

The Symbian OS
Architecture
Sourcebook

The Symbian OS
Architecture
Sourcebook
Design and Evolution of a Mobile
Phone OS

By

Ben Morris

Reviewed by

Chris Davies, Warren Day, Martin de Jode, Roy Hayun,
Simon Higginson, Mark Jacobs, Andrew Langstaff, David
Mery, Matthew O’Donnell, Kal Patel, Dominic Pinkman,
Alan Robinson, Matthew Reynolds, Mark Shackman,
Jo Stichbury, Jan van Bergen

Symbian Press

Head of Symbian Press

Freddie Gjertsen

Managing Editor

Satu McNabb

Copyright  2007 Symbian Software, Ltd
John Wiley & Sons, Ltd The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to
the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data

Morris, Ben, 1958-
The Symbian OS architecture sourcebook : design and evolution of a

mobile phone OS / by Ben Morris.
p. cm.

Includes bibliographical references.
ISBN-13: 978-0-470-01846-0
ISBN-10: 0-470-01846-1

1. Operating systems (Computers) 2. Symbian OS (Computer file) I.
Title.

QA76.76.O63M6835 2007
005.4′32 – dc22

2006103533

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-470-01846-0

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

www.wiley.com

To Philippa, with love.

Contents

About this Author xiii

Acknowledgements xv

Glossary of Terms xvii

Introduction xix

Part 1: The Background to Symbian OS

1 Why Phones Are Different 3
1.1 The Origins of Mobile Phones 3
1.2 From 2G to 3G 5
1.3 Mobile Phone Evolution 6
1.4 Technology and Soft Effects 7
1.5 Disruption and Complexity 9
1.6 The Thing About Mobile Phones 10

2 The History and Prehistory of Symbian OS 15
2.1 The State of the Art 15
2.2 In the Beginning 17
2.3 The Prehistory of Psion 20
2.4 The Beginnings of Symbian OS 22
2.5 The Mobile Opportunity 26
2.6 Background to the First Licensee Projects 27
2.7 Device Families 31
2.8 Operating System Influences 37

viii CONTENTS

3 Introduction to the Architecture
of Symbian OS 45
3.1 Design Goals and Architecture 45
3.2 Basic Design Patterns of Symbian OS 49
3.3 Why Architecture Matters 49
3.4 Symbian OS Layer by Layer 52
3.5 The Key Design Patterns 56
3.6 The Application Perspective 65
3.7 Symbian OS Idioms 71
3.8 Platform Security from Symbian OS v9 83

4 Introduction to Object Orientation 87
4.1 Background 87
4.2 The Big Attraction 88
4.3 The Origins of Object Orientation 90
4.4 The Key Ideas of Object Orientation 92
4.5 The Languages of Object Orientation 100

Part 2: The Layered Architecture View

5 The Symbian OS Layered Model 111
5.1 Introduction 111
5.2 Basic Concepts 111
5.3 Layer-by-Layer Summary of the Symbian OS v9.3

Model 117
5.4 What the Model Does Not Show 119
5.5 History 119

6 The UI Framework Layer 121
6.1 Introduction 121
6.2 Purpose 122
6.3 Design Goals 123
6.4 Overview 123
6.5 Architecture 124
6.6 A Short History of the UI Architecture 128
6.7 Component Collections 129

7 The Application Services Layer 133
7.1 Introduction 133
7.2 Purpose 134
7.3 Design Goals 134
7.4 Overview 135
7.5 Legacy Application Engines 137
7.6 Architecture 137
7.7 Component Collections 149

CONTENTS ix

8 The OS Services Layer 165
8.1 Introduction 165
8.2 Purpose 166
8.3 Design Goals 168
8.4 Overview 170
8.5 Architecture 171
8.6 Generic OS Services Block 171
8.7 Multimedia and Graphics Services Block 177
8.8 Connectivity Services Block 192

9 The Comms Services Block 199
9.1 Introduction 199
9.2 Purpose 201
9.3 Design Goals 204
9.4 Overview 206
9.5 Architecture 206
9.6 Comms Framework 210
9.7 Telephony Services 220
9.8 Networking Services 230
9.9 Short-link Services 245

10 The Base Services Layer 255
10.1 Introduction 255
10.2 Purpose 255
10.3 Design Goals 256
10.4 Overview 257
10.5 Architecture 258
10.6 Component Collections 270

11 The Kernel Services and Hardware Interface
Layer 279
11.1 Introduction 279
11.2 Purpose 280
11.3 Design Goals 281
11.4 Overview 283
11.5 EKA1 and EKA2 283
11.6 Singleton Component Collections 284
11.7 Kernel Architecture Block 285
11.8 Kernel Architecture Component Collections 295

12 The Java ME Subsystem 301
12.1 Introduction 301
12.2 Requirements of the Java ME Subsystem 302
12.3 Design Goals for the Java ME Subsystem 302
12.4 Evolution of Java on Symbian OS 303

x CONTENTS

12.5 Architecture 306
12.6 Component Collections 311

13 Notes on the Evolution of Symbian OS 319
13.1 The State of the Art 319
13.2 Summary of Symbian OS v6 Releases 319
13.3 Summary of Symbian OS v7 Releases 321
13.4 Summary of Symbian OS v8 Releases 324
13.5 Summary of Symbian OS v9 Releases 326

Part 3: Design Case Studies

14 The Use of Object-oriented Design
in Symbian OS 333
14.1 Introduction 333
14.2 Pioneering the Object Approach in Psion 334
14.3 A Thoroughly Object-oriented Operating System 353

15 Just Add Phone 367
15.1 Introduction 367
15.2 Anatomy of a Phone 367
15.3 The Phone Operating System 368
15.4 Telephony 378
15.5 Messaging: It’s Different on a Phone 386

16 One Size Does Not Fit All: The Radical User
Interface Solution 397
16.1 Introduction 397
16.2 Background to the Eikon GUI 402
16.3 Eikon Design Point 404
16.4 The Device Family Strategy 410
16.5 Quartz 416
16.6 Pearl 417
16.7 Nightingale 418
16.8 How to Develop a World-class GUI 420
16.9 Symbian OS User Interface Architecture 425
16.10 Future Directions 426

17 System Evolution and Renewal 429
17.1 Introduction 429
17.2 Design Lifetime 430
17.3 Renewal in Symbian OS 434
17.4 Evolution in the Kernel 436
17.5 Telephony Evolution 440
17.6 Sound and Vision Evolution 443

CONTENTS xi

17.7 Defining the Skin 444
17.8 Moving Towards Standard C++ 446

18 Creative Zoo or Software Factory? 453
18.1 Introduction 453
18.2 The Software Problem 453
18.3 Too Many Dragons 455
18.4 Software Development Approaches 456
18.5 What Making Software Is Really About 459

Appendix A: Symbian OS Component Reference 475

Appendix B: Interviewee Biographies 573

References 579

Index 583

About the Author

Ben Morris joined Psion Software in October 1997, working in the
software development kit team on the production of the first C++ and
Java SDKs for what was at that time still the EPOC32 operating system. He
led the small team that produced the SDKs for the ER5 release of EPOC32
and, when Psion Software became Symbian, he took over responsibility
for expanding and leading the company’s system documentation team.
In 2002, he joined the newly formed System Management Group in the
Software Engineering organization of Symbian, with a brief to ‘define
the system’. He devised the original System Model for Symbian OS and
currently leads the team responsible for its maintenance and evolution.

He can be found on the Internet at www.benmorris.eu

Acknowledgements

Some people told me it would be hard to write this book in and around
my real job in the System Management Group at Symbian and a few
promised me that it would be impossible. They were all right, of course,
although none of them tried to stop me.

Many thanks to Wiley and Symbian Press therefore for their patience
as I’ve stretched deadlines. Thanks to Fredrik Josephson for saying ‘yes’
to my starting the book as a 10% task and for turning a blind eye when
it grew beyond that; and to Geert Bollen for being (almost) tolerant when
he inherited the problem. Thanks to Freddie Gjertsen of Symbian Press
for getting me to the end and to Phil Northam for his part in making it
happen in the first place.

My biggest thanks, though, are due to those who took the time to talk
to me, agreed to my using a recording device and let me use their words.
They are: Geert Bollen, Martin Budden, Andy Cloke, Charles Davies, Bob
Dewolf, Morgan Henry, lan Hutton, Peter Jackson, Keith de Mendonca,
Will Palmer, Howard Price, Murray Read, Martin Tasker, Andrew Thoelke
and David Wood. I have done my best to make sure they are happy with
the use to which I have put their words.

I am also very grateful to my technical reviewers from across the
company (and, in a few cases, from outside it): Jan van Bergen, Chris
Davies, Warren Day, Roy Hayun, Simon Higginson, Mark Jacobs, Martin
de Jode, Andrew Langstaff, David Mery, Matthew O’Donnell, Kal Patel,
Dominic Pinkman, Matt Reynolds, Alan Robinson, Mark Shackman, Phil
Spencer, and Jo Stichbury. Jeff Lewis provided a final review from a
commercial perspective.

Any errors which remain are mine, of course.
A special thanks to Jawad Arshad for his help in constructing the

reference material in Appendix A, and for his careful review of what

xvi ACKNOWLEDGEMENTS

I did with it, and to Bob Rosenberg for his great work on the System
Model graphics (which is present in the book in the form of the color
pull-out). Way back when, Martin Hardman was my original collaborator
on early versions of the System Model, and I would like to acknowledge
his contribution

Finally, my family have put up with this book for longer than was
promised. Philippa, Nat, Jake and Henrietta – thanks.

Glossary of Terms

ABI Application binary interface
ADT Abstract data type
BAL Bearer Abstraction Layer
BIO Bearer-independent object
CDMA Code Division Multiple Access
DFRD Device family reference design
DRM Digital rights management
DSP Digital Signal Processor
EDGE Enhanced Data Service for GSM Evolution
ETSI European Telecommunications Standards

Institute
FOMA Freedom of Mobile Access
GPRS General Packet Radio Service
IPC Interprocess communication
MOAP Mobile Application Platform
MTM Message type module
MVC Model–view–controller
OBEX IrDA Object Exchange
OMA Open Mobile Alliance
OTA Over the air
PAN Personal Area Networking
PIM Personal information manager
PLP Psion Link Protocol
QoS Quality of Service
RTOS Real-time operating system
RTP Real-time transport protocol
SIP Session initiation protocol

xviii GLOSSARY OF TERMS

SMIL Synchronized Multimedia Integration
Language

UART Universal Asynchronous
Transmitter/Receiver

UMTS Universal Mobile Telecommunications
System

VoIP Voice over IP
VPN Virtual Private Network
WAP Wireless Application Protocol
WDP Wireless Datagram Protocol
XIP Execute in place

Introduction

This book is part description, part reference, part case study and part
history. My goal in writing it has been to try to make Symbian OS more
accessible to a wider audience than has been catered for to date. I hope
there is nothing dumbed-down about this book, but at the same time
I have tried to make it accessible to those who are interested, but not
expert, in the topics it covers, as well as useful to a more hands-on
developer audience.

As Symbian OS becomes more mainstream – a volume product and
not just a niche one – I hope this book will serve as a primer for the
curious and a way in to a deeper understanding of what Symbian OS is,
where it came from and why it is currently riding high.

Certainly there is material here which is useful to Symbian OS devel-
opers – both seasoned and novice – and which has previously been hard
to find. However, this book takes a different approach to that of most
Symbian Press books; it is not so much a ‘how to’ book as a ‘what and
why’ book (and to some extent also a ‘who and when’ book).

Part 1 is a Symbian OS primer, a rapid introduction that sketches
the background of the mobile telephony market, traces the emergence of
Symbian OS and Symbian the company, conducts a rapid tour of the archi-
tecture of Symbian OS, and provides a refresher – or introduction – to the
key ideas of object orientation (OO) in software.

Part 2 begins the more detailed exploration of the architecture of
Symbian OS, following the Symbian OS System Model layering to provide
a complete, high-level, architectural description of Symbian OS.

Part 3 returns to the historical approach of the primer chapters, and
presents five case studies, each exploring some aspect of Symbian OS, or
of its history and evolution, in depth. Drawing on the insights – and the

xx INTRODUCTION

recollections – of those who were involved, these studies trace and try to
understand the forces that have shaped the operating system.

Appendix A contains a component by component reference, ordered
alphabetically by component name, which is definitely intended for a
developer audience. It also includes a color pull-out of the System Model
for the current public release, Symbian OS v9.3.

Who This Book Is For

This book is for anyone who wants to understand Symbian OS bet-
ter – what Symbian OS is, why it is what it is, and how it got to be that
way. If you work with Symbian OS, or intend to, this book is for you. If
you want to get under the skin of the OS and understand it more deeply,
this book is very definitely for you. This book is for you too if you are
interested in the software or mobile phone industries more generally, or
in the perennial themes of software development, or are merely curious
about how real systems get made and evolve.

A reasonable degree of software technical literacy is assumed, but not
so much that the more casual reader should shy away. There are no
exercises. And there is no sample code.

How to Use This Book

This book calls itself a sourcebook and it is intended to be used both as a
primer and as a reference. Its different sections are useful in their different
ways as reference material. Both Part 1 and Part 3 are structured as a
straight-through read and, I hope, they offer a good starting point from
which to come to Symbian OS for the first time. The material in Part 2
is probably deeper than a non-developer audience needs. And while this
is not (strictly) a programming book, I hope that Symbian OS developers
find its reference material useful, or better.

Telling Stories

Someone else wrote the phrase before I did: ‘‘In every great software
product is a great story’’ [McCarthy 1995]. I think it’s true. So while
this book is aimed at a technically aware audience, it is not addressed
exclusively to an audience of programmers. I hope programmers and,
more generally, software developers, designers and architects will find it
useful, especially those coming new to the OS and trying to understand
it. But I hope it will be just as useful to academics and students,
marketeers, technical decision makers and managers seeking to evaluate

INTRODUCTION xxi

and understand Symbian OS, and indeed anyone else who is broadly in
the business of software or phones or who is just interested in such things,
and who is encountering Symbian OS (or its close competitors) for the
first time and needs to understand it. Speaking personally, I have long
been something of an operating system junkie; to some extent, therefore,
this book attempts to scratch that itch. (You can’t work for an operating
system company and not have a bit of the operating system junkie in you.)

I hope that understanding the deeper story behind Symbian OS will
help those who want to (or have to) work with it to understand it better
and more deeply. Above all, I hope it will help them work better with
Symbian OS than would be the case without this book.

I have another purpose too. One of the things which appealed to me
most in my early days in the company (which became Symbian a few
months after I joined) was the degree to which everyone involved in
creating the system shared the sense that making software is a visionary
activity and that making good software, indeed the best possible soft-
ware, is as much a moral imperative as a business one. For an activity
which likes to count itself as a branch of engineering, the number, and
variety, of value words which cropped up in any daily conversation
could be surprising. Making software, which is to say making this soft-
ware in particular, is value-laden. ‘Delight’, ‘elegance’, ‘trust’, ‘integrity’,
‘robustness’, ‘reliability’, ‘economy’ and ‘parsimony’ were all among the
company buzzwords and very much part of the fabric of the effort, and
give a flavor of those times. Above all, to be part of the effort to create
Symbian OS was to be part of the revolution, no less. The truly personal,
individual, pocketable, always-on, human-scaled device you could trust
your data to, and to some extent therefore also your identity, and your
heart as well as your head, was not yet the commonplace thing which the
mobile phone revolution has made of it. Symbian – the operating system
and the company – has played its part, too, in that revolution.

Symbian is currently riding high. Symbian OS has done more than find
a niche; it has found (and, indeed, it has founded) a global market and has
led that market from its inception. To make that point more concretely,
consider this: when I was starting work on this book, I drafted a paragraph
about 2005 being a watershed year for Symbian OS, potentially its
breakout year. Between then and now, as I write this at the end of 2006,
the number of shipped Symbian OS phones has doubled from 50 million
to 100 million, and counting.

Way back when, the company was a company of individuals – who
could be opiniated, strident and arrogant but could just as quickly switch
to humility in the face of a powerful intellectual argument. Inevitably,
some of that individuality has been lost with success and growth. I hope
that by capturing some of the flavor of those times, that particular flame
can be kept burning.

xxii INTRODUCTION

I have been mindful both of commercial and personal confidences
and I believe that nothing I have written (or quoted) breaches either.
(Any instances of ‘Don’t quote me!’ which appear in the text have been
carefully approved.)

I have tried everywhere to observe the mantra ‘Tell no lies’, which
is not always the case in books such as this, and which here and there
has not been easy. Let me quote Bjarne Stroustrup as one inspiration for
honesty, ‘I abhor revisionist history and try to avoid it’.1 I have done my
best to follow that example.

Getting Symbian OS

Anyone, anywhere, can download Symbian OS in a form in which they
can learn to program it, work with it, explore it and experiment with it.
Anyone can learn to write Symbian OS applications: development kits
are free, and easily available, for UIQ and S60 platforms; development
tools (GCC and Eclipse) are free; the Symbian Press programming books
are widely available; and the possible languages range from OPL (which
began life as the Psion Organiser Language and is now an open-source,
rapid application development language for phones based on Symbian
OS) and Visual Basic (available from AppForge), through Java and Python,
to full-on native Symbian OS C++. The range is covered, in other words,
for everyone from the hobbyist to the enterprise developer to phone
manufacturers and commercial developers.

1 In [Stroustrup 1994, p2].

Part 1
The Background to Symbian OS

1
Why Phones Are Different

1.1 The Origins of Mobile Phones

The first mobile phone networks evolved from the technologies used in
specialist mobile phone radio systems, such as train cab and taxi radios,
and the closed networks used by emergency and police services and
similar military systems.

The first ever open, public network (i.e., open to subscribing cus-
tomers rather than restricted to a dedicated group of private users) was
the Autoradiopuhelin (ARP, or car radio phone) network in Finland.
It was a car-based system, inaugurated in 1971 by the Finnish state
telephone company, that peaked at around 35 000 subscribers [Haikio
2002, p. 158].

A more advanced system, the Nordic Mobile Telephone (NMT) net-
work, was opened a decade later in 1981 as a partnership between the
Nordic state telecommunications monopolies (of Denmark, Finland, Nor-
way and Sweden), achieving 440 000 subscribers by the mid-1990s, that
is, more than a ten-fold increase on ARP [Haikio 2002, p. 158]. Unlike
ARP, a car boot was no longer required to house the radio hardware.
Ericsson, and later Nokia, were primary suppliers of infrastructure and
phones, helping to give both companies an early edge in commercial
mobile phone systems.

Elsewhere, Motorola and AT&T competed to introduce mobile phone
services in the Americas, with the first Advanced Mobile Phone System
(AMPS) network from AT&T going public in 1984. European networks
based on an AMPS derivative (Total Access Communication System,
TACS) were opened in 1985 in the UK (Vodafone), Italy, Spain and
France.1 Germany had already introduced its own system in 1981. In

1 See for example the company history at www.vodafone.com.

4 WHY PHONES ARE DIFFERENT

Japan, a limited car-based mobile phone service was introduced in
19792 by NTT, the not-yet privatized telecommunications monopoly, but
wider roll-out was held back until 1984. A TACS-derived system was
inaugurated in Japan in 1991.

All these systems were cellular-based, analog networks, so-called first-
generation (1G) mobile phone networks (ARP is sometimes described as
zeroth-generation).

The history of the second-generation (2G) networks begins in 1982
when the Groupe Speciale Mobile (GSM) project was initiated by ETSI,
the European telecommunications standards body, to define and stan-
dardize a next-generation mobile phone technology,3 setting 1991
for the inauguration of the first system with a target of 10 million
subscribers by 2000. GSM was endorsed by the European Commis-
sion in 1984; spectrum agreements followed in 1986; and develop-
ment began in earnest in 1987. GSM reflected a deliberate social
as well as economic goal, that of enabling seamless communica-
tions for an increasingly mobile phone world as part of the wider
project to create a unified Europe. The politics of deregulation was
also an important factor in the emergence of new mobile phone
networks as rivals to the traditional monopoly telecommunications
providers.4

The first GSM call was made, on schedule, in Finland on 1 July 1991,
inaugurating the world’s first GSM network, Radiolinja. By 1999, the
network had achieved three million subscribers, a ten-fold increase on
first-generation NMT and a hundred-fold increase on ARP.

GSM rapidly expanded in Europe, with new networks opening in
the UK (Vodafone, Cellnet, One2One and Orange), Denmark, Sweden
and Holland, followed by Asia, including Hong Kong, Australia and
New Zealand. By the mid-1990s, new GSM networks had sprung up
globally from the Philippines and Thailand to Iran, Morocco, Latvia
and Russia, as well as in the Americas and to a lesser extent the
USA, making GSM the dominant global mobile phone network
technology.

Through the 1990s, GSM penetration rose from a typical 10% after
three years to 50% and then 90% and more in most markets (all of Europe,
for example, with the Nordic countries leading the way, but with Italy

2 A useful history appears at www2.sims.berkeley.edu/courses/is224/s99/GroupD/
project1/paper.1.html.

3 For a history of GSM see www.gsmworld.com/about/history.shtml, as well as [Haikio
2002, p. 128].

4 Political events unfolding between 1988 and 1992, such as the pulling down of the
Berlin Wall, German unification and the collapse of the Soviet Union, were also indirectly
significant, for example in causing Nokia to refocus on the mobile phone market [Haikio
2002, Chapters 5 and 7].

FROM 2G TO 3G 5

and the UK not far behind). By the end of the decade, the USA and Japan
were atypical, with the USA opting for a different technology (CDMA5)
and Japan languishing at less than 50% GSM penetration.6

1.2 From 2G to 3G

Famously, 3G is the technology that the network operators are most
frequently said to have overpaid for, in terms of their spectrum licenses.
(Auctions of the 3G spectrum raised hundreds of billions various curren-
cies globally in the first years of the 21st century.)

In the GSM world, 3G means UMTS, the third-generation standard
designed as the next step beyond GSM, with a few half-steps defined
in between including GPRS, EDGE (see [Wilkinson 2002]), and other
‘2.5G’ technologies. In the CDMA world, 3G means CDMA2000. (In
other words the division between the USA and the rest of the world
persists from 2G into 3G.)

The significant jump that 3G makes from 2G is to introduce fully
packetized mobile phone networks. (GPRS, for example, is a ‘halfway’
technology that adds packet data to otherwise circuit-switched systems.)
The significance of packetization is that it unifies the mobile phone
networks, in principle, with IP-based (Internet technology) data networks.
Japan has led the field since a large-scale 3G trial in 2001 but, as of the
last quarter of 2005, it seems that 3G has arrived ‘for the rest of us’, with
the introduction (finally) of competitively priced 3G networks from the
likes of Vodafone and Orange in Europe, opening the way for competition
to improve the 3G network offering.

Disappointingly, in terms of services 3G has not yet found a dis-
tinct identity. But from the phone and software perspective, the story
is rather different. Early problems with the greater power drain com-
pared to GSM, for example, made for clunky phones and poor battery
life. Those problems have been solved and 3G phones are now inter-
changeable with any others. From a software perspective, there are no
longer particular issues. Symbian OS has been 3G-ready for several
releases. (From a user perspective, of course, 3G is different because it is
‘always on’.)

5 CDMA, also known as ‘spread spectrum’ transmission, was famously co-invented in a
previous career by Hedy Lamarr, the Hollywood actress. [Shepard 2002] provides a very
approachable survey of telecommunications technologies. [Wilkinson 2002] is an excellent,
mobile phone-centric survey.

6 [Haikio 2002, p. 157] presents figures for mobile phone network penetration for 20
countries between 1991 and 2001.

6 WHY PHONES ARE DIFFERENT

1.3 Mobile Phone Evolution

Mobile phones for the early analog networks were expensive, almost
exclusively car-mounted devices selling to a niche market. Equipment
vendors sold direct to customers. Network operators had no retail pres-
ence and generated cash flow solely from call revenues. As the analog
networks evolved into GSM networks, mobile phones were liberated
from the car and the early car phones evolved into personal portable
phones and then began to shrink until they fitted, firstly, into briefcases
and, finally, into pockets. From around 1994, when GSM started to
boom, mobile phones and perhaps even more importantly mobile phone
network services began to emerge as potential mass-market products.

The iconic Mobira Cityman, introduced by Nokia in 1986, was the
size of a small suitcase and, with its power pack, weighed in at nearly
800 grams [Haikio 2002, p. 69]. By 1990, phones had halved in size and
weight and they had halved again by 1994, when the Nokia 2100 was
released. It was the first ever mass-market mobile phone and weighed in
at 200 grams [Haikio 2002, p. 160]. (It is credited with selling 20 million
units, against an initial target of 400 000.)

As it happens, 1998, the year that Symbian was created, saw a
temporary market reversal7 but mobile phone uptake boomed again
towards the turn of the millennium.8

The PC and mobile phone trend lines crossed in 2000 when mobile
phones outsold personal computers globally for the first time9 (by a factor
approaching four: 450 million phones to 120 million PCs). This was also
the year in which the first Symbian OS phone shipped, the Ericsson R380,
followed in 2001 by the Nokia 9210. Neither were volume successes but
both products were seminal. In particular, the Nokia 9210 instantly put
Nokia at the top of the sales league for PDAs, ahead of Palm, Compaq
and Sharp. (The Communicator was classified by market analysts as a
PDA, partly because it had a keyboard, but also partly because Symbian
phones really were a new category, and analysts didn’t quite know what
to do with them.) The death of the PDA, much trumpeted since (and
real enough, if Microsoft’s Windows CE sales numbers and the demise of
Palm OS are indicators), probably dates from that point.10

7 Nokia failed to meet sales targets; Motorola issued a profits warning and cut jobs;
Philips canceled joint ventures with Lucent; Siemens cut jobs; and Ericsson issued profits
warnings.

8 Mobile phone telephony thus acquires something of a millennial flavor, see [Myerson
2001, p. 7].

9 Market data for the period can still be found on the websites of market analysis
companies such as Canalysis, Gartner, IDC and others, as can the subsequent wider
coverage from news sites ranging from the BBC and Reuters to The Register.

10 In Q3 2005, for example, PDA shipments fell 18% while smartphone shipments rose
75% year on year. See, for example, commentary at The Register, www.theregister.co.
uk.

TECHNOLOGY AND SOFT EFFECTS 7

Although in 1997 Nokia shipped just over 20 million mobile phones,
in 2001 it shipped 140 million and the trends were broadly similar for
other vendors. (Nokia was the clear leader with over 30% of the market
in 2001, compared to second placed Motorola with closer to 14%.) Even
so, numbers which looked astonishing in 2001 [Myerson 2001] look
decidedly tame today. In 2005, global mobile phone sales broke through
the barrier of 200 million phones per quarter, with year-end shipments of
810 million, close to 20% and shipments for 2006 rising a further 21%,
almost touching the 1 billion mark.11 Close to 40% of the sales growth in
2005 came from Eastern Europe, Africa and Latin America.

Against these totals, annual sales of smartphones at closer to 50 million
in 2005 look small (which is why Symbian has begun to chase the mid-
range market). Nonetheless, Symbian OS still leads the market, having
doubled its shipments in pretty much every year since the company’s
creation. Thus, shipments in 2003 more than doubled from 2 million
to 6.7 million; in 2004, they doubled again to 14.4 million; and in
2005 they more than doubled again, with almost 34 million Symbian
OS phones shipped in the year (see www.symbian.com/news/pr/2006/
pr20063419.html).

1.4 Technology and Soft Effects

Almost as astonishing as the raw numbers are the social and technology
changes packed into little more than half a decade. The Nokia 7650,
introduced in spring 2002, was a breakthrough product. The first camera
phone in Europe [Haikio 2002, p. 240] with MMS, email, a color display
and a joystick, the Nokia 7650 introduced the Series 60 (now rebranded
as S60) user interface and was the first Symbian phone to sell in significant
volume. Looking back, it is easy to forget how novel its camera was.

Not even five years on, the mobile phone seems well on the way
to subsuming digital photography (the digital camera market began to
shrink for the first time in 2005, although arguably that may indicate
saturation as much as competition). It is an open question whether
mobile phones will do the same to the personal music-player market.12

Phones seem already to have subsumed PDAs. This is the principle of
convergence; on the evidence of the market to date, given the choice
between multiple dedicated single function devices or multifunction
mobile phone terminals (as mobile phones are increasingly described),
the market is choosing the latter.

11 See www.gartner.com/it/page.jsp?id=501734
12 Apple’s Quarter 1 2006 sales numbers, for example, show a decline in iPod sales

at the same time as the Nokia 3250 ‘music player’ phone has hit ‘triple platinum’ (i.e.
1 million units shipped) within a single quarter.

8 WHY PHONES ARE DIFFERENT

It may not even matter what impact convergence has on existing
markets. Broadcast TV, Wi-Fi, and VoIP13 are queuing up for the role
of newest hot mobile phone technology and seem likely to sustain
continued growth, with or without markets such as the personal music
player. (Digital terrestrial broadcast TV may yet prove to be the ‘killer
app’ for the mobile phone.) What seems certain is that personalization
has worked. Whatever the market drivers (and they are not necessarily
the same in all markets), person-to-person communications have moved
from their Victorian origins in fixed lines anchored to fixed locations,
to what used to be the distinctly science-fictional model of ubiquitous
mobile phone personal communications (something rather more like the
Star Trek model).

Genuine culture shock accompanied the emergence of the mass
mobile phone market, with its new habits and behaviors: people chatting
into their phones in the street and breezily answering their phones in
restaurants and trains, breaking the unwritten rules of public–private
spaces and frequently meeting hostility in consequence. Similarly, the
rapid rise of a ‘texting’ culture produced a predictable gap between
those who did (typically young users) and those who didn’t, with an
equally predictable spate of newspaper scare stories. Today, these seem
like reports from a world long gone. Looking back at the vision for the
future mobile phone information society that Nokia began promoting
from around 1999, it is remarkable how much of it has come to pass. The
vision is spelled out in detail in [Kivimaki 2001].

Telephony has always had a sociological dimension, ever since the
fixed-line phone shrank the world and collapsed time, making two-
way communications between remote locations instantaneous. This is
even more striking for mobile telephony. Again, it is easy to forget how
completely in the UK, for example, the first brick-like mobile phones
became the personification of the London ‘Big Bang’ deregulation of the
City, of the Thatcher era and the Lawson boom, every bit as much as red
Ferraris. (Local TV news reported at the time that motorists were buying
dummy mobile phones, simply to be seen talking into them while waiting
at the traffic lights, thus catching some of the Big Bang glow.) Again, the
curious notion of the ‘car phone’ has left its legacy in the name of one of
the UK’s larger mobile phone retailers, Carphone Warehouse. (Elsewhere
in Europe, where the sociology presumably was different, the brand is
simply Phone House.)

The mobile phone is an astonishing product phenomenon. Not just the
businesses of the phone vendors, but completely new operator businesses
too have been built on the back of selling and serving the mobile phone.
New business models have been invented from subsidies for phones

13 Voice Over IP (VoIP) telephony uses non-dedicated IP networks to carry voice
telephony traffic. Internet phone services such as Skype are VoIP-based as, increasingly, are
discount packages offered by mainstream phone providers.

DISRUPTION AND COMPLEXITY 9

to pre-payment and the marketing of intangibles such as ‘airtime’ and
‘messages’. Meanwhile some old business models have collapsed under
pressure from the cannibalization of neighboring markets including fixed-
line telephony.

It is easy to underestimate the depth of these ‘soft’ effects. The PC
brought about several social revolutions: as the visible embodiment of
the ubiquitous microprocessor, as the medium for the Internet, including
email, and most recently as the medium for the web. Arguably, the mobile
phone transformation runs even deeper, because it impacts public and
not just private behavior. It has both caused and enabled new social
uses (it has changed family relationships, enabled ‘remote mothering’
[Ling 2004, p. 43] and so on), as well as new patterns of behavior
which have rapidly become the norm (it has changed the way much
business is done, changed the way people set up meetings, and melted
private–public distinctions). The mobile phone ‘fits into the folds of
everyday life’ (L. Fortunati quoted in [Ling 2004, p. 51]) in a way that few
other technologies have and the effect has been extremely powerful.

1.5 Disruption and Complexity

A strong theme of this book is that mobile phones are uniquely complex,
both as devices and as products, and are therefore uniquely challenging
from a software perspective. Of course many things are complex. Rockets
are complex and so is the Internet, and so are corporate services,
battleships and submarines. But mobile phones outdo them all in the
complexity of the package.

Mobile phones are complex packages of multiple software functions
(computing, communications and multimedia), hardware technologies
(battery and power, radio, displays, optics (lenses), and audio), and
fabrication and manufacturing technologies (miniaturization, online cus-
tomization and localization, global procurement, and sourcing and
distribution) which are sold globally in unprecedented volumes. They
have moved from a niche market to the mainstream in two decades, with
much of that growth in the last five years. They have been technologically,
commercially, and socially disruptive.

The typical pattern of a disruptive technology is that it succeeds not by
outperforming existing technologies (many disruptive technologies have
in fact failed first time around as direct challengers), but by subtly shifting
the ground on which it competes. Instead of competing like-for-like,
it outperforms the incumbents on shifted ground, in effect skewing the
existing market and creating a new, related and overlapping but essentially
different market. It removes the ground beneath the old technology not
by replacing it directly but by sidelining it, often by moving the market in
an unprecedented direction. It is rather like adaptive evolution, in which

10 WHY PHONES ARE DIFFERENT

an unproductive mutation becomes unexpectedly relevant and therefore
successful because of a shift in the external context.14

Disruption is part of what makes it so hard to predict the future. WAP
failed dismally in one market whereas i-Mode was a runaway success in
another, but on the face of it both offer essentially the same service. The
missing ingredient for success in the case of WAP was not a technology
ingredient but a market or social one. Andrew Seybold says that i-Mode
‘is a cultural success – not a wireless success’ (quoted in [Funk 2004,
p. 13]). While the analysis is probably only half true, it does make the
point that the social and cultural dimensions of technologies cannot be
ignored.

Arguably, convergence is itself a form of disruption. One reason to
believe that the mobile phone will dominate at the expense of laptops,
PDAs, digital cameras or dedicated music players, all of which are
objectively fitter for a single purpose, is that while these devices may score
higher on function (in their niche), they score lower on personalization
and value as an accessory. Symbian OS does not itself count as a
disruptive technology, but it is a vehicle for the disruptive effects of
convergence.15

1.6 The Thing About Mobile Phones

Mobile phones are different from other devices for many reasons and
most of those reasons make them more complex too.

• Mobile phones are multi-function devices.

• Mobile phone functionality is expanding at an exponential rate.

• Phone-related technologies are evolving at an exponential rate.

• Mobile phones are enmeshed in a complex and still evolving business
model.

• Mobile phones are highly personal consumer devices (even when
someone else pays for them).

In a word, the mobile phone difference is ‘complexity’ and the trend
towards complexity appears to be growing at an exponential pace.

14 Disruption is a widely discussed (and fashionable) concept, first identified by Chris-
tensen [1997] as innovative change for which the market is the trigger point (see [Tidd
2005, p. 29]. [Funk 2004, p. 4] has a simple definition. [Davila 2006] defines it neatly as
‘semi-radical technology innovation’.

15 Symbian OS is, of course, itself at risk from the disruptive business model offered by
Linux.

THE THING ABOUT MOBILE PHONES 11

Mobile Phone Hardware and Software
Baseband (radio ‘modem’) hardware is complex. In effect, the baseband
hardware is a complete package in its own right, consisting of CPU,
data bus, dedicated memory, memory controller, digital signal processors
(DSPs), radio hardware, and so on.

The baseband software stack is complex too. Mobile phone protocols
are complex and require real-time systems to support their signaling timing
tolerances. Real-time support cannot be faked. A real-time operating
system is required at the bottom of the stack to manage the hardware
and support the layers of software protocols all the way up to the
phone-signaling stack.

Treating the phone as a black box encapsulated by a communications
protocol simplifies the software problem but has drawbacks in terms of
both speed and capability. The power and speed requirements of the
phone’s hardware cannot be ignored.

Mobile Phone Applications
A typical Symbian OS phone has a complete application suite: phone
book application, email and messaging clients, jotter, clock and alarm
applications, connection and network setup utilities (not to mention web
browser, camera support and photo album applications, video clip player
and editor, and music player).

The application layer requires a full function graphical user interface
(GUI) framework to support it, from widget set to full application lifecycle.
Most (and probably all) of the expected applications also demand fairly
deep system support from the operating system.

While Symbian OS staked its initial claim at the high end of the
market, partly on the strength of its application support, the downward
push towards the mass-market volumes of mid-range phones does not
mean it has to do less. There are persuasive arguments that the mid-range
is not defined by functional breadth (the range of available applications)
so much as by functional depth (the size of the mailbox, the number of
fields in a contact, and so on). Equally, critical factors such as performance
are typically more demanding in the mid-range, where users have higher
expectations that things ‘just work’ and lower tolerance for failure.

Convergence and Commoditization
Phone functionality is extending in every direction. Two-camera phones
are becoming commonplace, true optical cameras have arrived (with
Zeiss lenses, for example), as have phones with boom-box stereo speakers,
a gigabyte of RAM and a built-in global positioning system (GPS).16

16 Siemens and Mitac for example have both announced GPS-enabled GSM phones.

12 WHY PHONES ARE DIFFERENT

Device convergence is not a hypothesis, it is the reality. As discussed
above, mobile phones have cannibalized the PDA market, appear to have
eroded the digital camera market, and threaten other markets including
the personal music-player market.

At the same time, new technologies and advances in existing tech-
nologies continue to be relentlessly absorbed into and commoditized by
the mobile phone market. For example, Wi-Fi is causing the connection
model for mobile phones to be reinvented, with hot-spot connectiv-
ity offering alternative network options. Meanwhile advances in storage
media, from flash drive densities to micro hard-drives, challenge the
use-case assumptions for mobile phones. From being the equivalent of
snapshot cameras, they have become full video-recording devices; with
internal memories of several gigabytes, they now compete with dedicated
music players.

While the PC market, for example, has been essentially mature for
a decade and now exhibits little more exciting than consolidation, the
mobile phone market continues to be transformed by convergence and
commoditization.

Services

Possibly the biggest difference between phones and other mobile devices
is the integration of uniquely complex technology with uniquely complex
business models. Phone services are almost as important in the product
offering as immediate phone functionality.

Everything about the mobile-phone-network business model is com-
plex, from spectrum licenses to roaming, to network subsidies for phones,
to packetization of data and the interaction with legacy technology mod-
els, be they fixed-line telephony or radio and TV broadcasting or the
Internet.

This complexity has its impact on the software in mobile phones,
whether it is the requirement to support custom network services, to
enable customized applications, or to be invisible beneath the top-line
branding of networks and vendors (which leads, for example, to the
demand to support custom user interfaces).

Open Platforms

Symbian OS sets out to be an open application platform, in other words
a platform for which anyone can write and sell (or share, or simply give
away), installable software, whether end-user applications and utilities or
service and feature extensions.

Symbian therefore must provide the development tools and support
(tool chains, support programs, compatibility guarantees and documenta-
tion, including books) needed by external developers to understand and

THE THING ABOUT MOBILE PHONES 13

use the system, and to design and write stable and secure applications to
run over various releases of the operating system and on various phone
models, including phones from different vendors.

Open platforms are easy to promise and hard to deliver. Success can
present acute problems of scaling. Thus, for example, while vendors were
bringing to market only one or two models per year, it was possible for
third parties to test their applications on all available phones. Those days
are long gone, with the biggest Symbian licensees sometimes bringing out
a dozen or more Symbian-based models in a single quarter. Managing the
success of the platform means managing compatibility better; adopting
and adhering to open standards including tool and language standards
(standard C++, the ARM EABI, and so on); producing more and better
documentation; providing more developer services such as the Symbian
Signed program; the list could go on. In turn, these things can only be
achieved by creating a healthy ecosystem around the platform to increase
the overall pool of available resources and maximize the community
contribution.

User Expectations

Users expect and demand rock-solid stability and performance from their
phones; desktop computer performance standards are not acceptable.

At the same time, users are fickle, tending either to be infinitely happy
or infinitely unhappy.17 When they are infinitely unhappy, they return
the phone. However, it is not always easy to understand precisely what
triggers happiness or unhappiness (the trigger often seems removed from
ordinary measures of good, bad and defective behavior). Desktop PC
users seem more likely to be either infinitesimally happy (the machine
has not crashed) or unhappy (it crashed but they did not lose much data).

The conclusion is that phones really are different from other systems
and they are complex.

17 Thanks to Phil McKerracher for this idea.

2
The History and Prehistory

of Symbian OS

2.1 The State of the Art

Symbian OS reached market for the first time towards the end of 2000,
with the release of the Ericsson R380 mobile phone in November and
the announcement almost immediately afterwards of the Nokia 9210
Communicator, which came to market in June 2001. Both phones were
based on versions of what had previously been known as Psion’s EPOC
operating system. The final EPOC release was EPOC32 Release 5 (strictly
speaking, the final version was the full Unicode build, designated ER5u).
The first release of Symbian OS was therefore designated v6.0.

Since then, well over a hundred phone models later (the 100th model1

shipped in early Q2, 2006) and with more than 100 million (and rising)
cumulative unit sales, Symbian OS has undergone continuous evolution
to keep pace with the rapidly changing technology in the market it targets:
communications-enabled mobile terminals including, of course, mobile
phones.

The latest release of Symbian OS is v9. In v9, and its precursor v8,
dozens of new APIs offer access to services and technologies which
in many cases simply did not exist when Symbian OS first launched.2

Bluetooth support was one of the earliest additions (v6); Wi-Fi is one
of the most recent (v9). Telephony support, meanwhile, has evolved
from basic GSM and GPRS (in v6) to include EDGE (v7), CDMA (v8)
and 3G (v8). Networking support including IPSec has been integral from

1 The Nokia 3250 (also, as it happens, the first Symbian OS v9.1 phone to market) was
the 100th model, reaching the shops in April 2006, soon followed by the Sony Ericsson
P990, also based on v9.1.

2 To name just the three most obvious examples, Java ME, Bluetooth and 3G networks
did not exist when Symbian OS was first launched.

16 THE HISTORY AND PREHISTORY OF SYMBIAN OS

the beginning, evolving to a dual IPv4/v6 stack in v7 and enabling full
Internet browsing on Symbian phones, with recent additions including
support for VPN clients. New multimedia APIs (v8) support the high data
rates required for two-way streaming and high definition interactive TV
(DVB-H). The graphics system supports vector graphics (OpenGL ES in
v8), with direct screen access and double resolution displays. The new
platform security model (v9) enables the platform to remain open, but
safe, with a signing service to support trusted application download. The
list goes on.

The foundation for these latest services is the new real-time kernel
(available in v8.1b and from v9), supporting the multiple fast interrupts
needed for high data throughput, the latest generation of ARM processor
architectures (ARMv6 is supported in v9) and single core phone designs.

The latest Symbian OS phones are full multimedia devices, including
multimegapixel cameras with integrated flash and optical zoom, support
for hot-swappable media cards up to 2 GB, MP4 (video) and MP3 (audio)
players (supporting WMA and AAC too), 24-bit color (16.7 million colors),
not to mention Wi-Fi, and Universal Plug and Play (UPnP, which enables
remote control of compatible PCs, audio systems and TVs from a Symbian
phone).

Having achieved its first ‘1 million phones shipped’ year in 2002
(2.1 million Symbian OS phones were shipped that year, compared with
0.5 million the year before), Symbian OS achieved 1 million phones
shipped in one quarter in Q1 2003, and 1 million phones shipped in one
month in December 2003. Volumes have continued to rise steadily since
then, and Symbian OS passed the 100 million phones shipped milestone
in Q4 2006. Those numbers translate into close to 70% of the high-end,
or smartphone, market according to independent sources.3

At the same time, competition has probably never been greater.
In 2006, Linux phones are shipping in substantial numbers in Japan
and China. Microsoft launched the latest version of its mobile phone
platform, Windows Mobile 5, in late 2005 and phones based on it are
now shipping.4 Qualcomm has signed up European networks for the first
time to support its (previously CDMA-only) Brew platform. And while the
future of the Java-based SavaJe platform is uncertain, ‘all-Java’ phones
remain a possibility.5

But, at the time of writing, the biggest volume of phones (i.e. across
the whole market) are based on none of these platforms at all and remain
the mid- to low-end phones based on vendors’ own proprietary operating
systems. In 2006, Symbian set its sights on addressing this market and its

3 In fact, Canalys puts Symbian’s market share at nearer 80% based on data for Q3 2006
(see www.canalys.com/pr/2006/r2006102.htm).

4 Windows Mobile 5.0 is based on WinCE 5.1.
5 To split hairs a little, SavaJe is not in fact ‘all Java’: the kernel and low-level system is

written in C and the system layers are a mix of C/C++ and Java.

IN THE BEGINNING 17

v9 releases will increasingly be aimed at scaling not just for the high end,
where it is a proven platform for the latest feature-laden phones, but for
the mid-range, mass-volume consumer market.

2.2 In the Beginning

In the summer of 1994, Psion was a company of perhaps 40 software
engineers and as many hardware engineers, with a product line of
handheld organizers that was highly profitable. The most recent was the
Psion Series 3a, the second in the Series 3 family, a pocket-sized phone
with a clamshell design sporting a letterbox format grayscale display
hinged over a QWERTY keyboard, with an x86-family processor inside,
up to 2 MB of RAM, removable flash memory cards and a ROM-based
16-bit operating system (named SIBO) for an all solid-state design. Its
hardware design was not revolutionary but it was striking. Even more so
was its built-in set of easy-to-use productivity applications. Supported by
a dedicated, BASIC-like programming language called OPL, a thriving
hobbyist community had established itself, self-organized (in pre-World
Wide Web style; the first release of the Netscape browser appeared that
same year) around bulletin boards and news groups and writing add-on
software.

OPL was in fact a carry-over from Psion’s original Organiser product
line, which was also doing nicely, having been enthusiastically adopted
as a stock control tool by UK high-street retailers such as Marks & Spencer.

That particular summer, the big project was a true Visual Basic clone
(called OVAL) for the Series 3a, intended not just to increase the capabili-
ties of the machine, but to open a bridge to the programming mainstream
and tap the rich potential of the hobbyist programming market in BASIC
for DOS and the Macintosh.

At the same time a much smaller project was also kicked off to create
a next-generation operating system for the 32-bit devices which the
company was already planning as replacements for the 16-bit Series 3
range as part of its strategy for retaining its lead in the handheld market.
(In 1994, Palm had yet to release the Pilot; indeed it was still a software
house, writing connectivity software for Psion’s Series 3, among other
things. Apple’s Newton was a year old and genuinely innovative but
had failed to find much of a market. Microsoft had not yet released
Windows CE and the Hewlett Packard machines which were the nearest
competitors to the Series 3 were based on MS-DOS and primitive in
comparison.6)

6 In 1991, Hewlett Packard introduced the HP-95LX palmtop running MS-DOS and
applications such as Lotus 1-2-3, with a 16x40 text display. It was improved to an 80x25
display on the HP-100LX in 1993 and upgraded again with the HP-200LX in 1994. Devices
based on Windows CE, starting with the HP-300LX, did not appear until 1997.

18 THE HISTORY AND PREHISTORY OF SYMBIAN OS

The follow-on to the Series 3 was codenamed Protea,7 and over the
next year the project continued to grow. By the end of 1995 it was
driving a rapid expansion of the company and in particular the project
to create the new operating system (which was eventually named EPOC)
was consuming the lion’s share of the company’s software development
budget, although the Series 3 software remained in active development.
For example, email and Internet extensions, in particular, were being
prepared as it became increasingly clear that accessing Internet services
from handheld devices was likely to become a significant market driver.

The Protea story has been told before [Tasker 2000, p. 14]. The brief
was simple enough – create the next-generation successor to the Series
3, a more sophisticated 32-bit handheld to be called the Psion Series 5.8

In this sense, then, the project was quite narrowly focused on creating
the next successful product. But from the software perspective, the longer
term vision for EPOC was explicit. The design brief called for it to support
not just the explicit requirements for Protea applications, but the as-yet
unidentified requirements for other future products. While there was as
yet no talk of licensing the operating system, there was a long-term vision.
The next generation, like the current generation, would be a family of
products and there was an explicit intention that the software should aim
for a design life of perhaps ten to fifteen years.

The Protea project delivered in the early summer of 1997. Like many
complex software projects, it was late but not excessively so. However,
somewhere along the way an interesting shift had occurred. By the time
the all-new Psion Series 5 shipped in June 1997, the software side of the
company had been spun out (as Psion Software, in late 1996) and the first
licensee software projects had started.

The Series 5 was an outstanding industrial design, with a true tactile
keyboard (on which you really could touch type) and a backlit touch-
screen with an ingenious hinge that ensured the device remained stable
when used with a pen in touchscreen mode.9 (Competing, non-Psion
products tended to fall over backwards when the screen was pressed.) A
CF card slot was provided for expandability and, best of all, the Series 5
seemed to run forever on two AA batteries. As for the software, it rapidly
acquired a reputation for extreme usability and legendary robustness
(after some natural early teething troubles).

The Series 5 was a best-seller though, quite probably, it did not sell
as well as its predecessor, the Series 3. (In its lifetime of five years of

7 Protea is the name of a flower native to South Africa. As it happens, Psion founder,
David Potter, and the first two CEOs of Symbian, Colly Myers and David Levin, all share a
connection with Southern Africa.

8 Actually, as David Wood recalls, for a long time it was assumed it would be called the
Series 4.

9 Credit for the Series 5’s famous hinging clamshell case goes to Martin Riddiford of the
Therefore design consultancy.

IN THE BEGINNING 19

Figure 2.1 The Psion Series 5 MX

production, the Series 3 is thought to have sold more than 1.5 million
units.10 The Series 5 and its immediate successors including the Revo,
had a lifetime of four years of production, during which it sold probably
around a million units (see Figure 2.1).

The EPOC team had started with a clean slate, but the operating system
did not come out of nowhere. Many of the ideas had been tried, tuned and
proven in one or more, sometimes all, of the previous systems. Clean and
‘from the ground up’ it may have been but it was nonetheless a from-the-
ground-up rewrite of the 16-bit operating system for the Series 3, which
in turn was a from-the-ground-up rewrite of the second-generation 8-bit
operating system for the Organiser II. (The first-generation 8-bit system
for the Organiser I had only rudimentary operating system features and
was, in effect, written straight to the metal.)

While, by any measure, the new operating system was written remark-
ably quickly,11 the fact remains that operating systems gestate slowly
and cost years of effort to create.12 Counting from the first Organiser
systems, Psion had already invested a dozen years in operating system
development when the Protea project began. Planning for a design life of
at least as many years for the new operating system was a matter of basic
commercial common sense.

It is likely that, had Psion had been a pure software company (or
just a larger and more mature company), a from-the-ground-up rewrite,

10 See http://3lib.ukonline.co.uk/historyofpsion.htm.
11 Martin Tasker puts its development time at 3.5 years and its cost at £6 million [Tasker

2000, p. 15].
12 There have been some interesting attempts to quantify the development cost of

Linux (see for example the article by David Wheeler at www.dwheeler.com/sloc/redhat71-
v1/redhat71sloc.html).

20 THE HISTORY AND PREHISTORY OF SYMBIAN OS

let alone one using a new and unfamiliar, object-oriented language,
would not even have been considered, let alone allowed to complete.
The business logic would almost certainly have favored extending the
existing system and Psion very likely would have missed its moment. But
Psion was not a software company, nor did it really think of itself as a
computer hardware company; it was a product company, driven by a
whole-product vision. And what’s more, it had enough cash in the bank
to do what it liked in pursuit of that vision. Which is just what it did.

2.3 The Prehistory of Psion

Psion started life distributing computer hardware but moved quickly into
software, capitalizing on the pre-PC microcomputer boom, writing games
and then office applications for machines such as the Sinclair ZX81 and
Spectrum. It was a small-scale operation in a mews behind Gloucester
Place in Marylebone, London. Early hits included a flight simulator for
the ZX81 and a spreadsheet application for the Spectrum. The flight
simulator was written by Charles Davies, an early director of Psion, later
the Chief Technical Officer of Psion and now of Symbian. The spreadsheet
application was written by Colly Myers, another long time Psion director,
later CEO of Psion Software and Symbian’s first CEO. The legend has it
that Myers wrote the complete application from scratch in the course of
a single flight from Johannesburg to London.

Few people still in Symbian can trace their roots back quite so far,
but someone who can is Howard Price, now a senior system architect at
Symbian, who joined Psion in 1983 with a math degree, having settled
in London after traveling, largely to avoid returning to military service in
(pre-democratic) South Africa.

Howard Price:

In 1983 we were only doing Spectrum work, mainly games. We all sat in
a row along a workbench, about eight of us, with Charles Davies at a desk
near the stairs and David Potter in a little office at the end. And everybody
programming in assembler, pretty much, Z80 assembler for the Spectrum,
which we wrote on some HP-type machine. Downstairs were all the boxes
containing our programs on cassette that had come back from Ablex, the
mastering company. Once a week, a truck would arrive and everybody would
line up to throw the boxes onto the truck.

Charles Davies had joined the company at the invitation of its founder,
David Potter, after completing a PhD in computational plasma physics.
Potter had been his thesis supervisor.

THE PREHISTORY OF PSION 21

Charles Davies:

I was programming 3D models in Fortran and then I left and joined him. There
were Fortran programmers who didn’t know the length of a word on the CDC
machines we were using, but I always had an interest in programming, so I
learned assembler. And then I went to microprocessors and I programmed a
lot, first Pascal and then C. I learned C on the job at Psion.

Psion bet heavily on the success of Sinclair’s follow-on to the Spectrum,
the Sinclair QL, developing an office suite application. It was badly jolted
when the machine flopped and the software didn’t sell. The surprise
success which emerged at around this time was not software at all but
hardware: the original Psion Organiser, the pet project of the company’s
single hardware engineer.

The Organiser launched Psion as a product company and manifested
what became its signature traits: carefully designed hardware products
whose very modest means were maximized by great software. The games
had made money but the devices rapidly became the soul of the company.

Charles Davies:

We had a product vision for the Organiser. It was an 8-bit device and
the software was written straight above the bare metal, so there was no
operating system. The first ROM was 4 KB, subsequently 16 KB and we had a
programming language in there called Forth, even in the 4 KB, because Forth
is that tight that you can do that.

The success of the Organiser put enough money in the bank to fund
development of a second-generation device.

Charles Davies:

The Organiser II had the luxury of a 16 KB ROM. The first product didn’t have
any serial port and people wanted to add barcode readers and things, so we
added a serial port. But then you had to write add-on software to talk to the
serial port and Forth wasn’t up to it. So OPL was invented at that time, a
BASIC-like language. And because of that we ended up having to document
certain library routines for extending the software in the ROM. That introduced
us to the idea that when we go to the next generation we need an operating
system proper. We need to separate the applications from the system, because
we had library routines, but no operating system separation.

A few months after Howard Price joined, the original HP machine on
which Z80 software was developed was replaced by a VAX, at the time

22 THE HISTORY AND PREHISTORY OF SYMBIAN OS

a huge investment for what was still a very small company. When the
VAX arrived, development moved from assembler to C. It was a big and
exciting new language for the Psion programmers. Programs were written
and cross-compiled on the VAX for the Z80 chip. But C had not been the
first choice of programming language when the VAX arrived.

Charles Davies:

When we first got the VAX and decided to go from assembler to a high-level
language we chose Pascal, which was the system language for the Apple
Macintosh at that time. That choice lasted a few months. But then we read
Kernighan and Ritchie and it was just obvious that this is a whole load better
than Pascal for what we wanted to do. We recognized that C was the right
language for us, because with C, you know, ‘how low can you go?’. We
recognized that in C, we could do the sorts of things that using Pascal we
had to do in assembler. But that switch wasted money. At that time, a VAX
cost £100 000 and you work out what that is in real terms now, it was a big
investment and the compilers cost thousands. So we bought Pascal compilers
and wasted a whole load of money and had to re-buy C cross-compilers.

Despite its expense, the VAX turned out to be a fortuitous choice. The
VAX ran DEC’s VMS operating system. That the early influence of VMS
should eventually show up in an operating system which has become
best known as a mobile phone operating system is startling at first sight.
VAX, after all, was the dominant mini-computer of the late 1970s and
pre-PC 1980s and VMS is in many ways a dinosaur of the big-metal era.
But Symbian OS traces a very specific legacy to VMS, which indeed goes
all the way back to the first Psion operating systems for the Organiser
products.

2.4 The Beginnings of Symbian OS

When Geert Bollen joined Psion in May 1995, the 32-bit operating system
project (EPOC) was well under way. Bollen had been in the UK for just
six months, after moving on from a Belgian startup which had folded.
A Macintosh-only shop with strong university links and specializing
in document management systems, Bollen found Psion instantly quite
different, ‘a little bit homegrown’, as he puts it.

The EPOC project was dominated by a few key personalities and
largely divided up between the teams they had gathered around them.
Colly Myers was responsible for the kernel and base layers, Charles
Davies for the middleware and David Wood for the user interface. All
were directors of Psion, and later Psion Software and Symbian, as was
Bill Batchelor who had taken over the running of the overall Protea
project.

THE BEGINNINGS OF SYMBIAN OS 23

Geert Bollen:

Most of the architecture came ultimately from the interaction between Charles
Davies and Colly Myers and the creative tension between them. And sometimes
it could take a long time to settle something. So they would have an argument
and then out of that they would come up with something sufficiently rich
for Charles, sufficiently doable for Colly and then an implementation would
appear.

And once the implementation had appeared, that was very much
that. As Bollen puts it, it could be extremely difficult to influence the
implementation after the fact. Myers and Davies had styles which were
as different as were their personalities.

Geert Bollen:

Charles Davies the cerebral purist, Colly Myers the bull-dog-like pragmatist,
‘We are building the system and I have to know what to build!’ So to give
you an idea, Colly was off implementing the system, meanwhile Charles was
masterminding a complete Rational Rose model for it.

Martin Tasker was another early recruit, joining a few weeks after
Bollen when the software team was around 30 strong. Tasker had been
at IBM, working on System 370 mainframes, having studied computing
at Cambridge.

Martin Tasker:

I joined on 19 June 1995, 180 years and 1 day after the battle of Waterloo and
6 weeks before my wedding! There was fantastic intellect and purity of design.
I think the atmosphere was really quite frontier. You got a senior position, I
say ‘senior’ but this was a very small team, but you got authority within that
team by basically stating your opinions and being seen to have good ones.

There was Colly Myers, in those days with a beard, who would sit there
talking and he just couldn’t keep still, he would be twitching.

And there was Charles Davies, face raised at a Victorian angle.

Commitment was total and the dynamic could be abrasive. Strongly
held opinions, strongly defended, were part of the culture.

Martin Tasker:

Colly Myers was a combination of charismatic leadership and utter frustration!

24 THE HISTORY AND PREHISTORY OF SYMBIAN OS

Tasker indeed recalls an incident from the early days of the project,
a small but significant difference of views between Myers and Davies
which turned, as such differences usually did, on weighing the balance
between purity and pragmatism.

Martin Tasker:

Colly Myers had a theory that array arguments should be unsigned, which
meant that a descriptor length should be an unsigned value, in other words a
TUint argument. And I well remember a meeting in the first floor corner office
of Sentinel House, which was the operations room for the project and Charles
Davies’ exact words were, ‘I’m having a bit of trouble with the troops’. They
were unhappy about using unsigneds, because there are all kinds of things
you might legitimately do when manipulating descriptors which would result
in a signed value as an index, for instance you multiply by some signed value.
So that plays havoc with the array, because you’re getting all fffffs as an
index.

And what this triggered in Colly! ‘Are you mad?!’ You know, ‘Who are
these programmers of yours?’ So the abstraction is that an array has only a zero
or a positive index, it cannot have a negative index. Therefore, what possible
advantage could there be in allowing a signed index? So Colly’s line was, ‘You
just need to teach your programmers how to program!’

Well I remember four weeks of totally polarized debate and heated argu-
ment. Of course Colly was right, but the fact is that it’s just too hard to do the
right thing. So I walked in one Monday morning and checked out a release
note, this would have been October 1995, it just read ‘As agreed, changed all
TUint to TInt.’ Of course we kept TUints for flags and such – but as for
numbers, that was how that debate got closed. And Colly’s ‘agreement’, when
it came, was characteristically unilateral, announced through the release note
after a gruelling weekend’s work which couldn’t really be automated – Colly
really had to check every change manually.

The relentless development pace and constant project pressure were
hard, too. Peter Jackson, who these days is responsible for Symbian’s
software configuration management systems, remembers the approach to
project management, as directed by Bill Batchelor, with mixed feelings.

Peter Jackson:

Bill Batchelor liked getting his hands dirty, but then he became project manager
for Protea and so he had a dual nature. He was passionate about the right
things, but at the same time he didn’t like it when you told him how long it
would take to do ‘the right thing’.

But the company was vibrant and small and people didn’t actually mind
hacking away for all hours of the day and night to achieve the end goal.
Bill’s over-optimistic project plans were just part of that mix. He would cajole

THE BEGINNINGS OF SYMBIAN OS 25

you into committing to something that was impossible, and you’d do your
best to achieve it, and then eventually there would be this undercurrent
where everybody knew it was totally absurd, but no one was going to say it.
Eventually it would all come out. And then there would be another planning
iteration and the same thing would happen again.

The big practical problem with the Protea project, one which caused a
succession of headaches for Geert Bollen, was the lack of real hardware.
Software development started well ahead of the availability of any proto-
type hardware but even by mid-1995, when the software project was in
full swing, the device prototypes were still not ready.

Geert Bollen:

The on-the-metal version of the kernel was started and delivered after I arrived
and Colly Myers assembled a team for that. Before that Colly had been a
one-man band. The GNU tools at that time were coming on. I had some
involvement in that but they were still a long way from being rolled out.

Andrew Thoelke is another veteran who joined in March 1994 and
is now the Chief Technology Architect at Symbian for the base services
and kernel layers of the system. In the absence of hardware prototypes,
built code was run on PCs using an emulator layer which mimicked a full
system by mapping low-level operating system calls to their Windows
equivalents, essentially the same approach used by Symbian OS devel-
opers today in the first stages of development, before moving to hardware
targets.

Andrew Thoelke:

Down in the base team, not having hardware was a problem, so the system
was first brought up on x86 as a hardware port before it was ever brought up
on ARM. In the original kernel architecture, probably 40% or 50% of code
is shared with the target, but there’s still vast amounts of kernel code which
is target only, all of the scheduling and threading, the interrupt model, the
device-driver model, so all of that needed to be done with a real target. So
they used a 486, they basically built an 8386 port of the system first, because
that brought online another 40% of the kernel code. Obviously there was still
ARM-specific hardware code and a different MMU and all that sort of thing.
But it was actually much less work when hardware did become available
because they had already got a generic kernel mostly working.

Whatever the problems, there was no doubt in anyone’s mind that
what they were creating was special. Martin Budden, now Chief System

26 THE HISTORY AND PREHISTORY OF SYMBIAN OS

Architect at Symbian, was a veteran of the two 16-bit projects before
moving onto the EPOC project. He puts it very simply.

Martin Budden:

I came to the company because I wanted to do something that was exciting.
As soon as I saw what Psion was doing, I just knew that was what I wanted to
do.

Looking back, Psion’s timing was good; it had judged the moment
perfectly.

Martin Tasker:

Psion, like many companies then and not just in Britain but elsewhere, had
achieved success by innovating according to rules which nobody had ever
written. It just did its own thing and it found a niche in the market.

2.5 The Mobile Opportunity

When the Psion board decided to spin off its software division, which
at that time numbered around 70 engineers, it was effectively a public
commitment to a software-licensing strategy.

It is clear that a number of different options were considered. There
were rumors at about that time that Psion had considered buying Palm. A
possible purchase of Amstrad got as far as due diligence. The background
is revealing. For the Psion board, the real target seems to have been a
Danish phone-making company, Dancall, which Amstrad had previously
bought and absorbed into its empire. Thus, buying Amstrad would have
enabled Psion to become a phone manufacturer. This indicates very
clearly the direction in which Psion was pressing at that time. In the
event, Psion did not buy Amstrad and Dancall was eventually sold
to Bosch, before being sold on to Siemens. Much later, it was the
formerly Dancall site at which the Siemens Symbian OS phone, the
SX1, was developed. Still more recently, the site has been sold on to
Motorola.

Psion, of course, did make its move into the phone market, but in a
quite different direction. It was a visionary move and one for which the
company founder David Potter deserves enormous credit. There were
other visionaries too. In particular, Juha Christensen, Psion Software’s

BACKGROUND TO THE FIRST LICENSEE PROJECTS 27

bravura marketing director,13 had assiduously begun to cultivate mobile
phone manufacturers, Nokia included. Psion Software was certainly not
their only choice of partner for collaboration at the time (just as Symbian
is by no means the only choice today). However, the company was
perfectly positioned, with just the right product at just the right time in the
evolution of the mobile phone market. It has succeeded remarkably well
in extending that early lead into a commanding position in the market.

2.6 Background to the First Licensee Projects

The first Organiser shipped in 1984. Over more than ten years, Psion
honed its hardware and software skills and learned through three complete
iterations (Organiser, Organiser II and Series 3) what it took to create a
complete software system for mobile, battery-powered, small-footprint,
ROM-based systems, before embarking on the 32-bit EPOC operating
system from scratch. The Series 5 shipped in June 1997. Almost exactly a
year before, Psion’s software division had been spun off into a separate
company, Psion Software. Almost exactly a year afterwards, in June 1998,
Symbian was created as a joint venture aimed at bringing EPOC as a new
operating system to mobile phones.14

Even before the Series 5 project completed, licensees of Symbian
OS from at least three companies were waiting in the wings. There are
different versions of the story, but they all agree on the main points.

Martin Budden:

As I heard the story, Nokia were in the market for a new operating system
for their Communicator and they approached us. I know that Juha was
instrumental in brokering the deal, but it was Nokia’s idea and I remember
there was a time when we were told Nokia were coming to see us. It wasn’t
exactly ‘smarten up the office’, but you know, ‘if they ask questions, give good
answers’. It was Nokia that was strongly in favor of bringing in other phone
manufacturers to form a consortium, or that’s what I understand. They fairly
quickly brought Ericsson on board and then Motorola got on board at the last
minute, and that was also quite significant.

13 The legend within the company when I joined in 1997 featured Juha going off to cold
Northern climes, sharing saunas and vodka with Important People and coming home with
a Nokia deal in his pocket. Juha was later tempted away to Microsoft to lead the Windows
Smartphone effort.

14 [Tasker 2000, Chapter 1] provides a definitive history.

28 THE HISTORY AND PREHISTORY OF SYMBIAN OS

‘Symbian Day’ was June 24th 1998 and the Psion share price rocketed
on the news (causing much excitement in the office over the next few
days). A few days before, we had delivered the first free SDK for what
was still Release 2 of EPOC.15 Version 5 was still a whole year away and
the first Unicode release, ER5u as it was known, was a step further still.16

This, arguably, was Symbian OS ‘version 5’ (although it was never called
that), the first operating system release that was ‘fit for phones’, although
even then the first phones were still a year away from market. The first
designated Symbian OS release, v6, appeared in Spring 2001.

From a public perspective much was made of the Nokia versus
Microsoft angle and some commentary viewed the creation of Symbian
as an attempt by Nokia to build an alliance against Microsoft. But it seems
just as meaningful (and more useful) to view it more as a case of Nokia
making a shrewd move to work with competitors to consolidate and grow
a new market (that of highly capable, multi-function, phone-enabled
terminals: ‘smartphones’ in other words), at the same time enabling
Nokia to focus on what it clearly saw as its strength, the user interface.
The evidence [Lindholm 2003] is that Nokia viewed the user interface as
the critical software design factor for the phone market – if not the key
determiner of success then at least a critical one – and also that it viewed
the user interface as its critical strength.

However, even before the Nokia approach, Psion had been actively
evolving its own strategy and there is no doubt that a fundamental shift
occurred after the start of the Protea project, leading to the spinning off
of the software division to open the way for software licensing. The team
led by Howard Price moved across quite late to the EPOC project to start
what turned out to be the last rewrite of OPL, this time for the 32-bit
platform. By then the company’s focus had shifted quite noticeably.

Howard Price:

The big thing in every team meeting was, ‘Where are we with licensees?’ So
we’d go to the senior team brief and a lot of the talk would be about winning
another licensee, or that the licensees were getting unhappy because of this
delay or that delay, or that they were worried we were delaying their products
to concentrate on Psion work – the Series 5 project was running worryingly

15 Giving SDKs away to developers was still considered controversial within the company
at that time.

16 ER5u was an interesting experience to live through, a complete rebuild of a system
which still, at that time, did not routinely build from source (as it does these days, with
nightly builds of multiple variants from a single master codeline), with the ‘wide’ flag set for
all components in the system so that all descriptors, text data and resource strings (anything
with text, in other words) built ‘wide’ using multibyte (UTF-8) Unicode text encoding. A
complicated system of ‘baton passing’ was evolved to follow the dependency graph up
through the system and ensure that for every component, all dependencies built first; not
trivial in a system which still harbored some awkward circular dependencies.

BACKGROUND TO THE FIRST LICENSEE PROJECTS 29

late. It took a year longer than planned for us to ship and the licensees were
waiting.

The licensee strategy was squarely pitched at the phone market.

Andrew Thoelke:

The Series 3 family had been Intel based, but even at that point in ’94, ’95
the view was to migrate towards mobile and cellular applications. The jump
to ARM was intentional, because Intel was clearly not a player in that field
and ARM was already doing well and had ambitions to become far more
important in that space, so it was quite a strategic move. And part of the
mindset behind the next generation operating system was to target ARM. Even
at that point David Potter could see that handheld computers and PDAs and
cell phones would converge. And that’s why in ’96, before the Series 5 was
actually shipped, Psion put its software division out into a separate company,
specifically so that it could look at licensing its software externally.

The very first of those early collaborations was a project to create
the software for a mobile companion device for the Philips Ilium phone.
The companion and phone clipped together back to back and connected
through a hardware slot on the back of the phone, turning it into a
PDA/Communicator with 4 MB RAM, a Series 5-sized landscape-mode
touch screen, a choice of soft (on-screen) keyboard or handwriting
recognition and a full PDA application suite including calendar, organizer
and contacts book. Communications functions included email, web, fax,
SMS and full voice calling.17

The software was based on the November 1997 Message Suite release
of EPOC (also used in the Series 5 mx), which added email and web
applications, dial-up networking and TCP/IP, the C Standard Library and
the Message Suite itself. The project was publicly announced as the
Philips Ilium/Accent and showed at CeBIT at the end of 1998, but it never
came to market.

Martin Budden was the technical lead on the project, which involved
writing not just a bespoke user interface, but also a complete applications
suite including messaging and contacts applications. As he says, it was
a significant amount of work. However, compared with later projects,
these were very much toe-in-the-water exercises, both for Symbian and
its licensees. On the Symbian side, the team was relatively small, perhaps
a dozen developers working on the user interface and applications and
half as many again working on the software port to new hardware.

17 The Ilium is described at www.noodlebug.demon.co.uk/goingmob/spphiila.htm.

30 THE HISTORY AND PREHISTORY OF SYMBIAN OS

The Philips device was the first licensee project (unless Psion itself is
counted as a licensee) but, most significantly, it was the first project to
generate licensing revenue in the form of pre-paid royalties.

Martin Budden:

The Philips project was the first bit of money that we ever got in from licensing;
the first licensed product we ever got and made some money from.

Other licensee projects followed, including the Series 5 look-alike
Osiris from Oregon Scientific and the Geofox One, a keyboard-based
PDA with a larger keyboard and screen than the Series 5 and with a
laptop-style touchpad instead of a touchscreen. It also added a built-in
modem and a standard Type II PCMCIA slot.

While they demonstrate the enthusiasm with which Psion Software set
out to develop a licensing model, all of these projects were ultimately
false starts, failing to capture much attention from the market. Straight after
the Philips project, Budden moved onto another small licensee project,
working on behalf of Ericsson, and stayed as technical lead through the
project startup. While the biggest problem in the Philips project had been
trying to work around the limitations of the hardware design, which had
been more or less fixed before the start of the project, the Ericsson project
was a true phone design. In particular, the hardware design provided a
robust solution to the problem of communications between the phone
hardware and the application processor. As Budden says, the feeling on
the team was that the hardware design was right from the start.

The fact that it was another phone project indicates where Psion saw
the market opportunities, but it also indicates the direction in which the
licensees saw the phone market moving. The goal of the Ericsson project
was to create a mobile phone with full PDA functions, as full as was then
possible. The result was the Ericsson R380, a breakthrough product not
because it sold particularly well (it was probably too far ahead of both the
market and the current state of technology) but because it rehearsed key
principles which led the way to later successful Sony Ericsson Symbian
phones, starting with the P800 and followed up by the highly successful
P900 family of phones.

Biggest by far of all these projects was the collaboration with Nokia
to create the Nokia 9210 Communicator, which started while the Philips
project was still running. While the Ericsson R380 team had roughly
double the numbers of the Philips project, the Nokia 9210 project
eventually involved probably half the company; by the time it completed,
the company had grown from 70 to over 200.

The Nokia 9210 project completed after that of the Ericsson R380,
but began before it. Earlier projects and, to some extent the Ericsson

DEVICE FAMILIES 31

Figure 2.2 The Ericsson R380

Figure 2.3 The first Symbian phone, the Nokia 9210 Communicator

R380, had been based on snapshots of the evolving operating system
(which was still named EPOC), with the deepest changes concerned with
the adaptation to new hardware and bespoke customization of the user
interface. In contrast, the Nokia 9210 project drove a complete iteration
of the operating system from the ER5 baseline to what became known,
finally, as Symbian OS v6.0. Conceptually, the Nokia 9210 was the first
Symbian phone, even though it wasn’t the first to market (see Figure 2.3).

The transition from the Series 5 to the Nokia 9210 was less a series
of steps than a route march, four years of hard work (from inception
to completion). Symbian OS has been (and will no doubt remain) a
continuous evolution towards a destination which is always one twist of
the road away.

2.7 Device Families

The native EPOC graphical user interface (GUI), which defined the look,
feel and interaction style of the device software, was known as Eikon.
Eikon was designed for extensibility and customization. However, the

32 THE HISTORY AND PREHISTORY OF SYMBIAN OS

extent of the variations required by different customers, driven by the
needs of devices that, increasingly, were not PDAs but phones with PDA
functions, significantly exceeded the assumptions of the original design.
Each project effectively created a complete bespoke user interface, albeit
from the common starting point of the Eikon code. Not only did this
level of customization not scale, it was clearly threatening to fragment
the platform.

Martin Budden:

The model of doing a bespoke user interface was already there. We did
a bespoke user interface for Philips and for the Ericsson R380. And for
the Nokia 9210 Communicator, again there was a new user interface to
Nokia’s specifications. But there were fundamental conflicts between these
user interfaces, in practical terms of ‘Did they have pens?’ or ‘Were they
keyboard based?’ and ‘What was the screen size?’, but also in deeper terms of
the whole user interface philosophy and what you expose to the user. And it
just became clear that if we did a user interface for every single phone, that
wasn’t going to be sustainable.

Symbian’s solution was the so-called reference design strategy. The
specific phone types were genericized to reference specifications: in
practice, that meant the keyboard-based Communicator-style device and
the pen-based ‘smartphone’ equipped with PDA functions and based
loosely on the Ericsson R380. As well as a form-factor definition specifying
the essential features of the physical design and therefore, in effect,
parameterizing each design to a particular market point (in terms of
features, size and key use cases), Symbian would supply a generic user
interface for each form-factor, which licensees would then customize.

As realized in Symbian OS v6.0, devices were identified as ‘smart-
phones’ (phone form-factor devices) and ‘communicators’ (PDA form-
factor devices). Communicators were further divided into keyboard-based
(the Nokia 9210) and tablet-based devices (both Ericsson and Sanyo
showed off prototypes broadly similar to Palm or Windows CE devices
such as the Pilot and iPaq). Two reference user interfaces were included
in v6.0 as ‘device-ready’ designs: Crystal, which shipped with the Nokia
9210 and which eventually became Nokia’s Series 80 user interface; and
Quartz, which eventually evolved into UIQ.

A number of other device family reference designs (DFRDs) were
proposed and several proceeded to reasonably advanced specification,
including Sapphire which was split into Red and Blue variants, depending
on screen size and interaction mode (pen or keypad); Ruby, which
evolved from Red Sapphire; and Emerald, which encapsulated the original
smartphone concept as realized in the Ericsson R380. Neither Ruby nor
Emerald were announced or came to market. Blue Sapphire eventually

DEVICE FAMILIES 33

evolved into the Pearl DFRD and finally reached market branded as
the Nokia Series 60 user interface (see Figure 2.4). Pearl had first been
defined as a ‘headless’ DFRD (without a user interface), before acquiring
code branched from Crystal and eventually unifying with the work which
had been going on independently within Nokia to develop what was
known as the ‘square’ user interface.18

Pearl in effect became the first true smartphone platform (defined as a
phone with information capabilities) and was realized in the first Series
60 device, the Nokia 7650.

Quartz, meanwhile, never came to market in its original form, that
of a tablet-style device most closely resembling a phone-enabled, pen-
orientated PDA, which was dubbed the Mediaphone reference design
when prototypes were shown at CeBIT in 2001. The Quartz design had
originated at Symbian’s Ronneby site in Sweden. Originally an Ericsson
development laboratory specializing in Windows CE devices, the site had
been transferred to Symbian as part of the original Ericsson investment in
the consortium. Quartz quite clearly inherited Ronneby’s design legacy.
However, the device format with which Quartz did eventually come to
market, by this time rebranded UIQ, was the one pioneered by Ericsson
with the R380: pen-operated, a screen that could switch between portrait
and landscape modes and with a key-pad flip. In, first, the P800 and
then the P900 (see Figure 2.5), this format has become a signature design
of Sony Ericsson’s high-end, business-orientated range and has been
extremely successful.

The Crystal user interface of the Nokia 9210 Communicator was even-
tually rebranded Series 80 (see Figure 2.6) and remains the basis for the
product line which continues to evolve and innovate. (A Communicator
was the first Symbian phone to offer Wi-Fi connectivity, for example.)

Figure 2.4 The Series 60 user interface, as used on the Nokia 7650

18 David Wood believes that Nokia’s work on ‘square’ had been in progress for at least
two years before the formation of Symbian.

34 THE HISTORY AND PREHISTORY OF SYMBIAN OS

Figure 2.5 The UIQ user interface, as used on the Sony Ericsson P900

Figure 2.6 The Series 80 user interface, as used on the Nokia 9500

While a number of licensees worked on Quartz devices and others
(besides Nokia) expressed interest in Crystal-based devices, the DFRD
strategy eventually stalled. The reality is that, although they aimed to
be generic, the designs could not escape the pull of licensees. In the
end, they were more licensee-specific than generic, reflecting particular
licensee’s views about what a phone should be. Nokia drove Crystal;
Ericsson and then Sony Ericsson drove Quartz; and Sapphire seemed
to split and split again, until there was a one-to-one mapping between
DFRDs and licensees.

Martin Budden’s view then and now is that the problem was essentially
not resolvable. It was not possible to agree on a Symbian-based user
interface, in other words one evolved from the original Eikon GUI of
EPOC and the Series 5, which was suitable for the different device visions
of Nokia, Ericsson and Motorola.

And this was the problem. Each phone vendor had different, deeply
held views about what makes a phone. Symbian was trying to create a

DEVICE FAMILIES 35

software platform that would satisfy them all. Motorola wanted a pen-
based user interface. Nokia wanted a keyboard-based user interface.
Nokia did not place much value in the power of the pen and to date
have only ever released one pen-based range of Symbian OS phones,
the Series 90 user interface on the 7700 and 7710. Quartz, coming from
a design unit which had started out working on Microsoft Windows CE
devices, came up with a pen-based tablet format, such as the Compaq
iPaq or the classic Palm devices.

Not everyone in the company was convinced by the DFRD strat-
egy. To some it seemed more like an attempt to paint over the deeper
problem, that conflicting licensee user interface requirements were irrec-
oncilable.

Martin Budden:

In my view, we just could not resolve the issue. We couldn’t come to an
agreement on what the Symbian-based user interface would be that was
suitable for all licensees, which I think was ultimately why Nokia went off to
do their own.

The designs were not so much generic as licensee-specific, reflecting
each licensee’s views about what a phone should be.

Martin Budden:

The DFRD idea was to have families of user interfaces, so there would be
one family for devices like the Nokia 9210 Communicator and the Series 5;
there would be a family that was based on the Ericsson R380 which was a
phone; and at about this time, Quartz started up and that was for another
Ericsson phone with quarter-VGA tablet form-factor. There was a basic conflict
there between Nokia and the Series 5 user interfaces, because what Nokia
wanted went further than the customizations the user interface could easily
accommodate and then the other conflict that started to manifest itself was a
user interface for a phone form-factor smaller than even the Ericsson R380.

After his time on the Ericsson R380 project, Budden had moved
across to work on Quartz as technical lead and spent the best part of
a year commuting between London and Ronneby. He witnessed the
difficulties of implementing Quartz as a product-ready, concrete instance
of a DFRD at first hand. Partly the problem was one of resourcing,
with the company’s main focus dedicated to the underlying features
of the operating system, many of which were driven by the ambitious
requirements of the Nokia 9210 project. The fact that Quartz was being

36 THE HISTORY AND PREHISTORY OF SYMBIAN OS

developed at a remote site did not help. Nor was it necessarily easy for
the Ronneby engineering team to adapt itself to the very different style
of Symbian, of which it was newly a part, compared with its previous
parent, Ericsson. For its part, Symbian probably found integration of a
new remote site just as painful. Beneath it all, were the basic engineering
problems.

Martin Budden:

The Quartz team had very great difficulty getting anything done which would
support their work and that led to a lot of fragmentation and reimplementation
and it also highlighted that there was a lot of code that was not easily separable.
So, for example, the messaging code had user interfaces in the engine layer,
which meant that to change the user interface we had to redo a lot of the
engine code as well. So there were a lot of things that made it difficult to
separate out the bits. And this is when the idea of resolving all these conflicts
by defining DFRDs emerged. I thought at the time that it was never going to
fly.

However, the strategy served its purpose as, between 2000 and 2002, it
enabled the important focus to become that of developing the underlying
operating system. It also underwrote the splitting of generic from specific
functionality in Eikon, the original EPOC GUI, as a necessary engineering
step to enable the creation of the DFRD variant implementations.

When it abandoned the DFRD strategy in 2002, Symbian made a
tactical retreat out of the user interface space altogether. The Pearl DFRD
which was being actively developed in collaboration with Nokia, was
taken over entirely by Nokia to become Series 60. Quartz, which by this
time was the basis for projects with both Sony Ericsson and Motorola,
was spun out into a new Symbian subsidiary, UIQ Technology AB, based
at the Ronneby development site. UIQ became the name for the user
interface.19 Japanese licensees working under the FOMA umbrella, as
DoCoMo’s new 3G network was branded, went their own way and
collaborated on a common user interface known as MOAP.20

Symbian’s strategy since 2002 has been based on the concept of a
‘headless’ delivery to its customers with a custom user interface integrated
as part of the product creation lifecycle, either by the phone vendor (in
the case of the FOMA licensees and Nokia) or by a user interface vendor

19 In late 2006, Sony Ericsson announced that agreement had been reached for it to
acquire UIQ Technology AB from Symbian.

20 FOMA is DoCoMo’s 3G network, which launched in 2001. Mobile Application
Platform (MOAP) was originally an internal designation which has now begun to appear in
public forums.

OPERATING SYSTEM INFLUENCES 37

(UIQ licenses its own user interface pre-integrated with Symbian OS
to customers such as Sony Ericsson and Motorola; similarly, Nokia’s
independent Series 60 business unit licenses S60 preintegrated with
Symbian OS to customers such as Samsung and LG).

Symbian OS is GUI-centric in the sense that the user model is exposed
only through the GUI, while being designed into the operating system at
a deep level; nonetheless, Symbian does not provide its own shippable
GUI. This model has its challenges (as any model does) but, with the
sales record as it stands, it can be considered proven. It is driven by
the recognition that the mobile phone market is quite different from
the desktop computing market, for example, in which users (as well as
vendors) seem reconciled to the greater than 90% domination of a single
user interface, Microsoft Windows. There are alternatives, in the form of
Macintosh and Unix/Linux, but these are not mass-market alternatives.
The attempts to create mass-market alternatives (BeOS, for example, in
the late 1990s) have been spectacularly unsuccessful.

Personal mobile devices, from phones to music players to cameras, are
very different. Consumer devices, from TVs and DVD players to Hi-Fi and
radio to car dashboard controls, are very different too.21 What users want
from them and how they wish to interact with them, is quite different
from what they want from the beige box underneath the desk.

2.8 Operating System Influences

While the user interface defines a system from the perspective of end-users
and translates the design philosophy of the system into tangible behavior
accessible to users, the real character of an operating system is defined at
a deeper level, by the fundamental choices its designers make – typically
in the form of trade-offs between aspirations and limitations, whether of
performance against price, features against time-to-market or innovation
against familiarity. As a company of engineers rather than computer
scientists, it seems that Psion absorbed multiple influences, but then
proceeded from immediate practicalities, almost as if no theory existed.

Its first true operating system was written for the 8-bit Organiser and
then re-written for the next generation of 16-bit Organisers. Since these
were x86-based, DOS was a possible alternative candidate. The company
however decided to follow its own path.

21 Christian Lindholm provides a fascinating public insight into the issues driving user
interface design for phones as we have known them, and for the multi-function mobile
terminals they are becoming. These devices, as he says, are evolving from impersonal objects
to intimate possessions ‘containing one’s most important data and thoughts’ [Lindholm 2003,
p. 154].

38 THE HISTORY AND PREHISTORY OF SYMBIAN OS

Charles Davies:

We considered using DOS and rejected it, which was controversial at the time
because there was a view that DOS was the only kind of operating system for
PCs downwards and of course it was also what the HP200 used, which was
our big competitor at that time.

But DOS is a strictly synchronous system, single-user and single-tasking
and it also provides an interface which insists on dragging the user down
to the machine level, which was not the vision at all. In fact Psion did later
release a DOS-based version (MC600) of the MC400 laptop, precursor
to the Series 3, just as it had released a DOS-based version of the HC
handheld. As David Wood remembers, after that first-hand experience of
MS-DOS, it became known in the company as ‘MS-dogs’.

In contrast, the exposure to VMS was critical because it showed that
there was another way.

Charles Davies:

From that experience of cross-compiling on VAX for the ZX80 we got to know
VMS pretty well. It was a multitasking operating system with asynchronous
services. Colly Myers was the architect and we decided to make our system
pre-emptive multitasking.

While these ideas began to influence the Organiser operating systems,
they became central to the design of the next iteration 16-bit system. This
was the operating system which eventually made its way into the Series
3, from its first iteration for the MC400 laptop.

Charles Davies:

The strong drivers were firstly, ‘always on’, in other words, no bootup – the idea
that the operating system ran forever – and, secondly, that you could switch
from one application to another without waiting, which was the multitasking.
One of the early design principles was that we started to play with servers and
that was a direct VMS influence. So if you have a multitasking operating system
and if applications are executables in that operating system, then the number
of applications is extensible and you can switch between those applications
without exiting the current application. We take multitasking for granted now,
but DOS PCs at that time were single tasking, you ran an application and you
had to exit it to run another application. Remember TSRs, Terminate And Stay
Resident programs which allowed you to switch in and out? We thought that
was crazy! We thought the main system should be like that.

OPERATING SYSTEM INFLUENCES 39

The VMS influence was sufficiently visible in the final system to be
noticeable, for those who cared to look. Peter Jackson had worked with
VMS while at BP Exploration and recognized the influence even in the
first iteration 8-bit Organiser system. He quickly became a Psion fan.

Peter Jackson:

I was attracted to Psion in the first place because I got hold of the internal
documentation for the Organiser. This was the 8-bit operating system and
I read the documentation and thought, ‘That looks familiar. This has been
influenced by VMS’. And I also thought, ‘This is very clever. This is a company
that could be worth paying attention to’.

The Organiser operating system displayed many of the properties of
consistent and elegant design that Jackson had admired in VMS and had
found wanting in other systems, for example Unix.

Peter Jackson:

I would characterize Unix as being something that wasn’t really designed, it
evolved. So, by contrast, VMS was a system that was much more carefully
designed from the beginning and it was carefully designed in parallel with the
emergence of the VAX hardware architecture. So when you look at the design
of VMS, it’s quite rigorous in terms of API definition and quite consistent in
terms of patterns of use of those APIs. For example, typically in VMS all APIs
are asynchronous and they all have ways of monitoring the outcome of a
request made to the operating system or to the I/O system and so on. So once
you’ve learnt a corner of the VMS system and you want to explore another
corner of it, you don’t have to climb the same learning curve all over again.
And that level of consistency applies all the way up to the command interface.

By the time Psion produced its first 16-bit systems, the key VMS-
inspired patterns were well entrenched.

Peter Jackson:

It was harder to get into the 16-bit system, but there was still that consistency
and elegance in how they had implemented things and I would say that the
attention being paid to asynchronous interfaces was a good example of that.
The whole event-driven programming model was very strong in Psion in those
days.

Jackson attributes those patterns not just to VMS, but also to a more
general mainframe influence. While the hobbyist culture typified by

40 THE HISTORY AND PREHISTORY OF SYMBIAN OS

CPM and early DOS gravitated upwards from micros to PCs, the more
sophisticated professional programming culture of multiple-peripheral,
multiuser, ‘big-iron’ computing began to drift down towards smaller
systems, first to minis (including VAX, as well as the PDP family on which
Unix first evolved), micros and then PCs, but also to new classes of device
such as those being pioneered by Psion.

Peter Jackson:

On mainframes and mini-computers, such as VAXs, where everything is event
driven, you don’t put in a synchronous I/O request. You don’t say ‘write this
data to disk’ and have the call return when the write is completed. You issue
an instruction to write data to the disk and you get on with the rest of your life
and at some point you’ll get notified that the write is actually complete.

The asynchronous, server-based model has evolved to be one of the
primary patterns in Symbian OS. Servers provide for serialized access to
shared resources and are used throughout the system, wherever multiple
users (client programs, including other system services) require access
to a system resource, whether a logical resource such as a process or a
physical resource such as the physical device screen (or screens).

For Jackson, the visible influence of VMS on the Psion operating system
seemed to present a perfect opportunity.

Peter Jackson:

People who learned how to program on PCs, specifically on DOS, came from
a different culture where that asynchronous, event-driven model did not hold.
There were people that knew about event-driven programming and there were
people that didn’t. So I had this vision that said, all my mainframe expertise
now applies here, I understand stuff that these PC programmers aren’t at all
familiar with. And the way I saw it then, when I was coming into the company,
is that there’s a whole set of software idioms to do with mainframe computing,
and the way technology was evolving meant that you could now apply those
idioms to smaller and smaller devices. And I was able to capitalize on my
knowledge of mainframe software architecture.

The 16-bit system was a classic C API operating system, exposing a
small number of system calls as C functions. Higher up in the system,
object-oriented ideas had been widely applied. Initially, the operating
system appeared in the new laptop-like product. Jackson recalls it with
the enthusiasm of a convert. The MC400 in his view was way ahead of
its time in terms of its hardware design, a perfect match for an operating
system which was also distinctive and innovative.

OPERATING SYSTEM INFLUENCES 41

Peter Jackson:

It was a really nice machine. It looked like a laptop computer, only slightly
thicker than laptops are today, but on almost every face of this thing, every
way you turned it you’d find an interface that you could plug something into.
It was way ahead of its time. There was a speech synthesizer sound module
that was quite sophisticated; it had a module that was a built-in modem; it had
a superb keyboard and a long battery life. You could put batteries in it and it
would be good for 90 hours and this was in the era when for laptops, three
hours was your limit.

Unfortunately, the MC400 didn’t sell, which was a substantial set-back
for the company. However, Psion responded with a complete software
overhaul (to reduce ROM size and improve all-round performance) and
with a new hardware product, the Series 3. Significantly, the Series 3
played on the company’s core competence in creating and marketing
compelling small systems, which also avoided the DOS (and soon-to-be
Windows) mainstream.

In software terms, the Series 3 gave Psion a second chance to prove the
merits of its new 16-bit operating system. The most obvious conclusion to
draw from its subsequent success seems to be that, while the market was
prepared to embrace a novel design in a new device space, it rejected
innovation when it conflicted with the incumbent standard, which, in the
case of the laptop-like MC400, was DOS.

David Wood also believes that the MC failed because it simply had
too many flaws, both hardware and software. It was less a question
of standards than of quality and fitness for purpose. The digitizer was
awkward to use, for example and the machine would sometimes reset as
a result of electrostatic discharge when the user touched the removable
media door.

Whatever the reason, its failure was compensated for by the huge
success of the Series 3.

Peter Jackson:

The Series 3 used the same basic software technology and it was fantastically
successful. Without the Series 3, none of us would be where we are today. So
it was all to do with packaging, what device the software was packaged in.

The architecture of the early Psion operating systems and the patterns
which have evolved from them and in their turn influence Symbian OS,
can be traced back to a few key principles.

42 THE HISTORY AND PREHISTORY OF SYMBIAN OS

Charles Davies:

If you start with the idea of going from one application to another and having
processes and tasks, processes more than tasks in fact, then you say, well those
processes are running concurrently, they’re running all the time, even though
only one of them may be on the screen. And by the way we did produce
devices like the MC400 where multiple applications were visible on the screen
at the same time, though we ended up going toward smaller devices. But the
vision was that the user could see multiple applications at the same time. We
recognized that all of those applications would need to access a file system
or whatever, that if you were running multiple applications at the same time
and they compete for the same resources then you need to sort that out. One
way of sorting that out, which is the design pattern we adopted, was to use a
server to serialize access to a shared resource. So that was the slogan, ‘servers
serialize access to a shared resource’.

And the mass-storage media card on the devices at that time was a shared
resource too, so you couldn’t just have applications writing to mass storage,
you had to have something in between that was sorting out that access. VMS
used servers for that, a file server, so we made a file server and we also had
a supervisory process server. So the design principle of the 16-bit system was
that you had client–server and fast context switching, so there’s no penalty
for using servers and you get a clean architectural way of serializing access to
shared resources, including memory, which I suppose is what you could say
the system supervisor was.

The server principle runs deep and important design consequences
follow. For example, the need for fast context switching is what determines
the process and thread architecture of the operating system.

Charles Davies:

So to grow the heap dynamically, well you had a server process to do that,
which is the modern pre-emptive multitasking kernel approach. And a file
server and the idea of servers for other things. We knew we wanted to do
graphics and we wanted to have a windowing system. The competition was
still doing character-mode graphics at that time and we wanted a true graphics
mode, with variable fonts and more than one application drawing to the screen
at the same time. And so we had to have a model for doing that. So we said,
‘Okay, the file server shares access to mass storage and the window server
is the right architecture for serializing shared access to the screen.’ And you
need a windowing system. Even on phones, other processes can pop up a
notification at any time and it basically handles that. So that was an advanced
attribute of the design.

The design principles were not necessarily novel but their application
to the class of small device that Psion was pioneering certainly was, the

OPERATING SYSTEM INFLUENCES 43

Apple Newton notwithstanding. The vision that Psion was pursuing so
hungrily was of sophisticated pocket computers aimed at an audience
of consumer users rather than technical wizards – mobile and pocket
computing for all.

Charles Davies:

There were GUIs around at that time, Amiga and Macintosh, that did clipping.
Windows was tiled at that time, but we said we wanted overlapping windows.
We couldn’t afford a hardware solution. We had been involved in doing an
abortive piece of work for Thompson, which we called a Thompsonitosh,
which was Macintosh-like with hardware support for overlapping windows,
so we knew about those things. We had also worked on software for the
Sinclair QL and we’d worked on PC software. Remember, this was the age
of integrated suites, which at that time were still character-mode-based and
came with their own windowing APIs. IBM, for example, had something called
TopView at the time. So that was the kind of environment, but we wanted to
do graphics and we wanted a contemporary, modern way of doing it.

So we had pre-emptive multitasking for windows and the Window Server
was born and lots of things got done in servers. The idea of fast lightweight
client–server internals and servers managing clients were early design prin-
ciples. The other part of client–server architecture, I guess, was the idea that
this is an operating system that needed to run for years at a time without a
reboot and that meant you had to have system software that looked after badly
behaving applications and so that led to the idea that servers managed their
clients if the clients didn’t do the right thing, so that the servers didn’t get
left with memory leakage or data from long-gone clients. Servers knew about
client processes and managed their data on behalf of client processes, even if
they terminated, so there are services to let you know if a client dies and also
to clean up server-side resources so that you could run for a long time, because
for sure you were going to have many dying applications panicking over time.

Another design principle that came in the early days was asynchronicity.
We learned that from VMS, the idea that you had event signaling and not
polling. So part of that was that we were designing for battery-powered devices
and ROM-based devices, which is why we thought DOS was not appropriate
because it wasn’t designed for either ROM-based or battery-powered systems.
For us, ‘execute in place’ was the norm – the idea that you executed in place in
ROM but you could add applications that loaded – that was part of the design.
The idea of dynamic libraries was an early part of the design and I guess we
were aware that Windows had dynamic libraries. We knew we had to have
shared libraries and we didn’t want to be loading multiple copies of the same
code, which by the way was the norm if you just used compilers and linkers
in the usual way. I mean these were times when people had overlays, where
the code got loaded in at the same addresses, right? That was when Bill Gates
famously said 640 KB should be enough for everybody. And having written
software with the overlay model, we figured we didn’t want that. Overlays
were impossible to manage. They fell over under their own complexity after a
time. So we wanted libraries that were loaded once.

44 THE HISTORY AND PREHISTORY OF SYMBIAN OS

These principles were rehearsed through the three generations of Psion
operating systems leading up to the creation of EPOC and eventually
of Symbian OS. But they were driven also by a product vision. The
company was driven by the vision of creating products aimed squarely at
ordinary users, which would entice them and charm them and become
indispensable pocket companions.

Charles Davies:

We were building products. We were working from an idea of the user
experience that we wanted. So we didn’t just do pre-emptive multitasking
because we thought we wanted to do an operating system and that was the fun
thing to do, although there was that element to it too, if we’re being honest.
But we had a vision that you shouldn’t have to wait for boot up, that this
would be an instantly available, instant-on device and one where you didn’t
have to exit one application before you could run another one, because that
wasn’t an appropriate user experience for a handheld device.

We also thought that multitasking was a good thing for writing robust
software. We had this ethic of robustness, that the product didn’t go wrong
and that you didn’t have to be a techie to use it. Because in those days you
know, I remember the first 5 MB hard disk we bought for £6000. £6000! And
you went on a training course to learn how to use it! And that was not the
vision of the product that we had. We had a vision of a product used by
somebody who wasn’t stupid, but who wasn’t going to read the manual, a
device where the operating system did the work for you rather than the other
way around.

So it was based from the user experience backwards; the technology was in
support of the user experience. That was in the bones of the product vision. We
didn’t think of ourselves as producing an operating system and an application
suite. We thought of ourselves as producing a product that would sell. It would
walk off the shelves because people wanted it and it would be hard to imitate
because we’d put some good technology in it.

With hindsight, the prehistory of the company looks very much like
a dress rehearsal for a category of device which did not then exist – the
mobile phone.

3
Introduction to the Architecture

of Symbian OS

3.1 Design Goals and Architecture

Architecture is goal driven. The architecture of a system is the vehicle
through which its design goals are realized. Even systems with relatively
little formal architecture, such as Unix,1 evolve according to more or
less well-understood principles, to meet more or less well-understood
goals. And while not all systems are ‘architected’, all systems have an
architecture.

Symbian OS follows a small number of strong design principles. Many
of these principles evolved as responses to the product ethos that was
dominant when the system was first being designed.2 That ethos can be
summarized in a few simple rules.

• User data is sacred.

• User time is precious.

• All resources are scarce.

And perhaps this one too, ‘while beauty is in the eye of the beholder,
elegance springs from deep within a system’.

In Symbian OS, that mantra is taken seriously. What results is a handful
of key design principles:

• ubiquitous use of servers: typically, resources are brokered by servers;
since the kernel itself is a server, this includes kernel-owned resources
represented by R classes

1 ‘Bottom up’ and ‘informal’ typify the Unix design approach, see [Raymond 2004,
p. 11].

2 That is, the ethos which characterized Psion in the early-to-mid 1990s. By then, the
company was a leader in the palmtop computer market. It was a product company.

46 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• pervasive asynchronous services: all resources are available to mul-
tiple simultaneous clients; in other words, it is a service request and
callback model rather than a blocking model

• rigorous separation of user interfaces from services

• rigorous separation of application user interfaces from engines

• engine reuse and openness of engine APIs.

Two further principles follow from specific product requirements:

• pervasive support for instant availability and instant switching of
applications

• always-on systems, capable of running forever: robust management
and reclaiming of system resources.

Symbian OS certainly aims at unequaled robustness, making strong
guarantees about the integrity and safety (security) of user data and the
ability of the system to run without failure (to be crash-proof, in other
words). From the beginning, it has also aimed to be easy and intuitive
to use and fully driven by a graphical user interface (GUI). (The original
conception included a full set of integrated applications and an attractive,
intuitive and usable GUI; ‘charming the user’ is an early Symbian OS
slogan.3)

Perhaps as important as anything else, the operating system set out
from the beginning to be extensible, providing open application program-
ming interfaces (APIs), including native APIs as well as support for the
Visual Basic-like OPL language and Java, and easy access to Software
Development Kits (SDKs)4 and development tools.

However, systems do not stand still; architectures are dynamic and
evolve. Symbian OS has been in a state of continuous evolution since it
first reached market in late 2000; and for the three years before that it had
been evolving from a PDA operating system to one specifically targeting
the emerging market for mobile phones equipped with PDA functions. In
view of this, it may seem remarkable that the operating system exhibits
as much clarity and consistency in design as it does.

3 For example, see almost anything written by David Wood. Today, the GUI is no longer
supplied by Symbian, however GUI operation remains intrinsic to the system design. The
original integrated applications survive in the form of common application engines across
multiple GUIs, although their inclusion is a licensee option.

4 Symbian no longer directly supplies SDKs, since these are GUI-dependent. Symbian
provides significant ‘precursor’ content to licensees for inclusion in SDKs, including the
standard documentation set for Symbian OS APIs.

DESIGN GOALS AND ARCHITECTURE 47

Architectures evolve partly driven by pressures from within the system
and partly they evolve under external pressures, such as pressures from
the broad market, from customers and from competition.

Recent major releases of Symbian OS have introduced some radical
changes, in particular:

• a real-time kernel, driven by evolving future market needs, in partic-
ular, phone vendors chasing new designs (for example, ‘single core’
phones) and new features (for example, multimedia)

• platform security, driven by broader market needs including operator,
user and licensee needs for a secure software platform.

While both are significant (and profound) changes, from a system
perspective they have had a relatively small impact on the overall shape
of the system. Interestingly, in both cases the pressure to address these
particular market needs arose internally in Symbian in anticipation of the
future market and ahead of demand from customers.

It is tempting to idealize architecture. In the real world, all soft-
ware architecture is a combination of principle and expediency, purity
and pragmatism. Through the system lifecycle, for anything but the
shortest-lived systems, it is part genuine, forward-looking design and part
retrofitting; in other words, part architecture and part re-architecture.

Some of the patterns that are present in Symbian OS were also present
(or, in any case, had been tried out) in its immediate precursors, the
earlier Psion operating systems. The 16-bit operating system (SIBO) had
extended the basic server-based, asynchronous, multitasking model of
previous Psion products and re-engineered it using object-oriented tech-
niques. SIBO also pioneered the approach to GUI design, designed
communications services into the system at a deep level, and experi-
mented with some idioms which have since become strongly identified
with Symbian OS (active objects, for example).

In fact, surprisingly many features of Symbian OS have evolved from
features of the earlier system:

• the fully integrated application suite: even though Symbian OS no
longer includes a user interface or applications, it remains strongly
application-centric

• ubiquitous asynchronous services

• optimization for battery-based devices

• optimization for a ROM-based design: unlike other common oper-
ating systems, SIBO used strategies such as ‘execute-in-place’ (XIP)
(compare this with MS-DOS, which assumes it is loaded into RAM

48 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

to execute) and re-entrancy5 (MS-DOS is non-re-entrant), as well as a
design for devices with only solid-state disks

• sophisticated graphical design: from the beginning, SIBO supported
reactive repainting of windows and overlapping windows, in an age
of tiled interfaces (for example, Windows 2.0 and the character-
mode multitasking user interfaces of the day, such as TopView and
DesqView)

• an event-driven programming model

• cross-platform development: the developers’ mindset was more that
of embedded systems engineering than the standard micro-computer
or PC model.6

SIBO also introduced some of the programming constraints which
show up in Symbian OS, for example forbidding global static variables
in DLLs (because the compilers of the day could not support re-entrant
DLLs), an early example of using the language and tools to constrain
developer choices and enforce design and implementation choices, a
consistent theme in Symbian’s approach to development.

Symbian OS, or EPOC as it was then, was able to benefit from the
experience of the earlier implementation in SIBO. The 16-bit system was,
in effect, an advanced prototype for EPOC.

Meanwhile, of course, Symbian OS has continued to evolve. In par-
ticular, some crucial market assumptions have changed. Symbian OS
no longer includes its own GUI, for example; instead it supplies the
framework from which custom, product-ready GUIs such as S60, MOAP
and UIQ are built. Hardware assumptions have changed quite radically
too. Execute-in-place ROMs, for example, depend on byte-addressable
flash silicon (so-called NOR flash); more recently, non-byte-addressable
NAND flash has almost wholly superseded NOR flash, making execute-in-
place a redundant strategy. Other technology areas, for example display
technologies, have evolved almost beyond recognition compared to the
4-bit and 8-bit grayscale displays of earlier times. Not least, the tele-
phony standards that drive the market have evolved significantly since
the creation of the first mobile phone networks.

Despite sometimes radical re-invention and change, the original design
conception of Symbian OS is remarkably intact.

5 In designing for re-entrant DLLs (that is, re-entrant shared libraries), SIBO was signifi-
cantly in advance of the available tools. For example, C compilers were poor in this area.
Geert Bollen makes the point that it is not just language features that determine whether a
given language is suitable for a particular project; the tools infrastructure that supports the
language is equally important.

6 It is interesting to note that Bill Gates has identified as one of Microsoft’s key strengths
(and, indeed, a key competitive advantage), that it develops all of its systems on its own
systems. The advantage breaks down completely in the mobile phone context.

WHY ARCHITECTURE MATTERS 49

3.2 Basic Design Patterns of Symbian OS

The design principles of a system derive from its design goals and are
realized in the concrete design patterns of the system. The key design
patterns of Symbian OS include the following:

• the microkernel pattern: kernel responsibilities are reduced to an
essential minimum

• the client–server pattern: resources are shared between multiple users,
whether system services or applications

• frameworks: design patterns are used at all levels, from applications
(plug-ins to the application framework) to device drivers (plug-ins to
the kernel-side device-driver framework) and at all levels in between,
but especially for hardware adaptation-level interfaces

• the graphical application model: all applications are GUI and only
servers have no user interface

• an event-based application model: all user interaction is captured
as events that are made available to applications through the event
queue

• specific idioms aimed at improving robustness: for example, active
objects manage asynchronous services (in preference, for example,
to explicit multi-threading) and descriptors are used for type-safe and
memory-safe strings

• streams and stores for persistent data storage: the natural ‘document’
model for applications (although conventional file-based application
idioms are supported)

• the class library (the User Library) providing other user services and
access to kernel services.

3.3 Why Architecture Matters

‘Doing architecture’ in a complex commercial context is not easy.
Arguably all commercial contexts are complex (certainly they are all
different), in which case architecture will never be easy. However, the
business model for Symbian OS is particularly complex. While it must
be counted as part of Symbian’s success, it also creates a unique set
of problems to overcome and work around, and to some extent those
problems are then manifested as problems for software architecture.

Architecture serves a concrete purpose; it makes management of the
system easier or more difficult, in particular:

50 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• managing the functional behavior and supported technologies

• managing the size and performance

• retaining the ability to evolve the system.

Elegance, consistency, and transparency were all early design drivers
in the creation of the system. Charles Davies, now Symbian CTO, was
the early architect of the higher layers of the operating system.

Charles Davies:

I remember looking at Windows at that time and thinking that this is all very
well, here is this Windows API, but just look what’s happening underneath it,
it was ugly. I wanted something that you could look inside of.

The early ‘ethic of robustness’, to use his phrase, came straight from
the product vision.

Managing the Bounds of the System

In some ways, the hardest thing of all for Symbian is managing the impact
of its business model on the properties of the system and, in particular,
the problem that Charles Davies calls ‘defining the skin’ – understanding,
maintaining, and managing the bounds of the system under the impact
of the business model. As well as originating the requirements push and
feeding the requirements pipeline, generating almost all of the external
pressure on the system to evolve and grow, licensees and partners also
create their own extensions to the system. (S60, arguably, is the most
extreme example, constituting a complete system in itself, at around twice
the size of the operating system.)

Being clear where to draw the boundary between the responsibilities
of Symbian OS and the responsibilities of GUIs, in terms of who makes
what and where the results fit into the architecture, becomes difficult.
Charles Davies is eloquent on the subject.

Charles Davies:

One of the things I’ve done since being here is to try and identify where
the skin of Symbian OS is, to define the skin. When I was at Psion and we
were building a PDA, I understood where the PDA ended and where the
things outside the PDA began, and so I knew the boundaries of the product.
And then I came to Symbian and Symbian OS, and I thought, where are the
boundaries? It’s really tough to know where the boundaries are, and I still
sometimes wonder if we really know that. That’s debilitating from the point of
view of knowing what to do. In reality we’re trying to fit some kind of rational

WHY ARCHITECTURE MATTERS 51

boundary to our throughput, because you can’t do everything. We’ve got, say,
750 people in software engineering working on Symbian OS, and we can’t
make that 1500 and we don’t want to make that 200. So with 750 people,
what boundary can we draw that matches a decent product?

In one sense the problem is particular to the business model that Sym-
bian has evolved, and is less a question of pure technology management,
which to some extent takes care of itself (or should, with a little help to
balance the sometimes competing needs of different licensees), than of
driving the operating system vision in the absence of a wider product
vision. In that wider sense, the licensees have products; Symbian OS has
technologies and it is harder to say what the source of the technology
vision for the operating system itself should be. To remain at the front
of the field, Symbian OS must lead, but on the whole, customers would
prefer that the operating system simply maps the needs of their own
leading products. The problem is that by the time the customer product
need emerges, the operating system is going to be too late if it cannot
already support it. (At least, in the case of complex technologies and,
increasingly, all new mobile technologies are complex.) Customers there-
fore build their own extensions or license them from elsewhere, and the
operating system potentially fails under the weight of incompatibilities or
missing technologies).

Product companies are easier to manage than technology companies
because it is clear what product needs are; either they align with the
market needs or the product fails in the market. The Symbian model
is harder and forever raises the question of whether Symbian is simply
a supplier or integrator to its customers, or an innovator. Is Symbian a
product company, where the operating system is the product, or does it
merely provide a useful ‘bag of bits’?

Architecture is at the heart of the answer. If there is an architecture to
describe, then there is more to the operating system than the sum of its
parts.

Managing Competitive Threats

There are many external threats to Symbian OS. Some of the threats are
household names. Microsoft is an obvious threat, but the likelihood is that
Microsoft itself will always be unacceptable to some part of the market,
whatever the quality of its technology offering. (It is hard to see Nokia
phones, for example, sharing branding with Microsoft Windows, and the
same issues no doubt apply to some network operators, but clearly not to
all of them.) It is almost as certain that Nokia in turn is unacceptable to
some other parts of the market. S60 aims at building a stable of licensees,
vendors for whom the advantages of adopting a proven, market-ready

52 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

user interface outweigh the possible disadvantages of licensing a solution
from a competitor, or the costs of developing an in-house solution. There
will always be vendors, though, for whom licensing from Nokia is likely
to be unacceptable. Interestingly, the more Microsoft resorts to branding
its own phones, in order to increase market share, the more it competes
with those it is seeking to license to. It is hard to see any scenario in which
the phone market could become as homogeneous as the PC market.

Linux is also a clear and visible threat, even though again there are
natural pockets of resistance. Linux, for example, is viral. Linux does
not just take out competitors, it takes out whole parts of the software
economy, and it is not yet clear what it replaces them with.7 To put
Linux in a phone, for example, seems to require just the same ‘old’
software economy as to put any other operating system into a phone,
dedicated software development divisions which do the same things that
other software development divisions do: write code, miss deadlines, fix
defects, pay salaries. Linux may be royalty-free, but that translates into
‘not-free-at-all’ if you have to bring it inside your own dedicated software
division. Nonetheless, to ignore Linux would be a (possibly fatal) mistake.

Architecture is part of the answer. If Symbian OS is a better solution,
it is because its architecture is more fit for purpose than that of its
competitors, not because its implementation is better. Implementation
is a second-order property, easy to replace or improve. Architecture, in
contrast, is a deep property.

3.4 Symbian OS Layer by Layer

The simplest architectural view of Symbian OS is the layered view given
by the Symbian OS System Model.8

UI Framework Layer
The topmost layer of Symbian OS, the UI Framework layer provides the
frameworks and libraries for constructing a user interface, including the
basic class hierarchies for user interface controls and other frameworks
and utilities used by user interface components.

The UI Framework layer also includes a number of specialist, graphics-
based frameworks which are used by the user interface but which are
also available to applications, including the Animation framework, the
Front End Processor (FEP) base framework and Grid.

The user interface architecture in Symbian OS is based on a core
framework called Uikon and a class hierarchy for user interface controls

7 Where it is clear, it is not clear how to make a profit from what it replaces them with.
8 The System Model (see Chapter 5) is relatively constant across different releases,

although its details evolve to track the evolution of the architecture.

SYMBIAN OS LAYER BY LAYER 53

called the control environment. Together, they provide the framework
which defines basic GUI behavior, which is specialized by a concrete
GUI implementation (for example, S60, UIQ or MOAP), and the inter-
nal plumbing which integrates the GUI with the underlying graphics
architecture.

Uikon was originally created as a refactoring of the Eikon user inter-
face library, which was part of the earliest versions of the operating
system. Uikon was created to support easier user interface customization,
including ‘pluggable’ look-and-feel modules.

The Application Services Layer
The Application Services layer provides support independent of the user
interface for applications on Symbian OS. These services divide into three
broad groupings:

• system-level services used by all applications, for example the Appli-
cation Architecture or Text Handling

• services that support generic types of application and application-like
services, for example personal productivity applications (vCard and
vCal, Alarm Server) and data synchronization services (OMA Data
Sync, for example); also included are a number of key application
engines which are used and extended by licensees (Calendar and
Agenda Model), as well as legacy engines which licensees may
choose to retain (Data Engine)

• services based on more generic but application-centric technologies,
for example mail, messaging and browsing (Messaging Store, MIME
Recognition Framework, HTTP Transport Framework).

Applications in Symbian OS broadly follow the classic object-oriented
Model–Viewer–Controller (MVC) pattern. The framework level support
encapsulates the essential relationships between the main application
classes (representing the application data model, the views onto it, and
the document and document user interface that allow it to be manipulated
and persisted) and abstracts all of the necessary underlying system-level
behavior. In principle, a complete application can be written without any
further direct dependencies (with the exception of the User Library).

The Application Services layer reflects the way that the system as a
whole has evolved. On the one hand, it contains essential application
engines that almost no device can do without (the Contacts Model for
example), as well as a small number of application engines that are
mostly now considered legacy (e.g. the WYSIWYG printing services and
the office application engines, including Sheet Engine, a full spreadsheet
engine more appropriate for PDA-style devices). On the other hand, it
contains (from Symbian OS v9.3) the SIP Framework, which provides the
foundation for the next generation of mobile applications and services.

54 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

Java ME
In some senses, Java does not fit neatly into the layered operating system
model. Symbian’s Java implementation is based around:

• a virtual machine (VM) and layered support for the Java system which
complements it, based on the MIDP 2.0 Profile

• a set of standard MIDP 2.0 Packages

• an implementation of the CLDC 1.1 language, I/O, and utilities
services

• a number of low-level plug-ins which implement the interface
between CLDC, the supported packages, and the native system.

Java support has been included in Symbian OS from the beginning,
but the early Java system was based on pJava and JavaPhone. A standard
system based on Java ME first appeared in Symbian OS v7.0s. Since
Symbian OS v8, the Java VM has been a port of Sun’s CLDC HI.

The OS Services Layer
The OS Services layer is, in effect, the ‘middleware’ layer of Symbian
OS, providing the servers, frameworks, and libraries that extend the bare
system below it into a complete operating system.

The services are divided into four major blocks, by broad functional
area:

• generic operating system services

• communications services

• multimedia and graphics services

• connectivity services.

Together, these provide technology-specific but application-
independent services in the operating system. In particular, the following
servers are found here:

• communications framework: the Comms Root Server and ESock (Sock-
ets) Server provide the foundation for all communications services

• telephony: ETel (Telephony) Server, Fax Server and the principal
servers for all telephony-based services

• networking: the TCP/IPv4/v6 networking stack implementation

• serial communications: the C32 (Serial) Server, providing standard
serial communications support

SYMBIAN OS LAYER BY LAYER 55

• graphics and event handling: the Window Server and Font and Bitmap
Server provide all screen-drawing and font support, as well as system-
and application-event handling

• connectivity: the Software Install Server, Remote File Server and
Secure Backup Socket Server provide the foundation for connectivity
services

• generic: the Task Scheduler provides scheduled task launching.

Among the other important frameworks and libraries found in this layer
is the Multimedia Framework (providing framework support for cameras,
still- and moving-image recording, replay and manipulation, and audio
players) and the C Standard Library, an important support library for
software porting.

The Base Services Layer

The foundational layer of Symbian OS, the Base Services layer provides
the lowest level of user-side services. In particular, the Base Services
layer includes the File Server and the User Library. The microkernel
architecture of Symbian OS places them outside the kernel in user space.
(This is in contrast to monolithic system architectures, such as both Linux
and Microsoft Windows, in which file system services and User Library
equivalents are provided as kernel services.)

Other important system frameworks provided by this layer include
the ECom Plug-in Framework, which implements the standard man-
agement interface used by all Symbian OS framework plug-ins; Store,
which provides the persistence model; the Central Repository, the DBMS
framework; and the Cryptography Library.

The Base Services layer also includes the additional components which
are needed to create a fully functioning base port without requiring any
further high-level services: the Text Window Server and the Text Shell.

The Kernel Services and Hardware Interface Layer

The lowest layer of Symbian OS, the Kernel Services and Hardware Inter-
face layer contains the operating system kernel itself, and the supporting
components which abstract the interfaces to the underlying hardware,
including logical and physical device drivers and ‘variant support’, which
implements pre-packaged support for the standard, supported platforms
(including the Emulator and reference hardware boards).

In releases up to Symbian OS v8, the kernel was the EKA1 (Kernel
Architecture 1) kernel, the original Symbian OS kernel. In Symbian OS v8,
the EKA2 (Kernel Architecture 2) real-time kernel shipped for the first time
as an option. (It was designated Symbian OS v8.1b; Symbian OS v8.1a is

56 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

the Symbian OS v8.1 release with the original kernel architecture.) From
Symbian OS v9, EKA1 no longer ships and all systems are based on the
real-time EKA2 kernel.9

3.5 The Key Design Patterns

Probably the most pervasive architectural pattern in Symbian OS is the
structuring client–server relationship between collaborating parts of the
system. Clients wanting services request them from servers, which own
and share all system resources between their clients.

Another widely used pattern is the use of asynchronous methods in
client–server communications. Together, these two patterns impose their
shape on the system. Like any good architecture, the patterns repeat at
multiple levels of abstraction and in all corners of the system.

A third pervasive pattern is the use of a framework plug-in model to
structure the internal relationships within complex parts of the system,
to enable flexibility and extensibility. Flexibility in this context means
run-time flexibility and is particularly important when resources are
constrained. The ability to load the requested functionality on demand
enables more efficient use of constrained resources (objects which are
not used are not created and loaded). Extensibility is important too in a
broader sense. The use of plug-ins enables the addition of behavior over
a longer timescale without re-architecting or re-engineering the basic
design. An example is the structure of the telephony system which encap-
sulates generic phone concepts which are then extended, for example
for GSM- or CDMA-specific behaviors, by extension frameworks. The
use of plug-ins also enables licensees to limit or extend functionality by
removing or replacing plug-in implementations.

At a lower level, Symbian OS makes much use of specific, local
idioms. For example, active objects are the design idiom which makes
asynchronicity easy and are widely used. (‘Asynchronicity’ here means the
ability to issue a service request without having to wait for the result before
the thread of execution can continue.) Encapsulating asynchronicity into
active objects is an elegant object-oriented design. (Active objects are
examples of cooperative multitasking: multiple active objects execute in
effect within the context of a single thread. Explicit multithreading is an
example of non-cooperative multitasking, that allows pre-emption.)

Symbian OS has also evolved a number of implementation patterns,
including ‘leaving’ functions and the cleanup stack, descriptors for safe
strings, local class and member naming conventions and the use of
manifest constants for some basic types.

9 This history is described in detail in [Sales 2005], the in-depth, authoritative reference.

THE KEY DESIGN PATTERNS 57

Symbian’s microkernel design dates back to its original conception,
but becomes even more significant in the context of the new real-time
kernel architecture. The real-time architecture is essential for a system
implementing a telephony stack, which depends on critical timing issues,
and is also becoming increasingly important for fast, complex multi-
media functionality. Together, phone and multimedia are arguably the
most fundamental drivers for any contemporary operating system. As
mobile phones, in particular, reach new levels of multimedia capabil-
ity, to become fully functional converged multimedia devices (supporting
streamed and broadcast images and sound, e.g. music streaming, two-way
streaming for video phone conferencing and interactive broadcast TV),
achieving true real-time performance has become an essential require-
ment for a phone operating system. The real-time kernel allows Symbian
OS to meet that requirement, making it a suitable candidate for directly
hosting a 3G telephony stack.

The real-time kernel architecture also introduces important changes
(in particular to mechanisms such as interprocess communication) to
support the new platform security model introduced from Symbian OS
v9. (Strictly speaking, the security model is present in Symbian OS v8 but
implements a null policy. The full security model, which depends on the
new kernel architecture, is present from Symbian OS v9.)

The Client–Server Model

In Symbian OS, all system resources are managed by servers. The kernel
itself is a server whose task is to manage the lowest level machine
resources, CPU cycles and memory.

From the kernel up, this pattern is ubiquitous. For example, the display
is a resource managed by the Window Server; display fonts and bitmaps
are managed by the Font and Bitmap Server; the data communications
hardware is managed by the Serial Server; the telephony stack and
associated hardware by the Telephony Server; and so on all the way to
the user-interface level, where the generic Uikon server (as specialized
by the production GUI running on the final system) manages the GUI
abstractions on behalf of application clients.

Threads and Processes

The client–server model interacts with the process and threading model
in Symbian OS. While this is in keeping with a full object-oriented
approach, which objectifies machine resources in order to make them
the fundamental objects in the system, it can also cause confusion.

In Symbian OS, threads and processes are defined in [Sales 2005,
Chapter 3] as follows:

58 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• threads are the units of execution which the kernel scheduler sched-
ules and runs

• processes are collections of at least one but possibly multiple threads
which share the same memory address space (that is, an address
mapping of virtual to physical memory).

Processes in other words are units of memory protection. In particular
each process has its own heap, which is shared by all threads within the
process. (Each thread has its own stack.)

A process is created as an instantiation of an executable image file
(of type EXE in Symbian OS) and contains one thread. Creation of
additional threads is under programmer control. Other executable code
(for example, dynamically loaded code from a DLL file) is normally
loaded into a dynamic-code segment attached to an existing process.
Loading a DLL thus attaches dynamic code to the process context of the
executing thread that invokes it.

Each server typically runs in its own process,10 and its clients run in
their own separate processes. Clients communicate with the server across
the process boundary using the standard client–server conventions for
interprocess communication (IPC).11

As Peter Jackson comments, Symbian OS falls somewhere between
conventional operating system models in its thread and process model.

Peter Jackson:

Most of the threads versus processes issues are to do with overhead. In some
operating systems, processes are fairly lightweight, so it’s very easy to spawn
another process to do some function and return data into a common pool
somewhere. Where the process model is more heavyweight and the overhead
of spawning another one is too great, then you invent threads and you let
them inherit the rest of the process, so the thread is basically just a way of
scheduling CPU activity. In Symbian OS, you can use whichever mechanism
is appropriate to the requirements.

Server-Side and Client-Side Operations

Typically a server is built as an EXE executable that implements the
server-side classes and a client-side DLL that implements the client-side
interface to the server. When a client (either an application or another

10 There are some exceptions for reasons of raw speed.
11 [Sales 2005] defines the Symbian OS client–server model as inter-thread communi-

cation (ITC), which is strictly more accurate than referring to interprocess communication
(IPC). However, arguably the significance of client–server communications is the crossing
of the process boundary.

THE KEY DESIGN PATTERNS 59

system service) requests the service, the client-side DLL is attached to
the calling process and the server-side executable is loaded into a new
dedicated process (if it is not already running).

Servers are thus protected from their clients, so that a misbehaving
client cannot cause the server to fail. (The server and client memory
spaces are quite separate.) A server has responsibility for cleaning up after
a misbehaving client, to ensure that resource handles are not orphaned if
the client fails.

At the heart of the client–server pattern therefore is the IPC mechanism
and protocol, based on message passing, which allows the client in its
process, running the client-side DLL, to communicate via a session
with the server process. The base classes from which servers and their
client-side interfaces are derived encapsulate the IPC mechanisms.

The general principles are as follows:12

• The client-side implementation, running in the client process, man-
ages all the communications across the process boundary (in the
typical case) with the server-side implementation running in the
server process.

• The calling client connects to the client-side implementation and
creates a session, implemented as a communications channel and
protocol created by the kernel on behalf of the server and client.

• Client sessions are typically created by calling Connect() and
are closed using Close() methods, in the client-side API. The
client-side calls invoke the standard client–server protocol meth-
ods, for example RSessionBase::CreateSession() and RPro-
cess::Create(). On a running server, this results in the client
session being created; if the server is not already running, it causes
the server to be started and the session to be created.

• The client typically invokes subsessions that encapsulate the detailed
requests of the server-defined protocol. (In effect, each client–server
message can be thought of as creating a subsession.)

• Typically, client-side implementations derive from RSessionBase,
used to create sessions and send messages.

• Typically, the server side derives from CServer.

Servers are fundamental to the design of Symbian OS, and are (as the
mantra has it) the essential mechanism for serializing access to shared
resources, including physical hardware, so that they can be shared by
multiple clients.

12 The best description is [Stichbury 2005, Chapter 12].

60 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

Andrew Thoelke:

It’s not so much that there is a server layer in the operating system as a
hierarchy. It’s very much a hierarchy and there are a lot of shared services.
Some of them are shared by quite a few components and some of them really
support just a very small part of the system, and of course those shared services
may build on top of one or more client–server systems already.

Client–server is a deep pattern that is used as a structuring principle
throughout the system.

Asynchronous Services
Another deep pattern in the system is the design of services to be
asynchronous.

System responsiveness in a multitasking system (the impression that
applications respond instantly and switch instantly) depends on asyn-
chronous behavior; applications don’t wait to finish processing one
action before they are able to handle another.

The alternatives are blocking, or polling, or a combination of both.
In a blocking request (the classic Unix pattern), the calling program
makes a system call and waits for the call to return before continuing its
processing. Polling executes a tight loop in which the caller checks to see
if the event it wants is available and handles it when it is. (Polling is used
by MS-DOS, for example, to fetch keystrokes from the keyboard.)

