benders cut must
guarantee that Algorithm 1 finitely converges to the optimal solution. We define
the valid Benders cut for integer programming.

Definition 1. In a certain iteration of the Benders algorithm, a valid Benders
cut is a logic expression over the master problemvariables y that satisfies:

Condition 1. ifthe current master problem solution § is infeasible, then the cut
must exclude atleast §;
Condition 2. any feasible assignment of y variables must satisfy the cut.
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Condition 1 guarantees finite convergence since ¢ has a finite domain. Condition
2 guarantees optimality since the cut never cuts off feasible solutions.

Lemma 2. If a valid Benders cut is generated in every iteration (at step 2(c)),
then Algorithm 1 finitely converges to the optimality of the original program P.

Using the solutions of all N fixed subproblems (denoted by SPy (g, &%), Vi =
1,---,N), a generic integer Benders cut can be obtained as the disjunction of N
linear inequalities:

(Ay - b)Tat + (2H)Ts1 <0
v (Ay -b)Ta? + (#2)T92 <0
()

v (Ay - b)TaN + @N)TeN <o,

where {1, ---,&N} are the list of all the possible & values (i.e. an enumeration
of {0,1}"). For each &, (@¢,#*) are the corresponding optimal dual solutions
from DSPs (g, &*).

Similar to the Benders cut for linear programming, each linear inequality in
the disjunction follows the expression of the objective function of DSP¢(#, &).
However, for integer programming, where a duality gap exists, we use a large
number of dual fixed subproblem solutions, instead of a single dual subproblem
solution for linear programming where no duality gap exists.

Lemma 3. The generic integer Benders cut (5) is a valid cut.

The generic cut (5) is valid, but it has a nonlinear (disjunctive) form and
intrinsically contains all possible & combinations. Although it has theoretical
value, it is difficult to use it directly in practical algorithms.

3.2 Integer Benders Cut

Under certain conditions, one of the linear inequalities from the disjunction (5)
can still be a valid cut. In such cases the valid integer Benders cut becomes
a simple linear inequality and the nonlinear disjunction disappears. We give
the following sufficient condition under which such a simple valid cut can be
identified:

Theorem 1. If there exists a solution & € {&,---,&N} such that & and the
corresponding dual © satisfy

o<z V xze{z',. -2V}, (6)
then the linear inequality
(Ay-b)Ta+& <0 (7

is a valid integer Benders cut.
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Proof. (for the valid cut condition 1) If ¢ is infeasible for the subproblem,
then SP(g) has positive objective value. Thus, any possible SP¢(g,x) (& €
{&1,---,&N}) has a positive objective value, and so do all DSPs(g, ). There-
fore, all linear inequalities in (5) are violated by §. In particular, (Ay — b)T @ +
7% < 0 is violated by 4, that is, the cut (7) excludes the infeasible §.

(for the valid cut condition 2) Let §j be any feasible solution. There must exist
a corresponding (&, i, ) such that SP(§,&) and DSPs(g,&) has 0 objective
value as (Ag — b)T4 + 279 = 0. Since the feasible region of all DSPy(y, ) are
identical and independent of the values of ¢y and x, the values of (%, ) which are
the optimal solution for DS Py (g, &) are also a feasible solution for DSPs (g, &).
Therefore,

(Ag-b)Ta+2To < (A —b)Ta+2To=0 .
From the condition (6), we have #7% < &#T%. Therefore,

(A -b)Ta+ 375 < (Ag-b)Ta+ 2T <0,
which means that the feasible ¢ is not cut off by (7). O

If one can find an & such that the condition (6) holds, then the single lin-
ear inequality from the disjunction (5) that corresponds to & is a valid integer
Benders cut by itself. However, the condition (6) involves not only the selected
&, but also all other possible assignments of #, making it difficult to express (6)
as a simple constraint. But the sufficient condition (6) can be converted to an
equivalent sign condition.

Lemma 4. Inequalities (6) are satisfied iff the following holds:

= 0 = B >0, Vi=1,---,n . (8)

The above sign condition can be enforced as the constraints:

&5 <0 Vi,
{ (1-2)5; >0 Vi. )

Unlike the condition (6), the sign condition (9) only involves the selected & itself
and the corresponding .

3.3 Integer Benders Cut Generation

The integer Benders cut generation problem is to find a & such that the sign
condition (9) is satisfied. We formulate a Cut Generation Program (CGP) to
elicit it.

The sign condition relates &, an assignment that determines SPy(g, &), and
¥, the optimal dual solution from DSPy(g,Z). The constraints between them
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are established by (4). Therefore, the program CGP is composed of constraints
(4), the sign condition (9) and a dummy objective function.

