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Preface

The IFIP TC-10 Working Conference on Distributed and Parallel Embedded
Systems (DIPES 2004) brings together experts from industry and academia
to discuss recent developments in this important and growing field in the
splendid city of Toulouse, France.

The ever decreasing price/performance ratio of microcontrollers makes it
economically attractive to replace more and more conventional mechanical
or electronic control systems within many products by embedded real-time
computer systems. An embedded real-time computer system is always part of
a well-specified larger system, which we call an intelligent product.
Although most intelligent products start out as stand-alone units, many of
them are required to interact with other systems at a later stage. At present,
many industries are in the middle of this transition from stand-alone products
to networked embedded systems. This transition requires reflection and
architecting: The complexity of the evolving distributed artifact can only be
controlled, if careful planning and principled design methods replace the ad-
hoc engineering of the first version of many standalone embedded products.

The topics which have been chosen for this working conference are thus very
timely: model-based design methods, design space exploration, design me-
thodologies and user interfaces, networks and communication, scheduling
and resource management, fault detection and fault tolerance, and
verification and analysis. These topics are supplemented by hardware and
application oriented presentations and by an invited talk on “new directions
in embedded processing - field programmable gate arrays and micro-
processors” given by Patrick Lysaght, (Senior Director, Xilinx Research
Labs, Xilinx Inc., USA). We hope that the presentations will spark



x

stimulating discussions and lead to new insights. Since this working
conference is organized within the 18th IFIP World Computer Congress,
there are many possibilities to interact with experts from other scientific
areas and to place the field of embedded systems into a wider context. We all
hope that this working conference in this beautiful part of the world will be a
memorable event to all involved.

Hermann Kopetz, Bernd Kleinjohann, Guang R. Gao,

Lisa Kleinjohann and Achim Rettberg
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Abstract: Moving from code-centric to model-centric development seems to be a
promising way to cope with the increasing complexity of embedded real-time
systems. The Object Management Group (OMG) has been recently promoting
this approach, known as Model Driven Architecture (MDA). It relies on UML
model refinement and transformation as the basic step of an iterative design
process. This model-centric posture has raised many questions, among which
the need for an integrated MDA-based developing environment is probably the
most severe one. It directly affects the reality of the adoption of this good
practice by software engineers. For several years, the CEA-LIST has been
involved in the field of real-time systems research and development. This
work resulted in the completion of the Accord/UML toolkit, which aims at
providing users with a model-driven method and supporting tools. This paper
outlines the Accord/UML approach focusing on the solving of complex real-
time/embedded systems development issues in this MDA process.

Keywords: Model driven development, UML, Real-time embedded systems

1. INTRODUCTION

Over the last few years, engineers have been faced with the problem of
developing more and more complex embedded real-time systems in a world
where time-to-market constraints are constantly increasing. Moving from
code-centric to model-centric development brings significant answers to
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software complexity management. With its standardization the Unified
Modeling Language (UML) [1] has become the lingua franca of object-
oriented modeling. Existing UML-based approaches for real-time systems
development [2, 3] still result in models that are hard to maintain and reuse.
This drawback is principally due to the lack of model development
methodologies.

The Model Driven Architecture (MDA) [4] initiative introduces
architectural separation of concerns in order to provide portability,
interoperability, maintainability and reusability of models. To achieve these
goals, MDA recommends different kinds of models and describes ways to
obtain these models from one another through model transformation
processes. MDA relies on three kinds of models, which are the Computation
Independent Model (CIM), the Platform Independent Model (PIM) and the
Platform Specific Model (PSM).

The CIM is a view of a system from a computation independent
viewpoint. This model focuses on the requirements of the system and its
interactions with the environment while hiding the details of the structure of
the system. In other words, the system is seen as a black box. The PIM
focuses on the structure and operations of the system from a platform
independent viewpoint while hiding details specific to a particular platform.
In the PIM, the system is seen as a white box. The PSM combines the PIM
with details specific to a particular platform to obtain a model dependent of
that platform.

The idea is then to apply MDA tenets in order to facilitate development
of real-time applications. Accord/UML [5, 6] is an MDA-oriented
methodology entirely based on UML which aims at facilitating real-time
software development by engineers who are not real-time experts. The first
section of this paper gives an overview of the Accord/UML methodology,
enhancing its compliance with the MDA approach. The second section
accounts for several directions of research to deal with platform specificities
issues for complex embedded real-time systems development, while putting
emphasis on code generation process, before giving a short conclusion.

2. OUTLINES OF THE ACCORD/UML PLATFORM

Accord/UML aims at providing users with an MDA-compliant
methodology and connected tools dedicated to real-time systems design.
This section briefly introduces of the Accord/UML methodology before
giving an overview of its associated workbench.
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2.1 The Accord/UML methodology

A prototype development with the Accord/UML methodology basically
consists of three successive phases, each producing one of the three MDA
model kinds. For each phase, Accord/UML provides guidelines and UML
extensions (gathered in a UML profile), which enable users to model system
real-time features. Moving from one phase to another is facilitated by
partially automating model transformations.

The preliminary analysis phase deals with requirements capture. System
requirements are identified and reformatted in a set of UML diagrams (use
case diagrams and high-level scenario diagrams). The resulting model gives
a better-formalized view of system functionalities regardless of its internal
structure. This model, called Preliminary Analysis Model (PAM) in our
methodology stands for the CIM MDA model.

In the detailed analysis phase, the objective is to move from the PAM to
the Detailed Analysis Model (DAM), which is the Accord/UML vision of
PIM. The system is decomposed in complementary and consistent sub
models: structural models (mainly class diagrams), detailed interaction
models (detailed scenarios diagrams), and behavioral model (statecharts and
activity diagrams). Structural models are built following a generic pattern,
which consists in separating system core features from its relationships with
its environment. This approach notably favors reusability and permits to
define a generic mapping from PAM to DAM. Modeling real-time structural
features is eased by introducing the Real-Time Object concept [7, 8], an
extension of UML active objects. As far as behavioral modeling is
concerned, two aspects are separated [9]: the control view through
statecharts, and the algorithmic view through activity diagrams completed by
an UML Action Semantics [1] compliant Action Language [10]. To ensure
determinism in modeling behavioral aspects, Accord/UML also provides
through its profile a set of rules to specify UML semantics variation points in
the one hand and clarify some ambiguous points on the other hand. The
resulting model gives an implementation language independent executable
specification of the system.

Finally, the aim of the prototyping phase is to obtain a complete running
mock-up of the application from its DAM [11]. This model is the
Prototyping Model (PrM), an Accord/UML equivalent of PSM. This model
is then used as an input to a specialized C++ generator, handling notably
system real-time features implementation. Eventually, a runtime framework
is provided to support the execution of the synthesized code on top of a
Real-Time Operating System: the Accord real-time kernel, and the Accord
virtual machine. The so-obtained prototype can thus be validated by test.
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2.2 The Accord/UML workbench

As depicted in Figure 1, the Accord/UML methodology support consists
mainly of three parts: automatic synthesis of specific design patterns relating
to real-time and distribution issues; full code generation (structure +
behavior) toward the Accord runtime platform; the Accord platform itself
implementing high level concepts of the methodology and running on Unix,
Linux or VxWorks.

Figure 1: From analysis model to executable application.

The Accord/UML workbench relies on a generic UML-based CASE tool,
Objecteering [12], which we customize for distributed real-time embedded
systems design. This offers possibilities through its profile builder tool to
implement UML profiles. Our toolset is then made of the Objecteering tool
completed with additional modules implementing the Accord/UML profiles.

More precisely, in modeling phases, building models is done thanks to
the Objecteering UML modeler, which provides a complete set of UML
elements (e.g. use cases diagrams, class diagrams, state-machine diagrams,
sequence diagrams...), but also using additional model elements defined in
the context of the Accord/UML profiles and ensuring real-time features
modeling. Stepping from one model to another is done as much as possible
via Accord/UML specific model transformation rules. For instance,
Accord/UML sets mapping rules to ensure automatic model transformation
from Use Cases diagrams to Classes diagrams. The tenets of the approach
being to define and implement as often as possible modeling rules to assist
the engineer in building the application model. One could speak of MAC
(“Modeling Assisted by Computer”).

In addition, the Accord/UML tools provide the developer with means of
validation in the earlier phases of the development. Firstly, structural and
functional validation is carried out on the behavioral models. To this end, a
connection has been made between Accord/UML and the Agatha tool [13-
15], enabling automatic test case generation from the behavioral diagrams
obtained during the detailed analysis phase. Secondly, a validation of quality
of service (QoS) in terms of timing requirements is performed by a
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schedulability analysis of UML models [16]. This point will be discussed in
more details in the following sections.

Once application models are completed, one may perform code
generation from this model. To this purpose, Accord/UML provides a
specialized code generator targeting C++ code (a C code generator being
under development). This generator has been upgraded to integrate real-time
features support conformant to the Accord/UML specification. This means
that the generated code can be executed with support from the Accord kernel
and Accord virtual machine [17] running on top of various operating
systems, namely VxWorks, UNIX, or Linux.

3. PLATFORM DEPENDANCE ISSUES IN AN MDA
PROCESS

In this section, we present the strategy adopted in Accord/UML to deal
with real-time/embedded issues, before providing several examples
assessing the relevance of our choices.

3.1 Rationale

Targeting real-time embedded applications instead of mainstream ones
imposes a superset of constraints on the software developed, among which
platform-related considerations and real-time features validation are
prevailing. Actually, traditional real-time software design processes provide
strategies and support tools to validate temporal (either application-specific
or non-functional) properties of the system during the earlier phases of the
design cycle. Moreover, in the context of embedded applications, the
characteristics of the HW platform have a major influence on the final
system temporal behavior and have to be taken into account to make relevant
design choices. Integrating these issues in our MDA-compliant approach is
thus one of the major challenges we had to face.

As a consequence, two principal objectives were aimed to in the design
of our development methodology and tools: to provide a sufficient level of
real-time features integration and providing ways to validate the application
with respect to the HW platform, in a UML-based model-centric approach.
This comes actually to an attempt to merge conflicting aspects, since the
ultimate goal of the MDA approach is precisely to shield concerns linked to
the platform (in terms of implementation language as well as targeted HW).
Furthermore, the UML is a language, which natively provides only “raw”
materials (model elements, extension mechanisms), which are voluntarily
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platform-independent and generalist. As a consequence, UML tools are
usually designed to support mainstream software development and provide
therefore very poor means of validating real-time properties. All these
considerations have led us to differentiate three kinds of actions to perform:

Adapt the UML to real-time issues, by adding or extending (with UML
profiles) native model elements to provide proper ways to represent
temporal features at the model level.
Adapt existing validation strategies to our approach: this implies notably
to bridge the gap between the UML and other more formal languages,
and between UML modeling tools and validation tools.
Ensure the suitability of the application with respect to its embeddability,
by trying to express the HW platform characteristics at the model level
and thus enabling to make design choices in accordance.
These directions have been applied and refined all along the design of our

platform. In the next sections, we account for this process, by describing
works addressing several specific aspects of MDA adaptation to real-
time/embedded issues.

3.2 A generic architecture for smart-sensor networked
application

This thread of work is focused on architectural aspects when dealing with
embedded applications. Smart-sensor networked applications stand as the
prototypical example of such complex, but fairly common type of
architectures, featuring both a central computing resource, such as an
embedded PC, and several electronic devices, such as sensors and actuators.

To cope with the integration of such heterogeneous type of both
hardware and software pieces, the component paradigm is of great help. It
helps give a likewise abstract view of the various parts of the system. Then
the question remains as how to integrate those parts, given that, most of the
time, each of them is devised in an independent fashion, which prevents
from easy coping of, among many, communication matters.

This work [18, 19] is an attempt to provide a generic integration scheme
in the form of a component-partition of such networked applications. In his
proposition, a sensor is represented both at the application (embedded PC)
and at hardware level by various components:

At the hardware device level, the sensor is seen as two components. The
first one provides interface to the hardware logic. It is specified according
to the existing standards (IEEE and OMG [20, 21]). The second one
embeds the user logic and functional features. Apart from some
predefined interfaces it is left to the engineer to develop
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At the embedded PC level, each sensor is represented by a device-driver
component, which realizes one among predefined communication
patterns and provides specific service interfaces to talk to the sensor
through the network. Both CAN and Ethernet protocols have been taken
into account so far and special care has been given to the design of
synchronization algorithms among all the device driver components, so
that the whole communication delay is handled. All this logic is
embedded in the device-driver model construct, from which code can
then be generated.
This is a typical example of what MDA is promoting. The definition of

generic integration patterns, giving a sound basis for modeling, which in
turn, via code generation, is finely-tuned to specific targeted electronic
device platforms.

3.3 Schedulability and performance analysis

This thread of work can be seen as a general concern for assessing
system properties – functional as well as extra-functional – at the level of the
model. Among those, schedulability and performance stand as the most
severe ones that embedded systems are expected to provide.

Three subsequent PhD thesis have been led on this topic within our team.
The pursued goal was, on the one hand to broaden the coverage of those
aspects within the UML, and on the other hand to bridge the gap between
such UML modeling constructs and the use of external validation tools.

As concerns the first aspect, a dedicated UML profile was designed to
define a generic Action Language [10] suitable for expressing control and
functional algorithms in an implementation-language-independent fashion.
Besides, another profile was developed to enable the expression of worst-
case execution time (WCET) properties at the model level. Based on these,
both a static and a dynamic WCET analysis of the overall models are
possible.

The second part consisted in an effort to derive from Accord/UML
standard models a specific, scheduling-oriented model [16], suitable for
interpretation within a symbolic execution based validation tool, Agatha [13,
14], developed at CEA-LIST. Once established, this link between both tool-
chains enables a complete assessment of the scheduling properties of an
application model, provided that WCET information is fed to the models.
This approach was mainly intended for critical real-time systems, for which
precise knowledge of WCET are more likely to be known.

Finally, an ongoing work is focused on performance assessment, based
on the use of the enhancement of the Scheduling, Performance and Time
UML profile [22] and on the generation of Layered Queuing Networks
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(LQN) [23] from standard Accord/UML application models. In the same
way as was done for the scheduling issue, we foresee here the opportunity to
bridge the gap with tools that were devised to extract LQN properties.

3.4 From models to code

Real-time embedded systems have to meet various design constraints
including consumption of energy or memory and a sufficient level of
performance to satisfy real-time requirements. There are actually several
kinds of real-time embedded systems. They cover a wide range of domains
going from cell phones applications to nuclear power plants control systems
or also spacecrafts embedded calculators. Each domain has its own
constraints to meet. This concern takes place at every stage of the design
process but the fact that code of the application is the last link in the chain,
makes code generation an essential and critical phase of model-centric
development. Code provided by generators has to meet constraints of the
RT/E application itself but also has to take into account the limitation of the
resources provided by the hardware supports of the application. Hence, code
generation needs to be optimized for each targeted platform depending of the
features it offers. Besides, there are often several solutions to generate code
from a given model. For example, a state-transition model may be generated
under the form of a set of nested switches [24], or using the state pattern
[25], but also by generating tables. These three patterns of code generation
will not have the same impact on energy, memory and performance features
of the generated code.

These different patterns of code generation are proposed in the
Accord/UML workbench. Hence, code for different optimization purposes
can be generated from the same model. Currently, the user has to manually
make the choice of the code generation pattern, but our goal is to have a
“smart” code generator capable of making this choice as automatically as
possible. More than constraints specifications, this requires an elaborated
platform description model to gather sufficient amount of information and
we also need to elaborate some heuristics, keeping in mind combinatorial
explosion issues, to be able to make the most appropriate choice.

Another axis of our ongoing work on optimized code generation concerns
the ability to quantify the efficiency of the generated code in terms of
energy, memory or performance in order to validate the fulfilment of
requirements. From our point of view, this is a very important challenge in
order for model-driven development to be a success in real-time embedded
system development domain.
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4. CONCLUSIONS

We strongly believe that the MDA approach, or more generally design
processes centered on models design, constitutes a powerful mean to
facilitate real-time embedded systems development. However, this statement
will be completely true only if support tools and design processes guidelines
are defined and refined, taking into account the very specific aspects of this
application domain.
This paper expands this core rationale by describing the Accord/UML
platform, a combination of an MDA-compliant methodology and a
supporting workbench for developing real-time systems. In Accord/UML,
going through development process is eased by models transformation
automation and code generation, and support is provided until code
execution. In order to mitigate concerns linked to implementation, a
seamless integration of embedded and real-time features is performed all
along the development process, for instance by providing methods and tools
for temporal validation, or by extending the UML to a “real-time UML”.
The relevance of our approach has been assessed in various applications
from the automotive and telecom industry in the context of European project
such as AIT-WOODDES, EAST, or ARTIST.
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Abstract: The paper describes a method for the detection of deadlocks in large
UML models of reactive systems. Therefore a multi-phase-approach will
be presented which consists of the four phases: property extraction,
potential deadlock analysis, deadlock reachability analysis and result
visualisation.
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UML.

1. INTRODUCTION
In the last few years the Unified Modeling Language (UML) emerged

to the standard modelling language in the field of object-oriented de-
sign. Even in technical domains like automotive and aircraft industry
the application of UML has grown appreciable. Due to the fact of high
safety requirements in these areas the combination of UML and formal
methods is a popular object of research.

A very specific but practically relevant part of this field of investiga-
tion is the detection of deadlocks in UML models. Since they are very
easy to model but hard to find by manual inspection, automatic methods
for deadlock detection are convenient to reduce development costs and
to enhance quality. Recent contributions (e.g. [3],[8]) allow the detection
of deadlocks in UML models using model checking techniques. They are
very general and allow the proof of absence of deadlocks as well as many
other properties. Currently the systems to be checked are limited in size
(see [1],[2],[6]) depending on the state representation used. A further
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restriction of the regarded contributions is the small supported subset
of UML.

Hence, the model checking approach cannot be used for any given
project without additional effort. In particular the rich set of expressive
modelling concepts provided is the payoff of UML.

The presented contribution aims at the automatic detection of dead-
locks in large reactive system designs modelled by a rich UML subset.

Therefore in section 1 an expressive UML subset for reactive systems,
containing class, statechart, sequence and collaboration diagrams is in-
troduced.

Based on this, in section 2, a multi-phase analysis method is provided,
which allows the automatic detection of deadlocks. Subsequently we
conclude the presented work.

2. AN EXPRESSIVE UML SUBSET FOR
REACTIVE SYSTEMS

In order to provide an expressive UML subset for reactive systems
with the full usability it is necessary to include the most commonly used
concepts. A minimal but complete subset of necessary concepts is hard
to define by academic means. In the present case the concepts included
are the achievement of an academia/industry co-project described in [5].
These are essentially concepts for the structural and logical decomposi-
tion, modelling of concurrency/parallelism aspects, and the definition of
the behaviour of the system under development.

For the definition of the static structure the class diagram concepts
of UML are used. Within class diagrams the package concept is used to
provide a high-level logical decomposition of the system under develop-
ment. In order to define the system border the package level stereotype

is used. The further decomposition of the system under
development is done using classes and associations.

One important aspect of reactive systems is the concurrency. The
first design decision in the reactive system design is the distinction be-
tween active and passive components. Therefore the UML provides the
feature isActive which is anchored as an attribute of class in the UML
metamodel. Following the definition of the UML specification (see [7])
a class is an active class, if its meta-attribute isActive is set to ‘true’.
The class thus has an own thread of control. Whether active classes on
the same hierarchy level of a UML model are executed concurrently or
in parallel is left open on this level of abstraction. In the later design
phases this aspect may be refined using the stereotypes and

The former is used to denote software components which
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are running concurrently and the latter identifies hardware components
which are running in parallel by default.

For the hardware/software-codesign more elaborate concepts are nec-
essary which are beyond the scope of the present contribution.

Besides the structural modelling of the system under development the
behavioural aspects are important. In our profile the internal behaviour
of objects (instances of classes) is modelled using statemachines. For
each active class a statemachine must be defined. Since passive classes
have no own thread of control they have no own internal behaviour and
therefore they have no associated statemachine. This does not apply for
their operations. The behavioural modelling of class operations may be
done using statemachines. For simplicity we state the following assum-
tions for the UML models under analysis:

1

2

3

4

5

6

Nested statecharts are not used,

Concurrent states are not used,

All active objects are created in the initial phase, later on, only
passive objects are created using constructor methods,

Guards are boolean expressions over attribute and event-parameter
values,

Time events are regarded as equal to completion events,

No usage of history states.

The assumptions 1-4 are only stated for simplicity reasons and do not
limit the generality. Assumption 5 has no influence on the generality,
too, but it is needed for the analysis. If time events are not regarded1 as
completion events the underlying deadlock model must be changed into
a timed deadlock model. This would introduce a lot of effort without
advancing the analysis.

Assumption 6 deliberately increases the generality of the modelling
because from the authors standpoint the usage of the history state con-
cept of the UML decreases the comprehensibility of the respective model
in an irresponsible manner. Another important aspect of the reactive
system modelling is the time modelling. In particular for real-time sys-
tems this is essential. For the purpose of deadlock detection we abstract
from the timing aspects and therefore do not present our UML time
modelling concepts (see [4]) within this paper.

1 Since in the deadlock analysis time events are only regarded as completion events, the
developer may use them as accustomed.
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3. A MULTI-PHASE AUTOMATIC
DEADLOCK DETECTION METHOD

Our contribution is based on a multi-phase analysis process as shown
in Fig. 1. In the first phase the deadlock relevant properties of the UML

Figure 1. The multi-phase-method

model are extracted and stored in mathematical structures (e.g. lists,
sets, tuples) which allow effective algorithms in the second phase.

There the UML statechart diagrams are analysed statically in order
to find out which “wait-for”-relations between active objects exist. For
this purpose the State-Wait-Graph is introduced which allows white box
deadlock detection. In contrast to classical wait graphs, the State-Wait-
Graph representation considers the internal state of the active objects
expressed as statechart diagrams. The detection of cycles in the State-
Wait-Graph indicates the existence and location of potential deadlocks.

Whether these potential deadlocks are reachable at run-time, depends
on the binding of attributes and parameters of operation calls between
active objects to actual values. These aspects are analysed in the third
phase of the method, which performs a deadlock reachability analysis.
For this purpose relevant execution paths are derived from the model
and the associated transitions are analysed.
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When a potential deadlock situation is reachable, this is detected by
the method and the complete history of this deadlock can be stated. The
included result visualisation mechanism generates a sequence diagram
containing an illustration of the deadlock trace.

3.1 Property Extraction

In the property extraction phase all active classes of the UML model
are analysed concerning their communication aspects. In concrete terms
this means that for each active class the set of produced events and
consumed events is calculated and stored in producer and consumer lists.
For this purpose call events are regarded as consumer and call actions
are regarded as producer of events. Thereby events are only considered
if their consumer and producer are suitably associated.

3.2 Potential Deadlock Analysis

A potential deadlock is a cyclic wait situation between concurrent
or parallel components of a system each within a specific state. Our
respective deadlock model is the State-Wait-Graph (see Fig. 2). This
is a directed graph in which each vertex represents an active object in
a specific state (of the associated statechart diagram) and each edge
represents a ’wait-for-relation’. The number of vertices of the State-

Figure 2. Principle of a State-Wait-Graph

Wait-Graph is the same as the number of states of all statechart diagrams
of the model which are associated to active classes. The number of edges
depends on the transitions defined in these statecharts. The head of each
edge is connected with the vertex waiting for some specific event. The
vertex connected with the tail of the edge is a potential producer of this
particular event.

The potential deadlock analysis starts with the creation of a State-
Wait-Graph. This is done by operating on the structures (e.g. consumer
and producer lists) created in the property extraction phase.

Having created the full State-Wait-Graph of the system, potential
deadlock situations can be detected. A potential deadlock situation is
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a situation in which two or more objects (each in a specific state) are
waiting mutually for the production of a particular event.

In our approach the next phase is to detect all cycles in the State-Wait-
Graph and then sort out the relevant ones. In contrast to classical wait-
graphs (e.g. [9]), where each detected cycle is a potential deadlock the
procedure is more complicated for State-Wait-Graphs due to their white-
box-nature. Cycles with all vertices being of the same object (as shown in
Fig 3) are not potential deadlocks but logical errors in the corresponding
statechart diagram. Cycles with two or more vertices of different objects

Figure 3. Cycle within one object

are potential deadlock situations, if no object is involved with more
than one state. Otherwise we denote them as ’cycles with over-involved
objects’ (see Fig. 4). The detection of all cycles in the State-Wait-Graph

Figure 4. Over-involved object

is done using an advanced depth-first-search algorithm which calculates
all cycles of the graph and the partitioning within a single run. The
pruning of logical errors and cycles with over-involved objects is done
using set-operations.

After the pruning the remaining potential deadlock situations need
to be examined concerning outgoing edges. This is done by traversing
the graph and calculating the out-degree of each vertex. If all vertices
have the out – degree = 1 the potential deadlock situation is called a
potential deadlock in our approach. If there are vertices with an out –
degree > 1 (as shown in Fig. 5) it depends on the target object of
the edge leading out of the cycle, whether the cycle under examination
is a potential deadlock. When the target object is not involved in the
cycle the examined cycle is not a potential deadlock. Otherwise it must
be checked, if the edge connects two states of the same object. If the
check evaluates to true the potential deadlock is combined with a logical
error and the logical error should be corrected before going on in the
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Figure 5. Out transition of a cycle

deadlock detection. If it evaluates to false we have a further cycle in the
State-Wait-Graph. In this case the next phase can be initiated because
our cycle detection ensures that all cycles are found and all cycles are
handled seperately in the further analysis.

Potential deadlock means, that it is statically possible that the dead-
lock occurs but whether this really may happen at run-time depends
on some dynamic aspects of the model which are analysed in the next
phase, the deadlock analysis phase.

If no potential deadlock is found in this phase, the system is deadlock
free and the next phase may be omitted.

3.3 Deadlock Reachability Analysis
The purpose of the deadlock reachability analysis phase is to pro-

vide evidence for each detected potential deadlock found in the previous
phase. This means to calculate the possible paths into the potential
deadlocks detected using a search algorithm and to analyse whether these
paths are executable by an heuristic simulation approach. As illustrated

Figure 6. An example of statecharts
containing a potential deadlock

Figure 7. An example of path lists

in Fig. 6, the search algorithm performs a specialised depth-first search
for each relevant statechart diagram and stores all paths to potential
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deadlock states in a path list (see Fig. 7). Each path list contains all
states and transitions of the respective path.

The path lists are used as input for the subsequent heuristic simula-
tion. In the simulation the state machines are executed on a simulator
which implements the exact UML semantics as defined in [7]. Besides
very special features like the queue length and the evaluation order of
expressions as defined in the semantics the following dynamic aspects
of the model need to be considered: guard conditions, event parameter
values and attribute values.

In the case that one or more paths into a potential deadlock situation
exist it is sufficient to find one executable path during the simulation.
The other case is the more expensive one. When all paths of the path
list are executed once and no executable path is found, it cannot be
stated whether there is an executable path or not. Even after theo-
retically infinitely many executions one cannot be sure that the next
execution does not lead to a potential deadlock situation. In this case
the simulation will break after an adjustable number of executions and
a corresponding warning is issued to the user.

The disadvantage of this heuristic simulation approach is that the non-
existance of deadlocks cannot be proved if there are potential deadlocks
found in phase 2 into which no executable path could be found after
executions.

In this infrequent case only an exhaustive search over a completely un-
folded state space as model checking does could help. Since our approach
basically adresses models which are to large for model checking there is
no other solution than the usage of manual abstraction techniques in
conjunction with advanced model checking techniques.

3.4 Result Visualisation

The last phase of the presented contribution is the result visualisa-
tion phase. Its task is to provide an easily comprehensible representation
of the results of the deadlock detection procedure. Therefore extended
UML sequence diagrams are applied. In Fig. 8 a simple deadlock situa-
tion is shown, in which, for simplicity, only the deadlocked states ’A.S1’
and ’B.S2’ are displayed. The corresponding result visualisation chart is

Figure 8. Cycle in the State-Wait-Graph

given in Fig. 9. There it is apparent that the active objects A and B are
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running directly into a deadlock situation after being created from the
system. Next to the sequence of communications ahead of the deadlock

Figure 9. Example of a deadlock trace

situation the participating objects and states are relevant and presented
to the user. Other visualisations are possible but not in the focus of this
contribution.

4. CONCLUSION
We have presented a method for the detection of deadlocks in UML

models of reactive systems. The present approach has two main advan-
tages. First, the method supports an expressive set of UML concepts
and thus real-world UML models of reactive systems can be checked
without modification. Second, the size of models to be checked, may
be significantly larger than a model checker can handle. Since the eval-
uation of the presented method is in progress, we will not give a full
complexity analysis within the scope of the presented contribution but
a rough estimate causes the assumption that the overall algorithm will
be linear in the number of states and transitions multiplied by a factor
depending on the number of potential deadlocks found, the number of
reachable execution paths and a set of further internal parameters.

The main drawback is that in seldom cases (as discussed in section
3.3) the freedom of deadlocks cannot be stated and thus the method is
not complete. Since in this case a corresponding message is issued to
the user the creditability is not affected.
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Another disadvantage is the loss of generality in contrast to model
checking, which allows the proof of almost any property expressible in
the particular logic dialect used.

For a class of applications the criteria model size and expressiveness
of the supported UML subset are more important than the generality of
properties.

The property extraction and potential deadlock detection phases are
experimentally evaluated using a prototype implementation. The first
results of this evaluation are promising, but it turned out that the cre-
ation of adequate UML models as input for the method is an extensive
and difficult task. Hence, we defer the continuation of the experimental
evaluation in favour of a formal proof.
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Abstract: System level design incorporating system modeling and formal specification in
combination with formal verification can substantially contribute to the
correctness and quality of the embedded systems and consequently help reduce
the development costs. Ensuring the correctness of the designed system is, of
course, a crucial design criterion especially when complex distributed (real-
time) embedded systems are considered. Therefore, this paper aims at
presenting a verification framework designated for formal verification and
validation of UML-based design of embedded systems. It first introduces an
approach of using the AsmL language for acquiring formal models of the
UML semantics and consequently presents an on-the-fly model checking
technique designed to run the formal verification directly over those semantic
models.

Key words: embedded system design, UML, formal semantics, ASMs, AsmL, formal
verification, model-checking

1. INTRODUCTION

The increasing complexity of today’s embedded systems imposes new
demands on the overall design process and on the used design languages and
verification techniques. The system level design has become a hot topic in
the research area of embedded systems and is gradually gaining popularity in
the designer community. Typical for system level design are specification
and modeling techniques offering facilities for coping with the system
complexity such as structural decomposition, abstraction, refinement, etc.
However, employment of these techniques into the design process of
embedded systems can not succeed without appropriate support for

*This work has been supported by the German National Science Foundation (DFG)
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embedded systems can not succeed without appropriate support for
verification. Therefore, verification techniques are needed that are able to
identify the design errors hidden in the abstract and often incomplete models
at the earlier stages of the system level design.

The work presented in this paper deals with formal verification of UML-
based design for embedded systems. The main objective resides in providing
a unified verification framework based on a solid formal background that
integrates formal verification techniques together with model-based
validation techniques. In this way we believe that system designs of high
complexity could be verified at early design phase of the system
development lifecycle.

The remainder of the paper is organized as follows. Section 2 gives an
overview of the proposed verification framework. Section 3 outlines the
work on formalizing the UML semantics by means of the ASM-theory based
specification language AsmL. Section 4 presents a model checking approach
towards formal verification of the AsmL specifications. In this section, the
focus is put on the description of an on-the-fly algorithm and its functional
parts consequently followed by the introduction of possible enhancement
towards the efficient model checking of distributed systems. In Section 5 the
related work is discussed. Finally, the paper concludes with a brief outlook
on the future work in Section 6.

2. FRAMEWORK OVERVIEW

The proposed verification framework is depicted by means of a process
flow diagram shown in the Figure 1. The input to the verification process
(dashed box) is represented by an UML model describing the specified
system. The verification process is further divided into two parallel
branches, namely the formal verification and the validation. The main goal
of the formal verification consists in proving the correctness of the required
properties that a given UML model has to fulfill. This is achieved by
incorporating model checking techniques into the verification framework.
The validation branch, on the other hand, comprises of the methods for
conventional model simulation amended by the model-based testing. Both
branches are built upon a common formal background based on the theory of
Abstract State Machines (ASMs) and are implemented in the AsmL
language.

In the rest of the paper we focus only on the formal verification, i.e. the
model checking of AsmL specifications. The simulation and model-based
testing approaches are based on the tool support coming together with AsmL
and are out of the scope of this paper.
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Figure 1. Verification framework for UML-based design

3. FORMALIZING UML SEMANTICS

The main prerequisite for integration of the proposed verification
methods into the verification framework is the presence of a rigorous formal
semantics of the modeling paradigm, in our case represented by the Unified
Modeling Language (UML 2.0) [1]. Therefore, choosing the right formal
method is one of the crucial decisions to be taken. In our approach the
Abstract State Machines (ASMs) [2] has been chosen as a suitable formalism
to define the formal semantics of UML. The ASMs have approved their
strong modeling and specification abilities in various application domains
[3] also including work on formalization of selected parts of the older
version of UML [4,5]. In particular, we adopted the AsmL language [6], an
executable specification language built upon the theory of Abstract State
Machines, to formally describe the UML semantics.

Formalizing the UML semantics is a tedious task, especially when the
complexity and vastness of the whole UML 2.0 is considered. Therefore, our
aim is not to formalize the complete semantics of UML. Instead, we consider
only those UML diagrams that have been adopted into our design
methodologies focusing on the two main application domains we are active
in: the design of distributed production control systems and the design of
self-optimizing multi-agent systems with mechatronic components. In the
former, UML is applied to model distributed software for controlling
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production lines. We use UML structure diagrams, collaboration diagrams
and state machine diagrams combined with modeling of actions by means of
so-called Story Diagrams [7]. In the latter, similar diagrams are employed
except that the state machine diagrams are extended with discrete time
semantics. Due to the fact that the formalization process is out of the scope
of this paper we omit further details.

Although both application domains strongly overlap, there still exist
specific semantic deviations that result in partially different semantic models
of UML written in AsmL. However, the verification framework presented in
this paper does not depend on any semantic deviations. The solution resides
in using the AsmL as formal platform for all verification and validation
methods of the framework that are designed in a way to support any AsmL
specification regardless of what it describes.

4. MODEL CHECKING ASML MODELS

One of the qualities of AsmL is the high expressivity and richness of the
language that allows us to keep the semantic models of UML in a readable
and comprehensible form. This gives us flexibility in further maintenance of
the semantic models and eases their modification and updating. However, in
order to keep this advantage of AsmL we need to provide such a model
checking approach that imposes least restrictions on the AsmL specification.
Concretely, an AsmL specification should be allowed to fully exploit the
robust data type system build in the AsmL, should allow dynamic object
creation as well as usage of whole operational functionality provided by
AsmL. The only constraint imposed on a specification is related to the size
of its state space that has to be finite. The model checking approach
presented in the next sections obeys all these requirements. It can be
classified as an on-the-fly approach working over the explicit ASM state.

4.1 On-the-fly model checking

The intended model checking approach is depicted in the Figure 2. First
of all, a particular AsmL specification and the property to be verified are
provided as inputs. The property is specified in form of a temporal logic
formula. In the first step, the temporal formula is transformed into a property
automaton. As next, the AsmL specification is compiled and prepared for
on-the-fly exploration. When both steps are successfully finished, the
verification algorithm is started. During this process the state space
exploration of a given AsmL specification is driven by the verification
algorithm in an on-demand manner. The verification process may terminate
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in one of the following states: 1) in the OK state, after the whole state space
has been explored and no contradiction of the property has been detected, 2)
in the contradiction state, if a state of the system is found that does not
satisfy the property and a counter example is produced 3) in the exception
state, when an exception inside the specification is thrown during the state
space exploration, and 4) in the user termination state, if the verification
process was forced by the user to terminate.

Figure 2. On-the-fly model checking of AsmL

4.1.1 Property specification and transformation

During model checking a system is verified against a property describing
the desired system behavior. The property is expressed in form of a temporal
logic formula. There exist several kinds of temporal logics, e.g. CTL, LTL,
CTL* which usually differ in the set of expressible behaviors. In our
approach we consider the CTL* logic that subsumes both CTL and LTL.
The transformation of a CTL* formula into an automaton is done following
the method introduced in [8]. This method uses a set of predefined goal-
directed rules to derive the states of specialized tree automata called



26 Martin Kardos and Yuhong Zhao

alternating Büchi tableau automata (ABTAs). An ABTA represents the
property automaton showed in Figure 2.

4.1.2 Transition system construction

A transition system (a state transition graph) derived from an AsmL
specification represents all possible runs of the specification. Obviously, the
construction of such a transition system is, with respect to the needed time
and resources, the most costly part of the overall model checking process.
Therefore, we propose an on-the-fly construction approach that uses the
exploration function built-in in the AsmL Toolkit. This function should
allow us to drive the exploration of the system state space according to the
demands of the verification algorithm. Additionally, the configurability of
the exploration process gives us the apparatus to control how the state space
is going to be explored. Thanks to this feature, even an infinite specification
can be model checked within a fixed state space boundary (bounded model
checking).

4.1.3 Verification algorithm

The model checking algorithm adopted in our approach originates in the
work presented in [8]. It works over a product automaton, constructed from
the produced property automaton and the transition system. Since, in our
case, the transition system is generated in an on-the-fly manner, the original
algorithm had to be adapted accordingly. In addition, the algorithm was
redesigned in order to achieve a certain generics with respect to the
implementations of transition system and property automaton. This gives us
more freedom for experiments towards achievement of optimal
implementations.

4.2 Incremental Model Checking

The presented model checking approach, similar to any other existing
approaches, can show its weakness when it comes to verification of AsmL
specifications that have a large state space. This is typical for example for
distributed systems that consist of several interacting components running in
parallel. In order to cope also with such distributed systems we propose a
solution embedded into our verification framework. The main idea resides in
defining an algorithm that is capable of executing the model checking in an
incremental manner. The algorithm proposed here, depicted in Figure 3, can
be seen as an enhancement of the on-the-fly algorithm presented above. It
considers an AsmL specification consisting of several components (ASM
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agents) running in parallel and affecting each other only through their
precisely defined communication. In addition, the properties to be verified
are constrained to only ACTL formulas (the CTL formulas with only
universal quantifiers).

Figure 3. Control flow of incremental model checking

For an embedded system M with a finite set of variables
where each variable has an associated finite domain the

set of all possible states is Let P be the set of atomic
propositions derived from the system. Then the system can be represented as
a Kripke structure M = (S, I, R, L) where S = D is the set of states, is
the set of initial states, is the transition relation between states and

is the labeling function. Given an ACTL property f, to avoid
checking the satisfiability of f directly on M due to the state space explosion
problem, we can obtain an abstract model (initial abstraction) from the
original system by applying an appropriate abstraction function h to M.
Intuitively, the abstraction function h induces an equivalence relation on
the domain D. That is, let d, e be states in D, then It
means that the equivalence relation partitions D into a set of equivalence
class denoted as where If we
regard each equivalence class [d] as a state from an abstract view, an abstract
Kripke structure derived from M with respect to h can be
defined as follows:

1.
2.
3.
4.

is the abstract domain

Usually, the abstraction function h can be obtained by analyzing the
dependency relationship between the variables in the system as well as the
effect of these variables on the property to be verified. It is obvious that
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covers all possible behaviors of M but contains fewer states and fewer
transitions than M. In this sense, is an upper approximation to M, which
means that an ACTL formula f true in implies it’s also true in M.
However, in case that falsifies f, the counterexample may be the result of
some behavior in which is not present in the original model M.
Therefore, by refining to a more precise model, i.e. far closer to M, it is
possible to make the behavior which caused the erroneous counterexample
disappear. For the refinement of we repeat the above procedure until a
definite conclusion can be drawn. During this procedure, the initial
abstraction will be refined more and more close towards M. The
refinement can be done based on the information derived from erroneous
counterexamples [19]. As a result, the refined model is obtained by splitting
the abstract state causing the erroneous counterexample into two subsets of
the states, each of which represents a new abstract state. In this way, the
erroneous counterexample does not exist in the refined model any more.

Given an abstraction function h, it is easy to know that the initial abstract
model can be constructed on-the-fly. Consequently, we can apply the on-
the-fly model checking mentioned in section 4.1 to the abstract model of the
original system M. If the abstract model satisfies f, then we can conclude the
original system satisfies f. In case that a counterexample is found, we can
locate the first abstract state which can cause the counterexample and then
split the abstract state into two abstract states. Afterwards, we continue the
on-the-fly model checking on this modified abstract model until a definite
answer is obtained.

5. RELATED WORK

Many methods on model checking UML model [9,10,11,12,13] have
been presented in recent years. The basic idea of all these methods is to
transform the UML model to the input language of an existing model
checking tool, say SMV, SPIN or UPPAAL for example. In other words, the
semantics of the UML model is reflected through the input language of some
model checker. The expressiveness of the model checker’s input language
usually limits the expressiveness of the checked UML model. Unlike these
methods, our method presented in this paper uses the ASM-based executable
specification language AsmL to define the semantics of the UML model.
The expressive power of AsmL allows us to formalize the semantics of any
complex UML model that implies no constraints on used UML diagrams at
the user’s side. In addition, the resulting AsmL specification can be executed
or tested by the tools coming with AsmL.
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Of course, AsmL can also be used to do model checking. Since AsmL is
quite a new language, there are no published approaches aimed at model
checking AsmL yet. However, a few papers can be found concerning model
checking of Abstract State Machines [14,15,16]. Basically, we can identify
two main approaches both based on translation of the selected subsets of
ASMs into the input language of an existing model checking tool. In the
[14,15] an ASM model is first simplified by flattening the data structure and
the corresponding ASM rules, and then translated (by direct mapping) to the
SMV [17] input language. The approach introduced in [16] follows similar
strategy, but uses the SPIN [18] model checker and its PROMELA language.
The main drawbacks of both approaches consist in the constraints imposed
on the supported ASM models. On the other hand, imposing such constraints
seemed to be an inevitable decision in order to bridge the gap between the
different expressive power of ASMs and the model checker languages. Our
method can avoid this problem by model checking AsmL specifications
directly.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented a verification framework designated for
formal verification and validation of UML-based design of embedded
systems. The main ideas consist in using the AsmL specification language to
define the formal semantic model of the supported part of UML and
consequently applying model checking technique directly on the resulting
AsmL semantic model. In addition, we have introduced two model checking
methods, on-the-fly model checking and incremental model checking that
we hope, are suitable for verifying large complex system models.

The work presented here is still an ongoing research work that needs to
be evaluated in order to approve its practical utilization. Therefore, after
finishing the implementation of the discussed methods we plan to focus on
their evaluation by taking real system examples from the already mentioned
application domains. Consequently, we plan to integrate the formal
verification into our verification framework together with the simulation and
model based-testing functions provided by the AsmL tools.
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LTL’S INTUITIVE REPRESENTATIONS AND
ITS AUTOMATON TRANSLATION

Yuhong Zhao
Heinz Nixdorf Institute, University of Paderborn, Germany

Abstract: Compared with other verification methods, to some sense, model checking can
be thought of as more attractive method to test hardware and software systems
due to its automatic features. However, a stumbling problem is how to supply
correct formal properties in logic to do model checking by system designers
without specific mathematical background. This paper first presents two intuit-
tive representations for the LTL formulas: one is graphical automaton-like; the
other is textual regular-expression-like and then shows how these representa-
tions can be used to construct Büchi automata for LTL model checking.

1. INTRODUCTION

Software components have become an important part of the complex
distributed (real-time) embedded systems, which usually run in a much more
constrained environment than “traditional” computer systems and require
consequently safety-critical and high-reliability to these systems. Therefore,
one challenge today’s system designers are facing is how to guarantee the
correctness of such systems, especially when large concurrent and reactive
systems are concerned. Moreover, in safety crucial applications, real-time
requirements need to be considered, which further increase the difficulty of
system development and validation. The non-determinism inherent in such
applications usually makes them hard to test. However, formal methods for
specifying and verifying systems can offer a greater assurance of correctness
than traditional simulation and testing [CGP00].

Formal verification methods can ensure that a high-level system design
really meets rigorously specified correctness requirements, thereby increase-



32 Yuhong Zhao

ing the possibility that faulty designs can be discovered at the earlier phases
of system development. Temporal logics [CD88] are well-suited for specify-
ing temporal properties of systems. Nevertheless, experiences show that
specifications of even moderate-sized systems are too complex to be readily
understood if without some expertise in idioms of the specification language
[DAC99]. Consequently, system developers seldom make signifycant use of
formal specification and verification techniques in practice.

In order to be widely adopted in the development of real world systems,
formal specification and analysis methods should be made accessible to sys-
tem designers and software engineers in the sense that users can express the
properties of the systems about which they wish to reason as intuitively as
possible and to confirm automatically that the design models of the systems
satisfy the required properties. As a result, system developers can use formal
specifications throughout the system lifecycle to guide development, main-
tenance and enhancement.

To do this, the author has presented intuitive representations for a widely
used temporal logic called CTL* as well as its extensions with respect to
time in [Zha03]. These representations include automaton-like graphical
notations and regular-expression-like textual notations so as to fit into
different needs. To some extent, these representations can offer a natural
way to express system properties without sacrificing the benefits of the
formal notation. Moreover, the intuitive representations of the LTL formulas
can help to construct Büchi automata with features different from other
methods [DGV99, Fri03, GL02, GO01, SB00, Tri02]. This method
makes fairness constraints caused by the “U” operators disappeared and the
resulting automata are the Büchi automata with only one acceptance condi-
tions, instead of the generalized ones with multiple acceptance conditions.

Considering the limit of space, the main aim of the paper is to introduce
the intuitive representations for LTL formulas and then present the automata
translation method based on these intuitive representations. The remainder of
this paper is structured as follows: Section 2 gives the preliminaries on linear
temporal logic and on Büchi automata; Section 3 presents the intuitive
representations for the LTL formulas; Section 4 addresses applying these
representations to automata translation; Section 5 discusses related work and
finally we draw conclusions in Section 6.

2. PRELIMINARIES

Linear Temporal Logic(LTL)[Pnu81] is composed of temporal operators
(X, F, G, U and R) which specify properties of a system execution path.
LTL formulas are defined inductively starting from a finite set P of atomic
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propositions, the standard Boolean operators, and the temporal operators.
Without loss of generality, given a system M, let be an execution path;

be a proposition; f and g be LTL formulas. The interpretation of LTL can
then be described as below:
1.
2.
3.
4.
5.
6.
7.
8.
9.

M,
M,
M,
M,
M,
M,
M,
M,
M,

p holds at the first state of
f does not hold along
either f or g holds along
both f and g hold along
f holds at the second state of
f holds at some state on
f holds at every state on
f holds along  up to some state where g holds.
g holds along up to and including the first state where
f holds.

Büchi automata are widely used in model checking to verify LTL for-
mulas due to the characteristic that both the system model and the properties
can be represented in an automaton form. There are several variants of Büchi
automata. The variant typically used in model checking is Büchi automata
with labels on transitions and simple accepting conditions defined in terms
of states. Simply, a Büchi automata is a 6-tuple <S, P, R, L, F>, where S
is a finite set of states, P is a finite set of propositions, is a
transition relation, is a transition labeling function, is a set
of initial states, and is a set of accepting states.

3. LTL’S INTUITIVE REPRESENTATIONS

3.1 Graphical Representation

Without loss of generality, Figure 1 - Figure 5 illustrate the graphical
representations for LTL formulas Xf, Ff, Gf, f U g and f R g respectively,
each of which is composed of a dot and a path pattern. Simply speaking,
a dot connects to the first position of a path pattern and a path pattern
consists of  nodes and edges: a node denotes a position on the path pattern, on
which the formula “f” means only those states satisfying f can occur in this
position (matching the node); an edge denotes the sequential order between
states, on which a symbol “*” represents repeating zero or finitely many
times and a symbol represents repeating infinitely many times. In
addition, “T” refers to true representing “all states” in the system M;
similarly, “F” refers to false representing “no state” if needed. Thus, path
patterns can intuitively illustrate what states may occur in which positions on
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a matching path. In this sense, a path pattern can be seen as a type of those
paths matching this path pattern and such a path can be seen as an instance
of this path pattern.

Figure 5. f R g

The meanings of Figure 1 - Figure 5 are obvious, i.e., each path matching
the above path patterns in M are the path satisfying the corresponding
formula. But how about the more complicated LTL formulas with the nested
sub-formulas? Let’s take the formula as an example. As a
result, Figure 6 is the graphical representation in which the nodes with a dot

characterize the nested cases. That is, a path pattern connected to the dot
in a node of another path pattern represents a subformula. Therefore, a

path starting from a state matching such a node should, on the one hand,
conform to the path pattern starting from the node and, on the other hand,
conform to the path pattern of the formula in the node at the same time. For
example, a path from a state matching the node should follow both the
path pattern starting from and the path pattern connected to the dot in

Note that this is different from Figure 5 which means a path should
follow one of the two given path patterns. In addition, the negation form can
be represented as In this way, we can intuitively represent any

Figure 6.

Figure 1. Xf Figure 2. Ff

Figure 4. f U gFigure 3. Gf
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complex LTL formulas. The proof is simple by structure induction and
therefore omitted here.

3.2 Textual Representation

The idea of textual representation for LTL formulas is inspired by the
form of regular expressions. However, in order to describe LTL formula
intuitively in a textual way, we just borrow some notations of the traditional
regular expressions and add some new notations to fit our needs.

The new notations related to logic operators are “~” denoting Negation,
“|” denoting Or, “&” denoting And, “=>” denoting Implication and “<=>”
denoting Equivalence. In particular, “!” is employed to force the formula im-
mediately preceding it to repeat infinitely many times. The notations borrow-
ed from the regular expressions are the operators related to concatenation
and closure [HMU01] which also have a similar meaning here. In addition,
“T” and “F” have the same meaning as in the graphical representation.

As a result, the basic LTL formula Xf can be written as “TfT!”, Ff can be
written as “T*fT!”, Gf written as “f!”, f U g written as “f*gT!”, and “f R g”
written as As for the complex LTL formulas,
say its regular form is also easy to be obtained in this way,
i.e., “(h => T*(f*gT!)T!)!”. It’s not difficult to reason that this textual repre-
senttation has a direct one to one mapping with the corresponding graphical
representation. Therefore, its semantics is the same as the graphical one. In
fact, the regular form is another way to represent path patterns. Note that, to
avoid ambiguity, this regular representation has to be parenthesized when-
ever need. Otherwise, the meaning of the expression “(h => T*(f*gT!)T!)!”
would be not clear if the brackets surrounding the sub-expression “f*gT!”
were missing.

4. LTL’S AUTOMATON TRANSLATION

Because the graphical and the regular representations for LTL formulas
are essentially the same thing, here we only use the regular form to illustrate
the translation procedure in this section. On the other hand, we suppose the
LTL formula is of the restricted negation normal form, in which the negation
is applied only to propositional variables.

4.1 Example

To ease the understanding of the translation procedure, let’s first take an
LTL formula as an example. According to Section 3, the textual
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form of is representing an infinite sequence of nodes
labeled with If we separate the first node from the sequence, the
rest of the sequence still forms an infinite sequence. That is, can
be derived into two parts: Note that
the double colon “::” here is employed to separate the two parts: the part
before “::” is called head; the part after “::” is called tail. Intuitively, a path
pattern can be seen as a sequence of nodes, in which the first node is head
and the rest of the sequence tail. As for its head is
and its tail is However, its head is still a path pattern not a state
formula. Our goal is to transform a path pattern into its “normal” form, i.e.,
its head is state formula. Similarly, According to
the interpretation of LTL formulas, it’s not difficult to reason that

Moreover, since (T*gT!) is still a path pattern, can be
further transformed as follows until all the head parts are state formulas:

Notice that T! matches any infinite path, so
can be represented as the following normal form:

Similarly, the normal form of is shown as below:

Let then we have

which can be seen as a variant of context-free grammar productions. We can
construct the Büchi automaton of as shown in Figure 7 from this
production form.

Figure 7. Büchi automaton of

One problem that needs to make further explain is accepting condition.
The Büchi automaton of contains two states A and B which are
labeled with and respectively. Accord-

and
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ing to the automaton construction, the state A labeled with
means any infinite path starting from A matches the state B
labeled with means any infinite path starting from B
matches and (T*gT!) at the same time. It is easy to reason that
the loop from B directly to B is not acceptable because the infinite part (i.e.,
T!) of (T*gT!) is never matched. But the loop from B via A to B is acceptable
because Consequently, both A and B are
accepting states with such a constraint on B that the loop from B must go
through A. In general, all the states on an accepting loop can not contain a
common subformula of the form “x*yT!”. Otherwise, the loop will always
matche x*yT! and thus can not match the infinite part of x*yT! at all.

Note that in this automata translation procedure we do not need fairness
constraints with respect to the (implicit) “U” operators in the given formula.
The reason is Let A =f*gT! and B=T!, thus
in the resulting automaton (Figure 8) only the state B labeled with T! is the
accepting state, which guarantees that g has already been held before
arriving at B. In this aspect, this automata translation method differs from
many other methods by explicitly denoting the path pattern following g.

Figure 8. Büchi automaton of f U g

4.2 Translation Algorithm

The above example illustrates that the procedure of translating an LTL
formula into Büchi automaton from its path pattern representation, which is
similar to the tableau-constructing method. But the approach presented here
is more simple and intuitive. Especially, the “U” operators are no longer a
problem. In what follows, we’ll present our algorithm by imitating the
algorithm in [GPVW95]. Therefore, our algorithm has the same complexity
as the algorithm in [GPVW95].

The basic data structure used in our algorithm is called node. The states
of the automaton can be derived from nodes. A node is defined as below:

where the field formula keeps the textual path pattern of an LTL formula; the
fields head and tail keep the head and the tail of the path pattern formula
respectively. As a result, formula = head::tail. Our goal is to transform
formula into its normal form, i.e., its head is a state formula. Obviously, the
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three fields together can uniquely identify a node. Intuitively, the successors
of a node are the nodes with formulas the same as tail of the node and the
predecessors of a node are the nodes with tails the same as formula of the
node. The edge between a node and its successor is labeled with head of the
node. To some sense, the resulting automaton is a flattened path pattern.

Given an LTL formula r in a textual path pattern form, the function
create_graph initiates the automaton construction procedure by applying
split to the starting node with formula and head set to r and tail set to T!. As
a result, create_graph returns a set of nodes, from which we can derive a
Büchi automaton of r.

The recursive function split builds a tableau. It has two parameters: node
denoting the current node to be processed and node_set a set of nodes have
been generated by now and returns an updated set of nodes if possible.
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4.3 Acceptance Condition

We can deduce the accepting states of the resulting automaton as follows.
According to our automaton construction, a state labeled with a path pattern
means any infinite path (loop) starting from the state matches the path
pattern. Consequently, the infinite part of the path matches the infinite part
of the path pattern. In addition, the tails of the nodes obtained from
create_graph always have the conjunction form
where has a form of either “x*yT!” or “x!”. Notice that a path pattern of
the form “TxT!” or “xT!” is a special case of the form “x*yT!”. This
conjunction form requires any loop from the corresponding state in the
automaton match the n path patterns at the same time.

For convenience, we denote as a path pattern set
If all the states on a loop share common path patterns

of the form “x*yT!”, say,
obviously, the loop will match f*gT! forever

but never get to the infinite part of f*gT!. Consequently, such a loop is not
acceptable. However, if the above condition is not true, then we can say the
loop is acceptable. In general, if a state in a resulting automaton has a loop
starting from it and the states on the loop do not share common path patterns
of the form “x*yT!”, then the state is a (constrained) accepting state.

It’s easy to reason that a state labeled with a path pattern of the form
is definitely an accepting state and a state labeled with a

path pattern of the form is definitely not
an accepting state. Therefore, a state contains path patterns of the two forms
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“x!” and “x*yT!” is an accepting state if there is a loop to it and the states on
the loop do not share common path patterns of the form “x*yT!”.

As mentioned in section 4.1, this automata translation procedure does not
need fairness constraints with respect to the (implicit) “U” operators in the
given formula and thereby differs from many other methods. According to
the existing methods, for each subformula of the form “f U g”, a set of
accepting states is produced. In case a
formula contains multiple subformulas of the form “f U g”, then the resulting
automaton contains accordingly multiple sets of accepting states, so called
generalized Büchi automaton. The path of a generalized Büchi automaton is
accepted if for each set of accepting states, there are infinitely many s’s on
the path such that Therefore, a generalized Büchi automaton is
usually transformed into a normal Büchi automaton with only one set of
accepting states by using a counter i: each state becomes a pair <s, i>. The
counter is initialized to 0 and counts modulo where

It is increased whenever a state of the ith set is reached. As
a result, only one set of accepting states, say is needed.