Blocking is unsatisfactory because it blocks others from accessing the
system call which is being waited on, while it is waiting. Polling is
unsatisfactory because code which is functionally idle, waiting for an
event, is in reality not idle at all, but continuously executing its tight
polling loop.

Blocking reduces responsiveness. Polling wastes clock cycles, which
on a small system translates directly to power consumption and battery
life.

Charles Davies:

Asynchronous services was driven by battery life. We were totally focused on
that. For example on one of the Psion devices, we stopped the processor clock
when it was idle. I don’t know if that was innovative at the time. We certainly
didn’t copy it from anybody else, but we had a static processor. Usually in an
idle process, the operating system is doing an idle loop. But we didn’t do that,
we stopped the clock on the processor and we turned the screen off, and that
was fundamental to the design.

Typically, client–server interactions are asynchronous.

THE KEY DESIGN PATTERNS 61

The Plug-in Framework Model
A final high-level design pattern, the plug-in framework model is used
pervasively in Symbian OS, at all levels of the system from the UI
Framework at the top to the lowest levels of hardware abstraction at the
bottom.

A framework (as its name suggests) is an enclosing structure. A plug-in
is an independent component that fits into the framework. The framework
has no dependency on the plug-in, which implements an interface defined
by the framework; the plug-in has a direct, but dynamic, dependency on
the framework.

Frameworks are one of the earliest design patterns (going back to the
time before design patterns were called design patterns, in fact) [Johnson
1998]. While, in principle, nothing limits them to object-oriented design,
they lend themselves so naturally to object-oriented style that the two are
strongly identified. A key principle of good design (again, not limited to
object-oriented design but closely identified with it) is the separation of
interface from implementation. On a small scale, this is what designing
with classes achieves: a class abstracts an interface and its expected
behavior and encapsulates its implementation. Frameworks provide a
mechanism for this kind of abstraction and encapsulation at a higher level.
As is often said, frameworks enable a complete design to be abstracted
and reused.13 Frameworks are therefore a profound and powerful way of
constructing an object-oriented system.

In detail, a framework in Symbian OS defines an external interface to
some part of the system (a complete and bounded logical or functional
part) and an internal plug-in interface to which implementers of the
framework functionality (the plug-ins) conform. In effect, the framework
is a layer between a calling client and an implementation. In the extreme
case, a ‘thin’ framework does little more than translate between the two
interfaces and provide the mechanism for the framework to find and load
its plug-ins. A ‘thicker’ framework may do much more, providing plug-in
interfaces which are highly abstracted from the external visible client
interface. Symbian OS contains frameworks at both extremes and most
points in between.

Because in Symbian OS a framework exposes an external interface
to a complete, logical piece of the system, most frameworks are also
implemented as servers.

As well as providing interface abstraction and separation from imple-
mentation, and flexibility through decoupling, frameworks also provide a
natural model for functional extension. This approach is used for example
by the telephony-server framework to provide an open-ended design. The
core framework supports generic telephony functionality based around
a small number of generic concepts. Framework extensions implement

13 A framework is ‘reusable design’ as [Johnson 1998] puts it.

62 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

the specialized behaviors which differentiate landline from mobile tele-
phony, data from voice, circuit- from packet-switched, GSM from CDMA,
and so on.

As well as this ‘horizontal’ extension of the range of functionality
of the framework, such a plug-in also defines the interfaces which
are implemented ‘vertically’ by further plug-ins that provide the actual
services.

Because the plug-in framework model is pervasive, Symbian OS pro-
vides a plug-in interface framework. (Available since Symbian OS v7.0s
but universally enforced since Symbian OS v8.0 as part of the phased
introduction of Platform Security.) The plug-in framework (also known as
ECom) standardizes the mechanisms and protocols that allow frameworks
to locate and load the plug-ins which provide their implementations, and
for plug-ins to register their presence and availability in the system as
implementation modules.

Clearly, plug-ins pose a potential security threat because they provide
a mechanism for untrusted (that is, externally supplied) code to be
loaded into the processes of some system components (although the
microkernel architecture keeps them well away from the kernel). The
plug-in framework therefore enforces the security model on plug-ins
before they are loaded [Heath 2006].

Another area in which plug-ins pose potential risks to the system is in
performance. Potentially, a badly designed or poorly implemented plug-in
can damage the performance of the framework that loads it. The plug-in
model can also make it hard to understand the dynamic behavior of
the operating system and, in particular, can make system-level debugging
tricky, since the system can become (from the perspective of the debugger)
highly indeterministic, unpredictable and unreproduceable.

However, enabling a pervasive model of run-time rather than static
loading can boost system performance. Plug-ins are loaded on request;
if they are not requested, they are not loaded, saving loading time
and system resources (including RAM, on systems that do not provide
execute-in-place).

An interesting example of just how pervasive the plug-in framework
pattern is in Symbian OS is the original implementation of applications
as plug-ins to the application and UI Framework rather than as more con-
ventional executables. (This architecture changes somewhat in Symbian
OS v9, where applications are implemented as EXEs rather than DLLs,
while retaining other characteristics of plug-ins.)

In implementation terms, an ECom plug-in is implemented as a poly-
morphic DLL and a resource (RSC) file. The DLL entry point is a factory
function that instantiates the plug-in object. All system plug-ins are stored
into well-known locations, as required by the security model.

The plug-in framework provides a standard and universal mechanism
for binding implementations (plug-ins) to interfaces (frameworks) at run

THE KEY DESIGN PATTERNS 63

time, together with the mechanisms for packaging multiple interface imple-
mentations into a single DLL (that is, loading multiple implementations
at once, to improve performance), plug-in registration and implemen-
tation versioning, discovery and loading including boot-time discovery
optimizations to avoid run-time overhead, and cleanup after unloading
plug-ins. (A plug-in instance cannot destroy itself, because its destructor
code would be part of the code being removed from memory.) The frame-
work also provides security-policy definition and policing mechanisms.

The plug-in framework is implemented as a server, in effect a broker
between frameworks and conforming plug-ins, managing those plug-ins
as a resource to its framework clients.

Microkernel Architecture
Symbian OS has a microkernel architecture, which sets it apart from
operating systems such as Microsoft Windows and Linux.14 In Symbian
OS, core services that would be inside the kernel in a monolithic oper-
ating system are moved outside. The pervasive use of the client–server
architecture, and the protection of system code from clients which fol-
lows from it, guarantees both the robustness and high availability of these
services. The goal is a robust system that is also responsive and extensible;
experience suggests that the design achieves it.

Andrew Thoelke:

The actual client–server architecture, the division into processes across the
operating system and the boundary of the kernel, means that the actual
privileged mode software is much smaller than in desktop operating systems.
It’s very nearly theoretical microkernel, but not completely truly microkernel
because device drivers all run kernel side, and a true microkernel would say
that device drivers should run user side, and who knows maybe we’ll get there
in a few years time. But all file system services, all higher level comms services
including networking, and the windowing software for example, all run user
side.

If anything the new EKA2 kernel architecture goes beyond the micro-
kernel design and encapsulates the most fundamental kernel primitives
within a true real-time nanokernel, supporting an extended kernel that
implements the remaining Symbian OS kernel abstractions, but is equally

14 There are microkernel implementations of Unix, based on the Mach microkernel.
Mac OS X is an example; it is built as a Berkeley Unix variant with a Mach microkernel
and proprietary user interface layer. Other microkernel designs include QNX, which is an
operating system similar to Unix, but not Unix; Chorus, which is not just a microkernel but
also object-oriented and which, like Mach, is capable of hosting Unix; and iTron, which is
an important mobile-phone operating system in Japan.

64 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

capable of supporting ‘personality’ layers to mimic the interface of any
other operating system. But the essential elegance of the Symbian OS
kernel design goes right back to its earliest days.

Martin Tasker:

The Symbian model is that you’re either a user thread or a kernel thread,
and if you’re a user thread then either you’re an application thread, which
has a session with the window server and interacts with the user, or you’re a
server thread which has no interaction with the user. And if you’re a server
thread, well then you sit around waiting for client requests to happen and
when they do you service them, and in fact the kernel has a server and it does
just that. There are a couple of kernel calls which are handled by something
known as fast execs, which don’t involve the kernel server. But the design
philosophy of the kernel is to make those things very short and sweet and to
put most of the work into the server. I think that’s a cool architecture. Some
of it goes down to Colly Myers’s explainability requirement, that it takes more
than an average programmer to implement any of this stuff, but any average
programmer should be able to use it.

The lineage of course can be traced back to the precursor Psion
systems.

Andrew Thoelke:

It owes its design very much to the heritage of Series 3. Colly Myers took that
same OS structure, that you’ve got a small amount of protected mode software
that can do everything, and that even all the file system and file services
actually operate in a separate process from that and have less privileges, and
that you have a very tightly integrated client–server architecture that actually
binds everything together. That is definitely quite different to what you see in
a lot of other systems.

Notwithstanding the move to the EKA2 kernel architecture, at a high
level the lineage is still visibly present.

Martin Tasker:

The change from EKA1 to EKA2 is a hugely significant change. But at the
system-design level, you know that change hasn’t actually radically altered the
system design at all. It’s still either application processes or server processes,
and that design was actually pioneered all the way back in SIBO, and it hasn’t
changed much since then, and the reason is: it’s a proven design.

THE APPLICATION PERSPECTIVE 65

3.6 The Application Perspective

Symbian OS has been designed above all to be an application platform
(although it might be argued that that has begun to change, and that in the
latest devices it has become primarily an engine for driving fast, mobile
data communications). Applications have always been an essential part
of the system. The early operating system shipped with a complete set
of productivity and communications applications targeting connected
PDAs. Although Symbian OS no longer supplies a GUI and user-ready
applications but only common application engines, Symbian OS phones
now ship with more built-in applications than ever before, supplied
either with the licensee GUI or as extras provided by the phone vendor
or network operator.

Charles Davies:

Symbian started off as an operating system plus an application suite. We never
designed it as an operating system independently of the suite of applications.

Just as importantly, both S60 and UIQ are also explicitly pitched as
open platforms for third-party applications and provide extensive support
for developers including freely available SDKs, support forums and tools.

From the beginning the approach to applications has been graphics-
based. Like much else, the approach has evolved and, in particular, it has
evolved as Symbian’s user interface strategy has evolved. However, the
principles of application structure have been essentially mature since the
first release of S60 and UIQ in 2002.

Uikon is the topmost layer of Symbian OS. It provides the framework
support on which a production user interface is built. The three currently
available custom user interfaces are S60, UIQ and MOAP, but there is no
engineering reason why any licensee should not build its own bespoke
user interface, which indeed is precisely the origin of S60 and MOAP.
Uikon abstracts application and control base classes in the Application
Architecture and Control Environment class hierarchies to create generic
GUI application classes (that is, classes free of a look and feel policy)
which are customized by the custom user interface. The custom user
interface abstracts the Uikon policy-free base classes to provide the
policy-rich classes that applications derive from.

Uikon thus integrates the underlying support of the Application Archi-
tecture and the Control Environment to create a framework from which
(as abstracted by the custom user interface), applications derive. Uikon is
a framework and applications behave recognizably as plug-ins. Uikon is
implemented as a server.

66 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

The Structure of an Application
Every application is built from three basic classes:15

• an application class, derived from the Application Architecture (CApa-
Application)

• a document class, derived from the Application Architecture (CEik-
Document)

• an application user interface class, derived from the Control Environ-
ment (CCoeAppUiBase).

These classes provide the fundamental application behavior. However,
two important parts of the application are missing from this structure: the
application view, which is the screen canvas the application uses to
display its content, and the application data model and data interface
implementations, which encapsulate the application ‘engine’.

The classic application structure expects that the data model (the
data-oriented application functionality) exists independently of the GUI
implementation of the application and is, therefore, independent of any
user interface classes. It is hooked into the user interface by a member
pointer (iModel) in the document class. The classes specific to the user
interface then interact with it purely through the APIs it exposes.16

Charles Davies:

We always had that structuring of applications, the idea of separating
the UI from the application engine. That was an early design principle
and it was the design guidance for application writers. We knew about
Model–View–Controller, and we thought of an application engine as a
model, and our design guidance was to keep the application logic separate
from the UI. Not because we anticipated at that time multiple UI flavors,
but because we recognized something more fundamental in terms of writing
an application. That you might write an application and decide to improve
the design of the UI, where the refinement of the UI was just pragmatic, the
basic functional application logic stayed the same. So if you could separate
those two things, that was good, and that led to the terminology of application
engines.

15 This is the ‘classic’ application structure, with roots in the Eikon applications of Psion
Series 5. Both UIQ and S60 extend the design patterns for applications. See [Edwards 2004,
p. 184] for discussions of the ‘dialog-based’ and ‘view-switching’ S60 application structure.
UIQ applications also extend the basic pattern with custom view classes.

16 This is in fact a very powerful design principle, implying, for example, that the
data model can run without a direct user interface at all. Engines designed this way are
independently testable and intrinsically highly portable between different user interfaces.
The principle runs deep in the Symbian ethos, as witnessed by the presence of engines
independent of the user interface in the operating system itself.

THE APPLICATION PERSPECTIVE 67

In Symbian OS, a control is a drawable screen region (in other words,
the owner of screen real estate). The Application view class is derived
directly from the Control Environment control base classes.

On small devices, where screen real estate is scarce, desktop-style
windowing is not appropriate. A more natural approach for small displays
is to switch whole-screen views, for example switching between a list-
style view of contact names and a record-style view of the details of
a single contact. Applications therefore typically define a hierarchy of
views, with the main application view at the root.

Because Symbian OS is multitasking, multiple applications can be
running at once, even though only one (the foreground application) will
be presenting its view on the display. Both S60 and UIQ support switching
directly between views in different applications, including launching the
view of a new application inside the context of the current one (for
example selecting a phone number from within a Contact entry and
immediately switching to the phone application and dialing the number).

Symbian’s application structure makes much of the detail of the appli-
cation user interface programmable solely via resource files. Resource
files are compiled separately as part of the application build process
and linked into the built application, providing a natural mechanism
for language localization (all text strings used within an application can
be isolated in resource files and recompiled to a new language without
having to recompile the application). Resource files are also compressed.

Charles Davies:

We lived in tougher times as far as Moore’s law was concerned in those days.
Resource files were around in contemporary GUI systems at that time. But
from the beginning we did Huffman compression on resource files, and we
were careful about the amount of information we put in them.

Uikon
The most striking fact about Symbian OS at the user interface level is
its support for a replaceable user interface, and indeed the fact that it
ships without a native user interface at all. (User-interface-dependent
components are shipped only with a TechView test user interface.)

While it seems fair to say that Symbian did not get its user interface
strategy right first time (in particular, the Device Family Reference Design
(DFRD) strategy looks, with hindsight, to have been naı̈ve), nonetheless
the operating system has been able to support multiple licensees, each
having a distinct user-interface philosophy, occupying different positions
in the market and spanning diverse geographical locations. Those differ-
ences are encapsulated in the differences between the user interfaces that
have evolved for Symbian OS.

68 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

S60 builds on the classic Nokia user interface to provide a simple,
key-driven but graphically rich and arresting user interface. In contrast,
UIQ is firmly pen-based and targets high-end phones with rich PDA-like
functionality including pen-based handwriting recognition. MOAP aims
squarely at its solely Japanese market, providing a graphically busy user
interface featuring Kanji as well as Roman text and animated cartoon-style
icons.

File System or ‘Object Soup’ Storage Model

FAT is the ‘quick and dirty’ file system that MS-DOS made famous. When
work on EPOC started, the Apple Newton was a leading example of a
different way to approach consumer computing (different, for example,
from the MS-DOS-based Hewlett Packard machines which were the
leading competitor for Psion’s Series 3). Instead of a conventional file
system the Newton employed an ‘object soup’ storage model.17

On any useful system, data requires a lifetime beyond that of the
immediate context in which it is created, whether that means storing
system settings, saving the memo you have just written to a file, or storing
the contact details you have just updated.

Charles Davies:

We had a normal file system on the Series 3. When we went to C++, we talked
a lot about persistent models of object-oriented programming, and we went
for stream storage. We narrowly rejected SQL in favor of stream storage. I
remember the design ideas around at the time, and it was done in the interests
of efficiency. Different applications were having to save the same system
objects and we were having to duplicate that code. So for something like page
margins, which was a system structure, if that object knew how to serialize
itself, that would solve the problem. You do that by having serialization within
the object, so objects that might reasonably want to be persisted could persist
themselves. And that was in the air, I mean Newton had its soup at that
time which I think was object-oriented, and there was a belief at that time
that object-oriented databases were it, and that objects ought to be seen as
something that existed beyond the lifetimes of processes.

Objects, in other words, can be viewed as more than just the run-
time realizations of object-oriented code constructs. However, in terms
of the standards of the day, approaches based on something other
than a file system were certainly the exception. The big challenge in
maintaining data is that of data format and compatibility, ensuring that
the data remains accessible. Any device which aims to be interoperable

17 ‘Object soup’ is described in [Hildebrand 1994].

THE APPLICATION PERSPECTIVE 69

(in any sense) with other devices faces a similar challenge. In both
cases, the design is immediately constrained in how far it can deviate
from the data-format conventions of the day. For EPOC at that time,
compatibility with desktop PCs was an essential requirement. For Symbian
OS now, the requirement is more generalized to compatibility with other
devices of all kinds. Probably the most important test case for both is
readability of removable media file systems. (All other cases in which a
Symbian OS device interoperates with another device can be managed by
supporting communications protocols and standard data formats, which
are independent of the underlying storage implementation.)

While external compatibility does not determine internal data formats,
the need to support FAT on removable cards probably tipped the balance
towards an internal FAT filing system. One (possibly apocryphal) story has
it that the decision to go with FAT was a Monday morning fait accompli
after Colly Myers had spent a weekend implementing it.

Peter Jackson:

There were periods when we explored all sorts of quite radical ideas but in
the end we always came back to something fairly conservative, because if you
take risks in more than one dimension at a time it doesn’t work. So I spent
quite a lot of time at one stage investigating an object-oriented filing system.
But one day I think Colly Myers had a sudden realization and he just said,
’Let’s do FAT’, and he was probably right.

But FAT is not the whole story. In fact, Symbian OS layers a true object-
oriented persistence model on top of the underlying FAT file system. As
well as a POSIX-style interface to FAT, the operating system also provides
an alternative streaming model.

It is an interesting fact that data formats, whether those of MS-Word
or Lotus 1-2-3 or MS-Excel, have proved to be powerful weapons in the
marketplace, in some cases almost more so than the applications which
originated them. (The Lotus 1-2-3 data format lives on long after the
demise of the program and, indeed, of the company.) Data in this sense is
more important than the applications or even the operating systems with
which it is created.

Peter Jackson:

The layout of the file is an example of a binary interface and, as software
evolves, typically those layouts change, sometimes in quite an unstructured
or unexpected way, because people don’t think of them as being a binary
interface that you have to protect. So the alternative way of looking at things is
to say you don’t think about that, you ignore the layout of the file. What you

70 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

do is you look at the APIs, and you program all your file manipulation stuff to
use the same engines that originated the data in the first place.

In effect, this is the approach that Symbian adopted. But it has a cost.

Charles Davies:

We went for an architecture in which applications lost control of their persistent
data formats, and in retrospect I think that was a mistake, because data lasts
longer than applications. The persistence model is based on the in-memory
aggregation in the heap of whatever data structure you’re working with. For
example, if it’s a Contacts entry, then it consists of elements and you stream
the elements. One problem is that if you try to debug it and you’re looking at
a file dump, its unfathomable. It’s binary, it’s compressed, so it’s very efficient
in the sense that when you invent a class it knows how to stream itself, so it’s a
sort of self-organizing persistence model, but the data dump is unfathomable.
The second problem is that when you change your classes it changes how
they serialize. So it works. But if you add a member function which needs to
be persisted, then you change the data format. You lose data independence,
and that stops complementers from working with your formats too. So we
sacrificed data independence. And because that data has to carry forward for
different versions of the operating system, you get stuck with that data format
and you end up with a data migration problem. So I think that was a mistake.
It would have been worth it to define data-independent formats. In my view
that’s what XML has proved, the XML movement has shown that data sticks
longer than code.

In some ways, implementing a persistence model on top of a FAT
system leads to the worst of both worlds, on the one hand missing out
on the benefits of MS-DOS-style data independence, and on the other
missing out on Newton-style simplicity.

Peter Jackson:

If you implement your permanent store structure in terms of a database design
then you have all the advantages of being able to use database schema idioms
to talk about what you’re doing, and it turns out that those idioms now are
fairly stable and universal. So I think there are examples where we have pruned
away the databaseness of an application because we thought our customers
didn’t really want a database – but that may be a bad thing if one day our
customers decide they want more than just flat data.

SYMBIAN OS IDIOMS 71

Store and DBMS

The native persistence model is provided by Store, which defines Stream
and Store abstractions. Together they provide a simple and fully object-
oriented mechanism for persistence:

• A Stream is an abstract interface that defines Externalize() and
Internalize() methods for converting to and from internal and
external data representations, including encrypted formats.

• A Store is an abstract interface that defines Store() and Restore()
methods for persisting structured collections of streams, which repre-
sent whole documents. Store also defines a dictionary interface which
allows streams to be located inside a store.

Symbian OS also includes DBMS, a generic relational database API lay-
ered on top of Store, as well as implementations including a lightweight,
single-client version (for example, for use by a single application that
wants a database-style data model which will not be shared with others).
Databases are stored physically as files (single client databases may also
be stored in streams).

Database queries are supported either through an SQL subset or
a native API. Since the introduction of platform security, the DBMS
implementation supports an access-policy mechanism to protect database
contents.

3.7 Symbian OS Idioms

C++ is the native language of Symbian OS. Symbian’s native APIs
therefore are C++ APIs (although API bindings exist for other languages:
OPL, Java and, most recently, Python). C++ is a complex, large and
powerful language. The way C++ is used in Symbian OS is often criticized
for being non-standard. For example, the Standard Template Library (STL)
is not supported, the Standard Library implementation is incomplete, and
POSIX semantics are only partly supported. Since Symbian OS competes
with systems which do support standard C++, there is also little doubt
that the operating system will evolve towards supporting more standard
C++. But, like it or not, true native programming in C++ on Symbian OS
requires understanding and using its native C++ idioms.

Among some developers inside the company the view has been
unashamedly one of, ‘Those who can, will; those who can’t should
use Java, Python, or even OPL’.18 While that may not make for mass
market appeal for Symbian C++ itself, the fact is that programming on

18 For example, see the remarks by David Wood in Chapter 18.

72 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

any platform requires specialist expertise as well as general expertise,
and, in that, Symbian OS is no different. The skill level required is
commensurate with the programming problem. It is far from easy to write
software for consumer devices on which software failures, glitches, freezes
and crashes – things people put up with regularly on their PCs – are
simply not an option. Mobility, footprint, battery power, the different user
expectations, screen size, key size and all the other specifics of their small
form factors make mobile devices not at all like desktop ones; phones,
cameras, music players and other consumer devices are different.

Symbian OS idioms are not casual idiosyncrasies; they are deliberate
constraints on the C++ language devised to constrain developer choices,
consequences of the market the operating system targets, and of the
embedded-systems nature of ROM-based devices. Strictly speaking, they
are less architectural than implementational but, in terms of the overall
design, they are important and they have an important place in the
history of the evolution of the system. Understanding them is essential to
understanding what is different about Symbian OS, and what is different
about mobile devices. There are some large-scale differences.

• Lack of a native user interface means that the development experience
is significantly different for device creation developers using the
TechView test user interface than for developers later in the product
lifecycle using S60, UIQ or MOAP.

• The build system is designed for embedded-style cross-compilation,
which is a different experience from desktop development.

• Idioms have evolved to support the use of re-entrant, ROM-based
DLLs, for example disallowing global static data.

• Other optimizations for memory-constrained, ROM-based systems
result in some specific DLL idioms (link by ordinal not name, for
example).

There are what might be described as language-motivated idioms:

• descriptors

• leaving functions

• the cleanup stack

• two-phase construction.

And there are some design-choice idioms:

• active objects and the process and threading model

• UIDs

SYMBIAN OS IDIOMS 73

• static libraries and object-oriented encapsulation

• resource files to isolate locale-specific data, for example, text strings.

Active Objects
Active objects are an abstraction of asynchronous requests and are
designed to provide a transparent and simple multitasking model.

An active object is an event handler which implements the abstract
interface defined by the CActive class and consists of request and
cancellation methods, which request (or cancel) the service the object
should handle, and a Run() method which implements the actual event
handling. When the requested service completes and there is a result to
be handled, a local active scheduler invokes the active object’s Run()
method to handle the completed event.

An active scheduler is created by the UI Framework for each appli-
cation. All active objects invoked by an application (but only that
application’s active objects) share a single thread, in which they are not
pre-empted (i.e. they are scheduled in priority order by the scheduler).

Active objects are a pervasive Symbian idiom and provide a non-
pre-emptive multitasking alternative to explicitly creating multithreaded
programs (although that option remains available to developers), as a
solution to the problem of managing multiple paths of execution within
a program, in the context of an event-based, reactive application model.
From the perspective of a GUI application developer they offer a much
easier solution than multithreading, in effect handing off the awkward
details to the system.

Charles Davies:

Our model for events was very much asynchronous events and signals and
requests. So what we had first of all, and it’s what other systems have too,
is that you make one or more requests for events, and events include timers
and serial events and all kind of events that can come out of anywhere, not
just user-originated events. So you just set off a large number of events and
then you wait for any one of them to come through. So things need to be
able to respond to events from multiple sources. Now Windows had a way
of handling this. There’s a Windows API, though it’s not very elegant. The
problem is, it’s tied to the GUI programming model. In Windows you have
to run up the whole GUI to get the event model going, and we thought that
was a real weakness in mobile devices. We thought that servers needed this as
well, that servers sit there waiting for events from multiple sources, events like
‘my client has died’, which comes from a different source than the message
channel saying ‘here’s the next request from the client’.

The event-driven model is essentially a state-machine model. But,
except within niche areas such as communications programming, these

74 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

were not widely used patterns, especially for applications programming.
And except for those familiar with Windows at the time, or with other
GUI systems such as Amiga and Macintosh, the event-driven application
model was not widely or well understood.

Charles Davies:

When I was interviewing people I used an example of a terminal emulation
program. Here is a program that indisputably gets events not just from the
user. The normal, naı̈ve way of writing an interactive application at that time
would be to wait for a keypress, see what keypress it was, and respond to it;
was it a function key, was it any other key? You’d have some horrible case
statement responding to a keypress. So I would ask, ‘How would you write an
application where you don’t know whether your next input is coming through
the serial port or from the keypress?’ And if they had a good answer to it they
got hired, and if they didn’t, they didn’t.

Well we started off programming it the way that anybody would program
it, you make asynchronous requests on whatever event sources you want to
respond to. There are many pitfalls in doing that, for example if you don’t
consume that event in the right way. You end up with an event loop that’s quite
messy, and it’s pages long, and people were making mistakes. Every event
loop was buggy, and horrible bugs too, so we said ‘Let’s make it modular.’

Martin Tasker had the benefit of a background of programming IBM
mainframes:

Martin Tasker:

I’ve written plenty of event-handling loops, in communications programs
or command handlers where by definition you don’t know what’s going to
happen next. Every time I wrote one of these loops I remember thinking, ‘Have
I got this right?’ Dry running through every possibility, you used to have to tell
people coming on to the team, ‘No, if you handle your loop that way you’re
either going to double-handle some event or fail to handle some event, or
you’re not going to handle event number 2 if event number 2 happens while
you’re handling event number 1, or you’re not actually going to handle event
number 2 until event number 3 comes along. . .’ These are all mistakes that
everybody makes when they’re writing event-handling programs. Over the
lifetime of a program you tend to add in more and more events, or you remove
them, and you change things around. And in those circumstances, when you’re
modifying existing code, it’s tremendously difficult to get event-handling loops
right.

Active objects were devised explicitly to solve such problems, by
creating an easy-to-understand and easy-to-use mechanism for firing

SYMBIAN OS IDIOMS 75

off event handlers asynchronously, deliberately breaking the dependen-
cies between events which are implied by the big, single-block switch
statement which is the typical implementation. More generically, active
objects enable multitasking within applications without the use of explicit
multithreading.

Charles Davies:

We could have done it with threads and created a multithreaded UI, which
by the way is what Java does. But the bad thing about threads is that you
can pre-empt at any time, and then you’ve got to protect the data, because
you have no idea when you’re processing one thread what state the data is
in. The solution was active objects, for any program that responded to events
from multiple sources. So it came about because people were getting it wrong,
because the old way was so complicated. So what are active objects? They’re
really non-pre-emptive multitasking within an application. And that is a very
strong pattern. But it is also something that throws people, because it wasn’t
copied. It was invented here, and it’s widely used, and it has been useful, but
it is a particular strength of Symbian OS.

Active objects are used widely throughout the operating system, as
well as providing a ready-made mechanism for developers creating native
Symbian OS applications.

Martin Tasker:

Colly Myers was right, active objects are a fantastic solution. For people who
know they are dealing with event-handling programs, they are an absolute joy.
And the whole single-threaded nature of an application process is also great
for programmers. In an event-handling system, active objects are a natural
way of handling things, and they are easier for programmers to work with than
pretty much all of the alternatives.

Cleanup, Leaving and Two-Phase Construction
The native Symbian OS error-recovery model evolved explicitly to handle
the kinds of errors that should be expected on resource-constrained and
mobile devices: low-memory situations, low-power situations, sudden
loss of power, loss of connectivity or intermittent connectivity, and even
the sudden loss of a file system, for example when a removable media
card is physically removed from the device without unmounting. These
are all likely or even daily occurrences in the mobile phone context,
causing errors from which the system must recover gracefully. In contrast,
for a large system these may be rare enough occurrences for system
failure with an ‘unrecoverable error’ message to be acceptable.

76 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

The Symbian OS model is proven, playing a large part in the unrivaled
robustness of the system, and going back to the earliest days of the
operating system, and indeed to Psion systems before it.

Charles Davies:

We had Enter() and Leave() in the 16-bit system, which was Kernighan
and Ritchie inspired. When we went to C++, the standards for exception han-
dling were still being written, so they certainly weren’t available in compilers.
So we carried forward Leave() and Enter() rather than adopting native
C++ exception handling, because at that time it consisted of longjump()
and setjump(). It was very unstructured, and we didn’t like that. We liked
Enter() and Leave(), and we stuck with it.

In Symbian OS, Leave() is a system function (provided by the User
Library) which provides error propagation within a program. Typically,
Leave() is used to guard any calls which can fail (for conditions such as
out of memory, no network coverage and disk full). The system unwinds
the call stack until it finds a prior Leave() call wrapped by a TRAP
macro, at which point the TRAP is executed and the failure is handled by
the program in which it occurred.19

Functions which may fail because of a leave, whether because they
directly invoke the action which might fail or do so indirectly by calling
some other function that does, are described as ‘leaving’ functions.
By convention, leaving functions are named with a trailing ‘L’, which
makes it easy for programmers to see where they are invoked and trap
appropriately.

The second leg of the error-handling strategy uses the ‘cleanup stack’
to store pointers to heap-allocated objects whose destructors will fail to
be called if the normal path of program execution is derailed by a leave.20

As well as unwinding the call stack to handle the leave, the cleanup stack
is also unwound and destructors are called on any pushed objects.

The third leg of the strategy is ‘two-phase construction’, which guaran-
tees that C++ construction of an object will always succeed, by moving
any leaving calls out of the C++ constructor into a secondary construc-
tor. (It is important that construction succeeds, since only then can the
object’s destructor be called; if the destructor cannot be called, memory
may have been leaked [Stroustrup 1993, p. 311].) Again, a number of
system functions are available to regularize the pattern and take care
of underlying details for developers. (In its earliest implementation, two-
phase construction was matched by two-phase destruction. The eventual
consensus was that this was an idiom too far.)

19 See [Stichbury 2005, p. 14] for a detailed explanation.
20 See the discussion in [Harrison 2003, p. 150]. This is the authoritative programmers’

guide.

SYMBIAN OS IDIOMS 77

Charles Davies:

We had an ethic that said that memory leakage was something the programmer
was expected to manage. So something like the Window Server, which might
be running for a year at a time, needed to make sure that if an exception was
called it didn’t leak memory. The cleanup stack was an invention to make it
easier for people to do that. You’d have an event loop, and at the high end
of the event loop you’d push things on the stack that needed to be unwound,
whether they were files that needed to be closed or objects that needed to be
destroyed. That was a pragmatic thing, you know. ‘Let’s provide something
that encourages well-written applications from the point of view of memory
leakage.’

Cleanup is pervasive in the system ([Harrison 2003, p. 135]), permeat-
ing every line of code a developer writes, or reads, in Symbian OS, with
its highly visible trailing ‘L’ naming convention, its Leave() methods
and TRAPs, and its cleanup stack push and pop calls.

For new developers, it is both highly visible and immediately unfamil-
iar, which leads to an immediate impression that the code is both strange
and difficult. However, the conventions are not intrinsically difficult,
even if the discipline may be. The purpose is equally straightforward:
to manage run-time resource failures. On a small device, memory may
rapidly get filled up by the user (whether by loading a massive image,
downloading too many MP3s, or simply taking more pictures or video
clips than the device has room for). Other resources, whether USB cable
connections, infrared links, phone network signals, or removable media
cards, can simply disappear without warning at any time. Mostly these
hazards simply do not exist on desktop systems. On phones, they are the
norm.

Martin Tasker:

I think the cleanup stack was a brilliant solution to the problem that we were
faced with at the time.

Descriptors
Descriptors are the Symbian OS idiom for safe strings. (‘Safe’ means
both type safe and memory safe and compares with C++ native C-style
strings, which are neither21) Descriptors were invented (by Colly Myers)
because there was no suitable C++ library class, or none that was readily
available.

21 Nor are Java or Microsoft Foundation Class strings for that matter, according to
[Stichbury 2005, p. 55].

78 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

In principle, descriptors simply wrap character-style data and include
length encoding and overrun checking. (Descriptors are not terminated
by NULL; they encode their length in bytes into their header, and refuse
to overrun their length.) As well as this basic behavior they also provide
supporting methods for searching, matching, comparison and sorting.

Descriptors support two ‘widths’, that is, 8-bit or 16-bit characters,
based on C++ #define (typedef) and originally designed to enable a
complete system build to be switched, more or less with a single defini-
tion, between ASCII-based and Unicode-based character text support.

More interestingly, descriptors also support modifiable and unmod-
ifiable variants and stack- and heap-based variants. The content of
unmodifiable (constant) descriptors cannot be altered, although it can
be replaced, whereas that of modifiable descriptors can be altered, up to
the size with which the descriptor was constructed.22

Another important distinction is between buffer and pointer descrip-
tor classes. Buffer descriptors actually contain data, whereas pointer
descriptors point to data stored elsewhere (typically either in a buffer
or a literal). A pointer descriptor, in other words, does not contain its
own data. A final distinction is between stack-based and heap-based
buffer descriptors. Stack-based descriptors are relatively transient and
should be used for small strings because they are created directly on the
stack (a typical use is to create a file name, for example. Heap-based
descriptors, on the other hand, are intended to have longer duration
and are likely to be shared through the run-time life of a program (see
Table 3.1).23

Table 3.1 Descriptor classes.

Constant Modifiable

Pointer TPtrC TPtr

Buffer (stack-based) TBufC TBuf

Heap-based HBufC

See [Harrison 2003, p. 123] for a fuller explanation of the descriptor
classes.

22 Although modifiable, once allocated there is no further memory allocation for a
descriptor, so its physical length cannot be extended. For example, to append new content
to a descriptor requires that there is already room within the descriptor for the data to be
appended.

23 [Stitchbury 2005] contains a good overview.

SYMBIAN OS IDIOMS 79

Descriptors differ from simple literals, which are defined as constants
using the LIT macro, in that they are dynamic (literals are created at
compile time, descriptors are not). A typical use of a pointer descriptor is
to point to a literal.

Martin Tasker:

The 8-bit/16-bit aspect was ASCII versus Unicode, though, in retrospect we
should have been braver about adopting Unicode straight away. But bear in
mind that the ARM 3 instruction set we were then using didn’t have any 16-bit
instructions or, more accurately, it didn’t have any instructions to manipulate
16-bit data types, so it was not efficient to use Unicode at that time. But maybe
we should have had more foresight and courage, because it turned out to be
a distraction. But as a kind of memory buffer, I think they were reasonably
distinctive.

Given the state of the art at the time, Peter Jackson believes that the
distinction between 8-bit and 16-bit was understandable but that a more
naturally object-oriented approach would have been preferable.

Peter Jackson:

I think it would have been more elegant to have a descriptor that knew
internally what kind of descriptor it was, whether it was the 8-bit or 16-
bit variant. I never liked the fact that some of these things were done by
macros.

Descriptors are not only type safe, they are memory safe, making mem-
ory overflow (‘out-of-bounds’ behavior) impossible. Descriptor methods
will panic if an out-of-bounds attempt is detected (see Figure 3.1).

TDesC

TDesTBufCBase

TPtr TBufHBufCTBufCTPtrC

Figure 3.1 Descriptor class hierarchy

80 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

Charles Davies:

Descriptors were Colly Myers’s thing, definitely, and the idea was rather
like the cleanup stack, to stop people doing memory overwrites. That’s a
big protection against worms and other attacks, deliberate and malicious
overwriting of the heap, although at the time that wasn’t the driving reason to
do it. We did it to stop programmers making mistakes.

C and T and Other Classes

As well as the use of the trailing ‘L’ (for ‘leaving’) and ‘C’ (for ‘constant’)
to flag properties of methods, Symbian OS also uses some similarly
straightforward class-naming conventions to flag fundamental properties
of classes.

Martin Tasker:

If you look at the C and T types, they offer a very, very simple guide to
the programmer as to how to use these types. They are as simple as Java’s
objects and built-ins. We don’t do garbage collection because C++ doesn’t do
garbage collection, so we have to cope with that. We have to do it manually,
but otherwise I think our conventions are as simple as Java.

The most important naming conventions are summarized as follows: 24

• T classes are simple types which require no destructor and behave
like C++ built-in types.

• C classes derive from CBase and should always be explicitly con-
structed, thus ensuring that they are always allocated on the heap.
CBase classes also therefore require explicit destruction. CBase pro-
vides a basic level of additional support, including a virtual destructor,
allowing CBase-derived objects to be deleted through the CBase
pointer and performing cleanup stack housekeeping. CBase also
overloads operator new to zero-initialize an object when it is first
allocated on the heap. All member data of derived classes is therefore
guaranteed to be zero on initialization.

• R classes indicate resource classes, typically a client session handle for
a server session. Since an R class typically contains only a handle, it
does not require either construction or destruction. R classes therefore
may safely be either automatics or class members.

24 [Stichbury 2005, Chapter 1] provides a comprehensive discussion.

SYMBIAN OS IDIOMS 81

• M classes are ‘mixin’ classes (abstract interface classes), the only form
in which multiple inheritance is supported in Symbian OS.

• Descriptors are immediately recognizable as either TPtr pointer
descriptors, or TBuf (stack-based) or HBufC (heap-based) buffer
descriptors.

Manifest Constants

Symbian OS uses manifest constants – implemented as typedefs, that
is, system-defined types – instead of the native types supported by a
standard C++ compiler on standard hardware. This is partly, of course,
because the cross-development model means that the eventual intended
target platform is not the same as the development platform, hence the
‘native’ types of the platform on which the code is compiled may differ
from those of the platform on which it is intended to run. The use of
type definitions also has its roots in designing to support both ASCII and
Unicode builds, which is now superfluous since Symbian OS has been
all-Unicode since before v6.

Supporting emulator builds (that is, running Symbian OS programs on
PC as well as ARM, and not just developing on PC) creates the additional
complexity of requiring not one supported compiler but two (or more);
originally Microsoft compilers were specified for emulator builds and
GCC for ARM. More recently Metrowerks and Borland compilers have
been supported and, in Symbian OS v9, ARM’s RVCT replaces GCC
as the ‘official’ ARM target compiler (although GCCE is still supported
to ensure a low-cost development option). Recent initiatives such as
Eclipse, for example, or the adoption of the standard ARM EABI are likely
to continue to change the story of the development tools.25 Again, using
manifest constants provides the necessary level of decoupling of code
from compiler dependencies.

The key classes are summarized as follows:26

• TInt and TUint are the generic types for signed/unsigned integer
values; TInt8, TInt16, TInt32, and TUint8, TUint16, TUint32
are also provided; in general, the least specific types are preferred,
that is, TInt and TUint

• TInt64 is a 64-bit integer type intended for platforms without a
native 64-bit type

25 Symbian, like Psion before it, has always assumed that mainstream development is
done under Microsoft Windows, although this is not the only solution that works. There are
a number of independent open-source solutions for developers wanting to work on Linux
or Mac OS X.

26 Again, [Stichbury 2005, Chapter 1] provides a comprehensive discussion.

82 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• TReal, TReal32 and TReal64 are single- and double-precision
floating-point types; again the least specific type, TReal, is preferred

• TText8 and TText16 are 8-bit and 16-bit unsigned types for char-
acters

• TBool is a 32-bit unsigned Boolean type

• TAny* is used instead of void*.

Unique Identifiers

Unique identifiers (UIDs, implemented as signed 32-bit values) are cen-
trally controlled in Symbian OS. One common usage of them is to identify
applications and other binary and data types. UIDs, for example, are used
in Symbian OS to associate data types with programs and plug-in types
with frameworks. UIDs are also used as feature IDs and package IDs (for
SIS files).

Charles Davies:

The idea was that if you had polymorphic DLLs, dynamic libraries in other
words, then there are situations where the DLL is a plug-in, and it all goes very
wrong if the caller doesn’t get the interface it’s expecting from the DLL, so we
needed to characterize the interface. And we came up with the idea of using
a UID to do that.

UIDs are used in a three-tier construction to build TUidType objects:

• UID1 – a system level identifier that distinguishes EXE from DLL types

• UID2 – a specifier for library types that distinguishes between shared
library DLLs and various types of polymorphic DLL (for example FEPs
and other types of plug-in)

• UID3 – the individual component ID, also used by default as the
secure identifier (SID) required by platform security.27

UID3 is used, for example, by developers to uniquely identify their
applications, and can then be used by the streams, stores and files created
by that application to identify themselves. UID3 is assigned through
Symbian’s UID allocation database, from which third-party developers
can request blocks of UIDs for use in their applications.

Platform Security introduces two new types of UID, the SID (Secure
ID), which by default is identical to UID3, and VID (Vendor ID).

27 See the discussion in [Sales 2005, p. 328].

PLATFORM SECURITY FROM SYMBIAN OS V9 83

3.8 Platform Security from Symbian OS v9

Platform Security is the system-wide security model introduced in Sym-
bian OS v9. Providing an open, third-party programmable platform has
been an important principle in the development of Symbian OS. How-
ever, openness brings with it the risk of misbehaving software (whether
accidentally or deliberately misbehaving) finding its way onto users’
devices. The security model is designed to protect users from that risk,
while still preserving the openness of the platform.

Architecturally, Platform Security is a set of pervasive changes at all
levels of the system, based on a simple conceptual model,28 which is
deliberately as lightweight as possible, and supported by the Symbian
Signed certificate signing program, which provides a means for creating
a formal link between an application and its origin, as well as providing
a review mechanism to promote best practice in designing and writing
Symbian OS applications.

Will Palmer is one of the system architects who is currently responsible
for the Platform Security project.

Will Palmer:

There are three principles to Platform Security. The first principle is the unit of
trust, the idea of the process being the unit of trust. Since memory is already
protected per-process on the processor, that fits quite nicely, and it also has the
advantage of being a ‘least-privilege’ approach, based on the smallest element
in the operating system. The second principle is the idea of capabilities, which
are in effect authorization tokens. So to be able to access a potential resource,
a process needs to possess a particular capability that allows it to do so. And
the third principle is data caging, which is about read and write protection of
files, which protects the integrity of data as well as protecting data from prying
eyes.

The essential principles are:

• processes as the unit of trust,29 which turns trust into another process-
granular system resource

• capabilities as the tokens of trust, which are required to perform
actions

28 According to [Heath 2006, p. 18], the model conforms to the eight design principles
of [Saltzer and Schroeder 1975], which include economy, openness, least privilege and
psychological acceptability.

29 This is an elegant extension of the kernel’s process model, in which the process is the
unit of ownership of all system resources (for example, memory protection is per process).

84 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• data caging, which protects data from prying eyes (by policing read
access) or interference (by policing write access) or both.

The direct consequence of defining the process as the unit of trust is
that all threads in a process share the same level of trust (which is natural,
since they have access to the same resources).

The goal is to protect device users from the kinds of intentionally
rogue software, or ‘malware’, that plague the PC world. Symbian OS for
a long time avoided some of the worst threats from malware because it
was typically deployed in ROM-based devices, in which the system itself
cannot be corrupted (for example, it is impossible to install trapdoors
or trojans in system files) because system code is stored in unwriteable
ROM memory. By design, Symbian OS also protected against some of
the more trivial security holes found on other systems. Descriptors, for
example, make buffer overrun attacks much harder. Similarly, Symbian’s
microkernel architecture helps to increase security and robustness; since
the trusted kernel is deliberately the smallest possible subset of system
functions, there is little privileged code to exploit, and the smaller
codebase is easier to review and validate.

The nature of mobile devices, especially phones, also makes them
different from desktop systems. The physical access model is different
(personal devices are less likely to be shared) and the network access
models are different (connections are transient).

On the other hand, phones also present new opportunities for malware.
If a phone, or user, can be spoofed into making a call, real money is
at stake. (Premium-rate-phone-number scams are an example.) From
a network perspective, the cost of network disruption is immediately
commercially quantifiable in a way that Internet attacks are not.

These differences all require appropriately designed security mecha-
nisms.

Will Palmer:

When the capability model was designed there were a set of constraints about
what it had to deliver: it had to be robust; it had to be simple; and it shouldn’t
get in the way of the operation of a phone so, for example, you couldn’t use
hundreds of extra clock cycles on it, because on a small device you have
performance and power constraints. Also it had to be appropriate for an open
operating system: people have to be able to install additional software on their
phones and it has to be simple and easy to understand.

Data caging, for example, was chosen for its simplicity and economy
(in terms of clock cycles and power). Another important consideration
was that mechanisms which users are quite comfortable with on desktop
computers – logging on, for example – would be quite inappropriate on
a phone.

PLATFORM SECURITY FROM SYMBIAN OS V9 85

Will Palmer:

Authorization based on the process–capability model is simple to understand
and it fits the phone case much better than an authentication system. So in
an authentication system you log on and your password authenticates you to
the system, and once authenticated you can do anything permitted by your
authentication level. But a phone is different: it’s a single-user environment;
it’s in your pocket; it belongs to you. Although things are getting more complex
now because of requirements coming in for administrative rights. For example,
the network operator might want to change settings on the phone.

The capability mechanism is used to protect both ‘system’ and ‘user’
(i.e., application-owned) resources. Will Palmer sums up the difference
neatly.

Will Palmer:

It’s not that some types of capabilities are more powerful than others, they just
protect different things. System capabilities protect the integrity of stakeholders
and of the device, whereas user capabilities protect the user’s privacy and
money.

Protected APIs are tagged at method-level with the capability required
to exercise them and access any underlying resources (data files, for
example). The capabilities of a method are part of its interface. To use
protected APIs therefore, developers must request an appropriate set of
capabilities, which is done through the Symbian Signed program.

A ‘signed’ application is granted a set of capabilities. Application
capabilities are verified by servers when protected APIs are called by
applications. Unsigned software is flagged to the user at installation
time as being unsigned (and therefore untrusted). Thus, while unsigned
applications can assign any user capabilities to any binaries as they
see fit, the user is alerted at installation time and given the option to
approve the application or not. Unsigned applications cannot use system
capabilities, in other words they cannot use APIs which affect the behavior
of the device. Data security is provided on a per-application basis by the
data-caging model.

4
Introduction to Object Orientation

4.1 Background

Symbian OS is a full-blown, from-the-ground-up, object-oriented sys-
tem. In context, the decision to ‘go object-oriented’ was a natural step.
Object-oriented ideas had been increasingly adopted in Psion’s preceding
operating systems, from the first Organiser products to the 16-bit SIBO
operating system for the Psion Series 3. However, the decision to apply
object-oriented design to the whole system, and not just to the higher
user interface and application-level layers, was none the less radical for
that. In particular, the decision to adopt C++ as the implementation lan-
guage for the operating system was a bold one. The earlier systems (once
they had evolved beyond assembler) had been written in a home-grown
object-flavored dialect of C.1 Adopting C++, which was still far from the
mainstream, was, with hindsight, far-sighted though not without risk.

In 1994, when the project to create what eventually became Symbian
OS started up, C++ was still a new and evolving language. C++ compiler
implementations for the PC were still being pioneered by small companies
such as Zortech and Watcom (the ‘industrial’ C++ market was still based
on Unix). Microsoft had only just entered the market.2 The language
standard was still some years away. Standardized tools were even further
away.3

The immediate consequences were twofold. First, cross-platform devel-
opment was difficult (compiling on Intel for eventual ARM targets) because
the low-level language bindings were not consistent across hardware

1 See also Chapters 2 and 17.
2 See for example the Wikipedia article http://en.wikipedia.org/wiki/Visual C Plus Plus

for a history of Microsoft’s C++ releases. VC1.5 was the big release.
3 Tools standardization (enabling compiler and linker interoperability across vendors,

for example) depends on agreeing the low-level application binary interface (ABI). The
standardized ABI for ARM processors is only now emerging into the tools mainstream.

88 INTRODUCTION TO OBJECT ORIENTATION

architectures. Secondly, some language features were missing, immature,
or just unsuitable for the project’s purposes. While C++ was explicitly
intended as a systems language, and to some extent also inherited C’s
low-level–high-level mantle and its long history of optimized compiler
internals, some features of the language were far from optimal for small,
low-memory footprint, low-power devices.4 By and large, the language
made no claim to be particularly suitable for small systems of any kind.
Its roots were in big, middleware systems running on big hardware (e.g.,
millions of lines of code phone switches).

There were some significant consequences for the evolution of Sym-
bian OS; many of its hallmark idioms were invented because the C++
language as it stood could not meet requirements (type-safe strings, struc-
tured exception handling, and so on) that Psion’s designers considered
essential for the class of device they were targeting. Subsequently, as
Symbian OS has itself begun the move into the mainstream, these lega-
cies of early language immaturity and Psion’s early adoption of C++ have
presented obstacles to a new generation of developers who have grown
up with a standard language. Inevitably, there is pressure on Symbian OS
to do better at supporting the standard language.

But it is fair to say that this problem is related to the success of Symbian
OS. The pressure comes from its exposure to a much broader range of
developers than in the past. It seems inconceivable, or at least unlikely,
that Symbian OS would now be poised on the edge of mass-market
adoption had its architects not innovated far beyond the homegrown
tools and language idioms of its predecessors. The choice of C++ was
a prescient one, accurately predicting what turned out to be a language
juggernaut, sweeping all before it (at least until the rise of Java). There
were also benefits from adopting an object-oriented methodology across
the whole of the operating system.

4.2 The Big Attraction

Of all the perceived benefits of the object-oriented approach to software
creation, reuse is probably the most compelling. Software is expensive.
Software is unreliable. Software is complex. These are the three truisms
of software development and reusability meets them all head on, or at
any rate purports to.

First of all, software is expensive because it is complex. Software
projects overrun because the problem at hand always turns out to be
more complex than was at first thought and things prove to be harder
than they looked in the plan. But if software projects can be started from
a baseline of existing, already proven code or finished components, or at

4 For example, the overhead of vtables.

THE BIG ATTRACTION 89

least proven design, the scope for misunderstood complexity might just
be reduced, and this seems to be what reuse promises. The more artifacts
there are to be reused, the less the complexity, and therefore the lower
the cost.

Secondly, software is expensive because it is unreliable. It is unreliable
because it contains defects and it contains defects because it is complex.
Reuse seems to hold promise here too because reuse improves quality by
reusing proven parts. It also improves quality by reducing the complexity
which causes defects in the first place.

Reuse does indeed look like the key to conquering software complexity,
and this is very much how it has been sold. Object orientation claims
to deliver reuse and reuse is the big attraction. In the words of [Gabriel
1996], reuse was ‘the hook that grabbed the mainstream world and pulled
it toward object-oriented programming’. Since effort costs money, reusing
effort must save money. And since effort is error-prone, reusing effort must
reduce errors.

Of course, reuse is not the privileged domain of object orientation.
The earliest innovations in what were not yet called operating systems5

were as much about code reuse as about multiplexing processors and
peripherals. The same is true of the early language standardization drives,
from Fortran to COBOL to C and beyond.

There are other aspects of reuse too. Reuse also occurs at project level,
as every programmer quickly learns and as [Gabriel 1996] points out.
Today’s new problem can be understood as a variation on last week’s
problem, and therefore last week’s solution can be adapted to become
this week’s solution too.

Languages, however, have the advantage of working at several levels,
from the individual to the team, from program level to project level.
But all languages are not equal. The clever observation that heralds the
discovery of full blown object orientation is that reusing data structures
counts as much as reusing algorithms. Object orientation makes this a
language feature and supports it with language constructs, not just code
libraries and link-time tools.

Other benefits also arise from reuse. Object-oriented analysis is a good
way of modeling real-world problems. For example, object-oriented
language pioneers have claimed ‘real world apprehension’ and ‘stability
of design’ as two benefits which follow from the directness of the
correspondence between an object model and a real-world problem
domain [Madsen et al. 1993, p. 2]. The object approach to modeling
also provides its own natural model for program organization (code is
naturally granular at the object level; code can be divided between
interface definitions and implementations, and so on). It probably turns

5 Possibly the earliest example was the Supervisor program of the Manchester University
Atlas computer in the late 1950s (see [Hansen 2001]).

90 INTRODUCTION TO OBJECT ORIENTATION

out, too, that this way of organizing a program makes it easier to extend
than more traditional organizations.

We are now some years on from object orientation’s initial promise.6

Object orientation is the industry’s dominant programming methodology
and software is still expensive, software projects are still delivering late
(when they deliver at all: abortive projects remain at an astonishing 30%
across the industry) and software is still unreliable (i.e., it cannot be
guaranteed to perform its intended function without error).7

It would hardly be fair to blame object orientation for this, although
it is tempting to ask what became of the vision of reusable components,
of a black-box component industry and a free market in ready-made,
reusable software parts.8 Either the vision fizzled out or our gaze moved
on. If the market ever materialized, it failed to thrive.

There are still no magical solutions [Gabriel 1996]. The truth is
that simple promises rarely deliver. Reality is always more complex and
more interesting than that. Object orientation, meanwhile, has enjoyed an
astonishing rise and, perhaps for other reasons, remains in the ascendancy,
even if the search for the ‘New New Thing’9 in reuse has moved on.

Interestingly, following what seems to be an inevitable evolutionary
trajectory, the focus has shifted, or turned back, to the next level of
abstraction beyond languages and beyond the meta-languages of patterns,
to projects, project organization and other ‘soft’ or ‘human’ aspects of
programming, with methodologies such as extreme programming and
agile programming dominating the quest.

4.3 The Origins of Object Orientation

Object orientation is an approach to design and programming rather than
a fixed methodology.10 This makes it a rather loose label. At root, it is a
way of thinking, a programming style, a particular approach to modeling

6 It is ten years since Richard Gabriel’s book was published and he was using the past
tense even then.

7 The annual CHAOS report from the Standish Group includes IT project resolution
statistics. The 1994 report claimed that 31% of software projects are cancelled, with a
further 16% either over budget, late or reduced in the scope of their features or functions
compared to the initial specification. In 2004, the numbers were respectively 29% and 18%
(see www.standishgroup.com).

8 These were the radical slogans which accompanied the announcement of the ‘software
crisis’ and which were aimed at overturning the crisis, see [Assmann 2003, p. 6].

9 This phrase is attributed to Netscape’s Jim Clark, see [Lewis 1999].
10 For a discussion of terminology and many interesting insights into object orientation,

including the object-oriented conceptual framework, see [Madsen et al. 1993, p. 9]. In
general, I try to follow the BETA language terminology: ‘object orientation’ is an outlook or
perspective; ‘object-oriented’ is an attribute of specific tools or techniques (e.g., language
implementations or analysis techniques).

THE ORIGINS OF OBJECT ORIENTATION 91

the world in software. Object orientation as a programming style is
distinct from any particular object-oriented language implementation.

In the first place, object orientation grew up around the need for
a descriptive language for use in simulating discrete physical systems.
In particular, it emerged from the work of Dahl and Nygaard at the
Norwegian Computing Centre through the early and mid-1960s, which
resulted in the Simula languages.11 These ideas were in turn picked
up in the early 1970s by Alan Kay’s research group at Xerox PARC in
California and drove the development of Smalltalk, which was initially
an experiment in devising a language to teach programming concepts to
children [Kamin and Samuel 1990].

Both Simula and Smalltalk (but Simula in particular) served as explicit
influences for Bjarne Stroustrup, working at Bell Labs in the early 1980s
and looking for a way of introducing what had become known in the
literature as abstract data types into a C-style language, to try to overcome
problems in writing very large systems. The specific context was large
projects at AT&T, including telephone switch software (which typically
were programs containing millions of lines of code). Coincidentally, an
independent effort to harness the plain syntax and underlying efficiency
of C to an object model was being pursued by Brad Cox and led to the
appearance of Objective-C more or less simultaneously with C++.12

Just as both C++ and Objective-C set out with an explicit goal of
creating a better C, so later twists in the story of object orientation have
seen Java claiming a place as a better C++, and C# claiming in turn
to be a better Java. James Gosling’s group at Sun started work on what
became Java in 1990, addressing the perceived shortcomings of C++ in
the particular context of small, consumer devices such as set-top boxes.
Java certainly achieves greater simplicity, greater language uniformity
and a purer object model than C++, as well as wider goals of platform
independence, language safety, and tamper resistance.

The work at Microsoft to create a better Java began in the late-1990s,
as part of the Java-like managed code model for the .NET internet services
framework. The result is C#, a rather small increment to Java in language
terms, and a rather larger increment to C++, but one which so far is
only available on the Microsoft platform. (Albeit that makes it a large
marketplace.)

As well as this relatively linear evolutionary mainstream, a whole host
of object-oriented languages have sprung up through several decades of
research. Some have been shortlived, some have persisted, and almost
all have contributed something of interest to the wider object-oriented
research effort. From Beta to Sather to Eiffel to Dylan to Self to Python to
Ruby, all have had some following, if only within the research community,

11 See the discussion and timeline by Sklenar at http://staff.um.edu.mt/jskl1/talk.html.
12 Stroustrup tells the history in [Stroustrup 1994, p. 175].

92 INTRODUCTION TO OBJECT ORIENTATION

and one or two have found a more permanent niche. Many other already-
established non-object-oriented languages have adopted object-oriented
extensions. Smalltalk style, for example, caught on in the Lisp community
in the 1980s with Common Lisp Object System (CLOS), which became
a model for similar extensions to languages such as Pascal, as well as
more esoteric ones such as Prolog and ML. Similarly, the true inheritors
of the Pascal mantle are the Modula languages, of which Modula-3 is
an object-oriented language, and Oberon which again is object-oriented
(and, interestingly, is not class-centric).13

It is hard to think of a major programming language which has not
been touched, in some way or another, by object-oriented ideas.

4.4 The Key Ideas of Object Orientation

The goal of the original Simula language was to reconcile natural models
of description (of complex real-world behavior) with computation (spec-
ification of algorithms which could compute such complex behavior or
compute with it), to support programmed simulations. From that starting
point, the key ideas of object orientation emerged.

While traditional computing languages cut the world into algorithms
and data structures, object-oriented languages instead cut the world into
objects, each of which encapsulates both algorithms (behavior) and data
(state). Running an object-oriented program becomes more like running
a physical model of the world.14 This different approach captures a
number of insights, in particular that the real world is more naturally
understood as discrete and not continuous (or at any rate that we can
benefit from modeling it that way) and that, in the real world, behavior
comes packaged with context (context-free behavior is of formal interest
only).

A few high-level principles provide the basic modeling tools of object
orientation:

• Abstraction hides detail by finding the commonalities between things,
so that difference becomes variation

• Data hiding hides data inside objects as state

• Interfaces, or behavior hiding, expresses public behavior in public
protocols and hides private behavior.

Different object-oriented languages vary in the ways they support these
principles, but a small number of mechanisms are almost universal (at

13 See the official page at www.oberon.ethz.ch.
14 ‘A program execution is regarded as a physical model, simulating the behavior of

either a real or imaginary part of the world.’ [Madsen et al. 1993, p. 16].

THE KEY IDEAS OF OBJECT ORIENTATION 93

any rate in the mainstream object-oriented languages, including Smalltalk,
C++ and Java):

• Encapsulation supports data hiding; in class-based mainstream object-
oriented languages, classes are the units of encapsulation

• Inheritance provides the mechanism for structuring relationships
within object-oriented programs and for supporting code-sharing and
reuse

• Polymorphism (sometimes referred to as dynamic binding), the head-
line characteristic of object-oriented languages, is the result of
abstraction and the basis for reuse; the mechanisms that enable
objects to display multiple behaviors are superclass (generalization)
and subclass (specialization).

While a lot of theory has evolved around object orientation, object-
oriented ideas are intended to be intuitive. As Coad and Yourdon put it,
quoted in [Madsen et al. 1993], ‘Object-oriented analysis is based upon
concepts that we first learned in kindergarten: objects and attributes,
classes and members, wholes and parts’.

Object orientation emerged very naturally in the context of computer
simulations of physical processes. The purpose of simulating a process
is to understand it; but, in order to simulate it, it must be modeled
and modeling requires understanding. To break the regression, think
of modeling as a way of transforming one kind of understanding into
another kind (information in this respect is like energy or matter: it resists
lossless compression). A model reduces a problem in a systematic way to
recognizable objects, parts, and the relationships between them, allowing
a deeper understanding to emerge from the complex dynamics which
arise in the running system from the interactions between objects. A good
model represents an object in a way which reveals more information
about the object than was available without the model.

Arguably, all programming is based on the principle of abstraction15

(all problem decomposition is abstraction by one means or another),
but every language lends itself to a particular programming style (the
one it makes easiest). Each language provides a different conceptual
toolkit and encourages and enables different design and implementation
techniques. Abstraction, inheritance and polymorphism are the essential
characteristics of object-oriented languages.

‘Abstraction’, as [Koenig and Moo 1997, p. 9] rather neatly puts it,
‘is selective ignorance’. Inheritance and polymorphism are what make
abstraction in object-oriented languages different from abstraction in
other programming languages.

Inheritance builds on the ‘is-a’ relationship as a way of capturing
similarities between types. Objects in a program are defined into a

15 There is an interesting discussion of abstraction in [Koenig and Moo 1997, p. 75].

94 INTRODUCTION TO OBJECT ORIENTATION

hierarchy of increasingly specialized types, each of which inherits the
more general properties of its parents, while adding specialist properties
which can in turn be inherited by child classes that provide further
specialization. For example, in a financial application, current account
and savings account specialize the properties and behavior of a generic
bank account. A current account ‘is-a’ generic bank account that has
been specialized; so is a savings account.

Polymorphism (the ability to take multiple forms) enables objects to
respond either as specialized types or as the types from which they
inherit, allowing the programmer ‘to ignore the differences between
similar objects at some times, and to exploit these differences at other
times’ [Koenig and Moo 1997, p. 35]. Thus in the financial application
example, a current account can be treated either as a current account or
as a generic bank account.

Encapsulation
Object-oriented languages are strongly influenced by the idea of abstract
data types (ADTs). The central idea of an ADT is that it defines a data
structure and the operations which may be performed on it [Bishop 1986,
p. 4].16 To use an ADT it is enough to have access to the (public) operations
it supports, without requiring any knowledge of its internal structure, and
especially without requiring any knowledge of its implementation (that
is, the internal data it contains and how it implements the operations it
supports).

ADTs are a powerful idea and mark a big step forward in enabling
programmers to create their own, user-defined, complex types, having
something like equal status with the built-in types of a language. ADTs
really belong to the ‘data abstraction’ revolution (the revolution before
the object-oriented revolution), which spawned the Modula-2 language
and culminated in the definition of the Ada language.17 Ada brought
ADTs into the mainstream, but C++ is the language that has taken Ada’s
ideas and made them successful.18

Support for ADTs, that is encapsulation, does not itself define a
language as object-oriented (Ada is not object-oriented). However, it is a
central idea of object-oriented languages. Encapsulation is the most basic
pattern an object-oriented system can use. It is also a key programming

16 For a different view, see [Madsen et al. 1993, p. 278] and [Craig 2000, p. 17].
17 See [Bishop 1986] for a discussion.
18 For an insight into why, the aside in [Stroustrup 1994, p. 192] about the relative sizes

of the Grady Booch component library is illuminating: 125 000 lines of uncommented Ada
to 10 000 lines of C++. Ada wasn’t much liked by anyone (see the note in [Kamin and
Samuel 1990, p. 248] of Tony Hoare’s Turing Award lecture remarks). ‘What attracted me
to C++ had more to do with data abstraction than with object-oriented programming. C++
let me define the characteristics of my data structures and then treat these data structures as
‘‘black boxes’’ when it came time to use them.’ [Koenig and Moo 1997, p. 12].

THE KEY IDEAS OF OBJECT ORIENTATION 95

insight, an important step away from a focus solely on algorithm and
implementation. In class-based object-oriented languages, encapsulation
of objects is provided automatically by the machinery of class definition.19

In the case of C++, encapsulation of user-defined data types through the
mechanism of class definition is probably the key concept of the language.

Classes define objects whose instances are created at run time. Objects
hold values and an object’s methods provide the means of access to its
values, whether to set, update, retrieve or perform more complex opera-
tions upon them. An object’s methods define the interface that the object
exposes or, in Smalltalk terminology, the protocol that it understands.
(Terminology varies between languages: Java has interfaces and methods;
Smalltalk has protocols and methods; and C++ has interfaces and what
are interchangeably called either methods or functions.)

Object-oriented languages also allow objects to be extended to create
new objects. In class-based, object-oriented languages, inheritance pro-
vides the extension mechanism. (But prototype languages, for example,
use a copy-and-modify ‘cloning’ mechanism to create new objects from
old.)

In C++, there is no requirement to follow the logical separation
of interface from implementation with a physical separation of code. In
contrast, Java formalizes the separation by separating the class declaration
from the class definition (implementation). The interface provided by a
class for manipulation of instantiated objects of the class is declared in
an interface file, with only one class per file.

Inheritance
Inheritance is the mechanism in class-based languages that allows new
classes to be defined from existing ones. Not all object-oriented languages
are class-based (e.g., there are actor- and prototype-based object-oriented
languages20), but most are. Therefore while, strictly speaking, inheritance
is not universal in object orientation, it is certainly typical.

Inheritance is a parent–child relationship between types, usually called
subclassing in Smalltalk and Java (a class is subclassed from a superclass)
and derivation in C++ (a class is derived from a base class). Whereas
an abstract data type is a black box ([Stroustrup 1994, p72]) which can’t
be varied or adapted except by redefining it, inheritance provides a
mechanism that allows flexible variation of abstract data types, in order
to express both the differences and similarities between general types
(such as BigCat) and their specializations (Lion and Tiger).

19 [Beaudouin-Lafon 1994, p. 15] says, ‘a class is simultaneously a type and a module’,
where type implies interface and module implies implementation.

20 Actor languages with an object-oriented flavor include ABCL and Obliq; Self is
probably the best known prototype language and is thoroughly object-oriented [Craig
2000].

96 INTRODUCTION TO OBJECT ORIENTATION

The key differences in the way that languages approach inheritance are
in whether multiple inheritance is supported or not, and in whether the
inheritance hierarchy is singly rooted or not. Smalltalk and Java are singly
rooted, meaning that there is a single privileged root class from which
all other classes ultimately derive and which defines (and implements) a
universal set of common class behavior. In both languages, all classes are
subclasses of an Object class; Eiffel is similar, with all classes derived
from the ANY class, either implicitly or explicitly. In C++, on the other
hand, there is no universal base class: the inheritance hierarchy may
have multiple roots. C++ also allows multiple inheritance, so that classes
are unconstrained in the number of parent classes from which they may
derive. Similarly, Eiffel allows multiple inheritance. Smalltalk allows only
single inheritance, that is, a class may only have one parent, while Java
allows multiple inheritance of interfaces, but only single inheritance of
implementation.

Inheritance is not just additive. It does not just consist of adding new
definitions in child classes; it also enables the redefinition in child classes
of the existing behavior of parent classes. Typically this is known as
overriding, the child overriding the behavior of the parent with its own
specialized behavior.

Object-oriented languages typically distinguish between abstract
behavior, which defines an interface to an object but which does not
provide an implementation, and concrete behavior, which both defines
and implements an interface. Abstract behavior is provided by defining
abstract methods (in C++, virtual methods). Abstract methods emphasize
the point that inheritance relationships are defined by methods, but not
their implementations. Classes can also be defined as abstract. Abstract
(pure virtual, in C++) classes cannot have instances. In C++, abstract
classes provide the mechanism for polymorphism. Child classes are
required to implement the abstract methods of a parent.

Inheritance is explicitly a mechanism of class-based languages. Non-
class-based object-oriented languages, for example prototype languages,
provide equivalent mechanisms based on the idea of cloning new objects
from template objects (‘prototypes’), to create ‘pseudo-classes’ of similar
objects, rather than true classes, but the purpose is essentially the same
[Appel 1998, p. 310].

Polymorphism
Intuitively, the operations that can be performed on a value depend on
the type of the value. Adding numbers makes sense and concatenating
strings makes sense, but adding strings or concatenating numbers do not
make sense, or not in any generally agreed way.

Different programming languages treat the notion of type in different
ways. At one extreme, the functional programming world favors complete
type-inference systems that amount to full logics (i.e., languages) in their

THE KEY IDEAS OF OBJECT ORIENTATION 97

own right and are completely independent of any physical machine
representations of values. At the other extreme, procedural languages such
as C, as well as older languages such as Fortran, have type systems which
have evolved naturally, and informally, from the physical representation
of values in machine memory (bits, bytes, words, long-words, double-
words, and so on).

Object-oriented languages fall somewhere between these extremes.
Every object in an object-oriented program is really an instance of a
fully encapsulated, and possibly user-defined, type. In a class-based
language, class definition is the same as type definition. The inheritance
relationships between objects are type relationships.

Polymorphism simply means ‘having many forms’ [Craig 2000, p. 4]. In
an object-oriented context, it is often alternatively described as ‘dynamic
typing’. Polymorphism exploits a simple principle of substitutability:
two objects related by inheritance (or an equivalent mechanism) share
a common subset of methods. However, the implementation of those
methods may differ.

Methods can be invoked on a child object based simply on what we
know about its parent. We know that a set of methods is supported,
whatever their implementation and whether or not we know what other
specializations have been added. Sometimes we only know the parent
class of an object and not which specialization we are dealing with. (For
example, we may know that we have an event, but not what type of
event we have, or that we are dealing with a document, without knowing
what kind of document). We therefore know what common methods are
supported by the object, whether or not we know what their behavior
is, or what other methods are supported. Often we may not even care
about the details, for example if we simply want to tell an object to print
itself.

At other times, we may explicitly want to use the specialized behavior
of the derived object. Polymorphism is the ability of the object to switch
between these different behaviors, to appear in the run-time context of a
program variously as an instance of the parent object or as the derived
object; in other words the ability of an object to behave differently at
different points of the program execution.21

How polymorphism is implemented varies between languages. For
example, Smalltalk uses universal run-time type checking to provide the
underlying support for run-time polymorphism. C++, on the other hand,
employs static type checking, but allows a ‘virtual’ dispatch mechanism
to support constrained run-time polymorphism.22

21 See [Koenig and Moo 1997, p. 77] for a printing example.
22 Polymorphism is also frequently referred to as ‘dynamic binding’. [Bar-David 1993,

p. 87] gives a slightly different slant to his definition of dynamic binding as ‘the ability of an
object to bind – dynamically at run time – a message to an action (or code fragment, if you
will). The idea is that, in a given system, many different objects may respond to the same

98 INTRODUCTION TO OBJECT ORIENTATION

A weaker notion of polymorphism is usually qualified as parametric
polymorphism. It refers to functions which can be applied to arguments
of a different type. This is not polymorphism in the same sense as
dynamic typing, because the implication is that such functions execute
identical code [Appel 1992, p. 7] whatever the argument type; in other
words, overriding of implementation is not allowed. A simple example
is the language operator (i.e., the built-in function) denoted, in the C
language, by &; it creates a pointer to its argument, irrespective of the
argument type [Aho et al. 1986, p. 364]. Functional languages such
as ML and Scheme support parametric polymorphism systematically,
while conventional procedural languages such as C and Pascal do not
(although they may support occasional instances, such as the & operator
in C). Object-oriented languages typically support polymorphism in its
stronger sense.

Different languages adopt different strategies for type checking. The
primary distinction is between static and dynamic type checking. Static
type checking means that types are checked at compile time: if the
compiler encounters static type errors, it rejects the program. Dynamic
type checking occurs at run time, that is, during program execution:
if the program encounters dynamic type errors, it halts the program or
flags a run-time error in some other way. A different way of stating the
distinction between them is to say that static typing concerns the type of
the declaration (for example, a C++ reference to a variable or a C pointer
to a variable), while dynamic typing concerns the type of the value (for
example, a Smalltalk object) and the difference emphasizes the different
underlying programming philosophies.

Statically typed languages include Pascal, C, C++, Ada and the func-
tional languages ML, Scheme and Haskell. Statically typed languages are
regarded as strongly typed if the type system enables static analysis to be
sufficient to determine that execution of a program will be type correct
[Aho et al. 1986, p. 343], although it is not required that the compiler
necessarily be able to assign a type to every expression. Such expressions
require run-time evaluation. Strongly typed languages include Pascal, C,
Ada, Java, Simula, Modula-3 and C++ (except for the single case of a
dynamically typed method).

Dynamically typed languages are those in which all expressions are
typed and checked at run time. For example, Smalltalk and Eiffel use
‘dynamic method lookup’ [Appel 1992, p. 7]. (Smalltalk is sometimes
described as untyped, like Lisp, but it makes more sense to say that the
type information has been moved where it belongs, into the object as
part of the object’s encapsulation).

message – say ‘‘print’’ (i.e., display yourself to a display device); they just respond differ-
ently’. Alternatively, see [Ambler 2004]: ‘Different objects can respond to the same message
in different ways, enabling objects to interact with one another without knowing their exact
type’.

THE KEY IDEAS OF OBJECT ORIENTATION 99

Most languages that perform static analysis (such as Pascal, C, Ada,
C++ and Java) require type declarations in programs for all declared
types, whether data, operations (i.e. procedures, functions or methods,
depending on the language’s terminology) or user-defined types. (ML and
Haskell are exceptions that use static type inference).

C++ is something of a hybrid. While it mostly checks types statically,
it explicitly enables a mechanism for dynamic typing for polymorphic
objects, as well as a limited form of type analysis (it is really mangled
name matching) for objects loaded at run time, such as precompiled
libraries.

Dynamic typing in C++ is enabled by addressing an object through
a pointer or reference (although not every pointer or reference implies
polymorphism of the object on the other end23). A C++ pointer addresses
an object of the type of the pointer or of a type publicly derived from it.
The type is resolved at run time, in principle at each point of execution in
the running program. In C++ (and in Java), this allows the use of a parent
class reference to address a local variable, a class instance variable or
a method parameter instantiated by an object of a child class. In this
case, it is the real type of the object which determines which methods
are called, in cases where methods are overridden in a class hierarchy.24

This enables a program to invoke a method on an object with a single
call that is ‘right first time’, regardless of where in the class hierarchy the
object is defined and regardless of the actual behavior of the method. (A
calculateBonus()method in a payroll system, for example, performs
the correct calculation, depending on the real type of the object, not
on the type of the pointer.) The alternative, if polymorphism were not
available, would require testing for all possible types of the object to
isolate the particular case in every case every time, which is laborious
and error prone, as well as verbose.

Java is statically typed but all Java methods are bound at run time.25

All Java objects are typed and their types are known at compile time.
The compiler performs static type checking. Dynamic binding means that
polymorphism is always available, that is, all methods are like virtual
methods in C++ and can be overridden. In other words, every subclass
can override methods in its superclass [Niemeyer 2002, p. 11].

Both the static and dynamic approaches have their adherents. The
really significant difference between them is that each lends itself to a
certain style of programming.

The most common arguments in favor of statically typed languages
are run-time efficiency (all types are computed at compile time, so

23 See the discussion in [Lippman 1996, p. 21].
24 See the discussion in [Warren et al. 1999, p. 33–34].
25 Run time polymorphism, that is, dynamic typing, applies in C++ only through virtual

functions [Koenig and Moo 1997, p. 35]. A virtual function counts here as a pointer, i.e. a
pointer to a function in some class, its base class or a class derived from it.

100 INTRODUCTION TO OBJECT ORIENTATION

there is no run-time overhead) and program safety. Thus, says [Appel
1992], programs run faster and errors are caught early. In statically
typed languages, many programming errors are trivial type errors due to
programmer oversight, which can be caught and corrected at compile
time. In dynamically typed languages, these may arguably become run-
time errors. (Arguably, because adherents of dynamically typed languages
would probably claim that the rigidity and inflexibility of the type system
caused the errors in the first place.)

Type declarations probably do improve code readability and make
programmer intentions clearer. On the other hand, dynamically typed
languages such as Smalltalk and Python allow greater expressivity and
explicitly license a more exploratory programming style, as well as
avoiding some of the binary compatibility problems of applications and
libraries written in statically typed languages.

4.5 The Languages of Object Orientation

Smalltalk remains the canonical object-oriented language, but almost
certainly more object-oriented code has been written in C++ and quite
possibly in Java too. These three languages constitute the object-oriented
mainstream. Python, a newer language more specialized for scripting
and rapid development, may well be on its way to joining them in the
mainstream; if it can oust Perl from its position as the universal language of
the Web, it will certainly succeed. C# is another, newer language which
has set its sights on conquering the Java world as part of Microsoft’s .NET
services effort. However, it currently remains a niche language.

The differences between these languages and the other object-oriented
languages which come and go, are in large part about style (and history).
However, in the differences between Smalltalk and C++ in particular,
there are insights into more interesting, and deeper, differences about what
matters most in programming, for example the trade-off between flexibility
and correctness or, perhaps more precisely, what is the best route to cor-
rectness and to well-behaved programs which are also capable of evolving
to serve the evolving needs of their users. Differences of language style
reflect different intuitions about programming style (that is, not just about
the style of programs, but also about the different styles of programming
practice, the actual activity of designing and writing programs).

The key language differences can be fairly easily summarized:

• single versus multiple inheritance

• a single root class versus ad hoc class hierarchies

• dynamic versus static type checking and method binding.

THE LANGUAGES OF OBJECT ORIENTATION 101

Some other differences seem to have been relegated to questions of
academic interest only by the success of the mainstream languages:

• encapsulation versus delegation

• classes versus prototypes.

Languages which seemed to hold promise for a more concrete and
intuitive approach to exploratory programming (for example, Self or
Squeak, both Smalltalk derivatives) seem to have been rapidly sidelined.

One seemingly arcane research topic which has migrated in the
other direction, from the fringe to the language mainstream, is reflection
or introspection. Both Java and C# now support reflection, as does
Objective-C; run-time program objects are reflective (introspective) and
are able to consider themselves as data to be manipulated. Smalltalk also
uses reflection, in particular as the mechanism which enables objects to
examine themselves to discover their own types.

Java supports reflection for similar reasons, but with a different mech-
anism, providing a set of reflective classes that allow users to examine
objects to obtain information about their interfaces [Craig 2000, p. 197]
and to serialize objects. (In Smalltalk, reflection is a meta-property of all
class objects.)

Reflection is a rather esoteric property of a few languages (Smalltalk,
Self, Java and C#), but it should be seen as part of the search to define
more flexible languages, with more natural support for distributed and
parallel programming, and part of a longer tradition of languages which
include meta-level operations enabling a program to represent itself and
describe its own behavior. Smalltalk, like Lisp, can manipulate its own
run-time structures [Craig 2000, p. 184].

Other areas of object-oriented research focus less on language
techniques than on run-time issues, such as just-in-time compilation
techniques (for Java and C#, as well as Python, which are all interpreted
languages). It seems unlikely that the familiar object-oriented languages
will evolve very radically. The more likely areas of change will be the
drive towards binary-object encapsulation for distributed programming
(in the style of CORBA), which perhaps suggests an eventual convergence
between object-oriented techniques and more declarative programming
language styles, under the influence of the success of XML. (Declarative
programming supports greater semantic transparency.)

Meanwhile, with C++ and Java, and perhaps Python, as the dominant
languages, the programming mainstream now seems very squarely object-
oriented.

Smalltalk
Smalltalk dates back to 1972 when the research project from which it
originates began, although it came of age with the Smalltalk-80 release.

102 INTRODUCTION TO OBJECT ORIENTATION

It drew its inspiration from Simula and was developed by Alan Kay’s
research group at Xerox PARC [Beaudouin-Lafon 1994, p. 57]. In many
ways, Smalltalk is the canonical object-oriented language and it was
certainly the first to achieve critical mass. It was launched into the
spotlight in 1984, when Byte magazine devoted an entire edition to it.

Smalltalk gathered significant commercial momentum. However, since
its peak in the late 1980s and early 1990s, it has largely been in decline.
It has been decisively beaten (in terms of the programming mainstream)
by C++ and Java. Its most interesting legacy has been its promise of
a very different way of creating large programs, a more evolutionary
and exploratory approach than is encouraged by the ‘specification first’,
top-down style of C++.

Smalltalk is a dynamically typed, class-based, message-passing, pure
object-oriented language:

• Everything is an object and every object is an instance of a class.

• Every class is a subclass of another class.

• All object interaction and control is based on exchanges of messages.

Conceptually at least, Smalltalk is remarkably clean and uniform,
applying the object approach consistently and deeply. In particular,
Smalltalk has a single root class, called Object, from which all objects
ultimately inherit. Object itself inherits from the class named Class,
which inherits from itself (to satisfy the rule that all classes are subclasses
of another class).

In Smalltalk, a class whose instances are themselves classes is called
a meta-class. Thus Class is an abstract superclass for all meta-classes
and every class is automatically made an instance of its own meta-class.
This mechanism is used to introduce the notion of meta-class methods
(‘class methods’), which all subclasses inherit and which define the
canonical shared class behavior. For example, class methods typically
support creation and initialization of instances and initialization of class
variables.

The Smalltalk system at run time consists only of objects. All interac-
tions between objects take the form of messages. The message interface
of an object is known as its protocol and message selection determines
what operations the receiving object should carry out. Each operation
is described by a method. There is one method for each selector in the
interface of the class.

All objects are run-time instantiations of classes. Classes are defined
by class descriptions that specify the class methods (i.e. the meta-class
methods), instance methods and any instance variables [Goldberg and
Robson 1989, p. 79]. Method specifications consist of a message pattern
(equivalent to a function prototype in C++) which specifies the message

THE LANGUAGES OF OBJECT ORIENTATION 103

selector and argument names, and an implementation [Goldberg and
Robson 1989, p. 49]. A protocol description for each class lists the
messages understood by instances of the class.

The message-passing model is uniformly applied as the single control
mechanism for objects. Objects respond to messages and issue messages,
and there is no other control mechanism in the system. For example, a new
object is created by sending a message to the required class, which is itself
an object (because Class is itself an object) and can therefore receive
messages. The class object creates the new class instance. Message
expressions specify a receiver (the intended target object), a selector (the
message name) and any arguments [Goldberg and Robson 1989, p. 25].

Inheritance is used as the mechanism which enables sharing between
classes. In other object-oriented languages, classes are definitional con-
structs that define instances and it is these instances which are objects
(i.e., an object instantiates a class but a class is not itself an object). This
is not the case in Smalltalk, in which everything is an object, including
numbers, characters, Booleans, arrays, control blocks, and even methods
and classes. Smalltalk has a rich hierarchy of ready-made classes (230
classes in Smalltalk-80 with 4500 methods) [Mevel and Gueguen, p. 5].

The object purity of Smalltalk extends all the way down to what in
other languages would be the purely syntactic level of control structures.
This makes its syntax idiosyncratic compared with other languages.
Probably the most unfamiliar aspect of Smalltalk syntax for anyone with
a background in procedural languages is the absence of familiar control
constructs such as if–then–else. Instead, control blocks act as
switches. For example, compare a conventional C-style if–then–else
with a Smalltalk conditional block, using a Boolean object and ifTrue:
and ifFalse: messages. Certainly it can appear radically unfamiliar for
anyone coming from a more conventional programming background.

A final idiosyncrasy (although it may seem more natural to newer gener-
ations of programmers brought up on IDEs rather than the command-line)
is that Smalltalk cannot be invoked as a simple language interpreter
or compiler, but is instead part of a complete graphical programming
environment. Smalltalk programs do not compile into conventional exe-
cutables and libraries, with conventional linkage models, but instead
dynamically update the running image of the complete live environment.
The Smalltalk system can thus be modified at run time (unlike a con-
ventional compiled executable). The language (and its associated tools)
are thus embedded in a live, interactive environment, which is consistent
with the origins of the language and its goals (a teaching language for
novice programmers, based on a ‘physical world’ metaphor). Snapshots
of the environment can be created as persistent images.

An irony is that where Smalltalk aims for simplicity, the language
(and the associated ‘object theory’) turns out to be surprisingly complex.
While Smalltalk failed to gain much hold as a teaching environment, it

104 INTRODUCTION TO OBJECT ORIENTATION

found a number of commercial niches (it remains popular for financial
modeling applications) and it has retained its place as an ‘extreme’
language for (far from novice) object purists. A great deal of advanced
object-oriented programming practice and theory, from patterns to the
philosophy of reflection to extreme programming praxis, have originated
in the Smalltalk world.

An interesting Smalltalk spin-off is the Self language, designed by
Randall Smith and David Ungar, which originated at Xerox as a vehicle
for exploratory programming and an experiment in an object-oriented
language not based on classes. Instead of classes, Self is based on the
notion of prototypes. New objects are derived by cloning and modifying
existing prototype objects. Self takes the idea of a language embedded
in an environment modifiable at run time to an (interesting) extreme. By
removing both the theory and the machinery that comes with classes
(inheritance, polymorphism and so on), it removes almost all of the
complexity, while still retaining the power of object-based abstraction.
Self espouses as a central principle that an object is completely defined
by its behavior.26 The corollary is that programs are not sensitive to the
internal representations chosen by objects or, indeed, any other hidden
properties of programs.

C++
C++ originated from a networking-support research project at Bell Labs
in 1979, as an attempt by Bjarne Stroustrup to improve C by adding class
concepts derived from Simula to support powerful but type-safe abstract
data type (ADT) facilities. Indeed those origins are made transparent by
its first incarnation as ‘C with classes’.

The central concept of C++ is that of class [Koenig and Moo 1997].
Classes enable user-defined types that encapsulate behavior and data.
Originally, C++ classes began as elaborations of C structs. While structs
allow structured data to be defined and managed to create user-defined
complex data types, classes extend the idea to include method definitions
as well as data. (C++ retains the notion that a simple class that defines no
methods is synonymous with a struct.)

In its first implementations, C-with-classes and later C++ were imple-
mented as pre-processors, which translated C++ into plain C and then
invoked the standard C compiler. (Again, the history is in the name: the
first C++ implementation was named Cpre) [Stroustrup 1994, p. 27]. In a
general sense, C++ thus includes the C language but C++ is not a pure C
superset (unlike Objective-C, for example).

The goal of C++ is to enable the same level of type safety as is enjoyed
by built-in language types to be enjoyed by user-defined data types. C++

26 See the Self Programmers Reference Manual, p. 55 at http://research.sun.com/self/
language.html.

THE LANGUAGES OF OBJECT ORIENTATION 105

also provides improved type safety for built-in types compared with C, for
example with language constructs designed to support immutable values
(the const construction and the ‘reference’ operator). Its secondary goal
is to do so without compromising either the efficiency of C or C’s ability
to operate (when necessary) close to the machine level.

Compared with Smalltalk, its goals make C++ inherently a hybrid
language, sacrificing purity in favor of pragmatism. C++ is often said to
be not an object-oriented language at all, but a language which can be
used to program in a number of different styles. The more use that is made
of advanced language features, the closer the style becomes to object
orientation. However, there are advanced features which have little to do
with object orientation (as understood in the purer sense of Smalltalk at
any rate), for example the templating support for parametric (also known
as generic) programming styles.

In summary, C++ is a strongly statically typed language with support
for classes.

• Objects are optional, but when used they are based on classes, which,
at one extreme, may be C-like structs and, at the other, may define
pure virtual (polymorphic) objects or may fall somewhere between.

• Objects are created from classes by constructor methods and are
deleted by destructor methods, which may be defined (for complex
classes) or default to standard methods if not defined.

• Objects can control access to their data and methods by declaring
them private, shared or public.

• Values can be made immutable by declaring them const and all
objects can be passed by value, by reference or by pointer.

• Separation of interface from implementation is encouraged but not
enforced (for example, methods may be declared inline and their
implementation specified at the point of definition, within a class
definition). Definition and implementation can be mixed and there
is no requirement for separate interface definition files. Multiple
definitions and implementation specifications can be provided within
a single file. C-style #include preprocessor directives are used to
manage definition inclusion.

• There is no notion of a root class and, therefore, no definite class
hierarchy. Multiple hierarchies can be created within a single program
and multiple inheritance is allowed (so that a single class may inherit
from multiple parents). Advanced object-oriented features such as
reflection are not supported.

Run-time polymorphism is the exception in C++ rather than the rule
and, for all other cases, type checking is performed at compile time.

106 INTRODUCTION TO OBJECT ORIENTATION

Run-time polymorphism is enabled only for classes which are defined
as pure virtual, in which case method dispatch is completed at run time
through a ‘vtable’ (a virtual method dispatch table). Virtual methods use
run-time binding and are not determined at compile time.

C++ retains a conventional C-style execution and linkage model.
There is no automatic garbage collection in C++. Memory management
is the responsibility of the programmer, making the language flexible and
powerful but also dangerous (carelessness leads to memory leaks).

Java

Just as C++ began as an exercise to improve C, so Java began as an
exercise to improve C++ and, in particular, to simplify it, straighten out
inconsistencies and make it less dangerous (for example, proof against
memory leaks) as well as more secure (in the sense of tamper-proof,
the origin of the Java ‘sandbox’ application model) and, therefore, more
suitable for a wider range of devices (in particular, for smaller, consumer-
oriented systems). Perhaps even more importantly, from the beginning
the Java implementation model aimed at maximum platform neutrality
and a write-once–run-anywhere model.

Java language programs are thus compiled into an interpreted inter-
mediate language which is executed by a Java virtual machine (VM)
running on the target hardware. Any Java code runs on any Java VM, thus
providing abstraction from physical hardware. In other words, Java pro-
vides a software environment for code execution rather than a hardware
environment.

In this sense, Java is like the pure object-oriented model of Smalltalk,
which similarly provides a software execution environment based on a
VM. Unlike Smalltalk, Java programs are separable from the execution
environment and its linkage model is more akin to a conventional
executable and library-linkage model.

The VM approach also allows Java to meet its goals of robustness
and security. The VM controls access to the resources of the native
environment, thus enabling a garbage-collected execution environment
(so that memory management is the responsibility of the environment,
not the program), as well as a security sandbox, isolating Java programs
from the native environment (malicious software can at worst only attack
other code executing on the VM and has no access to the VM itself, nor
to the underlying system).

Java programs pay a price for the execution model, in the overhead
of interpreting Java intermediate byte code. However, Java VM technol-
ogy exploiting sophisticated compilation techniques has eroded the raw
speed differences between executing Java byte code on a VM and exe-
cuting native processor instructions, to the point where execution speed
differences are almost insignificant.

THE LANGUAGES OF OBJECT ORIENTATION 107

Java has been less successful at reducing latency of program startup,
however, which requires the complete Java environment to be initialized.
Java has also struggled to slim down its substantial platform memory
footprint. For desktop PCs and ‘single-function’ consumer devices such
as set-top boxes, this is less of an issue than it is, for example, on mobile
phones, where Java competes for resources with native code. Pure Java
solutions such as JavaOS, which replaces the native operating system
with a lightweight Java system sufficient only to host the VM, have not
been successful to date, although the Jazelle project has challenged con-
ventional solutions by providing a Java solution in dedicated hardware.
Jazelle remains a contender in the mobile phone space.

From a language perspective, Java makes an interesting contrast with
C++. It succeeds in its goals of providing an object-oriented language that
is simpler and purer than C++, while avoiding the syntactic eccentricities
of Smalltalk; it remains syntactically quite conventional and close to its
C++ origins.

Like C++, Java is strongly statically typed. Unlike C++ and like
Smalltalk, it is a purely class-based language, with an Object root
class.

• Native number, character and string types are defined by the language;
all other types (including all user-defined types) are objects.

• Every object is an instance of a class and every class is a subclass of
another class, except for the root class.

• Objects are created from classes by constructor methods and are
deleted by destructor methods, which may be defined (for complex
classes) or default to standard methods if not defined.

• Objects can control access to their data and method members by
declaring them private, shared or public.

• Values can be made immutable by declaring them const, and all
objects can be passed by value, by reference or by pointer.

• Separation of interface from implementation is enforced. Every class
consists of an interface definition and an implementation specification
in separate files, with only one class per file.

• Unlike C++, all objects are run-time polymorphic (all methods employ
late binding).

• Garbage collection is automatic. All program resources are cleaned
up and recovered by the VM when a program completes (or is
terminated).

Java’s success has been striking and, in many ways, it is a model
language. However, compared with C++, it is relatively inflexible and

108 INTRODUCTION TO OBJECT ORIENTATION

constrained (by design) and its deliberate isolation from the underlying
device makes it generally unsuitable as a system-level language.

Microsoft has made its own attempt at improving Java and providing a
managed-code solution of its own (for the .NET services platform, which
competes with Java) in the form of C#. As a language, C# contains some
interesting features, including a reflection model. However, the history
of C#, which first emerged as a set of unilateral Java extensions, makes it
somewhat unconvincing as a genuine language advance.

Other Languages: Objective-C, Eiffel and Modula-3
Objective-C was written by Brad Cox in the early 1980s. It has a visible
Smalltalk influence, for example in some of its syntax, and in its adoption
of run-time typing (in contrast to C, C++ and Java). Also unlike C++, it is
a true superset of ANSI C, that is, it is a pure extension of C that leaves
the core of C unrefined.

It was adopted for the NeXTStep, which employed a Mac-based flavor
of Unix, and from there it was inherited by Mac OS X, in which it remains
highly visible. (For native application development, the object hierarchy
remains based on Objective-C, complete with the NeXTStep, i.e. NS,
class-naming convention.) Objective-C was also an explicit influence and,
indeed, the inspiration and model, for the Psion in-house object-flavored
C that preceded the adoption of C++ for what became Symbian OS.

Eiffel emerged at around the same time as Objective-C, that is, after
Smalltalk but before C++ had become dominant. Eiffel was designed as
a commercial, pure object-oriented language intended to compete with
Smalltalk, with a more conventional syntax. It included a comprehensive
and pure object-oriented class library, including ready-to-go container,
collection and iterator classes, well in advance of anything comparable
in the C++ world. (The C++ Standard Template Library emerged well
after the C++ language.)

In the Pascal lineage, Modula-3 evolved by way of Modula-2, adding
object-oriented features and garbage collection.27 Both Eiffel and Modula-
3 are influenced by Simula, but while Simula and C++ allow a choice
between static and dynamic binding, with dynamic binding provided via
virtual methods, Eiffel and Modula-3 offer a pure polymorphic model
with universal dynamic typing and run-time binding, for which run-time
efficiency is the trade-off.

In other respects, both languages share similarities with C++. Classes in
these languages are elaborations of the concept of a record, a description
of a list of fields together with the methods that operate on them (just
as C++ classes are elaborations of the concept of a C struct; structs and
records are, in essence, synonymous). Again like C++, both Eiffel and
Modula-3 allow multiple inheritance.

27 According to www.m3.org, the language was first defined in 1989.

Part 2
The Layered Architecture View

5
The Symbian OS Layered Model

5.1 Introduction

This book explains the architecture of Symbian OS using the system
model (see the fold-out and Figure 5.1), which represents the operating
system as a series of logical layers with the Application Services and UI
Framework layers at the top, the Kernel Services and Hardware Interface
layer at the bottom, sandwiching a ‘middleware’ layer of extended OS
Services.

In a finished product, for example a phone, Symbian OS provides
the software core on top of which a third-party-supplied ‘variant’ user
interface (UI) provides the custom GUI with which end-users interact and
which directly supports applications. Typically, the variant user interface,
including the custom applications supplied by the phone manufacturer,
is considerably bigger than Symbian OS itself.

Beneath the operating system, a relatively small amount of custom,
device-specific code (consisting of device drivers and so on), insulates
Symbian OS from the actual device hardware.

5.2 Basic Concepts

The remainder of this chapter summarizes the key concepts of the system
model and then describes the operating system layer by layer, starting at
the top with the UI Framework and working down to the Kernel Services
and Hardware Interface layer.

The basic approach taken by the model is to decompose the operating
system into layers, and to further decompose the layers as necessary
into blocks and sub-blocks before finally arriving at collections of
individual components. Layers are the highest level abstraction in the
model; components are the lowest level abstraction, the fundamental

112 THE SYMBIAN OS LAYERED MODEL

Symbian OS

Base
Services

Application
Services

Kernel
Services &
Hardware
Interface

OS
Services

UI
Framework

Figure 5.1 Symbian OS layered system model

units of the model; blocks and sub-blocks decompose layers by func-
tionality – roughly speaking, by broad technology area. The key concepts
used by the system model therefore are layers, blocks and sub-blocks,
component collections and components.

Components provide the essential mapping from the logical model to
the concrete system. While layers, blocks and sub-blocks are essentially
logical concepts, components are physically realized in software, typ-
ically consisting of multiple files in the operating system delivery (e.g.
source code files including test code; built executables including libraries;
data and configuration files; build files; and documentation). However,
from the perspective of the model, components are treated atomically
and constitute the smallest units of architectural interest.

The complete component set shown in any particular version of the
model represents the superset of all components delivered by that release
of the operating system and intended to run on any Symbian OS device,
whether a phone or some other product, a development board or other
test hardware, or an emulator build of the system running on a host
operating system (such as Microsoft Windows).

Test components and tools are considered outside the scope of the
Symbian OS model, although they form an essential part of the model
of the complete delivery of the operating system as shipped by Symbian

BASIC CONCEPTS 113

to customers. (They are shown in a full product model as the Symbian
Toolkit.)

Because the model reflects the concrete system, a new version of
the model is published for each release of Symbian OS. The model has
also evolved in its own right since the first versions were published for
Symbian OS v7, in particular to bring it closer to the concrete system.

Layers

The model adopts a conventional software architecture interpretation of
layers [Buschmann et al. 1996]: each layer abstracts the functionality of
the layer beneath and provides services to the layer above.

Within each layer, components are either grouped directly into col-
lections according to functionality (and to some extent also according
to collaborations and shared dependencies); or are grouped into collec-
tions within blocks and possibly sub-blocks, which are broadly based on
technologies.

The goal of the model is to impose manageable granularity onto
the operating-system architecture, to make it easier to understand and
to navigate. Hence, layers are useful approximations of structure, not
precise specifications of architectural relationships. There is no concrete
mechanism that instantiates layers in the existing system (i.e. there is no
make file or equivalent).

However, the broad principles of the layering hold good: although
there are some exceptions, dependencies in general flow downwards from
higher layers to lower layers; and dependencies in the reverse direction
are considered to be anomalies. In general, services are abstracted
through the layers, with higher layers abstracting the services of lower
layers, although for reasons of efficiency there is no requirement that
layers only access the services of the layer immediately below them; thus
the functionality of lower layers is accessible to all layers above.

One reason for showing the system as layered is to show how sys-
tem functionality is increasingly abstracted away from hardware (at the
bottom) and towards users (at the top); successive groups of tasks are
increasingly abstracted from more basic tasks. A widely accepted princi-
ple for creating a layered model of a system is the ‘inverted pyramid of
reuse’, characterized by the slogan ‘Keep the base layer slim’ [Buschmann
et al. 1996, p. 39].1

Layers in the system model are defined with the following guidelines
in mind:

1 ‘Layers’ is a well known architectural pattern, the best known example probably being
the OSI Seven-Layer Model. The Layers pattern is described and discussed in [Buschmann
et al. 1996].

114 THE SYMBIAN OS LAYERED MODEL

• all the services provided by a layer are at a similar level of abstraction

• a layer is relatively logically cohesive and relatively self-contained
(both inexact terms, used with commonsense meaning)2

• a layer provides services to higher layers (‘upwards’)

• a layer delegates tasks to lower layers (‘downwards’)

• dependencies flow consistently from higher layers to lower layers (but
dependencies are allowed sideways within layers)

• requests travel downwards

• notifications travel upwards

• higher layers abstract the services of lower layers away from machine-
centric services towards user-visible functionality

• a layer provides services as far as possible via well-defined exter-
nal interfaces, which can be separated from the internal interfaces
available within the layer

• a layer could be a delivery unit (although, in the current system, no
layer is delivered independently).

Blocks

A block or sub-block in the system model (see Figure 5.2) roughly
corresponds to a ‘technology domain’.

Blocks are used as a pragmatic way of partitioning layers into mean-
ingful divisions according to commonsense criteria, with sub-blocks
providing finer grained divisions for convenience. There is no concrete
mechanism that instantiates blocks or sub-blocks in the existing system
(i.e. there is no make file or equivalent).

Blocks in the system model are defined with the following guidelines
in mind:

• a block is relatively logically cohesive and relatively self-contained

• a block is relatively cohesive and relatively decoupled (measured in
terms of the coupling of the component collections it contains)

• a block provides services to blocks in the same layer (‘sideways’) or
to blocks or component collections in higher layers (‘upwards’)

• a block delegates tasks downwards or sideways

2 Cohesion and coupling are standard concepts used to analyze software complexity.
See, for example, [Henderson-Sellers 1996] and the influential papers by Lionel Briand and
others at the Fraunhofer Institute, such as [Briand et al. 1997].

BASIC CONCEPTS 115

Java ME

Base
Services

Application
Services

Kernel
Services &
Hardware
Interface

OS
Services

UI
Framework

Comms Services
Generic OS

Services

Connect-
ivity

Services

Multimedia
and

Graphics
Services

Networking
Services

Short Link
Services

Telephony
Services

Comms
Framework

Kernel Architecture

Figure 5.2 Block decomposition in the system model

• a block ‘consolidates’ the sum of services provided by the component
collections it contains into a technology domain

• a block is not a delivery unit – it makes sense to partially deliver,
update or remove a block.

Components and Component Collections

Components are the basic entities of the model and the smallest units
of architectural interest. Importantly, components have a concrete inter-
pretation in the source system, corresponding approximately to parts of
the source tree controlled by a single high-level build file (an MRP file
in the Symbian build and delivery idiom but, more generally speaking, a
high-level make file).

Components are also the basic units of optionality in the system,
the level at which common, optional and replaceable functionality is
defined and at which it may be (respectively) included, removed or
re-implemented by the respective licensees of Symbian OS.3

Component collections group individual components into coherent
sets of collaborating components. In principle, a component collection

3 For a more detailed discussion, refer to Appendix A.

116 THE SYMBIAN OS LAYERED MODEL

delivers a complete, discrete and identifiable subset of system functional-
ity. In practice, component collections are derived from a ‘commonsense’
analysis of existing system functionality, as well as the physical organiza-
tion of the source tree.

There is no concrete mechanism that instantiates component collec-
tions in the existing system (i.e. there is no make file or equivalent).

Component definition follows these principles:

• a component is the smallest architectural unit of the system

• a component is understood as a set of implementation units that are
built together to provide a discrete, reusable piece of the system

• in concrete terms, a component is identified with a single MRP file that
ensures alignment with build and delivery mechanisms (in versions
of the model up to Symbian OS v8, a component is identified with a
high-level bld.inf file rather than an MRP file.)

Components should also obey the following guidelines and display
these properties:

• a component is relatively cohesive (in essence it has been designed
as a discrete part of the system)

• a component is a reusable unit of the system

• a component is the smallest unit of architectural significance and the
finest grained unit of description, management and distribution of the
system

• a component is implemented by at least one and possibly many
collaborating sub-units

• no part of any component is shared by other components

• all interfaces defined at higher levels of the model are implemented
by components.

In all, the system model for Symbian OS v9.3, the latest version
of the operating system at the time of writing, defines approximately
250 individual components.4 However, there is still a significant degree
of idealization in the component definitions and, in many cases, the
detailed mapping from the model to the system as built and delivered
is approximate. In other words, the model serves as a useful logical

4 Appendix A documents 258 components, for example, and does not include Toolkit
components.

LAYER-BY-LAYER SUMMARY OF THE SYMBIAN OS V9.3 MODEL 117

description, but cannot necessarily be unambiguously followed down to
file level. (Improving alignment is an ongoing task.)

Component collections are defined with the following guidelines in
mind:

• a component collection is relatively cohesive and relatively decoupled
(in terms of the coupling of the components it collects)

• a component collection provides services to other collections within
its block or layer (‘sideways’) or to blocks or component collections
in higher layers (‘upwards’)

• a component collection delegates tasks downwards or sideways

• a component collection groups logically related functionality

• a component collection exposes the interfaces provided by the com-
ponents it collects

• no component collection is shared between blocks or layers

• no component is shared between component collections

• a component collection is not a delivery unit – its individual compo-
nents may be delivered, updated, or removed singly.

5.3 Layer-by-Layer Summary of the Symbian OS v9.3
Model

A high-level view of the system model for Symbian OS v9.3 is included
in this book as a fold-out diagram.

All releases of the operating system from Symbian OS v7.0 to Symbian
OS v9.3 share the same layer decomposition.

• UI Framework layer: The topmost layer of Symbian OS provides the
frameworks and libraries for constructing a user interface, including
the basic class hierarchies for user interface controls, and other
frameworks and utilities, including concrete widget classes used by
interface components.

• Application Services layer: This layer provides support independent
of the user interface for applications on Symbian OS. These services
divide into three broad groupings:

◦ system-level services, such as basic application frameworks, used
by all applications

118 THE SYMBIAN OS LAYERED MODEL

◦ services providing technology-specific logic, such as messaging
and multimedia protocols, that are used by multiple classes of
application

◦ services that support specific individual applications, such as
personal information management (PIM) and office applications.

Also included are a number of application engines that are used and
extended by a licensee.

• Java ME: In effect, Java spans the UI Framework and Application
Services layers, abstracting (as well as implementing) elements of
both for Java applications. Symbian’s Java implementation is based on
Java ME MIDP 2.0 and CLDC 1.1. Java support has been included in
Symbian OS from the beginning, but the early Java system was based
on Personal Java and JavaPhone. A standard system based on Java ME
first appeared in Symbian OS v7.0s. Since Symbian OS v8, the Java
VM has been a port of Sun’s CLDC HI.

• OS Services layer: The ‘middleware’ layer of Symbian OS provides
the servers, frameworks and libraries that extend the bare system
into a complete operating system. The services are divided into four
major blocks that provide all technology-specific but application-
independent services:

◦ generic operating system services

◦ communications services

◦ multimedia and graphics services

◦ connectivity services.

• Base Services layer: The foundational layer of Symbian OS provides
the lowest level of user-side services, depending only on the operating
system kernel (and related components), which it extends into a
useable (but minimal) system. In particular, no services higher than
those in the Base Services layer are required for a minimal base port
to new hardware (in other words, a minimal base port requires only
the two lowest layers of the system).

• Kernel Services and Hardware Interface layer: The lowest layer of
Symbian OS contains the operating system kernel itself and supporting
components that abstract the interfaces to the underlying hardware,
including logical and physical device drivers and variant support
that implements pre-packaged support for the reference hardware
platforms. Releases up to Symbian OS v8 use the original Symbian
OS kernel, Kernel Architecture 1 (EKA1 kernel). In Symbian OS v8.1b
and from Symbian OS v9, all systems are based on the new Kernel
Architecture 2 (EKA2) real-time kernel.

HISTORY 119

5.4 What the Model Does Not Show
The System Model shows a static view of the system, in effect a source
view based on architectural relationships and abstracted from the details
of what code appears in which files. It is not, therefore, a source tree or
repository view.

The model also reflects only static (i.e. build-time) dependencies. It
does not model processes, the memory contexts that are created on a
device when the operating system runs, the threads that run within those
memory contexts, or the services that those threads provide.

5.5 History

The system model was first published internally in 2004 (and therefore
somewhat after the fact), as a description of Symbian OS v7.0. It was
almost immediately updated for Symbian OS v7.0s. That model was first
published for a wider audience in [Harrison 2004].

Since then, a revision of the model has been published for each release
of the operating system. Since Symbian OS v9, the model has been used
in the broader design and specification processes that are part of all
operating system releases, providing a design base for each release and
supplying the build definition to the software build system.

6
The UI Framework Layer

6.1 Introduction

The UI Framework layer is the topmost layer of Symbian OS (see
Figure 6.1) and the immediate interface to the ‘variant’ user interface
supplied by the manufacturer on a phone.

Symbian OS is delivered to licensees in a ‘headless’ configuration, with
a minimal test user interface which is neither complete nor of production
quality. (Known as TechView, it is considered to be a test and validation

UI Framework

Base
Services

Application
Services

Kernel
Services &
Hardware
Interface

OS
Services

UI
Framework

Figure 6.1 UI Framework layer in the system model

122 THE UI FRAMEWORK LAYER

tool and is not, therefore, part of the operating system proper, although
in the past it has been exposed to developers through ‘preview’ SDKs.)

Mobile phone manufacturers who license Symbian OS either replace
the test user interface with a production quality user interface of their
own, or license a suitable variant user interface. Typically in the latter
case, the user interface is pre-integrated and pre-tested with Symbian OS,
to simplify the task of bringing a device to market.

Currently two user interfaces are available for licensing: S60 (from
Nokia) and UIQ (from UIQ Technology AB). Another important user
interface is the MOAP user interface developed in Japan by DoCoMo’s
FOMA consortium of handset vendors, and used by consortium vendors
on FOMA phones.

• S60 is developed and licensed by Nokia. It ships on Nokia phones
based on Symbian OS. Lenovo, LG and Samsung, among others,
license and ship S60 phones based on Symbian OS. Licensees have
also included Panasonic, Sendo and Siemens.

• UIQ is developed and licensed by UIQ Technology AB (until recently
a fully-owned, Swedish-based Symbian subsidiary, now acquired by
Sony Ericsson). Sony Ericsson, Motorola and Arima license and ship
UIQ phones based on Symbian OS.

• MOAP is developed by the FOMA consortium in Japan as part of the
DoCoMo common software platform for 3G FOMA handsets. FOMA
members, including Fujitsu, Mitsubishi, Sony Ericsson and Sharp, ship
MOAP phones based on Symbian OS.

• Series 80 and Series 90 were developed by Nokia but are not
licensed to other phone vendors. Series 80 was found on the Nokia
Communicator family of devices based on Symbian OS. Series 90 can
still be found on the Nokia 7710 phone, but has been merged with
S60 for future devices.1

6.2 Purpose

The UI Framework layer is the foundation for building customized user
interfaces on top of Symbian OS and is the immediate interface between
Symbian OS and the variant UI layer.

The UI Framework layer provides the frameworks which custom user
interfaces extend, the class hierarchies from which controls specific to

1 Interestingly, Series 90 began life as the Hildon user interface, developed by London-
based Mobile Innovation, now part of Macromedia. Hildon has since been ported as a
widget set to the GNU GTK+ user interface toolkit, in which form it appears on Nokia’s
Linux-based 770 Internet Tablet.

OVERVIEW 123

the user interface are derived, and additional supporting components
used primarily by user interfaces. It provides some specialist generic
frameworks, for example animation, which are used by user interfaces
but which are also available directly to applications.

The basic graphical and behavioral user interface abstractions are
encapsulated in UI Framework layer components such as the control
hierarchy, window interactions and graphics contexts, which determine
basic application behavior.

The UI Framework layer is also used by the Java implementation,
although Java also makes quite heavy direct use of some lower-level
graphics frameworks. (Any such dependencies are transparent to Java
applications, which see only Java APIs.)

6.3 Design Goals

The UI Framework layer is intended to enable user interface differentiation
without fragmentation. This requires balancing the sometimes conflict-
ing goals of providing a common, consistent functional and behavioral
core to all user interface variants in order to provide a consistent devel-
opment target for application writers while also providing the greatest
possible flexibility and customizability to enable maximum user-interface
differentiation for phone vendors

The design goals are that:

• the system should be a platform

• the different user interfaces should be distinct platforms.

6.4 Overview

Conceptually, the UI Framework layer has become thinner (functionality
has migrated upwards) as the user interfaces built on top of it have become
larger and richer; rich user-interface functionality is overwhelmingly in
the user-interface variants.

However, important core user-interface functionality is retained in the
framework base classes, from which the user interface variants derive.
The framework approach means that many of the key user-interface
design decisions (the basic user-interface architecture and broad division
of responsibilities, managing input methods, the way user interfaces
are customized, the basic control hierarchies, and some of the basic
GUI application architecture and behavior) are encapsulated in the
frameworks, which ‘plumb in’ the underlying operating system support for
event handling (including all input–output events), window management
and drawing, font and graphics support, and so on.

124 THE UI FRAMEWORK LAYER

• The Uikon framework provides abstracted (i.e. high level or generic),
customizable control of the overall GUI look and feel and encap-
sulates the main classes used to create applications. The underlying
implementation of the generic application architecture is provided by
lower-level frameworks, such as the Application Services layer.

• The Control Environment hierarchy (widely known as CONE) provides
generic screen controls (‘widgets’) that are free of a look and feel and
policies.

• FEP Base, the front-end processor framework, provides input-event
capture (by key, pen or voice) and support for language preprocessing
engines, for example, for handwriting recognition and exotic script
input.

Supporting components provide additional graphical and other utilities
(font, color and drawing support for user interfaces, including graphics
effects such as fading and animation), as well as some useful frameworks
that are used by both user interfaces and applications:

• The UI Graphic Utilities and Graphics Effects components contain
common, general-purpose utilities used by user interfaces, for example
drawing window borders and fading effects.

• The Animation and BMP Animation components provide frameworks
for window animation and bitmap-based and sprite-based animation
including animated clocks and animated user-interface elements.

• The Grid framework is a legacy framework specifically supporting
cell-like (spreadsheet-style) layout.

Additional support for user-interface customization is included as part
of the toolkit delivery (outside the scope of this book), which provides
components that customizers may choose to re-implement as part of the
variant user interface.

6.5 Architecture

Uikon and Control Environment (CONE) are the two most significant
components in the UI Framework layer from an architectural point of
view, since they determine the overall user interface architecture. Both
also provide essential application support.

For most purposes, applications do not use Uikon directly, but instead
use a Uikon-derived custom framework specific to the user interface
(for example, Avkon in S60 and Qikon in UIQ). However, there are

ARCHITECTURE 125

exceptions in which applications directly use Uikon; for example, appli-
cations directly use the many useful static methods of the user interface
Environment object of class CEikonEnv.

The Control Environment is used both directly and indirectly by appli-
cations. Frequently the main application view is derived directly (from
CCoeControl or MCoeView), bringing all the flexibility of the generic
user interface control framework directly to it. Indirectly, applications use
the Control Environment through the custom framework or the custom
control set of the user interface variant.

Uikon
Uikon can be thought of as the common core on top of which are built
the variant user interfaces that actually appear on phones.

Uikon provides a framework for creating user interfaces including
the base classes which interface to lower-level system services such as
application launching; key mapping and command handling; alarms and
notifications; and graphics services.

Uikon supplies the base classes from which user interface variants
derive essential application classes (Application, Document and AppUI)
and encapsulates the relationships between them.

Uikon supplies the factory classes used by the user interface variant
to create the hierarchy of custom concrete user interface control classes,
including list boxes, scroll bars, buttons, dialogs and popups. (Basic
menus are not controls but windows.)

Uikon loads a static library implementation (interface defined by the
UI Look and Feel component) of the core library look-and-feel (LAF)
component, which is supplied by the user interface variant. The UI
Look and Feel component defines a standard set of methods which the
variant user interface implements to define the concrete behavior of user
interface elements, for example, layout and behavior of windows; choice
of fonts and bitmaps; default location of resource files; system font and
text rendering defaults; and the look and feel of toolbar, dialog, button
and button container classes. The Uikon Error Resolver Plug-in is a small
component that is used by the user interface variant to map system error
codes to localized strings. Strictly speaking it is not a plug-in, but a
resource file which is built as a dummy DLL.

Uikon provides a server stub which is run to launch other servers
expected by the framework or by applications (the alarm server, notifier
server, and server-side support for user-interface status panes) and to load
implementations specific to a user interface variant for password and
alarm notifications. (The Notifier is run inside the Uikon server thread to
ensure that memory is always preallocated for those notification dialogs
which must never fail, for example the ‘Out of memory’ dialog itself.)

Uikon provides servers to manage backup and shutdown (used to
close running applications when the user starts a backup, and to handle

126 THE UI FRAMEWORK LAYER

shutdown when the user switches off the device). In earlier releases of
the operating system (up to Symbian OS v7.0) Uikon also supplied a
core library of concrete controls and dialogs, EikCoeControl; these
are now supplied in the customization toolkit, and may be selectively
re-implemented by the user interface variant or discarded.

The Control Environment (CONE)

Controls in Symbian OS are window-using, possibly nested, rectangular
screen areas that accept user input and other events. (Windows do not
necessarily own any controls; menus and sprites, for example, do not.)

Events (such as redraw events, standard events and foreground –
‘focus’ – events) are supplied by the Window Server to the Control
Environment framework.2 Of these, key, pointer and draw events are
routed by the Control Environment to controls. Additional events may
be generated by controls themselves, including change of focus events
between controls. In effect, controls bring together:

• screen and window behavior as controlled by drawing, redrawing
and other events

• graphics states, for example, color, font, brush and other settable
attributes

• user-input handling (the Window Server serializes system events, such
as key presses and pen taps, and delivers them to the currently active
control of the foreground application).

The Control Environment defines the base classes that encapsulate
these basic behaviors and the relationship between controls and their
environment and define abstract controls. Applications can derive their
own types of controls directly or use derived classes provided by Uikon
and the user interface variant. The Control Environment, in effect, is
the abstract middle layer between the low-level windowing functionality
provided by the Window Server and the concrete user-interface classes
provided by Uikon and libraries specific to the user interface variant.

• The CCoeControl class is the base class for derived controls.

• The CCoeEnv class encapsulates the application session with the
Window Server, as well as providing utilities to manipulate the
graphics state and for other system interactions (for example, it creates
an application session with the File Server). Every application owns
a singleton object of this class derived from CEikonEnv (which is

2 Note that Window Server focus events are not the same as ‘focus events’ as understood
by controls.

ARCHITECTURE 127

implemented as an active object responsible for routing input-event
messages from the Window Server to the application framework
AppUi class). Typically, the object is accessed from the application
framework classes through the derived CEikonEnv class. From an
application control, the object’s methods are accessed through the
control’s iCoeEnv member.

The Control Environment also defines the user interface base class
CCoeAppUi, providing the application user interface framework (bro-
kered to applications via Uikon and the user interface variant) that
manages input events. Key events are managed in the context of the stack
of application controls (assigning a key event to the appropriate control).

Front-End Processor Framework

The Front-End Processor (FEP) Framework provides the abstractions that
implement user-input capture and preprocessing, for example for hand-
writing recognition or multitap input systems, in order to capture, process
and map user input events onto standard key events.

The FEP Framework provides the base classes for creating FEPs and
defines the plug-in interface. The FEP Framework extends Control Envi-
ronment base classes and is implemented as a DLL that is statically linked
to by code which wants to derive from it. The Control Environment
manages the creation, ownership and destruction of FEPs. FEPs are also
available to Java and OPL applications.

FEP implementations are based on the CCoeFep class, which owns
a high-priority, invisible control loaded by the Control Environment.
Controls are organized as a priority queue. Since FEPs have high priority
they receive keyboard events before (nearly all) other controls. The
FEP captures and preprocesses sequences of input events which are
then returned to the control stack as new events for consumption by
lower-priority controls.

Only one FEP instance is allowed per application, since it must run
within the application process and thread (in order to access the control
stack). A FEP can exist on top of an application without the application
being aware of it.

Animation

The animation framework is used to create bitmap-based and sprite-based
animations. Animations are created as framework plug-in DLLs (with the
extension ANI), which are recognized and loaded directly by the Window
Server. While bitmap-based animations are rectangular and restricted to
a single window (hence they are also known as ‘window’ animations),
sprites can have irregular shapes and can overlap windows.

128 THE UI FRAMEWORK LAYER

Because animations are run inside the Window Server thread, they run
with higher priority than would otherwise be possible for any application
thread, solving possible problems of slow running due to the high latency
of redrawing.

Animations have been used since the early days of the Symbian OS
and the framework still contains visible legacy of this, for example in the
choice of timing periods.3

6.6 A Short History of the UI Architecture4

As early as 1997, when the Nokia Communicator project was already
underway in Symbian, proposals were made for separating Eikon’s look
and feel (LAF) from its basic functional machinery. In the end, the
Communicator project, like other early licensee projects, settled for
adaptation (branching the codeline). However, it was clear that this could
only be a short-term solution and that a principled approach was required
to support the numbers of licensees and devices which were envisaged.

Reference Designs

As part of the Symbian OS v6 release project, therefore, the earlier look-
and-feel separation proposals were revived. The result was Uikon. Its
goal was to create a modular, streamlined and extensible user interface
framework that would support multiple user interface styles whose look
and feel could be customized from a common base. This approach
became a central part of the DFRD strategy, which proposed to create
reference designs for a generic product matrix that would be licensed to
customers as the basis for real products.

Recognizing that each licensee had a distinct product philosophy, the
reference designs in effect defined a set of distinct products. Reference
designs specified the basic use cases and device style (classic phone or
PDA; pen or keyboard input) and physical form factor (tablet or clamshell,
as well as screen size, resolution and orientation), and were intended
to be followed up with reference implementations including a reference
user interface based on custom extensions to Uikon.

Uikon Architecture Evolution
The Uikon architecture consists of a common functional core (Uikon),
a standard but non-core supporting library (EikStd), a graphical utility
library (EGUL), and a LAF customization framework (UikLaf).

3 See Douglas Feather’s Window Server chapter in [Sales 2005].
4 See also Chapter 16.

COMPONENT COLLECTIONS 129

Early on, the implementation of common dialogs and controls was
split between a core set and an optional set, with printing, file browsing,
infrared beaming, and other similar functionality classed as optional.

• Core modules were intended for use unchanged.

• Standard modules were based on the Eikon baseline but were evolved
in collaboration with the DFRD teams (Crystal, Quartz and Pearl).

• DFRD-specific libraries were created by DFRD teams.

Initially, ‘mixin’ classes were used to enable control implementations
to reside in LAF-specific custom classes. Invoking Set() functions in
the mixin classes loaded the custom library dynamically and allowed the
core libraries to ‘set’ the custom concrete implementations.

Largely for performance reasons, this evolved into a stub library model
in which the core links statically against a stub library which then loads
and initializes the concrete custom library (or libraries, since there may
be several). The advantage was that only one copy of the custom DLL was
now loaded and one-off initialization was also faster than on-demand
initialization. As well as providing a custom library, each variant user
interface also implements a LAF module DLL that supplies the specific
look-and-feel implementation for the Uikon core, to achieve a consistent
look and feel across core, standard and custom libraries. The custom
library replaces the Uikon internal library, UikLafGT.5

In its current architecture, Uikon principally provides application base
classes for use by a variant user interface implementation. In early
Symbian OS releases, it also provided a core set of controls (such as
window borders) and dialogs (standard information and query dialogs).

Additional (optional) standard controls and dialogs, which are directly
modified by customizers to form part of a variant user interface, are
supplied in the UI Toolkit (part of the larger Symbian Toolkit delivery)
and are not described here. Each variant user interface also defines its
own custom controls, which vary between user interfaces.

6.7 Component Collections

The UI Framework layer contains two collections of components, as
shown in Figure 6.2.

UI
Framework

UI Application
Framework

UI Support

Figure 6.2 Component collections in the UI Framework layer

5 ‘GT’ is a legacy Symbian internal name that originally stood for Generic Technology.

130 THE UI FRAMEWORK LAYER

UI Application Framework Collection

The UI Application Framework collects the main frameworks related to
user interfaces (see Figure 6.3).

It provides generic user-interface framework components that support
user-interface customization. Additionally, it provides support directly to
applications.

Table 6.1 UI Application Framework Components

Component Name Development Name

Uikon UIKON

Control Environment (CONE) CONE

FEP Base FEPBASE

UI Look and Feel UIKLAFGT

Uikon Error Resolver Plug-in ERRORRESGT

• The Uikon component provides a concrete framework for user inter-
face and application creation. Applications, typically, should not
derive directly from Uikon classes. Instead, they should derive from
equivalent classes provided by the variant user interface, because
these provide the appropriate look and feel and other device-specific
behavior. However, applications implement virtual methods inherited
from Uikon and call inherited methods.

• The Control Environment (CONE) provides a control hierarchy and
environment. It provides policy-free abstract controls (interactive
screen elements) and control context, as the basis for interaction
between the user and the application. It includes the application
interface to user and keyboard events and View Server encapsulation.
Derived concrete controls are provided by the variant user interface.
All applications also use CONE (i.e. CCoeEnv and CCoeControl)
directly within the application framework context.

UI Application Framework

Uikon
UI

Look &
Feel

Control
Environ-

ment

FEP
Base

Uikon
Error

Resolver
Plugin

Figure 6.3 UI Application Framework collection

COMPONENT COLLECTIONS 131

• The FEP Base component provides base classes for creating FEPs.
FEPs selectively intercept and preprocess user input events, which
are returned to the system as simplified events for handling by
applications, to enable keyboard mapping, multitap keyboard input,
handwriting recognition, voice recognition and other input prepro-
cessing.

• The UI Look and Feel component defines the look-and-feel properties
of the user interface. It defines standard methods (i.e. an API) for
which user interface customizers provide an implementation in the
UikLaf library of a variant user interface. The role of the user interface
LAF component is to provide other parts of the application framework
with a way of requesting look-and-feel information from a variant
user interface, including the layout and behavior of windows; which
bitmaps and fonts to use; and the location of various resource files.

• The Uikon Error Resolver Plug-in is a resource file that maps system-
error numbers to helpful error-text strings, which a variant user
interface extends and customizes. Errors are flagged when a user
interface thread leaves normal execution inside the active scheduler
of an application.

UI Support Collection

UI Support (see Figure 6.4) collects miscellaneous frameworks, utilities
and libraries that are used by variant user interfaces and which, in some
cases, may also be used directly by applications.

• The Graphics Effects component supports flicker-free animation of
windows and window contents and composition of animation effects
with other graphics objects, to enable GUI special effects (such as
animated icons and ‘exploding’ menus) and moving and resizing
windows (known as ‘transition effects’).

