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Preface 

Where This Book Fits in; How It Came to Be 

Books on C++ and lately, Java, occupy a full shelf at the bookstore and more than ade­
quately cover the mechanical aspects of programming in C++. Books such as Booch's 
(1991) occupy the high plane of object-oriented design and analysis. Only a few, such as 
Budd's (1991), attempt to bridge the gap between coding and design, as we do here. Some 
features in the middle ground that make this book unique are: 

• its emphasis on formulating primitives from which all other desired functionality 
can be built; e.g., we develop primitives for lists and later devote a chapter to an 
original set of primitives for the containers hierarchy; 

• its integral use of semiformal behavior specification language based on straight­
forward state-transition concepts. 

• the differentiation between behavior and implementation with many examples. 
• its demonstration of a reusable heterogeneous container class library with full 

specification of each class and implementation in C++ and Java. 
• the elegance and power of the ensemble methods working on top of well-known 

properties (polymorphism, inheritance) - illustrated in nontrivial examples. 
• the payoff of the state-transition behavior specification in terms of testing meth­

odology. 

An Interview with the Author 

Perhaps the easiest way to explain the place and contribution of the approach developed 
here is to retrace the history of its development. Dropping the third person, I'll do this 
with an interview with myself. 

Q: What motivated you to do this project? 

A: When I first started to teach software engineering in 1985, there were no textbooks 
that could provide concrete guidance as to how to practice the discipline they preached. 
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The most unifying and rigorous framework came from Wymore's (1967) system engi­
neering concepts, which did not, however, apply to software directly. Fairley's (1985) 
book became my standard since it provided comprehensive coverage along with some 
discussion of formal methods that could be used to give meat to a course. Unfortunately, 
when one tried to follow the paradigm: specification~implementation ~verification, it's 
help quickly evaporated. The situation improved somewhat a few years later as the books 
by Liskov (1986) and Lamb (1988) appeared. They offered more examples of algebraic 
and trace specifications. Unfortunately, having derived from academic research, both 
couched their approaches in mathematical logic that undergraduates could not be ex­
pected to understand, let alone use. 

Q: How did object orientation enter? 

A: The teaching situation improved significantly with the emergence of object-oriented 
languages in usable form. With such concrete tools, the concepts of information hiding, 
data abstraction, and so on could be given tangible form. 

Q: Why didn't this solve the problem? 

A: There was still a disconnect between these widely distributed and commercial lan­
guages, such as SMALLTALK, CLOS (Stefik and Bobrow, 1986), and C++ (Stroustrup, 
1989); which were developed by the programming community, and their counterpart con­
cepts, being researched by the logic-based researchers. 

Q: When did you seriously start to tackle this problem? 

A: I first tried to fill this gap during a sabbatical year, 1991, spent with my former stu­
dent Norman Foo, a logic-based artificial intelligence researcher in Sydney. I felt that the 
trouble with the logic-based approach was that it obscured the underlying concepts that 
were evident from early automata and systems theory. Norman's earlier work with me on 
systems theory made him sympathetic to my approach, although he still believed that 
logic was the true answer (Foo, 1987). Our unpublished paper (Zeigler and Foo) showed 
how Nerode's concepts from automata theory (Arbib, 1969) provide a consistent founda­
tion that explains some of the mysteries and anomalies of formal specification. As of this 
writing, he paper still languishes in review, presumably because no referees can be found 
to confirm or deny its conclusions.) 

Q: What mysteries and anomalies are you talking about? 

A: The expressive power of algebraic specification was a puzzle. Could it go beyond the 
standard textbook examples of simple data structures such as stacks and queues? Several 
papers showed its limitations when slight additional behavioral features are added 
(Majster, 1977; Bertzliss and Thatte, 1983; Guttag and Homing, 1983). For example, a 
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stack with an internal marker eluded representation. Remedies were offered such as going 
to higher-order logics and introducing hidden components (Bergstra and Tucker, 1987). 

Q: What led you to your solution? 

A: While in Sydney, a report from Pamas' group (pamas and Madey, 1990) came out 
with a trace specification of a cursored list. Although not explicitly stated, the presump­
tion was that this could not be expressed with algebraic specifications. And, while made 
more understandable by the new tabular form, the trace specification of the cursored list 
looked highly suspect to me. It was as if a Turing Machine head were riding back and 
forth over the full trace of the operation history and reconstructing the information 
needed for the current state of the object. Why not represent this state in a more direct 
fashion? 

Q: Why not? 

A: Because if you stick with the given interface operators, this cannot be done. This and 
the algebraic extensions were trying to work with the given interface and as a conse­
quence were doing a simulation of the object rather than specifying the behavior of the 
object itself. 

Q: So the solution was to focus on complete state representation? 

A: Yes, when I returned home and started teaching the material again, it finally dawned 
on me that the only way to make specification direct and not a simulation was to find an 
appropriate set of state-representing queries, even if some of them were to be hidden. 
That's how I Came up with the specification of the list class in Chapter 3. The cursored 
list could then be directly represented by using the list state queries (in hidden form) and 
portraying the effect of motion operations on the cursor (see Problem 7 of Chapter 3). 
Implementation in C++ follows nicely using private inheritance (see Problem 5 of Chap­
ter 6). 

Q: What's the essential difference between your state-representing queries 
and traditional algebraic approaches? 

A: Traditional approaches tacitly assume that commands can be partitioned into upbuild­
ing and downbuilding subsets where the downbuilding ones can be eliminated by equa­
tions. The classic stack and queue are the prototype examples where the downbuilding 
pop and remove operations, respectively, are eliminated by equations that express their 
interplay with the upbuilding push and add commands, respectively. My approach con­
siders such elimination as being so unlikely in general that it is not worth considering, let 
alone establishing as the basis of a general approach. But this only became clear after 
working with the systems and Nerode equivalence concepts, and giving up this form was 
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painful. I had to convince myself with the characterization of the list behavior (Chapter 3) 
and later that of the general order class (Chapter 10) that what was gained was much 
more valuable than what was lost since stacks and queues in my approach are not as 
straightforward as in the traditional one. 

Going to state representation also made it important to find primitives for a behavior. 
In this way, the state representation, in the form of state-representing queries, would only 
need to support the primitives. 

Q: But if complete state representation is used, why not use state-oriented 
specifications such as Z? 

A: For two reasons. One, Z (Diller, 1990; Dumota, 1994) and other state-oriented speci­
fications (Jones, 1986) require that the state be specified in a set theory-based notation. 
This fixes the state quite strongly. State-representing queries, on the other hand, specify 
only what the return value type is and thus still leave the actual state representation deci­
sion to the implementation. 

Two, the command/query form still relates to the interface concept and also retains 
the form of the original algebraic specification. So it is possible to easily compute the 
number of state equations needed for complete specification. The syntax constraints of 
the algebraic approach are retained as well. 

Q: Why is this syntax important? 

A: It provides a crucible in which specification can be done. In fact, my students and I 
have implemented software that supports the specification process (Williams, 1992; Va­
hie, 1993). The initial input is the syntax (prototypes) of the constructor, commands, and 
queries. This is used to generate the set of left-hand sides of the required number of 
equations. The user then fills in the right-hand sides, and the software checks that the 
right-hand sides are syntactically correct. Of course, semantic correctness cannot be 
checked since the semantics are the specification itself. The software then generates test 
forms based on the equations along the lines of Chapter 7. 

Q: Why so much focus on testing as opposed to verification? 

A: Verification requires understanding of logical calculii (Woodcock and Loomes, 1988) 
that undergraduates don't have. Moreover, in today's state-of-the-art, it is still a difficult, 
error prone art that can be practiced by very few professionals. Testing, on the other 
hand, is more direct and intuitive. Designing for testability (Binder, 1994) is possible 
since tests can be generated directly from the behavior specification, and this gives strong 
motivation to learn to do such specification. Students with this background can go on to 
learn refinement (Whysall and McDermid, 1994) and verification methods in later 
courses. 
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Q: You said that systems theory was the guiding light in your approach. But 
doesn't category theory address the same issues in more rigorous form? 

A: Unfortunately, category theory (Goguen et aI., 1978) adds a second layer of abstrac­
tion to what is already almost too abstract for most undergraduates. Furthermore, I feel 
that the Nerode behavior equiValence concept is an adequate basis for object behavior 
specification and its simplicity evaporates when rephrased more abstractly in category­
theoretic terms. 

Q: Given their importance, how are systems theory and the Nerode equiva­
lence manifested in the book? 

A: The systems concepts (Zeigler, 1976, 1990) of structure, behavior, and their inter­
relation are phrased directly in terms of constructors, commands, queries, state transi­
tions, and behavior-generating simulations. This starts with their finite state manifesta­
tions and continues with the infinite state representations made possible by adopting the 
essentials of the syntactical forms borrowed from algebraic specification. 

Q: How did the HCCL come about? Aren't container libraries common? 

A: The HCCL owes much to the initiative of an enterprising undergraduate student, Lip 
Saw. I asked him to check if there was anything widely available in C++ that could du­
plicate the heterogeneous list capabilities of Lisp. Because nothing of that kind existed, 
he went ahead and did most of the implementation, documentation, and testing for his 
senior project based on the specification I developed. Incidentally, this paradigm might 
be good for many undergraduate senior projects or software engineering group projects. 

Q: Why devote so much space to ensemble methods? 

A: Ensemble methods are at the heart of the demonstration that classical iterator behavior 
can be specified in a manner that is neutral with respect to sequential and parallel imple­
mentations. In effect, classical iterator specification allows the characteristics of the un­
derlying technology (sequential computing) to influence the behavior specification. The 
original seed of ensemble methods lay in the for-all and map forms in Scheme and Lisp. 
But given the complexity of the classical iterator specifications (Lamb, 1990; Shaw, 
1981), I had to convince myself that the apparent simplicity of these forms was not an 
illusion. This eventually led to the test of expressive power set forth in Chapters 9 and 10. 
Could ensemble methods realize all the behavior in the container class hierarchy? It 
turned out that the original tell-all and ask-all methods had to be supplemented by three 
new ones (which?, which-one?, and reduce) to do so. This further emphasized the useful­
ness of seeking primitives, this time for a whole repertoire of behaviors (not just a single 
one). The end result, an informal proof of expressive power of the ensemble methods, 
shows that the same containers' behavior can be implemented in both sequential and par-
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aBel technologies. In other words, we can use object orientation to hide these technolo­
gies within container classes. 

Q: Andfinally, why is that important? 

A: Because we can develop systems based on containers by working at the specification 
level and delay the decision of which technology to use to the implementation phase. 
Also, we can have portability from sequential to parallel technologies and partition proc­
essing between sequential and parallel modes for optimal efficiency (Cho, 1994). This is 
the approach taken in the development of the DEVS-C++ simulation environment 
(Zeigler and Louri, 1990; Zeigler et aI., 1996), which achieves both high-level portability 
and high performance. 
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Introduction for the Student and the Instructor 

Why a Principled Approach Is Needed 

Formal approaches to software development are gaining greater acceptance in practice 
these days. This is especially true in projects where safety is absolutely critical, such as in 
airplane control software, or where a software crash could cause a major foul-up such as 
in the telephone system. But it is also true in general as software developers strive to 
achieve higher levels of maturity on the Software Enterprise Institute's (SEI ) scale. This 
is a model of achievement that is becoming widely accepted as a credential necessary to 
qualify to bid on a contract. So it is important that students have not only the basic pro­
gramming skills but also the understanding of formal principles that enable them to fit 
into high SEI-ranking software organizations. 

This book is based on the belief that object orientation provides a powerful way to 
build complex software systems. This belief is supported by the overwhelming adoption 
of c++ as the programming language of choice, with installations in the hundreds of 
thousands. Nevertheless, a programming language by itself does not provide a set of 
sound principles to use - you can just as easily program poorly in C++ as in its nonob­
ject-oriented predecessor, C. Thus, this book aims to provide formal principles for object­
oriented system development that guide the effective application of object-oriented pro­
gramming constructs. 

Technology Invariance and Skills Survival 

C++ is the programming champion today, as was Fortran in the past, but it is hard to 
guarantee that it will remain so in 10 years. Technology today is moving toward net­
worked and distributed computing, and this will certainly influence the programming­
language standard. Today we can already see the rise of Java, the object-oriented lan­
guage for World Wide Web programming. But standards and specifications are more 
permanent than languages and technologies. We can see this as the premise underlying 
the effort to define a Common Object Request Broker Architecture (CORBA). This ef­
fort, supported by many of the world's leading information age companies, is to provide 
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workable specifications that will enable objects to interact by adhering to common inter­
faces while hiding the details of their implementations (vendors, languages, technologies, 
and so on.) 

But principles are even more permanent than specifications. So the concepts we pre­
sent here, while shown to work in C++ and Java, are also aimed at future languages, 
technologies and systems that are likely to be distributed, parallel and global. They will 
help you surf with the waves of technology change that can be expected in the next cen­
tury. 

Toward a Disciplined Realistic Software Development Process 

What distinguishes the principled programming process of the book from current prac­
tice? A series of diagrams will suggest the answer. Figure 1 depicts our natural pro­
gramming tendencies. There are three steps: 

1. conceptualize: think about the problem. 
2. write code: express your ideas directly in programming form. 
3. debug: execute and modify the code until it does what you want. 

~e-8 

Figure 1. Common programming practice. 

On the other hand, software engineering texts prescribe methodologies for software 
development that are much more disciplined. Figure 2 illustrates our version of such a 
methodology. According to it, you should 

1. conceptualize: think about the desired behavior of the software. 
2. specify: express the behavior exactly. 
3. concurrently 

• implement: write code that realizes the desired behavior, 
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• develop test plan: design tests that reveal whether the code actually does re­
alize the desired behavior. 

4. debug: correct the flaws revealed by the tests until the tests are all satisfied . 

. E,---Ire--

~ 

Figure 2 Idealized software development process 

This scenario imagines that you can think: through all of the situations encountered by 
the software application and determine what it is expected to do in each. Having done 
this, you can proceed to implement the system in coded form. Now, since the desired 
behavior has been defined precisely, tests can be developed based on it before actual im­
plementation. So after both have been completed, the tests are executed on the imple­
mented system. This can be called a "waterfall model" since the work progresses down­
stream with no reversals. 

The waterfall model has, alas, become the model that methodologists love to hate. 
Ordinary people just can't practice what it preaches, and numerous amendments to it 
have been proposed that are more in keeping with what humans can do. Nevertheless, the 
individual phases it identifies are essential to the principled development of object ori­
ented software. However, rather than require that they be carried out in rigid order, we 
view the situation as in Figure 3. We are constantly conceptualizing the problem, getting 
a better understanding of it, as we iterate through the phases. You may not succeed in 
exactly specifying the desired behavior at first, but this attempt puts you in a much better 
position to implement the code since you have a well-thought-out blueprint to guide you. 
When you develop the test plan based on the specification, you may notice some things 
wrong with it: nothing prevents you from going back and modifying the specification 
accordingly. The same goes for revisiting any of the phases. Having a good test plan 
makes the process of debugging much more efficient than the conventional way of doing 
it and makes the resulting software much more reliable. 
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Figure 3 More realistic software development process 

This book will help you understand how to carry out each of the circled tasks in 
Figure 3 and to appreciate why this approach is better in terms of improved software de­
velopment and, just as importantly, in terms of the increased longevity of your software 
skills. 

Objects and Systems Concepts 

Some of the concepts to be developed are associated with the specification, implementa­
tion, and test plan tasks: 

• specify behavior: 
o objects 
o states 
o constructors, queries, commands 
o state equations 

• implement: 
o classes 
o inheritance 
o hierarchical construction 
o class reuse 

• develop test plan: 
o convert state equations to tests 
o coverage 
o efficiency 
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o test reuse 
These concepts merge two streams of ideas. Object orientation provides an operation­

al level tool kit that supports effective software development. However, the framework 
that provides the guiding light to achieve such effectiveness is that of systems theory­
specifically, its concepts of state and behavior, and of hierarchical system construction. 

We'll demonstrate the methodology by designing a library of container classes, that 
is, classes that work like lists to hold objects. Furthermore, these classes, called the Het­
erogeneous Container Class Library (HCCL), will be built with features that enable them 
to be reused again and again in the construction of complex systems. And we will show 
how they can be implemented in the paralleVdistributed technologies on the horizon. So 
it will be worth understanding their behavior, from the specifications given, independ­
ently of their implementation. 