5. RELATED WORK

Graphical representation, due to its visual effect, is popular in the process
of system development. Some intuitive representations for temporal logic
properties have been presented in recent years. Timing Diagrams [SD93] are
a graphical notation for expressing precedence and causality relationships
between events in a computation, the semantics of which is defined by a sub-
set of temporal logics. Graphical Interval Logic (GIL) [DKM+94] is a visual
temporal logic in which formulas resemble timing diagrams and can thus
express a subset of temporal logic, too. Timeline notation captures the event-
based LTL requirements [SHE01]. Constrained expression representation in

is essentially a regular expression which can not address infinite
executions of the system. Regular CTL (RCTL) [BBL98] covers a rich and
useful set of CTL formulas and regular expressions. Bandera Specification
Language (BSL) is a source-level model checking independent
language for expressing properties of Java program actions and data.

For the automaton translation, many existing approaches [DGV99, Fri03,
GL02, GO01, SB00, Tri02] are mainly based on the LTL formulas
or alternating Büchi automata of the LTL formulas together with some simp-
lification and optimization techniques to reduce the size of the resulting
automata. In contrast, the method presented in this paper built the automata
based on the path patterns of the LTL formulas. Path pattern is similar but
different from alternating Büchi automaton in concept and use. We just use
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path pattern(formula) to label a state, but never think of
such a state as a conjunction of n basic states labeled respectively with

A path pattern can characterize the whole path instead of the prefix of
the path, say Fg, because path pattern ends with the infinite form “x!”. Thus,
path pattern does not need accepting states. Using path pattern does not need
to transform G(F) into R(U) operator. Checking a (constrained) accepting
state is simple and the resulting automaton can directly be used to do LTL
model checking. That is to say, we can avoid the problem caused by the
formula of form “f U g” and obtain a “normal” Büchi automaton directly.

6. CONCLUSION AND OUTLOOK

Expressing complex requirements in logic is without doubt a challenging
task. Therefore, this paper attempts to visualize the cryptic specifications to
ease the question. By using path pattern, one can intuitively reason what type
of states can occur in which positions on a path and both state- and event-
based properties can be specified in a unified way. Moreover, path pattern
can help to construct the normal Büchi automata, instead of the generalized
ones, which different from many other translation methods in the aspect that
this method avoids the problem caused by the “U” operator naturally. We
plan to study on the simplification and optimization methods related to this
automata translation way in the future.
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Abstract: We describe hybrid observational transition systems, or HOTSs. HOTSs
are written in terms of equations and verified by means of equational
reasoning. More concretely, CafeOBJ, an algebraic specification lan-
guage, is used to specify HOTSs and verify that HOTSs have properties
by writing proofs, or proof scores. One case study is used to demonstrate
how to model hybrid systems as HOTSs, specify HOTSs in CafeOBJ
and verify that HOTSs have properties with the CafeOBJ system.

Keywords: CafeOBJ, HOTS, hybrid systems, modeling, verification.

1. INTRODUCTION

Embedded systems are inherently hybrid. Hybrid systems are sensi-
tive to physical continuity such as real-time and real-temperature. Real-
time systems are one sub-class of hybrid systems. Hybrid systems can
be complex and subject to subtle errors. Therefore, several formal meth-
ods of modeling and verification of hybrid systems have been recently
proposed(Kesten et al., 2000; Lamport, 1993; Lynch et al., 2003). Our
method proposed in this paper is one of such formal methods. Our
method is based on equations and equational reasoning. Equations are
the most basic logical formulas and equational reasoning is the most fun-
damental way of reasoning(Gries and Schneider, 1993), which can mod-
erate the difficulties of proofs that might otherwise become too hard to
understand. Consequently, we expect that our method is easier to learn
and use than existing formal methods for hybrid systems.

1
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We have been successfully applying equations and equational reason-
ing to modeling and verification of distributed systems such as security
protocols (Ogata and Futatsugi, 2003a; Ogata and Futatsugi, 2003b).
The method used is called the OTS/CafeOBJ method(Ogata and Fu-
tatsugi, 2003c), in which systems are modeled as observational transition
systems, or OTSs, which are written in CafeOBJ(Diaconescu and Fu-
tatsugi, 1998), an algebraic specification language. It is verified that
systems have properties by writing proofs, or proof scores in CafeOBJ
and executing the proof scores with the CafeOBJ system.

The OTS/CafeOBJ method is evolved in order to deal with hybrid
systems. OTSs are a definition of transition systems for writing transi-
tion systems in terms of equations. An OTS consists of a set of observers,
which correspond to variables in the usual transition system definition, a
set of initial states and a set of transitions. Observers are functions that
return observable values in an OTS. By introducing observers that re-
turn real numbers, called physical observers, OTSs can deal with hybrid
systems. Such OTSs are called hybrid observational transition systems,
or HOTSs. In this paper, we describe HOTSs and demonstrate that
equations can be used to specify hybrid systems and equational reason-
ing can be used to verify that hybrid systems have properties using a
case study in which a temperature stabilizer is modeled and verified.

The rest of the paper is organized as follows. Section 2 mentions
CafeOBJ. HOTSs are described in Section 3. A temperature stabilizer
is modeled and verified in Section 4. We finally mention related work in
Section 5.

2. CAFEOBJ IN A NUTSHELL

CafeOBJ(Diaconescu and Futatsugi, 1998) can be used to specify ab-
stract machines as well as abstract data types. A visible sort denotes
an abstract data type, while a hidden sort denotes the state space of
an abstract machine. There are two kinds of operators to hidden sorts:
action and observation operators. An action operator can change states
of an abstract machine. Only observation operators can be used to ob-
serve the inside of an abstract machine. An action operator is basically
specified with equations by describing how the value returned by each
observation operator changes. Declarations of observation and action
operators start with bop or bops , and those of other operators start
with op or ops. Declarations of equations start with eq, and those of
conditional ones start with ceq. The CafeOBJ system rewrites a given
term by regarding equations as left-to-right rewrite rules.
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3. HYBRID OBSERVATIONAL TRANSITION
SYSTEMS

HOTSs are OTSs that are evolved by introducing physical observers
in order to deal with physical continuity. We assume that there exists
a universal state space called We also suppose that each data type
used has been defined beforehand, including the equivalence between two
values of the data type denoted by Let R and be a
set of real numbers and a set of non-negative real numbers, respectively.
An HOTS  is defined as where

A set of observers. The set is classified into the set
of discrete observers and the set of physical observers. Each

is a function where D is a data type. For each

For each there are aspects, each of which is denoted
by a predicate {true, false} where We
suppose that the predicates are exhaustive and exclusive. For each
aspect denoted by we have a value and  function

such that is the initial value returned by as the
aspect denoted by starts and denotes how values returned by

change in the aspect as time goes by. There is a special physical
observer now : There is one aspect called cosmos for
now, is 0 and now serves as the master clock
that returns the time amount that has passed after starting the
execution of

Given two states the equivalence between two states,
denoted by with respect to is defined as

A set of initial states such that Master clock now
initially returns 0.

A set of conditional transitions. Each
is a  function on equivalence

classes of with respect to Let be the representative
element of for each and it is called
the successor state of with respect to

The condition of a transition is called the
effective condition. The effective condition is supposed to satisfy
the following requirement: given a state if the effective
condition of is false in then
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For each the effective condition of consists of the phys-
ical part and the non-physical part There is also the time
advancing condition corresponding to Any does not
change values returned by now.

Each is a time advancing transition, where Given a
state is if for each keeps
holding while time units are passing, and is otherwise.

does not change values returned by any discrete observers.

Observers and transitions may be indexed such as and
where and we assume that there exist data types such that

An execution of is an infinite sequence of states satisfying

Initiation:

Consecution: For each for some

Time Divergence: As increases, increases without bound.

A state is reachable with respect to if and only if there exists an
execution of in which appears. Let be the set of all reachable
states with respect to

All properties considered in this paper are invariants, which are de-
fined as follows:

Let be all free variables in We suppose that
is interpreted as in this paper. When proof scores are
written to prove are replaced with constants that de-
note arbitrary values corresponding to and the universally quantifier is
eliminated. If a variable is existentially quantified in the vari-
able is replaced with a Skolem constant or function and the existential
quantifier is eliminated.

HOTSs are written in CafeOBJ as OTSs. Observers and transitions
are denoted by CafeOBJ observation and action operators, respectively.
We prove a predicate invariant to an HOTS by reduction, case analysis
and/or induction as we prove a predicate invariant to an OTS. In any
case, proofs, or proof scores are written in CafeOBJ. A method of writing
proof scores of invariants for OTSs is described in (Ogata and Futatsugi,
2003c), which can be used for HOTSs.
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Figure 1. Behavior of the temperature stabilizer.

4. TEMPERATURE STABILIZER

Let us consider a temperature stabilizer that keeps the temperature
between and where The temperature stabilizer
consists of two processors called Cooler and Heater. Cooler lowers the
temperature per unit time if it is active, while Heater raises the
temperature per unit time if it is active. Cooler or Heater is
active, and only one of them is active. Cooler can become active if the
temperature is greater than or equal to and must become active
by the time when the temperature is greater then Heater can
become active if the temperature is less than or equal to and must
become active by the time when the temperature is less than
Initially the temperature is T and Heater is active. The behavior of the
temperature stabilizer is depicted in Figure 1.

Modeling

The temperature stabilizer is modeled as an HOTS.

Observers.

Discrete observers.

phase : It means that the temperature is heated
if it returns true and the temperature is cooled otherwise. It ini-
tially returns true.

point : It returns the latest time when the temperature
has become heated (or cooled) if the temperature is heated (or
cooled). It initially returns 0.
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value : It returns the temperature at the time returned
by point. It initially returns T.

Physical observers.

temp : It returns the temperature, initially T. There are
two aspects heating and cooling that are denoted by phase and

 respectively. is the value returned by temp as the
aspect changes to heating from cooling and

is the value returned by temp as the aspect changes to
cooling from heating and

now :

Transitions.

cool: Given a state is and
is is

if holds, and is true other-
wise. If both and hold, then is
false, is and is In
any case, is

heat : Given a state is
and is is

if holds, and is true
otherwise. If both and hold, then
is true, is and is In
any case, is

Given a state if both
and holds for any such that
is and is

if is true, and is
otherwise.

The HOTS is written in CafeOBJ. The signature is as follows:
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Sys is the hidden sort denoting the state space. A comment starts
with -- and terminates at the end of the line. Constant init denotes
any initial state. Bool, Real+ and Real are the visible sorts denoting
the truth values, and R, respectively. You can imagine what the
observation and action operators denote.

In the following, let S and R be CafeOBJ variables whose sorts are
Sys and Real+, respectively. The equations defining cool are as follows:

Operator c-cool denotes Term cool(S)denotes the suc-
cessor state of state S after applying transition cool denoted by action
operator cool. The six equations from the bottom describe how to
change the values returned by observers when cool is applied. For ex-
ample, the sixth equation from the bottom says that the value returned
by observer phase changes to false when cool is applied in a state where

holds, and the last equation says that nothing changes when
cool is applied in a state where does not hold.
heat is denned likewise.
The equations defining tick are as follows:
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Operator c-tick denotes Operators f-cool and f-heat
denote and respectively. The six equations from the
bottom describe how to change the values returned by observers when
transition denoted by action operator tick is applied.

Verification

We verify that the temperature is surely kept between and
To this end, all we have to do is to prove the following

predicate invariant to the HOTS:

To prove (1) invariant to the HOTS, we need to prove the following
predicates invariant to the HOTS:

The four predicates are proved invariant to the HOTS by induction on
the number of transitions applied by writing proof scores in CafeOBJ.

Before writing proof scores, we first write a module, say INV, in which
the four predicates are expressed as CafeOBJ terms as follows:

We next write a module, say ISTEP, in which basic formulas to prove in
each inductive case are expressed as CafeOBJ terms as follows:

Constants s and s’ denote an arbitrary state and a successor state of s.
We then write four proof scores of (1), (2), (3) and (4). In this paper,

we describe the inductive case in which denoted by tick preserves
(1). The state space, or the case is first split into two subcases: one
where the condition denoted by c-tick(s,r) holds and the other where
it does not. Since does not change anything in a state in which the
condition does not hold, surely preserves (1).
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The case in which the condition holds is divided into two: one where
bothphase(s) and (value(s) + f-heat((now(s) + r) – point(s)))
<= (T + (2 * d)) hold and the other where phase(s) does not hold
and (T – (2 * d)) <= (value(s) + f-cool((now(s) + r) – point
(s))) holds. The former is also split into three: (i) point(s) <=
now(s) does not hold, (ii) (T – (2 * d)) <= value(s) does not hold
and (iii) both point(s) <= now(s) and (T - (2 * d)) <= value(s)
hold, and the latter is also split into three: (iv) point(s) <= now(s)
does not hold, (v) value(s) <= (T + (2 * d)) does not hold and
(vi) both point(s) <= now(s) and value(s) <= (T + (2 * d)) hold.
Cases (i) and (iv) use (2) to strengthen the inductive hypothesis denoted
by inv1(s), case (ii) uses (3) to strengthen the inductive hypothesis and
case (v) uses (4) to strengthen the inductive hypothesis.

In this paper, the proof passage of case (i) is shown, which is as follows:

Constant r denotes an arbitrary non-negative real number. (value(s)
+ (a*((now(s) + r) – point(s)))) <= (T + (2 * d)) is the nor-
mal form of (value(s) + f–heat((now(s)+r) – point(s))) <= (T
+ (2 * d)) in the sense of term rewriting. In order to make effective use
of the declared equation, the left-hand side should be in normal form.
The proof passage is executed by the CafeOBJ system, which returns
true. This means that preserves (1) for any in this subcase.

The proof passages of the remaining subcases are written likewise.

5. RELATED WORK
Lamport (Lamport, 1993) proposes a method of specifying and rea-

soning about hybrid systems in TLA+. TLA+ is a formal specification
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language based on TLA, the Temporal Logic of Actions. Systems are
specified in terms of temporal logic formulas. Kesten, et al.(Kesten et al.,
2000) propose phase transition systems for modeling hybrid systems and
a rule for proving invariants of hybrid systems. Phase transition systems
are described graphically, which seems suited for small examples. Lynch,
et al.(Lynch et al., 2003) propose hybrid I/O automata that are I/O au-
tomata that are evolved for modeling and analyzing hybrid systems.
They verify that a hybrid system meets its specification by proving that
there exists a simulation relation from a hybrid I/O automata modeling
the hybrid system to a hybrid I/O automata describing the specification.

Lamport points out that any formal method that can be used to
model and verify concurrent systems can be applied to distributed, real-
time and/or hybrid systems. Phase transition systems and hybrid I/O
automata are basically such examples, and so is our proposed method.
One important difference between our method and the existing ones is
that our method intensively uses equations and equational reasoning,
which makes our method relatively easy to learn and use.

Maude, a sibling language of CafeOBJ, can be used to specify and
analyze hybrid systems(Ölveczky and Meseguer, 2000) and is equipped
with an LTL model checker. Maude can be used to complement our
method. Design and implementation of a tool that translates CafeOBJ
specifications into Maude ones is part of our future work.
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Abstract: In majority of computer systems, the most time-critical tasks are performed by
interrupt service routines. In some cases pooling methods are utilized, espe-
cially when I/O hardware is not capable of stand-alone operation. When these
two approaches are mixed together conflicts are likely. Pooling procedure may
not tolerate delays caused by interrupts and interrupt-driven procedures may
not be able to wait until pooling driver finishes its job. In various systems
some of the time-critical operations can be repeated or skipped, if CPU fails to
service them in time. Statistical methods can be used to verify if system per-
formance satisfies requirements. To apply them the distribution function of
time interval between two consecutive interrupt requests is calculated on the
basis of a simple theoretical model. The model is then verified by empirical
measurements.

Key words: interrupt, distribution function, streams merging, performance modeling.

1. INTRODUCTION

Observations of program execution performance have been taken using
the most widespread hardware and operating systems (Windows 98/me/XP,
Linux) and embedded processor MB91F362. In all cases a significant influ-
ence of operating system jobs and interrupt-driven activity has been de-
tected. Asynchronous tasks particularly affect “smoothness” of execution
making application response time random and unpredictable. These effects
can be easily observed in low-end systems during multimedia playback.
Methods of compensating IRQ introduced slowdowns may be applied to re-
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store acceptable quality of real-time performance [1]. Since interrupts have
the highest priority a vast majority of internal kernel functions must be able
to tolerate unexpected delays during execution [2].

Execution of application while interrupts are enabled can be compared to
queuing model where streams of requests are merged into one queue. When
the queue is empty an application code is executed [3]. Queuing models with
mixed type streams are not popular. Coexistence of periodical and random
events results in very complex equations or problematic assumptions [4].

Many publications focus on scheduling algorithms that should give best
overall quality of service of a real-time system [5]. The statistic nature of
interrupts and other factors causing execution time uncertainty is rarely
taken into account. Sometimes the simplest algorithms like Earliest Deadline
First are suggested to be the most efficient solution [6].

In contrast to hard real–time systems where well-timed response must be
assured soft real–time approach relays on statistical assurance of required
performance [7]. Since average number of missed deadlines is not a good
metrics n-out-of-m is proposed [8].

2. MODEL OF INTERRUPT REQUESTS

To investigate a nature of interrupt request process a spectral density of
the empirically measured time between interrupts was plotted. Two compo-
nents were observed: single periodical and the white noise. Such spectrum
proves that interrupts can be categorized as:

system timer interrupt
random interrupts from other sources
It is known, that interrupts from peripheral devices are not 100% random.

The observation of spectral plot shows that collection of all interrupts makes
good approximation of the white noise in the majority of the cases.

Let’s assume computer system where two types of interrupts are present.
There is only one periodical timer interrupt and unlimited number of random
interrupts. The nature of interrupts is as follows:

Timer interrupt with frequency is requested periodically in fully
deterministic manner.
Peripheral interrupts are requested randomly according to Poisson proc-
ess with parameter If many sources of random interrupts are present,
with intensities that they can be described as one process
with intensity
All interrupts are treated identically. The cumulative distribution function

of time between two consecutive interrupt requests is to be calculated.
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Figure 1. Interrupt requests and time intervals between them

Example interrupt requests and time intervals are presented on figure 1.
Timer interrupts are marked with circle while random ones are marked with
arrow-tail. The time interval can be measured between:

two timer interrupts
timer interrupt and random interrupt
random interrupt and timer interrupt
two random interrupts
Non-zero correlation between and is not taken into account since

only distribution of time interval between (any) two interrupts is calculated.

2.1 Weighted sum of alternative distributions

To calculate the CDF of time between two consecutive requests two al-
ternative cases should be considered:

time interval begins after timer interrupt or with probability
time interval begins after random interrupt or with probability
Cumulative distribution function is then calculated as a weighted sum of

distribution functions of two alternative cases.
In sufficiently long time period it is expected to appear timer

interrupts and random interrupts so the probabilities are:

If the last interrupt was timer interrupt:

CDF of the interval from a timer interrupt to the next timer interrupt:

CDF of the time interval from a timer interrupt to the nearest random:
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Distribution of the time interval from a timer interrupt to the next timer
or random interrupt (whichever comes first):

If the last interrupt was a random interrupt then the cumulative distribu-
tion functions of time interval to next interrupt are given as follows:

CDF of the interval from a random interrupt to the next timer interrupt

There is no synchronization between timer and random interrupts so it’s
not known when the last timer interrupt was generated and when to expect
the next. Due to periodic nature of timer interrupts, the next timer interrupt
must appear within time. The probability is equally spread in (0,

CDF of the time from a random interrupt to the next random interrupt:

Distribution function of time interval from a random interrupt to any in-
terrupt (whichever comes first) is given the equation:
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2.2 Cumulative distribution function

The Bayes equation for total probability is used to get the cumulative dis-
tribution function as a weighted sum of distribution functions of previously
shown alternative cases.

After simplification and grouping of variables:

Figure 2. Example distribution function for and

The cumulative distribution function has following properties:
Equals zero for negative time values
Equals one for
Is continuous excluding
Difference of left and right side limits at equals
Is differentiable in all range excluding and
Is integrable in all its range - it consist of sum
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2.3 Density and intensity

The first derivative of the distribution function (density function)

Figure 3. Example density function for and

Density function of distribution of time interval between interrupts:
Produces positive values in range
Has Dirac’s delta at
Is descending in range slower than exponential distribution
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Figure 4. Example intensity function for and

The intensity function of interrupt requests has following properties:
Produces positive values in range (0,
Has Dirac’s delta at
Is ascending in range (0,
If is similar to intensity of exponential distribution
If produces small values for Dirac’s delta is dominating

3. EMPIRICAL RESULTS

Observations of moments when interrupts are requested have been taken
to construct empirical distribution of time between two consecutive requests.
Fast spin-lock procedure was used as a measuring routine and good ap-
proximation of CPU utilization by pooling driver or user multimedia appli-
cation. To get reliable results measurements have been taken during
each experiment. In most experiments request were detected. Den-
sity function of time interval between two consecutive interrupts has been
plotted because it graphically shows better the nature of distribution than the
cumulative distribution function. Having so big collection of empirical data,
very high level of confidence was expected during statistical tests. Unfortu-
nately majority of statistical analysis applications are not capable of proper
handling of such large sets of data.

The histogram (density function) for Pentium III – 450MHz system
working under Windows 98 is presented on figure 5. Nearly 700 thousands
intervals has been measured and shown giving good approximation of distri-
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bution shape. Horizontal axis represents length of time interval expressed in
processor clock periods (450MHz). Vertical axis represents the number of
samples that fit in range (t, t+dt). Density function has not been scaled to
have integral equal one. Empirical results are plotted as black line. Addition-
ally light-gray line of theoretical histogram has been plotted. In the left part
of the figure they fit almost perfectly, while the Dirac’s delta is left hand dif-
fused. Due to relation, the descending nature of density function is
weak, although can be observed.

Figure 5. Empirical density function for and

Time interval between two consecutive interrupts seen by user-level ap-
plication may significantly differ from the real one. The histogram (density
function) of time interval between interrupts for Pentium 4 system 2,5GHz
working under Win-XP system is presented on figure 6. Three interrupt re-
quests of periodic nature can be observed in this system. Additionally
a small peak at 78 million cycles occurs. The reason for odd shape of histo-
gram is that a measuring procedure runs as a normal user-level process in
highly over-loaded single-processor system. When CPU is switched to an-
other process the spin-lock loop used for measurement can not detect inter-
rupts since it is not running. In fact there is only one periodic interrupt in
presented system - the first peak in histogram at The second peak
occurring at the third at and the fourth at are caused by scheduler
that stopped measuring procedure giving other programs 4, 12, or 24
“chunks” of CPU time. Since processor’s clock count register (used for
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measurement) was incremented while spin-lock procedure was sleeping the
application after wake-up observed it as a single, very long interrupt.

Figure 6. Empirical density function from application point of view

4. CONCLUSION

Statistical analysis of interrupt request behavior can be a helpful tool in
design and validation of systems with coexisting interrupt driven and pool-
ing I/O service routines. Additionally the influence of interrupt requests on
application execution is significant in soft time critical programs such as au-
dio or video recording and playback. Presented simple model of delays
caused by operation system can be effective means of describing execution
platform from the applications point of view without going into details of
hardware and system software. Statistical description of machine and system
influence on application is far less exact than behavioral model of operating
system, but also far more simple and easy to apply. Model of interrupts
slowing down application execution can be regarded as formal method of
defining “smoothness” of application execution. Presented model is espe-
cially suited to low-end audio and video systems rapidly growing in popular-
ity.
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Abstract: Our paper presents a new membership agreement algorithm that address
asymmetric timing faults and includes a new tool simulating TTP/C clusters.
The proposed algorithm flags deviating or slightly untimely messages to
assure that single marginal transmitting faults are detected and that only the
faulty node will be expelled. The tool can demonstrate the behavior of
membership agreement algorithms such as the original TTP-C1 algorithm or
our modified flagging algorithm. The performed simulations use experimental
results from heavy-ion fault injection logged timing faults. The gathered
results show the rare faults, which made a network using the original
algorithm either collapse or become degraded, are detected and handled with
the new algorithm without loss of more than the faulty node.

Key words: Membership agreement; Asymmetric timing faults; Fault detection.

1. INTRODUCTION

A severe type of communication faults is the infamous Byzantine fault
class, which includes so-called slightly-out-of-specification faults1, SOS,
which may cause inconsistencies at the communication level in distributed
systems when a number of nodes receive a message while other nodes fail to
correctly receive the same message. This may affect the application with
problems such as reaching application consensus.

In the FIT project (IST-1999-10748)2, a time-triggered architecture3 was
evaluated by use of several fault injection techniques. One major finding was
that the fault detection and error processing with respect to SOS faults was
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insufficient1, which had major effects on the application due to
communication black out and the degraded operation of the cluster.

There are basically two approaches to design a system for a specific fault
tolerance: a) to have sufficient redundancy to mask the Byzantine fault4, b)
to implement methods to identify (diagnose) and reconfigure the system
before additional faults arrive5-7. We present a diagnosis algorithm where the
basic idea is that messages are “quality stamped” with respect to the
timelines they demonstrate at each receiving node. The designed algorithm
differs significantly compared to the original implementation of TTP/C
where no effort has been put to detect a specific node, rather the caused
inconsistency, solved through minority partition reintegration.

The paper is organized as follows. First we briefly present TTP/C,
especially mechanisms8-11 vital for the development and understanding of
our algorithm such as membership agreement and clique avoidance.
Secondly Byzantine faults and slightly-out-of-specification faults are
described. Then the membership agreement is presented with respect to
asymmetric faults while the simulation tool is presented in section five.
Section six contains the simulation results while section seven concludes the
paper.

TIME-TRIGGERED PROTOCOL CLASS C

basically provides three services; clock synchronization9,
deterministic message sending, and a membership service8. The clock
synchronization information uses the FTA clock synchronization algorithm
where the time data is extracted from the arrival of the latest four messages.
The two most extreme clock values are removed and the sum of the
remaining clocks’ values is averaged, a correction term. The nodes will
adjust their clocks with the correction term and thus remain synchronized
with the cluster.

The membership agreement8,10 in TTP/C is represented by a unique
identification vector, which is stored in all nodes as a local membership
vector. All nodes update the membership information continuously. The
membership service is closely coupled to features such as clique
avoidance10, which further improve the error handling capabilities in a
distributed system.

If the membership vectors differ between sending and receiving nodes,
the CRC calculation should not produce a readable message. When a CRC
error is found, the receiving node raises a membership error for the sending
node locally (after some internal checks such as implicit acknowledgement
algorithm, see below) and the corresponding membership vector value is set

2.
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to false. If the frame is not semantically correct it is considered as an invalid
frame, which could be due to a transmission error, and the membership bit is
in this case set to false. If a node discovers that it is not in agreement with
the majority of the active nodes in the cluster, it is not allowed to send and
has to reintegrate this is guaranteed by the clique avoidance algorithm.

Starting with its own sending slot all nodes in a cluster counts all
incorrect nodes in a fail counter, FC and correct nodes in an accept counter,
AC during one TDM A round. AC + FC = n, where n is the number of nodes
in the system before failure (or operating). Null frames are not counted by
either FC or AC and it is assumed that all nodes detect Null frames thus n is
decreased by detected Null frames. If FC > 1 the cluster is considered a
partitioned cluster otherwise the acknowledgement algorithm is enough to
retain a consistent cluster.

A node may transmit if FC < n/2 if n is even and (n+1)/2 if n is odd
which results in that FC must be < n/2. An in depth explanation can be
found in10.

When a node, lets say A , has sent a message it usually (can be a sending
error) increases the AC counter. If it detects a CRC error during the two
succeeding TDMA slots it does not passively await the resolution of the
upcoming situation. TTP/C has an algorithm to address this situation, the
implicit acknowledgement algorithm.

The algorithm introduces the denotation of first and second successor. If
the first succeeding node B does not have the same membership list, A
decides to preliminary remove B from its local membership list and increases
its FC. If it was B that was receive-faulty the situation will be solved by a
second successor node, C. If C sends a syntactically correct message, e.g.
with B removed from the membership, node A is acknowledged. If not, B is
probably acknowledged and A has been removed from Cs membership, A is
thus not acknowledged. A was as a result faulty. A removes itself from the
membership list but adds both B and C to the membership list and updates
AC and FC correspondingly and then reintegrates. The implicit
acknowledgment algorithm is completed.

3. BYZANTINE FAULTS

Since its initial presentation the Byzantine Generals problem12 has been
the subject of intense academic scrutiny, leading to the development of
numerous Byzantine-tolerant algorithms and architectures6,7,13. A sub-class
of Byzantine faults are slightly-out-of-specification faults1 which occur in
the transition between the analog and discrete world. In the time domains
these faults occur when entities get different views of the time, a marginal
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transmission. A message that is timely at a certain node may be considered
as untimely at another node due to different drifts of the local clocks or
internal errors.

In TTP/C all nodes have a start of frame window where an expected
message must be received (with respect to start of frame transmission) to be
processed further by the node and application. This window is usually so
small that a feasibly low jitter can be achieved. When the receive window
has opened up for message reception a counter is incremented every
microtic, from for example -40 microtics before expected arrival time and up
to 40 microtics after expected arrival time, a span of 81 microtics. Within
this span the design specific window is specified, for example -20 <
acceptable reception time < 20 microtics. Settings for this window depend
on the size of the TDMA slots and the time for a TDMA round.

Figure 1. TTP/C membership agreement and clique avoidance handling an Asymmetric fault
(node B sending in slot two) + = nodes resetting

In Figure 1, an asymmetric fault scenario is shown. Triangles pointing
upward mean agreement with the sent message while triangles that point
down is in disagreement while squares mean sending node. When B
transmits, second row, node A and C raise an error. D and E on the other
hand accept the message.

In the third TDMA slot (when C sends its opposing opinion to the
system) the inconsistency is known to parts  of the system (node B, D and E)
while A still regards the upcoming situation as a normal fault (non-
asymmetric).

D is the next node to transmit and must now decide which opinion it
should have (Assume for a while that the message sent by C can be viewed
by D, in TTP/C this would have caused a CRC error). In TTP/C it does not
accept the message from C. We now have a situation where two nodes out of
five have expressed their opposing view. D uses, in this case, the clique
avoidance algorithm to decide. The upcoming situation is solved as
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described in Figure 1. Node A and C will cease their transmission because
their fail counters will be larger than their accept counters. The faulty node is
on the other hand still synchronized and remains undetected.

4. FLAGGING ALGORITHM

The proposed algorithm uses some assumptions. Only one node is faulty
during one TDMA round. The algorithm is assumed to be a transparent layer
on top of the ordinary TTP/C mechanisms, not voiding any of the original
properties.

Following assumptions have been used with respect to the receive
window, see Figure 2:

Figure 2. The modified receive window where node 4 is received early, too early by node 1

A message (node) is declared invalid and removed from membership
list (if it arrives later than 20 microtics or earlier than 20 microtics from
expected arrival time. –20 < expected arrival < 20, a window of 40
microtics. A message received outside this window of 40 microtics is also
flagged.

A node is not allowed to transmit if the own clock synchronization
calculation results in a clock correction term that is larger than 10 microtics

A message that arrives within 10 to 20 microtics from expected time is
declared as a message possible SOS-message. The message is flagged in an
internal register by the communication controller.

A node that has a non-empty flag register will not immediately remove
disagreeing nodes without an extra check with respect to flag position
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If a received message, M, is declared invalid due to a faulty CRC
calculation (non-readable message) the receiving node R will check its flag
register for flags, since voting message M as invalid at this state could result
in that the majority regards R as a faulty node. R will thus assume that the
flag corresponds to a node F that the sending node S has removed from its
membership, thus causing the CRC error. R changes the corresponding bit in
the membership vector and recalculates the CRC. Following this assumption
node R tries once more to access message M and if this succeeds it will
accept the message as valid assuming that it was because of a timing fault S
had removed F which R did only flag. All other nodes that have the same
view about this node and flagged the same will update their membership
vectors correspondingly. All nodes will thus have removed node F that was
flagged by everyone but the faulty and removed from membership by at least
one. In cases when not all nodes, except the faulty, have flagged the node
the original algorithm will solve the situation. All nodes will then recount
their accepted messages and update their fail counters and accept counters
accordingly. This way all nodes should, in case of a single fault, have the
same consistent view of operating nodes within one TDMA round. Any
shortage of the algorithm will be solved within a second TDMA round, see
Figure 3 for a corresponding situation.

Figure 3. Membership behavior under two fault scenarios

One variation of an SOS faults shows up if the third node, C, flags
message B and transmits this knowledge. C has thus not removed B from
membership while the successor D has already done so, see Figure 3 (right).
This means that node D will receive a message that could differ on two
places with respect to the own membership list (D has already removed B
from membership and has a pending membership change on C, meaning it
would have removed C from the membership list using the original
algorithm). But C and D do only disagree about their opinion concerning B.
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Node D will still keep the opinion about B and raise a CRC error on B, but
accept node C. D will be notified about this agreement about B upon
inverting the membership bit in question (flagged position). This will cause a
transient inconsistency in the system, which is a complex state, meaning we
disagree over one message but accepts each other, which is against the
prerequisite of the original membership agreement protocol utilization but a
prerequisite for the accurate operation of the flagging algorithm.

Figure 3 furthermore shows that node D and E did not accept the
message in TDMA slot 2 and that node C must change its already public
membership view. D and E will win while A and C will adapt to this view.

The algorithm is interpreted in Figure 4 which shows the flowchart of the
algorithm which is then implemented and tested using our tool.

Figure 4. A flowchart of the algorithm



70 Håkan Sivencrona, Mattias Persson and Jan Torin

5. SIMULATION SETUP

The purpose of the TTP/C algorithm simulator is to provide a simple
simulation environment for a TTP/C network. It simulates a network of n+1
nodes, where n is the number of nodes for which experimental log files
exists, where one node is assumed to be the fault-injected without any
logged data available, see Figure 5.

Figure 5. The basic work flow of the simulation tool environment

The application mainly consists of three parts; the Simulator GUI which
controls the flow of the application, the Parser which parses the experiment
files and the TTP/C Node, simulating the behavior of a real TTP/C node.
Using the object orientation principle, all significant data structures such as
the TTP/C Message and the Membership Vector are represented by objects.

Through the Simulator GUI the user controls the simulation. After
invoking the Parser, the Simulator sets up the simulation and calls the TTP/C
nodes. Because not all experiment logs are identical, the Parser is actually a
Java interface. This allows the user to tailor-make one Parser per log file
type, as long as it contains a specified method to parse a set of log files.
When running, the parser creates a scenario from n-1 files, where n is the
size of the cluster.

Finally, the TTP/C Nodes consists of TTP/C protocol implementations.
Utilizing the same versatility as the Parser, the protocol is also an interface.
Simplifying the program flow, each simulated node actually processes all
messages received from one TDMA round at the same time. The TTP/C
message is distributed to all “nodes” in the network, using the Membership
vector calculated by the protocol implementation and the time drift obtained
from the same slot in the logged scenario.
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6. SIMULATION RESULTS

The SOS scenarios were first executed with the original algorithm.
Figure 6 shows the last part of the printout of one experiment. When the
same object file was executed using the flagging algorithm the cluster
remained synchronized but the faulty node was detected and expelled from
the membership at all nodes.

One type of scenario was not solved perfectly. The flagging algorithm
did not resolve situations when more than one node was badly synchronized,
meaning this node did not flag the SOS-node. But the cluster remained
synchronized in throughout al test cases but in some cases with two nodes
expelled.

Figure 6. Scenarios using old algorithm (left) and the flagging algorithm (right) where node 3
is the faulty node

7. CONCLUSION

We have presented an algorithm for increasing the tolerance against
asymmetric timing faults in a time-triggered protocol (TTP-C1). The major
conclusion is that any single untimely node will be disclosed and that a
global agreement can be reached about the system state, including time
within two TDMA rounds.

The algorithm does not guarantee that all SOS faults are detected, at least
not with respect to the chosen parameters. The success depends on the ratio
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between the different windows, e.g. the width of the flag window compared
to accept window.

We have furthermore provided and presented an uncomplicated simulator
GUI for a TTP/C network. The TTP/C Simulator can mimic a TTP/C
network of n+1 nodes, where n is the number of nodes for which log files
exists, where one node is assumed to be a fault-injected node without any
logged data available, as was the case when a single TTP/C communication
controller was injected with heavy-ions.
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Abstract: In the context of real-time fault-tolerant architecture, as TTA (Time-Triggered
Architecture), the temporal validation of the system behavior is very important.
Indeed, the fault-tolerant mechanism execution must respects several temporal
constraints. To validate the mechanism behaviors, and to give their maximum
execution time (temporal bound), we propose here a temporal validation method-
ology for TTA. This methodology uses the UPPAAL tool, based on the timed au-
tomata and the model-checking analysis. This methodology allows us to extract
the temporal bounds of the TTA services.

Keywords: Time-Triggered Architecture, Embedded real-time networks, Fault tolerance,
Temporal validation, UPPAAL modeling.

1. INTRODUCTION

Motivation. TTA (Time-Triggered Architecture) (Kopetz, 1998, TTP, 2002)
is a real-time network architecture for embedded systems. It is mainly used for
automotive embedded applications. This architecture is based on two primary
concepts : time triggered protocol and fault tolerance. These concepts are per-
formed by a number of services defined in TTA specifications. Furthermore,
the services are defined by using basic algorithms such as : synchronization,
membership fault detection, or reintegration.

An application using TTA will require temporal guarantees on the temporal
behavior of the architecture. The execution time of the algorithms and services
has an influence on the behavior of the application level. Therefore, they have
to be validated within a specific fault environment. For a specific service, its
maximum execution time (its temporal bound), must never be superior to a
fixed deadline. In this article we are going to define these bounds and describe
the validation process to obtain them.

State of the art. TTA specifications definition (TTP, 2002) allows extrac-
tion of basic temporal bounds. Obviously, these bounds are not validated by



74 Karen Godary, Isabelle Augé-Blum, Anne Mignotte

the specifications definition. While it is quite easy for elementary services to
extract their bounds on simplified hypothesis, it is more difficult for regular
TTA services. For instance, the clock precision is never taken into account,
nor complex fault hypotheses.

On one hand, formal proofs (Pfeifer, 2003, Rushby, 2002, Bouajjani and
Merceron, 2002) validate basic algorithms. For example in (Pfeifer, 2000),
the membership algorithm is formally verified with the PVS theorem prover.
This article proves the convergence of the algorithm. Yet, it does not define its
temporal bound.

On the other hand, another approach is developed in (Bouajjani and Mer-
ceron, 2002), which gives a parametric proof of clique avoidance and member-
ship correctness. These algorithms can be modeled by graphs, used to prove
their temporal bounds. In the study, a bound is given for the detection of one
fault, with simplified hypotheses. However this study is based on graph theory,
a method too specific to be applied to all TTA algorithms.

All these formal methods are applicable on basic algorithms. Nevertheless
they are difficult to be used on combination of services, or for the whole archi-
tecture. However the proven properties can be used as hypotheses in several
other validation methodologies including the one presented in this article.

Other approaches produce deadline verification at a higher level. In (Caspi
et al., 2003) for instance, the design of the whole system is based on a LUS-
TRE model, including temporal information and constraints, mapping on the
hardware architecture, and the related scheduling. Temporal constraints are
validated during scheduling. In this context, the TTA bus is modeled by a
TDMA (Time-Division Multiple Access) round. Nevertheless, the deadline of
a message transmission on the bus do not take into account the presence of
faults nor fault tolerance. Such an approach would take fault tolerance into
account if the temporal information are bounded durations (message transmis-
sion for instance) including faults. This is the aim of our approach.

Our approach is based on UPPAAL (Larsen et al., 1997). This tool has
already been used for verification of other protocols (Jensen et al., 1996, Lönn
and Pettersson, 1997, Lindahl et al., 1998). For instance, the study in Lönn
and Pettersson, 1997 is similar to our method : the TDMA protocol is modeled
in Uppaal, some properties are verified, and a parameterized deadline bound
is extracted. But this study did not verify the protocol in the fault tolerance
context, nor the whole architecture (it did not consider the applicative levels).

In this article, we propose an approach to find parameterized temporal bounds
of TTA behavior, based on specific fault hypotheses. TTA is described in the
next section. Our approach uses bounds already defined in TTA specifications
or other publications. We extract new bounds by analysis of timed automata
models. This approach is defined in the third section. Section 4 gives an illus-



Temporal Bounds for TTA : Validation 75

trating example (the reintegration mechanism). Then section 5 presents exper-
iments and results on our methodology.

2. TTA BASIC DEFINITION

Architecture

TTA (Kopetz, 1998) is composed of a cluster, i.e. a set of nodes connected
through a communication network based on TTP/C (Time Triggered Proto-
col class C) (TTP, 2002). A node is composed of four independent levels :
the application level; the real-time operating system (RTOS), compatible with
the OSEKTime specifications (OST, 2001); the FTLayer (Bauer and Kopetz,
2000), compatible with the FTCom (Fault Tolerant Communication) specifica-
tions (FTC, 2001) (this level is in charge of redundancy, which is the base of
fault-tolerance); and the TTP/C controller (TTP, 2002).

Figure 1.   Temporal slot decomposition

Time Triggered Protocol
TTP/C is based on a static and predefined scheduling. It implements a

broadcast communication using the TDMA strategy. Moreover, the bus ac-
cess is guaranteed by autonomous subsystems, bus guardians, which prevent
the nodes to emit at the wrong time.

Information about transmitted data and emission dates are stored in a static
table : the MEDL (MEssage Descriptor List), included in each node. Then,
clock synchronization is necessary. It is based on the comparison between the
time of the real arrival of each message and the expected time given by the
MEDL.

A slot is the smallest unit of the communication phase. The slots are grouped
together in a TDMA round. Each slot is dedicated to the transmission of a
node. The usual system phase is a cyclic execution of all TDMA rounds : the
cluster cycle. A slot is composed of 4 phases (figure 1):

- Transmission Phase (TP): a TDMA slot begins with the transmission of a
message on the bus.

- Post Receive Phase (PRP): allows the evaluation of received data and the
execution of protocol services.

- Pre-Send Phase (PSP) : necessary to load the schedule information from
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the MEDL and to prepare the data transmission of the next slot.
- Idle phase : the duration of the PRP and PSP depends on the actions per-

formed. So the Idle phase is used to stretch the slot to the duration fixed by the
schedule designer.

The set of phases without transmission on the bus is called Inter-Frame Gap
(IFG). It is the set of the three phases PRP, Idle and PSP.

3. METHODOLOGY
Our methodology is based on model validation. The chosen formalism is

a specific timed automata implemented in the UPPAAL tool (Larsen et al.,
1997). Its associated model-checker enables to check reachability properties
by an exhaustive analysis of all the possible behaviors of the system. More
discussions on different possible modeling formalisms are in Godary et al.,
2004b. For more information on the UPPAAL tool see for instance Pettersson,
1999 or Bengtsson and Yi, 2004).

Methodology definition

Our methodology is composed of two phases. The aim of the first step
(illustrated figure 2) is to obtain an abstracted and verified UPPAAL model of
TTA. Then, the aim of the second one is to extract parameterized formulae for
temporal bounds of mechanisms and services of TTP/C, such as mode change,
reintegration (of a TTA node after a fault) or initialization.

Figure 2. Methodology - step 1

Step 1: Abstracted and verified model (figure 2).
From the referring document TTP, 2002 a first model of TTA is built in UP-

PAAL. To guarantee the expected behavior, we check our model with formal
verification of behavioral properties (for instance, one can check that two states
are never reached at the same instant). More information on the initial model,
and some results on this formal verification are given in the section 4

After those simulation and verification, we obtain a verified TTA model.
The problem of this model is combinatorial explosion. Therefore, some ab-

straction rules have been applied to simplify the analysis method implemented
in UPPAAL. This abstracted TTA model keeps the same behavior, but it is
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easier to analyze. Basically, we have applied the following abstraction rules:
reduction of the number of variables, automata, clocks, and interleaving. More
details on these rules can be found in Godary et al., 2004a.

Finally, we have obtained an abstracted and verified TTA model.

Figure 3. Methodology - step 2

Step 2 : Parameterized formula (figure 3).
Each basic mechanism is expressed in the UPPAAL model: either with an

explicit modeling of its behavior, or with a representation of its characteris-
tics. For instance, the synchronization algorithm is represented by the fact that
all the local clocks of the nodes are synchronized within a fixed interval
This abstraction is possible because this algorithm has already been validated
(Pfeifer, 2003).

The basic mechanism model is completed with a Test automaton to verify
with the model-checker that a deadline value D is never reached. This deadline
value is a parameter of the system model. Then different values of D are
verified by dichotomy, until the worst-case scenario is found. This worst-case
behavior is the temporal bound of the studied mechanism.

Then, the same model is used with different values of parameters (such as
clock drift or slot duration). We obtain a set of values depending on system pa-
rameters. We analyze them to deduce parameterized formulae for each bound.

Now, our methodology is going to be illustrated in more details with a com-
plete analysis of the reintegration mechanism of TTA. This is a simple example
which can help to understand its interest.
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4. ILLUSTRATION ON A BOUND : REINTEGRATION

The reintegration service

The reintegration of a node can occur when one of the TTA basic algorithms
detects a fault. Then the faulty node transits in passive state, and waits for
reintegration. All the nodes however continue to perform TDMA principle,
and the non-faulty nodes continue a normal execution.

The faulty node has a slightly different behavior. In the PSP, if the next slot
is the one of the faulty node, the faulty node checks if it can transit to active
state. The condition for that is that the controller has received at least MIC
(Minimum Integration Count) correct frames since it has failed. Then the node
reintegrate the cluster (transits to active state) and can send its frame.

The exact bound is validated between the beginning of the reintegration
(i.e. the detection of the fault which causes the transition of the faulty node
to passive state), and the end of the reintegration (i.e. its transition to active
state).

Hypotheses

Time-triggered concept : Some TTA mechanisms are supposed to be
correct, as there have already been formally validated in the literature (
Pfeifer, 2003, Rushby, 2002, Bouajjani and Merceron, 2002): member-
ship, clique avoidance and clock synchronization algorithms. These al-
gorithms provide the basis of the time-triggered strategy : a global view
of the system for all the non faulty nodes. All the nodes are synchronized
with a maximal clock drift

Architecture : The model includes a cluster of 4 nodes with bus guardians
in a one bus topology. No redundancy is considered.

Fault hypotheses : In faulty models, we consider that only one fault at a
time can occur during one TTA cluster cycle, which corresponds in our
model to two TDMA rounds. This is realistic considering the usual fault
hypotheses in automotive applications; but it rejects repetitive faults or
combination of faults. In non faulty models, the only fault modeled is
the one which initiates the reintegration process. It does not interfere
with the reintegration itself, and thus not with the bound value.

Model

The model is composed of several automata : one MEDL, one central bus-
guardian, one test automaton, one overall behavior manager and a set of au-
tomata for each node (the scheduler, the host_ftlayer level and the controller).
They are not presented here because of the limited place.
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A fault detection cause the starting of the deadline verification : the test
automaton (see figure 4) transits to the Reintegration state on the reintegra-

is indicated to the test automaton with the reintegration_end signal. If this
signal is not received before the end of the deadline (clock==deadline), the
test automaton transits to the Error state. The deadline verification is then the
verification of the Fault state reachability.

Figure 4. Test automaton

Validation

Verification results. Few results of the reintegration deadline verification
are given as example in table 1. These results are the same for all faulty nodes.
The CPU times and memory sizes have been measured for the verification of
the property of the deadline, in the case the Error state is reached.

Analysis - worst scenario. The figure 5 illustrates the first line of table
1, for the faulty node 2. This worst scenario exists for a fault detected in the
PRP of the slot which is two slots before the faulty node one. In this case,
at the next node PSP, the reintegration condition (integration > MIC with
integration the number of received correct frames) is not fulfilled, and then
the node must waits for its next PSP, i.e. one round later.

tion_being singnal from the controller. Similary, the end of the reintegration
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Analysis - parameterized formulae. In the model, the node transits to
passive state only at the end of the PRP. Thus, for the maximal bound, we add

at the bound verified on the model:
The IFG phase duration is calculated by adding the other durations of the

slot phases:
The parameterized formula is extracted by the worst case analysis of differ-

ent scenarios, as shown in figure 5. Then we have:
and

This formula is confirmed with all the results of table 1. For example, with
the first line of this table :

Figure 5. Worst reintegration scenario for node 2

5. EXPERIMENTS AND RESUTLS

Each of the UPPAAL models has been verified proving a number of proper-
ties on the UPPAAL model-checker. For instance, the cyclic infinite behavior
is guarantee verifying the deadlock property. Another example is the verifica-
tion of the reachability of the reintegration Error state.

This section gives bounds for the TTA services. On one hand, some elemen-
tary bounds for TTA algorithms are given by the TTA specification TTP, 2002 :

for the clock synchronization algorithm and for the membership
loss detection. Another one is given with formal verification in Bouajjani and
Merceron, 2002 : for the clique avoidance algorithm.

In the other hand, our methodology was first performed on bounds valida-
tion for basic services. These bounds can be seen table 2. The fault hypotheses
are the ones fixed in section 4. The communication blackout detection service
is the only service which necessarily works under a longer time fault (more
than one frame failed).
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Another interesting study to do is the bound validation of the composition
of several mechanisms. All TTA mechanisms are not independent and the
temporal bound of the composition is not the sum of the different mechanism
bounds. Specific analyses have to be done to extract these bounds.

This section shows as an example, the composition of both the detection
mechanism of membership loss fault, and the reintegration service. The bound
is not detailed here, and is done with simple fault hypotheses : the fault causing
the membership loss is a symmetric one (it has the same effect in all the nodes),
and there is no other faults during the rest of the service execution.

The temporal bound of the membership loss detection can be extract from
the specification : The one of the reintegration service is given in
table 2 : The sum of this two services bounds is
then superior two rounds and one slot. But the real temporal bounds is equal
to This difference is because the sum do not take into account that
this is the same node which is concerned with the two mechanisms. And the
worst case do not happened for both mechanisms for the same node. Moreover,
this bound is still an overvaluation of the real combined bound. Indeed, the
membership loss detection bound used is the one given in the specification,
and we do not modeled and analyze the worst case in details.

6. CONCLUSION

We defined a methodology to determine temporal bounds for basic TTA
services and algorithms. These bounds are parameterized values. They should
be used at higher levels for temporal validation of application.

In the future we expect to complete our UPPAAL models. Indeed, some
combination of services have to be bounded. Moreover, other fault hypothe-
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ses can be modeled. As bounds are calculated in reasonable CPU time, our
methodology could be applied to more complex models.
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Abstract: Embedded real-time systems are being increasingly used in a major part of criti-
cal applications. In these systems, critical real-time constraints must be satisfied
even in the presence of failures. In this paper, we present a new method-based
on graph transformation that introduces fault-tolerance in building embedded
real-time systems. The proposed method targets distributed architecture and can
tolerate a fixed number of arbitrary processors and communication links fail-
ures. Because of the resource limitation in embedded systems, our method uses
a software-based replication technique to provide fault-tolerance. Finally, since
we use graph transformation to perform replication, our method may be used
by any off-line distribution-scheduling algorithm to generate a fault-tolerant dis-
tributed schedule.

Keywords: Distributed and embedded systems, real-time systems, fault-tolerance, active
replication, graph transformation.

1. INTRODUCTION

Distributed and embedded real-time systems, such as transportation (e.g.,
aircrafts and automobiles), nuclear, robotics, and telecommunication, requires
high dependability (Avizienis et al., 2000), where system failures during execu-
tion can causes catastrophic damages. These systems must function with high
availability even under hardware and software faults. Fault-tolerance (Jalote,
1994) then becomes an important key to establish dependability in these sys-
tems. Hardware and software redundancy are well-known effective methods
for hardware fault-tolerance (Guerraoui and Schiper, 1996), where extra hard-
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ware (e.g., processors, communication links) and software (e.g., tasks, mes-
sages) are added into the system to deal with hardware faults. However, hard-
ware techniques based on hardware solutions are not preferred in most em-
bedded systems due to the limited resources available, for reasons of weight,
encumbrance, energy consumption, or price constraints.

In this paper, we present our most recent work for integrating fault-tolerance
in SYNDEx (http://www-rocq.inria.fr/syndex), a system level CAD software tool for
optimizing the implementation of real-time embedded applications on mul-
ticomponent architectures. The method we present extends (Girault et al.,
2001; Girault et al., 2003) by tolerating also communication links failures,
and is more general than (Dima et al., 2001) since it can tolerate an arbitrary
number of processors failures and an arbitrary number of communication links
failures.

The paper is organized as follows. Section 2 describes the related work.
Section 3 presents the various models used by our method and states our fault-
tolerance problem. Section 4 presents the proposed approach for providing
fault-tolerance. Section 5 explains how to use our solution with some existing
distribution-scheduling heuristics to generate fault-tolerant schedules. Finally,
section 6 concludes and proposes directions for future research.

2. RELATED WORK

Related work in software fault tolerance approaches for distributed and em-
bedded real-time systems falls in several categories. Relatively to fault hy-
pothesis, we are interested in three fault-tolerant approaches: processors fault-
tolerance, communication links fault-tolerance, and processors/communication
links fault-tolerance.

In the first category of approaches that tolerates processors failures, several
algorithms-based on scheduling heuristics have been proposed. They are based
on active software redundancy (Breland et al., 1994; Hashimoto et al., 2002)
or passive software redundancy (Ahn et al., 1997; Oh and Son, 1997). In the
active redundancy technique, multiple redundant copies of a task are scheduled
on different processors, which are run in parallel to tolerate a fixed number of
processor failures. For instance, an off-line scheduling algorithm that tolerates
a single processor failure in multiprocessor systems is presented in (Hashimoto
et al., 2002). In the passive redundancy technique, also called primary/backup
approach, a task is replicated on primary and backups replicas, but only the
primary replica is executed. If it fails, one of the backups is selected to become
the new primary. For instance, a fault-tolerant real-time scheduling algorithm
that tolerate one processor failure in a heterogeneous distributed system is pre-
sented in (Qin et al., 2002), where failures are assumed to be permanent.
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In the second category of approaches that tolerates communication links
failures, several techniques have been proposed, which are based on proactive
and reactive schemes. In the proactive scheme (Fragopoulou and Akl, 1995),
multiple redundant copies of a message are sent along disjoint paths. However,
in the reactive scheme (Sriram et al., 1999), one copy of the message, called
primary, is sent, and if it fails, another copy of the message, called backup, will
be transmitted.

Finally, the last category of approaches tolerates both processors and com-
munication links failures (Gummadi et al., 2003; Zheng and Shin, 1998; Dima
et al., 2001). For instance, in (Gummadi et al., 2003), failures are tolerated
using the fault recovery scheme and a primary/backups strategy. Our solu-
tion is more general since it can tolerate arbitrary processors and communica-
tion links failures, and it may be used by any off-line distribution-scheduling
heuristic to generate a fault-tolerant distributed code.

3. MODELS

3.1 Algorithm model
The algorithm is modeled by a data-flow graph Each vertex is an op-

eration and each edge is a data-dependence. A data-dependence corresponds
to a data transfer from a producer operation to a consumer operation, defining
a partial order on the execution of operations. This partial order relation is
denoted by Operations of can be either an external input/output op-
eration or a computation operation. Operations with no predecessor (resp. no
successor) are the input interfaces (resp. output), handling the events produced
by the sensors (resp. actuators). The inputs of a computation operation must
precede its outputs. Moreover, computation operations are side-effect free, i.e.
the output values depend only of the input values. The algorithm graph is exe-
cuted repeatedly at each input event from the sensors in order to compute the
output events for the actuators.

Figure 1.     (a) Algorithm graph; (b) Architecture graph.

Figure 1(a) gives an example of with four operations: A (sensor), B
and C (computations), and D (actuator), and four data-dependences:

and
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3.2 Architecture model

The architecture is modeled by a graph where vertices are processors,
and edges are bidirectional point-to-point communication links. In the sequel,
we write “links” instead of “point-to-point communication links”.

A processor P is a graph made of one operator one local memory and
at least one communicator An operator executes sequentially operations
of reads from and writes data into its local memory A communicator

cooperates with another communicator in order to execute sequentially
transfers of data stored in the memory (send or receive) between processors
through a link.