CGP(g): min 0

z,ru

Bz —1r <b- Ay,
ui(—B&); +r; = u;(Ag - b); Vi, (10)
s.t. ii(BTU)i S 0 Vi,

(1-2)i(BTu); >0 Vi,
Ze€{0,1}"\r>0,0<u<1.
Note that in CGP & (together with 7, u) is a variable. The CGP solves for
a value for &, which, together with the dual values, satisfies the sign condition.
If such a solution is found, a corresponding Benders cut is immediately obtained
as (7).

Because &; € {0, 1}, all the bilinear terms &;u; in the CGP can be linearized
by introducing the variables w;; = &;u; as:

{'wijﬁi'i, wi; < uy, Vi,
wi > & +uy;—1, wy >0, e
Thus, CGP can be in practice solved with MIP solvers such as XPRESS [12].

Note that the CGP is not necessarily feasible due to the enforcement of the
additional sign condition constraints (9), and hence the integer Benders cut (7)
is not always available in each iteration. Therefore, we need to generalize the cut
in order to give a complete Benders decomposition Algorithm 1.

4 Relaxed Integer Benders Cut

4.1 Relaxation

When the sign condition (8) does not hold, one cannot directly use an inequality
from (5) as the valid cut. However, we can still select one inequality but relax it
to some extent so that the sign condition is satisfied. This provides a generalized
way of constructing a valid Benders cut.

In fact, any inequality from the disjunction (5):

(Ay-b)Ta+&T6<0 (11)

can be relaxed by inverting the & values for those elements that violate the sign
condition (8) as follows:

- Z; if (6) is satisfied for the ith element,
T ;= - .
1 —&; otherwise.

In such way & and ¥ satisfy the sign condition, and the relaxed cut is given by:

(Ay - b)Ta+ (#)T5 <0 . (12)
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Lemma 5. The relaxed cut (12) satisfies the valid cut condition 2, and the
relaxation gap from (11) to (12) is Y i, (& — &');0; > 0.

Note that (12) does not necessarily satisfy the valid cut condition 1, that is,
it may not cut off theinfeasible % in the current iteration due to the relaxation.
In this case, however, it can be easily remedied by adding a no-good cut that
excludes only one point (the infeasible §):

m m
Y-y +Y A-Fy; =1 . (13)
=1 j

Jj=1

4.2 Relaxed Cut Generation

Since any inequality from the disjunction (5) can produce a relaxed cut, one can
even avoid solving the CGP during iterations. Only the subproblem SP(F) is
solved to find a solution &, and DSPy (g, &) is solved to find the duals & and .
Then a relaxed cut (12), derived from this &, can be generated. To ensure that
the valid cut condition 1 is met, the value of § is checked against the relaxed cut
(12). If it does violate (12), then (12) itself is a valid Benders cut that satisfies
valid cut condition 1 and 2. If not, the conjunction of (12) and (13) constitutes
a valid Benders cut.

The advantage of such a way of cut generation is its simplicity, since no CGP
is involved. The disadvantage is that the selection of the inequality to be relaxed
is rather arbitrary, and the generated cut can be loose. In particular, cut (7),
which is a tight cut that needs no relaxation, may exist but not be found.

Therefore it is desirable to find a minimally relaxed cut, that is, its corre-
sponding relaxation gap (as is given in Lemma 5) is made as small as possible,
and thus the cut is as tight as possible. This is indeed a generalization of the
valid Benders cut (7), which is just the special case when the minimum relaxation
needed is zero.

The minimally relaxed cut can be generated by solving a Relaxed Cut Gen-
eration Program CGP,, constructed by introducing slack variables (p, q) to the
sign condition constraints of CGP.

CGP.(g): 5 71}1111}, . 17p+17¢q

B& -1 <b- Aj,
ui(~BZ); + 7 = u; (A - b); Vi,

ot ) E(BTu)—pi <0 Vi, (14)
‘ (1-2)i(BTu)i+4q: 20 Vi,
£€{0,1}",7>0,0<u<1,
p,g20.

As the program CGP, after simple linearization this program is solvable in
practice with MIP solvers.
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Lemma 6. If the optimal solution of CGP, is (Z,4,0), and the optimal objec-
tive value is ¢cap,, then:

n
bcap. = 2(53 —&); .
i=1

Since the right hand side of the above equation is just the relaxation gap and
it is minimized, the derived cut (12) is a minimally relaxed cut. In particular, if
the optimal objective value of CGP, is 0, then all the sign condition constraints
are satisfied, and no relaxation is necessary. In this case the minimally relaxed
cut is reduced to the basic valid Benders cut (7).