Teaching and Learning 

This book is intended as a text offering a semiformal, principled introduction to object­
oriented software design and application system programming. The presentation is fo­
cused at the level of junior/senior (third or fourth year) undergraduates in computer sci­
ence and engineering. While all the elements of C++ necessary to understand the ap­
proach are provided, the book should be supplemented with a manual or programming­
level exposition of C++ to supply further mechanical details, such as how to invoke the 
compiler, how to write make-files, and so on. The presentation assumes a modest back­
ground in programming and acquaintance with data structures. Although C++ is the pri­
mary vehicle for illustrating the concepts, other languages also appear. Scheme and Lisp 
are mentioned in some of the problems. The last chapter illustrates the major concepts in 
the Web programming language, Java. 

A course based on the book should serve as a prerequisite to a full-scale software en­
gineering course. As object orientation takes firmer root, many computer science and 
engineering subfields will be taught from an object-oriented perspective with C++ (or 
other 00 language) software. In this scenario, a course based on this book would become 
a prerequisite to many such courses. 

The student will be unfamiliar with the concepts, but very likely, the instructor will be 
too. Seeing examples of applications before getting down to hard work should provide the 
motivation to move forward. However, a book must have a logical order where the con­
tent precursors of any instruction unit precede its presentation. Hence, complex, realistic 
examples appear at the end only when all the tools have been developed. But there is 
nothing to prevent teaching and learning in a more holistic style-suitably distilling the 
gist of later material to motivate the groundwork that must be understood first. For exam­
ple, every implementation should be tested. So the test methods in Chapter 7 can be in­
troduced, and practiced, piecemeal after the discussion of specification in Chapter 2. Both 
instructor and student are encouraged to mix and match from all parts of the book as 
needed. 
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Web Access 

Access to further infonnation and source code is provided on my research group's World 
Wide Web site: http\\:www-ais. ece. arizona. edu. This site also features ad­
vanced application of HCCL to discrete event modeling environments that support both 
serial and parallel/distributed simulation. Please surf to the Web site to discover how 
powerful the concepts developed in this book really are! 
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1 
Object Orientation and State Systems 

This chapter uses simple state machines to introduce the basic concepts of object orienta­
tion. You have run across state-system concepts in earlier courses, such as discrete math. 
One immediate advantage of using such concepts is that they enable us to describe the 
functioning of an object in a form independent of any particular software implementation. 
Using state diagrams, we can specify what functionality we want to obtain and then in­
vestigate different ways to achieve it. One of the simplest, yet nontrivial, examples of a 
finite state machine is the binary counter. First we implement this machine in C using a 
nonobject-oriented implementation. Then we will show how this machine can be imple­
mented in C++. This will provide the basis for comparing the two kinds of approaches to 
programming and thereby demonstrate the advantages of object orientation. 

1.1 Finite State Machine Example: Binary Counter 

When the binary counter is fed a sequence of Os and 1 s it responds with a predictable se­
quence of Os and 1 s. The 1 s in the output stream occur at every alternate occurrence of a 1 
in the input sequence. A state/output diagram for the binary counter is given in Figure 1. 
Note that 0 inputs never affect the state or output of the system; 1 inputs cause the machine 
to cycle back and forth between states 0 and 1. The only time the machine emits a nonzero 
output is when it is transitioning from the 1 state to the 0 state. 

1/0 

1/1 

Figure 1. State/output of a binary counter. 
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Binary Counter: Nonobject-Oriented Implementation 
Figure 2 shows how we might implement this behavior in C, the non-object oriented pre­
decessor of C++. To experiment with this device, we might "inject" a series of 1 's and O's 
and display the outputs (the arrow "-7" stands for "prints out"; it is not a part of C++ lan­
guage): 

printfCld".output(l)); ~ 0 
transition(1 ); 

printfCld".output(l)); ~ 1 
transition( 1); 

printfC 1 d" .output(1 »; ~ 0 
transition(1); 

printfCld" .output(l)); ~ 1 
transition(l); 

printfCl d" .output(l»; ~ 0 
transition(l); 

printfCld".output(l)); ~ 1 
transition( 1); 

Note that every second input of 1 results in an output of 1, as required. An input se­
quence of all zeros produces the same sequence as output. This is true no matter what state 
we left the counter in. Try it. 

There is an important constraint we have to observe in writing test sequences such as 
that above. We fIrst query for output with a particular input and then issue a command for a 
transition with the same input. Technically, this is called a Mealy machine (after a pioneer 
in computer science). In such a device, the input causes an output and a state transition at 
the same time. It would be inconsistent, for example, to request our implementation to out­
put its response to an input 0 and then give it a 1 input to make a state transition. 



int state = 0; 

void resetO{ 
state = 0; 
} 

int output (int inp){ 
if (state == 0) 

return 0; 
else if (inp == 1) 

return 1; 
else return 0; 
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void transition (int inp){ 
if (inp == 1) { 

if (state == 0) 
state = 1; 

else 
state =0; 

} 

Figure 2. Code for implementing the binary counter. 

Rather than remember this constraint, we can combine the query and command pro-
cedures into one procedure and use it instead: 

int outputTHENtransition (inp){ 
int save = output(inp); 
transition( inp); 
return save; 

) 

Using this new composite procedure we can inject an input sequence such as 110 this 
way: 

printfC 1 d" .outputTHENtransition (1 )); 

printfC 1 d" ,outputTHENtransition (1 )); 

printfC 1 d" .outputTHENtransition (0)); 

1.2 Problems with Nonobject-Oriented Programming 

Having introduced the implementation of the binary counter in C puts us in a position to 
point out some of the problems that occur in non object-oriented programming. After ex­
amining these problems, we will develop an object-oriented implementation of the same 
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device. This will allow us to demonstrate some of the software development advantages of 
object -oriented programming, 

The following problems are easily identified in the binary counter implementation. 

Everything is Exposed 

Defining the output and transition procedures separately is good because it allows us to 
define and test each of these aspects of the device separately. Such separation is always the 
best approach to getting an implementation to work properly. Moreover, combining the 
two procedures into one achieves the final goal of the implementation, namely to be able to 
input sequences and get the proper output sequences. However, having defined output and 
transition for our own scaffolding purposes, we really would not like to expose them to end 
users. They might, after all, forget the constraint and create an inconsistency between state 
and output (blaming us for it when its effect surfaces). There is no way to do this unless 
we can somehow encapsulate the implementation and expose only a portion, (i.e., output­
THEN transition), leaving the rest hidden to the user. Such encapsulation and information 
hiding is one important feature offered by object-oriented systems. Let's look at other 
problems with our C implementation that are readily solved with object orientation. 

Unrestricted Global Access 

There is no way in the C implementation to prevent the end user or some other part of a 
program from tampering with the internal state of the counter. For example, suppose that 
the statement 

reset(); 

appears somewhere in a program; and somewhere else - possibly far removed - output­
THENtransition is invoked: 

outputTHENtransition (1); 

Now suppose that further on in the code, the state is directly altered: 

state = 0; 

Since the state is not what it should be, a second invocation of outputTHENtransition(1) 
encounters a wrong state and yields a wrong output: 0 instead of 1. Tracking down where 
this invalid assignment was made can be excruciatingly difficult. After all, we might have to 
look through the whole program (and there could be millions of lines of code in a modem 
software system) to find the source of the error. 

The problem in this implementation is that state is a global variable-any user (person 
or procedure) can change it at will. What we want is for only inputs and, possibly, inten­
tional resets, to be able to change this state. So what we need is a way to encapsulate the 
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state within an interface that channels access to the hidden variables through intentionally 
specified queries and commands. 

No Convenient Replication 

In real hardware design, power-of-two counters (able to count up to 4, 8, 16, ... ) are made 
by cascading binary counters together, feeding the output of one as the input to the next. 
Each successive counter sees exactly half as many Is as its predecessor. So a 1 will appear 
at the output of a cascade of two counters for every four input 1 s, a cascade of three count­
ers will output a 1 for every eight input Is, and so on. To mimic this hardware approach, 
we need to be able to replicate device implementations at will. However, our current im­
plementation makes this rather tedious to do. 

One approach, for example, is to rewrite the same code with distinct variable and pro­
cedure names for each counter we need. For instance: 

int state 1 = 0; 

void reset 1 O{ 
state 1 = 0; 

and so on. Then to inject a 1 to a counter and feed its output to a successor, we can write 

int y = outputTHEN transition(l); 
outputTHEN transition 1 (y); 

Since we are not interested in the intermediate result itself, we could just as well write 

outputTHEN transition 1 (outputTHEN transition(l »} 

An input sequence of four Is would cause a final 1 output as required for a four­
counter: 

printf(" 1 d" ,outputTHENtransition 1 (outputTHEN transition (1 ») = 0 
printf("l d" ,outputTHENtransition l(outputTHEN transition (1») = 0 
printf(" 1 d" ,outputTHENtransition l(outputTHEN transition (1))) = 0 
printf(" 1 d" ,outputTHENtransition 1 (outputTHEN transition (1») = 1 

Of course using a text editor cuts down the tedium involved in copying code. But this is 
still not a very reliable or elegant way to do things. Object orientation provides the proper 
basis for such replication. 
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1.3 Benefits of Object Orientation: Binary Counter 
C++ Implementation 

How does object orientation solve the replication, exposure, and access problems just dis­
cussed? An object-oriented programming system (OOPS) is built around the concepts of 
object - a package of data and procedures, and classes - templates for generating such 
objects. In its simplest form, a class definition specifies the fields, called data members 
(also called instance variables), and the procedures, called the junction members (also 
called methods) that each of its instances will have. Figure 3 contains a class definition in 
c++ for the binary counter. 

Having made such a definition, we can create instances--objects with these instance 
variables and methods-at will using constructors, illustrated in Figure 4. 

In the program's environment, the global variable bcl is now bound to the instance of 
binary counters just created. This means that bc 1 has all the properties accorded to any 
instance of class binary counters-in this case, this means having a slot called state . Any 
other instance of binary counters, say bc2, that we choose to make would also have a slot 
called state. But since they are encapsulated in different objects, bc 1 and bc2, these fields 
are completely independent of each other. To verify this, we can initialize two instances 
with different states: 

binary_counter bc 1 (0); 
binary_counter bc2(l); 

We can apply the methods declared in the class declaration to any instance of binary­
_counter. This is done through message passing. For example, to send a message to bc 1 
to reset: 

bc l.reset(); 

Examine the code in the methods in Figure 3. You will notice that it looks exactly like 
the code in our original, nonobject-oriented implementation. However, in this case, the 
same code suffices for each and every instance that we wish to create - when a message is 
sent to an instance, its own environment is used to interpret that message. Thus the same 
message sent to bc 1 produces a different response than it does to bc2 when they are in 
different states. 
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class binary_counter { II define a closs called binary_counter 

private: II the following are private to the closs 
II (discussed in text) 

int state: II declare state as an Instance variable of 
II type integer 

int output (int input) { II define output as a query method 
if (input == 0) 

return 0; 

else if (state == 0) 

return 0; 

else 
return 1; 

void transition (int input) { II define transition as a command 

II method (shown by declaring void os 

if (input == 1) I 
if (state == 0) 

state = 1; 
else 

state = 0; 
} 

1/ its return value) 

public: II the following are public (explained In text) 

binary_counterOI state = O;} /1 define a constructor for 
II a closs 

binary_counter(int InitiaLstate) { II here is another choice 

II of closs constructor 

state = initiaLstate; 
} 

void resetO I state = 0; } 

int outputTHENtransition(int input) I 

int out = output(input); II declare local integer variable 
II called out and give it the value 
II computed by output 

transltion(lnput); 

return out; 

}; II end the closs declaration 

Figure 3. C++ class definition for binary counter. 



8 Objects and Systems 

II two ways in which closs instances can be creoted 

II are illustrated: 

binary_counter bc 1 = binary_counter(O);lldeclores and defines 

Ilbc 1 at the same time 

binary_counter bc2(O); II short form for achieving 

/I the previous result 

If an altemative form of creating an instance is to 

f f first declare a pointer to it: 

binary_counter' bcp; 

f f the actual instance is constructed using the general 
If constructor new: 

bcp = new binary_counfer(O); 

f I this can be combined into one step: 

binary_counter' bcp = new binary_counter(O); 

Figure 4. Illustrating constructors in C++. 

/ / the following Invoke the outputTHENtransition methods 
II for bcl and bc2, respectively: 

cout « 
"output of bc 1 is:"« bc 1.outputTHENtransitionCO) 

«endl; 
cout « "output of bc2 is: " 

« bc2.outputTHENtransition(1)« endl; 

As before, we can send the output of bc 1 to the input of bc2: 

bc2.outputTHENtransition(bc 1.outputTHENtransition(O» ; 

When referencing a pointer to an instance, rather than the instance itself, the arrow (-» 
replaces the dot C.). For example. having constructed bcp in Figure 4. we can send mes­
sages such as: 

bcp->outputTHENtransition(O); 
bcp->outputTHENtransition(l ); 
bcp->resetO; 
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1.4 Access Restrictions in C++ 

c++ makes a distinction between public and private access specifications in its class decla­
rations. Both data and function members may be declared as public or private (protected is 
another possibility, which will be discussed later). A private member can be accessed only 
within an instance environment; a public member can be accessed in any environment. 
Declaring a data member to be public makes it accessible for both reading and writing us­
ing the dot or arrow notation. In the binary counter, we want the state to be hidden within 
the encapsulated object, so we declare it to be private. Had we declared state to be public, 
its value could be obtained and altered anywhere; for example, 

int x = bc l.state; 
bc l.state = x + 1; 

This would leave us vulnerable to the same problems of global access in nonobjected­
oriented programming that we encountered earlier. 

In our class declaration, the methods output and transition were declared to be private. 
This achieves our objective of restricting these methods to be used only within the public 
method, outputTHENtransition. Recall that this approach ensures that output and transi­
tion cannot be called independently with different inputs. The effect of declaring a variable 
to be public can be achieved by defining methods to access its value. These are called ac­
cessors in object-oriented parlance. For example, instead of declaring state as public, we 
can define the two accessor methods: 

public: 

int geCstateO { return state}; 
void set_state(int val) { state = val; }; 

Note, however, the essential difference: by leaving state as public, we have the choice 
of not defining one or both of these accessor methods. Thus, in C++ we can allow read 
access to an instance variable while still preventing any inadvertent modification of it. 
How? Think about it before looking below! 

private: 

int state 0; 

public: 

int get_stateO { return state}; 

This defines get_state to access state while omitting seCstate (which would enable modi­
fying state) from the class declaration. In general, the state of an object refers to the as­
signment of values to its instance variables. The only means to observe or modify the state 
is to apply the methods of an object (send it the appropriate message). Get_state and out-
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put are examples of so-called query methods that return views of the internal state. 
SeCstate and transition are examples of so-called command methods that cause changes 
in state. Often methods such as outputTHENtransition contain both query and command 
components. 

1.5 Instance Generation, Information Hiding, and Restricted Access 
in OOPS 

Summarizing the lessons learned from the examples just discussed: 
• OOPS provides class declaration facilities that enable any number of instances to 

be generated (subject only to memory limitations), each having the same instance 
variables and methods. 

• Instances may transition between different states over time and may differ from 
each other in state at any time; the state of an object refers to the values assigned 
to its instance variables. 

• Methods, called queries, of a class are the only means by which the states of its 
instances can be viewed; the class designer can hide the internals of the object and 
expose only those aspects that are consistent with the "advertised" behavior. 

• Methods, called commands, of a class are the only means by which the states of 
its instances can be altered; the class designer can thus restrict changes to instance 
variables to only those aspects that are consistent with the "advertised" behavior. 

• Instance variables and methods can be hidden from public exposure by declaring 
them to be private. 

Problems 

1. 
(a) An n-counter generalizes the concept of binary counter-it counts up to n-l 

before returning to state O. Along the way it outputs O's until the transition 
from n-l to O. Define a class of n-counters, where n, a positive integer, is a 
parameter of the class (it is supplied an argument to the class constructor). 
Implement the class in C++. 

(b) Build a class of four-counters by using two slots to hold binary counters and 
then have the first send output to the second; the output produced is that of 
the second binary counter. Implement the class in C++. 