Figure 1(b) gives an example of with three processors and
and three links and where each processor is made of one operator

one local memory and two communicators and
To each operator we associate a list of pairs where is the worst

case execution time (WCET) of the operation o on operator Also, to each
communicator we associate a list of pairs where is the worst
case transmission time (WCTT) of the data-dependence on communicator

Since the target architecture is heterogeneous, the WCET (resp. WCTT)
for a given operation (resp. data-dependence) can be distinct on each operator
(resp. communication link).

3.3 Failure model

We consider only processors and communication links failures, where fail-
ures are assumed to be a fail-silent (also known as fail-stop), i.e. a component
works correctly or stops functioning (becomes silent). Recent studies on mod-
ern processors have shown that a fail-silent behavior can be achieved at a rea-
sonable cost (Baleani et al., 2003). We assume that at most processors
and links may fails.

As we consider off-line distribution-scheduling heuristics, the execution of
operations and communications are time-triggered (Kopetz and Bauer, 2002),
that is, each operation and communication is assigned two start-dates:
in the absence of failure and in the presence of failures.

4. THE PROPOSED APPROACH

In this section, we present our approach based on software redundancy to
tolerate processor and link failures. We propose to use graph transformation
to perform software redundancy, where a given input algorithm graph is
transformed into a new algorithm graph augmented with redundancies.
Then, operations and data-dependences of can be distributed and sched-
uled on a specified target distributed architecture to generate a fault tol-
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erant distributed schedule. The global picture of our methodology is shown in
Figure 2.

Figure 2. Global picture of our methodology.

In this section, we concentrate on the first step, the transformation of
into We first present a method that tolerates only processors failures,
next we present a method that tolerates only links failures, and finally we
present a combined method that tolerates both processors and links failures.

4.1 Tolerating processor failures

In order to tolerate at most processor failures, we propose to use the
same principle as in (Girault et al., 2003): each operation has replicas
scheduled on distinct processors. The system’s communication links
are assumed to be fault-free.

The transformation of into is performed in two steps. Initially,
each operation of is replicated in on exclusive replicas

(the set of replicas is noted two operations et
are exclusive if and only if they are two identical replicas of the same opera-
tion and they must be scheduled on distinct processors. In the second step,
each replicated operation of must receive its inputs data times
from each of its predecessors. Therefore, each data-dependence of
is replicated in on exclusive replicas two
data-dependences et are exclusive if and only if they are two iden-
tical replicas of the same data-dependence and they must be scheduled
on disjoint paths (see Figure 3(a) for

Figure 3. (a) Processor failures; (b) Link failures.
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4.2

To tolerate at most link failures, we propose to use the same princi-
ple as in tolerating processors failures, which is based on the following graph
transformation. We don’t need to replicate operations because the processors
are assumed to be fault-free. Therefore, each data-dependence of is
replicated in on exclusive replicas
between any two dependent operations (see Figure 3(b) for

4.3
To tolerate at most processor and link failures, we first replicate

each operation of in on exclusive replicas (set as
shown in Figure 4(a), wherein operations A and B of Figure 1(a) are replicated
on exclusive replicas. Then, each replicated operation of must
receive its input data times from each of its predecessors. There-
fore, each data-dependence of is replicated in on
exclusive replicas, as shown in Figure 4(a), wherein the data-dependence
is replicated times between the replicas of A and each
replica of B.

Figure 4. (a) Initial transformations for and (b) Final transformations.

The problem of this scheme is to find a distribution of these exclusive de-
pendences of between the replicas of A. The requirement is to
tolerate only processor failures and link failures. Therefore, we pro-
pose a distribution which is less expensive in terms of communications.

To present as clearly as possible our distribution technique, we present ini-
tially its principles in the case and for the algorithm sub-graph
of Figure 5(a). Figures 5(b) and 5(c) are the two first steps of our approach,
before the distribution itself, which is performed in two steps, illustrated in
Figures 5(d) and 5(e). Since and and contain
each two replicas. Furthermore, the data-dependence is replicated three
times.

Tolerating link failures

Tolerating processor and link failures
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First, we connect each replica of A with one of these three data-dependences,
as shown in Figure 5(d). Next, we first replace the third data-dependence by a
new operation We call this new operation a routing operation, its duration
is null (the set of all routing operations from A to B is noted Fi-
nally, we connect all the replicas of A to which is also connected
to each replica of B, as shown in Figure 5(e). The purpose is to make sure
that each replica of B has three distinct sources from which it will receive
the data-dependence so that if any two sources fail (two because here

then these failures will be masked by the third source. Thus, for
any operations and are exclusive and must be implemented on dis-
tinct processors. Also, the data-dependences and are
exclusive and must be implemented on disjoint paths. Such exclusive relations
are given with the final transformed graph to the distribution/scheduling
heuristic (see Figure 2).

Figure 5. Distribution scheme for and

In the general case, and the transformation scheme of
on is illustrated in Figure 4(b), where each operation is replicated

in on exclusive replicas, and each data-dependence is replaced
by routing operations data-dependences between and
each and one data-dependence between each and each The opera-
tions in and in are exclusive and must be implemented on
distinct processors. Also, all replicated data-dependences and are
exclusive and must be implemented on disjoint paths.

5.

Our method may use the distribution-scheduling heuristic DSH proposed
in (Grandpierre et al., 1999). As required by our graph transformation method,
we modify the DSH heuristic to take into account the exclusive relations be-
tween operations and data-dependences. The modified heuristic is formally

DISTRIBUTION/SCHEDULING HEURISTIC
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described in Figure 6. We use the two functions and to de-
note the sets of successor and predecessor operations of o in

At each step of the heuristic, for each candidate operation in
we compute the set of processors that can execute and comply to
the concerned exclusions of Then, the most urgent candidate operation

is selected to be scheduled thanks to the schedule pressure function
defined in (Grandpierre et al., 1999). Then, among the set the pro-
cessor where will finish at the earliest date, is selected to execute

But before is actually scheduled onto            all the required
data-dependences are scheduled on paths, possibly disjoint depending again
on the concerned exclusions of Finally, the lists of scheduled

operations and of candidate operations are updated.
Finally, the proposed general transformation scheme enables us to generate

a fault-tolerant distributed schedule of the new algorithm graph onto the
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architecture graph The following theorem proves that it is, by construc-
tion, tolerant to any combination of at most processors failures and at
most communication links failures.

THEOREM 1 Let be an algorithm graph and an architecture graph.
Let be the new algorithm graph obtained by applying the transformation
of Figure 4(b) to Let be the system obtained by distributing and
scheduling onto w.r.t. the exclusion relations required by the graph
transformation having led to If at most processor  failures and
communication links failures occur in then at least one replica of each
operation will remain active.

Proof. Since each operation is replicated times, since all these
replicas are scheduled onto distinct processors, and since at most pro-
cessors can fail simultaneously, then at least one replica of each operation is
scheduled onto a processor that will remain valid. We therefore need to prove
that any operation scheduled onto an active processor is active, i.e., that it re-
ceives correctly all its required inputs from all its predecessor operations.

Let be such an operation, namely the replica of operation For
each of its predecessor operations thanks to the same argument as above,
there exists at least one replica scheduled onto a valid processor. By con-
struction, there exist data-dependences between and Thanks to
the exclusion lists given to the distribution/scheduling heuristic, these
data-dependences are scheduled onto disjoint paths. Since at most
communication links can fail simultaneously, then at least one of these data-
dependences will remain valid. Hence will receive correctly its input from

We have thus proved that any operation scheduled onto an active processor
will receive correctly all its input data from all its predecessors in and will
therefore be executed correctly.

6.
We have investigated methods to mask hardware failures in heterogeneous

distributed systems with point-to-point communication links. We have pro-
posed a new method that tolerates at most arbitrary processors and at
most arbitrary communication links failures. It is a software solution,
based on active redundancy to mask the hardware failures. It proceed in two
steps: first a graph transformation, and then an off-line distribution-scheduling
heuristic. The graph transformation adds software redundancy to the original
algorithm graph we obtain a new algorithm graph with redundancy,
along with exclusion relations. Then, the distribution-scheduling heuristic is
applied to map onto a given architecture graph As a result, it gen-
erates a static schedule of onto which is tolerant to the required
processors and communication links failures.

CONCLUSION
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Currently, we are working on a new solution to take into account distributed
architectures with bus communication links. We also plan new solution to take
sensors/actuators failures into account.
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DEVELOPMENT OF DISTRIBUTED
AUTOMOTIVE SOFTWARE
The DaVinci Methodology
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Abstract: The software complexity in modern vehicle electronic systems is increasingly
growing. Vehicle projects have to take into account a growing number of
interconnected functions, which are jointly developed by many persons in
many different companies. For facing these challenges, new design
methodologies for a formalized and partially automated software development
are required.

The DaVinci design methodology has been developed to match the specific
requirements of distributed automotive systems. This includes the function-
oriented design of the system structure as well as the deployment on a network
and software integration on ECUs (electronic control units). Such a design
serves as basis for an automatic code generation process, which integrates the
applications into an efficient ECU target architecture with real-time operating
system (RTOS) and communication stack.

Typical scenarios during the development processes like the reuse, exchange
and integration of design data are supported and combined with a flexible
configuration management. PC-based test environments may be used for
functional integration tests or verification of the network communication.

This article is supposed to give a brief overview of the methodology as well as
some selected aspects of its implementation in the DaVinci tool suite.

Design methodology, distributed embedded systems, automotive.Key words:
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1.

The software architecture of typical automotive systems in general is
required to fulfil important requirements, the most prominent being:

Independence of software component from each others: it must be
feasible to independently develop and test self-contained functions of the
automotive software. Only by this means it is possible to reuse particular
software components among model families.
Independence from particular network topology: it must be possible to
map a particular collection of communicating software components to a
variety of network topologies.
Efficiency: the overhead imposed by the conformance to a standard
software architecture is required to be as small as possible. Of course,
the optimal solution would be not to generate any overhead at all.
As a response to these requirements the Da Vinci methodology has been

developed. DaVinci supports the independence of “pieces of software” from
each others by defining the so-called software component.

The combination of particular software components to form a logically
consistent higher functionality is called a software configuration. In other
words: the software configuration represents a graph of software
components.

Figure 1. Distributed System

INTRODUCTION
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Furthermore, it is possible to model relevant hardware components (i.e.
ECUs, communication buses, sensors, actuators). By this means a graph of
hardware elements is formed.

In order to define a concrete network of electronic control units (ECU)
for a particular car model the software graph has to be mapped on the
hardware graph. The result is called a mapping system. The latter is the basis
for sophisticated code generation activities that mainly resolve the abstract
interfaces defined in the software component. By this means the strict
interfaces leave virtually no overhead.

The persistent storage of DaVinci model elements is based on XML.
Model elements that belong together are arranged in a so-called workspace.
The latter, on the other hand, can be associated to a configuration
management repository to support team-based development of DaVinci
models.

The main field of application for DaVinci is the specification of so-called
body electronics (e.g. power windows, climate control, seat adjustment,
lighting, etc.). It is planned to extend the applicability of the DaVinci
methodology to other automotive domains such as power train, chassis, etc.
in the future.

2.

2.1

Obviously, the main point for achieving independence of software
components is the definition of strict interfaces among software components
as well as to the underlying hardware and standard services (RTOS,
communication drivers, network management, etc.).

A further point to take into account is the granularity of software
gathered in a software component. The latter is defined as the minimum self-
contained reusable software unit.

Software components can be arranged hierarchically such that software
components (without behavioural description) contain other software
components.

The behaviour of a software component can be modelled either directly
by means of the C language or by means of some behaviour modelling tool
such as The Mathwork’s Simulink™ or I-Logix’ Statemate™.

DAVINCI DESIGN ELEMENTS

Software Component
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Furthermore, dSPACE’s TargetLink™ can be used for behavioural
modelling to support the creation of series production code from Simulink™
models.

Figure 2. Example of a hierarchical software component

The architecture of Vector’s DaVinci Tool Suite provides a generic
adapter concept that allows to easily integrate additional behaviour
modelling tools on customer’s demand.

2.2

A signal is used for interconnecting software components with each
others. Furthermore, a signal can be used to connect a software system (see
ch. 2.4) to hardware devices such as sensors and actuators.

Signals maintain several properties such as the data type, the conversion
formula from the physical domain to the data type as well as several
automotive-specific properties like a timeout value.

2.3

The so-called ECU state machine is part of the abstraction mechanisms
specially introduced to yield a maximum hardware independence of software

Signal

ECU State Machine
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components. ECU state machines define special states in which an ECU can
operate as well as the possible transitions between states.

Software components, on the other hand, may define so-called
procedures that implement special behaviour of the software component
according to the current state of the ECU state machine.

Of course, the full power of ECU state machines as a means of
abstraction is provided only if all ECUs (to which a particular software
component can be mapped) implement an instance of the same ECU state
machine.

2.4

A software system is a collection of software components connected by
signals. The purpose of a software system is to gather software components
to form a higher functionality based on the interaction of the particular
software components.

Figure 3. Example of a simple software system.

Another perspective of a software system is the representation of the
entire (as far as DaVinci in concerned) software functionality of the network
of ECUs in a car.

Software System
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3.

3.1

A bus is used to express a communication device among the collection of
ECUs in a network. In general, several types of buses (e.g. CAN, LIN,
MOST, FlexRay, etc.) could be used in a network of automotive ECUs.
Furthermore, several disjoint buses of the same type (e.g. CAN) could be
used to form subnets connected to each others by gateway ECUs.

DaVinci currently supports the definition of CAN networks. Gateways
are supported but the gateway functionality must be explicitly specified by a
software component.

For the future, DaVinci will not only support a wide range of buses but it
will be possible to automatically determine the communication behaviour of
gateway ECUs based on the formal description of the communication
network.

3.2

An ECU obviously is used to carry out computations, i.e. host a
collection of software components as described by the mapping description.
An ECU can have sensors and actuators that resolve particular signals.

In other words: software components interact (via signals) with the real
world by means of sensors and actuators provided by the ECU onto which
the software component is mapped.

Furthermore, the description of an ECU consists of a reference to a
particular ECU state machine.

Figure 4. Communication Bus

DAVINCI IMPLEMENTATION ELEMENTS

BUS

ECU
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For supporting the generation of target code, it is possible to specify the
type and (if applicable) variant of the underlying microcontroller.

3.3

A hardware system is the direct counterpart of the concept of the
software system, i.e. it describes a collection of ECUs as well as the
communication buses used to interconnect particular ECUs.

3.4

A mapping system defines a particular combination of a hardware system
and a software system. Furthermore, the mapping of software components to
ECUs as well as the mapping of signals to bus messages are essential parts
of the description of a mapping system.

Figure 5. A simple mapping system

4. DAVINCI TARGET ARCHITECTURE

As mentioned before, the abstract interfaces defined by the DaVinci
methodology at some point in time must be resolved such that software
components can be embedded into a defined target architecture with
maximum  efficiency.

DaVinci’s code integration capabilities allow the seamless integration of
heterogeneous software components, e.g. legacy C Code and model-based
developed components.

The standardized target architecture used for DaVinci models is depicted
in Figure 6. As sketched by the picture, the target architecture itself consists
of self-contained modules some of which must be specially generated
according to the DaVinci model configuration.

Hardware System

Mapping System
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Other modules exist as predefined source code but must be configured
(i.e. header files containing configuration information must be created). Both
generation and configuration of software modules is carried out by specially
tailored code generation tools.

One of the most prominent code generation issues is the generation of a
communication stack that provides signal access in the context of a so-called
interaction layer to software components.

The underlying RTOS must be configured as well. The configuration
depends on the mapping of software components as well as the assignment
of priorities to tasks.

Furthermore, timing constraints concerning bus communication must also
be taken into account, i.e. it must be made sure that messages with a high
priority are send by tasks that as well are executed under a high priority.

Figure 6. DaVinci target architecture

The currently supported range of microcontroller targets consists of the
Motorola PowerPC series for embedded applications as well as on the Star 12
microcontroller. Further targets are supported on demand.

For diagnostics purposes Vector’s CANdesc software module can be
integrated to DaVinci applications. Supported interaction layers are
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GMLAN, DBKom, and derivatives of the Vector IL. For calibration and
measurement purposes it is possible to add a CCP driver as well.

5. TEST OF SOFTWARE COMPONENTS

A very typical constraint of the development of ECU software is the fact
that in early phases of the development project the target hardware does not
yet exist.

This fact should not have an impact on the activities on the software side.
For this purpose it is essential to have a test platform that emulates especially
the communication hardware.

Figure 7. CANoe test environment

This requirement is fulfilled by the software tool CANoe that has as well
been developed by Vector Informatik GmbH. The functionality of CANoe,
however, is not limited to mere simulation.

It is possible to simulate particular nodes of a communication bus that
otherwise already exists in hardware, i.e. physically existing ECUs can be
conveniently combined with simulated ones and perform realistic real-time
communication among each others. This concept is depicted by Figure 7.

DaVinci supports CANoe as an experimentation platform for early
phases of a network project. It is possible (by means of a predefined target
configuration) to generate the target architecture code such that the entire
ECU including applications, communication stack and RTOS can be
simulated by CANoe.

6. DISTRIBUTED DEVELOPMENT

Large software projects in the automotive domain are usually distributed
among several supplier companies under the control of the car manufacturer.
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A tool suite for carrying out large software project must therefore support
the distributed development of software.

For this purpose Da Vinci provides several features:
It is possible to attach a DaVinci workspace to a configuration
management repository thus enabling DaVinci to be used by the
development team of at least an entire company.
DaVinci provides sophisticated import and export mechanisms that are
capable of dealing with the formal model without uncovering subjects to
intellectual property (e.g. the structure of a control algorithm
implemented to realize a specific software component). This technique
can be used to share DaVinci model elements among developers of
different companies. Please consult Figure 8 for more details.

Figure 8. Distributed development using DaVinci

7. FUTURE PROSPECTS

The DaVinci methodology as well as the corresponding tool suite is
subject to continuous improvement. Among other things this applies in
particular to the introduction of further behaviour modelling tools as well as
the support for additional microcontroller targets.
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Research in distributed dependable control systems within the automotive
industry is of high importance today. One reason is the introduction of more
mechatronical systems. Volvo Car Corporation and the Royal Institute of
Technology initiated a joint project in October 2002 to target this technology
change. The project was named FAR, which stands for Function and
ARchitecture integration. FAR focused on the development of drive-by-wire
systems using model based development. The deliveries from the project were
a tool chain for automatic code generation from Matlab Simulink and Matlab
Stateflow models and also a prototype vehicle in scale 1:5. It was a very
successful project and the result was delivered to Volvo Cars in June 2003.
The project deliveries have been further developed at Volvo Cars since then.
Primarily, a new hazard analysis method has been developed and new fault
tolerance mechanisms have been implemented.

dependable systems; drive-by-wire; model based development; hazard
analysis; redundancy; fault tolerance; electrical architecture; time-triggered
CAN; case study.

1. INTRODUCTION

The automotive industry faces new challenges as more functionality is
implemented using mechatronical solutions. At the same time, challenges as
increased complexity and high dependability requirements must be handled.
The dependability requirements will be in the same order as for fly-by-wire
systems. It is also crucial to meet low development costs, short development
time, high degree of reusability, and quality targets.
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Therefore, the automotive industry needs new approaches in product
development and engineers skilled to develop mechatronical system. These
were the main reasons for initiating this project. In the FAR project, Volvo
Cars and the Royal Institute of Technology reached these objectives in a
successful cooperation.

There were many lessons learned and valuable outcomes from the FAR
project. The model based development used, allowed the project to handle
the complexity of the given task. The prototype car that was developed has
been used to implement and evaluate several design concepts like a fault
tolerant electrical architecture and redundancy strategies. Further, the car
implemented the time triggered CAN protocol, TTCAN. TTCAN gave the
required support to synchronize the nodes in the cluster.

When the first phase of the FAR project was finished, the prototype
moved to Volvo Cars in Gothenburg. At Volvo Cars, the main research was
in the area of electrical architectures. It is mainly this work that is presented
in this paper. Particularly the focus has been on an actuator based hazard
analysis and fault tolerance mechanisms that uses inherent redundancy. This
hazard analysis was used to guide the design of the implementation.

The paper starts with a short introduction to the dependability approach
including hazard analysis and fault tolerance mechanisms in Section 2.
Section 3 describes different architecture views that were developed and
implemented in the prototype. The prototype is described in Section 4 and
Section 5 summarizes the conclusions from the project.

2. DEPENDABILITY APPROACH

The development of safety critical mechatronical products require
structured design methods to assure system dependability. In this work, the
focus was on an actuator based hazard analysis and specific redundancy
strategies for fault tolerance.

2.1 Actuator Based Hazard Analysis

In the early stages in the design process, an actuator based hazard
analysis was performed. The method used has been developed from the work
by Johannessen (2001) and Papadopoulos (1999). Since it is the actuators
that affect the system’s environment, this actuator based approach is the
logical approach for an early hazard analysis.
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The failure classes used in this analysis are; omission, commission, and
stuck. These classes are the worst case failures for any mechanical actuator.
The class omission is interpreted as no energy is available at the actuator,
commission is interpreted as maximum energy is applied to the actuator, and
stuck is interpreted as a mechanical locking.

The chosen failure classes represent the three main failures of an
actuator. Therefore, the analysis can indicate which state is the preferred fail
state. For instance, if a brake failing in an omission state is less severe than
both the commission and stuck states, then omission is the preferred fail state
for the brake actuator. All failure classes are applied to each actuator and the
system effect is analyzed.

The used severity levels are described in IEC-61508 (IEC 1998). They
are Catastrophic, Critical, Marginal, and Negligible. These failure classes
are used in a unique criticality ranking where the distribution between the
severity levels for each failure class is considered. The sum of the
distribution terms is 100%. This can be seen in the example in Table 1.

To be able to do a quantitative analysis, each severity level is assigned a
weight, as shown in parenthesis in Table 1. The weights are application
dependent, e.g. Negligible is of higher importance in a consumer product
than for an industry product. The product of the severity level and the
distribution numbers are added to a criticality number for each failure class.

The hazards that have a criticality that exceeds a predetermined threshold
need to be handled. This method also supports a solvability analysis, where
different design solutions are compared with each other. The analysis gives
an indication of the best soultion.

In the FAR project, this hazard analysis gave valuable input to the design
and implementation, particularly for fault handling concepts at the actuator
level.
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2.2 Redundancy Strategies for Fault Tolerance

The redundancy strategies used are described by Johannessen (2003) and
Forsberg (2003) and include inherent redundancy, scalable software
redundancy and local redundancy. These redundancy strategies are
implemented in a top down approach starting with the most cost efficient
strategy, which is the inherent redundancy. The most expensive approach,
local redundancy, is used to fulfill fault tolerance requirements of permanent
faults when inherent redundancy is impossible.

The inherent redundancy requires fail-silent actuators to be efficient. In
FAR this is achieved by using wheel nodes that monitor each other by a fault
handler module. The front and rear wheel nodes are grouped together to
achieve a more dynamically stable system. The disable signals are directly
connected to the actuators and are activated by the monitoring node to avoid
unintended behavior. It is vital that the signal is an active action by the
monitoring node. This approach requires a sane node to shut down the
controlled node. A schematic of this solution is shown in Figure 2. An
alternative solution that was implemented was to reset the controlling node
instead of disabling the actuator. However, this approach was analyzed to be
less safe since a reseted node has to reintegrate in the system. Therefore, it
was used as a secondary fault handling mechanism.

Figure 1. The monitoring node concept used to achieve fail-silent actuators.

3. ARCHITECTURE VIEWS

The FAR architecture is a further development of the Sirius 2001
architecture (Johannessen 2003) and the conceptual study of a distributed
JAS 39 Gripen architecture (Forsberg 2003). This updated FAR architecture
contains several different views. In this section, the functional, logical,
hardware, software, deployment, and TTCAN views are described.
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To capture the requirements of the system, a functional view is first
developed. The logical view is highly integrated with the vehicles dynamic
functionality developed in Matlab Simulink and Matlab Stateflow. One
further step towards the implementation is the software view that integrates
all software components in the complete system. The hardware view
describes the target system onto which the functions developed in the Matlab
tools will execute. To integrate the functional, software and hardware
systems, a deployment view is needed. This view is also important when
implementing fault tolerance and redundancy. The TTCAN view describes
the communication system used in the project.

3.1 Functional View

UML Use cases were used in the early design phases to capture the
requirements of the project. Figure 1 shows the project’s Use case diagram.
This diagram includes three users; the Project Stakeholder, the Driver of the
car, and the System Developer. The Project Stakeholder is interested in the
project as a whole, for visualizing new technology, education and research
activities and also for marketing purposes. Both the Project Stakeholder and
the System Developer can be a Driver, who operates the prototype vehicle.
The System Developer is the engineer that develops the system and uses it
for experiments.

Figure 2. The FAR UML Use case diagram
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3.2 Logical View

The logical view shown in Figure 3 is the basis in the scalable software
redundancy strategy described by Johannessen (2003). Further, many
control-by-wire systems can be modeled and designed according to the
model in Figure 3. The global control functionality considers vehicle
dynamics and the local control functionality handles loop closure for all
actuators. All objects should be designed with as few dependencies as
possible to support reusability and reduce complexity.

Figure 3. The logical view of the FAR architecture.

3.3 Software View

The software view in Figure 4 is the base for automatic code generation
from Matlab Simulink and Matlab Stateflow using dSPACE TargetLink.
Further, the clock tick from the TTCAN controller is used for distributed
node synchronization. By separating the application code from the low level
code such as I/O and scheduling, it was possible to automatically generate
and modify application code for the target hardware.

Figure 4. The software view of the FAR project.
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3.4 Hardware View

The hardware view in Figure 5 shows the hardware components used in
the system. There are six Motorola 68340 microcontrollers connected with a
TTCAN network. The microcontrollers run at 25 MHz and are equipped
with external A/D and D/A converters.

Each wheel has a dedicated node and there is one node for environment
sensors. To coordinate the whole system there is one driver node that is
connected through a radio link to a HMI node. The HMI node is further
connected to a joystick or a steering wheel and pedals.

Figure 5. The Hardware view of the FAR car

3.5 Deployment View

The deployment view in Figure 6 is vital for implementing redundancy
strategies and fault tolerance concepts described in section 2.2. In the
scalable software redundancy concept, several instances of the global control
calculations are executed in the distributed system and the results are shared
in the cluster using a broadcast communication system.

Since all results from the global calculations are broadcasted, all nodes
have a consistent view of the system. These broadcasted results are voted on
in each wheel node, which gives a high degree of fault tolerance for transient
faults.

Further, the par-wise monitoring and fault handler in Figure 2 was
implemented. This applies to the brake, steer and drive actuators. Figure 6
shows these mechanisms for the front right node denoted FR. The other
nodes are symmetrically identical.
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Figure 6. The deployment view of the FAR project with fault handling strategies for the front
right wheel node.

3.6 TTCAN View

The communication protocol that was implemented in the FAR platform
was TTCAN (ISO 2003). TTCAN was chosen since it is a potential protocol
for the automotive industry that would fulfill the system’s requirements. The
protocol supports both time triggered and event triggered operation. Event
triggered operation is implemented in the protocol using standard CAN
arbitration mechanisms.

TTCAN is particularly useful in distributed control systems since the
TTCAN controllers can provide a clock tick. These clock ticks can be used
to synchronize the nodes in the cluster. All clocks in a TTCAN cluster are
synchronized by CAN messages distributed by redundant time masters.
Further, time triggered communication is predictable in the time domain.

The FAR car uses time triggered operation and approximately 20% of the
available bandwidth. However, the communication could be further
optimized. The cycle time of the communication system was 32 ms and
consequently the global cycle frequency was 31 Hz.
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4. PROTOTYPE

The developed car prototype has four-wheel steering, individual braking
and four-wheel drive, with a total of three actuators per wheel. The car,
shown in Figure 7 can be programmed into several modes of operation,
including three different types of steering and three different types of wheel
drive. This prototype will be valuable as a basis for future projects with
drive-by-wire research.

Figure 7. The developed prototype vehicle in scale 1:5.

5. CONCLUSIONS

This project allowed us to verify some concept in the development of
drive-by-wire systems. Primarily, many dependability increasing concepts
were validated, both to provide fault tolerance and also to be implementable
in an embedded system.

The developed hazard analysis method also proved useful in the
development process. It efficiently identifies real and critical failures that
need to be handled. This is a requirement in the development of safety
critical systems. By combining criticality and distribution of criticality for
each failure class, valuable information could be obtained.

The use of TTCAN gave valuable insights. It is a highly interesting
protocol, not only as a replacement of traditional CAN, but also as a
communication protocol for safety critical real-time systems.

The developed prototype vehicle has shown to be as useful as expected.
It is always preferred to have a real system when demonstrating new
functionality or implementing new concepts to increase understandability.
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It is also important to consider the teams developing the drive-by-wire
systems. These mechatronical systems have a very high degree of
complexity and also many degrees of freedom that give a larger possible
solution space. The designers need some form of tools to handle the
complexity. In this project the complexity was handled using several
architectural views. Since each view considered only one aspect the
complexity was manageable by the designers.
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This paper describes a communication system for the test track that will be
used to develop the components of a new train concept, the RailCab. The
demand for flexible hardware architecture and optimized communication
channels motivated this project. The aim of the network is to control frequency
converters for linear motor sections placed along the track. The vehicles that
are moving along the track at a given time will issue the commands to each
motor. In order to optimize the communication functions, new hardware
components and a new protocol were designed, so that modules accessing
network are able to do this in a more direct way.

Mechatronic systems, hardware design, protocol specification, control
systems, communication systems.

1. INTRODUCTION

Stand-alone systems are increasingly becoming obsolete. For some
applications, they are considered useless in comparison to the distributed
ones, the latter being able to use all the features that are present on each
element of a network. Distributed systems are especially useful in
constructing complex systems that comprise different function modules; they
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offer the possibility of sharing resources and can be used together nodes that
can cooperate to accomplish a certain task.

Although the number of communication interfaces available on the
market has largely increased in the past decades, there are still new
applications which make specific demands that cannot be completely
fulfilled by the available standards in terms of cost/benefit or even particular
technical characteristics [9]. The special case to be described in this work
requires a protocol that has to guarantee very short latency times (some
microseconds at most) but can sometimes dispense extremely high
bandwidths as the packets transmitted are relative small and the number of
nodes is restricted.

The case study presented here is the RailCab [1] test track. The RailCab,
developed at the University of Paderborn, is an innovative variation of con-
ventional trains and based on individual, autonomous shuttles that can be
ordered by a client to transport him/her directly from one city to another.
The service being personalized, there is no need for the passenger to change
trains or wait for fixed departures: the shuttle just sets off at the defined time
and location and travels to its destination non-stop. This technology is based
on linear motors which are used to move and brake the shuttles and can be
installed on existing railroad tracks. The whole track is made up of a
succession of linear-motor sections which can be controlled individually. For
the shuttle to run smoothly and at a defined velocity, a linear motor has to be
synchronized to its respective neighbors as the vehicle is passing over them.
However, not only the motors have to be synchronized but their current must
also be controlled by a local ECU. To provide these features, a networking
system is required that can be optimized to this application. The aim of this
paper is to propose a concept to be used with the first prototypes on the test
track and to present the basic protocol and hardware platform required to
accomplish this task.

2. TEST TRACK

The RailCab test track was built up at the University of Paderborn on a
scale of 1:2.5 and has a total length of about 530 meters. It is made up of the
rail track itself and 83 linear-motor sections, each one controlled by a servo
device; all of these are distributed to 4 stations along the track. Additionally,
there is a control room where the track functions are coordinated and
monitored. Figure 1 represents the track.

The servos, or frequency converters, are made up of a processing unit and
power electronics. The processing unit is the component where the current
controller for the servo runs. This unit also provides communication
interfaces (CAN-bus and RS-485) to other equipments. At present, the entire
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network operates using the CAN-bus interface which allows an external
system to set the reference values for the motor frequency, amplitude, and
phase. However, the RS-485 (SSI) interface is faster and provides features
that surpass those of the CAN-bus. Extra features include, e.g., the
possibility to let the controllers run externally, using only the servo sensors
for reading signals and writing values for high voltages to registers in the
frequency converter that is then in charge to generate the power outputs. Due
to its advantages, the RS-485 servo interface was chosen for the network
described in this paper.

Figure 1. RailCab test track

Networking between the control room and the servo stations is done via a
fiber optic (see [6], [7]) channel where all five nodes are interconnected by a
point-to-point link that represents a ring topology (fig. 1).

So far two communication interfaces that are going to be used for the
actual implementation were described: RS-485 for the servos and fiber
optics between the stations. For these links to communicate with one
another, additional interfaces and hardware are required and will be
described in the following sections.

3. NETWORK FUNCTIONALITIES

The proposed network is intended to gradually provide new functionali-
ties according to the following three steps:

1. Establishment of a networking system that, from a remote operation
point, will be able to distribute reference values to all linear motors on
the track. These reference values are set by a pre-defined unit located at
the control room. At this stage the timing requirements are not as strict
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2.

as those for the following two steps once the current controllers run on
the servos themselves.
Disabling of the internal current controllers of the servos and implement
them using an external ECU. This will make possible the tests of new
control strategies for the linear motors - one of the tasks of the RailCab
development team. To implement this second stage the Motorola
PowerPC MPC555 microcontroller will be used. A set of four boards,
each containing one of these processors, is going to be connected to the
network, initially in a remote position, to control the entire track. Some
prior tests have shown that implementation of the current controllers at
sampling rates of 8 kHz requires almost the entire microcontroller
capacity; as a result, the four boards can simultaneously control up to 4
linear-motor sections. Although there are many more sections to control,
four boards should be sufficient because initially there will be
simultaneously no more than two shuttles on the track, and each one of
them requires a maximum of only two sections operating at a given time
(considering that the vehicle is passing from one section to the next).
This illustrates a scenario in which the processing power is scheduled
dynamically to the active motors, in an “on demand” manner. The
immediate advantage is that the number of hardware elements needed to
implement the controllers is drastically reduced; on the other hand,
though, the communication requirements will increase significantly
because the controllers are in a remote position and have to use the
network to transfer the servo’s input/output data.
The third step is meant to minimize the communication drawbacks by
distributing the controllers evenly along the track, thus reducing
demands on the network bandwidth and creating segments that can make
safety or operability decisions autonomously if, for example, the
connection to the respective neighbors is interrupted. Another possibility
here is to build the ECUs using FPGAs as processing elements. Such
devices are appropriate for fast and parallel computations and could
therefore be used to implement the current controllers.

3.

Now that the basic idea for the network has been expounded, we can go
on to propose appropriate hardware devices.

4. HARDWARE PLATFORM

The hardware described here is based on the Rabbit system [2], [8]. The
Rabbit platform is intended for the rapid prototyping of distributed
mechatronic systems and made up of three main boards: one with an
MPC555 PowerPC, another with a Xilinx Virtex-E FPGA, and the last
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including a FireWire (IEEE 1394) communication interface. The new
processing hardware developed is to be used as an ECU for the current
controllers and makes use of the concept of microcontroller/FPGA
integration. Although the FireWire module is no longer available on the new
hardware, there are also some new communication interfaces, such as 4
LVDS (low-voltage differential signaling) [10] ports and a 10/100 Mbps
Ethernet port. Additional features include the possibility for the
microcontroller to program the FPGA or its Prom, as well as the FPGA to
write the MPC555 memories. This is especially helpful if some
reprogramming tasks must be performed remotely (some dozens of meters
away), which is the case for the test track. The diagram of this board is
shown in figure 2:

Figure 2. Rabbit NG platform

Communication among all the boards takes place mainly via the LVDS
interface. This serial standard offers high signaling rates, but is restricted to
just about 40 Mbps for each pair of wires on the boards for this system. Each
one of the so-called LVDS ports available on the board contain actually four
differential pairs; thus the total throughput for each of the four ports is about
160 Mbps. The reason for using this standard is that it is a merely physical
one, i.e., the entire protocol that is being used over it can be implemented to
met the requirements of specific applications. As the network proposed in
this paper basically defines a new protocol, the choice of the LVDS standard
is justified. All LVDS interfaces are connected to the FPGA, where the
entire protocol is actually implemented. The programming language chosen
for this purpose was VHDL.

As stated above, communication infrastructure between the stations on
the track uses fiber optics only. In order to transmit the data of the LVDS
interface transparently via optical fibers an adapter board was also built up.
With this solution, it will not matter to the user if electrical or optical cables
are used to connect two boards. Fiber optics is a good solution for the link
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between the stations because the involved distances are rather high for
electrical cables and also due to the fact that the linear motors’
electromagnetic fields may cause interferences on electrical cables.

At this point, there is still the need to connect the motor servos to the
network. Because the servos have their own communication standard, a third
board (called SSI) must also be developed. This board operates as a bridge
between the LVDS (network) and RS-485 (servo) interfaces. Once again an
FPGA is used as the processing element for this task.

Figure 3. Architecture of a station

Now that we have described the boards, we need an architecture to
combine them. The architecture of the four servo stations is shown in figure
3. For these stations, each SSI board has connections for up to 8 servos and a
LVDS link to a router (fig. 3). The router is actually the MPC555 board with
a LVDS-to-fiber optics, but is represented as a single block for
simplification.

Figure 4. Architecture of a garage
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The architecture for the control room is different (figure 4) because its
functions differ from those of the servo stations. The basic difference is that
the ECUs are for the first development phase centralized in the control room.
Additionally, one processing board operates as a gateway for a radio link
between the test track and the shuttles and another one is used as an interface
to a developer’s PC via Ethernet communication.

5. PROTOCOL SPECIFICATION

All the messages in the proposed network fit into one packet. A message
is sent only once and will not be repeated even if an error is detected. A node
address serves as a unique identifier for each component on a network. Thus,
as this project has many similarities with standard networks, it resembles
sometimes the Internet Protocol Addressing [3] strategies. The messages that
pass through the network can have different purposes. For this reason, four
different types of messages were defined: emergency, synchronization, data,
and maintenance. The priority scheme is very simple: it considers just the
type of message and the order of arrival. As regards priority, the order of the
messages from the highest to the lowest is: emergency, synchronization,
data, and maintenance.

There are many techniques to detect garbled messages. Three of them are
the most common ones used in data communications: Checksum, Error
Detection, and Error Correction. Check Sum is a method that uses module
summation to detect errors in a stream of data. The problem is that the
probability of not identifying an error is equal to the sum of all bits in the
message. Error correction can be implemented in two different ways: error
correction by itself, in the form of Forward Error Correction (FEC), and
strategies such as Automatic Repeat Request (ARQ) that function in
combination with a retransmission of corrupted data. Although the first is a
good technique, error detection is generally preferred. The main reason is
that the number of overhead bits required to implement error detection is
much smaller than the number of bits needed for correction [4]. The CRC is
a very powerful error detection technique used to obtain data reliability and
is easy to implement. In order to employ this technique, the transmitter
appends an extra n-bit sequence to every frame. In the present project, it was
chosen the 16 bit standard polynomial, the “CRC-16”.

To receive data from the memory and send it to the network, it is
necessary to modify the data into the correct data format. Another task that
has to be implemented is retrieval of the line status, which is used by the
memory controller. The main modules specified to fulfil those tasks are the



120 André Luiz de Freitas Francisco, Achim Rettberg, Andreas Hennig

following: Receiver, Transceiver, Manager, Switching Matrix, and Registers
(see figure 5).

The Receiver receives the data stream and store 16 bits segments in a
FIFO. Furthermore, it has a ready/acknowledge handshaking mechanism
with the Switch Manager. When the Receiver sets “ready”, the priority of the
current block is available at the outputs. When a CRC error is detected, the
packet is ignored, the FIFO is emptied and the Receiver waits for a new
packet.

The Transceiver transmits the contents of the four message types
according to the given priority, if messages are available. It is ensured that
the message with the highest priority is transmitted first. It is not necessary
to calculate the CRC because it is already calculated by the manager.

Figure 5. Modules of the protocol implementation

The Switching Matrix is necessary to speed communication up. Once the
destination address of an incoming packet has been received, and the
respective output channel is idle, the data stream is directly sent to the
destination.

The Manager receives requests from the Receiver (RX) and the
Switching Matrix and then directs the received packet to the transmit
memory of the Transceiver via an internal bus. The Registers are necessary
to store the packets internally.

5.1 Memory Management

The RAM memory available in FPGAs for data storage is limited (e.g.,
Spartan-IIE™ FPGAs range from 32 to 288 kbits) [5]. For this reason, it is
necessary to manage the memory to get the most advantage of each free bit
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space. Many generic algorithms could be implemented to this purpose. Most
of them are based in linked queues, binary trees, or even mapping tables that
contain information about each space in the memory.

The memory management of this project should be simple. Besides
choosing the best algorithm to fit the project needs, it was necessary to think
about logical space constraints in FPGAs. Each Receiver has only one FIFO
to store the incoming messages. A Transceiver needs four FIFOs, one for
each message type. For the Transceiver, a method based on queues was
created, considering all the constraints and features of the specific protocol
and available hardware configuration. This method uses the memory and
takes care of the performance of the concurrent running processes.

Figure 6 illustrates the way the memory management works within the
Transceiver. For each type of message, one FIFO was created for each
transmission channel. The horizontal lines in figure 6 represent the FIFOs,
considering the whole illustration as a matrix. The memory manager uses the
next available space on the FIFO to store the message. To specify the
destination, the Manager reads the destination address from the incoming
packets and directs it to the appropriated output FIFO. A transmission
channel pools the FIFOs, starting from the highest to the lowest priority.
After the message is send it is popped from the FIFO.

Figure 6. Memory management scheme

5.2 Implementation

All the VHDL code was developed using the Xilinx™ ISE 6.2 software.
To simulate these designs Synopsys™ and ModelSim™ were employed. The
MPC555 software was developed using Metrowerks™ Codewarrior 6.5
compiler.
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6. CONCLUSION AND FUTURE WORK

The present paper briefly described the RailCab project. It also presented
the hardware, including the protocol to control the RailCab test track. In
combination with the hardware boards, it was possible to specify a software
protocol and a management of data passing through a network. All these
features were implemented by means of VHDL, with access to the higher-
level function enabled by a microcontroller programmed in C. The standards
used in the physical layer were LVDS, Fiber Optics, and RS-485.

The approach presented has supplied all the bases for the specifications.
After putting the communication system in operation, the experience
gathered testing mechatronic functions can be used as a feedback in view of
the design of a system for a 1:1 realization, which surely has many more
requirements (e.g., safety and extensibility). In addition, the flexibility of the
hardware allows scenarios including different topologies and protocols,
which are naturally important when implementing new approaches and
evaluating trade-offs.
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This paper deals with an application of multiagent systems to man-
agement in wireless sensor networks (WSN). This WSN will be applied
to monitor an underground hydrographic network (the EnvSys project).
We present the EnvSys project, the multiagent systems (MAS) and their
application in WSN. After we propose an adaptive infrastructure of au-
tonomous agents to route the information in the best way, in consider-
ation to strong constraints on energy resources. Interesting simulation
results are discussed.

Multiagent system, wireless sensor network, self-organization.

1. INTRODUCTION
Considering complex embedded control systems as decentralized coop-

erative nodes networks is a recent but attractive way to design intelligent
applications.

In some cases, especially for aggressive environment applications, no-
des cannot be interconnected through classical field buses and wireless
technology is required. The whole system becomes an open network of
intelligent autonomous embedded entities controlling sensors and actu-
ators.

We introduce in this paper a multiagent approach to design such ap-
plications. Further, we intend to show that using behavior modelling,
cooperative aspects and organizational techniques of multiagent systems
allows increasing the overall efficiency of embedded systems.

In a first section we describe the EnvSys project, an underground river
instrumentation system, which motivates this study. We expose in a sec-
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ond section multiagent systems (MAS) and their application to wireless
intelligent sensor networks (WSN). We then propose our multiagent ap-
proach based on self-organization to manage the functional integrity of
the decentralized embedded nodes network. Finally, after a presentation
of our simulation platform and of some quantitative results, we give an
insight to the operational embedded architecture.

2. THE ENVSYS PROJECT

2.1 Origin and issue

The purpose of the ENVironment SYStem project is to monitor an
underground river system (Jamont, J.-P. et al, 2002). At the origine
of this project are the difficulties to measure various parameters in an
underground river system is a complex task : access to this type of un-
derground galleries requires help from speleologists, installation of wire
communications networks is difficult, especially because an hydrographic
system has a chaotic structure and, in the case of radio communication,
the underground aspect complicate wave propagation (these techniques
are not totally mastered).

The general idea of the project is to study the feasibility of a WSN
from an existing physical layer. This will allow wireless instrumentation
of a subterranean river system. Such a network would present an im-
portant interest in many domains: the study of underground flows, the
monitoring of deep collecting, flooding risk management, river system
detection of pollution risks, etc.

In a subterranean river system, the interesting parameters to measure
are numerous: temperature of air and water, air pressure and if possible
water pressure for the flooded galleries, pollution rate by classical pollu-
tants, water flow, draft speed, etc. All this information will be collected
at the immediate hydrographic network exit by a work station like a
PC. These data will be processed to activate alarms, study the progress
of a certain pollution according to miscellaneous measuring parameters,
determine a predictive model of the whole network by relating the sub-
terranean parameters measures of our system with the overground pa-
rameters measures more classically on the catchment basin.

Every sensor has a limited transmission range due to rock blocks
properties. This limitation results from three points: the technologi-
cal solutions which are used to achieve the sensor transmission module
(frequency, power, antenna), the implementation of these solutions and,
finally, the environment. Indeed, according to the obstacles it will have
to go through, the electromagnetic waves will not be usable at the same
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distance for each direction. The transmission zone will not be modeled
by a sphere.

2.2 Difficulties of communication management
in wireless sensor networks

WSN are a particular type of adhoc network. In adhoc network, com-
munication between two hosts is generally not direct. To communicate,
they require help from others host. It is a multihop communication.
Thus, the sensors have two tasks : make their own measure and assure
routing functionnality for others sensors. This multihop caracteristic
create an important routing problem (routing consist to find the path
between a sender to a receiver node) because all the adhoc routing pro-
tocol use flooding technics (in a flooding scheme a host give the message
to all its neigboors etc.) and the location updating is difficult (location
updating consist to maintening information about its neighboors).

A lot of problems are added in the case of WSN. An overview of
these difficulties, collectively accepted today, is given in (Zhang, W. et
al, 2002). Some of them concern the sensors (hardware limitation for
financial cost reason) and its energy ressource. Sensor’s battery are
difficult to replace, one of the global system aim so to reduce as possible
the energy cost. When it has nothing to do generally for conserving
energy they enter in a sleep mode. When they communicate they must
use good routing protocol and optimal way (generally the criteria will
be the number of hop). An agressive environment like the underground
river system can cause some internal fault for sensors. So WSN must
be very adaptive, fault tolerant and self-stabilized : a sensor failure
must not have an important impact on the system. This system must
provide reliable communication and, sometimes, adapt to “real-time”
constraints. Furthermore, in the case of mobile devices the infrastructure
of sytems are not persistant.

Our work deals with the analysis of the problem using a MAS ap-
proach. The main contribution of the work presented in this paper is
situated at a logical level : we don’t discuss about the physical layer.
We talk about the monitoring of this system, the complex environment,
the kind of intelligence giving to the network.

3. MULTIAGENT AND WSN

3.1 Agents and multiagents systems
An agent is a software entity endowed with autonomous behaviors and

embedded in an environment which it can perceive and in which it acts.
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This entity has its own objective. Autonomy is the main concepts in the
agent issue: it is the ability of agents to control their actions and their
internal states. The autonomy of agents implies no centralized control.
The power of an agent decomposition is the decentralization of the in-
telligence, i.e. the decision capabilities, and of entities’ knowledge.
A MAS is a set of agents situated in a common environment, which in-
teract and attempt to reach a set of goals. Through these interactions
a global behavior can emerge. The emergence process is a way to ob-
tain, from cooperation, dynamic results that cannot be predicted in a
deterministic way.

The multiagent methods aim at decreasing the complexity of system
design by a decentralized analysis. There are several MAS methods (
Iglesias, C. et al, 1998) among which most are centered on the analysis
of agents’tasks as the methods Gaia and MaSE, others on the roles or
on the organization as the method AALAADIN.

We are thereafter going to be interested in the AEIO decomposition.
We will follow the method of multiagent design discussed in (Occello
and Koning, 2000), associated to this MAS decomposition. It proposes
a decomposition according to four axes collectively accepted today. The
agent axis (A) gathers all elements for defining and constructing these
entities. The environment axis (E) deals with elements necessary for
the MAS realization such as the perception of this environment and
the actions one can do on it. The interaction axis (I) includes all ele-
ments which are in use for structuring the external interactions among
the agents (agent communication language, interaction protocols) The
organization axis (O) allows to order agent groups in organization de-
termined according to their roles.
We chose to apply this multiagent method for our problem because it
privileges an explicit description of the interactions and the environment.

3.2 Wireless sensor networks management

WSN management and MAS. The distributed and open nature
of WSN means that the MAS approach is an adapted answer. Another
advantage of this approach is the external representation of the inter-
actions and of the organization. External representations offer multiple
possibilities such as the monitoring by an external observer.
A few works reaching the same objectives show that the approach is
interesting. We can quote the ActComm (Gray, 2000) project which is a
military project for which the routing of information is essential: it aims
at studying the communication management between a soldier team and
a military camp via a satellite. We can also mention the work of (Petriu,
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E.M. et al, 2002) on wireless networks of mobile autonomous intelligent
sensors where agents are used to achieve flexible and open cell assembly.
Another example is the Unmanned Ground Vehicle Program ARPA’s
project (Cook,D.J. et al, 1996) which approaches the information man-
agement resulting from a group of autonomous observation military ve-
hicles. The problem described in (Zhang, W. et al, 2002) is very similar
to our problem but the approach is very different since the used tech-
nique is based on distributed stochastic algorithms.
MAS are used in very active way for service descriptions and service
discovery in ad-hoc networks (Chen, H. et al, 2000).

WSN and routing protocol. The WSN associated routing proto-
cols are centered on the flooding techniques. There are three differents
type of routing protocols families. The reactive protocols using no rout-
ing table. The main idea of this family is to reduce the flows by creating
clusters for example. The proactive protocols using routing tables, peri-
odically updated, and for those it is necessary to exchange control pack-
ets (energy cost). The hybrid protocols adopting the reactive protocol
behavior and, if necessary, using routing tables for increasing efficiency.

4. A MAS FOR WSN COMMUNICATION
MANAGEMENT

4.1 AEIO analysis of this problem

As previously examined, this approach is articulated around four axes.

The environment axis. The environment will be made of the mea-
surable information. It is deterministic, non episodic, dynamic and con-
tinuous. Agents are situated but don’t know their position.

The organization axis. In this type of application no one can con-
trol the organization a priori. Relations between agents are going to
emerge from the evolution of the agents’states and from their interac-
tions. We are going to be content with fixing the organization parame-
ters, i.e. agents’tasks, agents’roles.
The organizational basic structures (see fig 1) are composed of one group
representative agent (managing the communication in his group), some
connection agents (they know different representative agents and they
can belong to several groups) and some ordinary members (active in
the communication process only for their own tasks. They don’t ensure
information  relay).
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Figure 1. Group organisation for communication management

Because a representative agent is the most sollicited agent in a group,
the best one having the most important level of energy and the most
important number of neighbors. We use a role allocation based self-
organization mechanism involving the election of a representative agent
based on a function which estimates the adequation between it desire
to be the boss and its capacity to be. The organization is modified
only when a problem occurs. We don’t try to maintain it if we have no
communication.

The interaction axis. The agents will interact only with the agents
in acquaintance (an agent is in acquaintance with another if it is aware
of its existence). Agents interact by asynchronous exchange of messages
(without rendez vous). Among the different protocols that we use, the
choice of an introduction protocol is essential. Indeed, this protocol
allows to the agents to be known, i.e. to bring their knowledge and their
know-how to the agents’ society. We defined thirteen different types of
small messages.

The agent axis. Sensors are modeled by agents. These agents have
hybrid architectures, i.e. a composition of some pure types of archi-
tectures. Indeed, the agents will be of a cognitive type in case of a
configuration alteration, it will be necessary for them to communicate
and to manipulate their knowledge in order to have an efficient collabo-
ration. On the other hand, in normal use it will be necessary for them
to be reactive (stimuli/response paradigm) to be most efficient.
The agents have then to achieve a measuring function (the main work of
a sensor, it consists in interacting with the environment to acquire infor-
mation about one of the environment parameters) and a communication
task for giving (if necessary) the information to other devices or relay-
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ing neighbor’s messages. All the agents have the same communication
capabilities but the communicated data depend of their roles.

Figure 2. Agent architecture and agent tasks tree

Using a hybrid architecture for the agents enables to combine the
strong features of each of reactive and cognitive capabilities seen before.
The ASTRO hybrid architecture (Occello, M. et al, 1998) is especially
adapted to a real time context. The integration of deliberative and
reactive capabilities is possible through the use of parallelism in the
structure of the agent. Separating Reasoning/Adaptation and Percep-
tion/Communication tasks allows a continuous supervision of the evo-
lution of the environment. The reasoning model of this agent is based
on the Perception/Decision/Reasoning/Action paradigm. The cognitive
reasoning is thus preserved, and predicted events contribute to the nor-
mal progress of the reasoning process.

5. THE EXPERIMENTATION
In order to evaluate and improve such agents’ software architectures

and the cooperation techniques that they involve, we introduce a simu-
lation stage in our development process.

5.1 Simulation Results
The simulation first allowed us to experiment our approach and the

software solutions that we provide for the various problems. We can also
quantify the emergence inferred by the MAS approach in this case.

The simulation software structure is very basic. In fact, we have
two types of components: SimSensor and SimNetwork. A SimSensor
component simulates the sensor behavior. It possesses its own model and
architecture. All the sensors have the same communication capabilities.
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They transmit their requests to the SimNetwork component sends this
information to all sensors which can receive them, in the environment.
SimNetwork can appear as the inference mechanism for the simulation.

We have compared our MAS to three traditionnal ad-hoc protocols.
The DSDV protocol and the natural DSR protocol do not appear in this
comparaison because its efficiency were lower than the ehanced version
of DSR which use a route maintenance (memorization of main route).

Use case 1. At a first, let us present some performances in the
ENVSYS context. All sensors communicate only with the workstation
situated at the end of the undergound river system : it is a unidirection-
nal protocol. In this case, messages are small (one byte for data type
and four for the measure). For this example, three messages are send by
five second. The same scenario is applied for the different protocols.

Figure 3. Approach comparison for unidirectionnal use case

We can see that the benefit (fig 3) of our approach is important.
Quickly our routing method can deliver all messages with a good effi-
ciency. Higher is the number of sensors better is the reactivity of our
approach. We must note that if the system knows no pertubation or mo-
bility variation of DSR will be better from an efficiency point of view.
It is normal because in this case DSR learns all the routes (succession of
sensors) allowing to communicate with the workstation. It is not really
the case of our approach witch reason from the group and not from the
sensors. One consequence is that the route used by the messages with
our approach are not optimal.

Use case 2. In this case, we are in the ENVSYS context where the
sensors communicate together for elaborating more complex measures.
We choose to give to the message a size of thirty bytes. In this case
the behavior of our approach is much better than DSR because is route
management it more complicated. If we add some perturbations on these
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Figure 4. Approach comparison for the multidirectionnal use case

scenarios (one perturbation by three minutes) the efficiency is nearly the
same (it is not the case for the DSDV protocol).

5.2 The operational embedded architecture
Therefore, we will demonstrate the feasibility of our approach. For

the sensors we have chosen a classical three-layers architecture (physical
layer/Link layer/Applicative layer).
We use the physical layer which is employed by NICOLA system, a
voice transmission system used by the French speleological rescue teams
(Graham, 1999). This layer is implemented in a digital signal processor
rather than a full analogic system. Thereby we can keep good flexibility
and we are able to apply further a signal processing algorithm to im-
prove the data transmission.
The link layer used is a CAN (Controller Area Network) protocol stem-
ming from the motorcar industry and chosen for its good reliability. The
applicative layer is constituted by the agents’ system. The agents are
embedded on autonomous processor cards. These cards are equipped
with communication modules and with measuring modules to carry out
agent tasks relative to the instrumentation. These cards supply a real
time kernel. The KR-51(the kernel’s name) allows multi-task software
engineering for C515C microcontroller. We can produce one task for one
capability. We can then quite easily implement the parallelism inherent
to agents and satisfy the real-time constraints.

6. CONCLUSION

This software agent architecture is embedded on autonomous proces-
sor cards. The MAS, which we are creating, is open: adding a sensor
does not require a manual reconfiguration. Most of sensors’dysfunctions
should not threaten the functional integrity of the whole system which
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should be fault tolerant. All the sensors have a hybrid decisionnal archi-
tecture based on the ASTRO model. Through the simulation step, we
can already notice what the MAS approach provides:
1. The emergent feature , which is inferred by the MAS, makes the sys-
tem fault tolerant to changes of the environment in which it evolves.
2. Agents present interesting features of software engineering such as
genericity allowing an easy evolution of the applications.
3. Generic aspects of agents allows us to envisage differents applications
for this network type such as diagnosis, risk management, data fusion...