In practice, the CG P, () is solved in every iteration (provided the algorithm
does not terminate from step 2(a) or 2(b) before the cut generation). Its optimal
solution gives a minimally relaxed cut as (12). According to Lemma 5, cut (12)
satisfies the valid cut condition 2. If the optimal value is greater than 0, then the
current (infeasible) assignment of master problem variables & is checked against
the cut. If the cut is violated, then (12) by itself satisfies both the valid cut
conditions. If not, the conjunction of (12) and the no-good cut (13) constitutes
a valid Benders cut.

S Complete Algorithm

Based on the proposed integer Benders cut, the unspecified cut generation step
2(c) in Algorithm 1 can now be given as:

Procedure 1. Cut Generation Procedure (step 2(c) of Algorithm 1)
Construct the cut generation program CGP-(§®). Solve it to obtain the optimal

solution (F®,@® 5™ and its optimal objective value ¢(C’% p.- Generate the
minimally relaxed cut:

(Ay ~ b)Ta® 4+ (2)BT5HR) <0 |
There are three cases:

A. if¢g%P, =0, then &'®) = ¥, the above cut is reduced to (7), which is the
valid Benders cut.

B. if ¢(cl% p, > 0 and the current G®) violates the above cut, then this cut is the
valid Benders cut by itself.

C if qsg%,,r > 0 and the current §*) satisfies the above cut, then this cut, in
conjunction with the no-good cut (13), is the valid Benders cut.

Add the generated Benders cut to the master problem to construct M PE+D) - Gor
k=k+1 and go back to step 2 of Algorithm 1.

Replacing step 2(c) of Algorithm 1 with the above procedure, we have a complete
Benders decomposition algorithm.
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Theorem 2. The Benders Decomposition Algorithm 1, with its step 2(c) in-
stantiated by the Cut Generation Procedure 1, terminates in finite steps and
returns the optimal solution of the original program P.

The proof is trivial according to Lemma 2, since in all the three cases the cut
being generated satisfies the valid cut condition 1 and 2.

6 Computational Experiments

This section presents computational results of using Benders decomposition with
the proposed integer cuts in integer programming problems. The algorithm is
implemented using the ECLiPSe [11] platform. The test problems have bordered
block structure in their coefficient matrices, so that the Benders algorithm can
decompose the subproblem. The coefficients are generated randomly, and 20
cases are computed for each problem size configuration. The minimally relaxed
cut derived from the CGP, (14) of Sect. 4.2 is used in the tests.

Table 1 summarizes the computational results for different problem sizes.
The number of constraints is fixed to 300 and the number of blocks in the
subproblem matrix is fixed to 10. Thus, the subproblem is decomposed into 10
smaller independent problems, each of which can generate a Benders cut in every
iteration. We vary the number of master problem variables (MPV) and that of
subproblem variables (SPV). For each problem size configuration, the average
and maximum number of iterations (#Iter: avr, max) of the 20 test instances,
and the average number of no-good cuts that have to be added (#NG) are
recorded. Also the average and maximum solving time (Sol.Time: avr, max) of
the 20 test instances, and the average percentages of solving time spent in the
solution of master problem, subproblem and relaxed cut generation program
(MP%, SP%, CGP%), are recorded. All the solving times are in seconds. For

Table 1. Computational Results using Minimally Relaxed Cut

#lter |#NG Sol.Time MP% | SP% | CGP% || MIP.Time LWIN
avr |max | (avr) avr max (avr) | (avr) | (avr) (avr)

300 | 100 ||10.40{ 14 0|l 84.50| 132.06| 5.1] 3.6] 91.3 785.07| 7/20
300 | 150 || 11.55| 16 104.04| 187.39| 16.2| 3.4| 804 109.84| 6/20
300 | 200 |/12.40] 20 136.11| 260.56| 27.1| 2.9] 70.0 176.20| 13/20
300 250 1/13.30| 25 195.67| 562.64| 46.9) 2.1 51.0 318.35| 12/20
400 | 100 ||12.10] 18 152.03| 245.67| 3.4| 3.9| 92.7 1343.05| 13/20
400 | 150 || 15.20] 28| 0.05| 229.08| 566.93| 12.2| 3.7| 84.1 1697.62) 17/20
400 | 200 {|14.50| 21 215.85| 434.22| 19.4| 3.5 77.1 889.04| 19/20
400 | 250 ||18.05] 30 371.47| 851.96| 35.1| 2.8 62.1 3655.31| 20/20
500 | 100 | 15.05] 23| 0.05||302.98| 546.46| 2.6/ 4.0/ 934 6482.65| 20/20
500 | 150 || 18.20| 36| 0.10||409.43| 873.56| 7.9| 3.8/ 88.3 8673.01] 20/20
500 | 200 []19.15| 39| 0.05| 483.66/1441.65| 15.3| 3.4| 81.3 8595.30| 20/20
500 | 250 ||21.40| 43| 0.10|/643.67|1929.80| 30.7| 3.0 66.3|| 10059.28| 20,20

SPV|MPV

=1 k=115 k=] E=] =] =]
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comparison purpose, every problem is also directly solved with MIP solver. The
last two columns summarize the average MIP solving time (MIP.Time), and in
how many cases (out of the total 20 cases) the Benders algorithm outperforms
the directly solving (#WIN). The external solver used in both the decomposition
algorithm and the direct solving is XPRESS 14.21 [12].