(c) In view of (a) and (b) how many ways are there to implement an n-counter, 
for given n? 

2. Define a class bank-accts in C++. There are two command methods: deposit 
and withdraw, each with a single argument, called amount. There is an instance 
variable called balance. Deposits of positive amounts can always be done. With­
drawals can only be done if the requested amount is covered by the balance. 
Study the following properties of 00 programming in this context: 
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• replication: open several accounts with different initial balances. 
• restricted exposure: suppose that a friend is not told how an account was ini­

tialized. Can she find out what the balance is? To rectify this situation, add a 
query: balance? that returns the balance in the account. 

• restricted access: even though an account's balance can now be obtained, can 
it be altered other than through the deposit and withdraw methods? 

Suppose you were trying to "break-into" an account. Could you do so? 

3. A finite state machine that keeps track of whether a variable has been set is shown 
below. It starts with the variable undefined. When the variable is set, it goes to the 
defined state. An attempt to set the variable again is illegal until a clear has 
changed the state back to undefined. 

set 

clear 

Implement this machine in C++ as a class def. Create at least two distinct instances of this 
class and show how the effect of a set command is different in different states. 



2 
Object Behavior Specification: 
Software Blueprints 

It may be difficult to imagine yourself simultaneously playing the roles of designer, im­
plementor, tester, and user of a software tool. But that's what best describes your activities 
if you are writing a program for your own later use. When you graduate, you might par­
ticipate in a software development team where it is now common that designer, imple­
mentor, tester, and other roles are assumed by specialists on the team. For now, let's stick 
with the case where you are the designer, implementer, tester and user of a software tool. 
Some form of abstract specification of the software is needed to facilitate communication 
among designer, implementor, and user. We will call it a blueprint (playing the same role 
as design sketches used by building architects) as illustrated in Figure 1. Suppose you are 
developing a set of classes in C++ or some other object-oriented language. 

/ 
8 

Figure 1. The mediating role of a software blueprint. 

• As designer you should create a blueprint to provide the implementor (yourself) 
with clear guide lines on the code to be written. 

• As tester, you should use the blueprint to develop your tests for correctness (i.e., 
to see if the classes realize the desired behavior). 

• Later, as user, you will be glad to have the blueprint around when you have for­
gotten how to use some of the features that were obvious to you when you were in 
the development stage. 

While needed by an individual developer such as yourself, such a blueprint is essential 
in a software team setting. Without it, the implementor and tester can't be sure what the 
designer has in mind, and later the user may not be able to find out enough about the avail-

B. P. Zeigler, Objects and Systems
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able features of the software to make it useful. Indeed, a less detailed, more readable form 
of the blueprint can be used to document the functionality in the form of a user's manual. 

We have already seen an example of a language-independent specification: the finite 
state diagrams for the binary counter in Chapter 1. This chapter will acquaint you more 
fully with what an object behavior specification should provide, enable you to understand 
such specifications, and even help you write some. 

2.1 Object Behavior Specification 

There are many forms that an object behavior specification can take, including state dia­
grams, tables, or statements in an appropriate logical calculus. However, we will stan­
dardize on one form in most of this book. In this section, we outline the form that this 
specification will take. Don't be put off if the form doesn't fully make sense at first. You 
can return to it for reference as you come across examples throughout the book. 

Here is the form of an object behavior specification: 

• class, the name of the class of objects to be specified: 
• constructors, one or more procedures to create instances of the class: 
• queries, methods that return values without changing the state of an object; we 

may also designate methods as hidden (corresponds to private in C++).: 
• commands, methods that may change the state and do not return values: 
• domain restrictions, which describe the restrictions governing method applica­

tion; 
• equivalences are the relationships that specify the behavior of the class instances; 

there are two main types: state equations and definitions. The number of state 
equations needed for a complete specification depends directly on the number of 
queries, constructors and commands (Figure 2): 

Number of state equations = 

Number of State Representing Queries 

x 
Number of Constructors + Number of Commands 

Reason: each query must be paired with each constructor and command 

Figure 2. Number of state equations. 
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Example of Object Behavior Specification: Combination Lock 

We will write a behavior specification for a class of combination locks that will function 
like real padlocks. OUf first step is to fonn a model of a padlock (Figure 3). 

input(n urrber) 
LOCK 

reset 

reset? I I I I I I I I 
open? key ok 

Figure 3. A combination lock. 

There is a definite sequence of steps that must be perfonned in order to open such a 
lock. First, the dial must be rotated fully three times to establish the proper initial condi­
tions. Thus in our model, there is a method to reset the lock. There is a combination, a se­
quence of three numbers, that when matched in the given order by rotations releases the 
catch and opens the lock. In our model there are 3 numbers to hold the combination, called 
the key vector. There is a vector, ok, of 3 corresponding boolean variables that record 
progress toward the goal. To represent the rotations of the dial, we send input messages to 
the lock object. If, after resetting the lock, the first input matches the first key then the first 
ok becomes T. Similarly, if the first ok is T and the second input matches the second key, 
then the second ok becomes T. Finally, if the second ok is T and the third input matches the 
third key, then the third ok becomes T. The lock opens when the third ok is T. 

As with all English-language descriptions or requirements, there are two major diffi­
culties: 

• ambiguity-there is more than one way to interpret the description, and 
• incompleteness--the description omits eventualities that can occur. (By Mur­

phy's Law, if a problem can occur, then it will occur). 

We need ways to specify desired behavior which are understandable, leave no room 
for ambiguity, and cover all possible conditions encountered in an object's operation. Am­
biguity is always present, and you have no doubt experienced it many times when given a 
program to write. Incompleteness occurs when only some of the conditions of the object's 
behavior have been considered. For example, the above description does not specify what 
happens when after inputting one or two correct entries, the following entry is incorrect. 
Does the lock just continue to wait patiently while you continue trying to find the right 
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number? Or does the lock reset itself immediately after the first bad attempt and oblige you 
to start over from scratch? 

Figure 4 displays a specification of the combination lock's behavior that can serve as 
the blueprint concept that was just introduced. l 

According to our model, key and phase are part of the state vector. Phase changes as 
inputs commands come in. In contrast, key is a parameter-it is not affected by inputs. 
However, we need to know the particular key of each lock instance to describe its behav­
ior. In order to properly represent the state of the lock, we define the queries - key? and 
phase? to correspond to key and phase in the model. Since we need to know whether the 
lock is reset or not to predict its behavior, one more query, reset?, is added in. Another 
query, open?, reveals whether the lock opens when the complete, correct sequence of in­
puts has been injected. However, it is not included in the state since its value is entirely 
determined by phase? 

Now to write a behavior specification, we need to write one equation for each paired 
combination of queries and {constructors, commands} (of course, typically this equation 
breaks into several cases). Since there are 

3 queries: {phase?, key?, reset?} 

and 

1 constructor {make-lock} + 2 commands: {reset, input}, 

the number of equations is 3 x 3 = 9 

Figure 5 displays them. Note that where multiple cases are distinguished, such as for 
the combination (phase?,input) on the bottom of Figure 4, the rules (condition, action 
pairs) are applied in sequential order. Note that the last rule is the default, which applies 
whenever none of the previous ones do. Here, this states that there is no effect of input on 
the phase? query when a wrong key element is tried. In other words, an unlimited amount 
of experimentation is allowed-only patience is needed to exhaust all the possibilities. 

1 The specification employs class list to be discussed in the next chapter. For ease of explanation, we 
assume we can make a list from three numbers list(numberl, number2, number3) and lookup 
the ith one using list-ref(list,i), also written as list(i). 
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lock 

constructor 

lock make-lock(numberl,number2,number3) 

queries 

boolean open?(lock) 
boolean reset?(lock) 

hidden 

list key?(lock) 

phase phase?(lock) / / for simplicity we use phase? instead of ok 

commands 

lock' reset(lock) 

lock' inputClock,number) 

Equivalences 

open?(lock) = (phase?(lock) = 3) 

/ / reset? applied after make-lock, reset, and input 

reset?(make-Iock(numberl ,number2,number3) = F 

reset?(reset(lock)) = T 

reset?(input(lock,number)) = F / / not reset as soon 
/ / as an input occurs 

Figure 4. Blueprint specification of combination lock. 
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II key? applied after make-Iock,reset, and input 

key?(make-lock(numberl,number2,number3» 
Iist(numberl,number2,number3) 

II the key is a parameter 
II determined at construction 

key?(reset(lock» = key?(lock) 
key?(input(lock,number» = key?(lock) 

/I phase? applied after make-Iock,reset 
phase?(make-Iock(numberl ,number2,number3»= 3 II lock starts open 
phase?(reset(lock» = 0 II reset also closes lock 

II phase? applied after input; this breaks down into several cases; 
II "rules" are applied in the given order; the first to be 
II satisfied is applied 

phase?(lock) = 0 & number= key?(lock)(O) 
=> phase?(input(lock,number» = 1 
phase?(lock) = 1 & number= key?(lock)(l) 
=> phase?(input(lock,number» = 2 
phase?(lock) = 2 & number= (key?(lock)(2) 
=> phase?(input(lock,number » = 3 
phase?(input(lock,number» = phase?(lock) 

Figure 4 (Cont'd). 

Clearly, this interpretation of combination lock logic is unambigous, but it is also not 
consistent with real padlock properties. Figure 5 displays an alternative specification that 
requires the key elements to be entered in the exact sequence of length 3. If anyone is en­
tered incorrectly, the user must reset the lock before trying again. 



2. Object Behavior Specification: Software Blueprints 19 

reset?(input(lock,number» = F \ \ reset becomes false as soon 

\ \ as an Input occurs 

... \ \ same as before 

phase?(lnput(lock,number » = 0 \ \ default case that forces 

\ \ the user to start again 

\ \ after missing a key element 

Figure 5. Alternative specification preventing trial and error. 

2.2 Simulating an Object Behavior Specification 

The two alternative specifications for the combination lock can be used to simulate the 
behavior of the lock. For example, the following sequence represents a successful attempt 
to open the lock: 

sequence 1 

lock = make-lock(numberl,number2,number3) 

open?(lock) -> T 

lock' = reset(lock) 

open?(lock') -> F 

lock" = inpuf(lock', key?(lock')(l)) 

open?(lock") -> F 

lock'" = input(lock",key?(lock")(2» 

open?(lock" ') -> F 

lock"" = input(lock'" ,key?(lock" ')(3)) 

open?(lock" ") -> T 

We can use the state equations to compute the responses to the queries shown. This 
works because using the equations, the state of the lock can be updated after each com­
mand. This is so because this state is represented by the query responses to the command. 
For example, the following is a complete simulation of the successful interaction given 
above: 



20 Objects and Systems 

lock = make-lock(number(3» 

open?(lock) = (phase?(lock) = 3) 

= (phase?(make-lockO) = 3) = T 

lock' = reset(lock) 

open?(lock') 

= (phase?(lock') = 3) 
= (phase?( reset(lock» = 3) = F 
lock" = input(lock', key?(lock')(l)) 
phase? (lock") 
= phase?(input(lock', key(l)?(lock'» 
= 1 

open?(lock") = F 

lock'" = input(lock" ,key?(lock' ')(2)) 

open?(lock"') = F 
lock Iv = Input(lock'" ,key?(lock"') (3» 

open?(lock Iv) = T 

The following sequence shows how "experimentation" can occur in the first specifica­
tion. 

sequence 2 

lock = make-lock(numberl,number2,number3) 

open?(lock) = T 

lock' = reset(lock) 

open?(lock) = F 

lock"= input(lock', number = key?(lock'), (1» 
open?(lock") = F 

lock"'= input(lock" .number!= key?(lock"). (2» 

open?(lock"') = F 

lock iv'= input(lock" ,number = key?(lock''') (2» 

open?(lock"") = F 

Using the second specification, here is a simulation of the same sequence that shows 
how experimentation is prevented: 
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lock = make-lockO 
open?(lock) = (phase?(lock) = 3) = (phase?(make-Iock(» = 3) = T 
lock' = reset(lock) 
open?(lock) = (phase?(lock) = 3) = 

(phase?(reset(lock» = 3) 
=F 

lock" = input(lock' ,key?(lock') (1)) 
phase? (lock") = phase?(input(lock' ,key?(lock') (1))) 

=2 

lock = input(lock'" ,number != key?(lock"') (2» 

phase? (lock") = phase?(input(lock' ,key?(lock') (1))) 

=2 

open?(lock IV) = F 
reset?(lock V) = F / / no further progress is possible until / / the lock is reset 

Note that each step in the simulation can, and must, be justified by an equivalence in the 
specification. We could have identified these justifications with comments at each step, but 
these were omitted in the interests of readability. However, to convince yourself of the 
correctness of a simulation, you should be able to write down the equivalences that justify 
each of its steps. 

2.3 DefInition of Behavior 

Note that there is a query, open? after each command in the foregoing sequences. How­
ever, since queries don't change the state, they have no effect other than to provide re­
sponses. This means that the complete behavior of an object can be represented by its re­
sponses to all possible query-terminated sequences of commands, such as the following: 

query-terminated sequence 1: 

lock = make-lock(number(3» 
open?(lock) 

query-terminated sequence 2: 

lock = make-lock(number(3» 
lock' = reset(Jock) 
open?(lock') 

query-terminated sequence 3: 

lock = make-JockO 
lock' = reset(Jock) 
lock" = input(lock', key?(lock') (1)) 
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open?(lock") 

Such query-terminated sequences can be used to test the object's behavior independ­
ently of its implementation. We return to discuss behavior-based test sequences in Chapter 
7 on testing methodology. 

Problems 

1. Implement a class of combination locks in C++ to satisfy the first behavior speci­
fication given in the text. Test your implementations with the same set of query­
terminated sequences of commands. Modify your implementations to conform to 
the second behavior specification given in the text. 

2. As it stands, the bank-acct class (Problem 2, Chapter 1) does not have the ability 
to allow an owner to reconcile this month's closing balance with last month's 
closing balance and her check-book record of transactions that have transpired 
during the month. Add a query record?(i) that returns the ith transaction (deposit 
or withdrawal) for the transactions that transpired since the last record? request. 
Also add a query last-balance? which returns what the balance was when the 
last record? was requested. Note that there are now two more queries to represent 
the state so the state vectors of instances must be correspondingly enhanced. In 
general, this means that the state vector required for implementing a desired be­
havior depends intimately on that behavior. 

3. A house alarm system is modelling by the following object behavior specification: 

constructor 
alarm make-alarm(key) 

queries 

boolean armed?(alarm) 
boolean open?(alarm) 
boolean sound?(alarm) 

hidden 
key key?(alarm) 

commands 

alarm' arm(alarm,key) 
alarm' disarm(alarm,key) 
alarm' open(alarm) 
alarm' close(alarm) 
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Equivalences 

armed?(make-alarm(key» = F 
open?(make-alarm(key» = F 
sound?(make-alarm(key» = F 
key?(make-alarm(key» = key 

open?(alarm) = F & key?(alarm) = key =>armed?(arm(alarm,key» = T 
armed?(arm(alarm,key» = armed?(alarm) 
open?() = F 
they?( ) = key 
armed?(disarm(alarm»)= F 
armed?(disarm) = no charge 
armed?(open(alarm)) = armed?(alarm) 
armed?(close(alarm» = armed?(alarm) 

open?(arm(alarm,key)) = open?(alarm) 
open?(disarm(alarm,key)) = open?(alarm) 
open?(open(alarm)) = T 
open?(close(alarm)) = F 

sound?(arm(alarm,key)) = sound?(alarm) 
open?() = F 
key = key?(alarm) => sound?(disarm(alarm,key)) = F 
sound?(disarm(alarm,key)) = sound?(alarm) 
armed?(alarm) = T => sound?(open(alarm)) = T 
sound?(open(alarm)) = sound?(alarm) 
sound?(close(alarm») = sound?(alarm) 

key?( arm(alarm,key)) = key?(alarm) 
key?( disarm(alarm,key)) = key?(alarm) 
key?( open(alarm) = key?(alarm) 
key?( close(alarm) = key?(alarm) 

4. Implement this specification as a class of alarms in C++. Write some query-termi­
nated command sequences, and use the specification to obtain the expected re­
sponse associated with each sequence. Use these sequences to test the implemen­
tations. 