• The UI Graphics Utilities component consists of libraries used by
user-interface framework components, the variant user interface and
applications. They provide color, font, icon, text, drawing, and num-
ber conversion utilities. The utilities include those to query the relative

UI Support

Animat-
ion

BMP
Anim.Grid Clock

Graph-
ics

Effects
UI

Graphic
Utilities

Figure 6.4 UI Support collection

132 THE UI FRAMEWORK LAYER

Table 6.2 UI Support Components

Component Name Development Name

Graphics Effects GFXTRANSEFFECT

UI Graphics Utilities EGUL, NUMBERCONVERSION

BMP Animation BMPANIM

Animation ANIMATION

Grid GRID

Clock CLOCK

positions of nested rectangles, to draw borders, to store color schemes
and map logical to physical colors, to perform various font manipu-
lations, to perform number conversions, to find pixel widths of text
objects and to package icons as bitmap-plus-mask pairs.

• The Animation component supports window- and sprite-based frame-
sequence animation. It enables animated effects to be included in the
normal drawing of a window by a client or to be managed server side
as a sprite. It also defines a plug-in interface enabling new animation
types to be created and loaded as plug-ins directly into the Window
Server. Hence, they run in its high-priority thread rather than in an
application thread. Sprites can have irregular shapes and can overlap
windows. Window animation is used, for example, to create fade
effects.

• The BMP Animation component is a Window Server plug-in utility
that enables bitmap-based frame-sequence animation. Bitmap-based
animations are rectangular.

• The Grid component is a simple layout engine providing presenta-
tion, print preview and printing for complete spreadsheets and for
spreadsheet cells, rows and columns. It is now considered a legacy
component.

• The Clock component is a shared library for creating animation-based
digital and analog clocks, used by user interfaces and applications.

7
The Application Services Layer

7.1 Introduction

The Application Services layer provides user-interface-independent sup-
port for applications on Symbian OS (see Figure 7.1). Broadly speaking,
services whose clients and users are specifically intended to be applica-
tions or application engines (rather than system components and servers)
can be found here. A number of essential application frameworks are also
included. Note that the Java ME implementation also uses the frameworks
and services found in the Application Services layer.

Base
Services

Application
Services

Kernel
Services &
Hardware
Interface

Application Services

OS
Services

UI
Framework

Figure 7.1 The Application Services layer in the system model

134 THE APPLICATION SERVICES LAYER

Services range from those used by all applications (basic application
frameworks), to those providing technology-specific logic (for example,
support for device management, messaging and multimedia protocols),
to services targeting specific individual applications (PIM and office
applications support).

Test or ‘reference’ user interfaces, where required, are supplied in the
customization toolkit for licensees but are replaced in licensee products
(including SDKs) and are not described here.

7.2 Purpose

The Application Services layer builds on the underlying services of
the operating system to provide services intended primarily for use by
applications and their engines, and includes some essential application
frameworks which are used by all applications, either directly or as
mediated by higher-level frameworks. The Application Services layer is
also used by Java ME components.

The Application Services layer provides services used by all appli-
cations but mediated by the UI Framework layer and the variant user
interface above it, for example, application installation and launching,
view switching, and the basic application architecture relationships. It
also provides:

• generic services supporting all application types, for example, text
rendering and MIME-based content recognition and handling

• technology-specific application support; for example, Versit support
(vCard and vCal); alarms for PIM-type applications; and Internet, web
and multimedia session protocols

• application-specific services, for example, engines and plug-ins for
PIM and office applications; device management; and provisioning.

7.3 Design Goals

From the beginning, Symbian OS has been designed as an application
platform. In particular, an important goal has been to make it possible to
write rich and compelling applications for pocket-sized, mobile devices
(small screen, small ROM and RAM footprint, low power, connected but
not ‘tethered’). The early system architecture abstracted the application
framework as a generic service used by all applications and supplied
engines for the built-in application suite independent of the user interface,
and layered both beneath the frameworks which supported the GUI-
specific aspects of the user interface.

OVERVIEW 135

The basic separation of applications into user interfaces and engines
and, in particular, the adoption of an MVC-like approach has a long
history in Symbian OS. As the system has evolved, there has been an
increasing distinction between engines and services. Services are under-
stood as providing generic support for working with data models, for
example, generic recognizers, translators and protocol handlers for typed
data at the application level. Engines are understood more narrowly as
the application-specific logic forming the part of an application imple-
mentation that is independent of the user interface. According to this
definition, application services would be expected to expose Symbian
OS interfaces but application engines would not.

Applying this definition to the system has the effect of moving function-
ality out of engines (which become narrower in scope and more specific
to an application, user interface or vendor), while increasing the common
functionality available to the wider set of applications on the phone. This
is the direction in which the operating system has been evolving. In the
latest operating system releases therefore, the Application Services layer
supports application engines but does not include them (except for legacy
engines).

There are good reasons for this evolution. Compared with its begin-
nings, Symbian OS now supports a wider range of devices in diverse
markets and geographies. Increasingly, the APIs provided by the generic
engines have been perceived by licensees as being too broad (providing
too much functionality), while not delivering functionality required in
specific markets, for example in Japan and the Far East. Supplying generic
engines, with APIs big enough and comprehensive enough to support all
application implementations, risks fragmenting the platform rather than
unifying it, since licensees are more likely to choose to provide their own
specialized (and small) engines than reuse bulky generic engines which
nonetheless need extending. Generic engines, in other words, can prove
to be a false economy, neither delivering the expected benefits in time to
market nor avoiding platform fragmentation.

Providing rich services is a more effective, more generic, more granular,
and more customizable way of increasing the capabilities of the platform
while serving licensees better.

Some services and application engines may now be considered redun-
dant. For example, Bluetooth profiles are more relevant to phones than
WYSIWYG printing; and phones do not typically need a full spreadsheet
or word-processor engine, as found in the Office Application engines
components.

7.4 Overview
Applications have always been central to the vision of Symbian OS. The
original design conception called for more than simply an operating sys-
tem with an application suite; applications and application support were

136 THE APPLICATION SERVICES LAYER

considered intrinsic to the operating system. The application architecture
was embedded into the object-oriented design and specific application
logic – shared data models and data persistence – was provided at the
level of operating system services.

• The operating system has evolved to become a common software
platform for diverse categories of device, not simply for a single
device family as first envisaged.

• The device categories it targets have evolved from PDAs through
PDAs with phones to phones, and continue to evolve more generally
in the direction of connected, mobile, consumer devices, including
phones but not limited to them.

• Open standards have become increasingly important. Efficient and
deep integration of open standards for multiple technologies into
the operating system platform has become one of its distinguishing
features.

• Support for specific, shared data models has become less important,
for example the office-style application engines are considered to be
legacy functionality.

The Application Services layer includes support for important
application-level standards:

• the Versit specification, specifically vCard and vCalendar

• data synchronization, device management and client provisioning,
including on-device and ‘over the air’

• email standards, including POP, IMAP and SMTP

• phone-messaging standards for GSM and CDMA including SMS, MMS
and WAP messaging

• Internet document and data protocols including HTML, XML, WAP,
HTTP and Synchronized Multimedia Integration Language (SMIL)

• application-session protocols, Real-time Transport Protocol (RTP) and
Session Initiation Protocol (SIP).

Although many of the services based on these standards have been
designed to support specific standard applications (messaging and phone
applications, for example), they are also generally available to third-party
developers creating new applications.

ARCHITECTURE 137

7.5 Legacy Application Engines

The Word, Sheet and Data engines should be considered legacy func-
tionality.1 While the functionality may continue to feature on specific
devices, it should not be considered part of the generic operating system
delivery.

Other services, for example printing, should also be considered legacy
for different reasons. The original goals of the printing support in Symbian
OS (to provide WYSIWYG document printing) have been overtaken by
the nature of the content being printed (from photos and contact details to
web pages, but rarely a full business document) and by newer protocols
(such as the Bluetooth printing profile).

7.6 Architecture

A goal of the user-interface architecture in Symbian OS is to enable
as much common functionality as possible on the system side and to
make it available to as wide as possible a range of applications. This
allows applications to be written with a minimum of new code and the
maximum reuse of system-provided code. Applications gain in robustness
and reliability because, as far as possible, the most complex code is
written only once, on the system side where it is tested and validated,
and is reused by application authors. While the strategy for delivering
this goal has shifted from providing full application engines to providing
comprehensive services, with engines moving up to the licensee layers,
the goal remains the same. And while the classes that define the basic
architecture of a Symbian OS application differ between variant user
interfaces, they all derive from generic Symbian OS classes; Symbian OS
implements the underlying generic behavior.

For the application writer, this is interesting. On the one hand, it is
extremely powerful, because a little application code goes a long way.
On the other hand, having so much richness in the system presents a
steep learning curve to the application writer. The Application Services
layer provides ‘rich system’ support for applications.

Application Framework

Model–View–Controller (MVC) is the classic object-oriented abstraction
of a graphically based, data-centric, interactive user application. (MVC
was originally part of Smalltalk-80 and, according to [Johnson 1998], was
‘the first framework that was recognized as a framework’.)

1 In practical terms, their public APIs are likely to be deprecated in some future release.

138 THE APPLICATION SERVICES LAYER

Symbian OS, from its first inception, applied an MVC-like model to
applications. It is not quite pure MVC, because it elevates the application
itself (as an abstraction for system-owned resources) into a first-class
concept and because the variant user interfaces do not necessarily code
the MVC classes directly. How they interpret MVC is strictly the business
of the variant user interfaces.

Applications, documents, UIs and views

The first rule of object orientation (in C++ anyway) is, according to
[Koenig and Moo 1997], to ‘use classes for concepts’. There are four
key concepts in the application model: Application, Document, AppUI
and View. The Application Framework supplies the base classes for
Application, Document and AppUI, and variant UIs supply appropriate
custom specializations. The View class is typically derived directly from
CCoeControl.

An application is built as a EXE that is recognized by the application
architecture and launched in its own process.2 The framework-defined
entry-point function calls the factory function that creates the application
instance. The application encapsulates the relationships between the
application instance, its document, its document-owned user interface,
and its view or views, as well as application-owned resources, for
example the application icon and more abstract properties such as UIDs.
Applications may have multiple views; every application must have at
least one view (i.e. one window-owning or window-controlling control).

Strictly speaking, the application document abstracts a data model
and not a file, although applications may be file-based. The docu-
ment is responsible for storing and restoring the application’s persistent
data, whether to or from a file or a database. Documents can also be
embedded, so that documents may contain other documents (including
documents belonging to other applications). The application document is
also responsible for creating the application user interface (although the
framework takes ownership of the user interface and is responsible for
destroying it). Just as the document exists to persist the data state of the
application, the user interface exists to manipulate the data state.

A ‘data model’ in this context really means data plus the APIs defined
to create and manipulate it (getters and setters, the ‘data logic’ defining
the translations and other functions that can be applied to the data to
return results of some kind). In Symbian OS, this is often loosely referred
to as an application ‘engine’; the engine is really a code implementation
of the machine that transforms the data state, driven by the user interface:
the document encapsulates the data model state.

2 In releases before Symbian OS v9, applications were built as DLL plug-ins and shared
process space; the changes are required by the system-wide security model.

ARCHITECTURE 139

‘Engine’ classes do not have any framework significance (and hence
do not derive from a framework class) and they are not required, although
they are a useful design pattern for encouraging separation of logic from
data.

Since the document creates the user interface and every application
needs a user interface, every application must have a document. Each
application instance is associated with a single document.

The application view provides a view onto the state of the application
data. Views are implemented using controls. On a typical Symbian
OS device, desktop user interface idioms (such as multiple overlapping
windows) are not appropriate, for a number of reasons: display size is
hugely limited compared with a desktop device; handheld operation (and,
in particular, one-handed operation) rules out mouse-style interaction,
and so on.

Typically, the view metaphor is closer to a stack of sticky notes or a
deck of cards. The top card conceals the other cards in the deck. Cards
can be brought to the top, shuffled to the bottom of the deck or shuffled
unseen within the deck. While applications can have multiple views,
only one is visible at any time.

View switching

The View Server provides a framework for sharing application views by
‘view switching’. Originally designed to support switching between flip-
open and flip-closed modes on the Ericsson R380 (an ER5-based phone),
it migrated into the Quartz user interface (which became UIQ) and
was eventually adopted back into the operating system. Applications can
register views with the server. A registered view owned by one application
can then be used by any other application (or indeed by another view in
the same application) that requests the view to be activated.

In UIQ, for example, the Contacts application can request activation
of the New Message view from the Messaging application when a user
taps on an email address in a contact detail. View switching provides a
clever shortcut to passing data between applications.

Note that while the View Server manages view switching and owns the
framework, it is not used directly by applications: instead, switching is
enabled via the application user interface (which is a Control Environment
wrapper). View Server uses the Window Server client API to effect view
switching.

Support for Generic Applications
While applications are highly dependent on the frameworks supplied
by the variant user interface, the underlying support for the application
logic is largely provided by Symbian OS. This is an important part of the
platform promise that Symbian makes to developers: application logic

140 THE APPLICATION SERVICES LAYER

should in principle be reusable across the whole range of devices based
on Symbian OS. As discussed above, in recent releases the emphasis
within the operating system has shifted away from providing reusable
application engines towards application services.

Legacy engines

The earliest versions of Symbian OS included a number of fully fledged
applications, ranging from standard PIM and Office applications (Agenda,
Data, Sheet, Word) to Time World (a time zone browsing and setting
application), a Help system, and so on. While there was no Contacts
application on the original Series 5, by the time of the later Psion devices
(such as the Revo) it had joined the set of standard applications.

Increasingly, providing common services and standardizing APIs is
seen as providing more value to licensees than providing ready-made,
one-size-fits-all engines. However, the legacy engines still form part of
the operating system.

Along with phone-specific functions (messaging and email as well
as the phone application itself), PIM applications – most importantly, a
phonebook and a simple calendar – are at the heart of what a modern
phone provides to its users. Underlying these standard applications are a
number of common services, including support for basic text handling, the
vCard and vCalendar standards, alarms, backup and restore notifications,
and file and date conversions.

Text handling (EText) and formatting (FORM)

Text Handling supports the storing of editable text and its formatting
attributes, while Text Formatting provides text view and layout classes
(CTextView,CTextLayout,MLayDoc) that control scrolling, selection,
cursor management, margin setting, and other attributes of displayed text.
Managing display attributes (layout and drawing) is thus distinguished
from managing logical text attributes (including text content).

Text content is managed by the text-handling APIs, and consists of
Unicode characters, including space characters and paragraph delimiters,
as well as formatting attributes, including properties such as paragraph
alignment, character fonts, and so on. (Formatting attributes are not the
same as text formatting layout attributes.)

The text-handling APIs and the rich text model underlying them have
a long history in Symbian OS. They have used Unicode since the ER5u
release, the first release to be used in phones, in 1997.

The Text Formatting layout framework is used directly by applications
(to lay out text in application user interfaces and documents) and by
user interface and system components (to lay out text in dialogs, etc.);
for example, text views are used by the Uikon Core API for editable
text windows (‘editors’), as well as directly by applications to format and
display rich text.

ARCHITECTURE 141

vCard and vCalendar

vCard and vCalendar are standards that define formatting conventions
for card (address detail) and calendar (diary appointment) entries. The
standards allow entries to contain more than simply text (character,
number, date and time) content. For example, they can include sounds
(for example, alarms) and pictures.

The vCard and vCalendar component provides parsing APIs for vCard
and vCalendar entries and enables conversion into Symbian OS native
formats.

Alarm server

The Alarm Server manages a queue of system-wide, time-based alarms
and provides APIs for applications to set, modify and query alarms. Note
that the Alarm Server does not actually notify, sound or show alarms (the
Alarm Alert Server performs those functions).

The Alarm Server is a conventional Symbian OS server managing a
shared resource (the alarm queue). Clients create a session and connect
to the server to use the APIs. The Alarm Server has a long history in
Symbian OS.3

Backup and restore notification

The backup and restore notification mechanism provides an alert (based
on Publish and Subscribe) to signal to PIM applications that backup or
restore is in progress or has completed. Applications may need to refrain
from writing data to file during backup or may need to re-read files after
restore. Other applications should use Publish and Subscribe.

Chinese calendar converter

The Chinese Calendar Converter provides a simple API for converting
between Gregorian and Chinese calendar dates.

File converter plug-ins

The File Converter Plug-in is a simple converter that translates HTML to
Symbian OS rich text format. It is used, for example, to convert text to
HTML email format.

3 Until Symbian OS v7.0s, a single component (known cryptically as EALWL) combined
both World Server and Alarm Server functions and served as the engine for the TimeWorld
application, see [Tasker 2000, p. 108]. In Symbian OS v7.0s, they were separated and
rewritten. The new version of the Alarm Server replaced the old EALWL-specific alarm types
(e.g. clock alarms and agenda alarms) to make them more generic.

142 THE APPLICATION SERVICES LAYER

Printing support

Printing Support implements a framework for managing printers and print
jobs, generating graphics input to raster devices and treating printing as
a special case of drawing to a device context, much like drawing to a
screen or any other display device.

It is intended to be used by applications printing directly to supported
printer types and is therefore most suitable for ‘old-fashioned’ PDA-
style applications on ‘converged’ devices, such as Communicator-style
phones, and less appropriate for the more lightweight kinds of application
likely to be found, for example, on a phone without a keyboard. For such
applications, full WYSIWYG printing is unlikely to be as important as
sending a picture to a printer using Bluetooth technology. The print
framework can, therefore, be seen as part of the legacy functionality of
Symbian OS, along with the Office-style applications it most naturally
supports.

It presents a simple application-level interface to underlying printing
support provided by the Multimedia and Graphics Services. The printing
API, among other things, manages:

• listing and selection of available printers

• encapsulation and setting of the device and print job properties

• selection of a printer port (where required by the printer).

Data synchronization and device management and provisioning

The Open Mobile Alliance (OMA) sponsors data synchronization services
based on SyncML, Client Provisioning for OTA device configuration, and
Device Management standards. The Application Services layer includes
specific support for OMA standards.

Support for Generic Technologies

Standards-based messaging and browsing have become essential func-
tions for mobile phones. The Application Services layer provides exten-
sible support for messaging standards including SMS, MMS and email;
for Internet browser protocols; and for newer, session-based multime-
dia protocols. Supporting services include content recognition, including
MIME-type recognition, for data originating from the network; and support
for ‘smart’ messaging (messages containing network-originated configu-
ration and settings data intended to be used by the system rather than
read by the end user).

ARCHITECTURE 143

Messaging

Comprehensive support for messaging of all kinds, from email to text and
multimedia messages, is an important feature of Symbian OS. Messaging
support has been available from the first release. As the operating system
has become more phone-centric, messaging has arguably become even
more critical than it was originally, although (interestingly) the use cases
are subtly different for phones and PDAs.

The Symbian OS messaging implementation provides a complete mes-
saging infrastructure for use by a messaging application, whether from
a licensee or other source. It is based around a message server, which
manages access to a unified Message Store and performs generic mes-
saging actions that are exposed through a client-side API. It also owns
an extensible framework allowing generic actions to be specified for
particular message types. The framework is open and is intended to sup-
port enterprise-level customization (for example, for bespoke, corporate
messaging systems or services) as well as licensee extension and cus-
tomization (for example, to adapt the generic functionality to a particular
user interface idiom – S60 and UIQ messaging applications behave dif-
ferently from an end-user perspective). The client-side API enables client
applications to manipulate the message store, for example, to browse and
navigate the message-store folder tree, and provides basic functions, such
as edit, copy and move. The framework also supports scheduled sending
of messages.

The underlying communications services of the operating system are
used to enable message transport over any available network connection,
whether phone, short link (Bluetooth or infrared), or cable (serial or USB).

Extensions are provided by Message Type Module (MTM) plug-ins
to the framework and the operating system provides product-quality
implementations for a standard set of message types, including email
(SMTP, POP3 and IMAP4 HTML mail), SMS (on both GSM and WCDMA,
that is on 2 and 2.5G, 3G and CDMA 2000 networks: the SMS protocols
are specific to each type of network) and MMS.

BIO messaging

An important secondary server and framework is the Bearer-Independent
Object (BIO) Messaging Framework, which extends generic messaging
to provide a ‘smart’ messaging server, a message type framework and a
watcher framework. Bearer-independence means that the message han-
dling is independent of the type of transport over which the message
was received; ‘smart’ messages are those which are intended for process-
ing by the system, or directly by applications. BIO messaging supports
application message types, such as encapsulated vCard and vCalendar
data, and system services such as network-access setup messages. The

144 THE APPLICATION SERVICES LAYER

BIO messaging APIs allow application developers to create their own
application-specific ‘smart’ message types.

The message server provides the underlying mechanisms used by ded-
icated messaging applications, or other mail or SMS client applications,
as well as providing a ‘Send As’ API as an extension to the client-side API,
which allows any application to encapsulate a document and send it as a
message type (including Fax), over any available bearer. Any application
can also receive messages, using the watcher service, and ‘smart’ objects.

Messaging support includes handling of MIME and other recognized
data types (provided by the Content Handling components); handling
of attachments; managing local and remote mail boxes; and editing
message contents and properties. The watcher frameworks support alerts
for message-related external events, for example a fax-line ringing or an
SMS or email being received, and for ‘system’ messages to be identified
and handled.

The basic design principle in the messaging system is to clearly separate
generic message handling performed by the framework from the detail of
manipulating and handling different message types, which is delegated
to the MTM extensions.

The Message Store is considered to be a shared system resource, for
which the client–server design ensures multiple simultaneous access by
client applications.

The plug-in-framework design allows for a modular and extensible
implementation. (However, the MTM model is complex: creating a new
MTM is a challenging system-level programming project.) An MTM
implements concrete support for three client-side APIs and one server-
side API. The client-side implementation consists of a user interface for
viewing and editing message contents (and service settings), concrete
data, such as icons that clients should display, and the message creation
and management functions. The server-side implementation supports
manipulation of messages on remote services. Messaging clients link to
the client-side MTM. The matching server-side MTM is loaded as needed
by the messaging server.

The BIO messaging server and framework is itself implemented as an
MTM. BIO messaging plug-ins derive from and implement the framework
classes and are loaded by the BIO messaging MTM.

BIO Messaging responsibilities are divided between the MTM (which
implements the server and framework), a BIO database (which maps port
numbers, MIME types, etc. to BIO types in order to identify the type of
incoming BIO messages), and plug-in parsers that parse and process the
BIO message payload. Because BIO messages arrive over other message
transports, for example as a WAP push or an SMS, watchers are used
to receive and tag incoming BIO messages. Watchers that watch for
specific message types are created by deriving from and implementing
the watcher framework classes.

ARCHITECTURE 145

The scheduled send framework is implemented by the Server MTM
and provides classes that define the scheduling parameters, allowing
messages to be scheduled (sent later), rescheduled or deleted from the
schedule. MTM implementations for different message types can choose
whether or not to support message scheduling.

At Symbian OS v9, the supported message types include email (POP3,
IMAP4 and SMTP), SMS and OBEX. MMS messaging, which was included
in Symbian OS v8, may be provided as part of a licensee user interface
implementation.

Content handling

An important aspect of supporting messaging, browsing, and other
network-oriented applications is the provision of content recognition,
parsing and access services for protected content (key, certificate or other
DRM-protected downloads, for example).

Symbian OS provides standard application services that support:

• file and data recognition based on MIME types (MIME Recognition
Framework), standard web types (Web Recognizers) and multimedia
file types (MMF Recognizers)

• parsers and handlers to support SMIL (SMIL Parser) and ‘smart’ mes-
sages and content (BIO Messaging Parsers) and WAP ‘push’ messages
(WAP Push Handlers)

• handling and providing access to DRM-protected content (Content
Access Framework for DRM).

These services are used by applications either indirectly via the var-
ious application-level messaging, web and multimedia frameworks and
services or directly through the Application Architecture recognizer inter-
face. These services are also used by system components, for example,
the messaging framework.

The Application Architecture provides a ‘Recognize Data’ interface
which is implemented by plug-ins to the MIME Recognition Framework.
This enables recognition of non-native document types in order to asso-
ciate documents with applications. (Native document types are identified
and associated with applications using UIDs). Associating documents
with applications allows appropriate applications to be started (or offered
to users) when a user performs an action to open a document, as well
as allowing default documents to be located when applications are
launched. Data types as well as documents can be recognized.

File and data recognizers are written as plug-ins to the MIME Rec-
ognizer Framework (from Symbian OS v9 they conform to the ECOM
Plug-in Framework) and are scanned for and loaded during operating
system startup.

146 THE APPLICATION SERVICES LAYER

Data recognizers are provided for common MIME types, URLs, web
bookmarks, HTML and XML, and multimedia file types. The supported
multimedia types depend on the licensee implementation of multimedia
plug-ins for supported media types.

Applications can register with the Application Architecture as handlers
for specified MIME/data types. The Application Architecture maintains a
list of all recognizers in the system and their supported data types.

The WAP Push handlers are intended to support WAP browser appli-
cations. They are plug-ins to the WAP Push Framework and respond to
WAP Service Initiation (SI) and Service Load (SL) signals to take owner-
ship of incoming messages and validate, parse, and extract the message
content. SI and SL messages signal actions to WAP browser applications
(to display content or a URL), unlike other WAP Push message types
(MMS and OTA), which are pure message carriers for messaging, not
browsing, services. The Web Push handlers are intended to support WAP
browser applications directly.

The Content Access Framework provides a generic mechanism to
support DRM implementations, based on defined interfaces for broker-
ing controlled content between content agents (DRM applications) and
content-consuming applications (for example, media players).

The BIO Messaging parsers plug into the BIO Messaging Framework to
enable parsing of specific BIO message types, including vCard business
cards, email notifications, Nokia Smart Messages and Nokia and Ericsson
OTA setup messages. (Note that BIO Messages use WAP messaging.)

The SMIL Parser is an XML parser that uses a ‘mini-DOM’-like API to
parse and validate XML against simple DTDs. SMIL is an XML language
that defines presentation attributes for encoded text, images, video and
audio. It is provided primarily to support handling of MMS messages with
SMIL content. (Note the earlier remarks about MMS not necessarily being
supported on all devices from Symbian OS v9.) The parser however is
also available for direct use by applications and provides APIs to perform
simple XML parsing (not limited to SMIL). Heavier duty, generic XML
parsing is provided by Base Services components.

A SMIL parser was first introduced in Symbian OS v7.0. The current
implementation, which is able to parse any XML document against a
simple DTD, was introduced in Symbian OS v7.0s and the original parser
was deprecated.

Internet, web and multimedia protocol support

A number of components provide infrastructure support for Internet and
web applications including web and WAP browsers and WAP messaging.
Newer protocols such as RTP and SIP have also been introduced in the
latest releases of the operating system to support new categories of
interactive streaming applications.

ARCHITECTURE 147

Basic Internet, web and WAP support consists of framework, utility,
and application engine components providing application-level interfaces
to Internet protocols (HTTP, Telnet) and WAP Push messaging. The
HTTP Transport Framework provides a generalized client interface for
applications wanting HTTP transport sessions over TCP/IP or WSP sessions
(the WAP equivalent of HTTP).

The HTTP Transport Framework provides a complete supporting frame-
work for HTTP and WSP applications, such as HTML or WAP browsers.
For WAP browsing the underlying support of a full WAP stack is required;
this is no longer part of the Symbian OS delivery and therefore depends
on the licensee platform to provide a full WAP stack. The framework
adopts a session model based on a core client API and request–response
message exchange transactions with a remote URL.

The WAP Push components provide an interface between the WAP
stack and the messaging infrastructure to support WAP as a messaging
transport. The WAP Push components are used by the messaging services,
to support receiving WAP push messages and BIO messages, and by other
system components including, for example, Java. Note that simple client
access to WAP push is provided by the WAP Message API of the WAP
Stack.

Implementers of a WAP stack need to be aware of the dependency
of the HTTP Transport Framework on it. In effect, the lower level of the
framework serves as an adaptation layer to the WAP stack, implying that
work is required to adapt it to a WAP stack implementation.

The Telnet and FTP engines are rather simple application-level services
based on clients creating a client session to the Symbian Telnet or FTP
daemon, through which the client can conduct a dialog with a specified
host. (Note that FTP does not expose public APIs.)

More specialized Web browsing support is provided by the stand-alone
Bookmark Support component, which provides access to a bookmark
database and APIs for creating, reading and deleting bookmarks and
creating a folder tree. The database uses the Central Repository to store
all data. There is only one bookmark database.

A folder object contains an array of CBookmarkBase objects. A
bookmark must contain a URI, authentication data, the last time it was
visited and an indication if it is the home page. Applications can set item
visibility to public or private.

HTTP transport framework

The HTTP Transport Framework is based around a Core API, which
manages the client-session interface to a session based on either a
WSP or HTTP protocol, for example for WAP or web browsing. In
both cases, secure versions of the protocols are also supported. Within
a session, message-based transactions are conducted with the remote

148 THE APPLICATION SERVICES LAYER

URL. A message is a generic abstraction that packages contents of any
type.

As well as the Core API, clients can configure a session to use Filter
Plug-ins that are loaded by the framework and used by applications to
handle, process or modify message content. Default filters are provided
for message authentication, redirection and validation.

Beneath the Core API, protocol handlers and transport handlers inter-
face to the underlying transport. WSP and HTTP protocol handlers are
supplied by default. WAP Stack, WAP WTLS, HTTP and HTTPS transports
are available. WAP and WTLS use the WAP Stack interface directly; HTTP
and HTTPS use the Socket Server to provide TCP/IP sockets or secure
sockets, in all cases using an appropriate network interface.

Real-time transport protocol

The real-time transport protocol (RTP) is a network transport service that
provides real-time guarantees on packet latency to support uses such
as interactive audio and video, for example, web conferencing. TCP-
based packet services have a (relatively) high potential latency. For many
applications, heuristics (buffering, selective dropping and repeating of
packets, etc.) can be used to maintain service quality at a satisfactory
level, even for demanding applications such as streaming. However,
two-way interactive services have effective real-time requirements which
cannot be met simply by smoothing packet arrival latencies.

RTP implements reliable and real-time bound transport using UDP
packets over IP. RTP services support payload-type identification,
sequence numbering, time stamping, and delivery monitoring of packets.

From a system perspective, RTP is provided to support the Multimedia
Framework introduced in Symbian OS v8. It is designed as a core software
stack that implements RTP/RTPC packet creation and handling using the
underlying network infrastructure, and an upper API used by applications,
which link to it.

RTP is available to applications using a socket interface. From the user
perspective, it is created and used in essentially the same way as any
socket-based transport. Within a socket server session, an RTP subsession
is opened.

RTP provides APIs to:

• create and manage RTP sessions

• register for and handle events

• manage and access RTP packets and reports

• create, send and receive packet streams

• manage, send and receive reports.

RTP was introduced in Symbian OS v9.

COMPONENT COLLECTIONS 149

Session initiation protocol

Session Initiation Protocol (SIP) is a simple but powerful protocol enabling
peer-to-peer, multiple-participant sessions to be created over a TCP/IP
packet network. The protocol is reminiscent of HTTP (in its use of URLs
to identify participants) and SMTP (plain text messages). SIP messages are
used to set up and terminate sessions.

The SIP Framework integrates a plug-in implementation into the under-
lying network infrastructure, including RTP. The operating system pro-
vides only the framework; licensees supply the service implementation.

The SIP Framework was introduced in Symbian OS v9.2.

Other Application Services
Improved secure installation services provided by the App Installer and a
System Starter that manages server startup at boot time were introduced in
Symbian OS v9.1 to improve the supporting infrastructure for applications
(although they do not expose APIs directly to applications).

The App Installer uses the Certificate and Key Management services
(see Chapter 8) provided by lower layers of the system to manage
certificate- and key-secured applications.

The System Starter, while it does not expose public APIs, is configurable
by licensees. In the original design of Symbian OS, true reboots were
assumed to be rare events. The operating system was designed to support
devices that would run for months and even years at a time between
reboots. Booting-up time was therefore an insignificant cost. However,
the phone use case is very different. Phone users switch phones off
frequently and expect a fast boot when they switch them on.

Symbian’s server model – ubiquitous use of servers to manage all
system resources, logical and physical – leads to multiple servers being
started at device boot time with a cascade effect. (Any server can arbitrarily
start many other servers; in the past, some have.)

The System Starter allows a start-up policy to be specified and enforced.
This enables careful management of the start-up sequence, to enable a
device to become maximally responsive in minimum time, even if loading
of the full server set continues in the background. If a server run list is
found, it is used to select which servers start and in which order. In this
scenario, some servers are not started until they are first called by a client.

7.7 Component Collections

The Application Services layer contains the component collections shown
in Figure 7.2.

• System level services:

Ž Application Framework

150 THE APPLICATION SERVICES LAYER

Application
Services

PIM Application
Services

Other
Application
Services

Office
Application

Engines

Data Sync
Services

PIM Application
Support Text Messaging Application Support

Device
Manage-

ment

Client
Provision

-ing
Content Handling Application Framework

Internet & Web Application Support Protocols Services Sup-
port

Application
services

continued

Figure 7.2 Component collections in the Application Services layer

Ž Application Launch Services

Ž Multimedia Protocols

• Application services and engines:

Ž Data Sync Services

Ž Device Management

Ž Client Provisioning

Ž PIM App Services

Ž Other Application Services

Ž Office Application Engines

• Lower-level application support:

Ž PIM Application Support

Ž Messaging Application Support

Ž Content Handling

Ž Internet and Web Application Support

Ž Printing Support

Application Framework Collection

• The Application Architecture component defines the key application
responsibilities and interactions with data and the user interface.

Application Framework

App
Archit-
ecture

Content
Hndlng.
Frmwk.

File
Cnvter.
Frmwk.

Secure
Soft-
ware

Install

Java
MIDlet

Installer

View
Server

Figure 7.3 Application Framework components

COMPONENT COLLECTIONS 151

Table 7.1 Application Framework Components

Component Name Development Name

Application
Architecture

APPARC

View Server VIEWSRV

File Converter
Framework

CONARC

Content Handling
Framework

CONTENT HANDLING

Secure Software
Install

SECURESOFTWAREINSTALL

Java MIDlet Installer JAVAMIDLETINSTALLER

It encapsulates the key application classes, which are abstracted via
Uikon and, ultimately, by a vendor-specific variant user interface.

• The View Server component provides a mechanism for view sharing
and view switching between applications. A running application can
switch into and use a view belonging to another application.

• The File Converter Framework component supports creation of file
converter plug-ins that enable applications to request file-to-file con-
version based on the MIME types of the files. It is typically used
to support conversion between Microsoft Office and Symbian OS
proprietary formats.

• The Content Handling Framework component contains the File Con-
verter and Content Handling frameworks, which are used to provide
applications with common framework behavior independent of the
user interface. The Content Handling Framework supports the find-
ing, loading, processing and displaying of typed content by content
handlers on behalf of applications.

• The Secure Software Install and Java MIDlet Installer components
enable the installation of native applications and Java MIDlets. SIS
files, based on versions of Symbian OS that do not include platform
security, do not install on devices based on Symbian OS v9.

Application Launch Services Collection
This collection (see Figure 7.4) contains only one component, which
enables policy-based startup of system servers at boot time. The server
startup sequence is defined in a policy file, which can be customized by

152 THE APPLICATION SERVICES LAYER

System
Starter

App. Launch
Services

Figure 7.4 Application Launch Services components

licensees to tune boot-up time and ensure that the device is responsive
to the user as quickly as possible after switch on.

Table 7.2 Application Launch Services Components

Component Name Development Name

System Starter SYSSTART

Multimedia Protocols Collection
This collection (see Figure 7.5) provides support for the real-time transport
protocol (RTP) and the session initiation protocol (SIP).

Table 7.3 Multimedia Protocols Components

Component Name Development Name

RTP RTP

SIP Framework SIP COM

SIP Connection Provider
Plug-ins

SIPCPR, SIPDUMMYPRT,
SIPSTATEMAC, SIPPARAMS,
SIPSCPR

• The RTP component is a server- and user-side API providing socket-
based access to RTP services. It provides an IP-based real-time network
transport service.

• The SIP Framework and SIP Connection Provider Plug-ins provide
support for SIP and integration into the networking infrastructure. It

Multimedia
Protocols

RTP SIP
Frmwk.

SIP
Connect-
ion Prov.
Plugins

Figure 7.5 Multimedia Protocols components

COMPONENT COLLECTIONS 153

does not provide the protocol implementation (which is provided as a
plug-in by licensees). SIP is the main signaling protocol for 3GPP and
is used by phone, multimedia and messaging applications.

Data Sync Services Collection

This collection (see Figure 7.6) provides support for data synchronization.

Table 7.4 Data Sync Services Components

Component Name Development Name

Sync Initiation SYNCMLINITSERVER

OMA SyncML
Framework

SYNCMLCLIENT

OMA SyncML DM
Interface

SYNCMLDMCLIENT

OMA Data Sync SYNCMLDSCLIENT

SyncML is an open industry standard, primarily for data synchroniza-
tion but extending to device management. SyncML has been adopted and
standardized by the Open Mobile Alliance.

The SyncML protocol supports data providers (for example, application
engines) and components requiring remote management (for configuring
settings, for example) over various transports. It is implemented as a server,
with a supporting plug-in framework, that supports synchronization and
device management over HTTP, WSP and OBEX.

Client Provisioning Collection

This collection (see Figure 7.7) provides components for client provision-
ing.

Client Provisioning is an OMA standard for configuring application
and network settings on mobile devices. It overlaps to some extent

Data Sync Services

Sync
Initiat-

ion

OMA
SyncML
Frmwk.

OMA
SyncML
DM Inter-

face

OMA
Data
Sync

Figure 7.6 Data Sync Services components

154 THE APPLICATION SERVICES LAYER

Client Provisioning

Client
Provi-

sioning
Frmwk.

Client
Provi-

sioning
Adapts.

Figure 7.7 Client Provisioning components

Table 7.5 Client Provisioning Components

Component Name Development Name

Client Provisioning
Framework

DEVPROV CLIENTPROV FRAMEWORK

Client Provisioning
Adaptors

DEVPROV CLIENTPROV ADAPTERS

with SyncML and competes with proprietary alternatives (Nokia Smart
Messaging and Nokia and Ericsson OTA).

Client Provisioning supports components requiring either one-off set-
tings configuration (network settings setup, for example) or continuous
provisioning (for example, settings management plug-ins to applications
or Symbian OS services) over various transports.

Device Management Collection

This collection (see Figure 7.8) provides a framework and plug-ins imple-
menting OMA Device Management based on SyncML and supporting
Remote Terminal Management and continued provisioning of devices by
network operators.

PIM Application Services Collection

This collection (see Figure 7.9) provides specialized support specifically
for the Agenda and Contacts applications.

Device
Management

Device
Mgmt.

Frmwk.

Device
Mgmt.

Adapts.

Figure 7.8 Device Management components

COMPONENT COLLECTIONS 155

Table 7.6 Device Management Components

Component Name Development Name

Device Management
Framework

DEVPROV DEVMAN FRAMEWORK

Device Management
Adaptors

DEVPROV DEVMAN ADAPTERS

Cont-
acts

Model

vCal
Plugin

Agenda
Model

PIM Application Services

Calen-
dar

Figure 7.9 PIM Application Services components

Table 7.7 PIM Application Services Components

Component Name Development Name

Contacts Model CNTMODEL

Calendar CALINTERIMAPI

Agenda Model AGNMODEL

vCal Plug-in AGNVERSIT

• The Contacts Model component is an application model providing a
common contact or address book API implemented over an underlying
database.

• The Calendar component is intended to replace the previous Agenda
Model API. Calendar provides a cut-down API more suitable for a
modern phone. The Agenda Model API is larger and has its origins
in the needs of PDA users. Calendar partially supports the iCalendar
standard. The vCal Plug-in is a library used by the Agenda Model to
communicate with the vCard and vCal components.

Other Application Services Collection

This collection (see Figure 7.10) provides miscellaneous application sup-
port, originating from the Series 5 set of built-in applications, but extended
more recently with the addition of the Timezone component.

156 THE APPLICATION SERVICES LAYER

Other Application
Services

World
Server

Time-
zoneHelp

Figure 7.10 Other Application Services components

Table 7.8 Other Application Services Components

Component Name Development Name

Timezone TZ, TIMEZONELOCALIZATION,
TZLOCALIZATIONRSCFACTORY,
TZCOMPILER, TZDB

World Server WORLDSERVER

Help HLPMODEL

• The Timezone component provides localization support, including a
time-zone database, for Standard, Daylight, Short Standard and Short
Daylight names for time zones. Localized names are stored in the
resource file framework. Users can create cities and link them with
time-zone information. Cities can also be grouped irrespective of time
zone.

• The World Server component originated in the Time/World appli-
cation of the original EPOC release. It is based on a world cities’
database and server, and allows setting and easy switching between
‘home’ and ‘away’ locations and time zones, as well as time-zone
browsing. It was deprecated in Symbian OS v8.1, in favor of the
Timezone component.

• The Help component provides an engine implementation of a context-
sensitive help system, providing read-only access to all help files on
a Symbian OS device. Help files are essentially heavily compressed
databases, each containing a series of topics relating to different
applications or subjects.

Office Application Engines Collection

This collection (see Figure 7.11) provides legacy application-engine
implementations of the original EPOC built-in applications: Data
(database), Sheet (spreadsheet), and Word (word processor). Redundant
on a modern phone, they are likely to be removed in a future operating
system release.

COMPONENT COLLECTIONS 157

Office Application
Engines

Word
Engine

Data
Engine

Sheet
Engine

Figure 7.11 Office Application Engines components

Table 7.9 Office Application Engines Components

Component Name Development Name

Data Engine DAMODEL

Sheet Engine SHENG

Word Engine WPENG

PIM Application Support Collection

This collection (see Figure 7.12) provides services that may be useful to a
variety of applications and application engines but which, typically, are
quite closely tied to legacy applications.

Table 7.10 PIM Application Support Components

Component Name Development Name

Alarm Server ALARMSERVER

vCard and vCal VERSIT

Chinese Calendar
Converter

CALCON

File Converter Plug-ins CHTMLTOCRTCONVERTER,
CONVERT, RICHTEXTTOHTMLCONV

Backup Restore Notification BACKUPRESTORENOTIFICATION

PIM Application Support

Alarm
Server

Backup
Restore

Notif.

vCard
&

vCal

File
Cnvter.
Plugins

Chinese
Cal.

Cnvter.

Figure 7.12 PIM Application Support components

158 THE APPLICATION SERVICES LAYER

• The Alarm Server component manages a queue of system-wide, time-
based alarms, providing set, modify, query and notify APIs for client
applications.

• The vCard and vCalendar components are parsers that convert
between vCard or vCalendar entries and Symbian OS native formats.

• The Chinese Calendar Converter component provides a simple API
for converting between Gregorian and Chinese calendar dates.

• The File Converter Plug-ins component supports conversions between
HTML files and Symbian OS rich text objects stored in files, and
between specific formats, for example Microsoft Excel, Microsoft
Word and Microsoft font formats, and Symbian OS native rich text.

• The Backup Restore Notification component is used by legacy applica-
tions to notify of system-wide backup and restore operations. Publish
and Subscribe provides a preferred alternative for new applications.

Messaging Application Support Collection
This collection (see Figure 7.13) provides Messaging and BIO Messaging
frameworks and MTM plug-ins.

• The Message Store component provides a message server and frame-
work, supporting standard message types (for example email and
SMS).

• The BIO Messaging Framework component supports ‘smart’ message
types (Bearer-Independent Objects), for example vCard or vCalendar
messages and network setup messages.

• The BIO Watchers component provides a framework and service for
notification of message arrival to applications.

• The Scheduled Send MTM component supports scheduled sending of
any available message type and defines the scheduling parameters.

• The Email MTM components are plug-ins to the Message Store frame-
work providing support for sending, receiving or editing POP3, IMAP4
(HTML mail) and SMTP email messages.

• The OBEX MTM components are plug-ins to the Message Store
framework providing support for OBEX messages.

Messaging Application Support

OBEX
MTMs

BIO
Msg.

Frmwk.
BIO

Wtchrs.
CDMA
MTM

IMAP4
MTM

Msg.
Store

POP3
MTM

Sched.
Send
MTM

SMS
MTM

SMTP
MTM

MMS
MTM

MMS
Sett-
ings

Figure 7.13 Messaging Application Support components

COMPONENT COLLECTIONS 159

Table 7.11 Messaging Application Support Components

Component Name Development Name

Message Store MSG FRAMEWORK

BIO Messaging
Framework

MSG BIOMSG

BIO Watchers MSG BIOWATCHERSCDMA

Scheduled Send MTM MSG SCHEDULEDSEND

POP3 MTM MSG EMAIL

IMAP4 MTM IMAPSERVERMTM

SMTP MTM SMTPSERVERMTM

OBEX MTMs MSG OBEXMTM

SMS MTM MSG SMS8.1

CDMA MTM CDMASMSMTM

MMS Settings MSG MMS SETTINGS

MMS MTM MMS

• The SMS and MMS MTM components are plug-ins to the Message
Store framework providing SMS message support for GSM/WCDMA
and CDMA 2000 and the infrastructure support for MMS messages.
From Symbian OS v9, licensees may provide the MMS MTM.

Content Handling Collection

This collection (see Figure 7.14) provides frameworks, handlers, parsers
and recognizers for typed data and documents (including MIME and web
types, SMIL and BIO messages) and DRM content.

Content Handling

MIME
Recog.
Frmwk.

SMIL
Parser

Web
Recogs.

WAP
Push
Hand-
lers

BIO
Msg.

Parsers

MMF
Recog.

Refer-
ence
DRM
Agent

Content
Access
Frmwk.
for DRM

Figure 7.14 Content Handling components

160 THE APPLICATION SERVICES LAYER

Table 7.12 Content Handling Components

Component Name Development Name

SMIL Parser GMXML

MIME Recognizer
Framework

EMIME

WAP Push Handlers WAPPUSHSUPPORT

Web Recognizers RECOGNIZERS

Content Access
Framework for DRM

CAF2 , CAF2CONFIG

Reference DRM Agent DRMAGENT

MMF Recognizers RECMMF

BIO Messaging Parsers CBCP, ENP, GFP,
IACP, WAPP

• The SMIL Parser component parses SMIL content based on a generic
XML Parser and Composer with a ‘mini-DOM’ API able to perform
syntax checking against simple DTDs. It replaces the SMIL Translator
implementation of Symbian OS v7.0s.

• The MIME Recognizer Framework component supports for MIME data
types.

• The WAP Push Handlers components are plug-ins to the WAP Push
Framework implementing handlers including Several Interfaces, Single
Logic (SISL).

• The Web Recognizers component supports URLs and web bookmarks
and are implemented as plug-ins to the MIME Recognizer Framework.

• The Content Access Framework for DRM component provides generic
APIs for brokering DRM-protected content between agents (DRM
applications) and consumers (e.g. media players). It includes a refer-
ence DRM-agent implementation.

• The MMF Recognizers component provides support for multimedia
data and document types.

• The BIO Messaging Parser components parse by BIO message type.

COMPONENT COLLECTIONS 161

Text Rendering Collection

This collection (see Figure 7.15) enables not just applications but any
components that want to display or manipulate text to use the Symbian
OS text-handling and formatting APIs.

Table 7.13 Text Rendering Components

Component Name Development Name

Text Formatting FORM

Text Handling ETEXT

• The Text Formatting component provides text view and layout classes
to control scrolling, selection, cursor management, margin setting,
and other attributes of displayed text. It supports the separation of
display attributes (layout and drawing) from logical text attributes
(styles). It is used, for example, by the Uikon Core API for editable text
windows and, more generally, by applications to format rich text.

• The Text Handling component supports the storage of editable text
and its formatting attributes, for example, paragraph alignment and
character fonts. It is used with the Text Formatting text view APIs.

Text
Hndlng.

Text
Rendering

Text
Format-

ting

Figure 7.15 Text Rendering components

Internet and Web Application Support Collection

This collection (see Figure 7.16) provides Internet, web and WAP appli-
cation support.

Internet & Web Application Support

WAP
Push

Frmwk.

HTTP
Utilities
Library

HTTP
Trans.
Frmwk.

Telnet
Engine

FTP
Engine

WAP
Push
MTM

HTTP
Filter

Plugins

HTTP
Proto-

col
Plugins

Book-
marks

Support

Figure 7.16 Internet and Web Application Support components

162 THE APPLICATION SERVICES LAYER

Table 7.14 Internet and Web Application Support Components

Component Name Development Name

HTTP Transport
Framework

HTTP

HTTP Protocol Plug-ins HTTP

HTTP Filter Plug-ins HTTP

HTTP Utilities Library INETPROTUTIL

Bookmark Support BOOKMARK SUPPORT

Telnet Engine TELNET E

FTP Engine FTP

WAP Push Framework WAPPUSH

WAP Push MTM WAP-BROWSER

• The HTTP Transport Framework component enables clients to estab-
lish a transport session for HTTP-like protocols, provides core APIs for
transport sessions, transactions, and messages.

• The HTTP Protocol Plug-ins component provides dynamically loaded
application and network protocol handlers, including TCP/IP, HTTP
1.1 and WSP 1.2.

• The HTTP Filter Plug-ins component provides dynamically loaded
plug-ins to configure a transport session before use. It includes default
HTTP and WSP filters that encapsulate responses to session events,
for example, client authentication, message validation and message
redirection.

• The HTTP Utilities Library component stores utility classes commonly
used by Internet protocol parsing components. It contains implemen-
tations for URIs, a standardized time format, and simple text parsing
utilities.

• The Bookmark Support component provides a bookmark database for
web browsers.

• The Telnet Engine component provides a Symbian OS Telnet daemon
and supports client sessions for communicating with a specified host.

• The FTP Engine Symbian OS FTP daemon, supports client sessions for
communicating with a specified host. Does not expose public APIs.

COMPONENT COLLECTIONS 163

• The WAP Push Framework component provides an interface between
the WAP stack and the messaging infrastructure to support WAP as a
messaging transport.

• The WAP Push MTM component provides a WAP stack implementa-
tion supporting messaging interfaces.

Printing Support Collection

This collection (see Figure 7.17) provides standard dialogs for setting up
print jobs and controlling access by application clients. It is considered a
legacy component for most devices.

Printing
Support

Printing
Servcs.

Figure 7.17 Printing Support components

Table 7.15 Printing Support Components

Component Name Development Name

Printing Services PRINT

8
The OS Services Layer

8.1 Introduction

The OS Services layer (see Figure 8.1) provides the servers, frameworks
and libraries that implement the core operating system support for graph-
ics, communications, connectivity, and multimedia, as well as some
generic system frameworks and libraries (Certificate and Key Manage-
ment; the C Standard Library) and other system-level utilities (logging
services). In effect, it is the layer that extends the minimal base layers of
the system (the kernel and the low-level system libraries that implement

Base
Services

Application
Services

Kernel
Services &
Hardware
Interface

OS ServicesOS
Services

UI
Framework

Figure 8.1 OS Services layer in the system model

166 THE OS SERVICES LAYER

the basic OS primitives and idioms) into an extensible, programmable,
and useful operating system.

In terms of the number of components, it is by some margin the largest
single layer of the system. To bring clear structure to it, the System Model
organizes the layer into four major blocks by broad technology type (see
Figure 8.2):

• Generic OS Services

• Comms Services

• Multimedia and Graphics Services

• Connectivity Services

These blocks are relatively self-contained. (Generic OS Services is used
by the other blocks in the layer; Connectivity Services uses the transport
technologies of Comms Services.)

This chapter describes the Generic, Multimedia and Graphics, and
Connectivity Services blocks; the Comms Services block is described in
Chapter 9.

Connectivity
Services

Generic OS
Services

Multimedia & Graphics
ServicesComms Services

OS
Services

Figure 8.2 Blocks of OS Services components

8.2 Purpose
Symbian OS is a microkernel operating system. The kernel is restricted to
providing the minimum of essential services, specifically those required
to implement process execution and memory access models. These are
extended by the remaining (non-kernel) components of the base layers of
the system, to support bringing up a bare system on hardware, providing
access to peripherals and a file system, and to support a program execution
model. Higher-level system services are built on top of this foundation.

In Symbian OS, the higher-level system services are located in the
OS Services layer. These services provide the specialized system-level
support required by other system components and by higher layers of the
system, as well as by applications. Thus, for example, graphics support,
communications support including networking and telephony, and the
connectivity infrastructure are all provided as OS services.

PURPOSE 167

Generic OS Services Block
This block provides a small number of generic services for use directly
by applications, as well as some specific programming libraries intended
for application and system use (including for use by the user interface
and application support layers above).

• The logging and task-scheduling services are used by applications as
well as by system components.

• The C Standard Library, providing a basic POSIX environment, is used
by system components (for example, Java) and is also useful to those
porting software from other platforms.

• There are libraries and frameworks supporting cryptographic and
certificate-based security, including the key and certificate stores.

Multimedia and Graphics Services Block
This block provides all graphics services above the level of hardware
drivers and provides the frameworks supporting multimedia services.

• It provides windowing, event handling, bitmap and vector graphics
support including all font, drawing and bitmap functions, as well as
low-level support for WYSIWYG printing.

• It defines a comprehensive set of multimedia APIs and provides a
framework for implementation. It includes camera and broadcast
tuner APIs, sound capture and recording APIs, still and moving image
capture and recording APIs, display and play APIs, and conversion
and manipulation APIs.

Generic OS
Services

Generic Services

Generic Libraries

Figure 8.3 Generic OS Services block

168 THE OS SERVICES LAYER

Multimedia & Graphics
Services

Graphics
Device

Interface

Graphics & Printing Services

OpenGL ES Windowing
Framework

Multimedia

Figure 8.4 Multimedia and Graphics Services block

Connectivity Services Block
This block provides the device-side support for connectivity services, for
example backup and restore, file transfer and browsing and application
installation. (Data synchronization is provided in the Application Services
layer, see Chapter 7.)

8.3 Design Goals

While the detail has changed considerably, most of the services located
in the OS Services layer can be traced back to the original, early architec-
ture of Symbian OS. In the earliest designs, the principal communications
transport technology was serial, although networking support and, in
particular, thorough support for standard Internet protocols had already
been identified as an essential requirement, leading to the design of
a networking infrastructure tightly bound to the communications ser-
vices.

The first work on telephony-specific services, meanwhile, was well
underway even before the first release of the OS, and relevant require-
ments were being evolved in collaboration with licensees. While at
that time there were no specific multimedia services, the bitmap-based,
windowing graphics system was central, and support for various audio
formats was present from the beginning.

DESIGN GOALS 169

Connectivity
Services

Service
Frame-
work

Device
Connection

Service Providers

Figure 8.5 Connectivity Services block

Connectivity was also considered a vital service from the beginning,
although it was a significantly simpler service based on Symbian’s propri-
etary PLP protocol, a simple data transfer protocol over a physical (wired)
serial port or emulated serial port over IrDA.

Since then, the rapid evolution of mobile telephony through successive
technology generations, the ubiquity of the Internet and the increasing
packetization of services, and the emergence of data exchange standards
and protocols such as SyncML have all been powerful forces in shaping
the evolution of the OS Services. The rapid convergence of multiple
device functions with mobile phones has also had a dramatic impact
on the kinds of services required from Symbian OS. Above all, multi-
media technologies, which a decade ago were the province of top-end
workstations, have migrated inexorably downwards onto smaller devices;
simultaneously new categories of multimedia device have been invented
(digital music players and digital cameras). New technologies, including
digital broadcast TV for mobile devices and session-based multimedia
protocols enabling two-way, real-time video and audio applications,
continue to emerge and evolve.

In Symbian OS, providing support for all such services falls squarely
in the realm of the OS Services layer.

170 THE OS SERVICES LAYER

8.4 Overview

All the core system servers, with the exception of the kernel server and
the file server, are found in the OS Services layer.

• Generic OS Services:

◦ The Task Scheduler provides a task-launching service for time-
based and condition-based task triggers.

• Multimedia and Graphics Services:

◦ The Window Server provides access to screen hardware and
application and system events.

◦ The Font and Bitmap Server provides font and drawing contexts
for all bitmap-based devices.

• Connectivity Services:

◦ The Software Install Server provides a secure software installation
interface from remote clients.1

◦ The Remote File Server provides a file system interface from remote
clients.

◦ The Secure Backup Socket Server provides a backup and restore
interface from remote clients.

In addition, the essential communications servers appear in this layer
(see Chapter 9):

• Comms Framework and Serial Comms

• Telephony

• Networking

Together these servers provide interfaces to system-level support for
almost all the major services provided by the OS above the level of
the kernel (persistent store and file system services are the notable
exceptions). OS Services therefore really can be thought of as the essential
infrastructure on top of which all application-level services are built.

It is also the location of Symbian OS support for many open standards
including:

• OpenGL ES, FreeType, and graphics and audio file formats including
GIF, BMP, WAV, MP3

1 The Remote Software Install Server is not the same as the Secure Software Install
Server; the former is used only by Connectivity Services components and manages software
installation from a connected host device, typically a PC; the latter is the trusted computing
base gatekeeper installation component, see Chapter 7.

GENERIC OS SERVICES BLOCK 171

• Cryptographic and key standards including RSA, DSA, DH, DES (not
for use by end-users)

• ANSI C Standard Library, POSIX

• TCP/IP v4 and v6 networking

• 2G, 2.5G, and 3G telephony for GSM/UMTS and CDMA2000

• Serial RS232, USB, Bluetooth, Infrared/IrDA, OBEX

• Fax

From an application perspective, many of the provided services are suf-
ficiently specialized that few applications use them directly, or even at all.
Their functions are exposed to applications through higher-level frame-
works and, for example, only specialized applications explicitly use tele-
phony or networking, although any application may use the SendAs API.

However, all applications use the font services and perform event
handling, window management, and drawing. Whether they know it or
not, all applications depend on these core servers.

From another perspective, this layer brings out many aspects of the
particular character of Symbian OS: multiple essential services are pro-
vided independently of the kernel; the client–server and framework and
plug-in design patterns are ubiquitous; and object-oriented design idioms
are widespread.

8.5 Architecture
The system model captures the broad division of responsibilities between
components in the block structure of the layer. In general, each block
is structured around one or more servers that collaborate to deliver a
set of related services. Typically, servers also provide a plug-in frame-
work, enabling extensible and flexible implementation of the underlying
services. Frequently, the design includes multiple levels of frameworks
through which services are implemented.

As an approximation, the key interfaces to each block are encapsulated
in the principal servers and frameworks each block contains, although in
many cases there are also additional utilities exposing library interfaces.
In general, each block can also be thought of as layered to form a logical
stack. The topmost layers of the stack expose the client interfaces (used by
applications and system clients); the middle layers typically interface to
other system services; and the lower layers expose framework interfaces
(used by device implementers to create hardware adaptation plug-ins).

8.6 Generic OS Services Block
The Generic OS Services block provides a number of general-purpose
utility-style services which are useful to applications (and other system

172 THE OS SERVICES LAYER

Generic OS
Services

Generic Services

Generic Libraries

Figure 8.6 Generic OS Services block

components) and some specific frameworks and libraries that provide
useful system services.

The frameworks and libraries include an implementation of the C
Standard Library and framework support for secure certificates, keys and
tokens. The more general-purpose utilities include logging and scheduling
services and some legacy components.

Design Goals

For the most part, the Generic OS Services are system utilities or libraries
which have (or had in the past) some specific association with particular
applications but which have been seen as more generally useful for both
system and application support and so have migrated downwards in the
system as their services have been generalized.

The Event Logger and Task Manager were closely tied to the orig-
inal PIM-style onboard applications, the File Logger to the telephony
implementation (of which it was originally a component), the C Standard
Library to Java (for which it was originally written to provide a minimal C
wrapper for system calls), and so on. In all cases, these components have
been part of the OS since its early releases.

The Cryptographic Token Framework and Certificate and Key Manage-
ment components are relatively more recent, first appearing in Symbian
OS v7. Their initial appearance in the platform represented the first steps
toward providing complete and pervasive architectural support for secure
network connections and secure browsing. The introduction of Platform
Security, in Symbian OS v9, completes that process and takes it further,

GENERIC OS SERVICES BLOCK 173

providing a complete architectural solution to the problems of security,
privacy and trust.

ANSI C and POSIX Support
The C Standard Library first appeared early in the evolution of the
OS and has remained largely unchanged through subsequent releases,
providing a basic subset of the standard ANSI C library functions and
POSIX system calls. It is designed to make it easier to port programs
written in C or mixed C and C++ from other platforms to Symbian OS,
although it does not claim to create a complete POSIX-like environment
on Symbian OS. Instead, it supports the essential library functions, for
example malloc(), free(), printf(), and so on, that almost any
C program needs in order to run. All of stdio.h and math.h are
supported.

The goal is to solve the most basic problems of porting and to enable
basic C programs to run, allowing developers to focus on porting specific
program logic and mapping to Symbian OS native idioms. In many areas,
the underlying operating system semantics (of POSIX and Symbian OS)
are quite different. For example, native process and thread semantics,
file semantics, console behavior, and error and signal handling are very
different in the two systems.

The C Standard Library implementation was originally written to
support the first Java port to Symbian OS and included the bare minimum
of the library needed by Java. (The porting problem was exacerbated
by the original licensing conditions for Java, which limited source code
availability; providing a minimal POSIX support layer was the simplest
solution.) Since then it has been used by other system components, as
well as by third-party code, especially for porting programs originally
written for Unix. For example, recent ports of Python rely heavily on it.2

While Symbian OS v9 improves the support for ‘standard C’, there is
still no support for accessing native idioms such as active objects from
the standard C library. In other words, the library does not attempt to
provide a complete C language interface to Symbian OS. Thus while
POSIX can be seen as a valuable migration tool, for complex system ports
its omissions are significant. It is likely that future releases of Symbian OS
will include increasingly complete POSIX support as part of the support
for a more standard C and C++ application platform.

Secure Certificates, Keys and Tokens
The Certificate and Key Management framework provides a complete
framework for managing and storing security certificates and keys, and
supports certificate storage and retrieval, certificate-chain building and

2 Nokia provides a Python implementation for S60 through http://forum.nokia.com.
Tim O’Cock’s Python for Symbian OS can be found at www.monkeyhouse.eclipse.co.uk.

174 THE OS SERVICES LAYER

validation, and key operations including importing and exporting RSA,
DSA and DH key pairs. (There is no support for generating keys.) The
framework is not generally available to third-party applications, but is
used by system clients (Application Installer, for example) and licensee
applications (browsers and VPN client applications).

The Cryptographic Token Framework provides the additional support
needed to manage certificate or key-protected hardware tokens (media
cards such as SD or Memory Sticks, for example), and again is available to
applications as well as system clients. It also provides an API for displaying
security-related dialogs to the user (the implementation is supplied by the
user interface).

Tokens are used to store secure keys. The framework provides an
abstraction based on stored keys or certificates or PIN-style key authen-
tication, as well as finder support to identify and enumerate secure
media. Typical uses of secure tokens include DRM-protected content on
physical media or their equivalent software ‘emulations’ (for example,
DRM-protected games or films), as well as downloads (for example, of
music).

Both frameworks make use of the unified key store and unified cer-
tificate store, abstractions allowing devices to have multiple, coexisting,
key and certificate store implementations and providing a single point of
access for clients, regardless of where an actual certificate or key resides
(e.g. it might be on external media).

The key store is a repository of private PKI keys and provides APIs
for storing and retrieving keys and for managing the store itself. The
certificate store is a repository of root and user certificates and it provides
APIs for storing and retrieving certificates and for managing the store
itself. Root certificates typically belong to a certificate authority. User
certificates belong to and are authenticated by the phone owner, and are
always associated with a private key which is stored in the key store.

The security-related components within the Generic Libraries collec-
tion sit between the application-level services (such as the secure installers
and the Content Access Framework, which is a generic framework for
controlling content access in a way which is transparent to applications)
and the low-level implementation of the cryptographic libraries (see
Chapter 10).

Other Generic Services
The Task Scheduler provides a mechanism for performing time-based
or condition-based tasks by scheduling the launch of an appropriate
application when the task trigger is met. (This is not a notification service
therefore, it is an application launcher.) From Symbian OS v9.1, condi-
tions may include Publish and Subscribe variables becoming true. Typical
uses include scheduled connections (connecting to email or message ser-
vices, for example) and scheduled backup or data synchronization. Note

GENERIC OS SERVICES BLOCK 175

that the Task Scheduler is a system server that always runs and which
saves schedules to a permanent file store to ensure continuity across
reboots.

Before Publish and Subscribe, the System Agent provided the means for
storing and querying system state. From Symbian OS v9.1, most system-
state values become Publish and Subscribe RProperty values to which
clients can subscribe (given appropriate security-model capabilities). The
System Agent retains only a few key services, for example, it defines and
creates some default global system properties at startup and it maintains
the Publish and Subscribe battery strength property.

The Event Logger provides an interface for logging and filtered querying
of system events of interest to applications. Built-in and user-defined event
types are supported. Typical uses are for creating call or message lists
(a list of ‘Recent Calls’ in a phone application, for example). Events
are expired when their lifetime is reached. However, the actual logging
engine is optional and is supplied by the licensee (in the variant user
interface on a particular device). If it is not present, calls to the logging
APIs have no effect.

The File Logger, which provides a logging to file service, is deprecated
in Symbian OS v9.1 and should be used only as a debugging tool. (It
remains in the system for backwards compatibility purposes only.)

Component Collections
Components are organized into two small collections of servers, frame-
work, and libraries. The common theme of the collections is general
utility.

Generic Services Collection

This collection provides miscellaneous system services including some
legacy components (retained for API compatibility).

• The Task Scheduler component is an application-launching server
that supports creating, querying and editing of time- or condition-
triggered tasks. From Symbian OS v9.1, clients should migrate to
revised interfaces.

• The Event Logger component is only an interface (i.e. it is supplied
only as a wrapper) supporting logging of events, for example, call

Generic Services

Event
Logger

Task
Sched-

uler

File
Logger

System
Agent

Figure 8.7 Generic Services components

176 THE OS SERVICES LAYER

Table 8.1 Generic Services Components

Component Name Development Name

Event Logger LOGENGONGOING

System Agent SYSAGENT2

Task Scheduler SCHSVR ONGOING

File Logger FLOGGER, COMMSDEBUGUTILITY

and message lists and retrieval, filtering and viewing by clients. The
logging engine itself is assumed to be supplied by the variant user
interface. If no engine is present, calls to the wrapper succeed but
have no effect.

• The System Agent component is a legacy component that performed
a number of useful functions for monitoring and reporting system
state. From Symbian OS v9, the main System Agent functionality is
taken over by the Publish and Subscribe service provided by the User
Library (see the RProperty class). The System Agent retains a few
key services only, for example, it defines and creates some default
global system properties at start-up, and it maintains the Publish and
Subscribe battery strength property.

• The File Logger component is a legacy utility for logging system
or application messages to a log file. From Symbian OS v9 this is
considered a debugging utility that is provided only for backwards
compatibility.

Generic Libraries Collection

This collection provides system-level libraries for use by applications and
system components.

• The Certificate and Key Management, Certificate Store and Key Store
components provide a framework for certificate and key management
that supports public key cryptography for RSA, DSA and DH key
pairs (including storage and retrieval), assignment of trust status and
certificate-chain construction, validation and revocation. Certificate

Generic Libraries

Cert. &
Key

Mgmt.

C
Std.

Library

Crypto.
Token
Frmwk.

Key
Store

Cert.
Store

Figure 8.8 Generic Libraries components

MULTIMEDIA AND GRAPHICS SERVICES BLOCK 177

Table 8.2 Generic Libraries Components

Component Name Development Name

Certificate and Key Management CERTMAN

Certificate Store CERTSTORE

Key Store KEYSTORE

Crypto Token Framework CRYPTOTOKENS, FILETOKENS

C Standard Library STDLIB

Store provides a single point of access for clients to certificates stored
on the device. Key Store is a repository of private PKI keys that may
be used to sign data, verify signatures, and so on, and provides APIs
for storing and retrieving keys and for managing the store itself.

• The Cryptographic Token Framework supports the use of secure
hardware tokens (i.e. encrypted media cards and file systems), for
example DRM-protected games or films on SD cards or memory sticks,
or their equivalent software emulations, for example, downloaded
music tracks.

• The C Standard Library is a subset of the POSIX C library which maps
C function calls in as simple a way as possible to native Symbian OS
calls. It is a subset implementation and does not attempt to provide a
complete POSIX environment on Symbian OS.

8.7 Multimedia and Graphics Services Block

Graphics has always been central to Symbian OS (see Figure 8.9), which
was designed to support a sophisticated graphical user interface and
sophisticated application graphics. In Symbian OS, there is no notion of
character-based applications (except for test or development purposes);
all applications are intrinsically graphical. Likewise, full-color support
has always been an integral part of the OS design; even when running on
16-bit grayscale devices, 24-bit color modes were supported (which still
remains beyond the capabilities of most phones).

Similarly, while the native font format is bitmapped (bitmap fonts
are still preferred for small-screen devices, where pixel-perfect design is
required to optimize for relatively small physical display size), support for
FreeType vector fonts was introduced early on. Indeed sophisticated sup-
port for non-Roman fonts, including right-to-left and even bi-directional
fonts, was always seen as central to the global aspirations of the OS.

178 THE OS SERVICES LAYER

Multimedia &
Graphics Services

Graphics
Device

Interface

Graphics & Printing Services

OpenGL ES Windowing
Framework

Multimedia

Figure 8.9 Multimedia and Graphics Services block

Audio data too was supported from the beginning, with a built-in
recorder application forming part of the original application set for the
system, something many phones still cannot match. (A Psion Series 5
running the early version of what became Symbian OS beat a cassette
player hands-down for nailing that hard-to-master guitar lick.) Symbian
OS moved onto phones when the state of the art was a polyphonic ring
tone; in contrast, it allowed users to launch a complete sound clip as a
phone ring tone (leading to offices full of baaing sheep and baby-gurgle
effects).

Increasingly, as Symbian OS has driven into the phone market from its
base as a more generic OS for the family of connected, PDA-like devices
from Psion and as phones themselves have become more sophisticated,
support for full-scale multimedia has become essential.

The Symbian-based Nokia 7650 was the first camera–phone outside
Japan. The Symbian-based Sony Ericsson P800 played movie clips and
the P900 shipped with a built-in MP3 player. The Symbian-based Nokia
nGage integrated an FM radio along with game graphics and stereo
sound.

The new device trends include full-stereo sound, multimegapixel
cameras with true optics (true camera lenses and optical zooming)
for both still and movie images, hardware-accelerated graphics, multiple
high-pixel-density displays, and onboard high-definition broadcast TV.

Symbian OS v9 supports these hardware features with a new Multi-
media Framework that is lightweight and flexible and aims to provide

MULTIMEDIA AND GRAPHICS SERVICES BLOCK 179

consistent and hardware-independent interfaces at the application level,
while providing flexible support to device makers wanting to integrate the
available multimedia hardware and support new multimedia applications
and services.

Graphics Design Goals

Graphics is central to the goals of the OS to provide an easy-to-use,
consumer-oriented operating system capable of driving a wide range of
devices but offering a sophisticated and, above all, open (to third-party
application developers) platform for general application development.

From the beginning, the system has been optimized to produce fast
graphics on low-power devices. The importance of rich font support was
recognized early on, including support for exotic scripts. Increasingly, the
focus for graphics has moved towards multimedia applications and games,
making device graphics generally more critical, as well as specifically
making it more important to support open graphics standards.

On the one hand, Symbian offers a much more integrated graphics
architecture optimized for its device class than, for example, Linux, which
requires licensing an application-level graphical toolkit, for example,
Trolltech or GNU, on top of which to either license or implement a
bespoke user interface. On the other hand, the Symbian graphics solution
aims to be more carefully architected, more modular, and better-scaled
than a system such as Windows Mobile, which has a monolithic user
interface implementation (with its origins in the PC-centric, legacy design
of Windows itself).

Multimedia Design Goals

The first implementation of a multimedia server was introduced in Sym-
bian OS v7. It was enhanced and substantially re-architected in Symbian
OS v8 and has evolved significantly in Symbian OS v9. Partly, its evo-
lution is the result of the rapid pace at which multimedia hardware and
services have migrated to mobile phones and the push from both licensees
and operators to integrate sophisticated new hardware and support new
media services, and partly it is a natural evolution enabled by other
enhancements in Symbian OS (including the adoption of the real-time
kernel, which opened the way for a significant change in phone hardware
complexity, and platform security, which makes Symbian OS an ideal
platform for a movie and music player, including DRM-protected media
cards and downloads).

The Multimedia Framework therefore provides a single extensible
framework for integrating support for audio, video, MIDI, automated
speech recognition, cameras, and integrated broadcast tuners. Its purpose
is to consolidate and standardize the multimedia APIs, so that they are

180 THE OS SERVICES LAYER

common across all devices based on Symbian OS, while also providing
a flexible foundation for extension and customization.

The framework is designed around the concept of controllers that
provide a full range of standard multimedia functions (such as audio
and video recording and playback, as well as more advanced functions
such as speech recognition) and define standard APIs, allowing uniform
client access across all Symbian OS devices regardless of their different
capabilities, and a standard plug-in interface.

The framework is implemented as a lightweight, multithreaded, ECOM-
conforming plug-in framework, which may run as one or more threads in
the client application process, and consists of a number of components
that implement the application-level interfaces.

The actual implementation on any device is provided by controller
plug-ins which are supplied by licensees and used by client applications
to access multimedia functions. The media capabilities of a given device
therefore depend on the available hardware and the supporting con-
troller plug-ins, and are ultimately determined by the underlying device
hardware. Multiple controllers may be available for any given format.
Applications can choose whether they want to select a controller or to
leave selection to the framework.

The Image Conversion Library provides an extensible plug-in frame-
work, also conforming to ECOM, and a standard set of conversion
plug-ins supporting conversions between standard image formats. The
Camera component defines a standard API for onboard cameras and
provides a reference implementation. The Broadcast Tuner component
provides a standard API for onboard radio tuners.

The camera and tuner APIs are implemented as frameworks into which
custom plug-ins are loaded to support specific hardware available on dif-
ferent Symbian OS devices but provide a standard API both for plug-in
writers and for client applications, so that applications can work consis-
tently across different phones including phones from different vendors.

The framework also defines the lower-level interface to the Media
Device Framework (see Chapter 10), which defines device-level plug-in
interfaces including support for hardware accelerators, and provides a
standard set of device drivers.

The framework is heavily plug-in dependent. From a client application
perspective, it provides a rich and consistent set of interfaces for all kinds
of multimedia. From a system perspective, it provides a number of different
plug-in interfaces to support writing of plug-ins that implement chosen
levels of support (from logical to physical) for the onboard hardware.

By default, Symbian supplies only a simple audio plug-in, supporting
WAV, AU and RAW formats. Codec implementations are provided for
a number of encodings including various PCM encodings, A-Law and
u-Law, and GSM6.10. Licensees are expected to supply the full set of

MULTIMEDIA AND GRAPHICS SERVICES BLOCK 181

plug-ins required on a particular phone, providing custom controllers,
codecs, and format support.

OpenGL ES

OpenGL ES is an open standard for 2D and 3D graphics, specifically
targeted at embedded systems including consoles and phones. It defines
application APIs for rendering, texture mapping, and other graphical
effects, as well as a portable binding to native windowing systems, as a
subset of the workstation- and desktop-oriented OpenGL standard.

OpenGL ES support in Symbian OS consists of a framework that
implements the API binding and a standard client API definition but not a
concrete implementation. A stub implementation is supplied by OpenGL
ES Headers and the OpenGL ES component is a reference implementation
of a third-party OpenGL ES renderer. The API includes Display Properties
(optional in the OpenGL ES standard) that encapsulate drawing properties
(e.g. displaying rectangles and clipping regions), enabling drawing to be
delegated to threads that don’t have access to an RWindow object.

The framework is provided to implement the OpenGL ES binding and
ensure compatibility between different devices.

Windowing Model

The Window Server is at the heart of the graphics architecture of Symbian
OS and it is central to the event-handling model that drives applications.
Unlike many other operating systems, in Symbian OS there is no notion
of character-based applications or devices (there are no teletypes or
green-screen terminals in mobile phones). All applications in Symbian
OS are intrinsically graphical and the screen is where application events
are realized, as well as being an important source of application events.
The Window Server is at the heart of screen control and is, therefore,
central to applications.

The Window Server uses the concept of application-owned windows
onto the display device to serialize access to the display by multiple con-
current applications. A window on a Symbian OS device is a rectangular
screen region that can be drawn to on behalf of its owning application in
response either to system or application events, and which receives focus
events as well as keyboard and pointer (pen) events. The Window Server
owns the screen as a resource and owns the single event queue through
which all device events, whether system- or application-originated, are
handled, managing kernel and application events as well as events gen-
erated by the Window Server itself and distributing them to applications
or system user interface components (status bars and so on). The Window
Server implements a classic Symbian OS pattern – serializing access to
shared resources, which in this case include the physical display and

182 THE OS SERVICES LAYER

interaction and other events. (Note that devices may also have multiple
physical displays.)

A window is an abstraction for making a screen region available to an
application for interaction. A window abstracts a region of the physical
screen. From the perspective of an application developer, a window is
a screen region in which an application view can be constructed. To
draw into the window area, and to receive user input, applications create
controls inside windows and the controls become the units of interaction.

Applications are, by definition, window-owning processes. Applica-
tions may create and destroy windows, may have many windows, and
may switch between them. Application windows form a window group.
The first application window in a group is the top client window and an
application must have at least one of these in order to display. Windows
allow applications to display and have screen modes (e.g. color depth), a
drawing area, and so on.

Logically, windows are maintained in a window stack, implying that
they have a ‘Z’ order which is enforced by clipping; windows higher in
the stack hide windows lower in the stack. Windows come in and out
of focus (i.e. have the focus of the user) and, typically, the window at
the top of the stack is the window which currently has focus. (A window
group, however, may choose not to receive focus.)

By default, windows are the size of the full screen (less any area
reserved for device status bars, control button arrays, or similar system-
owned screen resources). Therefore, windows do not overlap but hide
each other, a design optimized for small-screen devices (but a policy
which is ultimately determined by the variant user interface running on a
given device).

In implementation terms, a window is an ‘R’ class (RWindow) object
returned by the Window Server to a client opening a window subsession
in a Window Server session.

From an application perspective, most of the Window Server function-
ality is abstracted through the Control Environment and is made available
to applications through the APIs provided to create and manipulate
controls. Thus while applications need some knowledge of the win-
dowing model, the window methods are provided through the Control
Environment, not from the Window Server explicitly.

The Window Server is a system server that is started by the System
Starter at boot time and runs until system shutdown. Only when the
Window Server is running and providing access to the screen and events,
can the Application and UI Frameworks be started, and only then can the
phone application be run.

The Window Server is also responsible for starting some servers at
startup and it provides the plug-in interface for animation (see Chapter 7).
(It also provides other plug-in interfaces, for example the RSoundPlug-in
interface. The Keyclickref plug-in is an example implementation of a

MULTIMEDIA AND GRAPHICS SERVICES BLOCK 183

Window Server key-click plug-in library, which provides the audible
clicks for keystroke events.)

The Window Server has a number of responsibilities:

• implementing client-side buffering of windowing commands to mini-
mize calls across process boundaries between client and server, while
enabling fine-grained control by the client (which can flush the buffer)

• managing bitmapped drawing via the Font and Bitmap Server

• managing the clipping and valid or invalid regions of screen, for
example, when part of the screen becomes uncovered by some
window

• managing system-initiated redraw events, window stacking (Z-order),
etc.

• providing backed-up windows as a special case for applications that
lack the ability to manage their own redrawing efficiently

• handling special effects including shadowing and animation.

Event handling is based around the RequestEvent active object,
which the Window Server uses to get events from the kernel, once it has
registered itself as the default event handler. Event types include digitizer
and pointer events, keyboard events, and some other hardware events
(including switch off, case open and case close, which are legacies of
the early device architecture of the Series 5, a clamshell device in which
closing the case caused the device to suspend and opening it caused the
device to resume operation).

Window Server processes these events and passes processed events
to clients. Thus, for example, pointer events may be translated into
focus events or other logical events. Window Server may also perform
rotation and other logical processing or scaling of screen coordinates
for generated events (some devices support multiple screen orientations;
others support full and ‘flip’ mode sizes). It performs key events and
logical key events, including translations that are implemented by Front
End Processor (FEP) plug-ins, for example to translate pointer events on
an on-screen soft keyboard to logical keyboard events; to translate scan
codes to character codes for physical key events; and to interpret hot-
key events and combinations. Window Server also initiates events, for
example redraw events, and manages the event queues for clients. Each
client has its own queues.

The Window Server also supports a direct access (DSA) drawing
mode, which bypasses the server itself but still enables an application to
determine which screen region it owns (so that it does not overwrite other
applications or system components which may have visible elements
on the screen). The DSA framework notifies Window Server when it is
invoked (but otherwise the Window Server is not directly involved).

184 THE OS SERVICES LAYER

The Window Server has been a central part of Symbian OS since
the beginning but has seen many enhancements in subsequent releases,
including semi-transparent windows, multiple screens, double buffering,
and a configurable origin and scaling factor for windows (supporting
rotated screens and flexible screen size).

Fonts and Bitmaps

From the perspective of the graphics system, all graphics devices are
bitmap devices. All bitmapped graphics services and font services, includ-
ing printing support, are managed by the Font and Bitmap Server. It owns
the graphics devices and serializes client access to them (whether clients
are applications or other system services). All access therefore to the
screen or to printers and all bit-oriented screen operations, including
font operations, are conducted through a client session with the Font
and Bitmap Server, within a bitmapped device context. The Font and
Bitmap Server also ensures that screen operations are efficient by sharing
single instances of fonts and bitmaps between its multiple clients. It also
provides the framework for loading bitmap and vector fonts.

While the Font and Bitmap Server owns the graphics devices, the Bit
Graphics Device Interface (GDI) actually rasterizes drawing to bitmapped
devices. Bit GDI implements the concrete instances of bitmapped
graphics contexts, from the basic device abstractions providing hardware-
independent access to display devices and screen attributes using a variety
of graphics primitives. Bit GDI also provides transparency support (alpha
blending).

Font management is delegated to Font Store, which manages all fonts
in the system, both native Symbian OS format bitmapped fonts (glyph
fonts) and open vector fonts, and performs closest-fit matching of font
requests. Font Store provides APIs for storing, querying and retrieving
bitmapped fonts and all properties of glyph fonts. Vector fonts are drawn
by the FreeType Font Rasterizer and the available vector fonts are vendor-
dependent. (Symbian OS includes a reference implementation of the
FreeType rasterizer and reference bitmap fonts. Licensees may choose
to replace the FreeType implementation with one of production quality
or may omit it and replace the reference bitmap fonts with their own
bespoke fonts.)

FreeType supports FreeType 2 TrueType fonts. On small-display
devices, and on phones in particular, carefully optimized bitmap fonts
offer a more optimal font solution than standard vector fonts.

WYSIWYG printing is provided by the Printer Driver Support printing
framework, which stores and manages printer drivers and manages access
to and mapping of printer ports, and for which reference implementations
of concrete printer ‘driver’ plug-ins (type: PDR) are provided. Printer
drivers are not device drivers in the standard sense of controlling physical

MULTIMEDIA AND GRAPHICS SERVICES BLOCK 185

hardware; rather they are printer-driver information files that provide
translations from device-independent bitmap-based graphics descriptions
to printer page descriptions. More precisely, a printer driver implements
the GDI-defined bitmapped device abstraction and is a DLL plug-in to
the framework. Printer ports are virtualized over the available device
hardware, typically serial or short link. As well as loading driver plug-ins,
Printer Driver Support creates printer driver lists. WYSIWYG printing
support is considered legacy functionality for a modern phone. (See the
earlier discussion of application-level support for printing, for example,
based on Bluetooth profiles.)

The close coupling of drawing and printing and the inclusion of support
for line breaking and margin calculation alongside polygon and ellipse
rasterization among the Bit GDI primitives shows the legacy of the early
implementation of Symbian OS. For example, on a modern phone, fast
rendering of games and smooth rendering of streamed video on a device
where many other things may be going on (calls being received, music
being played, and so on) is more relevant than margin calculation for
office-style documents.

Graphics Contexts and Color Palettes
The lowest layer of the graphics system provides the abstract interface to
the device hardware (the physical interface is managed by the logical and
physical device drivers in the Kernel Services and Hardware Interface
layer).

The GDI abstracts the physical graphics device (a bitmap display
or raster device) as a Device Context containing settable drawing and
font properties (pen and brush settings for line styles, character and
font information and metrics), all drawing methods (for lines, polygons,
circles, rectangles, as well as text and bitmaps), and the clipping region
defining the drawable rectangle.

Since GDI pixels and font metrics are device dependent, methods are
provided to map from twips values (Symbian OS device-independent
units)3 to pixels and to zoom fonts by a specified zoom factor.

Text rendering supports bi-directional text, that is, both right-to-left and
left-to-right as well as mixed text, and line-breaking algorithms. GDI also
manages color value, handling mapping RGB values into display-mode
color spaces.

The Color Palette supports color-array handling and conversion
between RGB values and palette indices, and supports dynamic palettes,
that is, color palettes may be supplied by external classes, allowing
clients to control the palette capabilities depending on the available
device hardware.

3 A twip is a decimal variant of a typographical point. A point is 1/72 of an inch; a twip
is 1/20 of an inch.

186 THE OS SERVICES LAYER

Font metrics and selection (matching a device-specific font to the
font request) were significantly improved in Symbian OS v9 to support
higher-resolution screens and to better support screens with non-square
pixels. Calculation algorithms for font metrics (ascender and descender
sizes, capital heights, etc.) were added and there are methods that offer
choices based on maximum height to guarantee that the supplied font fits
the given screen space.

Graphics Architecture

At the heart of the graphics architecture are the Window Server, the
Bit GDI and the GDI components. Together they provide the services
required to write to bitmapped physical displays from within a system
or application graphics context and support the windowing abstractions
that allow multiple clients to independently manipulate the display.

The Window Server abstracts the key ideas of event-driven pro-
gramming for graphical applications and applies object-oriented design
principles (and native idioms of the operating system, for example, active
objects) to provide a straightforward programming model for native
applications.

From an application perspective, a window is a secondary object that is
created from the application view (the top-level application control; every
application needs at least one control that owns or controls a window,
that is a view). Once associated with a view by a Set() operation,
a window is abstracted to the top-level graphics context in which all
subsequent drawing, clipping and similar operations are performed.

While the graphical architecture of Symbian OS is central to the user
interaction and application model, so that, in effect, nothing can happen
on a device (from a user perspective at least) without the involvement of
the Window Server, from a system perspective graphics is well isolated
from the kernel and the basic system services. Thus to implement a
base port, a text-only version of the Window Server and a Text Shell
replace the complete graphics infrastructure with a simple event handler
and a console shell. The resulting bare-bones system has no application
support, communications or other ‘higher’ services but, from a kernel
perspective, it is fully functioning.

The graphics system therefore is (from the kernel perspective) just
another user-side process; it runs user-side (i.e., in non-privileged mode)
and uses the standard machinery of client–server inter-process commu-
nications to communicate both with the kernel (which is a server and to
which it is a user-side client) and with its own clients.

The newer additions in the graphics area, for example, vector fonts
and the OpenGL ES interface, as well as the Multimedia Framework itself,
build on top of the basic window and graphics system.

MULTIMEDIA AND GRAPHICS SERVICES BLOCK 187

Component Collections

Multimedia Collection

This framework defines application-level APIs for multimedia support
of all kinds and provides a number of standard implementations as
framework plug-ins.

Table 8.3 Multimedia Components

Component Name Development Name

Multimedia Framework MMF, COMMON

Multimedia Framework Plug-ins MMFAUDIOCONTROLLER,
MMFRAWFORMAT, MMFAUFORMAT

Image Conversion Library ICL, ICL IMAGEDISPLAY,
IMAGETRANSFORM

Image Conversion Library
Plug-ins

ICL GIFSCALER

Camera ECAM

Broadcast Tuner TUNER

• The Multimedia Framework component provides a high-level exten-
sible framework for multimedia support of all kinds, providing client
utilities for common tasks, for example audio, tone, video, and MIDI
playback and recording, as well as speech recognition. The frame-
work is designed to accept controller plug-ins, which in turn provide
the interface to lower level plug-ins (supplied by the Media Device
Framework, see Chapter 10) that interface to hardware and provide
acceleration APIs.

• The Multimedia Framework Plug-ins component provides controller
plug-ins to the framework; reference controllers are supplied for
standard audio formats.

Multimedia

Multi-
media

Frmwk.

Image
Conv.

Library

Multi-
media

Frmwk.
Plugins

Broad-
cast

Tuner
Camera

Image
Conv.

Library
Plugins

Figure 8.10 Multimedia components

188 THE OS SERVICES LAYER

• The Image Conversion Library component provides an extensible
framework for integrating still-image conversion codecs into the Mul-
timedia Framework. It recognizes picture file formats by providing a
MIME-type recognizer plug-in to the MIME Recognizer Framework.

• The Image Conversion Library Plug-ins component provides default
reference codecs for common still-image formats including GIF, JPEG,
PNG, BMP and MBM.

• The Camera component provides an implementation for an onboard
camera, allowing a camera object to be created and controlled and
imagery data to be requested and received from it.

• The Broadcast Tuner component provides an implementation for an
integrated broadcast tuner.

OpenGL ES Collection

These components comprise a framework supporting the OpenGL ES
2D- and 3D-graphics standard. OpenGL ES provides multi-client access
to screen, keyboard, and pointer or digitizer for GUI applications and
includes a keyclick reference plug-in that produces key or pointer clicks.

Table 8.4 OpenGL ES Components

Component Name Development Name

OpenGL ES Headers OPENGLSHEADERS

OpenGL ES Display Properties OPENGLESDISPLAYPROPERTY

OpenGL ES OPENGLES9.X

• The OpenGL ES Headers component provides standard OpenGL ES
headers and binary definition files to encourage compatibility between
OpenGL ES implementations for Symbian OS. The headers bind the
OpenGL ES API to the underlying graphics model and support a
plug-in renderer implementation.

OpenGL ES

OpenGL
ES

Headers

OpenGL
ES

OpenGL
ES

Display
Propts.

Figure 8.11 OpenGL ES components

MULTIMEDIA AND GRAPHICS SERVICES BLOCK 189

• The OpenGL ES Display Properties component encapsulates display-
drawing properties (e.g. display rectangles and clipping regions),
enabling window surface access, that is, drawing, to clients from
threads that do not own a window.

• The OpenGL ES component provides a reference implementation of
an OpenGL ES renderer implemented as a plug-in, which is replaced
by licensees.

Windowing Framework Collection

The Window Server owns and manages access to the screen as a drawable
resource, which is made available to applications through the abstraction
of windowed screen areas. It also provides access to the keyboard and
pointer or digitizer for GUI applications, including the keyclick reference
plug-in that produces key or pointer clicks.

Table 8.5 Windowing Framework Components

Component Name Development Name

Window Server WSERV8.1

Windows are at the top of the abstraction hierarchy for screen elements;
all applications must own (or control) a window in order to display or
to receive events. The Window Server receives and interprets events on
behalf of applications, as well as generating events based on received
application events (focus events, for example).

Graphics and Printing Services Collection

These components support all bitmapped graphics operations on display
and printer devices, including all font and drawing operations. The
principal components are the Font and Bitmap Server, through which all
operations are made within a client-side server session to a bitmapped

Windowing
Framework

Window
Server

Figure 8.12 Windowing Framework components

190 THE OS SERVICES LAYER

Graphics & Printing Services

Bit
GDI

Font &
Bitmp.
Server

Font
Store

Free-
Type
Font

Rster.

Printer
Driver

Support

Printer
Drivers

Refer-
ence
Fonts

Text
Shaper
Plugin

Figure 8.13 Graphics and Printing Services components

Table 8.6 Graphics and Printing Services Components

Component Name Development Name

Font and Bitmap Server FBSERV

Text Shaper Plug-in ICULAYOUTENGINE

Bit GDI BIT GDI

Font Store FNTSTORE

FreeType Font Rasterizer FREETYPE

Reference Fonts FONTS

Printer Driver Support PDRSTORE

Printer Drivers PRINTDRV

graphics context, and the Bit GDI, which implements the bitmapped
graphics context abstraction.

• The Font and Bitmap Server owns all bitmapped graphics devices
and provides the framework for other graphics components. The
server manages system-wide shared access to single-instance fonts
and bitmaps, providing bitmap and font services for native bitmap
fonts and vector fonts through its client-side APIs. It is responsible for
loading the plug-in font rasterizer for vector fonts.

• The Text Shaper Plug-in component to the Font and Bitmap Server
enables improved glyph placement for Hindi (i.e. Devanagari script).

• The Bit GDI component provides a polymorphic interface indepen-
dent of device and display modes to bitmaps and the screen device
via graphics primitives that implement the concrete device context for
bitmaps.

• The Font Store component provides font storage and font file loading,
using plug-in font rasterizer libraries if required. It also performs
closest-fit matching of font requests.

MULTIMEDIA AND GRAPHICS SERVICES BLOCK 191

• The FreeType Font Rasterizer component provides a reference imple-
mentation and library wrapper for the FreeType font rasterizer,
supporting FreeType 2 TrueType font descriptions.

• The Printing Support component provides a framework that manages
and loads printer drivers as bitmapped device context implementa-
tions and manages access to printer ports. It is considered a legacy
component on most modern devices and is only relevant to PDAs.

• The Printer Drivers component provides reference implementations
of concrete printer drivers that implement the polymorphic interface
defined by GDI. It is considered a legacy component on most modern
devices and is only relevant to PDAs.

Graphics Device Interface Collection

This is the lowest level of the graphics services, providing low-level
graphics abstractions and color palette support.

Table 8.7 Graphics Device Interface Components

Component Name Development Name

GDI GDI

Color Palette PALETTE

• The GDI component provides a device-independent graphics con-
text abstraction, which supports drawing to various devices including
screens and printers (which are treated as specialized graphics con-
texts). Normally all drawing, text display, and so on, is performed on
a graphics context.

• The Color Palette component supports color-array handling, conver-
sion between RGB values and palette indices, and dynamic palettes.
Color palettes may be supplied by external classes, allowing clients
to control the palette capabilities depending on the available device
hardware.

GDI Color
Palette

Graphics Device
Interface

Figure 8.14 Graphics Device Interface components

192 THE OS SERVICES LAYER

8.8 Connectivity Services Block

Connectivity Services in Symbian OS (see Figure 8.15) consist of dedi-
cated service and transport frameworks designed to support basic device
or host connectivity functions, including backup and restore, remote file
browsing, remote software installation, and so on.4

The first releases of Symbian OS based their connectivity on the pro-
prietary PLP serial and infrared-based protocol. Symbian provided basic
software for both PCs and devices, enabling backup and restore, synchro-
nization of PIM-application engines, remote software install, and remote
access to the file system. Licensees mostly provided basic customizations.

While Symbian OS v6.0 retained PLP, Symbian OS v6.1 moved to a
TCP/IP-based framework (based on m-Router, licensed from Intuwave)
and also introduced Bluetooth as a bearer, thus extending support to
include cable, infrared and Bluetooth. m-Router also adds a service-
loading framework and can load custom services.

From Symbian OS v8, there has been significant re-architecture of
the Connectivity Services, principally on the host-side (in other words,
on the host computer to which the device is connecting) but including
the introduction of the Bearer Abstraction Layer to improve standardized
access to connected phones.

Connectivity
Services

Service
Framework

Device Connection

Service Providers

Figure 8.15 Connectivity Services block

4 The best introduction is [MacDowell 2005].

CONNECTIVITY SERVICES BLOCK 193

Design Goals
Good connectivity is a vital feature for any mobile device and especially
for consumer-oriented devices. Symbian OS provides good device-
side support for generic connectivity services based on configurable,
standards-based technologies (such as SyncML), and the drive towards
more consumer-oriented devices will hopefully see licensees (or oppor-
tunistic third-parties) providing good solutions for connecting to all host
platforms, including Macintosh and Linux, for example. Easy connec-
tivity based on standard technologies and compatible between devices
from different licensees across multiple host operating systems is vital to
support migration of data between devices (from an old device to a new
device, for example).

Interestingly, while Symbian OS makes TCP/IP the standard protocol
for its connectivity services, OBEX is more common on phones not based
on Symbian OS. OBEX is optimized for simple transfer of small objects, for
example, contact records and SMS messages. While OBEX is supported
by Symbian OS and while some licensees may provide their own support
for OBEX-based connectivity, it is not part of the standard connectivity
solution.

Overview
The connectivity architecture provides a framework within which the
device-side of TCP/IP-based device-to-host services can be created. Since
the actual bearer is abstracted, such a service runs on any bearer.
Implementations are provided for the basic device–host connectivity
services of device backup, remote software installation and remote file
browsing.

Windows PC desktop-side implementations are supplied as part of the
Connectivity Services implementation but, in principle, the services on
the Symbian OS device are agnostic about the host operating system.
Since the services are based on TCP/IP, host-side implementations can
be written for any operating system. Typically, all licensees provide
a host connectivity suite of some kind; most support only Windows,
some support Mac OS/OS X. Third-party freeware packages provide
varying degrees of support for Linux or Unix connectivity for Symbian OS
devices.5

The device-side framework is extensible, so that new (device- and
host-side) services can be written, and open, so that host-side services

5 http://symbianos.org/∼malm/SymbianLinuxHowTo.html documents connectivity so-
lutions for legacy releases up to Symbian OS v7.0; for current Symbian OS phones,
data synchronization with other SyncML supporting systems should be possible but
may require configuration. Alternatively, www.scheduleworld.com provides a web-based
SyncML service, which should enable synchronization between Symbian OS and other
SyncML-supporting systems.

194 THE OS SERVICES LAYER

can be written for platforms (e.g. Linux/Unix) that device vendors do not
support out of the box. The framework is intended for use by developers
of host-side software to access the device and its applications and is
customizable by extension.

As supplied, the PC-side connectivity application uses Windows
Winsock over RS232 serial, USB, Bluetooth, and infrared connections. On
the device-side (i.e. Symbian OS), the chosen bearer propagates (through
the Sockets Server) to a Connectivity Services Server Socket. Bearer-
level components interoperate with the Sockets Server (see Chapter 9) to
provide services to the framework.

Services
Connectivity Service Providers are device-side services that support basic
interactions with a desktop host to perform device backup to the host, file
browsing and transfer (in both directions; typically, browsing the device
file system from the desktop and copying files between the device and
desktop host) and software installation (from desktop to device).

The basic supported services are:

• backup and restore of a drive on the device to a desktop host

• file management (e.g. copying files to and from the device, renaming
and deleting files and directories on the device, and formatting device
drives)

• installation of software from the desktop host.

Additionally, the infrastructure supports starting named services on the
device from the desktop host and managing the connection between the
device and the host.

Data synchronization functions are not supported by the Connectivity
Services but are provided elsewhere (for the device side, see Chapter 7;
on the host side, there are various third-party offerings as well as licensee-
provided software packages).

All the supplied services use the Service Broker framework. The Remote
File Server provides an interface, via the Service Broker, to the device
file system for a host-side client. Similarly, the Software Install Server
enables a host-side client to interact with the device Application Installer
to install SIS, JAR and JAD files over TCP/IP or OBEX. Similarly also, the
Secure Backup Server enables a host-side client to interact with the Secure
Backup Engine, which performs the interaction with the device-side file
system and other processes to back up data from the device to the host.

Framework and Transport Abstractions
The Service Broker framework is the core of the Connectivity Services
implementation, allowing device-side services to register a port number

CONNECTIVITY SERVICES BLOCK 195

Service Providers

PLP
Variant

Remote
File

Server

Secure
Backup
Engine

Secure
Backup
Socket
Server

Soft-
ware

Install
Server

Figure 8.16 Service Providers components

for use by host-side clients, allowing host-side services to be started. The
Service Broker protocol requires a TCP/IP connection to the host, for
which it relies on the Bearer Abstraction Layer (BAL). Named services
(supplied by the connectivity component) use the Service Broker. Port-
number registration is based on XML-defined configuration files.

The Bearer Abstraction Layer (introduced in Symbian OS v9) provides a
bearer-abstraction framework and a connection-management API to PC-
link-type applications, allowing selection and configuration of connection
bearers. Typically, the link application is provided by a licensee as part
of a connectivity suite for a particular product. The framework supports
plug-ins that encapsulate actual bearers (for example, m-Router).

Server Socket is a helper library that allows TCP/IP services based
on port numbers to be created for use by the Service Broker, which is
simpler and more ROM-efficient than creating bespoke named services
from scratch.

Architecture
The Connectivity Services block provides device-side support for connec-
tivity services. Services are organized around a central Service Framework
component, the Service Broker, with named services, which are clients
of the framework and use it to propagate service port numbers to remote
clients, and bearer services, which are used by the framework to provide
TCP/IP-based services over a variety of available bearer technologies.

The Bearer Abstraction Layer provides a common platform on top of
the m-Router TCP/IP-based transport, independently of the actual bearer.
Bearer support is provided to the Bearer Abstraction Layer as a plug-in,
interfacing to a networking Sockets Server socket connection.

Component Collections

Service Providers Collection

These components provide named services which run on the device side
to provide service interfaces to remote (host-side) clients. All use the
Service Broker as an intermediary to propagate their port numbers to the
remote client.

196 THE OS SERVICES LAYER

Table 8.8 Service Providers Components

Component Name Development Name

Remote File Server REMOTEFILESERVER

Software Install Server SWINSTALLSERVER

Secure Backup Socket Server SBSERVER

Secure Backup Engine SECUREBACKUPENGINE

PLP Variant PLPVARIANT, PLP, BRDCST

• The Remote File Server component provides on-device file-
management functions to a remote client over TCP/IP, including
access to backup and restore functions provided by other system
components.

• The Software Install Server component interacts with the software
installation components on the device to enable remote installation
of SIS, JAR and JAD files over TCP/IP or OBEX. Installation events
can propagate to a connected host, passing progress information and
errors and allowing user interaction.

• The Secure Backup Socket Server component provides backup/restore
functions to a remote client over TCP/IP.

• The Secure Backup Engine component manages backup and restore
of device-side data, including private data and installed software,
as controlled by the Secure Backup Socket Server. This component
exposes an API and can be used by other components to carry out
a remote backup and restore (for example, to a connected PC) or a
local backup and restore (for example, to a removable memory card).

• The PLP Variant is a deprecated legacy component that returns fixed-
device information, for example the device ID and required free
memory, to applications running on other devices or connected hosts.
It is retained only for compatibility with third-party components that
use some of its APIs. It is implemented as a DLL to which applications
link, not as a plug-in.

Service Framework Collection

This service based on configuration files and port registration enables
device-side services to register a port number for use by PC-side clients,
which can query for and start device-side services. The configuration files
have an XML-based format.

CONNECTIVITY SERVICES BLOCK 197

Service
Framework

Service
Broker

Figure 8.17 Service Framework components

Table 8.9 Service Framework Components

Component Name Development Name

Service Broker SERVICEBROKER

Device Connection

M-
Router

Server
Socket

Bearer
Abstr-
action
Layer

Figure 8.18 Device Connection components

Table 8.10 Device Connection Components

Component Name Development Name

Bearer Abstraction Layer MROUTER-PLUG-IN

Server Socket SERVERSOCKET

m-Router MROUTERSECURE

Device Connection Collection

This is the lowest (bearer-level) layer of the phone’s Connectivity Services.

• The Bearer Abstraction Layer component is a framework for plug-ins,
which encapsulates actual bearers (for example m-Router), providing
a connection-management API to PC link-type applications.

• The Server Socket component is a helper library that supports creating
(new, unnamed) port-number-based TCP/IP services for use by the
Service Broker for device–host communications, for example with a
PC. It communicates service port numbers and manages messages
and commands.

• m-Router is a licensed, PPP-like data-communications protocol and
framework, which provides a TCP/IP-based connection between two

198 THE OS SERVICES LAYER

devices (typically, a Symbian OS device and a desktop computer;
it runs on both sides of the connection). The connection may run
over Bluetooth, infrared, USB, or serial cable connections. m-Router
provides a proprietary framework for loading custom services.

9
The Comms Services Block

9.1 Introduction

The system model represents Comms Services as a major, self-contained
block within the OS Services layer of Symbian OS.

‘Comms’ (or communications), in this context, really means ‘data com-
munications’ – the art, science and technology of moving data between
different devices over direct connections or networks. See Figure 9.1.

What connections are available depends both on the hardware archi-
tecture of a given device and on what services happen to be accessible
through the hardware at any particular time. A typical modern mobile
phone includes a data cable connector of some kind for connecting
to a desktop computer (typically for data synchronization and backup),
infrared or Bluetooth radio or both for more transient connections (to other
phones or devices such as printers) and, of course, the telephone radio
hardware itself. Typically the data connector is proprietary but, increas-
ingly, mini-USB ports have begun to appear on phones. On devices such
as PDAs they are standard, as they are on other digital devices such as
cameras and music players. Most recently, Wi-Fi has begun to appear on
high-end phones.

Connectivity
Services

Generic OS
Services

Multimedia & Graphics
ServicesComms Services

OS
Services

Figure 9.1 The Comms Services block within the OS Services layer

200 THE COMMS SERVICES BLOCK

Whatever the physical connections and whatever their purpose, the
issues from a communications perspective are essentially the same.

• Two-way communications requires protocols; to successfully
exchange data requires a surprisingly complex set of shared
assumptions between two parties: getting the other party’s attention,
agreeing who speaks when, agreeing what counts as ‘data’, keeping
up with each other, and so on.

• As well as protocols to manage the conversation between the end
parties, protocols are required to relay or transport data between
them, if the two parties are not directly connected to each other.

• Finding a route that connects the parties can also be complex; even
where the parties are directly physically connected, an appropriate
interface to the connection must be selected and configured (there
may be multiple interfaces available, even for the same physical
connection) and where there is no direct connection, a network route
must be found.

• Specialized hardware requires appropriate drivers, to push data
through and manage the hardware state (powering hardware down
when not in use is especially important in a low-powered or battery-
powered device, for example).

• In a multitasking system, contention for hardware between multiple
clients is likely so that hardware needs to be shared (for example, if
two applications are trying to use a serial port at the same time).

• Finally, at the application level, settings may need to be saved, shared,
updated and managed.

Communications is complex because the task is complex. Communi-
cations also continues to evolve at an explosive rate, not least because
it is also where computing and telephony converge, where wired and
radio technologies converge and where personal and enterprise usages
converge. For all these reasons it is usually considered to be at the
technological leading edge.

Symbian OS supports a wide range of communications technologies
including conventional serial communications, short link technologies
such as USB, Bluetooth and infrared, as well as networking technologies,
from standard Internet protocols to newer protocols such as SIP (which
are designed to support services from VoIP to the latest packet-based data
services) and, of course, telephony voice, data and messaging services for
2G, 2.5G and 3G networks, whether GSM/UMTS or CDMA/CDMA2000.

Symbian’s communications support has evolved not just to track new
technologies but also in response to their rapid convergence and, in
particular, in response to the increasing importance of packet-based
technologies for 2.5G and 3G telephony services.

PURPOSE 201

9.2 Purpose

Comms Services in Symbian OS provides the support for a wide variety
of communications protocols and services:

• Serial protocols including RS232, IrDA and USB

• Bluetooth radio

• Networking protocols including TCP/IP (both IPv4 and IPv6), network
security (TLS and IPSec) and dial-up protocols (PPP and SLIP)

• Wi-Fi

• 2G, 2.5G and 3G mobile telephony voice, data (including fax) and
messaging services for GSM/UMTS and CDMA/CDMA2000 networks.

These protocols in turn enable the infrastructure for higher-level ser-
vices including:

• networking including browsing and VPN support

• SIP session support

• email, SMS, MMS, WAP and OBEX messaging

• SyncML data synchronization

• WAP browsing

• Fax.

These services are supported over physical hardware including cable
serial ports, infrared, USB connectors, Bluetooth radio and GSM/UMTS
or CDMA/CDMA2000 phone–air interface.

The system model divides the Comms Services block into four distinct
sub-blocks: the Comms Framework, which provides the overall support-
ing infrastructure for data communications, and Telephony, Short Link
and Networking sub-blocks, each of which defines the dedicated services
required for its respective technology.

Comms Services

Telephony
Services

Short Link
Services

Networking
Services

Comms
Framework

OS
Services

Figure 9.2 The Comms Services sub-blocks

202 THE COMMS SERVICES BLOCK

Comms Framework

Comms
Process &
Settings

Comms
Config.

Data Comms Server

Comms
Framework

Baseband
Abstraction

Figure 9.3 Comms Framework sub-block

Comms Framework

The Comms Framework provides the generic infrastructure that supports
all communications services.

Most importantly, it includes the Comms Root Server, which is the
‘meta’ process server for all communications services and the ESock
Socket Server which provides the generic, sockets-style interface used to
access all communications services. See Figures 9.2 and 9.3.

Telephony Services

The Telephony Services are based on the ETel Telephony Server (and
its extensions) that provides support for 2G, 2.5G and 3G mobile
phone networks, including GSM/GPRS/EDGE/UTMS (2G/2.5G/3G) and
CDMA/CDMA2000 (2G/2.5G/3G North America).

GPRS and EDGE are the incremental packet data and ‘go faster’
increments to GSM; UMTS and CDMA2000 are the respective GSM and
CDMA evolutions to 3G. See Figure 9.4.

Networking Services

Networking Services provides packet-based network services with
Ethernet emulation and includes the TCP/IP stack implementation, secure

PURPOSE 203

Telephony Services

Telephony Utilities

Telephony Server

SMS Protocol Plugins SMS Utilities

Telephony Server
Plugins

Telephony
Reference Platform

Figure 9.4 Telephony Services sub-block

Networking
Services

Link Layer Control

Networking Plugins

ESock API
Extensions

Subconnection
Interface

TCP/IP Security TCP/IP
Utilities WAP Stack

Network Protocol Plugins

Figure 9.5 Networking Services sub-block

204 THE COMMS SERVICES BLOCK

networking extensions including TLS/SSL and IPSec, which support secure
browsing and VPN gateways, together with a variety of application-level
Internet services including FTP and HTTP. (FTP does not expose pub-
lic APIs.) All networking services are designed to be virtualized over
telephony, serial or short-link bearers.

Support for Wi-Fi appears for the first time in Symbian OS v9
(although licensees have introduced Wi-Fi-enabled phones based on
earlier releases). See Figure 9.5.

Short-link Services
Short-link services provides USB, Bluetooth and infrared services includ-
ing support for the OBEX binary object protocol, USB class support that
enables a Symbian OS phone both to use and serve as a USB host,
and full implementations of the IrDA and Bluetooth protocol stacks. See
Figure 9.6.

Short Link Services

OBEX
USB

Manager

Short Link

Short Link Protocol

Serial Comms Server
Plugins

Figure 9.6 Short-link services sub-block

9.3 Design Goals

A phone is an extreme case of a mobile, connected device, which was the
original design point for Symbian OS. While the ER5 release was explicitly
targeted at PDA-style devices, even as the first Symbian OS devices
reached market, convergence with mobile telephony was beginning to

DESIGN GOALS 205

drive the company strategy. Symbian OS has been a leader in the trend
which has seen PDA functions largely absorbed into mobile phones.

Compared with the original Symbian OS devices, current mobile
phones (even low-end ones) make vastly greater demands on communi-
cations support. On the Psion Series 5, for example, the communications
hardware consisted of a single UART, which could be switched between
the serial port and the infrared port but could not be used by both
simultaneously. Despite the simple hardware, a full set of integrated
communications applications was envisaged, from email and web clients
to network news readers and multiplayer games (network Doom, for
example) and, of course, including infrared printing and beaming.

By the time the Series 5 came to market, communications support in the
operating system had already been extended to include basic telephony.
However, following the logic of the simple communications hardware
design of the Series 5, the early networking and telephony use cases
envisaged a Symbian OS device as one half of a two-box solution, using a
conventional serial modem or a GSM mobile phone as a dial-up modem
to connect to an ISP for network access (including Internet) or driving a
GSM mobile phone (sending AT commands over a serial link), for example
to dial directly from a phonebook on the Symbian OS device or writing
and sending SMS messages from the Symbian OS device via a GSM
phone. In each case the physical link was serial (either cable or infrared).

Even when Symbian OS migrated onto devices with onboard phone
hardware (even before the release of the Series 5 in July 1997, phone
projects were underway with licensees), the connection between the
phone-side hardware (a dedicated second processor running a GSM
stack) and Symbian OS was serial. Thus even true telephony functions,
such as setting up lines and answering and making calls, ultimately went
through the serial server and a serial port.

Each subsequent release of Symbian OS has taken it a further step
away from this early legacy to support the evolving reality of data-
enabled phones capable not just of full network access (browsing or
email, for example, over a VPN tunnel into a company network) but also
of running real-time communications applications, for example, video
conferencing which requires two-way, real-time video streaming.

As Symbian OS has evolved, it has become capable of real-time pro-
cessing and thus capable of directly hosting the telephony baseband stack,
making single-core phone designs possible. (The real-time kernel first
appears as an option in Symbian OS v8 and is standard in Symbian OS v9.)

In Symbian OS v8 and Symbian OS v9, Comms Services has evolved
significantly. In particular, the Root Server was introduced as the primary
communications server, responsible for starting and stopping the dedi-
cated communications servers on demand and providing the common
context within which all communications servers run. (In earlier releases,
the C32 serial server provided this service.) The goal is to support more

206 THE COMMS SERVICES BLOCK

seamless interoperability between services and the faster data throughput
required by new high-data-rate services.

In another significant change, from Symbian OS v9 the Comms
Database has been integrated into the Central Repository, which pro-
vides a single point of storage for all system settings and a single common
interface to all settings and service configuration. (The legacy CommDB
interface is retained as a ‘shim’ layer providing backwards compatibility
for existing applications.)

9.4 Overview

Symbian OS is designed for devices that typically do not have permanent
or predictable connections (unlike a networked desktop computer, for
example) and which have also typically not had even transient Ethernet
connections (although this is beginning to change as Wi-Fi starts to appear
on phones). The key requirement for communications services is therefore
the ability to virtualize almost any service required at the application level
over whatever transient connections are available at the time.

The hallmark of Symbian’s communications implementation is the
high degree of integration between the services at application level and
the high degree of interoperability of technologies at a system level.

Logically, Comms Services is divided into sub-blocks, based on tech-
nologies. Each sub-block is organized around one or more primary
servers and frameworks. Each server exposes client interfaces through its
client-side APIs; implements system-level services by providing appro-
priate protocol implementations as Socket Server plug-ins; and defines a
hardware adaptation interface through a framework for which it provides
implementation plug-ins, while also enabling extension by licensees and
partners (who can write their own plug-ins to support bespoke hardware).

9.5 Architecture

Servers and frameworks, characteristically for Symbian OS, provide the
unifying architectural patterns for Comms Services.

The servers collaborate to provide the necessary level of interoper-
ability essential for mobile devices which, by definition, rely on transient
connections of varying kinds, depending on availability, rather than being
a permanent part of a known, fixed infrastructure.

Each server exposes a client-side API. Each server is implemented as
a framework. The frameworks supply the mechanisms for extensibility,
which is designed in at a number of levels (see Figure 9.7):

• new protocols can be added to the system by server extensions

• new hardware types at the lower level can be supported by adding

ARCHITECTURE 207

Clients

Hardware adaptation

Sockets interface

 Other services

Client APIs

System interfaces

Socket server plug-in
modules

Hardware adaptation
plug-in modules

Figure 9.7 Logical layering of Comms Services

supplier module extensions (plug-ins which provide the hardware
abstraction).

The architecture has proved its flexibility and adaptability over time,
as it has evolved to support technologies such as Bluetooth and USB, as
well as almost continuous evolution in telephony.

The Comms Server Model

In Symbian OS, each dedicated communications service is organized
around a principal server and a protocol implementation. The servers
include the ETel Telephony Server that provides telephony services, the
C32 Serial Server that provides data communications services (typically
virtualized over short-link connections), Internet extensions to the ESock
Socket Server that provides networking services, and Bluetooth and USB
managers that provide short-link services.

In the original communications architecture, all communications ser-
vices were virtualized over a simple serial connection, supported by a
hardware architecture which provided a single UART switchable between

208 THE COMMS SERVICES BLOCK

a cable serial port and an infrared port. The C32 Serial Server was there-
fore the primary service provider, accessed directly by clients using its
client-side APIs. The Serial Server also provided the framework which
defined the low-level abstract API for communications modules (CSY
files) which were implemented as plug-ins supporting the available serial
hardware (the serial port and IrDA).

Networking services were designed around a server that provided a
Berkeley-style Sockets API and a TCP/IP stack implementation, which
was loaded as a server plug-in. At a lower level, however, all networking
services were virtualized over serial connections (for example, an IrDA
link to a network-connected computer).

When telephony services were introduced to the operating system,
the design was quite closely modeled on the serial services architecture,
with a primary server, the ETel telephony server, providing the client-side
APIs and the abstract framework for hardware-facing telephony modules
(TSY files), which were analogous to C32 Serial Server CSY communica-
tions modules. Interestingly, the addition of telephony services did not
substantially change the earlier assumption of the primacy of serial com-
munications, since the initial expected use for telephony was a two-box
solution, using a serial connection (either cable or infrared) to connect a
Symbian OS device to a modem or a mobile phone.

This was more or less the communications architecture of the first
releases of the operating system and largely survived through the Symbian
OS v6 and Symbian OS v7 releases. Over those releases, there were
significant extensions, most obviously to telephony and networking to
add the required packet capabilities for 2.5G and 3G data services,
as well the addition of new short-link technologies such as Bluetooth
and USB. However, the general principle of the serial server as the
primary communications server (the ‘first among equals’) remained even
though, as each release increasingly specialized the operating system
for mobile phones, the primary communications use case was not serial
communications but on-board telephony, with or without networking.

This architecture was unsatisfactory for a number of reasons, not least
of which was the resource cost of having the serial server running all the
time to support non-serial communications services.

Beginning with Symbian OS v8, therefore, some significant changes to
the communications architecture were introduced as the foundation for
further evolution to support the increased demands for high data rates.
The key change was to introduce a primary communications server,
the Comms Root Server, which is designed to provide a purpose-built,
lightweight server for which the dedicated communications servers (C32
serial, ETel telephony and ESock sockets servers) act as service providers.
The Serial Server is relieved of its privileged role and becomes just another
dedicated service provider.

ARCHITECTURE 209

In this architecture, the Root Server becomes a communications pro-
cess server, initiating a single communications process within which it
runs the servers for individual services as threads, starting and stopping
them in response to client requests and providing process, shared resource
and common settings management including fast, low-overhead commu-
nication between the dedicated server threads. Each server is run in its
own thread and only a single instance of any server is ever running. A
number of supporting components implement the messaging abstractions
and communications channels which allow passing of messages between
running server threads, while the Comms Database provides the shared
settings service. (From Symbian OS v9, the CommDB API is provided for
compatibility only; the Central Repository should be used for all shared
settings.)

The Root Server is responsible for running the following dedicated
servers, which implement a common Comms Provider Module (CPM)
interface defined by the framework:

• C32 Serial Comms Server

• ETel Telephony Server

• ESock Socket Server

• Resolver Server

• Fax server.

The individual services are described in more detail in the sections
that follow. Each service provides a client-side session API, encapsulated
in a single static DLL to which clients link. The general usage pattern is
thus:

1. Create a client session with the appropriate server, for example the
Serial Server or Socket Server; this exposes the server’s client-side
APIs to the client.

2. Create a client sub-session with an appropriate object, for example a
communications port or a socket; this exposes the object APIs to the
client.

3. Use the object.

4. Close the sub-session with the object when finished.

5. Close the session with the server when finished.

It is also worth noting that in Symbian OS communications services
are provided user-side; in other words, communications services are not
built into the kernel. This protects the kernel from resource failures or

210 THE COMMS SERVICES BLOCK

badly behaved processes originating from communications services or
clients.

Frameworks
As well as implementing server functions, the principal communications
servers also provide extensible frameworks, which are at the heart of the
communications architecture.

Frameworks provide extensibility at a number of levels, including:

• at the client-interface level (for example, extending core telephony
services to enable fax over mobile networks)

• within the protocol stacks at the protocol level (for example, adding the
WAP stack or extending core TCP/IP services to enable packet-level
security)

• at the network-interface level (for example, adding support for new
technologies such as the Bluetooth Personal Area Networking (PAN)
profile)

• at the hardware-abstraction-interface level (for example, extending
the telephony baseband interface to support CDMA).

All implementations of communications framework plug-ins conform
to the Plug-in Framework (i.e. ECom), in other words they are polymorphic
DLLs that implement the standard interfaces which enable the Plug-in
Framework server to find and load the appropriate modules at run time
on behalf of the requesting framework, as well as the communications-
specific interfaces required by the specific communications frameworks.

The Comms Services frameworks include:

• C32 Serial Server, which defines CSY virtual serial port modules

• ETel Telephony Server, which defines TSY baseband interface modules

• Socket Server, which defines PRT protocol modules

• Network Interface Manager, which defines AGT interface agent and
NIF network interface modules.

In addition, the Comms Framework component defines the CPM
interface which is implemented by all of the dedicated communications
servers (but not by the Root Server itself).

9.6 Comms Framework
The Comms Framework components implement the infrastructure used
by all communications services:

• The Comms Root Server is the primary communications server,
responsible for starting and stopping the communications servers

COMMS FRAMEWORK 211

that provide dedicated services and for providing the process context
in which all dedicated servers are run.

• The C32 Serial Server and the ESock Socket Server are, respectively,
the data communications and socket servers that provide the two direct
client interfaces for communications services (all communications
services are accessed through sockets and serial communications
services are also available directly through the Serial Server).

• The Network Interface Manager and Network Controller are, respec-
tively, the network interface and connection managers that find and
set up appropriate network connections requested by Socket Server
clients and that are used (indirectly) by all communications services.

The Comms Framework also includes common utility and framework
support, including the framework classes that define the Comms Provider
Module (CPM) interfaces to which all communications servers conform
and specialized messaging and memory management (Comms Chan-
nels and MBufs), designed to enable fast inter-thread communications
within the communications process including thread-shared memory.
(Communications servers run in their own threads inside the single
communications process managed by the root server.)

Also included is the Comms Database, which supports the legacy inter-
face used for storing shared communications settings. (New applications
should use the Central Repository.) See Figure 9.8.

Comms Framework

Comms
Processes &

Settings

Comms
Config. Utils

Data Comms Server

Comms Framework
Utilities

Baseband
Abstraction

Figure 9.8 Comms Framework components

212 THE COMMS SERVICES BLOCK

Design Goals

It is important to remember that on a typical device based on Symbian
OS (a mobile phone, for example), all communications must be virtual-
ized over an available, and usually transient, connection. Thus Internet
browsing, for example, typically does not take place over a direct Internet
connection (as it would on a PC) but is virtualized over telephony or
short-link services. As Wi-Fi begins to appear on phones, direct network
connections also become possible but very much as complementary
options.

The Comms Framework has evolved to provide a generic infrastructure
that enables the seamless interoperation of services while providing
improved performance, ready for the next generation of high-data-rate
services.

Architecture

The Comms Framework sub-block is less a self-contained architectural
unit than the architectural glue that binds the different dedicated com-
munications services together. It provides the frameworks that define
essential, common communications abstractions, the Root Server that
provides the runtime context within which all communications services
operate, and the shared settings database and utilities, as well as utilities
and libraries, such as the MBuf Manager and Elements components.

The Root Server and Framework Utilities

From Symbian OS v8, all communications servers are implemented as
Comms Provider Modules and are run and managed by the Root Server,
which loads, configures, runs and monitors CPMs as dedicated threads
within the Root Server’s own process. Starting the Root Server creates the
single communications process and starts the server as the main running
thread within in. The Root Server runs from device startup to shutdown.

In Symbian OS, a process is the fundamental unit of protection, with its
own address space, while a thread is the fundamental unit of execution,
running inside a process and sharing the process address space and any
other resources (file handles, for example) with other threads running in
the process.

The Comms Framework is the component that provides the abstrac-
tions needed to implement Comms Provider Modules including the
CPM interface, common thread management and Comms Channels, the
asynchronous message queue abstraction that provides an efficient com-
munication mechanism between active CPMs. The CPM framework also
defines a file-based configuration method that is used by the Comms Root
Server to configure CPMs on loading.

COMMS FRAMEWORK 213

To support implementation of new CPMs, the Comms Elements pro-
vides a reusable catalog of common design pattern implementations, for
server startup, message passing and generally useful abstractions such
as state machines. The MBuf Manager provides a memory manage-
ment framework that allows direct sharing of data (for example, network
packets) between CPMs without copying.

Serial Communications
The C32 Serial Server provides serial services for application and system
clients. A key component from the first Symbian OS release, it has been
re-architected and re-engineered to support platform security and the new
communications infrastructure based on the Root Server. From Symbian
OS v8, the C32 Serial Server is a CPM, run and managed by the Root
Server. The CPM and supporting mechanisms provide data sharing and
efficient inter-server communications without the overhead of running
the Serial Server to support other communications services.

The Serial Server follows the standard Symbian OS server pattern,
providing serialized access to shared resources. In the simplest case, and
unlike other communications servers, clients can gain direct access to the
serial hardware on a device by initiating a client session with the server
(by making a serial service request to the communications configurator)
and then from within the session loading, opening and configuring a
(virtualized) serial port. This creates what is, in effect, a raw serial link
over the chosen port (either an actual serial port, or virtualized over
Bluetooth, infrared, or USB) to another, connected device. Clients can
also access serial services through the Socket Server.

As well as providing a client API, the Serial Server defines the
framework interface that communications plug-in modules (CSY files)
implement. A CSY module is implemented as a polymorphic DLL (with
a CSY extension, by convention) that exports a factory function for a
CSerial-derived CPort class object. CSY implementations are sup-
plied for true RS232 serial ports and serial port emulation over IrDA,
Bluetooth and USB. At the level below the plug-in modules, logical and
physical device drivers implement the hardware-level interfaces.

Sockets
Sockets were first introduced as a networking abstraction in Berkeley Unix
(BSD), providing a generic mechanism to associate a communications
protocol with a data pipe (dedicated communications channel) connect-
ing two processes, transparently of where the processes were actually
running and using a simple, file-type semantics. The ESock Socket Server
provides sockets-based communications on Symbian OS through a client
session API and an underlying framework for creating and loading pro-
tocol implementation plug-ins (PRT files) that determine the type of the

214 THE COMMS SERVICES BLOCK

socket and provide the underlying protocol implementations. Sockets-
based protocol implementations are supplied allowing services to be run
over a wide range of possible bearer protocols including Bluetooth, IrDA,
TCP/IP and SMS.

The sockets abstraction provides a common client interface to network-
ing, serial and short-link communications protocols, providing a sockets
API plus name and address resolution and connection management.

ESock was originally provided as part of the networking implementa-
tion of the first Symbian OS release, but over subsequent releases it has
evolved into a more generic mechanism for requesting any communi-
cations services. Since Symbian OS v8, the Socket Server presents itself
to the Comms Root Server as a collection of CPMs whose purpose is to
provide protocol sessions to requesting clients by finding and loading an
appropriate protocol module, serving it through a client session to the
client, transparently managing the shared data structures and channels
used for socket communications, monitoring and cleaning up after thread
panics and, generally, performing all necessary housekeeping functions
and resource management.

Clients connect to the ESock server with a Connect() call and then
open a sub-session by calling Open() on a socket of the chosen type.
The socket type is based on the transport protocol. In response to a socket
request from a client, the Socket Server loads an appropriate protocol
module (PRT file) that implements the requested protocol.

In Symbian OS v9, the Socket Server is multi-threaded, improving
performance.

Network Interfaces

The underlying interface to the network transport layers is provided by
the Network Interface Manager, or NIFMan, and its supporting com-
ponents, which load interface agents (AGT files) to establish network
connections and then create an appropriate network interface (NIF file).
Connections supported at Symbian OS v9 are either circuit-switched or
packet-switched data connections running through telephony services,
or an Ethernet implementation running over serial communications or
short-link services. The chosen network interface is bound to the TCP/IP
stack. NIFMan defines the plug-in framework (i.e. the base classes from
which plug-ins must derive and hence the interfaces they must imple-
ment) for the network controller modules. A network controller owns
both networks and bearers.