In a near future, we want to analyse the effect of a recursive mecha-
nism on this application to increase its efficiency in the case of a very
pertubated context. We project to apply our approach to other appli-
cations such as health monitoring and movement tracking. For these
applications, eavesdrop can introduce new problems on messages secu-
rity.
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Abstract: The largely synchronous sensor network software architecture (LaSSeNSA)
was formulated with the goal of enabling efficient construction of sensor
networks that are easily analyzable and can rarely run into a chaotic situation.
There are largely three parts in LaSSeNSA; (1) Global time based
coordination of uses of shared communication channels; (2) Global time
based coordination of group configuration updates; and (3) Global time based
coordination of sensing, communication, and relay activities. The essence of
LaSSeNSA as well as various issues related to optimal implementation is
presented. For efficient implementation of LaSSeNSA, a sensor node
operating system supporting time-triggered functions (TTFs) is highly
desirable. Our first prototype of TTF support facility was built as an RT
subsystem on a small-footprint time-sliced multi-threading kernel. The
prototype including both the kernel and the TTF support subsystem is called
the TTF Support OS (TSOS). Major features of TSOS and a sensor network
application development experiment are also presented.

Key words: Sensor, network, real time, time-triggered, TTF, service function, TDMA,
TCoDA, wireless, kernel, synchronous, LaSSeNSA, analyzable.

1. INTRODUCTION

Tiny communicating sensors which consume low power and contain
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sensing, computation, and wireless communication components, are
appearing with steadily growing capabilities and varieties [Agr00, Aky02,
Hil02, Levo2, She0l]. Such sensors are called C-sensors in this paper. New
potential applications of networks of such C-sensors are recognized
continuously in military and commercial areas such as command-control,
surveillance, environment monitoring, targeting system, etc., although their
practical deployments may be still several years away.

Due to their low costs, C-sensors may be densely deployed inside or
close to the object of interest, dynamically forming a cooperative sensor
network. We judge that one of the key technological issues in developing
applications of C-sensor networks is to enable harmonious orderly
cooperation among the C-sensors to meet real-time (RT) application goals.
Cooperation among the C-sensors is needed mainly due to the reliability and
functionality characteristics of C-sensors as well as due to the nature of the
typical applications. To be more specific, the following causes exist.

(1) The radio communication mechanisms of C-sensors typically have
short communication ranges. Multi-hop store-and-forward modes of
communications are inevitable.

(2) Applications often require fusion of data from multiple
geographically dispersed C-sensors.

(3) C-sensors are often deployed in rough environments and thus
temporary or permanent failures of C-sensors are significantly more frequent
than the failures of nodes in networks of office computers are. Healthy
neighbors of failed C-sensors must thus cooperate to bypass the failed C-
sensors or take over their duties and work toward the application goals.

(4) Since C-sensors are often deployed in high density, not all of them
need to be activated at any given time to meet the application requirements.
This then offers opportunities for cooperative power saving, i.e., permitting
some non-essential C-sensors in hibernating modes.

Simplistic designs of sensor nodes to exhibit poorly coordinated highly
probabilistic self-centered behavior are bound to result in C-sensor networks
which operate in chaotic manners and cannot accomplish RT applications
successfully. For example, consider a spy-tracking application involving C-
sensors spread out in a field to detect and track any intruding spy in the field.
Sensor nodes might use magnetic, acoustic, or other types of sensing
mechanisms for the detection and tracking purpose. As spies are tracked,
their position reports are sent to a command station equipped with storage
and long-distance communication capabilities which are not available in C-
sensors. In this spy-tracking C-sensor network, poorly coordinated C-sensor
nodes will frequently collide in accessing communication channels.
Consequences will then be untimely arrivals of sensor reports at command
stations and untimely arrivals of sensor adjustment commands at sensor
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nodes, which directly lead to application failures. Message forwarding
functions will be highly unreliable, too. Poorly coordinated C-sensor nodes
are also bound to produce sensor reports which collectively contain little
more than what can be provided by a small subset. As multiple spies move
around, the sensor-network will be plunged into a chaos.

Coordinated behavior of C-sensor nodes must be achieved by means
involving little or modest amount of wireless communications. Coordination
mechanisms requiring high-frequency message communications cannot be
effective. They may actually add to the forces inducing a chaos. The
recognition of this nature led us to explore the principle of global-time-based
coordination of distributed actions (TCoDA) [Kop97]. Here coordination is
realized by use of globally referenced time information, or for short, global
time, rather than “last-minute” exchange of messages.

We started with applying the TCoDA principle to the wireless
communication area, which quickly led us to adopting the TDMA (time-
division multiplexed access) approach. Later we saw the needs for well
coordinated behavior in other areas as well, e.g., coordination of sensing
times of distributed sensors, dynamic formation and reconfiguration of
closely interacting sensor-groups, etc. Subsequent efforts for exploring the
TCoDA principle in a top-down manner in the context of C-sensor networks,
led us to the formation of a new software architecture named the largely
synchronous sensor network software architecture (LaSSeNSA). The main
purpose of this paper is to discuss the essence of LaSSeNSA as well as
various issues related to optimal implementation.

Our subsequent studies on implementation approaches for LaSSeNSA
produced an idea that if the sensor node operating system (OS) supports
time-triggered functions (TTFs), not only efforts for implementation of C-
sensor network application systems but also their analysis and validation
efforts are greatly simplified. The most general form of a TTF can be
expressed as,

“From GlobalTime = T1 to T2, Do an execution of the TTF body Every P
time-units (= iteration-interval) By GCT”

where GCT denotes the guaranteed completion time [Kim00]. TTFs
make it very simple to implement periodic tasks which are often needed in
sensor reading, communication, etc.

After some analysis and preliminary experimental investigations, we
judged that in spite of the small memory foot-print requirements inherent in
C-sensors, it was well worth equipping C-sensors with OS mechanisms
supporting TTFs. In principle, TTFs can be facilitated on both multi-
threading OSs and single-threading non-preemptive task (STNT) OSs
(which are equipped with device drivers and use a single thread to execute
both commanded and interrupt-triggered tasks in first-in-first-out (FIFO)
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manners). Although we first devised an approach for supporting TTFs on
STNT OSs [Kim03], our first prototype of TTF support facility was built as
an RT subsystem on a small-footprint time-sliced multi-threading kernel.
The prototype including both the kernel and the TTF support subsystem is
called the TTF Support OS (TSOS). TSOS adopted some device drivers
included in TinyOS, an STNT OS developed at UC Berkeley [Hil02], with
some modifications.

We have performed a spy-tracking experiment by using the Mica sensor
nodes equipped with TSOS and magnetic sensing mechanisms and acoustic
sensing mechanisms. The results clearly indicated the promising nature of
LaSSeNSA and TSOS. Both TSOS and the experiment performed are also
discussed in this paper.

This paper starts in Section 2 with a discussion on the essence of
LaSSeNSA. Several issues related to efficient implementation are discussed.
The main features of TSOS are discussed in Section 3. The spy-tracking
experiment is discussed in Section 4 and the conclusion is provided in
Section 5.

2. THE ESSENCE OF LASSENSA

The C-sensors such as Mica sensor platforms have the following
common characteristics.

(1) The amount of memory available, including both RAM and flash
ROM, is fairly small although its continuous increase can be safely predicted.
32 KB RAM and 512 KB ROM may become available in 2005.

(2) The wireless communication mechanisms are limited in their
communication ranges (up to 200 feet) and bandwidth. The number of
channels is limited to one or a few. Controlling the communication ranges
to stay below the maximum possible range is usually needed to enable
reasonable chances for multiple simultaneous inter-node message
communications.

(3) The batteries cannot be recharged easily in most application
environments.

(4) An RS232 or similar serial communication port is an optional item.
This can be used for loading a program onto the flash ROM and message
communication between a command station and its slave C-sensor.

Given these characteristics and the possibility of deploying dense
networks of C-sensors in application fields, effecting well-coordinated
operations of C-sensors is a research issue of critical importance.
LaSSeNSA was devised to enable avoiding chaotic situations arising from
poorly coordinated behavior of C-sensors. Therefore, it should be relatively
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easy for developers of sensor network applications based on LaSSeNSA to
avoid facing an explosion in the number of special cases to be dealt with.

There are largely three parts in LaSSeNSA and they are discussed in the
following subsections.

2.1 Global time based coordination of uses of shared
communication channels: TDMA

A well-established cost-effective way for letting distributed nodes share
wireless communication channels is to enforce TDMA rules [Kop97]. It is
our judgment that TDMA schemes are particularly attractive in C-sensor
network environments. TDMA is effective in preventing collisions among
C-sensors which can listen to each other. It is well known that in light-
traffic conditions, TDMA has the drawback of relatively high overhead.
However, this small drawback is more than compensated by the enormous
advantages which become evident in typical C-sensor network application
environments where wireless communication bandwidths are severely
limited precious resources and collision costs are severe.

In the case of the prototype C-sensor developed at UC Berkeley and
called the Mica platform, there is only one frequency radio channel of
40Kb/S bandwidth [Hil02]. In applications involving dense networks of this
type of C-sensors, the time costs for collision detections and repeated
competitions for accessing channels easily become prohibitively high unless
sensor nodes are designed to access channels in well coordinated manners.

On the other hand, in large-scale networks, nodes separated beyond
certain distance cannot talk and listen to each other. Therefore, grouping the
nodes into closely cooperating groups and making groups provide message-
forwarding services to other groups are essential requirements.

For the sake of simplicity in discussing the basic requirements and the
promising approaches, we will consider C-sensors all of which share single
fixed-frequency radio communication channel. In LaSSeNSA, a node-group
has the following characteristics:

(1) Every node-group is a TDMA group.
(2) Each node-group has at least one member which can communicate

with a non-member. Such a member is called a gateway node.
(3) Each node-group has one group-master node which should have the

capability of talking to and listening from every member node.
(4) A member of a group, which is not the group-master, is called a

worker node. A worker can send a message to another normally via the
master of the group. Therefore, worker nodes do not communicate directly
among themselves. Naturally, workers in a group must always listen during
the slots belonging to their master.
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An ideal situation is where each node-group has one and only one
gateway node. In such a case, the only constraint on multiple simultaneous
message broadcasts is:

(C1) No more than one message broadcast which can be heard by a
gateway node during the time-slots paid attention by the gateway node
should be generated within the sensor network.

Enforcing C1 requires global knowledge on the network status, especially
knowledge on which node can listen to which other nodes. Moreover, the
function of assigning group membership and TDMA slots to individual
members can be a computationally intensive one. Therefore, in LaSSeNSA,
that job is held by a relatively powerful node called the region-command
station. A region-command station is usually a general-purpose server
computer with relatively powerful hardware components (e.g., CPU,
memory, and disk), abundant energy sources, and strong connections (e.g.,
wired connections) to the application customers. It collects data from all
sensor groups via wireless communication channels and sends useful
information to the application customers. It may use a C-sensor as a slave
connected through a wire, e.g., serial communication wire, to itself. In a
large-scale application, there may be multiple region-command stations
which can interact through high-bandwidth high-reliability connections.

Figure 1 illustrates a sensor network instance of LaSSeNSA consisting of
7 active C-sensors and one region-command station. The 7 active C-sensors
form 3 C-sensor groups. Each C-sensor group has a group-master node.
The link between two C-sensors represents the reachability of radio
transmission from one of the two to the other. We initially treated each link
as a symmetric two-way link [Kim03] but recently we refined LaSSeNSA to
recognize possibilities of asymmetric wireless reachabilities between a pair
of C-sensors. For example, Node 4 can hear message broadcasts by the
region-command station and Node 5 but the latter nodes cannot hear
message broadcasts by the former node.

The TDMA slot assignment for all sensor groups is made by the region-
command station. More details regarding the TDMA slot assignment for all

Figure 1. Sensor Groups in a C-sensor network
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sensor groups can be found in [Kim03].
The global time base which is an essential ingredient in implementing the

TDMA approach can be established in various ways nowadays. If GPS
receivers are parts of the sensor nodes, then a global time base of
microsecond-level precision can be established easily. Otherwise, a master-
slave scheme which involves time announcements by the master as well as
exploitation of the knowledge on the message delay between two nodes, can
be used to establish a global time base of about 10 millisecond level
precision with the C-sensors such as Mica platforms.

2.2 Global time based coordination of group
configuration updates: Dynamic TDMA grouping

The scheme in LaSSeNSA for admitting a newly awakened node into an
existing cooperating sensor group was formulated with the following
challenging goals:

(1) As a newly awakened node joins an existing cooperating group, the
members of the group should be able to continue their application tasks
without significant interruptions due to the joining of the new node.

(2) Upon becoming awakened, a node should be able to join an existing
group, receive an assignment of an application-specific task, and start
performing its application task within an acceptable time bound.

(3) When a member node crashes and thus loses its membership of a
group, remaining members of the group should not experience any
unacceptable interruptions in their application tasks.

Therefore, the group configuration update is a dynamic process and the
scheme adopted is called the dynamic TDMA grouping scheme.

We initially formulated the dynamic TDMA grouping scheme with the
simplistic assumption about the symmetry in wireless reachability between
every pair of C-sensors [Kim03] but recently we refined the scheme to
handle the cases of asymmetry in wireless reachability between pairs of C-
sensors. As a result, the complexity of the scheme grew considerably.

The asymmetry in wireless reachability between a member node and a
newly joining node can be detected in various manners. One such case is
depicted in Figure 2. A newly joining node N can hear from the group-
master M and three workers, W1, W2, and W3. It thus announces its
liveliness. M will not forward the liveliness report of N to the command
station since it does not hear the liveliness report. After a while, W1, W2,
and W3 detect the liveliness report of N and realize that M has not heard it.
The three workers then alert M of N’s liveliness report. M forwards it to the
command station. Various possible cases have been considered and an
admission protocol which accounts for all those cases has been established.
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Figure 2. Admission of a node in a case of asymmetry in reachability

Due to the space limit, all those cases are not discussed here.
An additional aspect of the dynamic TDMA grouping scheme is related

to the cases where C-sensors are too densely populated in certain parts of the
application field. How the sensor nodes will be clustered or spread out
geographically is not always predictable at design time. In the case of an
excessively dense population, it is not desirable to keep all the C-sensors
running all the time. An excessively dense sensor network will
unnecessarily burden the communication channels while producing the
amount of valuable information which is nearly the same as that which can
be obtained with the operation of a subset of the sensors. Therefore, if a
node in an area where active worker nodes are already densely populated,
announces its liveliness, then it is assigned the role of an auxiliary worker
under the dynamic TDMA grouping scheme. An auxiliary worker is
allowed to occasionally share TDMA slots of a nearby worker to provide its
sensor reports. Therefore, workers can cover the application field without
the help of auxiliary workers but the overall sensing accuracy can be
improved by receiving occasional helps from auxiliary workers.

Optimal assignment of sensor-groups and TDMA slots is the duty of the
region-command station and a very complicated subject. So far, we have
adopted a heuristic approach. Much further study is needed in this area.

The orderly joining scheme discussed in this section can be extended
easily to fit the case where multiple frequency channels are used. The
orderly joining enabled is another significant advantage of LaSSeNSA.

2.3 Global time based coordination of sensing,
communication, and relay activities

Each member of a sensor group must operate one or more sensing
mechanisms during the time-slots in which it does not have to pay attention
to communication channels [Kim03].

LaSSeNSA allows fine-precision coordination of the timings of sensing
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activities in multiple C-sensors. Coordination of the timings of
communication and relay activities in different C-sensors is also not
difficult. TDMA slot assignment can also be done to reflect such
coordination goals.

3. TTF SUPPORT OS

As mentioned in Section 1, we believe that TTF is a sound fundamental
building-block for constructing LaSSeNSA systems. We first devised an
approach for supporting TTFs on STNT OSs [Kim03]. However, a
prototype implementation of such a TTF support facility has not been
completed yet. Instead, our first prototype of a TTF support facility was
built as an RT subsystem on a small-footprint time-sliced multi-threading
kernel running on the Mica platform. The prototype including both the
kernel and the TTF support subsystem is called the TTF Support OS (TSOS).
A substantial part of the structuring approaches and resource management
techniques adopted in TSOS originated from our previous research on
middleware support for high-level RT distributed computing objects
[Kim97, Kim99, Kim00, Kim02]. Some major features of TSOS are briefly
discussed in this section.

3.1 Threads and dynamic binding

In LaSSeNSA, applications are programmed as a set of TTFs. Each TTF
is then assigned a thread within TSOS. This assignment or TTF-thread
binding is a dynamic binding.

To be more specific, TTFs are dynamically registered to TSOS by
applications. The registration parameters of TTFs, including the timing
requirement specifications, a pointer to its code body, and the interrupt mask
specification, are stored in a list called the TTF List within TSOS. The TTF
List is periodically examined by the TTF scheduler within TSOS and when
the next execution round of a TTF is found to be approaching within a pre-
determined time-window, the TTF is bound to an available thread.

3.2 Two-level scheduling

TSOS enables applications to specify special grouping of TTFs. TTFs
without such specification belong to the main group. Typically applications
involve one or two groups of TTFs. TSOS then attempts to provide one
virtual machine to each TTF group.

TSOS manages multiple ready queues and each ready queue corresponds
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Figure 3. Two-level scheduling of TTF-threads in TSOS

to one TTF group. The two-level scheduler of TSOS selects one of multiple
groups as the running group in the round-robin fashion. Therefore, if there
are two TTF groups, time-slices are strictly alternatively given to the TTF
groups. Within the running group, the time-slice is given to a TTF-thread
following the policy of earliest-deadline-first or its variation. Figure 3
depicts this two-level scheduling structure.

The criteria for forming groups are a subject for much further study. We
initially adopted this grouping approach for the cases where separating a
group of compute-bound TTFs from the group of I/O-bound TTFs gave
certain advantages in terms of performance prediction, search for effective
in-group scheduling approaches, etc.

3.3 Critical sections

TSOS does not provide semaphores or mutexes for critical sections
because these mechanisms may cause non-deterministic timing behavior of
user applications in forms that make the timing analysis of user applications
quite complicated. Instead, the protection of critical sections can be
achieved via the thread-to-thread atomic section (TTAS) [Kim99].

4. AN EXPERIMENTAL SPY-TRACKING SENSOR
NETWORK

We have performed a spy-tracking experiment by using the Mica sensor
nodes equipped with TSOS. The microcontroller in the Mica C-sensor
platform used in our prototype implementation is Atmega 128 which has a 8-
bit RISC CPU core running at the frequency of 7.3728MHz, 64K of program
memory, 4K of data memory, and several peripherals including SPI, USART,
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ADC, and digital I/O ports. The sensing mechanisms used in this
experiment include a magnetic sensor and an acoustic sensor. Two core
requirements of this application are timely sensing of moving objects and
dynamically configuring an ad hoc network for delivering sensor data from
all C-sensors to designated region-command stations. To fulfill these
requirements, three TTFs were designed and implemented on TSOS:

(1) The TTF for periodic sensing of moving objects with the scheduling
frequency of 20.83Hz;

(2) The TTF for radio transmission with the scheduling frequency of
1.736Hz; and

(3) The TTF for handling incoming radio messages with the scheduling
frequency of 20.83Hz.

All these TTFs have an RT requirement in the sense that a small
deviation of execution timing of any TTF may cause a loss of message or
message collision during ratio communication and a wrong decision on
sensing objects.

We ran this application with 24 C-sensors in a 4x6 grid network with the
grid spacing of 4 ft. These 24 C-sensors build up an ad hoc network in an
incremental fashion as each one of the C-sensors joins the current network.
One of the 24 C-sensors plays a role of a slave / gateway to a command
station where human operators can also monitor the operation of the sensor
network. This slave is connected to a PC via serial communication.

We achieved the 410 usec jitter in global clock synchronization with the
local real-time clocks set to operate at the resolution of 30.5 usec. In
addition, our TDMA protocol showed an average 95.6% of successful radio
message transmission between any two adjacent motes in the network. This
result is an indirect demonstration of the strong RT scheduling ability of
TSOS that has not been seen much in the C-sensor network field so far. The
smooth spy-tracking performance demonstrated had not been shown much
either in the past C-sensor network field.

5. CONCLUSIONS

LaSSeNSA is a C-sensor network architecture which exploits the
TCoDA principle extensively. Its main advantages are in making the
application systems easily analyzable. Its optimal implementation in various
application environments is regarded as a fruitful area for future research.

The current TSOS was developed for platforms not containing GPS
receivers. We plan to develop another version of TSOS for platforms
equipped with GPS sensors. Further performance evaluations of TSOS are
in plan.
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Abstract: Power dissipated on global DSM buses increasingly influences total chip power
consumption. In order to reduce that portion, activity minimizing bus encoding
schemes are applied. Thereby adaptive techniques have a higher potential in re-
ducing transitions than static schemes. However, they are susceptible to rarely
but occuring transmission errors since the encoding rule on decoder side is cal-
culated from the received data. Once a different encoding rule is calculated there
is no re-synchronization. In this paper we present a new approach which elim-
inates the dependency on the received data. The encoding rule of both, coder
and decoder is updated by partial runtime reconfiguration. In combination with
a static scheme we could achieve a reduction in activity of up to 26%. In com-
parism with an adaptive scheme the hardware requirements were reduced by up
to 50%.

Keywords: Adaptive bus encoding, DSM, Partial run-time reconfiguration

1. INTRODUCTION

Technology scaling into the deep sub micron range (DSM) allows the re-
alization of embedded systems on a single chip. Due to the extended func-
tionality and the higher integration density both, power dissipation and power
distribution over the whole chip are becoming limiting factors [Sylvester and
Keutzer, 1998]. Since the reliability of a circuitry can be guaranteed only
until a certain thermal threshold the reduction of power dissipation becomes
increasingly important.

Embedded systems realized in DSM technologies are proposed to be imple-
mented in a tile-like structure since DSM effects can be almost neglected in

*This work is funded by the Deutsche Forschungsgemeinschaft DFG within the VIVA research initiative
under MU 1024/5-4
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modules with 50 to 100 k gates [Sylvester and Keutzer, 2001]. They commu-
nicate with each other over high capacitive global system buses or extended
networks on chip (NoC) [Benini and DeMicheli, 2002] which are dominated
by parasitic DSM effects such as capacitive and inductive coupling. As a re-
sult the communication becomes error-prone and lossy. The signal integrity
on these communication channels can be improved by repeaters which addi-
tionally increase the power dissipated on global wires [Sylvester and Keutzer,
2001]. Therefore wires contribute a main and even increasing portion to the
overall power dissipation of embedded systems. The power consumed on sys-
tem buses can be calculated by the well-known formula:
where is the supply voltage, f the frequency, the capacitance and the
switching activity of line i, respectively. Although modern technologies al-
low a high flexibility of the used supply voltage such as voltage islands, both

and frequency are determined by performance requirements. The wire ca-
pacitance, depends on the distance of the modules and the layout. Only the
switching activity can directly be influenced by the designer.

One approach is the application of transition-minimizing bus encoding
schemes which either work statically or adaptively. Due to their reactivity
to varied statistics adaptive schemes usually outperform static schemes with
respect to the reduction in activity. The required adaption of the encoding
rule is concurrently performed at coder and decoder based on the uncoded
data. Therefore adaptive techniques rely on error-free transmission. However,
errors occur on DSM transmission channels which can result in a different,
non re-synchronizable decoding rule. In this paper we present a new approach
which eliminates the susceptibility to errors. It exploits a new trend in complex
ASICs: embedded FPGA (eFPGA) which are tailored on specific functional
requirements in order to provide more flexibility [IBM, 2003]. Implemented
in eFPGAs, partial dynamic reconfiguration allows the replacement of coder
and decoder with a more suited one during operation.

The remainder of the paper is structured as follows. Section 2 gives an
overview of the related work. The fundamentals of the proposed scheme are
presented in sect. 3. In Sect. 4 the hardware platform and the realization are
described while in Sect. 5 experimental results are presented. The paper will
be summarized in Sect. 6.

2. RELATED WORK

In the literature a huge number of bus encoding techniques were published.
Applying such methods transitions are displaced from high capacitive bus lines
into the less-capacitive encoder-decoder (codec) circuitry under exploitation of
different characteristics of the data stream.
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Depending on the way the encoding rule is implemented into the codec sys-
tem encoding techniques are either static or adaptive. The encoding rule of
static schemes has to be optimized at design time for an application-specific
data stream. Examples tailored on the high in-sequence portion of address
buses are Gray encoding [X.L.Su et al., 1994] and combined schemes such
as T0-BI, Dual-T0 and Dual-T0-BI [Benini et al., 1998]. Instruction- or data
bus streams have a different characteristics and require therefore other tech-
niques such as the 1bit redundant Businvert encoding (BI) [Stan and Burleson,
1995], which is the only static scheme that does not require a priori knowledge
of statistical parameters of the data stream or the Partial Businvert encoding
scheme (PBI) [Shin et al., 1998] encoding only a sub set of bus lines with high
activity. A third class of static schemes focuses on the minimization of activ-
ity on adjacent lines. Coupling activity contributes due to the higher coupling
capacitances in DSM technologies mainly to overall power dissipation. Ex-
ample schemes are the coupling-driven Businvert [Kim et al., 2000] and the
Odd/Even Businvert scheme [Zhang et al., 2002].

Most of the static schemes mentioned so far achieve a high encoding effi-
ciency if the data transmitted corresponds to the streams they are optimized for.
If the statistical parameters vary over time as this is usually the case for real
applications, the encoding efficiency decreases dramatically as shown in [Kret-
zschmar et al., 2003]. In contrast to that adaptive schemes such as presented
in [Benini et al., 1999], the Adaptive Code-book Method [Satoshi Komatsu
et al., 2000] and the Adaptive Partial Businvert (APBI) [Kretzschmar et al.,
2000] which adapts the set of bus lines to encode, outperform static schemes
in terms of encoding efficiency due to the adaption of the encoding rule. In the
last few years the number of adaptive schemes increased. Only a few can be
mentioned here: the Frequent Value encoding (FV) [Yang and Gupta, 2001],
the Adaptive Encoding Scheme ADES [Lv et al., 2002] and the Adaptive Prob-
ability Based Mapping (APBM) [Kretzschmar et al., 2003] for data buses and
the Address Encoding using Self-Organizing Lists [Mamidipaka et al., 2001]
and ETAM++ [Lekatsas and Henkel, 2002] for address buses.

Starting from the identical initial encoding rule, coder and decoder of adap-
tive schemes concurrently perform an update based on the uncoded or decoded
data, respectively. As long as the transmission is error-free both compute the
same encoding rule. However, wires in DSM technologies are susceptible to
transmission errors which can result in a different encoding rules. Therefore
the encoding rule has to be computed at a central place from which it is trans-
ferred to coder and decoder. If being transmitted over the bus error correction
is compulsory. Furthermore activity is generated and additional bandwidth or
wires are required which is infeasible in complex circuits. Therefore we pro-
pose the utilization of embedded FPGAs (eFPGA) as presented by XILINX
Inc. and IBM Corp. [IBM, 2003]. eFPGAs will be included in complex cir-
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cuits in order to introduce more flexibility in complex ASICs. The areas are
tailored to the needs of the function to be realized. Implementing the codec
system on eFPGAs provides the adaptability of the encoding scheme while si-
multaneously eliminating the dependence on transmission errors. Additionally
our approach reduces the overall hardware overhead.

3. FUNDAMENTALS OF THE SCHEME
The principle of the proposed encoding using eFPGAs is shown in Fig. 1. In

the depicted example circuit the 3 modules X, Y and Z are connected via a tran-
sition minimizing codec system to the bus. The data sent by the source module
X is transmitted in activity reduced fashion over the bus. Each of the receiving
modules Y and Z is connected to a decoder which recovers the original data.
Coder and decoder circuitry are implemented as partial runtime reconfigurable
(pRTR) modules into the eFPGAs. At design time a static encoding scheme
is selected based on the statistics of an application-specific data stream. The
corresponding codec macros are loaded at setup time into the eFPGAs.

Figure 1. Principle of runtime exchange of encoding techniques using eFPGA

Since the statistics of real-life data streams usually changes over time the
encoding efficiency of the selected static technique decreases. Therefore the
scheme has to be adapted to varied statistical parameters during operation. The
implemented codec control block observes relevant parameters in a window of
fixed size and periodically selects a suited scheme. The corresponding coder
and decoder(s) are loaded into the eFPGAs by runtime reconfiguration. In con-
trast to traditional adaptive schemes which concurrently observe the statistics
in coder and decoder, our proposed technique implements a single observa-
tion block within the circuit which is sufficient even if more than one receiver
is connected to the source. Thereby the hardware overhead is significantly
reduced in comparism with published adaptive schemes. However, the most
important advantage is the decoupling of the decoding rule from the received
data. Possible transmission errors will not impact the computation of the de-
coding rule anymore.
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While being reconfigured data can not be processed by the codec system.
The required alternative data path for the reconfiguration period can be realized
either by wires bypassing the pRTR codec or a simple encoding scheme. Sim-
ply bypassing the pRTR codec requires very little hardware overhead. On the
other hand the encoding efficiency deteriorates dependent on the reconfigura-
tion duration. In contrast to that providing a different codec system introduces
additional hardware overhead which results in a higher total area but improves
the overall encoding efficiency. The total power dissipation can be kept low
by switching off the alternative codec during periods of “normal” operation.
The tradeoff between cost and gain of the two possibilities determines which
alternative to use.

For the realization of the proposed adaptive scheme on eFPGAs two dif-
ferent possibilities of adaptation exist. The two variations which differ in their
observation and reconfiguration complexity, will be discussed in the following.

3.1 Dynamic exchange of the encoding scheme

This variation is based on experimental results which show that the encod-
ing efficiency of different encoding techniques distinguishes if applied to a
number of data streams. In order to achieve the maximum encoding efficiency
always the most suited encoding scheme has to be selected for the current data.
The encoding scheme is exchanged by replacing it with the new, more efficient
one during operation as depicted in Fig. 2. If for instance a data stream of
an i.i.d. source is transmitted BI is optimal [Stan and Burleson, 1995] while
for other streams PBI or PBM might achieve a more efficient reduction in ac-
tivity. Since the schemes exploit different characteristics of the data streams

Figure 2.     Dynamic replacement of encoding schemes using eFPGA

the codec control block has to observe the parameter set for each of the con-
sidered techniques such as line transition activity or data word probability. In
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a very complex process the codec control block has periodically to evaluate
the results of each observed parameter set in order to determine which scheme
would achieve the highest encoding efficiency for the current data stream char-
acteristics. After initiating the reconfiguration and switching the data transmis-
sion to the alternative data path the configuration controller loads the selected
codec macro from the flash ROM into the eFPGA. After the reconfiguration the
transmission is switched back to the pRTR codec system by the codec control
block.

While this approach allows the highest flexibility with respect to the encod-
ing scheme to be selected and the best adaption to the current data statistics
it requires a high effort. The number of schemes to consider is restricted by
the size of the flash ROM and the number of parameter sets to be observed
and evaluated in the codec control block since it directly influences the area
and power requirements. The most decisive drawback of this variation is that
a large eFPGA is required in order to provide enough area for each coder and
decoder, respectively of the considered static schemes. The size of the eFPGA
determines the cost of the circuit as well as the reconfiguration duration. Since
during the reconfiguration data is sent either non- or less effective encoded the
overall encoding efficiency is directly influenced.

Due to the previously mentioned drawbacks we propose a simplified version
of the partial runtime reconfiguration which is described in the next section.

3.2 Dynamic adaption of the encoding rule

Figure 3 shows how dynamic reconfiguration is used in the simplified vari-
ation for the adaption of encoding schemes in integrated DSM circuits. In
contrast to the previously described method only the encoding rule of a static
scheme is optimized instead of exchanging the encoding technique. That ap-
proach allows the optimization of static schemes such as PBI or PBM for the
current data stream characteristic similar to APBI or APBM without the sus-
ceptibility to transmission errors. Due to the adaptability a high encoding effi-
ciency can be achieved if the statistics varies while simultaneously alleviating
some of the drawbacks of the previous variation. In comparism with the dy-
namic exchange of the encoding scheme the eFPGA area is reduced drastically
since only that part of the codec system which implements the encoding rule
has to be updated. The rest of the codec system does not change and can there-
fore be fabricated in conventional ASIC technology which reduces the chip
cost while providing enough flexibility to adapt the scheme. The smaller eF-
PGA area results in a reduced reconfiguration duration which requires less data
words to be encoded by the default codec during the reconfiguration period.
Therefore the influence of the default encoding method is decreased which in-
creases the overall performance especially if data is not encoded alternatively.



Adaptive Bus Encoding Schemes for Power-efficient Data Transfer in … 151

Figure  3. Dynamic adaption of the encoding rule using eFPGA

Also the codec control block is significantly simplified since for the adaption
of one scheme only a single parameter set has to be observed.

In order to eliminate the flash ROM which is used to store all possible codec
macros we propose to expand the codec control block by a bit-stream gen-
eration block. The updated bit-stream containing the new encoding rule is
computed and directed to the configuration pins of the eFPGA. This approach
allows the self-reconfiguration of the circuit.

In order to keep the hardware overhead and the power dissipation of the
codec control block as low as possible we decided to implement the second
approach which realizes the adaption of the encoding rule instead of the ex-
change of the complete encoding technique. As a representative for all possi-
ble static schemes we chose PBI and periodically adapted the set of bus lines
to include into encoding. We refer to it as PBI-Reconf.

4. TEST PLATFORM

4.1 Hardware

We implemented the proposed partial run time reconfigurable encoding
scheme on a XILINX VIRTEX FPGA XCV1000, since we did not have on
our disposal integrated circuits containing eFPGAs. XILINX VIRTEX FPGAs
consist of configurable logic blocks (CLB) which are arranged in columns and
rows. Each CLB contains 2 Slices with 2 logic cells (LC) each. A LC is
formed by a flip flop (FF) and a 4-input look up table (LUT) which are used to
realize the logic function. In order to (re)configure the FPGA according to the
required function a bit-stream is generated from a RTL description and loaded
via the configuration pins into the FPGA. Thereby the smallest reconfigurable
unit is a frame which spreads over all rows of a certain column.

Due to the bit-stream structure all rows of the concerned column are in-
volved in a reconfiguration. Therefore the modules have to be placed carefully
so that a partial run time reconfiguration does not affect logic of other modules.



In [Haase et al., 2002] the authors developed a method for circuit partitioning
together with an automated design flow based on XILINX standard tools in
order to produce the partial bit streams used to dynamically reconfigure the
FPGA during runtime. The exchange of the complete encoding scheme would
require synthesis, place and route for each of the considered codecs. Since we
restrict ourselves to the adaption of the encoding rule only a single bit-stream
has to be generated, from which the part is extracted that contains the encod-
ing rule for the codec system. That partial bit-stream is taken as a basis to
periodically generate the updated bit-stream.

4.2 Implementation

PBI can be adapted to the statistics of the current data stream if the sub
bus to be encoded is periodically selected. Included lines are transmitted in-
verted if more than a half of the considered lines would switch. It means that
transitions are only detected for selected bus lines and the value to which the
number of switching lines is compared has to be updated for each configu-
ration. Furthermore only lines which are included into encoding are inverted
while non-included lines are transmitted uncoded independent of the number
of transitions. Corresponding lines have to be masked. On decoder side the
inversion is selectively applied according to a mask. For the PBI-Reconf coder
we placed the 2 required LUTs per bus line in the reconfigurable area in or-
der to influence the functionality as described. According to the configured
function of the LUT the bits are correspondingly processed. The inversion
threshold is formed by the outputs of LUTs. The decoder im-
plements one reconfigurable LUT per line which does the selective inversion.
For a 32 bit bus it results in 69 reconfigurable LUTs for coder and 32 for de-
coder. A column in the XCV1000 contains 64 rows which corresponds to 128
LUTs per slice. The reconfiguration of the experimental environment can not
be restricted to the utilized LUTs. Instead all LUTs of the corresponding slice
of the column are covered. In contrast to that only used resources are recon-
figured in the eFPGA. In order to converge the reconfiguration time of the two
approaches all the reconfigurable LUTs of coder and decoder were placed in a
single column of the VIRTEX FPGA.

The codec control block consists according to Fig. 3 of a parameter obser-
vation block, a mask computation logic and a bit-stream generation unit. The
first two blocks correspond to the mask computation block of APBI but are re-
quired only once per PBI-Reconf circuit. The bit-stream generation unit alters
the LUT bits of the partial bit-stream according to the new mask. Each of the
16 bits of a LUT is situated in a different frame. Therefore 16 Frames with 39
words have to be reconfigured. Since the LUT bits are placed very regularly
in the bit-stream a few counters suffice to find their positions. According to
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the new subset of bus lines the bit-stream is altered and routed to the configu-
ration pins of the FPGA. The codec control block switches data transmission
to the alternative data path during the reconfiguration and back to the adapted
PBI-Reconf codec system afterwards.

5. EXPERIMENTAL RESULTS

We implemented the proposed PBI-Reconf encoding for a bus width of 32
lines in the FPGA test environment and conducted experiments with the fol-
lowing set of test data streams:

art: A random, segmented data stream with a varying distribution of
activity in each segment.
eps: An ASCII file in encapsulated postscript format.
gzip: Gzip binary (example for an executable file).
ppm: A composed PPM image stream consisting of 4 different images
with varying statistics.
gauss: White Gaussian noise.

The statistical parameters were observed in a window of fixed size. Subse-
quently a new mask was computed. For the experiments we first read the partial
configuration bit-stream using the reconfiguration pins of the FPGA before it
was altered according to the new mask and reloaded. The reconfiguration was
done in the SelectMap mode with a reconfiguration clock of 45 MHz. Dur-
ing the reconfiguration period continuously data was transmitted either with
no encoding (PBI+NE) or BI encoding (PBI+BI).

Figure 4. Relative activity reduction
as function of window width: PBI-Reconf
with no default encoding (PBI+NE)

Figure 5.    Relative activity reduction
as function of window width [bit]: PBI-
Reconf with BI as default codec (PBI+BI)

In a first experiment we determined the influence of the window width which
is used for parameter observation on the encoding efficiency. The relative sav-
ings for the test data streams are depicted as a function of window width given
in bit for no alternative encoding in Fig. 4 and for BI encoding during the re-
configuration period in Fig 5. Although the encoding efficiency is as expected
influenced by the alternative encoding both plots show a dependency on the
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window width. The most efficient reduction is achieved for art since adaptive
schemes can exploit the strongly over time varying activity profile. The effi-
ciency varies for the streams. In order to achieve the maximum reduction for
each data stream different window widths would be required. Since we focus
on a general-purpose scheme the average performance Avg is regarded. The
highest average reduction is achieved for window widths between (window
width 5) and (window width 7).

Figure 6. Comparism of the relative reduction in activity

In a second experiment the savings were compared to other encoding schemes:
APBI, BI and PBI. PBI was optimized for each of the streams which is indi-
cated by the subscript opt. Additionally we investigated in real-life conditions
when PBI encodes streams with different statistical parameters. The results
are marked by the subscript avg. The most efficient reduction in activity was
achieved by APBI as depicted in Fig. 6 since the optimization can be applied
instantaneously. Nevertheless, that opportunity does not exist in DSM tech-
nologies anymore since the scheme is susceptible to transmission errors. The
optimized version of PBI is very efficient as long as the data to be transmitted
corresponds to the data the scheme is optimized for. Otherwise the efficiency
decreases as shown by The proposed PBI-Reconf performs in both
variations (BI and NE) comparable to In both variations it outperforms
BI by 25 to 50 percent.

In a next experiment we investigated in the hardware requirements. The
codec control block which comprises of parameter extraction, encoding rule
computation and bit-stream generation unit used for manipulating the partial
bit-stream accordingly was described in synthesizable VHDL. We synthesized
the block for our target FPGA. The hardware requirements were compared
with that of APBI and BI. The results are presented in Tab. 1. As the figures
indicate APBI requires compared to BI, a very high overhead in order to adapt
the encoding rule periodically to the statistics of the data stream. The main
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portion of the increased hardware overhead is caused by the mask computation
block (MC) which observes the statistics and computes a new encoding rule. In
contrast to that our proposed PBI-Reconf scheme requires a single observation
block per circuit and a PBI codec system with the complexity of BI which
is periodically adapted by partial reconfiguration. The second part of Tab. 1
shows the requirements for an adaptive codec system with one or two sinks,
respectively. In comparism with APBI our approach reduces the hardware
requirements by about 30% if a single sink is connected to the bus. If more
receivers are implemented the savings increase even more. For 2 sinks the
hardware can be reduced to about 50% of a comparable APBI codec while the
adaption is independent of any transmission errors on the bus.

6. CONCLUSIONS

The experimental results confirm the efficiency of our proposed scheme.
We achieved a higher encoding efficiency than BI and the average PBI with
both variations of alternative encoding. Since the reconfiguration process lasts
longer than the application of the new mask in APBI the reduction in activity
was lower than for APBI. The most important advantage is the independence
of transmission errors. Unlike APBI the encoding rule of the decoder is not
derived from the received data but computed in the central codec control block
and applied by partial reconfiguration. Therefore the scheme is suited for ap-
plication in DSM environments where, due to coupling effects, transmission
errors on system buses occur from time to time. In contrast to that the en-
coding rules of APBI diverge from each other as soon as a transmission error
results in a different encoding rule on decoder side. The investigations in the
hardware overhead showed that in comparism to APBI the overall hardware
overhead including the bit-stream generation could be reduced by about 30 %.
That benefit even increases if data is transmitted to more than one receiver. Fur-
thermore the approach is very flexible regarding the scheme which is adapted.
Instead of PBI which we chose as an example also one of the schemes which
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takes into account coupling activity such as coupling-driven BI or odd/even BI
can be applied.
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Abstract: There are two general approaches for scheduling tasks in real-time systems: run-
time and pre-runtime scheduling. However, there are several situations where
the runtime approach does not find a feasible schedule even if such a schedule
exists. The proposed approach uses state space exploration for finding a pre-
runtime scheduling. The main problem with such methods is the space size,
which can grow exponentially. This paper shows how to minimize this problem,
and presents a depth-first search method on a timed labeled transition system
derived from the time Petri net model.

Keywords: Embedded real-time systems, scheduling, formal methods, and time Petri nets.

1. INTRODUCTION
Embedded hard real-time systems are dedicated computer applications hav-

ing to satisfy stringent timing constraints. For meeting this requirement,
scheduling performs an important role. There are two general approaches for
scheduling tasks: runtime and pre-runtime scheduling. In runtime schedul-
ing, the schedule is computed on-line as tasks arrive, using a priority-driven
approach. However, there are situations where this approach may constrain
the possibility of finding a feasible schedule, even if such schedule exists [10–
11]. The approach presented in this paper is pre-runtime scheduling, where
schedules are computed entirely off-line. This solution reduces context switch-
ing, its execution is predictable, and excludes the need of complex operating
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systems. In safety-critical systems the predictability is an important matter,
mainly due to the use of arbitrary precedence and exclusion relations. In ac-
cordance with [11], pre-runtime scheduling is often the only means of provid-
ing predictability in complex systems. This work uses state space exploration
since it presents a complete automatic strategy for verifying finite-state sys-
tems [6]. In spite of the fact that a scheduling can be found using this strategy,
this may be limited by the excessive size of its state space. The proposed ap-
proach tackles this problem by applying techniques for state space reduction,
and a depth-first search algorithm. This paper is an extension of ours previous
work [3], which presents how to reach feasible schedules by using a time Petri
net model on uniprocessor architectures.

2. RELATED WORK
Xu and Parnas [10]present a branch-and-bound algorithm that finds an opti-

mal pre-runtime schedule on a single processor for real-time process segments
with release, deadlines, and arbitrary exclusion and precedence relations. De-
spite the importance of their work, it does not present real-world experimental
results. Abdelzaher and Shin [1]proposed an extension of [10]in order to deal
with distributed real-time systems. This algorithm takes into account delays,
precedence relations imposed by interprocess communications, and considers
many possibilities for improving the scheduling lateness at the cost of com-
plexity. The scheduler synthesis proposed by Altisen et.al. [2]synthesizes all
dynamic on-line scheduling satisfying a given property. In spite of they have
claimed that using synchronization modes the complexity is reduced, they do
not directly address the state explosion problem, stressed by the authors as a
limitation of their approach. Several authors also use Petri nets in scheduling
theory. However, most of them are only concerned with schedulability anal-
ysis. For instance, Bruno et. al. [4]present a schedulability analysis, using
high-level Petri nets. However, their work does not generate feasible sched-
ules, but it relies on Xu and Parnas’ algorithm [10]in order to find them.

Comparing our approach with other works (e.g., [1, 9]), it differs in the sense
that: (i) their works model the scheduling problem, whilst our work models the
tasks of a system. For this reason, they may have better performance in some
situations. Nevertheless, time efficiency is not a critical concern when con-
sidering schedules computed off-line. However, our solution can also generate
timely and predictable scheduled code, which is difficult in their works. (ii) us-
ing Petri net analysis techniques allows one to check several system properties.
Although state space exploration is not new, at the best of our present knowl-
edge, there is no similar work that uses formal methods for modeling real-time
systems, and finds a feasible pre-runtime schedule considering multiprocessor
architectures.
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3. COMPUTATIONAL MODEL: SYNTAX
AND SEMANTICS

The computational model syntax is given by a time Petri net [7], which is
a Petri net extended with time, and its semantics is given by its time labeled
transition system. A time Petri net (TPN) is a bipartite directed graph repre-
sented by a tuple P (places), and T (transitions) are
two types of nodes. The edges are represented by

represents the weight of the edges. A TPN marking is a vector
and is the initial marking. represents the tim-

ing constraints, where is a set
of enabled transitions in marking Let M be the set of all reachable mark-
ings of is a clock vector, which represents the time elapsed
since the respective transition enabling. In order to facilitate the TPN’s anal-
ysis, it is defined the dynamic firing interval where

and is
dynamically modified whenever the respective clock variable is incremented,
and does not fire.

The set of states S of is given by that is, a single
state is defined by a pair where is a marking, and is its respective
clock vector for The initial state is where

is the set of firable transitions at state defined by:
where

The firing domain for at a specific state is defined by:

The semantics of a TPN is defined by associating a TLTS
such that: (i) S is a finite set of discrete states of (ii) is an

alphabet of labels representing activities. The labels are corresponding
to the firing of a firable transition at a specific time value in the firing
interval (iii) is the transition relation; and
(iv) is the initial state of

Let be a TLTS derived from a time Petri net and a
reachable state. denotes that firing a transition t at time

from the state a new state is reached, such that:

The firing of a transition at a specific time in the state defines the
next state

Let be a TLTS of a TPN  where its initial state,

a final state, and which is the desired final marking.

(i)

(ii)
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is defined as a feasible firing schedule,
where if and
As it is presented later, the modeling methodology guarantees the final marking

is well-known since it is explicitly modeled.

4. TEST MODEL

Let be the set of tasks in a system. Let be a periodic task defined
by where is the initial phase (delay associated
to the first time request of a task after the system starting); is the release
time (interval between the beginning of a period and the earliest time that a
task execution can be started); is the worst case computation time; is the
deadline (interval between the beginning of a period and the time when the
task must be completed); and is the period (time interval in which the task
must be executed). Let be a sporadic task, where is the
worst case computation time; is the deadline; and is the minimum
period between two activations of task A task is classified as sporadic if it
can be randomly activated, but the minimum period between two activations
is known. As pre-runtime approaches may only schedule periodic tasks, the
sporadic tasks have to be translated to an equivalent periodic task [8]. A task

precedes task if can only start execution after has finished. A task
excludes task if no execution of cannot start while task is executing.

Exclusion relations may prevent simultaneous access to shared resources. Each
task consists of a finite sequence of task time units
where always precedes for A task time unit is the smallest
indivisible granule of a task, during which it cannot be preempted by any other
task. A task can also be split into more than one subtasks, where each subtask
is composed by one or more task time units.

5. MODELING REAL-TIME SYSTEMS

Hard real-time systems are those that besides its functional correctness,
timeliness must be satisfied. The modeling phase is very important to attain
such constraints.

5.1 Scheduling Period

The proposed method schedules the set of periodic tasks occurring in a pe-
riod that is equal to the least common multiple (LCM) of the periods of the
given set of tasks. The LCM is also called schedule period Within
this new period, there are several tasks instances of the same task, where

gives the instances of For example, consider the following
task model consisting of two tasks: and
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In this particular case, implying that the two periodic tasks are re-
placed by seven new periodic tasks and where the
timing constraints of each task instance has to be transformed to consider that
new period [10].

Figure 1. Modeling Scheduling Methods

5.2 Scheduling Methods
Figure 1 presents three ways for modeling scheduling methods, where

is the task computation time and are computation times for
the first and last subtask, respectively):

a)

b)

c)

all-non-preemptive: processor is just released after the entire computa-
tion be finished. Figure 1(a) shows that computation transition timing
interval has bounds equal to the task computation time (i.e., [c, c]);

all-preemptive: tasks are implicitly split into all possible subtasks. This
method allows running other conflicting tasks, meaning that one task
could preempt another task. It is worth observing, the difference be-
tween the timing interval for the computation transition and the arc
weight in Figures 1(a) and 1(b).

defined subtasks: tasks are split into more than one explicitly defined
subtasks. Figure 1(c) shows two subtasks.

5.3 Tasks Modeling

Figure 2 is also used to show (in dashed boxes) the three main building
blocks for modeling a real-time task. These blocks are: (a) Task Arrival,
which models the periodic invocation for all task’s instances. Transition
models the initial phase, whilst transition models the periodic arrival for the
remaining instances; (b) Deadline Checking, where it is used elementary net
structures to capture deadline missing. Some works (e.g. [2]) extended the
Petri net model for dealing with deadline checking. (c) Task Structure, which
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models: release time, processor granting, computation, and processor releas-
ing. Figure 2 presents a non-preemptive TPN model for the example presented
in previous subsection. It does not model the seven task instances. Instead, it
models only the two original tasks, and the time period of every task instances.

5.4 Modeling Interprocessor Communication

Processors are connected to one (or more) bus, which is modeled as a re-
source that is shared by all processors and accessed in mutual exclusion. The
proposed approach schedules the communication for avoiding network con-
tention. Otherwise, it could result in different execution times for different
runs of the same system, which is not appropriated for hard real-time systems.
It is supposed that: (i) the communication time between tasks in the same
processor is negligible; and (ii) the communication is synchronous (blocking).
Figure 3 presents a model for two interprocessor communicating tasks (ping
and pong). The task ping computes and sends a data to pong. When the
data arrives, the task pong computes and sends a new data to ping, and this

Figure 2. Petri net model

Figure 3. A Simple Example of Interprocessor Communication
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Figure  4.  Scheduling Synthesis Algorithm

procedure repeats indefinitely. The bus is modeled by a place (P–BUS) shared
by all tasks. The communication time is attached to transitions TCommA–B
and TCommB–A. The places P–SB–A and P–SB–B model sending buffers,
whilst places P–RB–A and P–RB–B model receiving buffers.

6. PRE-RUNTIME SCHEDULING

This section shows a technique for state space minimization, the algorithm
that implements the proposed method, and an application of the algorithm.

6.1 Minimizing State Space Size

Partial-Order Reduction. If activities can be executed in any order,
such that the system always reaches the same state, these activities are inde-
pendent. Partial-order reduction methods exploit the independence of activi-
ties [6]. An independent activity is one that is not in conflict with other activity,
that is, when it is executed it does not disable any other activity, such as: ar-
rival, release, precedence, computation, processor releasing, and so on. This
reduction method proposes to give for each class of activities a different choice-
priority. Dependent activities, like processor granting and exclusion relations,
have lowest priority. Therefore, when changing from one state to another, it
is sufficient to analyze the class with highest choice-priority and pruning the
other ones. This reduction is important due to two reasons: (i) it reduces the
amount of storage; and (ii) when the system does not have a feasible schedule,
it returns more rapidly.

Undesirable States. Section 5 presents how to model undesirable
states, for instance, states that represent missed deadlines. The proposed me-
thod is interested for schedules that do not reach any of these undesirable states.
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6.2 Pre-Runtime Scheduling Algorithm

The algorithm proposed (Fig. 4) is a depth-first search method on a TLTS.
The stop criterion is obtained whenever the desirable final marking is
reached. Considering that, (i) the Petri net model is guaranteed to be bounded,
and (ii) the timing constraints are bounded and discrete, this implies that the
TLTS is finite and thus the proposed algorithm always finishes. When the
algorithm reaches the desired final marking it implies that a feasible
schedule was found (line 3). The state space generation is modified (line 5)
to incorporate the state space pruning. PT is a set of ordered pairs rep-
resenting for each firable transition (post-pruning) all possible firing time in
the firing domain. The tagging scheme (lines 4 and 9) ensures that no state is
visited more than once. The function fire (line 8) returns a new generated
state due to the firing of transition at time The feasible schedule is
represented by a TLTS generated by the function add–in–trans–system
(line 10). The whole reduced state space is visited only when the system does
not have a feasible schedule.

6.3 Application of the Algorithm

Table 1 depicts the execution of the algorithm applied to the time Petri net
model of Figure 2. In this table, at state 13, two transitions and are
firable. The possible execution of task T1 (choosing for firing) is a wrong
choice since, after that, task T2 misses its deadline (state 17). The algorithm
backtracks to state 13 and try the alternative, now granting the processor to the
task T2 (firing This new decision leads to a feasible schedule, since in the
state 29 the firing of transition reaches the desired final marking
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Figure 5. Case Study Graph

7. EXPERIMENTAL RESULTS
Table 2 shows a summary of the experimental results. All experiments were

performed on a Pentium-III 600 Mhz dual processor. In order to depict the
practical usability of the proposed method in more details, one of the examples
is considered, a simple control application. This case study is described origi-
nally in [5]. The system consists of a sensory device mounted on a motorized
platform that must detect and track specific objects in the environment. Four
processors connected by a single bus control the system. The model consists
of 6 tasks split into 22 subtasks, which exchanges 10 messages, 6 of them are
sent across processor boundaries. Figure 5 shows the computational graph for
this application, presenting the subtasks allocated to processors, and its com-
munication pattern. In this graph each node is labeled with the corresponding
subtask number, arcs representing local communication are treated as prece-
dence relation, and each arc representing an interprocessor communication is
labeled with a corresponding message identification. The proposed algorithm
founds a feasible scheduling with no overhead, since it only examined the min-
imum number of states (in this case 50 states) in 5 milliseconds.
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8. CONCLUSIONS
This paper proposed a formal modeling methodology based on time Petri

nets, and a framework for pre-runtime scheduling on multiprocessors using a
reduced state space exploration algorithm. In spite of this analysis technique
is not new, to the best of our knowledge, there is no work reported similar to
ours that models hard real-time systems and finds (whether one exists) a re-
spective pre-runtime scheduling. The real-time task specification can be very
general, since it can have resource and timing constraints, and intertask rela-
tions, such as precedence and exclusion relations. The proposed algorithm is a
depth-first search method on a finite TLTS derived from a TPN model. When
searching for a feasible schedule, the algorithm suffers from the state space
explosion problem. In order to maintain the state space growth under control,
the proposed method uses minimization techniques. The algorithm presented
here always finds a schedule, provided that one exists.

The proposed modeling and the scheduling synthesis are an important step
toward embedded real-time software synthesis tools. So, it is planned to gen-
erate complete executable code from the formal model. This can be solved
through TPN with tasks, which is an extension of TPN, which annotates tran-
sitions with program code. Another extension is to take into account different
operational modes in the pre-runtime scheduling.
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Abstract: Resource partitioning is used to run several independent applications on the same
hardware while avoiding error propagation. However, classical methods of val-
idation and design are not adapted to this technique, so new methods have to be
elaborated. In this paper, we define four utilization bounds, which give sufficient
conditions to guarantee an execution sequence without timing faults as long as
the utilization rate of the system remains under the bound. They can of course
be used to validate a system with partitions, but the fact that they are based on a
partial knowledge of the system allows to use them during system design. This
latter point is interesting since we can thus validate a system whose parameters
are not yet completely defined, which can greatly reduce the cost by avoiding
many backtracks in development cycle.

1. INTRODUCTION

The use of computers in industrial processes that involve critical applica-
tion [1] induces changes in the design of systems. To run several applications
simultaneously on the same systems, one can choose a distributed or central-
ized architecture. The first solution avoids propagation of errors between inde-
pendent applications [2] but its cost increases with the number of applications
(including the costs of space, a major issue in avionics for instance [3, 4]).
Besides it is possible nowadays to centralize computations owing to computer
performances, which have increased and are still increasing faster than embed-
ded applications complexity.