5. Write a behavior specification for the binary counter presented in Chapter 1. Base 
your specification on current-state? as the state-representing query and output? 
as the other query, reset and transition being the commands. Note that it is diffi­
cult to write a specification in terms of outputTHENtranstion since it combines 
both a query and a command into one method. 



24 Objects and Systems 

6. Implement and test the following object behavior specification for a class of ob­
jects that provides read/write access restrictions to an encapsulated variable. 

constructor 
make-acc(pw-initial ,value-initial) 

commands 
acc'set-read(acc,pw,boolean) 
acc'set-write(acc,pw,boolean) 
acc'set-v(acc,value) 

queries 
boolean read?(acc) 
boolean write?(acc) 
value v?(acc) 

hidden 
pw get-pw(acc) 
value get-v(acc) 

Domain Restrictions 

set-write(acc,pw,boolean) = defined provided that pw = get-pw(acc) 
set-read(acc,pw,boolean) = defined provided that pw = get-pw(acc) 
set-v(acc) = defined provided that write?(acc) = T 
v?(acc) = defined provided that read?(acc) = T 

Equivalences 

v?(acc) = get-v(acc) II provided domain restrictions are satisfied 
read?(make-acc(pw-initial,value-initial» = T 
read?(set-read(acc,pw,boolean» = boolean 
read?(set-write(acc,pwJ» = T Ilwrite access enables read access 
read?(set-write(acc,pwJ» = read?(acc) 
read?(set-v(acc,value» = read?(acc) 
write?(make-acc(pw-initial,value-initial» = T 
write?(set-write(acc,pw,boolean» = boolean 
write?(set-read(acc,pw,boolean» = write?(acc) 
write?(set-v(acc,value» = write?(acc) 

get-v(make-acc(pw-initial,value-initial» = value-initial 
get-v(set-write(acc,pw,boolean» = get-v(acc) 
get-v(set-read(acc,pw, boolean» = get-v(acc) 
get-v(set-v(acc, value» = value 
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get-pw(make-acc(pw-initial,value-initial)) =pw-initial 
get-pw(set-pw(acc,pw,boolean)) = pw 
get-pw(set-read(acc,pw,boolean)) = get-pw(acc) 
get-pw(set-v(acc,value)) = get-pw(acc) 
get-pw(set-write(acc,pw,boolean)) = get-pw(acc) 



3 
Lists: Behavior Specification, Models and 
Implementations 

You are familiar with linked lists from earlier courses in programming. Some languages, 
such as Lisp and Scheme, provide lists as built-in data structures together with some es­
sential associated operations. But most languages don't provide lists as basic data struc­
tures, so we must create and manipulate them using their basic data-structuring and proce­
dure definition facilities. How would we go about defining a class of list objects and 
methods in such a language? 

Indeed, let's go one step further. Suppose that the language of interest provides object­
oriented programming features. How would we define lists as a class of objects? C++ is a 
case in point: it provides powerful object-oriented (00) features, but programmers must 
define their own list classes. Sure, object libraries, such as NIHCL, provide such classes. 
But to use these, you must understand the behavior of list objects to apply them with con­
fidence. 

The objective of this chapter is show how lists can be modeled as state machines-not 
finite but "infinite" state machines, since lists need not have an upper bound on their 
lengths. This will help us to understand how to describe their behavior in the terms we 
have already introduced: namely, as responses to query-terminated sequences of com­
mands. 

The repertoire of list manipulations consists of a large number of queries and com­
mands. Rather than try to characterize them all at once, it is more practical to start with a 
subset from which many others can be synthesized. Methods for building a bigger set of 
methods are called primitives for the bigger set. 

We shall use the following primitives: 

queries: length?, list-ref? 

commands: insert, remove 

The object behavior specification based on these primitives is shown in Figure 1. 

B. P. Zeigler, Objects and Systems
© Springer Science+Business Media New York 1997
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list( element) 

constructor 

list make-listO 

queries 

number length?(list) 
element list-ref?(list.number) 

commands 

lisf insert(list.element.number) 
list' remove(list .number) 

Domain Restrictions 

Iist-ref?(list.l) = defined provided that 0 <= i <= length?(list)-l 
remove(list.i) = defined provided that 0 <= I <= length?(list)-l 
Insert(list.j) = defined provided that 0 <= j <= length?(list) 

Equivalences 

length?(make-list()) = 0 
length?(insert(element.list.I» = length?(list) + 1 
length?(remove(element.list.I» = length?(lIst) - 1 

Iist-ref?(lnsert(element.llst.I).I) = element 
Iist-ref?(lnsert(element.list.i).j < I) = list-ref?(list.j) 
Iist-ref?(lnsert(element.list.I).j > I) = list-ref?(list.j - 1) 

list-ref?(remove(list.i). j < I) = list-ref?(list.j) 
Iist-ref?(remove(list.I). j >= I) = list-ref? (list.j+ 1) 

Figure 1. List object behavior specification. 
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3.1 Domain Restrictions and Legal Sequences 

There is a slot in the specification form in Chapter 2 called Domain Restrictions. This al­
lows us to specify constraints on the combinations of argument values for any of the meth­
ods defined in the specification. For example, the only positions that have elements in a list 
are those between its boundaries, namely 0 and the length of the list minus 1. Thus in list­
ref?(list.i) we must have 0 ~ i ~ length?(list) - 1 and we say that 0 ~ i ~ length?(list) - 1 is 
the domain restriction for list-ref? Similar considerations apply to the domain restrictions 
on remove and insert. 

Programmers often define exception conditions and implement exception handlers to 
deal with them. Such exception conditions are modeled as domain restrictions in object 
behavior specifications. For example, what should be the result of attempting to remove 
from an empty list? Although domain restrictions are an important part of behavior specifi­
cation, we leave the decision of how to deal with domain violations (in other words, ex­
ception handling) up to the implementor. For example, two different implementations 
could both correctly implement the list class but differ in the way they treat the problem of 
removing from an empty list. One might prevent the removal from happening at all; an­
other might return an empty list. By stating the domain restrictions, we define only the 
normal behavior of the object and expect it to be implemented correctly. This greatly sim­
plifies the task of specification, since it leaves the abnormal behavior to the implementa­
tion, where the context of the implementation can be taken into account. 

When domain restrictions are specified, not all query-terminated sequences are mean­
ingful. We say that a sequence is legal if no domain restrictions are violated at any step 
within it. A sequence is illegal if at least one domain violation occurs. For example, the 
following is a legal sequence: 

list' = make-listO 
list" = insert(element.list.O) 
list-ref? (list' ' ,0) 

In contrast, following are illegal sequences: 

list' = make-listO 
list" = insert( element ,list.l ) 

list' = make-listO 
list" = insert(element,list.O) 
list-ref?(list" ,1) 

Since the object behavior specification concerns itself only with capturing normal 
behavior it gives the desired responses associated with all the legal query-terminated 
sequences. 
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3.2 An Abstract Model for the List Specification 

Figure 2 displays a list in abstract fonn divorced of any particular computer realization. 
This representation, or model, should help to understand how the object behavior specifi­
cation for lists works. Intuitively, a list is, at any time, a finite sequence of elements-it can 
grow or contract, so its length may change. This suggests that the state of a list should be 
detennined by its length and by its elements in the order they occur. The queries length? 
and list-ref? provide precisely this infonnation. Let's state a criterion for a set of queries 
providing enough infonnation to represent the state of an object-this has to be stated 
relative to a set of commands: 

list-ref? -7 o 2 3 4 5 

QqDQD 
insert ~" 

list-ref? -7 o 2 3 4 5 

remo~ ,,' 

list-ref? -7 o 2 3 4 5 

Figure 2. Lists in abstract form divorced of any computer realization. 

A set of queries is a state-representing set if the value returned by each query, after any 
command, can be detennined by knowing the values returned by the queries before the 
command was issued and the values of the arguments in the command. 

By referring to Figure 2, you can see that length? and list-ref? are a state-representing 
set relative to insert and remove: 
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• The length of a list will increase (or decrease) by one whenever an element is in­
serted or removed. In other words, the value returned by length? is determined by 
its value before either command is issued. This is expressed by 

length?(insert(element.list.i» = length?(list) + 1 
length?(remove(element.list.i» = length?(list) + 1 

• What happens to the value "read out" by list-ref? at various positions after insert­
ing an element? Consider the insertion point: here list-ref? returns the element 
just inserted: 

list-ref?(insert(element.list.i).i) = element 

If the read-out point.i comes before the insertion point.i then the read-out shows no 
change. 

list-ref?(insert(element.list.i ). i < i) = list-ref?(list.j) 

If the read-out point comes after the insertion point, then the element at the read-out point 
is what was read out by list-ref? at the preceding position before the insertion: 

list-ref?(insert(element.list.i ). j > i) = list-ref?(list. j - 1) 

The reverse story happens in the case of remove: 

list-ref?(remove(list.i ). j < i) = list-ref?(list. j) 
list-ref?(remove(list.i ). j >= i) = list-ref?(list. j + 1) 

• To determine the list boundary we need to know its length. This explains why we 
need length? as a state representing query. The restrictions on insertion and read­
out points are stated by the following: 

o <= i <= length?(lIst) - 1 
o <= j <= length?(list) 

With one more piece of information-that the length of an empty list is zero-we can 
use the state equations just written to simulate the behavior of a list state machine. This 
provides us with a way of testing any particular implementation of a list class. The basic 
idea is that to be correct, an implementation must display the same behavior as that ob­
tained in the simulation. We'll return to this idea later. 
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3.3 Implementations and Models of Lists 

A very common way of implementing lists in such languages as Scheme or Lisp can be 
likened to a physical model consisting of two curtain rods with rings as elements. Figure 3 
illustrates the correspondences underlying this analogy. The two rods hold the head and tail 
parts of the list A read-out point can be anywhere on either rod. The insertion point (and 
removal point) is the gap between the rods. To insert a new element at a desired point, we 
have to move rings from one rod to the other across the gap until the desired insertion point 
lines up with the gap. The new ring is placed on the left-hand rod. To remove a ring, we 
get it into the end of the left rod and pull it off the gap. 

head part tal part 

Figure 3. The curtain rod model of list implementation. 

It is often helpful to visualize such physical models when constructing abstract data 
structures and other objects. Such concrete representations suggest ways to implement and 
test their computer counterparts. For example, the most common way to implement lists is 
through pointers, as we shall see in the later discussion of C++. Such implementations can 
be modeled by the railway car analogy illustrated in Figure 4. 

1 )=e{ K )=n 
00 00 00 

Figure 4. The railway car model of list implementation. 
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Here elements, the cars, are hooked together by coupling the hook of one into the ring 
of the next. To insert a new car between two linked cars, the two have to be uncoupled and 
the new car hooked into the car in front while having the car behind hook into it. A similar 
decoupling and recoupling is needed for removal. With toy cars that can be easily picked 
up, any such coupling can be easily modified. Not so for real railway cars confined to 
tracks! Here insertion, or removal, can only take place at a siding in a similar manner to the 
curtain rod model. 

3.4 Parallel Implementations of Lists 

So far we have considered only very standard computer implementations of lists along 
with their counterpart physical models. The memory of a conventional computer is organ­
ized as a (very long) sequence of words. There are only a few natural and efficient ways to 
implement sequential list structures in such a sequential memory. However, the rise of par­
allel computers may change all that. Parallel computers in the near future will have many 
thousands of processors, and it may be possible to implement lists in radically different 
ways-and get much faster execution as well. Imagine a "sea" of computers that can com­
municate with each other (Figure 5). 

list-ref? 

remove 

Insert 

length? 

englh 
4 

coordlnatOI 

~ I :010 I 5;j 
~ I d:IO I 

processors 

Figure 5. A massively parallel implementation of lists. 

Two types of computers, coordinators and processors, cooperate to realize list-like be­
havior. Active processors store data and have an index representing their position in a list. 
A coordinator receives the external commands and queries. When it receives an insertion 
command, the coordinator recruits an inactive processor, giving it the proper index and 
data. The newly activated processor is "tuned" to listen to its current "boss." A remove 
command results in the deactivation of a processor, enabling it to return to the pool of in­
active processors. The interaction between a coordinator and its listeners proceeds as fol­
lows (Figure 6). 
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Notice that in this "analogy," the sequential nature of a list is no longer reflected by a 
spatial arrangement as it was in previous models. Instead, each processor knows its posi­
tion in the list and can easily and quickly update this information: it takes only two com­
munication steps to complete each operation, no matter how long the list is! Later we will 
discuss how parallel implementations such as this can be neatly expressed in object­
oriented terms. 

when the coordinator receives list-ref?( i) 

If 0 <= i <= length - 1 I 
it broadcasts i to all processors simultaneously 

the processor whose index = i 
responds by returning its data. 

when the coordinator receives insert?(x,i) 

If 0 <= i <= length 

it broadcasts i to all processors simultaneously 

the processors whose indexes >= i 

increment their indexes 

a new processor with index = i and data = x 

is activated to listen to this coordinator 

and length is incremented 

when the coordinator receives remove( i) 

If 0 <= i <= length - 1 

it broadcasts i to all processors simultaneously 

concurrently: 

the processor whose index = i 
is deactivated and length is decremented 

the processors whose indexes >= i 
decrement their indexes 

Figure 6. Parallel implementation of list behavior. 

3.5 Proving and Testing Correctness 

Several quite distinct implementations of list behavior have been discussed. Furthermore, 
many more are possible now or will become feasible in the future. So it should be clear 
that we urgently need means of establishing that an implementation is correct. Ideally, the 
required behavior should be stated in abstract terms independently of any implementation. 
Fortunately, the equations we developed for list behavior satisfy this criterion. Later we 
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will see how such an approach allows us to formulate tests of behavior and sometimes 
prove that an implementation is correct. 

Problems 

1. Imagine a "rubber band" implementation of a list. In this model, every time an in­
sertion needs to be done, the band is stretched uniformly to make room for the 
new entry. Write a class definition for lists such as that for the railway car model, 
where the rubber band is represented by a vector and stretching is represented by 
copying the vector into a new one twice its size. Discuss the obvious disadvan­
tages of such an implementation with conventional computing technology. What 
might be its advantages in a technology for which stretching occurred without 
cost? 

2. Write a suite of tests for class list that can be used to test the behavior of any im­
plementation of this class. Show that your implementation in Problem 1 passes 
this suite of tests. 

3. Simulate the behavior of a list object using the object behavior specification given 
in the text. That is, select several legal query-terminated sequences and work out 
the responses by following the step-by-step computation of successive states that 
we can do using the equations of the specification. 

4. Append adds one list to the end of another so that they form one combined list. 
An elegant implementation of append is possible for the parallel "sea of proces­
sors" implementation provided that one coordinator can transfer its tuning fre­
quency to another. Write a protocol, similar to those in the text, for appending one 
list to another. 

5. (Optional: requires Scheme or Lisp background) Encapsulate lists, basic data 
structures in Scheme or Lisp, as a user-defined class, list. (Hint: define a single in­
stance variable, 1st, which will be treated as a (basic object) list. Define the meth­
ods list-ref? and remove to invoke the corresponding procedures of Scheme on 1st. 
In many implementations, there is a small problem with this: using the name of a 
method within its definition will cause an infinite recursion. A simple but inele­
gant solution is to change the names of the methods. (There are more fundamental 
solutions but they are beyond the scope of this book.) Implement insert by using 
cons and cdr in curtain rod fashion. Discuss the differences between lists as basic 
data structures and lists as user-defined objects. 

6. (Nonuniqueness of primitives). Show that the set {length?, head? ,rest?, add-to­
front, add-to-tail) is a set of primitives for list behavior, where 

head?(list) ::: Iist-ref?(list.Q) 
insert(rest?(list), head?(list),O) ::: list 

/ /rest?(list) is list with the first element 
/ /removed (if any) 

add-to-front(list, el) ::: insert(list,eI,O) 
add-to-tail(list. el) ::: insert(list.el.length?(list)) 
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(Hint: show that each of the methods in the set {length?, list-ref?, insert, remove} 
can be expressed in terms of the given set-use the curtain rod model to do so.) 

7. A cursored list has a cursor that moves one position at a time between the 
boundaries. The public commands are moveJeft, move_right, insert and re­
move at the cursor position. The public queries are aUeft_end?, aUight­
_end?, and read? at the cursor position. Write an object behavior specification 
for the class cursored list. (Hint: retain the queries of list as hidden and add a hid­
den query, cursor_position? Write the state equations for all pairs of state­
representing queries and constructor/commands.) 