The Network Controller component is used by the Network Interface
manager to select a suitable outgoing interface, for example from those
pre-configured in the Comms Database. It loads first the appropriate agent
to establish the physical connection and then the appropriate network
interface. Thereafter, data can flow between the requesting client and the

COMMS FRAMEWORK 215

network interface through the loaded PRT stack module and the Socket
Server that loads it.

At the lowest level of the networking services are the modules that
implement the interfaces to the physical link layer, the plug-ins to the
Network Interface Manager (NIF files) and other related low-level plug-
ins. Supported interface types include Ethernet, PPP, SLIP and a tunneling
NIF, each of which can serve as an interface to different physical link-
layer carriers, for example physical cable or infrared implementations of
serial communications, Bluetooth, GPRS, and so on.

NIFMan can be thought of as the server that manages the overall
control of network and bearer selection, delegating the actual work to the
Network Controller and the agents that plug-in to NIFMan. Agents are
the workhorses that manage the pairings of networks to bearers. Typical
bearers might include:

• a GSM radio network supporting circuit-switched data calls

• a CDMA95 radio network supporting circuit-switched data calls

• a GSM radio network supporting packet-switched data contexts

• a UMTS radio network supporting packet-switched data contexts

• a CDMA2000 radio network supporting packet-switched data contexts

• an Ethernet wired network connection to a LAN

• an 802.11 (Wi-Fi) radio network connection to a LAN.

With multi-homing, there may be multiple access technologies avail-
able to reach the same network destination. For example, a given network
(an Internet ISP, say) may be reachable by all of the following: circuit-
switched data (for example, a GSM data call), packet-switched data (for
example, a GPRS connection) or WLAN (directly via Wi-Fi or perhaps via
Bluetooth connection to a PC). In contrast, another network (the user’s 3G
mobile network, for example) may be reachable only by packet-switched
data. Multi-homing enables each network and bearer combination to
be separately defined, so that the relationship of networks to bearers is
no longer 1:1 but one to many (i.e. multiple combinations for a given
network, based on all the possible bearers).

Shared Settings

Historically in Symbian OS, the Comms Database, or CommDB, is the
repository in which all communications-related settings and configuration
information is stored. Settings are used, for example, by system-level com-
ponents for default host-name resolution and to determine connection
preferences, availability of physical modems, services, configured ISPs,

216 THE COMMS SERVICES BLOCK

GPRS access points, LAN services, and so on, as well as by applications
that, for example, may need to allow users to set or change settings.

As well as containing preferences and settings, CommDB provides the
utilities needed to set, store and manipulate settings and to read and write
settings into XML formats.

CommDB has been a part of the system since the first Symbian OS
releases. In Symbian OS v9, however, its functions are replaced by
the Central Repository, to which the CommsDat component provides
a communications-specific interface for stored settings. Compatibility is
maintained for old-style CommDB requests.

Component Collections

Comms Process and Settings Collection

The Comms Root Server provides the main thread in the communications
process and is responsible for starting and managing all other communi-
cations process threads. These are started at device boot, rather than on
demand, as in previous operating system releases. See Figure 9.9.

Table 9.1 Comms Process and Settings Components

Component Name Development Name

Comms Root Server ROOTSERVER

It provides client-side APIs for loading, configuring and binding
provider modules; polices any relevant security policies; and publishes a
Publish & Subscribe property to notify thread death of provider modules.

Comms
Root

Server

Processes &
Settings Comms

Figure 9.9 Comms Process and Settings components

Comms Configuration Utilities Collection

Communications-related settings and configuration information are used
to set and determine the host name, connection and service provider
defaults. The Comms Database (CommDB) is the legacy repository that,

COMMS FRAMEWORK 217

Comms
Dbase.

Comms
Config. Utils

Figure 9.10 Comms Configuration Utilities components

Table 9.2 Comms Process and Settings Components

Component Name Development Name

Comms Database COMMSDAT, COMMDB SHIM,
COMMDB COMPAT

from Symbian OS v9, is replaced by the CommsDat interface to the Central
Repository, although the CommDB API is preserved for compatibility. See
Figure 9.10.

Data Comms Server Collection

This collection contains servers and supporting components that provide
the key client interfaces for data communications. See Figure 9.11.

Table 9.3 Data Comms Server Components

Component Name Development Name

C32 Serial Server C32

ESock Server ESOCK

Network Interface Manager NIFMAN, DIALOG

Network Controller NETCON

• The C32 Serial Server provides the client session APIs and server
implementation for serial type communications and the framework

C32
Serial
Server

Data Comms Server

Network
Inter-
face
Mgr.

Network
Cntrllr.

ESock
Server

Figure 9.11 Data Comms Server components

218 THE COMMS SERVICES BLOCK

for creating and loading the communications plug-in modules (CSY
files) that implement the serial-port abstractions, enabling clients to
access virtual serial ports independently of the underlying hardware.

• The ESock Socket Server provides the client-session APIs and server
implementation for sockets-based communications and the framework
for creating and loading protocol implementation plug-ins (PRT files).

• The Network Interface Manager provides the bearer-level support for
the Socket Server, providing the framework for creating, loading and
managing interface agent (AGT file) and interface plug-ins (NIF files).
Interface agents find and load network-interface implementations and
bind them to the TCP/IP stack to create the bearer-level connections
over which the socket protocols served to clients by the Socket Server
actually run.

• The Network Controller is the component that selects a network
interface agent to create an appropriate network interface. It reads
connection preferences for the client from stored communications
settings, based on which it chooses both a network and a bearer
(i.e. an access technology). Having made its choice, it loads the
appropriate agent. It is implemented as a plug-in library loaded by the
Network Interface Manager.

Comms Framework Utilities

These utilities provide framework support for the Root Server and for
Comms Provider Module mechanisms. See Figure 9.12.

Table 9.4 Comms Framework Utilities Components

Component Name Development Name

Comms Framework COMMSFW

Comms Elements ELEMENTS

MBuf Manager MBUFMAN

MBuf
Mgr.

Comms
Elmnts.

Comms Framework
Utilities

Comms
Frmwk.

Figure 9.12 Comms Framework Utilities components

COMMS FRAMEWORK 219

• The Comms Framework provides the framework base classes and
utilities that support the communications architecture based on the
Comms Root Server, including base classes that define Comms
Provider Modules (the addressing and binding mechanism used by
the Comms Root Server to identify and load modules), the message
definitions and communications channel queue abstraction used to
communicate between modules and the Comms Root Server, and
thread-creation support.

• The Comms Elements are an internal library of ready-made program-
ming patterns, for example state machines and message parsers, that
are used within communications services and are made available as
reusable objects.

• The MBuf Manager defines and manages MBufs, a communications-
specific shared-memory mechanism allowing provider modules (i.e.
multiple threads within the primary communications process) to share
memory buffers and therefore avoid unnecessary copying of messages
and data. For example, MBufs can contain data packets as well as
arbitrary C++ objects.

Baseband Abstraction Collection

The Baseband Channel Adaptor (BCA) provides an abstraction of the
actual channel used to communicate with the baseband processor, for
use by communications components (which, therefore, don’t need to
understand the actual channel implementation) and a plug-in framework
for a hardware-specific interface implementation module. The actual
channel is dependent on the hardware design and may comprise a
physical fast serial link, USB or other fast bus, a shared memory or even
a shared register protocol. See Figure 9.13.

Table 9.5 Baseband Abstraction Components

Component Name Development Name

Baseband Channel Adaptor BCA

Baseband
Abstraction

Bsebnd
Chnl.

Adapter
Frmwk.

Figure 9.13 Baseband Abstraction components

220 THE COMMS SERVICES BLOCK

9.7 Telephony Services

The telephony architecture was designed to provide flexible support for
a wide variety of possible phone types, including conventional analog
modems, GSM phones and even desktop phones containing an integrated
Symbian OS device.

Like other communications services, the Telephony Services block is
organized around a primary server and framework, the ETel Telephony
Server, supported by protocol implementations for specific services,
low-level plug-in modules implementing hardware adaptation interfaces
defined by the framework and some assorted high-level utilities.

The design principle for ETel was to abstract a small core set of
universal telephony functionality as the Core API, while providing a
flexible extension mechanism to enable support to be added for specific
service and network types at both the client interface, enabling support
for custom services and at the hardware interface, enabling support for
different telephone-baseband implementations. The straightforward goal
of the Core API is to enable telephony clients to pass information over a
generic phone link.

From this starting point, support has evolved from basic Hayes modem
control (AT commands) through GSM 2G standards, to 2.5G (GPRS,
EDGE) and CDMA (for the North American market and other markets,
such as Korea, that initially adopted CDMA rather than GSM), and to

Telephony Services

Telephony Utilities

Telephony Server

SMS Protocol Plugins SMS Utilities

Telephony Server
Plugins

Telephony Reference
Platform

Figure 9.14 Telephony Services components

TELEPHONY SERVICES 221

3G UMTS and CDMA2000 (respectively the 3G evolutions of GSM and
CDMA).

From an initial emphasis on dial-up and modem connections, provid-
ing a fully integrated telephony service became important as Symbian
OS moved onto mobile phones. More recently as mobile telephony has
evolved towards packet-based networks, support for high-bandwidth data
services has become important. See Figure 9.14.

While the basic phone services in Symbian OS are quite mature and
were well established by Symbian OS v6, incremental enhancements
have been introduced with almost every release since.

Architecture
Telephony Services are structured around the ETel Telephony Server.
ETel provides a core set of common, network-independent telephony
services that abstract control of telephony devices either connected to or
integrated into a Symbian OS phone and enable client access to phone
services. ETel is implemented as an extensible framework into which
modules can be added to extend the core functionality at the client level.

The ETel framework also defines the low-level, hardware adaptation
interfaces and provides the mechanisms that support hardware adaptation
plug-in implementation modules (TSY files).

Conceptually, the ETel core API is extensible in two directions: in the
direction of hardware, supporting new networks, baseband implemen-
tations and other hardware evolutions, and, in the client API direction,
enabling new services to be supported.

While extensibility implies flexibility, it also implies a significant
division of labor between Symbian and licensees to extend the telephony
support appropriately for a given phone or family of phones:

• On the Symbian side, the ETel server core and Multimode framework
support extensions for new standards (which is how the initial GSM-
only support has been extended first through CDMA and then to 3G
UMTS and CDMA2000) and expose the TSY provider module plug-in
API.

• On the licensee side, the Telephony Application and low-level TSY
provider modules support platform- and device-specific customiza-
tion.

Licensees implement a custom TSY and any additional custom APIs
they choose to add to support unique features of their own telephony
hardware.

In addition, licensees provide engine support and custom UIs, for
example, for phone security (such as PIN-based locking of the phone
application), and the phone application itself, which must include a

222 THE COMMS SERVICES BLOCK

platform-specific user interface and must also support comprehensive
user-interface-independent functions including handling networks, audio,
contacts, logging and call handling, number parsing, and so on. Tele-
phony Services includes a number of libraries and utilities that provide
basic support for such functions.

Note that the ‘licensee’ may be either a platform vendor such as S60
or UIQ, providing a pre-integrated user interface and application suite
solution to its customers, a phone vendor (or consortium such as FOMA)
creating a bespoke UI and applications, a third-party developer of a
phone application, or a hardware partner providing a packaged phone
hardware solution.

Evolution of Mobile Services

Mobile phone services and technologies have evolved rapidly, as has the
global market for mobile phones, including significant cycles of boom
and bust. Basic mobile network technologies have evolved from ‘plain
old’ GSM through GSM Phase 2+, otherwise known as 2.5G (GSM,
GPRS, EDGE), to UMTS 3G, with similar evolutions from CDMA to 3G
CDMA2000. Symbian OS has tracked these evolutions. It enables control
of landline and mobile phone modems and supports wireless telephony
standards for all markets.

GSM uses a packetized but synchronous Time-Division Multiple
Access (TDMA) approach to sharing available bandwidth between multi-
ple users. Voice is digitally encoded and transmitted as digital packets in
timeslots (frames) at a data rate approximating 19 200 baud (equivalent
to modem speeds from around the late 1980s).

Support for basic GSM services requires support for receiving and
making voice calls, receiving and sending SMS messages, showing that
SMS messages have been received, and receiving and making circuit-
switched data calls, for example fax calls. GPRS adds the requirement to
support making and receiving packet-switched data calls.

EDGE and 3G networks extend these requirements to include, for
example, both one-way and two-way audio and video calls including
support for two-way tele-conferencing; streaming of audio and video
to a phone; interactive, session-like two-way request–response (for web
browsing or remote database query); and background data delivery for
example of SMS messages.

GPRS and EDGE add packet data services by stitching together mul-
tiple GSM voice channels to create a higher bandwidth channel. GPRS
provides data rates up to 170 kbps, which EDGE improves by a factor
of three (either in speed or in the number of simultaneous subscribers
supported at GPRS data rates).

Both GSM and CDMA remain circuit-oriented, voice-centric tech-
nologies. UMTS evolves GSM to use Wideband CDMA to gain higher

TELEPHONY SERVICES 223

data rates. Unlike GSM or CDMA, UMTS is fully packet-switched, not
circuit-switched.

Historically, CDMA has dominated the North American market, while
GSM originated as a European standard that has had widespread global
uptake. GSM has also recently increased its market share in many CDMA-
dominated markets to become a second-line network technology.

Telephony Server
The ETel Telephony Server manages access to telephony functions on
a Symbian OS device, regardless of the details of the available phone
hardware. Indeed, there may be no onboard phone hardware, as was the
case in the first Symbian OS devices. As well as supporting fully featured
mobile phones, ETel supports the use of data ports thus enabling two-box
solutions, for example using a mobile phone as a modem via infrared or
Bluetooth, which was an early use case.

The server implements the standard Symbian OS client–server frame-
work, providing a client-side API (as a separate DLL to which clients link).
The server also implements the CPM interface and is thus a communica-
tions provider that is managed and run by the Comms Root Server and
which provides thread management and communications channels for
fast communication with other communications server threads.

The basic abstractions made available by the Telephony Server are
phones, lines and calls. The server also provides an extension framework,
which is used to add extended client services and a low-level hardware
adaptation interface that is implemented by hardware adaptation plug-in
modules. Clients open a server session with the Telephony Server and
then open sub-sessions with phone, line and call objects.

The Core API includes generic functions for requesting the capabilities
or status of the phone hardware and making and managing voice, data
and fax calls.

Basic telephony extensions supporting GSM/GPRS are implemented
by the ETel Multimode extension and other extension modules supply
further CDMA, messaging, 3GPP packet data and fax-specific extensions.
Collaborating components are all realized inside sub-sessions or the root
ETel server session to a client, that is created when the ETel server is
started by the Comms Root Server in response to a client request.

The ETel Server and Core API, together with the Fax Client–Server,
formed the basis of the original telephony implementation in ER5. The
ETel Core API was rearchitected in Symbian OS v7 when the other
extensions were introduced and most were further enhanced in Symbian
OS v8.

ETel Third-Party API
The ETel third-party API was introduced in Symbian OS v7 to pro-
vide a restricted but common ‘safe subset’ of telephony functionality to

224 THE COMMS SERVICES BLOCK

third-party (i.e. non-licensee and partner) application developers. It was
significantly extended in Symbian OS v8, adding support for multiple
voice calls, better access to onboard and network status information and
system notifications and events, and access to IMEI and IMSI numbers.

Telephony Messaging
The ETel Multimode extension includes generic support for telephony
messaging, with specific implementations (for example for GSM, CDMA
and WAP) implemented as Socket Server protocol-module plug-ins, pro-
viding a common sockets-based interface to messaging clients. The
protocol modules perform the actual encoding and decoding of messages,
support SIM card message store management functions and interact with
the Telephony Server (via ETel Multimode) for transmission and reception
of message.

SMS messaging clients include the messaging application support
components at the application-services level, for example the SMS MTM,
CDMA MTM and Java messaging components.

Similarly, the WAP Stack is a client for WAP messaging, typically to
expose a Wireless Datagram Protocol (WDP) service to a WAP client. The
WAP protocol module in turn directly cooperates with the SMS protocol
module, which undertakes the transaction with the Telephony Server.

Note that the Telephony Server may not be the ultimate provider
of the message service, for example if an SMS is requested to be sent
over a Bluetooth link. In this case, the Telephony Server creates a further
Socket Server session requesting the appropriate bearer and the messaging
interface is a serial port plug-in for the appropriate bearer rather than the
TSY interface to onboard phone hardware.

Part of the messaging support consists of utility classes that implement
encoding and decoding functions and streaming, logging and backup-
server interface classes. Utilities are provided as standalone DLLS (linked
to by clients at compile time).

Interfacing to the Baseband
TSY modules are the telephony equivalent of the Serial Server’s CSY
virtual serial-port implementation modules and are defined and loaded
by the ETel Framework. A TSY is an ECom (plug-in framework) compliant
plug-in that provides the glue between Symbian OS Telephony Services
and the phone baseband (the telephony stack).

The Telephony Server passes client requests made to it on sub-session
objects (which may be based on the Core API, Symbian-supplied exten-
sion APIs, or custom APIs created by licensees by extending the core
framework) to the TSY, which translates them into proprietary requests
the baseband understands. The TSY plug-in model is a direct borrowing
of the CSY model used by the Serial Server.

TELEPHONY SERVICES 225

The Telephony Server framework provides the abstract base classes for
each of the objects implemented by a TSY, representing phones, lines,
calls, faxes and extensions.

Symbian OS supplies four TSYs as reference implementations. The
Multimode TSY shipped for the first time in Symbian OS v7, as an
upgraded and renamed version of the original GSM.TSY that shipped
with ER5, incorporating GPRS support. The CDMA and SIM TSYs also
shipped for the first time in Symbian OS v7, as did a first version of
a Telephony Reference Platform (TRP) TSY. The Symbian OS v9 TRP
TSY runs on Texas Instruments H2 development board hardware but is
designed to be easily ported to other platforms.

Component Collections

Telephony Utilities Collection

This collection contains helper components that use the telephony server
but which are not used by it. See Figure 9.15.

Table 9.6 Telephony Utilities Components

Component Name Development Name

Telephony Watchers TELEPHONY WATCHERS

Phonebook Sync PHBKSYNC

Dial DIAL

• The Telephony Watchers are watcher Framework plug-ins that mon-
itor telephony conditions and report them as Publish and Subscribe
properties, including current signal strength, battery level and whether
a call is in progress. They were introduced in Symbian OS v8.

• The Phonebook Sync server enables synchronization of contacts
between a phonebook application and entries stored in the Integrated
Circuit Card (ICC) or ‘SIM’ card of a device. It was originally introduced
as part of the ETel Multimode extension 3G support for UMTS and
CDMA2000.

Telephony Utilities

Dial
Phone-
book
Sync.

Teleph-
ony

Wtchrs.

Figure 9.15 Telephony Utilities components

226 THE COMMS SERVICES BLOCK

• The Dial component consists of dialing utilities the use of which is
deprecated from Symbian OS v9.

Telephony Server Collection

The ETel telephony server and core framework implements the basic
telephony functions and is extended by the Multimode framework into
a uniform generic API for all mobile telephony independent of the
underlying network, with additional packet-data extensions for 2.5G and
3G packet services, CDMA-specific extensions, plus SIM Toolkit utilities,
fax support and a third-party API that opens a common subset of telephony
functions to third-party application developers. See Figure 9.16.

Table 9.7 Telephony Server Components

Component Name Development Name

ETel Server and Core ETEL

ETel 3rd Party API ETEL3RDPARTY

Fax Client and Server FAX

ETel Multimode ETELMM

ETel Packet Data ETELPCKT

ETel SIM Toolkit ETELSAT

ETel CDMA ETELCDMA

• The ETel Server and Core API provides clients with access to telephony
functions on Symbian OS. It implements the standard Symbian OS
client–server framework, providing a client-side API (as a separate
DLL to which clients link). The server in turn translates these into
TSY requests, which are passed on to a TSY module. The server
dynamically loads and unloads TSY modules at client request. The TSY
implements a customized interface to the onboard hardware (although
in a two-box case, it would route back through an appropriate socket to

Telephony Server

ETel
3rd

Party
API

ETel
Multi-
mode

ETel
Packet
Data

ETel
Server/

Core

ETel
SIM

Toolkit

Fax
Client/
Server

ETel
CDMA

Figure 9.16 Telephony Server components

TELEPHONY SERVICES 227

use the requested communications port). Like other communications
servers, ETel is a CPM that runs as a thread within the communications
process.

• The ETel Multimode component extends the Core ETel API to provide,
as far as possible, a uniform API, for making voice, fax, data or
multimedia calls, that is independent of the underlying mobile network
and phone architecture (e.g. 2G, 2.5G, or 3G).

• The ETel 3rd Party API is implemented as a sub-session providing
a subset only of the Core ETel, ETel Multimode and ETel Packet
APIs. Unlike the other main telephony APIs, which are restricted to
licensees, the ETel 3rd Party API is open to third-party developers,
enabling them to make applications that can use the telephony features
or create dedicated, phone-aware applications.

• The ETel CDMA component extends the ETel multimode sub-session
to implement a high-level API for CDMA-specific telephony applica-
tions.

• The ETel Packet Data component is an ETel Telephony Server
extension framework enabling access to GPRS Release 97/98,
CDMA/CDMA2000, Release 99 (GPRS and UMTS) and Release 4
(UMTS) packet services. It enables clients to configure, modify and
activate a PDP context for a network packet-switched service and to
control a packet-switched connection.

• The ETel SIM Toolkit provides the functionality of a GSM/WCDMA
(U)SIM Application Toolkit, implemented as a sub-session.

• The Fax Client and Server is not an ETel extension. The server is a DLL
that provides a framework for adding fax functionality to applications
and is driven by the Fax Client via ETel and a suitable TSY. The Fax
Client is accessed by applications through the Messaging Send-As
API.

SMS Protocol Plug-ins Collection

These protocol modules and other plug-ins implement telephony-based
messaging for GSM and CDMA SMS and WAP messaging. See Figure 9.17.

SMS Protocol Plugins

SMS
PRT

WAP
PRT

CDMA
WAP
PRT

CDMA
SMS

Plugins

Figure 9.17 SMS Protocol Plug-ins components

228 THE COMMS SERVICES BLOCK

Table 9.8 SMS Protocol Plug-ins Components

Component Name Development Name

SMS PRT SMSSTACK

WAP PRT No unit

CDMA SMS Plug-ins CDMASMSSTACK

CDMA WAP PRT No unit

• The GSM SMS PRT protocol module enables its clients to send and
receive GSM SMS messages, enumerate and delete messages from
phone stores and read and write SMS parameters on the SIM. It is
implemented as an ESock plug-in protocol module, therefore clients
interact with it though an instance of RSocket; all operations are
initiated by IOCTL calls on RSocket.

• The CDMA SMS protocol implementation conforms to IS-637 and sup-
ports Wireless Paging, Wireless Messaging, Voice Mail Notification,
Broadcast SMS, Service Category Programming, Wireless Enhanced
Messaging and Card Application Toolkit Protocol.

• The WAP PRT protocol module is used by the WAP Stack for sending
and receiving SMS messages.

• The CDMA WAP PRT provides functional equivalents of the GSM
WAP protocol module.

SMS Utilities Collection

The GSM Utilities and SMS Utilities components are used by the SMS
protocol modules (the SMS stack) to assist in creating and processing SMS
messages. For example, GSM Utilities includes encoding and decoding
routines and SMS Utilities includes streaming classes (to stream message
objects across the Socket Server), logging classes and interfaces to the
backup server. They are implemented as utility DLLs that are linked to by
clients. See Figure 9.18.

SMS Utilities

GSM
Utilities

SMS
Utilities

Figure 9.18 SMS Protocol Utilities

TELEPHONY SERVICES 229

Table 9.9 SMS Protocol Utilities

Component Name Development Name

GSM Utilities GSMU

SMS Utilities SMSU

Telephony Server Plug-ins Collection

This collection contains reference telephony server plug-in modules (TSY
files), loaded by the Telephony Server. See Figure 9.19.

Telephony Server
Plugins

Multi-
mode
TSY

CDMA
TSY

SIM
TSY

Figure 9.19 Telephony Server Plug-ins

Table 9.10 Telephony Server Plug-ins

Component Name Development Name

MultiMode TSY MMTSY

CDMA TSY CDMATSY

SIM TSY SIMTSY

• The MultiMode TSY provides the GSM and GPRS functionality. It uses
the AT command interface to communicate with the phone or modem
via standard AT commands over a serial or infrared link.

• The CDMA TSY is the CDMA equivalent of the MultiMode TSY for
GSM. The ETel TSY reference plug-in for CDMA is replaced on an
actual device by a hardware-specific licensee TSY.

• The SIM TSY is a simulator module designed to enable automated
testing of a range of operating-system components in a simulated
GSM, CDMA and WCDMA mode. It does not communicate with
any real hardware (neither a modem nor a phone) but instead uses
static configuration data and dynamic system-agent notifications to
simulate the presence of phone hardware. It supports the Core ETel
API, Multimode ETel API and ETel Packet API requests.

Telephony Reference Platform Collection

These components support a standard reference platform telephony
implementation. See Figure 9.20.

230 THE COMMS SERVICES BLOCK

Telephony Reference
Platform

TRP
TSY

TRP
CSY

Figure 9.20 Telephony Reference Platform components

Table 9.11 Telephony Reference Platform Components

Component Name Development Name

TRP TSY TRP

TRP CSY TRP

Baseband Channel Adaptor for C32 C32BCA

• The TRP TSY is a reference TSY designed to run on development-
board hardware, as part of a wider effort to make easier licensee
development on phones using Symbian OS.

• The TRP CSY is used to manage the internal channel between the
telephony hardware (a dedicated phone-side core running the TI
phone stack) and the application hardware (an ARM core running
Symbian OS). The logical driver on the TI H2 board presents the
internal serial bus as a standard serial port.

• The Baseband Channel Adaptor for C32 is a reference plug-in pro-
viding a serial communications implementation of the Baseband
Channel Adapter interface (see Section 9.6). For example, the Tele-
phony Reference Platform provides a serial communications BCA
plug-in implementing the BCA interface.

9.8 Networking Services

Web browsing and email were the functions that motivated the inclusion
of networking services in the first releases of Symbian OS, although the
potential for more exotic applications such as network news readers and
multiplayer games was.

It is worth remembering in this context that the devices at which
the first ER5 release was targeted were not phones, although they were
connected and they were telephony-enabled in the sense that they were
designed to interoperate with phones. That interoperation, however, was
understood in terms of phone-as-modem, dialing up an ISP to access
an email account, a corporate intranet or the Internet, or even the web.
Neither email nor the Internet were ubiquitous in the way that they both
now are and the web was still very much a novelty.

NETWORKING SERVICES 231

Networking
Services

Link Layer Control

Networking Plugins

Network Protocol Plugins

ESock API
Extensions

Subconnect-
ion Interface

TCP/IP Security
TCP/IP
Utilities

WAP Stack

Figure 9.21 Networking Services components

The core of the networking implementation remains the TCP/IP v4/v6
networking stack, implemented as a PRT Socket Server plug-in module
and the network interface plug-ins that support it and which are, in turn,
supported by link-layer plug-ins.

While the ESock Socket Server and Network Interface Manager have
migrated out into the Comms Framework to provide generic socket
support for all communications services (and not just for networking),
networking services have expanded to encompass TCP/IP enhancements
such as IPSec, telephony-driven networking enhancements including
packet-data services (for GPRS and UMTS) and Quality of Service (QoS,
required for 3G services), as well as completely new technologies such
as WAP and most recently (in Symbian OS v9) Wi-Fi. See Figure 9.21.

Networking Stack

Symbian OS Networking Services are based on a TCP/IP protocol imple-
mentation, TCP/IPv4/v6 PRT (in effect the transport and network layers of
the OSI seven-layer model), together with IP extensions that implement
various packet-level services including QoS and IPSec. See Figure 9.22.

However, TCP/IP packets and the stack itself are not directly available.
TCP/IP packets are encapsulated within the stack and there are no visible
TCP/IP packet classes, for example. The stack is implemented as a Socket

232 THE COMMS SERVICES BLOCK

Application

Physical

Datalink

Network

Transport

Session

Presentation Application
protocols

TCP UDP

IPv4 / IPv6

Device driver
and

Hardware
protocols

Stevens' 4 layer model

7

4

3

2

1

5

6

7 layer OSI model

'High level' protocols

'Low level' protocols

Figure 9.22 The OSI Seven-Layer model and simplified layer model

Server PRT protocol plug-in, and network services are made available
through the sockets interface, by requesting a TCP/IP socket.

The stack does however support a hook mechanism provided by IP
Hook to enable packets to be accessed within the stack on the inbound
and outbound paths, for example to allow pre- and post-processing and
other packet transformations; that, for example, is the mechanism used to
implement IPSec packet-level encryption and decryption.

A socket is a session-based abstraction that sits logically above the
networking protocol implementation, which provides the transport and
network layers implementation.

The bottom interface of the stack relies on the Network Interface
Manager to select a suitable outgoing interface, which in turn relies on
the Network Controller to find a network agent to negotiate the chosen
connection (for Network Interface Manager and the Network Controller
see Section 9.6).

A number of network agents (AGT files) are available: CSD.AGT,
to establish circuit-switched data connections; PSD.AGT, to establish
packet-switched data connections; and NULL.AGT, which implements a
minimal agent that is used with Ethernet.

A number of network interface implementations (NIF files) are avail-
able, including for PPP and Ethernet, as well as a QoS Test NIF that is
used in conjunction with the QoS Framework.

At these levels, the architecture has evolved quite significantly since
Symbian OS v7, which implemented a rather simplistic view of networks
and connections. Particularly with UMTS packet-switched 3G networks,
the networking world becomes more complex. For example, multi-
homing means that devices can have multiple IP addresses (multiple

NETWORKING SERVICES 233

network interfaces may be active, each with its own IP address and
potentially each on a different network) and packet-switched phone data
services mean that multiple interfaces and networks may provide access
to a single network destination. However, from an application perspective
these changes are mostly invisible and impact only systems developers.

Note that Bluetooth and wireless LAN are not supported by default but
require comparable drivers to abstract the hardware for the (overlying)
Ethernet NIF implementation. The NIF can support one lower-layer packet
driver, loaded during initialization.

PPP NIF has been part of the networking delivery since the first
releases of Symbian OS but was significantly enhanced in Symbian OS v8
to improve interoperability with MS Windows, for example by supporting
Microsoft extensions to CHAPS dialup authentication.

The Tunneling NIF was introduced with VLAN support and IPSec
reimplementation in Symbian OS v8.

Network Security
Network Security protocols operate at different levels in the overall net-
working stack. TLS and SSL (the two can be considered synonyms) operate
at the transport level, providing per-packet encryption and decryption.
IPSec on the other hand operates at the network level and is princi-
pally designed to support secure networks, for example Virtual Private
Networks (VPN) based on policy.

The TLS component implements TLS v1.0 (Transport Level Security)
and SSL v3.0 (Secure Sockets Layer), providing more or less transparent,
per-packet encryption-based security to client applications, for example
HTTPS or SyncML. TLS is implemented as a number of separate DLLs
exposing client APIs to applications, which enable sockets to be secured
and internal APIs used by networking and security components. TLS was
first introduced in Symbian OS v7 and was redesigned and enhanced in
Symbian OS v8. A typical use of SSL is to enable secure browser-based
transactions.

The IPSec implementation provides security policy management,
including support for multi-homed clients (so that different security poli-
cies can be associated with the different IP addresses in use by the device)
and multiple active policies. IPSec is implemented as a policy server
and supporting libraries, as well as a protocol-level PRT Core IPSec PRT
plug-in. In effect, it sits between the Socket Server and clients requesting
secure sockets. The IPSec PRT does not implement the full interface
required by the Symbian OS v9 Socket Server architecture based on the
Comms Framework and therefore is considered to be a ‘pseudo-PRT’.

IPSec uses the networking stack Hook interface to inspect all incoming
and outgoing packets and apply the required cryptographic transforma-
tions. The actual security algorithms and libraries are implemented by
cryptography and security services components.

234 THE COMMS SERVICES BLOCK

The VPN component uses IPSec to manage VPN policies and con-
nections, including VPN password management and is implemented as a
VPN manager server and supporting libraries.

IPSec was first introduced into Symbian OS in v7 and was redesigned
and enhanced in Symbian OS v8.

Quality of Service

Quality of Service enables performance characteristics to be specified for
a communications channel in a packet-based network, to ensure that the
required data rates for a given application are met.

The QoS Framework PRT implements QoS policy setting for open
sockets (Socket Server sub-sessions) that are treated as QoS channels,
providing generic and UMTS-specific APIs for use by applications. While
GPRS supports general QoS principles, UMTS defines four traffic classes
(Conversational, Streaming, Interactive and Background). Like IPSec, QoS
is considered to be a ‘pseudo-PRT’.

Networking Daemons

A number of standard networking daemons are implemented as part of
networking support.

• DND (i.e. DNS) and DHCP are implementations of the Internet
standard protocols for domain-name resolution and dynamic host-
address assignment.

• DND makes DNS queries to the (remote) network and listens for and
responds to local queries. Like its Unix counterpart, it is implemented
as a server ‘daemon’. It is accessed through the RHostResolver
class by Socket Server clients (i.e. as a Socket Server sub-session) and
supports GetByName and GetByAddress queries.

• DHCP enables a device to obtain an IP address and network param-
eters dynamically from the network, so that having a fixed IP address
becomes unnecessary. The DHCP implementation consists of a server
daemon and a client-side interface and provides a limited API suffi-
cient for the Network Interface Manager to configure an appropriate
network interface. (It is not intended for other users.)

WAP Support

Wireless Application Protocol (WAP) evolved out of work started by the
Unwired Planet consortium, which evolved into the WAP Forum in 1998
at around the time that Symbian joined it and into the Open Mobile
Alliance (OMA) in 2002. WAP was a deliberate attempt to create a Web

NETWORKING SERVICES 235

standard targeted at mobile devices in general and phones in particular,
to make web content browsable on those devices.

WAP defines a protocol stack, much like TCP/IP, with transport and
datagram layers defined over a variety of possible mobile phone network
bearers. At the top of the stack, the wireless session protocol (WSP)
behaves like a binary-encoded HTTP. Unlike HTTP, WAP enables both
pull and push models. In the pull model, clients make requests to a WAP
gateway that responds by sending data. In the push model, the gateway
pushes data to the client, without a client request.

While the full WAP stack consists of multiple protocols, WAP Datagram
Protocol (WDP) is the critical underlying mechanism, defining a binary
encoding for datagrams over a bearer network, which can be any of GSM,
CDMA, SMS, GPRS or 3G network protocols.

Symbian supplied a full WAP-stack implementation in Symbian OS
v7. However, where licensees supplied a WAP browser it was generally
tightly coupled to a particular WAP-stack implementation and where
they didn’t the Symbian stack was redundant in any case. Therefore from
Symbian OS v8, Symbian OS implements a ‘short’ stack that only supports
WAP messaging features (which, for example, are used by the Multimedia
Messaging Service), providing connectionless WAP Push, connectionless
WSP, and WDP.

The implementation consists of the Messaging API and the WAP Short
Stack, which is supplied as a reference implementation only. These
provide the client APIs and implementation for WAP messaging over
GSM SMS bearers. (Note that the mapping of WDP to CDMA SMS not
implemented.)

An important use case for WAP is as the carrier for MMS delivery.
Unlike SMS, which is transmitted over network-signaling channels, MMS
uses data-traffic channels and, hence, requires a transport technology
(SMS relies on network-specific signaling mechanisms as its bearer).
An advantage of WAP is that it provides a uniform transport protocol
regardless of the underlying network type (GSM, GPRS, CDMA or 3G).

WAP push is based on notification sent to the terminal over SMS,
followed by a WSP ‘get’ call to fetch the message. MMS is therefore
independent of the network type (because WAP implementations run
on all network types) and interoperable (because TCP/IP is used on the
network side to link WAP gateways and can link gateways on different
networks, for example, GSM and CDMA or UMTS).

Architecture

The general structure of Networking Services in Symbian OS will be
recognizable to those familiar with the standard OSI 7 layer networking
model and corresponds roughly to a utility layer plus the lower four
layers. See Figure 9.23.

236 THE COMMS SERVICES BLOCK

Other transport-level
extensions

TCP/IPv4/v6

Network interface selection

Network interface implementation
(link layer)

Device drivers/Hardware interfacePhysical (1)

Datalink (2)

Network (3)

Transport (4)

Socket mechanism Applications

Figure 9.23 Networking Services mapped against the OSI model

The higher layers of the OSI model are mapped by components in
the higher layers of Symbian OS, particularly in the Application Services
layer.

The OSI model is a generic abstraction and not a rigid specification but
understanding the mapping helps to understand the Symbian networking
implementation. Roughly, the Symbian OS layers are as follows, working
top down:

• networking services and utilities including network security, network
daemons, plus the WAP stack implementation

• network-specific extensions to the Socket Server and Network Con-
nection Manager

• core network protocols, the TCP/IP stack and its extensions

• network interface management agents

• network interface implementations.

The higher-level components provide application-level interfaces, the
middle-layer protocol implementations are tightly bound to the sockets
abstraction, through which all networking services are accessed, and
the lower levels provide the interfaces to the available communications
bearer technologies.

NETWORKING SERVICES 237

From a client perspective, the complex interactions between the net-
working components, the communications framework and the short-link
and telephony bearer services are hidden behind the Socket Server.
However, it is useful to have at least a general picture of the pattern of
interaction.

When a Socket Server sub-session is opened by a client requesting a
TCP/IP protocol socket, the request is passed to the TCP/IP stack, which
tries to start an outgoing connection. If the stack fails to find an interface
that will allow it to reach the selected destination, it reports its failure back
to the Socket Server, which then requests the Network Interface Manager
to load and start a connection agent of suitable type. Depending on its
type, the agent requests a connection from either the Telephony Server or
the C32 Serial Server. When the connection is established, the Network
Interface Manager loads and starts a NIF module, which implements the
required Network Interface and negotiates authentication and other link
characteristics (for example, encapsulation and compression) and finally
acquires an IP address. The Network Interface manager then binds the
NIF to the TCP/IP stack.

Design Goals

The original design goals of Symbian OS Networking Services were
based on dial-up access to a network via either a fixed-line modem or
a mobile phone. The expected networking applications were standard
Internet and web applications, for example email and browsing. Adequate
data throughput and the ability to virtualize networking services over an
available serial bearer were the key considerations.

Network protocols were also considered important as a way of stan-
dardizing support for connectivity with desktop computers for data
synchronization and backup.

The increasing specialization of Symbian OS for mobile phones, and
the evolution of mobile phones into true network devices as packet ser-
vices have begun to dominate, has required almost continuous evolution
in the architecture and implementation of Networking Services, to keep
in step with rapid technological advance, rapid adoption of advanced
technologies into mobile phones and the push to provide infrastructure
for new services and applications.

Networking has become mainstream for telephony as the basis for
high data throughput services such as two-way video conferencing and
audio and video streaming. Direct network connection over Wi-Fi is also
rapidly becoming a support requirement for mobile phones.

VoIP pushes these trends to their logical step, in effect subsuming
telephony into networking.

238 THE COMMS SERVICES BLOCK

Component Collections
TCP/IP Security Collection

These components implement secure networking, supporting transport-
level security (security at the level of individual IP packets) and
connection-oriented security (which is used, for example, to provide
VPN support services to application clients running on Symbian phones).
See Figure 9.24.

TCP/IP Security

TLS IPSec VPN

Figure 9.24 TCP/IP Security components

Table 9.12 TCP/IP Security Components

Component Name Development Name

TLS TLS, TLSPROVIDER

IPSec IPSEC

VPN VPNAPI, VPNCONNAGT,
VPNMANAGER

• The TLS component is an implementation of Transport Level Security
(TLS) including SSL Secure Sockets, which provide encryption per
packet, supporting application-level encryption and authentication-
based security, for example for secure web services. Client authentica-
tion is based on key management and certificate handling, including
support for external cryptography modules (‘secure tokens’), for
example based on a phone smart card.

• The IPSec component operates at a lower level (i.e. network level)
and is principally designed to enable secure networks, for example
VPN, based on policy.

• The VPN component provides policy-based connection management
and gateway interoperability for VPN connections, i.e. it enables users
to connect to VPNs.

TCP/IP Utilities Collection

This collection contains implementations of standard networking ‘dae-
mon’ server utilities. See Figure 9.25.

NETWORKING SERVICES 239

TCP/IP
Utilities

DND DHCP

Figure 9.25 TCP/IP Utilities

Table 9.13 TCP/IP Utilities

Component Name Development Name

DND DND

DHCP DHCP

• DND is a DNS implementation that makes DNS queries to the network
and listens for and responds to local queries.

• The DHCP component is a Dynamic Host Configuration Protocol
(DHCP) implementation used by the PAN Profile and other networking
components.

WAP Stack Collection

Symbian provided a full WAP stack implementation in Symbian OS
v7. Versions later than Symbian OS v8 implement only a ‘short’ stack,
providing client APIs for connectionless WSP, connectionless Push and
WDP. See Figure 9.26.

Table 9.14 WAP Stack Components

Component Name Development Name

WAP Message API WAPMESSAGE

WAP Short Stack WAPSTACK

• The WAP Short Stack component is a cut-down WAP stack supporting
WAP messaging, that is, WAP datagrams, WAP Push messaging and

WAP Stack

WAP
Mess-
age
API

WAP
Short
Stack

Figure 9.26 WAP Stack components

240 THE COMMS SERVICES BLOCK

WSP but not full WAP browsing. It is supplied only as a reference
implementation. Vendors replace it with their own short or full WAP
stack implementations.

• The WAP Message API implementation provides APIs for WAP Push,
connectionless WSP and WDP datagrams.

Sockets API Extensions Collection

The Internet Sockets component is a DLL that provides a library of utility
classes and generally useful constants, which specifically support using
Internet sockets, to store and manipulate IP addresses, routes, and so on.

ESock API
Extensions

Internet
Sockets

Figure 9.27 Sockets API Extensions

Table 9.15 Sockets API Extensions Components

Component Name Development Name

Internet Sockets INSOCK

Clients access the Internet Sockets through the generic sockets client
API and use the TCP/IP-specific utility classes to perform the IP-specific
manipulations. Clients link against the Internet Sockets library. See
Figure 9.27.

Subconnection Interface Collection

This is a utility component used by QoS clients to create and package
the QoS parameter list. Parameters are set using the RQoSChannel class.
See Figure 9.28.

Sub-
conn.

Params.

Subconnection
Interface

Figure 9.28 Subconnection Interface

NETWORKING SERVICES 241

Table 9.16 Subconnection Interface Components

Component Name Development Name

Subconnection Parameters

Network Protocol Plug-ins Collection

This collection contains the core TCP/IP functionality including the TCP/IP
stack, which supports both v4 and v6 standards, the hook mechanism
that allows access to packets for inline processing (for example allowing
packets to be encrypted ‘in place’ as they flow through the stack), and
IPSec and QoS implementations. See Figure 9.29.

Table 9.17 Network Protocol Plug-ins

Component Name Development Name

IP Event Notifier IPEVENTNOTIFIER

TCP/IPv4/v6 PRT TCPIP6

IP Hook INHOOK6

QoS Framework PRT QOS, QOSLIB, PFQOSLIB,
SBLPAPI

Core IPSec PRT No unit

• The IP Event Notifier PRT is implemented as an IP Hook and raises
events to clients based on state changes in the TCP/IP stack. It is
principally used by DHCP to determine when and how to perform
address negotiation.

• The TCP/IPv4/v6 PRT supplies the core protocol implementations
for TCP/IP networking including the IPv4 and IPv6 stacks, TCP, UDP,
ICMP and ARP protocols, a Hook interface allowing access to packets,
IPSec and QOS protocol modules, and an event notifier service.

• The IP Hook PRT defines an interface to which modules bind to per-
form transformations on inbound and outbound packets, respectively

Network Protocol Plugins

IP
Event

Notifier
IP

Hook
TCP/

IPv4/v6
PRT

Core
IPSec
PRT

QOS
Frmwk.

PRT

IP Hook
Examp-

les

Figure 9.29 Network Protocol Plug-ins

242 THE COMMS SERVICES BLOCK

upon receipt from or before delivery to the Network Interface. IPSec
is such a Hook, inspecting all incoming and outgoing packets and
applying cryptographic transformations as specified in the Security
association database.

• The QoS Framework PRT is a Hook module, implementing QoS
channels through which it schedules packets. Additional plug-ins
map the desired QoS characteristics to relevant link technology.

• The Core IPSec PRT implements core functionality for IPSec in a
multi-homed context, that is multiple active network interfaces, for
simultaneous use by multiple applications, providing tunnel modes
and various high-level APIs. It includes a cryptographic library mod-
ule, policy managers and parsers.

Networking Plug-ins Collection

This collection contains the network interface agents (AGT files). Two
additional components are also included, the Bluetooth PAN profile and
the GPRS/UMTS QOS PRT (which is considered a ‘pseudo PRT’). See
Figure 9.30.

Table 9.18 Networking Plug-ins

Component Name Development Name

Connection Provider Plug-in IPCPR

CSD AGT CSDAGT

PSD AGT PSDAGT

NULL AGT NULLAGT

GPRS/UMTS QOS PRT GUQOS

Bluetooth PAN Profile BLUETOOTHPAN

Secondary PDP UMTS Driver SPUD

Networking Plugins

PSD
AGT

Null
AGT

GPRS/
UMTS
QOS
PRT

CSD
AGT

Btooth
PAN

Profile
Impl.

Control
Prov.
Plugin

Secnd-
ry PDP
UMTS
Driver

Figure 9.30 Networking Plug-ins

NETWORKING SERVICES 243

• The Connection Provider Plug-in provides IP connections to clients,
supporting bearer mobility.

• The CSD AGT plug-in to the Connection Agent framework negotiates
a circuit-switched data connection, for example to GSM or CDMA
networks, supporting dial-up networking services.

• The PSD AGT plug-in is deprecated and its functionality is replaced
by other components. It is an agent plug-in to the Connection Agent
framework that negotiates packet-switched connection for example to
GPRS networks, supporting ‘always on’ networking services.

• The NULL AGT plug-in implements a minimal agent used to pass
straight through to an Ethernet connection that is provided by the
Ethernet packet driver.

• The GPRS/UMTS QOS PRT is a plug-in helper module to the QoS
Framework that gets and validates QoS parameters from the QoS
framework at the request of a loaded NIF and is used to implement
3GPP parameters.

• The Bluetooth PAN Profile plug-in is an agent-like module that imple-
ments the Bluetooth Network Encapsulation Protocol (BNEP), as an
Ethernet Packet Driver module. It serves as the network interface
agent used to create PAN connections, enabling PAN to behave like
a regular Internet access provider.

• The Secondary PDP context UMTS Driver (also called the PDP NIF)
supports multiple primary PDP contexts (multi-homing over GPRS) on
the telephony reference platform. It is not a production component.

Link Layer Control

Link-layer components of the networking stack, Network Interface mod-
ules (NIF files) are selected by the Network Controller and loaded, started
and stopped by the Network Interface Manager to implement the inter-
face to the physical link layer (which is, in turn, provided by networking
device drivers, serial communications CSYs, or telephony TSYs). See
Figure 9.31.

NIFs implement the polymorphic plug-in interface defined by the
Network interface manager (NIFMan).

Ether-
net
NIF

Ether-
net

Packet
DRV

PPP
NIF

PPP
Compr-
ession
Plugins

Tunnel
NIF

Slip
NIF

Raw IP
NIF

Link Layer Control

Packet
Logger

Ethernet
Over IR
Packet
DRV

Wire-
less
LAN

Figure 9.31 Link Layer Control components

244 THE COMMS SERVICES BLOCK

Table 9.19 Link Layer Control Components

Component Name Development Name

Ethernet NIF ETHER802

Ethernet Packet Driver ETHERDRV

Ethernet Over IR Packet Driver IRLANPACKETDRIVERS

PPP NIF PPP

PPP Compression Plug-ins PREDCOMP, MSCOMP,
STACCOMP

SLIP NIF SLIP

Tunnel NIF TUNNELNIF

Packet Logger PACKETLOGGER

Raw IP NIF RAWIPNIF

Wireless LAN 802.11

• The Ethernet NIF component provides a generic Ethernet layer network
interface, that manages Ethernet framed packets. It is designed to sit
below any number of supported Protocol modules and on top of more
specialized Ethernet framing interfaces, called packet drivers.

• The Ethernet Packet Driver is an Ethernet framing interface, the driver-
level component (DRV files, that is, lower-layer packet drivers) that
supports the Ethernet NIF.

• The Ethernet Over IR Packet Driver is an Ethernet framing interface,
the underlying networking interface driver for infrared.

• The Serial Line IP (SLIP) NIF component is supplied as a reference
component that licensees can choose to remove or replace with
a production implementation. SLIP was the earliest (and simplest)
protocol for relaying IP packets over dial-up lines and has largely
been replaced by PPP.

• The Point to Point protocol (PPP) NIF provides TCP/IP over serial
communications (i.e. over a point-to-point link). It allows a device to
connect to a phone and use it as a gateway to the Internet. Once the
link has been established, optional facilities such as data compression
may be negotiated.

SHORT-LINK SERVICES 245

• The PPP Compression Plug-ins supplies the implementation of com-
mon PPP compression algorithms as dynamically loaded DLLs. It
includes Microsoft Compression (MSCOMP), Stac Electronics Com-
pression (STACCOMP) and Predictor Compression (PREDCOMP)
implementations.

• The Tunnel NIF component implements the IPSec tunnel to enable
IPSec to operate in tunnel mode, for example, as used by VPN clients.

• Wireless LAN supports IEEE 802.11 wireless networking.

9.9 Short-link Services

Short-link services enable individual devices to communicate directly
with each other (‘peer-to-peer’), either over a physical cable connection
such as serial or USB, or using short-range radio, either line-of-sight
such as infrared, or unseen paired, such as Bluetooth. (Note that, by
this definition, Wi-Fi, which is fast becoming important on phones, is
considered a network access technology not a short-link connection
technology, although Wi-Fi hardware supports a peer-to-peer mode.)

Symbian OS supports the principal short-link technologies: RS232
serial, USB, infrared/IrDA and Bluetooth, as well as the higher-level OBEX
object transfer protocol, which is supported over both IrDA and Bluetooth.

Short Link Services

OBEX
USB

Manager

Short Link

Short Link
Protocol Plugins

Serial Comms Server
Plugins

Figure 9.32 Short-link services

246 THE COMMS SERVICES BLOCK

The short-link-services block includes managers, utilities, protocol imple-
mentations and serial-hardware-adaptation plug-ins. Associated device
drivers are located lower down in the system model, at kernel level. See
Figure 9.32.

For network-capable mobile devices (mobile phones and PDAs, for
example), short-link connections are also important for network access.
Typically, they provide the connection alternative to using the onboard
phone. In Symbian OS, short-link services act as bearers for higher-level
communications services, including both networking and telephony. This
enables some interesting scenarios, for example, remote use of a phone
in one Symbian OS device from another over a short-link connection.

Although continuing to evolve to enable increased data rates, short-
link technologies are relatively mature and Symbian’s support for them
is relatively mature. RS232 serial has a long history and IrDA, Bluetooth
and USB have all been standardized since the mid-1990s.

However, there are interesting and significant evolutions in all the
technologies. In terms of connection speeds, while serial cable is limited
to data transfer rates of 115 kbps, Bluetooth offers data rates closer to
1 mbps with a range of 10 meters, while ‘newer’, ‘faster’ IrDA standards
increase rates beyond 16 mbps and even up to 100 mbps. USB began as a
12 mbps standard, before increasing 40-fold (with USB 2.0) to 480 mbps.

The application possibilities are also interesting and extend beyond
basic data management and data synchronization. After a slow start,
Bluetooth has become ubiquitous on phones, in particular for hands-free
and headset peripherals, including stereo headsets. USB offers much
more than just a physical link protocol. USB is both a link technology and
a transport protocol definition with extras such as support for powering
unpowered devices and hot-plugging (‘plug and play’ notification to the
host). In a Symbian context, it allows a Symbian OS device to plug into a
USB host (for example, a desktop computer) and offer multiple services.

Both IrDA and Bluetooth specify a complete protocol stack defining
link, transport and application layers, which offers significantly more than
just serial-like setup for a simple physical link.

Because Bluetooth allows ad hoc, ‘promiscuous’ connection between
any devices within range, security is potentially an issue. The Blue-
tooth standard therefore includes security protocols (which Symbian OS
implements).

As well as conventional serial communications, over a physical serial
link or virtualized over IrDA or Bluetooth, Symbian OS supports a number
of higher-level short-link services:

• Higher-level IrDA protocols are supported, for example including
IrTranP for beaming camera images.

• IrDA Object Exchange (OBEX), a binary protocol for data exchange,
is supported over IrDA, Bluetooth and USB connections.

SHORT-LINK SERVICES 247

• A number of Bluetooth profiles including security profiles are sup-
ported, with support for licensee extension.

• USB device management is supported.

Architecture
While short-link services forms a natural logical and functional block, it
does not form a cohesive architectural unit. While the supported short-
link technologies are designed to interoperate extensively and implement
the overall architectural patterns of communications services (server- and
framework-based, protocol module plug-ins to the Socket Server, serial
port plug-in implementations to the Serial Server framework), the detailed
architecture of each is distinct and should be understood independently
of the serial architecture.

IrDA is implemented as a Socket Server plug-in module, loaded by
the Socket Server when an IrDA socket is requested (either directly by
an application, or by other components in the Comms Services). Within
the Socket Server session, the protocol module communicates with the
infrared port through the Serial Server and its IrDA serial plug-in CSY
module, which ultimately drives the logical and physical device drivers
for the onboard infrared hardware.

The OBEX implementation is designed as a wrapper for either a
socket style API (RSocket for IrDA and Bluetooth) or a USB client API
(RDevUsbcClient for USB). OBEX is implemented as a static DLL to which
clients link at compile time, with the OBEX code running in the client
thread.

Bluetooth is implemented as a Socket Server protocol plug-in module.
Clients request a Bluetooth socket from a Socket Server session. The
Bluetooth socket communicates with the firmware controller via the
Bluetooth HCI implementation. Symbian OS implements the mandated
v1.2 Bluetooth stack.

IrDA and OBEX
Symbian OS has supported IrDA since the first ER5 release, providing
line-of-sight infrared data exchange between devices. IrDA is more than
a simple connection protocol and, in fact, comprises a complete set of
protocols from application level to link level, including IrTranP (Infra Red
Transfer Picture, for devices with cameras), IrCOMM (IrDA serial port
emulation) and TinyTP (TinyTransfer Protocol, providing flow control),
as well as lower-level protocols including FIR (Fast Infrared). All are
supported by Symbian OS.

IrDA also provides the underlying support for OBEX over infrared
(Infrared Object Exchange, IrOBEX). OBEX is a protocol and not a service
but application-level services can be created that use the protocol to

248 THE COMMS SERVICES BLOCK

send and receive data. At the application level, Symbian OS provides
OBEX-based services including SendAs messaging, SyncML data synchro-
nization, installer services, and so on. Symbian OS has supported OBEX
since the first ER5 release. Since the introduction of Bluetooth support
in Symbian OS v6, it has supported OBEX over Bluetooth and, since
Symbian OS v7, OBEX over USB (but with server functionality only).

Bluetooth
Bluetooth also defines a complete protocol stack and not just a radio
link technology. The Bluetooth services that run on top of the stack are
defined as Bluetooth profiles. Symbian OS provides Serial Port, PAN
(Personal Area Networking) and Generic Access profiles, as well as
Remote Control (since Symbian OS v9), that enables a Symbian device to
control Bluetooth peripherals, for example headsets. Licensees may add
additional profile support.

Bluetooth components include:

• The Bluetooth Manager is the information store (implemented over
Symbian OS DBMS) used to manage details of local and remote
Bluetooth devices.

• Bluetooth SDP (Service Discovery Protocol) enables Bluetooth devices
to find each other and store information about discovered devices.
(The SDP database is not persistent.)

• The Bluetooth HCI (Host Controller Interface) interfaces the Bluetooth
stack to the onboard controller hardware and is provided as a reference
plug-in.

Symbian OS has supported Bluetooth since Symbian OS v6, with
incremental support added over subsequent releases.

USB Manager and Classes
USB classes are analogous to Bluetooth profiles and represent the use
cases that a device supports when it connects to a USB host. The
USB Manager on a device enumerates, starts and stops the USB classes
implemented on the device and provides a query interface for their status,
providing a central control point and an on–off switch.

Symbian OS provides a USB Manager and implements USB CSY (serial
over USB), Mass Storage and OBEX (OBEX over USB) classes. The USB
Manager implements a server interface for USB class implementations and
for clients requesting information or services from USB classes (typically
the user is the USB host) and provides the underlying mechanism for
application-level class configuration and querying of the USB host (the
other connected device) across a USB connection.

SHORT-LINK SERVICES 249

Component Collections

OBEX Collection

This collection defines the OBEX (Object Exchange) session protocol.
OBEX is a binary protocol and is therefore compact and can support
application-level services from simple beaming of vCard and vCal entries
to full-scale synchronization, for example, as a SyncML bearer.

Table 9.20 OBEX Components

Component Name Development Name

OBEX Protocol OBEX, IROBEX

OBEX Extension API OBEX EXTENSIONAPIS

In Symbian OS, OBEX is supported over IrDA infrared, Bluetooth and
USB, providing session-style APIs, that is, Connect and Disconnect and
basic Get and Put commands. See Figure 9.33.

OBEX

OBEX
Proto-

col

OBEX
Extens-
ion API

Figure 9.33 OBEX components

USB Manager

This collection comprises the manager for the USB classes present
on a device, for example providing the mechanism beneath a con-
figuration application like a control panel to switch on and off the
available USB classes on a Symbian OS device and to query a USB host
(not a Symbian OS device) application across a USB connection. See
Figure 9.34.

USB
Mgr.

USB
Manager

Figure 9.34 USB Manager components

250 THE COMMS SERVICES BLOCK

Table 9.21 USB Manager Components

Component Name Development Name

USB Manager USB

Short Link Collection

These higher-level components support the Bluetooth protocol imple-
mentation and Bluetooth profiles. See Figure 9.35.

HCI
Frmwk.

Btooth.
SDP

Btooth.
Profiles

Remote
Control
Frmwk.

Short Link

Btooth.
Mgr.

Btooth.
Protocol
Client
APIs

Figure 9.35 Short Link components

Table 9.22 Short Link Components

Component Name Development Name

Bluetooth Protocol Client APIs No unit

Bluetooth Manager BLUETOOTHMANAGER,
BLUETOOTHBTEXTNOTIFIERS,
BLUETOOTHCONFIG,
BLUETOOTHGAVDP,
BLUETOOTHROM,
BLUETOOTHUSER

Bluetooth SDP BLUETOOTHSDP

Bluetooth Profiles BLUETOOTHAVRCP

Remote Control Framework BLUETOOTHREMOTECONTROL

HCI Framework BLUETOOTHHCI

• The Bluetooth Protocol Client APIs are used by Bluetooth socket clients
and provide support for low-level control of protocol parameters
(packet sizes, for example) and hardware (power modes, for example).

• The Bluetooth Manager provides an information store for managing
details of the local and remote Bluetooth devices, implemented over
Symbian OS DBMS, allowing entries to be stored, retrieved, modified
and deleted.

SHORT-LINK SERVICES 251

• The Bluetooth Service Discovery Protocol (SDP) is the mechanism
used by connected Bluetooth devices to query each other and
exchange information about the Bluetooth services they support.

• The Bluetooth Profiles include Generic Access Profile (GAP), Personal
Area Networking (PAN), since Symbian OS v8, and (from Symbian
OS v9) Audio and Video Remote Control (AVRCP).

• The Remote Control Framework enables sending and receiving of
remote-control commands to and from remote Bluetooth devices. (It
is supported from Symbian OS v9.)

• The HCI Framework is a reference implementation of the Bluetooth
Host Controller Interface as used by the Bluetooth Stack to interface to
the onboard controller hardware. It provides a full range of HCI com-
mands, accessed indirectly via L2CAP and RFComm layers. Licensees
can replace the supplied implementation.

Short Link Protocol Plug-ins

This collection implements the Bluetooth core stack, including the Blue-
tooth protocols and the HCI firmware implementation and the IrDA
protocol suite as PRT Socket Server plug-in-in protocol modules. See
Figure 9.36.

Table 9.23 Short Link Protocol Plug-ins

Component Name Development Name

Bluetooth Stack PRT BLUETOOTHSTACK

Bluetooth HCI BLUETOOTHHCIPROXY

IrDA PRT IRDA, INFRA-REDCONFIG

• The Bluetooth Stack PRT component implements the Bluetooth stack
as a Socket Server protocol plug-in, providing a complete implemen-
tation including L2CAP, RFCOMM and SDP.

• The Bluetooth HCI is a reference implementation of firmware-specific
support for the standard Bluetooth Host Controller Interface (the

Short Link Protocol
Plugins

Btooth.
HCI

IrDA
PRT

Btooth.
Stack
PRT

Figure 9.36 Short Link Protocol Plug-ins

252 THE COMMS SERVICES BLOCK

stack-side implementation of the interface forms part of the standard
Bluetooth support provided by Symbian OS).

• The IrDA PRT is an implementation of the IrDA protocol stack as a
Socket Server protocol plug-in, provides a complete IrDA implemen-
tation including IrTranP (for sending pictures) and FIR (Fast Infrared).

Serial Comms Server Plug-ins Collection

CSY modules are implementations of serial ports virtualized over different
bearers (RS232, USB, Bluetooth, IrDA) and are loaded by the C32 Serial
Server in response to clients to provide ports of the types requested. See
Figure 9.37.

Table 9.24 Serial Comms Server Plug-ins Components

Component Name Development Name

Serial Port CSY ECUART

USB CSY ECACM

Bluetooth CSY BTCOMM

IrDA CSY IRCOMM

The Serial and IrDA CSY components were both present in ER5.

• The Serial Port CSY component implements an RS232 virtual serial-
port abstraction for conventional serial communications and directly
drives the ECOMM.LDD and ECOMM.PDD logical and physical
device drivers.

• The USB CSY component was introduced in Symbian OS v7.0 sup-
porting a single-port configuration and extended to support multiple
virtual ports in Symbian OS v7.0s. It provides a multiple serial-
port-like interface over a USB connection and directly drives the
EUSBC.LDD and EUSBC.PDD logical and physical device drivers.
Note that this is an implementation of USB intended for legacy
applications that require conventional serial support, rather than for
USB-aware applications.

Serial Comms
Server Plugins

Serial
Port
CSY

USB
CSY

Bluetooth
CSY

IrDA
CSY

Figure 9.37 Serial Comms Server Plug-ins

SHORT-LINK SERVICES 253

• The Bluetooth CSY component was introduced in Symbian OS v6.1
with the first Bluetooth implementation for Symbian OS. It is a plug-in
to C32 Serial Server and implements an RS232-like virtual serial port
over a Bluetooth link using an RFComm socket. Port configuration is
performed using the Bluetooth Manager APIs.

• The IrDA CSY component implements the IrDA standard for serial
communications, IrComm, emulating a serial port over an IrDA link.
Internally, it uses an IrDA socket (IrDA.PRT), through a Socket Server
session, which in turn drives the ECUART.LDD and UCUART.PDD
logical and physical drivers to drive the infrared hardware.

10
The Base Services Layer

10.1 Introduction

To get Symbian OS up and running on new hardware, whether on a
reference board (from a supplier such as Intel or Texas Instruments) or on
the hardware for a new phone, you need to port the base layers of the
system.

The lowest level of the system contains the operating system kernel,
device drivers, and the device-driver framework support, which provide
operating system primitives and hardware abstraction frameworks. Sitting
just above them are the low-level libraries, servers, and frameworks
that build on the kernel layer to create a programmable and usable
operating system. Because Symbian OS is a microkernel system,1 the
‘kernel side’, which runs in protected or privileged mode on the host
processor (‘supervisor’ mode on ARM processors), is kept as small as
possible. The kernel-side/user-side distinction roughly divides the base of
the system into two layers.

The Base Services layer is the higher of the two layers and it contains
the user-side servers, frameworks, libraries and utilities that build on the
kernel layer to provide the basic operating system services. Together, the
two layers constitute the minimal system which can be booted, run and
programmed on real hardware. In a monolithic operating-system design,
most (and possibly all) of the Base Services would form part of the kernel
implementation. See Figure 10.1.

10.2 Purpose
The Base Services layer extends the bare kernel into a basic software
platform that provides the foundation for the remaining operating system

1 In fact the design is not ‘pure’ microkernel, but borrows from both microkernel and
monolithic design principles (see Chapter 11).

256 THE BASE SERVICES LAYER

Base ServicesBase
Services

Application
Services

Kernel
Services &
Hardware
Interface

OS
Services

UI
Framework

Figure 10.1 Base Services layer in the system model components

services, and effectively encapsulates the user side of the ‘base’ operating
system. It also provides the minimum services required to enable a
complete and self-contained basic build of the lower-level system, which
supports only text-mode program execution and is used to create the first
stage ‘base-port’ to new hardware.

As well as providing foundational frameworks and utilities which are
used both by system components and by applications, it also provides the
operating system libraries that support the programming model, in other
words, which support the creation, loading, and running of programs
on the operating system and which implement many of the signature
Symbian OS idioms, for example the cleanup stack, active objects and
descriptors.

10.3 Design Goals

In many (but not all) respects, Symbian OS offers a textbook example
of a microkernel operating system architecture.2 The most significant
exception is the inclusion of the two-level device-driver framework, and

2 See the rationale for and description of the microkernel pattern in [Buschmann et al.
1998].

OVERVIEW 257

device drivers themselves, on the ‘kernel side’ of the system. A true
microkernel design would move these into user space.

The microkernel principle is to keep the kernel small;3 core function-
ality which is, however, above the level of the basic operating system
primitives, is kept out of the kernel itself and instead is located in sys-
tem servers. System servers extend the microkernel to provide necessary
services, and also encapsulate any lower-level software and hardware
dependencies. In Symbian OS, the core system servers that are required
to create a complete but minimal running system on real hardware are
located in the Base Services layer; the remaining system servers, which
are not essential for a basic hardware port but which are required to
engineer a complete product based on Symbian OS, are located one
layer up, in the OS Services layer.

The goals of the Base Services layer therefore are to provide efficient
and effective extensions to the basic kernel functionality, which are in a
concrete sense complete (i.e. they enable a complete but minimal system
to be built), while being both portable and extensible.

10.4 Overview

The Base Services layer includes a number of essential frameworks and
libraries on which almost all higher-level services, as well as applications,
have some direct or indirect dependencies.

• The User Library provides the basic programming model for Symbian
OS, including system-specific types (such as the CBase class and
manifest constant4 definitions), as well as the APIs that define the
unique native idioms, for example active objects, descriptors and
UIDs, libraries which provide DLL and executable entry point stub
classes, and so on.

• The File Server includes file-system utilities and the concrete file-
system implementation plug-ins in use on a particular device.

• The Store is a persistent storage framework. The Base Services layer
also includes the DBMS implementation, as well as more recent
additions such as the Central Repository, which provides a single
location and set of APIs for managing all system settings.

3 The most significant immediate benefits of ‘small’ are portability, because all essential
hardware dependencies are encapsulated within the small core of the system, and small
memory footprint, a small system consuming less ROM (where the system is ROM-based)
and RAM (put simply, there is less system to load at runtime). The additional goal of
simplicity is also more likely to be realized in a small system than in a large one.

4 Those are named constants whose underlying definition can be varied at compile time
for different platforms; in Symbian OS, they include TInt, TReal, TBool and TAny.

258 THE BASE SERVICES LAYER

• Other essential frameworks and libraries include the Plug-in Frame-
work (ECOM), cryptographic libraries, Application Utilities (such as
the Basic Application Framework Library, BAFL), character encoding
and conversion libraries, XML parsers,5 the power management and
shutdown framework, as well as the low-level framework support used
by multimedia services to communicate with hardware-accelerator
adaptor plug-ins. (The actual adaptors and the device drivers with
which they interact are located lower down, at the kernel level.)

• Components such as the Text Window Server and Text Shell are
required to make the base system complete and to avoid dependencies
on higher-level services, for example, graphics.

Put simply, from a programming perspective, many of the most basic
characteristics of the operating system are realized in the Base Services
layer.

10.5 Architecture

The Base Services layer of Symbian OS is in many ways the foundational
layer of the system, extending the microkernel and the lowest level
hardware-abstraction services provided by the kernel layer into a basic
but complete system. A number of critical services which in monolithic
architectures would be included in the kernel itself, for example the file
system and the user libraries which provide the programming model for
the operating system, are found here. The key boundary which defines
the separation of these services from the kernel is the division between
kernel (supervisor or privileged) and user (non-privileged) processes. In a
monolithic system, most of these services would run as privileged kernel
processes.

The design decision to separate these services from the kernel and
to implement them as user-side services is a distinguishing feature of
the operating system, separating it from monolithic systems (Unix/Linux,
Windows-derived systems) and putting it squarely in the tradition of
microkernel operating system design.

From the perspective of applications and higher-level operating system
services, the Base Services layer libraries and frameworks provide the
logical interface to the basic low-level operating system. The Base Services
layer extends the raw hardware support and the basic kernel abstractions
of the low-level system and adds file-system support and the File Server,

5 XML is considered an essential service since XML is increasingly used as the basis for
internal configuration files and other essential data formats, for example, Central Repository
entries.

ARCHITECTURE 259

the User Libraries that support the programming model, a simple text-
window server and a text-based shell, and an assortment of other low-level
frameworks and utilities. Together, this is enough to support, test and
validate a first-stage port to new hardware and it provides the foundation
for creating complete support for all device hardware. The boundary
between the Base Services layer and the higher-level services in the
layers above it, therefore, is a concrete one: nothing above the Base
Services layer is required get a port running on specific hardware.

The system model organizes the Base Services layer components
into a number of collections, divided broadly between the low-level
components that interact closely with the kernel to provide basic services
(the User Library, file-system support) and higher-level components that
build on these services (for example, Store, which provides the persistence
model, the Cryptography Library and the Text Shell).

The User Library

It is through the User Library that the fundamental abstractions imple-
mented by the kernel, which together define the native programming
model for Symbian OS, are made available to clients. These include
processes, threads and memory chunks and mutexes, semaphores and
message queues. The User Library also implements many other pro-
gramming idioms specific to Symbian OS, including active objects and
descriptors, the cleanup stack, the client–server framework, and the
Publish-and-Subscribe mechanism. It supplies an assortment of utility
classes, including timers, date and time services and locale definition and
collection classes, including arrays, lists and binary trees. It defines the
native data types, both class-based and manifest constants, and supplies
the libraries that implement the low-level system and language bindings,
including DLL and executable entry point stub classes.

In the original kernel architecture of Symbian OS (EKA1, before
Symbian OS v9), the User Library was called from both user-side and
kernel-side code. In order to guarantee time bounds, the EKA2 kernel-side
code does not link to the User Library but instead uses a small utility
library (incompatible with the user-side library) accessible only by the
kernel side.

The User Library includes the following APIs:

• the native types used in the system which include C++ base classes
(including CBase) and manifest constants (TInt and others)

• collection classes (buffers, arrays and lists), descriptors, Unicode-
character support, raw-memory management (copying and filling)
and geometric concepts (points, sizes, rectangles and regions)

• math libraries including 64-bit integers and floating-point math

260 THE BASE SERVICES LAYER

• idioms specific to Symbian OS including the cleanup stack, descrip-
tors, active objects, UID manipulation, and implementations of
memory allocators, named and reference counted objects and bitmap
allocators

• other useful classes supporting lexical analysis, bitstreams, Huffman
compression, timers and timing services.

In addition, it supplies libraries that provide DLL global data and static
data and thread local storage; and executable and DLL entry point support
(for example calling static constructors).

The User Library also provides the Publish-and-Subscribe mechanism
(since Symbian OS v8), as a means of storing system-wide global variables
and a platform-security safe IPC mechanism (again, since Symbian OS
v8) for peer to peer communication between threads in the operating
system. Publish and Subscribe is based on the notions of properties (data
values), publishers (threads with rights to update given properties), and
Subscribers (threads interested in changes to given properties). Because
it is available on both user-side and kernel-side, it also provides a
possible asynchronous communication mechanism between user-side
and kernel-side code.

The File Server
The File Server provides the framework architecture supporting the imple-
mentation of file systems as custom plug-ins and the default plug-in
implementations for FAT file systems, the native format for externally
visible drives, for example, those implemented on removable media, as
well as internal-only formats such as Read Only File System (ROFS),
the internal file system to which ROM code is copied for execution in
hardware architectures that do not support execute-in-place memory.

File-system plug-in implementations may in turn be further extended
via extension DLLs to support specific hardware differences, for example
FAT on NAND flash, which implements a NAND flash translation layer
transforming requests coming from the FAT file system into a format
suitable for a NAND flash-media driver. Note that the file server is
multithreaded (since Symbian OS v9), using one thread per storage
medium used.

The File Server also provides some file-related utility functions, for
example FAT filename conversion which supports translation from full
Unicode file names to ASCII. (While EKA1 supported Unicode strings
internally, the real-time EKA2 kernel uses only ASCII strings internally;
note that there is no impact on the full, system-wide support for Unicode.)

The file server has traditionally had an additional role in Symbian OS,
as the first of the system services to be started by the final stage of the kernel
boot process. In Symbian OS v6 and v7, the file server was responsible

ARCHITECTURE 261

for starting the Window Server, in effect completing the boot process.
From Symbian OS v8, the File Server instead launches the System Starter,
which performs final initialization of the File Server including adding and
mounting file systems on appropriate local drives, and then initiates start-
up of the rest of the system, including implementing the customizable
server start-up policy (which defines which servers should be started and
in which order).

Essential System Frameworks

The Base Services layer includes some essential system frameworks,
including the Plug-in Framework, which underpins the Symbian OS
framework–plug-in architecture, and the persistent storage model.

Plug-in framework

The Plug-in Framework, known as ECOM, has two principal purposes:
to make it easier to design and implement new services or features as
framework plug-ins by providing a standard (and best-practice) pattern
together with ready-made run-time support. Framework plug-in architec-
tures improve the overall modularity, extensibility, and customizability of
the system, thus improving usability (from a system perspective) as well
as improving design consistency. As importantly, it provides an evolution
path for already conforming framework plug-in components to migrate
relatively painlessly to the platform security model introduced in Symbian
OS v9, making it easier for components to adopt the required security
policies (i.e. to ensure trust between frameworks and the plug-ins they
load and to avoid plug-in loading being exploited to subvert platform
security).

ECOM defines an interface to which all plug-ins conform (plug-ins
derive from the ECOM base classes) and provides the dynamic discovery
and instantiation mechanisms which find, create, and load them on
demand.

ECOM’s original design was evolved from the design of the WAP
browser framework plug-ins. Broadly, it provides:

• methods for defining and implementing interfaces as DLL plug-ins

• plug-in registration and methods for managing multiple interface
implementations, including plug-in ‘upgrades’ (later versions)

• fast dynamic discovery and instantiation methods for plug-ins, as well
as static registration for known system plug-ins

• capability policing, that is, enforcement of the security restrictions of
its clients

262 THE BASE SERVICES LAYER

• other features including support for easy localization of plug-ins and
start-up state awareness (to improve system boot-up performance).

ECOM was first introduced in Symbian OS v7 and was then signif-
icantly enhanced in Symbian OS v8, to support and conform with the
new platform security model. Initially it offered an optional, standard
mechanism for frameworks to define plug-in interfaces and a standard
plug-in registration and loading mechanism. Subsequently it was elevated
from an optional to an obligatory mechanism; from Symbian OS v8, it
is the standard interface used by all frameworks to define how plug-ins
interact with and extend the framework and the global runtime binding
mechanism that finds and loads plug-ins into requesting frameworks on
demand, while conforming to the Platform Security requirements and
limitations on processes.

Security issues

ECOM ensures that frameworks are only able to find plug-ins they have
the capability to load and which pass the platform security check, that
is, matching of the DLL UID field from the RSC resource file to the SID
(secure identifier) of the corresponding DLL.6 Plug-ins are loaded into
the requesting client framework’s process, allowing the kernel to police
the capabilities of the plug-in DLL. (Although if the plug-in’s capabilities
do not match those of the client process, then it could be loaded into a
separate process.)

ECOM is implemented with a standard client–server architecture,
based around a central registry (of interface implementations) and a
server client-side API that handles inter-process communication (IPC)
between servers and their clients (wrapping the invocation parameters,
passing the wrapped request over the IPC boundary and unwrapping
any return parameters when a call completes). Client frameworks use a
session object as the interface to the ECOM server for finding, creating
and destroying plug-in providers of the framework interface.

Calls to the ECOM server are translated into registry or load calls to
perform:

• addition and removal of interface implementations (registrar functions)

• access and persistence mechanisms (registry data functions)

6 Strictly speaking the UID3 of a DLL is not really the SID, since SIDs are only assigned
to executables or processes (based on the executable’s UID3) and not to DLLs. Also any
single DLL can potentially contain multiple different implementations of a given interface,
which would share interface UIDs but differ in implementation UIDs. [Heath 2006] is the
best reference for following up the details.

ARCHITECTURE 263

• resolution and searching mechanisms returning ‘best fit’ results
(resolver functions)

• loading and unloading (load manager functions).

A single instance of the registry exists. Registry data is held in two
forms, an internal format for fast access, consisting of a subset of the full
registry data, and persisted data, consisting of the registration set stored
in file form, divided into branches with one branch per available drive
(branches may be transient, supporting removable media).

Client frameworks (i.e. interface definers) may supply custom resolver
implementations to ECOM to implement custom criteria.

Full discovery of plug-ins occurs at ECOM server start-up, that is, at
device boot time. Additional discovery of non-read-only internal drives
occurs when a drive is added or removed and when a secure plug-in is
added to or removed from a writable drive.

Persistence model

The Symbian OS persistence model is based on the Store architecture,
which defines abstractions of streams and stores.

A stream is an abstract interface that translates between internal and
external object representations, that is, between bit layouts in RAM and
bit layouts saved onto storage media or sent over a network. As well as
encryption and decryption streams, four alternative stream implementa-
tions are provided, suited for different underlying storage media:

• fixed-size memory streams

• variable-size memory streams

• file streams

• store streams.

A store is an abstract interface that allows a network of streams to
be manipulated, including Externalize and Internalize operations, which
allow complex data structures (e.g. whole documents or databases) to be
stored or restored from external media or from a network.

As well as secure stores (which provide encryption and decryption) and
supporting store dictionaries (used to locate the various streams inside a
store), the Store architecture provides alternative implementations suited
for different underlying storage media or uses:

• stores using RAM as the underlying storage media (for example, used
as undo buffers by some applications)

264 THE BASE SERVICES LAYER

• stores using files as underlying storage media, either direct file stores
used by ‘file-based applications’, which keep all their data in RAM
when running (in other words, which create and manipulate conven-
tional documents), or permanent file stores used by applications that
only part-load their data (for example, database applications)

• stores that can be embedded into other stores thus allowing document
embedding to create compound documents (e.g. pictures in a text
document)

Streams and stores provide the native, object-oriented persistence
model for Symbian OS. Both the DBMS relational database interface and
the Central Repository are implemented on top of store mechanisms.

DBMS

The DBMS component defines a general relational-database-access API
and provides implementations either for small client-side databases or
for client–server-based multiple-client implementations. Client–server
databases are stored in files. Client-side databases can either be a whole
file or a single file stream (enabling multiple single stream databases to
reside in a single file).

Databases can be manipulated either through a native API or a subset
of SQL. Basic database functions are supported, including table creation,
manipulation and deletion, database queries and transactions.

From Symbian OS v8, where required, DBMS supports security-
access-control policies for databases, including shared-access policies.
For system-supplied databases, it allows additional finer-grained policies
to be specified for named tables within a database (for databases created
within the DBMS private data-cage).

Central repository

The Central Repository provides a single persistent store for global settings
as well as a notification mechanism allowing clients to register to be
notified when specific settings change.

The Central Repository is designed as a collection of repositories,
where a repository is a collection of settings. A setting is represented
by a data value (a 32-bit integer, a real number, a byte-array or a text
string). Repositories are created from a definition file based on a standard
template and may be compacted into a binary format. Each repository has
an owner and is required to declare an access-control policy, which is set
in the initialization file and cannot thereafter be changed. Access control
may be specified at the level of the whole repository, for individual
settings or for ranges of settings, and may include settings which have not
yet been created.

ARCHITECTURE 265

Depending on access control, individual settings may be created,
searched for, have their values set, or deleted. Range operations are
supported and a notification registration mechanism is provided allowing
clients to register interest in settings changes (including creation and
deletion). ‘After-market’ repositories (e.g., for user- or network-installed
applications) are supported by the Application Installer. Backup, restore
and caching of repositories is also supported. Access to repository settings
is restricted based on the capabilities of the client making an access
request together with the repository security policy.

In general, settings replace the use of INI files to store application and
system defaults and other information, for example default file names,
locale settings and user preferences. Similarly, settings replace the use
of the Comms Database for storing communications-specific defaults
and settings, although the Comms Database interface is preserved for
compatibility.

The earliest releases of Symbian OS included a Registry, but it was
removed (as it was not portable) in Symbian OS v6 and replaced by
solutions based on INI files and the Comms database. In Symbian OS
v8, the Central Repository was introduced to provide more efficient and
consistent settings management.

Other Services and Utilities

The Base Services layer contains a number of additional frameworks,
libraries, utilities and servers.

Application Utilities

The Application Utilities, known to developers as the Basic Applica-
tion Framework Library (BAFL), provide an assortment of utility classes
organized as a single library DLL:

• resource-file handling including loading and reading of legacy formats
(before Symbian OS v7) and Unicode-compressed and Unicode-
and-dictionary-compressed formats (since Symbian OS v7), including
robust reading classes able to handle corrupt resource files

• file utilities, including file finding based on file type as defined by UID
and file matching to select between files based on the current locale

• string pools, a storage mechanism allowing for fast string comparisons

• dynamic arrays for descriptors, supporting mixed 8-bit and 16-bit
descriptors

• incremental text-matching comparing two text buffers (reading left-
to-right)

266 THE BASE SERVICES LAYER

• support for showing localized names of ‘user-showable’ plug-ins

• clipboard copy–paste support implemented as a direct file store with
stream dictionary, allowing applications to retrieve clipboard data by
UID

• system sounds for messages, events, errors and so on, specified by
UID

• minimal support for spreadsheet-style ‘cell’ and ‘range’ data types

• legacy change notifier (derived from active objects) wrapping the
RChangeNotifier for system environment changes relating to time,
locale, power and thread death.

Character Encoding and Conversion Framework and Plug-ins

The Character Encoding and Conversion Framework provides an API for
converting text between Unicode and other character sets based on an
extensible converter plug-in architecture.

In Symbian OS v9, conversion is supported for a variety of ASCII
formats (including common ISO codepages), UTF-7 encodings (including
Shift-JIS and JIS) and UTF-8 encodings. Conversion is performed by
specifying the Unicode character set of interest (for conversion to or from)
and then requesting the conversion.

As well as text conversion, text utilities are provided to manage
character sets (create character-set arrays, find the character-set UID
from the character set name and vice versa) and to detect character sets
automatically based on sample texts.

XML Framework and Parser Plug-ins

The XML Framework provides an extensible framework for XML parsing
based on a parsing model similar to SAX 2.0, into which custom parser-
implementation plug-ins (as well as validator, DTD and auto-correction
plug-ins) can be loaded. Default plug-ins are provided for non-validated
parsing of XML 1.0 and for WAP Binary XML (WBXML).

Parsers are selected based on a document’s MIME type and other
criteria supplied by clients when using the framework. The parser class
defines methods that parse XML data from descriptors (all in one go or
incrementally) and from files. Internally within the parser, text is stored in
UTF-8 format to ensure preservation of extended characters.

The WBXML parser plug-in can be extended to support additional
document types by providing WBXML token-to-string translation tables
(‘String Dictionaries’). Default tables are supplied for SyncML, WML and
Service Indication.

The design goal for the framework is to provide a single, standard,
platform implementation of a flexible and capable XML parser to replace

ARCHITECTURE 267

the various task-specific and ad hoc parsers provided locally in the system.
The framework also provides sufficient extensibility for likely future uses
(including generating capability).

So-called ‘processor’ plug-ins (for example, validators and auto-
correctors) may be chained with parsers to provide multiple processing
stages.

String Dictionaries are implemented using string pools that make
string comparison almost instantaneous (at the expense of string creation;
however, this supports parsing cases where string constants are known
at compile time particularly well, as is the case where documents follow
standard DTDs such as SyncML, SMIL or WML).

Media Device Framework and Plug-ins

The Media Device Framework provides hardware-abstraction interfaces
for audio and video accelerators to the Multimedia Framework (see
Chapter 8) and its clients. Typically, accelerators are hardware devices
(codecs) but they may also be software emulations. The framework defines
APIs for sound, video, MIDI, and ASR (Automatic Speech Recognition)
accelerators, and the architecture for loading the lower-level adaptor
plug-ins (DevSound, DevVideo, DevMIDI, and DevASR; see Chapter 11).
A client utility API for speaker-independent speech recognition is also
supplied as a plug-in and is available to any client wanting to interface to
ASR hardware (or software emulations).

The framework also includes a policy server that manages access to
the underlying audio and video hardware, deciding which clients can
access the hardware and when. Licensees can customize access policies.

The Media Device Framework evolved from the earlier Symbian OS
v6 and Symbian OS v7 MediaServer. Previously, Multimedia Framework
controller plug-ins were able to directly interface to audio and video
codecs via adaptor plug-ins. By defining a standard interface between
controllers and adaptors, the Media Device Framework enables portable
adaptors to be developed to support specific accelerator hardware. The
framework has evolved significantly over subsequent releases compared
with its first implementations, which supported only audio.

Cryptography Library

The Cryptography Library provides system-level support for a wide-
range of non-RSA cryptographic algorithms including symmetric and
asymmetric ciphers, hash functions and a cryptographic strong random-
number generator. The cryptographic algorithms are supplied in two
variants: export-restricted (strong) and non-export-restricted (weak). Note
the change since Symbian OS v7, which provided an export-restricted
and an RSA-based library, with no non-export-restricted variant.

268 THE BASE SERVICES LAYER

Subcomponents of the library include:

• random-number server, an implementation of a random-number gen-
erator

• random-number library DLL, providing an API for generation of cryp-
tographically strong random numbers

• hash library DLL, providing an API for generating cryptographic
hashes, supporting MD2, MD5, SHA1 and HMAC

• password encryption API DLL supporting key generation from pass-
word (PKCS#5 key-derivation function) and key-based encryption and
decryption

• cryptographic library, providing non-RSA cryptographic algorithms,
supplied in weak and strong versions (depending on possible export
restrictions) and implementing symmetric and asymmetric ciphers,
padding schemes, and big integers.

Clients link against the Cryptography Library for all functions. Calls are
transparently forwarded to whichever version of the library implementa-
tion is present at run time (strong if present, weak if not; this is determined
at ROM build time). The weak version is limited to symmetric crypto-
graphic operations with a maximum key size of 56 bits and asymmetric
cryptographic operations with a maximum key size of 512 bits.

Zip Compression Library

Port of the zlib compression library (see relevant RFCs, for example,
RFC1950) used to support compression and decompression of SIS files
(Symbian native installable-application format) and Java Archive (.JAR)
files, and for PNG decompression.

Shutdown Server

The Shutdown Server provides a notification service to clients to provide
‘save data’ and ‘release resources’ notifications in case of switch-off
or low memory and similar events, enabling a client to save data (for
example, if it is an application) and possibly also close itself (to free up
resources).

It consists of a client-side library that clients use to request notifications,
the Shutdown Server that provides ‘save data’ notifications and which
may be derived from to create bespoke shutdown servers (for example,
Uikon implements a customized shutdown server), and a server launcher
(executable) that launches the service.

ARCHITECTURE 269

Feature Registry

The Feature Registry (introduced in Symbian OS v9.2) provides an API
enabling run-time queries to discover whether known but optional
features are supported on the particular running platform (device or
emulator).

A ‘feature’ is a Symbian OS or user interface variant API (or set of APIs)
identified by a Feature UID.

A configuration file listing features present is generated at ROM build
time (on real devices) or provided as part of the emulator support in the
licensee SDK and is held in a Publish and Subscribe property queried by
the Query API. A Notify API is also provided but not currently enabled,
with the intention that in future releases the feature set will be updatable
at run time (the Symbian OS v9.2 implementation fixes the feature set at
ROM build time).

Text Shell and Text-Window Server

Together, the Text Shell and the Text-Window Server that supports it
make the base layers of the operating system independent of higher-
level services (for example graphics and windowing support as well as
the GUI-based application support), allowing functional text-mode-only
builds of the base to support porting and other low-level development.

This enables a minimal but functional system to be built for and run
on new hardware as a first step to providing full hardware support. In
principle, all hardware dependencies are encapsulated within the base
layers of the system; once the base port is complete, the rest of the system
can be moved over to run on top of it without any further adaptation
being required. In practice, the situation is a little more complex; Comms
Services, in particular, are hardware-dependent at the lowest level of
hardware abstraction and interface. In practice therefore porting is a
two-stage activity: once the base port is complete, a communications
port is needed to interface the communications stacks to the device
hardware. When the communications port is complete, the remaining
system services can be moved over.

The Text Shell provides a console-like (command-line) interface to
basic operating system services, for example navigating the file system
and launching executables, when standard graphics, application, and
GUI support are not available. The Text Shell is also available on the
emulator, where it is used, for example, when developing servers that run
without a user interface.

The Text-Window Server supports the Text Shell, using a text-mode
display driver to provide standard VGA/LCD screen displays on local
hardware as well as VT100 terminal emulation over a serial line.

270 THE BASE SERVICES LAYER

Low Level Libraries
and Frameworks

Character
Conversion

Media Device
Framework XML Persistent

Storage
Text
Mode
Shell

User Library
and File
Server

User Side
Hardware

Abstraction

Base
Services

Figure 10.2 Component collections in the Base Services layer

10.6 Component Collections

The Base Services layer (see Figure 10.2) contains several collections of
components.

• The User Library and File Server and User-Side Hardware Abstraction
collections contain essential system services providing file-system
support and essential user libraries.

• The Text-Mode Shell provides character-based text services that
enable the lowest two layers of the system to be built independently
of graphics frameworks.

• The Low-Level Libraries and Frameworks, Character Conversion, Per-
sistent Storage and XML collections contain frameworks and libraries
useful to applications, as well as to other system components.

User Library and File Server Collection

The User Library and the File Server implement essential basic function-
ality that should be considered central to the operating system. They
interface to the kernel in a uniform way using the standard client–server
model. Because they run user-side, the kernel is protected both from
programming errors by users of the basic libraries (including resource
exhaustion) and from timing latencies introduced on the user side enabling
real-time guarantees to be met. See Figure 10.3.

• The User Library component provides much of the signature func-
tionality of Symbian OS to (system) programs and to applications,

Low Level Libraries and Frameworks

Appli-
cation

Utilities
Crypto.
Library

Plugin
Frmwk.

Feature
Reg.

Pw. &
Shut-
down
Mgmt.

ZIP
Compr-
ession
Library

Figure 10.3 User Library and File Server components

COMPONENT COLLECTIONS 271

Table 10.1 User Library and File Server Components

Component Name Development Name

User Library EUSER

File Server F32 EKA2

Filesystem Plug-ins FILSYS

FAT Filename
Conversion Plug-ins

FATCHARSETCONV

including native data types, clean up and clean-up-aware base classes,
active objects, descriptors, as well as the system–language binding
including DLL stub mechanisms, IPC and similar mechanisms, and
generally useful low-level services including (since Symbian OS v8)
Publish and Subscribe.

• The File Server component manages all file access through client-
side file-server sessions. It is a framework of file-system plug-ins and
extensions which supports the implementation of custom file systems.
The server is responsible for brokering client requests and passing
them through to the file system, where the real work is performed.
The file server includes an embedded ROM file system.

• The Filesystems component provides file-system plug-in implemen-
tations of LFFS and FAT file systems. FAT is the native format for
externally visible drives, for example those implemented on remov-
able media.

• The FAT Filename Conversion Plug-ins support filename conversion
from and to Unicode.

User-Side Hardware Abstraction Collection

This API provides Get and Set functions to query and set information
about specific hardware features from the user-side, providing a way to
access and control many device-specific features independently of the
hardware platform. See Figure 10.4.

User Side Hardware
Abstraction

User
HAL

Figure 10.4 User-Side Hardware Abstraction components

272 THE BASE SERVICES LAYER

Table 10.2 User-Side Hardware Abstraction Components

Component Name Development Name

User HAL HAL EKA2

This component is deprecated for application use. The intended users
are system components running on the user-side and needing to access
hardware properties, for example fault and exception, memory-page size,
timer-tick period, screen properties (whether a screen backlight is present
or not, setting the display contrast), and so on.

Text-Mode Shell Collection
Together, the Text Shell and the Text Window Server that supports it
make the base layers of the operating system independent of higher
level services (for example graphics and windowing support as well as
GUI-based application support), allowing functional builds of the base to
support porting and other low-level development. See Figure 10.5.

Table 10.3 Text Mode Shell Components

Component Name Development Name

Text Window Server EWSRV

Text Shell ESHELL

• The Text-Window Server supports the Text Shell, using a text-mode
display driver to provide standard VGA/LCD screen displays on local
hardware as well as VT100 terminal emulation over a serial line.

• The Text Shell provides a console-like (command-line) interface to
basic operating system services, for example navigating the file system
and launching executables, for use in porting, testing, and low-level
development in which only the base layers of the system are built.

Low-Level Libraries and Frameworks Collection
This collection contains a number of basic system frameworks and
libraries which are used throughout the system as well as by applications.

Text Mode
Shell

Text
Window
Server

Text
Shell

Figure 10.5 Text-Mode Shell components

COMPONENT COLLECTIONS 273

It includes the Plug-in Framework, which provides a uniform and secure
plug-in definition and loading mechanism, Store, which implements the
Symbian OS persistence model, and a varied collection of system utilities.
These include a cryptography library, which implements both weak and
strong versions of standard cryptography algorithms, a Zip compression
library, and a basic application utilities library (BAFL).

Table 10.4 Low-Level Libraries and Frameworks

Component Name Development Name

Cryptography Library CRYPTOGRAPHY

Zip Compression Library EZLIB

Plug-in Framework ECOM ONGOING

Power and Shutdown
Management

DOMAIN

Application Utilities BAFL

Feature Registry FEATREG

Among the more recent components (new in Symbian OS v8) is
the Central Repository which is provided to store state and settings
information that need to be persistent for clients, for example default
filenames, locale settings, user preferences, etc. See Figure 10.6.

• The Cryptography Library implements (since Symbian OS v7) non-
RSA-based cryptographic support for symmetric and asymmetric
ciphers, hash functions, random number generation, and password
encryption.

• The Zip Compression Library is a port of the zlib compression library
(see relevant RFCs e.g. RFC1950) used to support compression and
decompression of SIS files (the native Symbian OS installable applica-
tion format) and Java Archive (JAR) files, and for PNG decompression.

Low Level Libraries and Frameworks

Appli-
cation

Utilities
Crypto.
Library

Plugin
Frmwk.

Feature
Reg.

Pw. &
Shut-
down
Mgmt.

ZIP
Compr-
ession
Library

Figure 10.6 Low-level libraries and frameworks

274 THE BASE SERVICES LAYER

• The Plug-in Framework is a framework and server for plug-in interface
implementations. It defines the standard base classes used by con-
forming plug-ins and a client-side API used by framework clients to
locate and load plug-ins on demand. It manages a registry of available
plug-ins and implements security policy mechanisms (e.g. capability
policing).

• The Power, Memory and Disk Management component is a cus-
tomizable user-side power manager supporting policy-driven power
management via power domain ‘profiles’ at device switch-on and
switch-off. It includes a notification service (the so-called ‘Shutdown
Server’) to clients to provide ‘save data’ and ‘release resources’ notifi-
cations in case of switch-off, low memory and similar events.

• The Application Utilities component, known to developers as BAFL,
provides an assortment of utilities organized as a single library DLL
including utility classes for resource-file handling and file finding, and
implementations of string pools and descriptor arrays.

• The Feature Registry (introduced in Symbian OS v9.2) provides an API
enabling run-time queries to discover whether known but optional
features are supported on the run-time platform.

Character Conversion Collection
This collection provides a character-code conversion framework and
plug-ins. See Figure 10.7.

Table 10.5 Character Conversion Components

Component Name Development Name

Character Encoding
and Conversion
Framework

CHARCONV ONGOING

Character Encoding
and Conversion
Plug-ins

CHARCONV

Character Conversion

Char.
Encode.
Conv.

Frmwk.

Char.
Encode.
Conv.

Plugins

Figure 10.7 Character Conversion components

COMPONENT COLLECTIONS 275

• The Character Encoding and Conversion Framework supports con-
version of text between Unicode and non-Unicode character sets.
Symbian OS native text formats are Unicode.

• The Character Encoding and Conversion Plug-ins provide conversion
between a variety of ASCII and UTF-7 and UTF-8 text formats. The
Unicode text format is UTF-8.

Persistent Data Storage Collection

The persistence model, plus the DBMS abstraction implemented as a
layer around it, provides an SQL-interface for database applications. It
also includes the Central Repository that provides a uniform approach to
persistent settings management. See Figure 10.8.

Table 10.6 Persistent Data Storage Components

Component Name Development Name

Store STORE

DBMS DBMS

Central Repository CENTRALREPOSITORY

• The Store component defines the Symbian OS persistence model
based on the two abstractions of streams and stores, providing an
application data-storage model which shields applications from the
underlying File Server implementation.

• The DBMS component defines a general relational database access
API and implementations for fast client-side-only exclusive access and
slower client–server-based shared-access databases. Databases can
be manipulated either through a native API or a subset of SQL.

• The Central Repository component provides a single persistent store
for global settings as well as a notification mechanism allowing clients
to register interest when settings change. The Central Repository was
introduced in Symbian OS v8.

Persistent Storage

Central
Repos-

itory
DBMSStore

Figure 10.8 Persistent Data Storage components

276 THE BASE SERVICES LAYER

XML

XML
Frmwk.

XML
Parser

WBXML
Parser

Figure 10.9 XML components

Table 10.7 XML Components

Component Name Development Name

XML Framework XML

XML Parser XMLPARSERPLUGIN

WBXML Parser WBXMLPARSER

XML Collection

XML support includes an extensible framework and parser plug-ins for
parsing and validating XML documents (see Figure 10.9).

• The XML Framework provides an extensible framework for XML pars-
ing based on a parser model similar to SAX-2.0 and supporting DTD
and processing plug-ins (for example, validators and auto correctors)
as well as parser plug-ins.

• The XML Parser component is a non-validating parser plug-in for XML
1.0.

• The WBXML Parser component is a parser plug-in for WAP Binary
XML (WBXML).

Media Device Framework Collection

The Media Device Framework (see Figure 10.10) defines standard hard-
ware acceleration APIs which are used by the Multimedia Framework
and its clients, enabling multimedia controller plug-ins to communicate
with hardware accelerator adaptors through standard interfaces.

• The Media Device Framework contains standard acceleration APIs for
audio, video, MIDI, and Automatic Speech Recognition (ASR).

• Media Device Framework Plug-ins is an ASR Client Utility API that
provides speaker-independent speech recognition to the Multimedia

COMPONENT COLLECTIONS 277

Framework and directly to other clients wanting to interface to speech-
recognition hardware (or software emulations).

Media Device Framework

Media
Device
Frmwk.

Media
Device
Frmwk.
Plugins

Figure 10.10 Media Device Framework

Table 10.8 Media Device Framework Components

Component Name Development Name

Media Device
Framework

MDF

Media Device
Framework Plug-ins

AUDIODEVICE,
MDFAUDIOHWDEVICEADAPTER,
VORBISDECODERPROCESSINGUNIT,
VORBISENCODERPROCESSINGUNIT,
MDFVIDEODECODEHWDEVICEADAPTER,
MDFVIDEOENCODEHWDEVICEADAPTER

11
The Kernel Services and Hardware

Interface Layer

11.1 Introduction
The Kernel Services and Hardware Interface layer (see Figure 11.1) is
the lowest layer of Symbian OS. It contains the Symbian OS kernel and
supporting components.

These include the kernel-level components which must be customized
in order to bring up a minimal build of the operating system on new hard-
ware (although a typical port entails customizing other components too).

Base
Services

Application
Services

Kernel
Services &
Hardware
Interface

Kernel Services and Hardware Interfaces

OS
Services

UI
Framework

Figure 11.1 Kernel Services and Hardware Interface layer in the system model

280 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

The layer boundary also marks the ‘kernel side’ boundary; all compo-
nents which run in privileged mode in the runtime system are included
within the layer.

11.2 Purpose

The Kernel Services and Hardware Interface layer is the foundational layer
of Symbian OS. It includes the kernel and all the supporting infrastructure
needed to boot and run the kernel on the underlying hardware platform.
It is responsible for fundamental operating system services:

• bootstrapping the physical or emulated device to provide the basic
initialization of the hardware

• creating and managing the fundamental operating system kernel
abstractions, for example, threads, processes, memory address spaces,
and other resources including timers, mutexes, and so on

• scheduling, pre-emption and interrupt handling

• access to devices, providing the device-driver framework and device
drivers that abstract device hardware and implement the two-tier
logical and physical device driver model

• encapsulating the kernel–user boundary; all processes which run in
privileged mode originate from this layer

• encapsulating the lowest level of an operating system port (‘base port’)
to new hardware

• insulating all higher layers from actual hardware.

The system model collects the kernel and kernel extensions, device
drivers, and the other hardware abstraction components which are
required for hardware porting, into a single Kernel Architecture block.
(Versions of the system model for Symbian OS v8 have two Kernel
Architecture blocks, for each of the EKA1 and EKA2 kernel versions.)

Two small collections sit within the layer but outside the block. These
collections each have a single component which is independent of the
kernel version but which requires customization in a new port. These
components implement locale support, which is used by the kernel, and
the screen driver.

From Symbian OS v9, the Kernel Architecture block is organized
to reflect the basic architecture of the kernel side of the system, as
well as the recommended structure of a base port. The kernel includes
extensions that implement the device-driver framework, providing a two-
layer logical–physical device-driver model in which logical device drivers
abstract a generic device interface and physical device drivers drive
the actual hardware. Below the kernel, abstraction of device hardware

DESIGN GOALS 281

is divided between the Application-Specific Standard Part (ASSP), an
off-the-shelf integrated CPU, and the Variant components. The ASSP
component contains ASSP-specific code that is otherwise hardware-
agnostic (it supports the specific silicon package used in a product,
typically a standard part containing the CPU core and custom chips). The
Variant components contain hardware-dependent code which is specific
to a product, for example hardware-specific flash-memory translation.

11.3 Design Goals
Releases up to and including Symbian OS v8 shipped with the original ker-
nel, EPOC Kernel Architecture 1 (EKA1). Symbian OS v9 and later releases
ship with the new kernel architecture of the EKA2 ‘real-time’ kernel.

At the highest level, the design goals of the kernel layer of Symbian
OS are common to both kernel versions:

• provide an operating system kernel optimized for its device class –
palmtop and smaller

• optimize for ROM-based execution – XIP- or RAM-shadowed execu-
tion

• optimize for mobile – no fixed wires

• optimize for battery operation – anything from the two ‘AA’ batteries
of the original Psion Series 5 to the latest mobile phone rechargeable
battery

• target consumer-oriented devices – for ‘ordinary’ non-technical users.

Immediate performance goals follow:

• meet the requirements of the device class – in terms of the operating
system image size, start-up time, task-loading and task-switching
times, its ability to run forever, and overall robustness

• meet consumer-device goals – robustness in the face of typical failure
scenarios, for example out-of-memory, no signal, low battery or
sudden battery removal, media card removed in mid-write, disk full
but camcorder still running, and so on

• provide a highly portable operating system kernel – to enable porting
to multiple hardware architectures in as pain-free a way as possible

• support typical licensee product models, that is, the product line or
product family principle – multiple minor hardware revisions follow
from an initial ‘lead product’ and porting effort should scale down
significantly between a first port and subsequent incremental ports.

Compared with the original kernel, EKA2 is explicitly designed to
make porting easier by improving the modularity of the kernel and the

282 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

structuring (and packaging) of its supporting components. Thus the core
kernel is independent of both ASSP and variant. In contrast, in EKA1
the separation between hardware-dependent and hardware-independent
code was less clear-cut, and hardware support was less cleanly partitioned
between the ASSP and variant.

It is also important to remember Symbian’s origins as an application-
centric operating system, which determines additional design goals:

• provide a fully programmable platform – enabling user-installable
applications as well as a complete native application set

• provide a fully graphical system which is intuitive to use – with full
interactive GUI, multitasking and instant task switching.

From the beginning, Symbian OS has also been strongly focused on
international markets, with early support for non-Western scripts (for
languages such as Chinese, Arabic, Thai and Hindi):

• Unicode multi-byte characters supported throughout the system

• easy localization

• non-Roman and multidirectional script display.

Increasingly, the application emphasis has evolved from PIM applica-
tions (calendars, contacts books and so on) toward high-data bandwidth
applications, including camcorder applications and mobile digital TV,
following the trend of increasingly multimedia capable devices.

As well as requiring the architecture to support ever higher data
rates, this overall shift in the market away from PDA-style products
towards mobile phones has led to an important evolutionary goal and, in
particular, to specific requirements on the EKA2 kernel. The kernel was to
be capable of supporting typical licensee phone hardware architectures,
including one-core and dual-core variants, and Symbian-only as well as
‘partner operating system’ configurations (requiring cooperation with a
real-time ‘partner’ operating system driving the baseband hardware and
software).

Arguably the most critical design goal follows from the above: provide
a highly adaptable and evolvable kernel architecture capable of change
in a rapidly evolving technology, product and market context.

The strength of the kernel architecture is demonstrated by its stability
and continued fitness for purpose in the face of rapid change – for
example, the almost complete transformation of the mobile phone in less
than a decade, from the pre-Symbian OS basic phone of the mid-1990s to
the PDA–phone ‘smartphone’ hybrids with which Symbian OS entered
the phone market to today’s full multimedia devices.

EKA1 AND EKA2 283

11.4 Overview

Symbian OS has a microkernel architecture,1 which means that the
responsibilities of the kernel are kept to an essential minimum. The design
approach is to implement a minimal set of operating-system primitives in
the kernel, on which higher-level, generic operating system services can
be built, the goal being to keep the kernel small, and therefore fast, and
to keep its complexity low, to achieve high reliability and predictability.

Simplistically, kernel responsibilities are divided between implement-
ing suitable primitives for use by the higher layers of the operating system
and interfacing to the underlying hardware platform. Surrounding the
kernel itself are the additional components required to provide complete
hardware support.

Because the kernel layer is the interface to the hardware platform,
it is dependent on the hardware. To port the operating system to new
hardware entails porting the kernel layer. An important design consid-
eration, therefore, is to optimize ease of porting by isolating hardware
dependencies. The design of the kernel and its supporting components is
highly modular, to make porting simpler.

An important distinguishing feature of Symbian OS is its optimization
for ROM-based systems. Symbian OS was designed to be built into
device ROM and executed in place without requiring loading into RAM,
in contrast to more conventional systems (including Linux/Unix and
Microsoft Windows), which are designed to be loaded from the file
system into RAM before executing.

Supporting ROM-based systems has become more complex as memory
technologies and hardware architectures have evolved to keep pace with
the burgeoning requirements for storage capacity. The latest releases of
Symbian OS are optimized for multiple hardware architectures and mem-
ory types, including the latest NAND-flash-based systems as well as more
conventional NOR flash. On NOR-flash systems, Symbian OS is executed
in place (XIP). On NAND flash, which is not byte-addressable, Symbian
OS shadows itself to RAM from where it executes. In both cases, it
provides a translation layer to interface the filing system to the flash drive.

11.5 EKA1 and EKA2

The origins of EKA1 go right back to the first releases of the operating
system. The original architecture of the Symbian OS kernel was driven by
the need to provide a robust platform for a PDA-centric (and, therefore,
application-centric) operating system. Almost from its first release, how-
ever, Symbian OS has been evolving to meet the high data-throughput

1 There are some aspects in which it is more hybrid than pure (see the detailed discussion
below).

284 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

and real-time requirements of more communications-centric devices (in
particular, advanced mobile phones).

As early as 1998 (i.e. two years before Symbian OS v6 was released)
a ‘real-time’ project began in the kernel team to investigate the issues
involved in providing real-time support and to prototype a solution.

The eventual result of that work was a new, real-time-capable kernel,
EKA2 (also known as EpocRT), benchmarked in terms of its ability to
directly support a full mobile phone signaling stack. It was intended for
release in Symbian OS v7 and reached the market in Symbian OS v8,
becoming the standard kernel in Symbian OS v9. (In Symbian OS v8.1,
customers were offered a choice between the EKA1 and EKA2 kernels.)
Even so, the new kernel’s initial selling point for customers was probably
less its real-time capabilities than its support for the new Platform Secu-
rity architecture, which had become commercially necessary. Platform
Security requires kernel support to police security policies as part of its
inter-process communication (IPC) mechanism. While Platform Security
was introduced in stepped phases to be compatible with the original
kernel, the full features of Platform Security are only available in a system
running EKA2.

EKA2 was designed to be closely compatible with EKA1. In important
respects, the two are functionally equivalent, as evidenced by the choice
of using either EKA1 or EKA2 in Symbian OS v8.1. The critical difference
is that EKA2 is designed to offer true real-time behavior.

11.6 Singleton Component Collections

The Kernel Services and Hardware Interface layer consists of the Kernel
Architecture block (or blocks, in the case of releases that include both ker-
nel versions) and two singleton component collections (see Figure 11.2)
containing components that, while they are not part of the kernel archi-
tecture proper, nonetheless can be counted as belonging on the kernel
side of the kernel–user boundary.

Localization Collection
This component is a customizable plug-in that implements locale-specific
settings including standard strings (for example, day and month names),

Kernel
Services &
Hardware
Interface

Kernel Architecture

Localisation

Screen

Driver

Figure 11.2 Localization and Screen Driver collections

KERNEL ARCHITECTURE BLOCK 285

Localisation

Locale
Support

Figure 11.3 Localization components

distance units, currency symbols, date and time formats, collation orders,
and so on. Standard locales, including Japanese and several Chinese
variants, are provided with the system.

Locale Support is included in the Kernel Services layer because it
implements various strings used directly by the kernel (e.g. default system
messages). It is loaded by the User Library.

Table 11.1 Localization Components

Component Name Development Name

Locale Support LOCE32 ONGOING, ELOCL

Screen Driver Collection
This component implements the generic operations defined by the Bit
GDI to manipulate the physical memory map of the device display or
bitmap memory map. (Typically, in-memory bitmaps and the display
memory map are addressed in the same way in hardware, hence a
common interface is provided to both.) It supports dual screens, which
feature in flip-phone designs. The Screen Driver forms part of a base port
to new hardware.

Table 11.2 Screen Driver Components

Component Name Development Name

Screen Driver SCREENDRIVER

11.7 Kernel Architecture Block

In one sense, the Symbian OS kernel has always been larger than a
microkernel, since in both EKA1 and EKA2 it includes extensions and

Screen Driver

Screen-
driver

Figure 11.4 Screen Driver components

286 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

Kernel
Architecture

Kernel
Services

ASSP Variant

Logical Device Drivers

Figure 11.5 Kernel Architecture block in Symbian OS v9

device drivers. In another sense, in EKA2 (see Figure 11.5) it is even
smaller, with a true nanokernel at its core.

However, both kernel architectures have true microkernel proper-
ties. For example, major services such as the File Server and the User
Library, as well as all graphics and communications services, including
networking and telephony, remain outside the kernel and are run as
user-side processes. This is in contrast for example to the monolithic
kernel architectures of both Linux and Microsoft Windows.

A microkernel limits the kernel responsibilities to a small set of core
functions, and builds higher-level operating-system functions on top of
a small set of kernel primitives. The microkernel can thus be kept small
and fast. Another important feature of microkernel architecture is that
kernel functionality is deliberately simplified; more complex higher-
level behavior is moved out of the kernel onto the user side. The
principles parallel those of Reduced Instruction Set Computer (RISC)
versus Complex Instruction Set Computer (CISC) processor design, with
broadly comparable arguments in favor.

From microkernel architectures, the Symbian OS kernel borrows the
following features:

• a message-passing framework for the benefit of user-side servers

• networking and telephony stacks as user-side servers

• file systems implemented as user-side servers.

At the same time, for performance reasons Symbian OS compromises
on microkernel purity by allowing kernel extensions and including the
device-driver framework in the kernel. However, device drivers are not
embedded in the kernel binary but follow the typical Symbian OS design
pattern of being implemented as run-time loadable and unloadable
plug-ins.

From monolithic kernel architectures, the Symbian OS kernel borrows
the following features:

• kernel-side device drivers

• scheduling policy implemented in the kernel.

KERNEL ARCHITECTURE BLOCK 287

The test case for the success of the EKA2 kernel architecture is its ability
to support the real-time requirements of a GSM/wCDMA or CDMA
phone-signaling stack ([Sales 2005, p. 778]). To do so requires that
real-time guarantees can be given for key services, most importantly
interrupt latencies, thread latencies and context switches. (‘Real-time’
in this context means deterministic and bounded by a predictable and
known time; which is not quite the full definition.2)

The rationale for providing real-time support is two-fold. First, as
phones become more complex and add more custom hardware, par-
ticularly to support multimedia functions, interrupt latencies become
increasingly critical to data throughput. Secondly, there is a specific goal
to enable the Symbian OS nanokernel to operate as a true real-time oper-
ating system capable of hosting the baseband software. The baseband
(phone software stack or ‘modem’) in a mobile phone requires real-time
support in order to respond to the timing requirements of the signaling
stack.

Typical phone designs host the baseband stack on a real-time operating
system. In a phone that also provides sophisticated application-side
software including, for example, a full GUI, a second, application-centric
operating system is dedicated to providing the application support. The
‘dual operating system’ design most commonly also implies a ‘dual core’
two-processor design, in which dedicated baseband and application-side
processors host the respective operating systems and, in many cases, also
own dedicated peripheral hardware including memory. Adding real-time
capability to Symbian OS is intended to enable ‘single operating system’,
and hence ‘single core’, designs.

The EKA2 architecture is based on a nanokernel which is designed
to have sufficient functionality and the real-time properties required to
directly host a GSM, wCDMA or CDMA phone stack. Phone stacks are
not yet commodity items and most have been written to interface to
an existing real-time operating system (RTOS), whether bespoke or off
the shelf. The EKA2 nanokernel therefore supports a ‘personality’ layer
mechanism that enables an interface layer to be written between a given
RTOS and the software above it, while mapping calls into the interface
to the underlying functionality of the nanokernel. This provides a way of
running a baseband stack directly on Symbian OS without having to first
port the stack. Writing a personality layer is a small task compared to
that of porting an existing phone stack or writing one from scratch to the
Symbian OS nanokernel interface.3

The kernel re-architecture had a secondary goal of improving the
modularity of the kernel. The EKA1 architecture includes an undesirable

2 See [Sales 2005, Chapter 17] for a detailed discussion of what real-time means and
how Symbian OS meets real-time requirements.

3 The task of creating a new phone stack, from design to full type approval, can take 10s
to 100s of man-years of coding effort.

288 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

degree of hardware dependency. Although at the lowest level of the
kernel an EKA1 ‘variant’ DLL encapsulates many of the device-specific
hardware dependencies, many ASSP-specific assumptions are contained
in generic EKA1 kernel code, meaning that customization of kernel code
is still required to move to a new ASSP architecture (or, at the very least,
the kernel needs to be recompiled).

In the EKA2 architecture, all peripheral-related code (i.e. code which
is ASSP-specific, but not specific to a particular licensee product) moved
out of the kernel into a separate ASSP DLL. This provided better isolation
of the kernel from the porting effort and enabled a more flexible approach
to porting (since a licensee can choose how to structure the port between
the Variant and ASSP DLLs, to better support families of similar but not
identical devices; indeed, a licensee can even choose to dispense with
the ASSP DLL for a one-off port).

Architecture

The project that led to the creation of EKA2, the ‘real-time’ kernel, had a
number of goals:

• to enable the creation of single-core, single-operating-system products
in which baseband software, for example a GSM protocol stack,
executed on the same processor as the application software, supported
by the same operating system

• to improve average overall performance, as well as portability and
robustness

• better timer resolution, easier debugging, a better emulator (i.e. a more
faithful ‘virtual’ port to Microsoft Windows), and general architectural
housekeeping.

EKA2 meets all of those goals. In particular, it is highly portable,
running on X86 as well as many flavors of ARM processor architectures
(ARM720/920/SA1/Xscale); on systems with different Memory Manage-
ment Unit (MMU) styles, including no MMU;4 and on multiple ASSPs. Its
architecture (see Figure 11.6) is highly modular and carefully layered to
isolate hardware dependencies.

At the heart of the design, the nanokernel implements essential oper-
ating primitives and supports real-time guarantees for interrupt latencies,
thread latencies and context-switching time bounds. The nanokernel is
responsible for the most basic thread scheduling, synchronization and

4 Realistically, the ‘no MMU’ option is intended as an aid to porting rather than a
supported target architecture. The security model, for example, depends on an MMU being
present to enforce memory protection between processes.

KERNEL ARCHITECTURE BLOCK 289

User Library

Variant

ASSP

LDDs

PDDs

Nanokernel Kernel Extensions
MM

Privilege
Boundary

Generic

Architecture
specific

Figure 11.6 Kernel architecture for EKA2

timing functions. Extending the nanokernel, the kernel proper provides
higher-level operating-system services compatible with the EKA1 kernel.

Both the nanokernel and the kernel are isolated from hardware depen-
dencies by the Memory Model, ASSP, and Variant modules. The Memory
Model provides per-process address spaces and inter-process data trans-
fer. The Variant represents the specific, ‘off-chip’ system hardware, while
the ASSP represents the core silicon package.

The device-driver model and extension mechanism control peripheral
devices and provide client interfaces. (Extensions are statically linked
device drivers.)

Kernel Responsibilities
The Symbian OS Kernel implements the operating-system primitives on
top of which generic services are built by higher-level components (such
as the File Server and the User Library). In particular, the kernel, including
its extension mechanisms, implements:

• the thread and process models that provide the underlying basis for
all code execution, including process creation and termination, code
loading, thread scheduling and the scheduling policy

• memory management, including Direct Memory Access (DMA),
which is an essential service underlying the process model

• process protection and IPC mechanisms that guarantee process inde-
pendence while allowing processes to cooperate; IPC is at the heart of
the client–server model and policing of the platform security model

• the device-driver model, which provides the device-level interface for
system clients and applications

• interrupt management, which is exclusively the responsibility of the
kernel

290 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

• the power model, which provides an interface for higher-level clients
to manage and respond to the device power state

• logical device drivers (LDD), which are implemented as plug-ins to
the device driver framework and provide a high-level device interface
(i.e. LDDs support classes of device, e.g. Ethernet ports)

• physical device drivers (PDD), which are implemented as plug-ins to
LDDs and provide the low-level interface to actual hardware present
on a device (for example, a specific Ethernet card)

• various other high-level drivers (for example, accelerator plug-ins to
the Media Device Framework), which are not implemented as LDDs,
operate at an equivalent level of abstraction.

Kernel Executive Calls

Executive calls are the mechanism used to call into the kernel from
user-side programs. While the interface is defined by the User Library, the
underlying mechanism is a kernel-side software interrupt dispatch table
that decodes software interrupts generated by invocation of the CPU
software interrupt instruction into a specific executive call. From the user
side, the mechanism is entirely wrapped by methods of the User Library
static classes.

Inter-Process Communication

IPC is supported by an asynchronous message-passing mechanism, based
on Executive calls, which is the basis for client–server communications, as
well as inter-thread communications used in system-level programming
(for example, device-driver programming). EKA2 also introduces IPC
based on message queues, which is distinct from client–server IPC, and
enables shared chunks.

Publish and Subscribe

EKA2 introduces Publish and Subscribe, a mechanism for defining global
properties whose values may then be ‘published’, that is, updated by
the property owner, to ‘subscribers’ who have a dependency on the
value. Publish and Subscribe is, in effect, a system-wide asynchronous
notification mechanism to which interested clients can subscribe to
track the changing values of arbitrary properties. Broadly speaking, it is
an asynchronous IPC mechanism although, more precisely, it is really
an inter-thread mechanism, since both publishers and subscribers are
threads.

Properties are single data values, that is 32-bit integers or ‘string’ values
(strictly speaking, descriptors that contain byte or text data, including

KERNEL ARCHITECTURE BLOCK 291

Unicode text) of up to 512 bytes in size. Larger property arrays of up
to 64 KB can also be defined but do not have the same deterministic
operation.

Real-Time Processing

In EKA1, the kernel is single-threaded. In EKA2, the kernel is multithreaded
and all threads are pre-emptible. Interrupt latencies and process switching
are time-bounded (whereas they are potentially unbounded in EKA1).

Memory Model

In EKA2, all MMU-related code is moved into a separate module (the
‘memory model’), which is linked against the kernel at build time. (EKA2
also uses a different memory-map base address.) The kernel itself is thus
MMU-agnostic. The following memory models are supported:

• the moving model (ARMv4 and ARMv5 architecture) is functionally
equivalent to EKA1; it uses a single memory-page directory within
which entries are moved when address spaces are switched

• the multiple model (ARMv6) uses per-process memory-page directo-
ries

• the single model has no address-space paging but uses a single address
space (it is used with CPUs without an MMU or to simplify the early
stages of porting)

• the emulator model for memory management on a PC.

Device-Driver Model

In EKA2, the device-driver model is made more flexible to allow multiple
user-side client device-driver requests to be handled by a single kernel
thread, which in effect serializes access and therefore simplifies device-
driver programming.

Device drivers are DLLs that allow code running in Symbian OS to
communicate with hardware in the variant or kernel extensions. Device-
driver DLLs are loaded into the kernel process by explicit load commands
from the user side. (In contrast, kernel extensions are automatically loaded
during the kernel boot process.)

User-side code accesses a device driver through a specific API provided
by the kernel, which provides functions to open a channel to a device
driver and to make requests. These functions are protected and the
device-driver author provides a derived class to implement functions that
are specific to the device driver.

292 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

Device-driver DLLs come in two types – logical (LDD) and physical
(PDD) device drivers. Logical device drivers provide an abstracted rep-
resentation of hardware and typically support functionality common to
a class of hardware devices. Physical device drivers support specific
devices. Thus, for example, there is a single serial communications LDD
(ECOMM) that supports all UARTs, providing buffering and flow-control
functions. On a particular hardware platform, different physical UARTS
(for example, RS232 and infrared) are supported by device-specific PDDs.

Porting

Modularity is improved in EKA2 and more flexible porting strategies are
supported. Changes to the ROM building tools also enable greater ROM
build-time (rather than compile-time) customization.

Emulator

The EKA2 Emulator is written as a true port of Symbian OS to a (virtual)
hardware platform and, in that respect, is like any other variant port.
This is unlike the EKA1 emulator implementation, which mapped native
Symbian OS system services to their best equivalents on the Microsoft
Windows host (i.e. trying to make the Symbian OS kernel API work
on Microsoft Windows, so that the underlying services, including the
scheduler, are all Microsoft Windows services).

As a result, the EKA2 emulator is a much more faithful representation
of Symbian OS although, since Microsoft Windows forces the emulator
executable to be a single process, the emulator must use Microsoft
Windows threads to emulate Symbian OS processes. A deliberate goal of
these changes is to make it easier to implement an emulator on platforms
other than Microsoft Windows.

Power Management

EKA2 introduces a new power management framework, which is intended
to improve flexibility by supporting a wider range of hardware and by
separating policy from mechanism. The new framework is based on the
concept of power domains. (A domain is a set of processes that share the
same power management characteristics.)

A user-side domain server provides a single point of interaction with
the kernel. Policy (the definition of power states) is implemented in a
customizable DLL.

On the kernel side, a power manager is embedded in the core kernel,
which implements the power-management executive calls. An ASSP-
specific power controller is implemented in a kernel extension and
manages the different power states and sleep modes supported by the
ASSP.

KERNEL ARCHITECTURE BLOCK 293

SDIO Support

The MMC/SD bus controller is extended in EKA2 to support SDIO cards
(SD cards that provide an interface to a hardware device as well as
memory). For example, an SDIO card could provide access to a camera
and to some memory.

Unicode Support

Unicode strings are not directly supported within the EKA2 kernel, and
therefore all kernel objects (processes, threads, and so on) have ASCII
names, implying that user-side code should use only the ASCII subset of
Unicode when creating such objects.

User Library

In EKA2, the User Library is available only on the user side and a kernel-
specific utility library is used on the kernel side. In EKA1, both user-side
and kernel-side code were linked against the User Library DLL.

Summary of Major Kernel Differences

• EKA2 offers real-time support.

• EKA2 supports alternative memory models.

• Device-driver implementation in EKA2 is simplified by supporting
an alternative, serialization approach to handling multiple user-side
requests in a single kernel thread (in the case where multiple device
drivers share a kernel thread, which is optional).

• EKA2 includes improved modularity and greater flexibility for port-
ing, a new power-management model, emulator improvements, and
support for SDIO cards.

• EKA2 does not support Unicode strings inside the kernel and the User
Library is available only on the user side. (The kernel implements its
own User Library subset.)

Overall, there are some small system-wide impacts from these changes:

• EKA2 threads use more RAM than EKA1 threads (4 KB to support a
per-thread kernel-mode stack)

• In EKA2, memory chunks are limited to 16 per process (for the Moving
Memory model, in order to support deterministic operation although
context-switching times remain nondeterministic). For the Multiple

294 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

Memory model, there is no chunk limit and, in addition, it provides
fast, deterministic context switching.

Hardware Interface, Base Porting and Reference Hardware

Kernel extensions provide the interface to the platform hardware (the
device-driver model provides the interface to specific devices). The
modular, extension-based architecture is designed to allow for flexible
customization when moving the operating system to new hardware.
In particular, it is designed to enable generic platform dependencies
encapsulated by the Application-Specific Integrated Circuit (ASIC) or
ASSP, for example, processor type, MMU architecture and standard
peripherals such as DSPs and LCD drivers, to be isolated from the
device-specific hardware such as the flash-memory interface.

Platform dependencies are typically encapsulated as ASSP dependen-
cies and device-specific dependencies as ‘Variant’ dependencies.

• An ASSP extension module implements hardware-dependent support
for a given ASSP.

• A device-specific ‘variant’ extension module implements other device-
specific hardware support, for example, for peripherals that are not
standard to the ASSP.

• Other standard extensions include the power framework and the
peripheral bus and USB controllers.

To provide a reference point for porting work, each release of Symbian
OS is built and warranted against the hardware reference platform. The
hardware reference platform for Symbian OS v8 releases was the Intel
Lubbock development board. For Symbian OS v9, the hardware reference
platform is based on the Texas Instruments OMAP development boards.

For Symbian OS v9.0 and v9.1, the hardware reference platform is the
H2 development board with OMAP 1623 (ARMV5-based core):

• other versions of the H2 boards are not officially supported

• includes a DSP, SD/MMC/SDIO card, USB, camera, display
(240×320, rotatable, 8 or 16 bits per pixel), NAND flash

• operating system installation from MMC or serial loads either into
RAM or into NOR Flash on the board

• JTAG (IEEE 1149.1) is also supported.