However, costs reduction must not cut down on safety. That is why we need
to develop new methods to design, validate and safely execute independent ap-
plications in a centralized environment. Many researches have been conduced
in this area and many kinds of solutions were proposed [1, 5], among which
partitioning [6–8].
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Partitioning is an interesting solution, which allows to run several applica-
tions on the same hardware while keeping their independence and the safety
requirements. The ARINC-653 [9] standard is a typical example of partition-
ing, that uses both strict resource partitioning and time partitioning. This time
partitioning is based upon a multi-level or hierarchical scheduler [10–12] com-
posed of a cyclic scheduler for the partitions, and a fixed-priority scheduler
for the tasks inside a partition. The layer organization offers modularity and
re-usability [13], which reduces the cost of the systems. Many recent real-time
systems [14, 15] use it, and moreover classical methods of validation [16] can
be used without any particular problem for this kind of systems, which makes
the partitioning solution an almost perfect one.

However, the use of a fixed-priority scheduler is a problem regarding perfor-
mance, since the utilization bounds are quite low [17, 18]. A dynamic priority
scheduler (such as EDF) would be useful to increase the scheduling capacity
of partitioned systems. And thus the cost of the system.

The cost of validation also has to be considered. Indeed, the design of hard
real-time systems differs from classical design processes in that the hardware
is to be taken into consideration very early.

The validation step requires the knowledge of both hardware and software.
In fact, it is particularly difficult to know the time parameters of tasks, includ-
ing their worst case execution time. Indeed, computation methods of WCET
are based on the knowledge of the hardware and on the software implemen-
tation. This second point is the most problematic since implementation and
testing are expensive, and it may have to be re-done several times if the valida-
tion fails.

In this article, we propose techniques to limit this risk. We try to give an
explicit representation of the system and its scheduling capacity usable even
during the design step. Indeed, some time parameters of tasks can be known
very early, such as for instance the period which often depends on the proper-
ties of external systems. The partitioning choice is also often made before the
software implementation step.

Owing to this partial knowledge, we will determine processor utilization
bounds which, if respected, will guarantee an execution without timing faults.
This technique allows to conduct in parallel tasks software implementation
and validation. The advantage is that the validation using this technique can
detect some errors before the complete realization of the system, which can
drastically cut down the design costs of hard real-time systems.

This article is structured as follows: the next section describes the system
properties and presents some notations. Section 3 introduces four utilization
bounds, and describes their properties and how to use them for validation. In
section 4, we present methods, based on bounds, to allow the designer to find
partitions parameters. Finally, we conclude our work in section 5.
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2. BACKGROUND

The concept of partitioning induces that the processor allocation is not lin-
ear. This makes unusable the model of task commonly used [17]. That is why
we will use the generalized multiframe task model [19–23].

Task notion

The concept of task uses in this article is relatively simple, but it makes pos-
sible to model and study many real-time systems [24, 16]. A task is defined
as a couple where is the worst case execution time and is the pe-
riod of the task.
The study of partitioned systems highlights the difference between the concept
of application and the concept of task. Indeed, these two concepts are often
wrongly confused. In the case of partitioned systems this is not allowed be-
cause the concept of partition is used to separate the applications and not the
tasks. Thus, the various tasks of a partition are considered as an application or
a group of tasks to which a complete processor is assigned. In this article,
we consider that this collection is partially ordered according to the task index
set, thus the period of the first task is the shortest one

Partitioning

We now introduce the concept of partitioning. Even if we will only study
here the partitioning of the processor, we can notice that the following defini-
tion of partition can be extended to any kind of resource.

Definition 1 (Partition). A partition is a tuple where is an array of
N pairs that satisfies

for some and P is the partition period. The
processor is available to a task group executing on this partition only during
time intervals

This representation of the partitioning has the advantage of being able to
model any static behavior.

Definition 2 (Supply Function). The supply function of a partition is
the total amount of time that is available for from time 0 to time

Definition 3 (Demand Bound Function). Let be a task, and a positive
number. The demand bound function denotes the maximum cumu-
lative execution requirement of the jobs of  that have both arrival times and
deadlines within any time interval of duration

Theorem 1 ([21]). A group is infeasible on a partition if and only if
for some positive real numbers and
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The major interest of this theorem comes from that the complete knowledge
of the task parameters is not needed. We will thereafter use this property to
introduce new theorems based on a partial knowledge of the system.

Definition 4 (Least Supply Function). The least supply function of a
partition is the minimum of where

Definition 5 (Critical Partition). A critical partition of a partition
is where has time pairs corresponding to the steps

in such that supply function equals in (0, P).

The critical partition is an essential concept because it can express in a non-
pessimistic way the worst situation, for the schedulability of a task group, rel-
ative to a partitioning
The following theorem was, up to this article, the best means to study effec-
tively the schedulability of a partitioned real-time system (as far as we know).

Theorem 2 ([21]). A task group is infeasible on a partition if and only
if:

for some positive real number

3. SCHEDULABILITY AND UTILIZATION BOUNDS

The previously defined method allows to study the schedulability of a real-
time partitioned system, without pessimism. However it has some disadvan-
tages. Indeed, since it uses all the system characteristics (parameters of both,
tasks and partition), a system modification, as negligible as it may be, implies
to restart the process of validation from the beginning. For the same reason, it
cannot be used in an interactive design of the system. Moreover, this method
does not provide an intuitive idea of the capacity of the system to meet task
time-constraints. Finally, towards the aim of adding the system some tasks dy-
namically, this method is too complex to be used as acceptance test for new
tasks.
So there is a need of another kind of solutions. That is why we introduce four
utilization bounds to study the schedulability of partitioned systems.

Demand bound function

In the particular situation where a task is defined only by its period and its
worst case execution time, the demand bound function is defined as follow:

Theorem 3. A task group is schedulable on a partition if and only if
with such as:

such as
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The proof is commonplace because the demand bound function grows only
at the instants such that

Minimal partition

We introduce the concept of minimal partition which allows the designer to
study the schedulability of a system in which some parameters are unknown.

Definition 6 (Minimal Partition). The minimal partition is the partition such
that its availability function is lower than or equal to all availabil-
ity functions of every critical partition with same period (P) and period total
availability

Thus we can easily deduce the formula of the minimal partition availability
function, called minimal function:

As a consequence, the minimal critical partition is defined such as:

The minimal partition is interesting because we can use it to validate parti-
tioned systems with the following theorem.

Theorem 4. If a task group is schedulable in the minimal partition
then is schedulable in every partition with the same period (P) and same
period total availability (A).

Utilization bound

Using utilization bounds to study a real-time system is interesting, because
it provides a means, to validate and design the system, less complex than the
method based on the critical partition. But it also gives to the designer an
intuitive idea of the availability of the system to schedule tasks without timing
faults. To do so, we need to introduce a new hypothesis.

Hypothesis 1. For any task group the period of the first task must be greater
than or equal to the period of the partition:

We can give these four following bounds:

with such as
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Bounds properties

Pessimism. One of the major advantages of the utilization bounds is their
robustness. Indeed, the bounds being calculated only with parts of parameters
of the system, their conclusions remain valid with some changes of the sys-
tem. This property is interesting because it allows to use the utilization bounds
during the design step. The partial knowledge needed to calculate the bounds,
implies that they are pessimistic. In fact, the more parameters are needed to de-
termine a bound, the less pessimistic it is. In order to quantify the precision of
each bound we use a simulator varying the number of tasks and the parameters
size [25]. The results show that the first bound may be too pessimistic to
use it to validate a system, contrary to the others. That’s why we recommend
to use it for the design.

Loss. Pessimism makes it possible to characterize the behavior of a method
based on a sufficient condition, compared to a perfect method based on a nec-
essary and sufficient condition. The concept of loss makes it possible to mea-
sure, at the same time, the inaccuracy of the method of validation as well as
the waste of processor time that comes from partitioning.

We can thus define the loss of an utilization bound B as follows:

Definition 7 (Loss).

The simulations show that the loss rate decreases quickly with the ratio
We can also use the definition of the loss to prove the following the-

orem:

Theorem 5. For any group if then whatever the characteristics
of partitioning are, there is one period for the partition (P) short enough to

and

Utilization of the bounds

We have four utilization bounds based on a partial knowledge of the sys-
tem, we also know a partial order on their precision; it thus remains to recall

schedule all the tasks of without timing faults.

Bound comparison

Until now we evaluated the precision of the various utilization bounds
thanks to simulations. These results show that some bounds are less pessimistic
than others. This observation intuitively seems logical; indeed it appears rea-
sonable to think that a technique of validation based on a whole of knowledge
is less pessimistic than another which requires less knowledge. In fact, we
can prove the following partial order between the fourth utilization bounds:
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in a clear way when to use each bound. Indeed, it is obvious to use the less
pessimistic bound we can calculate. Thus, the designer must follow the in-
structions corresponding to its situation:
If only the total availability of the partition and the period of the partition or
the smallest period of the tasks (or both), are known, then the utilization bound

should be used.
If the period of the partition and the total availability and the period of all the
tasks are known then the bound should be used.
If the partition is completely known and the shortest period of the tasks is
known to then the bound should be used.
If the partition and the period of the tasks are known then the bound should
be used.

4. BOUND-BASED DESIGN

In the previous section, we studied how to determine whether a real-time
system with partition is schedulable. In this section, we will determine the
values of the parameters of the partition so that the tasks are executed without
timing faults.

Specific partitioning

We introduce here the concept of specific partition:

Definition 8 (Specific Partition). The specific partition of tasks group is a
partition which allows to schedule all the tasks of without timing faults, and
for which the availability function is lower than or equal to all other scheduling
of the tasks of

The specific partition of the task group is denoted and its avail-
ability function. To determine the specific partition, we proceed in three steps:
first find task constraints; second, keep the significant ones only, third calculate
the steps of the specific partition.

The first stage consists in finding, for each task, when the demand bound
function changes. The second stage consists in finding the instants when the
constraints are the more restrictive (i.e. when the request of the resource
is significant). To do that, we just have to find the pairs such
that and to keep only those which bring an additional constraint.
In fact, a pair is not significant if such that

Once determined
the significant pairs, we determine the various pairs To do so, we
associate with each of a significant pair, one and to each corresponding
instant where the request increases, a
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Determining the total availability of the partition

It is possible to use the utilization bound to find the total availability of
a given partition A, from tasks parameters. To do that, one can use various
methods according to the utilization bounds.

The first solution which can be used with all the bounds consists in proceed-
ing in an iterative way by progressively increasing the availability per period
way until the bound is verified.

However, there is another solution, more formal, based on the bound use.
This method makes it possible to calculate the smallest value of A which makes
schedulable the tasks of the partition. The following equation makes it possible
to calculate the smallest value of A:

Determining the period of the partition
The utilization bounds also make it possible to determine the period of the

partition. The use of the theorem given in the previous section makes it pos-
sible to state that the bounds enable to find a period of the partition, enough
short, which schedules all the tasks of the partition, if the utilization ratio of
the partition is lower than the availability of the partition.

There still are two solutions: one is iterative and consists in reducing the size
of P gradually until the bound is verified, the other is based on the bound.
Indeed, we can demonstrate that if the following equation is checked, then the
system is schedulable.

5. CONCLUSIONS

The main goal of this article is to provide guidelines for the designer to rep-
resent clearly the capacity of a system to schedule tasks without timing faults.
For that, we propose four utilization bounds. These bounds provide an intu-
itive representation of a system whose designer has a partial knowledge, and
this method thus makes it possible to provide a judgment on the schedulability
of a system even if its design is not finished. A comparative study of these
bounds enabe to state in a clear way and specify some rules of their use, ac-
cording to knowledge of the studied system.

The results obtained in this article are already concretely usable. However,
taking into account other shared resources, whose access is controlled by pro-
tocols specific to real-time systems [24, 26], is mandatory to extend the field of
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application of the studied methods. This is why our future research will focus
on the intra and inter partitions resource sharing using specific protocols. In
this article, the speed of the processor was constant, but on the current proces-
sors it is common to be able to modify it. Thus, it would be interesting to vary
the frequency of the processor on the different steps of partitioning.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Bondavalli, A. Fantechi, D. Latella, and L. Simoncini. Design validation of embedded
dependable systems. IEEE Micro, 21:52–62, September/October 2001.

Peter van der Stok and Paul T.A. Thijssen. Prevention of replication induced failures in the
context of integrated modular avionics. In Embedded System Applications, pages 153–170.
Kluwer Academic Publishers, 1997.

P. Conmy and J. McDermid. High level failure analysis for integrated modular avionics.
In 6th Australian Workshop on Safety Critical Systems and Software, volume 3, 2001.

Ben L. Di Vito. A model of cooperative noninterference for integrated modular avionics.
In Dependable Computing for Critical Applications (DCCA-7), 1999.

M. Nicholson, P. Conmy, I. Bate, and J. McDermid. Generating and maintaining a safety
argument for integrated modular systems. In 5th Australian Workshop on Industrial Expe-
rience with Safety Critical Systems and Software, Melbourne, Australia, November 2000.

J. Rushby. Partitioning in avionics architectures: Requirements, mechanisms, and assur-
ance. Technical report, SRI International, Menlo Park USA, March 1999.

B. L. Di Vito. A formal model of partitionning for integrated modular avionics. Technical
report, NASA Langley Research Center, August 1998.

B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor scheduling: To
partition or not to partition. In Proceedings of the Int’l Conf. on Real-Time Computing
and Applications, pages 337–346, Cheju Island, Korea, December 2000. IEEE Computer
Society Press.

Airlines Electronic Engineering Committee. Arinc specification 653, January 1997.

B. Ford and S. Susarla. Cpu inheritance scheduling. In Usenix Association Second Sym-
posium on Operating Systems Design and Implementation (OSDI), pages 91–105, 1996.

P. Goyal, X.Guo, and H.M. Vin. A hierarchical CPU scheduler for multimedia operating
systems. In Usenix Association Second Symposium on Operating Systems Design and
Implementation (OSDI), pages 107–121, 1996.

John Regehr, Jack Stankovic, and Marty Humphrey. The case for hierarchical schedulers
with performance guarantees. Technical Report CS-2000-07, Department of Computer
Science, University of Virginia, march 2000.

M. Nicholson and P. Hollow. Approaches to certification of reconfigurable ima systems,
2000.

M.D. Bennett and N.C. Audsley. Developing a real-time micro kernel design process. In
22nd IEEE Real-Time Systems Symposium, London, UK, December 2001. IEEE Computer
Society Press.

Michael Bennett and Neil Audsley. Developing an ima kernel based on 14 for avionic
systems. Technical report, Dependable Computer Systems Centre, Dept. of Computer
Science, University of York, UK, 2002.



176 David Doose, Zoubir Mammeri

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour. A Practitioner’s Hand-
book for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-time Systems.
Software Engineering Institute, 1999.

C.L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in hard real-time
environment. Association for Computing Machinery (ACM), 20:40–61, January 1973.

J.P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In IEEE Real-Time Systems Symposium, pages
166–171, Los Alamitos, CA, 1989. IEEE Computer Society Press.

A.K. Mok and D. Chen. A multiframe model for real-time tasks. In 17th IEEE Real-Time
Systems Symposium (RTSS ’96), page p.22. IEEE Computer Society, December 1997.

S.K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. Generalized multiframe tasks. In
Real-Time Systems, volume 17, pages 5–22, July 1999.

A.K. Mok, A.X. Feng, and D. Chen. Resource partition for real-time systems. In Sev-
enth Real-Time Technology and Applications Symposium (RTAS ’01), pages 75–84, Taipei,
Taiwan, May-June 2001. IEEE Computer Society.

A.K. Mok and A.X. Feng. Towards compositionality in real-time resource partitioning
based on regularity bounds. In 22nd IEEE Real-Time Systems Symposium (RTSS’01), page
129, London, England, December 03-06 2001. IEEE Computer Society.

A.X. Fen and A.K. Mok. A model of hierarchical real-time virtual resources. In Real Time
System Symposium, pages 26–35, Austin, December 2002. IEEE Computer Society.

L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. IEEE Transactions on Computers, 39:1175–1185, September
1990.

David Doose and Zoubir Mammeri. Analyse de bornes d’utilisation pour la validation de
systèmes temps réel partitionnés. In RTS 2004, 2004.

T. P. Baker. A stack-based resource allocation policy for realtime. In Real-Time Systems
Symposium, pages 191–200. IEEE Computer Society Press, 1990.



FLEXIBLE RESOURCE MANAGEMENT

A Framework for Self-Optimizing Real-Time Systems

Carsten Boeke and Simon Oberthuer
Heinz Nixdorf Institut, Paderborn University
Fürstenallee 11, 33102 Paderborn, Germany
{boeke|oberthuer}@uni-paderborn.de

The demand for highly flexible and reconfigurable applications for embedded
systems under real-time constraints led to various demands for operating system
capabilities. The resource manager of the operating system has to handle dif-
ferent service functions of the applications with different resource requirements
and different qualities. Thereby, the grant of new resources has to be assured by
an acceptance test. Whilst this issue is widely handled for the processor utiliza-
tion and its schedulability analysis, it will be extended in the presented resource
manager to a more general model. The profile model supports for an optimal
resource utilization and also leads to a better system quality by enabling appli-
cations to use resources that are normally reserved for other applications. The
resource manager also supports for a smooth integration of timing constraints
and their acceptance tests for the resource allocation in a hard real-time environ-
ment.

In the recent years real-time systems take over more versatile tasks and
are more and more often used in dynamic scenarios. Systems of the future
should be self-organizing, self-repairing, self-optimizing, self-adaptive, and
self-reflective. To achieve this goal the system must be reconfigurable dur-
ing runtime. Other challenging requirements for systems under this conditions
are characterized by Schmidt, 2002: To adapt to the environment the systems
must satisfy multiple QoS properties. Therefore, different levels of services
are appropriate under different configurations and environmental conditions.
The need for autonomous and time critical application behavior necessitates a
flexible system substrate that adapts robustly to dynamic changes in mission
requirements and environmental conditions.

Our basic approach to support reconfigurable applications follows the idea
of service profiles. An application profile describes the configuration of the

Abstract:

1. INTRODUCTION
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application, which in fact means what service function should be active. Addi-
tionally, the minimum and maximum resource usage boundaries are specified,
which can be used to find an optimal profile for activation according to a fea-
sible resource distribution. Besides the feasibility of the resource usage, the
resource utility should be maximized. In order to support the process of find-
ing an optimal set of all active application profiles, each profile is assigned a
quality parameter. The quality parameter describes the benefit that the profile
achieves when it would be active. This parameter is highly dynamic and can
be changed from the application during runtime.

Important for these systems is that the flexibility does not harm the real-
time constraints of the system. To describe the dynamic of applications for the
operating system or other system components a model is required in which this
dynamic can be represented.

The remainder of the article is organized as follows: Section 2 describes
some previous experiences made with the configuration of real-time operating
systems. Section 3 gives a short overview about reconfiguration approaches for
embedded applications. Section 4 is the main part and describes our operating
system driven resource manager that supports real-time reconfiguration and
high resource utilization for embedded applications. Section 5 concludes this
article with some general results.

2. PREVIOUS WORK

Operating systems and run-time platforms for even heterogeneous proces-
sor architectures can be constructed from customizable components (skele-
tons) from the DREAMS’s (Distributed Real-time Extensible Application
Management System) library [Ditze, 1995; Ditze, 1999; Ditze and Böke,
1998]. This process is done a priori during the design phase of a system. By
creating a configuration description all desired objects of the system have to
be interconnected and afterwards fine-grained customized. The primary goal
of that process is to add only those components and properties that are really
required by the application.

The creation of a final configuration description for DREAMS had been au-
tomated during the DFG project TEReCS (Tools for Embedded Real-Time
Communication Systems) [Böke, 1999; Böke, 2000; Böke, 2003]. During that
project a methodology was developed in order to synthesize and configure the
operating system for distributed embedded applications.

Another main issue of TEReCS is the integration of an off-line timing anal-
ysis into the design process for a configured distributed runtime platform. The
design cycle of TEReCS specifies a loop. Within this loop a configuration is
generated and its timeliness execution is checked as long as the check fails.



The experiences about configuration of operating systems that have been
gathered during the TEReCS project will be adapted to the application level.
Therefore, applications must support for reconfiguration of their services. The
approaches in the literature often introduce service level constructs. The ap-
plication’s state is divided into different service levels. In each of these ser-
vice level states the application provides different functions with a different
resource usage, system benefit, and utility.

Dertouzos and Mok, 1989 showed that for multi-processor systems no
scheduling algorithm is optimal without a priori knowledge of the deadlines,
computation times, and arrival times of the tasks. Popular algorithms like ear-
liest deadline first and least laxity scheduling can be outperformed by other
promising approaches that take resource requirements into account.

Lee et al., 1999 introduced QoS dimensions for a group of applications. In
Q-RAM a utility function is used in order to dynamically optimize the resource
requests of dynamic application service levels. The model requires a priori
application profiles for each application.

Burns et al., 2000 presented a model that includes a set of different service
alternatives for tasks. But their resource usage still is based on worst-case
assumptions.

DQM [Brandt and Nutt, 2002] uses QoS levels to adapt multimedia appli-
cations to overload conditions. DQM uses worst-case execution time analysis
to determine the resource usage. DQM does not reallocate tasks due to special
situations.

In QuO [Loyall et al., 2002] applications adjust their own service level to
improve performance. Applications react to the environment on their own ac-
cord.

ARM [Ecker et al., 2003] was especially developed to cope with unantici-
pated events, anomalies, or overload conditions. A system is seen as a dynam-
ically allocated pool of resources. It is the job of a global scheduling policy to
dispatch application tasks to all processors of the system. The software model
incorporates knowledge of application profiles, network hardware, utility, and
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This implies that the configuration has impact on the analysis and the analysis
has impact on the configuration.

During the exploration of this approach it had been revealed that config-
uration of software components increases dramatically their reuse. Contra-
dictory goals, respectively trade-offs, for example, between performance and
flexibility become highly adjustable. The operating system can be individu-
ally adapted to the concrete demands of the application. Hereby, the overall
performance of the operating and communication system can be optimized.

3. RELATED WORK
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service level constructs for the applications. A service level is represented
by a value of An application can have assigned a set of service levels. Ad-
ditionally, each application is assigned a workload For each application
a and each host h with its defined workload and service level the response
time and the memory consumption are determined. An
overall utility function U(s,w,r) can be defined, which must be monotonically
non-decreasing in a combination of s, w, and r. An allocation of applications
to hosts has to be found where the utility function is maximized.

The previously presented approaches define often a set of service alterna-
tives per application that have different resource usages. This is named service
level of the application. The benefit that the application achieves increases
with higher service levels. Also the resource usage of an application is differ-
ent according to its service level. It is the task of the resource manager to find
a feasible resource distribution and to maximize the system’s utility.

In the scope of the Collaborative Research Center 614 is the challenge to
make embedded applications self-optimizing. In this article an operating sys-
tem driven approach is presented. For this approach applications must support
several service alternatives, which claim for different resource usages. This
means that applications are able to change their resource requirements. The
maximal resource requirement of one service alternative is called profile. Due
to the different resource usages per profile of an application task, the quality of
the application can vary. It is the task of the resource manager of the operating
system to support the tasks in finding their actual profile and to maximize the
system’s quality.

The following part defines the main features of our Flexible Resource Man-
ager (FRM).

In our FRM per tasks the programmer can define a set of profiles In the
following the actual number of tasks is assumed to be n, thus The
set must contain at least one profile. Profiles can be compared to different run
or service levels of a task. At each time only one profile of task is active.
Each profile of a task implements another service level of the task. Inside of a
profile the following information are stored:

Resource requirements. Each profile describes a different level of re-
course requirements of the task. A task can only allocate resources in the range
that its active profile defines. The following data must be provided: The type
of the resource (e.g. memory, CPU time, area on a FPGA, bandwidth on a

4. FLEXIBLE RESOURCE MANAGER

4.1 Profile definition
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communication medium, etc.), the quantity of the resource in ranges (e.g. 128-
256kb, 20%-30%, 10-20 kbits/s, etc.), and the delay of the requests (e.g.
which describes the maximum delay between the request and the assignment
of the resource. When a task wants to allocate more resources than described
in its active profile, it has to switch to a profile with appropriate resource re-
quirements.

Switching conditions. The FRM is responsible for activating a profile.
To support the FRM a task has to describe switching conditions in each profile.
This conditions describe when and under which constraints a task can switch
to another profile. Additionally, it is defined how long the switch will take, and
which methods to execute. These methods are so-called enter and exit methods
per profile, with their worst-case execution times (WCET) assigned.

Profile quality. The programmer or a quality manager application can
order the profiles according their quality. The quality of a profile is defined
through the quality value The FRM uses this value to decide which
profile to activate as described later in detail.

Service function. Each profile is assigned a main function that has to
be executed when the profile is active. When switching between two profiles,
the appropriate leave function of the old profile will immediately be activated,
while the main function of the old profile is stopped. Hereafter, the enter func-
tion of the new profile will be executed. After this enter function terminates
the main function of the new profile becomes immediately active. Thus, the
active process of a profile is divided into an enter, main, and leave interval.

4.2 Profile configuration

4.3 Quality of the system

We call a combination of profiles with
the configuration of the system. This means every configuration

maps each task to one of its profiles. The configuration of all actual profiles
is called active configuration.

The FRM is responsible for switching between the profiles of the tasks under
the switching conditions. To provide the FRM with information, which profile
is the best for an application and which application to favor, the FRM considers
the quality of the profile and the importance of each task

It represents the importance of this task inside of the whole system and the
RTOS can consider it for optimizing the system. The value is set from the
programmer, but can be changed dynamically online.
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A quality function Q(c) defines the quality of a configuration. The FRM
uses this function to decide which configuration has to be activated, by maxi-
mizing the quality function. The programmer of the system has to define the
quality function. For example, a simple quality function can be:

4.4 Configuration classification
In classical approaches for resource management, applications in real-time

systems define worst-case requirements. The classical resource management
has to assure that the upper limits from all applications do not exceed the sys-
tem limits. When these upper limits are only reserved for worst-case resource
requirements and do not represent the average case, then this leads often to an
internal waste of resources. This means that the applications can only allocate
resources in their a priori defined boundaries.

Guaranteed allocation. Per configuration, we define a resource to be
in a guaranteed allocation state, when the normalized sum of all upper bounds
of the resource requirements of the profiles of the configuration is lower than
100%. This means that the sum of all upper bounds of the resource require-
ments for the resource do not exceed the available amount of the resource.
We define the configuration to be in a guaranteed allocation state, when all
resources are in a guaranteed allocation state.

Over allocation. In a real-time environment applications want to have
guaranteed resources. This leads to unused resources in the average case by
reserving them for worst-case resource allocations.

We define per configuration a resource to be in an over allocation state,
when not all upper bounds of the resource requirements of the configuration
can be granted at the same time. This means that the sum of all upper bounds
of the resource requirements for the resource exceeds the available amount of
the resource in the system. We call a configuration to be in an over allocation
state, when one or more resources are in an over allocation state.

When a conflict appears (more resources are required than available) this
conflict must be solved, because in a real-time environment the applications
need planning reliability. Denying of a resource requirement is normally not
acceptable and can lead into catastrophic results. To deal with this fact our
FRM allows transitions from a guaranteed allocation configuration to an over
allocation configuration only under special circumstances. Transitions can
only be granted if a guaranteed allocation configuration can be reached in time,
when a conflict appears.
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4.5 Profile reachability graph

4.6 Allowing over allocation

We define a profile reachability configuration graph. This is a directed
graph. Each configuration represents a node. From one node to another node a
directed edge exists, if the system can switch from the first configuration to the
second configuration. A weight is assigned to the edges, which indicates how
long it takes to switch from the start configuration to the destination configu-
ration. This weight is taken from the WCET of the enter and leave methods
of the corresponding profiles. Each node is classified to be in a guaranteed
allocation state or an over allocation state. This classification can also be done
per resource.

The basic idea is to allow the system to be in an over allocation state config-
uration, when the FRM can guarantee that a guaranteed allocation state con-
figuration can be reached in time. Here, ”in time” means that a new resource
requirement that leads to a conflict must have a greater assignment delay than
the switch time to a guaranteed allocation state configuration. In order to speed
up the search time for a guaranteed allocation state configuration in the graph,
the taken paths from the guaranteed to over allocation states will be recorded
and cached.

Figure 1 shows a simple profile example with two tasks and the correspond-
ing profile reachability graph. The first task has two profiles and
the second task has only one profile From this follows that the cor-
responding profile reachability graph consists of two nodes: one for configu-
ration and one for When we assume that
our system has 1024kb memory for the application tasks, the configuration
belongs to the set of guaranteed allocation states and the configuration to
the set of over allocation states. We also assume that task allows to activate
the profile when it is in profile and vice versa. So, the two nodes of
the profile reachability graph are connected with two directed edges, one from

Figure 1. A simple example for profiles and their reachability graph
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to with the weight (switch time) and one from to with
weight

Let us start with this scenario. We assume that our system is in the config-
uration and both tasks have each 256kb memory allocated. In this case, the
tasks use only up to 512kb memory of the system memory. Our FRM checks
whether task can switch to profile which would bring the system in
the over allocation state This can be granted, because when task would
allocate more memory, the assignments have to be fulfilled in Thus, the
FRM has enough time to reconfigure the system in the guaranteed allocation
state by forcing task to go back from profile in profile which
takes only The FRM grants the transition into the over allocation state

and caches a way back to the guaranteed allocation state. This can help to
optimize the system quality, while uses less memory (in its average case
only 256kb), task is allowed to use up to 768kb memory by entering an over
allocation configuration. When wants to enter its worst-case scenario, then

has to switch back to its lower profile.

4.7 Resource allocation paradigm
This FRM assumes special requirements according the resource allocation

by the applications:

The application specifies a priori the minimum and maximum limits per
resource usage. The application cannot acquire less or more resources
than specified. If the application wants to do so, then it has to specify
a new profile with appropriate limits. The activation of the new profile
underlies an acceptance test of the operating system.

The active profile of an application also registers the actual resource con-
sumption (which must be in the specified limits).

All resource demands (also within the specified limits of the actual pro-
file) require an announcement to the operating system. Between the an-
nouncement and the assignment a delay is assumed. The profile specifies
a maximal delay per resource. Note, that this delay is a worst-case value.

1

2

3

Due to the fact that the maximal resource requirement per application is
fixed for the active profile and that the assignment delays are greater than the
activation delays for guaranteed allocation state profiles, the overall system
quality can be improved. This can be achieved by allowing applications to
have resource requirements that lead in the worst-case to an overload condi-
tion (refer to task of the example). Such overload conflicts can be solved,
because the FRM assures that a guaranteed allocation state profile can be ac-
tivated before the resources for the worst-case scenario have to be assigned.
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The existence of activation paths to guaranteed allocation state configurations
implies that the applications assure to degrade their resource usages. For ex-
ample, this means that the task can improve its system quality by activating
the over allocation state profile which means to be able to use more re-
sources. This might have been possible, because task did not use all of its
maximal resources of its worst-case scenario. But when task wants to en-
ter the worst-case scenario by acquiring more resources, then task will be
forced to reactivate its lower profile The operating system supports the
maximal assignment delay per resource request by a resource demand and a
resource acquire programming interface. Thus, the application programmer
should split resource requirements into a demand and acquire function. They
have to recognize that between the call of both functions the operating system
will assure an appropriate delay. For this reason, the resource request is split
into these two functions in order to enable the application to make some other
work before the resources are granted. This implies that resource requirements
should be announced as early as possible in order to enable the operating sys-
tem to handle them.

5. CONCLUSION

Our Flexible Resource Manager (FRM) is appropriate for application tasks
that use moderate resource requirements in the average use case. Their re-
source requirements can increase during seldomly occurring worst-case condi-
tions. Additionally, a well-known maximum delay can be specified during the
recognition of the worst-case conditions (announcement for a higher resource
demand) and the start of their handling (respectively, using more resources).
Thus, the difference of the average resource usage and the worst-case resource
usage can be used by other applications. Those applications must assure to
degrade their resource usage in time, when the worst-case scenario will be
announced by the other task. This will lead to a better resource utilization
(wasting less resources due to worst-case reservations) and also to a better sys-
tem quality (by allowing other applications to increase their resource usage in
order to improve their service quality).

The shown FRM opens new potential of optimization in real-time applica-
tions. It helps to negotiate about resources between applications, even when
the applications do not know each other. The programmers have to split their
application into different service levels and have to use the FRM profile API.
Also the FRM is flexible and supports dynamics, which is important for self-
optimizing applications.
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We describe a method for synthesizing SystemC-Code from high-level Petri
nets. The synthesis method is part of a Petri net based methodology for the de-
sign of distributed embedded real-time systems [13]. The methodology leads
through the complete design process from modelling on an abstract level using
high-level Petri nets via analysis and partitioning of the model down to auto-
matic synthesis of an implementation. Within the synthesis stage, we currently
are able to automatically generate target code for different microcontrollers
that are interconnected by a communication media, for instance a CAN bus.
Such a software implementation is sufficient for many applications. In certain
cases, however, it is necessary to realize components of an embedded system
in hardware in order to meet real-time constraints.

For realizing a component in hardware, a specification in a Hardware De-
scription Language (HDL) has to be generated. Appropriate languages are

*This work was supported by the German Science Foundation (DFG) project SFB-376

Abstract:

Keywords:

The paper presents an approach for realizing high-level Petri net models in Sys-
temC. The approach contributes to an existing methodology for the Petri net
based design of distributed embedded real-time systems. It is intended to be
a vehicle for realizing Petri net components in hardware. The paper describes
the use of standard SystemC language constructs to realize the execution of a
high-level Petri net, which is assumed to be separated into partitions. Besides
techniques for realizing the mechanisms of Petri net execution, the integration of
the code generation into the overall design flow is discussed. To demonstrate the
effectiveness of our approach we use the inverse discrete cosine transformation
(IDCT) that is part of the MPEG-2 algorithm.

Petri nets, SystemC, Embedded Systems, System Synthesis.

1. INTRODUCTION



Many applications of Petri nets to various aspects of hardware design can
be found in literature (cf. for instance [16]). One reason for the usage of Petri
nets in this area is their ability to express concurrency and parallelism. Fur-
thermore, Petri nets are a well-investigated formal model offering a variety
of analysis methods. They are used e.g. for behavioural modelling, analysis
and verification, synthesis, and performance analysis. There are even complete
Petri net based systems for hardware design, e.g. the CAMAD high-level syn-
thesis system [9]. A canonical method for interfacing suchlike Petri net based
methodologies to standard hardware design tools is to generate VHDL- or
Verilog-code. For generating HDLs from Petri nets, again several approaches
can be found in literature. In [10] behavioural VHDL code is generated from
Petri nets. The generated code is not synthesizable, but it can be used for sim-
ulation of the model. Another approach is described in [11]. Here, structural –
fully synthesizable – code is generated from so called Hardware Petri nets, an
extension of Place/Transition nets.

In order to develop similar approaches for the relatively new C-based HDL
SystemC, some basic techniques for realizing Petri nets in SystemC should be
provided.

Concerning SystemC, currently no approach for coupling it with a formal
graphical modelling language like Petri nets is known to us. Methodologies
based on SystemC use either this language directly (as for instance [4]) or
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for instance Verilog and VHDL. In addition to these languages, C/C++ based
languages for hardware design and hardware software codesign respectively
emerged in recent years. Prominent examples are SystemC [14] and SpecC
[3]. Especially SystemC has been developed towards a standardized modelling
language, that is intended to enable system level design and IP exchange at
multiple levels of abstraction for hardware and software components in em-
bedded systems. Developed for today’s System-on-Chip (SoC) design with in-
creasing complexity, it offers executable specifications with high performance
in early design phases. Hence, SystemC can be a particularly suited vehicle
for realizing Petri net components in hardware. In order to accomplish that,
techniques for realizing the basic operations of Petri net execution in SystemC
are needed. A description of these techniques is the main topic of this paper.

In the remaining sections of the paper, we first give an overview of ap-
proaches related to our work (Section 2) and provide some background con-
cerning SystemC (Section 3). Section 4 gives an overview of the entire syn-
thesis process and its integration into our design methodology, while Section 5
presents several details of the realization of high-level Petri net execution in
SystemC. Finally, in Section 6 an application example is described.

2. RELATED WORK



In this section, we give a brief overview of our target language SystemC.
We pass on a detailed description of our Petri net model used for specification.
A small example net is depicted in Figure 2 on page 191. Basically, our formal
model is a form of high-level Petri nets. An overview of several high-level Petri
net-models is given in [5]. A general introduction into Petri nets can be found
for instance in [7]. Beyond standard constructs of high-level Petri nets, our
formal model includes a hierarchy concept in order to support easy modelling
of complex systems. Furthermore, we support delay specifications.

As regards SystemC, introductions can be found in [14, 6]. Similar to other
HDLs, users can construct structural descriptions of designs in SystemC us-
ing modules, ports and signals. To enable structural design hierarchies, mod-
ules (SC_MODULE) can be instantiated within other modules. Communica-
tion between different modules is enabled by ports (single directional or bi-
directional) and signals. All ports and signals are declared by the user to have
a specific data type. Typical data types include single bits, bit vectors, char-
acters, integers, floating point numbers, vectors of integers, etc. Four-state
logic signals (i.e. signals that model 0, 1, X, and Z) are also supported by
SystemC. For the behavioural part of a hardware specification, concurrent be-
haviours can be modeled using processes. Such a process can be thought of as
an independent thread of control which resumes execution when some set of
events occur or some signals change, and suspends execution after performing
some action. Generally SystemC process instances have their own indepen-
dent execution stack. Code within processes is executed sequentially. Certain
processes in SystemC that suspend at restricted points in their execution do
actually not require an independent execution stack - these process types are
termed SC_METHODs. Optimizing SystemC designs to take advantage of
SC_METHODs leads to great improvements of simulation performance when
the number of process instances in a design is large, see [14]. In SystemC a set
of features for generalized modelling of communication and synchronization
is available. These are channels, interfaces and events. They enable design-
ers to model the wide range of communication and synchronization found in
system designs. Examples include HW signals, queues (FIFO, LIFO, message
queues, etc.), semaphores, memories and busses (both as RTL and transaction-
based models), see [14].
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blockdiagrams for representing the entire system (e.g. [8]). Blockdiagrams
however are rather a means for visualization than a formal model. Hence, our
work is a contribution to interface a formal implementation independent high-
level Petri net-model to the implementation oriented language SystemC.

3. BACKGROUND
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4. SYNTHESIS PROCESS

Figure 1. Overview of entire synthesis process

The synthesis method presented in this paper is integrated into our method-
ology [13] as shown in Figure 1. We first give an overview of the first three
steps, which are not in the scope of this paper. The step modelling leads to a hi-
erarchical high-level Petri net of a system under construction. The next step is
to flatten the net specification, which is straightforward, and to partition it. For
Partitioning, we use a method introduced in [15]. The basic characteristics of
this method are on the one hand that very small partitions are produced and on
the other hand that the connections between different partitions have a simple
structure. The latter is reached by encapsulating conflicts into single partitions.
Due to the simple connection structure, communication between different par-
titions can be realized using a simple ‘send and forget’ mechanism. For more
details concerning modelling and partitioning, we refer to [13].

After the step of partitioning, the system under consideration is given as
a set of small Petri net-units with a simple connection structure. For each
unit, it now has to be decided whether to realize it as hardware or as software.
This non-trivial and usually iterative process is represented by the item HW/SW
Codesign. Without going into the details of this process we can state that
it leads to a separation of the Petri net-model into Hardware- and Software-
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partitions. The software parts are typically implemented in C or C++. To
the hardware parts, the code generation presented in this paper is applied. In
general, each Petri net can be mapped to an equivalent SystemC-specification,
since SystemC is a superset of C. However, with the aim of realizing a Petri
net component in hardware, the approach may be applied only to subnets that
use a certain set of transition types. Petri nets that breach this condition, e.g.
because a transition is annotated with a complex C function, have to be realized
in software or to be modified by the engineer. With standard tools already
available, the SystemC-code can be simulated together with the software parts,
that were realized in C or C++. Tools for automatic synthesis of hardware
from SystemC-Code are not available yet. However, these tools are under
development. Guidelines for specifying synthesizable SystemC-models are
given in [2].

5. PETRI NET REALIZATION

We first describe the basic concepts for execution of high-level Petri nets
in SystemC using the example depicted in Figure 2. Afterwards, the coupling
of subnets will be described. The SystemC-Code for the net in Figure 2 is
(partly) depicted in Figure 3. The entire net is realized as a SystemC-module.
Hence, it can define several methods to be executed on activation of the mod-
ule. In our SystemC-realization for high-level Petri nets, the constructor of
the module (SC_CTOR, line 58) determines the method for Petri net execution
(P02_main, line 16) to be executed on activation. Therefore, this routine is ex-
ecuted – concurrently to the routines of other modules – each time the module
is triggered. The routine itself is executed sequentially. The constructor also
includes – besides the definition of the main method – the initialization of the
module: For all inner places (in the example just one), the capacity and the
initial marking is set (line 59) by means of methods that are not depicted in
Figure 3. The mechanisms for triggering in line 64 are related to the interface
specification, which has – as usual in hardware specification – to be defined for

Figure 2. High-Level Petri Net Example



192 Carsten Rust, Achim Rettberg

Figure 3. SystemC-Code for Example in Figure 2

each module in addition to the behavioural specification. The interface of the
module for subnet P02 is specified in lines 5 to 9 of Figure 3. For each place of
the net that is to be connected to other components, an instance of SC_PORT is
defined. When instanciating the subnet, an object has to be provided for each
port that implements the interface specified for the port (place_int_in_if and
place_int_out_if respectively). The specification of the triggering mecha-
nism in line 64 has the effect that the module is activated each time the value
of one of the ports changes. Since the module is triggered only by changes on
in- and outports, it is independent from the system clock.

The behavioural specification for executing the transitions of a net is like a
standard software implementation using C or C++. In a loop (lines 22 to 55),
which is executed until no more transition-firing can occur, each transition is
evaluated. As an example, the evaluation code for transition t3 is included in
lines 29 to 53. First, it is checked whether the transition is enabled (lines 30 to
45). The check starts with testing whether the output places provide enough ca-
pacity for the token produced by a transition firing. Afterwards it is examined
whether the input places contain enough token. Finally, the transition guard is
evaluated. If the transition has concession to fire, the corresponding changes in
the place marking are realized (lines 48 to 51). This includes removal of token
from incoming places, evaluation of the transition annotation and creation of
token for outgoing places. As shown in the source code in Figure 3, places are
realized by instanciating a place class generated therefor (line 12). The decla-
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Figure 4. SystemC-Code for entire net and for a place / a channel

ration of the place class used for place p1 of the example net is depicted in the
upper right part of Figure 4. For the example net, only the depicted place class
place_int is needed. In general, one class is generated for each place type
occuring in a net specification.

Beyond evaluation of single transitions, a Petri net-implementation has to
provide mechanisms for resolving conflicts, for instance the conflict between
transition t1 and transition t2, when both places pi1 and pi2 are marked
with appropriate token. Conflict resolving is however realized implicitly when
transitions are implemented in one module as indicated in Figure 3, since the
code of one SystemC-module is executed sequentially. Furthermore, our par-
titioning method ensures that transitions realized in different modules are not
conflicting (cf. Section 4).

Obviously, the simulation algorithm for a single subnet is pretty simple. The
strategy of evaluating all transitions of a net in a loop would be very inefficient
for large nets. We do however assume only small subnets to be realized in
each partition (cf. Section 4), for which the simple strategy is sustainable. For
the execution of the entire net, a less clumsy simulation strategy is realized,
which avoids steady evaluation of all transitions. Instead, after each change
of the net marking of one partition, only those other partitions are evaluated,
whose transitions are affected from the change (since they are connected to a
place with a modified marking). This is realized implicitly by using adequate
primitives for communication between different partitions.



In order to evaluate our approach, we have implemented the inverse discrete
cosine transformation (IDCT) according to the approach of Chen-Wang [1] as
a Petri net. The IDCT consist of 13 additions, 13 subtractions, and 14 con-
stant coefficient multiplications. The data-flow graph of the IDCT is depicted
in figure 5. The boxes indicate a partitioning into so-called butterfly compo-
nents. These components each consist of one addition and one subtraction with
crossed inputs. In some cases, a butterfly component has constant coefficient
multiplications for each input of the addition and subtraction. Other possi-
bilities for partitioning are to include the entire IDCT into one partition or to
include into each partition one operation only.

Based on a Petri net library containing all required elements, the depicted
data-flow graph could easily be transformed into a high-level Petri net and -
using the approach presented in this paper - into SystemC-Code. Hence, we
were able to compare the generated code with an already existing hand-written
implementation. A comparison concerning simulation time has shown no sig-
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For coupling of subnets, our code generation approach assumes partitions
that communicate with each other via shared places. For building partitions,
we hence assume an algorithm that – like our partitioning algorithm mentioned
in Section 4 – cuts a given net at places, leaving a copy of a cut place in both
partitions built through cutting. The connections between partitions are real-
ized by means of channels. In the SystemC-Code for the partitioned net, partly
provided in Figure 4, the channels needed for communication between parti-
tions are created in lines 15 to 17. For each connection, we create a channel,
in our example net an instance of classplace_int_fusion. The channel class
implements the interfaces place_int_in_if and place_int_out_if, which
are depicted in the lower right part of Figure 4. Naturally, these classes have
the same methods as the class for inner places of the same type int. Since
place_int_fusion implements these interfaces, an instance of the class is
qualified to connect for instance the outportpo1 of partition P02 (cf. Figure 2
and 3, line 8) with the inport pi3 of another – not further specified – partition
P01. The – straightforward – implementation of the channel class is omitted.
In general, channels are not synthesizable. Due to the simple communica-
tion structure between partitions, we suppose however, that the corresponding
channels can be refined to synthesizable code using signals. In order to en-
able evaluation of the specified system by simulation, a testbench consisting
of a stimulus (line 9) and a monitor (line 10) are created. A clock is needed
for the testbench as well as for timed subnets as partition P01. For the real-
ization of this timed component we refer to [12]. For the testbench, standard
SystemC-classes are used.

6. APPLICATION EXAMPLE
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nificant differences between the implementations. An advantage of the trans-
formation into Petri nets is for instance that tests with different partitionings
of the model can easily be achieved. The partitioning can be influenced by the
user or by design parameters in the sense of design space exploration. Further-
more, we are able to annotate timing information from previously synthesized
components into the Petri net model. Starting with single partitions, we then
are able to gradually analyse the timing behaviour of the specified system. This
leads to a hierarchical design approach based on our SystemC code generation
from Petri nets.

Figure 5. Data-flow graph of the inverse discrete cosine transformation (IDCT)

7. CONCLUSION

An approach for the realization of high-level Petri net-models in SystemC
was introduced. The approach aims at providing a code generation component
for realizing Petri net-models of embedded real-time systems in hardware. We
presented SystemC-implementations for several aspects of high-level Petri net
execution. Furthermore, we described how the SystemC-code generation is in-
tegrated into our existing methodology for the design of distributed embedded
real-time systems. As an application example, we implemented the IDCT that
is part of MPEG-2. We specified this example using Petri nets as well as using
SystemC directly. The comparison between the manually and the generated
SystemC code for simulation have shown no significant differences. With the
presented approach, we are able to perform a design space exploration based
on a partitioning of the system.
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Recent advances in manufacturing programmable logic devices, such
as the FPGA, have made it possible to obtain reconfigurable circuits
with upwards of one hundred million gates. Although we have such
enormously powerful hardware at our fingertips, we are still somewhat
lacking in techniques to properly exploit this technology to its full po-
tential. In previous work, we have proposed a development methodol-
ogy based on transformational programming and process refinement for
producing provably correct solutions. Starting with a clear, intuitively
correct specification of the problem, in a functional language such as
Haskell, we apply a set of formal transformation laws to refine it into
a behavioural definition in Handel-C, exposing the implicit parallelism
along the way. This definition can then be compiled onto an FPGA. We
apply this technique to a non-trivial, real world problem - a JPEG de-
compression algorithm, and achieve a truly scalable, parallel hardware
implementation.

Greatly increased efficiency in solutions to real world problems can be
achieved through parallelism and implementation in hardware. Unfor-
tunately this comes at a cost; principally in terms of complexity. This
complexity, coupled with the increased consequences of making mistakes,
can make this a very costly process indeed.

A good example of a class of real world problems to illustrate these
issues is that of image compression, particularly the JPEG standard
[10, 11]. JPEG decoders and encoders are widely used, but not nearly
as widely understood. Developers tend, quite naturally, to rely on tried

Abstract:

1. INTRODUCTION



and tested library code under normal circumstances. However, in some
situations performance requirements force developers to leave behind the
comfort of such libraries and look to new implementations.

At this point it is very important to have clear, unambiguous, and
if possible, provably correct specifications to work from. We propose
that functional programming languages [4], such as Haskell [5], facilitate
exactly this. Indeed, we are not the first to consider the functional style
a good foundation for a specification of JPEG decompression [7]. Not
only do functional languages provide a good framework for specifica-
tion, but also they give us scope for transformation and refinement not
present in imperative languages. Such capabilities allow an efficient and
correct implementation to be derived formally, and in part mechanically
from the specification, by exploiting known efficient implementations for
commonly used patterns of computation. This approach is often broadly
referred to as patterns or skeletons [1, 2, 6].

Recent advances in FPGA chip manufacturing, coupled with the emer-
gence of higher level compilation tools, such as Celloxia’s Handel-C com-
piler [8], have together revolutionised hardware design from the exceed-
ingly costly process it once was, to now being within the grasp of even
the smallest company or academic institution. The Handel-C language
has many desirable features including CSP [9] style communication, and
an explicit means for denoting parallelism. However, it is an imperative
language (being based on C), and as such, we argue, does not necessarily
form a good basis for specifications, nor a good starting point for deriv-
ing a parallel algorithm. In this work, we use Handel-C as a target for
implementation, deriving code in this language from specifications given
in a functional style.

The rest of this work proceeds as follows. In Section 2, we give a brief
overview of the notation used, and introduce the concept of refinement to
explain how behavioural implementations can be derived from functional
specifications. In Section 3 we discuss some issues relevant to the JPEG
decompression process. In Section 4 we provide a functional specficiation
of a JPEG decompressor. Then, in Section 5, we use this specification
to derive a parallel implementation in Handel-C. This paper concludes
in Section 6.
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2. NOTATION AND REFINEMENT
CONCEPTS

Functional Notation. As already noted, functional languages such
as Haskell provide an extremely good environment for clear specification
of algorithms. Details of functional notation in general can be found in



[4], with more specific information relating to Haskell in [5]. Also, certain
aspects and properties of the particular notation we use in this work are
explored in [1–3].

Handel-C. Handel-C [8] is a C style language, and fundamentally
imperative. Execution progresses by assignment. Communication is
effectively a special form of assignment. As previously noted, commu-
nication in Handel-C follows the style of CSP. The same operators are
used for sending and receiving messages on channels (! and ?), and
communication is synchronous - there must be a process willling to send
and a process willing to receive on a given channel at the same time for
the communication to take place. Additionally, note that channels in
Handel-C are typed - this is so the compiler knows how wide to make
them. Parallelism in Handel-C can be declared with the par keyword.
Handel-C has an equivalent of CSP’s choice operator in the form of the
prialt statement.

Refinement. Having stated our specification environment (Haskell)
and our target environment (Handel-C) it is now necessary to consider
how we are to refine definitions in one to the other. These techniques
are explained in more detail elsewhere [1–3], we shall provide only a very
brief overview here.

Data Refinement. Given that our implementation in Handel-C will
rely on message passing, we need to consider how the types derived from
our specification will be communicated. Most interesting to us are list
types, and we will examine the alternative refinements for these here.
Broadly we have two intuitive strategies for communication of a linear
data structure (i.e. a list) - either sequentially or in parallel. We term
these techniques streams and vectors respectively.

Streams facilitate a functional, or pipeline parallel scheme. To com-
municate a list as a stream, we send each value in order along a channel,
and then signal the end of transmission (EOT). Although there are a
number of possible options for how to signal the end of transmission,
we have found the use of a second single bit channel the most widely
applicable.

Vectors implement a data parallel scheme. To communicate a list as a
vector each item is communicated independently, in parallel, on its own
channel. There may be several variations to the vector, depending on
the type of the items in the list.

These two structures may then be combined together to form refine-
ments for lists of lists. One example of this is the vector of streams,
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which is a parallel composition of streams, each communicating a sub-
list independently as a stream. Another example is the stream of vectors,
in which at each stage an entire sublist is communicated in a single step,
in parallel

Process Refinement. Higher-order functions in our specifications
can be refined into Handel-C implementations from a library of pro-
cesses. We may have more than one implementation for any given higher
order function depending on the setting in which we choose to use it (i.e.
with streams or vectors). More detail on higher order process refinement
can be found in [3].

As noted, the composition operator forms an important part of func-
tional definitions. In terms of processes and parallelism, functional com-
position maps on to pipelining. Given a process P that outputs on a
particular channel, and a process Q that takes input of the same type on
a particular channel, we can pipe the result from one to the other simply
by parameterising the name of their respective output and input chan-
nels and composing them together in parallel. This simple but powerful
scheme can apply to both the stream and vector setting. We can pass
in streams and vectors as parameters to processes in exactly the same
way as we would simple channels.
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3. JPEG DECODING

We shall focus our efforts on a decoder for JPEG’s baseline DCT
method of compression. This is almost certainly the most commonly
used method within the JPEG set of standards.

We shall require the use of restart markers in our compressed data.
A JPEG decoder must maintain a set of predictors. The predictors
will be modified each time a unit of data is decoded, and their values
will affect the decoding of each unit. As such, for every single unit in
the compressed file, we require that the previous unit has been at least
partially decoded before it in turn can be decoded. This makes for a
largely sequential decoding process. Thankfully, the JPEG standard
recognises applications in which JPEG images might be communicated
over unreliable media, and as such, data may have been lost part way
through transmission. To this end, the standard includes the definition
of restart markers. Whenever one of these markers is encountered, the
predictors can be safely reset. This has the effect of defining a number
of sections within the compressed data that can be decoded completely
independently of each other.

It is important to clearly consider the hierarchy within a compressed
JPEG file, when considering writing the specification for a decoder. To
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begin with we have a file. This can be split into two areas, the head-
ers and the compressed scan data. The headers contain information
about the compressed data (size, format and so on) as well as tables for
dequantization and Huffman decoding.

Where restart markers are used, the scan can be decomposed into a
number of independent sections which we shall call intervals. An interval
can be further decomposed into one or more minimum coding units
(MCUs). The number of MCUs per interval is defined in the headers.
The MCU is a collection of units. Each unit, when fully decompressed,
will form an 8 × 8 matrix of samples for a given component (usually one of
Y, or for colour images). Generally, the chromincance components
will be downsampled to achieve better compression. A typical scheme
has an MCU representing a 16 × 16 block of pixels in the fully decoded
output image. Within this, there will have been a unique Y (luminance)
value for every pixel. However, each chrominance value will be shared
by a 2 × 2 pixel block.  As such, an MCU in this scheme will contain
four units of Y samples, followed by one of samples, and one of
samples.

4. FUNCTIONAL SPECIFICATION

We may find the following type definitions useful. A unit is an 8 × 8
matrix of coefficients (before transformation) or samples (after trans-
formation). An MCU is a list of units. These types may therefore be
defined as follows:

Now, to consider the functions that will comprise our decoder. At the
highest level we require a function that will take in a list of compressed
bytes representing the entire file, and will return an uncompressed image.

An Image here can be considered as a simple two dimensional array of
pixel values. This definition relies on two auxilary defintions. The first
decodes the headers in the data, and returns both a HeaderInfo object
and a list of the remaining data in the file, following the headers.
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The exact definition of decodeHeaders and the HeaderInfo type will
not be shown in full here due to lack of space. Broadly, the header
information should include all the numeric parameters and structures
required for decoding.  The second function, decodeScan, is where the
bulk of the decoding effort takes place.

This function is a composition of three stages. In the first, we use the
function readIntervals to split the compressed scan data into a list
of intervals which can be decoded independently of each other. Next,
we map the function decodeInterval to each interval in the list of de-
coded sections within the image. Finally we apply composeImage to
compose these sections together, a function which we shall keep deliber-
ately vague.