4 
Inheritance Hierarchies and Hierarchical 
Construction 

This chapter introduces the concept of inheritance in object-oriented programming and 
design. Inheritance is an essential and powerful mechanism that enables new classes to be 
constructed on the basis of existing classes. Inheritance also helps to organize large 
software systems into manageable pieces through inheritance hierarchies. We also discuss 
a related concept, hierarchical construction, often called aggregation in database contexts, 
that allows software modules to be connected together to form larger systems. 

We will start by taking on the task of developing a class of objects that can realize any 
desired switching function. For example, Figure 1 shows a switching function called and­
gate. It has two input wires which can take on binary values, often represented by 0 and 1, 
or by FALSE and TRUE. The response of the and-gate to each combination of its inputs is 
shown in the table. A concise description of this behavior is that its output is the logical 
conjunction of its inputs (i.e., output = Inputl and Inpu12). In other words, both inputs 
must be TRUE for the output to be TRUE. 

The and-gate is an example of a switching function. Other examples are the two input 
or-gate and the one input not-gate also shown in Figure 1. There are an infinite number 
of others, each having a finite number of inputs and one output. It is well known that the 
and, or, and not gates form a set of primitives for all switching functions in the sense that 
any function can be built by interconnecting copies of these primitives. Thus, there are at 
least two ways of implementing a particular switching function: (1) directly, and (2) as a 
network of primitives. 

1nput1 ~ 
----{~ 

output? 

1nput1 Input2 output? 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

and 

Figure 1. Logic gates. 

Input1 InpuI2 output? 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

or 
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In this chapter we will show how the mechanism of inheritance greatly facilitates 
defining classes of objects such as switching functions that can be synthesized both directly 
and through network synthesis using hierarchical construction. 

4.1 Specifying and Implementing an and-gate 

The background for our inheritance presentation is set by considering how the and-gate 
might be implemented as an object. We assume that inputs arrive one at a time. Therefore, 
Figure 2 shows that there are two commands for inserting inputl and input2, respectively. 
Reset is a third command to prepare for another round. Output? is a query to obtain the 
and-gate response to its last two inputs. Ready? tells if both inputs have been received 
since the last reset. 

inse rt-inputl 
and-gate 

inse rt-input2 

reset 

ready? 
I num-inputs I 

output? I inputl I input2 I 
Figure 2. Interface for and-gate. 

The object behavior specification for the and-gate is shown in Figure 3. To obtain a 
state-representing set of queries, we add the queries num-inputs? (the number received so­
far), inputl? (the last received value of inputl), and input2? (ditto for input2). Ready? 
can be defined directly in terms of num-inputs?, and output? is defined directly in terms 
of the inputs. Therefore, neither needs to be included in the basic queries. Since there are 3 
queries and 3 commands plus a constructor, there are 12 ( = 3 x 4) cases defined in the 
specification. 

A class declaration for and-gate in C++ is shown in Figure 4. We start by making 
some declarations that help the readability of C++ code. 

enum ( FALSE,TRUE \; 

defines FALSE to mean 0 and TRUE to mean 1 

typedef unsigned int boolean; 

defines boolean to a new type having the same properties as unsigned int - C++ 
terminology for non-negative integers. (When possible, we save space by using unsigned 
int instead of int, which includes the sign.) 
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and-gate 

constructor 
and-gate make-and-gateO 

queries 

Derived 
booloutput?(and-gate) 
bool ready?(and-gate) 

hidden 
bool inputl?(and-gate) 
bool input2?(and-gate) 
num num-inputs?(and-gate) 

commands 
and-gate' insert-inputl (and-gate,bool) 
and-gate' insert-input2(and-gate,bool) 
and-gate' reset(and-gate) 

Equivalences 
input] ?(make-and-gateO) = F 
input2?(make-and-gateO) = F 
num-inputs?(make-and-gateO) = 0 
inputl ?(insert-inputl (and-gate,bool »= bool 
input2?(insert-inputl (and-gate,bool» = input2?(and-gate) 

lithe value in input2 does not depend on the inputl 
num-inputs?(insert-input] (and-gate,bool» = num-inputs?(and-gate) + ] 
input] ?(insert-input2(and-gate,bool »= inputl ?(and-gate) 

lithe value in inputl does not depend on the input2 
input2?(insert-input2(and-gate,bool» = bool 
num-inputs?(insert-input2(and-gate,bool» = num-inputs?(and-gate) + 1 
num-inputs?(reset(and-gate» = 0 

Domain Restrictions 

Ilreset doesn't clear the stored inuts just the count 
II of received values 

output?(and-gate) = defined if ready?(and-gate) = T 

Definitions 
ready?(and-gate) = (num-inputs?(and-gate ) = 2 ) 
output?(and-gate) = and(inputl ?(and-gate),input2?(and-gate» 

Figure 3. and-gate object behavior specification. 
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class and_gatel 

private: 
boolean input 1; 

boolean inpu12; 
int numjnputs; 

public: 

and-9ateOI 
resetO; 

1 

void insertjnputl(boolean inp)1 

inputl = inp; 
numjnputs++; 

1 

void insertjnpu12(boolean inp)1 
inpu12 = inp; 
numjnputs++; 

void resetOI 
numjnputs = 0; 

1 

boolean ready_qOI 
return numjnputs == 2; 

1 

boolean output()1 
return input 1 && inpu12; 

1 
I; 

Figure 4. C++ class declaration for and-gate. 

Examples of query-terminated sequences for the and-gate include: 

and_gate a = new and_gate; 
a->readyO; --> FALSE 
a-> insert-inputlTRUE); 
a-> insert-input2 TRUE); 
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a->readyO; -->TRUE 
a->outputO; -->TRUE 

a->resetO; 
a->readyO; --> FALSE 
a-> insert-inputlTRUE); 
a-> insert-input2 FALSE); 
a->readyO; -->TRUE 
a->outputO; -->FALSE 

insert-Input! 

Insert-Inputn 

reset 

device 

I num-Inputs ready? _ 

-out-pu-t?---II input! I __ -I,nputn 

Figure 5. The General switching function. 

4.2 General Switching Functions 

Figure 5 illustrates the general switching function that has n inputs and one output. We can 
try to formulate the behavior specification for a class of devices that can implement these 
switching functions as shown in Figure 6. Actually, since there is no limit on the number of 
possible input wires for such a function, the specification is given in parameterized form. 
The number of input wires, n, and the switching function, tn, are assumed to be 
parameters. For example, the and-gate is obtained by putting n = 2 and fn = and. 
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deviCe (n,rn) 

conotrucfor 

deviCe mak~eO 

hidden 

bOOInpulI?(devlce) 

bOOlnputn?(devlce) 

nurn nurn-inputs?(devlce) 

d9llk:e'insert-lnpul1(devlce.bool) 

devIce'lnserNnpu1n(devIce.booll 
device' resel(devlce) 

inputl ?(make-devlceO) = F 

Inputn?(mok~eO). F 
num-lnpu1s?(mot<e-devlceO) = 0 

Input I ?Onserl-inpul1(device,bool )l= bOO 

Inputn?(Insert-lnput1(devicebooO) = Inputn?(devlce) 

Inputl?Onsert-Inputn(devlce,bool». Inputl?(devlce) 

Inputn?Onsert-lnputn(device booI). bool 

num-lnpu1s?Onserl-inpul1(devlce,bool»· num-lnpu1s?(devlce) + I 

Inputl?(resel(devlce». Inpul1?(device) 

inputn?(reseI(devlce» = inputn?(device) 

num-lnpu1s?(resel(device» - 0 -
boo! output?(devlce) 

boo reody?(devlce) 

Dom«*l_ 

output?(devlce). defined ff reody?(devIce) = T 

D __ 

reody?(devlce)' (num-lnputs?(device)' n) 
output?(devIce)· fnOnputl?(device), .. ,Jnputn?(devlce» 

Figure 6. Object behavior specification for devices (switching functions). 
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4.3 Inheritance and Derived Classes in C++ 

Figure 7 depicts the inheritance hierarchy for class device and its subclasses. Our C++ 
implementation of this hierarchy uses instance variables to implement hidden methods. In 
general, we distinguish between a behavior inheritance hierarchy that specifies the behav­
ior of a collection of classes from an implementation inheritance hierarchy that represents 
the way this collection of classes is implemented in a particular language or environment. 
The distinction between behavior and implementation is as important in the context of a 
collection of classes as it is when dealing with one class. For example, we will see later that 
the container hierarchy is best specified with one hierarchical structure but that different 
hierarchical structures are better suited for serial as opposed to parallel implementation. 

device 

Input 1 ? (hidden) 
num-Inputs? (hidden) 

num-reqd? (hidden) 
ready? 
output? (virtual) 

Insert-Input 1 
reset 

net 

otilate andilafe orilate 
output? Input2? Input2? 

nand 
a? 
n? 

output? 

~ 
Insert-lnput2 Insert-lnput2 
output? output? 

o? 
n? 

output? 

al? 01? nl? 
a2? 02? n2? 

output? 

Figure 7. Behavior hierarchy for device and its derived classes. 

The interface declaration for device is shown in Figure 8. One major new feature to 
notice is that we have used the access qualifier protected in place of private. This is 
because we are looking ahead to using device as a base class to derive other classes using 
inheritance} in C++. For example, gate and net will be derived from device. C++ 
stipulates that private members of a base class are accessible only in the scope of the base 
class, not in those of its derived classes. Thus, as shown in Figure 9, private members of a 
base class are not accessible to the methods of any derived class. Now we, want the in­
stance variables that are private in device also to be private (and accessible) in a derived 
class such as and_gate. Thus, we designate these as protected - in accordance with the 
access inheritance rules in Figure 9, which summarizes the rules for all combinations of 
allowed access combinations of base and derived classes. 
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Another feature to notice in Figure 8 is the use of virtual in the declaration of the output 
method. We said earlier that this indicates that each derived class is expected to supply its 
own version of output. However, in C++, the real role of virtual is to support the important 
mechanism of dynamic binding - to which we will return later. 

class device { 

protected: Ilindicates that the following variables are private 
/land moreover, when inherited they are protected 
/I(hence also private) 

I lin any derived class 

boolean inputl; 
unsigned int numjnputs; 
unsigned int num_reqd; 

public: I I indicates that the following methods are in the 
I I public interface 

deviceO; 
boolean readyO; 
virtual boolean outputO; I I tells the compiler that derived 

I I classes will provide their 
Ilown version of this method 

void insertjnputl(boolean In); 
void resetO; 

); 

device::deviceO 
{ 

num_reqd = 1; 
) 

Figure 8. Class interface declaration for device 



4. Inheritance Hierarchies and Hierarchical Construction 45 

For class DERIVED:public BASE 
individual member access restrictions are inherited as follows: 

BASE public private protected 
DERIVED public not protected 

accessible 

For class DERIVED:private BASE 

individual member access restrictions are inherited as follows: 

BASE public private protected 
DERIVED private not private 

accessible 

Note: individual access specifications can explicitly override 
the inherited restriction 

Figure 9. Access inheritance in C++. 

Figure 10 shows classes gate and net declared as derived classes of device. Since the 
qualifier public is used, the rules in Figure 9 say that gate and net will each inherit all 
the public and protected members of device and treat them as public and protected, 
respectively. Most often we use the public modifier in deriving a class. However, we can 
use private instead. As shown in Figure 9, the effect of this is to make the public members 
of the base class private in the derived class. There are occasions when this makes perfect 
sense-when we want to totally encapsulate the base class so that only the derived 
interface is exposed (see the Problems). Now look at the constructors for gate and net in 
Figure 10. In C++, base class constructors are not inherited. However, they can be invoked 
within derived class constructors to have the same constructive effect. For example, since 
gate is derived from device, we can call the device constructor to perform a suitable 
initialization of num-read. Of course, within its body, the derived class constructor can 
still perform any other initializations that are relevant to the derived class. 
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class gote:publlc device / / declares gate to be a class derived 

/ / from base closs device 

goteO:devlceO() 
\; 

class net:publlc device 
( 

netO:device()() 
\; 

Figure to. Deriving gate and net from device. 

closs noCgate:public gate 
( 

public: 
noCgoteO; 
boolean output(); / / indicates that noCgate Is 

/ / providing Its own version 
\; 

Figure 11. Deriving noCgate from gate. 

class and_gate:publlc gate 
( 

private: 
boolean Inpu12; 
public: 
and-9ateO; 
void InserUnpu12(boolean in); 
boolean outputO; / / indicates that and_gate is 

II providing Its own version 

and-9ote: :and_goteO 
( 

num_reqd = 2; 

\ 

Figure 12. Deriving and_gate from gate. 
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Figures 11 and 12 depict the derivation of not_gate and and_gate from gate, 
respectively. Notice that the methods ready, inserUnputl, and reset are inherited without 
change from device (see the Problems). 

4.4 Using Inheritance for Alternative Implementations 

While every switching function can be implemented with the approach embodied in class 
gate, this approach may not be the most convenient, or even feasible, when the number of 
inputs gets to be large. Indeed, hardware designers must contend with such extremely large 
switching functions. Therefore, we provide an alternative approach embodied in a new 
subclass called net. Its definition simply declares it to be a subclass of device and enables 
it to inherit all the features defined for this class: 

net: inherit from device 

The new approach in net is to construct a switching function by synthesizing its 
behavior from a network of components. These components must have already been 
defined as classes of device. Initially, they may be subclasses of gate-and indeed, the 
primitives and_gate, or_gate, and not_gate are sufficient for this purpose. However, 
once a new subclass has been defined, it can be reused as a component to make an even 
larger network. Thus hierarchical construction is possible. 

input] 

input2~_ ........ L __ --------"" 

Legend 

a = and-gate 

a = or-gate 

n = not-gate 

Figure 13. Synthesis of exclusive-or from primitives. 
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Figure 13 depicts a network synthesis of the exclusive-or switching function. This 
function outputs a 1 just in case its inputs are different - it is like an or except that it 
excludes the case where both inputs are 1 s. 

The implementation of the exclusive-or network as class xor is shown in Figure 14. In 
the class defmition we have an instance variable for each component in the network. For 
example, we have instance variables a1 and nl holding pointers to an and_gate and a 
noCgate, respectively. In C++, pointers must be declared as data members in a class 
declaration. They must be defined (i.e., given an appropriate instance to point to in the 
class methods), usually in a constructor. For example, the pointers, a 1 and n 1, are given the 
addresses of and_gate and not_gate instances, respectively, in the constructor 
xor_gateO. 

The method outputO propagates the input values to the components in the proper 
sequence-making sure that a component receives all its inputs before sending its output to 
the next level. When the highest-level component has finally received all its inputs, its 
output is generated to be the output of the net. 

The following query-terminated sequence tests the behavior of an xor instance. It also 
illustrates the use of the features inherited from device. 

intmainO 

xor " x = new xor(); II declare and define instance of xor 
x->inserUnputl (FALSE); II inherited from device 
x->lnserUnput2(TRUE); 
if (x->readyO) II inherited from device 
{ 

if (x->output() ==FALSE) 
cout « "test satisfied:· ; 
else cout« -test not satisfied:·; 
} 

x->reset(); II inherited from device 
... II start next test 
} 



class xor:public nett 
private: 

boolean inpu12; 
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and_gate' a 1; / / declare instance variable to be a 

/ / pOinter to type and_gate 
and_gate' a2; 
noCgate • n 1 ; 
noCgate • n2; 

or_gate' 01 ; 

public: 
xorO; 

void inserUnpu12(boolean in); 
boolean outputo; 
) 

xor::xorO 

num_reqd = 2; 

a1 = new and_gateO;// define value of instance variable 
/ / to be instance of and_gate 

a2 = new and_gateO; 
n 1 = new not_gate(); 
n2 = new not_gate(); 
01 = new ocgate(); 
) 

void xor::insert-inpu12(boolean inp)( 
inpu12 = inp; 
numjnputs++; 

xor::output() 
( 

n 1->insertjnput1 (inpu12); 
n2->insertjnput1 (input1); 
a1->insertjnput1 (input1); 
a l->insertjnpu12(n l->output()); 
a2->insertjnpu12(inpu12); 
a2->insertjnput 1 (n2->output()); 
o 1->insertjnput1 (a1->output()): 
o 1->insertjnpu21 (a2->output()); 
retum ol->output();: 
) 

Figure 14. Class xor derived from class net in C++. 
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xor 

sum 

carry 

Figure 15. Sum and carry components of binary adder. 