From Symbian OS v9.2, the hardware reference platform is the H4
development board with OMAP 2420 (ARMv6-based core):

KERNEL ARCHITECTURE COMPONENT COLLECTIONS 295

• adds USB for bootable image source to H2

• introduces some NAND-flash differences compared to the H2 board.

11.8 Kernel Architecture Component Collections

The Kernel Architecture block in the system model contains four separate
collections (see Figure 11.7): Kernel Services, Logical Device Drivers,
ASSP, and Variant.

Kernel Services Collection

The EKA2 component consists of the nanokernel, which is the real-
time kernel core, and the operating system kernel that builds the basic
threading, process and memory models on top of it.

Table 11.3 Kernel Services Components

Component Name Development Name

Kernel Architecture 2 E32 EKA2

Logical Device Drivers Collection

Logical (see Figure 11.9) device drivers (LDDs) are plug-ins to the kernel
device-driver framework that provide the logical abstraction of hardware

Kernel
Architecture

Kernel
Services

ASSP Variant

Logical Device Drivers

Figure 11.7 Kernel Architecture collections

EKA2
Kernel

Kernel
Services

Figure 11.8 Kernel Services components

296 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

Logical Device Drivers

Ether.
Driver

USB
Driver

Other
LDDs

Media
Drivers

Speech
Driver

Video
Driver

MIDI
Driver

Audio
Driver

SD
Card

Driver

Periph.
Bus

Cntrllrs.

Figure 11.9

Table 11.4 Logical Device Drivers

Component Name Development Name

Ethernet Driver ETHERDRV

USB Driver USBC

Audio Driver SOUNDDEV

MIDI Driver DEVMIDI

Speech Driver DEVASR

Video Driver DEVVIDEO

Other LDDs

Media Drivers MEDUSII, MEDUSII CRASHLOG,
MEDUSIIS

SD Card Driver SDCARD4C

Peripheral Bus Controllers EPBUS

devices, and accept the physical device driver (PDD) plug-ins, which
communicate with real hardware.

Symbian OS supplies specific Ethernet and USB drivers, as well as
hardware accelerator plug-ins used by the Media Device Framework,
which form part of the hardware abstraction for multimedia devices.

• The Ethernet Driver is a logical device-driver implementation for
Ethernet cards, including the emulator.

• The USB Driver is a logical device driver for USB. The standard
USB software architecture on Symbian OS supports dynamically
configurable USB 2.0 device functionality.

• The Audio, MIDI, Speech and Video accelerator API plug-ins to the
Multimedia Device Framework (MDF), the lowest-level framework
supporting multimedia services, are used by MDF controllers. They
all include hardware- or kernel-dependent components.

KERNEL ARCHITECTURE COMPONENT COLLECTIONS 297

◦ DevVideo is the hardware-abstraction layer for video decoding
and encoding acceleration enabling playing and recording of
video; it includes a client API that enables policy management
(e.g. request contention and file-type matching).

◦ DevMIDI is the API that supports hardware-accelerated MIDI
engines.

◦ DevSound is the hardware-abstraction layer for digital audio
acceleration enabling Playing, Recording, Conversion and Tone
generation of sounds; it includes a client API that enables policy
management (e.g. request contention and file-type matching).

◦ DevASR is the hardware-acceleration API for Automatic Speech
Recognition, allowing the computationally intensive speech-
recognition algorithms to be performed in hardware, where
present.

• The peripheral bus controllers for supported variants are implemented
as kernel-side DLLs that interface media and I/O device drivers to
PC-card or MMC-card socket hardware.

ASSP Collection

Hardware dependencies divide between ASSP dependencies, based on
properties of the CPU core and the peripherals packaged with it in the
same silicon chip, and additional ‘off-chip’ hardware peripherals.

Table 11.5 ASSP Components

Component Name Development Name

ASSP OMAP 1623

Isolating the ASSP-dependent code allows it to be reused on multiple
systems that use the same ASSP. OMAP 1623 is the ASSP supported in
the Symbian OS v9 hardware reference platform, as used in the Texas
Instruments H2 development board. (Other H2 ASSPs are not supported.)
The ASSP module contains source code tailored to a range of different
microprocessors (e.g. ARM720/920/SA1100/Xscale). See Figures 11.9 and
11.10.

ASSP

OMAP
2420

Figure 11.10 ASSP components

298 THE KERNEL SERVICES AND HARDWARE INTERFACE LAYER

Variant

Boot-
strap

Emu-
lator

Lubbck
Variant PDDs

OMAP
H2

Variant

OMAP
H4HRP
Variant

Flash
Transl-
ation
Layer

Board
Support
Pckgs

Figure 11.11 Variant components

Table 11.6 Variant Components

Component Name Development Name

Bootstrap BOOTSTRAP

Emulator WINS VARIANT EKA2

Lubbock Variant LUBBOCK EKA2

OMAP H2 OMAP H2

OMAP H4 OMAPH4HRP

PDDs

Board Support Packages

Flash Translation Layer UNISTORE2 DRIVERS

Variant Collection
The Variant collection contains components which are associated with
off-chip hardware, that is, which are independent of the ASSP.

• The Bootstrap component prepares hardware including memory and
peripherals, maps virtual address space if an MMU is present, and starts
the kernel. It includes processor-, MMU- and other device-dependent
code, as well as a generic layer.

• The emulator component is treated as a hardware target variant. The
Emulator runs on Microsoft Windows platforms and maps Symbian
OS services and logical devices to Microsoft Windows APIs and local
hardware. Single-process implementation uses Microsoft Windows
threads to emulate Symbian OS processes. It is valuable for high-
level programming, but the implementation creates practical issues for
low-level and device-dependent programming compared to hardware
targets.

• The Lubbock Variant component is Variant code for the Symbian OS
v8 hardware reference platform.

KERNEL ARCHITECTURE COMPONENT COLLECTIONS 299

• The OMAP H2 component is Variant code for the Symbian OS v9.1
hardware reference platform. (From Symbian OS v9.2 the reference
hardware platform moves up to the OMAP H4 board.)

• The PDDs are physical device drivers, low-level plug-ins used by
LDDs providing the device-dependent level of the two-tier device-
driver model.

• The kernel requires additional loading and media translation sup-
port when running on NAND-flash devices. A special boot loader
is required to move the kernel into RAM so that it can execute
(since NAND flash is not byte-addressable), together with a trans-
lation layer that manages the flash device and presents a standard
byte-readable and -writable interface to the file system. The Flash
Translation Layer component is the original file system plug-in imple-
mentation of flash-driver support. Media drivers provide a newer
implementation (implemented as conventional Symbian OS device
drivers), supporting more NAND formats: small, large and OneNAND.

12
The Java ME Subsystem

12.1 Introduction

Symbian OS offers licensees an optional Java implementation. Since
Symbian OS v7.0, this has been based on the Java 2 Platform, Micro
Edition (Java ME) MIDP and CLDC specifications, which have become
the standard for Java on mobile phones and other communicator-style
devices.

Java ME is subdivided into configurations, profiles and optional pack-
ages. A Java ME configuration provides a basic1 Java platform for a large
class of constrained devices by defining a Java Runtime Execution (JRE)
environment consisting of a Java language subset, a Java Virtual Machine
(JVM) and a base set of necessary class libraries. It is commonly based on
a subset of the J2SE APIs.

Currently, there are two Java ME configurations:

• Connected Limited Device Configuration (CLDC)

• Connected Device Configuration (CDC).

A Java ME profile sits on top of a configuration to complete the JRE
by adding more high-level APIs, thereby preparing a device for a specific
device category. Currently, there are two common Java ME profiles:

• Mobile Information Device Profile 1.0 (MIDP1)

• Mobile Information Device Profile 2.0 (MIDP2).

1 See the CLDC specification at http://jcp.org/aboutJava/communityprocess/final/
jsr139.

302 THE JAVA ME SUBSYSTEM

Optional packages add functionality to the Java ME platform by offering
standard APIs for various technologies such as advanced multimedia, 3D
graphics, file system access, web services and much more.

A widely adopted standard is the combination of MIDP and CLDC
to provide a complete Java platform for mobile phones and similar
devices. MIDP applications are known as MIDlets. With MIDP 2.0
the specification becomes rich enough to support a wide variety of
sophisticated applications.

12.2 Requirements of the Java ME Subsystem

Java is an important application environment for mobile phones, support-
ing a multiplatform third-party market for downloadable and installable
programs (including games, utilities and media players), a standard envi-
ronment for enterprise developers seeking to extend information systems
to mobile phone users within organizations and a standard platform for
mobile phone services, as well as a branding and personalization mech-
anism (through custom applications) for network operators and others in
the phone retail chain.

Platform independence is an important part of Java’s philosophy that
applies as much to the MIDP context as to desktop Java implementations.
The Symbian OS implementation of Java ME provides a standard envi-
ronment for installing and running MIDlets, with access to the underlying
operating system services through the supported MIDP 2.0 APIs, which
include a number of optional APIs – for example, Mobile Media, 3D
Graphics and File GCF – as well as the Java Technology for the Wireless
Industry (JTWI) standard, which aims to standardize MIDP support for
mobile phones, and the Unified Emulator Interface (UEI), a development
tools standardization initiative.

12.3 Design Goals for the Java ME Subsystem

Symbian OS provides a rich and powerful host for the Java ME imple-
mentation, but also poses some great challenges. These are a result of the
architectural differences between Symbian OS and the Java platform and
the differences between Symbian OS components and the MIDP APIs
which are built on top of the Symbian APIs.

• There are some specific mismatches between Symbian OS and Java
models; in particular their threading models are incompatible.

• Symbian OS has its own native application model (for C++ applica-
tions), with which the MIDP lifecycle must be integrated if MIDlets
are to have a seamless, native application lifecycle.

EVOLUTION OF JAVA ON SYMBIAN OS 303

• Symbian OS has a rich set of native controls, localization abstractions,
custom dialogs, input mechanisms, and so on, all of which are
expected to be customized for look and feel by the providers of the
variant user interface with which the operating system is integrated
on any particular Symbian OS device. Therefore, any look-and-feel
dependent aspects of the MIDP implementation must be customized
for the different variant user interfaces.

• MIDlets should, as far as possible, look and feel like native appli-
cations. For Symbian OS, this poses a particular challenge since
application look and feel ultimately depends on the variant user
interface which is running on a given Symbian OS device.

• Symbian OS component APIs have a different design from MIDP
APIs, which requires an elaborate internal architecture to bind the
functionality between those two orthogonal class hierarchies.

• The Java ME subsystem as a whole can be swapped out and replaced
by another. Symbian’s licensees are also at liberty to pick and choose
which of the JSRs they use and which they do not.

As well as overcoming these complications, the Java ME design must
meet some basic design goals:

• Support near-native behavior of MIDlets to enable seamless switching
between MIDlets and native applications

• Provide the fullest possible implementation (MIDP specifies both
required and optional features) to ensure that the Java ME implemen-
tation on Symbian OS is highly competitive

• Enable a ‘common platform’ by providing a solid core system on all
Symbian smartphones

• Provide customizability as an essential part of Symbian OS. Licensees
may choose to vary the degree to which they support Java on a
particular device by extending or limiting the default Symbian Java
ME implementation, including removing or replacing it entirely.

12.4 Evolution of Java on Symbian OS

Symbian’s Java support has evolved with Java itself from the earliest days
of JDK 1.1.4, which had an AWT-based user interface implementation,
to the PersonalJava and JavaPhone implementations of Symbian OS v6.
The first MIDP 1.0 implementation on Symbian OS v7.0 (subsequently
backported to Symbian OS v6.1) was followed by the arrival of MIDP 2.0
in Symbian OS v7.0s.

304 THE JAVA ME SUBSYSTEM

Through Symbian OS v8 and v9, Java delivery evolved to a rich Java
ME platform supporting a significant number of optional MIDP APIs
and enhanced by the latest version of Sun’s CLDC 1.1 VM, which uses
HotSpot technology.

Although recently the emphasis has shifted towards Symbian’s
licensees as the ultimate ‘owners’ of their own Java ME platforms, with
Symbian focusing on the core of its delivery, Java has strengthened its
position as an important element in any enterprise strategy, where rapid
development and rollout of bespoke local applications is an important
driver in the choice of devices. It is also an important enabler for rapid
development and easy deployment of small but high-value applica-
tions, including games and custom applications and services from the
mobile phone manufacturer and network operator, all of which help to
consolidate the position of Symbian OS in the market.

Java provides a powerful model for acquiring mass business market
share and building a technical platform. One of the important, original
underlying goals for Symbian OS was to enable Java as a true platform
for developing Symbian OS applications, not simply as a lightweight
platform for running relatively trivial generic applications.

Symbian (or Psion as it then was) was quick to recognize the signifi-
cance of Java. The success of its own OPL language2 and the emergence
of a strong third-party developer community was an important element
in the success of Psion’s Series 3 products. The follow-on 32-bit system
was conceived from the beginning as an open development platform
for third-party application developers. At the same time, the complex-
ity of its native C++ development environment and its unsuitability for
some kinds of application development was recognized early, as was
the need for a rapid development alternative. OPL support was present
from the beginning, following which a Visual Basic porting project was
started. However, attention moved to Java as a more powerful solution
for third-party developers.

Sun’s first release of Java appeared in early 1995 and the more stable
JDK 1.0.2 release appeared in 1996. In early 1997, a few months before
the first release of what was still known as EPOC32, Psion started its Java
port based on JDK 1.1.2. ‘Hello World’ first ran in July 1997 and the
first graphical application ran in October of that year. By the summer of
1998, graphical applications were running on an upgraded version of the
port, based on JDK 1.1.4, and in August 1998 certification was granted
by Sun. The first Java run-time system for EPOC32 was released in May
1999.3 Demonstrations of Java applications running on early Symbian

2 OPL lives on as a rapid development language for Symbian OS, having been released
under an open source license by Symbian in 2003. It can be found on the web at
www.allaboutopl.com/wiki/OPLWikiHome. See also [Spence 2005].

3 The full history of these early implementations can be found in earlier Symbian
programming books, including [Tasker 2000] and [Allin et al. 2001].

EVOLUTION OF JAVA ON SYMBIAN OS 305

OS smartphones caused quite a stir at the Symbian developer conference
in June 1999.4

By that time, Psion had become Symbian and EPOC was evolving
towards the first release of Symbian OS. However, porting Java had
not been particularly easy. For one thing, Sun had at first insisted on a
binary-only license for the VM. Since the VM assumed an ANSI C/POSIX
platform, a basic C Standard Library implementation was needed to
interface it to Symbian’s native C++ APIs. Fundamental differences in the
thread model between Java and Symbian OS posed further problems. And
at that time, since the port was still based on ‘full-sized’ Java, graphics
were AWT-based. On a small platform, it was simply not possible to
extract acceptable performance from AWT.

Even before its first Java release for EPOC had shipped, Symbian had
started work, early in 1999, on a port of PersonalJava, a newly defined,
scaled-down Java specification targeting smaller devices. In July 2000,
PersonalJava together with an implementation of the JavaPhone API was
released as part of Symbian OS v6, appearing for the first time in a phone
product later that year in the Nokia 9210 Communicator. JavaPhone
opened key Symbian OS APIs to Java applications, giving basic access
to the underlying address book, communications services and telephony
APIs.

PersonalJava was a first attempt to define a Java environment suitable
for constrained devices such as PDAs and mobile phones, and a forerun-
ner of what eventually became Java ME. By the time of the first Symbian
OS v7 release, the Java ME specification had been defined in terms of
MIDP/CLDC. MIDP 1.0 was included for the first time in Symbian OS
v7 and subsequently back-ported to earlier releases, appearing in the
Nokia 7650, based on Symbian OS v6.1. However, the PersonalJava and
JavaPhone combination was still offered as an option to licensees.

Symbian OS has tracked the evolution of the MIDP specification
(indeed, as a member of the MIDP Expert Group, it has played an
active role in shaping it) through subsequent releases of the operating
system, supporting MIDP 2.0 for the first time in Symbian OS v7.0s,
and extending its support in Symbian OS v8 and v9 with the addition
of important optional packages, as well as improving the compatibility,
interoperability and completeness of Java ME technology by providing
support for the JTWI standard and increasing developer productivity by
supporting on-device debugging and standard integration with Java IDEs
through the Unified Emulator Interface (UEI).

MIDP 2.0 is a significant enhancement of the original MIDP specifica-
tion. In particular, it supports ‘push’ applications, in other words, MIDP
applications that are launched in response to ‘external’ events (i.e. events

4 The Java team demonstrated a Rubik Cube application, running in color on a Psion
netBook, to an enthusiastic audience.

306 THE JAVA ME SUBSYSTEM

originating outside the application’s own process), for example, alarms,
incoming messages or other network events.

At the same time, the CLDC specification that defines the execution
environment has evolved (again with Symbian participating as a CLDC
Expert Group member). In practical terms, the most significant change
is the move in Symbian OS v7.0s from the KVM to CLDC-HI 1.0, with
HotSpot VM technology, and in Symbian OS v8 to CLDC-HI 1.1. The
current CLDC1.1 configuration is likely to be the final configuration from
Symbian, although licensees may continue to evolve their own extensions
and track future evolution of the MIDP profile.

12.5 Architecture

In the Symbian OS system model (see Figure 12.1), Java ME is shown
as a self-contained block spanning the UI Framework and Application
Services layers, which emphasizes the external view of Java ME as an
application platform.

The system model idealizes the representation of Java ME. As con-
ventionally represented (see Figure 12.2), MIDP/CLDC forms a software
stack that provides the execution environment for MIDlets; the CLDC
configuration consists of the VM itself and the basic Java languages
libraries; the MIDP Profile defines the frameworks for application support
expected from the device class and the various packages (both required
and optional) providing the application APIs.

Java ME

Base
Services

Application
Services

Kernel
Services &
Hardware
Interface

OS
Services

UI
Framework

Figure 12.1 Java ME in the system model

ARCHITECTURE 307

Bluetooth

Required packages

MIDP 2.0 and MIDP 1.0 Compatability

CLDC Configuration

VM

SMS Mobile
Multifunction

PiM

Extensions

Package

Profile

Configuration

Figure 12.2 High-level Java ME architecture

From an internal architectural perspective, however, the Java ME
implementation hooks deeply into the supporting layers of the operating
system. Complex system interactions are required between the two, and
indeed requirements originating from the successive Java implementations
have had significant impact on the evolution of some fundamental features
of the operating system, including the native Symbian OS application
model, inter-process communication (IPC), and the thread and process
models. In particular, the different threading models of Java and Symbian
OS posed particularly thorny issues for the early Java implementations,
which in turn influenced later design decisions.

At a high level, the architecture (see Figure 12.3) can be broken down
as follows:

• the SystemAMS server, which is responsible for the lifecycle of MIDlets
and VM processes, and static and dynamic resource management for
Java applications

• the SystemAMS plug-ins for licensee customizability (i.e. customized
security policy)

• the SystemAMS extension plug-ins that extend internal AMS frame-
works

• the VM executable, which includes the VM, MIDP APIs and frame-
works

• the VM plug-ins for licensee customizability (i.e. graphics customiza-
tion)

308 THE JAVA ME SUBSYSTEM

System AMS

Client-side

VM LCDUI
LCDGR

Runtime
plug-in

Security
policy

MIDP 2.0

Client-side

CLDC Runtime CLDC

Recognizers,
installers

Figure 12.3 Internal architectural view of Java ME on Symbian OS

Java ME Applications Management Software

The System Application Management Software (SystemAMS)) operates
as a managing agent between Symbian OS and the Java ME run-time
(see Figure 12.4) for all stages of the MIDlet lifecycle from installation,
launching and stopping MIDlets, controlling execution and launching
VM processes as required. SystemAMS also manages static and dynamic
push connections and alarms registered by MIDlets, which is the basis
for the MIDP 2.0 ‘push’ support.

SystemAMS is implemented as a server which is run from device boot
time. From an application perspective, the MIDlet can initiate some state
changes itself and notify the MIDP run time, which eventually notifies
SystemAMS of those state changes by invoking the appropriate methods.

From a system perspective, SystemAMS provides client-side interfaces
used by the VM and the Java installer to support MIDlet recognition,
installation and launch; manages resources such as registered push con-
nections and Symbian OS alarm notifications; and is responsible for
managing the MIDP policy-security model.

The CLDC Configuration Layer

An important feature of Symbian’s CLDC implementation is its support for
various VMs. For example, in earlier versions of Symbian OS, the KVM
was used and later replaced by the CLDC 1.0 VM which was eventually
replaced by the CLDC 1.1 VM. As VMs may change, an abstraction
layer is required between the VM and the various CLDC and MIDP

ARCHITECTURE 309

CLDC Core
Classes VM

System AMS

Symbian OS

Profile APIs BT WMA etc.

C
on

ne
ct

io
ns

A
la

rm
s

In
st

al
le

r

R
ec

og
ni

ze
rs

System AMS

MIDlet
lifecycle

Launch and
reclaim

Figure 12.4 SystemAMS Architecture

libraries to avoid dependencies between them and any particular VM.
The abstraction layer also interfaces Java event-handling with the native
event-handling model.

CLDC-HI is designed as a high-performance JVM and run-time envi-
ronment for resource-constrained small devices, in particular mobile
phones and communicator-style devices, and is optimized for perfor-
mance, footprint, and efficient resource management, with a specialized
Just In Time (JIT) compiler for the ARM processor architecture. Sun claims
an order of magnitude improvement over the performance of the older
KVM, for example.

The MIDP Profile Layer

LCDUI

MIDP is specifically targeted at small, mobile devices. It includes the
LCDUI specification, which is optimized for this device class. LCDUI
defines both the UI event model and the standard GUI widgets avail-
able to MIDlets (lists, forms, textboxes, and so on). LCDUI therefore
requires integration both with the native UI Framework and Application
Architecture.

In order to make MIDlets (as far as possible) indistinguishable from
native applications, LCDUI uses the native widget set as peers for the
Java widgets. A MIDlet runs as a single native application owning its

310 THE JAVA ME SUBSYSTEM

own window group, listed in and launchable from the task list (if the
user interface variant has a task list) and integrated with the save notifier
framework, power events, and foreground/background notification. Input
methods are also inherited from the native widget set so that all native
functionality is available to MIDlets, for example, mechanisms such
as T9, handwriting recognition and non-keyboard character set input
(e.g. Chinese), which are all based on the Front End Processor (FEP)
framework. This also harnesses the native locale support, for example for
bi-directional text and capitalization.

The LCDUI implementation consists of a framework that implements
the core user interface functionality and provides the high-level interface
between Java ME LCDUI APIs and the concrete user interface platform
implementation areas that are implemented in separate graphics plug-
ins (which licensees customize to provide integration with the graphics
system of their specific user interface platform).

GCF

The MIDP Generic Connection Framework (GCF) provides the generic
mechanism for creating a connection from a URI and enables a wide
variety of connections including networking connections such as HTTP
and HTTPS, sockets and server sockets, secure sockets and datagrams,
as well as support for ‘push’ connections and on-device mechanisms for
local file and directory access (which is known as ‘File GCF’).

The MIDP GCF design maps the Java class interfaces to the underlying
Symbian OS communications models and provides core communications
functionality for MIDlets including:

• opening, closing, and disposing of connections

• opening Java streams for appropriate types

• a server connection pattern for types capable of receiving incoming
connections.

Symbian’s Java ME implementation enables all the relevant MIDP 2.0
GCF protocols and its framework is intended to be used by extensions that
provide support for future protocols. In particular, it supports push con-
nections, using the SystemAMS dynamic and static resource management
for managing the registered connections.

Mobile Multimedia

Mobile Multimedia implements access to the multimedia support pro-
vided in the underlying Symbian OS, enabling MIDlets to play and
record audio and video data from a wide range of inputs using a

COMPONENT COLLECTIONS 311

range of possible mechanisms, including streaming. The design follows a
framework-plug-in architecture:

• the framework provides the high-level interface to MIDP Multimedia
functionality

• the reference DLL contains all dependencies on the underlying native
multimedia services and can be customized.

PIM and RMS

PIM support is provided for accessing native Symbian OS contacts (i.e.
phone book or address book) and agenda (i.e. calendar) entries, including
Event and ToDo classes.

Record Management System (RMS) support, which enables MIDlets to
store persistent data, is implemented over the native Symbian OS DBMS
APIs, using the DBMS in client–server mode and thus enabling database-
like functionality including transaction integrity and sharing between
multiple clients for Java applications.

Security

SystemAMS and the MIDP run-time are responsible for supporting the
MIDP security model, through static (at installation time) and dynamic
(at run time) checking of permissions, which provides for trusted and
untrusted MIDlets, and for protection based on security domains.
Licensees implement specific security policies by customizing the MIDP
security plug-ins.

12.6 Component Collections

The system model divides the Java ME block into a number of separate
collections (see Figure 12.5), broadly layered to reflect the conventional
layering of the Java ME software stack.

The foundation is provided by the core Java class implementations
and the CLDC-HI VM, together with the low-level plug-ins that integrate
the MIDP frameworks with Symbian OS. The MIDP profile and packages
collections are layered over this foundation.

MIDP 2.0 Profile Collection
This collection (see Figure 12.6) implements the Java ME MIDP 2.0 Profile.

• The MIDP MIDlet component implements the MIDlet lifecycle, which
defines how MIDlets are started, paused and destroyed and how they
interact with the host environment.

312 THE JAVA ME SUBSYSTEM

Java J2ME

MIDP 2.0 Profile

MIDP 2.0 Packages
Virtual

Machine

Low Level
Bluetooth &
SMS Push

CLDC 1.1

Figure 12.5 Java ME Block

MIDP 2.0 Profile

MIDP
GSM

Secur-
ity RP

MIDP
Device
Control

Secur-
ity

Policy

MIDP
MIDlet MIDP IOMIDP

RMS
MIDP

LCDUI

Figure 12.6 MIDP 2.0 Profile components

• The LCDUI component is specifically designed with small LCD
screens in mind and provides compact, device-independent con-
trols that can respond to user input ranging from keyboards to phone
keys to touch screens. MIDP graphics APIs are implemented in terms
of generic native controls which acquire platform-specific look and
feel through the UI Application Framework implementation, which is
customized by the UI variant.

• The RMS component provides MIDP persistence APIs. RMS is imple-
mented internally over Symbian OS native DBMS, using the DBMS in
client–server mode.

• The I/O component provides MIDP high-level input–output APIs,
including networking support and HTTP connections.

COMPONENT COLLECTIONS 313

Table 12.1 MIDP 2.0 Profile Components

Component Name Development Name

MIDP MIDlet MIDP2

MIDP LCDUI JAVAX.MICROEDITION.LCDUI

MIDP RMS JAVAX.MICROEDITION.RMS

MIDP IO JAVAX.MICROEDITION.IO

MIDP Device Control MIDP2

Security Policy Reference
Plug-in

MIDP2SECURITY

MIDP GSM Security
Recommended Policy

MIDP2SECURITYRP

• The Device Control component provides an interface for implemen-
tations of MIDP device control APIs, for example controlling device
vibration.

• The Security Policy Reference Plug-in provides a reference imple-
mentation of Java security policy, implemented as a replaceable
plug-in.

• The GSM Security Recommended Policy component adds specific
protection domains to the security model (for example ‘manufacturer’,
‘operator’, ‘third-party’ and ‘untrusted’). Licensees should customize
and provide their own concrete implementation plug-in to be used by
the framework.

MIDP 2.0 Packages Collection

The Java ME MIDP 2.0 packages components (see Figure 12.7) extend
the MIDP 2.0 Profile implementation with additional APIs.

MIDP 2.0 Packages

WMA
1.1

Mobile
Media

API
1.1

Mobile
3D
1.0

JTWI
1.0

MIDP
File
GCF

MIDP
PIM

Btooth.
1.0

Figure 12.7 MIDP 2.0 Packages components

314 THE JAVA ME SUBSYSTEM

Table 12.2 MIDP 2.0 Packages Components

Component Name Development Name

Mobile Media API 1.1 MMAPI11

Mobile 3D 1.0 M3GIO

JTWI 1.0 Java ME9.12

MIDP File GCF GCF

MIDP PIM MIDP2

Bluetooth 1.0 BLUETOOTH

WMA 1.1 WMA

• The Mobile Media API 1.1 component comprises Mobile Media APIs
(JSR-135).

• The Mobile 3D 1.0 component comprises 3D-graphics APIs for scal-
able, small-footprint devices (JSR-184).

• The JTWI component implements the JTWI specification, which
improves the compatibility, interoperability and completeness of Java
ME technology implementations in mobile phones by reducing API
fragmentation and raising the bar of functionality to specify a common
set of APIs and standards such as MIDP 2.0 and including optional
APIs (WMA 1.1 and MMAPI 1.1).

• The MIDP PIM and File GCF components support MIDP personal-
information-management (PIM) and file-connection APIs (JSR-075),
enabling reading and writing of event, contact, and to-do items,
and file system access. File system access is implemented through
the GCF communications framework, which generalizes framework
support for HTTP, IP and socket-based connections.

• The Bluetooth component implements two optional MIDP2.0 Blue-
tooth 1.0 (JSR-082) packages: the core Bluetooth API and the Object
Exchange (OBEX) API.

• The Wireless Messaging API (WMA) provides platform-independent
access to wireless communication resources, enables send and receive
of SMS messaging, including SMS push, on GSM, CDMA and other
networks supporting asynchronous messaging protocols.

Both Bluetooth 1.0 and WMA 1.1 add ‘push’ capability to the support
for MIDlets, allowing a MIDlet to respond either statically (at install time)

COMPONENT COLLECTIONS 315

CLDC
1.1

Java
IO

Java
Lang

Java
Utilities

Figure 12.8 CLDC 1.1 components

or dynamically (programmatically) to an incoming WMA or Bluetooth
connection (i.e. to a ‘message’). Both implementations are integrated into
the GCF communications framework.

CLDC 1.1 Collection

This component implements CLDC 1.1 Java class libraries (JSR-118).
CLDC 1.1 specifies the core subset of the Java language required to
support MIDlets. The language libraries define basic types and objects,
including Byte, Integer, Object and Thread; the I/O libraries define the
data-stream-based input–output APIs, as well as APIs for reading and
writing bytes and basic Java types; the utilities library supplies basic
utility classes, including Date and Time, and collection classes including
Hashtable, Stack and Vector (see Figure 12.8).

Table 12.3 CLDC 1.1 Components

Component Name Development Name

Java Lang JAVA.LANG

Java IO JAVA.IO

Java Utilities JAVA.UTIL

Virtual Machine Collection

The CLDC-HI 1.1 component is the Sun CLDC HotSpot Implementation
VM, which is part of the CLDC 1.1 specification (JSR-139). The HotSpot

Virtual
Machine

CLDC
Hi
1.1

Figure 12.9 Virtual Machine components

316 THE JAVA ME SUBSYSTEM

Table 12.4 Virtual Machine Components

Component Name Development Name

CLDC HI 1.1 CLDCHI

VM applies a variety of advanced performance-optimization techniques to
deliver a highly competitive execution environment for Java applications.
See Figure 12.9.

Low-Level Plug-ins Collection

These plug-ins allow customization of the CLDC run-time framework and
bind LCDUI to the underlying graphics system. See Figure 12.10.

Table 12.5 Low-Level Plug-ins

Component Name Development Name

Runtime Plug-in MIDP2RUNTIME

LCDUI Plug-in LCDUIB

• The Runtime plug-in component is the MIDP 2.0 run-time plug-in
module. It can be customized by the licensee.

• The LCDUI plug-in component consists of low-level graphics APIs
with direct screen access, implemented as a plug-in that is replaced
with an alternative implementation.

Bluetooth and SMS Push Collection

These plug-ins bind the Bluetooth 1.0 and WMA 1.1 packages to the
underlying system. See Figure 12.11.

Low Level
Plugins

LCDUI
Plugin

Run-
time

Plugin

Figure 12.10 Low-Level Plug-ins

COMPONENT COLLECTIONS 317

Bluetooth &
SMS Push

WMA
1.1

Btooth.
1.0

Figure 12.11 Bluetooth and SMS Push components

Table 12.6 Bluetooth and SMS Push Components

Component Name Development Name

Bluetooth 1.0 Push
Plug-in

BLUETOOTH

WMA 1.1. Push Plug-in WMA

13
Notes on the Evolution of Symbian OS

13.1 The State of the Art

Symbian OS reached market for the first time towards the end of 2000,
following on from the Psion EPOC32 releases. The last release of EPOC32
was Release 5; the first release of Symbian OS was Symbian OS v6.0.

The most recent release is Symbian OS v9, but Symbian OS v8
remains very much an active platform on which new products are
still being developed and brought to market. Phones based on earlier
releases still ship in their millions, even though Symbian’s licensees have
moved up to the latest releases for new products. Indeed until relatively
recently, phones based on Symbian OS v6.1 continued to ship in quantity,
particularly in Japan. Since then, Japanese licensees have led the way
in adopting the new real-time kernel architecture, and have brought to
market new 3G phones based on Symbian OS v8.1b and are likely to
follow with phones based on Symbian OS v9.

In other markets, licensees are shipping new phones based both on
Symbian OS v9 (platform security, new real-time kernel) and v8 (original
kernel architecture). Symbian OS v7 (Sony Ericsson P910, Motorola
A1000 and FOMA M1000) remains a volume-selling release and phones
based on Symbian OS v6.1 (N-Gage QD) are still shipping.

At the time of writing, in late 2006, phones are shipping on all releases
from Symbian OS v6.1 to Symbian OS v9.1, although new product
pipelines from licensees are based on Symbian OS v8 and v9.

13.2 Summary of Symbian OS v6 Releases
Symbian OS v6 was the immediate result of a major and long-running
project, working with Nokia as lead licensee, to re-engineer and re-
architect Symbian OS from its EPOC32 baseline (ER5U). EPOC32 did
support some phone and messaging functions, for example ‘two-box’

320 NOTES ON THE EVOLUTION OF SYMBIAN OS

telephony solutions in which an EPOC-based PDA could use a GSM
mobile phone as a dialup modem, as well as driving it directly to send
SMS messages and synchronize with the SIM phone book. However,
EPOC remained substantially PDA-centric. Even more importantly, its
Eikon GUI was not suitable for phones.

Among the most significant changes in Symbian OS v6, therefore, was
the refactoring of Uikon to support multiple user interface implemen-
tations, so called ‘variant UIs’, and the more general re-architecting of
phone-centric functionality to suit a true phone operating system. The
Symbian OS v6 system architecture was based on a component-based
release model and representation.

Symbian OS v6.0
Symbian OS v6.0 was the common platform for what were branded as the
Crystal and Quartz reference designs, in keeping with Symbian’s DFRD
strategy.

One Crystal-based product, the Nokia 9210 Communicator, was
brought to market. No Quartz devices reached market (although devices
from Ericsson and Sanyo were demonstrated, including at 3GSM in
Cannes).

The system architecture of Symbian OS v6.0 was based on a compo-
nents representation inherited from the original Psion EPOC32 binary-
component release model.

Symbian OS v6.1
Symbian OS v6.1 (announced in March 2001 at CeBIT) was the original
platform for the Nokia S60 UI (which began life as the Pearl DFRD and
launched as Series 60) The first Symbian OS v6.1/S60 phone (arguably,
the first Symbian OS phone as opposed to PDA–phone hybrid) was the
Nokia 7650. Other Symbian OS v6.1/S60 phones were brought to market
by Panasonic, Sendo and Siemens.

Symbian OS v6.1 was very much an addition to the Symbian OS v6.0
baseline. No functionality was deprecated (although there were one or
two significant reworkings); some functionality was added (around 150
new classes and other types). In almost all cases, changes were both
binary and source compatible. Significant changes included:

• UI Framework and UI Toolkit changes and related changes to FEP and
Text Formatting

• Application Services changes including new Contacts Model file
format, new Chinese calendar and locale support, including Character
Encoding Conversion updates, and improved VCard and VCalendar
support

SUMMARY OF SYMBIAN OS V7 RELEASES 321

• OS Services changes including major Bluetooth revision (full Blue-
tooth 1.1 compliance), Infrared IrObex over Bluetooth, screen driver
split out from BitGDI, 256-color-mode palette support added to
Font & Bitmap Server, Free Type enhancements, Multimedia Server
streaming added, new WAP Push and messaging functionality, tele-
phony support for GSM/GPRS and SIM Toolkit, and Comms Database
improvements.

13.3 Summary of Symbian OS v7 Releases

Symbian OS v7 was significant as the platform for the first UIQ phones.
It also provided Symbian with its first real taste of the problems of
fragmentation, with the divergence of Symbian OS v7.0 from Symbian
OS v6.1 threatening the common platform model for UIQ and S60,
subsequently corrected by the Symbian OS v7.0s release.

Symbian OS v7.0 was the platform for the Sony Ericsson P800 family;
Symbian OS v7.0s was the platform for Nokia phones beginning with the
6600 and remained the mainstream platform for Nokia phones until the
6630 3G phone was released.

Symbian OS v7.0
Symbian OS v7.0, announced in February 2002 at 3GSM, was the
platform for the UIQ UI (an evolution of the Quartz DFRD). The first
Symbian OS v7 UIQ phone was the Sony Ericsson P800 (announced in
Q1 2002 and released in Q4 2002).

Symbian OS v7.0 was, at a functional level, substantially backwards-
compatible with Symbian OS v6.1, however there were numerous
compatibility breaks, as well as significant new functionality added and
significant restructuring of the UI Framework components to improve
the separation between the framework support and the overlaying user
interface. The TechView reference user interface components were also
introduced (although TechView never became a complete reference user
interface implementation).

Symbian OS v 7.0 also significantly reworked the source tree, introduc-
ing a subsystem-based release model and representation. Subsequently,
Symbian OS v7.0 became the baseline for the architecture representa-
tion based on the system model, which has become Symbian’s standard
architectural representation for releases from Symbian OS v7.0 forwards.

Among the most significant changes from Symbian OS v6.1 were:

• Application support

◦ The Time/World application refactored into Alarm Server and
World Server

322 NOTES ON THE EVOLUTION OF SYMBIAN OS

◦ New Help file format; Agenda and Contact format changes (for
vCard and vCal)

◦ System agent updated to support two-box system.

◦ Improvements to text handling and text views (formatting) support
for user interface

◦ Microsoft Word and Excel converter support

• UI and Graphics

◦ Further refactoring of Uikon to support user interface separation
and pluggable Look-And-Feel

◦ New standard controls including animation in menus, menu-
highlighting options, variable-height list items, customizable text
wrapping, line breaks, automatic hyphenation (editable windows),
improved error handling, a generic dialog server, flip support, and
many other minor enhancements

◦ Graphics changes for anti-aliasing, key click and long keypress
support, direct screen access and 2D hardware-acceleration sup-
port, hardware bitmaps, font name aliases, polygon fill, bitmap
scaling, fading

◦ Front End Processor Base optimizations

◦ New TechView test user interface

• Multimedia

◦ Media Server updates to support audio and video streaming and
graphics acceleration

◦ Improved audio codec support

• Comms and Telephony

◦ Telephony re-architecture introduced Multimode ETel (in place
of the Basic, Advanced and GPRS extensions), enabling CDMA
support and performance improvements

◦ New 3rd-party telephony API, non-third party APIs restricted

◦ New SIM Toolkit phone applications support

◦ New reference and test TSY implementations

• Networking

◦ Dual v4/v6 IP stack introduced, networking support for packet
telephony (GPRS) and IPSec, including integration with new Mul-
timode ETel

◦ Socket Server changes relating to IPv6, internet sockets, and secure
sockets

SUMMARY OF SYMBIAN OS V7 RELEASES 323

◦ Improved emulator Ethernet support

• Bluetooth and short link: Simplified HCI implementation to assist
porting

• WAP and browsing

◦ WAP stack withdrawn (reliance on licensee implementations),
WAP messaging implementation refactored

◦ HTTP Client API added

◦ WSP Adaptation Layer and Protocol Handler APIs

◦ Opera-specific web-browser support component added

• Messaging

◦ Support introduced for multimedia messaging (MMS) including
SMIL message content markup. SMS messaging re-architected
including support for Multimode (non-GSM) phone messaging
refactored from ETel

◦ Smaller fixes in internet mail, fax client and scheduled send

• Cryptography: support for x.509 parsing and ASM.1 library added

• Connectivity: support for SyncML connectivity protocol added

• MIDP JAVA ME introduced with fully compliant support for MIDlets
on Symbian OS; PersonalJava enhancements but JNI compatibility
maintained

• System Libraries

◦ ECom (also known as ‘Magic’) Plug-in Framework introduced
implementing new plug-in architecture

◦ StringPool API factored out of Uikon and re-engineered

◦ Support for non ROM-based localization added

◦ Support for Shift-JIS (Japanese) character set added

• Kernel, Base Porting, and Build Tools

◦ Emulator target build system migrated to Metrowerks CodeWarrior
from Microsoft Visual C++

◦ Added XScale processor support

◦ New kits delivery model

◦ New Backup and Shutdown server, USB support, MMC card sup-
port, power management improvements, performance improve-
ments (speed and ROM footprint).

324 NOTES ON THE EVOLUTION OF SYMBIAN OS

Symbian OS v7.0s
Symbian OS v7.0s, announced in April 2003 at Symbian’s developer
event, repaired the fragmentation resulting from incompatibilities between
Symbian OS v7.0 and v6.1 and the scale of the Symbian OS v7.0
changes, which threatened to create permanent divergence between
S60-based product lines from Nokia, and its licensees, and UIQ-based
products (for example, from Sony Ericsson and Motorola). The Symbian
OS v7.0s system architecture was based on a subsystem release model and
representation, retrospectively updated to the architecture representation
based on the system model.

13.4 Summary of Symbian OS v8 Releases

Announced at 3GSM in February 2004 and reaching the market in phones
such as the Nokia 6630, the Symbian OS v8 release was a significant
increment on Symbian OS v7. In particular, it marked the first appearance
of the real-time kernel.

In large part, the feature set is common to both Symbian OS v8.0 and
Symbian OS v8.1, except that Symbian OS v8.1 offers the option of the
new kernel.

The main new functionality in Symbian OS v8 includes the following
(by no means an exhaustive list):

• CDMA telephony support

• Multimedia Framework replacing Media Server

• new connectivity, data synchronization and device management ser-
vices architectures

• new WAP stack architecture and implementation

• OpenGL ES vector graphics support

• new implementation of Certificate and Key Management

• new App Installer architecture (preparing the way for Symbian OS v9
Platform Security)

• new content-access and content-handling frameworks, supporting
policy-based content management, that is, DRM

• new JAVA ME JSRS

• USB-device class support

• MMS support, including parsing of SMIL markup, and support for
OBEX over Bluetooth and Infrared

SUMMARY OF SYMBIAN OS V8 RELEASES 325

• Improved VCard and VCal conversion

• New XML parsing framework

Symbian OS v8.0
Originally Symbian OS v8.0 was envisaged as the release which would
introduce the EKA2 kernel option for the first time. However, in the event,
only one Symbian OS v8.0 release was made, based on the original EKA1
Symbian OS kernel.

Symbian OS v8.0 marked a substantial increment on Symbian OS v7,
with new features spanning most layers of the system:

• Communications and telephony changes including the new commu-
nications framework based on the Comms Root Server and MBufs,
first stage of CDMA telephony support, and Quality of Service (QoS)
for GPRS

• Bluetooth and short-link changes introducing new USB class support
providing control for USB devices and Bluetooth stack changes to
support new Java ME JSRs

• New WAP short-stack WAP Messaging API, providing a limited func-
tionality WAP stack and message API

• OpenGL ES Framework introduced, as well as multi-client access to
screen, keyboard, and pointer or digitizer for GUI applications

• New Multimedia Framework replacing Media Server, new ECam
camera API, Image Conversion Library and codec plug-ins, and low-
level Media Device Framework providing low-level MIDI, video,
speech recognition, and audio hardware-acceleration APIs

• New implementations of Certificate and Key Management and secure
application installation

• Content-access and content-handling frameworks to support DRM
content

• New connectivity, data synchronization and device management
architectures

• Java ME new JSRs including Mobile 3D 1.0 (JSR-184), Bluetooth 1.0
(JSR082), Mobile Media API 1.1 (JSR135) and JTWI 1.0 (JSR185).

• New VCard and VCal conversion support and new character encod-
ings

• New XML parsing framework, including XML Parsing Framework,
WBXML Parser for WAP Binary XML, WBXML XML Parser Plugin

• Messaging support for OBEX over Bluetooth and MMS messaging

326 NOTES ON THE EVOLUTION OF SYMBIAN OS

Symbian OS v8.1a
Symbian OS v8.1a is the Symbian OS v8.1 variant built on the original
EKA1 kernel, but otherwise sharing the same features as Symbian OS
v8.1b:

• ETel CDMA telephony extensions introduced support for CDMA
networks, including CDMA SMS and WAP messaging support, and
CDMA, Multimode, and SIM TSY reference plug-ins

• Graphics support for multiple simultaneous display, multiple display
sizes and multiple display orientation

• SyncML device management

• Java ME upgrade to CLDC 1.1 from 1.0

• New Comms Database compatibility.

Symbian OS v8.1b
Symbian OS v8.1b is the real-time EKA2 kernel release of Symbian OS
v8.1. This is the release, therefore, in which the EKA2 kernel becomes
available for the first time.

In Japan, Symbian OS v8.1b has been the platform for a wave of 3G
DoCoMo FOMA phones (from Fujitsu, Mitsubishi and Sharp), in particular
with rich music and multimedia capabilities.

13.5 Summary of Symbian OS v9 Releases

Symbian OS v9 is the platform for the latest ‘generation 3.x’ UIQ and
Nokia user interfaces, starting with UIQ 3 and S60 3rd Edition. It is also
the release which introduces the new Platform Security architecture and
completes the transition to the new real-time kernel architecture (first
introduced as an option in Symbian OS v8.1; in Symbian OS v9, the
original EKA1 kernel is retired).

Symbian OS v9 is the release with which Symbian has set its sights on
the high-volume, mid-range market and the Symbian OS v9 releases to
date take incremental steps to improve the fit of Symbian OS with that
market, in particular in terms of performance and scalability (improving
critical, basic performance and providing a cleaner architecture for port-
ing to new hardware, support for single-core phone designs to reduce bill
of materials (BOM) cost, improved peripherals support, and other porting
and tools improvements to help time-to-market and reduce development
cost). In keeping with these volume goals, it is also the platform on which
Symbian has made its ‘compatibility promise’, the promise of API stability
for all releases from Symbian OS v9 on.

SUMMARY OF SYMBIAN OS V9 RELEASES 327

Compared with Symbian OS v8, the headline changes are the retiring
of the EKA1 kernel architecture, in favor of the new, real-time kernel,
and the introduction of platform security, providing a trusted application
model.

From a developer perspective, since the new kernel maintains user-
side API compatibility, the kernel changes have little application-level
impact. In contrast, platform-wide security has significant impact for all
developers, introducing a security-capability model to protect system
APIs and data caging for all application data.

The Symbian Signed signing and certification program grants capabil-
ities (required to access protected APIs) to applications. Java ME MIDlets
are also integrated into the security model. A free certification process
is provided to freeware and shareware developers. Experience to date
suggests that, for third-party developers, the more general certification
requirements for robust and safe handling of extreme conditions (such as
out-of-memory) are as much of an issue as the immediate requirements
of the security model.

In other respects, Symbian OS v9 is very much an incremental update
to Symbian OS v8. There is little radical architectural change, but a
significant amount of re-engineering and improvement (in particular to
improve performance, with boot time and RAM usage the key target
areas, along with a set of user-oriented critical use-cases, for example
addition and deletion of multiple contacts).

Symbian OS v9 also makes the transition from GCC to the ARM
RVCT compiler, supporting the ARM ABI versions 1 and 2 and there-
fore promising tools interoperability for ABI-compliant tools (including
compilers).

Future Symbian OS v9 releases are likely to continue the focus
on performance, including high-performance graphics and support for
continued user interface evolution, improved suitability for the mid-
range, evolution of the build toolchain, and backwards compatibility,
while introducing headline new technologies (likely candidates include
location-based services).

Symbian OS v9.0

There is no productized Symbian OS v9.0 release, which instead served
as a baseline release for the integration of Platform Security on top of the
EKA2 kernel. All Symbian OS v9 ‘new features’ (as opposed to platform
changes) therefore appear in subsequent releases, from Symbian OS v9.1.

Symbian OS v9.1

The first phones based on Symbian OS v9.1 (which was announced in
February 2005) shipped during the first half of 2006. They included the

328 NOTES ON THE EVOLUTION OF SYMBIAN OS

Nokia N80 3G phone and Sony Ericsson P990, both with Wi-Fi and
multimegapixel cameras (3 and 2 megapixels respectively).

For the enterprise market, device-provisioning enhancements and
group-scheduling APIs are important additions.

Headline features include:

• Platform Security

• Real-time EKA2 kernel, with support for a range of ARM CPU archi-
tectures and memory models

• System Starter, a new policy-based mechanism for server startup

• New Device Management and Client Provisioning services, including
a new Client Provisioning Framework

• Broadcast Tuner APIs

• Bluetooth Remote Control Framework

• Improved Timezone support

• Networking enhancements including RTP/RTCP support

• Java ME MIDP 2.0 (JSR 118) and CLDC 1.1 (JSR 139), plus new MIDlet
security policy support

• Hardware reference platform incremented to TI OMAP H2.

Symbian OS v9.2

Symbian OS v9.2 continues performance improvements, supports several
new locales and provides build-toolchain and porting improvements,
while maintaining baseport compatibility, all of which can be seen as
steps along the way to an improved mid-range offering.

New features include some important new APIs and technologies (the
SIP Framework, for example). The major platform features, however, are
those which it shares with Symbian OS v9.1: platform security and the
EKA2 kernel architecture.

Compared with Symbian OS v9.1, the key changes are:

• New RTP/RTCP and SIP multimedia protocols, together with under-
lying networking support and communications architecture evolution
to support high data rates

• New Hindi and Vietnamese and improved Japanese language and
locale support

• Device management, messaging, email and multimedia enhance-
ments

SUMMARY OF SYMBIAN OS V9 RELEASES 329

• Continued improvements in boot time, RAM usage, and range of
specific performance use cases

• Hardware reference platform incremented to ARMv6.

Symbian OS v9.3

At the time of writing, the latest release (announced in July 2006) is
Symbian OS v9.3. Compared with Symbian OS v9.2, the key changes
are:

• additions to SIP protocols and continued evolution of the communi-
cations architecture

• support for Wi-Fi wireless networking.

Part 3
Design Case Studies

The case studies presented here provide an in-depth examination of
significant turning points in the evolution of Symbian OS or of significant
aspects of the wider context in which the operating system continues
to evolve. They take an unashamedly historical approach, which I hope
helps to capture the flavor of the times, as well as providing some insight
into how real systems get made and what forces – often contingent and
accidental – shape them.

Each study explores a different aspect of the evolution of Symbian
OS: the adoption of object-oriented ideas in designing and creating the
system, the choice of C++ as the implementation language and the
consequences of that choice; the early decision to implement telephony
support and what that meant for Symbian OS; the radical solution to the
question of user interface customization and what led up to it and shaped
it; the challenges of renewal and evolution, which all software systems
face and which all system designers must overcome; and, finally, taking
a small step back from the operating system itself to the wider context of
its production, the tensions exposed by success and the scaling up from
small-scale to large-scale software production and what it implies for the
future of the system.

These chapters are exploratory and not always conclusive but, I hope,
illuminating nonetheless.

14
The Use of Object-oriented Design

in Symbian OS

14.1 Introduction

Symbian OS traces its lineage back to the operating systems that Psion
created for a succession of innovative and market-leading handheld
devices, from the early Organisers through to the Psion Series 3 and,
finally, to the Psion Series 5, for which the first versions of what became
Symbian OS were designed. Psion was an early adopter of object-oriented
programming techniques and an early adopter of C++, opting to build a
commercial, production operating system in C++ significantly ahead of
the mainstream.

This case study explores that history, and the consequences. It goes on
to survey some of the ways in which object-oriented techniques are used
in Symbian OS, for example the adoption of model–view–controller
(MVC) as the basis for the application model, the widespread use of
frameworks, the active object idiom, and the way object-oriented ideas
influenced the design of the kernel itself.

The adoption of object orientation, generally, and of C++, in particular,
were radical steps for the company; both posed challenges, both were
motivated by some clear expected benefits. Within the company at the
time, both decisions were controversial and the risks were enormous. The
history and the controversies are instructive and still relevant today – both
within and outside Symbian. They give a flavor of the company’s particular
character at that time, of its openness, its willingness to take risks, its
commitment to understanding what the ‘right thing’ was to do, and then
doing it; as well as giving a flavor of what the broader context was for the
design of Symbian OS and of some of the influences that shaped it.

334 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

14.2 Pioneering the Object Approach in Psion

The operating system that eventually became Symbian OS started life as
Psion’s 32-bit, ‘next generation’ operating system, an all-new operating
system designed for a new generation of 32-bit hardware which was
planned to replace the then current (and highly successful) Series 3
range of 16-bit palmtops. Psion in early 1994 already had a history
of experimenting with an object-based design approach and object-
oriented programming techniques. The 16-bit operating system for the
Series 3 (SIBO), for example, had used object-oriented design ideas
and implementation techniques heavily at the application and user-
interface levels, with great success. The Series 3 had a powerful but
easy-to-use graphical user interface (GUI), unique for a machine of its
class. Its user-interface and application architectures were fully event
driven, with an object-oriented implementation. Martin Tasker, new
to the company, saw object orientation as a perfect match for the
problem.

Martin Tasker:

They had understood that objects helped you to do GUIs and systems, and in
the SIBO GUI they had the perfect event-driven system.

Object-Flavored C

The big question facing the company as it prepared to start work on the
new 32-bit system was how best to build on its object-oriented legacy.
An important focus of the debate was which object-oriented language to
choose.

Peter Jackson:

The big debate that was going on was, ‘Do we write another proprietary object
system like we did for SIBO or do we go to C++?’ People were saying, ‘C++ is
the next big thing, everyone will know how to do C++ programming, therefore
it’s easier to get engineers without special training.’ And of course this is
complete nonsense, because what you really need to know is not C++, but
how to program against a particular object model and the APIs that have been
developed for the system you’re programming. It’s just as big a learning curve
as learning some proprietary object framework. But the C++ faction won out.

For the 16-bit system, Psion had evolved a proprietary object-flavored
dialect of C, along with tools which pre-processed this ‘C with classes’
code and generated standard C output, which was then passed into

PIONEERING THE OBJECT APPROACH IN PSION 335

a conventional compile and link stage. Objective-C was the explicit
influence.1

In fact, this was the second time around for the C++ debate. At
the outset of the 16-bit project, the team had evaluated a number of
language options including C++, before deciding to develop its own
object flavored, C-based solution.

David Wood:

We looked at C++ as one alternative, but we were concerned by a number of
things. First, we saw it as being a very large language compared with C and we
thought that we would just have no constraints on our design. Second, we saw
it as still being immature. There weren’t mature compilers for it at that stage,
certainly not for the PC which was our development platform. So we took the
view that it would be a big, big jump to adopt C++ and we didn’t know much
about it, whereas we thought we could do a more constrained job ourselves.

Psion’s solution was home-grown and decidedly arcane, but on the
other hand it did what it was meant to do and it did what was needed.
Since the users were all in-house, the fact that it was a proprietary
solution was not an issue. It also gave the team complete control of
the most important components of the development toolchain. There
was, however, rather more to the detail than simply pre-processing
pseudo-class definitions into standard C.

Andrew Thoelke:

You had a class description file which basically said, ‘This is a class’ and it
knew what its base class was, it knew what methods you had added, what
methods you had overridden, and it knew its data members. That was then
processed by a preprocessor, in effect a class compiler, which generated a C
header file with lots of #defines in it which defined method numbers and
offsets of data and that sort of thing. It also defined data structures for the
classes themselves, so you could actually use pointers to the class objects, and
then it generated an object file which contained a binary representation of the
class structure. These were then all compiled together, so in a given dynamic
library in SIBO the header contained initially a lot of information describing
all the classes within that dynamic library, and then following that was all the

1 Objective-C (see Chapter 4) is an object-oriented superset of C with a Smalltalk-style
(infix) message syntax, which emerged in the early 1980s more or less concurrently with
the Cfront versions of early C++, in an independent effort to harness the plain syntax and
underlying efficiency of C to an object model. Objective-C is still in use as the native
system programming language for Mac OS X, having been inherited by it from the NextStep
operating system.

336 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

actual code itself, the actual functions, the methods. And normally you would
have written that in plain C.

High-level object-oriented design could therefore be directly imple-
mented using class-like constructs. Underneath, the class (or pseudo-
class) method implementations were vanilla C. The class compiler was
known officially as the Category Translator.

David Wood:

It looked at the class definition file and generated C output. There were
also helper functions in the operating system which enabled indirect function
calling to methods in the classes you defined, which was the equivalent of
C++ virtual tables. Our implementation didn’t use virtual tables in the same
way as C++. We tried to implement that in a more efficient way, driven by the
desire to save memory.

The importance of saving memory in order to maximize the small
ROM and RAM footprint of the hardware was deeply engrained in the
Psion culture. Necessarily so, since early Series 3 models were based
on either 128 KB or 256 KB RAM with 512 KB ROM, increasing in later
models to 1 MB or 2 MB RAM with1 MB ROM, and to 2 MB ROM for
the last model in the series.

Another optimization was the replacing of the standard C library with
a dedicated library of support functions implemented as thin wrappers
around native operating system calls. This kept the dynamic libraries small
because, instead of each library including the same several kilobytes of
standard library code, they simply made direct calls to operating-system
functions. It also improved run-time performance, another important
driver.

Peter Jackson:

All in all, it made for some very lean and mean code and it was also a very
elegant system. It was precisely targeted to meet the requirements of the object
space you would need to have for a PDA.

Throughout the system, assembly code was also extensively used
to achieve speed and small code size. Again, this code was written
inside an object framework which integrated with the C-based object
model.

PIONEERING THE OBJECT APPROACH IN PSION 337

Martin Budden:

The assembler stuff was written to the same kind of interface, so it was
effectively object-oriented assembler, and it fitted in the same framework, at
least at the application level.

While object-oriented techniques were used extensively in the higher
levels of the system, the lower levels of the system were more con-
ventional. The kernel implementation, for example, and the lower-level
system services, such as the file server, were written in conventional C.

Geert Bollen:

It was a layered OO [object-oriented] mechanism, using message dispatch on
top of a C system. That was the Psion tradition. Underneath was a classic
C-API-based operating system with a small number of system calls exposed as
C functions.

This is exactly how it should have been, in David Wood’s view.
Object orientation was a pragmatic choice, not an ideological one. It
was intended to achieve some clearly defined benefits without undue risk
either to the system (in terms of size and performance, for example: code
bloat was the big fear) or time-to-market (which a wholesale jump to C++
might have jeopardized).

David Wood:

OO came in stages, which is how all large software systems should evolve.
One of the very important rules of software, or indeed of anything else in life,
is, If you’re not sure what you’re doing, don’t do it on a large scale. I think
the phrase is attributable to Tom Gilb. What it means is that you should go
and experiment, and you should evolve through iterations. So we introduced
objects first of all just for the user interface, and then we realized that we could
apply those ideas elsewhere too. So we proceeded through iterations.

C++ Language Choice and Adoption

At the outset of the 32-bit project the team assumed that a straightforward
software migration effort would suffice to move the major part of the
software base to the new hardware architecture. In fact, the first plan
was for automated migration. Since the move up to a 32-bit system

338 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

involved a switch from Intel to ARM processor architectures, the focus
for rework was on the hardware interfaces of the low-level system and on
the operating system kernel itself, for example to migrate to new process
and thread models and a new MMU architecture.

David Wood:

In 1994, we had at first a plan that we would do a quick project to convert
from 16-bit to 32-bit. We assumed we would keep more or less the same
syntax and that we would actually write a tool to read in everything and then
spit out 32-bit versions.

There were a number of reasons for moving from Intel. The Intel x86
architecture was primarily aimed at desktop computers. It had no real
power management features, making it power hungry and giving it much
worse MIPS per Watt performance than ARM. Just as importantly, even as
early as 1994 Psion had identified mobile phones as the most promising
future mass market for handheld devices. ARM had established itself as
an ambitious and successful semiconductor player in the mobile device
market. In contrast, Intel had little or no mobile device presence.

The plan for automated migration did not last long. The language
question quickly came to be seen as an important strategic choice, not
just a practical one, in much the way that the processor choice was
both pragmatic and strategic. One consideration was the nature of the
intended platform so far as third-party applications were concerned. The
Series 3 had provided a run-time support system similar to Visual Basic
for installable third-party applications, and a thriving hobbyist culture
had grown up around it. However, this was far from offering a natively
programmable platform (which would imply that the system-level APIs
were open to third-party applications as native calls rather than serviced
through the run-time language support). Native programmability was
emerging as a key requirement for the 32-bit system.

The more general question was how far Psion could afford to ignore
the mainstream. Continuing with a home-grown system involved more
than software maintenance costs (supporting the toolchain and keeping
it fit for purpose). It would incur the larger, negative opportunity cost of
locking the 32-bit system out of the mainstream. As ambitions for the new
operating system scaled up, with its design life projecting well beyond
2000, moving with the mainstream became an increasingly important
consideration.

David Wood:

As we saw the scale and longevity of the 32-bit system we thought, ‘Wait, we
don’t want to be stuck in some custom programming system, we want to go

PIONEERING THE OBJECT APPROACH IN PSION 339

with the mainstream’, and increasingly the mainstream was C++. That’s what
software engineers were learning at university, that’s what they would know
about. We thought it would be harder to recruit people if they then had to go
and learn this comparatively arcane technology which we had. So we adopted
C++ for sociological reasons as well as technical reasons. But the technical
reasons were important too. As we studied C++ more over the years we saw
there were benefits in it being, quotes, a better C, rather than just being an
object-oriented C.

While not everyone was convinced by this line of argument, it was
certainly clear that the alternative to C++ was an in-house system; that
C++ was almost certainly going to be one of the dominant object-oriented
languages for the foreseeable future; and that the mainstream would be
there if it was anywhere. Dialects such as Objective-C were being
relegated to the margins by the momentum which was gathering behind
C++. Arguably, even Smalltalk, which had some claims to priority, was
losing ground to the C++ juggernaut.2

While C++ was still the same language which the company had
previously rejected as too big, too complex, and insufficiently constrain-
ing, the context had changed. Looked at more positively, C++ not only
retained many of the advantages of C as a systems programming lan-
guage (its ability to get ‘close to the metal’) it was indeed by design ‘a
better C’.

Stroustrup characterizes this aspect of the language as including
stronger type checking; more convenient and less error-prone mem-
ory allocation (operator new) and release (operator delete); function
overloading; the ability to initialize variables with values as well as to
assign values; references; and, in general, less reliance on exploiting tricks
needed to get the best from the language. (Type casting, for example,
was a ubiquitous pattern in C that was only rarely necessary in C++
[Stroustrup 1994, p. 171].3)

2 A 1995 survey conducted at Object World identified 77% of respondents as C++ users
compared with 28% as Smalltalk users [CIO Magazine, www.cio.com/archive/110195/
object.html].

3 It is also worth considering Stroustrup’s views on what programming languages are for.
A language does two things, as he sees it: it provides a vehicle for specifying actions to be
executed and it ‘provides a set of concepts for the programmer to use when thinking about
what can be done.’ [Stroustrup 1993, p. 8] In other words, on the one hand, it provides
a model which abstracts a programmable machine (a ‘machine model’) and, on the other
hand, it provides a conceptual model for translating real-world problems into program
solutions. Arguably, the history of the evolution of programming languages is the history
of the stretching of the gap between the two, so that the conceptual model is increasingly
distanced from the underlying machine model, as well as of the increasing abstraction of the
machine model away from a literal physical interpretation toward a logical interpretation.

340 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

Andrew Thoelke:

I remember hearing about the discussions, but I was too junior in the company
really to be directly involved or influence them. But C++ was still quite young
at that point. This must have been 1994. It was way off being standardized,
probably four or five years before the first pass at standardization. But it clearly
had most of the elements of object orientation that had been put into the
Series 3 system, and clearly it was going to be standardized, it was going to
be much more mainstream, it was important. And the experience of using an
object-oriented language and having an event-based application environment
was one they didn’t want to lose (because the 16-bit system already had that)
by migrating to a new hardware architecture and going 32-bit. So it’s not
surprising they went for it.

Martin Budden, already a veteran at that time, was an early C++
advocate.

Martin Budden:

I was actually advocating C++ fairly early on, but I wasn’t the only one, there
were other people advocating C++ too. There was a debate about whether
to move to C++ or stay with C and, fairly quickly, the C++ argument won.
Since Colly was doing the first cuts of the operating system, once he had been
convinced, it followed from there.

Geert Bollen arrived at Symbian in the early summer of 1995 with
impeccable credentials in object orientation and a significant background
with C++, specifically. While others in the company were still learning
C++, Bollen already had three to four years heavy-duty implementation
experience behind him. By the time he arrived, the decision to go with
C++ had already been made and the team was six months into the
project.

Geert Bollen:

C++ seemed the obvious choice from my perspective. But I suppose I hadn’t
really been exposed so much to some of the issues in an operating-system
context. But consider, it’s only in the last few years that the C++ ABI (Appli-
cation Binary Interface) has been standardized, so that completely determines
the interoperability of different toolsets. That gives you an idea of how young
the language was, at least as an industrial tool. All that had been taken for
granted in the C world since the ’80s; they just weren’t issues. In the C++
world they were wide-open problems.

PIONEERING THE OBJECT APPROACH IN PSION 341

When Bollen joined the project, the lack of standardized low-level
tools meant that no code was yet running on ARM hardware, and all
development was still emulator-based. The project was still feeling its
way, climbing the language-learning curve while throwing its energy into
the object-oriented design opportunities of a clean, from-the-ground-up,
re-engineered system.

Geert Bollen:

Moving to C++ was a very brave decision. I don’t know if it seemed so at the
time, but in hindsight it was a very, very brave decision. They had selected
C++ to build this system, with some trepidation, as a leap of faith.

Challenges of Switching Languages
Switching incurs costs. There were what David Wood might call the
‘sociological’ issues, the questions of what tools developers knew, the
problems of bringing in new developers familiar with C++ but not with the
in-house object-oriented style, while training up the seasoned in-house
developers in a new language; and all this, of course, as the design itself
evolved fairly freely.

But there were other problems too. Performance problems, perhaps
inevitably, quickly became apparent.

Howard Price:

C++ was slow and big in various situations. For example, the OPL VM grew
by about six times when it was ported from S3 8086 Assembler to C++. There
was some argument, to the point where there was talk of dropping C++ and
moving back to the faster, leaner, meaner approach – just sticking to C. But,
thankfully, David Wood and Charles Davies were really strongly committed
to C++ and object orientation, and they persuaded the rest that this was the
way to go.

But the biggest practical headache almost certainly was the lack of a
suitable, stable toolchain.

Geert Bollen:

The target tools were not in place when I arrived, so whatever the system was,
it was emulator-only. The kernel implementation was an emulator implemen-
tation. The on-the-metal version of the kernel was started and delivered after
I arrived. Colly Myers assembled a team for that. Before that, he had been a
one-man band.

342 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

There was no standard toolset capable of targeting both Intel and ARM.
Or rather there was, of course, the GNU GCC toolchain, but not one
that would work naturally in a Microsoft Windows development environ-
ment. Since most development took place on Microsoft Windows for the
emulator targets, a productive Microsoft Windows programming environ-
ment was essential. Microsoft’s compiler and toolchain targeted only Intel
processors. Because there was no standard Application Binary Interface
(ABI), Intel binaries were in a world apart from the GCC ARM binaries.4

In the short term, this meant that bespoke tools had to be written to
enable dual-target compile and build using two different compilers, each
with its own make and link tools and other utilities, but in a way that
integrated reasonably well enough with the Microsoft Windows-based
IDE so as not to cripple developer productivity.

The longer-term legacy is that this bespoke system still persists, in
essentials unchanged, to this day, a source of low-level discomfort for the
external developer community. (Internally, it is as it is and you get used
to it. Externally, it is reasonable to ask why you should have to get used
to something that causes development pain.)

The underlying problem of course is that phones now, and PDAs
then, are essentially embedded devices, and the development process
for embedded systems is inherently more complex (typically in arcane
and opaque ways) than development for desktop systems. A cross-
compilation model is natural and inevitable in an embedded-systems
context. For Symbian OS now, as then, initial development is based on
an emulator hosted by Microsoft Windows and only later (when the basic
implementation is running) moves to a cross-compilation model targeting
real hardware, either prototype or production devices or reference boards.

Another lasting legacy of the early tools problems is the nature of
the emulator implementation. Essentially, the emulator consists of the
user libraries (the base-level services and utilities above the kernel itself)
and higher-level kernel services implemented on top of native Microsoft
Windows libraries. This is nominally transparent to the higher layers
of the system, but key kernel services and hardware-level services are
really being provided by the host operating system, in this case Microsoft
Windows, to which the low-level calls of the hosted system are mapped.
Historically, the problem with this solution is that for anything beneath
application-level programming, the true behavior of the code is obscured
by the underlying Microsoft Windows implementation. This was not an
issue in the early development of the operating system, since the whole
point of the emulation was to allow the application developers to get
on with work on the application suite, but it rapidly became a problem
both for internal and external developers. While the worst problems have

4 Standardization at the binary level is only now appearing across the toolchain with the
standardization and adoption of ARM’s EABI, enabling interoperation of tools from different
vendors.

PIONEERING THE OBJECT APPROACH IN PSION 343

been fixed for some time, some awkward issues have remained even up
to the most recent releases of the operating system. Those challenges can
be traced all the way back to those first problems of early adoption of a
pre-standard C++.

As the kernel moved onto real hardware and began to exercise the
ARM-targeted toolchain, yet more challenges emerged.

David Wood:

We hit various quite significant obstacles along the way, for example we were
calling C++ functions from one DLL into another DLL in a way that I don’t
think had been widely done before, and certainly this required lots of changes
in the GCC compiler that we used. So several times, the implementation for
ARM as opposed to the emulator got held up because we were using C++
to the limit, with the DLLs, and we needed to get Cygnus (who were at that
stage under contract from us, maintaining GCC) to issue numerous fixes. So
we were pushing it to the limit.

Again the issue was the immaturity of the C++ development environ-
ment and the lack of standardization of the low-level interfaces.

Yet another area in which early adoption proved to be costly was the
lack of standardization at the level of the basic language libraries.

David Wood:

There was no sufficiently agreed standard library that covered the things that
we wanted. There was no text-handling library that Colly Myers was satisfied
would provide either the necessary degree of security or the necessary degree
of efficiency and performance.

This is the reason that descriptors were invented as type-safe, memory-
safe, string and binary-data container classes. The alternative would
have been to use standard C++/C-subset strings, which provided neither
protection against overruns nor type-safety.5 For a system with pretensions
to robustness, they were out of the question.

Error handling was another unstandardized area of the C++ language.
Again, a solution was invented, specifically aimed at the needs of the
class of device that the operating system targeted, based on the notions
of ‘leaving’ functions and a cleanup stack.6

5 C-style strings are just arrays of raw data bytes, which can be accessed as either
character data or raw binary data, and as bytes or multi-bytes. Indeed, that very versatility is
their point, but it makes them both error prone and open to accidental or deliberate abuse.

6 The cleanup stack is used to hold pointers to automatic (i.e., stack-based and, therefore,
function-scoped) objects, so that if the function should fail (‘leave’) the objects are deleted
and not left allocated but inaccessible (which is a memory leak).

344 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

Other features of the language were treated with caution.

Andrew Thoelke:

We were very cautious in our adoption of advanced C++ features, partly
because not all compilers supported them or did them well, but also because
you just don’t know whether you’re using a feature which has lots of power
but has a lot of background overhead to it. And we were trying to ensure that
we had some control over what was happening behind the scenes. It’s still
important today, although compilers are better at implementing all of those
odds and ends, and having a good relationship with the compiler vendor
makes it easier to have confidence in the compiler being efficient.

Charles Davies:

We were experienced in object-oriented programming. We were battle-
hardened in object-oriented programming. But, in all honesty, we were still
novices in C++.

Managing C++

Beginners’ mistakes are the mistakes you make because – well, because
you are beginners. C++ is a powerful language and there are almost
certainly cases in which its powerful object-oriented features overrode
the better judgment of even seasoned developers.

Charles Davies:

We over-used inheritance, which everybody does when they get introduced
to object-oriented programming. But we weren’t new to object-oriented and
should have known better.

David Wood:

We probably did take some of the inheritance hierarchies too far. That was
driven by an understandable wish to avoid duplication of code, but some of the
hierarchies as a result became, shall I say, unnaturally clever. That cleverness
solved the problem of the moment, but ended up itself being difficult to
maintain.

Possibly the problem was that because people felt they knew what
they were doing with object orientation, they saw in the language only
the opportunity to exploit object orientation more fully, rather than
the dangers of over-abstraction and over-complexity. However, overuse
of inheritance is symptomatic of confusion between class relationships
(e.g. the difference between is-a inheritance relationships and has-a

PIONEERING THE OBJECT APPROACH IN PSION 345

composition relationships) and the misuse of so-called ‘implementation’
inheritance.7

Andrew Thoelke:

C++ is an extremely flexible language because you can ignore all the extras
and just use raw C with all of its ability to manipulate hardware and to do
whatever you like. But C++ also allows you to be overly excessive with the
use of things like inheritance until you get to the point where you lose track of
what exactly you are doing anyway.

David Wood:

There’s actually a spectrum of reuse. On the one hand, you end up with
multiple copies of the same code and that’s no good. At the other end of the
spectrum, you end up with just a single bit of code which is so convoluted it
manages to do everything but no one can understand it. And there’s a happy
middle ground which nowadays we occupy much more readily.

Certainly there were language features which were considered dan-
gerous, in some cases because they were not well-enough understood
in the company (there just was not sufficient grounding in the language
for there to be enough experts to make the judgments and provide
the design and coding guidelines, short of outright banning), and in
other cases because they were not mature, whether in terms of the
language specification or of the implementation of the available tools
(compiler). Templates, multiple inheritance and namespaces are three
examples.

Templates

Templates are a C++ mechanism for writing type-independent code,
typically library-like classes that are useful for managing objects of any
type, which are then invoked in subsequent code with a parameter
of a concrete type, for which the compiler generates (or selects) type-
specific code at the point of invocation. They were added to the language
particularly to solve the problem of providing useful, generic container
classes capable of acting as containers for objects of arbitrary type, in
other words, of any type whatsoever that a program might invent (see
[Stroustrup 1994, p. 339]). (Ada is another language that provides a
template mechanism, though it is different from that of C++.)

7 ‘Implementation inheritance’ (in which a derived class inherits its base class imple-
mentation, that is, the implementation of the base-class methods) contrasts with ‘interface
inheritance’ (in which the derived class inherits its base-class interface but not the imple-
mentation of the base class methods); see [Stroustrup 1993, p. 413].

346 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

The problem is that naive use of templates causes code bloat. As a
template user, each time you instantiate a given template for a given type,
the compiler generates a fresh copy of the complete template code for
that type. Each time, every time.

Martin Tasker:

All major systems that existed at that time had been written in C, and C++ was
a language that people were still getting comfortable with. There was still a
lot of opinion that some of the features of C++ were too expensive to use in a
ROM-based small device. Templates being one of them.

Careful design of the initial template classes can avoid the problem,
but to do so requires expertise.

Andrew Thoelke:

Certainly parameterized programming using templates is something that’s at
least a degree harder to understand than some other features. It’s very easy to
bury yourself in complexity that you assume the compiler will get you out of,
but you really don’t know. The actual side effects in terms of size of code or
performance are hard to measure sometimes. It’s hard to write very complex
template code well.

Especially in the early days of Symbian’s adoption of C++, when the
language was fluid and the standard libraries (which were almost wholly
template-based) were still evolving and had not been fully standardized,
templates were regarded in the company as potentially dangerous and
therefore treated with extreme suspicion. 8

Martin Tasker:

The Standard Library is the basis of what people call generic programming.
We do not do that at all in Symbian OS. We have a few templated types,
but we don’t use them aggressively enough to call it generic programming. I
don’t think there were many people anywhere that understood the Standard
Library at the time it was being designed, and we certainly didn’t. Collectively
in Symbian, or Psion as it then was, we didn’t understand it.

8 Even the experts find templates hard. See, for example, Scott Meyers in his introduction
to [Alexandrescu 2001].

PIONEERING THE OBJECT APPROACH IN PSION 347

Instead, an in-house idiom called ‘thin templates’ was evolved for some
generic, container-style classes, based around type-independent, pointer-
based concrete classes (which therefore can accept pointers to any type
of object), wrapped by a template class that contains no implementation,
but just serves to enforce a parameterized interface to force type-safety
for the object type for which it has been invoked. (The technique is quite
well known in the C++ literature, see [Meyers, p. 191, Item 42].) Beyond
this, templates are not used in the Symbian OS library classes. If used
internally elsewhere, they are used with extreme caution.

Andrew Thoelke:

It was more about the fact that the compilers didn’t do a good job with
templates. They could only do very basic things. So we were very careful
about how we used them. We didn’t do anything very advanced. We were
also careful to tell people that templates can lead to code bloat if you use them
aggressively. So instead we used templates to give type-safety over essentially
type-unsafe container objects. Really we were trying to make sure that we
could have more maintainable, better written, higher quality code in the first
place, by actually constraining the use of the language and helping the external
and internal developers to help themselves.

Multiple Inheritance

Inheritance is the basis for structuring the object relationships which
underwrite the collaboration and delegation between objects in (class-
based) object-oriented design.9 Inheritance relates objects logically and
provides the mechanism for sharing common behavior.

Some object-oriented languages, and C++ is one of them, allow mul-
tiple inheritance. (Eiffel, CLOS and Dylan are other examples; languages
which do not allow multiple inheritance include Beta and Smalltalk).
Multiple inheritance allows objects to have multiple parents. As with tem-
plates, casual use of multiple inheritance can lead to multiple instances
of identical code being generated. One of the early rules within Psion
was therefore ‘no multiple inheritance in C++’.

The idea of multiple inheritance is trivial enough to grasp. For example,
a police car inherits from Car, but also has Emergency properties, which
fire engines and ambulances also share, even though they are not derived
from Car (for example, they may be derived from Truck); multiple inheri-
tance allows emergency vehicles to share Emergency properties, inherited
from an Emergency class, while deriving from different vehicle base

9 There are non-class-based systems for example the language Self, based on prototypes
(see Chapter 4).

348 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

classes.10 While the principle is simple, the implications for implementa-
tion in an object-oriented language go deep.

Martin Tasker:

The multiple inheritance chapter in the Ellis and Stroustrup book is staggeringly
difficult! It’s mind-bogglingly difficult! So we made a really conscious effort:
no multiple inheritance at all. And in fact our solution, Mixins, serves exactly
the same purpose as the equivalent in Java, that is, interface classes, and they
are really easy for the user.

Andrew Thoelke:

Some of the constraints, like ‘avoid multiple inheritance unless the additional
base classes are interfaces only’, was partly to avoid the Evil Diamond
inheritance graph, which you can acquire without always realizing it, and
which all the text books said was a Bad Idea, unless you used virtual bases,
which we always said, ‘No, don’t do it’, on grounds of performance and
footprint and questionable value.

The ‘Evil Diamond’ pattern is one in which class K derives from both
classes B and C, which both derive from A. (K, by multiple inheritance,
inherits from both B and C; both B and C inherit, possibly also through
multiple inheritance, from A.)

The problem with this pattern is that, because C++ implements inher-
itance of behavior at compile time not run time, if class A contains
concrete method implementations then its code may be and its v-table
is compiled into the code for both B and C (because they inherit the
behavior) and appears twice in class K.

The immediate problem that outlawing the use of multiple inheritance
causes is that no class can present multiple interfaces. An example of the
value of interface inheritance is the Observer pattern. Some object has
behavior derived through one inheritance hierarchy, say Timer or Alarm,
but is also an Observer of some event that triggers its behavior. Not all
timers and alarms are Observers, but some certainly would like to be.11

A

CB

K

Figure 14.1 The ‘Evil Diamond’ pattern

10 The example is from [Stroustrup 1993, p. 405].
11 [Stroustrup 1994, p. 271] cites Stream I/O as an example of the value of composition of

interfaces; another example is composing a class from an implementation and an interface.

PIONEERING THE OBJECT APPROACH IN PSION 349

Java (as a ‘better C++’) explicitly provides machinery for adding
interfaces to objects. But in the absence of that, multiple inheritance is
the most natural way to get it, and the only way to get it by derivation.
(So-called ‘fat’ interfaces are an alternative approach, see the discussion
on ‘Streams, Stores and Persistence’ in Section 4.3.)

Eventually a compromise was reached and ‘mixin’ (‘M’ or interface)
classes were introduced, following the solution which had actually been
first adopted for CLOS.12 Mixins solve the problem of how to get the
best of multiple inheritance, for example, so that objects can present
multiple interfaces, without getting the worst of multiple inheritance,
code duplication and bloat, and over-complex and over-designed class
hierarchies.

With the mixin pattern, while only one inheritance path may inherit
behavior, in other words inherit from (and, therefore, include the code
from) a concrete base class, a class is allowed to inherit from as many
M classes as it likes because M classes may only define pure virtual
functions. In other words, they define abstract behavior (interfaces) only,
not concrete behavior.

A typical use of an M class is to define an Observer class, so
that a CCoeControl-derived control (GUI widget) also presents an
MObserver-derived interface. Because MObserver is an abstract class
(all of its methods are pure virtual), there is no inherited implementa-
tion, and therefore no danger of duplicated implementation code (when
you define an MObserver-derived class, you must provide all method
implementations yourself).

Martin Tasker:

The notion of implementing an interface, which incidentally I think is used
very nicely in some of the printer driver classes for instance, seems very
natural. So, one pattern for implementing is-a uses mixins; another pattern
is that you have an attribute and it turns out that the interface paradigm is
actually very natural.

There is a more general and interesting point about the similarities
with Java.

Martin Tasker:

We ended up with a lot of the same things that Java did, and we invented
them more or less completely independently. We didn’t really start looking

12 Mixins were reputedly named for the way of specifying the flavors you wanted
at Steve’s Ice Cream shop, near MIT: vanilla plus mixins. The original LispMachine
implementation was indeed called Flavors.

350 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

at Java until somewhat after our major design decisions were committed. But
funnily enough we ended up using multiple inheritance in the same way, we
constrained C++ multiple inheritance and ended up using it in the same way
as Java uses inheritance interfaces.

Before the mixin solution was adopted, some designs suffered from
the injunction against multiple inheritance and had to find other ways to
offer multiple interfaces, resulting in convoluted design.

The lesson is that early adoption involves multiple leaps into the
unknown. Leaping into the unknown can harm your design.

Namespaces

Namespaces are another example of a useful C++ language feature
which was not used because it was not standardized in early C++
implementations. (At least, namespaces were not used early on in Symbian
OS.) More recently, some technology areas (networking is an example)
have pioneered the use of namespaces, generating some internal debate
about what the rules for using namespaces should be.

For example, in designing the networking components, namespaces
have proved useful as a mechanism for associating Symbian OS imple-
mentations of standards-based behavior (in other words, externally spec-
ified APIs) with a standard API, without polluting the global namespace,
making it easier for licensees to swap out the Symbian implementation in
favor of their own alternative implementations and to do so in principle
simply by changing the namespace qualifier.

Freedom Through Object Orientation

One of the more intriguing aspects of the way that object orientation was
used inside Psion was to liberate the design process from the need for
central oversight and scrutiny, below the level of API definition. While,
in some respects, this liberation meant freedom for developers to shoot
themselves in the foot with complex features of C++ or just over-use of
features (such as over-elaborate use of inheritance), in the wider sense
of applying object orientation as an enabling technology to unleash
talent to solve a problem while still providing a sufficiently constraining
mechanism, it was hugely successful and partly explains how Psion was
able to create a fully-fledged modern operating system, all the way up to
the application level, in a remarkably short time with a relatively small
number of engineers. (In 1997, not long after the first operating system
release, Psion Software was still a company with barely 200 employees.)

PIONEERING THE OBJECT APPROACH IN PSION 351

Martin Tasker:

Something I think Charles Davies did extremely consistently and well, was he
basically said, ‘Look, you can design an object-oriented system and train all
those programmers that you had to recruit because this fantastic system is just
too big for your elite team of ten, and you can design the interfaces and give
them a sandbox in which to play inside those interfaces, and they can’t hurt
anybody else by just adding another function onto that library over there’,
which is what you can do in C, and which is what you are strongly inclined
to do in C.

I think Charles, in particular, did this; he paid minute attention to the details
of his APIs, he used their explanatory power to motivate his people, and he
almost didn’t need to look at what they produced in terms of implementation
code or test code. He basically said, ‘If it meets the requirements of the
API and if you feel it’s correct then I trust you that it is correct.’ Whereas I
think that process is harder to do in a non-object-oriented system, because
the boundaries are much harder to draw, both for the architect and for the
implementer. I think Charles used that to massively good effect. He was
outstanding in that.

David Wood was another exponent and practitioner of the principle
of freedom and his approach remains to this day: hire talented people,
point them at the problem, provide the minimum constraints necessary
to bound the solution space, and let them get on with it.

However, this was not what initially attracted him to the benefits of
object orientation. Rather, it was the holy grail of reuse. Inheritance as a
mechanism for delivering reuse seemed to be a perfect fit for the problem
domain of constrained devices.

David Wood:

My first interest in object orientation was in the notion of inheritance, which
was that you could reuse somebody else’s code but still modify it without
having to end up with a complete copy of it. So, the same principle of looking
for small code size which runs through many of our early design decisions
is there, and we saw that we would otherwise have duplications of code,
where there would be a system component whose behavior couldn’t be fully
parameterized just by data, so you couldn’t say, ‘well, here are all the flags
that will completely govern the behavior of specializations of this object.’
We saw that yes, you had to have a way of specializing the code as well
as specializing the data. And that is the idea that really struck home. I know
exactly the book that I read that made that impact, it was a book by Bertrand
Meyer about Eiffel. So that was a very pragmatic consideration, it wasn’t at all
an ideological consideration.

352 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

The object-oriented design approach also seemed to offer something
else that was particularly necessary in GUI design: a systematic design
approach (abstraction hierarchies) capable of bringing elegance and order
to a complex problem domain and empowering designers. Probably the
first, large-scale example of a complete object-oriented system (even
though it was written in C) was the original Carnegie–Mellon design and
implementation of the X-Window system for Unix.13 Abstraction hierar-
chies (whether called classes or not) lend themselves elegantly to solving
the GUI design problem, while also being open to full-scale extension.

David Wood:

I bought into the wider philosophical view which was that if you followed an
object-oriented approach you could handle greater complexity. Because you
will have items in your code that map better to concepts in the real world
that you’re trying to model, or map better to concepts in the user’s mind. So
you’ll have data and code together and you can organize them in hierarchies
which correspond to how they are arranged in the real world, or correspond
to how they are arranged in the users mind. So, going forwards, that was a
very important reason to adopt object-oriented principles. It allowed a single
programmer to hold more in his head.

Again, the efficiencies delivered were not just machine efficiencies
(more effective, efficient code) but human (‘sociological’) ones too: more
productive, effective and empowered developers.

David Wood:

You always fought against code bloat, and there are two ways to fight it. The
first way is to encourage people to practice efficiency in the small, which
was to understand the side effects of the code they were writing and to think
about every line of code they wrote to make sure it wasn’t unnecessarily long
and they weren’t duplicating code unnecessarily. The second way is to look
for efficiency in the large scale as well, which is when you realize that two
programs, or more than two, are actually trying to do essentially the same job,
so instead of them having independent copies of code which is largely the
same, you have one copy of the code, together with small bits in each of the
applications where they provide their relevant specializations.

Object orientation provides a principled approach to code reuse. In
contrast, nothing is easier or more tempting or more fatal, than reusing
code by literally copying and pasting code sections within programs and

13 At the time of writing, there is a good history at http://en.wikipedia.org/wiki/
X windows.

A THOROUGHLY OBJECT-ORIENTED OPERATING SYSTEM 353

between programs; object orientation is the ultimate principled antidote
to ‘copy and tweak’.

David Wood:

What we were fighting against was something that’s sometimes called ‘copy
and tweak’, when you’re writing some code and you notice that something
you’ve already written doesn’t quite do the job but it nearly does, so you
just copy it wholesale and then tweak it, so you end up with two not quite
identical copies of the code and before you know it you end up with dozens of
copies of essentially the same code, but it’s not quite the same. And that’s bad
for all kinds of reasons. It’s bad because it’s inefficient. It’s bad because it’s
very hard to maintain, if you discover that there’s a problem with your original
algorithm you may manage to fix it in one place and then the same bug
remains very probably in all the dozen separate copies that you made in the
meanwhile. Some people nowadays say, ‘Well, the hardware has advanced so
much, the same efficiency considerations don’t apply.’ And there’s certainly
an element of truth in that. We needn’t work quite so hard to save every
single byte. But avoiding duplication is still an important principle, because if
you duplicate unnecessarily then you end up with maintenance problems and
comprehensibility problems.

14.3 A Thoroughly Object-oriented Operating System

The rest of this chapter looks in more detail at how object orientation
is used in practice in Symbian OS, identifying some of the most char-
acteristic examples of object-oriented style and techniques. Symbian OS
contains some important object-oriented patterns. What follows is not an
exhaustive list, but it captures the larger scale object-oriented patterns in
the system.

• Frameworks and plug-ins are a good example of the power of polymor-
phism and are ubiquitous in Symbian OS. As a pattern, frameworks
operate at the level of the static architecture of the system (what
parts are in the system, in other words) although they also have an
interesting run-time, dynamic aspect.

• Active objects are thoroughly object-oriented and are probably best
thought of as a design and programming idiom for avoiding the com-
plexity of multithreadedness, while enabling asynchronous activities
to be spun out of a single thread and spun back in.

• Descriptors are good examples of object-oriented encapsulation, best
thought of as an idiom for achieving type-safe and memory-safe string
handling.

354 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

• Cleanup is another example of good object-oriented design applied
to solve the error recovery and propagation problem and is probably
best thought of as a programming idiom (although it also touches the
built-in typing model).

• Streams and Stores (the persistence model, in other words) is pure
object-oriented design, that underlies a programming idiom for exter-
nalizing and internalizing data through an abstract, non-file-based
abstraction.

• The User Library is a good example of simple encapsulation-style
object-oriented design used to package some system services.

On the other hand, there are also some designs in the system which
are more conventional, non-object-oriented patterns.

• The client–server model is not an object-oriented model (unlike
frameworks, for example), even if it is given an object-oriented flavor
by modeling the client–server relations with objects.

• The file system, beneath the client–server and framework architec-
ture and the object-oriented interfaces provided by the stream–store
persistence model, is in fact a conventional, non-object-oriented,
files-on-disk system. (Compare for example with the thoroughly
object-oriented ‘object soup’ storage model made famous by Apple’s
Newton and the similar database approach later adopted by Palm.)

• Critical aspects of the kernel design, for example the scheduler, are
conventional in design, with hand-optimized assembler implementa-
tions for speed.

It is worth making the observation that the device for which the
operating system was originally designed, the Psion Series 5, was quite
a conventional device in terms of its technologies. So while the use
of the technologies was innovative, the technologies themselves were
conventional: a small, ROM-based device with screen and keyboard
using conventional, removable (Compact Flash) data cards for external
storage. To take the file system as an example, the choice of a FAT
filing system was conventional but eminently reasonable. And in fact,
if users wanted to use their removable cards to swap data with other
devices, then FAT was the necessary choice, for removable media at
least. Deciding for a conventional file system simply reflected the realities
of data exchange for a handheld device in a world dominated by PC
consumer computing.

This argument in favor of a conventional file system beneath the
object-oriented wrapping is one that Geert Bollen, for example, has
heard before.

A THOROUGHLY OBJECT-ORIENTED OPERATING SYSTEM 355

Geert Bollen:

That’s very much the argument you would have expected to hear from Colly
Myers. But, it doesn’t follow from the argument that the internal storage
representation should be FAT, though that’s quite a valid design choice.

The point is really that, while the system indeed is thoroughly object-
oriented, adoption of object orientation was motivated by pragmatism
and, in some cases, that same pragmatism led to more conventional,
non-object-oriented design choices in the system.

Frameworks

A framework is a component that defines an abstract interface which it
does not implement, but for which instead it provides a runtime loading
and management mechanism for locating and loading external plug-in
components that provide concrete implementations for its interface.

Framework–plug-in is a classic pattern therefore for separating inter-
faces from implementation, which is one of the driving design principles
of object orientation (inherited, as it were, from the notion of the abstract
data type, an important influence in the emergence of object-oriented
languages). The framework–plug-in pattern is therefore classically good
object orientation. It is also a natural pattern for enabling extensibility.

But frameworks are more than that. As [Beck 1999, p. 258] puts it,
‘Design is hard’! A framework is, in effect, reusable design because it
expresses a part of a system as a set of abstract, cooperating classes,
scopes the behavior of those classes by defining their interfaces, and
implements the interface between the framework and the underlying
system; in other words, it wires the design into the system. At that
point, the design work is complete. What remains is implementation,
and implementation (the actual instantiation and also, if you like, the
interpretation of the behavior scoped by the interfaces) is left to others
including third parties.14 Frameworks are an important design choice,
because a framework design strongly determines how we should expect
to work with some part of the system. In the object-oriented litera-
ture, frameworks go back to ideas of Deutsch and Johnson in the late
1980s.15

Of course, patterns are also ‘designs for designs’ and, arguably, so too
are class libraries, but frameworks go further than patterns, because they

14 Or as Martin Budden put it to me, ‘Frameworks are for people who just can’t make
up their darned minds!’

15 My references here are taken from [Beck 1999, p. 257].

356 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

are actually coded ([Rising 1998, p. 375]), and they go further than class
libraries, because they are already pre-wired into the system.16

There is an objection: frameworks are complex and hard to write
and need ‘refining by fire’ (see [Rising 1998, p. 184]). In many cases
there is an additional, important dimension. Where frameworks expose
interfaces on two sides, an ‘up-side’ application-level interface and a
‘down-side’ hardware-level interface (which is a common pattern in
Symbian OS – the frameworks in the communications and multimedia
areas are good examples), the question of the ‘thickness’ of the API, (how
much code there is between the up-side and down-side interfaces) can
become critical for retaining control of the design. The thinner the API,
the more exposed it is to the opposing and even hostile forces of its
up-side and down-side clients and the easier it is for them to subvert the
original design intention.17

Frameworks can also be complex to use. Because they constrain the
user, they must be understood well to be used well. Frameworks are a
pervasive design choice in Symbian OS, because they are a particularly
effective mechanism for enabling customization and extension at a deep
level; the operating system implements an overall design in some par-
ticular area but licensees are still able to contribute highly customized
behavior. Frameworks therefore can be found in all layers of the sys-
tem, from top to bottom. Indeed, in some senses, the different ways that
frameworks are used in the different layers may be the dominant design
characteristic of those layers.

Model–View–Controller
Model–view–controller, or MVC, is a well-known design pattern which
applies the idea of frameworks to the design of an application, ‘the earliest
framework that was recognized to be a framework’, indeed, according to
Johnson [Rising 1998, p. 376].

The high-level design of an application in Symbian OS really resides
in this pattern, which provides a general model for the classes that an
application needs, what their basic collaborations are, and how they are
achieved.

The simple version of MVC, and the headline from the point of view
of Symbian OS, is the separation of the application model (the data and
the APIs which operate on it) from the application logic (the way the
user uses the application and its data), not just as a coding rule, but as a
well-founded design principle.

16 As Johnson puts it, the difference between patterns and frameworks is the difference
between reusing knowledge and reusing code. Frameworks reuse code and, thus, enable
more immediate reuse than patterns [Rising 1998, p. 382]. Patterns are a degree of
abstraction further out from frameworks.

17 See Chapter 16 for some examples of the ‘thin framework’ problem.

A THOROUGHLY OBJECT-ORIENTED OPERATING SYSTEM 357

Howard Price:

Model–view–controller goes way back to SIBO. It probably was Charles
Davies and David Wood who introduced it. But, right from the beginning,
that’s always been the design. Right from the beginning, there was a decision
that you really should separate these three things.

Active Objects and the Event Model
The event model is an important part of the wider application framework,
but it is itself a part of the system which makes rich use of object-oriented
principles. Its key principle is to abstract the event loop using the active
object pattern. Again, the driving point here is to fix the design in the
framework and so simplify the way that applications interact with it
through the framework.

Martin Tasker:

Think of it this way. Firstly, the fundamental requirements of doing a GUI and
the fundamental requirements of event handling motivate object orientation,
and polymorphism in particular. So you have an event and you have a
control, you send that event to that control or you get that event from that
control. But then of course you need concrete types underneath that, you need
concrete actions for concrete controls and concrete events. The point is that
the fundamentals of event-orientated programs in a GUI context take you in a
very short sequence of steps to object orientation.

At the heart of the message dispatch system, active objects are used
to encapsulate and serialize (i.e., make sequential) incoming events. In
Symbian OS, this is probably the object-oriented pattern which goes back
the furthest. The alternative, of course, is the conventional ‘big switch’
statement style of classic Microsoft Windows.

Active objects provide a simple, natural, serialized, alternative.

Martin Tasker:

Colly Myers was right, active objects are a dream. For people who know that
they are dealing with event-handling programs, they’re an absolute dream. In
an event-handling system, active objects are a really natural way of handling
things and they are so much easier for programmers to work with than pretty
much all of the alternatives actually, or any alternative that I had seen.

The key advantage of active objects is that they provide a simple
model for maintaining a single flow of execution through the main

358 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

program logic of an application, while still enabling a responsive, event-
based implementation. They offer a simple alternative for what would
otherwise typically require a complex, multithreaded approach.

Martin Tasker:

With multithreaded programs you have to do locks, so you always have to ask
yourself, ‘Am I handling these locks correctly?’ And what eventually happens
in those systems is that you get some conservatism, so you eventually end
up with two or three global system locks which only your kind of super-elite
programmers ever touch, and then you get a couple of local locks which are
more or less private business, and you don’t quite have to be a genius to do
stuff with those locks on the basis that you only penalize your own code, so
you’re probably going to get it right eventually. But it’s much more complex
and it’s much less elegant.

There are times, of course, when the active-object model is inferior to
a more raw-thread-based model.

Andrew Thoelke:

Of course there are times when the active scheduler gets in the way, but
for many things active objects are a better model. It’s actually a better
model to have cooperative active objects running in a single thread than
to go multithreaded. But there are certain tasks for which multithreaded
programming is definitely more useful. Certainly when you want to be able to
do finer time slicing or you don’t want to have to manually break up a task
into discrete chunks. Sometimes it has been hard initially to integrate that sort
of software with Symbian OS. In the early days, a client–server session was
inherently tied to a thread. The client was the thread and that was engrained
in the whole framework and model. And there were even cases where that
was designed into the server. The server required that the thread and client
were synonymous. That has changed now, explicitly to enable multithreaded
clients. So you have the choice.

The Framework for Frameworks
An important change in Symbian OS v7.0 was the introduction of the
ECOM ‘framework for framework plug-ins’, the Plug-in Framework com-
ponent.

Andrew Thoelke:

The plug-in pattern was pervasive in the OS. Everything has plug-ins: the kernel
does, the file server does, the window server does, and in all cases the actual

A THOROUGHLY OBJECT-ORIENTED OPERATING SYSTEM 359

mechanism for tagging and identifying and locating a suitable plug-in that
matched your interface protocol and statically matched your actual specific
requirements right now, was very ad hoc, except for the fact that you generally
used a UID to match the server protocol interface. But the way you located
them, whether you searched for them, whether the loader searched for them,
it was all very unpredictable.

Worse still, new variations were continually being created, of varying
quality. Standardizing framework–plug-in design by introducing a frame-
work for framework plug-ins not only brought more discipline to bear on
the way plug-ins were searched for, found and loaded, it allowed the best
design (the plug-in system created for the web and Internet browser) to
become the template.

The basic principle adopted is the abstract factory design pattern.

Andrew Thoelke:

Our design is a fairly obvious pattern as soon as you see it. You can see that
actually I can apply this anywhere somebody wants an abstract factory. You
put that abstract factory something in a DLL, and then when you request that
DLL you have it conform to your interface. And the ECOM plug-in framework
just provides a standard way of doing all of that.

As it happened, standardizing the plug-in mechanism fit in well with
the new requirements of the platform security architecture. (Unchecked
loading of externally written plug-ins into system frameworks, or applica-
tions for that matter, is a potential security risk.) And that in turn helped to
enforce the standardization, because it could be pushed through as part
of the effort to implement the system-wide, pervasive changes required
by the security architecture.

Andrew Thoelke:

With platform security, it was highly desirable to get away from everybody
searching for their executable content, which is what’s really going on when
you’re looking for plug-ins to load into your framework. And because we
already had put ECOM there and it was an established part of the system,
we could enforce it as the standard mechanism and police plug-in loading at
that single point. So we had a way to force the migration to ECOM through.
After PlatSec, there is no way for your framework to find out what plug-ins are
available by enumerating the actual executables in the system because it’s not
possible to do that any more. So you either use ECOM, because it’s got its own
registration mechanism with resource files, which regulates add-in plug-ins,
or you have your own registration mechanism where something which gets

360 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

installed not only installs the executable, it installs something else which tells
you that there’s an executable plug-in that you can load, so you control what
plug-ins can be added.

Streams, Stores and Persistence
Symbian OS, possibly surprisingly for an object-oriented system, supports
a conventional FAT file system. At the same time it provides a native,
object-oriented persistence framework that, for example, enables appli-
cations to externalize and internalize state without explicitly invoking
file system APIs. It also provides a native database storage model, which
is extensively used by applications such as Agenda and Contacts. Geert
Bollen was the original architect of the persistent-storage frameworks.

Geert Bollen:

At my previous company I had implemented a persistent object database over
RDBMS in C++. Actually, I had done that several times. So I was brought in
as a C++ and design expert, and I was given the persistent-storage job. I had a
team of two, me and Andrew Thoelke.

Andrew Thoelke:

It was only 18 months after I started and EPOC 32 was really kicking off in
a big way. So I started working with Geert Bollen shortly after they had the
major discussion about ‘Is it going to be a database? Is it going to be a file
system? Is it going to be some object soup? Are we going to buy it in? Are we
going to write it ourselves?’

To start with they designed and implemented a DBMS API based on
the DBMS API in the 16-bit system (which had originally been written by
Colly Myers).

Geert Bollen:

The design and implementation is that of a classic, by-the-book RDBMS light,
because it was always designed, for example, not to have joins. It was light.

The design layered a stream serialization interface over a dictionary-
style persistent store over a (conventional FAT-style) file system.

Andrew Thoelke:

Initially they were going to say, ‘Right, well pretty much every file’s going to

A THOROUGHLY OBJECT-ORIENTED OPERATING SYSTEM 361

be a database’ and that was refined a bit later on, so it turned out that every
file should be a database but they were going to go with a file system, and you
had different sorts of databases for different sorts of files. And then the ideas got
refined somewhat to having two separate layers, having a store architecture,
and the notion of Streams and Stores which is slightly more basic than a full
database, and then you have the database sitting on top of that for applications
that explicitly want that kind of data storage.

Geert Bollen:

DBMS was always intended to be the heart of application storage. The Psion
Series 5, recall, was to ship with a suite of built-in applications, including
Agenda, which was a diary, meetings, and to-do list application, as well as
office style apps. DBMS was intended to provide storage for them all.

For more conventionally file-based applications, such as the spread-
sheet and the word processor in the original Psion Series 5 application
suite, a more document-centric Store interface was available.

Later, the decision was taken to design a less abstract storage framework
with object serialization at the heart of it. DBMS is a natural storage
model for a database application, such as Data, but, for document-based
applications, the requirement was somewhat different.

Geert Bollen:

We needed a Store for document-based applications which load up their
application data when they launch and write it out when they suspend.

The question was then how this fit with the needs of the more
transaction-based applications (such as the Data application, which ex-
plicitly used a database format, or the Agenda application, which implic-
itly used a database format); in other words, applications which didn’t
load their data into working memory, but had a store on permanent
storage and conducted transactions against the store.

Geert Bollen:

The requirement was to build a framework which combined the needs of
database operations with the simplicity of object serialization. That led to
a transaction-based API for Store and we provided that as a fat API-style
framework.

It is a ‘fat API’ because its single interface had to encompass the
multiple interfaces it needed to support the multiple different kinds of

362 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

objects. In other words, Store exposed a single, ‘maximal’ interface which
was only partially implemented by any one of the concrete objects which
implemented the Store interface and which were available at run time. In
other words, the concrete objects which were available at run time each
implemented a subset of the complete interface. The ‘fat API’ approach
was adopted as an alternative to multiple inheritance, against which
there was a strict injunction. Since at that time the ‘mixin’ solution
had not yet been adopted, there was no other way to expose multiple
interfaces.

Just as the database layers over the generic Stream–Store architecture,
so it in turn layers over the more or less conventional filing system.

The goal of the Stream–Store design was to define a generic persistent
storage mechanism suitable for any application type and robust enough
to guarantee bullet-proof data safety in a model in which ‘the user never
saves’. Data safety was required no matter what the user might do or fail
to do, including pulling out a removable media card while an application
was using the data stored on it or even pulling out the batteries while
applications were active.

Peter Jackson:

The end-user requirement is that you don’t want corrupt data still around, you
want a transaction-oriented filing system at some level so that if something
goes wrong in the middle of what you’re doing you don’t have to do some
expensive repair process. You might have lost a couple of transactions because
that’s when it went wrong, but the transactions that have already happened are
safe. And the whole Stream–Store technology gives you that kind of layer. And
for that reason I would say it’s a lot better than just having a raw I/O system.

Andrew Thoelke:

I think for Streams, in particular, the actual class design went through something
like four or five iterations, because we were trying to deal with the many ways
you might want to use Streams and chain them together and run them back
to back without resulting in a system that passes one byte around between
different classes, which gives you performance problems.

Store is a complex design problem because what’s required is really
not a single solution at all, but multiple orthogonal solutions, serv-
ing the fundamentally different needs of different applications working
with data in essentially different ways, that is, document-based versus
transaction-based.

Andrew Thoelke:

DBMS is just a template API for a database, whereas Store is an extensible

A THOROUGHLY OBJECT-ORIENTED OPERATING SYSTEM 363

Steams and Store architecture where you can have different types of back end
to it.

No design allows an application to continue writing to or read-
ing from a media card that the user has removed from the device.
However, different design choices provide different levels of protec-
tion against such unexpected failures. A conventional file system is
the least robust solution. From a developer perspective, on the other
hand, file-based semantics are so widespread and so engrained as to
seem like second nature. In contrast, object-based serialization using
externalize–internalize and store–restore semantics imposes a new learn-
ing curve at what should be a very basic level of programming,
saving and restoring data. Inevitably too, if developers don’t under-
stand a model, they use it wrongly (or, indeed, even deliberately
subvert it). In some respects then, the persistence architecture is another
example of a Symbian OS idiom which has been described as a
barrier to new developers, but which is firmly rooted in the origi-
nal design requirements for the system (unrivalled robustness for a
device class which is quite different from the conventional desktop
device).

Object Orientation in the Kernel

The Application Architecture framework, the Control Environment hier-
archy (CONE), the Graphics Device Interface framework and Store all
make aggressive use of object-oriented and C++ techniques including
interface inheritance, polymorphism, templates (in the Symbian OS ‘thin
template’ style) and so on.

At first sight, most of these techniques are absent in the design and
implementation of the kernel (whether the EKA1 or EKA2 architec-
ture).

Andrew Thoelke:

If you look at the features of C++ that get used in the kernel, you don’t see
very much in the way of templates and you don’t see very much in the way
of derivation and you don’t see very much in the way of virtual functions and
overrides and frameworks, so it’s a simpler use of object-oriented design. But
it’s still object-oriented design.

In fact, the kernel design has some interesting object-oriented features
and they are sufficiently fundamental to persist in the design of EKA2.

364 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

Geert Bollen:

There is something interesting. There is a key insight of Colly Myers’s which
is very interesting, and it’s an interesting use of OO concepts. A lot of what
an OS does is very close to the metal, which is not an area that lends itself
to standard OO-programming mechanisms. But Colly’s key insight was that at
one level the kernel is a model of an executing system. That’s what the kernel’s
job is, parceling out the hardware resources of the underlying machine, and of
course managing the computation, which is what the central processor is there
to do. So what else really is the kernel? The kernel is really just a dynamic
model of the computation which is in progress, of the thread of execution and
the processes which exist and the way they are locked and communicating.
You can make an OO model of that. You can implement that model using
a bunch of objects. And essentially that’s what Colly did. That was a very
interesting use of OO concepts to design a kernel.

The basic kernel objects derive from this approach.

Andrew Thoelke:

Any kernel is going to have a control block for a process, but rather than just
saying it’s a control block, in Symbian OS it’s actually an object with respon-
sibilities to manage that process and the things that belong to that process.
So it’s not just a data structure that says, ‘This is the process control block
associated with this dynamic collection of threads and memory space.’ It’s an
object and it has the responsibilities for that management within the kernel.

The kernel takes a different approach to the use of object orientation
than is taken in the UI or Application Services layers, for example.
Nonetheless the ‘object-oriented clouds’ are there.

Andrew Thoelke:

In the kernel in some sense you can say there are clouds, because you’ve got
encapsulation, and you’ve got objects. Perhaps it depends on whether you say,
‘Well, if you don’t really use advanced inheritance and virtual functions then
you aren’t really using OO’, right? So OO is derivation, using virtual functions,
polymorphism and whatever, but a key part of it is about encapsulation and
roles and responsibilities and the way the different objects in your system
interact with each other using defined methods or messages, rather than by
just invasively tinkering with each other’s data structures. That’s OO too. You
can see that in the kernel.

A THOROUGHLY OBJECT-ORIENTED OPERATING SYSTEM 365

Object orientation is not just a way of making a design tidier. It enforces
discipline, not just on the design of a piece of software, but also on the
way that users must go about designing their own use of the software.

Andrew Thoelke:

From the point of view of modeling a system and having clearly defined
components which interact in well-defined ways, the kernel is really quite
object-oriented. Whether EKA2 is as rigorously so, it probably is at the same
level although for the sake of performance occasionally we don’t always try
and protect data. But from the point of view of saying, ‘Are we utilizing virtual
functions and polymorphism substantially?’ – well the kernel has got one or
two examples of it, the key one really is the device-driver framework, where
you have a base class which represents the basic device driver and device
driver-channel, and then a real device driver which implements a concrete
device-driver object and device-driver channel. But, on the whole, that isn’t
really used in the rest of the kernel, for the good reason that the rest of the
kernel is a closed system, and there is not a great deal of value to be added by
pursuing that kind of design extensively.

There are some other choices that Colly Myers made which are
interesting.

Geert Bollen:

Colly Myers decided to use polymorphism for implementing the differences
between the target machine and emulator implementations. For example,
DThread is the abstract base class and you have a derived emulator thread
class and a derived on-the-metal thread class. I’m not so convinced about that.

Bollen’s objection is that polymorphism in this case is the wrong
concept to apply.

Geert Bollen:

I’m not convinced, because it’s using a dynamic binding mechanism, that is,
polymorphism, to represent a static property of the system, that is, whether
you are an emulator build of the system or an on-the-metal build of the system.
You don’t need to do that at run time. In fact, you really don’t want to do that
at run time. That could as well be a compile-time or link-time binding.

Using a complex mechanism where a simple one would do (as Bollen
says, ‘A typedef would do it: #ifdef baretothemetalthread. . . ’)
seems to break a basic design principle, though no doubt there was a

366 THE USE OF OBJECT-ORIENTED DESIGN IN SYMBIAN OS

reason for the decision when it was made. But there is a deeper point,
echoing one previously made.

Geert Bollen:

Modeling the computation, making that literal and the operations that you
do is still an interesting choice. And it points out something else which was
going on, the desire in the architects to constrain the design choices, to have
a limited number of patterns in the system. This is an OO system, so let’s use
OO mechanisms. There’s some possible impact on runtime? So?

15
Just Add Phone

15.1 Introduction

Mobile phones are uniquely complex devices: more complex than PDAs;
more complex by far than PCs. This case study looks back to the critical
early points in the evolution of Symbian OS into a fit-for-phones operating
system. It looks at why phones are different, what particular challenges
they pose and the impact of those challenges in shaping Symbian OS.

It is often said that Symbian OS was ‘built for mobile phones’ and the
claim, while true, does not remind engineers of the roots of the operating
system. Its predecessor, EPOC, was conceived and implemented first as
a mobile operating system for PDAs, even though, by the time it first
shipped, mobile telephony had been identified as a critical market in
which the operating system would win business and work was well
in hand – driven by phone licensee collaborations – to put Symbian OS
inside phone handsets.

As this case study shows, the shift in emphasis from PDAs to phones
involved some very real challenges. Understanding what those challenges
were helps us to build a deeper understanding of what Symbian OS is
today.

15.2 Anatomy of a Phone
‘Mobile phones’, says David Wood, ‘are just irreducibly complex.’ He
should know. As one of the five founding directors when Symbian was
created,1 Wood took responsibility for the Technical Consulting arm of
the company – with a mission to support licensees, old and new, to create
‘great phones’ on Symbian OS. Technical Consulting has always been at
the forefront of the process of securing licensees’ use of the system and
following through to shipped products.

1 The others were Bill Batchelor, Colly Myers, Stephen Randall and Stephen Williams.

368 JUST ADD PHONE

David Wood:

There’s no getting away from the fact, it’s not Symbian OS that makes smart-
phones complex. Smartphones are complex simply because of the enormous
number of different technologies that are contained in every single smartphone.

Compared with PCs or even PDAs, phones pack an astonishing number
of different technologies into a tiny package. The things which in a PC
are peripheral become integral in any pocket device; screen, keyboard,
speakers, microphone and soundcard are packed in with CPU core
and memory and permanent storage. But phones, of course, go further.
There is the phone radio hardware itself and possibly multiple other
radio interfaces, such as Bluetooth, and their associated software stacks,
full networking, and a complete multimedia system. Megapixel cameras
with true optics have arrived (Zeiss lenses, for example, and optical
zoom) as, of course, has stereo sound with real-time compression and
decompression for stereo playback. Integrated high-definition TV is the
most recent arrival, hard on the heels of Wi-Fi, with Wi-Max waiting in
the wings. Add in the power-management technologies needed to deliver
long battery life while fueling this impressive array of technologies with
ever-increasing processor speeds yet also avoiding the device becoming
(literally) hot in the user’s pocket; the PC, in comparison, starts to look
trivial.

Looking back, the hardware architecture of the early devices for
which Symbian OS was originally designed now looks remarkably simple
too. A hardware schematic of the Psion Series 52 shows little more
than an ARM core connected via a data bus to ROM, DRAM, and
removable media-card memory, with direct connections to the remaining
hardware: an audio codec for microphone input and speaker output, RS-
232 and infrared UARTs, LCD screen and digitizer overlay (via an analog-
to-digital converter) and keyboard (via parallel I/O pins). A power supply
unit drives the system from two standard AA batteries and a wristwatch-
style flat cell backup battery. Interestingly, the Series 5 hardware was
itself more complex than that of some competitors, for example, Apple’s
Newton or Motorola’s Magic Cap devices [Wolf 2001, p. 548].

15.3 The Phone Operating System
A phone operating system must manage complexity at a number of levels.

• It must manage the sheer hardware complexity of a converged device
but, more specifically, it must manage a double platform: a highly spe-
cialized, data-centric (including voice data3) radio hardware device on

2 [Furber 2000, p. 366] shows just such a schematic.
3 Voice-centric GSM/2G has morphed into data-centric 3G.

THE PHONE OPERATING SYSTEM 369

the one hand and a multimedia-ready, networked, application-centric
device on the other.

• It must cope with the sheer software complexity and, more specifically,
a double software stack: specialized communications and data-centric
protocol stacks and real-time channels on the one hand and a GUI-
based, friendly, application-rich consumer system on the other.

• It must deliver the performance expectations of a general consumer
market (toasters ‘just work’ and so phones had better ‘just work’: when
they stop working, they are thrown away), quite different from the
expectations of users of desktop computers, PDAs or gadgets.

• It must conform to the usability expectations of a general consumer
market (no one expects to read the manual for a toaster; why should
they read the manual for a phone?), again quite different from specialist
users.

• It must stay fit and keep up to date with rapidly evolving technologies,
a rapidly evolving network-services (operator-services) infrastruc-
ture and evolving open standards (often multiple, competing global
standards).

Depending on who you talk to, ‘phonification’ means different things
but, in principle, it means all of the above. ‘Being a phone’ is different
from being merely a small, pocketable, mobile device.

Architectural Impacts

The impacts on the system architecture of the move from PDAs to phones
are worth examining.

• The most obvious impacts are on the Kernel Services and Hardware
Interface layer. The Kernel itself must either support the real-time
needs of the baseband or it must be made amenable to an alternative
solution. It must also support licensee ASIC or ASSP custom chip
packages, which may mean supporting alternative memory models
and memory-hardware architectures. It must support phone-specific
device peripherals, including screens and keypads and possibly dedi-
cated hardware such as a phone flip.

• In the Base Services layer, the File Server must support multiple file-
system architectures and media types (both NOR and NAND flash, for
example, and probably also hard drives), providing specialist services
such as wear-leveling (for NAND) and demand paging.

• In the OS Services layer, the Comms Services architecture must support
telephony protocols and integrate with networking support; graphics
and multimedia services must support phone use cases (such as

370 JUST ADD PHONE

camera-phones and music-player-phones); connectivity requirements
are probably also different between PDAs and phones.

• The Application Services layer is significantly affected too, with the
different phone use cases for applications and new services requiring
support.

• Finally, the UI Framework must provide support for a dedicated phone
user interface.

There are almost certainly other system-wide impacts:

• system performance characteristics are likely to be quite different for
a phone and a PDA

• greater modularity in the system may be necessary to enable the
different product cycle for phones (a more platformized model, in
other words) and a full product matrix

• adaptation almost certainly becomes more complex, with a much
greater range of technologies needing integration (web browsers,
viewers for content such as Flash and PDF, and Office file viewers,
font technologies, etc.) and plumbing to close hardware support

• service assumptions turn into architecture headaches; phone operators
are simply not used to open network models (third-party software
availability, for example) and a system-wide security model becomes
a requirement.

Supporting the Baseband

The mobile phone ‘baseband’ is the software signaling stack that accepts
a data stream (e.g., the output from a digital signal processor which has
been fed voice input from a microphone) at the top layer and emits a
stream of encoded data frames at the bottom layer onto a data channel
to radio–air-interface hardware and vice versa; accepting encoded data
frames at the bottom and emitting a data stream at the top (if it is voice
data, it is fed to a DAC for conversion to audio output).

The signaling stack sits on a software layer of some kind, traditionally
a real-time operating system (RTOS), which in turn drives the baseband
processor, typically a general-purpose CPU such as an ARM or StrongARM
dedicated to the RTOS and the stack that it hosts. The radio hardware
is likely to vary between phone makers, from custom silicon to standard
bought-in parts, and the data channel might be old-fashioned serial or,
more recently, USB.

Non-voice data on 2G and 2.5G and all data on 3G is packetized
(into TCP/IP packets). The DSP/DAC steps are omitted but otherwise the

THE PHONE OPERATING SYSTEM 371

packets follow the same path through the signaling stack and are tunneled
as GSM/2.5G/3G frames.

The basic hardware design choices for a Symbian phone revolve
around whether to use one processor or two and, if two, how to connect
them. The two-CPU option treats the baseband, or phone side, as a com-
pletely separate hardware subsystem and interfaces it to an application
subsystem with its own application processor (an ARM or StrongARM
CPU, for example), running Symbian OS and applications. The single-
CPU option creates a single hardware system, and shares it between
an RTOS and Symbian OS or (enabled by the Symbian real-time EKA2
kernel) uses Symbian OS exclusively to host both the baseband and the
application stack on a single CPU.

While to some extent how licensees architect their phones around
Symbian OS and the design choices they make are opaque (and often
jealously guarded), the consequences clearly impact the operating system
design and the assumptions it makes about the environment in which it
runs.

The hardware design options are as shown in Figure 15.1.

A: Two processors connected by a fast serial bus: CPU A is the baseband
processor and hosts an RTOS, which in turn hosts the baseband stack.
CPU B is the application processor and hosts Symbian OS, on top
of which is layered a bespoke or licensed user interface that hosts
applications.

B: A custom package with two CPUs and shared memory at the register
level. CPU A is the baseband processor and hosts an RTOS, which
in turn hosts the baseband stack. CPU B is the application processor
and hosts Symbian OS, on top of which is layered a bespoke or
licensed user interface that hosts applications.

C: A single processor hosts both the RTOS and Symbian OS. RTOS runs
the baseband stack and Symbian OS runs the user-side processes;
the two operating systems have a mutual agreement to share the
CPU, RAM, device drivers, and other system resources.

D: A single processor hosts Symbian OS with real-time kernel EKA2.
Symbian OS, abstracted by a custom ‘personality layer’, runs the
baseband stack, device drivers and user-side application processes.

But telephony is not just a matter of getting raw data to the baseband.
The baseband needs to be under application control, which means that
there must be application interfaces to the phone side from the application
side. On a typical Symbian phone, the phone application is simple and
can therefore be relatively hard-wired to the phone side, but phone

372 JUST ADD PHONE

CPU CPU

RTOS

Symbian
OS

Baseband
Stack

GUI

Apps

Hardware Platform

A: EKA1-based system – 2 CPUs,
bus connected

CPU CPU

RTOS

Symbian
OS

Baseband
Stack

GUI

Apps

Hardware Platform

B: EKA1-based system – 2 CPUs,
shared memory

C: EKA1-based system – 1 CPU, shared
by Symbian OS and Partner OS

CPU

RTOS

Symbian
OS

Baseband
Stack

GUI

Apps

Hardware Platform

D: EKA2-based system – 1 CPU,
Baseband Stack directly hosted by

Symbian OS

CPU

Baseband
Stack

GUI

Apps

Hardware Platform

Symbian
OS

Figure 15.1 Hardware design options

books, call logs, messaging (SMS, MMS, email, and so on) require access
to phone protocols and data services (such as networking and Web
browsing) need to control the phone side in a modem-like fashion.

While the telephony application that the user sees is relatively simple,
the underlying engine which sits beneath it is quite complex. It needs to
handle a number of cases such as ensuring that emergency calls are always
possible, even in low-memory conditions, and it must interoperate with
hardware accessories such as headsets, as well as specific call-handling
and over-the-air (OTA) settings protocols (e.g., call-handling and SIM
toolkit functions).

THE PHONE OPERATING SYSTEM 373

Supporting New Hardware

The real-time kernel (EKA2) is still valuable even in designs that retain a
separate, dedicated RTOS or partner operating system. Whether or not it
hosts the baseband, EKA2 has advantages on the application side too.

Ian Hutton:

Hosting the telephony stack directly on Symbian OS requires real-time capa-
bility – and this is an issue. But the other argument for EKA2 is that it will
allow mobile-phone manufacturers to integrate more multimedia hardware.
The increased complexity of the hardware puts demands on the operating
system that are increasingly hard to sustain, just with the level of interrupts and
so on, and that’s where EKA2 makes the difference. So enabling the integration
of more and more hardware without compromising performance, which is
what we are witnessing with phones, is the real bonus.

The other aspect of new hardware – cameras, audio-codecs, high
resolution displays and multiple displays, multiple radio interfaces and
new memory formats such as NAND flash, to give the most obvious
examples – is that it needs drivers and, increasingly (and especially for
more exotic hardware), the drivers are likely to be proprietary rather
than supplied by the operating system. Easy integration of third-party and
partner drivers becomes a significant matter. EKA2 has been designed
with these needs in mind.

Supporting Services

Networks are driven by services and services are supported by phones.
As voice services become increasingly commoditized, existing non-
voice services such as messaging, browsing and new services (alternative
network access through Wi-Fi, broadcast TV, presence and navigation)
become more important.

Supporting Features

There is no good definition of what features make a smartphone into a
smartphone, a mid-range phone into a mid-range phone or a low-end
phone into a low-end phone.4 Typically the measure is Bill of Materials
(BOM) cost; as manufacturing techniques improve and Moore’s law5

4 In [Lindholm et al. 2003, p. 172], ‘smartphone’ is still an emerging category defined
by its balance of phone, personal productivity, imaging and gaming features.

5 Moore’s Law, derived from an article by Gordon Moore of Intel, originally published
in Electronics Magazine in 1965, is popularly formulated as predicting a doubling of
computing power every 18 months.

374 JUST ADD PHONE

High

Low

Time

Features

Bill of
Materials

In 2007, best guesses are that
entry-level phones will target BoM
costs of less than $20, while high-
end phones based on Symbian OS
and competitors (Linux, Microsoft)
will target costs of less than $100.

Feature phones, the so-called ‘mid-
tier’, are likely to be aiming at less

than $50.

Figure 15.2 BOM costs fall but feature pressure rises

continues to hold, BOM costs fall (See Figure 15.2). As volumes continue
to push inexorably upwards, driving marginal costs down, so the cost of
a given feature set drops inexorably.

Meanwhile feature pressure (the demand to pack more and more
functionality into phones) exerts a degree of counter pressure, driving
ROM/RAM peripheral hardware requirements up. (For example, the
camera-phone has evolved into the multi-camera-phone; still pictures
have become video sequences; the ringtone phone has become a music-
playing phone and has subsequently evolved into a direct competitor to
MP3 players.) It’s not clear whether that means that the BOM costs are
not falling as fast as they might and therefore the line between high-end
and mid-range is not falling as quickly as it might or whether it just means
that we are all migrating to the high end.

Supporting the User Model

Phones are branded goods, fashion items, consumer appliances (see
[Lindholm et al. 2003, Introduction]), and a host of other unlikely things
that drive user expectations for how they behave, how easy they are to
use and what they do. Phones have hard keys and soft keys; some have
keyboards, some have pens, some accept voice commands; all may raise
issues about handedness and screen orientation. Users expect ‘natural’
interaction models, associate interaction styles with brands, and fuel both
performance pressure and feature pressure (where the performance and
features of mid-range phones are increased to match high-end phones).

Supporting the Market

Phone manufacturers typically want rapid product cycles as part of their
drive towards increased volume of sales. Feature pressure (again with a
helping hand from Moore’s law and the economics of volume) drives

THE PHONE OPERATING SYSTEM 375

a rapid technology-proliferation cycle. The pace of the drive towards
increased volume of sales continually quickens and the cycle times for
technology moving from research labs to products speed up.

The result is a demand for continuously greater agility from suppliers,
including the operating system supplier, as well as continuously greater
predictability, fuelled by the relatively long product lead time coupled
with a short product cycle and lifetimes.

There is additional pressure on a system when it becomes a platform
(being a supplier is easier: there is only one customer to please).

1997: The State of the Art

It is worth recalling what a mobile phone was in 1997, the year the Psion
Series 5 was launched.

Mobile phones had been mass-market products since perhaps 1994–5,
depending on which geographical area you look at, with the UK’s
penetration of a little over 20% about average for Europe, excluding
Scandinavia (which was more than twice that). Penetration in the USA
was a little ahead of the UK, Canada a little behind, and in the rest of
the Americas almost non-existent, as it was in China [Haikio 2002, pp.
157–9].

Worldwide, mobile phone sales were just under 108 million units (in
2005, just under 800 million units were sold).6 Motorola was dominant
with 23% market share, Nokia was a little behind with 19%, and Ericsson
was a little more behind with just under 15%. Nokia, indeed, seemed to
have stumbled, issuing profit warnings in both 1995 and 1996. Otherwise,
Vodafone in the UK had a little over two million customers (15.5 million
in 2005) and had just introduced a pay-as-you-go service. The WAP
Forum had just been created, with the first WAP phones two years or so
away.