The function readIntervals is simple, but crucial in terms of scope
for parallelism, as we shall see later. It reads through the input list
of bytes, and splits it into sublists based on the occurrence of restart
markers. A restart marker will be a single byte with value ff in hex,
followed by a value from d0 up to d7. The encoder will ‘pad’ any byte
values of ff naturally occurring in the compressed data with a single zero
byte to ensure they are never confused with a restart marker. This means
that readIntervals can safely split up the compressed data without any
greater level of detail than simply examining individual byte values. As
such, this task should be very fast.

The next function, decodeInterval, will take a list of compressed
bytes that form a single interval, and return a list of totally decompressed
MCUs that, when reconstructed, will form the corresponding section of
the output image. The definition is as follows:

Here again we have a composition of three stages. Firstly, given that
Huffman decoding works at the bit rather than byte level (due to the
use of variable length codes), we employ bytesToBits to transform our
input list of bytes into a list of bits. Next we apply intervalToMCUs
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which should supply us with a list of MCUs, each, at this stage, con-
taining untransformed coefficients. Finally we map transformMCU, such
that each MCU is transformed from a list of matrices of coefficients
to a list of matrices of samples (Y, and values). The type of
intervalToMCUs is as follows:

We shall have to brush somewhat briefly over the goings on inside this
function due to lack of space. Suffice to say we shall have a repeated
application of a function which reads in an MCU, and maintains the
state of the predictors between calls. Reading an MCU is in turn a
repeated application of a function which reads in units.

Let us return now to the function transformMCU. This takes an MCU,
containing units of untransformed coefficients, and returns an MCU
containing units of fully decoded sample data. It maps the function
transformUnit to each unit in the MCU.

The transformUnit function performs the familiar stages of trans-
forming an 8 × 8 unit of coefficients into an 8 × 8 unit of output sam-
ple values. Firstly it performs zig-zag reordering, then dequantization
(making use of the appropriate quantization table in the HeaderInfo
structure), and finally applies the inverse discrete cosine transform.

5. IMPLEMENTATION

The majority of interesting functionality in the specification is con-
cealed within the function decodelnterval, upon which we shall con-
centrate in this section. Given that an MCU is a list of units, and the
number of units per MCU can be derived from the header information,
it should be straightforward to flatten a list of MCUs into units and
vice verse. This can be achieved with the functions unitsToMCUs and
MCUsToUnits. Thus, with a little simple program transformation, we
can arrive at the following definition:
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We may find the following ‘shortcut’ useful:

This compositional form is now well suited to process refinement. An
overview of the definition of DECODEINTERVAL could therefore proceed as
follows. Communication between intermediate stages of the process (and
indeed the final output of the process) will be in the form of a stream of
vectors. At each stage a whole unit (sixty four values) is communicated
in parallel. We have:

Now we have a definition for DECODEINTERVAL, we can construct our
overall refinement of decodeScan. Let us consider the three stages of
decodeScan in turn. Firstly we have readIntervals. A process refine-
ment of this function, READINTERVALS, should take a stream of bytes
as input - it needs to process these sequentially. The output, a list of
lists of bytes, can be produced as a vector - each interval can be pro-
cessed independently. At the next stage, we map decodeInterval to
each interval produced by readIntervals. As the input to this stage
will be a vector, we shall choose VMAP to refine the map in the original
specification.

We shall leave the output type of the compose image stage (which
forms the output of the decoder as a whole) deliberately vague - we
may want it in any one of several forms depending on the process that
receives the data. Regardless of the exact structure of the output, the
overall outline for the DECODESCAN process can proceed as in Figure 1.
The implementation is depicted in Figure 2.
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Figure 1. The DECODESCAN process.

Figure 2. The JPEG decoder process network

6. CONCLUSION
We have presented a framework in which non-trivial algorithms can

be specified in a clear, well structured environment, and then trans-
formed formally, and in part mechanically, into an efficient behavioural
implementation.

We have illustrated this with the development of a JPEG decoding al-
gorithm, starting from a high level and intuitive specification in Haskell,
and using this to derive a parallel Handel-C program that in turn can
be compiled into a circuit design for an FPGA.

Given that the intervals (defined by the restart markers) in the com-
pressed data are decoded independently of each other in parallel, our
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implementation is scalable, and as we are required to deal with larger
problem sizes (effectively higher resolution images) we simply need to
add more processing elements. Effectively this means we should use an
FPGA with more gates, or combine more than one FPGA together, and
the resulting execution time should not be greatly increased. This as-
sumes, of course, that higher resolution images will contain more restart
markers.

It is important to point out that restart markers are optional in the
official JPEG specification, and the benefits of the implementation pre-
sented here on an image encoded without restart markers would be some-
what limited. It is worth noting however, that several newer compres-
sion standards derived from JPEG (including most notably MPEG-2,
the worldwide standard for digital television), have adopted a version of
restart markers which are mandatory.
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Reconfigurable systems have the potential to combine the performance of ASICs
with the flexibility of software. The architecture presented in this paper offers
a new concept for reconfiguration by operating self-timed and self-controlling.
Data is routed together with its control information in a so-called packet through
the operator network to make local decisions concerning the behavior of the
network. Therefore, we can realize different paths without a central control unit.
In this paper, we describe the architecture from the aspect of reconfiguration. An
example shows the architecture in practical operation.

High-Level Synthesis, Reconfigurable Architectures, Embedded Systems.

1. INTRODUCTION
Nowadays processors work with clocks running in gigahertz and are pro-

grammable to execute all imaginable software programs. The flexibility is
bought dearly by high power consumption and goes along with barely influ-
enceable possibilities to use the available parallelism of algorithms. In con-
trast, ASICs provide high parallelism at low power consumption, yet only for
fixed algorithms. Both concepts only partly fit in the requirements of data
processing today. E. g. mobile devices demand for low power consumption
and real-time data processing. Furthermore, all existing and in future arising
standards should be supported. Such devices need the combination of the per-
formance of ASICs with the flexibility of General Purpose Processors (GPP),
more precisely their software.

Reconfigurable systems and their concepts address this problem area [2].
In such systems, existing modules are reused for other tasks and dynamically
adjusted for current requirements. This procedure is supported by FPGAs. FP-
GAs are no longer only programmable at the beginning of appropriate applica-

*This work was partly funded by the Deutsche Forschungsgemeinschaft (SPP 1148)
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tions; they can be partial reconfigured during operation. At the same time alter-
native architectures, like the PACT XPP (eXtreme Processing Platform) [7] or
Quicksilver’s ACM (Adaptive Computing Machine) [9] come on the market.

Thus, technical opportunities for dynamic reconfiguration are given, being
constantly improved, and optimized. Besides the basic technical aspects, we
need additional methods to realize simplified and flexible automated and con-
crete design cycles. By considering all the given arguments, it is not desirable
to use centralized control processes, which represent a complex energy and
area consuming control unit.

The MACT (Mauro, Achim, Christophe and Tom) architecture [11–13] de-
veloped at the University of Paderborn describes a concept to flexibly decen-
tralize considerable tasks of reconfiguration by self-controlling. Necessary in-
formation for reconfiguration exists locally due to the combination of control
information and data word. It is possible to adapt the processing of each data
packet according to individual requirements. Required operators are requested
and released. The clear identification of data allows direct and serial process-
ing of different data.

In this paper, we firstly describe related work including the development
of the MACT architecture and all necessary operators. Secondly, we give an
overview of the requirement analysis for the data packet of the MACT architec-
ture w. r. t. reconfiguration. Finally we present an example with an application
that shows how MACT realizes the adaptation to exogenous effects.

2. RELATED WORK

The PACT XPP, which addresses coarse grain reconfiguration, resembles
the MACT architecture. A typical realization of the PACT XPP is similar to an
array with processing nodes. The nodes are always alive, yet the functionality
is dynamically changeable. The configuration respectively the reconfiguration
is implemented by an appropriated flow. Therefore, it is essential to transform
the instruction flow of a GPP into a configuration flow. This flow is mapped
into a control flow graph representing the alternating configuration of the pro-
cessing nodes over time. The control flow graph is executed sequentially.

The ACM approach by Quicksilver is based on run-time reconfigurable
PLDs (Programmable Logic Device). Technical details concerning the im-
plementation are hardly available. The main goal is to include algorithmic
concepts in the architecture. Several ACMs are switched together according to
requirements of the algorithms.

The MACT architecture is close to the concept of dataflow computation
[14], as it is based on dataflow graphs. Further, concepts of dataflow compu-
tation often base on the inter-digitations of control- and dataflow. There, the
processed data is combined with tokens to symbolize the status of affiliation.
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The operators are triggered by the tokens evaluated from compare elements
leading to demand-oriented execution similar to the MACT architecture. Syn-
chronization at not unary operators does not have to be planned by a compiler
in advanced, rather it is implicitly contained in the architecture.

A self reconfigurable platform based on FPGAs is described in [1]. In this
example, the reconfiguration is executed by a microprocessor. The overhead
of reconfiguration w. r. t. to power consumption is characterized in [10]. In this
approach, the time of reconfiguration is reduced by pre-fetching. This leads to
a more compact schedule.

3. MACT ARCHITECTURE

We describe the MACT architecture from two points of view. On one hand,
the architecture is similar to the concept of the Internet on hardware level. On
the other hand, it can be interpreted as a systematic approach for bit-serial
calculation.

Within the Internet, data is transported without a central control element.
All necessary information is transmitted in packets, with decisions done lo-
cally by routers or switches. Arriving packets activate nodes. These nodes
decide how to proceed according to temporal circumstances. MACT uses a
similar concept to transmit on dataflow level. This concept is especially suit-
able for processing of streaming-data. The architecture consists of an operator
network derived from a dataflow graph. Data-words are assembled with suit-
able meta information and sent into the operator network. Each data-word acti-
vates self-controlled the next operator and ensures a minimal distance between
the following packets. Valid data-words are alternated with minimal idle times.
Thus, the processing of data within the MACT architecture is free of deadlocks
and similar to operating in waves. Meta information of the packets is evaluated
at specific points in the operator network to select the path.

Bit-serial processing is characterized by small operators, less area usage,
low number of I/O pins, but higher latency in opposite to parallel calculation
[3]. MACT is a systematic approach to process data bit-serial. Data of the ad-
dressed application classes, like control algorithms or signal processing, often
is bit-serial. Therefore, conversion is not necessary. Further, we use advanced
operators (e. g. [4]) and pipelining to considerably reduce the latency.

Data packets are transmitted synchronously into the operator network. The
network can be interpreted as a clocked shift register. Due to the fixed length
of data packets, scanners allow a precise evaluation and modification of the
information at any time. Typical operators are addition, multiplication, etc.
that are cascaded and assembled directly. Therefore, there exists no buffer
storage. The local self-control cares for necessary synchronization of not unary
operators, provoked by different path length.
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Figure 2.  Bypass

3.1 Realization
The functionality of the architecture is exemplary described by means of a

data packet (see Fig. 1). Valid data packets consist of a leading flag (‘1’) in
front of the data. The flag is needed to identify arriving packets at operators.
Furthermore, we use the flag for local control. Additional information for rout-
ing in the operator network is stored between the leading bit and the data word.
The bit length of the header information (flag and routing information) and the
data word length are fixed at implementation. As mentioned before, such data
packets are transported bit-serial on one wire.

When packets arrive at arithmetic operations, header information and data
word have to be split, as the arithmetic operation should not process the head
information. This is realized by so-called Bypass signals. The Bypass is im-
plemented parallel to the operator (see Fig. 2). Initially the Bypass is active.
When the flag of the header information reaches a specific point in the net-
work the Bypass is deactivated and the following part of the data packet (data
word) is directed to the operator. The Bypass is set to the active state when
the data packet is outside the operator, again signaled by the leading flag of the
header information. Details concerning the implementation of the Bypass can
be found in [5].

It is necessary to synchronize the dataflow within the operator network at
non-unary operators. We do this by Stall signals that are directed in opposite
direction of the dataflow. These Stall signals can stop the dataflow. So-called
Synchronizers in front of each non-unary operator implement this functional-
ity. Yet, it is only necessary to delay a minimal amount of operators and not

Figure 1. Data packet
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Figure 3. Synchronizer: A packet activates the Block_Stallsignal at that is transmitted to
Synchronizier 2. This one generates a Free_Previous _Sectionsignal and transmitted it to Syn-
chronizier 1. Consequently section is released.

the complete network. Only the block of operators actually processing the
data packet is delayed. We implement the Block_Stall therefore. The signal is
gripped from the shift register and directed to the corresponding Synchronizers.

Synchronizers having received a Block_Stall accept new data packets, but
will not dispatch them. If necessary a Stall is produced. The reactivation of
the block that is blocked by a Block_Stall is done by a Free_Previous_Section
signal generated from a Block_Stall of the following operator block, see Fig. 3.

The interaction of the signals leads to local consistency of data and forces
minimal distances to consecutive data packets. Therefore, the data processing
is conflict free and operates in waves. The entire control is based only on local
signals and not on long control wires from a central controller. This concept
of locally based control elements realizes a deadlock free pipeline processing.
The MACT architecture is the second approach implementing a deadlock free
pipeline architecture (the interlocking problem) after that one from [6].

3.2 Router

We integrated routing nodes called Routers in order to be able to process
similar to concepts of the Internet. The Routers evaluate the routing informa-
tion in data packets and decide which paths are selected. We use such path
decisions to assemble or to reload suitable operator networks. Further require-
ments for routers are compactness by high flexibility and minimal latency (de-
cision delay). A first variant of router implementations are multiplexers. In
this case, the routing information of data packets is used to set the parameters
of operators. This leads to operators with integrated routing structures. If data
packets achieve e. g. a constant multiplication with different hard implemented
constants, it is possible to select the constant from the routing information
grabbed by Scanners. This implementation style is useful for low numbers of
constants in opposite to include constants within the data packets.
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Figure 4. Router example

We achieve more freedom concerning the path selection by implementing
the routers as independent elements. Fig. 4 shows a router with two paths.
A Scanner detects after the arrival of the flag (leading ‘1’, see grey shaded
register) the head information of the data packet. Thus, the logic of the routers
interprets the head information. Depending on the result, the corresponding
paths are triggered.

The router concept tends to result in two levels of reconfiguration. The first
level selects between available paths of the operator network with the existing
head information. A higher-level reconfiguration is based on this path selection
mechanism. At this level e. g. the realization on an FPGA leads to reloading
specific parts of a dataflow graph. At this point, the router has to be equipped
with an intelligent replacement strategy similar to caching methods to mini-
mize the reconfiguration of the FPGA. Both concepts have enough potential
to operate locally and individually for each data packet. In this case, a cen-
tral control element to generate signals and to track the data is not necessary.
Therefore, it is practicable to process sequentially different applications with
different requirements in the same operator network.

We integrate Scanners on the shift register before routers. These Scanners
track the head information independently from the following elements (opera-
tors, synchronizers, or delay elements). The leading flag of each data packet is
used to control the grabbing time. Routers represent an additional element in
the shift register. This further delay is used for the decision of the router logic.
Thus, we achieve a short latency of one clock cycle and a small area usage.

4. RECONFIGURATION

In the previous section we described the routers and showed how a simple
reconfiguration of the MACT architecture is achieved. In this section, we dis-
cuss the procedure in detail and examine the problem when using a surrounding
system. Thereby, the MACT architecture offers a variety of possibilities for the
implementation. Furthermore, we examine the possibilities towards practica-
bility.

The goal to be reached for reconfigurable architectures is the realization of
intelligent systems. Such systems have the capability to independently adjust
the behavior and structure due to exogenous (environmental influences, user
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Figure 5. Network with two routers and four paths

interaction) and endogenous effects (ageing, component failure, altered target
parameters, etc.). Systems have to be adapted permanently and efficiently to
changing requirements without additional control overhead. Comparing this
adaptation with a GPP, it is a context switch, which should be as short as possi-
ble, because most reconfigurable systems are used under real-time constraints.
Reconfigurable architectures allow a context switch on hardware respectively
wiring level. The dataflow is manipulated from outside by a control system.
Therefore, an external and complex control element is necessary to track the
data and to provide appropriate networks and follow-on operations.

MACT offers the possibility to reduce the overhead of a context switch by
local presence of the control and routing information. Not a control element,
but the data itself controls the way to the operators. Therefore, data is assem-
bled with explicit identification to distinguish between each other. Thus, it is
possible to have data from different applications in the same operator network.
This offers the freedom to use paths and operators without a central control
element. Furthermore, we realize a dynamical extension of algorithms simply
according to given facts. This is achieved by assembling data and suitable head
information before entering the network. The peripheral preprocessed logic is
only responsible for the attachment and generation of the data packet. Further
control tasks are decentralized and operate independently in the local control
elements (synchronizers, routers).

5. IMPLEMENTATION OF THE SYSTEM

The implementation of the system should make profitable use of the charac-
teristics of the MACT architecture. Thus, we distinguish between two tasks.

Firstly, we assume a hard implemented operator network with routers at suit-
able locations. These routers offer the possibility of multiple usages of areas
of the graph (see Fig. 5). This kind of reconfiguration may be used for dif-
ferent coding standards like TDMA and GSM or refinements of compression
algorithms. We code the path into the header of the data package. Concerning
the example, we need 2 bits for the four possibilities. In general, the amount
of path possibilities can be realized with digits referring to The
logarithmic dependency realizes many different paths to be coded by few bits.

Further, if data from different applications is intended to use the same path,
the header must be extended with additional identification. The same formula
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Figure 6. Reconfiguration: In situation (a) a packet reaches a router on an existing path stored
in a slice. The router sends a Request-signal so that the slice is configured with a new operator
network (b). Then the packet is routed to the network (c).

E. g. if there are less than but more tan paths, one of those bits
may be used for the additional identification of the different packets.

If path decisions are located early in the data flow network, we realize a
further way of optimization. Parts of the header can be removed after the path
decision is done, leading to shorter data packets for the ongoing processing.

We modify the above explained system in order to be able to adapt to new
requirements. These new requirements are new versions of processing standard
or complete new algorithms for data processing. In most cases, we will have
to modify and add paths or exchange operator nodes. We can think of 3G and
4G mobile communication problems.

In order to be able to reconfigure hardware, there has to be the technical con-
dition. We assume an FPGA, which contains the whole MACT architecture.
We have multiple possibilities to reconfigure the network. Firstly, the FPGA
may be programmed completely. All calculations have to be stopped for this
task. The duration may take up to several milliseconds and the package gener-
ation part must be reconfigured. Now, we try to avoid these disadvantages.

FPGAs are dynamically partial programmable. It is possible to exchange
parts of the circuit during operation. Still, this takes some time. We try to
reduce the requirements for the reconfiguration, in order to speed up the recon-
figuration phase. Therefore, we adapt the MACT architecture to these require-
ments. Basically, possible branches i. e. new paths can be found directly after
routers. Thus, we extend routers with the possbility to request new paths. The
header of the data packet is extended by one additional bit, which signals the
need to establish a new path or not.

In order to be able to omit a central controller, the router itself will gen-
erate a data package that requests the new path. This data package consists

leads to an amount of possibilities for identification with bits. Here,
we can combine both the path and identification information, as the first is
needed inside the network, the latter after exiting the network. Each individual
case demands for special care taken concerning possible double usage of bits.
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Figure 7. JPEG coding

of a location address (a number of slices of the FPGA) for the new operators.
Thus, the reconfiguration data can be retrieved. The data packet generation
unit buffered this reconfiguration information. To sum up, the process of re-
configuration is not controlled by a central controller, but organized locally and
demand-oriented. Refer to Fig. 6 for a graphical example.

Using this order for the reconfiguration, we are able to reduce the control
flow to a minimum. There is no need for a central controller, which would
have to track the state of every data within the network. Again, different data
packets of different applications can be calculated within one implementation
of the MACT architecture. In order to reduce the busy waiting for new opera-
tors during the reconfiguration, we have planned to re-locate the scanners for
the routers. Placing them earlier will mean additional time until the data will
actually need the new path, thus hiding reconfiguration.

6. EXAMPLE

As an example we present a part of the JPEG algorithm [8]. JPEG com-
presses images according to individual quality requirements. Fig. 7 shows a
relevant part of the JPEG algorithm. Following a preprocessing, it is possible
to either choose a lossy DCT (Discrete Cosine Transformation) or a lossless
coding, before there is the entropy coding or compressing. We find different
paths within the JPEG algorithm, initialized by a router. According to the meta
information in the header, each data packet gets assigned the correct paths by
the routers. Thus, data of different images with different requirements can be
found in the same network.

The example JPEG consists of multiple possibilities to realize reconfigura-
tion with the MACT architecture. This is especially true for an easy realization
of dynamically adoptions of the data flow graph to new requirements.
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7. CONCLUSION

In this paper we have shown how a new bit-serial self-controlled architecture
can be used to easily realize the reconfiguration of signal processing systems.
This architecture, the MACT architecture, operates with data packets which
carry all relevant information and thus offer the possibility of local controlling.
Especially path decisions changing the data flow of the signal processing can
be realized by referring to the meta information. In doing so, the functionality
of the circuit is adapted dynamically, or even reconfigured completely. Further
work will consider the effectiveness of the described system.
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An approach to holistic system modelling is presented, based on the
Specification PEARL hardware/software co-design methodology, having its
origin in the standard Multiprocessor PEARL specification language.
Specification PEARL specifications and models represent prototypes of systems
and programs, based on the PEARL program model. The system models built
are checked for timely execution by co-simulation. The resulting information
shall be used for fine-tuning the designs. Through the analysis of simulation
traces a profiling process takes place. An integral CASE tool facilitating this
holistic approach has also been devised.

After the profiling process has produced a feasible system model, the program
prototypes may be enhanced to their full functionality. As long as their timing
properties are not changed by this, utilising this methodology should minimise
the possibility of implementing an infeasible system.

Real-time systems, co-design, co-simulation, verification, PEARL.

1. INTRODUCTION

With the ever increasing complexity of embedded control systems, the
traditional development process of manual coding followed by extensive and
lengthy testing is becoming inadequate. The main design concern, which
first moved from low to high level program languages, recently moved to a
higher abstraction level, which relies on automatic or semi-automatic code
generators to produce code in traditional programming languages. Examples
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of these include the Unified Modelling Language (UML) [17], Model-
Driven Architecture (MDA) [16] and Model-Integrated Computing (MIC)
[14]. For real-time systems, timeliness and safety issues are just as important
as functional correctness. Hence, to avoid exhaustive testing, they should be
designed holistically, taking all their temporal and functional properties into
consideration as early as possible, with their subsequent verification in mind.

To enable verification, often formal languages and/or mathematical
notations are used, for which subsequently a proof can be worked out (e.g.,
formalisms supported by differential equations, which describe a system’s
operation in time and space [4], formal languages and timed automata [1],
combinations of conventional CASE methods and state charts [15], graphical
techniques with the expressive power of their formal language counterparts
[3]). While enabling formal verification, most of these methods lack the
versatility of basic constructs and user friendliness. Therefore, graphical
formalisms with a greater set of basic constructs have been defined (e.g.,
CSR/CCSR [7], TTM/RTTL [9]), while keeping enough “strictness” to
enable verification. Dedicated state transition automata like CRSM [9] are
often used as basic internal computation model (e.g., POLIS [2]).

A wide variety of different verification methods has been combined with
VHDL based design tools, ranging from formal methods to simulation with
fault insertion and combinations thereof (e.g., [6]).

For pragmatic reasons, simulation is often used to check the correctness
of a system designed or parts thereof. Hence, verifying systems with time
limitations led to the introduction of real-time scheduling algorithms into
their co-design and simulation (e.g., [8]). This approach is also used to check
our designs for timeliness. The design and profiling processes are described
in the forthcoming sections followed by a concluding summary.

2. SPECIFICATION PEARL METHODOLOGY

Our co-design method [5] is based on the notation of the standardised
Multiprocessor PEARL [12] specification language. It enables the
construction of a conceptual system model, whereby its hardware and
software architectures may be designed in parallel. The system model is built
as a result of running the associated CAD tool. For each hardware and
software component its timing information is specified for the later
timeliness checking by co-simulation.

The main motives for using the mentioned method with the mentioned
profile are:

1. the concepts of the modelling (specification) language and of the
PEARL real-time programming language are syntactically and
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2.

3.
4.

5.

conceptually closely related,
the ability to use software specifications as program prototypes as
well as to extend them to fully functional programs in a
straightforward manner,
the ability for early reasoning on system integration,
the ability to apply timing parameters to hardware and software
constructs, and
the ability to simulate a modelled solution and to check its feasibility
before implementation.

3. VERIFICATION METHOD

Our verification method is based on co-simulation with earliest-deadline-
first (EDF) scheduling and time boundaries [5]. It is primarily meant to
profile the timing properties of designs in order to make them feasible. A
design is transformed into an internal representation for simulation, whose
primary result is a successful execution or a failure, whereas the secondary
result is an execution trace, from which additional profiling information is
extracted. This is used to discover bottlenecks and unreachable states, as
well as to fine-tune the resource parameters and to balance the load on the
designed prototypes.

For successful verification, it is assumed that the designed system model
is consistent. Intermediate checks on the following points may be performed
during the design of the system architecture, and a final check has to be
performed prior to verification to ensure this:

1.
2.
3.

3.1

completeness check (all components are present and fully described),
range and compatibility check (parameter compatibility), and
software to hardware mapping check (complete coverage and
consideration of resource limitations).

In the forthcoming sections the structure of system models is described,
followed by the explanation of the co-simulation (verification) method.

System Model

The hardware model is represented by STATIONs, being the processing
nodes of a system. Their properties are determined by their components
(e.g., processors, memories, interfaces). There are four different types of
processing nodes in a system architecture: BASIC (program and operating
system), TASK (program), KERNEL (operating system) and COMPOSITE
(multi-station node). A processing node may have one or more
communication lines attached to it, each one connecting it to another node.
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The components of the software model are COLLECTIONs of tasks,
which are mapped to the stations of the hardware model. They are composed
of sub-layers of nodes representing program tasks. The tasks themselves are
represented by Timed State Transition Diagrams (TSTD), cp. [8]. For inter-
task co-operation, collections communicate via PORTs, which represent
references to “physical” communication lines between stations of the
hardware model.

Figure 1: Structure of simulation units

While being designed on separate layers, the mapping of collections to
stations is made explicit for co-simulation. The structure of the simulation
units is shown in Fig. 1.

The structure of a task is represented by the start/end and action states of
the TSTDs (see Fig. 3):

start states (representing task trigger conditions),
working states (having continuation pre-conditions, timeout
condition, on-timeout action, and actions to be performed within the
current state),
super-states (representing a working state’s decomposition into a sub-
diagram), and
final states (representing finalisation actions).

Since the state transition conditions relate to the (operating) system’s
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internal states, they are formed around system calls, changing these states.
Naturally, they have to outline the task’s structure together with its control
structures and conditions.

For co-simulation, the execution times of individual states need to be
estimated. A task’s execution time is calculated based on the longest path in
the corresponding TSTD.

The hardware and software models are glued together by a Configuration
Manager (CM) including a real-time operating system (RTOS), which
supports the tasking model and system services of the PEARL language [10,
11] chosen as most suitable for our tasks.

Functionally, the CM module has the same role in co-simulation (Fig. 3)
as in execution on the target platform. The main difference lies in the global
real-time clock, which is maintained by the simulation environment, and the
context switches, which are performed virtually in the case of simulation
(the context refers to task states - not processor registers). Pre-emption
points remain the same in both cases - the atomic execution of task states is
maintained in both cases.

The CM also represents the hardware abstraction layer for the executing
application. The hardware abstraction layer, as configured by the hardware
architecture model, is mainly used to define the properties and interfaces of
stations. It is the only visible hardware simulation unit, and is also
considered as a whole, with the properties specified in the target platform
implementation. The resource access functions and interface device drivers
of stations perform virtual functions in case of simulation, and concrete
functions in case of target platform implementations.

Our RTOS supports earliest-deadline-first scheduling (later
enhancements for other strategies are foreseen). Its resources are
parameterised (e.g., number of tasks, synchronisers, signals, events, queued
events) by setting the parameters of the KERNEL station or BASIC station,
which are RTOS host nodes for any TASK station nodes.

Each RTOS processing node maintains a real-time clock. In a simulation
environment, all these clocks need to be synchronised with the global
simulation time.

3.2 Verification Presumptions and Criteria Function

Verification is based on the following presumptions:
1.

2.
3.

there is only one global simulation clock in the system and all real-
time clocks (timers) relate to it;
the time events relate to the corresponding station’s real-time clock;
tasks are assigned deadlines for their execution (the only exception
are short initialisation tasks);
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4. task states (TSTDs) have a time frame for the activity being
performed within the state (in real-time clock time units).

The time required to execute the operating system itself (schedule and
dispatch cycle) is assumed constant. This time is considered to be a part of
the system call service time and is, therefore, not modelled separately. The
time needed to service a system call is considered to be included in the time
frame of the calling task’s state. Its sole function is to change the system state
and to trigger task states, whose trigger conditions relate to the internal data
structures of the (operating) system.

Every verification method requires the definition of a criteria function,
which tells when a system fails, i.e., what the limits of the “normal”
execution of the system being checked are.

The concept of correctness had been defined as follows: “The system
fails if it holds true during co-simulation: the system reaches an undefined
state, or its pre-defined time frame is violated and no timeout-action is
defined.”

By trying the shortest and taking the longest transition times through the
task states (TSTD) of the system, it is assumed that enough of the time
domain can be covered to be able to generalise the results to an arbitrary
transition time (within these time limits) of every state and herewith also of
the system as a whole.

3.3 Co-simulation with EDF Scheduling

The station clock rate is translated into the step size of the station in the
simulation, and is used when the next event time is being calculated. For
feasibility profiling, next critical event simulation and (EDF) scheduling are
used. The time instant of the next critical moment is always determined by
the simulation unit whose activation time is the closest. This time is
forwarded to all its parent units and, finally, it becomes the next global
critical moment.

On each step it is checked, whether timing or synchronisation errors have
occurred. A “timeout-action” (performed upon violation of the state’s timeout
condition) represents a controlled program fault. Herewith, a transition is
performed into a final state, from which there is no further transition. If,
upon the same error, this action is not defined for the current state, the
system fails and the error is logged. Otherwise, the transition into the next
state is always tried in the minimum and performed in the maximum time
variant, if the pre-conditions for the transition are fulfilled. The transitions
through the task states executing at their stations are performed first for all
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nodes, which share the current critical moment, and the previous state is
remembered on every transition. The execution protocol is logged instantly
for all simulation nodes.

3.3.1 EDF Next Event Scheduling

Earliest-deadline-first next event scheduling is based on the following
timing information (see Fig. 2):

A:
R:
E :

task activation time,
accumulated task run time (updated with the next critical event),
task end time (the time when the normal task end is expected based
on its maximum run time; upon a context switch the current time t1
needs to be remembered, because this parameter needs to be reset
based on the current time t2 and the formula E’=E+(t2-t1) when the
task is re-run), and
task deadline (set, when A is known).D:

Figure 2: Task run with a single context switch

Re-scheduling takes place when a task is activated due to a scheduled
event or on request. The task with the earliest deadline is chosen for
execution, and its current state is assigned the current time t as its next
critical moment.

While re-scheduling, the following criteria (failure conditions) need to be
checked for all tasks:

t < Z=D-(E-(A+R)), where Z represents the latest time when the task
needs to start/continue in order to meet its deadline; and

must be true for all active tasks, since they would have missed
their deadlines, otherwise.

Tasks can be scheduled to be executed on events. For simulation
purposes, they are assigned occurrence times regardless if they represent
timers or external interrupts. They represent a special simulation unit, which
takes its next critical moments’ data from an occurrence table. When these
events occur, they are fed into the stations’ CM interfaces, and appropriate
tasks are woken up through the RTOS.
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3.4 Course of Simulation

During co-simulation (Fig. 3), the time of progression to the next state is
calculated in two variants for each state:

1.
2.

RTC + minT (to check the pre-conditions), and
RTC + maxT (for transition to a new state).

Figure 3: The course of simulation

If in critical moment (2) the pre-condition for the transition to any further
state is not fulfilled, the on-timeout action is executed. If it is not defined, the
system fails.

During simulation, the E and D parameters are set for each task when it is
activated (the A parameter is set). When a critical moment is reached, it is
checked if herewith the time frame given for the task has been violated,
which results in the following consequences: (1) subtraction of the overhead
from the task’s slack time, or (2) the system fails as the task deadline is
missed.

The simulation results are logged during the execution of every
simulation unit, and each step is accounted for also within all its parent
simulation units.

This means that every task state logs its actions into the task log, whereas
a task logs its beginning and end into the module/collection log. The
collection logs the time when it was first allocated at the station, possible
subsequent re-loads, and the changes of states which triggered them into the
station log. The stations also log the times when they were communicating
among each other.

3.5 Interpretation of Results

The simulation logs are checked manually for irregularities, which could
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represent faults in the original design, or timing/synchronisation errors that
might have occurred during the virtual “execution” of the system model.

Busy and idle times are considered for each station and, if necessary and
possible, load balancing actions are taken.

The process of analysing and fine-tuning, also known as profiling
process, cannot be unified due to the great diversity of possible designs. For
this reason, it must be carried out manually and remains the responsibility of
the designer.

4. CONCLUSION

Some “design for verification” methodologies and formalisms, used to
design and verify real-time systems, have been mentioned. In particular, the
part to verify temporal feasibility of the Specification PEARL co-design
methodology for real-time systems has been presented. Our goal is to be able
to determine a priori the feasibility of a program part on a specified hardware
architecture without the need to implement it first.

A feasible design model, which is produced by the presented modelling
and profiling process, retains its value if the foreseen execution time frames
were chosen correctly (i.e., the circumstances on the time scale shall not
change when the program part is extended to a fully functional program and
run on the target platform).
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Abstract: An important step during the design of embedded systems is to allocate
suitable architectural components and to optimally bind functions (tasks) to
these components. This design step is called system synthesis. The automation
of system synthesis is limited in recent research by developing models only for
standard optimization algorithms. This paper describes the first approach to
improve a standard optimization technique itself for the use in embedded sys-
tem design. Our solution extends the heuristic optimization algorithm tabu
search by multiobjective optimization. Using the multiobjective approach,
domain specific heuristics could easily be included into the algorithm. By per-
forming experiments with the new algorithm, a new effect was discovered: In
contrast to known results from literature, the quality of optimization was de-
pending on the size of the neighborhood if the moves in the neighborhood
were sorted by domain specific estimation.

Key words: Tabu-Search, Multiobjective, Optimization, System Synthesis.

1. INTRODUCTION

A number of approaches for system synthesis have been proposed in the
relevant literature. The common goal of such approaches is to build an opti-
mization model and to use heuristic optimization techniques to solve the syn-
thesis problem. The optimization problem itself is tackled using simulated
annealing [1], [6], genetic algorithms [1], [2], [5] and tabu search [1], [6],
[10]. In some papers, self-made heuristics are used [4], [7], [11].
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Most of the papers considering the analysis of real-time systems, which
means different system tasks with different priorities running on one proces-
sor, must hold given deadlines. Only in [2] just the latency of the problem is
considered.

Embedded system design is a multiobjective optimization challenge. The
most important objectives are time, area and power. Many papers in system
synthesis do not consider this aspect. The authors describe optimization as a
cost or area optimization problem with time constraints. Only [2] and [5] de-
scribe multiobjective algorithms using a Pareto approach. Both papers deal
with genetic algorithms, but [2] do not consider real-time systems. The algo-
rithm described in [5] deals with real-time systems, but it disregards com-
munication synthesis.

However, no paper deals with aspects for improving the quality of the
optimization heuristic by information coming from the application domain,
which in our case is embedded system design. The results of [1],[5], and [11]
are based on an effective real-time analysis algorithm. In this paper, we pre-
sent a technique that uses the multiobjective nature of the problem as a
chance for improving the optimization technique itself. In contrast to recent
literature on tabu search, which uses randomly generated neighborhoods [1],
[6], we revealed that a sorted multiobjective neighborhood can improve the
optimization algorithm.

2. EXPLORATION MODEL

Our approach to the system synthesis is based on two input models, (1)
the problem graph to specify the application, and (2) the architecture graph
to describe the maximal available hardware [2]. To synthesize a system ar-
chitecture, the problem graph is mapped onto the architecture graph, along
with the determination of additional parameters. A major difference of our
modeling approach to related work is the use of different types of program
nodes for modeling semantic aspects, e.g. to describe asynchronous commu-
nication between system-level tasks (processes) and other semantic peculi-
arities of languages based on the model of finite state machines.

2.1 Problem Graph

The problem model consists of two types of graphs: a control-flow graph
(CFG) to model the behavior of the system (the control-flow of the specifi-
cation, given in a formal description technique, e.g. SDL [12]) and a set of
data-flow graphs (DFG). The two types of graphs are combined to a control
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data flow graph (CDFG), or problem graph for short. Each DFG refines a
node of the CFG to model computational tasks.

Figure 1. Optimization Modell

In order to derive the problem graph, the behavioral description of the
system, as given by e.g. an SDL description, is transformed to the problem
graph. The problem graph is a directed graph, where the nodes may repre-
sent computation or communication tasks. The edges of the problem graph
specify the control flow. In addition to the nodes of the CDFG, we define
super nodes that allow to model system-level tasks. A system-level task
represents an instance of code with its own memory, i.e. a process running
on an architecture component. In our model, a super node is defined as a set
of nodes, where each node has the same process identifier and the same pri-
ority. The priorities of system-level tasks influence scheduling decisions
where two or more super nodes are mapped onto the same architecture com-
ponent, e.g. a processor.

In order to define time constraints, labels are assigned to the nodes. All
nodes of the graph marked with the same label are associated to the same
timing constraint.

2.2 Architecture Graph

The architecture graph defines the maximal available configuration of the
hardware. It contains different types of nodes to model different types of
components. The node types are used to model different scheduling strate-
gies of processing elements: preemptive scheduling, nonpreemptive schedul-
ing, no scheduling and communication. In this terminology, no scheduling
means that a resource can only be used by one task exclusively.
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All architecture nodes contain a class attribute that specifies different
classes of components (e.g. different processor types and technologies). Fig.
1 outlines how the behavioral description — in our case an SDL description
— is transformed to a problem graph, which in turn is mapped onto an archi-
tecture graph. In the problem graph, dotted nodes represent communication
nodes. In the architecture graph, dotted nodes represent architecture nodes
not yet allocated.

2.3 Allocation, Binding and Scheduling

As outlined above, our optimization algorithm for system synthesis de-
fines the allocation, the binding and the schedule.

The allocation defines the selection of the architecture components from
the available architecture components as defined by the architecture graph.
The decisions are implicitly defined by the binding, i.e. each architecture
node to which a program node is bound to is allocated.

Binding: Each node of the problem graph is bound to exactly one archi-
tecture node. The binding of the nodes of the problem graph to the architec-
ture graph is achieved by edges between the two graphs.

Scheduling: We assume that the derived implementation employs run-
time scheduling. Thus, decisions made by the system synthesis implicitly de-
fine the schedule. The factors influencing the schedule comprise 1) the
scheduling strategies employed by the architecture nodes, 2) the binding of
the program nodes on architecture nodes, 3) the priorities of the program
nodes (super nodes).

3. MULTIOBJECTIVE OPTIMIZATION WITH
TABU-SEARCH

3.1 Multiobjective Optimization

Optimization of embedded systems is a multiobjective search problem.
Different design parameters like time, area and power need consideration.
Using a weighted cost function in a multiobjective optimization problem is
questionable [5]. The weights are depending on the problem and finding the
right set of weights could be as expensive as the optimization problem itself.

In multiobjective optimization, an effective method for ranking solutions
is used: the Pareto approach. Consider a two dimensional objective space,
e.g. area and power. For each solution, a value for each objective, power and
area, can be calculated. This results in a point in the two dimensional objec-
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tive space. A point in the objective space is dominating when it is in all ob-
jectives at least equal or better then the dominated point. Pareto points are
points which are not dominated by other points. Thus, all system implemen-
tations represented by Pareto points are equal in terms of their design qual-
ity. To further discriminate them requires additional constraints. An optimi-
zation tool can find the Pareto points by using an algorithm called Pareto
ranking [5]. Pareto ranking sorts all solutions according to the number of so-
lutions that dominate them. The Pareto points are dominated by no other
points, so they are on the top of the list.

3.2 Tabu Search

Tabu search is a heuristic optimization algorithm. In contrast to simulated
annealing and genetic algorithms, tabu search represents a purely determinis-
tic approach. Similar to simulated annealing, tabu search is based on a
neighborhood search. Thus, any new solution is derived from the previous
solution. In order to support this, the definition of the neighborhood of a so-
lution and the definition of the moves to transform a previous solution to a
new solution is of importance.

Different from greedy algorithms, e.g. as gradient search, tabu search
also allows moves to solutions with higher cost. This is important for escap-
ing from local minima. However, allowing non-improving steps may result
in a cyclic search. To avoid cycles, tabu search employs a memory, typically
called tabu list. The purpose is to prevent moves, which can lead to cycles.
This list could have very different implementations. One possible way is to
store a fixed number of previous moves, whose recurrence is inhibited.

3.3 Structure of Multiobjective Tabu Search

The idea of Pareto ranking can be used to construct a multiobjective tabu
search algorithm. As tabu search defines moves for constructing new solu-
tions and all moves are put to a list, called neighborhood, it is easy to con-
struct a single neighborhood for each objective. The moves are evaluated
only by the single objective of the neighborhood. Additionally, it is possible
to use estimation techniques to find fast evaluation results. Such a fast esti-
mation technique may be the use of Liu and Laylands real-time analysis in-
stead of a computation expensive worst-case response time analysis or simu-
lation. By using this technique, it is possible to explore a lot of possible sys-
tem implementations or solutions. All neighborhoods will then be sorted
separately. These lists are than merged with Pareto ranking.

However, constructing an optimal solution requires an extended analysis
of complex objectives, which is in our approach carried out by selecting the
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N best moves given by the Pareto ranking. For the chosen solutions, an ex-
tended and precise evaluation is performed.

3.4 Moves and Neighborhood

3.4.1 Definition of Moves

Priority Changing of Processes: To each process, a priority is attached.
The priority defines the scheduling priority of a process. This means that all
processes bound to the same component will be scheduled with respect to
this priority. The actual priority of a process can be increased or decreased
within a move.

Partitioning of Processes: Each process can be partitioned. A process
partitioning is supported by the super node concept. Each process can be
split into a number of super nodes. If a process is split into different super
nodes, it is possible to bind the super nodes to different components of the
component graph. This is used to support fine grain hardware/software parti-
tioning in a hierarchical environment.

Binding of Super Nodes: This move changes the binding of the super
nodes to hardware components. Only the binding of super nodes can be
changed.

Figure 2. Multiobjective Tabu-Search

Allocation of Components: Moves to allocate and deallocate compo-
nents are very important. If allocation were implicitly performed by binding
moves, in many cases it would take a few moves to deallocate a component.
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These intermediate steps are problematical because the not yet deallocated
component still needs area, while its workload is moved to other compo-
nents, which reduces their quality in other objectives like the performance.
Deallocating moves prevent this overall stepwise degradation.

3.4.2 Neighborhood

The result of these moves is the neighborhood of a solution. In many
cases, the resulting number of different moves is too high for a reasonable
performance of the optimization process. Every move in a neighborhood is
evaluated separately for each objective. Therefore, a separate list of moves is
built for each objective.

Allocation Cost: The total system cost consist of the allocation cost,
which represent the fixed cost of architecture components and the binding
cost that is caused by binding the program nodes on architecture nodes. Each
allocated node of the architecture graph results in a fixed cost. The fixed cost
of an architecture component depends on its type and its class.

Binding Cost is caused by the need for memory (software) or cost for
registers, ALUs, etc., on ASICs. Similar to allocation cost, binding cost de-
pends on the type and class of the architecture component to which the pro-
gram node is bound.

Timing Constraints: In order to evaluate meeting of time constraints,
the actual execution schedule has to be derived. This schedule not only de-
pends on the allocation and the binding of the processes but also on the dis-
tribution of the priorities. In this work, a simple event-driven simulation ana-
lyzes the temporal behavior of a given system (for more information see
[10]). The problem to verify a given system and scheduling is NP-complete
[5]. For that reason, it is problematic to verify a large neighborhood in an
exact manner. As a rough estimation about the real-time behavior, the utili-
zation formula in Liu und Layland [8] is used. The calculated utilization is
then used as a metric to sort the solutions into the neighborhood.

3.4.3 The Tabu List

A new approach combines a problem independent sizing of the tabu list
with a reduction of program memory size: It uses the multiobjective nature
of the problem to implement an effective tabu list. The evaluation parameter
of each neighborhood is stored separately. Although the used data structure
is very compact, it describes a solution very exactly: Let us assume e.g., a
system implementation needs allocation area, program
memory (binding cost) at 70% processor utilization. In such a case, the set
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{100, 50, 70} completely describes the system. As equivalent solutions have
the same evaluation parameter, they can be mapped to the same description.

4. EXPERIMENTAL RESULTS

Using a multiobjective search for hierarchical problems in combination
with neighborhood estimation reduces the run-time and the cost of the final
system implementation. We verified this by experiments based on given ex-
amples from the literature [11]. Fig. 3 gives an idea about the quality im-
provement achieved by sorted neighborhoods. The figure shows the two ob-
jectives, number of real-time violations and total system cost. The total sys-
tem cost is the sum of binding and allocation cost. The figure shows the ef-
fect of sorted neighborhoods for the examples random1 and random2. Tab. 1
gives a detailed overview, how the algorithm’s run-time depends on the size
of the neighborhood.

The table shows three experiments with a small neighborhood and a large
neighborhood to find an optimal value for the length of a sorted neighbor-
hood. The first number in the neighborhood size row gives the number of es-
timated moves and the second number gives the number of total evaluated
(using a detailed real-time simulation) moves. This number is equivalent to a
neighborhood size in standard tabu-search. The given run-time is the com-
plete run-time for 10,000 iterations fixed given by starting the program. The
number in the brackets gives the number of iterations after which the best so-
lution was found. As can be seen, a neighborhood of 6000 yields better re-
sults than a small neighborhood of 600 moves. In detailed experiments, we
found that a size of 4000 is a break-even in run-time and quality. A
neighborhood with a size larger than 8000 again increases the run-time of
the algorithm, without improving quality. However, a neighborhood size be-
tween 4000 and 8000 is a good value for optimization with sorted neighbor-
hoods.

The experiments reveal that the result from tabu search literature, which
states that the quality of optimization is independent from the neighborhood
size, only holds for unsorted or randomly generated neighborhoods. Our
newly found result allows the design of fast system synthesis algorithms
based on tabu search. Note that the experiments in [1] show that the quality
of tabu search is as good as the quality of genetic algorithms. Sorting the
neighborhood gives the possibility to include embedded system designers
knowledge to the heuristic search algorithm and to improve the results given
in [1], [2], and [5].
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Figure 3. Results

5. CONCLUSION

In this paper, a new multiobjective tabu search heuristic is presented: In-
cluding domain-specific heuristics into a general optimization algorithm im-
proves the quality of the optimization results and reduces the algorithm’s run
time. For that reason, the heuristic was extended to work with both estima-
tion and evaluation algorithms for the different objectives. This enables the
use of large neighborhoods without loosing quality of the optimization re-
sults. It also combines for the first time tabu-search with Pareto-ranking.
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Abstract: Automatic embedded software generation and IP-based design are good
approaches to achieve a short design cycle due to stringent time-to-market
requirements. But design automation must also consider application-specific
requirements. This paper presents a mechanism for the automatic selection of
software IP components for embedded applications, which is based on a
software IP library and a design space exploration tool. The software IP library
has different algorithmic implementations of several routines commonly found
in different application domains. These routines have been characterized in
terms of power, performance, and area, for a given architectural platform. The
design exploration tool allows the automatic configuration of an optimized
solution for a specific application, by selecting routines whose combination
best match system requirements. Experimental results are presented and
demonstrate that a very expressive design space can be explored with this
approach.

Key words: Design Space Exploration; Embedded Software, IP Components.

1. INTRODUCTION

The fast technological development in the last decades exposed a new
reality: the widespread use of embedded systems. Nowadays, one can find
these systems everywhere, in consumer electronics, entertainment,
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communication systems and so on. In embedded applications, requirements
like performance, reduced power consumption and program size, among
others, must be considered. Since different platforms and cores are available,
precise technical metrics regarding these factors are essential for a correct
comparison among alternative architectural solutions, when running a
particular application.

To the above physically related metrics, one should add another
dimension, which is software development cost. In platform-based design,
design derivatives are mainly configured by software, and software
development is where most of the design time is spent. But the quality of the
software development also directly impacts the mentioned physical metrics.

Presently, the software designer writes the application code and relies on
a compiler to optimize it. Compiler code optimizations for embedded
systems have been traditionally oriented towards improving performance,
reducing memory accesses or space [1,2,3], for instance targeting code to
specialized architectures, reducing cache misses, or compressing code.

It is widely known that design decisions taken at higher abstraction levels
can lead to substantially superior improvements. Software engineers
involved with software configuration of embedded platforms, however, do
not have enough experience to measure the impact of their algorithmic
decisions on issues such as performance and power. Therefore, this paper
proposes a more pragmatic approach, consisting in the use of a software
library and a design space exploration tool to allow an automatic software IP
selection. The software IP library contains alternative algorithmic
implementations for routines commonly found in embedded applications,
whose implementations are previously characterized regarding performance,
power, and memory requirements on a given platform. A similar approach is
followed in [6], but restricted to implementations of Simulink blocks.

By offering a range of algorithmic solutions for usual problems that may
be critical in several applications, the designer may choose the solution that
best matches particular application requirements. By exploring design
alternatives at the algorithmic level, that offer a much wider range of power,
performance, and memory size values, the designer is able to automatically
find, through the exploration tool, corner cases that result in optimizations
far better that those reported by later code optimizations. As a very important
side effect, the choice of an algorithm that exactly fits the requirements of
the application, without unnecessarily wasting resources, may allow a more
efficient use of the underlying hardware, for instance reducing supply
voltage, clock frequency, and area to a minimum.

This paper is organized as follows. Section 2 discusses related work in
the field of embedded software optimization. Section 3 gives an overview of
the target architecture. Section 4 presents our approach to design space
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exploration, introducing the library with its characterization and the
exploration tool. Section 5 presents experimental results, and, finally, section
6 draws conclusions and introduces future work.

2. RELATED WORK

Power-aware software optimization has gained attention in recent years.
It has been shown [8] that each instruction of a processor has a different
power cost. By taking these costs in consideration, a 40% power
improvement obtained by code optimizations is reported [8]. Reordering of
instructions in the source code has been also proposed [9], considering that
power consumption depends on the switching activity and thus also on the
particular sequence of instructions, and improvements of up to 30% are
reported. In [10], an energy profiler is used to identify critical arithmetic
functions and replace them by using polynomial approximations and
floating-point to fixed-point conversions.

Recent efforts are oriented towards automatic exploration tools that
identify several points in the design space that correspond to different trade-
offs between performance and power. In [4], Pareto-optimal configurations
are found for a parameterized architecture running a given application.
Among the solutions, the performance range varies by a factor of 10, while
the power range varies by a factor of 7.5. In [5], the best performance/power
figures are selected among various application-to-architecture mappings.

In [6], a library of alternative hardware and software parameterized
implementations for Simulink blocks that present different performance,
power, and area figures is characterized. Our approach is similar, but instead
of aiming at a partitioning between software and hardware functions, it
concentrates on algorithmic variations of software routines that are
commonly found in a wide range of embedded applications. This way, it
provides design space exploration for given platforms.

3. TARGET ARCHITECTURE

The software library characterization has been performed for a platform
based on a Java microcontroller, called femtoJava [7], although the
methodology is general and can be applied for other processor architectures
as well. The Java microcontroller implements a hardware execution engine
through a stack machine that is compatible with the Java Virtual Machine
(JVM) specification. A CAD environment that automatically synthesizes the
microcontroller for a target application [7] is available, using only a subset
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of instructions critical to the specific application. This way, the impact of
algorithmic-level optimizations against compiler level optimizations can be
measured.

4. THE PROPOSED APPROACH

Figure 1a shows a traditional design flow, where the designer receives the
application specification and, after coding it in some language, compiles it
for a chosen platform. In this approach, the designer must know the target
platform, and all optimizations are trusted to the compiler.

In our approach, illustrated in Figure 1b, the design starts with an
application specification at a high level of abstraction, and the application
code is generated automatically by a tool. This tool allows design space
exploration based on a software IP library, the application specification, and
the designer knowledge. Note that, in this approach, the designer does not
need to know the target platform, because this information is used only for
the library characterization. This methodology allows the automatic selection
of software IPs to better match a certain platform. Moreover, if the
application constraints might change, for example with tighter energy
demands or smaller memory footprint, a different set of SW IPs might be
selected. The same reasoning applies when the underlying platform is
changed.

Figure 1. (a) Traditional approach (b) Our approach.

In this work, a configurable power estimation simulator, called CACO-
PS [11], was used to collect all measures during library characterization.
Specifically, considering a certain platform and for each algorithmic
implementation of the library functions, it measures the performance (in
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cycles), the memory usage (for data and instruction memories), and the
power dissipation (in gate capacitances – GC – that switch during execution,
considering CPU, RAM, and ROM). In the next sections, the software IP
library and the design space exploration tool are presented in more detail.

4.1 Software IP library

As it has been already mentioned, the library contains different
algorithmic versions of the same function, thus supporting design space
exploration. Since embedded systems are found in many different
application domains, this investigation has been started using classical
functions: Sine – Two ways to compute the sine of an angle are provided.
One is a simple table search, and the other one uses the CORDIC
(Coordinate Rotation Digital Computer) algorithm [12]; IMDCT – The
Inverse Modified Discrete Cosine Transform is a critical step in
decompression algorithms like those found in MP3 players. Together with
windowing, it takes roughly 70% of the processing time [13]. Others
functions are implemented like Table Search, Square Root and Sort.

4.2 Library characterization

To illustrate the results of library characterization using different
algorithmic versions of the same function, there are two routines selected:
the sine and the Inverse Modified Discrete Cosine Transform. Table 1 shows
the main results of the characterization of the four different implementations
of the IMDCT function. The IMDCT4 implementation has the better results
in terms of performance and power dissipation, but the size of program
memory significantly increases. The opposite happens with the IMDCT1
implementation, which has far better results in terms of program memory,
but consumes about 3 times more cycles and power.

Table 2 illustrates the characterization of the alternative implementations
of the sine function. There are some entries in Table 2 that are pretty
obvious. Since Cordic is a more complex algorithm, program memory size is
larger than with Table Look-up, as well as the number of cycles required for
computation. It is interesting to notice, however, that the data memory size
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seems to be almost the same. This, however, is caused by the fact that data in
Table 2 was obtained for a sine resolution of 1 degree. As the resolution
increases, the amount of data memory increases exponentially for the Table
Look-up algorithm, but only sublinearly for the Cordic algorithm. The
increase in memory reflects not only in the required amount of memory, but
also in the power dissipation of a larger memory.

4.3 Evaluating a complete application

In all examples presented above, the design space concerning
performance, power, and memory footprint was large. However, the
availability of different alternatives of the same routine is just a first step in
the design space exploration of the application software. One must notice
that embedded applications are seldom implemented with a single routine.
There is another level of optimization, which concerns finding the best mix
of routines among all possible combinations that may exist in an embedded
application.

In order to better illustrate the concept, let us take as an example the
IMDCT function. Taking into account program and data memory sizes,
performance, and power, there are 16 possible combinations of the four
versions of the IMDCT and cosine functions. Some of them are very
interesting, depending on particular application requirements:

If memory space has the highest priority, one can combine the IMDCT1
core with a table look-up cosine calculation with a resolution of 1 degree.
This requires only 3,730 bytes of data memory and 432 bytes of program
memory, although it presents the worst figures for performance and
power;
If an application must respond in at most 200,000 cycles and the cosine
calculation requires a high resolution (0.1 degree), then the best is to
combine the IMDCT2 core and the CORDIC-based cosine calculation.
This is the combination that fulfils the above restrictions and requires less
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memory space (3,730 bytes of program memory and 2,343 bytes of data
memory);
If performance and power have the highest priority, combining the
IMDCT4 core with a table look-up cosine is the best alternative. It
requires only 56,242 cycles and gate capacitances of power
consumption.

4.4 Design space exploration tool

The Dragon Lemon tool maps the routines of an embedded program to an
implementation using instances of the software IP library, so as to fulfil
given system requirements. The user program is modeled as a graph, where
the nodes represent the routines, while the arcs determine the program
sequence. The weight of the arcs represents the number of times a certain
routine is instantiated. It is also possible to model parallel routine calls, in
case the underlying hardware has parallel processing capabilities.