Table 1 shows that as the problem size increases, the number of iterations
and the solving time both increase. But throughout the test instances, no-good
cuts being added are rare, which means that the generated cuts are usually
tight enough to exclude the infeasible assignment in each iteration. It is also
notable that a significant portion of the total solving time is spent in solving the
relaxed cut generation program. However, in spite of the time spent in the cut
generation, the Benders algorithm still wins over directly solving the problem
in more cases when the problem size becomes larger. This shows the benefits
of using Benders decomposition for integer programs to exploit the problem
structures, that is, a problem is decomposed into a master problem and a series
of smaller independent subproblems, reducing the complexity of solving it.

We observed that the decomposition algorithm is especially better for the
hard instances. For those problems that take long time by direct solving, the
Benders decomposition with integer cuts usually achieves high speedup in terms
of solving time. Table 2 shows the comparison. Five hardest instances (in terms
of direct MIP solving time) for each fixed subproblem size are recorded.

We also observed that, for all the test instances that take more than 200
seconds by directly solving, the decomposition algorithm invariably consumes
less solving time than the direct solving.

Table 2. Solving Time Comparison for Hard Instances

SPV | MPV || #lter || Sol.Time | MIP.Time

300 100 12 94.62 14181.90
300 250 17 270.74 1403.68
300 250 25 562.64 901.83
300 250 14 201.25 833.31
300 200 15 171.69 624.48
400 250 28 697.45| >20000.00
400 150 17 299.12 14577.89
400 100 17 235.38 11086.83
400 250 12 195.52 10335.30
400 250 30 851.96 7061.50
500 250 24 803.22| >20000.00
500 100 18 372.73| >20000.00
500 150 14 297.14| >20000.00
500 200 30 834.20| >20000.00
500 250 28 924.56| >20000.00




Generating Benders Cuts 139

7 Conclusions

This paper studied the generation of valid Benders cuts for a general class of
integer programming problems. The valid Benders cuts in the form of linear
inequalities were derived, based on which a complete Benders algorithm was
presented. The (relaxed) cut generation program was proposed to determine the
valid cuts in practice. In theoretical aspect, the paper extended the application
scope of Benders decomposition method to integer programming problems. In
computational experiments, the results showed the benefits of using Benders
algorithm with the proposed cut for integer programs.

The master problem discussed in the paper need not be restricted to linear
integer programs. In fact, it can be any formulation and can be solved with
any proper algorithm (such as Constraint Programming). More specifically, the
linear objective function in problem P (i.e. ¢Ty) can be replaced with a general
function f(y). The first constraint in P (i.e. Dy < d) can be replaced with
a general constraint C{y) (even need not be arithmetic). Since the generalized
objective and constraint are only handled in the master problem, they do not
affect the theory and method proposed in the paper. Furthermore, the second
constraint of P can be generalized to h(y) + Bz < b, that is, the part that
relates to the master problem variables can be any function on y (i.e. h(y)),
in place of the linear one, Ay. Accordingly, all the occurrences of Ay in the
derivations are changed to h(y), and the derivations remain valid. As the master
problem is generalized as above, different modelling and solution methods could
be combined via the method of Benders decomposition to cooperatively solve
a given optimization problem.
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Appendix: Proofs of Lemmas

Lemma 1:

Proof. 1t suffices to show that any feasible solution of (4) automatically satisfies
ri(u — 1); = 0. Suppose &, #, @ constitute a feasible solution of (4).
The first constraint of (4) implies

7, > (Ag+ B - b); . (15)
The second constraint of (4) implies
#; = 4;(A§ + BE — b); . (16)

Consider two cases on the non-negative value of #;.
Case 1: #; = 0. Then the constraint 7;(uw — 1); = 0 is trivially satisfied.
Case 2: #; > 0. Then we have 1; = 1 (otherwise, 0 < 4; < 1. Then from (16)
0 < 7, = 4;(Ay + B& — b); < (AF§ + B& — b);, which contradicts (15)). Since
it; = 1, the constraint 7;{u — 1); = 0 is again satisfied. O

Lemma 2:

Proof. In every iteration, if §(*) is feasible then the algorithm terminates from
step 2(b). Otherwise a valid cut is added. Due to the valid cut condition 1, the
feasible space of M P*+1) must be smaller than that of M P®) at least reduced
by one point. Since the feasible space of master problem is finite domain, the
alg