4.5 Hierarchical Construction 

As mentioned before, predefined classes can be employed to provide components for 
larger nets. Figure 15 shows an example where two xor instances are connected together to 
implement a device called sum. The class definition is simple (Figure 16). 

class sum: public net! 
private: 
boolean input2; 
boolean input3; 
xor 'xl; 
xor' x2; 

public: 
sum(); 
void Insertjnpu12(boolean in); 
void insertjnput3(boolean In); 
boolean output(); 
}; 

Figure 16. Class definition for sum. 

The definition of the class methods is an exercise at the end of the chapter. The sum 
switching function does a very useful job when considered as operating on Os and 1 s. 
Indeed, it is part of the addition hardware in a digital computer. When two binary words 
are added, each pair of bits is added together using modulo 2 addition (xor) and the result 
is added to the bit carried from the previous pair. The carry bit is also a switching function 
that yields a 1 just in case there are at least 2 ones in the input. An implementation of the 
carry function is also shown in Figure 15; its class definition is left as an exercise. 
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The construction of a binary adder illustrates the power of hierarchical construction. 
In such bottom-up construction, the final device is synthesized in stages where compo­
nents at the next stage are built from components at the current or earlier stages. Each stage 
involves one or more classes that can be tested and debugged before their use in 
subsequent stages. 

4.6 Summary 

Inheritance is the replication of features, such as instance variables and methods, already 
defined for one class to the definition of another. Designating a superclass in a class 
declaration lets this class inherit all the features of the designated superclass. The new class 
is now called a subclass, or derived class, of the latter superclass, or base class. 
• Inherited features may be used without modification in a subclass, or they may be 

overridden by local definitions as needed. New features may also be added that make 
use of inherited ones. 

• Inheritance is the basic organizing concept in class hierarchies that provide alternative 
means to construct objects that have many commonalities, but also significant 
differences. 

• Hierarchical construction is performed by reusing instances of already defined classes 
as components in larger networks. 

Problems 
1. Specify the behavior of the subclasses of net: nor (which is not applied to the 

result of or) and nand (which is not applied to and). 
2. Specify the behavior of subclasses of net to implement the following 3 input 

switching functions: 
a) outputs a TRUE just in case all its inputs are TRUE 
b) outputs a TRUE just in case at least one of its inputs is TRUE 
c) outputs a TRUE just in case at least one of its inputs is FALSE 
(Hint: equivalently, it outputs a TRUE just in case not all its inputs are TRUE.) 

3. Supply the missing definitions for methods ready, insert-inputl, and reset in the 
class definition of device (Figure 8). Remember that they must be inherited 
without change, for example, in the definition of and_gate. (Hint: in ready use 
num-reqd, which is initialized upon instantiation). 

4. Complete the C++ implementation of the device hierarchy (Figure 1). Implement 
and test the xor derived class. 

5. Define the method output for the subclasses sum and carry, respectively, in 
Figure 15. 

6. (a) Extend the use of class net to allow for more than one output. For example, 
connect a sum instance and a carry instance to form a three-input, two-output 
half-adder. Continuing with hierarchical construction, n of these half-adders can 
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be connected together to form a full adder for n-bit binary numbers. Define such a 
class for n = 4. 
(b) Implement and test the four-bit binary full-adder in C++. 

7. Notice that the object behavior specification for device given in the text assumes 
that inputs are not repeated between resets, e.g., insert-inputl does not occur 
twice, causing and-gate to consider itself ready for output when actually only 
one of the input wires has been activated. Revise the behavior specification to 
declare any duplicated input between resets to be illegal. Revise the C++ 
implementation. How does this change what can be inherited? 

8. Rewrite the specification of cursoredJist (Problem 7, Chapter 3) by inheriting the 
specification of class list and writing only those new query/command pairs that are 
not specified in list. 



5 
Containers: An Object Behavior Specification 

Chapter 3 presented an object behavior specification of the list class and explained the 
advantages of such a specification. We saw that there are many ways to implement list 
behaviors - in particular, sequential and parallel implementations differ radically. In Chapter 
1 we mentioned that containers are basic classes that help store, retrieve and organize 
interacting objects. We said then that containers were generalized forms of lists. Actually, 
once we have freed ourselves from thinking in sequential processing terms, we can start with 
container as the more basic concept and derive lists as one of the special subclasses that 
happen to be natural for sequential processing but are not really fundamental in general. 

bag 
remove 
number-of? 

set 

odd 

relation 
odd 
remove 

ossoc-oll? 

tunction 

replace 

assoc? 

entity 
name? 
equo/-se/f1 

container 
Is-In? 
size? 
add 
ask-all 

queue 
remove 
front? 
(=mox?) 

ve 

stack 
list 

push (=odd) 
insert pop (=remove) 

tOP?(=max?) 
remove 

list-ref? 

ask-oll 

teI/-an 

Figure 1. Behavior class hierarchy for container. 

B. P. Zeigler, Objects and Systems
© Springer Science+Business Media New York 1997



54 Objects and Systems 

This chapter introduces the specification hierarchy of the container classes shown in 
Figure 1. The classes are roughly characterized as follows: 

• container - the base class, provides basic services for the derived classes; 
• bag - counts multiple object occurrences; 
• set - only one occurrence of any object is allowed; 
• relation - is a set of key-value pairs, used in dictionary fashion; 
• function - is a relation in which only one occurrence of any key allowed; 
• order - maintains items in given order; 
• queue - maintains items in first-inlfirst-out (FIFO) order; 
• stack - maintains items in last-inlfirst-out (LIFO) order; 
• list - maintains items in order determined by an insertion index. 

This chapter presents the unordered container lineage of the container hierarchy: bag -
> set -> relation -> function. Chapter 10 will continue with ordered classes. We will also 
introduce the concept of ensemble methods, which are related to the more common concept 
of class iterators, but are equally at home in both serial and parallel implementations. In a 
later chapter, we will discuss an implementation in C++ that can hide the underlying 
hardware so that both serial and paralleVdistributed environments can be accommodated. 

5.1 Class entity 

As shown in Figure 1, container is actually a subclass of the more basic class, entity. This 
latter class will actually be the base class for all user-defined classes whose instances can be 
placed into container instances. Class entity will provide methods that work hand-in-glove 
with those of container. Note that since container is derived from entity, container 
instances can be placed into other container instances, thus setting up the basis for 
hierarchical construction. 

The object behavior specification for entity is given in Figure 2. 
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entity 

constructor 

entity make-entity(name) 

queries 

name name?(entity) 
entity equal-self?(entity.entityl) 

commands 

equivalences 

name?(make-entity(name)) = name 

equal-self?(entity.entity) = entity 

equal-self?(entity.entityl) = make-entity('null") 

Figure 2. entity behavior specification. 

As you see, entity has only two queries, but these are essential for later use. One provides 
the object's printable name. The other provides a test of equality: an instance is able to 
recognize whether any other instance is its equal; in such a case, the instance itself is 
returned. This will be very convenient soon when we scan containers for instances that match 
given requirements. When appropriate, the method says roughly: "I match your requirements 
and here I am." We will add more methods to entity as we need them. 

~ 
is-in?(x) 

add 0:4 
0 -ME sJze?O container 

~~ is-in?(x) 

--r,:,? 

Figure 3. The basic methods of container. 
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5.2 Container Base Class 

We are ready to specify the behavior of the container base class. As shown in 
Figure 3, it has only the most basic functionality. We can 

• add instances of entity (but not yet remove them), 
• ask how many items there are, and 
• ask whether a specific object is included in the container. 

We have purposely chosen is-in? and size? to form a state-representing set of queries. 
Writing the specification then becomes straightforward (Figure 4). 

container(entity) inherited from entity 

constructor 

container make-containerO 

queries 

number size?(container) 
boolean is-in? (container,entity) 

commands 

container' add(container,entity) 

Equivalences 

size?(make-container()) =0 
size?(add(container,entity» = size?(container) + 1 

is-in?(make-containerOentity) =F 
is-in?(add(container,entity),entity)) = T 
is-in?(add(container,entity),entityl)) = 

is-in?(container,entity 1) 
/ /the state of container relative to 
/ / entity 1 is not affected by the 
/ /addition of a different entity 

Figure 4. Basic container specification. 
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To illustrate how containers can be used, let us create two containers of vowels and 
consonants, respectively (Figure 5): 

vowels = make-containerO 
consonants=make-containerO 
size? (vowels) = 0 
a = make-entity("a") 
... ;; make all letters 
z = make-entity("z") 

vowels' = add(vowels,a) 
... ;; add all vowels 

vowels6 = add(vowels5,y) 

consonants' = add(consonants,b) 
... ;; add all consonants 

consonants26 = add(consonants,z) 

vowels 
consonants 

Figure 5. Illustrating containers of vowels and consonants. 

Tests of whether a letter is a vowel, consonant, or both (as in the letter y) use the method 
is-in? as follows: 
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is-In?(vowels. 0) = T 
IS-in?(vowels. b) = F 
is -In?(vowels. y) = T 
IS-in?(consonants. y)= T 
size?( vowels) = 6 
slze?(consonants) = 21 

Now suppose that we want to test whether a letter is a vowel or a consonant in one step. 
For this we need to add both vowel and consonant containers to another container. To check 
whether a letter is a vowel, a consonant, or both, we query the individual containers 
simultaneously using is-in? The ensemble methods, discussed next, provide the right 
vehicles for such tasks. 

5.3 Ensemble Methods 

tell-all command args 
ask-all query args 

which? query? args 
append (container1) 

Figure 6. Class container ensemble methods. 

container 

Figure 6 illustrates the basic methods that allow us to treat all the items in a container as a 
group. We call these ensemble methods since they apply to the ensemble, or whole, 
container at once. There is one primitive command, tell-all, which is primitive in the sense 
that others can be synthesized from it (not in the sense of being simple, since it depends on a 
good deal of capability in the underlying environment). The behavior of the ensemble 
methods is inforr:tally described by 
• tell-all(container,command.args)-sends command(args) to each entity 

in the container; 
• ask-all(container.query?args) - sends query?(args) to each entity in the 

container and collects the results in a container; 
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• which?(container.query?,args)-sends query?(args) to each entity in the 
container and collects the entities which return T in a container; 

• append(container,contalnerl)-adds the entities in container 1 to 
those in container. 

The object behavior specification for the above ensemble methods is given in terms of 
the effects of queries and commands on the state-representing queries in Figure 7. 

Examples 

Here are some examples of ensemble command use. Using tell-all, we can print out the 
vowels and consonants: 

tell-all(vowels,dlsplay-name) II prints aeiouy 

tell-all(consonants,display-name) Ilprints bcdfghjklmnpqrstvwxyz 

The container created by ask-all is illustrated by 

as = ask-all(vowels,equal-name,NaN) 

It has five null entities and the entity a. On the other hand, the container created by: 

wa = which?(vowels,equal-name?, NaN) 

is a container whose only item is the entity a. Thus, 

size?(wa) = 1 

As in Figure 8, we can combine vowels and consonants into one container using append: 

letters = make-containerO 

letters' = append(letters,vowels) 

letter' = append(letters' ,consonants) 

size?(letters' ') = 27 II y Is In twice 
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Ensemble Methods 

command 

container' tell-all(container .command.orgs) 

/ /results in changed states of all objects in container 
container' append(container .containerl) 

/ /adds in containerl contents to container 
query 

containerl ask-all(container.query?orgs) /lreturns a container of answers 

containerl which?(container.query? .orgs) / /returns a container of entities 

/ / which return T to query 

Domain Restrictions 

tell-all(container.command.args) = defined provided that 

if is-in?(entity.container) = T then command(entity.orgs) is defined 

ask-all(container.query?orgs) = defined provided that 

if is-in?(entity.container) = T then query?(entity.orgs) is defined 

which?(container.query?args) = defined provided that 

if is-in?(entity.container) = T then query?(entity.orgs) returns a boolean 

Equivalences 

is-in?(container.entity) = T => 

is-in?(tell-all(container .query? .orgs).command(entity .args» = T 

size?(tell-all(container.query? .orgs» = size?(container) 

is-in?(container.entityl) = T and query?(entityl. args) = entity 

=> is-in?(ask-all(container.query?args). entity) = T 

size?(ask-all(container .query? .args» = size?(container) 

is-in?(container .entity) = T and query?(entity. orgs) = T 

<=> is-in?(which?(contalner.query?orgs). entity) = T 

size?(which?(container .query? .args» <= slze?(container) 

is-in?(append(container.containerl).entHy) ==( is-in?(container.entity)= T or 

is-in?(containerl.entity) = T) 

size?(append(container.containerl» = size?(container) + size?(containerl) 

Figure 7. Container ensemble methods specification. 



5. Containers-Object Behavior Specification 61 

In contrast, we can add the two containers, vowels and consonants, as distinct items to 
a new container to form a partition 1 of the alphabet 

partition = make(container) 
partition' = add(partition,vowels) 
partition" = add(partltlon' ,consonants) 

partition is an example of hierarchical construction: its entities are containers them­
selves. To find out, in one step, to which container(s) a letter belongs, we use the ensemble 
method, which? 

size?(which?(partition,is-in? ,a) = 1 

size?(which? (partition, is-in?, V»~ = 2 

vowels consonants 

vowels consonants 

letters = 

append(vowels.consonants) 
partition = contaIner of containers 

Figure 8. Appending versus partitioning. 

We will continue exploring ensemble methods in Chapter 9. 

I Mathematically speaking, this is a cover rather than a partition, since y is common to both blocks. 
However, we use the term "partition" since it is more suggestive and more easily understood to the 
less mathematically astute. 
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5.4 Container Subclasses: Unordered 

This section deals with the unordered container lineage of the container hierarchy: bag ~ 
set ~ relation ~ function. We will continue with the ordered container classes in a later 
chapter. We take advantage of inheritance to specify each of the four subclasses. That is, we 
assume that all specifications of the base class apply to the derived class. For the latter, we 
have to provide only the new specifications not applicable in the base class and any 
inherited specifications in need of modification. 

Bags and Sets 

Sets are the fundamental building blocks of modem mathematics. A set is an unordered 
collection in which no element occurs more than once. Set theory goes back to the 
beginning of the 20th century. Bags are a more recent generalization of sets that allow any 
number of occurrences of elements. Mathematically speaking, it would make sense to start 
with set as the root class in a hierarchy for container. However, our objective is not 
mathematical, but computational, and this drives our choice of a root class that is even more 
generalized than bags. As shown in Figure 1, our root class has the bare minimum of 
methods that will be common to all containers. This simple core enables us to derive sets 
and other traditional mathematical containers from the base class. Ordered classes such as 
lists, stacks, and queues are also derived from the base class. We proceed to discuss the 
container hierarchy starting with classes bag and set. 

Class bag, specified in Figure 9 adds the capability to query for the number of occur­
rences of an entity. It also introduces a remove command. The number of occurrences of 
each element is a state-representing query, and the effect of the commands add (inherited 
from the base class) and remove is easily characterized in terms of it. Note that the 
specification of a derived class has to deal only with the new combinations of queries 
and commands that were not covered in the specification of the base class. 
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Bag 

bag(entity) inherits from container 

constructor 

bag make-bagO 

queries 

number number-of? (bag,entity) 

commands 

bag' remove(bag,entity) 

Domain Restrictions 

remove(bag,entity) = defined provided that is-in?(bag,entity) = T 

Equivalences / /beyond those inherited from the parent in the hierarchy 

size?(remove(bag,entity» = size?(bag) - 1 
/ / other combinations are inherited 

number-of?(make-bagO ,entity) = 0 

number-of?(add(bag,entity),entity» = number-of?(bag,entity) + 1 
number-of?(add(bag,entity),entity 1» = number-of?(bag,entity 1) 

number-of?(remove(bag,entity),entity» = number-of?(bag,entity)-l 
/ /remove acts to remove an instance of an entity 

number-of(remove(bag,entity),entity 1» = number-of(bag,entity 1) 

Figure 9. Class bag specification. 