To generate the application graph representing the dynamic behavior of
the application, an instrumentation tool was developed. It is based on BIT
(Bytecodes Instrumentation Tool) [14] that allows the dynamic analysis of
Java Class files, generating a list of invoked methods with its corresponding
number of calls, which can be mapped to the application graph.

In the exploration tool, before the search begins, the user may determine
weights for power, delay and memory optimization. It is also possible to set
maximum values for each of these variables. The tool automatically explores
the design space and finds the optimal or near optimal mapping for that
configuration. The cost function of the search is based on a trade-off
between power, timing, and area. Each library option is characterized by
these three factors. The exploration tool normalizes these parameters by the
maximum power, timing and area found in the library. The user can then
select weights for the three variables. This way, the search can be directed
according to the application requirements. If area cost, for example, must be
prioritized because of small memory space, the user may increase the area
weight. Although one characteristic might be prioritized, the others are still
considered in the search mechanisms. As output, Dragon Lemon also
provides 2D and 3D Paretto curves. For both curves, the user may select
which variables (power, delay, or memory) will be used in each axis (x, y
and z).
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5. RESULTS

Two sets of experiments have been executed. First, our methodology has
been evaluated with small synthetic examples, but trying to address real
applications, like an Address Book and a Game, running in parallel with a
MP3 player. The second experiment shows that the design exploration tool is
also able to explore much larger search spaces.

The application A_Book+MP3 is implemented as two parallel processes.
The first one runs typical Address Book tasks, such as table search, insert,
and sort. Calculator features, such as square root and sine calculation, have
also been added. In parallel to this process, an MP3 player is executed. The
design space exploration for the MP3 considers the different
implementations of the IMDCT function, which is dominant in the MP3
decode routine. Two different architectural variations have been tried. In the
first one, a single processor has been used. In the second option, one
processor executes the MP3 algorithm, while the other processor deals with
the other tasks of the Address Book. The results are shown in Table 4. For
the option with equal weights for power, timing and area, the best solution is
to use hash and quick-sort routines. However, this configuration is changed
when the area weight increases. Hash is replaced with a sequential search,
while the quick-sort is replaced with insert-sort. Table 4 also shows that
increasing the number of processors does not significantly decreases the
running time. This happens simply because the IMDCT calculation running
time is much larger than the other tasks.

The Game application is implemented by three parallel processes. There
is a rendering part, which allows the exploration of sine and square root
routines. In parallel, there is the MP3 decoder part, with the IMDCT
exploration. The third part comprises the game logic itself and AI
computation, which will perform table searches, insertions, and sort
functions. The difference from the previous application is that the parallel
processes will have similar running times, while in the Address Book the
IMDCT time determines the total running time. Results are also presented in
Table 4. It is clear that this time we took advantage of additional processors
in the architecture, because of the higher parallelism of tasks with equal
complexity.

All results in Table 4 come from an exhaustive search, running in less
than a second of execution time. Figure 3 shows the Paretto curve found for
the first row of Table 4. The curve shows Running Time in the x-axis and
Area in the y-axis. It is clear that by increasing the expected running time the
designer is able to use smaller memory spaces.
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Figure 3. Paretto curve for first row of Table 4.

6. CONCLUSIONS AND FUTURE WORK

This paper proposed a new methodology for software IP selection in a
design space exploration context, considering performance, power, and
memory area requirements. It is based on software IP library that is
previously characterized for a given architectural platform and uses a genetic
tool for automatic design space exploration and IP selection.

Experimental results have confirmed the hypothesis that there is a large
space to explore based on algorithmic decisions taken at higher levels of
abstraction, much before compiler intervention. Selecting the right algorithm
might give orders of magnitude of gain in terms of physical characteristics
like memory usage, performance, and power dissipation. As a future work,
we plan to enlarge the library and to investigate the impact of different
memories with different power-delay products, so that one can better tune
the algorithms to the underlying platform.
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A MULTI-LEVEL DESIGN PATTERN FOR
EMBEDDED SOFTWARE*

Ricardo J. Machado and João M. Fernandes
Dept. Sistemas de Informação & Dept. Informática, Universidade do Minho, Portugal

Abstract: It is a common practice amongst programmers to construct parts of software
programs by imitating parts of programs constructed by more experienced
professionals. This “learn by example” approach can be applied at the design
level by using patterns as sets of rules and recommendations to solve
well-defined tasks within the development of computer-based systems. This
paper describes the multi-level ICIS pattern, to be used at various design levels
of industrial control-based information systems, where embedded devices are
networked to interact with the industrial processes and equipment. The
proposed pattern is described using several UML diagrams.

1. INTRODUCTION

The research work of Edsger Dijkstra has demonstrated that it is
advantageous to “waste time to think” in the organization, structure and
internal partition of a system, instead of going directly to the implementation
just after the requirements’ modelling [1]. This methodological position,
nowadays perfectly accepted by any professional system designer, has
originated, at that time, several research lines that culminated in the
emergence of a new sub-discipline called systems architecture [2], or
software architecture in the particular situation of software intensive systems
[3].

Architectural design involves the manipulation of general abstract models
that can be applied to distinct systems, as long as these systems share a set of

* Research funded by FCT and FEDER under project METHODES (POSI/37334/CHS/2001).
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common requirements. These general abstract models of systems’
organization are called design patterns [4].

It is a common practice amongst programmers to construct parts of
software programs by imitating parts of programs constructed by more
experienced professionals. This current practice, at the implementation level,
demands the search for a pattern within a third-party software code and the
adaptation to the specific problem at hand. This “learn by example”
approach can be applied at the design level by using patterns as sets of rules
and recommendations to solve well-defined tasks within the development of
computer-based systems [5].

2. DESIGN PATTERNS

One of the traditional problems of design patterns is the inexistence of a
standard notation for its description, which allows different interpretations
for each existing pattern [7]. A pattern can be characterized by using:
(1) a pictorial diagram to describe the general context of the pattern;
(2) a class/object diagram in a well-known notation (UML, for instance), to
model the static relations amongst the pattern entities; (3) a sequence
diagram to model the dynamic relations within the pattern; (4) any other
semantic diagram, as long as the syntax is well-defined, to characterize a
particular view of the pattern. Recently, Fontoura [8] has proposed the
UML-F profile to describe framework architectures and to support
framework modeling and annotation by using UML-compliant extensions.

Nowadays, design patterns have reached such a very mature state that
they are organized in a catalogue fashion just like the old databooks of
digital integrated circuits [9-13]. There are also some pattern catalogues for
the analysis phase [14].

The idea of documenting the best practices in software development as
patterns for building embedded and real-time systems is a recent research
topic. The first important work on this topic was the “Recursive Control”
pattern for real-time control systems [15]. Another major landmark is the
collection of patterns proposed by Douglass to design object-oriented
real-time systems [5]. Other work in defining patterns for embedded and
real-time systems were also proposed in the last years [16-22].

3. THE MULTI-LEVEL ICIS PATTERN

A new design pattern, named multi-level ICIS, was defined as a result of
the development of several industrial information systems [23, 28]. Within
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these developments, embedded systems, web-services, and control
applications had to work together to accomplish the easy interconnection
between the lower (0, 1 and 2) and the upper (3 and 4) CIM (computer
integrated manufacturing) levels [24]. These ICIS (industrial control-based
information system) solutions are complementary, within the industrial
organizations, to the well-known management information systems (MISs)
[25]. Industrial information systems (IIS), which result from the integration
of a MIS with an ICIS, are the answer to accomplish the definition of an
applicational platform, based on ERP (enterprise resource planning)
approaches, in order to integrate and unify the management and control of all
organizational information.

The proposed pattern, based on the MVC pattern [6], was defined to
support both the levels 2 and 3 of co-design [26]: (1) at level 2, the
embedded software engineer must decide which functionalities will run
directly on the processor and which ones will be synthesized for the
reconfigurable devices; (2) at level 3, the information systems engineer
integrates the previously designed components with the existing MIS. With
this pattern we avoid the designer to follow a strict class-driven approach,
where class diagrams are built before the object diagram [27]. The defined
pattern provides a set of recommendations to support the architectural design
of ICIS solutions.

Fig. 1 depicts a pictorial diagram of the multi-level ICIS pattern. This
pattern is composed of four architectural blocks: (1) the access interface
block, is responsible for the interface implementation with the MIS
subsystem; (2) the supervision interface block is responsible for the interface
implementation with the industrial processes and equipments (shop-floor);
(3) the operator interface block is responsible for the interface
implementation with the human operators that interact directly with the ICIS
subsystem; (4) the production, quality and management (pre-)processing
block is responsible for the data processing (stubbing and transformation) to
support the interconnection of the three previous interfaces. Each
architectural block can be implemented by adopting a reuse approach, based
on the specialization or refinement of previously existing classes. This is the
reason why, in fig. 1, there are one inheritance relation between each block
and one class library. Additionally, each block can be developed within a
CBD (component-based design) approach by using aggregation and
composition of sub-objects as instances of specialized or refined classes
from libraries.

To thoroughly understand the proposed pattern it is important to analyse
the typical network topologies of final IIS solutions. In fig. 2, two distinct
“zones” can be identified: (1) the first one corresponds to the CAN network
supporting the ICIS implementation by using several embedded devices
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(CANit, CANio, CAN-FPGA, CAN-RF and CAN-Server execute embedded
software to support CIM level 2) and one (or more) PC-VAP (gateway
executing LabVIEW software); (2) the second one corresponds to the
Ethernet network supporting the MIS implementation by typical ERP and
POS (plant operations system) software.

Figure 1. Pictorial diagram of the multi-level ICIS pattern.

UML deployment diagrams can be used to illustrate the three typical
application scenarios for the multi-level ICIS pattern:

(1) ICIS architecture. The deployment diagram of the ICIS architecture is
depicted in fig. 3, where the multi-level ICIS pattern is being used as
follows: (i) the PC-VAP node supports the access interface component;
(ii) the CANio node (embedded device topologically located near the
industrial processes and equipments to acquire and send supervision
information) supports the supervision interface component; (iii) the CAN-RF
node (wireless embedded device used by human operators, along their
walkthroughs the factory plant, to acquire and send supervision information)
supports the operator interface component; (iv) the CANit node (embedded
device that controls one or more groups of nodes, based on CANio and
CAN-RF architectures, to coordinate the acquisition and sending of
supervision information) supports the (pre-)processing component. Each
PC-VAP node can concentrate, in a star topology, several sets of nodes based
on CANio and CAN-RF architectures. Within this application context, the
multi-level ICIS pattern is intended to clarify the kind of topology the
information systems engineer should use to structure the existent computing
nodes in a particular ICIS final solution.
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(2) Software architecture of the PC-VAP node. The software architecture
of the PC-VAP node is depicted in fig. 4. The access interface component of
fig. 3 is being decomposed into a set of sub-components organized by the
architecture defined by the multi-level ICIS pattern. The access interface,
supervision interface, operator interface and (pre-)processing components
appear again, but now within the PC-VAP software. For instance (and only
just an example, since the graphical LabVIEW language has not been
introduced here), it is possible to identify, within a portion of LabVIEW
code depicted in fig. 5, the code blocks that correspond to those components.

Figure 2. Network topology for typical IIS solutions.

(3) Software architecture of the embedded components. The
(pre-)processing component of fig. 3 is decomposed into a set of
sub-components organized by the architecture defined by the multi-level
ICIS pattern. Again, access interface, supervision interface, operator
interface and (pre-)processing components appear, but this time within the
CANit embedded device, by using aggregates of objects in the Oblog
language, just as referred in [29], following the methodology described in
[30], with some well-known limitations [32].
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A class diagram that describes, generically, the relations between the
entities involved in the components suggested by the pattern is depicted in
fig. 6. This diagram follows a class-driven approach (since it defines an
instantiation template) and identifies six distinct classes: Access,
Supervision, Controller, Sub-Controller, DataRepository and Operator.

Figure 3. UML deployment diagram of the ICIS architecture.

Figure 4. UML deployment diagram of the PC-VAP node.

Access, Supervision and Operator are «interface» classes (according to
[32], an «interface» class models behaviour and information dependent on
the system’s interface) and allow Controller e Sub-Controller classes to be
considerably independent from the particular mechanisms adopted to
implement the relation with the outside world (the system’s environment).
Both the access (border between the embedded architecture and the upper
MIS) and the supervision interfaces (border between the embedded
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architecture and the industrial process and equipment) deal with external
entities topologically located very far from the embedded device, thus
adopting an asynchronous flow mechanism in relation with the embedded
device’s main thread responsible for the system’s general control.

Figure 5. Multi-level ICIS pattern implemented in LabVIEW code.

Figure 6. UML class diagram for the multi-level ICIS pattern.

The embedded device should have another tread that acknowledges the
access and supervision objects (instances of Access and Supervision classes)
about: (1) the arrival of information from the environment to be stored in the
interface objects by using the putData() method; (2) the need to update all
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the values stored in the interface objects by using the updateChannels()
method. Each access and supervision objects must implement, as attributes,
two distinct data structures, one to store the interface input values
(inputChannels) and another to store the interface output values
(outputChannels), before they are disseminated throughout the other system
components. In the main thread, the methods getData() and putData()
should be used to have access to the inputChannels and outputChannels data
structures in an asynchronous way. To assure a synchronous execution of the
reading and writing operations the methods getFreshData() and
putDataNow() should be used. These methods are blocking within the main
thread, since access and supervision objects force an effective hardware
refreshment of the data structures.

Controller and Sub-Controller are «control» classes (according to [32], a
«control» class models behaviour that can not be naturally associated to any
other kind of object, i.e., «interface» or «data») and allow the instantiation
of aggregations of state-machines. These state-machine aggregations have
access to a small data base, internal to the embedded device, to store
temporarily information about the industrial processes and equipment. This
set of objects constitutes the (pre-)processing architectural block to be
executed within the main thread. Fig. 7 presents an UML sequence diagram
for the multi-level ICIS pattern.

Figure 7. UML sequence diagram for the multi-level ICIS pattern.

4. CONCLUSIONS

The implementation of a pattern with the characteristics of the one
presented here must be carefully thought for real-time applications, since it
is very easy to adopt technological solutions that will introduce an enormous



A Multi-level Design Pattern for Embedded Software 255

temporal and space inefficiency. This additional implementation difficulty
must be explicitly assumed as being the price to pay to benefit from the
usage of patterns. The multi-level ICIS pattern should be faced as a semantic
guideline for conducting the design of networked solutions for the
supervision of industrial processes and equipment.

In practice, it is common to implement a simplified version of the
architecture in which the three kinds of interfaces (access, supervision and
operator) and the data repository are melted into a unique entity, named
interface controller. This solution is more efficient than the one presented in
fig. 7, since it is only necessary to maintain a unique set of data structures,
which implies that the memory requirements can be significantly reduced
and, consequently, the data processing operations can be speedup.
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Abstract: A Petri net based approach for modeling dynamically modifiable embedded real-
time systems is presented. The presented work contributes to the extension of a
Petri net based design methodology for distributed embedded systems towards
the handling of dynamically modifiable systems. Extensions to the underlying
high-level Petri net model are introduced that allow for dynamic modifications
of a net at run time.

1. INTRODUCTION AND RELATED WORK
To an increasing extent, embedded real-time systems these days are dynam-

ically modifiable. As an example, consider an adaptive robot control, where
components of the control software are changed at run time due to results of
online learning algorithms. Another application scenario is a group of mobile
robots that cooperatively solve a problem. Since robots may enter or leave
the scenario or just change their location, the entire system is highly dynamic.
Such systems gain increasing interest, e. g. when studying autonomic comput-
ing. Even in traditional application domains like automotive systems, dynam-
ically modifying control systems are considered, for instance for the handling
of so called fail-over situations, that is in error situations, where functionality
has to be relocated. For the design of these systems, dynamically evolving
subsystems – which imply a powerful basic model for specification – have
to be considered together with basic controllers running under hard reliability
constraints.

For the design of these systems, we propose to use a methodology based on
high-level Petri nets as the underlying formal model [11]. We have chosen a

*This work was supported by the German Science Foundation (DFG) project SFB-376
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high-level Petri net model for several reasons, for instance in order to bene-
fit from the multitude of existing verification and analysis methods based on
Petri nets. While Petri nets are well-established for the design of static sys-
tems, they lack support for dynamically modifiable systems. We propose an
extension in such a way that an engineer is enabled to annotate transitions with
transformation rules. A transformation rule specifies a modification of the sys-
tem that is performed when the annotated transition fires. The basic concepts
of our approach were first introduced in [10]. In [8] and [6], the extended
design methodology and a tool for the simulation of dynamically modifiable
systems were presented. In this paper, we concentrate on the formal Petri net
model. We will define a self-modifying Petri net model as the extension of a
hierarchical high-level Petri net model.

In the literature, dynamically modifiable Petri nets were often considered
in the context of object-oriented Petri nets. An example are Object Petri nets
introduced by Valk [13]. They support a two-stage modeling method: a main
net called system net contains several object nets, which are instanciated via
tokens of the system net. Transition firings in the system net, which lead to
changes of its net marking, obviously can change the overall net. However, the
dynamics is reflected in the marking of the net. No changes to the net structure
are made. An early approach to self-modifying Petri nets was presented by
Valk in the late seventies [12]. More recently, Badouel and Darondeau intro-
duced Stratified Petri nets, a subset of Valks self-modifying nets. Both models
are based on standard Petri nets without annotations. Modifications of a net
are due to a simple mechanism switching edges on and off dependant on the
current net marking. An approach for high-level nets which is based on similar
ideas is presented in [1].

We propose a more generic approach, where modifications of the net struc-
ture at run time result from coupling a net model with graph transformation
rules (productions), as they are known from graph grammars and high-level
replacement systems respectively. Several other approaches for coupling Petri
nets and graph transformation techniques can be found in literature (see for in-
stance [2] for an overview). One example is the concept of net transformation
systems [7]. Roughly speaking, a net transformation system is a graph gram-
mar, where the generated graphs are Petri nets and the definition of productions
is based on Petri net morphisms. Basically, we use very similar concepts. The
characteristic feature of our approach is that the transformation system is inte-
grated into the Petri net formalism by annotating transitions with productions.
In the aforementioned approaches, graph transformations are applied to Petri
nets at design time only. Our approach integrates them into the firing-rule.

In the following section, we will first give an informal brief overview of
the hierarchical high-level Petri net model, that forms the basis for introduc-
ing dynamic modification. The specification of Petri net transformation rules
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and their integration into the high-level Petri net model will then be defined
formally in Sections 3 and 4. Finally, a small application example will be
considered in Section 5.

2. BASIC PETRI NET MODEL

The basis for definining dynamically modifiable Petri nets in the following
section is a high-level form of Petri nets. Petri nets are bipartite directed graphs
augmented by a marking and firing rules. The Petri net graph consists of a
finite set of places P, a finite set of transitions T, directed edges from places
to transitions and from transitions to places. Places model conditions. For
this purpose they may be marked by tokens. Driven by specific firing rules,
a transition can fire based on the local marking of those places it is directly
connected with. By firing, the marking of these places is modified.

With regard to the definition of Petri net morphisms, we adopt the so-called
algebraic notation for the formal description of Petri nets. Hence, a Petri net
graph is a tuple F = (P,T,pre,post) where pre : assigns a
multiset of places (the preset) to each transition, while post :
specifies the postset of each transition. Figure 1 a) shows an example net. Its
formal definition is

Figure 1. Petri net examples

In the case of high-level nets the tokens are typed individuals. The other
net components are annotated accordingly: places with data types, transition
in-edges with variable expressions, transitions with a guard and transition out-
edges with term expressions, i. e. sums of functional expressions. Now a tran-
sition can fire only if the formal edge expressions can be unified with actually
available tokens and this unification passes the guard expression of the transi-
tion. By firing, the input tokens are consumed and calculations associated with
the transition out-edges are executed. That way new tokens are produced that
are routed to output places of the transition. A simple high-level net is depicted
in Figure 1 b). Different from this example, we usually annotate transition out-
edges with variable expressions and transitions with corresponding variable
assignments, since to our experience this representation has some advantages
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Figure 2. Hierarchical high-level Petri net

in practical applications. Obviously, both alternatives for annotating the out-
going edges of transitions are equivalent. The depicted notation was chosen,
because the resulting formal definitions are more readable. In order to handle
complex systems we added a hierarchy concept. As an example for a hierar-
chical specification, a small robot control is depicted in Figure 2 a). It contains
three hierarchical transitions, each instantiating a distinct robot behavior which
maps sensor values to according actuator settings. The components providing
the sensor values and processing actuator values respectively are omitted from
the figure. Furthermore, the net contains a hierarchical place instantiating a
discrete control which is responsible for properly switching between the possi-
ble modes. The instantiation of the Explore-module is depicted in Figure 2 b).

Besides support for easy modeling, another reason for presuming a hierar-
chical Petri net model as the basis of our dynamically reconfigurable model
is that the structure induced by hierarchy may be used for defining scopes, to
which transformation rules can be applied. In order to define a hierarchical
structure, we assume a function    which assigns a parent node to each node
of the net. A node acting as a parent node is called hierarchical node. The
inverse function of assigns to each hierarchical node the set of nodes which
constitute the module instanciated by this node. In order to keep the definitions
reasonably simple, we assume that each hierarchical Petri net can be realized
by a flat net constituted by the basic, i. e. non-hierarchical, nodes of the net.
This holds for many hierarchy concepts. In some cases however, extensions to
the net model are necessary in order to facilitate this mapping. Since hierarchy
is not in the focus of the presented work, we neglect these cases. Thus, in the
following we consider flat Petri nets, which have a structure imposed by an
original hierarchical definition.
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3. RULES FOR DYNAMIC MODIFICATION

In the case of a static system, the entire system can be modeled in advance.
To specify these systems, we propose to use the hierarchical high-level Petri net
model outlined in the previous section. For dynamically modifiable systems
however, only the generating system of a set of potentially resulting systems
can be provided. A straightforward approach for describing the generating
system is given by graph grammars, since a Petri net specification is strongly
based on a graph, and graph grammars are a standard formalism for specifying
graph manipulations. From the various existing approaches for defining graph
grammars, we have chosen an algebraic approach, which was first introduced
by Ehrig et. al. in the early seventies [4], Algebraic approaches typically make
use of constructs from category theory in order to describe graph transforma-
tion rules (productions) and their semantics, i. e. the precondition for applying
a production to a given graph as well as the effect to the graph. In order to ap-
ply category theory, categories of graphs are considered, where relationships
between graphs are modeled by graph morphisms.

Hence, in order to define productions for Petri nets, we first have to define
Petri net morphisms. At this point, a - merely technical - problem arises: Pro-
ductions and likewise Petri net morphisms shall be formulated over high-level
Petri nets as well as be part of the annotation of high-level Petri nets. In or-
der to solve this cyclic dependency, we define morphisms for a generic model
of annotated nets complying with standard high-level nets, but also with the
dynamically modifiable nets we are aiming at. An annotated net combines a
Petri net graph F = (P,T,pre,post), as it was introduced in the previous
section, with a tuple of functions

where and
are languages. Each function assigns annotations to Petri net elements.

Given two annotated Petri nets, a Petri net morphism is a tuple of functions
which

maps the places, transitions, and annotations of one net N to those of another
net M. For being a morphism, it is required that for all net components
(i. e. places, transitions, and edges), the corresponding morphism component
commutes with the annotation function. For the complete formal definition we
refer to [9].

Having introduced Petri net morphisms, we are able to define productions
for Petri net transformations in the usual way. Thereby we follow the double
pushout approach which was introduced in [4]. A comprehensive tutorial can
for instance be found in [3]. In the double pushout approach applied to Petri
nets, each production consists of two Petri net morphisms and

Basically, correlates an annotated Petri net L (the left side of
the production) with an annotated Petri net R (the right side). Furthermore,
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Figure 3. Rule for Dynamic Transformation of Petri nets

the production explicitly specifies the interface object K, typically a common
subnet of L and R. An example for a production is depicted in Figure 3. The
rule can be applied to a net N, if N contains the net on the left hand side of
the rule (Left). When the rule is applied, the left hand side is replaced with the
net on the right hand side (Right). The common interface object (Interface)
must be part of the net N for application of a rule, but it remains unchanged
during replacement. Hence, it specifies the interface of the modified net to the
surrounding net.

In general, the application of a production to a graph leading to another
graph (in our case the application to a Petri net leading to another Petri net)
is called a direct derivation. In algebraic approaches to graph grammars, di-
rect derivations are defined by gluing constructions of graphs, that are formally
characterized as pushouts, a standard construct from category theory. As the
name suggests, a direct derivation step in the double pushout approach is mod-
eled by two pushout diagrams. They are depicted in Figure 4. The first diagram
(1) describes the deletion of all elements of N which have a pre-image in L, but
none in K. The diagram contains the graphs K, L, N, and C, the latter being
the graph resulting from the first step. In addition to the morphisms and
the diagram contains which embeds K into C, and
In terms of category theory, N is called the pushout object of and while
C is the pushout complement object of and The second pushout diagram
(2) describes the second step, where all elements of R are inserted that do not

Figure 4. Diagram of a direct derivation
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have a pre-image in K. In this diagram, the resulting graph M is the pushout
object of  and Summarized in terms of category theory, given a production

a Petri net N and a match p is
applied to N by first building the pushout complement object C of l and m and
then building the pushout object of and We pass on a formal
definition of pushouts and direct derivations and conclude this section by char-
acterizing three objects from Figure 4 that are substantial for the application
of a production to a given annotated Petri net
N. These are the Petri net morphisms (which embeds the left side of the
rule into N), (which removes the left side from N), and (which adds the
right side). In the following we denote these objects by the tuple

4. INTEGRATION OF DYNAMIC MODIFICATION

With a formalism for describing net transformations, we now are able to
define dynamically modifiable high-level Petri nets. They consist of a Petri net
graph F = (P,T,pre,post) as described in section 2 and a tuple of annotation
functions

annotates
places with sorts, i. e. with datatypes, annotates transition in-edges with
variable expressions. Transitions are annotated with a guard (by and with
a transformation rule (by annotates transition out-edges with sums
of terms. Finally, the initial marking is specified by The definition of a
signature including a set of sorts as well as of the languages

and is straightforward.      is the set of rules. Each element of is
a tuple where is a production as described in the previous section,
and is a (hierarchical) Petri net node, the scope of

Annotating a transition of a Petri net N with a rule specifies
that, during firing of  the production is applied to the subnet instantiated
by If several matches of the production are feasible, one of them is chosen
non-deterministically. For defining the semantics of a dynamically modifiable
net formally, the definition of net markings as well as the transition firing rule
have to be extended. As usual, markings assign tokens to the places of a net,
whereby the sort of each token must fit to that of the place. For dynamically
modifiable nets, the notion of a Petri net marking is extended towards a Petri
net configuration consisting of a marking and a Petri net. Petri net configu-
rations are modified by firing of transitions. For enabling a transition firing,
a match of the transition’s transformation rule has to be found in the current
net as well as a consistent substitution of the transition’s variables by values of
the current marking. Hence, a transition a tuple charac-
terizing a direct derivation, and a variable binding B are combined to form a
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transition step B must be a consistent substitution of the transi-
tion’s variables, for which the transition guard is true. If a transformation rule
is specified for the transition, the transition guard as well as the out-edge anno-
tations may include references to the rule components, for instance in order to
specify additional conditions. Therefor, the set of transition variables includes
the places and transitions of the rule’s left side. Accordingly, a consistent sub-
stitution B being part of a transition step must assign values to
these variables, which comply with D.

The semantics of a transition step S is defined in terms of its incremental
effects describing the effect of the demarking process of a transition and of the
marking process respectively. For dynamically modifiable nets, the incremen-
tal effects of a transition step are twofold. We have to define the effects of S on
the current net and as well as the effects on the current marking

and Given a transition step where
and a configuration C = (N,M), the effects on the current net N

are given directly by the two functions and applied to N. From these
functions, the two nodesets and can be derived. con-
tains all nodes of N that are removed by  while contains all nodes
added by As in static nets, the negative effect of a transition step results
from evaluating the in-edge annotations of with the substitution B. Similarly,
the out-edge annotations are evaluated for generating the positive incremental
effect In addition, modifications to the net must be taken into account.
The positive effect has to be restricted to the marking of those places,
that remain in the net after modification, i. e. the elements of are not
marked. Places contained in i. e. places created by the transition step,
are assigned their initial marking.

Based on these definitions, the firing rule of dynamically modifiable high-
level Petri nets can be defined expectedly. Let be a transition with the trans-
formation rule where Let

be a direct derivation, a transition step, and
a configuration. S is enabled, i. e. can fire, in if the fol-

lowing conditions hold. (1) The transition is an element of (2) The scope
of the transformation rule is a hierarchical node of (3) instantiates

(4) The negative incremental effect is included in the current
marking If S is enabled in it may fire leading to a configuration

where results from applying and to and
results from subtracting from and adding

5. APPLICATION

Using the Petri net transformation features introduced in the previous sec-
tions, a more concise specification of the robot control presented in Figure 2 is



A Petri Net Approach for the Design of Dynamically Modifiable … 265

Figure 5. Petri Net with dynamic modification

feasible. An excerpt of the revised specification is depicted in Figure 5. The
hierarchical transitions Explore, Justify, and Fullturn specifying the behaviour
in each possible mode of the robot have been folded into one transition Mod-
ule. The mode switching transitions of the discrete control Ctrl are annotated
with transformation rules changing the refinement of Module as exemplarily
shown for one transition in Figure 5. This specification is more compact than
the original one. Beyond that, it is more flexible, since transformation rules
determining the refinement can depend on run time data.

The presented application example is comparatively small. An application
of our approach to a larger robot scenario, a small robot contest called ’Cap-
ture the Flag’, is described in [5]. In both cases the extended high-level Petri
net model has proven useful for the specification of dynamically modifiable
systems. For an evaluation of the system behavior, we provide an execution
platform [6], which allows to simulate the execution of a dynamically modifi-
able high-level Petri net on the simplified model of the target hardware. The
execution platform will also serve as a basis for the automated implementation
of dynamically modifiable Petri nets. For the realization of the above described
applications, it was necessary to transform the dynamic Petri net models into
equivalent static nets, since a direct implementation of truly dynamic behav-
ior on the available small microcontrollers was not feasible. However, with
regard to more powerful backends, we made first experiments with a direct
implementation of the dynamic nets in Java, whose results were very promis-
ing. Compared to the implementation of an equivalent static net, the time for
executing a modifiable net increased by a factor of 1,5 only.

6. CONCLUSION

We have presented an extension of our high-level Petri net model in order to
capture dynamically modifiable embedded systems, for instance adaptive robot
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controls. In order to achieve a formal definition of dynamically modifiable
Petri nets, the existing high-level Petri net model was coupled with transfor-
mation rules as they are known from graph grammars. In our approach, these
productions annotate transitions. The firing rule for transitions was modified
accordingly.
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Abstract: This paper presents the provision of an internet premium service on
different format output devices, which are embedded devices. In par-
ticular, we developed a tool for automatic generation of different profile
depending target formats, which are used to present the service in-
formation on distributed mobile embedded devices like mobile phones,
personal digital assistants (PDAs) or smart phones. In this approach
XML-[Extensible Markup Language]-based user interface descriptions
will be transcoded into other target formats. Used examples are cHTML
[compact Hypertext Markup language] for web-enabled mobile devices
and WML [Wireless Markup language] for WAP [Wireless Application
Protocol]-enabled mobile devices.

Keywords: Transcoding, User Interface.

1. INTRODUCTION

The huge amount of information possibly much unstructured that is
received by users every day for example by internet, email or newsletter
make it difficult to select important and individual user information out
of it. Users like to get special very personal information. Additionally
users work more and more with mobile devices like PDAs, mobile phones
and smart phones and wish to have their information on these embed-
ded devices. Dealing with this problem a service called MEMPHIS1 [1] is

1 MEMPHIS [Multilingual Content for flexible format Internet Premium Service] supported
by the European Commission: IST 5th Framework Programme
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developed and implemented. This service system collects premium ser-
vice information according to user profile depending topics, transforms
these information in various ways like extraction, summarization and
translation and transcodes these information to special target output
formats. Information will be provided in form of push or pull services.
For the pull service on distributed mobile devices the transcoding tool
performs the automatic generation of different target formats. In fact,
as an example a XML-based description will be transcoded into cHTML
and WML format descriptions.

The increasing use and the growing variety of different mobile de-
vices induce the introduction of special purpose content presentation lan-
guages, like WAP [Wireless Application Protocol] / WML [2] and W3C
[World Wide Web Consortium] / cHTML [3] as well as techniques for au-
tomatic conversion of traditional HTML [Hypertext Markup language]
format to these formats by using XSLT [Extensible Stylesheet Language
Transformation] methods [4]. Further developments are transcoding
tools for automatic conversion of arbitrary different formats [5], which
are based on generic rules in the description language RDL/TT [Rule
description language for tree transformation] that operates on the DOM
[Document Object Model] tree representations of HTML or XML-based
documents [6], Additional work is spent for comparing different meth-
ods [7]. A classification of transcoding functions with respect to user
and hardware profiles can be realized by a Fuzzy-RDL/TT [8].

This contribution is organized as follows: Section 1 describes briefly
the architecture of the internet premium service. The transcoding mech-
anism is discussed in section 2. The portals on the different mobile de-
vices are described in section 3. The next section 4 gives examples of
the internet premium service. The final section 5 comprises a summary
and an outlook.

2. INTERNET PREMIUM SERVICE
ARCHITECTURE

The internet premium service collects premium service information
according to user profile depending topics, transforms these information
and distributes individual information to users. The rough architecture
of the Internet Premium Service (Figure 1) contains three main parts,
namely acquisition, transformation and distribution. Participating to
premium service information needs a registration of user data to the
system. The user can select different service profiles and he has choices of
a variety of device profile definitions. The premium service information
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Figure 1. Internet Premium Service Architecture

and the user information will be managed by a user and information
document database.

The acquisition part works with mobile agents that collect high pre-
mium information according to user profile depending topics from special
databases or news providers like nationwide newspapers.

The transformation part (Figure 2) transforms the information in var-

Figure 2. Components of Transformation

ious ways like information extraction, summarization of information,
combining of several information that belongs together, translation in
different human languages and transcoding to special target output for-
mats depending on users device profiles. In our approach of internet
premium service the human languages English, German and Italian are
supported. Output formats that are supported in our demonstrator are
WML and cHTML, i.e. we focus on limited mobile embedded devices. In
section 2 the transcoding mechanism that produces the different output
formats on mobile devices is described in detail.
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The distribution part delivers the formatted service information to the
users. The user has the option to get information by a push service and
also by a pull service (Figure 3). Concerning the push service the user

Figure 3. Distribution

gets his information by SMS on his mobile phone or by email. The pull
service uses the formats that are produced by the transcoding tool. The
output information that are produced in special content presentation
language formats can be pulled either by a web-browser or WAP-browser
so that the user can browse in his personal information for example on
PC or on small mobile clients like PDAs and mobile phones. The Portal
for the pull service is described in section 3 in detail.

3. TRANSCODING TOOL

The Transcoding Tool component of the transformation layer formats
the output information for different small limited devices. The users
can get the formatted information by the pull functionality of the ser-
vice (see section 3). Because of a great variety of mobile devices a
generic transcoding tool is used. This tool generates automatically out-
put formats depending on the output device parameters. The transcod-
ing tool is a rule based system to transform automatically between differ-
ent markup languages like HTML, XML, cHTML or WML by passing
the DOM tree presentation of XML-based user interface descriptions
with the deapth-first-search method and modifying for example tags,
attributes or content. Therefore the transcoding system needs some pa-
rameters like device profiles, rule description files and tool settings (see
Figure 4).

In our use case of internet premium service, special structured XML-
files are transcoded to cHTML-files and also to WML-files by passing
the DOM-tree of the XML-file and modifying the tree according to the
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Figure 4. Conceptual overview of the transcoding tool

rules in rule-description-language-file. The following example shows an
XML-based description for books.
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This example will be transformed by special rules for example to the
following WML-desription. WML-files are divided in special cards and
each card will be one site on the mobile phone. The transcoding will be
done by rules that are implemented in a rule-description-file.
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The produced WML or cHTML formats will be used for the represen-
tation of information for the individual users. The representation will
be described in the next section.

4. PORTALS ON LIMITED DEVICES
In this section we describe the pull service of the distribution part

by explaining the portals on small mobile devices like mobile phones
and PDAs. The users can login to the service and can browse in his
personal information. PDAs have own browsers, often http-browser for
example a special Internet Explorer on Pocket PCs. Mobile phones use
WAP-browsers.

4.1 Pull Service on PDAs
The internet premium service offers a pull service on PDAs by the

Web. This functionality offers the possibility to get service information
by a Web-browser on the PDAs.

Users often work with PDAs when they are on the way and when
they have no online connection to their office or private PC. In order
to support this use case, PDAs use conduit-browsers. That means users
synchronize their PDA and PC at some points of time and afterwards
they use their PDA offline. In our case of internet premium service
system it is possible to configure the conduit-browser in such a way that
the user can synchronize the PDA and PC and afterwards he can read
his personal service information offline.

Usual online browsing on the PDA just like browsing on a PC will
also be supported.

By calling the Internet Premium Service portal page on the PDA, a
start page for the input of login and password will be presented. Addi-
tionally a function for password forgotten is implemented. The user can
ask for his password and gets an email with his password. Otherwise
the user can enter the portal and gets the home page of the system by
username and password.

Once the user has logged in the system he gets some web pages, in
which he can navigate. In these web sites the functionalities L (logout),
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H (home), A (archive), S (Search) and U (user data) are implemented.
We work on small display clients, so that we use only one letter to
describe a function. Additional there is a button, where the user can
choose the language for representation of the websites and of service
information content. The language which the user has selected during
the registration to the internet premium service is used optionally. The
available languages will be English and German. The default language
will be English.

In detail, the functions on the web sites work in the following way.
After clicking L for logout the user will leave the pull service portal.

If the user goes to home by clicking H, he get a site containing a
list of service information items which have been selected by the system
according to the users service profiles since the last users login. Each
list item contains an icon that hints to the topic of information and a
links to a new page with a more detailed description of the information.

New information will not be deleted at once, they will at first be
written to an archive. These information will appear in the archive
functionality during the next login of the user. This functionality by
clicking to the letter A will present all the items of the information list,
which have been read once by the user and which are not older than
30 days. The archive function will be designed in a similar way as the
list on the main page. That means there are also icons that hint to the
topics and links to the information description.

The function U for user data allows the user to get to the internet
premium service registration portal and allows to modify his user data
and his service and device profile data. This functionality is only avail-
able in the online mode and not for the offline application, because there
is no back writing during the next synchronization.

An additional function in the Portal is S for searching. By this func-
tion the user can search for a special term in the database of the internet
premium service system.

The user can configure a notification email alerting service for his pull
service in the registration portal, which will remind him that there are
new information arrived. The default value for this alerting service is
every 7 days, but the user can change this value or he can stop this
service by the registration portal.

4.2 Pull Service on Mobile Phones

The second part of the pull service is a WAP-service on mobile phones.
The portal for this service is designed in a similar way as for the Web-
service on PDAs, unless one has to design several cards instead of sites.
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When the user browses in his information per WAP he is always con-
nected online to the Internet Premium Service System, so that all the
functionalities in the portal could work.

The user can configure a notification by sms, which will send him an
SMS to remind him that new information are arrived. The notification
sms connects automatically to the right site in the WAP-Portal and the
user can read immediately his personal information.

5. EXAMPLE

As an example we implemented an internet premium service for new
book publications and financial news on small clients like PDAs and
mobile phones. For each of these two cases the user can select personal
individual topics.

6. CONCLUSION AND OUTLOOK

This paper presents an internet premium service for flexible format
limited output devices. In particular we implement a rule based sys-
tem to transcode XML-based user interface descriptions to cHTML and
WML in order to present premium service information by Web and WAP
on embedded devices like mobile phones, PDAs and Smartphones. It is
possible to enhanced the system by speech generation and to support
graphics.

However, the idea and the tool of a rule based system for automatic
transcoding is universal and can be used in other applications that work
also with a variety of different devices and consequently with a variety
of different output formats.
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Abstract: This paper compares different high-level modeling approaches for real-time
embedded systems design: an object-oriented approach using UML diagrams
against the block diagram approach provided by Simulink. This investigates
the facilities provided by both approaches for expressing system requirements
and functional specification. A Crane Control System is used as a case study
for conducting the proposed comparison.
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1. INTRODUCTION

Traditionally, the function block (FB) modeling approach has been used
by the signal processing and control engineering communities for the
development of real-time embedded systems. These models are widely
accepted in industrial design, driven by an extensive set of design tools, as
for instance Matlab/Simulink from MathWorks. On the other hand, as a
result from a standardization process among different object-oriented (OO)
design methodologies, the OMG promoted the creation of the Unified
Modeling Language (UML) [1], which is considered the de facto modeling
notation for any OO system. UML has gained in popularity also for real-time
embedded systems specification and design [2, 3]. Efforts that describe the
use of UML in different phases of an embedded system design process are
shown in [4]. A relevant question is whether the use of UML presents real
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advantages over traditional approaches for real-time embedded systems
design. Therefore, an analysis is necessary in order to argue about the
facilities provided by the approaches. Such analysis should reflect aspects
like model readability, model validation, and model implementability.

This paper presents a study comparing the use of the UML and FB
modeling approaches. In order to reach a fair comparison, a collection of
criteria based on the work conducted by Ardis et al [5] is established. A case
study is developed using the proposed evaluation methodology, consisting in
the modeling of a Crane Control System, as proposed in [6]. The remaining
of the paper is organized as follows. Section 2 gives an overview of high-
level modeling applied to real-time embedded systems. In Section 3, the
comparison criteria are defined. Section 4 presents the case study and shows
the description of the UML and Simulink models. Section 5 discusses and
summarizes the obtained results. Section 6 gives an overview of related
work. In the last section, conclusions are drawn.

2. EMBEDDED SYSTEMS DESIGN OVERVIEW

The design of an embedded system consists of several steps, as follows.
The first step is the development of a high-level system model, containing
both requirements and a functional specification. The requirements
specification relies on defining three main elements: desired behavior or
functionality; quality-of-service (QoS) requirements (performance, timing,
power); and problem domain structure. Once these elements are specified,
designers can proceed with the development of the formal solution, that
results in the system functional specification. The high-level model should
reflect the nature of the application domain. It is important to use the most
appropriate Model of Computation (MoC) [7], so that the model
applicability is enhanced. Up to this point, no platform information has been
added to the model. The concerned aspects relate only to user needs and
their detailed description, which is expressed by means of specific diagrams.

The following step consists of translating the high-level model into an
executable description. This process should be automatic, but depending on
the modeling notation it may need different degrees of designer interaction.
Such executable description is generally obtained by means of a program
code, written in the programming language that best fits the adopted
modeling approach and MoC. Further steps must take the executable
description as input for the architectural exploration, where alternative
hardware and software solutions that fulfill system requirements should be
taken into account, and for the final system generation.
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The high-level modeling language should be able to express both the
application requirements and the functional specification. Also, it should
provide facilities to allow model validation, as well as features that can be
used to guide implementation.

3. EVALUATION CRITERIA

To develop a comparison between the modeling approaches, several
evaluation criteria have been established. These criteria are based on the
work conducted by Ardis et al [5], which performs a qualitative comparison
among several design languages for reactive systems. This work is extended
here in the direction of searching for aspects that could be used to perform a
quantitative evaluation of the designed models. For those criteria where a
quantitative evaluation is not possible, a qualitative one is established.
Moreover, additional evaluation criteria are added together with a new
organization for the set of criteria. They are organized in groups that reflect
the design steps introduced in the previous section as listed bellow.

a) Requirements Specification: evaluates the capacity to express and
document user needs and system requirements;

b) Functional Specification: evaluates the model abstraction level and
expressiveness, i.e. if it describes the problem domain and the system
behavior/functionalities in a natural and straightforward manner;

c) Validation/simulation: evaluates if the specification can be validated
before its implementation;

d) Implementability: evaluates if the specification can be easily refined or
translated into an implementation compatible with the rest of the system;

e) Design Space Exploration Facilities: criteria evaluate whether the
model incorporates facilities that can be used for design space exploration.

The comparison is based on criteria subgroups, as detailed below:
a.1) Functional requirements: capability of expressing and documenting

the problem domain elements that provide interaction with the system to be
designed and its desired functionalities; expressed by the number of
modeling diagrams that can be used to implement the desired feature.

a.2) QoS requirements: capability of expressing the application QoS
requirements and/or restrictions. This is expressed by the number of QoS
requirements that can be specified.

b.l) Applicability: capability of representing system behavior or
functionality by using different MoCs, according to systems nature; This
criteria is expressed by the number of supported MoCs.

b.2) Modularity/Hierarchy: capability of dividing a large specification
into independent modules, which could be decomposed into smaller parts;
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b.3) Expressiveness: capability of the modeling language primitives to
describe the specification; This is expressed by three main aspects: (1)
Number of modeling primitives, (2) Number of different modeling
primitives in use, (3) Number of lines of code programmed by the designer;

c.1) Simulation (qualitative): capability of verifying if the specification
can be used to validate the implementation.

c.2) Verifiability (qualitative): capability of demonstrating formally that
the specification or generated program fulfils the requirements.

d.1) Code generation (qualitative): capability of generating an executable
application from the model.

e.1) Synthesis (qualitative): capability of synthesizing the model (into
hardware) or generating a program.

e.2) System tuning (qualitative): capability of adjusting the generated
model by correct tuning of parameters like performance and power.

4. CASE STUDY

The crane system, proposed as a benchmark for system-level modeling
[6], was developed for the comparison using UML and block diagrams.

4.1 UML Model Description

The UML model development has followed the design steps proposed by
Gomaa [3]. According to this approach, the first development concerns the
Use Case model to represent the system functionality that must be fulfilled
and its interaction with the real-world. Each proposed Use Case has been
further detailed as UML Collaboration Diagrams. After detailing all Use
Cases, the Class Diagram has been derived, containing the whole static
structure of the system (see Fig. 1).

Fig. 1: UML Class Diagram of the Crane System

An important consideration regards the fact that UML models have been
decorated with the stereotypes and tags suggested by RT-UML [8].



Evaluating High-level Models for RT Embedded Systems Design 281

Therefore, it has been possible to state the timing information about the
system. As an example, in Fig. 2 one can see the collaboration diagram for
the control algorithm, which represents a periodic activity that is triggered
every 10 ms, starting after the user selects a new position for the crane.

Fig. 2: UML Collaboration Diagram of the Control Algorithm

4.2 FB Model Description

The crane model developed using FBs starts with the definition of the
elements that interact during the system execution. The model is composed
by four modules: PlantActuators, Sensors, ControlAlgorithm, and
JobControl, as presented in Fig. 3. Each module is further detailed to
represent its intrinsic behavior, by creating different hierarchical levels.

Fig. 3: Crane Model using Simulink

The crane system is composed by both data-driven and event-driven
parts, as can be observed in Fig. 3. The JobControl module is represented by
a finite state machine (event-based), while the other modules are data-driven.
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Fig. 4 illustrates details of the ControlAlgorithm module, which is
responsible for computing the control of the crane-motor. As it can be
observed in the figure, this functional block contains two implicit MoCs,
which are characterized as continuous-time and discrete-time. For example,
it contains a discrete-space state component used for differential equations
resolution (top-left), which is combined with those components that work in
the time-continuous domain.

Fig. 4: Control Algorithm Model in Simulink

5. COMPARISON OF THE MODELS

This section presents an analysis and comparison of the developed
models according to the criteria discussed in Section 3. The obtained results
are summarized in Table 1. For evaluating the qualitative aspects, we have
used the symbol + to indicate a particular strength of the approach, - to
indicate a clear weakness of the model, and * to indicate that the model
meets the criterion in a way that is adequate, but less than ideal.

This evaluation begins with analyzing the facilities for expressing the
system functional requirements. UML offers the facilities provided by the
use case diagram (1 point), while the FB approach does not support this kind
of facility (0 points).

Regarding the support for QoS specification, one can see that the profile
for the RT-UML supports both timing and performance requirements
specification (2 points), while in the FB approach there is no support for
such issues (0 points). In the FB model, the timing requirements are implicit
in the functional/behavior specification. Both languages do not give support
to the specification of power consumption and cost requirements.

Analyzing the model applicability by means of the number of supported
MoCs, it is possible to observe the advantages provided by the FB approach,
as it supports three different MoCs (3 points): time-continuous (analog),
time-discrete (digital), and event-based. Regarding UML, it supports only
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the event-based model (1 point). Nevertheless, there are efforts in the
literature that already address the lack of dataflow in UML (see [9,13]).

Considering modularity/hierarchy aspects, it is possible to observe that
the FB model leads to a better decomposition. This can be observed by
comparing the Simulink high-level model against the UML class diagram.
The first contains fewer elements, making the interpretation of the physical
behavior easier. The UML class diagram maintains the whole system
elements within the same abstraction level, which is somewhat not suitable,
considering the desired hierarchical features. Nevertheless, one should
mention that this is not a problem of the OO paradigm itself, but rather stems
from the decomposition nature allowed by UML diagrams.

The next criteria relate to model expressiveness. The first two aspects
relate to the number of used modeling primitives and to the number of
different modeling primitives in use. This reflects an interesting observation
point. As expected, the UML model is depicted by means of classes, objects,
their associations, and states. Therefore, it is natural to observe an equivalent
number of different modeling primitives if compared to the FB model, which
includes blocks, ports, connections, and states. Nevertheless, using a design
tool like Simulink, the designer can make use of different pre-defined
components available in a component library. Such aspect has a direct
influence in the total number of modeling primitives in use, and the
comparison shows a smaller number of elements in the FB model if
compared to the UML one. Another point of interest relates to the number of
lines of code programmed by designer in both models. It can be observed
that in the UML model the designer has to manually code much more lines.
On the other hand, by using the FB model and associated library, the
designer is not required to code the program by hand.

Regarding model validation/simulation, it is possible to observe that in
order to provide such features, suitable modeling/design tools are required.
Regarding the crane case study, only the FB model could be simulated,
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thanks to the Simulink tool. The available version of the Real-time Studio
tool, used for the construction of the UML model, does not support model
simulation. Nevertheless, considering the authors’ experience with other
UML-like simulation tools, these provide support only for the event-based
MoC. Also, one can state that for this task the FB model is more adequate,
because the simulation environment supports all the three intrinsic MoCs.

Considering the model implementability, one can see that from both
models an implementation can be derived. Nevertheless, there are two
directly related aspects that lead to differentiations: amount of code provided
by designer and number of pre-defined components. Regarding UML, most
tools are able to generate code skeletons from the model static structure
(classes, objects, and associations) and from the dynamic one (the state
machines). Nevertheless, the need for designer intervention is higher. In the
FB models, the whole code can be generated almost automatically, since it
relies on the use of pre-defined libraries. Although Simulink provides
facilities for simulation, the generation of the embedded software implies
several modifications/optimizations of the initial code used for simulation,
since it must be adapted/optimized to the target platform.

Regarding the design space exploration facilities, one can observe that
both UML and FB lack features to tackle this issue. An up-to-date topic is
the enhancing of their functionality to provide the desired capabilities.

6. RELATED WORK

As of today, the authors are not aware of other similar work that directly
compares the OO modeling approach from UML against the FB modeling
approach provided by Simulink. Nevertheless, there are several proposals for
combining both modeling paradigms. In [10], a profile for integrating FBs
into UML is proposed. For this, the General Function Block Model is
presented, working as a kind of adapter between classes and FBs. Another
work [9] addresses the lack of a dataflow model in UML, and so presents an
integration proposal for both mechanisms.

Additionally, other works concentrate on observing that UML is not
suitable for representing other MoCs besides the event-based one. Therefore,
other extensions are proposed. Axelsson [11] proposed an UML extension to
represent continuous-time relationships, such as continuous variables,
equations, time and derivatives.

The HASOC methodology [12] extends UML-RT to include annotations
with mapping information. In this work, the authors propose the association
of capsules with additional MoCs, such as Synchronous Dataflow and
Codesign Finite State Machines. Another research group proposed an UML
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profile for embedded system platforms [13], which allows the modeling of
platforms, quantifying QoS performance and budgeting constraints and
revealing platform services. Nevertheless, the adopted modeling strategy is
difficult to understand, once it is hard to see a direct correspondence between
the UML model and its describing equation from the physical domain.
Moreover, the model is overly verbose, since it uses several modules to
describe a simple equation with two multiplications. Additionally, the model
abstraction level is very low, going to the micro-operation level, and is not
adequate for complex embedded system modeling.

7. CONCLUSIONS

While several authors already proposed the unification between UML
and the FB modeling approaches, this work focused on comparing both
approaches. Our goal was to define the largest amount of quantitative
evaluation criteria as possible, thus allowing a more consistent comparison.

Considering the obtained results, it seems that UML looks better for
requirements specification. Nevertheless, none of the models properly deals
with the specification of embedded systems requirements, since power, for
example, is not included. An advantage of UML is that it can be extended to
incorporate such feature. Comparing the developed functional specifications,
a similar score is observed in Table 1 for both approaches. This leads to the
conclusion that models are somehow equivalent, although each has pros and
cons in this aspect. An observed weak aspect from UML is the lack of a
suitable decomposition mechanism, which could be easily overcome by the
modeling tools by adopting a hierarchical aggregation as in the SIMOO-RT
framework [14]. Also, this aspect should be tackled in UML 2.0.

Moving to the facilities for validation/simulation, the FB model is
advantageous especially because of the used modeling tool, coupled with its
intrinsic simulation engine. Regarding the model implementability, one can
see that from both approaches an implementation can be derived, although
each approach has its own peculiarities. Considering the last comparison
dimension, namely design space exploration facilities, one can observe that
both UML and FB lack features to tackle such issue. Nevertheless, there are
already proposed approaches focusing on providing the desired capabilities.

As a final remark, it must be observed that both models show clear
advantages and disadvantages. One interesting research target is to combine
both approaches with the care to keep the application of each one within the
most adequate design phase and abstraction level, according to their original
capabilities. This contrasts with other existing proposals, which extend the
current models to allow their use at design levels for which the language
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abstraction does not provide real advantages. Future investigations should
focus on enhancing the existing proposals for extending UML to support a
higher degree of integration with the FB paradigm and to allow the design of
models using different MoCs in a natural manner.
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Abstract: Avon is a dataflow graph language which insists single-assignment side-
effect free paradigm. While it is an asynchronous system, the syn-
chronicity is achieved by explicit events, thus allowing a sub-system to
have local sychronization, while being globally asynchronous. A pow-
erful facility in Avon is line filters where a predicate can be associated
with input as well as output ports. These filters can screen values from
the streams either at the source or at the sink.

We demonstrate that a small subset of Avon allows us to describe a
computer architecture of substantial complexity in a natural and intu-
itive setting.

Keywords: dataflow, single-assignment, stream, filter, strictness, asynchronous,
nondeterminism, pipelining, speculative execution, flushing.

1. DATAFLOW LANGUAGES [1, 2]

Tools shape our thoughts. The concept of dataflow is fundamentally
different from that of control flow [3]. The discipline of thinking in terms
of values about a solution of a problem may be a new experiences for a
newcomer to this area.

As in other areas of computer science, designers of dataflow languages
have different viewpoints – in terms of syntax, semantics and pragmatics
of the language. These differences mostly originate from the philosophies
or other considerations. For example, LUCID [4, 5] was originally de-
signed as a declarative language which makes proving programs easy; Id
[6] was designed to run on a fine-grain dataflow machine, called Tagged-
token machine; Sisal [7] was designed as an applicative language to run
on different multiprocessors systems; and Avon [8] was designed as a
minimalist dataflow graph language.
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1.1 Introduction to Avon [8]

Avon is a dataflow language with a small number of powerful con-
structs. Dataflow programs written using Avon are actually dataflow
graphs [9]. We will introduce some of its main language constructs via
simple examples.

In Avon, a line (or, a variable) associates with a stream of arbitrary
length. Each output is singularly defined, and hence no side-effect is
allowed.

Filters in Avon:
In Avon, a filter is a predicate which can be associated with a line

– either an input line or an output line. The purpose of a filter is to
’remove’ the current value from the line if the associated filter is not
satisfied for the current values. A filter on an input line is a conditional
expression which can involve the names of input lines, but not the names
of output lines. A filter can also be attached to an output line, in which
case the output line filter can involve the input line names and also the
output line names. Absence of a filter with a line is the same as having
a filter TRUE, which will allow values unfiltered.

Example 1: To find the largest numbers so far from a stream of
integers.