Motorola’s phone of the year was the SlimLite (see Figure 15.3a),
with a 4×16 character monochrome display and a 100-entry phonebook
memory. Among Nokia’s hot phones was the 3110 (see Figure 15.3b),
in which a new, easy-to-use ‘one key’ (the Navi-key) user interface
debuted. The design context was still dominated by users’ propensity to
use anything that looked like a dedicated ‘Call’ key to try to get a dialing
tone before keying in a number. One of Navi-key’s goals was to help

6 The statistics and product specifications in this and the following paragraphs come
from public sources. Some useful URLs include

- www.gartner.com/press releases/asset 132473 11.html
- www.gartner.com/5 about/press room/pr19990208a.html
- http://en.wikipedia.org/wiki/List of mobile network operators
- www.gsmarena.com/motorola slimlite-78.php
- http://en.wikipedia.org/Nokia 7610
- www.paconsulting.com/news/by pa/1997/by pa 19970115.htm

376 JUST ADD PHONE

(a) (b)

Figure 15.3 a. Motorola SlimLite and b. Nokia 3110 phones

users learn to ‘punch in the number before trying to contact the network’
[Lindholm et al. 2003, p. 75].

Typical screens that year were 84×48 pixels, monochrome, giving 3 +
2 character lines (3 lines of ‘user’ text and 2 status lines). A typical 1997
Nokia (based on their DCT3 hardware platform) had 400 physical parts
([Lindholm et al. 2003]). DCT4 arrived in 2001 and halved the number
of parts to 200.

Mobile network data services were largely unused except for SMS,
which the analysts were still describing as underused. But the two-box
PDA–phone solution, using a GSM phone as an infrared or serial cable
modem, was seen as the coming thing for enabling email and Internet
access and fax transmission from PDAs via phones.

The still somewhat revolutionary alternative could be glimpsed,
though, in the Nokia 9000 (Figure 15.4), Nokia’s first generation Com-
municator and the first converged PDA–phone device, introduced in
1996.

Figure 15.4 Nokia 9000

THE PHONE OPERATING SYSTEM 377

Convergence
Convergence may or may not have been inevitable but, despite its clunky
physical form factor and monochrome display (640×200 pixels), the
Nokia 9000 had put it on the cards. (It was a big, exciting, and very secret
project inside Nokia; so much so, according to [Lindholm et al. 2003,
p. 74], that no-one wanted to work on basic phones, which suddenly
looked ‘trivial’ in comparison. Lindholm’s Navi-key project had a hard
time competing with it for resources.)7

The two-box solution, pairing a data-centric handheld such as the
Psion Series 5 with a communications-centric GSM mobile, still seemed
to be where the market was leading. Convergence, on the other hand,
seemed to suggest putting a phone into a Series 5 or, more to the point,
putting the Series 5 operating system into a phone. At some point, it
became the inevitable next step.

Putting a Phone into the Series 5
The challenge which Symbian’s engineers faced was to take an operating
system that was designed and created with an almost obsessive attention
to the details of a particular product context and evolve it to suit a different
product just as well. It does not seem far to travel, after all, from the (ARM-
based, pocket-sized, 1/2 VGA screen, clamshell-case, keyboard-centric,
battery-powered) Psion Series 5 PDA to the (ARM-based, pocket-sized,
sub-1/2 VGA screen, clamshell-case, keyboard-centric, battery-powered)
Nokia 9210 Communicator. And it seems not that much further from the
Communicator to an even more phone-like and less PDA-like device, in
fact to a mainstream (if high-end) phone.

The Symbian OS mantra ‘built for mobile phones from the ground
up’ doesn’t quite tell the complete technical story. The operating system
which shipped in the summer of 1997 in the Psion Series 5 knew exactly
what device it was built for: a clamshell, AA-battery-powered, always-on
PDA, with a keyboard, a touch screen and a couple of serial ports. It was
optimized for mobile devices, but it also required several evolutionary
steps to properly address mobile phones specifically.

Peter Jackson:

I don’t know the point at which we really got to grips with the idea that we
were making an operating system for a phone. Because when we started we
weren’t, we didn’t. We were making an operating system for a Series 5, not
even for a generic PDA but for a Series 5, and for other things like it that we
might invent.

7 Lindholm was later the architect of the Series 60 user interface and arguably the driver
behind its platformization.

378 JUST ADD PHONE

15.4 Telephony

Telephony services in Symbian OS are organized around the ETel server
and framework, which is at the heart of the application-side interaction
with the phone baseband or, as it was originally conceived, any modem
at all.

As Andy Cloke remembers it, development work on ETel started even
before the Series 5 had shipped. See Figure 15.5.

Andy Cloke:

We started doing ETel when Roger Nolan8 was running the Comms group.
I don’t think it was entirely clear that we were going to do the next Nokia
Communicator. At least, it wasn’t clear to me at that point. There was still
quite a focus on PDAs. Certainly, the thought that we wouldn’t be doing PDAs
hadn’t become clear. So it could have been PDAs in a variety of forms: the
modem could have been built in; it could have been a plug on; it could have
been wirelessly linked. It was quite different from the way we are today.

The device that came to market was the Nokia 9210 Communicator,
the direct descendant of the Nokia 9000. But at least two other phone-
based projects ran more or less concurrently with the Communicator

ETel API
Extensions

ETel API
Extensions

ETel API
Extensions

Core ETel API

ETel Server and Framework

TSY

Applications

Telephony Hardware

Application level

Symbian OS

Hardware adaptation

Figure 15.5 Telephony architecture

8 Roger Nolan had previously been a member of Colly Myers’s kernel team.

TELEPHONY 379

project, one for a Philips phone ‘companion’, which did not come to
market, and one for the Ericsson R380. (See Chapter 2 for more about the
background to these early projects.)

The starting point for the design was not really a converged device
at all. While assumptions had moved beyond being simply an operating
system for the Psion Series 5, the thinking was closer to a ‘super PDA’.

Andy Cloke:

We were thinking about the possibility that you might have multiple modems
that may appear and disappear. So the concept of PCMCIA cards that could
be inserted and removed dynamically was still very prevalent. So that was the
motivation for having multiple phones: you might have an internal modem
and a PCMCIA modem and another one accessible over Bluetooth, for
example.

ETel first appeared in the codeline at version 001 in July 1997 and
by the end of the year was providing basic ‘Hayes’ control of a GSM
phone (as modem) over a serial connection. As it happens, the test phone
was none other than a Nokia 9000. If there had been uncertainty about
whether the Nokia Communicator project was the target, it was resolved
by the end of the year and ETel was explicitly delivering into the Nokia
Communicator project.

Andy Cloke:

We established the ETel API first and then, in parallel as I remember, we started
developing an AT-command-based TSY, and we didn’t quite realize how big
a job that was. And in parallel with doing that, we started talking to Nokia,
to the Communicator development team. I remember going to talk to them
and we thought we were going to get completely toasted when we presented
our ideas because we were fairly new to it, and clearly these people knew
everything about telephony and we didn’t. I can remember coming back on
the plane after the meeting in Tampere and thinking ‘Wow!’ Because we had
expected to get roasted alive and that hadn’t happened, so we just thought,
‘How great we are, we’ve managed to get it right first time!’ It wasn’t until later
that we realized how easy they’d been on us and how much we had to learn.
In the end, we got strong design steers from Nokia and Ericsson.

In 1998, the first GSM extensions began to appear; the fax server was
integrated from a standalone component into the ETel framework (as
a framework extension). By the end of 1998, the code had reached a
degree of stability as an alpha-release component of what was by then the
‘EPOC Release 5′ platform, aimed at the new Psion Series 5MX, a souped

380 JUST ADD PHONE

up palmtop intended to have full phone and networking capability (in
two-box mode).

In January 1999, ETel branched for the Ericsson R380 and by May it
had become a component of the ER5u baseline, the so-called ‘wide’ or
Unicode build of the operating system, and part of the main codeline. By
then, there were multiple licensees taking the component.

Andy Cloke:

As you can imagine with companies working together but competing in the
same market, there were quite a few political considerations; the opportunities
for getting the different parties into a room together were fairly small, and the
amount that they would discuss in the room together was also fairly small. You
have to understand that we hadn’t shipped a phone at this point, the Ericsson
R380 hadn’t shipped and the Nokia Communicator (9210) hadn’t shipped
either. So it was difficult for us. In terms of the TSY development, both Ericsson
and Nokia were saying, ‘Don’t worry about that, we’ll do the TSY’. We all
thought that this was a good thing, little knowing that with us creating the API
and them creating the TSY that plugs into the bottom of it, we were creating an
integration nightmare. If we’d done the TSY design more in parallel it would
have been better. We would have avoided some pain later.

ETel Design Goals and Architecture

ETel’s design drivers are clear enough. It was designed to support multiple
clients and multiple dynamically loaded TSY modules with the goal of
enabling a PDA to access either a built-in or external modem – indeed,
multiple modems at any time – typically to enable data calls (for example,
SMS messaging and fax) and Internet access (for example, email and
Web browsing). From the beginning, there were also some clever phone-
specific extras, designed for the case in which the ‘modem’ being accessed
was in fact a GSM mobile phone. For example, SIM toolkit functions
allowed synchronization of on-phone SIM-stored and memory-stored
phonebook entries with the PDA contacts application.

The design took the existing serial communications architecture as its
starting point (Figure 15.6). The design goal was to provide an abstract
model for controlling phones from Symbian OS. Phone hardware was
understood in classical Symbian terms as a resource to be shared by
multiple applications with serialized access; in other words, the server
model applied. Analogously with CSY serial communications modules,
TSY telephony modules were defined as the abstractions for actual hard-
ware and a similar framework architecture to the serial communications
system was adopted. Depending on what hardware was available to
the system (and what application was requested) the TSY would either
interface directly to the hardware (the baseband–built-in modem case)

TELEPHONY 381

or access the hardware through the serial communications system (for
example, a TSY sending AT commands to a true Hayes modem or to a
GSM phone presenting an AT interface, over infrared or a cable serial
connection).

The ETel architecture closely followed the tried and tested architecture
of the Comms services. A classic Symbian OS client–server interface
shares access to telephony services and hardware between multiple
clients. A framework architecture provides for a core API which is
extensible in two directions by plug-ins; horizontally, ETel extensions add
richer functionality to the basic core set with extensions for fax, packet
data for GPRS and 3G, the Multimode extensions for CDMA2000, and
SIM toolkit extensions; vertically, plug-in TSY adapter modules, modeled
on the Comms CSY modules, that are loaded on demand interface the
abstracted ETel APIs to the actual hardware available.

ETel therefore interacted closely with the serial communications system
and, in fact, did so through the generic mechanism of the Socket Server
(requesting a serial socket connection, for example). Looked at from
the other direction, ETel equally became a socket provider, providing
telephony sockets to serial or networking components.

The communications design analogy was an obvious starting point,
especially because the design was proven and had shown itself to be both
extensible and flexible. In effect, the whole communications architecture
was elaborated horizontally so that the telephony system was created as

Client-side API

Core Server

Plug-in framework

Clients

Adapter plug-ins

Figure 15.6 ETel design mirrored the design of the serial comms server

382 JUST ADD PHONE

a peer of the networking and serial communications systems. The serial
system was ‘first among equals’, primarily because, in the use cases that
drove the design, serial communications via modem always provided the
physical access to the network (phone or Ethernet).

With hindsight, however, the PDA or two-box use case dominated
over the built-in phone use case. ETel started with a design goal which
it met admirably, but which was rapidly overtaken by the change in
context. Symbian OS in a phone has different telephony requirements to
Symbian OS in a modem-connected PDA.

Andy Cloke:

Our early design assumptions were not really true any more; modem wasn’t
the primary use case. And certainly the primary use case that we’re dealing
with now is a phone that has a single baseband, and consequently ETel has
morphed into a baseband abstraction.

The more complex question is whether ETel’s design supports the
needs of an abstracted baseband or simply provides an API for application
access to the baseband.

In design terms, ETel is a classically good example of object-oriented
abstraction. Its three key concepts are phones, lines and calls. Clients
request an RPhone session, from within which an RLine subsession can
be opened and a further RCall subsession can be created.

The TSY instantiates corresponding derived classes from the frame-
work: CPhoneBase, CLineBase and CCallBase. In turn, these objects
create AT commands, instantiated as objects derived from CATBase,
which are then sequenced through the TSY’s command sequencer, which
controls a communications port requested through a serial communica-
tions session owned by the TSY. The communications port in question
provides a direct (docking-style), infrared or serial-cable connection to
an actual phone, which responds to the AT commands.

Andy Cloke:

I wish in hindsight I had spent more time looking at the ISDN specs, standard
wireline phone specs, and the GSM standards. I think Phone and Call are
still quite valid abstractions, but I think Line was a bit of a waste of our time.
It was there originally because, on a single GSM phone in the GSM specs, you
can have a different telephone number for voice calls, data calls and fax calls.

TELEPHONY 383

Fax, indeed, turned out to be troublesome.

Andy Cloke:

Fax over GSM is tricky because of timing issues. You have to spoof packets
on the base-station side to stop the fax machine timing out because the
transmission delays are too long over GSM. Well, and then it all gets more
complex because of the alternate numbers. But anyway, I think I would have
dropped the Line abstraction.

Another, subtle, design assumption that proved a problem comes back
again to assumptions about the nature of the modem that is providing
access to the phone network.

Andy Cloke:

That’s something else that ETel was predicated on, that the modem would
become completely commoditized, and while it is slowly moving in that
direction, with the advent of 3G and all the different services on there and
all the different ways that packet data works and some of the services work,
that is not true yet. And coming you have HSDPA and HSUPA – High-Speed
Downlink and High-Speed Uplink Packet Access – which will be the next
service that will be required. It’s already being referred to as 3.5G. So these
sorts of forces stop the modem software – I’m using these words, modem and
baseband, interchangeably – they stop that software becoming a commodity
because it just moves on and on, it’s moving so fast. How many non-proprietary
3G signaling stacks are there out there that have any kind of market credibility?
I think the answer is as small as three or four, ones where you’re going to buy
off the shelf, so it’s certainly not yet a commodity item.

The Problem With ETel

Charles Davies:

We did a telephony API, whereas what we needed was a distributed computing
solution with a baseband. Or to put it another way, it was not so much a
telephony API we needed as a subsystem that does more than telephony, but
of which telephony is one application.

The more general case of supporting data communications, including
abstracting the baseband, is the direction in which Charles Davies is
heading. With hindsight, the requirement was not to provide abstract

384 JUST ADD PHONE

control for a phone, because outside the two-box context that is not
what devices require. What devices really require are high speed data
connections between the application side and the phone baseband. As
Davies puts it, something much more like what he calls ‘a distributed
computing solution with a baseband.’

Charles Davies:

What that really means is that you supply a reliable by-value RPC mechanism
between the two sides which is independent of the application you are doing
it from, and then telephony would be one of the applications.

On the question of the importance of telephony, Charles Davies is
even more radical.

Charles Davies:

You can debate how important a telephony API really is anyway. Many
other APIs are much more important from the point of view of the operating
system, in the sense that connections to packet data are more important,
because telephony is only needed by one application, although it certainly is
an important application. But it’s all the rest of it that allows a phone to be
built.

Andy Cloke takes a more sanguine line.

Andy Cloke:

With hindsight we would have preferred to establish a narrower API upon
which Symbian would have built its services, in other words, data calls,
establishment of PDP contexts and secondary contexts, transmission of SMSs,
reception of SMSs, these sorts of things. It’s very important that we have an
API which works well there, a downward, hardware-adaptation-interface-style
API.

The Danger of the Thin API

For Andy Cloke, the real lesson here is a more general one about API
design in the case where both the application-level API clients and the
hardware-level adapters are extrinsic to the operating system, and the
operating system has the role of defining a thin, stable API against which
partners can develop their value-adding components. In this case, two
big issues arise: how thin can a thin API be and still be sustainable? And,

TELEPHONY 385

how do you manage the design and development process to ensure that
the API is viable and the right one?

Andy Cloke:

ETel today is a baseband abstraction layer and suffers because it tries to provide
an abstraction for the whole of the baseband. Not just modem functionality,
but also the ability to make calls, put calls on hold, do multiparty calls and all
that stuff, and it also contains all the supplementary services, call forwarding,
notifications that somebody else has put you on hold, so all of this kind of
Layer Three GSM signaling, all these notifications need to come through. As
well as that, it also has to be able to transmit SMS messages, which are actually
a reasonably complex beast when you dig down because there are various
different levels of ACK-ing that occur in the SMS protocol stack, and then there
is USSD too, the unstructured service data.

Symbian does not build the telephony application above ETel, and we do
not own the TSY below ETel. Where you have code like that which is so thin
between two parties, between the top-side API users and the bottom-side API
users, especially when they’re very broad, well it’s almost just worth getting
out of the way and letting the users sort it out between them. Actually an API
produced by the creator of a telephony engine might well deliver the best
result.

It is possible, of course, to define, create and successfully manage
‘thin’ frameworks. There are successful examples in Symbian OS, as well
as industry examples.

Andy Cloke:

A good example is Direct X, although it’s in a slightly different area. You have
the games developers on one side and the graphics drivers creators on the
other side. It’s a tricky path to walk, creating that kind of thing. You have to
have everybody bought into the fact that you need it, and then create a forum
with a number of graphics card creators and a number of games developers,
and you need to mediate between them, which can be quite hard. Similarly,
this is a hard thing to do in the telephony area.

What makes it difficult in the case of ETel is the very specific dynamic
between Symbian, as platform company, and its licensees, as phone
manufacturers. Because licensees already have their own solutions in
this area – it is, after all, their very particular expertise – they do not
necessarily see this as a place in which the operating system either can
or should try to add value. From the Symbian perspective, however,
giving up its telephony offering would reduce the value of the platform
for potential new licensees lacking existing investments in telephony.
Symbian stands in the centre of these conflicting positions.

386 JUST ADD PHONE

Andy Cloke:

Some licensees do not see this as something they require. They would like to
talk straight to the silicon, direct to the baseband. They don’t want anything
in the way. So they just want to know what is the minimal TSY that they need
to create in order to support Symbian OS on top of it, and the rest of it they
bypass. They just talk straight to the baseband.

But that’s not the position of all licensees. For example, it is a matter of
public record that Nokia does not license its own telephony application
(its crown jewels, or part of them) to competitors. It is important therefore
for the viability of the S60 platform that its licensees should be able to
integrate their own (or a third-party) telephony application. For these
licensees, an application interface is critical and it is also critical that it
is supplied as part of the operating system, so that it can be standardized
and controlled, since without a Symbian OS API between the application
above and the TSY below, there would be no standard for the interface
between the two, or at any rate no controlled standard.

This implies a clash of interests between Symbian, those customers who
are in the business of making complete telephony solutions themselves
and simply want the rest of the operating-system functionality, and those
who may not have a telephony application at all and want the operating
system they buy to offer a complete solution.

This is, of course, not a design or engineering problem; it’s a business
problem and there is no engineering solution to it. What is the lesson?

Andy Cloke:

You should do an incremental design and you should also make sure that you
have an interested community both above and below the interface and that you
involve them, that you validate the interface by continuing effort on it through
the development process of the clients and the plug-ins on both sides, really to
prevent yourself being circumvented wholly by those people. Especially when
you have the same company building both the client and the plug-in. Because
they will build assumptions into their client code which are fulfilled by their
plug-in code, but which are completely absent from the specifications. And of
course they will extend it further than you would ever expect.

15.5 Messaging: It’s Different on a Phone

Messaging is another area which proved tricky in the transition to
being a full-on phone-focused operating system. The Psion Series 5 was

MESSAGING: IT’S DIFFERENT ON A PHONE 387

specifically intended to provide integrated email and, in particular, to be
‘Internet ready’, offering standard, Internet-based mail solutions, as well
as access to other Internet services. Support for Internet-based email was
therefore an important design driver.

Keith de Mendonca joined Psion in 1994 in one of the early, small
expansions of the company which came with the success of the Series 3
and the start of the preparations for the Series 5 project.

Keith de Mendonca:

I started with SDK work as a grounding, and I was working with Colly Myers
on the Psion remote comms protocol SDK for the Psion Series 3a. Interestingly
enough, I remember getting a fax of appreciation from a small company in
America that I didn’t really know, a small company called Palm Computing
that it turned out we were in communication with about them perhaps writing
connectivity software.

At around that time there was talk of cash-rich Psion buying Palm.
But in the end Psion and Palm went their own ways. Meanwhile, after
a stint writing applications for some of the later Series 3 machines, de
Mendonca moved to the new Messaging team.

Keith de Mendonca:

I think at the time it was the biggest team that Psion had ever had working on
a single application.

Its first task had been to create a messaging application for the
Series 3.

Keith de Mendonca:

On the Series 3 the focus had been on working just with corporate mail. It was
very much before the real Internet explosion, so it was just bespoke. It worked
with ccMail and I think one or two other mail clients. It was only later that
there was a decision to go Internet, where the open standards were.

For the Series 5, the team started from scratch with a new, modular
and flexible messaging-client application which was designed to provide
a seamless, unified, single-point-of-access interface to email and other
message types.

388 JUST ADD PHONE

Keith de Mendonca:

The intention for the Series 5 was very much that open standards were the
future for us and the company. This was the most flexible way of actually
interacting with servers and hence getting the best market share. So all the
work really was to do POP3 and SMTP and IMAP4, which we started doing
for the first time. In addition to that it obviously did SMS and there was a fax
component as well, so you could send and receive faxes. So that was all in
the messaging application and the design of the application was informed by
discussions that we had been having at the time with Nokia, because obviously
in the background there had been lots of work thinking about what was to be
in the Communicator.

The Nokia Communicator project was already having an influence on
the design. The ambition level was high.

Keith de Mendonca:

That was probably representative of the Nokia Communicator requirements
generally, that what everybody shipped in the end was much less than what
we intended to do when the project was scoped at the very beginning. I think
the idea about what this next generation of communicator should do was
beautiful and visionary, but the vision was very much greater than the reality
of what both companies could produce in the time available.

Messaging Design Goals and Architecture

The key design drivers were to support open standards, with a flexible
and extensible solution. The core of the design was a message storage
framework for all messages, regardless of type, with plug-in protocol
modules for particular message types. This was a modular solution, based
on sound object-oriented principles of abstraction from a generic notion
of message to the individual message types, designed for openness and
extensibility.

Keith de Mendonca:

You had one message store but you could actually plug in different modules
that allowed you to add different messaging protocols as and when they came
up and even add those after market. So you could literally just download some
SIS file and install some components, and suddenly you had fax or IMAP4
support, for instance. So the message architecture was designed from the very
beginning to be very modular and flexible and that is the architecture which
we still have today.

MESSAGING: IT’S DIFFERENT ON A PHONE 389

OBEX
MTM

Viewer

Editor

IMAP4
MTM

Viewer

Editor

POP3
MTM

Viewer

Editor

Message store and framework

Store

Filesystem

MTMs

Underlying
system

Other MTMs...

SMS
MTM

Viewer

Editor

Disk

Figure 15.7 Messaging architecture

Following the general principle of Symbian OS design, access to the
message store is through a server, which offers a client-side API. The plug-
in modules (Message Type Modules or MTMs) are loaded dynamically by
the framework on demand, based on the type of the message, and handle
everything from the bitmap which is displayed in the inbox to indicate the
message type and status, to creating, copying, moving, deleting, parsing
and editing contents of the message type. See Figure 15.7.

Keith de Mendonca:

It also provided a back door for any special commands, which was literally
just a special ID and any arguments that you chose to send to it in case
those generic ones didn’t actually represent what you were trying to do with a
particular message type. The framework also allowed a simple API for another
client of that server, another application, to send content as a message and
choose the type dynamically based on the plug-ins which happened to be in
the framework at that time, the Send-As API.

While the design met the stated requirements, the result was a large
and complex component with complex APIs. In at least one area, the
flexibility of the application had an immediate pay-off. With the messaging
application still not ready to ship on the final Series 5 launch date, the
messaging architecture made it possible to ship a complete messaging
package as a user-installable after-market upgrade. It duly shipped some
months later.

That flexibility proved just as useful for the first release of Nokia’s 9210
Communicator. With the product pushing the limits of its ROM budget,

390 JUST ADD PHONE

messaging saved the day by shipping some features not in ROM but as
optional installable packages on a companion CD.

Keith de Mendonca:

When we ran out of ROM space on the Communicator they decided to put the
fax MTMs on the CD instead of built into the actual machine. It allowed them
some flexibility in the ROM. Likewise, IMAP4 was originally delivered as a SIS
file because it was finished a little later than the messaging application, which
kind of proved that the architecture worked, you really could deliver things
after market.

The flexible architecture and, in particular, the support for after-market
delivery of MTMs by third parties and partners, which enabled messaging
capabilities to be extended for any future message types, had been among
Nokia’s headline design requirement.

Keith de Mendonca:

It was responding to a customer-level requirement as far as we were concerned.
But I’m not really sure to what extent that flexibility was really needed and
you could argue that it was over-engineered or the requirement was a bit too
heavy-duty, for the actual reality of what the application required. There was
a vision of a new community of programmers writing corporate email plug-ins
and suchlike, but the downside of such an extremely flexible architecture is
that, unfortunately, often it can be quite complicated. This was quite a barrier
for programmers and there’s not really been a large market for those kind
of MTMs to this day. But of course then you are left with your architecture,
which you need to maintain and continue. A lean development model might
have delivered the best value first, and then grown it as and when the appetite
of both companies grew and we understood better what the market really
wanted.

Perhaps one of the more puzzling facts of the phone market to date
is that, despite the apparently huge popularity of products such as the
Blackberry, email on phones has not yet proved a core function. In
general, messaging – other than SMS – seems to have made little impact
on users to date.

Keith de Mendonca:

The Communicator was very advanced but also much of the same code went
into the Ericsson R380, which was much smaller, but that was a really visionary
product as well. Everybody in the messaging team has picked up their mail
on their phones ever since that day whenever it was, 1999 or thereabouts, yet

MESSAGING: IT’S DIFFERENT ON A PHONE 391

that’s only becoming a relatively recent phenomenon for other people buying
phones. So it was extraordinary power that there was inside the actual product
right from those earliest days.

What is the lesson? That making a phone operating system is not just
about putting cool technology in the box. The harder formula seems to
be – the right technology at the right time in the right product for the right
market.

Meanwhile, flexibility implies complexity and the complexity of the
messaging architecture has, arguably, had its downside.

Keith de Mendonca:

If I had my way again we would have presented less complex APIs for mes-
saging. This complexity is one reason for the small number of people actually
innovating using messaging. For instance, it’s quite a big job to port your own
corporate email solution that you might already have running on WinCE or
some other device, to then package those into the MTMs, understand that
paradigm and make it work on a Symbian phone. So it’s been a barrier to
that.

But also performance became an issue, primarily with email, due to
some design decisions that were made early on. We also have been held
back, perhaps, by feeling very constrained by APIs and data structure storage
methods. That looks ridiculous looking back now. Of course we are now
very closely restricted by such considerations, because we sell so many
phones a month, but I felt very restricted about changing those things
in Symbian OS v6.0 or between v6.0 and v6.1, when we would have
survived making changes. But there was this compatibility promise very
strongly enshrined in Psion and Symbian in those times, that you couldn’t
break binary compatibility, so it was quite difficult to make substantial
changes.

The Universal Inbox

There are two other lessons from the messaging experience, one about
designing for the wrong use case and one about performance.

Keith de Mendonca:

Although we knew our primary goal was to produce mobile phones and the
phone would always be there, there was still quite a lot of work, say in the
Symbian OS v6.1 project, for two-box support, even though the particular
product never came to fruition. That probably resulted in the two-box concept

392 JUST ADD PHONE

not dying so quickly, although the company was focusing 100% on its new
environment.

One particular issue concerns the design of the message folders.

Keith de Mendonca:

When we designed messaging we had a concept of ‘the universal inbox’ [See
Figure 15.8], so it didn’t matter if it was SMS or emails or whatever, they
would all appear in the same message store and appear physically in the same
inbox view. That’s exactly what we used to have on the Series 5, where, of
course, it was a two-box solution. You put your phone next to it or connected
a modem to it and you downloaded all your email, that was the concept, and
it all appeared in the inbox. And if you synchronized your SMSs, they would
appear there too.

But from the beginning we also started toying with an idea of offline
operations, a remote mailbox view. The point was that because you were
a small device and you didn’t have that much memory, you didn’t want to
download everything, because you didn’t know how big those things were
going to be. Quite frankly you might not want to have them. So you would
synchronize the headers, that’s all that appeared in the inbox, and then if you
were interested in anything, then you would populate the individual items and
fill them up with their content. The view was then represented as an external
view, those messages didn’t appear as just headers inside the inbox, they were
actually shown as a separate independent view representing to the user that
they were looking somewhere else, and in fact they were inside my very nice
tree-structured message store browsing the complete structure of the message
contents, which was very expensive in performance, not at all like just looking
at the headers.

Now, in effect, the view on a phone is actually that offline view, certainly
it’s the way that Nokia displays them, it’s the view of your mailbox. You no
longer just synchronize the headers, on a phone you go straight into browsing
and opening and reading. So the concept of the universal inbox immediately
dies, because in the new model that we followed you had a remote view
of each of your email accounts and those messages never appeared in your
Inbox.

The difference between browsing the simple, inbox view of the message
headers and browsing the elaborate, tree-structured representation of the
complete contents of messages has a significant performance impact, one
which, moreover, is tricky to resolve because the design is being used in
an unintended way.

There are other impacts too, which ripple down throughout the whole
design. For example, the basic assumptions underlying the design of the
messaging APIs are the wrong ones for some of the most common phone
use cases.

MESSAGING: IT’S DIFFERENT ON A PHONE 393

Message...

Message...

Message...

Message...

Message...

Messages
My Inbox

email

SMS

MMS

email

SMS

Messaging

 My Inbox

 Remote Mailbox

Figure 15.8 The universal Inbox

Keith de Mendonca:

Consider the generic API for the MTMs, which includes Copy and Move, for
example. Actually, you never copy or move anything to your inbox on our
phones. Those methods on that generic API for all of those MTMs are probably
never used nowadays, because the API doesn’t match the common usage, so
the methods are redundant. Should we have predicted that? But take a different
example, along comes MMS and suddenly our original assumptions about the
universal inbox start to make sense again, because now you can have a
mixture of SMS and MMS messages in the inbox. It’s become universal again!
But it’s only when that MMS technology reared its head that you actually had
something else to go in your universal inbox, because remember, emails are
always set off alone in their own view anyway. But can we claim that our
design was right after all?

It is not so much a point about user interface design, because the
underlying conceptual design is interpreted by the user interface in a way
that suits the user interface paradigm.

Keith de Mendonca:

Of course it’s up to the UI how it actually presents those things. On UIQ
phones, it doesn’t mix them all together in the inbox. It shows you different
message types and it ‘pretends’ they’re all in the same general location.

394 JUST ADD PHONE

Conceptually they’re stored in a different structure underneath these remote
services.

The underlying conceptual design does, however, have a strong impact
on how the system APIs below it, and which support it, are used. In
the case of the original design of messaging, the supporting APIs are
misused.

Misusing Store

Keith de Mendonca:

The conceptual model for the message store is a logical tree structure with
the root at the top. Underneath the root there are the folders that you know
about, the Inbox, Outbox, Drafts and Sent, also some representations of other
things that are on the device; those are all seen as local services. It also has the
concept of remote services, so your email at work technically would be the
SMTP email server at work, or there’s the fax machine you are trying to send
to or the SMS service centre that you’re sending your message to. Normally
those things are invisible, but they still exist physically and are represented
inside the message store.

Symbian OS supports folders, and it’s very flexible – you can create any
number of folders and put any number of messages in folders. Logically that’s
just a tree stored in RAM, in a RAM index effectively, but also it’s written onto
disk in case the battery fails, and it uses the Stream interfaces which are part
of the Store in Symbian OS. It was designed in the same way that we designed
most things, to be robust and never to lose data if you lost power. Therefore
there’s a lot of writing to disk, and as we know and have learnt, the Store
components themselves, because they are so careful in making sure that you
can never lose any data, are also quite expensive in disk writing.

This wasn’t a problem when we wrote the message architecture, because it
was designed for the Psion Series 5 which had a RAM disk and didn’t have any
performance problems. However, it started to create some problems if you put
your message store on a removable CF card, which was the first-generation
flash technology.

The team made minor modifications to their implementation when
performance problems began to manifest themselves on real hardware.
The fact that development was in the first instance carried out under
emulation didn’t help matters and the inevitable desire of licensees to
keep prototype hardware under wraps didn’t help either.

MESSAGING: IT’S DIFFERENT ON A PHONE 395

Keith de Mendonca:

A lot of last minute changes were made to try to improve the performance,
including for the Symbian OS v6.0 release which went into the Communicator.
One change was that we decided we couldn’t afford to use Store for those
small files, and we actually created our own store without changing the API.
So from the public interface it would seem as if Store classes still exist, but we
just wrote a binary file format which was faster, with some loss of robustness
if the battery failed.

Also, email messages were described in the filing system not as a single
message containing all the data for an email, but as a tree of objects repre-
senting exactly the MIME structure of that email. This meant you had an awful
lot of files or objects for representing one message. This was true especially
for HTML-style emails which are the standard way of sending emails now,
because they not only send you the HTML version which has the complete
content associated with it, but they also send you a simple text version as well,
and of course we stored that as well. You may have 8 or 10 individual files rep-
resenting an email, and if you have 8 to 10 files to write then obviously it will
be slow. That’s a basic challenge that we have even today, the performance of
downloading emails, where we still have to create all those physical objects.

As in any other areas of the operating system, performance issues are
continually reviewed and implementations tuned. But no one likes to have
been wrong-footed by designing for a use case which changes because
the overall device design point changes, as happens, for example, in the
move from PDA to phone assumptions.

Keith de Mendonca:

Obviously, you would like to start again knowing where a lot of the faults are.
But we are still constrained, we can’t break this binary compatibility which we
have offered so long, because the cost to customers and others of changing the
message applications is quite expensive if we make any changes. So we work
within the boundaries of our compatibility requirements and we’re always
making improvements.

Another compounding problem was the unfortunate interaction of the
Store design with the behavior of Flash memory systems. Having been
designed in the context of a conventional, fast, random-access, RAM-
disk-based file system, the design turned out to be weak in the context
of sequential-access, fast-reading but slow-writing flash hardware. Store,
designed to offer a transaction-style, robust, append-based file system

396 JUST ADD PHONE

does not have a natural concept of updating already written data. Streams
are appended sequentially to the physical medium and the header index
is updated to point to them.

In the worst possible use case for a flash-based system, the design
of Store ensures that it only ever grows and, in the worst possible use
case, it even grows to delete things, depending for its space performance
(so that it does not outgrow available memory resources) on a regular
compaction cycle. The reason, of course, is data integrity, and that most
basic, fundamental guiding principle of the operating system: ‘Thou shalt
not lose the user’s data’.

To some extent, the problems with the early version of the messaging
framework highlight a more subtle problem.

Martin Tasker:

The ground rules that we gave ourselves when we were making the PDA
are not the same as the ground rules in the mobile phone space. We told
ourselves that the ground rules are that you should assume you’ve got very
little memory, and you should assume that the process is going to run forever,
but also to assume that you’re not in an embedded OS context where you can
give a fixed partition to everything.

The thing is that in the mobile phone world, you do have system restarts
and memory management is more complicated. If you look at the phone
from a high-level perspective, don’t just ask about the details of programming.
Instead, ask about the dynamics of the number of applications and the number
of services and how often it is turned on and off and how you allocate memory
when you’re sharing it between the programs, and look at the data storage
and the RAM. The answers to those questions are different from those that we
originally looked at in the PDA context.

It is not that the problem is one of greater complexity; it is different
complexity.

For Ian Hutton, the distance between the early phone projects such
as the Nokia 9210 and the Ericsson R380 and the phone projects that
Symbian is involved in today, is the best demonstration that the hard
lessons have been absorbed and the big step has already been made.

Ian Hutton:

I think the fact that we really are now beginning to see very, very ordinary
phones, not just the incredible phones but ordinary phones with Symbian OS
inside, phones that will still do anything you want, but are very similar to
ordinary mid-range phones. In a way, that’s the biggest step.

16
One Size Does Not Fit All: The Radical

User Interface Solution

16.1 Introduction

Symbian OS is an inherently GUI-centric operating system which ships
without a GUI of its own.1 Moreover it targets a market (wireless devices
generally and mobile phones in particular) in which the user interface is
a critical competitive element. Delivering an operating system without a
user interface is a radical software solution to a business dilemma: how
to create a common, multi-vendor platform for phones, while at the same
time not merely supporting but positively driving vendor differentiation.

This case study traces the evolution of Symbian’s user interface archi-
tecture and strategy. User interface issues are particularly interesting
because they highlight many of the unique problems of the mobile phone
market. It is significant that Symbian’s user interface architecture and user
interface strategy have both undergone some quite radical transformations
since the company was first created.

Although in computing terms the specification of a typical phone based
on Symbian OS in mid-2006 is equivalent to that of a mid-range PC of the
mid-1990s and exceeds that of a mid-range PC of the 1980s by an order of
magnitude,2 nonetheless a mobile phone is only incidentally a computing
device. It is simply not thought of by users as being ‘a computer’ (What

1 I use the terms GUI and UI almost interchangeably in this chapter; and use ‘GUI’ when
I want to emphasize the graphical aspect in particular.

2 80386-based PCs clocked at a maximum of 33 MHz in 1985; 80486-based PCs
reached 100 MHz by 1994; Nokia N series phones have reached 300 MHz in mid-2006.
IBM’s top of the range PS/2 machine, the 1987 Model 80 (with a list price of more than
$10 000 – without adjusting for inflation!) featured a 16 MHz processor, 16 MB RAM, and
140 MB hard drive. The Nokia 5500 shipped with 64 MB RAM and supported removeable
cards up to 1 GB.

398 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

is it then? It’s a phone, stupid!). As I have argued in previous chapters
phones are ‘just different’ from PCs and PDAs.

Phones have evolved rapidly from the clunky business tool of the
1980s to the seemingly essential ‘upscale accessory’ of 2006. In par-
ticular they have become consumer goods – ‘and we cannot expect the
user to configure them’.3 But high-end phones have also become appli-
cation platforms and this, in particular, has been the ground staked out
by Symbian, which has deliberately set out to create an open platform
for third-party software development. Where mobile phones began as
the ‘functionally direct replacements of their wired forebears’, they have
evolved a long way beyond those beginnings, boosted by the rich variety
of available applications and by dizzying competition between vendors
to outdo each other with new software and hardware features. They
have become quite independent platforms for personal communication
in modes both new (picture messaging, text messaging, and phoning
home from the train, plane, street or shop), nearly new (email on the go)
and old (plain old voice from home or office); for personal broadcasting
(mobile blogging, web-sharable photo albums); and personal entertain-
ment (games, MP3 players, pocket web browsers, pocket TVs). If they ever
were just functional replacements for fixed-line phones, they certainly
are no longer. With astonishing speed, mobile phones have become
‘platforms for entertainment and commerce and tools for information
management and media consumption’; everything in other words from
business tools to games players to shopping tools to fashion accessories.

Differentiation: The Big Idea

The goal of differentiation is to avoid selling on price alone. Operators
look for ways to apply their own branding to phones and to add value
that will not be available from competing operators. On occasion they
strike exclusive licensing deals or negotiate periods of exclusivity with
vendors for particular phones. At the very least, most operators demand a
minimum degree of customization of phones from vendors, for example
operator-specific packaging, stenciling of the operator name or branded
logo onto phones, and inclusion of custom operator applications or
support for dedicated operator services on phones (for example, O2’s
Homezone and Vodafone live!).

This is not quite the same as vendor differentiation, which is the most
visible form of differentiation. For phone vendors, differentiation – of their
phones from those of their competitors – encompasses everything from
design philosophy and style through reliability and build quality to ease
of use and, of course, technologies and features.

3 The quotes in this section are from Keinonen [Lindholm et al. 2003, p. 4] and Kiljander
and Jarnstrom [Lindholm et al. 2003, p. 15].

INTRODUCTION 399

Naturally all players in the phone market are seeking competitive
advantage, but there is something else at work: avoiding commoditi-
zation. For both operators and phone vendors, commoditization is an
ever-present threat and is one part of the complex dynamic which drives
the exponential pace of technological advance and feature growth. ‘Com-
moditization’ means the cheap and ubiquitous reproduction of what was
once expensive and unique. Commoditization reduces margins because
it reduces competitive advantage to price competition. Commoditization
naturally centers on hard technologies and features – ‘do more, go faster’.
Softer product qualities – ‘do better, be easier’ – are therefore critical
points of defense against commoditization.

In the battle to maintain differentiation, the user interface has become
a key competitive element for phone vendors. Indeed for phone vendors,
design philosophy and style (‘cool’ is an important selling point for
phones) and properties such as usability have become almost as important
as features. Since these are all properties which touch or are touched
by the user interface, the phone UI has turned out to be a key business
competitive edge that drives market segmentation and, as a result, brand
leadership.

As Christian Lindholm, the creator of the original S60 user interface
puts it, the UI ‘is one of the key elements in the fight for customers’,
creating pull from both end-users and networks, an essential ‘competitive
asset in the race for market dominance.’4

What’s in a User Interface?

The user interface is where the phone software and the specific hardware
features of a particular phone meet to enable the user to access the
features of the device. In large part, ‘usability’ reduces to questions about
the user interface and the myriad decisions made by its designers and
implementers about such things as one-handed versus two-handed use,
pen versus keyboard input, feature richness versus interface simplicity,
file-centered versus task-oriented application design, and so on. At one
level of detail down, these become decisions about such details as screen
color schemes and fonts, menu structure and sequencing, how hard and
soft keys interact with on-screen items, and so on.

At first glance, user-interface style may seem to be a slender thread
to hang market aspirations on and a tenuous driver for market share or
even dominance, but of course it is not the only driver. But the critical
contribution it makes has to some extent become a reality for all consumer
products (think of the iPod without its click-wheel), and it has certainly
become a reality for phones.

4 Kiljander and Jarnstrom [Lindholm et al. 2003, p. 15].

400 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

The Multiple GUI Operating System
To succeed in this complex context, Symbian’s solution is to support
multiple UIs and to engage with others to create those UIs. Licensees
either buy in the platform pre-integrated and tested from a Symbian OS
UI vendor such as S60 or UIQ Technology or they buy in the operating
system ‘headless’ and develop their own GUI.

In architecture terms (see Figure 16.1), the topmost layer has been
removed from Symbian OS. The operating system does not provide the
UI layer; instead it provides the infrastructure (frameworks and primi-
tives) for UI creation. Beneath the UI, the common frameworks and the
underlying services of the operating system itself ensure substantial plat-
form compatibility at the application-engine (i.e. application-logic) level.
Indeed applications can be targeted at the different available user inter-
faces by customizing the application UI without changing the application
engine. A Symbian licensee either creates a bespoke user interface from
the frameworks (although this is not a trivial engineering effort, it is the
option chosen by DoCoMo in Japan for its FOMA platform, for example)
or buys in a UI from a specialist vendor (both UIQ Technology AB, which
was spun out of Symbian as a separate company, and Nokia license UIs
and supply a pre-integrated platform to phone vendors).

Symbian OS on a Sony Ericsson phone or a Motorola phone with
the UIQ GUI – the P910 or P990, say, or the Motorola A1000 – looks
and feels very different to Symbian OS on a Fujitsu or Mitsubishi FOMA
phone or to Symbian OS on a Nokia, Samsung or LG phone with an
S60 GUI. And yet the underlying operating system is the same and the
very same applications can run on all of these different phones, sharing
identical source code at the application-logic and data-model levels.
While Symbian OS is tightly integrated to the GUI which runs on top
of it, by way of the UI and application frameworks, it is designed to
be GUI-neutral. For application developers and from the application

UI Framework Test UI

S60 UIQ MOAPUI Layer

Symbian

OS

Variant UIs

Figure 16.1 Symbian OS user interface architecture

INTRODUCTION 401

perspective, although Symbian OS applications are intrinsically GUI in
nature, applications are only loosely coupled to a particular GUI variant,
since the application model and the application-event loop are enshrined
in the operating system itself and in the UI Framework support, and not
in the variant user interface.

Symbian’s solution contrasts with that of other operating systems tar-
geting mobile phones. Windows Mobile, a Windows CE derivative, is
architecturally a monolithic UI, like its desktop parent. All phones that use
it, from whichever phone vendor, share the common Windows interface
and its Microsoft signature branding. Whatever the other opportunities for
vendor differentiation, phone vendors supplying Windows Mobile phones
are, to all intents and purposes, Microsoft OEMs. Windows Mobile is cer-
tainly a platform operating system, but what has so far made it unattractive
to many phone vendors is the fact that it is Microsoft’s platform.

The situation with Linux is somewhat different. To date, the Linux
phones which have shipped (in large numbers in Japan and China)
are not Linux platforms because they are not natively programmable.
Instead, they are closed phones exposing only limited Java APIs. Further
undermining the platform potential of Linux phones is the proprietary
nature of the Linux distributions on which the phones are based, with the
phone vendor typically directly owning the distribution. To some extent
new ‘open’ user interface toolkits supplied by independent vendors for
Linux-based phones (such as the Qtopia QT user interface toolkit from
Trolltech) may open platform potential to Linux phones if they become
widely adopted. However, it is something of an irony that the question
of openness still remains a significant challenge for Linux on phones.
Qualcomm’s Brew platform, which so far has been limited to CDMA
markets but which is now migrating to GSM, offers device vendors a
choice between creating their own bespoke UI, or adopting Qualcomm’s
customizable uiOne user interface.

The early decision that Symbian made was that the phone market
would reward UI diversity based on a common underlying platform.
Thus far, certainly, the market has found Microsoft-style homogenization
resistible.5 Linux, fast emerging as possibly the strongest challenger to
Symbian OS, has not yet solved the platform challenge. So far Symbian
OS remains the only operating system which is open to third-party
developers across multiple phone vendors, across multiple operators,
and in all geographies and all markets (GSM, CDMA, 3G), while also
offering vendors strong opportunities to differentiate.

However, the market is still barely in its infancy. The currently
competing platforms – most visibly Symbian OS, Windows Mobile and
Linux – have until recently been restricted to the high-end, less than 10%
segment of the overall market. Symbian’s strategy – of ‘leaner, faster,

5 To the surprise of some. But since homogenization in the phone context equals
commoditization, it is perhaps not so surprising.

402 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

fitter’ – is based on a drive towards the mid-range, boosted by natural
momentum from increasing market acceptance plus a little help from
Moore’s law (which continues to drive hardware specifications up and
BOM costs down, so narrowing the gap between the middle of the market
and the top). Meanwhile, the incumbent operating systems in the mid-
range are proprietary, for example Nokia’s NOS/Series 40 combination of
operating-system and UI or the operating system which drives Sony Eric-
sson phones. These can only be considered ‘platform’ operating systems
in the sense that they support third-party programming in Java. It is in the
mid-range that the next rounds of the battle for common operating-system
platforms will probably be fought.

Looking further ahead, there are also possible competitive threats in
the user interface area from alternative technologies which potentially
offer UI alternatives either to the existing incumbents or other embed-
ded operating system alternatives. Examples include building embedded
device user interfaces directly in Macromedia Flash, more commonly
known as a web-content display technology but proving itself as a UI-
simulation tool and jumping the gap to become a potential user interface
technology. Similar disruptive approaches include possible ‘declarative’
user interfaces based on XML-defined interface-description languages. It
is not yet clear whether, or how, these technologies will eventually play
in the market.

16.2 Background to the Eikon GUI

Symbian OS originates from the desire to create the perfect usable
operating system for small handheld devices.

The original GUI – on the Psion Series 5 – was known as Eikon. Eikon
itself, at least in the design sense, was an evolution of a previous genera-
tion of GUIs written for Psion’s earlier 8-bit and 16-bit machines, although
in concrete terms it was all new work, a second – or third or fourth,
depending on where you start counting – attempt at mastering the GUI.

David Wood:

There were several UIs for the 16-bit software. In a way, it prefigures what’s
happened to the 32-bit software. For the MC400 which was a full laptop-sized
device with a large screen, we designed what we called WIMP, standing
for Windows, Icons, Menus, Pointer. And then for the handheld version we
created something called HWIM: ‘H’ for handheld; we took the ‘P’ out because
there was no pointing device. And then we did a new version called XWIM
when we increased the screen resolution and it was actually binary compatible
with HWIM, which again prefigures something that’s happening nowadays,
because the applications that ran on the original Series 3 also had to run on

BACKGROUND TO THE EIKON GUI 403

later versions of the Series 3. So they ran in a compatibility mode with each
pixel being doubled up.

The basic ideas about how a UI should work on a pocket-sized
machine had been well worked through before any code was written for
the Series 5. The iterative approach, however, was quite deeply a part of
the Psion culture and scaled well to the size of the company at the time.

David Wood:

HCIL was the first version of the UI for the Series 5 and that was also quite
WIMP-ish. For example, you used to tab your way around dialogs. However,
after a while we decided that was too complex for most handheld users, so we
abandoned having two-dimensional dialogs, we had one-dimensional dialogs
which you navigated using the up and down keys. And that change led to
the creation of Eikon, actually through two phases. After a while we decided
we needed to refactor. After the first implementation we split it into two.
We separated out the CONE control hierarchy as something that would be
common for all user interfaces on the handheld devices because we viewed
Eikon as just the particular interface for the Series 5. And CONE persists to this
day. No doubt, it has evolved quite a lot but essential features of CONE are
the same as in the 1996 version when CONE was first created.

From the beginning, even though the project was very specifically
targeted at the Series 5, design decisions were taken with the later
platformization of the operating system in mind, assuming a family of
possibly different devices.

David Wood:

Splitting out CONE is a good example of the need to refactor. The need to
refactor is an important principle that comes through architecting any large
scale system.

A so-called ‘Nokie’ variant was created and the CONE classes were
separated out. Eikon was re-engineered around this separation and the
changes were then integrated back into a new version of Eikon.

David Wood:

‘Nokie’ is Eikon backwards. It’s just the kind of black humor of development
teams.

404 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

Eikon, in its time, was a complete concrete implementation of the
Psion Series 5 GUI. Architecturally, it fitted into a complete UI framework
comprising:

• Eikon: widget classes with look-and-feel policy and custom behavior

• CONE: generic control classes with no look-and-feel policy and
generic behavior

• Application Architecture: the application model, broadly MVC-
based,6 although the detail of the implementation depends on the
licensee GUI (UIQ3, for example, delegates most command handling
to views).

This is a classically good object-oriented design, with two independent
class hierarchies (Eikon and CONE) and an underlying framework expos-
ing some generic behavior (common to all GUIs) directly to applications,
with GUI-specific behavior brokered through Eikon.

16.3 Eikon Design Point
Windows, then as now, was the dominant consumer-oriented GUI when
Eikon was first being designed, although both Macintosh and even
AmigaOS (the Commodore Amiga operating system which included
the Workbench GUI) had strong followings. (The line from Microsoft
was then and still is ‘Windows Everywhere!’, from handhelds to data
center servers.7) In the small device space, although Windows CE ran on
some HP handhelds, there were other potential UI models too: Newton,
for example, which was a strong influence later on the Palm UIs and
PenPoint from GO! Corporation was an innovative and interesting, but
commercially unsuccessful, UI. But as the adoption of MVC suggests,
there were also other explicitly object-oriented influences.

David Wood:

Windows was one of our reference points, but we were aware of other
user interfaces too. We saw what people were trying to do with Taligent for
example, which was a combined effort between IBM and Apple that failed in
the end but, like many failures, there were lessons to be learned from it. So we
read avidly the books produced by people working on Taligent and we looked
at that as a reference. Charles Davies was familiar with X-Windows, the Unix
windowing system and that influenced us a bit also, though to be fair it more
influenced the design of the window server than the UI.

6 The model–view–controller pattern and framework is discussed in Chapter 14.
7 See the comments in [Petzold 1992, p. 4], for example.

EIKON DESIGN POINT 405

One critical design point for Eikon was usability – simplicity, natural-
ness and fitness for form factor of the GUI and the applications which
shipped with it. Robustness and an intuitive user experience were the key
principles.

Geert Bollen:

There was a logic which dictated that ultimately it is end-user benefit that
is important, and therefore any abstraction at all can be broken for the sake
of delivering something which delights the end user. And there was another
important value, almost a law, ‘Thou shalt not lose the user’s data’.

Although Psion always practiced a strongly decentralized design
regime with almost complete autonomy for the separate teams (sometimes
to a fault), a lot of care went into ensuring that the shipped applications
were consistent and well-designed from a user perspective. There was a
UI Board, for example, which vetted the designs for all the application UIs.

Howard Price:

Bill Batchelor and Nick Healey would run the UI board and you’d go in and
show them your design. There was a lot of attention to detail and pretty quickly
they would be counting key presses, going down into the details of the look
and feel. There was a lot of counting of key presses!

Another critical design driver was ease of application development.

David Wood:

One common principle behind the creation of Eikon was to make the job
of writing applications easier and require less code, so that the applications
would get more things for free provided they conformed to the framework.
So that was a common theme: put the complexity in the system code and
allow the applications to get the rich UI without having to do lots of detailed
programming of that themselves.

The point perhaps needs some elaboration, because Symbian OS is
sometimes perceived as being hard to write applications for. As discussed
in Chapter 14, frameworks are a powerful object-oriented concept and
the Eikon framework approach did indeed deliver a lot of power to
applications. However, the Eikon programming model is considerably
more sophisticated than a simple procedural one. Application developers
have also recoiled from the complexities of the embedded systems-like

406 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

toolchain (develop under emulation, then cross-compile for what is, in
effect, an embedded hardware target), as well as from the discipline
required to develop robust software for devices on which a software error
in an application freezing or crashing the system is simply unthinkable.
For some, the development experience is a little too far from the desktop
experience to be comfortable at first.

At the time, though, the big issue seemed somewhat different. Eikon
was evolved together with the system software beneath it and the appli-
cation suite above it. This approach continued the Psion tradition.

David Wood:

Eikon was created in an incremental process. As more applications were
written I looked to see what the problems were that the applications had
to solve so when people created a toolbar, for example, then we thought,
‘Well, actually toolbars should be in the Eikon framework’, and then peo-
ple did more complex things with toolbars and we thought, ‘Well, actually
other applications would like to take advantage of this as well’. So system-
atically things that started their lives in applications moved into Eikon. And
that made things a bit tough for the application developers because they
had to rewrite things as we went along, but it did mean that with only a
small amount of code in the applications, very rich user interfaces could be
achieved.

The goal was to maximize the power of the framework to enable
graphical applications to be developed with minimal new code and
therefore to get the most from the small hardware footprint.

Of course, this didn’t make things easy for the application teams
working on the built-in applications. Peter Jackson recalls the frustration
from the other side, compounded by the time-to-market pressures from
the project.

Peter Jackson:

It was changing under your feet the whole time, and you knew that if you put
effort into working on something that was based on that framework you were
going to have to change it again.

Iteration was the natural model in the company at the time, and there
was a long history of evolving from one product to the next. Evolving the
Eikon GUI for the phone projects which were starting up in the wake of
the Series 5 launch was in some ways just more of the same. Adapting
the Eikon GUI to the very different form factor of each different phone
was clearly a critical task and Eikon had been designed with adaptation
in mind.

EIKON DESIGN POINT 407

The reality, however, was that there was no clear understanding of
how that should be done. Martin Budden moved from the application
team to become technical lead on one of the very first phone projects,
the Philips phone ‘companion’ (see Chapter 2).

Martin Budden:

We were still a way from forming a portability strategy for how we would
develop and deliver the operating system for all these different manufacturers,
so we were learning as we went along.

The Philips phone was the first adaptation of the Eikon GUI. The
approach was straightforward and pragmatic, a straightforward branching
of the components that needed to change. The Philips project developed
a bespoke UI and a dedicated application suite with a small team, in not
much time.

Martin Budden:

We did the UI but we also did the applications in there: we did the messaging,
the contacts, and all those kind of things. To customize Eikon, we essentially
rewrote the drawing code and the code for things that we needed to draw
differently and we wrote new UIs for the new applications as well, using the
underlying engines without change.

Murray Read joined the project in its early days, initially working for
Origin, a software consultancy part-owned by Philips and later acquired
by Symbian, but at that time supplying specialist software engineers to
Psion.

Murray Read:

The UI design Philips wanted was quite different from the Series 5 design. It
shared some similarities. I think we had a task list and the major parts of the UI
were still there; there was a menu application; there was Window Server and
CONE; and they were all there doing the same basic things. But when it came
to the UI library itself, we had a much simpler set of controls to work with;
one type of button, no keyboard, so we had to make the system work with the
on-screen keyboard only, although it had handwriting recognition as well.

When the Philips project ended (disappointingly, without a product
coming to market) most of the team moved on to start up the project for
the Ericsson R380 and applied the same approach. Meanwhile the first

408 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

project with Nokia, for the new Nokia Communicator was in full swing
(see Chapter 2).

Martin Budden:

The model of doing a bespoke UI was there, and then we did another bespoke
UI for the Ericsson R380. The other big project at that time, going on in parallel,
was the Nokia Communicator, and again, that involved doing a new UI to
Nokia’s specification. We swiftly recognized that there was a fundamental
conflict between these UIs and it became clear that if we did a UI for every
single phone that wasn’t going to be sustainable.

The basic problem was clear enough.

Martin Budden:

We weren’t thinking about generic problems. We were dealing with specific
problems for specific projects that came up.

Each project was in effect a customization project, which created a
complete, custom variant of the operating system as required for each
device, from the base port to the operating-system services to the bespoke
application suite to the UI, including modifications (at whatever level
of the system) needed to support bespoke hardware such as dedicated
phone keys or the R380 phone flip.

For all these challenges, the first phone projects were genuinely
transformational for the company.

Ian Hutton:

The early projects were in fact extremely visionary, not just the Nokia Commu-
nicator, but also the Ericsson R380. The Ericsson R380 was a really advanced
phone. The fact that it didn’t sell in huge numbers, nor the Communicators for
that matter, is largely irrelevant. There were really huge advances in design,
both in what a phone should do, and how you could do those things on
a phone.

Key features of the Ericsson R380 – the flip, for example, and its inter-
action with the screen modes, flip-closed and flip-open landscape – were
good enough to be picked up by the next generations of phones and are
still central to the design of phones such as the Sony Ericsson P900 series.

EIKON DESIGN POINT 409

Ian Hutton:

The Ericsson R380 was very much an innovative design. It may have ultimately
disappointed in terms of sales, but it did come up with a lot of good ideas
and it solved quite a lot of problems in terms of turning what was then EPOC
Release 5 into fully-fledged phone platform.

The project also contributed key technology back into the operating
system. The View Server for example was originally developed by the
Ericsson R380 team but has evolved into a key feature of the UI framework
architecture.

Ian Hutton:

Initially it was used to solve a slightly different problem in the Ericsson R380,
which was the flip mode. So it was initially written for flip open and, in
fact, not just for the flip, it was for landscape mode too. It was written by
Symbian’s Licensee Technical Consulting (LTC) team for the customer project,
and then the larger software engineering group was presented with it by the
UI architects. Consequently, it was adopted back into the core architecture.

Accepting licensee (or LTC) changes back into the operating system
baseline and evolving them forwards thereafter as part of the platform has
been a central principle of the licensing model, right from the beginning.
Making the mechanism work has not always been so easy, however.

Ian Hutton:

The issue is how to manage migration of changes initiated by projects to
support project-specific and even device-specific requirements which then
may have more general applicability and value, and migrate them back into
the software base to avoid the base branching. So there’s really a continuous
process of splitting and some fragmentation, and then reunification – bringing
it back together.

In part, the problem came from organizational tensions, the support for
licensee projects being provided by a different engineering organization
than the main operating-system engineering teams. Over time, the com-
pany has become adept at managing the process but there are still key
hotspots around defect triage, change requests, engineering changes, and
product requirements and the inevitable balancing of priorities between
them.

410 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

16.4 The Device Family Strategy

Platformization of the operating system had always been a goal, whether
or not it was a licensed platform or simply a Psion internal one. The
licensing strategy was a logical next step. However, it is reasonable to
argue that Symbian was not well prepared for the reality of running mul-
tiple licensee projects either in the practical sense of the straightforward
logistics involved – it was highly difficult to resource and put immense
strain on the company – or in the more narrow technical sense of how to
manage the codebase-development practicalities.

Ian Hutton thinks that the Ericsson R380 project was significant in at
least one other respect.

Ian Hutton:

Pretty much through the whole of that project it was difficult for LTC to work
with the software-engineering organization. It was at the end of that project
that the DFRD strategy was written.

For all the problems of branching and the resulting wrangles to
migrate changes back into the main codeline, there was an underlying
strategy emerging. It was eventually announced at CeBIT in Hanover
in February 2000 as the ‘reference design’ strategy, based on so-called
Device Family Reference Designs (DFRDs). As well as announcing a joint
Motorola–Psion device, Symbian was showing off Ericsson ‘mediaphone’
prototypes based on what it called the Quartz DFRD – quarter-VGA,
pen-based, PDA-style tablet devices with built-in phones and Bluetooth
(enabling the use of remote headsets).

DFRDs emerged out of the need to resolve the problem of multi-
ple, incompatible UIs. And it provided direction for Symbian and its
engineering practice.

Martin Budden:

The problem was that it was not possible to come to agreement for a Symbian-
based UI that was suitable for all parties. So this was when the idea of resolving
all these conflicts with the DFRD approach emerged.

The engineering teams were at least in a position to abstract from
the day-to-day problems of competing and conflicting projects and agree
some higher design principles.

THE DEVICE FAMILY STRATEGY 411

Martin Budden:

The idea was to have families of UIs. There would be one family which was
based on the Nokia Communicator and the Series 5; there would be a family
that was based on the Ericsson R380; and at about this time Quartz was started
up for Ericsson, which was for the quarter-VGA tablet form factor.

The actual reference design specifications were based around a com-
bination of screen size and orientation and input method. To an extent,
the design points were really just rationalizations of the known pref-
erences of the different licensees and were closely modeled on actual
products that were already in development in licensee collaboration
projects.

The DFRD strategy helped Symbian recognize that the phone world
was complex and took a step forward from simply solving problems to
systematizing the solutions.

The DFRD model set out to provide enough flexibility to support
licensees across a wide spectrum from those, such as Nokia or DoCoMo,
who had both the resources and the desire to create their own bespoke
UIs, through a middle band of licensees who while not looking for
a complete off-the-shelf solution preferred to work closely with a UI
supplier like UIQ Technology than make the considerable investment to
create their own UIs from scratch, to the smallest licensees who were
looking for a near-complete solution and a fast product-development
cycle. In effect, it reflected the standard tiering of phone vendors used by
industry analysts:

• Tier One licensees create complete devices end-to-end: typically they
expect to buy in Symbian OS and create or license bespoke UIs; they
create lead products for new Symbian OS releases.

• Tier Two licensees create hardware platforms from standard parts:
typically they expect to buy in Symbian OS with a pre-integrated UI;
they create follow-on products from proven Symbian OS releases.

• Tier Three licensees focus on custom packaging of external phone
design: typically they expect to buy in complete (‘80%’) hardware
reference designs (from silicon vendors such as Intel and TI), with
Symbian OS and their chosen UI pre-integrated onto hardware.

Bob Dewolf joined Symbian in early 1999 when Symbian acquired
the Origin software consultancy. He had been working on embedded
software for pagers and fixed-line phones.

412 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

Bob Dewolf:

I had just done a Farsi pager for Philips, and a smaller pager written in 16 KB of
assembler, so that was quite the opposite of smartphones. But it wasn’t a bad
match because you had the embedded aspect from both pagers and telephone
work and I had UI experience.

Symbian’s DFRD strategy was newly in place. As a veteran of the early
evolution from Eikon to what became Series 60, he knows as much as
anyone, and probably an awful lot more, about the problems of crafting
a phone GUI.

Bob Dewolf:

In that period between April and July 1999, we were in meetings with licensees,
primarily in London, and they would get up and talk about their various plans
for screen sizes and other key GUI design features. Those meetings were very,
very important for Symbian to define a DRFD which fitted those users.

The first two DFRDs, known as Crystal and Quartz, were relatively
straightforward to define since each in effect abstracted the actual proper-
ties of the particular target devices of projects which were well advanced.
Each, in other words, had a single, clear customer. Crystal defined a
keyboard-based device in the style of the Nokia Communicator, appli-
cable to the Nokia 9210 and the Psion Series 5. Quartz defined a
pen-based, tablet-style device applicable to prototypes that Ericsson (as
well as other licensees) publicly demonstrated not long after. Between
Crystal and Quartz, however, there was a missing form factor – that of
a more or less conventional phone or, at any rate, a high-end device
that was recognizably a phone in the sense in which the Ericsson R380
clearly was. The Sapphire DFRD was defined to meet the need of the
third category.

Bob Dewolf:

The categories were QWERTY-keyboard-oriented, which was Crystal; pen-
oriented, which was Quartz; and telephone keypad, which came to be called
Sapphire.

Even then, the licensees who wanted to pursue designs in the Sapphire
category had conflicting design philosophies.

THE DEVICE FAMILY STRATEGY 413

Bob Dewolf:

One licensee would not be pen-oriented, while another didn’t want to do
anything without a pen. One licensee was very Java-oriented; another licensee
wasn’t. We talked about Blue Sapphire and Red Sapphire at that point,
and I remember people trying to figure out how we’d have polymorphism.
David Wood then produced some extremely interesting and abstract work
about data and layout separation, and about abstract specification of compo-
nents. I remember thinking, ‘Yes, this is the way to do it’, and saying, ‘we
shouldn’t talk about those screen sizes, that’s the last possible thing we want
to talk about, we should be talking about the abstract definition of control
sets!’

However, at the end of summer 1999, Sapphire was still blocked.

Bob Dewolf:

Then Nokia said they had a full design concept, and simply wanted to
start developing. So one day about four people from Nokia arrived and we
decided to see what happened. Originally, they were working from Sapphire
documents, but not long after the name was changed to Pearl.

Out of the ashes of Sapphire, the DFRD that emerged was Pearl.
By defining a new DFRD, the unresolved problems of Sapphire were
circumvented. It seemed clear to those close to it that Pearl was strongly
driven by Nokia.

Bob Dewolf:

Nokia had very strong time constraints. I remember sitting in meetings where
we cut up responsibility for various types of things like soft keys and notes and
queries and list boxes to various people and asked when they could get that
done.

A lot of the main decisions for the architecture were made during that
period. In fact it’s surprising how many of the things we still have are based on
decisions made in that period, things like doing all our multitap and key tries,
like internationalization in the FEP (Front End Processor); using CEikDialog
as the base class for notes and queries and forms, which you use in contacts;
using the listbox-based classes, using the view architecture, and that was being
pushed very strongly because of the Ericsson R380’s success with the view
architecture.

Some of the core architectural decisions were made at that point. It was
a very interesting period. At the same time, the UI team itself was breaking
Eikon down into Uikon, so they were refactoring and separating things out,
moving things around, and we were trying to understand the customization

414 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

rules. Otherwise, at that point we were trying to stick within modifying C++
files in Eikstd and not touching Uikon at all. So we didn’t do something new
for notes, we didn’t do something new for queries; they were still pop-ups. We
were using the FEP architecture. We were very much trying to be a DFRD.

The DFRD approach required the separation of core GUI base classes
that were free of a look-and-feel policy; the separation, in other words,
of those classes that had no intrinsic look and feel and were there-
fore common to all DFRDs from the policy-laden, look-and-feel-bearing
derived widget classes (which implemented the look and feel of a given
GUI). The core classes would be part of the framework; each DFRD GUI
implementation would create its own concrete derived classes.

The UI team in the software engineering organization therefore created
a design proposal for a refactored Eikon to be called Uikon and the work
was planned into Symbian OS v6.0, the first release which would support
the DFRD model.

As David Wood sees it, this was very much a natural continuation
of the evolution of Eikon, just as the earlier factoring out of the CONE
control classes had been.

David Wood:

Just as we split out the control hierarchy and refactored Eikon, so later on
people have sought to take other common elements into Uikon.

The original idea was really quite simple, based on a simple imple-
mentation strategy.

Murray Read:

The original plan was that everybody would just customize Uikon through
what was called UikLaf – Uikon Look-and-feel. This was the DFRD strategy.
Uikon provided the core UI, and Eikstd and any bespoke UI libraries were the
customizable bits that you could modify. UikLaf provided an interface which
you would use to modify the look and feel of Uikon itself, and it was a simple,
flat, monolithic interface which would allow you to tweak various parameters
inside Uikon.

But in practice, it just wasn’t rich enough to give you the customization
you needed to implement a UI like S60, for example.

Martin Budden is one of those who still feel that the Uikon architecture
and the design choices that were made to support UI separation and
customization were not always the best choices.

THE DEVICE FAMILY STRATEGY 415

Martin Budden:

Uikon was an attempt to resolve the conflict between Eikon, which was
the Psion Series 5 UI, and the UI developed for the Nokia Communicator.
Essentially the idea was to add a further layer of abstraction that would allow
both of those to sit on top of the same underlying UI. In effect, we ended up
dropping Eikon, so that was how the conflict was resolved. Then Quartz used
Uikon, but the so-called look-and-feel layers were just reimplementations; so
the fact that they were in a separate layer didn’t make any savings and you
might as well have just reimplemented elsewhere.

What we could have done was standardize the APIs, rather than trying to
make a split; standardize the topside and bottomside APIs of the UI framework
so that you could replace it and still be compatible. That way you can
run any application on any UI. You could slot in a different UI framework,
instead of having a customizable UI framework and trying to separate out the
customizable bits, which is problematic because there are no clear separations
as to what is customizable and what is not. If you instead standardize the APIs,
then you could just write a new framework to those APIs and things would
just run.

Budden’s views are based on his experiences during the Quartz project,
for which he became the first technical lead, commuting between London
and Ronneby.

Martin Budden:

The experience of doing Quartz highlighted that there was a lot of code that
was not easily separable. For example, the messaging code had UIs in the
engine layer, which meant that to change the UI we had to redo a lot of the
engine code as well. There were lots of considerations that made it difficult
to separate out the different bits. We rewrote a lot of the code, but without
necessarily preserving the APIs.

The root of the problem was the UI fragmentation which dated back to
the early days of the Nokia Communicator and Ericsson R380 projects.
The lesson, Budden thinks, is a simple one.

Martin Budden:

In retrospect, we didn’t do enough to support all those various UIs to ensure
that they were following the same rules and were compatible.

Some degree of fragmentation was probably inevitable. Certainly, the
risks of fragmentation were well understood on all sides and attempts

416 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

to avoid the worst consequences have been significant drivers of the
UI evolution strategy. For example, the history of the Nokia–Symbian
UI split shows a repeated pattern of branching and reconciliation of
Nokia and Symbian UI APIs; S60 1.0 branched Symbian OS v6.0 sig-
nificantly, leading eventually to the ‘unbranching’ Symbian OS v7.0s
release, which restored API compatibility across the UI variants. Sim-
ilarly, Symbian OS v9 has involved the unbranching of some UIQ
APIs and will probably continue to include unbranching for both UIQ
and S60.

Arguably, however, success is justification enough for the strategy
that eventually evolved. With hindsight, different design choices could
have been made; but getting devices to market is ultimately the test of
success.

Murray Read:

My strategy for UI development has always been to make it work. I know
people have this romantic idea that you can take one UI and turn it into
another with a few tweaks here and there, but in practice to do that you’ve got
to design that into the core UI in the first place. And that’s not where Symbian
started from. So my strategy has always been to just make it work anyway,
write the new controls that you’ve got to write, adapt the existing code, branch
things if you have to. And it’s worked, I think S60 is the proof of that; we have
a working UI in S60. And if we’d stuck to the strategy and followed the rules,
I don’t think S60 would ever have happened.

16.5 Quartz

The Quartz UI was developed at Symbian’s Ronneby site in Sweden,
which originally had been Ericsson’s Mobile Applications Lab, a devel-
opment lab working with Microsoft’s Windows CE operating system. Ian
Hutton moved to Ronneby to replace Martin Budden as technical lead
on Quartz.

Ian Hutton:

Certainly with Quartz, I think the biggest challenge wasn’t so much making
that UI from the basis of EPOC Release 5, it was the question of working out
what you want to do and then going out and finding something in Eikon to
do it. The bigger challenge was really looking at the wider possibilities of the
design, which was very challenging. A lot of that was focused around usability,
what are people going to do with this UI. A lot of work went into that and
working out what our underlying design needed to be to inform the UI design.

PEARL 417

The view architecture inherited from the Ericsson R380 project, which
had been migrated back into the Uikon framework, became a central
feature of the Quartz application model, elaborated in the UI layer into a
mechanism named direct navigational link (DNL).

Ian Hutton:

That whole view architecture, which is now in Uikon, was very different from
what was being done by Nokia and it’s very clever. The design of the views
and using DNL was completely new – there’s a whole new area of architecture
there – and this behavior had to be defined and designed. That was one of the
bigger challenges with Quartz.

Ian Hutton describes the DNL idea this way:

In the phone application, you’ve got your recent calls, you’ve got the callers’
names, now you want to see the details of this person, so when you tap
you switch to the contacts view, and now you can see that person’s details,
their phone numbers, email address, and so on. In the contacts view, when
you tap on the phone number you switch to the phone application and it
dials. So you’ve got some basic UI items and you want to make use of that
in another application, and the underlying mechanism which switches you
between those views is DNL which is quite a powerful part of the UIQ user
experience.

In contrast, to do the same thing in the original Eikon GUI would require
the sequence: go to Contacts; copy phone number; task away; find the
Phone Application; paste phone number into the Phone Application; tap
Dial.

16.6 Pearl

The Pearl team, meanwhile, was working flat out to meet Nokia’s
timescales.

Bob Dewolf:

The plan was to get the project up and running, and then, about six months
later, not exactly freeze the APIs but exert more control over them. Then
we would change the layout code so that it was resizable and more generic
and customizable, putting in customization layers, and that would become
the Nokia product. The DFRD would continue with that codebase and those
APIs. But the focus at that point was definitely getting rapid development of
their concept. However, there was increased pressure to change Uikon, and

418 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

I remember certain changes that were made at that point, we had meetings
with the UI team and they said ‘We can’t do that. We’ve got no requirement
to do that’. I guess there was skepticism about how we could customize this
thing after it was created, and there was also I think a little pressure from the
Interaction Design team, they weren’t so keen on the Pearl UI.

The Symbian Interaction Design team was led by Scott Jenson who,
before coming to Symbian, had been part of the original Newton team
at Apple. Interaction Design had been closely involved in the design
of Quartz. Pearl (or at any rate its concrete implementation) was a
thoroughly Nokia-flavored UI, its design driven by Christian Lindholm
and the team in Tampere (Lindholm recounts some of the history in
[Lindholm et al. 2003]).

Bob Dewolf:

I remember Scott Jenson coming up with some criticisms of the UI. But you
know, finding user problems with a UI is like shooting fish in a barrel, as they
say, but Scott didn’t like two soft keys, he thought it was too complicated.
And then, out of the blue, there was a meeting and it was decided that there
should be no UI in Pearl itself, Pearl would be UI-less. At that point everything
changed. There was to be no UI deliverable from Pearl, and we became
overnight the Nokia 7650 UI development team.

In a new shift of direction, Pearl was redefined to be a DFRD without
a user interface, or what came to be called a ‘headless’ DFRD. In effect it
was the first step towards the post-DFRD strategy of a headless operating
system. The Nokia 7650 (arguably the first true phone based on Symbian
OS) launched what was branded at the time as the Nokia Series 60 UI.
Pearl thus became Series 60. Dewolf sums up the situation.

Bob Dewolf:

Crystal was a product which was elevated to a DFRD. We had a DFRD which
was deflated to a product.

16.7 Nightingale

Series 60 (now rebranded as S60) was announced at Comdex, Las Vegas,
in November 2001. The Nokia 7650 itself (rumors of its launch had been
circulating for several months8) caused quite a ripple of interest when it

8 For example see online articles in the Register around November 2001.

NIGHTINGALE 419

was shown a few days later at Nokia’s Multimedia Developer Conference
in Barcelona, before its launch in February at 3GSM 2002 in Cannes. It
was the first product on Symbian OS v6.1, the first Symbian 2.5G (i.e.
it supported GPRS) phone and, with its VGA camera, it was the first
camera-phone anywhere outside Japan. At that time, the Nokia 9210 had
just become the best-selling PDA, unseating Palm. Symbian OS rose for
the first time to the top of the platform chart for PDAs and smartphones.

Bob Dewolf:

Series 60 made us think about all the things Symbian OS had to worry
about, like distribution policies and whether components are only published
internally or were third-party published. We put in a whole new layer of
control to say not only that header files export but whether they get filtered
out to the SDK process. Pearl became Series 60 at that point, version 0.9, and
SDKs came out soon after at version 1.0.

But above all, the Nokia 7650 was the first S60 phone. The big
announcement at 3GSM in Cannes was Symbian OS v7.0. At the same
time, Symbian announced a new UI strategy. The DFRD idea was
dropped. In fact, Symbian no longer proposed to ship a GUI implemen-
tation at all on top of its UI Framework implementation. The field was
opened to UI vendors or licensees to do their own thing. Meanwhile the
new UIQ UI was launched in place of Quartz, with UIQ spun out as a
separate, independent company, though it remained Symbian owned. (In
late 2006, UIQ was purchased by Sony Ericsson and became completely
independent of Symbian.)

A few weeks later, the first Symbian OS v7.0/UIQ phone, the Sony
Ericsson P800, was announced (it launched later that year). It was a pen-
based phone featuring a removable flip keypad, somewhat in the style
pioneered by the Ericsson R380, a jogdial thumbwheel for navigation
and, of course, a camera.

The new strategy was possibly the only strategy that made sense not
just of the unique nature of the phone market, but of Symbian’s unique
position in it. Perhaps, to some extent, Nokia identified this most quickly
(and so platformized its own UI). The moral, perhaps, is that where
it is impossible to have more than partial foresight of evolving market
requirements and opportunities, multiple visions are better than one.
Enabling a competitive ecosystem allows multiple different visions to
emerge and have a chance to succeed.

The change in strategic direction predated Colly Myers’s departure as
CEO in February 2002, but its implementation spanned the interregnum
and was picked up and seen to fruition by the incoming CEO, David
Levin, from April 2002. Fittingly, Myers’s – and Nokia’s – Christmas gift
to the company was a Nokia 7650 phone apiece.

420 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

16.8 How to Develop a World-class GUI

The most visible mobile phone trends are in conflict: devices are
becoming increasingly smaller, packing in more and more hardware
and demanding longer battery life, while moving increasingly into the
consumer end of the market as features and functions expand. The phone
operating system is the battleground on which these conflicts are played
out. Shrinking size and increasing complexity are not simple trade-offs.
The evidence is that the successful phone needs both.

Perhaps it is worth citing the definition from Pekka Ketola, a usability
engineer on S60 [Lindholm et al. 2003, p. 172].

Smartphones are an emerging product category where communication,
namely voice calls and messaging, is still the main function, but where
personal information management is fundamentally improved compared to
conventional mobile phones. Smartphones have good calendars, versatile
contact management properties, to-do lists, address books, and so on. They
are solid platforms for imaging and gaming.

In one way, phones are become increasingly personal items, statement-
making lifestyle accessories. In another direction, they have evolved
from being ‘expensive showoff tool[s] to an everyman’s communication
platform’ (Nieminen-Sundell and Vaananen-Vainio-Mattila in [Lindholm
et al. 2003]). In both directions, the trend is to a normalized market, that
is, a consumer market in which sophisticated users give way to naı̈ve
ones and complexity is not tolerated. Phones lose novelty value and are
expected to perform as easily and predictably as TV sets and stereos. In
this battleground, the UI becomes the front line.

Big User Interfaces Don’t Scale

Bob Dewolf:

There’s an awful lot to a UI. It’s not just controls and their customizations,
there’s a lot of interaction. That’s a surprise we got in the process of develop-
ment when we did Pearl, how much more integrated you had to be. Integration
is how the applications fit together, what keys the phone is grabbing from the
window server, and who’s managing the power key and what happens if you
press the Phone button. There were a lot of issues like that and it was important
to get them right.

I remember very fundamental decisions about what happens when you
press the menu key. For instance, does it just put the menu on top? In the we
decided on something very simple, but there were lots of different proposals,

HOW TO DEVELOP A WORLD-CLASS GUI 421

which led us to decide that simplest is the best and we just leave everything
stacked where it is and go with the window-server policy. But it’s amazing
how long the debates took. In that particular case, it ended up very simple,
but not in all cases.

An absolute rule is that small interfaces are different from big ones.
Direct manipulation (the familiar Windows or Macintosh model), for
example, does not scale down. You do not expect to drag a mouse
cursor across your phone screen. The parallel model of the desktop, with
multiple open windows between which you task, does not scale either.
On a small phone screen parallel is out, sequential is in.

Just as even the best UIs do not scale, nor do they move easily from
one device class to the next. In effect, this is exactly what Symbian’s UI
strategy reflects and what the architecture has been evolved to support.
One size does not fit all, and there is no single right model. What
works on a flip phone probably does not work on a keyboard-centric
Communicator; what works on a pen-driven tablet probably does not
work on a phone designed for the shirt-pocket.

The first generation Quartz devices (that is, before the evolution of
Quartz into UIQ) were strongly tablet-based designs. There have been
tablet phones (for example, the original XDA based on Microsoft Win-
dows CE and, perhaps, the phone-enabled iPaq counts as tablet-like)
but they have not been huge successes in the mobile phone market.
The evidence suggests that consumers want phones with productiv-
ity functions, rather than PDAs (which are really productivity devices)
with phone functions. There is little to suggest that the UI is a criti-
cal factor in the decline of the PDA market; neither Palm PDAs nor
Microsoft PDAs have fared much differently. (Palm has now gone all the
way and adopted Windows Mobile, so the point becomes moot going
forward).

Given the differences between Windows on a desktop and Windows
Mobile on a phone, there is not much case to be made that users
are seeking the desktop-style behavior on their phones; they won’t get
it. What they will get is familiarity at some level, even if the behav-
ior is different. Perhaps what they are really seeking is the unstated
promise of compatibility; but in that case the value of having Microsoft
running on their phones is only incidentally about the UI itself and
has more to do with the promise of the brand. But as the Palm and
Macintosh combination demonstrated quite ably years ago, smooth inter-
operation has not much to do with sharing a UI on different platforms,
it’s just a matter of plain old-fashioned good, careful, user-centered
design.

422 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

The most interesting point about phones is that while the design point
has in a sense been fixed and is the same across manufacturers, UI
differentiation makes different phones quite radically different from each
other (to the point that picking up someone else’s phone and trying to
make a call can be surprisingly difficult). Kiljander and Jarnstrom (in
[Lindholm et al. 2003]) argue that it is because phones have no standard
UI and, therefore, everyone is using their own solutions that the UI has
become such a significant competitive asset. This is as true at the low end
of proprietary operating systems and custom UIs as it is at the high end of
Symbian OS and its competitors.

If this is the case, Nokia’s commanding market share (at the time of
writing anyway, but with little sign of it waning) is a testament to its UI
designers and to its strategy of evolving a family of UIs, each tuned to the
design point of one of the categories in the famous Nokia segmentation
matrix.9

Usability Values
As well as becoming cameras, music players and diaries too, phones have
become open platforms for third-party software of all kinds, including
games. It is hard to devise a UI that is as fit for playing fast-paced shoot-
’em-ups as it is for managing your daily, weekly and monthly meetings
and appointments, while still allowing users to answer (and initiate) calls
with a single button press. While phones have become the archetype
of the omnifunctional, converged device, Symbian OS is still designed
to be flexible enough to support a wide range of possible device types
including more narrowly specialized categories – digital cameras, in-car
navigation systems and set-top boxes have all been rumored at one time
or another as possible target devices.

Arguably, however, the particular, and unique, strength of Symbian
OS is its power (as well as its compactness) as an open, thoroughly
GUI-centric, standards-driven application platform. The fact that phones
are no longer merely phones, but complete open software platforms is a
critical turn on the road. It is also a central part of Symbian’s play for the
market. Applications are critical.

The Application Model
A key usability issue is that of the application model exposed to users:
how does the user work with files, documents and applications, and what

9 Nokia segments its users according to customer categories (Balancers, Controllers,
Experiencers and Impressers) and its phone models according to style categories (for
example, Expression, Classic, Fashion and Premium). The fully populated matrix matches
phone styles to customer segments. Typically, Nokia’s different UIs (Navikey, Series 30,
Series 40, Series 60 and Series 80) match their complexity to the different requirements of
the segmented model. See the chapter by Kiljander and Jarnstrom in [Lindholm et al. 2003].

HOW TO DEVELOP A WORLD-CLASS GUI 423

concepts (and how many and how intuitive are they) must the user grasp
in order to use the device successfully and naturally.

Andrew Thoelke:

Windows has never really ever escaped being file-based. You think in terms of
files. Everything is a file. Macintosh at least went one step further because you
generally didn’t find files: you had documents and you had applications. The
Series 3 had a system screen that was application-centric and a file browser
that gave you a folder view of everything. So the system screen showed you
what we called the washing line of applications, and under each application
it said, ‘Here are all the documents this application knows about’.

With Series 5, we went to a bolder view of the world. It was document-
centric, not application-centric. You could basically tap on a document and
the system recognized the document. It knew exactly what application was
associated with it, and it would then launch that application and give you
your document. We didn’t believe in file extensions as a way of identifying
content, so we invented our own system of internal designation, UIDs (Unique
Identifiers). Macintosh, by the way, has always been the same. But our
application architecture in Symbian OS really came about from saying, ‘Okay,
so given a document I need to basically do something with this document’, and
that’s what the user really cares about. The fact that there was an application
doing it for you was almost like, ‘Well, the user shouldn’t have to worry about
that. The user shouldn’t have to care’. Of course you knew that if you hit
the Word button it would take you to that application, but if you found a
document that was just sitting there you could tap on it and ta-da! It would
have the right icon and it would just all work. Well that is probably right for
a PDA, because a PDA is all about creating documents. But actually that isn’t
right for a mobile phone.

The native, document-centric application model also runs into trouble
as devices start to become increasingly connected. While documents
created on the device, by the native applications, can be created with
appropriate UIDs which identify their document types (stores and DBMS
databases, for example), recognizing externally created documents so that
the appropriate application can be launched is more problematic. The
early use cases around which the Series 5 was designed were manageable,
mostly requiring recognizers for email and web document types. But in
a modern phone the sheer diversity of the document types which may
be encountered, ranging from office-type documents to a wide variety
of media formats, requires not just a comprehensive recognition system
(which Symbian OS provides), it also forces at least a degree of file
centricity on the UI. Thus UIQ, for example, which has a non-file-based
application model, must adopt a file-based approach for dealing with
media files. S60, which is file-based, runs into a slightly different problem
when swapping files between devices because the built-in file manager

424 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

application chooses to hide significant parts of the file system for usability
reasons with novice users. (A third-party file manager is required before
the user can fully explore the file system.)

In Symbian OS, the application model is, in effect, created as a
collaboration between the operating system and the UI implementation.
In the original architecture and in the Uikon architecture which was
derived from it, the application model (i.e. the document framework) is
implemented by the application framework but brokered through the UI
framework (Uikon) and the UI layer which is built on top of it.

Both UIQ and S60 have evolved away from the original application
architecture, for example of the original Eikon GUI, towards more task-
based approaches. Underlying that evolution is the difference in the way
that PDAs and phones are used.

Andrew Thoelke:

If you’re using a mobile phone, the way you think is very much doing one
thing at a time. The fact that a Symbian phone can multitask is something
that probably most people don’t realize, except that as soon as you go back
to an old phone you realize that when you send a message you’ve got to
sit there waiting for it to be sent. On an S60 or UIQ phone, you send a
message and you carry on doing everything else, and eventually the phone
says, ‘Oh, by the way, I’ve sent the message’. So the multitasking in a phone
is a bit less obvious. Generally on a phone you are task-oriented, so you’re
interested in what you’re doing right now, and then in the next thing you’re
doing, and so on. Some UIs are better than others at being able to backtrack
to what you were doing just before you interrupted it, but in that respect
you really want to have a system that is based around applications and
tasks. So that’s where UIQ has gone, in the direction of having the view
server, where a view is essentially a task, but sometimes it’s one way of
looking at tasks. So each application has got different views and you can flip
between those views, but also flipping between views will activate different
underlying applications. Whereas S60 has a quite different model of either
embedding views or just jumping between applications, and it produces a
different system.

In its time, the Eikon approach was quite innovative, and it is part of
what made the Series 5 so easy to use.

Andrew Thoelke:

I guess it wasn’t innovative in the software space in ’94, but certainly in
the PDA space, to have something that was document-centric and so highly
integrated with the actual application framework. It was certainly unusual.
And it has not been a barrier for being in the mobile phone space, but it’s not

SYMBIAN OS USER INTERFACE ARCHITECTURE 425

necessarily been totally tuned to the way mobile phones work, and the UIs
have had to address that.

Java proved to be another area in which the cleverness of the appli-
cation architecture and its seamless integration into the UI caused some
unexpected headaches. Java proved quite hard to integrate well with
the subtly different application model of Symbian OS, although for the
MIDlet writer, as for the user, the differences are transparent and Java
applications ‘just work’.

Andrew Thoelke:

Even today the system still thinks you’re a native standard Symbian C++ appli-
cation, so for Java we have to provide special ‘stubs’ and ‘dummy’ resource
files to make the application architecture think its got a valid application to
run. It would be better to be able to register with the application architecture
and tell it there is an application and how to run it. That would be the ultimate,
to have an application architecture and an application lifecycle model that is
truly agnostic to the actual programming language.

16.9 Symbian OS User Interface Architecture

Symbian OS supplies the UI Framework and Application Services as its
topmost layers, but does not supply the concrete user interface. Instead,
phone vendor licensees create (or license) a UI which is based on the
framework classes supplied by Symbian OS. Symbian OS has no notion
of a console application. Native applications, by definition, present a
UI which is implemented using the concrete classes of a particular GUI
implementation, layered over the generic GUI framework support made
available by the operating system. Applications implement the abstract
classes of an object-based, MVC-style, event-based application model
which is defined partly by the operating system frameworks and partly
by the GUI implementation. In fact, the event model goes surprisingly
deeply into the system, all the way to the Window Server.

Non-native applications, written in Java, Visual Basic, OPL or, more
recently, Python and even Ruby (these are currently the most mainstream
high-level languages available on Symbian OS), depend completely on
the graphical support of the GUI implementation on top of which they
are written. Except for low-level development work, for example system
programming, writing Symbian applications is inherently GUI-dependent.

Symbian ships only non-production test application UIs for system
components that require a UI for testing, configuration, and so on. In a

426 ONE SIZE DOES NOT FIT ALL: THE RADICAL USER INTERFACE SOLUTION

final licensee product, licensee applications manipulate the components
directly or provide the application-level user interface.

16.10 Future Directions

From 2006, smartphones are shipping with the latest releases of both
the UIQ and S60 user interfaces, both of which introduce new features
to support UI differentiation and specialization, aimed particularly at
enabling phone vendors and operators to customize, extend, and brand
phone UIs. In both cases, the latest UIs depend on the Symbian OS v9
platform.

If these releases are indicative, increased flexibility and customizability
certainly seem to be the dominating trends for the future evolution of
phone UIs.

UIQ 3
UIQ 3 emphasizes personalization and configurability. It includes features
that offer extended flexibility and new opportunities for differentiation and
specialization by phone vendors and operators, as well as new opportuni-
ties for third parties to provide end-user-installable UI customizations. In
particular, UIQ ‘themes’ bring the notion of the skinnable user interface
to UIQ. Themes may be ready-made (in other words, supplied by UIQ or
created or customized by the phone vendor or other UI integrator), user-
customizable, operator-specific or supplied by a third party, encouraging
the market for downloadable themes.

Operator customization based on Operator Configuration Package
(OCP) themes and skins allows the provision of preloaded content includ-
ing applications, sounds, settings, fonts, icons, animations and so on, by
vendors supplying UIQ phones to operators. There is also support for over
the air (OTA) features, allowing operators to configure (and customize)
phones remotely.

Supporting these features is the notion of parameterizable UI proper-
ties, with support for multiple screen sizes, multiple portrait and landscape
modes, touch-screen and non-touch-screen modes, and various hard and
soft key combinations. The resulting UI configurations (for example,
flip-open and flip-closed styles and pen and softkey styles for different
product families) are intended to help developers maintain application
compatibility across a range of different devices while enabling vendors
to create a wider variety of phone styles.

S60 3rd Edition
Again, much of the focus of the S60 3rd Edition UI is on enabling
customization, including vendor, operator, end-user and enterprise cus-
tomization. Increased flexibility is emphasized too, with UI scalability

FUTURE DIRECTIONS 427

supporting a wide range of screen sizes, both portrait and landscape
modes, and ‘double-resolution’, that is, high-resolution displays.

The most significant support for differentiation is the enabling of core
application extensions, allowing operators to extend the core applications
with new features while retaining basic application compatibility with
other S60 phones. The emphasis is on supporting integration of operator-
specific features and services, as well as service settings and operator-
customized UI look and feel, to enable a high degree of sophisticated
operator-specific branding to be provided by phone vendors using S60
on their products.

17
System Evolution and Renewal

17.1 Introduction

This case study looks at the forces and pressures that have driven the
evolution and renewal of Symbian OS, from the earliest days of the system
to the latest Symbian OS v9 releases.

A critical issue for any software company is keeping a complex software
system fit for purpose in a context of rapidly changing technology. To
do so requires continuous evolution and continuous renewal. Evolution
and renewal are, therefore, among the strongest internal drivers for
engineering and architectural change.

Customers, on the other hand, are typically more interested in features.
Balancing the competing pressures, for feature growth on the one hand
and internal renewal on the other, is an important part of the business.
Preserving the freedom to invest in renewal against relentless feature
pressure and deciding where to focus that investment are critical elements
of a successful system strategy.

In reality, of course, the two things are not independent. Renewal
is just another way to talk about the prerequisites for future features.
But, simplistically, while the costs of new features might be charged to
customers, the costs of renewal are an overhead. Left at that, features
tend to win the competition for development resources.

Symbian OS faces the particular challenges of the mobile telephony
context, which are acute. The pace of evolution since mobile telephony
began to take-off in the mid-1990s, and particularly since the second
boom around 2000, has been breathtaking. That period of a little under a
decade is also the period during which Symbian OS has been licensed to
phone vendors. The increase in capabilities of Symbian OS v9 compared
with the original release of Symbian OS is quite dramatic.

Charles Davies is forthright about the need for continuous renewal.

430 SYSTEM EVOLUTION AND RENEWAL

Charles Davies:

All of Symbian OS needs to be renewed over time and it’s a challenge to
work out how to do that. In architectural terms, renewal is one of the biggest
challenges.

In theory, five years or so from now, Symbian OS will be at the
outer limit of its original intended design life of approximately 15 years
(depending on when you start counting). Of course, it is a fact of life
that software systems commonly outlive their design lives by several
multiples. Bits do not wear out. Software does not fall apart over time.
But still, the changing requirements and changing context mean that, in
practice, system evolution is almost continuous. The likelihood is that, in
five years time, most of the headline features of the operating system, and
many of its significant architectural features, will be ones that were not
present in the original releases; many of them may not even be present
today.

This is the magic of renewal (or the problem, depending on how
close you are to it). Unlike the products which are built on top of
software systems, software design life is typically managed by forestalling
obsolescence through continuous re-invention and evolution, rather than
by withdrawal and replacement of products (although that difference may
have much to do with the less tangible nature of software compared with
hardware).

17.2 Design Lifetime

All designed systems have a design lifetime and, for any manufactured
system, deciding what that lifetime should be is as much about eco-
nomics as it is about technologies. For example, the design lifetime is
one determinant of cost because it determines quality requirements for
components. It is also a key variable in calculating return on investment
and other accounting metrics and is, therefore, a key variable in deciding
the business case for a system and it remains a factor in deciding how
much to invest in maintenance.

Software systems are no different. However, unlike other manufactured
systems, they do not wear out. Maintenance is not driven by use of the
system causing parts to become defective because of ‘wear and tear’, but
by change. Maintenance in a software context mostly means defect fixing.
Typically, the defects to be fixed are either those introduced by earlier
(internal) software changes, or those which are revealed by an (external)
change in the way the system is deployed. Thus, software maintenance
is driven by change, whether adding new components to the system,

DESIGN LIFETIME 431

removing components, or using the system in a new product, or because
some other contextual change exposes previously ignored defects.

A simplistic way to distinguish maintenance from renewal is to count
changes made to keep a system viable during its design lifetime as
maintenance and changes carried out to extend a system’s design lifetime
as renewal. It is because software systems do not wear out that renewal is
possible and attractive. But increasingly, what makes renewal necessary is
the rapid pace of technological change. Maintenance, therefore, shades
into renewal and is necessary not to extend system design life but to
ensure that a system actually survives for its design life and is not made
obsolete by technology changing more rapidly than predicted around it
or by new, disruptive technologies appearing and changing the external
context to one in which the system cannot compete. Renewal becomes
as much a matter of survival as of extending the design life.

Deciding between maintenance and renewal is by no means always
easy. There is a critical balance between maintenance and renewal, and
getting the balance right can be a tough challenge for any organization;
deciding when to maintain and when to renew requires foresight, a clear
and well understood strategy, and a good understanding of the technology
context. In the short term, maintenance always looks attractive; renewal
frequently looks expensive.

Determining the Design Lifetime of Symbian OS
There was never any doubt about the goals of the software project for the
Series 5 operating system. It remained as it began, focused very clearly
on the requirements of that very particular device. However, there was
also a broader context.

Geert Bollen:

There was already explicit intent to create an operating system suitable for
multiple mobile devices, with a design life of 10 to 15 years. There was
long-term thinking and there was also a vision of having software licensees
that included mobile-phone manufacturers.

David Wood is equally clear about the long-term nature of the original
vision.

David Wood:

I think we said something akin to ‘The 16-bit system was designed for five
years and would last ten; EPOC32 was designed for ten years and would last
for 20’. It is interesting that we have already been through ten years of history,
and I think it’s going to be around a lot longer than even we foresaw.

432 SYSTEM EVOLUTION AND RENEWAL

Even perfect foresight would not be enough to secure a 15-year system
lifetime. There is no option about accepting the challenge of renewal.
The need for renewal is a fact of life. David Wood argues that it has
been fundamental to the way Symbian OS has evolved right from the
beginning.

David Wood:

The fact is that we did redesign many things in the initial evolution of Symbian
OS. The UI is an important example of that, the fact that we went through three
separate UI designs to get to the Eikon UI. And there were similar changes, not
quite so large-scale, but other changes in the implementation of other aspects
of Symbian OS, even before it got launched.

While you cannot guarantee longevity for a system, you can certainly
design for it. Designing for longevity means designing for the unknowns
to which your system will be subjected in the future. What that really
means is designing extensibly.

The two prerequisites for extensibility are a good conceptual design
and natural extension methods. The Symbian OS architecture is built on
multiple levels of extensibility. System services are provided by servers
that serialize access to system resources. To provide a new service, you
just create a new server. Most servers are themselves extensible, because
they are implemented as frameworks. To extend a server, you just create a
new plug-in. Within the system there are multiple patterns of abstraction.
Active objects, for example, abstract all events, so that applications only
need to know how to handle the events they care about, without worrying
what their source was. Sockets abstract all communications bearers, so
that applications only need to know about the message types they want
to send, without worrying about message transport.

These are all examples of extensible design and there are many others.
David Wood tells a story to illustrate his point about the way extensibility
is designed into Symbian OS at a deep level.

David Wood:

Bluetooth only emerged as a technology in 1998, about the same time Symbian
was formed. So when we designed the system, Bluetooth didn’t exist. Now
I’m not trying to diminish the efforts of Symbian engineers, but when we did
want to implement Bluetooth it wasn’t that hard. Of course there are many
devils in the details but architecturally it slotted in quite easily as just another
active object, just another event source. In broad terms, it fitted easily into our
architecture; we had foreseen that need by designing to be future-proof.

At one of the early developer conferences there were questions from the
floor during a talk on implementing Bluetooth on Symbian OS, asking, ‘How

DESIGN LIFETIME 433

did you manage to do this?’ When the answer was given, the question came
back again, ‘But surely it couldn’t have been as easy as that!’ And the answer
was, ‘Well, for us it’s just another active object.’ That was the phrase used:
just another active object. Later on it turned out those questions were from
Palm engineers, from the operating system part of Palm, and clearly they
had been struggling to squeeze Bluetooth into their system which hadn’t
been sufficiently future-proof. In the end they managed, of course, and there
certainly is Bluetooth on Palm OS today, but it required much more effort I
think than with Symbian OS. So I do think Symbian OS is future-proof, because
we design our frameworks with extensibility in mind.

‘Future-proof’ is a bold claim but it was certainly the goal of the
early design of Symbian OS and, in key respects, has demonstrably been
achieved.

There is, perhaps inevitably, danger too in abstraction. Too many
levels of abstraction can lead to code bloat and poor performance and
also to over-complex and unmaintainable code. The job of the component
designers and architects is to understand where extensibility is required,
and to enable it appropriately, and where it is superfluous and constitutes
over-design and over-engineering.

High Impedance of Change

Technology moves fast and each technology generation seems to move
faster. The founder of Netscape, Jim Clark formulated his ‘Internet-
time’ law to express that fact, the so-called law of constantly increasing
acceleration which compels ‘technological products to be released faster
and faster’ [Lewis 1999].1

However, systems, especially large and complex systems, evolve
slowly. This is not just true of software. It is as true of social organi-
zations (from large bureaucracies to large crowds) as of whole species
(evolution) as of particular technologies (fossil-fuel-powered systems).
Thus the corollary of the speed of change of technology is the high
impedance of systems to change.

Entrenched systems change most slowly, as if large-critical-mass
systems are slowed by systemic inertia. Operating systems become
entrenched when they achieve a certain level of market saturation. This
kind of entrenchment and inertia may be the biggest threat to renewal.

Two ideas which have become central to what Symbian does, and how
it does it, reflect the interesting dynamic between the drive for change
and the drive for stability:

1 The limit is based, as he says, on the speed of light: ‘How fast light moves down a
fiber-optic cable.’

434 SYSTEM EVOLUTION AND RENEWAL

• Platformization is what drives Symbian’s business and technology
goals, the goal of creating a software platform suitable for hosting
end-user-centered services across a diverse range of phone hardware

• The lead product concept is a key part of the way Symbian drives
projects, so that each software iteration is closely coupled to and
driven by the requirements of a particular licensee product.

Platformization requires stability. Lead products, on the other hand,
drive innovation and change. In part, this approach has crystallized
naturally, out of practice.

Providing an open platform for third-party development and bringing
it to the emerging world of mobile phones (and other pocketable devices
highly centered on communications) was one of the early rationales
for Symbian OS, and remains as much so now as then. To make that
strategy support multiple licensee UIs (to enable licensee differentiation),
an equally basic rationale, requires a high degree of commonality in
the system below the licensee UI variations (80:20 was the early rule of
thumb guideline: 80% of common APIs underlying 20% of UI-specific
APIs). The challenge of the strategy, therefore, is to avoid the platform
fragmenting beneath the centrifugal effect of UI variation, to enable as far
as possible a write-once–run-on-all-variants development model. Some
customization for UI variants will always be required, but the minimal
goal of common data engines beneath custom UIs is achievable so long
as unnecessary fragmentation is avoided.

The lead product approach has proven a successful way to capture
new requirements and drive the evolution of Symbian OS forward while
supporting licensees in bringing a more or less continuous stream of
leading edge products successfully to market and, in particular, while
maintaining the hard product deadlines required for manufacturing.

All Symbian OS projects are tied to one or more particular lead
products that define the basic critical feature set for a release, drive
the release schedule, and provide early validation and real products for
final testing. Once the lead product has shipped, licensees can consider
that OS release a proven platform for subsequent product variants. In
effect, this simply rationalizes the early approach of working closely
with licensees on real products, but provides a framework for supporting
multiple simultaneous licensees taking a given new release.

17.3 Renewal in Symbian OS

Typically, a renewal strategy aims to anticipate future feature requirements
and evolve the system to be a better platform for those features than the

RENEWAL IN SYMBIAN OS 435

existing platform. To a lesser extent it also aims to improve any areas
where the platform is deficient for current features.

Renewal permeates Symbian OS. Examples range from major system-
wide changes, which include UI evolution, the introduction of the
real-time kernel, and platform security, to numerous small upgrades and
updates, for example to track standards evolution in supported technolo-
gies (including Bluetooth, SyncML, vCard and vCalendar). Between the
two extremes are many examples of significant architectural enhance-
ments, whether to evolve services such as telephony to support new
network technologies, to introduce new services or to replumb essential
system services.

• The UI architecture evolved through multiple iterations to the early
Eikon UI and, thereafter, to Uikon plus licensee UI variants (for
example, S60, MOAP and UIQ), which are themselves continuously
evolving.

• The new kernel provided a complete generational change at the heart
of the operating system.

• Platform Security was a major architectural evolution with system-
wide impacts and high external visibility.

• Large-scale tools and system infrastructure changes include toolchain
upgrades from Visual C++, to Codewarrior, to Carbide and ARM, tools
updates driven by the move towards standard C++.

• New services include the power-management and system-startup
frameworks.

There are numerous examples of small architectural changes related
to the above major changes, including evolution of the IPC mechanism,
a new client–server architecture, and the ECom plug-in framework archi-
tecture. Other examples of significant architectural evolution include two
generations of multimedia re-architecture, significant telephony evolution
to support new network technologies (CDMA and 3G) and a forthcoming
new communications architecture.

There are also numerous examples of continuous architectural evo-
lution driven by performance requirements and of extending existing
services as new technologies emerge, for example, flash filing systems
and USB support.

The largest changes have been phased in over multiple releases, partly
to manage the risks to licensees of large-scale change and partly to try to
maintain an incremental approach to development and to maintain the
model of frequent releases. (Symbian’s earliest releases were monolithic
and the project management lessons were learned the hard way.)

For example, the real-time kernel was introduced as an option for
Symbian OS v8 and then became the standard kernel for Symbian OS

436 SYSTEM EVOLUTION AND RENEWAL

v9, enabling licensees to evaluate the new architecture and giving them
flexibility in when to migrate. The introduction of system-wide platform
security was similarly phased in over two v8 releases: v8.0 and v8.1. (It
overlapped with the introduction of the new kernel because it depended
on the new kernel to police the security policy implementation.) Both are
examples of a major re-architecture of the system and both cases reflect
Symbian’s perception of the needs of the market. Interestingly, in both
cases there was some short-term customer resistance, even if customers
have later embraced the changes.

David Wood:

It has taken a long time for EKA2 to come to fruition, but that has been an
internal renewal of Symbian OS and that is an extremely important initiative
that’s happened, because it has addressed some of the things that, over the
course of time, it became clear to us were shortcomings in the original design.
So it’s very good that we’ve been able to do that. I don’t think the full
significance of the new kernel will be appreciated for some time, but we will
see it employed not just in smartphones, but in a large number of other mobile
devices too in my view, because of what we were able to do to refresh the
design.

Platform Security is a highly significant change, which introduces a
security capability model and data caging supported by a certification
scheme, and requires some significant kernel changes including changes
to IPC. The overall impact has been high and, in platform terms, is highly
visible, because it has immediate (external) developer impact. Again, the
project had to weather some significant early resistance. To some extent,
the external impact may not yet have been fully felt. Charles Davies is
sanguine.

Charles Davies:

It’s a big thing, you know. There is no industry-wide accepted best practice for
how to secure a system, I think nobody knows exactly what the best thing is
to do. There is no ‘right’ answer. But PlatSec is our answer and time will tell.

17.4 Evolution in the Kernel

The move to the new EKA2 kernel is perhaps the most significant
evolutionary step Symbian OS has taken. However, as Martin Tasker
points out, architecturally it remains in some ways quite a local change.

EVOLUTION IN THE KERNEL 437

Martin Tasker:

At the system-design level, it hasn’t actually radically changed the system
design. It’s still either application processes or server processes and that design
was pioneered way back in SIBO and hasn’t changed much since the earliest
releases of EPOC. One reason it hasn’t changed much is that it’s a proven
design.

In fact, the beginnings of the kernel re-architecture go all the way back
to the first collaboration with Nokia on the project to bring the 9210
Communicator to market. This was not Symbian’s first licensee project
and it was not the first Symbian OS phone project.2 However, at the time
it was certainly the largest and most complex Symbian project to date.

The design approach was based on a two-operating-system, two-
processor solution, the so-called ‘partner operating system’ approach.
Symbian OS, since it was not then real-time-capable, was not capable of
hosting the GSM telephony stack. The phone side and the application side
were therefore separated, with a dedicated RTOS running on a dedicated
phone-side processor and hosting the baseband software, while Symbian
OS hosted the application side, running separately on an application-side
processor (see Chapter 15). While Symbian OS has evolved hugely in the
intervening years (probably almost as much as the phone hardware has
evolved from the first, brick-like Communicator design to the latest sleek
devices), the problems of that early solution are instructive. The most
immediate problem was how to force the phone-side RTOS and Symbian
OS to cooperate.

Morgan Henry:

To integrate the two OS schedulers and interrupt handing, there was only a
small amount of management that EPOC did first and then it would call one of
these hooks to hand-off to the RTOS. The RTOS would only give control back
once it felt it had done its job. I believe there have been similar solutions for
things like Linux running with a partner RTOS. But the challenges aren’t over
yet and you have to decide what owns which bit of hardware. Some of the
hardware was owned by the RTOS and some of it was owned by EPOC. I think
the MMC card, for example, was owned by EPOC and all of the peripheral
drivers, but all of the baseband hardware was on the RTOS side, so it owned
the power management, and it owned the real-time clock which caused some
interesting problems.

Coming from the Series 5, where EPOC always had direct access to every
bit of hardware, especially the real-time clock and the timers, and now finding

2 The Philips Ilium/Accent and the Ericsson R380 projects both preceded it, though only
the R380 came to market.

438 SYSTEM EVOLUTION AND RENEWAL

that it had to go over a communications protocol to get the time from the
real-time clock was a bit of an architectural shock for it. So there were lots of
work-arounds, but where we had the opportunity to do it we tried to redesign
in a sane way. This is what started the move to try and push a lot of things
outside the kernel and shrink its responsibilities. For example, the kernel being
able to persist system settings is something that was possible on the Series 5
because it had battery-backed RAM available to it, so it was persisting data
in the superpage and so on. This wasn’t really possible in the Nokia 9210
model where a lot of that data was owned by the RTOS and persistent storage
required writing to flash memory. So there were improvements in how we
did the HAL [Hardware Abstraction Layer] to move from the Series 5 model,
where a lot of the responsibility for persisting was with the kernel and the User
Library. In the new world a lot of that either got pushed up higher into the
operating system or got pushed over to the RTOS.

Those were just some of the challenges of the partner OS approach, because
it was a fairly difficult piece of hardware sharing. For example, because we
didn’t have visibility of what was going on inside these RTOS hooks we’d
get defect reports or see problems on the hardware which were kind of
inexplicable. You quickly realized you needed someone in the kernel team
with a big brain to think hard about the problem and discover that it would
be that the RTOS was affecting the processor state in ways it shouldn’t, or
blocking interrupts when it shouldn’t.

Other basic differences between the Nokia 9210 hardware and the
original Series 5 hardware design also required some significant changes.

Morgan Henry:

In terms of architectural changes, new functionality was certainly added; things
like generic support for the DMA controller and power management, as well
as drawing the delineation between the kernel’s responsibilities and higher
level responsibilities, for example, in terms of persistence of data. Those kinds
of architectural changes were happening then and those have been carried
forward into the new kernel as well. So those decisions were the right ones at
the time.

Another explicit goal of the EKA2 kernel architecture was to improve
portability of the operating system by improving the modularity of the
kernel design, so that hardware dependencies were isolated from common
kernel code and so that different levels of hardware dependencies were
isolated from each other, for example, to distinguish between more
generic dependencies and the specific dependencies of particular devices.

The so-called ‘partner operating system’ solution is of course only
one approach to solving the phone problem. Another goal of the new
kernel architecture was to enable single-operating-system and, therefore,
single-processor-core solutions.

EVOLUTION IN THE KERNEL 439

Morgan Henry:

If you look at the problem we were trying to solve with partner OS, now with
the new kernel we are in a situation where we’ve solved it in a better way.
It certainly is a lot more architecturally sound. So the reference design team
in Symbian recently announced that they’d got their first single-core-solution
running using Symbian OS as the real-time OS with a personality layer. In
terms of functionality, they’re at the same place but with a better solution, a
more robust solution.

In this approach, a ‘personality’ layer is used to interface the baseband
stack directly to the EKA2 real-time nanokernel. The personality layer
mimics the interface of the RTOS for which the particular baseband stack
was written. Since the nanokernel has true real-time performance, this
solution allows the baseband to be hosted on Symbian OS along with the
application side, for which the extended EKA2 kernel (i.e. the nanokernel
plus kernel) provides the interface, enabling a single-operating-system,
single-core solution.

As well as the new kernel architecture, there have been significant
other additions to the lowest levels of the system over multiple releases. A
new framework for power-state management has been added to support
the latest generation of phones which incorporate hardware previously
found only on high-end laptops and dedicated devices such as digital
cameras and camcorders, but still need to provide phone-style extended
battery life.

Radio technologies, such as Bluetooth, Wi-Fi and 3G, are extremely
power-hungry (power drain and battery problems were among the early
technical hurdles that stalled the rollout of 3G networks). Coupled with
the motors needed to drive optical zoom lenses, electronic camera
flashes and large LCD displays, the power demands of high-end phones
really do push the limits of battery-management technology. Simplistic
three-state models (on, off and standby) which were adequate for an
earlier generation of phones no longer meet the requirements. Symbian
OS has been very successful at maintaining its significant lead over
less-well-adapted operating systems running in mobile phones.3

Similarly, there have been substantial changes to keep pace with evolv-
ing generations of flash-memory technology, matching the demands of the
latest phones for large removable (and non-removable) drives that provide
multigigabyte internal and removable memories. File system extensions
supporting flash-file storage media have been added. Flash systems are
not byte-addressable, so conventional read–write mechanisms have to

3 It has close to 80% of the market, see Chapter 2.

440 SYSTEM EVOLUTION AND RENEWAL

be completely redesigned. Flash systems also have a more limited lifetime
than other memory technologies, supporting a lower, fixed number of
accesses before wearing out, which means that memory accesses must
be evenly distributed across all sectors of the card and not concentrated
in one physical location. These all imply significant behavioral differ-
ences which must be abstracted by the file-system server to provide a
common file-system interface. (The behavioral differences between NOR
and NAND flash have also become significant as phone vendors have
adopted the cheaper NAND technology as a way of boosting internal
memory size in a cost-effective way.) Similarly, solutions such as demand
paging have been explored as solutions both to RAM inflation and to
mobile disk-based storage options.

Performance improvements have also been made throughout the sys-
tem, at all levels from application support to the kernel and other
low-level system areas. At the low level, file seek time and inter-
process-communication timings have been improved, in addition to
the fundamental work of managing interrupt and other low-level process
latencies as part of the real-time reengineering of the kernel. In the appli-
cation support layers, significant effort has been spent to maintain and
improve the core PIM application engines, to keep them up to speed
with current technologies as well as with evolving expectations. Thus
Agenda, Contacts and Messaging have all had their share of renewal
through recent releases of the operating system, particularly to improve
performance.

17.5 Telephony Evolution

Telephony is an obvious area in which technology has evolved at a
relentless pace since the first Symbian smartphones came to market. GSM
has been enhanced with successive generations of go-faster technologies
such as EDGE and with half-way house technologies such as GPRS
which extend the basic voice capabilities of GSM with packet-based
data services. Finally, it has evolved to full 3G, with packet-based voice
and data services. 3.5G network technologies are now reaching the
market and 4G will no doubt soon start to emerge (although it is not yet
clear what 4G networks will mean). As well as this kind of generational
network change, there is the further complication of a global market
divided between competing network technologies, although GSM has,
to date, dominated globally over the North American CDMA alternative.
Unfortunately, 3G perpetuates the divisions. 3G evolution is based on
standards but while GSM evolves to the 3GPP standard, CDMA evolves
to CDMA2000 and remains as incompatible as its 2G counterpart.

Further disruptive change is promised as competing high-speed wire-
less technologies such as Wi-Fi and WiMAX converge with the latest

TELEPHONY EVOLUTION 441

telephony technologies. It is not clear what mix of standards will succeed
or which technologies will dominate. But clearly, to retain its current
advantage, Symbian OS needs to be flexible, adaptable and to support
this technology evolution seamlessly.

To some extent, the beginnings of the telephony architecture evolution
go back a long way, to Symbian OS v7 and even earlier.

Andy Cloke:

We have invested a lot of time and effort in multimoding the ETel API to
support the North American market where the CDMA2000 specification, the
Qualcomm-influenced specification to put it like that, was prevalent. Our
original ETel API was very GSM-centric. Since 3GPP specs are based on GSM,
that translates nicely across to 3G in Europe and Japan and anywhere else
with a GSM footprint that is upgrading to 3G, but it doesn’t translate well to
the North American and Korean markets. So that was the ambition, to support
both GSM and CDMA, with a view toward 3GPP and CDMA2000.

Since the lead time for getting these sorts of software components right is
quite long, the work started off quite early. So we had to scour the Qualcomm
CDMA specifications and work to align data formats, data structures, requests,
responses and notifications, and sort out where we could align and where we
had to create two separate functions, one which would be used in GSM and
one which would be used in CDMA2000. And, of course, the design principle
is to support keeping the phone engine as simple as possible. You don’t want
to say ‘Dial a Qualcomm voice call’ or ‘Dial a GSM voice call’; you just want
to say, ‘Dial a voice call and here’s the number I want you to dial’.

The aim was not so much to support multimode phones capable of
both GSM and CDMA operation, as to support phone vendors with port-
folios of phones targeting all markets. For the vendor, being able to build
both GSM and CDMA phones, or their 3G equivalents, from a single
source base is a significant advantage (even though the source base is
more complex), allowing maximum reuse of software across a phone
portfolio.

Andy Cloke:

The core ETel stuff actually is very thin. So, for example, SMS transmission
and reception is an ETel extension. And it turns out that the multimode ETel
extension is almost so standard that you’d always have to use it. But the point
is that it did give us another opportunity to redesign. For example, when we
created the original GSM API, we had a split between Basic and Advanced.
The idea was that you would have the core ETel which would be suitable for
standard wireline modems, and the Basic ETel extensions would be suitable
for a phone connected by wire or infrared, a two-box solution, and Advanced

442 SYSTEM EVOLUTION AND RENEWAL

would extend on top of that and would be suitable for a phone where the
signaling stack is built in. That was the original design intent, but we never
really ended up using just Basic ETel, so it was good to be able to deprecate
that.

It may seem an obvious point, but in the early days of Symbian,
phone expertise was hard to find. The company’s own background had
been strongly PDA-based, with a particular flair for squeezing powerful
UIs and applications into diminutive machines. Conventional network-
ing technologies were well understood and fixed-line telephony was
a well-understood technology. But mobile telephony was still highly
specialized and mostly disjoint from more conventional computing.
Embedded systems was a similarly highly specialized field. Few individ-
uals (and companies) had expertise across all those boundaries.

Andy Cloke:

By the time we got to develop Multimode ETel, we were a lot more experienced
in the whole phone area. By then, we had people who had come in from
companies where they had been developing GSM phones, so they thoroughly
understood all this stuff.

Supporting all the available global telephony standards is a prerequisite
for a genuinely capable phone operating system. Because those standards
continuously evolve, the operating-system support for them must contin-
uously evolve. Without an extensible telephony architecture that kind of
evolution is impossibly hard. The goal of an extensible architecture is not
simply to make evolution possible, it is also to make it as easy as possible
and as safe as possible since, in any system, change is expensive; in a
complex system, all change is also a risk to the stability of the system.

Another rather more minor example of the way that the telephony
architecture has changed in unforeseeable ways is exemplified by the
introduction of the ETel third-party API in Symbian OS v6.1. In the
original release of Symbian OS v6.0, ETel was substantially open to
third-party developers. The release of Symbian OS v6.0 SDKs which
documented in detail the ETel APIs for the first time caused concern for
some licensees,4 reflecting extreme operator nervousness about possible
implications for network security. It should be remembered that Symbian
OS was not just the first, it was also the only open operating system
being used as a platform for phones. (And, arguably, it still is.) Operators

4 At that time I was managing the documentation team which had published the
controversial APIs and I saw very clearly the upheavals it caused.

SOUND AND VISION EVOLUTION 443

had simply never been in a position in which their networks were even
potentially open to third-party developers. A solution was rapidly agreed,
the API documentation was withdrawn and an open subset API was
introduced (and documented) to abstract public telephony behavior to
enable applications to control phone calls, while the underlying API was
locked down for internal use only.5

Again, future change is foreseeable in principle but never in detail.
Extensible design is the only assurance against future disruption.

17.6 Sound and Vision Evolution

Another area of rapid recent technology evolution is multimedia, and this
is again an area in which Symbian OS has undergone significant archi-
tectural change. Symbian OS has always supported sophisticated sound-
and image-based applications, with Symbian OS v6.1, for example, being
the platform for the first Nokia camera-phone in Europe, the Nokia 7650.
Multimedia really arrived for the first time in Symbian OS v7.0s which
introduced a new multimedia server. In Symbian OS v8.x, the archi-
tecture was reinvented to support a full suite of sophisticated phone
functions. Between the releases of Symbian OS v6.0 and v8.1 there-
fore the change has been dramatic, from still camera to movie camera;
from instamatic-like snapshots to full-function, multimegapixel digital
camera replacement; from ring tones to music player. With image- and
sound-recording, -editing and -manipulation capabilities, Symbian OS
is evolving to support capabilities that until recently were limited to
multimedia workstations.

The underlying rationale for the multimedia architecture redesign
was support for the increasingly complex built-in hardware of the new
generations of phones, with their dedicated multimedia components such
as graphics hardware accelerators, MIDI-tone generators, dedicated DSPs
and voice synthesizers, as well as high-end imaging and audio hardware
parts.

Evolution of the licensee UIs for Symbian OS has been another big
driver for change in the graphics services which underlie the UI framework
support. Numerous UI enhancements aimed at supporting specific UI
effects, such as fading, transparency and multimillion-entry color palettes,
have required a steady stream of changes, mostly focused at the level of
either the Window Server or GDI and BitGDI. The Window Server is a
central component of the operating system, in many senses underpinning
the GUI application model of the operating system, responsible not just
for the windowing model, managing screen real estate and serving display

5 Incidentally, incompatible changes were back-ported to Symbian OS v6 to ensure that
later Symbian OS v6 products could not be ‘hacked’ based on the previously published
documentation.

444 SYSTEM EVOLUTION AND RENEWAL

regions to applications, but also responsible for the system-event model.
An example of the complexities which can be involved are the challenge
to the fundamentally single-threaded Window Server model by explicit
multithreading in the UI. It is easy to arrive at a position in which a clash
of programming models (the native asynchronous model of Symbian OS
based on Active Objects versus explicit multithreading) turns into an
architecture problem.

There are other challenges too. A good example of the unpredictable
emergence of new technologies is the emergence of vector graphics as
the future display technology of choice (or at least a plausible candidate)
within the wider industry. Traditional display technologies are bitmap-
based (or have been for a good many computer generations), but vector
graphics for display is certainly not new. Since the days of the NeXTstep
Unix machine which put Display PostScript to work to manage the phone
display, it has remained an interesting possibility.

However, recently there has been a vector revolution. The big driver
has been 3D and naturalistic graphics for games. 3D graphics are calcula-
tion driven and vector graphics are a natural vehicle for their expression.

Charles Davies:

Now we have the challenge of how to deal with moving to Open GL and
SVG, and what happens to Window Server in that context. There’s a huge
amount of technology and value in the Window Server and in the GDI and,
for example, none of that’s available in Linux; people have to license Trolltech
above Linux. That makes the Window Server quite a critical asset. But it’s
under threat, because the world might be moving on to vector graphics models
of drawing. So we had better be careful about that. It’s not going to happen
tomorrow, but it’s one of the challenges.

17.7 Defining the Skin

One of the trickier problems Symbian OS faces is the boundary problem,
or as Charles Davies puts it, the problem of defining the skin of the
operating system, the boundary which determines what is in the operating
system and what is not, what value Symbian creates and what value
Symbian retains compared with the value that licensees themselves create
and retain. There is a complex relationship between the architecture of
the operating system and the business model, which is designed to
encourage platform unity while enabling variation. At the same time,
Symbian has deliberately sought to create an open platform capable of
supporting a broad ecosystem of partners, third-party developers, software
and tools vendors, enterprise customizers and hardware vendors, as well

DEFINING THE SKIN 445

as licensees. Against external competition from competing systems such
as Linux and Microsoft’s Windows Mobile, Symbian must maximize
the value it creates for its customers, thus maximizing Symbian benefit,
without doing so at the expense of the value chain, which includes the
ecosystem of Symbian’s own partners as well as the partners of Symbian
OS licensees. The essential rule, of course, is that Symbian must maximize
the value it delivers without cannibalizing the value chain.

Charles Davies:

When I was at Psion, when we were building a PDA, I understood where
the PDA ended and where the things outside the PDA began. I knew the
boundaries of the product. I came into Symbian OS and I thought, ‘Where are
the boundaries?’

One of the things I’ve done since being here is to try to identify the scope
of Symbian OS. We have had arguments like ‘Should MMS have been inside
or outside?’ and I would have liked, dearly loved, to say, ‘We do all the APIs,
but we don’t do the implementation’. That would be a simple thing to say,
but the moment’s gone. S60, MOAP and UIQ have extensive APIs. So that’s
not the boundary and it’s really tough for both our customers and us to know
where the boundary is.

To look at it another way, we’ve got, say, 750 people in Software Engi-
neering doing Symbian OS and we can’t make that 1500 overnight and we’re
certainly not going to make that 200. So with 750 people, what boundary can
we draw that matches a decent product?

There are no easy answers. Not only is the system complex, the
technologies are complex and the market is complex. The Symbian OS
licensee model is complex.

Charles Davies:

For example, we could do an OMA DRM plug-in. Or is that an application?
Is that in the scope of the OS or is that something for the UI? And the answer
is borderline, borderline. With the borderline cases we will work with our
customers when our capacity doesn’t match it.

Keith de Mendonca has been on the engineering side of similar
decisions in the past. MMS is an example. Writing MMS messaging
plug-ins is complex. Providing support for it within the operating system
clearly has an immediate benefit for licensees. The problem is that if
some licensees take the Symbian OS solution and some do not, then both
fragmentation and duplication result.

446 SYSTEM EVOLUTION AND RENEWAL

Keith de Mendonca:

We did produce an MMS solution when MMS first appeared. But we ended up
with multiple solutions, with us and licensees each investing and producing
basically the same technology. It was a waste of resources. Nowadays, Symbian
OS no longer supports MMS directly at all, and so our customers have to
provide those MTMs themselves if they want them, and they obviously do
want to support MMS. So although our MMS solution is still in some products,
say the Motorola M1000 phones or the v7.0 phones that are shipping, we
don’t supply it any more. I think the truth is, it was one of those situations
where it’s hard to decide who should really innovate in areas that seem to be
very hot, where the technology was moving very quickly.