Using a bag is appropriate where counts of element occurrences need to be 
maintained: 
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Class set 

bg = make-bog 
bg' = add(bg.a) 

bg" = add(bg' .b) 

bg'" = add(bg" .0) 

number-of?(bg'" .0) = 2 

number-of?(bg'" .b) = 1 

number-of?(bg'" .c) = a 
bglv = remove(bg .. ·.a) 

number-of(bglv.a) = 1 

The hierarchy shown in Figure 1 considers class set as a derived class of bog. As indicated 
before, sets, as mathematical objects, contain at most one occurrence of any entity. We 
specify this behavior by modifying the specification of odd: we don't allow odd to have an 
effect if the object to be added is already in the container. This is an example of a 
specification in a subclass overriding the specification inherited from the parent class. In the 
specification in , the size of a set increases only when a new entity is added: 
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set(entity) inherits from bag 

constructor 

set make-setO 

queries 

commands 

set' add(set ,entity) 

Equivalences 

All equivalences Inherited from bag apply except for the effect 
of add on size? And number-of? Which are specified by: 

is-in?(set,entity) = F => seize?(add(set.entity» + size(set) + 1 
slze?(add(set.entity» = size?(set) //otherwise 

number-of?(add(set.entlty),entity» = 1 
//increases to, and stays at. 1 

number-of?(add(set.entity) ,entity 1 » = number-of?(set.entity 1) 

Figure 10. Class set specification. 

Set objects are used when keeping track of the very existence of an entity is important -
not how many times it has occurred. For example: 

s = make-setO 
s' = add(s,a); 
5" = add(s' ,a); 
slze?(s" ') = 1 
number-of? (5" ,a) = 1 
is-in?(s" ,a) = T 
s'" = remove(s" ,a); 
is-in?(s'" ,a) = F 
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Class Relation 

Mathematically, a binary relation is a set of pairs. Likewise, we specify the class relation to 
inherit from set. The elements of such a set are called (key, value) pairs. Thus, the queries 
of relation have the form: 

number size?(relation) 
boolean is-in?(relation,keY,value) 

and the commands take the form: 

relation' add(relation,key,value) 
relation' remove(relation value),key, 

The new behavior obtainable from class relation is to be able to retrieve all the values 
associated with a given key. This functionality is implemented in the query assoc-all? We 
may also ask whether a key has already been given a value using key jsjn? The 
specification follows (Figure 11): 

Relations are used to record and lookup various kinds of associated data. For example, a 
dictionary associates words with meanings - the same word may have multiple meanings and 
different words may have the same meanings, as in: 

r = make-relationsO 
key-is-in?(r,bit) = F 
r' = add(r,bit.unit-of-information) 
key-is-in(r' ,bit) = T 
is-in?(r' ,bit,unit-of-information) = T 
r" = add(r' ,bif.small) 
assoc-all?(r" ,bit) = instance of set containing {unit-of-information,small} 

r''' = add(r" .tiny,small) 

assoc-all?(r''' ,bit) = instance of set containing {unit-of-information,small} 
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relation(entity) inherit from set 

constructor 

relation make-relationO 

queries 

number size?(relation) / /inherited from set (see text) 
number number-of?(relation,key,value) 
boolean is-in?(relation,key.value) 

boolean key-is-in?(relation,key) 
set assoc-all?(relation,key) / /returns a set of values 

commands 

relation' add(relation,key.value) 
relation' remove(relation,key .value) 

Domain Restrictions: 

remove(relation,key,value) = defined provided that 
is-in?(relation,key.value) = T 

Equivalences 

We obtain the equivalences of relation by replacing 
entity by key,value everywhere in the 
equivalences inherited from sets. For example, 

size?(add(relation,key,value» = size?(relation) + 1. 

Additional equivalences: 

assoc-all?(make-relationO,key) = make-setO 

assoc-all?(add(relation,key,value),key = 
add(assoc-all?(relation ,key) ,value) 

assoc-all?(add(relation ,key ,value)key 1) = assoc-all?(relation,key 1) 

assoc-all?(remove(relation,key ,value) ,key) = 
remove(assoc-all?(relation,key) ,vlaue) 

assoc-all?(remove(relation ,key ,value) ,key 1) = assoc-all?(relation,key 1) 

key-Is-in ?(relation ,key) == (not( empty?( assoc-all?(relation ,key»») 

Figure II. Class relation specification. 
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Class Function 

A function is a relation for which at most one value is associated with any key (Figure 12). 
In the specification of class function we hide the command add inherited from relation. In 
its stead, there is a new command, replace, to enforce the "unique key" constraint on key­
value pairs. However, method add can be used within the implementation of replace 

Table-look up is a common form of function usage. For example, you can look up a table 
for the logarithm of a number (or approximate the logarithm using numbers in the table that 
are close to the given number). For example, 

f = make-functionO 
key-is-in?(f, 5) = F 
f' = replace(f. 5,6983) 
assoc? (f', 5) = .6983 
key-is-in? (f', 5) = T 
f" = replace (f', 5.1 .7075) 
assoc? (f", 5.1) = .7075 
f'" = replace(f", 5.1. .7076) 

II 

assoc? (f"', 5.1) = .7076 

II put in approximation to log 5 
II look-up log 5 

put in better approximation to log 5. 1 
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function(entity) inherit from relation 

constructor 

function make-functionO 

queries 

value assoc?(function.key) 

commands 

function replace(function.key.value) 

hidden 

function add(function.key.value) 

Domain Restrictions 

assoc?(functlon.key) = defined provided 
that is-In?(function.key) = F 

Equivalences 

Is-In?(replace(function.key.value).key.value) = T 
is-in?(replace(function.key.value).key.valuel) = F 

is-in?(replace(function.keyl.value 1 ).key.value) 
= Is-ln?(function.key.value) 

key-is-In?(tunctlon.key) = F => slze?(replace(function. 
keY.value» = size(function) + 1 

slze?(replace(functlon.key.value» = slze?(function) 

assoc?(replace(function.key.value).key) = value 

assoc?(replace(functlon.key.value).key 1) = 
assoc?(functlon.keyl) 

Note: assoc?(remove(functlon.key).key) = undefined 

Figure 12. Class function specification. 
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Problems 

1. Define a method to test whether a container is empty by: 

boolean empty?(container) 

empty?(container) == (size?(container) = 0) 

Use the specification of container to show that empty? satisfies the specification: 

empty?(make-container()) = T 
empty?(add(container,entity» = F 

2. Show that the following equivalences for ask-all and tell-all, respectively, satisfy the 
equations given for them in the container specification: 

ask-all (make-containerO ,query? ,args) 
= make-containerO 

ask-all( add( container ,entity), query? ,args) 
= add(ask-all(container,query? ,args) , 

query?(entity ,args» 

tell-all (make-containerO,command,args) 
= make-containerO 

tell-all(add(container ,entity) ,command,args) 
= add(tell-all(container, 

command, args), command(entity ,args» 

3. Show how to define ensemble methods ask-all and which? in terms of tell-all (Hint: 
introduce a command method for entity that deposits the result of a query into a given 
container.) 



6 
c++ Implementation of a Heterogeneous 
Container Class Library 

This chapter discusses an implementation of the containers hierarchy in C++ called Het­
erogeneous Container Class Library (HCCL). Recall that "container" refers to a list-like 
structure to store data items, and "heterogeneous" means containers can hold different 
kinds of items. Therefore, HCCL provides a collection of list-like structures that are able 
to store different kinds of items. HCCL mitigates typing constraints in C++ since pro­
grammers are spared the task of implementing new container types for each new kind of 
object they develop. 

More specifically, our container objects should have the following properties: 

• multiple occurrence in the same container: the same object can appear many 
times in a container, for example, a has five occurrences in: (a bra cad a b 
r a); 

• multiple occurrences in different containers: the same object can appear in any 
number of containers; for example, a occurs in: (a bra cad a bra) and 
also in (a n V). 

• heterogeneity: different kinds of objects can be included in a container; for 
example, the container ( a "abcH 0) contains a character, a string, and a num­
ber. 

• multilevel or hierarchical construction: containers that contain other contain­
ers as items can themselves be placed into containers; for example, the con­
tainer ( (a 0) (b 1 )(c 2» has three items each of which is a container. 

HCCL was developed to enhance the C++ object-oriented programming (OOP) 
environment. One of the main advantages of OOP is that development time and effort can 
be greatly reduced through the use of reusable code. With such a facility, programmers 
no longer have to spend their time in coding something that is provided in a reusable 
library. This works well providing that code placed into a reusable library has been well 
tested. In this case, the only bugs introduced are those that arise from the new code built 
on the reused components. 

C++ was chosen as the base language of HCCL because of its popUlarity. Although 
C++ has many OOP features, it also has its difficulties. One of the main limitations of 
C++ is caused by its strongly enforced typing conventions. (Interestingly, since Java 
shares C++ syntax and semantics, it has the same problems.) Objects of different types 
may not be treated interchangeably, or at the most, they may be interchanged only in very 
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restricted ways. This situation is explained in the appendix to this chapter. Thus, support 
for keeping objects of different classes in the same container (heterogeneity) does not 
come naturally in C++. Although it is easy to implement a linked list in C++ to hold a 
single class of objects, it is not possible to implement a list to store heterogeneous objects 
directly. For advanced C++ programmers: generic pointers (pointer to void) cannot be 
used for this purpose. Although a list may be constructed with such pointers, there is no 
way to retrieve items from it, because generic pointer cannot be dereferenced. Moreover, 
a generic pointer has no way of knowing how much memory is required to store the 
information of an object that it points to. 

Since there is no direct approach to implement a heterogeneous container, an indirect 
method has to be found to create a HCCL. There are eight main classes in HCCL: entity, 
element, pair, container, bag, set, relation, and function. However, only five of them 
are container classes. The rest of the classes, such as entity, element, and pair, serve as 
the auxiliary classes to build the containers. All of these classes are used to create objects 
with different but complementary behaviors. 

6.1 HCCL Implementation Strategy 

Figure 1 shows the implementation class hierarchy. Its structure differs somewhat from 
the behavior specification hierarchy in Chapter 5 to take advantage of the underlying 
sequential, pointer based processing of C++. As just said, the entity class wiII be the base 
class for all classes whose objects can go into containers. This sets up the basis for the 
heterogeniety property of containers we are aiming for. Our approach will very closely 
follow the "railway car" model implementation in Chapter 3. The class element is intro­
duced to be provide the basic "cars" of the train (container). Using element also 
addresses the multiple occurrence property: different occurrences of the same entity can 
be placed in different elements. If we want to put an occurrence of an entity into a con­
tainer, we merely construct a new element to hold the entity and string it into the con­
tainer. Finally, by making container a subclass of entity, we enable container objects 
(trains) to be attached to elements (cars) and placed into other containers. This gives us 
the hierarchical construction capability, and hence all four properties we require. 

Entity 

The definition of class entity is sketched in Figure 2. Note that the entity name is pro­
tected (so that it is inaccessible and inherited that way too). There is a data member, 
classname, that is useful for testing equality. It is declared to be static, meaning that is 
shared by alI instances of the class - this makes it a class variable. There are two con­
structors for entity, one of which takes the new entity's name as its argument. The 
destructor, -entity(), frees up the memory space occupied by the instance for reuse. 
PrintO and equalO are virtual since they are expected to be supplied by derived classes. 
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Figure 1. Heterogeneous container classes hierarchy. 

All containers in HCCL use pointers to entity as the means to store objects. There­
fore, to store an object it must directly or indirectly come from a derived class of class 
entity. Thus the key point to handling heterogeneous objects is to unify them under the 
umbrella of the entity class. In particular, since all of the classes in HCCL are derived 
from class entity, their instances may be stored in any HCCL containers. This leads to 
hierarchical construction, where containers may be placed into containers up to any 
level of recursion. 
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CLASS ENTITY 

enum{FALSE,TRUE}; /I FALSE = 0, TRUE = 1 
typedef unsigned int Bool; 

class entity { 

private: 

static char • classname; 
II used in testing of equality 

protected: 

char· name; II name object 

public: 

entity 0 
entity (char • NAME); 
virtual - entity 0; Ildestructor 
virtual void printO 

Ilprint out the name of entity 
virtual Book equal( entity • ent); 

Ilpointers comparison 
virtual Book eq( entity· ent); 

/Iname fields comparison 
} ; 

Figure 2. Interface definition for entity (partial). 

Element 

Figure 3 sketches the interface for class element. As suggested above, there are two 
protected instance variables: ent, a pointer to an entity, and right, a pointer to an 
element. Public accessor methods are geUightO, get_entO and seUight(element *). 
PrintO and equalO for element invoke the same-named methods for the wrapped-up 
entity. 



CLASS ELEMENT 

class element: public { entity 
private: 

static char * classname; 

protected: 
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entity * ent; 
element * right; 

/ /pointer to entity wrapped within this element 
/ /link to the element on right 

public: 

element 0; 
element ( entity * ENl); 
virtual - element 0; 
element *geUightO; 
entity *get_entO; 

/ /get the -right" (next) element for this object 
/ /get entity that of this element 

void seUight( element *el); / /link this element to another element 
Bool equal( entity *ent); / /test for equality with he enclosed entity); 
}; 

Figure 3. Interface definition for element (partial). 

For example, the method equal is defined by 

Bool element::equal(entity *ENT) 
I 
return (geCentO->equal(ENl»; 
} 

Although not apparent at first sight, the definition of equal is progressive - if the ent 
(returned by geCent()) points to an instance of a derived class of entity, the equal 
method of the derived class will be invoked. This latter equal method may, in tum, call 
on one or more equal methods, and so on. Such invoking of the appropriate equal 
method is important for the correct functioning of such methods as isjn that rely on 
equal to do their work. We'll see examples of this phenomenon as we study the various 
container classes. 
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Container 

Figure 4 outlines the definition of class container, the base class for all container 
classes. In line with the "railway cars" approach, there are two protected instance 
variables, head, a pointer to an element, and length. A picture of a typical container 
is shown in Figure 5. 

CLASS CONTAINER: 

class container: public entity 
{ //50 can be wrapped in element in 

//hierarchical container 

private: 
static char * classname; 
protected: 
int length; 

element * head; 

void add_first(element *el); //add element at the first position 
void add_aChead(element *el); //insert element at head of list 
void add_element (element *el); //add element 

public: 

container 0; 
-container 0; 
void add(entity *ent); 
Bool iSjn(entity *ent); 

//add object to the container 
//is entity in the container? 

int sizeO; //same as geUength 
int geUengthO; //get the lenght of list 
Bool emptyO; //is the container empty? 
void printO; //print the items (recursively call their print(» 

Figure 4. Interface definition for containers (partial). 

The public command add calls upon several private commands. It creates a new 
element to hold its argument, entity, as follows: 

void add::add(entity *ent) 
{ 
add_element(newelement(ent»; 
} 
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elements are always added at the head, but the helper method add_element treats 
empty and non-empty cases distinctly: 

void container::add_element *el) 
( 

if (empty(» 
add_first(el); 

else 
add_at_head(el); 

void container::add_first(element *el) 
{ 

seUength(l); 
set_head( el); 

} 

void container::add_aLhead(element *el) 
( 

} 

incremenUength(l ); 
el->seUight(head); 
set_head(el); 

The method isjn( entity *) illustrates how to scan the elements in a container: 

Bool add::isjn(entity * ent) 
{ 
for (element *p = head;p != NULL;p = p->geUight(» 
if (p->get_ent()->equal(ent» 
return TRUE; 
return FALSE; 
} 

Note that the wrapped entity of each element is tested for equality with the entity in 
the argument. Since it is virtual, the equal method employed is that of the class of the 
wrapped entity; it has a big effect on the outcome. 
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Figure 5. The internals of a container. 

Recall that bags count the occurrences of included items. We also introduce the ability 
to remove items at this stage. 

To get a count, we scan the container looking for wrapped entities that are equal to 
the one of interest: 

int bag::number_of(entity *ent) 
{ 
intnum = 0; 
for (element *p = get_headO; p != NULL; p = p->geUightO) 
if (p->equal(ent» 
num++; 
return num; 
} 



Set 

CLASS BAG 

class bag: public container { 
protected: 
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Bool is_head(entity *ent); / /check if it is a head element 

element *previous(entity *ent); / /get to one element before the 
element w are looking for 

void remove_headO; / /remove the head element 
void remove_middle(entity *ent); / /remove from the middle 

public: 

int numbecof(entity *ent); / /how many ent occurences? 
Void remove(entity *ent); 

} ; 

Figure 6. Interface definition for bag (partial). 