An Avon program graph which computes the sequence of largest num-
bers found so far is shown at the top of Figure 1(a). An example of
execution of the program is shown in four stages. The initial value in
the line L is 0; and, say, the values appearing in line A are 5, 4, 3, 9, 7,
2 ... and so on. There is a filter, (A > L), attached to the line A. The
purpose of this filter is to ‘remove’ the values in line A which do not
‘pass through the filter’ ie. do not satisfy the condition. In other words,
if the ‘current’ value in A is less than or equal to the current value in L,
then that value is removed from the line A, and the subsequent values in
A will ‘move forward’. For instance, the value 4 in line A gets removed,
because

In textual form the Avon dataflow graph in Figure 1(a) will be written
as:

Elements of Avon:
In Avon, semicolon (;) is used to imply relaxed ordering or unorder-

ing. This means that any two syntactic entities separated by a semicolon
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(;) can be permuted without any effect on the program correctness. The
input and output lines have distinct names. For example, A and L are
used for two inputlines; and C is the output line. IN,OUT,INIT and
INCOND are keywords. Input line names are given after the keyword
IN. Output line names appear after OUT. An input line may have
an initial stream of values, and these values are given between square
brackets ([ and ]) following the keyword INIT. An input predicate, or
filter, for an input line, appearsafter the keyword INCOND. Absence
of a predicate (or, empty predicate) implies constant TRUE.

The body of the node contains one or more definitions, defining out-
put(s) in terms of input(s). The symbol for definition is right arrow

An output name cannot have more than one definition.
A program may have a set of line connectors as well – where, a line

connector connects an output line to an input line. The symbol used for
connection is left arrow

Types as filters and polymorphism:
In Example 1(a), the input line A may carry any type of values, which

is of course not what is specified. In Avon, types are treated as filters.
There is a generalised predicative function IS, which can be used to
define type of a line as a filter. In Figure 1(b) , the input line A has an
additional filter IS(A, INTEGER) – the keyword INTEGER represents
the set of all the integer values. This filter will accept only the integer
values appearing on the line A.

One advantage of using types as line filters in dataflow is that we can
associate types of a fairly complex nature, including negative type, to a
name. For example, a filter IS (A, COMPLEX OR REAL AND NOT
INTEGER) will allow all the reals and complex, but not the integers.

Using types as filters in this manner gives us a means of allowing
values of different types to appear for an input or output line name
(called restricted polymorphism). Of course, not having any type filter
allows all types of values –ie. unrestricted polymorphism.

In Example 1 the output from the line C will be a stream of values.
One may wish to see only the ultimate largest number, but not largest
numbers so far. In Figure 1(b), we do just that. EOD stands for end-of-
data value. The output filter (A = EOD) will then absorb all the results
appearing on the line G until the input line gets to the end-of-data value.

A note on the difference between Input Filters and Output Filters:
Although, at first glance, it may seem that with the availability of

input filters the output filters are redundant; but they are not. The
presence of a filter on an input line removes values from that line only
if the associated filter is not satisfied, and before the node fires, thus
keeping the values on the other input lines. Whereas, an output filter is
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Figure 1. An example of Avon Program

”active” only after the node fires by which time the current values from
all the input lines have been ”consumed” (and essentially are removed
from the input lines).

2. DESCRIBING MACHINE
ARCHITECTURE

2.1 von Neumann machine and IPC

Since the introduction of APL (Iverson, 1962), there were about
200 different languages proposed, although only some of them are best
known. For example, ISP (Bell and Newell, 1970), ISPL (Barbacci,
1976), ISPS (1977, Barbacci), SA* (Dasgupta, 1981), AADL (Damn,
1984), MIMOLA (Marwedei, 1984), VHDL (DOD, Intermetrics, IBM,
TI, 1985) [10].

Most of these languages, with the exception of APL which is a func-
tional and side-effect free language, are very much control flow oriented
and imperative in their behaviour. Some of them succeed in classifying
computers in terms of their processors, memory and switches. But most
are specification languages to be used to automatically convert the spec-
ification into hardware, or to study performance. Some attempt to ex-
press the ”dataflow” nature of a computer using control flow paradigm;
some would express ”parallelism” using cumbersome syntax, or intro-
duce the concept of ”stream” as an artifact. There are other systems
proposed which deviate from traditional control flow style. For exam-
ple, Johnson [11] suggested using recursive equations to describe digital
design; Cardelli [12] suggested an algebraic approach to hardware de-
scription; and more recently Arvind and Shen [13] suggested using term
rewriting system for description of processors.
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Dataflow concepts have been applied in some languages, such as Kahn
Network of Processes (KNP) [14], Synchronous Data Flow (SDF) [15]
and SIGNAL [16]. These languages are useful in modelling signal pro-
cessors. SDF do not allow asynchronicity, although KNP does. Also,
unlike KNP, SDF insists on finite size streams. But, they do not restrict
themselves to ”pure” dataflow paradigm – eg. side-effects are allowed,
and single-assignment is not necessary. SIGNAL differs from KNP in the
sense that it allows ”no value” in the trace so that handling process
deadlock (or, non-firing) can be accommodated in an unified manner.
In SIGNAL, an elementary process produces an output value (at time
t) by acting on all input values (at time t).

Avon, on the other hand, insists on single-assignment, absence of side-
effect; it is asynchronous, and its streams are of arbitrary lengths. It does
not insist on the output port to be empty in order for a node to fire. It
allows independent ”filters’ on any of the input or output ports, which
provides a powerful tool for modelling – eg, streams can be screened both
by the destination (receiver) node as well as the source ( sender) node.
Synchronicity is achieved by explicit events, and thus different subsys-
tems can synchronize locally, still maintaining global asynchronicity.

In this paper, we exploit only a subset of facilities available in Avon,
and demonstrate that dataflow graph language provides a natural and
transparent way of describing machines.

Traditionally, a von Neumann machine, executing one instruction per
cycle, is described by a control-flow algorithm, known as Instruction
Processing Cycle (IPC). For example, consider a machine with three
instructions – ADD, LW and BRZ. Instructions are single address, with
Accumulator (ACC) as the implied operand.
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In the example above, PC stands for the traditional program counter,
M stands for Memory where both instructions as well as data reside,
and for the time being can be viewed as an one-dimensional array; IR
stands for the instruction register; DC and IA stand, respectively, for
a functional unit which extracts the opcode (OP) and operand (OPR)
from IR;

The IPC given above can be hierarchically expanded to introduce, for
example, multilevel memory, complex instruction formats, addressing
schemes and larger instruction repertoir.

It can also be used for simulation purposes, and datapath and control
section designs.

But, the control-flow oriented description of IPC, and the related im-
perative semantics, make it very difficult to augment the IPC in a natu-
ral way to describe advanced concepts of overlapped instruction execu-
tion (instruction pipelining), data pipelining, multifunctional machines
with multiple instruction issuing, pipeline bubbles, branch hazards and
”flushing” pipeline stages, conditional issuing of instructions etc.

2.2 Using Avon as Architecture Description
Language

In this paper, we demonstrate, as an example, how Avon can be used
to describe a pipelined machine with speculative execution. We will
start with a machine which is not pipelined, has only ADD and LW type
instructions, and does not have branch instructions. Then we will show
that this description can easily be augmented to turn that machine into
a pipelined machine. Following that we will include a branch type in-
struction, BRZ, to the pipelined machine, and show how branch hazards
are represented.

Non-pipelined Sequential machine, with no branch type in-
structions. Figure 2(a) describes a strictly sequential von Neumann
machine.

Note that this description is very similar to the imperative style IPC
given earlier, although with several significant differences.

Avon, being single assignment language, cannot have more than one
function assigning values to the same output line, nor can it have the
same line name both as input as well as output. Therefore, the impera-
tive construct like PC = PC + 1 will be illegal. Similarly, both of ACC
= M[OPR] + ACC and ACC = M[OPR] are not allowed.

Two lines are shown joined, explicitely, by a non-deterministic OR,
or, sometimes implicitely, by simple fan-in.
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Figure 2. Non-pipelined and Pipelined Machine - no branch instructions

To further save us from redundant drawings, when two lines are la-
beled with the same name, it means that they represent the same phys-
ical line.

The input condition attached to all the input lines, OP, OPR and
ACC of the node which computes ADD, is (OP = ADD), meaning that
if the current value of OP is ADD, then this node will ”fire” and thus
will produce a value via ACC1; if the condition is false, then the current
values from these lines of this node will be ”absorbed” or discarded.
Similarly, for the node which computes LW.

In order to ”sync” the address generation station so that it generates
a new value only when the previous instruction is complete, we have an
”extra” input line ACC to the node which although
has no effect on the value generated, has the effect on the node’s firing
intervals. Note that the ”sync” line did not have to be fed from ACC, it
was just convenient in this example.– it simply mimics the behaviour of
”repeat forever” construction of the imperative style IPC shown earlier.

Pipelined machine with no branch type instructions. A sim-
ple modification of the first diagram (describing a sequential machine)
gives the description of a pipelined machine – we had to remove the
”sync” input line ACC from the address generation stage!! (See Figure
2b).

With this modification, the address generation stage produces a
stream of addresses which get buffered in the input line to next stage
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- the instruction generation stage. So, the input line PC’ refers to the
address cache. Using these addresses from the line PC’, the instruction
generation stage produces a stream of instructions which get buffered in
the input line IR of the instruction preparation stage, which is usually
referred to as instruction cache. And so on.

Note that now it is not difficult to see how the instructions are ”moving
along” the stages of the pipeline, which was a difficult proposition in
imperative style description.

These interstage buffers can be either multilevel storage structures
(to reflect its infiniteness), or its finite implementation can be done by
proper annotation and demand/acknowledge signals.

Note that the presence of two distinct nodes in the execution stage
(one for computing ADD instructions and the other for computing LW
instructions) clearly reveals the possibilities of issuing multiple instruc-
tions to a multifunctional machine, Of course, in that case the data
dependencies among instructions will have to be taken into considera-
tion.

If we are to restrict ourselves to pipelined but single issue machines,
then that can be easily described by introducing a ”sync” line ACC to
the instruction issue stage.

Pipelined machine with branch type instructions . In addition
to the system described in the last section, let us introduce a branch type
instruction BRZ (defined earlier). To keep the matter simple, we will
make a fair and realistic assumption that each stage takes equal amount
of time, and hence each stage may have at most one value.

In a pipelined machine, if a branch instruction is successfully executed,
a number of things will have to considered – the target address will be
the address of the next instruction to be executed; and as a result of
which, all previously generated addresses and the instructions which are
already in the pipeline have to be discarded. (Please refer to Figure 3.)

Modifying the execution stage: With the introduction of this new
instruction, we modify the execution stage by introducing two nodes (see
parts 1 and 2.)

The first node computes if the branch condition is true. And then,
if the branch is true (indicated by a T token on the branch line, the
following node computes In fact, if the branch is evaluated
to be true, a four value stream (T, F, F, F) will be generated. Reader
can ignore this for the time being without loss of continuity, and it will
be explained shortly.

Updating the next PC value to be the value of PC”: Now,
PC’ and PC” are OR-ed (multiplexed) using the value of the line branch.
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Figure 3. Segments of the Avon description of a speculative pipelined machine with
branch instruction

Initially, the value on the line branch would of course be F (false), and
as long as the current instruction executed is a non-branch type, then a
stream of F values will be on branch line, allowing sequential addresses
to be generated. If the value of branch becomes T, then the value on
PC” comes to PC. (See parts 3, 4 and 5.)

Flushing all intermediate stages of the pipeline:
In order to ”flush” all the intermediate stages, ie ”discard” all the val-

ues from the internal lines PC’ (gateway to instruction generator), IR
(gateway to instruction issuing stage) and the lines OP and OPR (gate-
way to the execution stage) we associate a new line condition (branch =
F). Thus, if and when branch value becomes true, the values from PC’,
IR, OP and OPR will be discarded. (See parts 6 and 7.)

As a consequence though, this will create ”bubbles” in the three
stages, and so no further values for branch will be generated. To make
these bubbles progress through the stages, we need extra F values fol-
lowing a T value on the branch line.

Similarly, to initially ”fill” the pipe, the init values of branch are to
be set accordingly for each stage of the pipeline, and are shown on the
diagram.

Finally, putting together the entire description is simply a matter of
connecting the appropriate lines. (Please note that the ADD and the
LW units were left out from the diagram for space.)

3. CONCLUSION

In this paper, we have attempted to show that Avon, a dataflow graph
language, is not only a powerful language for general purpose computa-
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tion, but it also proved to be useful in describing machine architecture in
a natural and intuitive way that is not possible with control flow based
imperative languages.

Our future research will focus on describing other aspects of machine
architecture and constructs of communicating sequential processes.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

W. B. Ackerman, Dataflow Languages, IEEE Computer, Feb, 1982.

A. Deb, Data Flow Languages, In Encyclopedia of Library and Information
Science, Vol. 66, Marcel Dekker, 2000.

M. Broy, Ed., Control Flow and Data Flow - concepts of Distributed Program-
ming, Springer-Verlag, vol. 14, 1985.

E. A. Ashcroft et. al., Lucid - A formal system for writing and proving programs,
SIAM J. Comp., 5, pp. 519 - 526.

E.A. Ashcroft and W. W. Wadge, Lucid, the Dataflow Programming Language,
Academic Press, 1985.
R. S. Nikhil, The Parallel Programming Language Id and its Compilation for
Parallel Machines, In Proc. of the Workshop on Massive Parallelism: Hardware,
Programming and Applications, Academic Press, 1990.

J. R. McGraw, et. al., SISAL: Streams and Iteration in a Single Assignment Lan-
guage, Reference Manual 1.2, M-146, Lawrence Livermore National Laboratory,
Livermore, CA, March 1985.

A. Deb, Avon: A Dataflow Language, In Second International Conference on
Supercomputing, Florida, USA, pp. 9 -19, International Supercomputing Institute,
1987.

A. L. Davis and R. M. Keller, Data Flow Program Graphs, IEEE Computer,
pp. 26 - 41, Feb. 1982.

Lipsch R. et al, VHDL: Hardware Description & Design, Kluwer, 1989.

S. Johnson, Synthesis of Digital Design from Recursive Equations, MIT Press,
1983.

L. Cardelli, An Algebraic Approach to Hardware Description and Verification,
Ph.D dissertation, Univ. of Edinburgh, 1982.

Arvind end Shen, Using Term Rewriting Systems to Design and Verify Proces-
sors, IEEE Micro, pp. 36-46, June 1999.

Kahn, G. The semantics of a simple language for parallel programming, In
Information Processing 74, pp. 471-475, North-Holland, 1974.

Lee, E. A. et all, Synchronous Data Flow, In Proc. of IEEE, pp. 55-64, Sept
1987.

Gautier, T. et al, SIGNAL: A declarative language for synchronous programming
of real-time systems, In Conference on Functional Programming Languages and
Computer Architecture, pp.257-277, LNCS, 274, Springer-Verlag, 1987.



ENGINEERING CONCURRENT AND REACTIVE
SYSTEMS WITH DISTRIBUTED REAL-TIME
ABSTRACT STATE MACHINES
Bridging the gap between formal and empirical approaches

Uwe Glässer and Mona Vajihollahi
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
{glaesser/mvajihol@cs.sfu.ca}

Abstract: This paper revisits the distributed real-time abstract state machine (ASM)
paradigm as a feasible, yet robust, approach to high-level specification and
design of distributed embedded systems. The flexibility in modeling reactive
system behavior, the well defined underlying concurrency framework, and the
ability to gradually sharpen requirements into specifications, inspires viewing
the ASM paradigm as an agile formalization method that directly supports
fundamental practical needs in modeling such systems.

Key words: distributed embedded systems, requirements specification, agile formalization.

1. INTRODUCTION

Distributed embedded systems implicate decentralized control structures
and asynchronous communication protocols. As such, they are characterized
by their concurrent and reactive behavior, making it particularly difficult to
predict dynamic system properties with a sufficient degree of detail and
precision under all circumstances. Typical examples are embedded control
systems and distributed protocol architectures used in automotive control,
industrial automation, e-business applications and wireless communication.
The inherent complexity and intricate nature of such systems clearly demand
for reliable and predictable design approaches in order to establish the key
system attributes in early design phases prior to coding. Unfortunately, it is
common practice, even when dealing with complex concurrent and reactive
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behavior, to deeply rely on informal requirements—regardless of the lessons
that should have been learned from previous experiences:

“There is a strong tendency on the part of people in general, and
engineers in particular, to pass quickly and casually through the
problem-definition phase of system design and focus almost
immediately on solutions. A satisfactory solution to the right problem
is often better than an excellent solution to the wrong problem. ”[6]
Classical engineering disciplines, in contrast, widely use well established

formalisms (such as the circuit diagrams and blueprints in electrical and
mechanical engineering) for gaining the mathematical precision needed to
sharpen informal requirements into reliable specifications. Inevitably, the
evolution of systems design will eventually lead to a shift in the design
culture towards mathematically well founded approaches. Not yet clear is
how formalization can effectively be used as a design instrument that serves
the fundamental practical needs.

The goal of this paper is to critically review the abstract state machine
(ASM) paradigm [14], [4] regarding its potential for high level specification
and validation of concurrent and reactive systems. Specifically, we discuss
fundamental issues related to suitability, practicability and robustness of the
approach. How can on gradually sharpen requirements into specifications?
How to draw the boundary between formal and informal specifications, and
how can they complement each other?

ASM models have been used extensively for specification and reverse
engineering of hardware and software architectures (e.g. [11],[7],[12],[1]),
semantic foundations of system modeling languages (including SDL [9],
SystemC [16] and VHDL [5]) and programming languages (like Java [17]),
and a variety of protocols (including real-time aspects [15]). A computation
model that is frequently used for concurrent and reactive systems is the
distributed ASM (DASM) model, a generalization of all other ASM models.
Practical applications dealing with distributed embedded systems often use a
restricted form obtained by imposing additional real-time constraints [9],
[12],[1]. In this paper, we concentrate on the DASM model and its variant,
the real-time DASM model.

Section 2 discusses the idea of agile formalization. Section 3 illustrates
the semantics of concurrency, reactivity and time. Section 4 exemplifies the
embedding of an ASM into its environment. Section 5 concludes the paper.

2. AGILE FORMALIZATION

This section briefly illuminates some fundamental aspects of combining
a formal semantics framework with informally described requirements.
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Informal descriptions are useful and necessary for dealing with abstract
requirements in early design phases. However, they are usually ambiguous,
incomplete, and often even inconsistent. Furthermore, informal descriptions
are not executable and thus provide very limited support for experimental
validation of the correctness and completeness of requirements. To eliminate
such deficiencies, one would like to gradually sharpen informal
requirements into precise specifications (effectively turning “English” into
mathematics) with a degree of detail and precision as needed.

Formal methods indeed seem to work best at the requirements level [2].
However, formalization may not help us to identify missing requirements,
and “difficulties caused by lack of understanding of the real world situation
are not eliminated by use of FMs; instead the misunderstanding gets
formalized into the specifications, and may even be harder to recognize
simply because formal definitions are harder to read by the clients” [2].
Still, formalization prior to coding results in a much better understanding of
the requirements in early design phases, where it is most meaningful, and
thus can indeed improve the quality of the resulting software dramatically.

Viewing the ASM paradigm in the light of agile software development
[8], the very nature of this formalism clearly is that of a “light-weight”
formal method (in the spirit of agile methods). Oriented towards practical
system design needs, the ASM formalism emphasizes feasibility, flexibility
and robustness instead of heavy mathematical machinery. As such, it offers
a good compromise between mathematical elegance and practical relevance.
This is accomplished by combining a universal abstraction for representing
system states with a minimal state transition language. Since there is no a
priori fixed language for defining the initial states of an ASM, one may use
whatever language is appropriate (e.g., first-order logic, algebraic languages,
etc.). Conceptually, this even allows for combining formal and informal
notations in the form of literate specifications where this is appropriate.

The idea of ‘agile formalization’ materializes in the notion of ASM
ground model as discussed in [3],[4]. Particularly interesting for dealing
with concurrent and reactive behavior are the underlying abstraction
mechanisms for modeling the continuous interaction between a system and
the operational environment into which the system is embedded—especially
as one usually starts from a fuzzy understanding of how actions and events
in this environment actually affect the system behavior.

3. CONCURRENCY, REACTIVITY, TIME

Abstract state machines (originally called evolving algebras) have been
introduced by Yuri Gurevich in [14]. We assume here some familiarity with
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the basic ASM concepts and will recall only definitions that we explicitly
address in this paper. For further details on theoretical foundations, see [13].

3.1 Concurrent Computations

A DASM A is defined over a given vocabulary V by a program and a
non-empty set of initial states. An initial state of A specifies a valid
interpretation of V over some potentially infinite base set X. A consists of a
collection of autonomously operating agents from some finite domain
AGENT. Intuitively, the agents of A model the concurrent control threads in
distributed computations of A. Agents interact with each other by reading
and writing shared locations of global machine states. The underlying
semantic model regulates such interactions so that potential conflicts are
resolved according to the definition of partially ordered runs.

A (partially ordered) run of a distributed ASM A is given by a triple
satisfying all of the following four conditions [14]:

1.

2.

3.

4.

M is a partially ordered set of moves where each move has only finitely
many predecessors.

is a function on M associating agents with moves such that the moves
of any single agent of A are linearly ordered.

assigns a state of A to each initial segment Y of M, where is the
result of performing all moves in Y; is an initial state if Y is empty.
The coherence condition: If x is a maximal element in a finite initial
segment X of M and Y = X – {x} then is an agent in and
is obtained from by firing at

While the above definition is elegant and concise, it may not be obvious
how one can imagine DASM runs in concrete applications, and, particularly,
what does the coherent constraint mean?

Intuitively, a run specifies a class of possible executions of A. In general,
there is more than one partial order required to specify all the possible
executions of A. For a given partial order there may be more than one
(even infinitely many) actual executions of the underlying DASM model
that can be derived from Of particular interest among these are the
linearly ordered runs, each of which is the result of a linear transformation
applied on (effectively ordering all those moves that are incomparable
under in an arbitrary way). In that respect, there are two interesting
observations [14]:

All linearizations of the same finite initial segment of have the same
final state.
A property holds in every reachable state of a run if and only if it
holds in every reachable state of every linearization of
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To further illustrate the meaning of the coherence condition in the above
definition, Section 3.2 considers two simple but meaningful examples.

3.2 Sample DASM models

We illustrate here fundamental semantic aspects of partially ordered runs
by means of two sample DASMs, where the first one is derived from [10].

Example 1. Suppose that we have three propositional variables (dynamic
nullary relation symbols) door, window and light. Intuitively door = true
means that “the door is open”, window = true means that “the window is
open” and light = true means that “the light is on”. Now, consider a DASM
consisting of three agents: a door manager (agent d), a window manager
(agent w) and a light manager (agent l). The door manager opens the door
only when the window is closed (move x), the window manager opens the
window only when the door is closed (move y), and the light manager turns
on the light when either the door or the window is closed (move z).

Figure 1 shows all the possible DASM runs assuming that in the initial
state the door and the window are closed and the light is turned off. There
are six possible runs yielding to two different final states

We cannot have x < y because w is disabled in the state obtained from
by performing x. Similarly we cannot have y < x because d is disabled in

the state obtained from by performing y. Finally, we also cannot have a
run where x and y are incomparable, that is neither x < y nor y < x. This
follows from the fact that all the linearization of such a run must result in the
same state (thus it is impossible to go from to or or from to

Example 2. Suppose a single producer agent placing items, one by one,
into a queue. Two consumer agents concurrently attempt to remove these
items by popping the head of the queue. This example shows the effect of
the coherence condition in the presence of a race condition (between the two
consumers simultaneously trying to remove the same item of the queue).

We abstract from the details of adding items to the queue and removing
items from it. In each step of the producer, it adds a single new item to the
queue (move p). In each step of a consumer, it removes the head item if the
queue is nonempty (moves c1, c2). The programs of the producer agent and
the consumer agents can be written as follows.
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Figure 1. All possible runs of Example 1

Figure 2. Some segment of possible runs of Example 2

In the initial state the queue is empty. The most important property of
this DASM is that there is no run where c1 and c2 are incomparable. Note
that if both consumers would make an attempt to remove the same head item
at the same time (incomparable c1 and c2), this would not cause conflicting
update operations on the queue; rather it would produce a logical conflict
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(notably, a duplication of this item). The coherence condition prohibits this
behavior as any linear execution of such a run, for instance c1 < c2, can not
produce the same result. Figure 2 shows some segment of possible runs of
this DASM and helps clarifying this argument. Clearly, it is not possible to
go from states and to hence c1 and c2 are not incomparable.

3.3 Reactivity and Time

Externally controlled actions and events that may affect the system
behavior in any way are encapsulated in abstract interface functions, called
monitored functions. Such functions change their values dynamically under
control of the system environment and, by definition, are read-only within
the model. A typical example is a real time extension of the DASM model1

based on a notion of global system time as implied by a globally accessible
system clock. One can model such a clock by a nullary function now taking
values in a linearly ordered domain TIME. As an integrity constraint on now,
we assume that the values of now change monotonically over DASM runs.

monitored now: TIME
Conceptually, monitored functions formalize abstract interfaces making

the boundary between the system and its environment explicit and visible.
Also, they have a crucial role in shaping abstraction levels by allowing us to
move irrelevant details to the “background”. In practice, however, it is often
not obvious how to delineate the system from the environment and the
background as this problem is tightly linked to the question of how to find
the “right” level of abstraction. We try to give some answers below.

4. AN ABSTRACT CASH MACHINE CONTROL

In this section, we abstractly model an automated transaction machine, or
ATM, to illustrate the role of ground models in defining the embedding of a
system into a given operational environment.

4.1 Informal requirements for ATM transactions

Assume an asynchronous interaction model between three autonomously
operating entities involved in ATM transactions, namely: an ATM manager,
an authentication manager, and an account manager. For simplicity, we
restrict here on withdrawal transactions. A withdrawal transaction requires

1 Real time behavior actually imposes additional constraints on DASM runs, for instance, to
ensure that the agents react instantaneously (see [15] for details).
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the following logical steps: (1) input the bank card and PIN code; (2) check
the validity of both the bank card and PIN code; (3) input the amount to be
withdrawn; (4) check the account balance against the credit line; (5) on
approval update the account balance; (6) output cash or denial notification.

Assuming an unreliable communication medium, timeout mechanisms
may cause the cancellation of a transaction spontaneously at any time.

4.2 ATM abstract machine model

Basically, the ATM control forms a distributed embedded system which
should be modeled in terms of a DASM consisting of three separate agents
(each of which represents one of the interacting entities). Nonetheless, one
may start by modeling only the ATM manager assuming the roles of both
the authentication manager and the account manager to be marginal. That is,
the latter two entities are considered to be part of the global environment of
the ATM manager. This view allows us to focus on the key behavioral
aspects first. In subsequent refinement steps, this model then can easily be
extended to a DASM by making the behavior of the two other agents
explicit.

Intuitively, an ATM activation event occurs whenever a user requests the
service. The user then enters the card number, PIN code and the desired
amount. Beyond reading this data from the global environment, the machine
can also perform more complex interactions with the global environment to
get other, non-trivial information like authentication approval/rejection and
transaction approval/denial. The abstraction mechanisms allow us not only
to define (and decide about) the environment, but also enable us to freely
choose the level of detail and precision. Here, we abstract from all the inter-
actions between the ATM and its global environment (including the user and
the two other services) by assuming that they take place in the background
(called the local environment). The ATM agent communicates with its local
environment through various monitored functions. Henceforth, we refer to
the local environment as environment. In this initial ATM control model,
neither the behavior of the authentication manager nor that of the account
manager will be formally defined; still, we have of course some idea of the
operations they perform and the constraints that do apply.

The machine is idle in the initial state. ActivationEvent is a monitored
Boolean-valued function. Two other monitored functions getCardData and
getPinCode serve to obtain the input data as soecified by the user.

This way, a series of interactions between the ASM and the environment
takes place, and in each step some required information, ranging from the
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requested withdrawal amount to the user authentication, is obtained from the
environment and is used to perform the operation. Authenticated is another
important monitored function that abstractly provides the authentication
service to the ATM abstract machine. Once the information is authenticated,
the ATM obtains the requested amount.

While in the processing mode, the abstract machine checks whether or
not the requested amount gets approved by the account management service
(as indicated by a monitored predicate ValidTransaction).

On the other hand, if the card information is invalid or the requested
amount exceeds the approved credit line, the transaction is cancelled and an
error notification is generated.

This example also makes use of another convenient feature. ReleaseCash,
UpdateBalance and OutputErrorNotification are parts of the model that are meant
to perform the final operations. However, as we do not want to deal with the
details of such operations at this level of abstraction, we left the definition of
these rule abstract. The complete definition of these rules thereby is left to
the next refinement step.

Furthermore, a transaction in progress may be canceled anytime due to
an externally caused timeout event. CancellationEvent is a monitored Boolean-
valued function indicating the occurrence of a timeout. Hence, the complete
behavior of the ATM control is described as follows.

5. CONCLUSIONS

Based on experience from extensive applications of the DASM paradigm
to modeling distributed embedded systems and communications software,
we review here its potential for agile formalization and literate specification.
Specifically, we consider the problem of defining the boundary between a
system and its environment in semantic modeling of concurrency, reactivity
and time. This research contributes to the effective use of formal methods as
practical system design tools rather than toys for academic pleasure.
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This work discusses the adaptation of NoCs to real-time requirements, in
particular with respect to the fulfillment of task deadlines. It is shown that, for
soft real-time systems, the number of missed deadlines can be substantially
reduced by the utilization of a routing mechanism based on message priorities.
A core placement strategy based on message bandwidth requirements and also
on message priorities can also reduce the number of missed deadlines. The
paper also discusses the impact of these strategies on the energy consumption
of the system and shows that an interesting design space can be explored.
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1. INTRODUCTION

Technology scaling improvements will allow SoCs with dozens of IP
blocks and large amounts of embedded memory until the end of this decade1.
IPs can be for instance CPU or DSP cores and video stream processors,
allowing new applications in the fields of telecommunication, entertainment,
and consumer electronics. Communication architectures providing from
dozens to hundreds of Gbit/s (or Tbit/s)2 will be required. Furthermore, these
architectures must follow reusable templates, in order to amortize design
costs among several designs and to meet time-to-market pressures3.

The typical reusable communication template in current SoCs is based on
the bus approach. But, this approach has strong constraints that will inhibit
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its use in future SoCs. First, a bus does not scale with the system size, and its
bandwidth is shared by all the cores attached to it. Second, its operating
frequency degrades with the increase in the number of cores, because of the
growing capacitive loading in the wires. Finally, the power consumption
increases with the wire length, which increases with the circuit size.

Recent works1,2,4 have proposed the use of interconnection networks5 as
an alternative approach to interconnect cores in SoCs. The overall idea is
that such NoCs will meet the major requirements for future SoCs:
reusability, scalability, and parallelism, while coping with power constraints
and clock distribution. Furthermore, the application requirements, such as
time restrictions and performance, can be met with the correct customization
of NoC features, like routing policy, speed of the router, and buffer size.

This work discusses the application of NoCs to real-time (RT) systems,
in particular regarding task deadlines. Since predictability of execution and
communication times is mandatory for these systems, NoCs add another
level of complexity. For soft RT systems, the number of missed deadlines
can be substantially reduced by a routing mechanism where messages with
tighter deadlines have higher priority. A core placement strategy based on
message priorities and bandwidth requirements can also reduce the number
of missed deadlines. The paper also discusses the impact of these strategies
on energy consumption. We show that an interesting design space exists,
where a right combination of strategies may result in an adequate trade-off
between soft RT requirements and energy consumption.

We discusse related work in Section 2. Section 3 presents concepts about
NoCs. Requirements of RT applications and their impact on NoC design are
considered in Section 4. Section 5 introduces the approach proposed in this
paper. The placement methodology is detailed in Section 6. Experiments and
results are shown in Section 7. Section 8 gives concluding remarks and
discusses future work.

2. RELATED WORK

High performance is obtained thanks to the available parallelism in the
network, and scalability is achieved thanks to the network characteristic of
regularity. Most of the works focus on the concept of using the regular NoC
tile-based architecture, but they do not address the mapping problem.

Hu and Marculescu6 present an algorithm to solve the mapping problem,
by considering the communication energy consumption. This algorithm
minimizes the energy consumption under specified performance constraints,
but does not consider RT restrictions.

Bolotin7 proposes a QoS NoC, where inter-module communication traffic
is classified into four classes of service. Once communication requirements
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of the target SoC have been identified, the network is customized. First, the
modules are placed so as to minimize spatial traffic density. After,
unnecessary mesh links and switching nodes are removed, and bandwidth is
allocated to the remaining links and switches according to their relative load,
so that link utilization is balanced.

In our work, we embed the QoS aspect into the mapping problem, in
order to achieve QoS while looking at smaller power consumption.

3. NETWORKS-ON-CHIP

Several NoCs are described in the literature2,3,4,8. A NoC is composed by
a set of routers and point-to-point links interconnecting routers in a
structured way. Each router has a set of ports that are used to connect routers
with their neighbor’s routers and with the processing cores of the system.

NoCs are based on the message passing communication model. Cores in
the network communicate by sending and receiving messages with a header,
a payload, and a trailer. A NoC is described by its topology and by strategies
for routing, flow control, switching, arbitration, and buffering. The topology
is the arrangement of nodes and channels in a graph. Routing determines
how a message chooses a path in this graph, while flow control deals with
the allocation of channels and buffers to a message as it traverses this path.
Switching is the mechanism that removes data from an input and places it on
an output channel, while arbitration is responsible for scheduling the use of
channels and buffers by the messages. Buffering defines the approach used
to store messages when the router arbitration circuits cannot schedule them.

3.1 THE SoCIN NoC MODEL

SoCIN9 is a scalable network based on a parametric router architecture to
be used in the synthesis of customized low-cost NoCs. It uses wormhole
packet switching and a deterministic XY-routing in order to ensure deadlock
freedom at a low cost. The communication model uses message passing, and
cores communicate by sending and receiving requests and responses. SoCIN
uses wormhole packet switching10. A distributed approach for arbitration is
used, and there is a round-robin arbiter at each output channel of a router.
Flow control is based on a handshake strategy. Buffering is performed at the
input channels, and there exists a p-words FIFO buffer at each input channel,
where p depends on the application costs and performance requirements.
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4. NOCS AND REAL-TIME REQUIREMENTS

Predictability represents the most important requirement for embedded
applications with real-time restrictions. But other aspects of QoS, like
performance, can be important too. Moreover, for embedded systems,
application requirements (memory footprint, power) are more restrictive.

Embedded systems using NoCs may achieve reusability, scalability, and
parallelism, while coping with power constraints. Furthermore, application
requirements, such as timing restrictions and performance, can be met with
the correct customization of NoC features. But the use of NoCs in RT
systems adds complexity to the design, since the predictability of execution
and communication time is mandatory. For predictability, it is necessary to
know the time latency in the routers, since the communication time between
two cores in the NoC must be smaller than the end-to-end deadline of the
messages exchanged by them (i.e. from source to destination core).

In soft RT systems, a small number of deadlines may be missed, thus
smoothly and temporarily degrading system performance. As shown in this
paper, the number of missed deadlines in a NoC can be substantially reduced
by the utilization of a routing mechanism based on message priorities, where
higher priorities are given to messages with tighter deadlines. For hard RT
systems, where deadlines cannot be missed, this mechanism must be
eventually combined with a larger channel bandwidth. But it is important to
notice that the required increase in bandwidth would be substantially larger
in a hard RT system if there was no priority-based routing mechanism.
Another important design aspect is the average time of the communications,
which is directly related to the total energy consumption (of course the
energy consumed in the core computations must also be considered). This
average time may be reduced by a core placement strategy that maintains
close to each other those cores that require a high communication bandwidth
between them. Sometimes, however, these two requirements – reducing both
missed deadlines and energy consumption – are conflicting, and an adequate
trade-off may be found according to application requirements.

5. THE PROPOSED APPROACH

The proposed approach considers two relevant aspects: the core
placement in the NoC and the flow control of messages by the arbiters of the
routers. The main idea is to improve QoS of soft RT systems by reducing the
number of missed deadlines, while simultaneously trying to reduce the
average transmission time of messages and thus the energy consumption.

For the placement, we compare a random strategy with two other ones
where communication requirements are considered. In the first one, a
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straightforward approach assumes that the cost of a core in a given position
is related only to the communication requirements with other cores. Cores
communicating with a high rate should be placed nearby. In the second
strategy, both the bandwidth and the priority (deadline-based) of the
messages are considered. These strategies tend to decrease the average
message transmission time, and thus the overall energy consumption.

Considering flow control, two policies are proposed besides the original
round-robin arbitration mechanism of the SoCIN architecture. The first one
is a priority-based arbiter, which is also based on message deadlines. The
other alternative, besides priority-based flow control, uses multiple buffers at
the output channels of the routers, allowing preemption of lower-priority
messages by higher-priority ones. These priority-based mechanisms decrease
the number of missed deadlines and thus increase QoS for soft RT systems.
However, they also tend to increase the average message transmission time,
since messages with lower priority may be blocked for larger time intervals.

Together, the arbitration mechanisms and the placement strategies build a
design space that can be explored during the design of a NoC. For each
application, with particular requirements considering task deadlines and
energy consumption, an ideal combination of mechanisms may be found.

6. PLACEMENT ALGORITHM

Given a distributed application, it is necessary to determine the best
placement of the processing cores over the network in order to match the
application RT constraints, while reducing the total energy consumption.

To model the placement problem, we define an Application
Communication Characterization (ACC) graph as the way the task
communications occur. It can be described by the relationships among the
application tasks, by the parallelism among message exchanges, and by the
bandwidth and priority required by each message. This behavior can be
modeled as an oriented graph, where vertices represent the application tasks,
that send and receive message, and arcs express the relationship among
tasks. The oriented arcs thus implement the paths for the messages and
express the communication pattern of the application. The arcs are weighted
in two alternatives. In the first one, the weight corresponds only to the
bandwidth required by the message modeled by the arc. In the second one,
the weight is given by the product between message priority and bandwidth.

Definition 6.1. ACC G=(V,A) is a directed graph, where each vertex
(i=1,2,...,m) represents an application task which sends and/or

receives messages, and an arc         (j=1,2,...,n) is the directed path between
the sender and receiver vertices of a message. For each directed arc
a weight defines either the bandwidth the application requires for the
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message represented by or the product bandwidth*priority. A position
is assigned to each i vertex.

The communication architectures can also be modeled as a graph, whose
vertices represent the routers in the NoC and the set of oriented arcs express
all the communication channels given by the topology. This data structure is
defined as the Architecture Communication Graph (ACG).

Definition 6.2. ACG is a directed graph, G’=(V’,A’), where each vertex
(q=1,2,...,m) represents a router in a NoC and each arc

(r=1,2,...,1) is a channel between two routers that are directly connected.
Furthermore, each router has a single local port, where a processing core is
attached to. For each directed arc a weight expresses the
available bandwidth of the communication channel it represents. This
parameter is taken from the network physical features such as channel width
and frequency. The way the arcs are connected represents the topology.

In order to find a placement, one must map each application task (vertex
of ACC) to a local port associated to a router (vertex of ACG).

Definition 6.3. Given an ACC and an ACG, for each vertex in
ACC there exists a corresponding vertex in ACG, and vice-versa, i.e.
there is a bijective mapping function

Finally, for each application message, it is necessary to find in the ACG a
path between its sender and receiver vertices, in order to determine if the
bandwidth offered by this path matches the one required by the application.

Definition 6.4. A path in ACG is an
alternating sequence of vertices and arcs from the sender to the receiver of a
message. A path is formed according to the routing strategy implemented in
the network routers the ACG represent.

Using the above graph representations, the problem of matching the
application real-time constraints, while reducing the total energy
consumption under performance constraints, can be formulated as the
problem of covering the rows of a m-row, n column, zero-one matrix

by a subset j; j=1,...,n; of the columns i =1,...,m; at minimal
cost. If we define if column j (with cost is in the solution, and

otherwise, then the problem can be formulated as:

Equation (1) ensures that each row is covered by one column, and
statement (2) is the integratility constraint. We can now formulate our
placement problem as a set covering problem: M is the set of vertices in the
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ACG used for each application message, This is so
because all n messages of an application cover the set M of routers in a NoC,
when they are sent over a network through their paths C.

Definition 6.5. A set is a path for one of the n
messages in an application:

In our problem, expresses the bandwidth (or the product between
bandwidth and priority) the message can reach. The semantic we adopted
for in the objective function says that if its associated bandwidth is
equal to or greater than the bandwidth required by the application; otherwise,
if the required bandwidth was not reached by the current placement.

Definition 6.6. Let b’ be the bandwidth for a given arc in a path
and B the required bandwidth for the message j:

As a consequence, minimizing the objective function means setting its
value as closer to zero as possible. When Z is zero, all bandwidths were
reached. This mapping problem has been proven to be NP-complete11, and a
number of heuristic solution algorithms have been presented in the literature.
We adopted for this purpose the Simulated Annealing (SA) algorithm12.

SA is a generalization of a Monte Carlo method for examining the
equations of state and frozen states of n-body systems. The concept is based
on the way liquids freeze or metals recrystalize in the process of annealing.
In this process, a melt, initially at high temperature (T) and disordered, is
slowly cooled so that the system at any time is approximately in
thermodynamic equilibrium. As cooling proceeds, the system becomes more
ordered and approaches a “frozen” ground state (T=0). SA has been used in
various combinatorial optimization problems and has been particularly
successful in circuit design problems13.

7. EXPERIMENTS AND RESULTS

Fig. 1 shows our experimental setting. The application cores are placed in
the NoC based on the traffic density of the communication (bandwidth) and
on the time priorities of the application (deadlines). Synthetic task graphs are
generated using TGFF14 and used as input to the placement tool15. The
placed NoC is then evaluated by a NoC simulation tool (NoCSim) in the
timing aspects. NoCSim simulates the exchange of messages according to a
previously defined communication bandwidth between two tasks. NoCSim
returns performance parameters as the maximum and average times required
to send each type of message. The deadline, as well as the bandwidth, is also
defined for each communication, therefore NoCSim also provides the
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number of messages that arrived after the deadline. NoCSim is specific to
SoCIN, with the addition of multiple buffers in the routers to allow message
preemption by priority, and has been developed in C++.

Figure 1. Experimental setting

To test impact of the placement and flow control strategies on the
communication traffic, we carried out two experiments, using two sets of
task graphs. The first set has tighter time restrictions than the second one, so
that its deadlines are harder to respect. The design space is shown in Table 1.

Results of the experiments, in terms of average message transmission
time (which is directly related to overall energy consumption, measured in
cycles) and percentage of missed deadlines, are shown in Table 2.

Following observations can be extracted from Table 2:
If the bandwidth-based placement combined with round-robin is used (I-
R), there is an average time reduction of 52.5% (from 31.12 down to
14.79) as compared to the original SoCIN network with arbitrary core
placement (0-R). However, a reduction is not observed when a
bandwidth-based placement is applied to NoCs using other arbiters.
In the case of placement strategies applied with a priority-based arbiter
(0-P, I-P, and II-P), there is a progressive reduction in the percentage of
missed deadlines – from 23 to 18 and 17 in experiment 1, and from 12 to
0.6 in experiment 2. However, the average message transmission time
increases (21.08, 25.36, and 28.49, respectively). The same behavior is
noticed with a priority-based preemptive arbiter (0-PP, I-PP and II-PP).
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As for the flow control, the use of a priority-based arbiter reduces the
number of missed deadlines in comparison to the round-robin arbiter, both
for random and bandwidth-based placements:

From 0-R to 0-P there is a reduction from 35 to 23% of missed deadlines
in experiment 1 and from 19 to 12% of missed deadlines in experiment 2;
From I-R to I-P there is a reduction from 33 to 18% of missed deadlines
in experiment 1 and from 2 to 0.9% of missed deadlines in experiment 2.
However, the average transmission time increases from I-R to I-P by
71.5% (from 14.79 to 25.36).
When preemption is used in a priority-based arbiter, the number of

missed deadlines decreases even more, but the average time increases again.
For example, in the bandwidth-based placement the reduction (from I-P to I-
PP) in the percentage of missed deadlines was aproximately 16% (18 to 15)
and 11% (0.9 to 0.8) for the first and second experiments, respectively, but
the average transmission time increased by 11,4% (25.36 to 28.26). By
comparing II-P to II-PP, we see that a more complex arbiter with premption
does not reduce the number of missed deadlines, since the priority-based
placement already reduced this value to an apparent lower bound.

It can be concluded that the flow control with priority reduces the number
of missed deadlines, but in general increases the energy consumption. The
application of priority with preemption reduces even more the missed
deadlines, but with an even higher energy consumption. In order to obtain a
smaller increase in energy consumption in these cases, a new placement
algorithm is required, considering the NoC dynamic behavior. The average
transmission time increases because of messages that are blocked by other
higher-priority ones: the placement algorithm should avoid communication
bottlenecks in channels that are used frequently by high-priority messages.

It can also be observed that a prority-based placement has the same effect
of reducing the percentage of missed deadlines as a priority-based arbiter, so
that a more complex arbiter with premption is not useful in this case.

8. FINAL REMARKS

In this paper we discussed two possible alternatives to adapt NoCs for RT
applications, where the correct predictability of execution and
communication time is required. The first was the impact of the placement of
the cores in the network in the behaviour of messages with priority. The
other alternative considered the way how the flow control is made by the
arbiter from the routers. We discussed a priority mechanism where the router
would dispatch first the message with highest priority, or still if there could
be preemption, when the router would have multiple queues of priorities.
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We proposed a core placement strategy based on message bandwidth
requirements and also on message priorities, in order to reduce the number
of missed deadlines. The paper also had discussed the impact of these
strategies on the energy consumption of the system. We had shown that an
interesting design space can be explored, where the right combination of
strategies might result in an adequate trade-off between soft RT
requirements and energy consumption.

As future work we plan to use an adaptive routing to reduce the average
message transmission time and therefore the energy consumption, while
sustaining RT behavior. Another approach is adapting the placement
mechanism for reducing the average time of message transmission when the
priority-based arbiters are used.
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Abstract:

Key words:

Digital video compression is a computationally intensive task, in which
motion estimation accounts for a significant portion of the arithmetic
operations. This paper presents ME64, a dedicated scalable hardware
architecture for fast computation of motion vectors. ME64 is a highly parallel
architecture, based on a matrix of 64 processing elements at its core, an I/O
interface, and comparison and control units. The proposed architecture was
implemented in an FPGA to treat reference and search blocks of 8x8 and
15x15 pixels, respectively. ME64 is scalable to be able to cover larger search
blocks if needed. It implements the full search algorithm using the SAD
criteria. ME64 was fully described in VHDL and prototyped in the Xilinx
XC2S150 FPGA device, with a maximum frequency of 33 MHz. Using this
FPGA device, ME64 reaches 2.1 GOps (billions of 8-bit operations per
second) and 107.32 frames (640x480 pixels) per second. The results herein
presented validate the ME64 against a software implementation, using an
external I/O data driver.

Hardware Architecture for Motion Estimation, Motion Estimation, Video
Compression.
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1. INTRODUCTION

1.1 Motivation

Digital video has a growing number of applications, such as in DVDs,
digital television, videophone, and PC multimedia. All these applications
require a large communication bandwidth and/or storage space.
Compression makes these applications feasible by reducing the amount of
data necessary to represent the video information.

Figure 1 shows a block diagram of a generic video compression system.
The pre-processing block performs color conversion and sub-sampling,
when necessary. Compression occurs inside the blocks: static image
compression and motion estimation, which are responsible for removing
spatial and temporal redundancy, respectively. Once compression is
performed, the resulting data is packed in a bitstream according to some
standard, MPEG-2, for example.

Figure 1. Generic video compression block diagram

Table 1 shows the computational effort to implement the main video
compression tasks in MOp (millions of 8-bit operations) per frame. This
table shows that the computational effort for motion estimation is more than
three times the effort for image compression.
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Since motion estimation is the most computationally intensive video
compression task, its implementation in a dedicated hardware device saves
hundreds of millions of operations and speeds up the task when compared to
software solutions.

1.2 Motion vectors

Motion vectors are used to represent the reference frame based on the
search frame, as shown in Figure 2. The reference blocks are represented by
a portion of the search block that has the same size of the reference block.
The motion vector points to the portion of the search block with the lowest
distortion when compared to the reference block. Each possible portion is
called a motion vector hypothesis.

Figure 2. Motion vectors, search block and reference block

To find the best motion vector hypothesis, an algorithm that defines the
search procedure and which hypotheses to consider is utilized in association
with some criterion for distortion computing. In practice, the most common
criterion is the SAD (sum of absolute differences) [5] [8]. Table 2 presents
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relevant algorithms for motion estimation and their operations requirement
in MOp per frame.

1.3 Previous works

Some relevant architectures for motion estimation have been developed,
as in [5] [4] [6] [9]. Their common features are that they are comprised of
linear or two-dimensional arrays of processing elements and all of them
utilize the SAD as the distortion calculation criterion. Their main
differences are the search block size, the I/O interface to input video data,
the level of hardware parallelism and the clock frequency.

The remainder of article is organized as follows: Section 2 presents the
proposed architecture, Section 3 presents the prototype used for validation
and Section 4 presents the results and conclusions.

2. THE ME64 ARCHITECTURE

2.1 General considerations

ME64 implements the full search algorithm for block matching-based
motion estimation. This algorithm was chosen due to its regularity and
precision. Full search is the most precise search algorithm, since it returns
the optimal motion vector hypothesis for a given search block. The analysis
is performed in a very regular way, which allows ME64 to save CPU time
by speeding up memory access through an efficient I/O interface and high
level of parallelism.

In ME64, the criterion for distortion computation is the SAD. This is a
common criterion in motion estimation hardware implementations [4] [6]
[9] because it does not involve multiplications or divisions.
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ME64 was designed to treat reference and search blocks of 8x8 and
15x15 pixels, respectively; therefore, 64 hypotheses are considered. One
motion vector is computed every 64 clock cycles. Motion estimation is
performed based on luminance data [1].

2.2 Architectural description

Figure 3 presents the ME64 high-level block diagram. The input
reference (Y) and search (SO and S1) data are organized by the I/O interface
in a way suitable for input to the Processing Matrix. The Processing Matrix
computes the distortion for all motion vector hypotheses and presents one
valid distortion value to the Comparison Unit at each clock cycle. The
Comparison Unit analyses these hypotheses and indicates to the Control
Unit through a NEW_MV signal pulse that a better hypothesis occurred. The
Control Unit, upon receiving this pulse, generates the MV signal based on its
own internal state.

Figure 3. ME64 high-level block diagram

The Processing Matrix is composed of 64 processing elements (PE), each
one responsible for the calculation of the distortion for one motion vector
hypothesis. The PE architecture is presented in Figure 4. The reference data
input Ri is stored in a register and presented in the output Ro, allowing for a
pipeline organization of the PEs. The difference between the B and Ri
signals is computed by ADR0. This difference may be inverted, depending
on its signal, by a controlled inverter logic gate, implemented through XOR
gates. The difference is then accumulated by ADR1 in the ACC register,
which is 6 bits larger than the input signal to avoid overflow. After 64 clock
cycles ACC stores the distortion in such a way that the SADij signal is
valid.
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Figure 4. Processing element architecture

The Processing Matrix is presented in Figure 5. Each PE is named PEij,
in which i stands for the line index and j stands for the column index of the
element’s position in the Processing Matrix. The R input signal feeds all PEs
through a pipeline created by connecting a PE’s Ro signal to the next PE’s
Ri signal. The four global buses feed local buses. The data from the GB1
and GB3 buses pass through a delay line with addressing function. Two
local buses feed one line of PEs. The local buses named LBi0 feed the B0
input to the PEs while the local buses named LBi1 feed the B1 input to the
PEs. Each PEij is responsible for the calculation of the distortion of the
block whose first pixel is the one located at the coordinates (i,j) in the
search block. Each PE starts computing one clock cycle that is delayed with
respect to the previous PE in the pipeline. For this reason, only one SADij
value is valid at each clock cycle. The SADij outputs from PEs feed the
M64 multiplexer which selects the unique valid SADij signal to feed the
SAD signal.

Figure 5. Processing Matrix architecture

The SAD signal is the input to the Comparison Unit. This unit, at each
clock cycle, analyses one distortion value and, if it represents a minimum, it
is stored in the MIN register and a NEW_MV pulse is generated.
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The Control Unit is a finite state machine implemented using an 8-bit
counter. The control signals are generated by applying a combinatorial logic
to some bits of the 8-bit counter. The Control Unit is also responsible for
generating the motion vector by sampling the addressing signal END at the
time a pulse is received from the NEW_MV signal.

2.3 Scalability

The proposed architecture may be instantiated to support larger search
blocks. For instances, the search block size is (k*8+7)x(k*8+7). Figure 6
presents an example of four ME64 instances to support a search block of
23x23 pixels.

Figure 6. Scalability property of the ME64 architecture

The R bus of each region receives the same data while their global buses
receive different partial search blocks. Note that the dead zones from inner
instances are covered by adjacent instances.

3. SYNTHESIS RESULTS

The proposed architecture was validated in simulation with the
ModelSim 5.5 tool and by a software tool (running on the PC platform) that
feeds data to the actual ME64 hardware implementation and reads back the
values of the motion vectors. In addition, to verify the quality of the ME64
hardware computation, the motion vectors were also computed by software
in the PC, and compared to the ME64 results for the same frames. The main
development tools used were:
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Hardware development tool WebPack 4.2, from Xilinx. This tool is
integrated with the simulation tool ModelSim 5.5, from Mentor Graphics.

Xilinx Spartan II Evaluation Kit, with the target FPGA prototyping
device XC2S150.

Pentium III 733 MHz microcomputer connected to a video source,
running MSWindows.

The ME64 full description was written in VHDL language. In this
description, the bit-width of the input signals Y, S0, and S1 were defined
based on a generic parameter named n.

During the development, simulation was exhaustively used for
validation. It also showed that the description with n=8 (as video is usually
distributed) occupies 1,918 logic blocks, which is more than the 1,728
available in the XC2S150 device. Figure 7 presents the number of logic
blocks taken up by ME64 for various values of n.

Figure 7. Number of logic blocks versus n

The XC2S150 device offers 12 configurable 4096-bit memory slices.
The ME64 architecture requires simultaneous access to its ten 256-bit
memory blocks. So unfortunately, each of ME64’s memory blocks had to be
mapped to different memory slice of the XC2S150, thus using up most of
the available memory.

The software developed interfaces to the prototype via the PC parallel
port. Due to the restrictions in the number of pins for communication using
the parallel port and the low availability of logic blocks in the XC2S150
device, the prototype was initially tested with n=4.

The prototype was tested at a slow speed (9.76 KHz) to accommodate
the slow communication channel provided by the PC parallel port. The
hardware results for the motion vectors of a full frame were compared to the



ME64 – A Parallel Hardware Architecture for Motion Estimation ... 325

software calculation done in the PC for n=8. This way, the ME64 hardware
calculations were validated.

4. CONCLUSION

With the FPGA running at 33 MHz, its maximum operating speed, the
proposed architecture can estimate motion for video at a resolution of
640x480 pixels at the rate of 107.32 fps (frames per second) or 41.96 fps for
a resolution of 1024x768 pixels.

Comparing the prototype against the PC software implementation, the
FPGA hardware prototype is 19.67 times faster and performs 437 times
more operations per second than a Pentium III 733 MHz running the
compiled version of the motion estimation software.

The ME64 latency is 192 clock cycles. The prototype uses 16 I/O pins
(for n=4), and the n=8 version would use 31 I/O pins. The prototype uses
71.1% of the logic blocks and 83.3% of the memory blocks available in the
XC2S150 FPGA device.

Considering the high ME64 computing power there is no reason to use
an algorithm other than the most precise, the full search. Moreover, in the
implementation of another algorithm, the expected decrease in the
operations rate requirement would not be directly converted to an increase
in the speed, due to the limitations imposed by the I/O rate that the FPGA
can sustain.

Table 3 presents a comparison of the proposed architecture against other
solutions. The frame rate normalization was done considering frame size,
reference block size and search block size.

The ME64 is among the fastest in Table 3. It is scalable, i.e. the frame
rate may be increased further and the search block size parameterized. The
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ME64 has a low I/O pin count and has a good ratio of operations to frame
rate. Given the ME64 efficient I/O interface and its pipeline architecture, the
hardware usage is 100% after initial pipeline fill latency.

Future developments include the design of different architectures of
processing elements. The proposed architecture can be used to implement
different algorithms such as hierarchical search or block clustering search.
The prototype can be integrated with external memory and an image sensor
aiming at a prototype running at the maximum simulated clock frequency.
Another tool to be developed is an automatic generator of VHDL
descriptions of motion estimation architectures based on the scalability
property of ME64. These descriptions would have the same throughput as
ME64 and a configurable search block size.
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