Avoiding the trap of duplication of effort, however, is hard. Arguably,
precisely because customization is required to adapt the operating system
to a given hardware platform, it may be unavoidable toward the bottom
of the operating system in the hardware adaptation interfaces. On the
one hand, the risk is of under-providing, which leaves too much work for
licensees in porting the operating system to their hardware, while on the
other hand the risk is over-providing, duplicating solutions that at least
some licensees wish to supply for themselves.

17.8 Moving Towards Standard C++

A quite different, but no less important, perspective on renewal emerges
from considering recent moves in Symbian OS towards a more standard
use of C++, as discussed in Chapter 15.

David Wood:

Historically, we were biased towards coping with programmers who could
handle quite a lot of complexity themselves, so while the operating system
hides many, many complexities, still the bits that spill out are pretty difficult,
and it requires a serious and very capable C++ software engineer to deal with
it.

We used to say, or some of us used to say, that if you’re a Java programmer
stick with Java; if you’re a C++ programmer, convert to Java unless you happen
to be a very good C++ programmer, in which case you can stick with C++
when you’re programming Symbian OS. I’m not sure we quite said it like that
but that was the implication. We didn’t make concessions for the ‘mid-range’
C++ programmer.

This is changing now, because we are at the stage where Symbian OS is
going mainstream. When I say mainstream, I don’t just mean that more phones
are running Symbian OS, I mean that mainstream developers want to get their

MOVING TOWARDS STANDARD C++ 447

applications ported onto Symbian OS and they’re not prepared to put up with
the level of complexity that early adopters have.

We are looking at alternative run-time environments that hide more of
the complexity. And you don’t get quite so much control, certainly, and you
probably end up with programs that are less efficient in several ways, but the
added power of the machine probably makes that a more acceptable trade off
than before.

Python may be one of the examples David Wood has in mind. But
providing alternative language environments for application develop-
ments does not address the fundamental problem, that for those system
programmers who must use C++ (whether they are porting the operating
system or extending it), Symbian OS C++ sometimes appears arcane and
willfully difficult in a world where standards rule. Symbian C++ idioms
include its Leave()mechanism and cleanup stack, Active Objects rather
than explicit multithreading, descriptors rather than C++ string classes,
ordinal-based function calling into DLLs rather than more conventional
name-based calling, and so on.

David Wood:

We did our own implementation of exception handling, because we took
the view that exception handling was insufficiently standard, which at the
time it was, and insufficiently efficient. As it happens that efficiency condition
was borne out to be correct too, because when we eventually we turned the
compiler flag that said ‘Right, enable native exception handling of C++’ in
Symbian OS v9, something like 10% or more in bulk was added to the code.
Not only does the native mechanism require more code, it’s also slower to
unwind the stack. We did various things in Symbian C++ where we would
unwind the stack in one whole lot just by calling User::Leave(). So we
avoided going up the stack layer by layer by layer, unlike the corresponding
function inside native C++ – I think it is throw(). When you throw(), it
doesn’t jump up all at once, it goes up layer by layer of the stack.

Standard C++ error handling also requires memory allocation, which,
of course, fails if the error being handled is an out-of-memory error.

David Wood:

There is occasional memory allocation needed by our cleanup stack as well,
but it’s done in such a way that each individual call to the cleanup stack will
succeed, although if it’s going to run out of memory for the next allocation it
then unwinds. But whatever you push onto the cleanup stack is guaranteed to
still be there. So that was very carefully designed in.

448 SYSTEM EVOLUTION AND RENEWAL

It is easy enough now to look at these mechanisms and condemn them
as idiosyncratic, quirky, and frustrating. However, the fact is that at the
time there was no C++ standard and there were no standard mechanisms.
While memory leakage on desktop systems is still frequently taken for
granted as part of the programming context, that approach was simply
not acceptable in the context in which Symbian OS emerged, and nor
is it for the mobile-phone market as it exists today. Power, memory
and CPU cycles remain scarce resources in mobile devices and desktop
assumptions do not hold.

Andrew Thoelke:

Memory allocation and out of memory was very important on the Series 3 and
it was going to continue to be a big deal on Series 5 and it still is a big deal
on any mobile device, even though some of the assumptions have changed.
So we assumed that the operating system had to run for days or months or
years without memory leakage or failure resulting from managing memory
because you never switched off a Series 5. C++ isn’t a garbage-collected
language, so a lot of the rules actually came about from asking, ‘How do we
help programmers write code and review code to make sure that it is memory
correct?’

It also predated exception handling in C++, so the cleanup stack, which
is an idea from Series 3, was brought across, as was the actual exception
mechanism for error propagation. This was followed by the naming convention
too, basically to say this is a class that you should only ever allocate on the
heap (or sometimes as an embedded member of another object on the heap)
and this is a class you can safely have as a stack item, but if you’ve got to close
it you need to make sure that you always close it, or you have to find some
way of ensuring that it can be closed as part of an exception propagation.

Martin Tasker argues that while the detailed rationale may have
changed as Symbian OS has evolved for new classes of device, the design
choices were sound, and remain sound. But there is no doubting the
barrier they pose for entry for developers coming to Symbian OS for the
first time.

Martin Tasker:

There are barriers to entry, and there are what you might call ongoing costs.
What happens in a lot of programming is that people assume that clean up is
either an issue that you never have to handle, or that you can terminate your
program if ever a resource is unavailable. It’s very easy to write that kind of
code. But what gets difficult is if exceptions can occur pretty much in every
function you call and then the old-style programming gets cumbersome. At
this point you have got to invest some thought in asking ‘What happens if
any of the functions you are about to call fail? Should you set up some kind

MOVING TOWARDS STANDARD C++ 449

of trap?’ Whatever system you have, you’ve got some thinking to do which
doesn’t come quite so naturally. I think the solution we chose was actually
quite simple compared to other solutions for the same problem. However,
from the perspective of a third-party application programmer or a developer
within a Symbian OS licensee, that is one of the more tricky areas. But we had
to do this and our design choices were actually pretty good.

On this argument, discounting the high initial cost of the Symbian OS
idiom against the resulting low ongoing costs may be a better option for
developers than the opposite choice, that of using a standard mechanism
which is immediately familiar but which is not optimized for the device
class. Like it or not, the reality is that programming for small devices, and
for phones in particular, is a specialist discipline, whether at application
level (working with the different UI considerations imposed by mobility,
the small footprint constraints, and so on) or at system level (ROM-based
driveless devices, hardware with awkward properties such as NAND
flash memory and intermittent connections). Desktop assumptions and
techniques do not carry across.

Bob Dewolf:

I quite like the Symbian OS programming culture. Of course it seemed odd at
the beginning because you had to learn all these strange new ways of working,
like two-stage construction and the cleanup stack, but I’m quite a fan of that
now; I quite like it. And I don’t think that’s held us back, I think that’s been
a good story, because it gives clear rules about how to deal with memory
allocations. It’s also a very strong OO-design pattern, which I also think is
good in general.

Nonetheless, the pressure to standardize is being responded to.

Andrew Thoelke:

In some cases, our constraints go beyond the advisory, ‘This is advisable
because of the way the system’s written’, and become, ‘If you don’t do it like
this your code won’t work’. We definitely intend to move away from this now,
and try to support a much more mainstream C++ programming environment.
This is partly because there is such a thing now, which there wasn’t when we
started, but also because it will aid more programmers to get onto the platform
and it will allow them to take code that already exists outside the platform and
more easily to deploy on the platform.

The investment in already-written software has often proved decisive
in relation to whether new systems succeed or not. Ease of porting is

450 SYSTEM EVOLUTION AND RENEWAL

an essential requirement for an operating system which aims to become
the standard in its market. To enable Symbian OS to continue to grow
as a software platform requires providing better options to those looking
to port existing code from other operating systems, whether at system or
application level. Requirements have been framed and the changes will
come.

Of course, it is an open question how much existing Unix or Windows
code would make suitable candidates for running on a phone. The porting
market is almost certainly not for standard third-party code, except for
games perhaps, so much as for proprietary solutions. Languages may turn
out to be as significant as mechanisms.

The company’s language strategy has not always been consistent.
While there has always been a commitment to native C++ development,
at times Java seems to have been promoted as the programming language
‘for the rest of us’ working on Symbian OS as a platform. Martin Tasker
takes some pains to explain the truth.

Martin Tasker:

It was always assumed that C++ would be used externally and there were
conscious design decisions around that. In fact, Colly Myers used to feel quite
strongly about it. He would say, ‘We can’t assume that everybody understands
operating systems and we cannot expose an API in such-and-such a category
to people who don’t understand operating systems’. That was because the
C++ APIs were exposed. And, if you look at active objects, if you look at the
C and T types which offer a very very simple guide to the programmer as to
how to use these types operationally, as simple as Java objects and built-ins,
then in some ways we are as simple as Java. We don’t do garbage collection,
because C++ doesn’t do it, so programmers have to do that stuff manually. But
otherwise we’re as simple as Java.

For application developers, languages such as Java, Visual Basic and
Python are obvious options for enabling cross-platform portability, rapid
development and improved productivity on Symbian OS.

David Wood:

Java is only one option. There are now other run-time environments as well,
including Visual Basic from AppForge and the run-time environment they
call Crossfire. They also support a. NET library or run-time environment for
Symbian OS. And then there’s OPL, a very old and venerable programming
environment and there are more recent contenders such as Python. The
common theme of these interpreted languages is that they are less efficient in
terms of manipulating the bare metal of the device, but they require less of a
learning curve to become productive.

MOVING TOWARDS STANDARD C++ 451

What I’ve seen is evidence that you don’t need to be anything like such
an experienced programmer to use them, indeed non-programmers such as
journalists and students of journalism or students of media or students of arts
and technology are able to learn how to create quite impressive programs in
Python from a course based on just one lesson per week, and that is part of
Symbian OS coming to the mainstream.

18
Creative Zoo or Software Factory?

18.1 Introduction

This case study takes a step back from Symbian OS itself to explore
some of the broader questions about how software is created. One
consequence of the success of Symbian OS has been the rapid growth
of Symbian, the company, and of its software engineering organization.
From its small-company origins, Symbian has become a middle-sized
company, established in a global market. Success, inevitably, brings its
own particular slant to the perennial problems of how best to make
software.

18.2 The Software Problem
Like all software companies, Symbian wrestles with the problems of
efficiency, effectiveness and predictability. Every software development
organization faces the same basic question: what is the right way to
organize so as to be as effective as possible at making and shipping great
software? In other words, how should development teams be organized
(or how they should organize themselves), with respect to the software
base and the need to continuously maintain, evolve and improve it? And
there are softer questions too: what should the project culture be and
how should it feel to work in a project?

These are not new problems and a lot has been written about them, but
nonetheless they are difficult problems. One reason they are difficult is
that they are ill-defined problems, not the kinds of problems with which
software companies like to deal and problems with which, typically,
software companies are bad at dealing. (It is always a mistake to seek
engineering solutions to non-engineering problems.) They are not made
easier by the fact that there is disagreement among practitioners about
even the basics.

454 CREATIVE ZOO OR SOFTWARE FACTORY?

Typically, software creation is counted as an engineering practice,
which is to say one based on measurable, formal procedures and systems,
although not necessarily formally mathematical. (A dissident, formalist
view is that it would better be classed as mathematical practice). Devel-
opment methodologies therefore are engineering methodologies (process
engineering and product engineering) which should deliver validated
solutions to well-specified problems (customer requirements), predictably
and repeatably.

There is a minority view that the very use of the word engineer-
ing in this context is a category mistake. Software creation is not an
engineering discipline but something more like a craft practice, carried
out by skilled professionals making intelligent, intuitive, but necessarily
‘soft’ or ‘fuzzy’ or simply underdetermined decisions. Worse, it is not
just the case that requirements are often poorly specified; they are, in
many cases, unable to be specified before the development activity (i.e.
outside the context of a proposed solution). Development methodolo-
gies, in this view, should be designed around these basic matters of
fact.

The business demands imposed by the commercial context do not
help to reconcile the differences. When software companies are product
companies (it is easier when they are simply internal suppliers), they
are subject to the same commercial disciplines as any other business.
Less orthodox approaches to requirements capture and design, based on
prototyping and experimentation, trial-and-error and iteration, because
they are inherently uncertain and therefore high risk, are in immediate
conflict with a command and control business culture. As much at issue
as methodological questions, then, are cultural and sociological ones
and the underlying questions of control and where it resides in the
organization.

A final difficulty of the pure engineering approach is that whatever the
other merits of the argument, there is no doubt that the underlying activity
of actually writing software looks as much like an art as a science. It is full
of subtleties, is strictly non-deterministic, is highly context-sensitive, lends
itself to multiple possible solutions, and requires experience, expertise,
imagination and inspiration. These are the facts that underlie the familiar
statistics about individual programmer productivity. No matter what the
business needs, it simply is not possible to mandate software productivity.

If proliferation of theory is an indicator that a research area is underde-
termined by the available facts, then software practice is up there with the
best of them. Development methodologies proliferate and it can be hard
to sort quack remedies from principled alternative practices. Theories
are rapidly inflated into fully marketed, patent medicines for all software
development ills. Gurus abound and none of them agree about much at
all. Metaphors abound too, from ‘design factories’ and ‘software factories’
to ‘total quality’ and ‘Sigma 6’ to ‘Scrum’ and ‘Extreme’.

TOO MANY DRAGONS 455

18.3 Too Many Dragons

[Aho, Sethi and Ullman 1986] has a fire-breathing monster bearing the
label ‘Complexity of Compiler Design’ on its cover. There are many
dragons to slay in software development, of which the innate complexity
of the endeavor is the fiercest and fieriest. Presumably, complexity is also
what Stanley Lippman, the author of more than one well-regarded C++
primer, is alluding to when he chooses Durer’s engraving of the knight
and the devil for a frontispiece [Lippman 1996].

But almost as fierce and fiery, and certainly as famous, is the dragon
‘of poor programming productivity’, the problem to which [Brooks 1976]
first drew attention and which, for example, [Gabriel 1996] confronts
in an influential essay, without reaching any very hopeful conclusions.
Estimates of programmer productivity vary from 10 to a few hundred lines
per month, or perhaps 1000 to 2000 ‘non-commentary source lines per
programmer per year.’ As [Gabriel 1996, p. 127] points out, that is about
four lines a day – ‘There is a software crisis.’

The phrase ‘software crisis’ was coined as long ago as 1968,1 and
most of the current software creation infrastructure has evolved in its
shadow, including the dominant operating systems, programming and
modeling languages, and analysis methodologies, not to mention the
modern software–hardware infrastructure.2 All can be seen as part of
the same calculated effort to move the practice of making software
from a black-art to a well-founded science. The ‘crisis’ was created
by the impossibility of reliably planning, implementing and maintaining
systems beyond a certain size and complexity threshold. Interestingly,
another phrase coined at the same conference, by Doug McIlroy, one
of the pioneer creators of Unix, was ‘software engineering’. McIlroy also
observed that without some evidence of a components industry, there was
no sound basis for thinking of software production even as an industry
(let alone an engineering industry) [Assmann 2003].

Of course, what McIlroy had in mind was a research and engineering
program that might lead to an industry founded on the manufacturing
of software out of components. Since components and composition of
components explicitly underlie and underwrite today’s object-oriented
approaches (and, in fact, most other recent programming methodology
research too), it seems fair to say that McIlroy’s call has been heeded.
But still, the striking fact is that, close to 30 years later and what should
therefore be a good way beyond the black-art and wizardry stage, the
crisis seems as strong as ever. It’s not so much that no solutions were

1 At an international conference of software professionals and academics called to
address the question, ‘How can software be produced systematically?’ [Assmann 2003,
p. 6]

2 Take your pick, but Unix first appeared in 1969; the PC in 1981; the C language in the
early 1970s; C++ in the early 1980s; and Java not until 1995.

456 CREATIVE ZOO OR SOFTWARE FACTORY?

found, as that the problem has simply continued to grow exponentially.
For every solution, it seems, there is an immediate test case problem for
which, in one dimension or another, the solution is inadequate.

There is extensive literature on the software crisis and on the proposed
solutions to it, from structured techniques to object techniques and reuse,
along with a host of related approaches and methodologies, from Class
Responsibilities Collaborators (CRC) cards3 and patterns, to feature teams,
to Extreme and Agile programming. Abstracting the detailed differences,
the common core of the radical solutions is an emphasis on incremental
and iterative development and the freeing of programmers to think,
approaches which are promoted by a generally broad and probably wise
consensus. But, as [Gabriel 1996] somewhat regretfully concludes, there
is little evidence that the industry overall is either pleased to hear the
remedies or attempts to apply them in practice on any large scale. On
the whole, they do not offer solutions that a traditionally managed and
typically ‘over-managed and under-led’ industry wants to hear. It carries
on as it always has, even though eventually, as [Gabriel 1996, p. 128]
puts it, ‘we’ll find that traditional software development methodologies
are among the least productive and possibly produce the lowest quality.’

What drives the traditional software development methodologies are
the basic commercial imperatives of management control and process
repeatability and predictability. The problem is that these imperatives
seem to be at odds with the practices which actually deliver better
software productivity and quality. Perhaps software is ‘just different’, but
if Gabriel and others are right, achieving productivity and quality seem to
require non-traditional approaches to control. Traditional management
doesn’t want to let go.

18.4 Software Development Approaches

One argument, or perhaps it is more strictly a metaphor or another
analogy, which has proved very popular is that making software is a
bit like making buildings. Prefabrication and componentization are only
small parts of any answer as to how to do it better, more reliably or
more predictably. Following the analogy of ‘habitability’, making ‘better’
software means making software which is more elegant, more long-lived
and more adaptable; on the analogy of buildings which do not fall down,
reliable software does not fail unexpectedly; and predictability means
completing the job in something like the predicted time.

This metaphor is at the heart of the software patterns movement, which
argues that not only is making software like making buildings, but that
it is an irreducibly human activity and team activity. Relationships and

3 A good introduction is [Beck 1999].

SOFTWARE DEVELOPMENT APPROACHES 457

interactions between individuals, and individual and team behaviors and
all the subtleties and difficulties associated with them, come into play
and must be managed by the software creation process in order for the
process to succeed [Rising 1998, p. 143]. Different organizations have
tried different approaches, including Extreme and Scrum4 programming
approaches and similar team-based systems, which along with ideas
such as ‘creative chaos’ (as a tool for fostering innovation and creativity
within the industrial organization) have been the subject of industrial
experimentation across many different industries in Japan.5 Teams, of
course, are just groups of collaborating individuals plus leadership (teams
without leaders are groups) and the health of a team is a function of the
health of its individuals plus the quality of its leadership.

The common contention behind all of these approaches is that the
core processes of software development cannot be understood from a
purely task-based perspective. A broader perspective which explicitly
makes room for the ‘people’ dimension, as well as mapping task outputs
(for example, an ‘artifacts, roles, actors, and agents’ model [Rising 1998,
p. 122]) is essential to understanding what is an essentially dynamic
activity. Traditional process models, especially those such as ISO9000
but including also the popular Capability Maturity Model (CMM), have
their place but are not perfect at capturing software development as it is
actually practiced and, indeed, as it must be practiced.

Another point that these approaches all stress is that if making software
is a creative process then it depends for its success (presumably) on
enabling creative individuals to do the creating, and creativity is not
easily prescribed. A preponderance of strong personalities among the
creative people also means that command-and-control approaches are
doomed to fail, if not absolutely (some software will get made) then
relatively (team potential will have been poorly exploited and software
quality will be poorer than it could have been).

Old-fashioned, waterfall development is very thoroughly and almost
universally deprecated. Full specification followed by full design followed
by full ‘coding’ does not work, because ‘full specification’ and ‘full design’
have both proven unachievable in practice. Iterative development, in
some form or another, seems to be the only rational alternative [Rising
1998, p. 148], allowing a full specification of the problem and a fully
designed solution to emerge through successive cycles of partial design
and implementation. However, in practice, software organizations like
most others have an almost insatiable desire for detailed specification
and up-front design, not to mention planning and budgeting, ahead of
any resource commitment. The organization defeats itself, because it is
risk-averse and wants certainty, or relative certainty, when in fact it should

4 ‘Scrum’, or ‘relay’, is an attempt to translate the Japanese word ‘sashimi’.
5 At Nissan, Fuji Xerox and Matsushita for example. See [Nonaka and Takeuchi 1995],

especially for the theory of creative chaos.

458 CREATIVE ZOO OR SOFTWARE FACTORY?

be organizing to manage uncertainty. But to many planners, uncertainty
does not sound much like engineering. It is also easy to fall into the trap
of seeking to control process artifacts, rather than managing processes
through the people who implement them.

Another problem is that iteration depends on short cycles, but often
enough the short cycle is subverted by the planning process. The imple-
mentation phase is repeatedly postponed for the sake of a little more
planning certainty. The result is not a short cycle at all, but a traditional
long one (six to nine months, say), with a planning front-end which
lasts for six months out of nine, followed by a hasty development tail.
Inevitably the tail turns out not to be short at all, development takes
as long as it takes, and the overall cycle reverts to being a one-year or
18-month cycle.

Organizational fear of ‘randomness’ and the indeterminate or merely
underdetermined fuels the urge to centralize and control, to legislate,
plan and create metrics (define and measure!). Randomness, for want
of a better word, is a necessary part of the process of exploration.6

Uncertainty, whether we like or not, is a given of creativity. The creative
factory is probably an impossibility.7

Building construction mixes art and science, but it also has another
important dimension. ‘Ethical’ architecture is essential, because the build-
ings that architects create determine our physical spaces and, done badly,
despoil our towns and cities. ‘Ethical software’ might be something we
had better start to consider too. Software increasingly permeates our
lives and, in some cases, is beginning to dominate and control them,
not necessarily for the good. Identity cards and ‘big’ databases are one
example; software-driven munitions are another;8 as is the ‘Google in
China’ question.9 An ethical-software manifesto, if there was such a thing,
would fit well with the original goals of the software pattern movement
for habitability and would fit well with the original aims of Christopher
Alexander in his architectural patterns work.10

6 Error, indeed, is objectively indistinguishable from creativity, in so far as both are
underdetermined and only subjective measurement against a goal can tell one from
another. To stretch the point only a little, the software on the Ariane rocket made an error,
not a creative leap; but in other circumstances, departure from the norm might be called
inspiration.

7 A factory is a place where mechanized production takes place, originally organized
around the principle of machine-minding (‘satanic mills’, for example, with steam-driven
looms), re-imagined by Henry Ford and others around the idea of the production line and
the factoring of the production task into simple actions performed by highly specialized
but unskilled labor. A factory has only lately been reinvented as a place where teams work
together to meet their production targets.

8 Mobile phones are not ethically neutral. Mobile phone access to emergency and rescue
services saves lives. But equally, mobile phones are increasingly being used to trigger bombs
and as homing devices for remotely delivered munitions to target individuals.

9 How can we achieve the ‘borderless Internet’ when it runs up against state censorship?
10 The classic text is [Alexander 1979].

WHAT MAKING SOFTWARE IS REALLY ABOUT 459

In some senses, the open-source and free-software movement is an
ethical movement, but in other senses it is more obviously mercantile
and market-led and markets know no ethics. But the hacker ethic (see
[Himanen et al. 2002]) proposes a rather different work ethic from the
conventional one: work is fun, programming is play and the passion for
the machine has a moral dimension.

18.5 What Making Software Is Really About

‘Shipping great software on time’, as [McCarthy 1995, p. 2] puts it, is
what making software is all about. But as he emphasizes, software is
peculiarly intangible. It is not simply ‘stuff’; it is embodied thought, idea
plus design plus implementation; each of which is an intellectual (not
mechanical) process. What makes the process interestingly different from
other intellectual processes (thinking, writing and painting) is that beyond
a certain level of size and complexity, it is necessarily a team activity.

For McCarthy at least, the word ‘development’ (as in ‘software devel-
opment’) is a clue to the nature of the enterprise, a dynamic process of
maturation, in which what matures is precisely that embodied thought:
as he writes in [McCarthy 1995, p. 85], ‘It’s the team ideation, gradually
migrating from highly individual (even private) notions toward a group
articulation in the shipping code.’ This way of putting it will resonate
with anyone who has been involved in the software development process
(and that means, as he says, ‘everybody on the team’, whether planning,
scheduling, creating or validating the software product). The essential
development act is this development of individual ideas into embodied
intellect, productized thought: intellectual property, in other words.

This is the view, of course, that sees making software not as an
engineering process (although there are engineering aspects to it, as
there are in any construction process) but ‘as primarily a sociological
or cultural phenomenon’ [McCarthy 1995, p. 87]. Perhaps more even
than engineering ‘aspects’, there are some engineering fundamentals
involved. Machines are engineered constructs and all software is in
some sense ‘soft machine’. But, nonetheless, if the software industry is
fundamentally a creative industry, then there are necessary limits to how
far industrialization (and even formalization) can go. Every developer is
familiar with the notion of the ‘death march’11 and it is hard to imagine
that anyone would willingly adopt it as a project model. But without a
development methodology that understands, and serves to support, the
reality of the software creation process, it is probably the inevitable end
for all software projects.

11 The ‘death march’ is the bringing to final completion of a long and difficult project
and its repeated slippage as an ‘exhausted, physically and emotionally spent’ team marches,
stumbles, and lurches to final shipping of the product [McCarthy 1995, p. 33].

460 CREATIVE ZOO OR SOFTWARE FACTORY?

Software is not the only creative industry to have attempted a ‘factory’
approach. Hollywood is probably the most famous, if not the most
obvious, example. Thus at Warner Brothers studios in the 1930s (see
[Bordwell et al. 1985, p. 326]), all creative people (directors and writers
included) had set working hours and a per-day expected piece-rate
production (which may not in the end have been so much more than
the equivalent of four lines of code per day). In one sense, it worked
and the films are there to prove it, but it almost certainly did not work
for the simplistic reasons that Jack Warner thought that it worked. More
likely, it worked because a hot-house of talented people did good things
despite the more foolish aspects of the regime.12 In an updated context,
it might also be legitimate to ask whether the independent cinema sector
produces higher quality films than the modern Hollywood factory (surely
it does!) and, if so, how much of the difference is due to their different
production models. The analogous comparison between conventionally
and open-source produced software might be similarly instructive and for
similar reasons.

Software development, says [McCarthy 1995, p. 87], is more like
a jam session than an orchestrated event and, in so far as that is
true, it cannot be factoryized and cannot be scripted. The jam ses-
sion requires motivated, independent, skilled, autonomous individuals to
work together with a common aim. What the development model can
enable is a team context which makes it likely that the goal will be
achieved, including time goals if time-boundedness is part of the project
specification.

Flavor of the Times

The stereotype of the early days of the Protea project which created the
precursor to Symbian OS is, on the one hand, Charles Davies and his elite
band of application and ‘middleware’ programmers with their object-
oriented cloud and, on the other, Colly Myers and his lieutenants with
their heads down in the practicalities of leaner, meaner and faster code,
only vaguely aware of the cloud but exploring some interesting object-
oriented ideas of their own. Somewhere between the two elites is David
Wood, throwing new recruits at the interesting problems of creating a
complete object-oriented GUI from the ground up and laboring mightily

12 According to legend, Jack Warner was accustomed to taking a mid-afternoon stroll
around the studio lot every day. If when he passed the Writers’ Building there were any
offices from which he did not hear the sound of a typewriter from the window, he would
have his assistant enquire why the writers in question had not been writing.

WHAT MAKING SOFTWARE IS REALLY ABOUT 461

(and often singlehandedly) into the night to integrate the raw code they
created into a complete and elegant system. Bill Batchelor stalks the
corridors with a furiously scribbled and rescribbled back-of-envelope
project plan looking distracted. In the basement, meanwhile, Richard
Harrison presides over a rack of home-made-looking black boxes (ROM
writers) and a heap of yellow, later green, ‘Banana’ and ‘Lime’ Psion
Series 5 prototype devices.

Davies, according to the stereotype, is the cerebral purist and Myers
the bulldog-like pragmatist, the one who is actually building the system
and needs therefore to know what to build. Bollen meanwhile, as a
relative newcomer, was neither exactly in Myers’s corner nor in Davies’s
corner.

Geert Bollen:

I was ‘piggy in the middle’. I had arguments with both.

Others who were there tell a broadly similar story. Most strikingly, for
all its informality, it was not a particularly relaxed environment. As Martin
Tasker puts it, it was a frontier atmosphere, exciting, charged but driven.

Martin Tasker:

Colly Myers and Charles Davies led the project, and they had three trusted
lieutenants who they put in key positions, namely Nick Healey, David Wood
and Bill Batchelor, but Colly and Charles were formally Psion Group directors
and they directed the software on the project. They had absolutely poles apart
different management styles. With Colly, everything came from within and
was asserted. His style was to assert everything more or less out of his own
brain and his own experience, you know, an ‘I’ve already written three OSs,
this is my fourth and I know what I’m doing’ kind of mentality. And people
who followed that had an easy time, and people who thought otherwise had
a hard time, which didn’t mean to say that Colly couldn’t be challenged, but
it was difficult.

Whereas Charles’s style was very much to read books about other projects
and basically to design the interfaces, and then to train up people and get them
to implement stuff to the specification, and then he would iterate. He had a
group of people who he basically taught Rose clouds to and he architected
iteratively with them. I mean Charles was quite assertive but he had broader
input than Colly and was gentler in the way he let things out as well. And
David Wood, meanwhile, although he was slightly under Charles’s guidance,
he gave a huge degree of autonomy to his people, basically he used to say,
‘these guys are bright and they can do it, I won’t give them any brief at

462 CREATIVE ZOO OR SOFTWARE FACTORY?

all, I’ll just comment on what they’ve done when I integrate it’, whereas the
people who worked directly for Charles got quite a lot of attention at a certain
interface level.

There were a lot of different styles, and I would say overall there was a
lot of creative tension around. I think the atmosphere was really very frontier.
There were probably people who didn’t have the experience to deliver on
their potential, for whom that environment wasn’t the right environment. And
there was also a class of people who kind of came in and always wore a white
shirt and would have been a lot happier with Symbian as it is today than Psion
as it was then. You know, the frontier mentality didn’t suit.

There was an architecture committee, ArchComm, and Bollen was on
it, as were Davies and Wood. There was also a UI design committee,
presided over by Nick Healey and Bill Batchelor, the two UI gurus,
dedicated to keeping down the number of key strokes required to drive
the system in keyboard-shortcut modes and to keeping the application
UIs clean and consistent.

Howard Price:

There was a lot of counting of key presses. Navigating with the keyboard, you
want to avoid having more than the strictly minimum number of key-presses.

Peter Jackson, who had joined the company well before the Protea
project began and was by then almost an old hand, also has another,
quite specific recollection of the transition from the early design activity
to the construction of a real system.

Peter Jackson:

I have a very clear recollection about what life in Psion was like at the end of
1994. There was a lot of quite deep thought going on about architecture and
the way things should be modeled and so on, and then one day Colly made
his world-changing submission. He heroically wrote all this code and arrived
with an implicit statement of, ‘Here we are, here’s EPOC32’. And then all hell
broke loose, because basically all this deep thought stopped and everyone
started coding.

You can’t argue against it, because time to market is everything. But at
the same time, what Colly catalyzed also included some poorly considered
design. At the same time, we were recruiting a lot of people and letting them
loose on difficult problems. One example was David Wood assigning some
relatively new people to write a menu system which would include things like
drop-down-menu technology.

WHAT MAKING SOFTWARE IS REALLY ABOUT 463

I remember that I had spent a lot of time, because of the lack of documenta-
tion in SIBO, reverse-engineering the design of the menu system to implement
on the MC400 laptop, so I knew how difficult it was to actually get it right.
And all these people were kind of fresh out of university! David Wood would
collate all their output, and he would make a huge effort to put it all together
to produce a user-interface system. And the good thing about it was that we
made progress and it cheered people up. The bad thing about it was we had
to throw a lot of it away that wasn’t right.

Lotus Notes had been adopted by the company quite early on and
provided an important part of the mechanism which allowed strongly
decentralized team-working without completely abandoning control of
the high-level design. The result was a kind of hub-and-spokes model,
in which strong design directions were transmitted from the hub to the
individual teams at the end of the spokes but without much direct com-
munication between the different teams. But the Lotus Notes culture
enabled a lot of direct communication between individual developers,
through the medium of the databases.

Howard Price:

Design was pretty much a central activity, though you didn’t get people show-
ing their Rose diagrams to each other especially. I remember going to Charles
Davies with my design for review just once. My design was only really seen
then and the rest of it was up to me. But there was a design database which
was very active. Charles Davies had a central Rose design on the network
where each team was supposed to design their own Rose diagrams that fitted
into it and you could link them together.

But there was a way you did things, definitely. There was a strong Notes
culture. There would be a lot of activity on databases discussing ways to do
things and it would be hard to miss the right way to do it, at least if you
were coding something standard anyway. So there was some very interactive
development discussion on the databases.

In fact, for a system in which in-house idioms were important (for
example, the idioms of descriptors and active objects, client–server and
framework–plug-ins), Notes was an essential mechanism for providing
guidance on how to use the idioms effectively and, indeed, for enforcing
their proper use.

While high-level design was always to a large extent autonomous,
although beneath the eye of an overall Architecture Committee, coding
standards were always strongly defined (they had to be, in a company
which was getting to grips with a new language, for which many engi-
neers had only had the brief exposure of a formal training course and no
hands-on experience).

464 CREATIVE ZOO OR SOFTWARE FACTORY?

Howard Price:

Client–server, for example, was treated as something that everybody had to
know. The way it worked was quite particular, the way you package and pass
data across the server boundary. You couldn’t simply invent your own way of
doing that, you had to stick to the right ways of doing it and it was enforced.
If you hadn’t done it before, you had to find out how to do it.

The mechanism was very much developer to developer, either within
teams by direct coaching and code review, or directly between individ-
ual developers using Lotus Notes as a universal read–write discussion
medium. The Lotus Notes culture was always extremely strong (and
remains so, although to some extent it has been diluted more recently by
the scale of expansion of the company and by new ways, for example
Wiki, leaking in).13 But among the older guard, it remains strong.

Culture, Culture, Culture

The strong culture of autonomy inherited by Symbian dates back to
Psion’s beginnings as a small company of highly technically capable
individuals, with not much hierarchy but with highly visible leaders,
in which everyone contributed to make things work. In particular the
company was engineer-led, with a deep culture of engineer-led design,
pulled together by a centralized but loose design process.

Peter Jackson:

Culture, not process, is what is important. And it really was the case that
everyone was given permission to do what it took.

In many respects the early engineering culture in Symbian seems close
to what has more recently (and fashionably) become formalized as ‘agile’
programming: strongly team-based, strongly team-meeting- and review-
based, strongly decentralized, highly localized and organized around
clear goals. There was a strong concept of team ownership of code and,
indeed, not just of code but more strongly of ownership of the design and
implementation of a well-defined, discrete piece of the system.

13 Wiki also has great potential to give the culture of collaboration a new lease of life
and take it in new directions.

WHAT MAKING SOFTWARE IS REALLY ABOUT 465

Howard Price:

I think we were Agile, but we didn’t have the culture of daily meetings Agile
recommends, though we did have weekly meetings. For instance, I think
it was for the Series 3, Charles Davies would organize a weekly meeting
and all the team leads would go in, and the meeting would go round the
table and you’d say how you were doing and maybe Charles would decide
that some team should implement a certain feature or that some other team
shouldn’t implement some other feature. And everyone would agree, but
maybe that team would go and do it anyway, because they thought it was
the right thing to do. So you had a lot of ownership of your own code,
which was good, and you could decide largely what you wanted to do.
However, you had to answer for what you’d done if it turned out to be a bad
decision.

Charles Davies was very much the driver of the culture of design, a
believer in design if only because, as he puts it, ‘It helps you be dumb’.

Charles Davies:

So I’m a believer in design, which I tried to promote using design tools. It
wasn’t UML, it was Rose at that time, so I was maintaining Rose diagrams.
I think you do have to have a design ethic. If you just end up putting code
where you happen to have the editor open. . . well, that’s a bit too harsh. . .

but you do need to take grasp of it and keep simplifying it. I believe you’re
a much better programmer if you’re a bit forgetful or can’t remember things
easily, because then you have to simplify until anyone can remember how
it’s done. I’m a great proponent of having design idioms so that you can
recognize designs. You can see that there is a design and that it makes
sense.

Martin Tasker thinks the design culture was particularly important in
enabling an informal culture nevertheless to be particularly effective.

Martin Tasker:

Charles Davies led the design and trained people who had been in related
disciplines – he got them to do object-oriented software. In any management
view there are massive benefits out there if you take the enabling steps to
achieve them and Charles did this extremely consistently and well. Charles,
in particular, paid minute attention to the details of his APIs. He used their
explanatory power to motivate his people and he almost didn’t need to look
at what they produced in terms of implementation

466 CREATIVE ZOO OR SOFTWARE FACTORY?

code or test code. He basically believed that if the code met the requirements
of the API and if you felt it was correct then he trusted you that it was correct.
Charles used that to massively good effect. He used object orientation as a
means of controlling a sea of junior programmers very successfully.

Perhaps of all teams in the company, the Base team (which developed
the kernel and low-level systems) had the capacity to survive longest
before compromising the quite particular culture which had evolved:
informal, devolved, expert and committed, attributes which it retained
certainly well into the Symbian OS v6 release projects and beyond into
Symbian OS v7. Morgan Henry was working in the Base team on the
original port of EPOC32 to Nokia’s new 9210 Communicator hardware
and what eventually became Symbian OS v6.0.

Morgan Henry:

Certainly in the Base team there was a mentality that you get the best people
you can find, people who are interested and excited by the hardware and
software interaction, and broadly you let them get on with it and they come
up with good code. And it was led by people who were interested in the
technology and enjoyed what it was doing. I think they understood that if
there’s enough space there, that if you allow talented people to do the things
they’re interested in, you end up with a good quality product. That’s not to say
there were no processes and no project management, but, that it’s all about
the balance.

Transition of the Development Model

Formalization of the software development model was probably an
inevitable consequence of success and growth and, in particular, of the
evolution from a software company making a software product for a single
customer (and, to all intents and purposes, a customer within the same
company), to one which was suddenly faced with multiple licensees, all
competing in a high-growth and relatively new, global consumer market.
What’s more, compared with Psion these companies were industry giants,
the likes of Nokia, Ericsson, Motorola and Matsushita. They had estab-
lished markets, established practices, global reach, and strong (and quite
different) internal cultures. The small-scale and home-grown practices
which had evolved within Psion and carried over into Symbian were
suddenly confronted by a very different external reality.

Certainly the reality is that the company now is very different to the
one it used to be. Having grown by several multiples, the approach to
software creation is inevitably very different.

WHAT MAKING SOFTWARE IS REALLY ABOUT 467

Morgan Henry:

Even during the process of Psion Software becoming Symbian, there were many
attempts to regularize development processes. The Base team was always a bit
different, but now it seems very much like the technology architects have less
freedom to make the architectural choices that they need to make, and they
don’t get the time to write any code or do any proper design. So Symbian as a
company has begun to regulate more, which is no bad thing, because you have
to have reliability of delivery over everything else if that’s what your customer
is asking for. Back in the Nokia Communicator and Psion Series 5 days, we
were a technology-driven company, and this transition to a marketing-led
company has probably contributed to the difference.

The most immediate loss is probably that of developer autonomy or,
at least, the sense of autonomy.

Morgan Henry:

With the Nokia Communicator, you’d see a problem and you’d be responsible
for it, up to the point where you’d be responsible for going to see Nokia. For
instance, I’d be sent out to Finland and I’d be put in a room with ten Nokia engi-
neers and they’d ask lots of questions and it would be my responsibility to come
up with a solution, and possibly even go back and implement the solution.

There was no project manager doing it for you, it was a case of having to
manage your time on that and work out when it was going to be done, which
meant you had much more freedom and you had much more contact with the
hardware. So I was prepared to put in a lot of time and a lot of effort, doing
long nights and weekends if I needed to, just to make sure that it worked,
because you cared about it and you wanted to see it ship.

As Symbian has evolved, driven by the need to scale to many more
licensees and to support a multitude of licensee projects, responsibility
for porting to new hardware has moved away from the core engineering
teams to a dedicated porting team and dedicated licensee support teams.
Inevitable and necessary as it may be, one consequence is the distancing
of the core software-engineering teams from real mobile-phone products.

Morgan Henry:

The Base team has been detached from the base porting activity and delivering
a base port for a ‘real’ product. At best they’re delivering a base port for a
hardware reference platform. There are many reasons for this, but certainly
the desire to regularize and the desire to control the time investments are part
of it. The fact is that they are less in contact with the final product.

468 CREATIVE ZOO OR SOFTWARE FACTORY?

Having said that, there are some parts of the organization which still have
a close relationship with the final product and they still do the long weekends
and they still go and see the customer and get bombarded with questions, so
that’s still there. I’d argue it’s probably the best way of doing that kind of job,
as opposed to the process-driven activity that is common in Symbian.

While the Lotus Notes database and discussion culture remains strong,
the design culture that used to underlie it has been dissipated as the
company has grown.

Howard Price:

The Lotus Notes culture has survived to a fair extent and there’s a lot of
discussion of how to do things. However, there doesn’t seem to be huge
amounts of design discussion going on, it’s more programming discussion.
Maybe that’s because there’s a feeling that everything is stable and there’s not
really that much new design and big new design now goes through the System
Design Authority.

There is no doubt that the design culture is very different in Symbian
now from what it was in the early days.

Charles Davies:

Do we do enough design now? Of course programmers like doing design, but
it’s whether you do design as an explicit activity. I’m a believer in modeling.
I’m not up to the UML standards these days but I’ve found UML useful. But
even if you just draw it on flipcharts, you do need a design. Design gets you
to reusable patterns, so if you’ve got a community of people doing design it’s
very useful, and if you leave a programmer on their own they won’t get there.
You need a culture of design, of people sharing designs and talking about it. So
I did used to do that. Design, ultimately, is the thing that cuts your defect cost
down, because good designs have fewer defects. But then of course you need
good requirements. It’s all ‘Page One’ of the software-engineering manual. So
we know that, but it’s not just knowing it, it’s actually doing it.

Control and flexibility are not easy to reconcile. The deadline pressures
of time-to-market inevitably conflict with the need to refactor and redesign
as part of the daily software development approach. David Wood still
considers iterative design an essential part of any successful development
style.

WHAT MAKING SOFTWARE IS REALLY ABOUT 469

David Wood:

I do think it’s worthwhile having enough project time set aside to allow for
some degree of refactoring of designs, because you can never be sure of getting
it right first time. Even with the cleverest people, the most experienced people,
there are things that only become clear as the design evolves, so you should, if
possible, allow yourselves the freedom to put that into future products. It gets
tough when you’ve got to maintain compatibility as well, so it may be that for
a while you’ve got to run the two systems in parallel, you’ve got to run the old
system for older products on new machines, but then also you can have the
new APIs which gradually people can switch to.

Size tends to work against flexibility, but in fact flexibility is not the
only thing that gets lost with increased size. Increased size also works
against the consistency and design elegance of the system, tending to
cause dilution. Peter Jackson argues that design dilution is an almost
inevitable consequence of a traditionally devolved approach to design
confronted by rapid expansion.

Peter Jackson:

A general problem that has been faced as Symbian OS development teams
have grown is the varied experience of the people you employ to work on
the operating system. If you try to do something new, if you try and invent a
sophisticated locale system, the problem is that somebody from outside who
may have, say, a Unix background, doesn’t understand the design principles
of what you’re doing and may get it wrong or may take longer to learn what
you’re up to.

Jackson’s own area of specialization in the system in the early days,
internationalization and localization, is a case in point.

Peter Jackson:

The problem with internationalization is that typical programmers like to
believe that everybody is American! They can ignore basic issues, like for
example sometimes you can’t assume that pluralizing a word means putting
an ’s’ on the end of it. So we were always compromising saying, ‘this would
be the elegant thing to do, but everybody expects it to happen a different way’,
and we have to do it the way everyone expects. It is a fact of life working
in this industry, that software tends to devolve towards the lowest common
denominator rather than towards the most elegant thing.

‘Worse is better’ is the label Richard Gabriel coined to describe the
problem that inferior systems or designs tend to beat superior ones in the

470 CREATIVE ZOO OR SOFTWARE FACTORY?

market by getting to the market quicker and occupying the market niche
with a system that is just good enough to make the switching cost to the
better system unattractive.

Peter Jackson:

It’s probably a particular case of the ‘Worse Is Better’ thesis, which basically
says, ‘You can put a lot of effort into doing the right thing at all times, but
meanwhile your competitor will have ignored all the difficult cases and got
to the market first, and the difficult cases happen so rarely that people can be
conned into accepting an inferior product.’ That’s a paraphrase of Worse Is
Better, but that’s how I think of it.

It is a truism that success can be a dangerous thing in its own
ways. Success for Symbian has meant near continuous growth and
expansion.

Peter Jackson:

The software development process determines your success in producing
software. I’m thinking of things like the role of testing in software development,
the question of where defect-fixing comes at the end. Issues like these are
cultural issues. You want to institutionalize something that’s good, the right
thing, and I don’t think it’s easy at all, because as soon as you have started
doing the right thing, you lose focus and you change the focus to something
else. Meanwhile, the company grows a bit more and suddenly the thing you
thought was taken care of isn’t taken care of at all. So it’s quite hard even to
work out what you have to do to institutionalize the things you care about.

But the biggest impact of growth is in a way the most obvious one,
if also the most puzzling one. With responsibility for managing the
code repository within the integration and build organization within the
company, Jackson is well placed to observe it.

Peter Jackson:

The number of submissions into the repository is enormous. You watch
it, and it just scrolls up the whole time, you just see it, submission after
submission after submission. And yet we produced the first version of EPOC
with an engineering community of closer to 100, it was of that order of
size. So sometimes you think, What is all this work going on? What is it?
Why do we need so much of it? So looking back, the scale really is quite
different.

WHAT MAKING SOFTWARE IS REALLY ABOUT 471

The Value of ‘Whole Product’ Development

Charles Davies identifies a particular problem which has become highly
relevant for the company, and which has deep roots not so much in the
details of the development model, but in the wider business model and
the place in which Symbian finds itself in the market. The evolution from
being a product company to being a pure software company (and indeed,
a pure operating-system company) tends to work against the holistic,
whole-product understanding of what the company is producing, which
makes validation much more complex. In the worst case, focus on
validation can be lost altogether.

Charles Davies:

In our context, validation is hard. It used to be much easier in Psion, because
we would provide an API with our OS hat on, and then applications would use
it in the same organization, and then the device would use the application. If
it wasn’t any good, people would say so! And the application is working this
way because the API works this way, so we’d change the API to work better.
That cycle doesn’t exist now. We deliver APIs to our customers, and there isn’t
that natural process of validation.

Pick up a book on software engineering. All of them say that verification
means, in software terms, that you’ve met the specification, and validation
means that the specification that you agreed with the customer was actually
useful in the event. And we used to do that in Psion without realizing it,
because it was part of being a product company. Now we have become too
remote from the final product for that.

The problem is that Symbian, by the nature of its business model, is
at least one step removed from the true product cycle of making and
shipping phones.

Charles Davies:

So, we’ve produced an API! It’s in the release and the job is finished. But the
job is really only finished when the value has been delivered, not when the
API has been delivered, and that’s what validation means. It means a customer
conversation to say, ‘Was that valuable? Did it do it for you?’ If the API wasn’t
used, the answer is, ‘No!’

In other words, creating the OS is not just a matter of delivering
software that works and delivering well-designed, well-abstracted and
well-implemented APIs. It is also a matter of delivering the right APIs
to customers, at the right time, and validating them with the customer.
In a sense the problem is the familiar one of the need for iteration, to

472 CREATIVE ZOO OR SOFTWARE FACTORY?

enable validation and where necessary refactoring and redesign. And
the difficulty is successfully creating a project model which delivers
that, while meeting the other needs of supplying into the global product
manufacturing businesses of phone-vendor licensees.

Charles Davies:

For any new API, it would be remarkable if it was right first time. It is guaranteed
to be wrong for any non-trivial API. So you should expect in the normal course
of events that for a new API, you’ll have defects at the requirements level and
you have to rely on that iteration. For a new API, you need to factor in the
extra work you get from a process that does validation.

It’s all too easy, instead, simply to finish the API and ship it.

Charles Davies:

Imagine you ship an API, and that’s it, you then move on to work on something
else. What if the customer says it doesn’t meet their needs? What do you do?
Ignore it? In Psion they would have said, ‘This API doesn’t work and I’m not
using this unless you fix it!’ And so it would be fixed and the APIs got good
because of that. And that’s validation!

This is an inherent problem of the business model and one that
exercises many people in the company and one on which the company
is continually striving to do better.

Putting the Magic Back

The goal of a successful development methodology must be to reconcile
the inevitable conflicts between the different demands of the business.
Performing that balancing act is an essentially dynamic activity and it
is hard to build dynamic behavior into organizations. Effective software
development, as if we didn’t know it already, turns out to be a hard
problem to solve. It may be that there is no such thing as a software
company above a critical size threshold that can get it right. Keith de
Mendonca certainly believes that it is hard, but not impossible, to scale
up without losing agility. Successfully scaling up probably requires a
broader perspective than just that of the development methodology and
raises the larger question of the way the development organization is
structured.

WHAT MAKING SOFTWARE IS REALLY ABOUT 473

Keith de Mendonca:

Agility is much bandied around as a hot topic, but certainly the attributes
it should represent are that you are close to your customer, you understand
better what you are doing, you are continuously improving, you are basically
making the best decisions that you can at each stage, and being able to take
each step and improve until you deliver the best version of the code to your
customer.

Organizationally, we are committed to this concept and that motivates
the way the software engineering organization is aligned and organized into
technology streams today. We consciously said we wanted to create the
organization around the technology architecture rather than just managerial
units. And although we maybe haven’t achieved it yet, there was meant
to be a much greater degree of autonomy inside the technology streams,
where they own their own roadmaps. So effectively if they were given clear
instructions about what they needed to do by when, they would have much
more autonomy to actually do those things in the best way that they see fit.

The key ideas are to align around a technology vision of where the
product should be going and to devolve responsibility for delivering the
vision to technology-focused engineering streams.

Keith de Mendonca:

A company which is still growing and still maturing must try to control itself,
while market forces constantly challenge that autonomy. The struggle is to
provide that flexibility and allow that flexibility to the technology streams
when external issues often arise that cause changes in direction. Naturally, this
makes an organization wish to have very tight control of what each component
is actually doing.

The forces of control and centralization are almost inevitable in the
face of commercial pressures – without which of course there would be
no system at all.

Keith de Mendonca:

Of course, success in a new market needs many changes in the way that a
software organization is controlled. Symbian has control of its own destiny
in engineering terms, but it will take time to balance that autonomy and
responsibility on the smaller units with the execution and the very predictable
delivery that we demand as a company.

474 CREATIVE ZOO OR SOFTWARE FACTORY?

But if you look at the high level, we release the OS to our customers
every two weeks now. We also have regular official operating system releases
(about three a year compared to the original model of one huge release every
18 months). The shorter release cycle delivers regular improvements to the
product and gets faster feedback from the customer.

Possibly there is no way back to the kind of flexible and autonomous
development model of the early days of the company. At the end of the
EPOC Release 5 project, 48 or so senior developers including architects
and team leads spent two days at an off-site debriefing with the company
management. Management had mapped out a two-day program, but on
the first morning it was overturned by the engineering participants, who
had a different view of where the obstacles to progress were and what
should be done about them. It is unlikely that such a thing could happen
now – if only because the likelihood of engineers and managers having
sufficient time to spend two days out at the same debriefing session is
remote.

Keith de Mendonca:

I think that physically the tools needed for controlling a large organization tend
to automatically restrain that kind of flexibility and fast movement. But to some
extent you can build agility into even medium- or large-sized companies, and
I suppose that’s what we are currently planning to do, to put that agility back.

It may also be that perhaps the company was never really a ‘creative
zoo’ at all.

Bob Dewolf:

Development methodology is a really tricky issue we have. But creative zoo,
is that what we used to have? I don’t know. I don’t think so.

Symbian is practiced at innovation. The nature of the development
model and software engineering organization remain open questions.
Watch this space.

Appendix A: Symbian OS Component
Reference

Introduction

This appendix attempts to provide a definitive component reference for
Symbian OS, based on Symbian OS v9.3, the most current available
release at the time of publication. Although associated with a specific
release, for the most part the component information will be useful for
developers working on any release.

The goal is to make available to external developers (including those
working with licensee or partner companies, as well as independent
third-party developers), a minimum level of information about the system
at component level.

Note that the component set should be interpreted as a superset of all
possible components, and not as a definitive guide to the components
present on a given Symbian OS device.

A.1 Explanation of Fields

Each component is documented in a simple format. The meaning of the
fields is explained below.

Development Name

The development name is the short name by which the component is
commonly known. For example, the Plug-In Framework component is
commonly known as ECOM; the Data Comms Server is commonly known

476 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

as C32, and so on. Typically, the short name is either identical to or a
derivation from the name of the binary that the component builds (where
it builds to a single binary), the principal significant binary (where it builds
several binaries), or the name of the directory in which the component
source is located in the source tree.

Build File Location

The build file location is the path at which the build file for the component
can be found in the OS source tree. Note that external developers do not
have access to the full source tree.

System Model Location

Where the component appears in the System Model, its location is
given as Layer (in all cases), Block (where applicable), Sub-block (where
applicable), and Component collection (in all cases).

Licence Categorization

In the license that defines the terms of use of Symbian OS by licensees,
all components intended for production deployment are categorized
as either Common or Optional, and as either Symbian or Replaceable
components, thus creating four possible categories. Components which
are not intended for production deployment are categorized as Reference
or Test components.

From an external developer perspective, the most meaningful interpre-
tation of these categories is as follows:

Symbian Replaceable

Common Always present in a
vendor platform.
Symbian supplied,
defines Symbian
OS APIs.

Always present in a vendor
platform.
Symbian or licensee
supplied, preserves (but
may extend) the Symbian
OS APIs.

Optional Optionally present
in a vendor
platform.
Symbian supplied,
if present, defines
Symbian OS APIs.

Optionally present in a
vendor platform.
Symbian or licensee
supplied, if present.
Not guaranteed to preserve
the Symbian OS APIs.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 477

Reference and Test components are not intended for production
deployment, although licensees may choose to deploy reference compo-
nents. Test components must not be deployed on licensee devices.

Exposes Third-Party APIs

If this is YES, the component exposes public APIs which any developer
can use. They are classified as publishedAll in the source code. If it
is NO, the APIs are restricted.

Restricted APIs are classified as publishedPartner, internal-
Technology or internalAll. Although partner APIs are not sup-
ported in public SDKs, they are supported in the kits shipped to partner
developers and can be used by them. Internal APIs are reserved for use
by Symbian development teams.

It is important to note that header files available either in kits or
SDKs may contain mixed categories of APIs. The classification rules are
intended to help guide developers towards the APIs they can safely use.

Present in OS Releases

Data is provided for all releases from Symbian OS v7.0 to v9.3 as an aid
to developers migrating code from earlier releases.

Description

This is a brief plain text description of the functionality provided by the
component and its role in the system.

A.2 Agenda Model

Development Name: AGNMODEL
Build File Location: /common/generic/app-
engines/agnmodel/group/

System Model Location:
Layer: Application Services
Component collection: PIM Application Services

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Public APIs are limited to enumerations in calnotifica-
tion.h. Legacy API, replaced in Symbian OS v9 with the new Calendar
API which is more suitable for a phone. Agenda Model is maintained for
compatibility.

478 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.3 Alarm Server

Development Name: ALARMSERVER
Build File Location: /common/generic/app-
services/alarmserver/group/

System Model Location:
Layer: Application Services
Component collection: PIM Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Server that manages a queue of system-wide, time-based
alarms that provide APIs for client applications to set, modify, query and
notify alarms.

A.4 Animation

Development Name: ANIMATION
Build File Location: /common/generic/app-
framework/animation/group/

System Model Location:
Layer: UI Framework
Component collection: UI Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 9.1, 9.2, 9.3
Description: Framework that supports window-, sprite-, and bitmap-based
animation, enabling animation plug-ins to be created and loaded.

A.5 Application Architecture

Development Name: APPARC
Build File Location: /common/generic/app-
framework/apparc/group/

System Model Location:
Layer: Application Services
Component collection: Application Framework

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 479

Description: Framework that defines basic application responsibilities
and the interactions between core application classes, broadly following
the MVC pattern. Abstracted via Uikon, and ultimately by a vendor-
specific variant UI.

A.6 Application Utilities

Development Name: BAFL
Build File Location: /common/generic/syslibs/bafl/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Essential application utilities organized as a single library
DLL. Includes system sounds, the clipboard, utility classes for resource-
file handling and file finding, and implementations of string pools and
descriptor arrays.

A.7 Audio Driver

Development Name: SOUNDDEV
Build File Location: /common/generic/Multimedia/MMF/
sounddev/group/

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Hardware-abstraction layer for digital audio acceleration.

A.8 Backup and Restore Notification

Development Name: BACKUPRESTORENOTIFICATION
Build File Location: /common/generic/app-
services/BackupRestoreNotification/group/

System Model Location:
Layer: Application Services

480 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Component collection: PIM Application Support
License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Intended for internal use only. An alert service to notify
backup–restore progress to PIM applications. All other applications
should use the Publish and Subscribe service to achieve similar func-
tionality.

A.9 Baseband Channel Adaptor
Development Name: BCA
Build File Location: /common/generic/networking/
BasebandAdaptation/bca/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Abstracts the channel used to communicate with the base-
band processor and defines a plug-in interface for a hardware-specific
interface-implementation module.

A.10 Baseband Channel Adaptor for C32
Development Name: C32BCA
Build File Location: /common/generic/networking/
BasebandAdaptation/c32bca/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Intended for partner use only. Plug-in providing a serial
comms implementation of the Baseband Channel Adapter interface.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 481

A.11 Bearer Abstraction Layer

Development Name: BALSERVER MROUTER-PLUGIN
Build File Location: /common/generic/connectivity/BAL/
group/

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Device Connection

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Intended for internal use only. Abstraction framework for
connectivity plug-ins that encapsulate actual bearers (e.g., m-Router),
providing a connection management API for use by PC link-type appli-
cations.

A.12 BIO Messaging Framework

Development Name: MSG BIOMSG
Build File Location: /common/generic/messaging/biomsg/
group/

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Messaging extension supporting ‘smart’ message types
(Bearer Independent Objects), for example vCard or vCalendar mes-
sages, network setup messages and so on, which are not intended for
end-user action but for system components or applications. Provides a
mechanism for creating application-specific, bespoke message types.

A.13 BIO Messaging Parsers

Development Name: CBCP, ENP, GFP, IACP, WAPP
Build File Location: /common/generic/messaging/biomsg/
group/

System Model Location:
Layer: Application Services

482 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Component collection: Content Handling
License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-ins to the BIO Messaging Framework for parsing spe-
cific message types including compact business card, email notification,
Nokia Smart Message Internet Access, Nokia and Ericsson OTA, as well
as a general file parser.

A.14 BIO Watchers

Development Name: BIOMSG, NBSWATCHER, WAPWATCHER,
BIOWATCHERSCDMA

Build File Location: /common/generic/messaging/biomsg/
BioWatchers/bld.inf,/common/generic/messaging/
biomsg/BioWatchersCdma/group/

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Watcher framework and service for notifying applications of
message arrival.

A.15 Bit GDI

Development Name: BITGDI
Build File Location: /common/generic/graphics/bitgdi/group/
System Model Location:

Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics and Printing Services

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Device- and display-mode-independent implementation of
the concrete graphics context for bitmaps.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 483

A.16 Bluetooth 1.0

Development Name: BLUETOOTH
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Packages

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MIDP 2.0 Bluetooth 1.0 (JSR-082) APIs that support Blue-
tooth messaging including Push support.

A.17 Bluetooth 1.0 Push Plug-in

Development Name: BLUETOOTH
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: Bluetooth and SMS Push

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Forms part of JTWI. Plug-in that binds the Bluetooth 1.0
package to the underlying system.

A.18 Bluetooth CSY

Development Name: BTCOMM
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Serial Comms Server Plug-ins

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

484 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Description: CSY plug-in to C32 Serial Server providing serial port
emulation over Bluetooth.

A.19 Bluetooth HCI

Development Name: HCI
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Short Link Protocol Plug-ins

License Classification: Reference/Test
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Host Controller Interface (HCI) firmware driver implemen-
tation for reference only, so must be replaced by the licensee. The HCI
framework, for example, includes public APIs.

A.20 Bluetooth Manager

Development Name: BLUETOOTH MANAGER
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Short Link

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Information store for managing details of the local and
remote Blueooth devices, implemented over DBMS.

A.21 Bluetooth PAN Profile

Development Name: BLUETOOTH PAN
Build File Location: /common/generic/bluetooth/
System Model Location:

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 485

Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Networking Plug-ins

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Support for Bluetooth Personal Area Networking (PAN)
Profile, which is analogous to a network interface agent for Bluetooth.
Implements the Bluetooth Network Encapsulation Protocol (BNEP) as an
Ethernet Packet Driver module, enabling PAN to behave like a regular
Internet access provider.

A.22 Bluetooth Profiles

Development Name: BLUETOOTH AVRCP, BLUETOOTH GAVDP
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Short Link

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 9.1, 9.2, 9.3
Description: Support for Bluetooth Audio/Video Remote Control Profile
(AVRCP) and Generic Audio/Visual Distribution Profile (GAVDP). AVRCP
is implemented as a bearer plug-in to the remote-control framework.
GAVDP is implemented as a thin layer over the Socket Server client APIs
and allows clients to configure, send and receive data over the AVDTP
protocol running inside the Bluetooth protocol plug-in.

A.23 Bluetooth Protocol Client APIs

Development Name: USER
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services

486 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Component collection: Short Link
License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Bluetooth-specific APIs for use by Bluetooth socket clients,
providing support for low-level control of protocol parameters (e.g.,
packet sizes) and hardware (e.g., power modes).

A.24 Bluetooth SDP

Development Name: BLUETOOTH SDP
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Short Link

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Service Discovery agent and database, used by connected
Bluetooth devices to query each other and exchange and store information
about the Bluetooth services they support. Note that the SDP database is
not persistent.

A.25 Bluetooth Stack PRT

Development Name: BLUETOOTH STACK
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Short Link Protocol Plug-ins

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Bluetooth stack implementation in the form of a PRT protocol
plug-in to Socket Server.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 487

A.26 BMP Animation

Development Name: BMPANIM
Build File Location: /common/generic/app-
framework/bmpanim/group/

System Model Location:
Layer: UI Framework
Component collection: UI Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-in utility to Window Server implementing support for
bitmap-based frame sequence animation. Forms part of the Animation
framework.

A.27 Bookmark Support

Development Name: BOOKMARKS
Build File Location: /common/generic/application-
protocols/bookmarks/group/

System Model Location:
Layer: Application Services
Component collection: Internet and Web Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Bookmark database support for Web browsers.

A.28 Bootstrap

Development Name: BOOTSTRAP
Build File Location: /cedar/generic/base/e32/
System Model Location:

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Variant

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

488 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Description: Bootstraps the system by preparing the hardware, including
memory and peripherals, mapping the virtual address space if an MMU
is present and starting the kernel.

A.29 Broadcast Tuner

Development Name: TUNER
Build File Location: /common/generic/Multimedia/Tuner/
group/

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Multimedia

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 9.1, 9.2, 9.3
Description: Integrated broadcast tuner API for analog or digital broadcast
channel reception.

A.30 C Standard Library

Development Name: STDLIB
Build File Location: /common/generic/syslibs/stdlib/group/
System Model Location:

Layer: OS Services
Block: Generic OS Services
Component collection: Generic Libraries

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Port of a subset of the POSIX/C programming language
Standard Library. Maps C function calls to native Symbian OS C++ APIs,
allowing ported C applications to interface to native services. Orginally
written to support porting of binary-only Java VM.

A.31 C32 Serial Server

Development Name: C32
Build File Location: /common/generic/ser-comms/c32/group/
System Model Location:

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 489

Layer: OS Services
Block: Comms Services
Sub-block: Comms Framework
Component collection: Data Comms Server

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.1, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Provides the client-session APIs for serial communications
and the framework for creating and loading CSY plug-in modules which
implement serial port abstractions, enabling clients to access virtual serial
ports independently of the underlying hardware.

A.32 Calendar

Development Name: CALINTERIMAPI
Build File Location: /common/generic/app-
engines/calinterimapi/group/

System Model Location:
Layer: Application Services
Component collection: PIM Application Services

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 9.2, 9.3
Description: Calendar API replacement for Agenda Model, partially sup-
ports the iCalendar standard.

A.33 Camera

Development Name: ECAM
Build File Location: /common/generic/Multimedia/Ecam/group/
System Model Location:

Layer: Multimedia and Graphics Services
Component collection: Multimedia

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Onboard camera API to provide compatibility for camera
client applications between devices.

490 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.34 CDMA MTM

Development Name: CDMASMSMTM
Build File Location: /common/generic/messaging/sms/
multimode/group/

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-in to Messaging Store framework that implements
messaging support for CDMA.

A.35 CDMA SMS Plug-ins

Development Name: CDMASMSSTACK
Build File Location: /common/generic/nbprotocols/
cdmasmsstack/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: SMS Protocol Plug-ins

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: CDMA SMS protocol implementation supporting CDMA
teleservices.

A.36 CDMA TSY

Development Name: CDMATSY
Build File Location: /common/generic/telephony/cdmatsy/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 491

Component collection: Telephony Server Plug-ins
License Classification: Reference/Test
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference-only TSY implementation of CDMA telephony
extensions, replaced by licensees with a hardware specific implementa-
tion. Plug-in to ETel Telephony Server framework.

A.37 Central Repository

Development Name: CENTRALREPOSITORY
Build File Location: /common/generic/syslibs/
centralrepository/group/

System Model Location:
Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Persistent store for global settings that provides a notification
mechanism allowing clients to register interest when settings change.

A.38 Certificate and Key Management

Development Name: CERTMAN
Build File Location: /common/generic/security/certman/
group/

System Model Location:
Layer: OS Services
Block: Generic OS Services
Component collection: Generic Libraries

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework for managing and storing security certificates
and keys supporting storage and retrieval, assignment of trust status,
certificate chain construction, and certificate validation and revocation.

492 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.39 Certificate Store

Development Name: CERTSTORE
Build File Location: /common/generic/security/certman/
certstore/

System Model Location:
Layer: OS Services
Block: Generic OS Services
Component collection: Generic Libraries

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Unified certificate store that provides clients with a single
point of access to certificates stored on the device.

A.40 Character Encoding and Conversion Framework

Development Name: CHARCONV
Build File Location: /common/generic/syslibs/charconv/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Extensible framework supporting text conversion between
Unicode and non-Unicode character sets (Symbian OS native text formats
are Unicode).

A.41 Character Encoding and Conversion Plug-ins

Development Name: CHARCONV
Build File Location: /common/generic/syslibs/charconv/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 493

Description: Converter plug-ins to the Character Encoding and Conver-
sion Framework that support conversion to and from a variety of ASCII,
UTF-7 and UTF-8 text formats, including JIS/ShiftJis.

A.42 Chinese Calendar Converter

Development Name: CALCON
Build File Location: /common/generic/app-services/calcon/
System Model Location:

Layer: Application Services
Component collection: PIM Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: API for converting between Gregorian and Chinese lunar
calendar dates.

A.43 CLDC HI 1.1

Development Name: CLDCHI
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: Virtual Machine

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Symbian OS port of the Sun CLDC HotSpot Implementation
VM (CLDC HI) that forms part of the CLDC 1.1 specification (JSR-139).

A.44 Client Provisioning Adaptors

Development Name: DEVPROV CLIENTPROV ADAPTERS
Build File Location: /common/generic/DevProv/Adapters/
ClientProv/group/

System Model Location:
Layer: Application Services
Component collection: Client Provisioning

494 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Adaptor plug-ins to the Client Provisioning Framework.

A.45 Client Provisioning Framework

Development Name: DEVPROV CLIENTPROV FRAMEWORK
Build File Location: /common/generic/DevProv/ClientProv/
group/

System Model Location:
Layer: Application Services
Component collection: Client Provisioning

License Classification: Common Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Framework implementing the OMA Client Provisioning
standards and supporting provisioning of devices by network operators.

A.46 Clock

Development Name: CLOCK
Build File Location: /common/generic/app-
framework/clock/group/

System Model Location:
Layer: UI Framework
Component collection: UI Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Shared library plug-in to the Window Server that supports
creation of animation-based digital and analog clocks, used by UIs and
applications.

A.47 Color Palette

Development Name: PALETTE
Build File Location: /common/generic/graphics/palette/
group/

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 495

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics Device Interface

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Low-level graphics support for licensee implementations of
color-scheme switching.

A.48 Comms Database

Development Name: COMMDB
Build File Location: /common/generic/comms-
infras/commdb/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Comms Framework
Component collection: Comms Configuration Utilities

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Legacy repository for storing communications settings. It
is replaced in Symbian OS v9 by the CommsDat interface to the Cen-
tral Repository, although the original CommDB API is preserved for
compatibility.

A.49 Comms Debug Utility

Development Name: COMMSDEBUGUTILITY
Build File Location: /common/generic/comms-
infras/commsdebugutility/group/

System Model Location: N/A
License Classification: Test/Reference
Exposes Third-Party APIs: YES
Present in OS Releases: N/A
Description: Reimplementation of File Logger intended only for use by
communications programs.

496 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.50 Comms Framework

Development Name: COMMSFW
Build File Location: /common/generic/comms-
infras/commsfw/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Comms Framework
Component collection: Comms Framework Utilities

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework providing the base classes used to create
communications servers, and the communication mechanisms used to
communicate between communications server threads.

A.51 Comms Root Server

Development Name: ROOTSERVER
Build File Location: /common/generic/comms-
infras/rootserver/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Comms Framework
Component collection: Comms Process and Settings

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Provides the main thread in the communications process
that is responsible for starting and managing all other communications
server threads (i.e. for starting communications servers as threads within
the root server process). From Symbian OS v8, communications servers
are started when the device boots up, rather than on demand.

A.52 Connection Provider Plug-in

Development Name: IPCPR
Build File Location: /common/generic/networking/iprpr/
group/

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 497

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Networking Plug-ins

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-in providing IP connections to clients, supporting
bearer mobility.

A.53 Contacts Model

Development Name: CNTMODEL
Build File Location: /common/generic/app-
engines/cntmodel/group/

System Model Location:
Layer: Application Services
Component collection: PIM Application Services

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Application model (i.e. data store plus APIs) for a common
contact or address-book application.

A.54 Content-Access Framework for DRM

Development Name: CAF2
Build File Location: /common/generic/syslibs/caf2/group/
System Model Location:

Layer: Application Services
Component collection: Content Handling

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework for brokering DRM-protected content between
agents (DRM applications) and consumers (e.g. media players). Includes
a Reference DRM Agent implementation.

498 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.55 Content-Handling Framework

Development Name: CONTENT HANDLING
Build File Location: /common/generic/content-
handling/framework/group/

System Model Location:
Layer: Application Services
Component collection: Application Framework

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Provides a framework for content handlers that implements
finding, loading, processing, and displaying of typed content on behalf of
applications.

A.56 Control Environment (CONE)

Development Name: CONE
Build File Location: /common/generic/app-
framework/cone/group/

System Model Location:
Layer: UI Framework
Component collection: UI Application Framework

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Control hierarchy and environment, providing UI-policy-
free abstract controls, i.e. interactive screen elements and control context.
Derived concrete controls are provided by the variant UI.

A.57 Core IPSec PRT

Development Name: IPSEC6
Build File Location: /common/generic/networking/ipsec/
ipsec6/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 499

Component collection: Network Protocol Plug-ins
License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: IPSec for IP v4 and v6 including Authentication Header
(AH) and Encapsulating Security Payload (ESP) cryptographic protocols.
Implemented as a sockets server PRT plug-in module.

A.58 Cryptographic Token Framework

Development Name: CRYPTOTOKENS, FILETOKENS
Build File Location: /common/generic/security/cryptotokens/
group/

System Model Location:
Layer: OS Services
Block: Generic OS Services
Component collection: Generic Libraries

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework supporting use of secure hardware tokens (or
their equivalent software emulations). Defines certificate and key storage
and authentication APIs for secure hardware tokens, for example SD
memory cards.

A.59 Cryptography Library

Development Name: CRYPTOGRAPHY
Build File Location: /common/generic/security/crypto/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Non-RSA-based cryptographic algorithms including
symmetric and asymmetric ciphers, hash functions and a cryptographic
random-number generator. Supersedes RSA-based implementations.
Implemented in ‘strong’ and ‘weak’ versions, of which the strong version
is export-restricted.

500 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.60 CSD AGT

Development Name: CSDAGT
Build File Location: /common/generic/networking/csdagt/
group/

System Model Location:
Layer: Comms Services
Sub-block: Networking Services
Component collection: Networking Plug-ins

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: AGT agent plug-in to Connection Agent framework that
negotiates circuit-switched connections e.g. to GSM and CDMA net-
works, supporting dial-up networking services.

A.61 Data Engine

Development Name: DAMODEL
Build File Location: /common/generic/app-
engines/damodel/group/

System Model Location:
Layer: Application Services
Component collection: Office Application Engines

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Legacy application model for a free-form database applica-
tion, originating from the early EPOC built-in application set.

A.62 DBMS

Development Name: DBMS
Build File Location: /common/generic/syslibs/dbms/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 501

Description: Relational database manager and server that defines
database-access APIs and implements a proprietary database format.
Supports both exclusive-access and shared-access databases.

A.63 Device Management Adaptors

Development Name: DEVPROV DEVMAN ADAPTERS
Build File Location: /common/generic/SyncML/DevMan/group/
System Model Location:

Layer: Application Services
Component collection: Device Management

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Adaptor plug-ins to Device Management Framework, sup-
porting application management, browser bookmarks, data synchroniza-
tion and Accounts, Device Information, Device Management Accounts,
Email, MMS, Network Access Points, SMS, WAP Proxies.

A.64 Device Management Framework

Development Name: DEVPROV DEVMAN FRAMEWORK
Build File Location: /common/generic/SyncML/DevMan/group/
System Model Location:

Layer: Application Services
Component collection: Device Management

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework that implements OMA Device Management
based on SyncML and supports remote provisioning of devices by network
operators.

A.65 DHCP

Development Name: DHCP
Build File Location: /common/generic/networking/dhcp/group/
System Model Location:

Layer: OS Services
Block: Comms Services

502 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Sub-block: Networking Services
Component collection: TCP/IP Utilities

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: For internal use only, this Dynamic Host Configuration
Protocol (DHCP) implementation is used by networking components.

A.66 Dial

Development Name: Dial
Build File Location: /generic/telephony/dial/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Utilities

License Classification: Optional Replaceable
Exposes Third-Party APIs: N/A
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Deprecated utility APIs for phone-number
manipulation.

A.67 Dialog

Development Name: DIALOG
Build File Location: /common/generic/networking/DIALOG/
group/

System Model Location:
License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases:
Description: Generic connection-agent dialog server that allows user
interaction where appropriate when setting up a connection to the
Internet.

A.68 DND

Development Name: DND
Build File Location: /common/generic/networking/dnd/group/

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 503

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: TCP/IP Utilities

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 9.1, 9.2, 9.3
Description: For internal use only, this Domain Name Service (DNS)
implementation is used by networking components.

A.69 Emulator

Development Name: WINS VARIANT EKA2
Build File Location: /cedar/generic/base/wins/
System Model Location:

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Variant

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Symbian OS emulator for Microsoft Windows platforms. In
EKA2, this is implemented as a hardware target variant.

A.70 ESock Socket Server

Development Name: ESOCK
Build File Location: /common/generic/comms-
infras/esock/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Sockets Server

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Server and framework for sockets-based communications.
Loads socket implementations from PRT protocol plug-in modules.

504 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.71 ETel Third-Party API

Development Name: ETEL3RDPARTY
Build File Location: /common/generic/telephony/
etel3rdparty/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Server

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Telephony API subset intended for third-party developer
use.

A.72 ETel CDMA

Development Name: ETELCDMA
Build File Location: /common/generic/telephony/etelcdma/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Server

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: CDMA extensions to the ETel Telephony Server.

A.73 ETel Multimode

Development Name: ETELMM
Build File Location: /common/generic/telephony/etelmm/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 505

Component collection: Telephony Server
License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: ETel Telephony Server API extensions that provide network-
agnostic APIs for voice, fax, data and multimedia calls and that, therefore,
abstract the differences between GSM and CDMA networks.

A.74 ETel Packet Data

Development Name: ETELPCKT
Build File Location: /common/generic/telephony/etelpckt/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Server

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: ETel Telephony Server API extensions that provide access to
packet services on GPRS, UMTS and CDMA/CDMA2000 networks.

A.75 ETel Server and Core

Development Name: ETEL
Build File Location: /common/generic/telephony/etel/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Server

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: ETel Telephony Server and core APIs.

506 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.76 ETel SIM Toolkit

Development Name: ETELSAT
Build File Location: /common/generic/telephony/etelsat/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Server

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: ETel Telephony Server API extension that provides access to
the GSM/WCDMA (U)SIM Application Toolkit.

A.77 Ethernet Driver

Development Name: ETHERDRV
Build File Location: /common/generic/networking/etherdrv/
group/

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: LDD and PDD implementations for Ethernet cards and
emulators.

A.78 Ethernet NIF

Development Name: ETHINT
Build File Location: /common/generic/networking/ether802/
group/

System Model Location:
Layer: OS Services
Block: Comms Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 507

Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Ethernet protocol NIF plug-in to Network Interface Manager
supporting wired Ethernet.

A.79 Ethernet Over IR Packet Driver

Development Name: IRLANPACKETDRIVERS
Build File Location: /common/generic/networking/ether802/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Logical and physical device drivers providing Ethernet-
framing services for networking over infrared.

A.80 Ethernet Packet Driver

Development Name: ETHER802
Build File Location: /common/generic/networking/ether802/
group/

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Logical and physical LAN packet drivers providing Ethernet
framing to generic-networking services.

508 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.81 Event Logger

Development Name: LOGENG
Build File Location: /common/generic/syslibs/logeng/group/
System Model Location:

Layer: OS Services
Block: Generic OS Services
Component collection: Generic Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Interface that supports logging events to a logging engine
and retrieval, filtering and viewing of logged events by clients.

A.82 FAT Filename Conversion Plug-ins

Development Name: FATCHARSETCONV
Build File Location: /common/generic/syslibs/
FATCharsetConv/group/

System Model Location:
Layer: Base Services
Component collection: User Library and File Server

License Classification: Common Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: File Server plug-ins that support converting FAT file names
from and to Unicode.

A.83 Fax Client and Server

Development Name: FAX
Build File Location: /common/generic/telephony/FAX/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Server

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 509

Description: Fax server and protocol stack together with client-side APIs.
Extension to ETel Telephony Server that manages fax transmission and
reception requests from application clients.

A.84 Feature Registry

Development Name: FEATREG
Build File Location: /common/generic/syslibs/featreg/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 9.2, 9.3
Description: APIs for run-time discovery of supported ‘features’ on a
given platform.

A.85 FEP Base

Development Name: FEPBASE
Build File Location: /common/generic/app-
framework/fepbase/group/

System Model Location:
Layer: UI Framework
Component collection: UI Application Framework

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework for front-end processors (FEPs) that enable
application-independent input preprocessing to support keyboard map-
ping, multitap-keyboard input, handwriting recognition, voice recogni-
tion, and so on.

A.86 File Converter Framework

Development Name: CONARC
Build File Location: /common/generic/app-
framework/conarc/group/

System Model Location:
Layer: Application Services

510 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Component collection: Application Framework
License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework for converter plug-ins that enable file conver-
sions based on MIME type.

A.87 File Converter Plug-ins

Development Name: CHTMLTOCRTCONVERTER, CONVERT, RICH-
TEXTTOHTMLCONV

Build File Location: /common/generic/app-
services/chtmltocrtconv/group/,/common/generic/app-
engines/convert/group/,/common/generic/app-
services/richtexttohtmlconv/group/

System Model Location:
Layer: Application Services
Component collection: PIM Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-ins to File Converter Framework that support conver-
sions between Symbian OS rich-text objects, HTML files and Microsoft
Office file formats.

A.88 File Logger

Development Name: FLOGGER
Build File Location: /common/generic/comms-
infras/flogger/group/

System Model Location:
Layer: OS Services
Block: Generic OS Services
Component collection: Generic Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Legacy utility that enables logging of events to file.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 511

A.89 File Server

Development Name: F32 EKA2
Build File Location: /cedar/generic/base/f32/group/
System Model Location:

Layer: Base Services
Component collection: User Library and File Server

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Generic file-system server and framework providing an
extension interface that supports the implementation of custom file
systems. File systems are implemented as loadable FSY plug-ins. All
file-system access is managed through client sessions with the file server.

A.90 File Systems

Development Name: FILESYS
Build File Location: /cedar/generic/base/f32/group/
System Model Location:

Layer: Base Services
Component collection: User Library and File Server

License Classification: Common Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: File system plug-in extensions implementing LFFS and FAT
file systems.

A.91 Flash Translation Layer

Development Name: UNISTORE2 DRIVERS
Build File Location: /cedar/generic/base/omap/
System Model Location:

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Variant

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: File-system plug-in implementation of flash driver support.

512 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.92 Font and Bitmap Server

Development Name: FBSERV
Build File Location: /common/generic/graphics/fbserv/group/
System Model Location:

Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics and Printing Services

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Server that manages system-wide shared access to single-
instance fonts and bitmaps, providing bitmap and font services for native
bitmap fonts and vector fonts through its client-side APIs.

A.93 Font Store

Development Name: FNTSTORE
Build File Location: /common/generic/graphics/fntstore/
group/

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics and Printing Services

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Provides font storage and font-file loading, including closest-
fit matching of font requests. Supports the Open Font specification for
vector fonts as well as proprietary Symbian OS bitmap fonts.

A.94 FreeType Font Rasterizer

Development Name: FREETYPE
Build File Location: /common/generic/graphics/freetype/
group/

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics and Printing Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 513

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference implementation port of the FreeType TrueType
font rasterizer, supporting FreeType 2 TrueType font descriptions and the
Open Font interface.

A.95 FTP Engine
Development Name: FTP E
Build File Location: /common/generic/networking/ftp_e/
group/

System Model Location:
Layer: Application Services
Component collection: Internet and Web Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: For internal use only. Symbian OS File Transfer Protocol
(FTP) daemon implementation used by networking components.

A.96 GDI
Development Name: GDI
Build File Location: /common/generic/graphics/gdi/group/
System Model Location:

Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics Device Interface

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Device-independent graphics context abstraction that sup-
ports drawing to various devices including screens and printers, which
are treated as specialized graphics contexts.

A.97 GPRS/UMTS QoS PRT
Development Name: GUQOS
Build File Location: /common/generic/networking/guqos/
group/

514 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Networking Plug-ins

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: PRT socket protocol module used by the QoS Framework
and network-interface components to implement 3GPP parameters.

A.98 Graphics Effects

Development Name: GFXTRANSEFFECT
Build File Location: /common/app-
framework/gfxtranseffect/group/

System Model Location:
Layer: UI Framework
Component collection: UI Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Support for flicker-free window and window-contents
animation and graphics-composition effects, for example to support
animated-menu ‘transition effects’.

A.99 Grid

Development Name: GRID
Build File Location: /common/generic/app-
framework/grid/group/

System Model Location:
Layer: UI Framework
Component collection: UI Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Layout engine for spreadsheet-style grid layout, presentation,
print preview and printing. Now considered a legacy component.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 515

A.100 GSM Utilities

Development Name: GSMU
Build File Location: /common/generic/nbprotocols/
smsstackv2/gsmu/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: SMS Utilities

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Utilities for processing GSM SMS messages, including
encoding and decoding routines, used by SMS PRT and its clients.

A.101 HCI Framework

Development Name: HCI V2 FRAMEWORK
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Short Link

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Bluetooth Host Controller Interface (HCI) implementation.

A.102 Help

Development Name: HLPMODEL
Build File Location: /common/generic/app-
services/hlpmodel/group/

System Model Location:
Layer: Application Services
Component collection: Other Application Services

License Classification: Optional Symbian
Exposes Third-Party APIs: YES

516 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Context-sensitive help engine providing a read-only inter-
face to all help files on a Symbian OS device.

A.103 HTTP Filter Plug-ins

Development Name: HTTP
Build File Location: /common/generic/application-
protocols/http/group/

System Model Location:
Layer: Application Services
Component collection: Other Application Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-ins to HTTP Transport Framework that are dynamically
loaded to configure a transport session before use. Filters encapsulate
responses to session events, for example, client authentication, message
validation, and message redirection.

A.104 HTTP Protocol Plug-ins

Development Name: HTTP
Build File Location: /common/generic/application-
protocols/http/group/

System Model Location:
Layer: Application Services
Component collection: Internet and Web Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-ins to HTTP Transport Framework that are dynamically
loaded. Application and network-protocol handlers including TCP/IP,
HTTP, and WSP.

A.105 HTTP Transport Framework

Development Name: HTTP
Build File Location: /common/generic/application-

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 517

protocols/http/group/

System Model Location:
Layer: Application Services
Component collection: Internet and Web Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework that enables clients to establish a transport
session for HTTP-like protocols providing core APIs for Transport Sessions,
Transactions and Messages.

A.106 HTTP Utilities Library

Development Name: INETPROTUTIL
Build File Location: /common/generic/application-
protocols/inetprotutil/group/

System Model Location:
Layer: Application Services
Component collection: Internet and Web Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Convenience component for storing utility classes com-
monly used by Internet-protocol parsing components.

A.107 Image Conversion Library

Development Name: ICL, ICL IMAGEDISPLAY, IMAGETRANSFORM
Build File Location: /common/generic/Multimedia/ICL/group/
System Model Location:

Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Multimedia

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Extensible framework that integrates image conversion into
the Multimedia Framework.

518 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.108 Image Conversion Library Plug-ins

Development Name: IMAGETRANSFORM, GIFSCALER
Build File Location: /common/generic/Multimedia/ICL/
ImageTransform/group/,/common/generic/Multimedia/
ICL/GIFSCALER/group/bld.inf

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Multimedia

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Default reference codecs for common still image formats
including Gif, Jpeg, Png, Bmp, Mbm, and others.

A.109 IMAP4 MTM

Development Name: IMAPSERVERMTM
Build File Location: /common/generic/messaging/email/group/
System Model Location:

Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-in to Messaging Store framework supporting
sending, receiving and editing of IMAP4 (HTML mail) email messages.

A.110 Internet Sockets

Development Name: INSOCK
Build File Location: /common/generic/networking/insock/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: ESock API Extensions

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 519

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-in library to Socket Server that specializes generic
socket-server address classes for TCP/IP v4 or v6 protocols to implement
sockets over TCP/IP.

A.111 IP Event Notifier

Development Name: IPEVENTNOTIFIER
Build File Location: /common/generic/networking/
IPEventNotifier/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Network Protocol Plug-ins

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Catches events occuring within the IP stack and publishes
them to registered subscribers. Implemented as an IP Hook.

A.112 IP Hook

Development Name: INHOOK6
Build File Location: /common/generic/networking/inhook6/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Network Protocol Plug-ins

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Implements a TCP/IP Hook interface to which modules bind
to perform transformations on inbound and outbound IP packets.

520 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.113 IPSec

Development Name: IPSEC
Build File Location: /common/generic/networking/ipsec/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: TCP/IP Security

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: IPSec key negotiation for IPv4/v6 that enables policy-based
secure networks, for example virtual private networks (VPNs).

A.114 IrDA CSY

Development Name: IRCOMM
Build File Location: /common/generic/infra-red/irda/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Serial Comms Server Plug-ins

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: CSY plug-in to C32 Serial Server providing serial port
emulation over an IrDA link.

A.115 IrDA PRT

Development Name: IRDA
Build File Location: /common/generic/infra-red/irda/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 521

Component collection: Short Link Protocol Plug-ins
License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: IrDA protocol stack implemented as a PRT Socket Server
protocol plug-in.

A.116 Java IO

Development Name: JAVA.IO
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: CLDC 1.1

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: CLDC 1.1 Java I/O libraries that define the data-stream-
based input and output APIs and APIs for reading and writing bytes and
basic Java types.

A.117 Java Lang

Development Name: JAVA.LANG
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: CLDC 1.1

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: CLDC 1.1 language libraries that define basic Java types and
objects, including Byte, Integer, Object and Thread.

A.118 Java MIDlet Installer

Development Name: JAVAMIDLETINSTALLER
Build File Location: /common/generic/security/
JavaMIDletInstaller/group/

522 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

System Model Location:
Layer: Application Services
Component collection: Application Framework

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Responsible for installation, removal and management of
MIDP JAR files and MIDlets, including OTA support.

A.119 Java Utilities

Development Name: JAVA.UTIL
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: CLDC 1.1

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: CLDC 1.1 utilities library that supplies basic utility classes,
including Date and Time, and collection classes, including Hashtable,
Stack and Vector.

A.120 JTWI 1.0

Development Name: J2ME9.2
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Packages

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Wireless Messaging API for JTW 1.0 (JSR185).

A.121 Kernel Architecture 2

Development Name: E32 EKA2
Build File Location: /cedar/generic/base/e32/

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 523

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Kernel Services

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.1b, 9.1, 9.2, 9.3
Description: Symbian OS EKA2 (real-time) kernel, delivered in Symbian
OS v8.1b and in all releases from Symbian OS v9.

A.122 Key Store

Development Name: KEYSTORE
Build File Location: /common/generic/security/certman/
certstore/

System Model Location:
Layer: OS Services
Block: Generic OS Services
Component collection: Generic Libraries

License Classification: Optional Replaceable
YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Provides a repository of private PKI keys and APIs for storing
and retrieving keys and for managing the store itself.

A.123 LCDUI Plug-in

Development Name: LCDUIB
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: Low-Level Plug-ins

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Low-level graphics APIs with direct screen access, imple-
mented as a plug-in that may be replaced with an alternative implemen-
tation.

524 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.124 Locale Support

Development Name: LOCE32, ELOCL, EKTRAN
Build File Location: /common/generic/base/loce32/
System Model Location:

Layer: Kernel Services and Hardware Interface
Component collection: Localization

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Customizable plug-in that implements a library of locale-
specific settings and standard strings including currency symbol and date
format, used by both the Kernel and the User Library.

A.125 Lubbock Variant

Development Name: LUBBOCK EKA2
Build File Location: /cedar/generic/base/lubbock/
System Model Location:

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Variant

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Variant code for the Intel Lubbock development board.

A.126 MBuf Manager

Development Name: MBUFMAN
Build File Location: /common/generic/comms-
infras/mbufmgr/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Comms Framework
Component collection: Comms Framework Utilities

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 525

Description: MBuf implementation enabling efficient inter-thread
communications within the communications process.

A.127 Media Drivers

Development Name: MEDUSII, MEDUSII CRASHLOG, MEDUSIIS
Build File Location: /cedar/generic/base/e32/drivers/
unistore2/,/cedar/generic/base/integrator/logic/
lmnand2/

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: NAND-flash-media driver libraries, replacing the Flash
Translation Layer implementation.

A.128 Message Store

Development Name: MSG, MSG FRAMEWORK
Build File Location: /common/generic/messaging/group/,
/common/generic/messaging/framework/group/

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: The message server, store and framework. Supports standard
message types (e.g. email, SMS) and defines the plug-in interface for
Message Type Modules (MTMs) that implement message handling.

A.129 MIDI Driver

Development Name: MMF DEVMIDI
Build File Location: /common/generic/Multimedia/MMF/MIDI/
group/

System Model Location:

526 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: API to support hardware-accelerated MIDI engines.

A.130 MIDP Device Control

Development Name: MIDP
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Profile

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Enabler for MIDP device-control APIs (JSR-118), for example,
to control device vibration and backlight, and to enable platform requests
(e.g. opening a browser page), triggered by device events.

A.131 MIDP File GCF

Development Name: GCF
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Packages

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MIDP File Connection APIs (JSR-075) implemented through
the GCF-communications framework.

A.132 MIDP GSM Security Recommended Policy

Development Name: MIDP2 SECURITY RP
Build File Location: /common/generic/ME/midp2security/
System Model Location:

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 527

Layer: Java ME
Component collection: MIDP 2.0 Profile

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Enabler for MIDP 2.0 Security Recommended Policy
enabling domain-based protection.

A.133 MIDP IO

Development Name: JAVAX.MICROEDITION.IO
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Profile

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MIDP high-level input/output APIs, including networking
support and HTTP connections.

A.134 MIDP LCDUI

Development Name: JAVAX.MICROEDITION.LCDUI
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Profile

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MIDP-graphics APIs that use UIKON native controls to
acquire platform-specific look and feel through the UI Application Frame-
work LAF implementation, which is customized by the UI variant.

A.135 MIDP MIDlet

Development Name: MIDP2
Build File Location: /common/generic/ME/group/
System Model Location:

528 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Layer: Java ME
Block: Java
Sub-block: ME
Component collection: MIDP 2.0 Profile

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: MIDlet lifecycle implementation.

A.136 MIDP PIM

Development Name: MIDP
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Packages

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MIDP Personal Information Management (PIM) APIs
(JSR-075).

A.137 MIDP RMS

Development Name: JAVAX.MICROEDITION.RMS
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Profile

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MIDP persistence APIs implemented over native DBMS.

A.138 MIME Recognizer Framework

Development Name: EMIME
Build File Location: /common/generic/app-
framework/emime/group/

System Model Location:

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 529

Layer: Application Services
Component collection: Content Handling

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Recognizer framework for MIME data types.

A.139 MMF Recognizers

Development Name: RECMMF
Build File Location: /common/generic/Multimedia/MMF/group/
System Model Location:

Layer: Application Services
Component collection: Content Handling

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Recognizer framework plug-ins to recognize specific
multimedia data and document types.

A.140 MMS MTM

Development Name: MMS
Build File Location: /common/generic/messaging/group/
System Model Location:

Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-in to Messaging Store framework supporting
sending, receiving and editing of MMS messages. From Symbian OS
v9, legacy component and licensees provide their own implementations,
if any.

A.141 MMS Settings

Development Name: MMSSETTINGS
Build File Location: /common/generic/messaging/mmsettings/
group/

530 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Encapsulation of MMS settings that are stored in the message
store.

A.142 Mobile 3D 1.0

Development Name: M3GIO
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Packages

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: 3D-graphics APIs for scalable, small-footprint, devices
(JSR-184).

A.143 Mobile Media API 1.1

Development Name: MMAPI11
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Packages

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Mobile Media APIs (JSR-135).

A.144 m-Router

Development Name: MROUTERSECURE
Build File Location: /common/generic/connectivity/BAL/
Plugins/mRouter3/
group/

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 531

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Device Connection

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-in to Bearer Abstraction Layer component providing
m-Router connectivity link layer.

A.145 Multimedia Framework

Development Name: MMF, COMMON
Build File Location: /common/generic/Multimedia/MMF/group/
System Model Location:

Layer: Multimedia and Graphics Services
Component collection: Multimedia

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Lightweight multi-threaded plug-in framework for handling
multimedia data that provides client APIs for audio playback, recording
and conversion, tone playback, video playback and recording, MIDI
playback, and speech recognition. Supports hardware acceleration via
Media Device Framework.

A.146 Multimedia Framework Plug-ins

Development Name: MMFAUDIOCONTROLLER, MMFSTDSOURCE-
ANDSINKPLUGIN, MMFLINEARAUDIOCODECS, GSM610, MMFAU-
DIOOUTPUT, MMFAUDIOINPUT, MMFFORMATBASECLASSES,
MMFWAVFORMAT, MMFRAWFORMAT, MMFAUFORMAT
Build File Location: /common/generic/Multimedia/MMF/
MMPfiles/plugin/

System Model Location:
Layer: Multimedia and Graphics Services
Component collection: Multimedia

License Classification: Common Symbian
Exposes Third-Party APIs: YES

532 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference audio controller plug-ins.

A.147 MultiMode TSY

Development Name: MMTSY
Build File Location: /common/generic/telephony/mmtsy/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Server Plug-ins

License Classification: Reference/Test
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference ETel Telephony Server TSY plug-in implementing
GSM and GPRS specific extensions. Replaced on an actual device by a
hardware-specific licensee TSY.

A.148 Network Controller

Development Name: NETCON
Build File Location: /common/generic/networking/netcon/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Comms Framework
Component collection: Data Comms Server

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Used by Network Interface Manager to select an appropriate
network interface agent to create an outgoing network interface.

A.149 Network Interface Manager

Development Name: NIFMAN
Build File Location: /common/generic/comms-
infras/nifman/group/

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 533

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Comms Framework
Component collection: Data Comms Server

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework for creating, loading and managing interface
agent (AGT) and interface (NIF) plug-ins to create bearer-level network
connections.

A.150 Null AGT

Development Name: NULLAGT
Build File Location: /common/generic/networking/NULLAGT/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Networking Plug-ins

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Minimal connection AGT agent plug-in, enables connection
to an Ethernet LAN.

A.151 OBEX Extension API

Development Name: OBEX EXTENSIONAPIS
Build File Location: /common/generic/obex/
obexextensionapis/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: OBEX

License Classification: Optional Symbian
Exposes Third-Party APIs: NO

534 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Present in OS Releases: 9.1, 9.2, 9.3
Description: Packet extensions for the OBEX implementation.

A.152 OBEX MTMs

Development Name: MSG OBEXMTM
Build File Location: /common/generic/messaging/obex/group/
System Model Location:

Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-ins to Messaging Store framework supporting
OBEX messages over Bluetooth and infrared.

A.153 OBEX Protocol

Development Name: OBEX
Build File Location: /common/generic/obex/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: OBEX

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: OBEX-session protocol implementation for IrDA, Bluetooth
and USB transports, supporting connections from simple beaming all the
way to fully fledged synchronization technologies such as SyncML.

A.154 OMA Data Sync

Development Name: SYNCMLDSCLIENT
Build File Location: /common/generic/SyncML/group/
System Model Location:

Layer: Application Services
Component collection: Data Sync Services

License Classification: Optional Replaceable

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 535

Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: SyncML client that manages the device side of a SyncML
data-exchange session.

A.155 OMA SyncML DM Interface
Development Name: SYNCMLDMCLIENT
Build File Location: /common/generic/SyncML/group/
System Model Location:

Layer: Application Services
Component collection: Data Sync Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Supplies an interface to the SyncML Framework for use
during a SyncML device-management session.

A.156 OMA SyncML Framework
Development Name: SYNCMLCLIENT
Build File Location: common/generic/SyncML/group/
System Model Location:

Layer: Application Services
Component collection: Data Sync Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Client–server-based framework that supports SyncML data
synchronization and device management over HTTP, WSP and OBEX.
Follows the SyncML v1.1.2 specification including large object sup-
port, Server Alerted Notification and transactional behavior. Clients may
provide plug-ins to manage device-management settings.

A.157 OMAP 2420
Development Name: OMAP2420
Build File Location: /cedar/generic/base/omap_hrp/assp/
System Model Location:

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture

536 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Component collection: ASSP
License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.2, 9.3
Description: ASSP support for the Texas Instruments H4 development
board with OMAP 2420 (ARMv6-based core). Hardware reference plat-
form for Symbian OS releases from Symbian OS v9.2.

A.158 OMAP H2
Development Name: OMAP H2
Build File Location: /cedar/generic/base/omap/h2/
System Model Location:

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Variant

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Variant code for the Texas Instruments H2 development
board.

A.159 OMAP H4
Development Name: OMAPH4HRP
Build File Location: /cedar/generic/base/omap_hrp/h4/
System Model Location:

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Variant

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Variant code for the Texas Instruments H4 development
board.

A.160 OpenGL ES
Development Name: OPENGLES9.X
Build File Location: /common/generic/graphics/OpenGLES/
group/

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 537

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: OpenGL ES

License Classification: Reference/Test
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference implementation of OpenGL ES, replaced by
licensees. Provides multi-client access to screen, keyboard, and pointer
or digitizer for GUI applications.

A.161 OpenGL ES Display Properties

Development Name: OPENGLESDISPLAYPROPERTY
Build File Location: /common/generic/graphics/
OpenGLESDisplayProperty/group/

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: OpenGL ES

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Encapsulates display-drawing properties (e.g. display rectan-
gles and clipping regions), enabling window-surface access, i.e. drawing,
to clients from non-window-owning threads.

A.162 OpenGL ES Headers

Development Name: OPENGLSHEADERS
Build File Location: /common/generic/graphics/
OpenGLESHeaders/group/

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: OpenGL ES

License Classification: Optional Symbian
Exposes Third-Party APIs: YES

538 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Standard OpenGL ES headers and binary definition files
to encourage compatibility between OpenGL ES implementations for
Symbian OS.

A.163 Other LDDs

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Common Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Drivers supporting hardware devices, implemented as
Symbian OS logical device drivers (LDDs).

A.164 Peripheral Bus Controllers

Development Name: EPBUS
Build File Location: /cedar/generic/base/e32/
System Model Location:

Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Variant

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Peripheral-bus controllers for supported variants imple-
mented as a kernel-side DLL interfacing media and I/O device drivers to
PC-card or MMC-card-socket hardware.

A.165 Phonebook Sync

Development Name: PHBKSYNC
Build File Location: /generic/telephony/phbksync/group/
System Model Location:

Layer: OS Services
Block: Comms Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 539

Sub-block: Telephony Services
Component collection: Telephony Utilities

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Server enabling synchronization of contacts between a
phonebook application and entries stored in the Integrated Circuit Card
(ICC), or SIM card, of a device.

A.166 PLP Variant

Development Name: PLPVARIANT, PLP, BRDCST
Build File Location: /common/generic/connectivity/legacy/
plp/PLPVARIANT/

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Service Providers

License Classification: Optional Replaceable
Exposes Third-Party APIs: N/A
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Deprecated legacy component previously used as the bearer
for connectivity services. Retained only for compatibility with third-party
components that use some of its APIs.

A.167 Plug-in Framework (ECOM)

Development Name: ECOM
Build File Location: /common/generic/syslibs/ecom/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework and server for plug-in interface implementations.
Defines the base classes used by conforming plug-ins and a client-side
API used by framework clients to locate and load plug-ins on demand, in
conformance with security-policy mechanisms.

540 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.168 POP3 MTM

Development Name: MSG EMAIL
Build File Location: /common/generic/messaging/email/
popservermtm/group/

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-in to Messaging Store framework supporting
send/receive/edit of POP3 (dial-up) email messages.

A.169 Power and Shutdown Management

Development Name: PWRCLI
Build File Location: /common/generic/syslibs/pwrcli/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Customizable user-side power manager supporting policy-
driven power management via power-domain ‘profiles’ at device switch-
on and switch-off.

A.170 PPP Compression Plug-ins

Development Name: PREDCOMP, STACCOMP, MSCOMP
Build File Location: /common/generic/networking/predcomp/
group/,/common/generic/networking/staccomp/group/,
/common/generic/networking/mscomp/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 541

Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: PPP NIF (Point to Point Protocol) plug-ins that implement
Predictor, Stac and Microsoft compression algorithms.

A.171 PPP NIF

Development Name: PPP
Build File Location: /common/generic/networking/ppp/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Point-to-Point Protocol plug-in to Network Interface
Manager. Supports TCP/IP over serial communications.

A.172 Printer Drivers

Development Name: PRINTDRV
Build File Location: /common/generic/graphics/printdrv/
group/

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics and Printing Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference implementation for concrete printer driver plug-
ins. Considered legacy for most mobile phones.

A.173 Printing Services

Development Name: PRINT
Build File Location: /common/generic/app-
framework/print/group/

542 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

System Model Location:
Layer: Application Services
Component collection: Printing Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework providing standard print dialogs for print-job
setup and control to application clients. Considered legacy for most
mobile phones.

A.174 Printing Support

Development Name: PDRSTORE
Build File Location: /common/generic/graphics/pdrstore/
group/

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics and Printing Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Framework that manages and loads printer drivers as
bitmapped-device-context implementations and manages access to
printer ports. Considered legacy for most mobile phones.

A.175 PSD AGT

Development Name: PSDAGT
Build File Location: /common/generic/networking/psdagt/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Networking Plug-ins

License Classification: Optional Replaceable
Exposes Third-Party APIs: N/A

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 543

Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Deprecated functionality replaced by other components.
AGT agent plug-in to Connection Agent framework that negotiates packet-
switched connection, for example to GPRS networks.

A.176 QoS Framework PRT

Development Name: QOS
Build File Location: /common/generic/networking/common/
generic/networking/qoslib/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Network Protocol Plug-ins

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: QoS Framework and library modules, implemented as a PRT
protocol plug-in to Socket Server.

A.177 Raw IP NIF

Development Name: RAWIPNIF
Build File Location: /common/generic/networking/rawipnif/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: NIF plug-in to Network Interface Manager that supports
multiple primary-PDP contexts, i.e. multi-homing over GPRS, on the
telephony-reference platform.

544 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.178 Reference DRM Agent
Development Name: DRMAGENT
Build File Location: /common/generic/syslibs/caf2/group/
System Model Location:

Layer: Application Services
Component collection: Content Handling

License Classification: Reference/Test
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Reference implementation of DRM-agent plug-in to Content
Access Framework for DRM.

A.179 Reference Fonts

Development Name: FONTS
Build File Location: /common/generic/graphics/fonts/group/
System Model Location:

Layer: OS Services
Block: Multimedia and Graphics Services

Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference native fonts for Symbian OS. Replaced by
licensees.

A.180 Remote Control Framework

Development Name: BLUETOOTH REMOTECONTROL
Build File Location: /common/generic/bluetooth/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Short Link

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 9.1, 9.2, 9.3
Description: Bearer-agnostic remote-control framework that enables
sending and receiving of remote-control commands to and from remote
Bluetooth devices using bearers provided as plug-ins to the framework.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 545

A.181 Remote File Server

Development Name: SCREMOTEFILESERVER
Build File Location: /common/generic/connectivity/
SCRemoteFileServer/group/

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Service Providers

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Named service providing on-device file-management func-
tions to a remote (off-device) client over TCP/IP including access to
backup and restore functions provided by other system components.

A.182 RTP

Development Name: RTP
Build File Location: /common/generic/mm-protocols/rtp/
group/

System Model Location:
Layer: Application Services
Component collection: Multimedia Protocols

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 9.1, 9.2, 9.3
Description: Server and user-side API providing socket-based access
to Real-Time Transport Protocol (RTP) services, providing an IP-based
real-time-network transport service.

A.183 Runtime Plug-in

Development Name: MIDP2RUNTIME
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: Low-Level Plug-ins

License Classification: Common Replaceable

546 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Licensee-customizable MIDP 2.0 runtime plug-in module.

A.184 Scheduled Send MTM

Development Name: MSG SCHEDULEDSEND
Build File Location: /common/generic/messaging/
schedulesend/group/

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-in to Messaging Store framework that supports
scheduled sending of any available message type including SMS and fax
and defines the scheduling parameters.

A.185 Screen Driver

Development Name: SCREENDRIVER
Build File Location: /common/generic/graphics/screendriver/
group/

System Model Location:
Layer: Kernel Services and Hardware Interface
Component collection: Screen Driver

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Device-dependent component that implements the generic
operations defined by the Bit GDI to manipulate the physical memory
map of the device display or bitmap memory map. Note that this is not
implemented as a standard Symbian OS device driver.

A.186 SD Card Driver

Development Name: SDCARD4C
Build File Location: /cedar/generic/base/e32/drivers/

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 547

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers
Component collection: Logical Device Drivers

License Classification: Common Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Logical and physical device drivers supporting Secure Digital
flash-memory cards.

A.187 Secondary PDP context UMTS Driver

Development Name: SPUD
Build File Location: /common/generic/networking/Spud/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Networking Plug-ins

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Network-interface-adapter component that supports primary
and secondary PDP contexts (multi-homing over GPRS) on the telephony-
reference platform only.

A.188 Secure Backup Engine

Development Name: SECUREBACKUPENGINE
Build File Location: /common/generic/connectivity/
SecureBackupEngine/group/

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Service Providers

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3

548 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Description: Manages backup and restore of device-side data, as
controlled by the Secure Backup Socket Server.

A.189 Secure Backup Socket Server
Development Name: SBSSERVER
Build File Location: /common/generic/connectivity/
SBSocketServer/group/

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Service Providers

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Named service providing backup–restore functions to a
remote (off-device) client over TCP/IP. Communicates with a connected
PC and with the Secure Backup Engine to carry out backup and restore
operations to a PC.

A.190 Secure Software Install
Development Name: SECURESOFTWAREINSTALL
Build File Location: /common/generic/security/swi/group/
System Model Location:

Layer: Application Services
Component collection: Application Framework

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Installers for native and Java apps.

A.191 Security Policy Reference Plug-in
Development Name: MIDP2SECURITY
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Profile

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 549

Description: Reference implementation of Java security policy, imple-
mented as a replaceable plug-in.

A.192 Send As
Development Name: SENDASV2
Build File Location: /common/generic/messaging/sendas2/
group/

System Model Location:
License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 9.1, 9.2, 9.3
Description: Not shown explicitly in the model and forming part of the
messaging framework, from Symbian OS v9, a client–server architecture
enabling message sending from within applications.

A.193 Serial Port CSY
Development Name: ECUART
Build File Location: /common/generic/ser-comms/c32/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: CSY plug-in to C32 Serial Server providing virtual serial port.

A.194 Server Socket
Development Name: SERVERSOCKET
Build File Location: /common/generic/connectivity/
ServerSocket/group/

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Service Providers

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Helper library that communicates service-port numbers and
manages messages and commands, for use by the Service Broker.

550 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.195 Service Broker
Development Name: SERVICEBROKER
Build File Location: /common/generic/connectivity/
ServiceBroker/group/

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Service Framework

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Configuration-file-based service and port registration that
enables device-side services to register a port number for use by PC-side
clients.

A.196 Sheet Engine
Development Name: SHENG
Build File Location: /common/generic/app-
engines/sheng/group/

System Model Location:
Layer: Application Services
Component collection: Office Application Engines

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Legacy application engine supporting a spreadsheet appli-
cation, originating from the early EPOC built-in applications set.

A.197 SIM TSY
Development Name: SIMTSY
Build File Location: /common/generic/telephony/simtsy/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Server Plug-ins

License Classification: Reference/Test
Exposes Third-Party APIs: NO

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 551

Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description:TSY simulator module that uses static configuration data
and dynamic system-agent notifications to simulate the presence of
phone hardware. Implemented as a TSY plug-in to the ETel Telephony
Server.

A.198 SIP Connection Provider Plug-ins

Development Name: SIPCPRT, SIPDUMMYPRT, SIPSTATEMAC, SIPPA-
RAMS, SIPSCPRT

Build File Location: /common/generic/mm-
protocols/connprov/sipcpr/group/

System Model Location:
Layer: Application Services
Component collection: Multimedia Protocols

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 9.2, 9.3
Description: Network-layer connection provision for Session Initiation
Protocol (SIP).

A.199 SIP Framework
Development Name: SIP COM
Build File Location: /common/generic/mm-protocols/sip/
group/

System Model Location:
Layer: Application Services
Component collection: Multimedia Protocols

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 9.1, 9.2, 9.3
Description: Framework providing Session Initiation Protocol (SIP) sup-
port and integration into the networking infrastructure, but not the
protocol implementation (which is provided as a plug-in by licensees).

A.200 SLIP NIF
Development Name: SLIP
Build File Location: /common/generic/networking/slip/group/
System Model Location:

Layer: OS Services

552 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Reference/Test
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference implementation of Serial Line Internet Protocol
(SLIP) NIF plug-in to Network Interface Manager providing TCP/IP over
serial communications via modem dialup.

A.201 SMIL Parser
Development Name: GMXML
Build File Location: /common/generic/messaging/gmxml/group/
System Model Location:

Layer: Application Services
Component collection: Content Handling

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Parser for SMIL (and other simple XML) content based on a
generic XML Parser/Composer with ‘mini-DOM’ API. Replaces the SMIL
Translator implementation of Symbian OS v7.0s.

A.202 SMS MTM
Development Name: MSG SMS8.1
Build File Location: /common/generic/messaging/sms/
System Model Location:

Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-in to Messaging Store framework that implements
SMS-messaging support.

A.203 SMS PRT
Development Name: SMSSTACK
Build File Location: /common/generic/nbprotocols/
smsstackv2/smsprot/group/

System Model Location:

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 553

Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: SMS Protocol Plug-ins

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Socket Server PRT plug-in that implements SMS protocol.

A.204 SMS Utilities

Development Name: SMSU
Build File Location: /common/generic/nbprotocols/smsstack/
smsu/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: SMS Utilities

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Utilities for processing SMS messages, includes streaming
classes, logging support and interface to the backup server, used by SMS
PRT and its clients.

A.205 SMTP MTM

Development Name: SMTPSERVERMTP
Build File Location: /common/generic/messaging/email/
SMTPSERVERMTm/group/

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-in to Messaging Store framework supporting
sending, receiving and editing of SMTP (Internet) mail.

554 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.206 Software Install Server

Development Name: SWINSTALLSERVER
Build File Location: /common/generic/connectivity/
SWInstallServer/group/

System Model Location:
Layer: OS Services
Block: Connectivity Services
Component collection: Service Providers

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Named service that interacts with the software-installation
components on the device to enable remote installation of SIS, JAR and
JAD files over TCP/IP or OBEX.

A.207 Speech Driver

Development Name: DEVASR
Build File Location: /common/generic/Multimedia/MMF/DEVASR/

group/

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Hardware-acceleration API for Automatic Speech Recog-
nition that allows the computationally-intensive speech recognition
algorithms to be performed in hardware, where present.

A.208 Subconnection Parameters

Development Name: UMTSIF
Build File Location: /common/generic/networking/
System Model Location:

Layer: OS Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 555

Block: Comms Services
Sub-block: Networking Services
Component collection: Subconnection Interface

License Classification: Common Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: QoS parameters and Traffic Flow Templates for GPRS.

A.209 Store

Development Name: STORE
Build File Location: /common/generic/syslibs/store/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Defines the Symbian OS persistence model based on the
streams and stores abstractions, providing an application data-storage
model that shields applications from the underlying file-server implemen-
tation.

A.210 Sync Initiation

Development Name: SYNCMLINITSERVER
Build File Location: /common/generic/connectivity/
SyncMLInitServer/group/

System Model Location:
Layer: Application Services
Component collection: Data Sync Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Allows a synchronization SyncML operation to be initiated
from the PC. Note that, although Symbian does not supply a PC-side
SyncML server, this service allows the creation of such a service by
partners.

556 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.211 System Agent

Development Name: SYSAGENT2
Build File Location: /common/generic/syslibs/sysagent2/
group/

System Model Location:
Layer: OS Services
Block: Generic OS Services
Component collection: Generic Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Legacy component whose functionality is largely replaced
by Publish and Subscribe.

A.212 System Starter

Development Name: SYSSTART
Build File Location: /common/generic/app-
framework/SysStart/group/

System Model Location:
Layer: Application Services
Component collection: Application Launch Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Server and framework enabling policy-based startup of
system servers at boot time.

A.213 Task Scheduler

Development Name: SCHSVR ONGOING
Build File Location: /common/generic/syslibs/schsvr/
System Model Location:

Layer: OS Services
Block: Generic OS Services
Component collection: Generic Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 557

Description: Task or executable launching service for time-based and
condition-based task triggers.

A.214 TCP/IPv4/v6 PRT

Development Name: TCPIP6
Build File Location: /common/generic/networking/tcpip6/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Network Protocol Plug-ins

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: IPv4/v6 protocol implementation and TCP/IP stack and plug-
in extension architecture, implemented as a PRT protocol plug-in to ESock
Socket Server.

A.215 Telephony Watchers

Development Name: TELEPHONY WATCHERS
Build File Location: /common/generic/telephony/Watchers/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Utilities

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Watcher Framework plug-ins that monitor telephony condi-
tions and report them as Publish and Subscribe properties.

A.216 Telnet Engine

Development Name: TELNET E
Build File Location: /common/generic/networking/telnet_e/
group/

558 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

System Model Location:
Layer: Application Services
Component collection: Internet and Web Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Symbian OS Telnet daemon implementation that supports
client sessions for communicating with a specified host.

A.217 Text Formatting (FORM)

Development Name: FORM
Build File Location: /common/generic/app-
framework/form/group/

System Model Location:
Layer: Application Services
Component collection: Text Rendering

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Text view and layout classes that support the separation
of display attributes (layout and drawing) from logical text attributes
(styles).

A.218 Text Handling (ETEXT)

Development Name: ETEXT
Build File Location: /common/generic/app-
framework/etext/group/

System Model Location:
Layer: Application Services
Component collection: Text Rendering

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Text-content framework that supports storing of editable text
and its logical attributes, for example paragraph alignment and character
fonts.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 559

A.219 Text Shaper Plug-in

Development Name: ICULAYOUTENGINE
Build File Location: /common/generic/graphics/
iculayoutengine/group/

System Model Location:
Layer: OS Services
Block: Multimedia and Graphics Services
Component collection: Graphics and Printing Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.1, 9.2, 9.3
Description: Plug-in to Font and Bitmap Server that supports rendering
text in Devanagari script.

A.220 Text Shell

Development Name: ESHELL
Build File Location: /cedar/generic/base/f32/etshell/group/
System Model Location:

Layer: Base Services
Component collection: Text Mode Shell

License Classification: Test/Reference
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Text shell providing a command-line interface to the base
system.

A.221 Text Window Server

Development Name: EWSRV
Build File Location: /cedar/generic/base/e32/ewsrv/
System Model Location:

Layer: Base Services
Component collection: Text Mode Shell

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3

560 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Description: Text-mode window server supporting the Text Shell. Uses
a text-mode display driver providing VT100 terminal emulation over a
serial line and VGA/LCD implementations for reference hardware.

A.222 Timezone
Development Name: TZ, TZLOCALIZATIONRSCFACTORY
Build File Location: /common/generic/app-services/tz/group/
System Model Location:

Layer: Application Services
Component collection: Other Application Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 9.1, 9.2, 9.3
Description: Localization support including time-zone database for
Standard, Daylight, Short Standard and Short Daylight names for time
zones. Associated components not explicitly shown in the model include
a time-zone compiler, database and localization tools.

A.223 TLS
Development Name: TLS
Build File Location: /common/generic/networking/tls/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: TCP/IP Security

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Implements Secure Sockets Layer (SSL 3.0) and Transport
Level Security (TLS 1.0) protocols, enabling secure network connections.

A.224 TRP CSY
Development Name: TRP
Build File Location: /common/generic/telephony/trp/csy/
csy27010/group/

System Model Location:
Layer: OS Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 561

Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Reference Platform

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: CSY implementation for the Telephony Reference Platform
that manages the internal channel between the telephony and application
hardware as a standard serial port.

A.225 TRP TSY
Development Name: TRP
Build File Location: /common/generic/telephony/trp/tsy/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Telephony Services
Component collection: Telephony Reference Platform

License Classification: Common Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: TSY implementation for the Telephony Reference Platform.

A.226 Tunnel NIF
Development Name: TUNNELNIF
Build File Location: /common/generic/networking/tunnelnif/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Ethernet protocol NIF plug-in to Network Interface Manager
supporting IPSec tunneling capability. Forms part of the VPN client and
is used when running IPSec in tunnel mode.

562 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.227 UI Graphics Utilities

Development Name: EGUL, NUMBERCONVERSION
Build File Location: /common/generic/app-
framework/egul/group/

System Model Location:
Layer: UI Framework
Component collection: UI Support

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Libraries used by UI-framework components as well as the
variant UI and applications, providing color, font, icon, text, drawing and
number-conversion utilities.

A.228 UI Look and Feel

Development Name: UIKLAFGT
Build File Location: /common/generic/app-
framework/uiklafGT/group/

System Model Location:
Layer: UI Framework
Component collection: UI Application Framework

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Reference-implementation plug-in to Uikon framework that
determines the look and feel of Control Environment controls by defining
standard methods for which UI customizers provide a custom implemen-
tation.

A.229 Uikon

Development Name: UIKON
Build File Location: /common/generic/app-
framework/uikon/group/

System Model Location:
Layer: UI Framework
Component collection: UI Application Framework

License Classification: Common Symbian
Exposes Third-Party APIs: YES

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 563

Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Concrete framework for UI and application creation, pro-
viding the foundation for licensee UI customization.

A.230 Uikon Error Resolver Plug-in

Development Name: ERRORRESGT
Build File Location: /common/generic/app-
framework/errorresgt/group/

System Model Location:
Layer: UI Framework
Component collection: UI Application Framework

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Resource file that maps system error numbers to helpful
error-text strings, extended and customized by variant UIs.

A.231 USB CSY

Development Name: ECACM
Build File Location: /generic/ser-comms/usb/CSY/group/
System Model Location:

Layer: OS Services
Block: Comms Services
Sub-block: Short Link Services
Component collection: Serial Comms Server Plug-ins

License Classification: Common Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: CSY plug-in to C32 Serial Server providing serial-port emu-
lation over USB.

A.232 USB Driver

Development Name: USBC
Build File Location: /cedar/generic/base/e32/
System Model Location:

Layer: Kernel Services and Hardware Interface

564 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Common Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Logical Device Driver for USB supporting dynamically
configurable USB 2.0 Full Speed device functionality.

A.233 USB Manager

Development Name: USB
Build File Location: /common/generic/ser-
comms/usb/usbman/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Comms Framework
Component collection: Data Comms Server

License Classification: Optional Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: USB class support that enables a Symbian OS device to both
use and serve as a USB host.

A.234 User HAL

Development Name: HAL EKA2
Build File Location: /cedar/generic/base/hal/
System Model Location:

Layer: Base Services
Block: User-Side Hardware Abstraction
Sub-block: User-Side Hardware Abstraction
Component collection: User-Side Hardware Abstraction

License Classification: Common Symbian
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: User-side access to hardware via hardware abstraction,
deprecated for application use.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 565

A.235 User Library

Development Name: EUSER
Build File Location: /cedar/generic/base/e32/group/
System Model Location:

Layer: Base Services
Component collection: User Library and File Server

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Symbian OS user library, used by all user-side code to
provide fundamental basic services.

A.236 vCal Plug-in

Development Name: AGNVERSIT
Build File Location: /common/generic/app-
engines/agnversit/group/

System Model Location:
Layer: Application Services
Component collection: PIM Application Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: Yes
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Limited public APIs, for example in vcal.h. Plug-in library
used by Agenda Model to interact with the vCard and vCal component.

A.237 vCard and vCal

Development Name: VERSIT
Build File Location: /common/generic/app-
services/versit/group/

System Model Location:
Layer: Application Services
Component collection: PIM Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3

566 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Description: Parsers that convert between vCard and vCalendar entries
and Symbian OS native formats.

A.238 Video Driver

Development Name: DEVVIDEO
Build File Location: /common/generic/Multimedia/MMF/
DevVideo/group/

System Model Location:
Layer: Kernel Services and Hardware Interface
Block: Kernel Architecture
Component collection: Logical Device Drivers

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Hardware-abstraction layer for video decoding and encod-
ing acceleration.

A.239 View Server

Development Name: VIEWSRV
Build File Location: /common/generic/app-
framework/viewsrv/group/

System Model Location:
Layer: Application Services
Component collection: Application Framework

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Provides a mechanism for sharing and switching views
between applications. A running application can switch into and use a
view belonging to another application.

A.240 VPN

Development Name: VPNAPI, VPNCONNAGT, VPNMANAGER
Build File Location: /common/generic/networking/ipsec/
vpnapi/group/,/common/generic/ipsec/vpnconnagt/
group/,/common/generic/ipsec/vpnmanager/group/

System Model Location:
Layer: OS Services

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 567

Block: Comms Services
Sub-block: Networking Services
Component collection: TCP/IP Security

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Key negotiation and tunneling using IPSec for VPN connec-
tions, enabling users to connect to VPNs.

A.241 WAP Message API

Development Name: WAPMESSAGE
Build File Location: /common/generic/wap-
stack/wapmessage/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: WAP Stack

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: APIs for WAP Push, connectionless WSP and WDP data-
grams.

A.242 WAP Push Framework

Development Name: WAPPUSH
Build File Location: /common/generic/wap-
browser/wappush/group/

System Model Location:
Layer: Application Services
Component collection: Internet and Web Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Provides an interface between the WAP stack and the
messaging infrastructure to support WAP as a messaging transport. WAP
Push embeds links to WAP addresses within SMS messages.

568 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.243 WAP Push Handlers

Development Name: WAPPUSHSUPPORT
Build File Location: /common/generic/wap-
browser/WapPushSupport/group/

System Model Location:
Layer: Application Services
Component collection: Content Handling

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-in handlers, including Several Interfaces Single Logic
(SISL), that use the WAP message API.

A.244 WAP Push MTM

Development Name: WAP-BROWSER
Build File Location: /common/generic/wap-
browser/wappush/pushmtm/group/

System Model Location:
Layer: Application Services
Component collection: Messaging Application Support

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: MTM plug-in to Messaging Store framework supporting
WAP messaging.

A.245 WAP Short Stack

Development Name: WAPSTACK
Build File Location: /common/generic/wap-
stack/wapmessage/group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: WAP Stack

License Classification: Optional Replaceable

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 569

Exposes Third-Party APIs: NO
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Shortened WAP stack supporting WDP, WAP Push and
Connectionless WSP over IP or SMS, implemented as an ESock Socket
Server plug-in. May be replaced by licensee implementation.

A.246 WBXML Parser

Development Name: WBXMLPARSER
Build File Location: /common/generic/syslibs/xml/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-in to XML Parser Framework that parses WAP Binary
XML.

A.247 Web Recognizers

Development Name: RECOGNISERS
Build File Location: /common/generic/application-
protocols/recognisers/group/

System Model Location:
Layer: Application Services
Component collection: Content Handling

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Web URL and bookmark recognizers implemented as plug-
ins to the MIME Recognizer Framework.

A.248 Window Server

Development Name: WSERV8.1
Build File Location: /common/generic/graphics/wserv/group/
System Model Location:

Layer: OS Services

570 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

Block: Multimedia and Graphics Services
Component collection: Windowing Framework

License Classification: Common Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Server that owns and manages access to the screen as
a drawable resource, making it available to applications through the
abstraction of windowed screen areas, and access to the keyboard and
pointer or digitizer for GUI applications. Includes the keyclick reference
plug-in that produces key or pointer clicks.

A.249 Wireless LAN

Development Name: WIFI 802 11
Build File Location: /common/generic/networking/802.11/
group/

System Model Location:
Layer: OS Services
Block: Comms Services
Sub-block: Networking Services
Component collection: Link Layer Control

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 9.3
Description: Support for wireless LAN based on the IEEE 802.11 specifi-
cations.

A.250 WMA 1.1

Development Name: WMA
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: MIDP 2.0 Packages

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: MIDP Wireless Messaging 1.1 (JSR-120) APIs supporting
SMS and MMS, including Push support.

APPENDIX A: SYMBIAN OS COMPONENT REFERENCE 571

A.251 WMA 1.1 Push Plug-in
Development Name: WMA
Build File Location: /common/generic/ME/group/
System Model Location:

Layer: Java ME
Component collection: Bluetooth and SMS Push

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Plug-in that binds the WMA 1.1 package to the underlying
system.

A.252 Word Engine
Development Name: WPENG
Build File Location: /common/generic/app-
engines/wpeng/group/

System Model Location:
Layer: Application Services
Component collection: Office Application Engines

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Legacy application engine supporting a word-processor
application, originating from the early EPOC built-in applications suite.

A.253 World Server
Development Name: WORLDSERVER
Build File Location: /common/generic/app-
services/worldserver/group/

System Model Location:
Layer: Application Services
Component collection: Other Application Services

License Classification: Optional Replaceable
Exposes Third-Party APIs: NO
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Legacy server providing application access to country and
city information, including country, capital city, international and city
dialing codes, latitude, longitude, and UTC offset.

572 APPENDIX A: SYMBIAN OS COMPONENT REFERENCE

A.254 XML Framework

Development Name: XML
Build File Location: /common/generic/syslibs/xml/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Extensible framework for XML parsing based on a SAX-
2.0-like parser model and supporting DTD and processing plug-ins (e.g.
validators and auto correctors) as well as parser plug-ins.

A.255 XML Parser

Development Name: XMLPARSERPLUGIN
Build File Location: /common/generic/syslibs/xml/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Replaceable
Exposes Third-Party APIs: YES
Present in OS Releases: 8.0, 8.1, 9.1, 9.2, 9.3
Description: Non-validating parser plug-in for XML 1.0.

A.256 Zip Compression Library

Development Name: EZLIB
Build File Location: /common/generic/syslibs/ezlib/group/
System Model Location:

Layer: Base Services
Component collection: Low-Level Libraries and Frameworks

License Classification: Optional Symbian
Exposes Third-Party APIs: YES
Present in OS Releases: 7.0, 7.0s, 8.0, 8.1, 9.1, 9.2, 9.3
Description: Symbian OS port of the zlib compression library, implement-
ing ZLIB, DEFLATE and GZIP for ZIP compression and decompression.

Appendix B: Interviewee Biographies

Geert Bollen

Before joining Symbian, Geert was involved in a startup in the then
emerging Electronic Document Management field, where he integrated
databases with optical storage technology and made them sit up and
perform tricks

At Symbian, Geert initially led the design and implementation of
persistent data services in Symbian OS and went on to create its first Java
implementation – possibly the first for mobile phones. Following that, he
held a wide range of engineering management roles. He is currently VP
System Management with overall technical responsibility for Symbian
OS.

Martin Budden

Before joining Symbian (then Psion), Martin worked in a variety of
computer-related jobs. His first, in 1980, was as a ‘Student Scientist’
at the Royal Signals and Radar Establishment (now QinetiQ) where he
worked on MASCOT (a parallel-processing system) and was exposed to
email and the ARPANET. Martin holds an MA in Mathematics from the
University of Cambridge.

Martin joined Symbian (then Psion) in 1990 and started working on
the MC400 laptop. He worked on a variety of Psion products, including
the Series 3 and Series 5 palmtops and then was Technical Lead on an
early Philips project – the first mobile phone project to earn Symbian
money. He spent a year in Symbian’s Swedish offices in Ronneby helping

574 APPENDIX B: INTERVIEWEE BIOGRAPHIES

architect the ‘Quartz UI’ (which later became UIQ). He is currently
Symbian’s Chief System Architect.

Outside work, Martin is a keen cyclist and has cycled extensively in
Europe. In 2002, he spent 26 days cycling 2600 miles across America.

Andy Cloke

Andrew joined Symbian (then Psion) in 1995 from Philips Research Labs
where he had been working on hardware and software for WCDMA
prototype phones. He worked initially as an engineer and then as an
engineering manager for the fledgling Communications group.

From the foundation of Symbian, he worked on the communications
subsystems for the first Symbian OS phones, the Nokia 9210 and Ericsson
R380. In 2002, he became the company’s first Chief Technology Architect
and now has ownership of the Technology Strategy.

Charles Davies

Charles became CTO of Symbian in March 2003, after a long career at
Psion as a software technologist and as a director since 1982. Charles
has been a technology pioneer in software for handheld computers and
a lead contributor to many of the architectural concepts underpinning
Symbian OS.

As CTO, he provides technology leadership at the executive level, con-
tributes heavily to Symbian’s business, product and technology strategies
and is the executive sponsor of Symbian’s Technology Committee.

Charles holds a first-class degree in Physics from Imperial College,
London, and a PhD.

Morgan Henry

Before joining Symbian (then Psion) in 1995, Morgan dabbled in graphic
design and wrote software for fun. He stayed in the software arm of the
company through its transition from Psion into Symbian. He worked on
the Psion Series 5 and was responsible for the kernel port for the Nokia
9210 (‘the world’s first open Symbian OS phone’). During his time at
Symbian, he has also worked as a Technical Lead and System Architect
working on many projects during the platform’s evolution.

Morgan holds a BSc in Mathematics and Computer Science from
Queen Mary and Westfield College, London, and maintains an active
interest in drawing, painting and animation.

APPENDIX B: INTERVIEWEE BIOGRAPHIES 575

Ian Hutton

lan joined Symbian (or Psion, as it then was) in 1995, straight from univer-
sity. He initially wrote test code for the Text Handling (EText) component
of what was still EPOC32. As one of Charles Davies’s gang, he played
a lead role in designing and implementing the Application Architecture
and Printing Services. He later spent two years in Ronneby, Sweden,
as Technical Lead seconded to UIQ working on UIQ releases based on
Symbian OS v7.0, moving into the Techinical Consulting organization on
his return. He now works with Charles Davies in Product Marketing, as
an OS Product Planner, helping to shape Symbian’s technology roadmap
and planning future releases of Symbian OS.

Peter Jackson

Peter joined Symbian (then Psion) in 1994, wishing to apply his mainframe
expertise, gained working with the VAX/VMS operating system, to smaller
devices including handhelds. He was an early fan of the Psion operating
systems created for the Organiser family of devices, and later of the SIBO
operating system, the 16-bit precursor of what became Symbian OS.
He designed and implemented the first versions of the Symbian OS local-
ization and internationalization components, led the team that created the
FreeType implementation for Symbian OS, and later became responsible
for Symbian’s source configuration management framework.
He now works with Ravenbrook as a consultant specializing in configu-
ration management.

Keith de Mendonca

Keith was awarded a first-class honors degree in Computer Systems
Engineering followed by a DPhil by Sussex University. He joined Psion
in 1994 and wrote SDKs and applications for the Psion PDA range.

On joining Symbian, Keith originally worked in the messaging team,
initially specializing in email protocols before becoming the Messaging
Technology Architect. More recently, Keith was the Chief Technology
Architect for Symbian’s Application Technology Development group in
the UK. He is currently the Chief Technology Architect for Symbian India
and is based in Bangalore.

Will Palmer

Will studied electronic engineering at Oxford Polytechnic, before training
as a C++ programmer. Prior to joining Symbian, he worked on various

576 APPENDIX B: INTERVIEWEE BIOGRAPHIES

leading-edge projects such as vehicle-tracking and automated precision
measurement.

Will is a System Architect in Symbian. He joined the company in June
2000 and has worked as an engineer on synchronization technologies,
PC- and device-side networking and device management. He is cur-
rently trusted with the development and integrity of Symbian’s security
architecture.

At the moment, Will is traveling an inspiring road with his young
family but can quite often be found on a football pitch.

Howard Price

Howard grew up in South Africa. After conscription into the army as a
cook for 10 months, he studied for two years towards a six-year degree
in architecture before finding that it wasn’t what he wanted to do with
his life. After six years traveling and working around Europe, he decided
to settle down, did a degree in physics and mathematics (including some
courses on programming) and, aged 28, joined Symbian (then Psion) as
a programmer.

At Psion, Howard developed software for all Psion’s PDAs from the
Organiser I to the Series 5, including developing the low-level arithmetic
operators and the mathematical functions, developing the Series 3/3a OPL
runtime, leading the OVAL (Visual Basic for SIBO) run-time and debugger
team, leading the Series5 OPL team and designing the OPX framework,
and leading the initial Java team. He was working as Engineering Manager
of the Applications team at the time Psion Software became Symbian.

At Symbian, after a few more years in management, Howard decided
to follow his interests and move back to technical work, joining the
System Management Group (SMG) as a senior systems architect. There
he designed and developed the Depmodel v1 suite of tools to analyze the
structure of Symbian OS automatically. This enabled him to write the Sys-
tem Architecture Overview Documentation for which an understanding
of dependencies was essential. The dependency model helped to define
the initial system model. More recently, he has joined SMG’s Technology
Strategy and Analysis team, analyzed the impact of SMP on Symbian OS,
researched the technical implications of Moore’s Law on Symbian OS
and contributed to Symbian’s Technology Strategy document.

Murray Read

Murray graduated in Artificial Intelligence and Computer Science at
the University of Edinburgh. He worked with NCR and Fortronic on
embedded software for cash machines and credit-card terminals. He

APPENDIX B: INTERVIEWEE BIOGRAPHIES 577

then joined Origin, where he worked on radio pagers and the Philips
smartphone project with Psion. After that, he worked with STNC on the
Psion web-browser project.

Murray started working with Psion/Symbian as a contractor on a
web project in 1998. Then he worked on the user interface library for the
Nokia 7650, which evolved into the S60 platform, focusing on application
architecture and the user interface layout system.

Murray is a Chartered IT Professional, a member of the BCS and a
regular competitor in Topcoder programming competitions.

Martin Tasker

Martin joined Psion in 1995 after 13 years in the system-software indus-
try. His first commercial software products were a graphics package
and debugger for the BBC Micro in its early 1980s heyday, produced
while studying Natural Sciences and Computer Science at Cambridge
University. On graduation, he joined IBM where he worked in network-
ing and storage management for eight years, programming mainframes
in assembler, working on product development, and delivering perfor-
mance, routing and management improvements in IBM’s global VNET
network. He learned C++, object orientation and artificial intelligence
during a two-year transport research project at Imperial College, London.

Martin then joined the Protea project at Psion, whose architectural
decisions form much of the subject of this book. He became responsible
for Protea’s documentation and SDKs, along with contributions to its
architecture. His output included many technical papers on the distin-
guishing features of Symbian OS, which form the heart of this book.
In 2000, his Professional Symbian Programming became the contempo-
rary guide to Symbian OS programming which helped Symbian and its
customers to grow their engineering teams to achieve the success we
see in the marketplace today. Professional Symbian Programming also
contained the definitive history of the Protea project and, until this book,
the most detailed insight publicly available into the design decisions on
the project. Martin then served as Product Manager with responsibility for
licensing, SDKs and tools. He now works in a technology-strategy role.

Martin is married with four children. He occasionally relaxes with
classical music.

Andrew Thoelke

Andrew joined Symbian (then Psion) in 1994 shortly after graduating
from Sidney Sussex college, Cambridge with an MA in Mathematics.
Within Symbian he became one of the key developers of OVAL, a rapid

578 APPENDIX B: INTERVIEWEE BIOGRAPHIES

application development language similar to Visual Basic, for the Psion
Series 3a computers. He has since worked as developer, designer and
architect on projects throughout the lifetime of Symbian OS, and spanning
many of its technology areas such as kernel, data storage, messaging, Java
and platform security.

Today, he has one of the most senior technical roles within Symbian,
influencing both the technical strategy of the organization and the ongoing
architectural development of Symbian OS.

David Wood

David spent eight years at Cambridge University, studying mathematics
and then philosophy of science. He drifted into teaching and became
head of the mathematics department at Ashbourne College in Kensington,
where he specialized in helping A-level-retake students move from, for
example, a D-grade pass to an A-grade pass in four months. Towards the
end of that period, he taught himself C in his spare time, on an Amstrad
PCW8512 word processor running CP/M, and was lucky enough to pick
up a job as a junior software engineer in Psion’s Harcourt Street offices.

At Psion/Symbian he has headed, at various times, the Development,
Technical Consulting, Partnering and Research departments. During
the formative stages of Symbian OS, he was the primary integrator of
application-level and UI framework code into the ROMs of what was
called ‘Protea’, the Psion Series 5 PDA. This experience is described in
more detail in David’s 2005 book Symbian for software leaders.

References

Aho, A., Sethi, R. and Ullman, J. (1986) Compilers: Principles, techniques
and tools. Addison-Wesley

Alexander, C. (1979) The Timeless Way of Building. Oxford University
Press

Alexandrescu, A. (2001) Modern C++ Design. Addison-Wesley
Allin, M., Turfus, C., et al. (2001) Wireless Java for Symbian Devices.

John Wiley & Sons
Ambler, S. (2004) The Object Primer: Agile model-driven development

with UML 2, Third Edition. Cambridge University Press
Appel, A. (1992) Compiling with Continuations. Cambridge University

Press
Appel, A. (1998) Modern Compiler Implementation in C. Cambridge

University Press
Assmann, U. (2003) Invasive Software Composition. Springer-Verlag
Bar-David, T. (1993) Object Oriented Design for C++. Prentice Hall
Beaudouin-Lafon, M. (1994) Object-Oriented Languages. Chapman &

Hall
Beck, K. (1999) Guide to Better Smalltalk. Cambridge University Press
Bishop, J. (1986) Data Abstraction in Programming Languages. Addison-

Wesley
Bordwell, D., Staiger, J. and Thompson, K. (1985) The Classical Holly-

wood Cinema. Columbia University Press.
Briand, L., Devanbu, P. and Melo, W. (1997) ‘An Investigation into

Coupling Measures for C++’ in Proceedings of the 19th International
Conference on Software Engineering, 412–21

Brooks, F. (1976) The Mythical Man-Month. Addison-Wesley
Buschmann, F., Meunier, R., et al. (1998) Pattern-Oriented Software

Architecture. John Wiley & Sons

580 REFERENCES

Christensen, C. (1997) The Innovator’s Dilemma. Collins
Craig, I. (2000) The Interpretation of Object-Oriented Languages.

Springer-Verlag
Davila, A., Epstein, M. and Shelton, R. (2006) Making Innovation Work.

Wharton
Edwards, L. (2004) Developing Series 60 Applications. Addison-Wesley
Funk, J. (2004) Mobile Phone Disruption. Hoboken, NJ: John Wiley &

Sons
Furber, S. (2000) ARM System-on-Chip Architecture. Addison-Wesley
Gabriel, R. (1996) Patterns of Software. Oxford University Press
Goldberg, A. and Robson, D. (1989) Smalltalk-80: The language.

Addison-Wesley
Haikio, M. (2002) Nokia: The inside story. Pearson Education
Hansen, P. B. (2001) Classic Operating Systems (editor). Springer
Harrison, R. (2003) Symbian OS C++ for Mobile Phones. John Wiley &

Sons
Harrison, R. (2004) Symbian OS C++ for Mobile Phones, Volume 2.

Symbian Press
Heath, C. (2006) Symbian OS Platform Security. Chichester: John Wiley

& Sons
Henderson-Sellers, B. (1996) Object-Oriented Metrics. Prentice Hall
Hildebrand, J. D. (1994) Object Magazine 3:6 (February 1994). NY USA:

SIGS Publications
Himanen, P., Torvalds, L. and Castells, M. (2002) The Hacker Ethic.

Random House
Johnson, R. (1998) ‘Patterns and Frameworks’, in Rising, L., The Patterns

Handbook, Cambridge
Kamin and Samuel (1990) Programming Languages: An interpreter-based

approach. Addison-Wesley
Kivimaki, J. (2001) MITA: Mobile Phone Internet Technical Architecture

(editor). Finland: IT Press
Koenig, A. and Moo, B. (1997) Ruminations on C++. Addison-Wesley
Lewis, M. (1999) The New New Thing. Coronet
Lindholm, C. et al. (2003) Mobile Usability. McGraw-Hill
Ling, R. (2004) The Mobile Phone Connection. San Francisco, CA: Mor-

gan Kaufmann
Lippman, S. (1996) Inside the C++ Object Model. Addison-Wesley
MacDowell, I. (2005) Programming PC Connectivity Applications for

Symbian OS. Symbian Press
Madsen, O., Moller-Pedersen, B. and Nygaard, K. (1993) Object-

Oriented Programming in the Beta Programming Language. Addison-
Wesley

McCarthy, J. (1995) Dynamics of Software Development. Microsoft Press
Mével, A. and Guéguen, T. (1987) Smalltalk-80. Macmillan
Meyers, S. (1998) Effective C++, Second Edition. Addison-Wesley

REFERENCES 581

Myerson, G. (2001) Heidegger, Habermas, and the Mobile Phone. Icon
Books

Niemeyer, P. and Knudsen, J. (2002) Learning Java. O’Reilly
Nonaka, I. and Takeuchi, H. (1995) The Knowledge-Creating Company.

USA: Oxford University Press
Petzold, C. (1992) Programming Windows 3.1, Third Edition. Microsoft

Press
Raymond, E. (2004) The Art of UNIX Programming. Addison-Wesley
Rising, L. (1998) The Patterns Handbook. Cambridge University Press
Sales, J. (2005) Symbian OS Internals. John Wiley & Sons
Shepard, S. (2002) Telecom Crash Course. McGraw-Hill
Spence, E. (2005) Rapid Mobile Enterprise Development for Symbian OS:

An introduction to OPL application design and programming. John
Wiley & Sons

Stichbury, J. (2005) Symbian OS Explained. John Wiley & Sons
Stroustrup, B. (1993) The C++ Programming Language, Addison-Wesley
Stroustrup, B. (1994) The Design and Evolution of C++. Addison-Wesley
Tasker, M. (2000) Professional Symbian Programming. Wrox Press
Tidd, J., et al. (2005) Managing Innovation. Chichester: John Wiley &

Sons
Warren, N. and Bishop, P. (1999) Java in Practice. Addison-Wesley
Wilkinson, N. (2002) Next Generation Network Services. Chichester:

John Wiley & Sons
Wolf, W. (2001) Computers as Components. Morgan Kaufmann

Index

1G (first generation) networks 4
2G (second generation) networks 4,

5, 171, 201, 203, 370–1
2.5G networks 5, 171, 201, 203,

208–9, 220–3, 226–31,
370–1

3G (third generation) networks 4, 5,
15–16, 36, 122, 171, 201,
203, 208–9, 216, 220–3,
226–31, 236, 319, 370–1,
381–3, 435–6, 439–40

3.5G networks 440
4G networks 440
8-bit devices 78–9
16-bit devices 17, 37–9, 42, 47–8,

78–9, 87, 334–5, 340, 361,
402–3

32-bit operating systems 17, 22,
27–9, 334–40

abstract data types (ADTs) 94–5,
104

abstraction principles 55–6, 61,
63–4, 91–108, 111–19, 124,
137–8, 481

active objects
see also asynchronous services;

events
concepts 49, 56–7, 72–5, 183,

256, 257–60, 266, 333,

353–4, 357–9, 444, 447,
463–4

definition 73
active scheduler, concepts 73–5
Ada 94–5, 98–9
ADTs (abstract data types) 94–5,

104
Agenda Model component 53, 140,

155, 322, 360–1, 362, 440,
477, 489

agile programming 90, 456,
464–5, 472–4

AGNMODEL 155, 477
AGNVERSIT 155, 565

see also vCal Plug-in component
AGT (interface agents) files

176, 215–16, 218–19,
232–4, 243–4, 500, 533,
542–3

Alarm Server component 53,
125, 141, 157–8, 321–2,
478

alarms 11, 53, 125, 141, 157–8,
306, 321–2, 478

ALARMSERVER 157–8, 478
always-on systems 46
Amiga 43, 74, 404
AMPS network 3–4
Amstrad 26
ANIMATION 132, 478

Animation component 52–3, 123,
124, 127–8, 131–2, 182,
478, 487

ANSI C 108, 171, 173–4, 305
APIs 40–1, 46–9, 59–60, 66–82,

85, 135–63, 167–8, 221–4,
302–3, 378–94, 471–2,
477–572

C++ 71–82
C 40–1
Symbian OS component

reference 477–572
APPARC 151, 478–9
Apple

Macintosh 22, 37, 43, 63, 74,
108, 193, 404, 421, 423

Newton 17, 43, 68, 70, 354,
368, 404

Application Architecture
component 53, 65–71,
150–63, 363–4, 404,
478–9

Application Services Layer 53,
111–19, 133–63, 168,
306–7, 320–9, 364–5,
370–5, 477–571

client provisioning collection
153–4

component collections
149–63

584 INDEX

Application Services Layer
(continued)

concepts 53, 111–15, 117–18,
133–63, 168, 306–7,
370–5

content handling collection
159–60

data sync services collection 153
design goals 134–6
device management collection

154–5
generic technologies 142–9
Internet/web application support

collection 161–3
launch services collection

151–2
legacy application engines 137,

140, 156–7
multimedia protocols collection

152–3
overview 117–18, 133–6
PIM application collections

154–5, 157–8
printing support collection 163
purpose 134
Symbian OS component

reference 477–571
text rendering collection 161

Application Utilities component
258, 265–6, 273–4, 479

see also BAFL
Application-Specific Integrated

Circuit (ASIC) 294, 369
Application-Specific Standard Part

(ASSP) 281–2, 288–9, 292–5,
297–8, 369

applications 11, 16, 53, 65–71,
72–3, 85, 302–17, 477–571

see also executable code;
processes; software

classes 66–7
complexity issues 11–12, 57,

88–90, 114, 337–50,
420–2, 429–51, 455–74

concepts 11, 16, 65–71, 85
documents 66–71, 138–9,

422–5
MIDlets 302–17, 323–9, 425,

521–2, 527–8

signed applications 13, 85,
327–9

structural issues 66–7
suite 11, 16, 65–71, 134–6,

422–5
third-party developers 12–13,

28–31, 50–1, 83–5, 173,
302–17, 327–9, 402, 475,
504

UIDs 72–3, 82, 138, 145,
257–62, 266, 423

AppUi 127, 138
architecture

definition 45
impacts 369–75
Symbian OS 41–4, 45–85,

111–19, 122–4, 133–7,
461–74

Arima 122
ARM 13, 16, 25, 29, 79–81, 87–8,

288, 291, 294–8, 309,
327–9, 338, 341–3, 368,
370–5, 435

see also CPUs
ARP network 3–4
arrays 24, 259, 265–6
ASCII 78, 79, 81, 260–1, 266, 275,

293, 493
ASIC (Application-Specific

Integrated Circuit) 294, 369
ASR (Automatic Speech

Recognition) 267, 277
assembler 20, 22, 87, 337, 341,

412
ASSP (Application-Specific

Standard Part) 281–2, 288–9,
292–5, 297–8, 369

asynchronous services 38–40,
43–4, 46–9, 56, 60, 290–1,
353–4

see also active objects
concepts 38–40, 43–4, 46–9,

56, 60, 290–1, 353–4
power management 60

AT&T 3–4
Audio Driver component 178,

180–1, 296–7, 479
see also SOUNDDEV

AUDIODEVICE 277

Australia 4
authorization issues 83–5
Avkon 124–5
AWT-based user interfaces 303

Backup and Restore Notification
component 141, 157–8, 192,
194–8, 479–80

BACKUPRESTORENOTIFICATION
157–8, 479–80

backups 125–6, 141, 157–8, 170,
192, 194–8, 479–801

BAFL 258, 265–6, 273, 274, 479
see also Application Utilities

component
BALSERVER... 481, 531

see also Bearer Abstraction Layer
component

Base Services Layer 55, 112–19,
146, 165, 255–77, 369–75,
479–563

see also File Server . . .; User
Library . . .

architecture 258–70, 369–75
component collections 270–7
concepts 55, 112–15, 118,

255–77, 369–75
design goals 256–7
essential system frameworks

261–5
other services/utilities 265–70
overview 118, 255–8
roles 255–8
security issues 262–3
Symbian OS component

reference 479–563
Baseband Channel Adaptor (BCA)

component 219–20, 480
see also BCA

Baseband Channel Adaptor for C32
component 230–1, 480

see also C32BCA
baseband hardware/software,

complexity 11, 370–3
BASIC 17, 21
Batchelor, Bill 24–5, 460–1
batteries 9, 18, 41, 43, 47–9, 60,

281, 368, 377, 420, 439

INDEX 585

BCA 220, 480
see also Baseband Channel

Adaptor component
Bearer Abstraction Layer (BAL)

component 192, 195, 197–8,
481, 531

see also BALSERVER...
Bearer-Independent Object . . . see

BIO . . .

Bell Labs 104
Berkeley-style Sockets API 208, 213
Beta 347
Bill of Materials (BOM) costs

373–4
BIO Messaging Framework

component 143–6, 158–9,
481

see also MSG_BIOMSG
BIO Messaging Parsers component

143–6, 158–60, 481–2
BIO Watchers component 144–5,

158–9, 482
biomsg 481–2
Bit GDI component 184–6, 190–1,

285, 443–4, 482
BITGDI 190, 321, 482
bitmaps 55, 57, 124, 127–8,

167–8, 170, 177–8, 183–5,
260, 512

Blackberry 390
blocking systems 60
Blocks 111–19, 476–572

see also System Model
concepts 111–19
guidelines 114–15
Symbian OS component

reference 476–572
Bluetooth 15, 135, 192, 194,

200–1, 208–11, 214–16,
245–53, 307–17, 321,
328–9, 432–3, 435, 439,
483–6, 544

bluetooth 243, 251–2, 314–15,
317, 483–6, 544

Bluetooth 1.0 component 314–15,
316–17, 483

Bluetooth 1.0 Push Plug-in
component 316–17, 483

Bluetooth CSY component 252–3,
483–4

see also BTCOMM
Bluetooth HCI component 249–53,

484
see also HCI

Bluetooth Manager component
249–53, 484

Bluetooth PAN Profile component
210–11, 243–4, 249, 251,
484–5

Bluetooth Profiles component
251–2, 485

Bluetooth Protocol Client APIs
component 251–2, 485–6

see also USER
Bluetooth SDP component

249–53, 486
Bluetooth Stack PRT component

252–3, 486
BMP Animation component 124,

131–2, 487
BMP format 170, 188
BMPANIM 131–2, 487
Bollen, Geert 22–5, 48, 337,

340–1, 354–5, 360–3,
365–6, 405, 431, 461, 462,
573

BOM costs 373–4
Bookmark Support component

161–3, 487
BOOKMARKS 162, 487
booleans 82, 103
BOOTSTRAP 298, 487–8
Bootstrap component 149, 182–3,

280–1, 298–9, 487–8
Borland 81
boundaries, Symbian OS 50–1,

63–4, 444–6
Brew platform 16, 401
Broadcast Tuner component

180–1, 187–8, 328, 488
see also TUNER

BTCOMM 253, 483–4
see also Bluetooth CSY

component
Budden, Martin 25–6, 27–8,

29–30, 32, 34–6, 337, 340,

407–8, 410–11, 414–16,
573–4

buffer descriptors
see also descriptors; TBuf...
concepts 78–81

build files 112, 115, 119, 476–572
business models 9, 12–13, 49–51,

470–2

C# 91, 100–1, 108
C++ 13, 71–82, 87–8, 91–2, 93,

96–102, 104–8, 173, 304,
333–66, 414, 435–6,
446–51

beginners’ mistakes 344–5
challenges 337–50, 446–51
historical background 91,

104–5, 107, 334–8
management issues 344–50
object-oriented approaches

87–8, 91–2, 93, 96–102,
104–8, 138–9, 333–66,
446–51

switching challenges 341–4,
446–51

virtual methods 96–8, 105–6
C 21, 22, 29, 40–1, 48, 55, 71, 87,

89, 91–2, 97–9, 104–5,
165–6, 167, 171–7, 334–5,
488

C (heap-allocated) classes
see also heap
concepts 80–1

C Standard Library component 55,
71, 165–6, 167, 171–7, 305,
336, 346–7, 488

see also STDLIB
C suffixes 79, 80–1
C32 218, 476, 488–9

see also Data Comms Server
C32 Serial Server component

54–5, 208–20, 238, 252–3,
488–9, 549

C32BCA 230, 480
see also Baseband Channel

Adaptor for C32
component

CActive 73–4

586 INDEX

CAF2 160, 497
see also Content-Access

Framework for DRM
component

CALCON 157–8, 493
see also Chinese Calendar

Converter component
Calendar component 53, 155, 477,

489
see also Legacy API

CALINTERIMAPI 155, 489
see also Calendar component

Camera component 180–1,
187–8, 489

see also ECAM
camera phones 7, 10–12, 16, 37,

169, 178, 328, 368, 374,
443–4, 489

Canada 375
CApaApplication 66
capabilities principle, Platform

Security 83–5, 262–3, 327–9
Capability Maturity Model (CMM)

457
car radio phones 3
Carbide 435
cards 139, 174, 177
Carnegie-Mellon design 352
Carphone Warehouse 8
case studies 331–474
Category Translator 336
CBase 80–1, 257, 259–60
CCoeAppUi 127
CCoeAppUiBase 66
CCoeControl 125–7, 130, 138,

349
CCoeEnv 126–7, 130
CCoeFep 127
CDC (Connected Device

Configuration) 301
CDMA 5, 15–16, 56, 62, 136,

158–9, 171, 201, 210–11,
215–16, 220–31, 236, 287,
324–9, 381, 401, 435–6,
440–1, 490–1, 500, 504–5

CDMA MTM component 158–9,
224–5, 490

CDMA SMS Plug-ins component
228–30, 236, 326, 490

CDMA TSY component 225, 230,
490–1

CDMA2000 220–31, 381, 440–1
CDMASMSMTM 159, 490
CDMASMSSTACK 228, 490
CDMATSY 230, 490–1
CDs, MTMs 390
CEikDialog 413–14
CEikDocument 66
CEikonEnv 125
Cellnet 4
cellular phones 4
Central Repository component 55,

211–20, 257, 258, 264–5,
275–6, 491, 495

CENTRALREPOSITORY 275, 491
Certificate and Key Management

component 149, 165–6,
172–7, 324, 491

Certificate Store component 177,
492

CERTMAN 177, 491
CERTSTORE 177, 492
Character Encoding and

Conversion Framework
component 266, 274–5, 320,
492

Character Encoding and
Conversion Plug-ins
component 266, 274–5, 320,
492–3

CHARCONV... 274–5, 492–3
China 16, 285, 375, 401, 458
Chinese Calendar Converter

component 141, 157–8, 320,
493

see also CALCON
Christensen, Juha 26–7
circuit-switched systems

see also GSM . . .

concepts 5, 62, 215–16, 222–3
CISC (Complex Instruction Set

Computer) 286
Clark, Jim 433
Class 102–3
class library 49

see also User Library component
Class Responsibilities Collaborators

(CRCs) 456

classes 59–60, 61, 66–71, 80–2,
95–101, 104–8, 117–18,
249, 259–60, 334–66

see also C...; M...; R...;
T...

concepts 59–60, 61, 66–71,
80–2, 95–101, 104–8,
117–18, 259–60

meta-classes 102–3
types 80–2, 96–100

CLDC (Connected Limited Device
Configuration) 54, 118,
301–16, 326, 328–9, 493,
522

CLDC HI 1.1 component 54, 118,
306, 315–16, 326, 328–9,
493, 522

CLDCHI 316, 493
cleanup stack 56–7, 72–3, 75–7,

256, 343–4, 354, 447–8
Client Provisioning Adaptors

component 154, 328, 493–4
see also DEVPROV_

CLIENTPROV_ADAPTERS
Client Provisioning Framework

component 154, 328, 494
see also DEVPROV_

CLIENTPROV_FRAMEWORK
client–server architecture 42–4,

49, 56–7, 58–60, 63–4,
133–4, 171, 186, 223,
264–5, 311–13, 354–5, 359,
381–6, 464, 508–9, 549

concepts 42–4, 49, 56–7,
58–60, 63–4, 171, 186,
223, 264–5, 354–5, 359,
381, 464

IPCs 58–60
robust software 63–4, 137, 405

client-side operations, concepts
58–60, 133–4, 143, 210,
255–77, 286

clipping 43
CLOCK 132, 494
Clock component 131–2, 494
clocks 11, 494
Cloke, Andy 378, 379, 382–6,

441–2, 574
CLOS 347

INDEX 587

Close 59
CMM (Capability Maturity Model)

457
CNTMODEL 155, 497

see also Contacts Model
component

COBOL 89
Codewarrior 435
cohesion/coupling concepts,

software 114
Color Palette component 185–6,

191, 494–5
see also PALETTE

COMMDB... 216, 217, 495
commoditization factors, mobile

phones 11–12, 399
COMMON 187, 531
Common License Categorizations,

Symbian OS component
reference 476–572

Common Lisp Object System
(CLOS) 92

Comms Database component
211–20, 265, 321, 326, 495

Comms Debug Utility component
495

Comms Elements component 219
Comms Framework component

170, 202, 211–20, 496
Comms Provider Module (CPM) 40,

209–20, 223
Comms Root Server component

54–5, 202, 206, 209–10,
211–20, 223, 325, 496

see also ROOTSERVER
Comms Services Block 54–5, 118,

165–71, 199–253, 322,
369–75, 480–570

see also Networking Services . . .;
OS Services Layer; Short
Link Services . . .;
Telephony Services . . .

architecture 206–11, 212–13,
220–1, 236–8, 247–8,
369–75

complexity issues 200–1
component collections 216–20,

225–31, 238–45
concepts 165–71, 199–253

design goals 204–6, 212, 238
frameworks 210–20
issues 200–1
model 208–10
network interfaces 215–16
overview 201–7, 209–10
purpose 201–4, 209–10
roles 201–4, 209–10
Symbian OS component

reference 480–570
COMMSDAT 217
COMMSDEBUGUTILITY 176, 495
COMMSFW 219, 496
Communicators 6, 15, 27–8,

30–6, 122, 128–9, 142, 320,
376–8, 388, 390–1, 408,
466–7

see also Nokia
Compaq 35
competitive threats, Symbian OS

16, 51–2, 401–2, 445,
469–70

compilers 43–4, 81–2, 103–4,
343–4

Complex Instruction Set Computer
(CISC) 286

complexity issues
mobile phones 9, 10–13,

49–52, 88–90, 114,
282–3, 367–96, 420–2,
429–51

software 9, 11–13, 57, 88–90,
114, 337–50, 368–96,
420–2, 429–51, 455–74

Symbian OS 49–52, 282–3,
367–96, 429–51

Component collections 111–19,
476–572

see also System Model
concepts 111–19
definitive list 475–572
guidelines 116–17
optionality units 115–16
Symbian OS component

reference 476–572
compression 245, 260, 268,

273–4, 540–1, 572
CONARC 151, 509–10

see also File Converter
Framework component

concrete behaviour, object-
oriented approaches 96

CONE 130, 403–8, 414, 498
see also Control Environment . . .

Connect 59, 214
Connected Device Configuration

(CDC) 301
Connected Limited Device

Configuration see CLDC . . .

Connection Provider Plug-in
component 243–4, 496–7

see also IPCPR
Connectivity Services Block 54–5,

115, 118, 165–71, 192–8,
545–50

see also OS Services Layer
architecture 195
component collections 195–8
concepts 168–9, 192–8
design goals 193–4
overview 192–4
roles 194–5

consistency goals, Symbian OS
50

const 105, 107
constants, concepts 81–2, 257
constructors 72–3, 75–7

two-phase construction 72–3,
75–7

Contacts Model component 53,
155, 320, 322, 360–1, 440,
497

see also CNTMODEL
container classes 345–7
Content-Access Framework for

DRM component 139, 146,
150–63, 174, 497

see also CAF2
Content-Handling Framework

component 139, 144, 145–6,
150–63, 498

CONTENT_HANDLING 151, 498
context-switches, concepts 42–4,

66–7, 293–4
Control Environment (CONE)

component 52–3, 65–71,

588 INDEX

Control Environment (CONE)
component (continued)

124–30, 182–3, 363–4, 403–8,
414, 498

convergence trends 7–10, 11–12,
29, 169–70, 178–9, 368–9,
377, 420, 422

conversions 180–1, 187–8, 266,
274–5, 492, 508, 517, 518

CONVERT 157–8, 510
‘copy and tweak’ problems 353
CORBA 101
Core IPSec PRT component 242–3,

498–9
see also IPSEC6

corrupt resource files 265–6
costs, software 88–90, 341–2
Cox, Brad 91, 108
CPM (Comms Provider Module) 40,

209–20, 223
CPUs 11, 281–2, 288, 291,

294–8, 309, 327–9, 340–3,
368, 370–5, 448

see also ARM . . .

CRCs (Class Responsibilities
Collaborators) 456

Cryptographic Token Framework
component 55, 171, 172–7,
499

see also FILETOKENS
CRYPTOGRAPHY 273, 499
Cryptography Library component

55, 171, 174, 243, 258–9,
267–8, 273, 499

CRYPTOTOKENS 177, 499
Crystal design 32–4, 129, 320,

412–13
CSD AGT component 232–4,

243–4, 500
CSDAGT 243, 500
CServer 59
CSY modules 208–11, 218–19,

224–5, 252–3, 381–6,
483–4, 489, 520, 549, 560–4

cultural issues, software
development 464–74

Cygnus 343

daemons 234

DAMODEL 157, 500
see also Data Engine component

Dancall 26
Data Comms Server 202–3,

217–20, 475–6
see also C32

Data Engine component 53, 137,
140, 156–7, 500

see also DAMODEL
data formats, file systems 69–70,

170–1
data-caging principle, Platform

Security 83–5, 264
data-hiding principles

see also encapsulation
object-oriented approaches

92–100
databases 55, 70–1, 211–20,

264–5, 275–6, 311, 360–3,
484, 486, 495, 500–1, 528

Davies, Charles 20–4, 38–9,
42–4, 50–1, 60, 65, 66–70,
73–5, 77, 80, 82, 341, 344,
351, 357, 383–4, 430, 436,
444–5, 460–4, 468, 470–2,
574

DBMS 55, 71, 257, 264–5, 275–6,
311–12, 360–3, 484, 500–1,
528

de Mendonca, Keith 387–95, 446,
472–4, 575

debugging 176, 288, 305–6, 495
DEC 22, 38–9
decryption 263–4
#define 78, 335
delete 339
Denmark 3, 4
descriptors 49, 56–7, 72–3,

77–80, 256–60, 265–6,
343–4, 353–4, 447, 463–4

see also HBufC; TBuf...;
TDes...; TPtr...

concepts 77–80, 256–60,
265–6, 343–4, 353–4,
447, 463–4

definition 77–8
hierarchy 79–80
protection factors 80
safe strings 77–80, 343, 353–4

design patterns 49, 56–64, 72–3,
204–6

design principles, Symbian OS
45–50, 56–64, 72–3, 119,
134–6, 168–71, 178–91,
193–4, 204–6, 212, 238,
256–7, 281–3, 288–9,
301–2, 396, 430–6, 460–74

destructors 63, 76–7, 80–1
DEV... 267, 296–7
DEVASR 267, 296–7, 554

see also Speech Driver
component

development names, Symbian OS
component reference
475–572

device drivers 25, 49, 55–6,
256–7, 280–99, 371–5

see also LDDs; PDDs
concepts 49, 55–6, 256–7

device families, Symbian OS 31–7,
67–8, 128, 320, 410–20

device family reference designs
(DFRDs) 32–7, 67–8, 128,
320, 410–20

Device Management Adaptors
component 142, 154–5, 328,
501

see also DEVPROV_
DEVMAN_ADAPTERS

Device Management Framework
component 142, 154–5, 328,
501

see also DEVPROV_DEVMAN_
FRAMEWORK

DEVPROV_CLIENTPROV_
ADAPTERS 154, 493–4

see also Client Provisioning
Adaptors component

DEVPROV_CLIENTPROV_
FRAMEWORK 154, 494

see also Client Provisioning
Framework component

DEVPROV_DEVMAN_ADAPTERS
155, 501

see also Device Management
Adaptors component

DEVPROV_DEVMAN_FRAMEWORK
155, 501

INDEX 589

see also Device Management
Framework component

DEVVIDEO 296–7, 566
see also Video Driver

component
Dewolf, Bob 411–13, 417–18,

420–1, 449, 474
DFRDs (device family reference

designs) 32–7, 67–8, 128,
320, 410–20

DHCP 239, 501–2
DHCP component 234, 239–40,

501–2
DIAL 226, 502
Dial component 226, 502
dial-up access 238
DIALOG 218, 502

see also Network Interface
Manager

Dialog component 502
differentiation goals 398–9, 422
digital cameras 7, 10–12, 16, 37,

169, 178, 328, 368, 374,
443–4

digital signal processors (DSPs) 11,
294–5, 370–5

Direct Memory Access (DMA)
289–90

disks 12, 44, 274, 395–6
displays 57, 60, 66–71, 177–91,

443–4, 537
see also screens

disruption effects, mobile phones
9–10, 420

DLLs (dynamically loaded libraries)
48, 58–9, 62, 82, 127–9,
185, 196, 210, 224, 229–30,
260–2, 268, 288, 291–2,
311, 343, 359, 479

DMA (Direct Memory Access)
289–90

DND 239, 502–3
DND component 234, 239,

502–3
DNS (Domain Name Services) 235,

503
DoCoMo 36, 122, 326, 400, 411
documentation 112

documents, applications 66–71,
138–9, 422–5

Domain Name Services (DNS) 235,
503

DOS 17, 37–8, 40–1, 47–8, 60,
68

double buffering 184
dragons, software development

455–6
DRAM 368
DRM 139, 146, 159–60, 324–5,

445–6, 497, 544
DRMAGENT 160
DSA framework 183–4
DSPs (digital signal processors) 11,

294–5, 370–5
DTDs 266–7, 276
DThread 365
dual-core two-processor designs

287
Dylan 347
dynamic libraries 43–4
dynamic typing 93, 97–100

see also polymorphism
dynamically loaded libraries (DLLs)

48, 58–9, 62, 82, 127–9,
185, 196, 210, 224, 229–30,
260–2, 268, 288, 291–2,
311, 343, 359, 479

E32_EKA2 295, 522–3
see also Kernel Architecture 2

component
ECACM 563

see also USB CSY component
ECAM 187, 253, 489

see also Camera component
ECOM 55, 62, 145–6, 180,

210–11, 224–5, 258, 261–3,
273, 359–60, 475, 539–40

see also Plug-In Framework
ECOMM.LDD 253, 292
ECOMM.PDD 253, 292
ECUART 253, 549

see also Serial Port CSY
component

EDGE technology 5, 15–16, 203,
220–1, 222, 440

EGUL 128–9, 132, 562
Eiffel 91, 96, 98, 108, 347, 351
EikCoeControl 126
Eikon 31–6, 53, 66, 125, 128–9,

320, 402–9, 412–14, 417,
424–5, 435

EKA1 55–6, 64, 118, 259–60,
280–2, 283–4, 287–8, 291,
293–4, 325, 326, 327,
363–4, 372

EKA2 55–6, 63–4, 118, 259–60,
280–2, 283–99, 325–9,
363–4, 365, 371–5, 436–40,
503, 522–3

see also real-time systems
concepts 280–2, 283–99,

325–9, 363–4, 365,
371–5, 436–40

personality layer 287–8, 371–5
Platform Security 284

elegance goals, Symbian OS 50
ELEMENTS 219
ELOCL 285
emails 7, 9, 11, 29, 136, 141, 142,

230, 328–9, 376–7, 380–8,
390–5, 540

see also Internet
EMIME 160, 528–9
emulator 55–6, 81–2, 112, 288–9,

292, 298–9, 341–2, 365–6,
503

Emulator component 55–6, 298–9,
503

see also WINS_VARIANT_EKA2
encapsulation

see also data-hiding principles
concepts 93–100, 123–5,

280–1, 353–4
object-oriented approaches 61,

73, 93–108, 353–4
encryption 263–4
engineering concepts, software

455–6, 459–74
engines, concepts 46–9, 66,

135–9, 156–7
Enter 76
EPBUS 296, 538

see also Peripheral Bus
Controllers component

590 INDEX

EPOC 15, 18–19, 22–6, 27–32,
35–6, 44, 48, 68, 156,
281–2, 304–5, 367, 409,
416–17, 437, 470, 474, 500,
550, 570, 571

EPOC Kernel Architecture see
EKA . . .

EPOC32 15, 27–31, 304, 319,
360–1, 462, 466

EpocRT see EKA2
ER5u 28, 31, 139, 140, 224, 248,

319–20, 380
Ericsson 3, 6, 15, 27–8, 30–6, 139,

146, 153–4, 320, 321–4,
375–7, 379–80, 390–1, 396,
407–11, 415, 417, 466, 482

ERRORRESGT 130, 563
see also Uikon Error Resolver

Plug-in component
errors 75–7, 266, 343–4, 447–8

see also exception handling
ESHELL 272, 559

see also Text Shell component
ESOCK 218, 503
ESock Socket Server 54–5, 202,

208, 209–20, 231, 503,
557

ETel 54–5, 203, 208, 209–11,
220–31, 378–86, 441–2,
491, 504–6, 532

ETel Third-Party API component
223–4, 227–8, 504

ETel CDMA component 227–8,
326, 504

ETel Multimode component 222,
224, 227–8, 322–3,
504–5

ETel Packet Data component
227–8, 230, 505

ETel Server and Core component
208, 227–8, 505

ETel SIM Toolkit component
226–8, 322, 506

ETEXT 140, 161, 558
see also Text Handling (ETEXT)

component
ETHER802 245, 507
ETHERDRV 245, 296, 506

Ethernet Driver component 206,
215–16, 233, 243–5, 296–7,
323, 506

Ethernet NIF component 244–5,
506–7

Ethernet Over IR Packet Driver
component 244–5, 507

see also
IRLANPACKETDRIVERS

Ethernet Packet Driver component
507

ethics, software development
458–9

ETHINT 506–7
ETSI 4
EUSBC.LDD 253
EUSBC.PDD 253
EUSER 271, 565

see also User Library component
Event Logger component 172–7,

508
see also LOGENG

event queues 49
events 39–40, 43–4, 48–9, 73–5,

127–8, 182, 305–6, 357–9
see also active objects

‘Evil Diamond’ patterns 348
evolution/renewal forces, Symbian

OS 429–51
EWSRV 272, 559

see also Text Window
component

exception handling 75–7
see also errors

EXE files 58–62, 82, 138
executable code

see also processes
concepts 58–62, 82, 112, 138

execute-in-place (XIP) principles
43–4, 47–9, 281–3

executive calls, concepts 290
exposed third-party APIs, Symbian

OS component reference
477–572

extensibility goals, Symbian OS
46–9, 50–1, 56–7, 179–80,
210–11, 355–6

extensions, concepts 56–7, 61–2,
95, 179–80, 207–8, 241,

285–6, 289–90, 292–3,
371–5, 379–80

Externalize 71
extreme programming 90, 104,

456–7
EZLIB 273, 572

see also Zip Compression
Library component

F32_EKA2 271, 511
see also File Server component

factory functions 62–3
failures 75–7
FAT file system 68–70, 260, 271,

354–5, 360–3, 508
FAT Filename Conversion Plug-ins

component 271, 508
FATCHARSETCONV 271, 508
fax 29, 54–5, 201–2, 209–10,

223, 224–31, 380–6, 508–9
FAX 508–9
Fax Client and Server component

54–5, 224–31, 508–9
FBSERV 190, 512

see also Font and Bitmap Server
component

FEATREG 273, 509
Feature Registry component 269,

273, 274, 509
FEP Base component 52, 124–31,

183, 320, 322, 509
FEPBASE 130, 509
FEPs (Front End Processors) 52,

124–31, 183, 310, 320, 322,
413–14, 509

File Converter Framework
component 141, 150–63,
509–10

see also CONARC
File Converter Plug-ins component

141, 150–63, 510
File Logger component 172–7, 510

see also FLOGGER
File Server component 55, 257–77,

286, 289–90, 511
see also F32_EKA2
concepts 260–1, 271

file servers

INDEX 591

see also servers
concepts 42–4, 55, 257–77,

286, 511
file systems

see also storage media
concepts 68–70, 192, 194–8,

258–9, 354–5, 360–3,
394–6, 422–5

data formats 69–70, 170–1
object-oriented approaches

68–70, 354, 360–3
persistence models 69–71, 136,

259, 263–4, 275–6, 354,
360–3

File Systems component 68–70,
271, 511

FILESYS 271, 511
FILETOKENS 177, 499

see also Cryptographic Token
Framework component

Finland 3, 4, 467
FIR (Fast Infrared) 248, 252
first generation (1G) networks 4
flash memory 12, 17, 48, 260–1,

281, 283, 294–5, 299, 354,
369–70, 373, 395–6, 402,
439–40, 449

Flash Translation Layer component
298–9, 511

see also UNISTORE2_DRIVERS
FLOGGER 176, 510

see also File Logger component
FNTSTORE 190, 512

see also Font Store component
folders, messages 394
FOMA 36–7, 122, 222, 319, 326,

400
Font and Bitmap Server component

55, 57, 170, 183–5, 189–91,
321, 512

see also FBSERV
Font Store component 190–1, 512

see also FNTSTORE
fonts 55, 57, 170, 183–5, 512, 544
FONTS 190, 544

see also Reference Fonts
component

FORM 140, 161, 558

see also Text Formatting (FORM)
component

formal development models,
software 466–70

Forth 21
Fortran 21, 89, 97
frameworks

see also individual frameworks;
object-oriented approaches

definition 61
object-oriented approaches 61,

353–6, 359–60
France 3–4
free 173
freedom principles, object-oriented

approaches 350–3
FREETYPE 190, 512–13
FreeType Font Rasterizer

component 170, 177–8,
184–5, 190–1, 512–13

Front End Processors (FEPs) 52,
124–31, 183, 310, 320, 322,
413–14, 509

FTP 162, 513
FTP Engine component 147–8,

161–2, 203–4, 513
Fujitsu 122, 326, 400–1
functional programming 96–7

Gabriel, Richard 469–70
games 302, 422
Gates, Bill 43–4, 48
GCF 314–15, 526

see also MIDP File GCF
component

GCF (Generic Connection
Framework) 302, 310–15,
526

GDI 191, 513
GDI (Graphics Device Interface)

component 184–6, 191, 285,
363–4, 443–4, 482, 513

Generic Connection Framework
see GCF . . .

Generic OS Services Block 54–5,
115, 118, 165–77, 491, 499,
508, 510, 523, 556

see also OS Services Layer

component collections 175–7
concepts 167, 170, 171–7

Geofox One 30
Germany 3–4
GetByAddress 235
GetByName 235
GFXTRANSEFFECT 132, 514

see also Graphics Effects
component

GIF format 170, 188
Gilb, Tom 337
global positioning system (GPS) 11
global static variables 48, 72
GMXML 160, 552

see also SMIL Parser component
GNU tools 25, 342
Google 458
GPRS 5, 15–16, 203, 215–16,

220–31, 236, 322–3, 381,
440, 505, 513–14, 547

GPRS/UMTS QoS PRT component
243–4, 513–14

see also GUQOS
GPS (global positioning system) 11
graphical user interface see GUI
Graphics Device Interface (GDI)

component 184–6, 191, 285,
363–4, 443–4, 482, 513

Graphics Effects component 52–3,
55, 123, 124, 131–2, 514

see also GFXTRANSEFFECT
Graphics Services Block 54–5,

115, 118, 142, 165–71,
177–91, 482, 488–9, 495,
512–14, 517–18, 537–41

see also Multimedia . . .

GRID 132, 514
Grid component 52–3, 124,

131–2, 514
GSM (Groupe Speciale Mobile

phones) 4–6, 11, 15–16, 56,
62, 136, 143, 171, 201,
203–5, 215–16, 220–31,
236, 287, 376, 379–86, 401,
440–3, 500, 515, 526–7

GSM Utilities component 136, 143,
171, 201, 229–30, 515

GSMU 229, 515

592 INDEX

GUI (graphical user interface) 11,
28–37, 43–53, 57, 61, 65–8,
73–4, 111–19, 121–32, 269,
287, 309–10, 320–9, 334–5,
352–3, 369, 371–5,
397–427, 435, 478–563

see also MOAP; Series . . .; UIQ
big interfaces 420–2
concepts 397–427
definition 399–400
development tips 420–5
device families 31–7, 67–8,

128, 320, 410–20
multiple GUI operating system

400–2
GUQOS 243, 513–14

see also GPRS/UMTS QoS PRT
component

hackers 459
HAL_EKA2 272, 438, 564

see also User HAL component
handheld computers 29
handwriting recognition 124, 310
hardware 9, 11, 25, 30, 55–6,

113–19, 207–8, 371–7
see also CPUs; device . . .;

memory . . .; storage . . .

complexity 9, 11, 367–96,
420–2

disks 12, 44, 274, 395–6
Protea project 25

Hardware Interface Layer
see also Kernel Services and

Hardware Interface Layer
concepts 294–9

Harrison, Richard 460–1
hash library 268
Haskell 98
Hayes modem control 220–1, 379,

381
HBufC 78–81
HCI 251, 484

see also Bluetooth HCI
component

HCI Framework component
251–2, 323, 515

HCI_V2_FRAMEWORK 515

‘headless’ configuration, Symbian
OS 121–2

Healey, Nick 461
heap 42, 76–81
heap descriptors

see also descriptors; HBufC
concepts 78–80

Help component 140, 156, 322,
515–16

Henry, Morgan 437–9, 466–8, 574
Hewlett Packard (HP) 17, 20,

21–2, 38, 68
HLPMODEL 156, 515–16
Holland see Netherlands
Hollywood factory, software

development 460
Hong Kong 4
HotSpot technology 304, 306,

315–16
HSDPA 383
HSUPA 383
HTML 141, 158, 395, 509–10
HTTP 53, 136, 147–9, 161–3,

235–6, 310, 323, 516–17
HTTP 162–3, 516–17
HTTP Filter Plug-ins component

136, 147–9, 161–3, 516
HTTP Protocol Plug-ins component

136, 147–9, 161–3, 516
HTTP Transport Framework

component 53, 136, 147–9,
161–3, 516–17

HTTP Utilities Library component
136, 147–9, 161–3, 517

see also INETPROTUTIL
Huffman compression 260
human aspects, software 90, 457–9
Hutton, Ian 373, 396, 408–10,

417, 575

i-Mode 10
I/O 39
IBM 43, 404
ICL... 187, 517
ICULAYOUTENGINE 190, 559

see also Text Shaper Plug-in
component

idioms, Symbian OS 56–7, 71–82,
256, 257, 260, 333, 347,
353–4, 447, 463–4

idle processes 60
if-then-else constructs 103
Image Conversion Library

component 180–1, 187–8,
517

Image Conversion Library Plug-ins
component 180–1, 187–8,
518

IMAP4 MTM component 136, 143,
145, 158–9, 388–91, 518

IMAPSERVERMTM 518
immutable descriptors, concepts

78–9
implementation inheritance,

concepts 345
#include 105
INETPROTUTIL 162, 517

see also HTTP Utilities Library
component

infrared links 77, 169, 171, 192,
194, 199–201, 205–6, 208,
213–14, 229–30, 245–53,
368, 376–7, 381, 520

inheritance
concepts 93–4, 95–100, 344–5,

347–52, 363–4
object-oriented approaches 81,

93–108, 344–5, 347–52,
363–4

INHOOK6 242, 519
INI files 265
INSOCK 241, 518–19
instantiation 62–3
integration factors 420–1
Intel 29, 338, 342
inter-thread communications (ITCs)

58
interfaces principles,

object-oriented approaches
92–100

internalAll 477
Internalize 71
internalTechnology 477
internationalization factors,

software development
469–70

INDEX 593

Internet 5, 9, 11, 16, 29, 142–3,
146–9, 161–3, 168, 208,
212, 376–7, 482, 487, 502,
513, 516–19

see also emails; Wap; web
virtualized browsing 212

Internet Sockets component 241,
518–19

interpreted languages 101, 450
interprocessor communications

(IPCs) 58–60, 262–3, 284,
289–90, 307–8

interrupts 280, 287–91
inverted pyramid of reuse, layered

models 113–14
IP Event Notifier component 242,

519
IP Hook component 233, 241–2,

519
IP-based data networks, 3G (third

generation) networks 5
IPCPR 243, 496–7

see also Connection Provider
Plug-in component

IPCs (interprocessor
communications) 58–60,
262–3, 284, 289–90, 307–8

iPod 399
IPSEC 239, 520
IPSec component 15–16, 203–4,

231–5, 239, 322–3, 520
IPSEC6 498–9

see also Core IPSec PRT
component

IPv4/v6 16, 231–42, 322–3, 557
IrCOMM 248
IRCOMM 253, 520
IrDA 201, 208, 245–53, 520
IRDA 252, 520
IrDA CSY component 201, 208,

252–3,
520

IrDA PRT component 252–3, 520
IRLANPACKETDRIVERS 245, 507

see also Ethernet Over IR Packet
Driver component

IrOBEX 248, 250, 321
IrTranP 248
ISO9000 457

ISPs 216, 230
Italy 3–5
ITCs (inter-thread communications)

58
iterative-development practices,

software 457–8, 468–9

Jackson, Peter 24–5, 39–41, 58,
69–70, 79, 334, 362–3, 377,
406, 462–3, 464, 469–70,
575

JAD files 194, 196
Japan 4–5, 16, 36–7, 68, 122, 135,

178, 285, 319, 326, 328, 401,
457

JAR files 194, 196, 268
Java 16, 46, 53–4, 71, 88, 91–6,

98–102, 118, 123, 127, 172,
268, 301–17, 349–50,
401–2, 425, 446–7, 450–1,
483, 521–3, 526–30, 548–9,
570–1

see also SavaJe platform
historical background 91,

106–8, 118, 303–6
object-oriented approaches 88,

91, 93, 95–6, 98–102,
106–8, 349–50

success 107–8
Virtual Machine (JVM) 54,

106–8, 118, 301, 305–9,
315–16

Java 2 Platform, Micro Edition see
Java ME Layer

Java IO component 315, 521
Java Lang component 315, 521
Java ME Layer 54, 112, 118, 133,

301–17, 323–9, 483, 521–3,
526–30, 548–9, 570–1

architecture 306–11
CDLC 301–16
component collections 311–17
concepts 54, 118, 133, 301–17
configurations 301–2
conflicts 302–3, 304–5
design goals 302–3
evolution 303–6
historical background 303–6

MIDlets 302–17, 323–9,
521–2, 527–8

MIDP 118, 301–16, 323,
328–9, 526–8

overview 112, 118, 301–6
profiles 301–2, 311–13
requirements 302
SystemAMS (Application

Management Software)
307–8, 310

Java MIDlet Installer component
150–63, 521–2

Java Runtime Environment (JRE)
301

Java Utilities component 302, 315,
522

JAVA.IO 315, 521
JAVA.LANG 315, 521
JAVAMIDLETINSTALLER 151,

521–2
JavaPhone 305
JAVA.UTIL 315, 522
JAVAX.MICROEDITION... 313,

527–8
JDK 304–5
JIT (Just In Time) compilers 309
JPEG format 188
JRE (Java Runtime Environment)

301
JTAG 294–5
JTWI 1.0 component 302, 305–6,

314, 522
Just In Time (JIT) compilers 309
JVM (Java Virtual Machine) 54,

106–8, 118, 301, 305–9,
315–16

Kay, Alan 102
kernel 25, 45–9, 55–6, 57, 63–4,

166–8, 186, 209, 255,
258–9, 270–99, 323–9, 333,
363–6, 369–75, 435,
436–40, 522–3

see also microkernel
concepts 45–9, 55–6, 57, 63–4,

166–8, 186, 255, 258–9,
279–99, 323–9, 333,
363–6, 369–75, 435,
436–40

594 INDEX

kernel (continued)
EKA1 55–6, 64, 118, 259–60,

280–2, 283–4, 287–8,
291, 293–4, 325, 326,
327, 363–4, 372

EKA2 55–6, 63–4, 118,
259–60, 280–2, 283–99,
325–9, 363–4, 365,
371–5, 436–40, 503,
522–3

graphics system 186
nanokernel 286–99
object-oriented approaches 333,

363–6
roles 49, 166–7, 255, 279–83,

288–94
Kernel Architecture 2 component

55–6, 118, 285–99, 522–3
see also E32_EKA2; EKA2

Kernel Services and Hardware
Interface Layer 55–6,
111–19, 185, 279–99,
323–9, 369–75, 479–566

component collections 295–9
concepts 55–6, 111–15, 118,

185, 279–99, 369–75
design goals 281–3, 288–9
overview 115, 118, 279–83
roles 279–83
singleton component collections

284–5
Symbian OS component

reference 479–566
variant collection 298–9

Ketola, Pekka 420
Key Store component 177, 523
Keyclickref plug-in 182–3, 189
keys 68, 127–32, 173–4, 491
KEYSTORE 177, 523
Korea 220

L suffixes 76, 80–1
L2CAP 252
Lamarr, Hedy 5
LANs 216, 233–4
laptops 38–41
layers 52–6, 111–19, 476–572

see also individual layers;
System Model

concepts 52–6, 111–19
guidelines 113–14
inverted pyramid of reuse

113–14
Symbian OS component

reference 476–572
LCDUI Plug-in component 308,

309–10, 316, 523
LCDUIB 316, 523
LDDs (logical device drivers) 55–6,

118, 253, 280–1, 289, 290,
292, 295–7, 479, 506–7,
525–6, 538, 564

lead product concept, Symbian OS
434

leaks, memory 76–7, 79–80, 106
Leave 76–7, 447
leaving functions 56–7, 72–3,

75–7, 343–4
Legacy API 53, 137, 140, 477

see also Calendar component
Lenovo 122
Levin, David 419–20
LFFS 511
LG 122
libraries 29, 48, 49, 53, 55, 58–9,

62, 71, 76, 82, 127–9,
165–6, 167, 171–7, 185,
196, 210, 225, 229–30,
255–77, 479, 488, 565, 572

License Categorizations, Symbian
OS component reference
476–572

licenses 27–31, 47, 50–2, 67–8,
121–2, 140, 145, 180–1,
222, 249, 281–2, 304,
313–14, 319, 385–6, 400–1,
435–6, 443, 475, 495,
529–30

Likon 16
Lindholm, Christian 37, 377
Linux 16, 37, 52, 55, 63, 179, 193,

258, 283, 401, 445
see also Unix

Lisp 92
_LIT macros 79
literals, concepts 79–80
Locale Support component 284–5,

328–9, 524

LOCE32... 285, 524
LOGENG 176, 508

see also Event Logger component
logical device drivers (LDDs) 55–6,

118, 253, 280–1, 289, 292,
295–7, 479, 506–7, 525–6,
538, 564

Lotus 1-2-3 69
Lotus Notes 463–4, 468
Lubbock Variant component

298–9, 524
LUBBOCK_EKA2 298, 524

M (abstract interface) classes,
concepts 81, 349

M3GIO 314, 530
McIlroy, Doug 455
Macromedia 122, 402
mainframe computers 39–40
maintenance needs, software

430–6, 455–6
malloc 173
malware 80, 84
manifest constants, concepts 81–2
markets

mobile phones 373–5
shares 422

Marks & Spencer 17
Matsushita 466
MBM format 188
MBuf Manager component 211,

213, 219, 325, 524–5
MBUFMAN 219, 524–5
MC400 laptop 38–42, 402–3, 463
MCoeView 125
MDF... 277

see also Media . . .

ME9.2 522
media cards 174, 177
Media Device Framework

component 267, 276–7, 290,
296–7

see also MDF...
Media Device Framework Plug-ins

component 276–7
Media Drivers component 180,

296–7, 525
media players 302

INDEX 595

MEDUSII... 296, 525
memory 11, 25, 58, 76–7, 79–80,

288–9, 291–2, 294–5,
298–9, 338, 488

see also heap . . .; RAM; ROM;
stack . . .

concepts 58, 76–80
leaks 76–7, 79–80, 106
virtual memory 58

Memory Management Unit (MMU)
25, 288–9, 291–2, 294–5,
298–9, 338, 488

Memory Model 289, 291–4
memory sticks 174, 177
Message Store component 53,

158–9, 525
see also MSG...

Message Suite release, EPOC
29–30

Message Type Modules (MTMs)
143, 144–63, 224, 388–94,
446, 490, 518, 529, 534, 568

meta-classes 102–3
Metrowerks 81, 323
Meyers, Scott 346
micro hard-drives 12
microkernel 49, 55, 57, 63–4,

166–8, 255–8, 283, 286–7
see also kernel
concepts 57, 63–4, 166–8,

255–7, 283, 286–7
Microsoft

C# 91, 100–1, 108
Excel 69, 157–8, 322
.NET 91, 100, 108
Nokia 28
Word 69, 157–8, 322

Microsoft Windows 6, 16–18, 37,
43, 48, 51–2, 63, 73–4, 81,
179, 193, 258, 283, 288, 292,
298–9, 342, 357, 404, 503

CE 17–18, 32–3, 391, 401,
416–17, 421

Mobile 16, 179, 401, 445
middleware 88, 111, 118
MIDI Driver component 267, 276,

296–7, 525–6
see also MMF_DEVMIDI

MIDlets 302–17, 323–9, 425,
521–2, 527–8

MIDP 526–8
MIDP Device Control component

54, 313, 526
MIDP File GCF component 302,

310–15, 526
see also GCF

MIDP GSM Security
Recommended Policy
component 311, 313, 526–7

MIDP IO component 313, 527
MIDP LCDUI component 309–10,

312–13, 527
MIDP MIDlet component 311–13,

527–8
MIDP (Mobile Information Device

Profile) 118, 301–16, 323,
328–9, 526–8

MIDP PIM component 311, 314,
528

MIDP RMS component 311,
312–13, 528

MIDP2 118, 305–6, 313, 314–15,
328, 527–8

MIDP2RUNTIME 316, 545–6
MIDP2SECURITY 313, 548–9
MIDP2SECURITYRP 313, 526–7
MIME 53, 134, 142–3, 144,

145–60, 266–7, 395, 510,
528–9, 569

mini-computers 21–2, 39–40
Mitsubishi 122, 326
mixins 348–9
ML 92, 98
MMAPI11 314, 530
MMF... 187, 525–6, 531
MMF Recognizers component 145,

159–60, 529
see also RECMMF

MMF_DEVMIDI 296, 525–6
see also MIDI Driver component

MMS 159, 529
MMS MTM component 158–9, 529
MMS (Multimedia Messaging

Service) 7, 142, 201–2, 236,
323, 324–9, 393–4, 445–6,
529–30

MMS Settings component 158–9,
529–30

MMSSETTINGS 529–30
MMTSY 230, 532

see also MultiMode TSY
component

MMU (Memory Management Unit)
25, 288–9, 291–2, 294–5,
298–9, 338, 488

MOAP 36, 48, 53, 65, 68, 72, 122,
400–1, 435, 445

Mobile 3D component 302, 314,
530

Mobile Information Device Profile
see MIDP . . .

Mobile Media API 1.1 component
302, 310–11, 314, 530

mobile phones 3–13, 44, 49–52,
57, 88–90, 282–3, 367–96,
397–427

see also smartphones
applications complexity 11–12,

57, 88–90, 114, 420–2,
429–51, 455–74

business models 9, 12–13,
49–50, 470–2

commoditization factors 11–12,
399

complexity issues 9, 10–13,
49–52, 88–90, 282–3,
367–96, 420–2, 429–51

concepts 3–13, 44, 57, 367–96
convergence trends 7–10,

11–12, 29, 169–70,
178–9, 368–9, 377, 420,
422

differentiation goals 398–9, 422
disruption effects 9–10, 420
errors 75–7
failures 75–7
flexibility 7–10, 11–12, 56–7,

61–2
future prospects 426–7, 440
GUI 11, 28–9, 31–7, 43–53,

57, 61, 65–8, 73–4,
111–19, 121–32, 269,
287, 309–10, 320–9,
334–5, 352–3, 369,
371–5, 397–427, 478–563

596 INDEX

mobile phones (continued)
hardware complexity 9, 11,

367–96, 420–3
historical background 3–9,

15–44, 46–7, 222–3, 247,
282, 367–96

markets 373–5
PCs 6–7, 13, 69, 77, 81–2,

193–8, 397–8, 420–2
personalization benefits 10
Psion 26–7, 44, 178, 304,

375–7
social issues 7–10
software complexity 9, 11–13,

57, 88–90, 114, 337–50,
368–96, 420–2, 429–51,
455–74

statistics 6–7, 13, 16–17,
375–7

technology/soft effects 7–9, 57,
222–3, 420, 433–4

uniqueness factors 10–13, 72,
84–5, 367–8

user expectations 13, 51, 374–5,
396, 398–9

Mobira Cityman 6
MObserver 349
Model–Viewer–Controller (MVC)

pattern 53, 66, 135, 137–8,
333, 356–7, 404–5, 425–7

Modula languages 92, 94–5, 98,
108

monolithic system architectures 55,
63–4, 255, 258, 286–7

Moore’s Law 373–5, 402
Motorola 3–4, 7, 27–8, 35–7,

122, 319, 368, 375–6,
400–1, 410, 466

MP3 16, 77, 170, 178, 398
MP4 16
m-Router component 192, 197–8,

530–1
MROUTERSECURE 197, 530–1
MRP files 115
MS-DOS 17, 47–8, 60, 68
MSG 159, 525
MSG_BIOMSG 159, 481

see also BIO Messaging
Framework component

MSG_EMAIL 159, 540
see also POP3 MTM component

MSG_FRAMEWORK 159, 525
MSG_OBEXMTM 159, 534
MSG_SCHEDULEDSEND 159,

546
MSG_SMS8.1 159, 552
MTMs (Message Type Modules)

143, 144–63, 224, 388–94,
446, 490, 518, 529, 534, 568

multi-homing interfaces 216
Multimedia Framework component

179–88, 267, 276–7, 324–6,
531

see also COMMON; MMF
Multimedia Framework Plug-ins

component 187–8, 531–2
Multimedia and Graphics Services

Block 54–5, 115, 118, 142,
165–71, 177–91, 322,
443–4, 482, 488–9, 495,
512–14, 517–18, 537–41

see also OS Services Layer
component collections 187–91
concepts 167–8, 177–91
design goals 179–81

Multimedia Messaging Service see
MMS . . .

multimedia trends 57, 443–4
MultiMode TSY component 222,

224–5, 229–30, 322–3,
532

see also MMTSY
multiple inheritance 347–50
multitasking operating systems

38–44, 47–9, 56–7, 75
multithreading 49, 73–4, 180,

358–9
music players 10, 12, 37, 169,

179
mutable descriptors, concepts

78–9
mutexes 259, 280
MVC (Model–Viewer–Controller)

pattern 53, 66, 135, 137–8,
333, 356–7, 404–5, 425–7

Myers, Colly 20, 22–4, 64, 69,
77–80, 341, 355, 358, 361,

364–6, 378, 387, 419–20,
450, 460–2

namespaces 350
naming conventions 56–7, 76–7,

78–82
NAND flash 48, 260, 283, 294–5,

299, 369–70, 373, 440, 449
nanokernel

see also kernel . . .
concepts 286–99, 371–5
roles 288–9

Navi-key interface, Nokia 375–6
NETCON 218, 532
Netherlands 4
Netscape 433
Network Controller component

211–20, 232–3, 243–5, 532
Network Interface Manager

(NIFMan) component 180–1,
210–20, 230–3, 236–7,
243–5, 532–3, 551–2, 561

Networking Services Sub-block
54–5, 170, 199–204,
230–45, 322–3, 480–570

see also Comms Services Block
architecture 236–8
component collections 238–45
concepts 203–4, 231–45
daemons 235
design goals 238
security issues 201, 203–4, 234,

238–9, 560
stack 231–4
Symbian OS component

reference 480–570
New Zealand 4
NeXTStep 108, 335
NIFMAN 218, 532–3

see also Network Interface
Manager

Nightingale 418–20
NMT network 3, 4
Nokia 3, 6–7, 15, 27–8, 30–6,

51–2, 68, 122–5, 146,
153–4, 305, 319–21, 324,
328, 375–8, 379–80, 390–2,
396, 400–27, 437–40,
466–7, 482

INDEX 597

see also Series . . .

3110 375–6
5500 397
7650 7, 33, 178, 305, 320,

418–20, 443
7700 35
7710 35, 122
9000 376–7, 379–80
9210 6, 15, 27–8, 30–6, 51–2,

320, 379–80, 390, 396,
419, 437–40, 466

market share 422
Microsoft 28
N80 3G phone 328
Navi-key interface 375–6
nGage 178, 319
Psion 27–8
statistics 6–7, 375–7
user interfaces 28–37, 68,

122–5, 400–27
Nolan, Roger 378
NOR flash 48, 283, 294–5,

369–70, 440
Norway 3
NTT 4
Null AGT component 233, 243–4,

533
NULLAGT 243, 533

O2 398
OBEX 145, 158–9, 193–4, 196,

201–2, 205–6, 245–53, 314,
321, 324–6, 533–4

OBEX... 250, 533–4
OBEX Extension API component

145, 250, 533–4
OBEX MTMs component 145,

158–9, 389, 534
OBEX Protocol component 145,

249–50, 534
Object 96, 102, 107
‘object soup’ storage models

68–70, 354
object-oriented approaches 20,

40–1, 47–9, 53, 57–8,
68–70, 73, 87–108, 136,
138–9, 333–66, 446–51

see also abstraction . . .

benefits 88–90, 333–66
concepts 20, 40–1, 47–9, 53,

57–8, 68–70, 73, 87–108,
136, 138–9, 333–66

concrete behaviour 96
data-hiding principles 92–100
encapsulation 61, 73, 93–108,

123–5, 353–4
file systems 68–70, 354, 360–3
frameworks 61, 353–6, 359–60
freedom principles 350–3
inheritance 81, 93–108, 344–5,

347–52, 363–4
interfaces principles 92–100
kernel 333, 363–6
key ideas 92–4
languages 100–8
liberating aspects 350–3
origins 90–2
polymorphism 62, 82, 93–108,

210–11, 353–4, 357,
363–6

real-world problems 89–90,
92–3, 339

reuse benefits 88–90, 93–100,
113–19, 345, 351–2

Symbian OS patterns 353–4
Objective-C 91, 104–5, 108,

334–7, 339
Observer pattern 348–9
OMA Data Sync component 53,

142, 153, 534–5
OMA (Open Mobile Alliance) 142,

153, 235, 494, 501, 534–5
OMA SyncML DM Interface

component 142, 153, 154,
193, 326, 535

OMA SyncML Framework
component 142, 153, 154,
193, 326, 535

OMAP... 297–9, 535–6
OMAP 1623 component 294,

297–9
OMAP 2420 component 294–5,

535–6
OMAP H2 component 294–5,

297–9, 328–9, 536
OMAP H4 component 298–9, 536
One2One 4

Open 214
Open Mobile Alliance (OMA) 142,

494, 501, 534–5
open platform, Symbian OS

12–13, 46–9, 83–5, 136,
170–1, 422, 474

OPENGL... 188, 536–8
OpenGL ES component 168,

170–1, 178, 181, 186,
188–9, 324–5, 444, 536–7

OpenGL ES Display Properties
component 181, 189, 537

OpenGL ES Headers component
181, 188, 537–8

operating systems
see also Apple . . .; Linux;

Microsoft . . .; Symbian OS
concepts 37–44, 255–77,

279–99, 333–8, 368–96,
401–2

design influences 37–44,
368–9, 430–6

multitasking operating systems
38–44, 47–9, 56–7, 75

operators, differentiation goals
398–9

OPL 17, 21, 28, 46, 71, 127, 304,
341, 425–6, 450

optimization design goals, Symbian
OS 47–9, 72–3, 281–3,
288–9, 327–9

Optional License Categorizations,
Symbian OS component
reference 476–572

Orange 4, 5
Oregon Scientific 30
Organiser, Psion 17, 19, 21–2, 27,

38–9, 87
OS Services Layer 54–5, 111–19,

165–98, 321–9, 369–75,
480–570

see also Comms Services Block;
Connectivity Services
Block; Generic OS Services
Block; Multimedia and
Graphics Services Block

concepts 54–5, 111–15, 118,
165–98, 321, 369–75

design goals 168–71

598 INDEX

OS Services Layer (continued)
overview 115, 118, 165–71
purpose 165–8
Symbian OS component

reference 480–570
OSI Seven-Layer Model 113,

231–4, 236–8
OTA (over-the-air) settings 372–3
out-of-bounds errors 79–80
OVAL 17
over-the-air (OTA) settings 372–3
overlapping windows 43, 48–9,

139
overlays 43–4

package IDs, concepts 82
packet-switched data

see also GPRS . . .; UMTS . . .

concepts 5, 62, 215–16, 223,
233–5, 322–9, 370–5

PALETTE 191, 494–5
see also Color Palette

Palm OS 6, 17–18, 26, 32, 35,
354, 387, 404, 421, 433

Palmer, Will 83–5, 575–6
Panasonic 122, 320
panics 79–80
parametric polymorphism 98
partners 50, 444–6, 475, 477, 480
Pascal 21, 22, 92, 98–9, 108
passwords 85
paths

see also build file locations
Symbian OS component

reference 476–572
PCMCIA 30, 379
PCs 6–7, 13, 40, 48, 69, 77, 81–2,

193–8, 397–8, 420–2
Connectivity Services Block

54–5, 115, 118, 165–71,
192–8, 545–50

emulator 55–6, 81–2, 112,
288–9, 292, 341–2,
365–6, 503

mobile phones 6–7, 13, 69, 77,
81–2, 193–8, 397–8,
420–2

PDAs 6–7, 10–12, 29, 30–2,
46–7, 50–1, 53, 65, 136,

142–3, 178, 200–1, 204,
282–4, 320, 336, 342,
367–77, 382, 395–6, 398,
410–11, 421–5, 442, 445

PDDs (physical device drivers)
55–6, 118, 253, 280–1, 289,
290, 292, 298–9, 506–7

PDP family 40
PDR 184–5, 542
PDRSTORE 190, 542
Pearl DFRD 33, 320, 417–18,

420–1
see also Series 60 . . .

pen-based interfaces 35, 68, 124,
128–9, 410–17, 421

performance issues 47–9, 62,
72–3, 75–6, 129, 281–2,
288–9, 327–9

optimization design goals 47–9,
72–3, 281–3, 288–9,
327–9

plug-ins 62
Peripheral Bus Controllers

component 296–7, 538
see also EPBUS

Perl 100
persistence models 69–71, 136,

259, 263–4, 275–6, 354,
360–3

Personal Information Management
(PIM) 118, 140, 154–5, 192,
311, 480, 497, 528

personality layer, EKA2 287–8,
371–5

personalization benefits, mobile
phones 10

PersonalJava 305
PHBKSYNC 226, 538–9
Philips 29–30, 32, 379, 407, 412
Phonebook Sync component 226,

538–9
physical device drivers (PDDs)

55–6, 118, 253, 280–1, 289,
290, 292, 298–9, 506–7

PIM (Personal Information
Management) 118, 140,
154–5, 192, 311, 480, 497,
528

PIN-based locks 222

PKI keys 174, 177
Platform Security 62, 82–5, 172–5,

179–80, 234, 262–3, 284,
324–9, 359–60, 435–6

see also security issues
concepts 82–5, 172–5, 234,

262–3, 284, 326–9, 435–6
EKA2 benefits 284
principles 83–5, 327–9
signed applications 13, 85,

327–9
threat types 84

platformitization concepts 433–4
PLP Variant component 169, 192,

195–8, 539
PLPVARIANT 196, 539
Plug-In Framework 55, 61–3,

145–6, 171, 180, 210–11,
224, 258–77, 353–4, 355–6,
359–60, 381–6, 475, 539–40

see also ECOM
plug-ins 49, 55, 56–7, 61–3,

145–6, 171, 180–3, 210–11,
257–77, 353–4, 355–6,
359–60, 381–6, 475, 531–2,
539–40

concepts 49, 55, 56–7, 61–3,
180–3, 210–11, 257–77,
353–4, 359–60, 381–2

performance issues 62
security issues 62, 359–60

pointer descriptors
see also descriptors; TPtr...
concepts 78–81

polling systems 60
polymorphic DLLs 62, 82, 210–11
polymorphism, concepts 62, 82,

93–108, 210–11, 353–4,
357, 363–6

polyphonic ring tones 178
POP3 MTM component 136, 143,

145, 158–9, 388–91, 540
see also MSG_EMAIL

porting strategies, kernel 292,
294–5, 323–9

POSIX standards 69, 71, 167, 171,
173–4, 305

Potter, David 20, 26–7, 29

INDEX 599

power management 9, 11, 47–9,
60, 75–6, 258, 273–4, 281,
290, 292–3, 323–9, 368,
439, 540

asynchronous services 60
errors 75

Power and Shutdown Management
component 273–4, 540

PPP 198, 215, 233–4, 540–1
PPP 245, 541
PPP Compression Plug-ins

component 245, 540–1
PPP NIF component 233–4, 245,

541
pre-emptive/non-pre-emptive

concepts, scheduling 56–7,
73–5, 280–99

Price, Howard 20, 21–2, 28–9,
341, 357, 405, 463–5, 468,
576

PRINT 163, 541–2
PRINTDRV 190, 541
Printer Drivers component 142,

184–5, 190–1, 541
printf 173
Printing Services component 142,

163, 541–2
Printing Support component 142,

163, 190–1, 542
procedural languages 97, 103
processes

see also applications; threads
capabilities 83–5, 262–3,

327–9
concepts 38–44, 57–8, 72–3,

83–5, 259, 280–99
definition 57–8

programming languages 17, 46,
71–82, 88–108, 173, 304,
334–66, 425–6, 446–51

see also C . . .; Java . . .; software
assembler 20, 22, 87, 337, 341,

412
purposes 339
Python 71, 91, 100–1, 173,

425–6, 447, 450–1
switching challenges 341–4,

446–51

Visual Basic 17, 46, 304, 338,
425–6, 450

Prolog 92
Protea 18, 19–20, 22–5, 28,

460
protocols 11, 62, 134, 168–9,

200–1, 207–8, 214–15,
220–31, 388–91

prototypes 104
PRT protocol 210, 214, 231–43,

486, 503, 515, 520
PSD AGT component 232–4,

243–4, 542–3
PSDAGT 243, 542–3
Psion 15, 17–31, 37–41, 50–1,

64, 87, 108, 140, 205–6, 304,
333–53, 361, 368, 375–7,
386–7, 402–3, 461–72

architecture principles 41–4,
368

boundaries 50–1
historical background 15,

17–31, 37–41, 64, 87,
304, 333–53, 361, 368,
375–7, 386–7, 402–3,
461–72

MC400 laptop 38–42, 402–3,
463

mobile phones 26–7, 44, 178,
304, 375–7

Nokia 27–8
Organisers 17, 19, 21–2, 27,

38–9, 87, 333
principles 41–4
Protea 18, 19–20, 22–5, 28, 460
Series 3 successes 38–41, 64,

68, 87, 304, 333–4, 338,
340, 350–1, 387, 437,
448, 465

SIBO 17, 47–8, 64, 87, 334,
357, 437, 462–3

VMS operating system 22,
38–40, 43

Psion Software 22, 26, 27–30,
350–1

Publish and Subscribe mechanism
141, 158, 174–6, 217,
259–60, 269, 290–1

publishedAll 477

publishedPartner 477
push and pop calls 77
push and pull models, WAP

235–6, 321
PWRCLI 540
Python 71, 91, 100–1, 173,

425–6, 447, 450–1

Qikon 124–5
QOS... 242, 543
QoS (Quality of Service)

Framework PRT component
231–5, 241–2, 325, 543

Qualcomm 16, 401
Quality of Service see QoS
Quartz design 32–6, 129, 139,

320, 321, 410–17, 421–2
see also UIQ

R (resource) classes, concepts 45,
80–1, 182

Radiolinja 4
RAM 11, 17, 29, 47–8, 62, 257,

263–4, 281–3, 293, 327,
329, 336, 374, 387, 394–6,
397, 440

random numbers 268
Raw IP NIF component 180–1,

245, 543
RAWIPNIF 245, 543
RCall 382
RChangeNotifier 266
re-entrancy issues 46–9, 72–3
Read, Murray 407, 414–16, 576–7
real-time systems 11, 16, 47–9,

55–7, 118, 152–63, 179,
206, 281–2, 284, 287–99,
319, 324–9, 370–5, 435–6,
437–40

see also EKA2
real-world problems,

object-oriented approaches
89–90, 92–3, 339

Recent Calls 175
RECMMF 160, 529

see also MMF Recognizers
component

600 INDEX

RECOGNIZERS 145, 160, 569
see also Web Recognizers

component
records, structs 108
Reduced Instruction Set Computer

(RISC) 286
Reference DRM Agent component

159–60, 544
Reference Fonts component

190–1, 544
see also FONTS

reference hardware, kernel 294–5
reference specifications 32–3
reflection concepts 101, 105
registry 262–3, 265, 269, 509
relational databases 70–1, 264–5,

275–6, 311, 360–3, 500–1
see also DBMS

remote access 55, 170, 192–8,
544, 545

Remote Control Framework
component 251–2, 328–9,
544

Remote File Server component 55,
170, 194–8, 545

see also
SCREMOTEFILESERVER

removable media file systems
69–70

renewal forces, Symbian OS
429–51

Replaceable License
Categorizations, Symbian OS
component reference
476–572

RequestEvent 183
Resolver Server 124, 125, 130–1,

209–10, 563
resource files 67, 73, 265–6
Restore 71
restore services 141, 157–8, 192,

194–8, 479–80
reuse benefits, object-oriented

approaches 88–90, 93–100,
113–19, 345, 351–2

reverse-engineering 462–3
RFCOMM 252–3
RHostResolver 235

RICHTEXTTOHTMLCONV 157–8,
510

ring tones 178
RISC (Reduced Instruction Set

Computer) 286
RLine 382
RMS component 311, 312–13, 528
robust software 44, 46–50, 63,

137, 283–4, 395–6, 405
ROFS (Read Only File System) 260
ROM 17, 21, 27, 43–4, 47–8, 72,

257, 260–1, 268, 281–3,
292, 336, 346, 354–5, 368,
374, 390, 394

Ronneby site, Sweden 33, 35–6,
415–17

Root Server component 54–5, 202,
206, 209–10, 210–20, 223,
496

ROOTSERVER 217, 496
see also Comms Root Server

component
RPhone 382
RProcess::Create 59
RProperty 175
RS232 serial technology 245–53,

292
RSessionBase::

CreateSession 59
RTP component 146–9, 152–3,

328–9, 545
Run 73–4
Runtime Plug-in component 316,

545–6
RWindow 182

S60 3rd Edition 426–7
S60 see Series 60
safe strings, descriptors 77–80,

343, 353–4
Samsung 37, 122, 400–1
Sanyo 32, 320
Sapphire 32–3, 412–13
SavaJe platform 16

see also Java . . .

SAX 2.0 266
SBSSERVER 196, 548

see also Secure Backup Socket
Server component

Scheduled Send MTM component
158–9, 546

scheduling 25, 56–7, 73–5,
280–99

nanokernel 288–9
pre-emptive/non-pre-emptive

concepts 56–7, 73–5,
280–99

Scheme 98
SCHSVR_ONGOING 176, 556–7

see also Task Scheduler
component

Screen Driver component 285, 546
SCREENDRIVER 285, 546
screens 60, 66–71, 124–32,

177–91, 269, 272, 285,
376–7, 443–4, 545, 546

see also displays
SCREMOTEFILESERVER 545

see also Remote File Server
component

SD cards 174, 177, 293, 294,
296–7, 546–7

SDCARD4C 296, 546–7
SDIO cards 293–4
SDKs (software development kits)

28, 46, 65, 122, 134, 269,
442, 477

SDP databases 486
second generation (2G) networks 4,

171, 201, 203, 370–1
Secondary PDP context UMTS

Driver component 243–4,
547

see also SPUD
Secure Backup Engine component

195–8, 547–8
Secure Backup Socket Server

component 55, 170, 195–8,
548

see also SBSSERVER
secure hardware 499
secure identifiers (SIDs) 82, 262–3
Secure Policy Reference Plug-in

component 313, 548–9
Secure Sockets Layer (SSL) 234
Secure Software Install component

150–63, 170, 548

INDEX 601

SECUREBACKUPENGINE 196,
547–8

SECURESOFTWAREINSTALL 151,
548

security issues
see also Platform Security
Base Services Layer 262–3
certificates 149, 165–6, 172–7,

327–9, 491
concepts 46–9, 62, 82–5,

172–7, 179–80, 234,
238–9, 262–3, 284, 324–9

EKA2 284
keys 68, 127–32, 173–4, 491
Networking Services Sub-block

201, 203–4, 230–1,
238–9, 560

PIN-based locks 222
plug-ins 62, 359–60
signed applications 13, 85,

327–9
Symbian OS 46–9, 62, 82–5,

172–7, 179–80, 234,
238–9, 262–3, 284, 324–9

threat types 84–5
tokens 55, 171, 172–7, 499

Self 104
semaphores 259
Send As component 144, 171, 248,

389–91, 549
SENDASV2 549
Sendo 122, 320
Serial Port CSY component

208–11, 224–5, 249, 252–3,
549

see also ECUART
serial servers 54–5, 57, 205–6,

208–20, 224–5, 238,
245–53, 488–9, 549

Series 60 (S60) interface 7, 33,
36–7, 48, 50–3, 65–8, 72,
122–5, 143, 222, 320–1,
324, 326–9, 377, 386,
400–27, 435, 445

see also Nokia
announcement 418–19
‘square’ user interface 33

Series 80 33–4, 122
see also Nokia

Series 90 35, 122
Server Socket component 197–8,

549–50
server-side operations, concepts

58–60
servers 40, 42–4, 45–9, 56–60,

182–3, 207–8, 255–77,
485–6, 503, 518–19, 548–50

see also file servers; kernel;
sockets; window servers

client–server architecture 42–4,
49, 56–7, 58–60, 63–4,
133–4, 171, 186, 223,
264–5, 311–13, 354–5,
359, 381–6, 464, 508–9,
549

concepts 40, 42–4, 45–9, 56–7,
58–60, 182–3, 207–8

fundamental importance 59–60,
182–3, 207–8

SERVERSOCKET 197–8, 549–50
Service Broker component 194–8,

550
SERVICEBROKER 197, 550
Session Initiation Protocol see

SIP . . .

Set 129, 186, 271–2
settings 200–1
Seybold, Andrew 10
shared resources 49, 60, 136
Sharp 122, 326
Sheet Engine component 53,

156–7, 550
SHENG 157, 550
Short Link Services Sub-block

201–3, 245–53, 483–4, 515,
520–1, 533–4, 544, 549,
563–4

see also Bluetooth . . .; Comms
Services Block; infrared . . .;
IrDA . . .; OBEX . . .; USB . . .

architecture 247–8
component collections 249–53
concepts 201–3, 245–53
historical background 247
overview 245–8

Shutdown Server 268–9, 274, 540
SIBO 17, 47–8, 64, 87, 334, 357,

437, 462–3

SIDs (secure identifiers) 82,
262–3

Siemens 26, 122, 320
signals 11, 43–4, 294–5, 370–5
signed applications 13, 85, 327–9
SIM cards 224, 226–7, 320,

550–1
SIM TSY component 224–5,

226–7, 230, 321, 322, 550–1
SIMTSY 230, 550–1
Simula 91–2, 98, 102, 104, 108
Sinclair

QL 43
ZX81 20–1, 38

singleton component collections,
Kernel Services and Hardware
Interface Layer 284–5

SIP... 152–3, 551
SIP Connection Provider Plug-ins

component 136, 146–7, 149,
152–3, 201, 551

SIP Framework component 53,
136, 146–7, 149, 152–3,
201, 328–9, 551

SIS files 82, 194, 196, 268, 390
SLIP 245, 551–2
SLIP NIF component 215–16, 245,

551–2
Smalltalk 91–3, 95–104, 105–6,

108, 137–8, 335, 339, 347
smartphones

see also mobile phones;
Symbian OS

concepts 3–13, 28, 282,
367–96, 420–6

definition 420
future prospects 426–7, 440
historical background 3–9,

15–44, 46–7, 222–3, 247,
282, 367–96

SMIL Parser component 136,
145–60, 323, 324–5, 552

see also GMXML
SMPTPSERVERMTP 553
SMS 29, 136, 142–5, 159, 201,

203–4, 205–6, 214, 221–3,
228–31, 236, 307–17, 320,
376, 380–94, 483, 490, 515,
552–3, 567, 570, 571

602 INDEX

SMS MTM component 136, 158–9,
203–4, 224, 552

SMS PRT component 136, 203–4,
228–30, 552–3

SMS Utilities component 136,
203–4, 228–9, 553

SMSSTACK 228, 552–3
SMSU 229, 553
SMTP MTM component 136, 143,

145, 158–9, 388, 394, 553
social issues, mobile phones 7–10
Socket Server 54–5, 194, 202,

206–7, 208, 209–20, 224,
231, 232–5, 236–7, 248–53,
322–3, 381–2, 485–6, 503,
518–19, 548–50, 557

sockets 54–5, 194, 202, 206–7,
208, 209–20, 224, 231–3,
485–6, 503, 518–19,
548–50, 557

see also servers
concepts 213–14, 224, 231–3
connection processes 214
roles 214

soft effects, mobile phones 7–9
software

see also applications
agile programming 90, 456,

464–5, 472–4
cohesion/coupling concepts 114
compilers 43–4, 81–2, 103–4,

343–4
complexity 9, 11–13, 57,

88–90, 114, 337–50,
368–96, 420–2, 429–51,
455–74

concepts 44, 46–50, 88–90,
104, 341–2, 453–74

costs 88–90, 341–2
creation processes 90, 104,

453–74
crisis 455–6
cultural issues 464–74
development methodologies 90,

104, 454–74
dragons 455–6
engineering concepts 455–6,

459–74
ethics 458–9

formal development models
466–70

Hollywood factory 460
human aspects 90, 457–9
internationalization factors

469–70
iterative-development practices

457–8, 468–9
maintenance needs 430–6,

455–6
object-oriented approaches 20,

40–1, 47–9, 53, 57–8,
68–70, 73, 87–108,
333–66

problems 453–74
production considerations 90,

104, 453–74
programming languages 17, 46,

71–82, 88–108, 173, 304,
334–66, 425–6, 446–51

robust software 44, 46–50, 63,
137, 283–4, 395–6, 405

source code 71–82, 88–108,
112, 334–66, 446–51

structured techniques 456
teams 459–74
waterfall-development practices

457–8
whole-product development

470–4
‘worse is better’ paradox 469–70

software development kits (SDKs)
28, 46, 65, 122, 134, 269,
442, 477

Software Install Server component
55, 170, 194–8, 554

see also SWINSTALLSERVER
solid-state disks 48
Sony Ericsson 30, 33–7, 122, 178,

319, 321–4, 328, 379, 400–2
SOUNDDEV 296, 479

see also Audio Driver
component

source code 71–82, 88–108, 112,
334–66, 446–51

see also programming
languages; software

Spain 3–4
Spectrum 20–1

Speech Driver component 296–7,
554

see also DEVASR
speech recognition 267, 277
sprites 124, 127–8, 131–2
SPUD 243, 547

see also Secondary PDP context
UMTS Driver component

SQL 68, 71, 264, 275–6
‘square’ user interface, Series 60

(S60) interface 33
SSL (Secure Sockets Layer) 234
stack-based descriptors

see also descriptors; TBuf...
concepts 78–81

Standard Library, C 29, 55, 71,
165–6, 167, 171–7, 305,
336, 346–7, 488

Standard Template Library (STL)
71–2, 108

standards 11, 13, 62, 88–90,
136–7, 359–60, 457

static libraries 73
STDLIB 177, 488

see also C Standard Library
component

STL (Standard Template Library)
71–2, 108

storage media 12, 44, 49, 68–70,
263–4, 394–6

see also file systems
STORE 71, 275, 555
Store component 55, 71, 177,

257–9, 263–5, 275–6, 354,
360–3, 394–6, 492, 523,
555

streams 49, 68, 71, 185, 263–4,
354, 360–3, 396

Stroustrup, Bjarne 91, 104, 339,
348

structs 108
structured techniques, software

development 456
stubs 125–6, 129
Sub-blocks 111–19, 202–53,

476–572
see also System Model
concepts 111–19

INDEX 603

Symbian OS component
reference 476–572

Subconnection Parameters
component 204, 241, 554–5

see also UMTSIF
Sun 54, 304–5, 315–16, 493
Sweden 3, 4, 33, 35–6, 122,

415–17
SWINSTALLSERVER 196, 554

see also Software Install Server
component

switching challenges, programming
languages 341–4, 446–51

switching concepts 66–7
Symbian OS

see also operating systems
3G-ready 5, 15–16, 319
application suite 11, 16, 65–71,

134–6, 422–5
architecture 41–4, 45–85,

111–19, 122–4, 133–7,
461–74

background 5–7, 10, 11, 15–44,
45–85, 87–8, 111–19,
134–5, 171, 178–9,
192–4, 207–8, 238,
255–7, 279–83, 288–9,
301–2, 319–29, 367–96,
397–427, 460–74

Blocks 111–19, 476–572
boundaries 50–1, 63–4, 444–6
business models 49–51, 470–2
C++ 13, 71–82, 87–8, 173,

333–66, 446–51, 488
case studies 331–474
competitive threats 16, 51–2,

401–2, 445, 469–70
complexity issues 49–52,

282–3, 367–96, 429–51
Components 111–19, 475–572
consistency goals 50
constraints 48, 49–52
creation 6, 20–7, 319, 432–3,

460–74
cultural issues 464–74
DEC’s VMS operating system 22,

38–40, 43
design lifetime 431–3

design principles 45–50, 56–64,
72–3, 119, 134–6,
168–71, 178–91, 193–4,
204–6, 212, 238, 256–7,
281–3, 288–9, 301–2,
396, 430–6, 460–74

device families 31–7, 67–8,
128, 320, 410–20

disruption effects 10
elegance goals 50
EPOC 15, 18–19, 22–6, 27–32,

35–6, 44, 48, 68, 156,
281–2, 304–5, 367, 409,
416–17, 437, 470, 474,
500, 550, 571

evolution/renewal forces
429–51

extensibility goals 46–9, 50–1,
56–7, 179–80, 210–11,
355–6

flexibility 7–10, 11–12, 56–7,
61–2

future prospects 426–7, 474
GUI background 31–7, 43, 46,

48–9, 50–1, 57, 65, 73–4,
320–9, 334–5, 352–3,
397–427

‘headless’ configuration 121–2
high end of the market 11,

16–17, 396
historical background 6, 22–6,

46–7, 87–8, 192, 208–9,
222–3, 247, 281–4,
303–6, 319–29, 333–66,
367–96, 401–2, 460–74

idioms 56–7, 71–82, 256, 257,
260, 333, 347, 353–4,
447, 463–4

layers 52–6, 111–19, 476–572
lead product concept 434
licenses 27–31, 47, 50–2,

67–8, 121–2, 140, 145,
180–1, 222, 249, 281–2,
304, 313–14, 319, 385–6,
400–1, 435–6, 443, 475,
495, 529–30

naming conventions 56–7,
76–7, 78–82

Nokia 6, 15, 27–8, 30–6, 51–2,
319–21, 324

object-oriented approaches 20,
40–1, 47–9, 53, 57–8,
68–70, 73, 87–108, 136,
333–66, 446–51

open platform 12–13, 46–9,
83–5, 136, 170–1, 422,
474

operating-system influences
37–44, 368–9

optimization design goals 47–9,
72–3, 281–3, 288–9,
327–9

origins 6, 20–7, 282, 319,
432–3

platformitization concepts
433–4

popularity 6–7, 15–16, 422
principles 41–4, 396, 470–4
Psion 15, 17–26, 64
real-time aspects 47–9, 55–7,

118, 152–63, 179, 206,
281–2, 284, 287–99, 319,
324–9, 370–5, 435–6,
437–40

recent changes 47–9, 62, 65, 81,
118, 135, 172–5, 179–80,
184, 186, 195, 208–9,
215–17, 238, 259–61,
269, 303–4, 319, 326–9,
396, 429–51, 473–4

renewal forces 429–51
security issues 46–9, 62, 82–5,

172–7, 179–80, 234–5,
238–9, 262–3, 284, 324–9

software-development practices
460–74

statistics 6–7, 13, 16, 51,
116–17

Sub-blocks 111–19, 476–572
‘Symbian Day’ (June 24th 1998)

27–8
System Model 52–6, 111–19
third-party developers 12–13,

28–31, 50–1, 83–5,
302–17, 327–9, 402, 475,
504

transparency goals 50

604 INDEX

Symbian OS (continued)
‘v5’ 28, 319
v6.0 15, 192, 319, 320, 391–2,

414, 416, 442–3, 466
v6 15, 28–9, 31–2, 319–21,

456, 466
v6.1 192, 303–4, 319, 320–1,

391–2, 419, 442–3
v7 16, 54, 62, 113, 117–19,

126, 141, 146, 172,
179, 208, 224, 225, 233,
234, 238, 248, 262, 265,
267, 284, 301, 303–6,
319, 321–4, 359–60, 419,
441, 456, 466, 477–572

v7.0s 54, 62, 113, 119, 141,
146, 172, 179, 208, 224,
225, 233, 234, 238, 248,
262, 265, 267, 284, 301,
303–6, 321, 324, 416,
443, 477–572

v8 15–16, 54, 55–6, 62, 118,
145, 148–9, 192, 206,
209, 212, 224, 234, 236,
260–2, 264, 273, 275,
280, 284, 294, 303–6,
319, 324–6, 435–6, 443,
477–572

v9 15–17, 62, 81, 83, 116–18,
145, 148–9, 172–3,
178–9, 186, 195, 203,
206, 215–17, 225, 251–2,
259–60, 266, 280–1, 284,
286, 294, 303–4, 305,
319, 326–9, 416, 435–6,
447, 477–572

v9.0 327
v9.1 149, 174–5, 294, 319,

327–8, 477–572
v9.2 149, 269, 274, 294–5, 299,

328–9, 477–572
v9.3 116–18, 329, 475–572
versions 319–29, 473–4,

477–572
vision 44, 50–1, 333–66, 402,

473–4
whole-product development

470–4

Symbian Signed program 13, 85,
327–9

Symbian Toolkit 113, 129
Sync Initiation component 153,

555
synchronization role, nanokernel

288–9
SYNCML... 153, 248, 435, 534–5
SYSAGENT2 176, 556
SYSSTART 152, 556
System Agent component 175–6,

322, 556
system lifecycles 47
System Model

see also Blocks; Component
collections; layers;
Sub-blocks

component reference 476–572
concepts 52–6, 111–19, 280–1,

295
historical background 119
overview 111–19

System Starter component 149,
151–2, 182–3, 261, 328–9,
556

SystemAMS (Application
Management Software)
307–8, 310

T (data type) classes, concepts
80–1

TACS network 3–4
TAny, concepts 82, 257
Task Scheduler component 55,

170, 172–7, 556–7
see also SCHSVR_ONGOING

Tasker, Martin 23–4, 26, 64, 74–5,
77, 79–80, 334, 346, 348,
349–51, 357–9, 396, 436–7,
448–9, 450, 461–2, 465–6,
577

TBool concepts 82, 257
TBuf... 78–81
TCP/IP 29, 54–5, 148, 162–3, 171,

192–8, 201, 203–4, 208,
210, 214, 218, 230–42,
502–3, 516–19, 548, 557,
560, 566–7

TCP/IPv4/v6 PRT component 54–5,
171, 231–42, 322–3, 557

TCPIP6 242, 557
TDes, concepts 79–80
TDesC, concepts 78–80
teams, software development

459–74
technology/soft effects, mobile

phones 7–9, 57, 222–3, 420,
433–4

TechView 121–2, 322
telephony 54–7, 61–2, 168–71,

202–53, 378–86, 440–3,
490–1, 502–6, 508–9,
515–32, 550–3, 557–61

concepts 56–7, 168–71,
202–53, 378–86, 440–3

stacks 57
standards 48

Telephony Services Sub-block
54–5, 57, 201–3, 220–31,
236–7, 322–9, 380–6,
490–1, 502–6, 508–9,
515–32, 550–3, 557–61

see also Comms Services Block;
ETel

architecture 221–2, 380–6
baseband interfaces 224–5
component collections 225–31
concepts 201–3, 220–31
messaging 224–31
telephony server 223

Telephony Watchers component
226, 557

Telnet Engine component 147–8,
161–3, 557–8

TELNET_E 162, 557–8
templates 71–2, 108, 345–7,

363–4
terminal emulation programs 74
Terminate And Stay Resident

programs (TSRs) 38–9
test code 112–13, 121–2
Texas Instruments 225
Text Formatting (FORM)

component 140, 161, 320,
558

see also FORM

INDEX 605

Text Handling (ETEXT) component
53, 140, 161, 558

see also ETEXT
text messages, historical

background 8, 15–44
Text Shaper Plug-in component 55,

190–1, 559
see also ICULAYOUTENGINE

Text Shell component 55, 186–7,
258, 259, 269, 270, 272, 559

see also ESHELL
Text Window component 55, 258,

269, 272, 559–60
see also EWSRV

Thatcher, Margaret 8
thin templates 347, 363–4
third generation (3G) networks 4, 5,

15–16, 36, 122, 171, 201,
208–9, 216, 220–3, 226–31,
236, 319, 370–1, 381–3,
435–6, 439–40

third-party developers 12–13,
28–31, 50–1, 83–5, 173,
302–17, 327–9, 402, 475,
504

Thoelke, Andrew 25, 29, 60, 63–4,
335, 340, 344, 345, 346–8,
358–65, 423–5, 448–9,
577–8

Thompsonitosh 43
threads

see also processes
concepts 25, 42–4, 49, 57–8,

64, 72–3, 259, 280–99,
302–5

definition 57–8
multithreading 49, 73–4, 180,

358–9
types 64

throw 447–8
tiles 43, 48–9
Timezone component 140, 155–6,

328–9, 560
see also TZ...

timing role, nanokernel 289
TInt..., concepts 24, 81–2, 257,

259–60
TinyTP 248
TLS... 239, 560

TLS component 201, 203–4, 233,
238–9, 560

tokens 55, 171, 172–7, 499
TPtr... 78–81
transparency goals, Symbian OS 50
TRAP 76–7
trap harness 76–7
TReal..., concepts 82, 257
trojans 84
TRP 230, 560–1
TRP CSY component 230–1,

560–1
TRP TSY component 225, 230–1,

561
trust principle, Platform Security

83–5, 170, 327–9
TSRs (Terminate And Stay Resident

programs) 38–9
TSYs 208, 210, 221–31, 243–5,

378–86, 490–1, 532, 550–1,
561

TText..., concepts 82
TUidType 82
TUint..., concepts 24, 81–2
TUNER 187, 488

see also Broadcast Tuner
component

Tunnel NIF component 245, 561
TUNNELNIF 245, 561
two-phase construction, concepts

72–3, 75–7
typedef 78, 81–2, 366
TZ... 156, 560

see also Timezone component

UART 368
UDP 233
UEI (Unified Emulator Interface)

302, 305–6
UI Framework Layer 52–3, 61, 62,

73–4, 111–19, 121–32, 182,
306–7, 320–9, 370–5,
400–27, 443–4, 478–563

see also active . . .

component collections 129–32
concepts 52–3, 61, 62, 73–4,

111–15, 117, 121–32,
182, 306–7, 370–5, 443–4

design goals 123
overview 117, 122–4
purpose 122–3
support collection 131–2
Symbian OS component

reference 478–563
UI Graphics Utilities component

124, 131–2, 562
UI Look and Feel component 125,

128, 130–1, 322, 562
UI Toolkit 129, 320
UIDs (unique identifiers) 72–3, 82,

138, 145, 257–60, 266, 423
UIKLAFGT 130, 562
UIKON 130, 562–3
Uikon component 52–3, 57, 65–6,

67–8, 124–31, 140, 268,
320, 323, 413–14, 479, 527,
562–3

Uikon Error Resolver Plug-in
component 124, 125, 130–1,
563

see also ERRORRESGT
UIQ 33–4, 36–7, 48, 53, 65–8,

72, 122–6, 139, 143, 222,
321–4, 326, 393–4, 400–27,
435, 445

UIQ 3 426
UK 3–5, 8, 17, 375
UMTS (3G) 5, 201, 215–16,

220–31, 233–4, 236, 505,
513–14, 547

UMTSIF 554–5
see also Subconnection

Parameters component
Unicode 78, 79, 81, 265–6, 275,

282, 293–4, 492
unique identifiers (UIDs) 72–3, 82,

138, 145, 257–62, 266,
423

uniqueness factors, mobile phones
10–13, 72, 84–5, 367–8

UNISTORE2_DRIVERS 298, 511
see also Flash Translation Layer

component
Unified Emulator Interface (UEI)

302, 305–6
universal inbox 391–4

606 INDEX

Unix 37, 39–40, 45, 63, 69, 87,
173, 235, 258, 283, 352, 450,
455, 469

see also Linux
USA 3–5, 220, 375, 440–1, 469
USB 77, 194, 200–1, 208–9, 220,

245–53, 294–7, 324–5, 563,
564

USB 250, 564
USB CSY component 249–53,

563
see also ECACM

USB Driver component 296–7,
563–4

USB Manager component 205–6,
249–53, 564

USBC 296, 563–4
USER 485–6

see also Bluetooth Protocol
Client APIs component

user expectations, mobile phones
13, 51, 374–5, 396,
398–9

User HAL component 272, 564
see also HAL_EKA2

user interfaces 11, 28–9, 31–7,
43–4, 46–9, 50–1, 52–3, 57,
61, 65–8, 111–19, 121–32,
320–9, 397–427, 435,
478–563

see also GUI; MOAP; Series . . .;
UIQ

big interfaces 420–2
concepts 397–427
definition 399–400
device families 31–7, 67–8,

128, 320, 410–20
UI Framework Layer 52–3, 61,

62, 73–4, 111–19,
121–32, 182, 306–7, 320,
400–27, 478–563

User Library component 49, 53,
55, 76, 257–77, 285, 286,
289–90, 293, 354, 565

see also EUSER
user-defined types 97, 104–5
user-side operations, concepts

58–60, 133–4, 143, 210,
255–77, 286, 291–2

UTF-7 266, 275, 493
UTF-8 266, 275, 493
UTMS 203

VAX mini-computer 21–2
vCal Plug-in component 53, 134,

140–1, 155, 157–8, 320,
322, 325–6, 565

see also AGNVERSIT
vCalendar 136, 140–1, 143–4,

155, 320, 322, 325–6, 435,
481, 565–6

vCard 53, 134, 136, 140–1,
143–4, 146, 155, 157–8,
320, 322, 325–6, 435, 481,
565–6

vendors, differentiation goals
398–9, 422

Versit 53, 134, 136, 157–8, 481,
565–6

video 12, 267, 276–7, 566
Video Driver component 296–7,

566
see also DEVVIDEO

View Server component 138–9,
150–63, 409, 566

VIEWSRV 151, 566
virtual machine (VM), Java 54,

106–8, 118, 301, 305–9,
315–16

virtual memory 58
virtual methods, C++ 96–8, 105–6
virtualized Internet browsing 212
vision 44, 50–1, 333–66, 409,

473–4
Visual Basic 17, 46, 304, 338,

425–6, 450
Visual C++ 435
VM (virtual machine), Java 54,

106–8, 118, 301, 305–9,
315–16

VMS operating system 22, 38–40,
43

Vodafone 3–4, 5, 375, 398
voice calls 222, 370–1, 420
VoIP (Voice over IP) 8, 201, 238
VPN... 239, 566–7
VPN component 16, 201, 206,

234, 238–9, 566–7

VT100 terminal emulation 269

WAP Message API component
239–40, 567

WAP Push Framework component
146, 161–3, 567

WAP Push Handlers component
146, 159–60, 568

WAP Push MTM component 146,
161–3, 568

WAP Short Stack component 210,
224, 236, 239–40, 323,
568–9

WAP (Wireless Application
Protocol) 10, 136, 144–63,
201–2, 210, 212, 224,
228–30, 234–8, 239–40,
261–2, 321, 323, 375, 567–9

concepts 235–8, 239–40, 321
push and pull models 235–6
WBXML (WAP Binary XML)

Parser component 266–7,
276, 325–6, 569

WAPMESSAGE 239, 567–8
WAPPUSH 162, 567
WAPPUSHSUPPORT 160, 568
WAPSTACK 239, 568–9
Warner, Jack 460
Watcom 87
waterfall-development practices,

software 457–8
WAV format 170, 180–1
WBXML (WAP Binary XML) Parser

component 266–7, 276,
325–6, 569

WDP (Wireless Datagram Protocol)
224, 235–6, 239–40

web 11, 29, 146–8, 161–3, 230,
487

see also Internet
Web Recognizers component 145,

159–60, 569
see also RECOGNIZERS

whole-product development,
software development 470–4

Wi-Fi 8, 12, 15–16, 33–4, 200–1,
206, 212, 216, 238, 328–9,
368, 373, 439, 440–1, 570

INDEX 607

Wi-Max 368, 440–1
WIFI... 570

see also Wireless LAN
component

WIMP 402–3
Window Server component 55, 57,

77, 126–7, 132, 139, 170,
181–4, 186–7, 189, 444,
569–70

see also WSERV8.1
concepts 181–4, 186–7, 189
roles 182–3, 186, 189

window servers, concepts 42–4,
55, 57, 126–7, 132, 139,
181–4, 569–70

Windows see Microsoft . . .
WINS_VARIANT_EKA2 298, 503

see also Emulator component
Wireless Datagram Protocol (WDP)

224, 235–6, 240
Wireless LAN component 245, 570

see also WIFI...
wireless session protocol (WSP)

235–6, 323
WLAN 216, 245
WMA 314, 317, 570–1

WMA 1.1 component 314–15, 570
WMA 1.1 Push Plug-in component

317, 571
Wood, David 22–3, 33, 38, 46,

335–9, 341–5, 352–3, 357,
367–8, 402–6, 414, 431–3,
436, 446–51, 460, 461, 463,
468–9, 578

Word Engine component 137, 140,
156–7, 571

see also WPENG
World Server component 156,

321–2, 571
WORLDSERVER 156, 571
worms 80
‘worse is better’ paradox, software

469–70
WPENG 157, 571

see also Word Engine
component

wrapper classes 347, 354–5
WSERV8.1 189, 569–70

see also Window Server
component

WSP (wireless session protocol)
235–6, 323

WYSIWYG 53, 135, 137, 142,
167–8, 184–5

X-Window 352
X86 25, 37, 288
Xerox PARC 91, 102, 104
XIP (execute-in-place) principles

43–4, 47–9, 281–3
XML 70, 136, 146, 195, 196–7,

216, 258, 266–7, 270, 276,
325–6, 402, 569,
572

XML 276, 572
XML Framework component 146,

266–7, 270, 276, 325–6, 572
XML Parser component 146, 258,

266–7, 276, 325–6, 572
XMLPARSERPLUGIN 276, 572

Z80 chips 21–2
Zip Compression Library

component 268, 273, 572
see also EZLIB
Zortech 87

Java J2ME

MIDP 2.0 Profile

MIDP
LCDUI

MIDP
RMS MIDP IO

MIDP
Device
Control

Security
Policy

MIDP
GSM

Secur ty
RP

MIDP 2.0 Packages

MIDP File
GCF

Mobile
Media API

1.1

Mobile 3D
1.1 JTWI 1.0 MIDP PIM Bluetooth

1.1 WMA 1.1

CLDC 1.1

Java IO Java Lang Java
Utilities

Bluetooth &
SMS Push

Bluetooth
1.1 WMA 1.1

Low Level
Plugins

LCDUI
plugin

Runtime
p ugin

Virtual
Machine

CLDC Hi
1.1

U
I

F
ra

m
ew

o
rk UI Support

Graphics
Effects

UI
Graphics
Uti ities

Grid Clock BMP
Animation Animation

UI Application Framework

Uikon

UIKON
Error

Resolver
Plugin

UI Look
&Feel

Control
Environ-

ment
FEP Base

A
p

p
lic

at
i o

n
S

er
vi

ce
s PIM Application Services

Calendar Agenda
Model

vCal
Plugin

Contacts
Model

PIM Application Support

vCard
&vCal

Alarm
Server

Chinese
Calendar
Cnvter.

File
Cnvter.
Plugins

Backup
Restore
Notifica-

tion

Text Rendering

Text
Handling

Text
Formatting

Office Application
Engines

Data
Engine

Sheet
Engine

Word
Engine

Other Application
Services

He p World
Server Timezone

Messaging App Support

Msg. Store BIO Msg.
Frmwk.

BIO
Watchers

Sched.
Send MTM

POP3
MTM

IMAP4
MTM

SMTP
MTM

OBEX
MTMs SMS MTM CDMA

MTM
MMS

Settings MMS MTM

Content Handling

SMIL
Parser

MIME
Recog-
nizer

Frmwk.

WAP Push
Handlers

Web
Recog-
nizers

Content
Access
Frmwrk.
for DRM

Reference
DRM
Agent

MMF
Recog-
nizers

BIO Msg.
Parsers

Data Sync Services

Sync
Initiation

OMA
SyncML
Frmwrk.

OMA
SyncML

DM
Interface

OMA Data
Sync

Mobile
Active
Sync

Device
Management

Dev Man
Frmwk.

Dev Man
Adaptors

Client
Provisioning

Client
Provision-
ing Frmwk.

Client
Provision-

ing
Adaptors

Internet & Web App Support

Bookmark
Support

WAP Push
Frmwk.

WAP Push
MTM

HTTP
Trans.
Frmwk.

HTTP
Protocol
Plugins

HTTP
Filter

P ugins

HTTP
Utilities
Library

FTP
Engine

Telnet
Engine

App. Launch
Services

System
Starter

Application Framework

Secure
Software

Install

Java
MIDlet

Installer
App. Arch. View

Server

File
Cnvrter.
Frmwk.

Content
Hand ing
Frmwk.

Printing
Support

Printing
Services

Multimedia Protocols

RTP SIP
Frmwk.

SIP
Connect.
Provider
Plugins

Location Based
Services

Location
Based

Services

O
S

S
er

vi
ce

s

Generic OS Services

Generic Services

Event
Logger

System
Agent

Task
Scheduler

File
Logger

Generic Libraries

C std.
Library

Crypto.
Token
Frmwk.

Cert. &
Key

Manage-
ment

Cert. Store Key Store

Comms Services

Comms Framework

Comms
Process and
Settings

Comms
Root

Server

Comms
Config. Utils

Comms
Dbase.

Data Comms Server

C32 Serial
Server

ESock
Server

Network
Interface
Manager

Network
Contrllr.

Comms Framework
Utilities

Comms
Frmwk.

Comms
Elements

MBuf
Manager

Baseband
Abstraction

Bsebnd
Channel
Adaptor
Frmwk.

Telephony Services

Telephony Utilities

Dial Phone-
book Sync

Telephony
Watchers

Telephony Server

ETel
Server &

Core

ETel 3rd
Party API

Fax Client
& Server

ETel Multi-
mode

ETel
Packet
Data

ETel SIM
Toolkit

Etel
CDMA

SMS Protocol Plugins

SMS PRT WAP PRT
CDMA
SMS

Plugins

CDMA
WAP PRT

SMS Utilities

GSM
Utilities

SMS
Utilities

Telephony Server Plugins

MultiMode
TSY

CDMA
TSY SIM TSY

Telephony Ref. Platform

TRP TSY TRP CSY C32 BCA

Short Link Services

USB
Manager

USB
Manager

Short Link

Btooth.
Protocol

Client
APIs

Btooth.
Manager

HCI
Frmwk.

Btooth.
SDP

Bluetooth
Profiles

Remote
Control
Frmwk.

OBEX

OBEX
Protocol

OBEX
Extension

API

Short Link Protocol
Plugins

Btooth.
Stack PRT

Btooth.
HCI IrDA PRT

Serial Comms Server Plugins

Serial Port
CSY USB CSY Btooth.

CSY IrDA CSY

Networking Services

TCP/IP Security

TLS IPSec VPN

TCP/IP Utilities

DND DHCP

ESock API
Extensions

Internet
Sockets

Network Protocol Plugins

IP Event
Notifier

TCP/ IPv4/
v6 PRT

IP Hook
Examples IP Hook

QOS
Frmwk.

PRT

Core
IPSec
PRT

Networking Plugins

Connec-
tion

Provider
Plugin

CSD AGT PSD AGT NULL AGT
GPRS/
UMTS

QOS PRT

Secondary
PDP

UMTS
Driver

B uetooth
PAN

Profile

Link Layer Control

Ethernet
NIF

Ethernet
Packet
DRV

Ethernet
Over IR
Packet
DRV

PPP NIF

PPP
Compres-

sion
Plugins

SLIP NIF Tunnel
NIF

Packet
Logger

Raw IP
NIF

Wireless
LAN

WAP Stack

Wap
Message

API

WAP
Short
Stack

Subconnecti
on Interface

Subcon.
Params.

Multimedia & Graphics Services

Multimedia

Multimedia
Frmwk.

Image
Conv.
Library

Camera Broadcast
Tuner

Windowing
Framework

Window
Server

OpenGL ES

OpenGL
ES Frmwk.

OpenGL
ES

Graphics
Surfaces

Graphics and Printing Services

Bit GDI
Text

Shaper
P ugin

Font
&Bitmp.
Server

Font Store
FreeType

Font
Rster.

Reference
Fonts

Printer
Driver

Support

Printer
Drivers

Graphics Dev-
ice Interface

GDI Colour
Palette

Connectivity Services

Service Providers

PLP
Variant

Remote
File Server

Software
Insta l
Server

Secure
Backup
Engine

Secure
Backup
Socket
Server

Service
Framework

Service
Broker

Device Connection

m-Router
Bearer

Abstrac-
tion Layer

Server
Socket

B
as

e
S

er
vi

ce
s

Low Level Libraries and Frameworks

Crypto.
Library

Feature
Registry

Zip
Compres-

sion
Library

Plugin
Frmwk.

Power &
Shutdown
Manage-

ment

Application
Utilities

Character
Conversion

Char.
Encode.
Conv.

Frmwk.

Char.
Encode.
Conv.

Plugins

Media Device
Framework

Media
Device
Frmwk.

Media
Device

Frmwrk.
P ugins

XML

XML
Frmwk.

XML
Parser

WBXML
Parser

Persistent Storage

Store DBMS Central
Repository SQL

User Library and File Server

User
Library File Server

FAT file
name
Conv.

Plugins

File
Systems

User Side
Hardware
Abstraction

User HAL

Text Mode Shell

Text
Window
Server

Text Shell

K
er

n
el

S
er

vi
ce

s
&

H
ar

d
w

ar
e

In
te

rf
ac

e

Kernel
Architecture

ASSP

OMAP
1623

Kernel
Services

Kernel
Arch. 2

Logical Device Drivers

SD Card
Driver

Audio
Driver

Ether.
Driver

MIDI
Driver

Other
LDDs

Media
Drivers

Speech
Driver

USB
Driver

Video
Driver

Periph.
Bus

Cntrllrs.

Variant

Bootstrap Emulator Lubbock
Variant

OMAP H2
Variant

OMAP H4
Variant PDDs

Integrator
BSP

support for
Unistore2

Flash
Trans-
lation
Layer

Localisation

Locale
Support

Screen
Driver

Screen
Driver

Symbian OS v9.3
System Model

ISSUED 2.0
Key

Internal

Partner

Public
Plugin

Compo-
nent

New in 9.3
Reference
Compo-

nent

Deprecated
Component

Optional
Symbian

Common
Symbian

Common
Replace-

able

Optional
Replace-

able

Test/
Reference

Copyright © Symbian Ltd. 2007

	The Symbian OS Architecture Sourcebook
	Contents
	About this Author
	Acknowledgements
	Glossary of Terms
	Introduction
	Part 1: The Background to Symbian OS
	1 Why Phones Are Different
	1.1 The Origins of Mobile Phones
	1.2 From 2G to 3G
	1.3 Mobile Phone Evolution
	1.4 Technology and Soft Effects
	1.5 Disruption and Complexity
	1.6 The Thing About Mobile Phones

	2 The History and Prehistory of Symbian OS
	2.1 The State of the Art
	2.2 In the Beginning
	2.3 The Prehistory of Psion
	2.4 The Beginnings of Symbian OS
	2.5 The Mobile Opportunity
	2.6 Background to the First Licensee Projects
	2.7 Device Families
	2.8 Operating System Influences

	3 Introduction to the Architecture of Symbian OS
	3.1 Design Goals and Architecture
	3.2 Basic Design Patterns of Symbian OS
	3.3 Why Architecture Matters
	3.4 Symbian OS Layer by Layer
	3.5 The Key Design Patterns
	3.6 The Application Perspective
	3.7 Symbian OS Idioms
	3.8 Platform Security from Symbian OS v9

	4 Introduction to Object Orientation
	4.1 Background
	4.2 The Big Attraction
	4.3 The Origins of Object Orientation
	4.4 The Key Ideas of Object Orientation
	4.5 The Languages of Object Orientation

	Part 2: The Layered Architecture View
	5 The Symbian OS Layered Model
	5.1 Introduction
	5.2 Basic Concepts
	5.3 Layer-by-Layer Summary of the Symbian OS v9.3 Model
	5.4 What the Model Does Not Show
	5.5 History

	6 The UI Framework Layer
	6.1 Introduction
	6.2 Purpose
	6.3 Design Goals
	6.4 Overview
	6.5 Architecture
	6.6 A Short History of the UI Architecture
	6.7 Component Collections

	7 The Application Services Layer
	7.1 Introduction
	7.2 Purpose
	7.3 Design Goals
	7.4 Overview
	7.5 Legacy Application Engines
	7.6 Architecture
	7.7 Component Collections

	8 The OS Services Layer
	8.1 Introduction
	8.2 Purpose
	8.3 Design Goals
	8.4 Overview
	8.5 Architecture
	8.6 Generic OS Services Block
	8.7 Multimedia and Graphics Services Block
	8.8 Connectivity Services Block

	9 The Comms Services Block
	9.1 Introduction
	9.2 Purpose
	9.3 Design Goals
	9.4 Overview
	9.5 Architecture
	9.6 Comms Framework
	9.7 Telephony Services
	9.8 Networking Services
	9.9 Short-link Services

	10 The Base Services Layer
	10.1 Introduction
	10.2 Purpose
	10.3 Design Goals
	10.4 Overview
	10.5 Architecture
	10.6 Component Collections

	11 The Kernel Services and Hardware Interface Layer
	11.1 Introduction
	11.2 Purpose
	11.3 Design Goals
	11.4 Overview
	11.5 EKA1 and EKA2
	11.6 Singleton Component Collections
	11.7 Kernel Architecture Block
	11.8 Kernel Architecture Component Collections

	12 The Java ME Subsystem
	12.1 Introduction
	12.2 Requirements of the Java ME Subsystem
	12.3 Design Goals for the Java ME Subsystem
	12.4 Evolution of Java on Symbian OS
	12.5 Architecture
	12.6 Component Collections

	13 Notes on the Evolution of Symbian OS
	13.1 The State of the Art
	13.2 Summary of Symbian OS v6 Releases
	13.3 Summary of Symbian OS v7 Releases
	13.4 Summary of Symbian OS v8 Releases
	13.5 Summary of Symbian OS v9 Releases

	Part 3: Design Case Studies
	14 The Use of Object-oriented Design in Symbian OS
	14.1 Introduction
	14.2 Pioneering the Object Approach in Psion
	14.3 A Thoroughly Object-oriented Operating System

	15 Just Add Phone
	15.1 Introduction
	15.2 Anatomy of a Phone
	15.3 The Phone Operating System
	15.4 Telephony
	15.5 Messaging: It’s Different on a Phone

	16 One Size Does Not Fit All: The Radical User Interface Solution
	16.1 Introduction
	16.2 Background to the Eikon GUI
	16.3 Eikon Design Point
	16.4 The Device Family Strategy
	16.5 Quartz
	16.6 Pearl
	16.7 Nightingale
	16.8 How to Develop a World-class GUI
	16.9 Symbian OS User Interface Architecture
	16.10 Future Directions

	17 System Evolution and Renewal
	17.1 Introduction
	17.2 Design Lifetime
	17.3 Renewal in Symbian OS
	17.4 Evolution in the Kernel
	17.5 Telephony Evolution
	17.6 Sound and Vision Evolution
	17.7 Defining the Skin
	17.8 Moving Towards Standard C++

	18 Creative Zoo or Software Factory?
	18.1 Introduction
	18.2 The Software Problem
	18.3 Too Many Dragons
	18.4 Software Development Approaches
	18.5 What Making Software Is Really About

	Appendix A: Symbian OS Component Reference
	Appendix B: Interviewee Biographies
	References
	Index