The remove command has to consider several cases: 

void bag::remove(entity *ent) 
{ 
if(isjn(ent) 

if (is_head(ent» / / if it is the first element in list, 
remove_headO; / / use remove_headO to perform 

/ / the deletion, else 
remove_middle(ent);/ / method to remove element 

/ / at middle of the list 

The operation of the helper methods is similar to that in the "railway car" list removal 
command. We leave the details to the reader as an exercise (Problem 2). 

Class set is derived from class bag. It inherits all of bag's functionality and makes only 
one, major, modification. This is to allow entrance to at most one occurrence of the same 
object (Figure 7). 
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Pair 

CLASS SET 

class set: public bag{ 
public: 
void add(entity "ent) 
{ 

if (!isjn(ent» I lif it is not already in set. 
container: :add(ent); 

} 
}; 

Iladd it using the inherited add method 

Figure 7. Interface definition for set (partial). 

Note that the global name of the container's add method is container::add. The 
prefixing of the class name avoids name clashes with methods with the same name in 
other classes. 

Recall that mathematically, a relation is a set of pairs. So to define class relation we 
need to define class pair first. As shown in Figure 8, pair inherits an entity slot from 
element which can play the role of a key in a relation. We only have to introduce a sec­
ond slot for a value. 

Class pair has a constructor that accepts key and value arguments and packages them 
as a pair: 

pair::pair(entity "KEY. entity "VALUE) : element (KEY) 
{ 
value = VALUE; 
} 



CLASS PAIR 

class pair: public element{ 
protected: 
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entity "value; / /consider inherited ent the key 

public: 
pair (entity "key, entity ·VALUE); 
Bool equal(entity "ent); 

/ /recursively check equality for both ent and value 

} ; 

Figure 8. Interface definition for pair (partial). 

Recall the use of a base class constructor - element(KEY)- to work in a derived 
class constructor. Pair needs to override the inherited equal to test equality of its respec­
tive components. Pair's equal first tests that the argument entity's classname is its own 
("pair"), Entities that are from different classes are certainly not equal. Moreover, if the 
classes are the same, then it makes sense to compare their respective keys and values 
(otherwise, the incoming entity may not have the value instance variable and a runtime 
error would result). 

Bool pair::equal(entity "END 
{ 

return (strcmp(get_classnameO, ENT->get_classnameO) == 0 && 
«pair ")END->get_entO->equal(get_ent()) && 
«pair ")END->get_valueO)->equal(get_valueO)); 
} 

Relation 

Figure 9 shows the main interface methods of class relation. 
The add command of relation packages its arguments into a pair which it inserts 

using container's add. Note that set's query isjn and within this query, pair's equal 
are employed to check whether the pair is really a new combination of key and value 
worth adding. 

void relation::add( entity "ent, entity "value) 
( 
pair "pr = new pair(ent, value); 
if ( !(isjn(pr)) ) 
container: :add_element(pr); 
} 
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CLASS RELAnON 

class relation: public set { 
public: 

void add( entify ·ent. entify ·value); 
Bool key_isjn(entify "ent); 
set "assoc_all( entify "ent); 
void remove( enfify "ent. entify "value ); 
set "range_objects(); 
set "domain_objects(); 

protected: 
pair" next_key( entify "ent. pair "start); 
); 

Figure 9. Interface definition for relation (partial). 

The helper method next_key is employed to search for a key required in the queries 
keyjsjn and assoc-all of relation. 

pair *relatlon::next_key( entity *key, pair *start) 
{ 

if (start != NULL) { 
for (pair "pr = start; pr->geUightO 1= NUll 

&& (l(pr->get_entO->equal(key»); 

pr = «pair *)pr)->geUight(»; 
if (pr->get_entO->equal(key» 
return (pr); 

return (NULL); 
} 

Bool relation::keyjsjn(entlty *key) 
( 

return(next_key(key,(palr *)head) != NULL); 
} 

To collect all values associated with a given key, next_key is used until locations of key 
are found. 



set ·relation::assoc_all(entity ·key) 
{ 

pair ·posn = (pair ·)head; 
set ·s = new set; 

while ( TRUE) { 

} 
} 

posn = nexCkey(key, posn); 
if (posn != NULL) 
{ 

s->add(posn->geC valueO); 
posn = «pair *)posnLgeUightO; 

} else 
return (s); 
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To remove a key/value pair, relation's remove calls upon set's remove. 

void relation::remove( entity *key, entity ·value) 
{ 
set::remove(new pair(key, value»; 
} 

Function 

Recall that afunction is a relation for which at most one value is associated with any key. 
The two essentially new methods of function are shown in Figure 10. 

CLASS FUNCTION 

class function: public relation{ 

public: 
void add (entity *ent, entity *value); 
void replace(entity *ent. entity ·value); 
} ; 

Figure 10. Interface definition for function (partial). 

Function's add first checks whether the key in its argument is unpaired and if so, 
accepts the new key/value pair. 
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void function::add(entity ·key, entity ·value) 
{ 
if (!keyjsjn(key» 
container::add_element(new pair(ent. value»; 
} 

function's replace method looks for the pair matching the incoming key. If it finds 
it, it replaces the associated value by the new one. If the key is new, it calls upon the add 
command inherited from relation. 

void function::replace(entity ·key, entity ·value) 
{ 
pair *pr = next_key(key, (pair *)head); 
if (pr != NULL) 
pr->set_ value(value); 
else add(key, value); 
} 

6.2 Ensemble Methods in C++ 

The scanning illustrated in container's isjn method (Section 6.1) suggests how to 
implement the behavior of the ensemble methods tell-all, ask-all, and which? . However, 
in C++, it would seem that we have to write such methods individually for each use. For 
example, assume that a particular command has been defined for entity: 

virtual void commandO; 

and for derived classes of interest. Then we would write the following code to send this 
command to the items in a container: 

void container: :command_aIlO 
{ 
for (element *p = geLheadO;p != NULL;p = p->geUightO) 
p->get_entO->command(); 
} 

Similarly, to broadcast a query to the container items and collect the results in a new 
container we would write 

container * container::query-aIiO 
{ 
container *c = new containerO; 
for (element *p = get_headO;p != NULL;p = p->geUight()) 
c->add( p->get_ent()->queryO ); 
return c; 
} 
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Although we have assumed that command and query have been declared virtual for 
entity, most methods will not satisfy this condition. One reason is that only a relatively 
small number were implemented when the entity class was defined. Another reason will 
be given in a moment. In the case where the method is not virtual, the extracted instance 
must be cast down to the particular class we are dealing with as discussed in an appendix 
to this chapter. For example, let vehicle be derived from entity. Then the effect of 
ask_all is obtained by 

container * container::query_aIlO 
{ 
container *c = new containerO; 
for (element·p = geLheadO;p != NULL;p = p->geUight()){ 

entity * ent = p->geLentO; / /pull off as entity 
vehicle * c = (vehicle *)c; / /note the cast down here 

c->add(queryO; 
) 
return c; 
} 

Recall that which? extracts a container of items for which a boolean query returns TRUE. 
For a particular method boolean_query, this can be done: 

container * container::which_boolean_queryO 
{ 
container *c = new containerO; 
for (element *p = get_headO;p != NULL;p = p->geUight()) 
if (p->geLentO->boolean_queryO) 
c->add( p); 
return c; 
} 

where again boolean_query is assumed to be virtual for entity. 

We come to the second reason why it may not make sense to declare the methods 
invoked in a scan to be virtual for entity. Consider a container of container objects 
(hierarchical construction). Define a method that will form a container of those 
container objects that have a particular item. Here we will use the container method 
isjn for which there is no equivalent in class entity. So even though isjn was known to 
be a method for container early in the implementation, we did not declare the isjn query 
as virtual since isjn has no intrinsic meaning for entity. Instead, we must cast down from 
entity to container as each item in the container is recovered: 
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container * container::whichJsJn(entity * ent) 
{ 
container *c = new containerO; 
for (element *p = geCheadO;p != NULL;p = p->geUightO) 

{ 
entity * e = p->get_entO; Ilpull off as entity 
container * vc = (container *)e; Ilcast down to container 
if (vc->-isjn(ent)) 
c->add(vc); 
return c; 
I 

Example: Ensemble Methods in C++ 

We revisit the example of Chapter 5 where containers of vowels and consonants were 
made and tested. First we create entities to represent letters: 

entity * a = new entity("a"); 

entity * z = new entityCz"); 

To create vowels and consonants. we use bag as the most convenient class: 

bag * vowels = new bagCvowels"); 
bag * consonants = new bag("consonants"); 

Add the letters to the right containers: 

vowels->add(a); 

vowels->add(y); 

consonants->add(b); 

consonants->add(z) ; 

Call the method printO defined for bag: 

vowels->printO; I I (a e i 0 u y) 
consonants-> printO; I I (bcd .. Y0fZ) 

Collect all the letters in one container: 



bag * letters = new bagO; 
letters->append(vowels); 
letters->append(consonants); 
cout « letters->sizeO; / /prints 27 
cout« letters->number_of(y); I/prints 2 

Create a container of bag instances: 

container * partition = new containerO; 
partition->add(vowels); 
partition->add(consonants); 

Test for vowel or consonant in one step: 

container * results = partition->whichjsjn(a); 

/ /see the above definition 

results-> printO; / /prints CvowelsH) 

results = partition->whichjsjn(b); 
results-> printO; I/prints ( ~consonantsH); 

results = partition->whichjsjn(y); 
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results-> printO; / /prints ("vowels", ~consonants"); 

6.3 A Macro Approach to Ensemble Methods 

Since we use the same basic code each time we need an ensemble action, there should be 
a way to have the computer write it for us. However, use of the subroutine concept will 
not work since the parts that need changing for specific applications are not acceptable as 
arguments. Instead, we can make use of the C++ preprocessor to rewrite our input text 
before it is compiled. The instructions to do this rewriting are called macros, several of 
which are listed in Figure 11 and shown in complete form in an appendix at the end of 
this chapter. Since macro writing is covered in basic C texts, we will limit this discussion 
to their application as ensemble methods. 



88 Objects and Systems 

copy(container1,class,container2) 

tellall(container,class,command) 
p tellall1 (container,class,command,arg) 
p tellall2(container ,class,command,arg,arg1) 

askall(container,class,query ,results) 
p askall1 (container,class,query,arg,results) 
p askaIl2(container,class,query,arg,arg1,results) 

which(container,class,query ,results) 
p which1 (container,class,query,arg,results) 
p which2(container,class,query,arg,arg1,results) 

which_not(container ,class,query ,results) 
p which_not1 (container,class,query,arg,results) 
p which_n0t2(container,class,query,arg,arg1,results) 

whichone(container,class,query ,result) 
p whichone1 (container,class,query,arg1,result) 
p whichone2(container ,class,query ,arg1,arg2,result) 

Figure 11. Macros for ensemble methods. 

copy(containerl. class.container2) 

where 

• containerl is an existing instance of a container class, 
• class is the name of the class to which each instance will be cast down, 
• container2 is another existing container instance. 

copy is a slightly more general form than append in that it casts down the entities in 
the first container into the specified class before appending them to the receiving con­
tainer. 
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tellall( container ,class,command) 

where 

• container is an existing instance of a container class, 
• class is the name of the class to which each instance will be cast down, 
• command is the method that will be applied to each instance. 

We can use this macro to implement tell-all functionality. For example, 

tellall(vowels,entity ,print); 

tells each entity in vowels to print its name. Note that in this case, no casting down is 
actually needed, but it does no harm to do it. 

To implement ask-all functionality, we need to set up a container of results first: 

askall( container ,class,query .results) 

where 

• container is an existing instance of a container class, 
• class is the name of the class to which each instance will be cast down, 
• query is the method that will be applied to each instance, 
• results is an existing instance of a container class. 

For example, we can ask all vowels to return their names to a container of names: 

container· names = new containerO; 
askall(vowels,entity ,get_name, names); 
names->printO; / /prints aelouy 

The existing macros accommodate up to two arguments. For example, the functional­
ity of the which? ensemble method using a query with one argument is given by 

which 1 (container ,class,query ,arg "results) 

where 

• container is an existing instance of a container class 
• class is the name of the class to which each instance will be cast down 
• query is the method that will be applied to each instance 
• arg is the only argument of query 
• results is an existing instance of a container class 

Note that we need to write a different macro for each desired number of arguments 
(although fortunately, not for their types). Thus, macros which, which 1 and which2 
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have been defined to handle zero, one, and two arguments, respectively. Rarely do query 
or command methods require more than two arguments. 

Typically, we package these macros within specific methods. For example, we can 
define the method whichjsjn with less work than required in the original implementa­
tion: 

container * container::whichjsjn(entlty· ent) 

container ·c = new contalnerO; 
which 1 (this,container ,isjn,ent,c); 
return c; 

A final example will show how to obtain the whlch-one functionality. Here, we need 
a pointer to hold the single result of the selection: 

whlchone 1 (container,class,query,arg.result) 

where 

• container is an existing instance of a container class, 
• class is the name of the class to which each instance will be cast down, 
• query is the method that will be applied to each instance, 
• arg is the only argument of query, 
• result is an existing instance of class. 

For example, we can define a method to return the item with a desired name: 

entity· conainer::whlch_one_has_name(char * nm){ 
entity • res = new entityO; 
whlchone 1 (thls,entity ,eq,nm.res); 
return res; 
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#define defptrO element *p; 

#define copy(source.class.dest) \ 
defptrO\ 
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for (p = source->geCheadO;p != NULL;p = p->geLrlght()) \ 
dest->add«class *)(p->get_entO» 

#define tellall(cont .class.command) \ 
defptrO\ 
for (p = cont->get_headO;p 1= NULL;p = p->geLrightO)\ 

«class *)(p->get_entO»->commandO 

#define tellalll(cont.class.command.arg) \ 
defptrO\ 
for (p = cont->get_headO;p != NULL:p = p->geLright(» \ 

«class *)(p->geCentO»->command(arg) 

#define tellaIl2(cont.class.command.arg.arg 1) \ 
defptr()\ 
for (p = cont->geChead();p != NULL;p = p->geLright(»\ 

«class *)(p->get_ent(»)->command(arg.arg 1) 

#define askall(cont.class.query.results) \ 
defptr()\ 
for (p = cont->geChead();p != NULL;p = p->geLright()) \ 

results->add«(class *)(p->geCentO»->queryO) 

#define askalll(cont.class.query.arg.results) \ 
defptrO\ 
for (p = cont->geCheadO;p 1= NULL:p = p->geLright(»\ 

results->add( ( (class *)(p->get_entO »->query( arg» 

#define askaIl2(cont.class.query.arg.argl.results) \ 
defptrO\ 
for (p = cont->geCheadO;p!= NULL;p = p->geLrightO)\ 

results->add«(class *)(p->get_ent(»)->query(arg.argl» 

#define which(cont.class.query.results) \ 
defptrO\ 
for (p = cont->geCheadO;p!= NULL;p = p->geLrlght(»\ 

if «(class *)(p->get_ent()))->query())\ 
results->add(p->get_entO) 

#define which 1 (cont.class.query.arg.results) \ 
defptrO\ 
for (p = cont->geCheadO;p!= NULL;p = p->geLright(»\ 
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if «(class *)(p->geCentO»->query(arg»\ 
results->add(p->get_entO) 

#define which2( cont .class.query ,arg .arg l.results) \ 
defptrO\ 
for (p = cont->geCheadO;p != NUll;p = p->geUight())\ 

if «(class *)(p->get_ ent()))->query( arg .arg 1 » \ 
results->add(p->geCentO) 

#define which_not(cont,class,query .results) \ 
defptrO\ 
for (p = cont->geCheadO;p!= NUll;p = p->geUightO)\ 

if (!«class *)(p->geCentO»->queryO)\ 
results->add(p->geCentO) 

#define which_not1(cont,class.query.arg.results) \ 
defptr()\ 
for (p = cont->get_headO;p!= NULL;p = p->geUightO)\ 

if (!«class *)(p->get_ent()))->query(arg))\ 
results->add(p->get_entO) 

#define which_not2(cont.class.query.arg.argl.results) \ 
defptrO\ 
for (p = cont->geChead();p != NUlL;p = p->geUight())\ 

if (1« class *)(p->geC ent())->query( arg .arg 1)) \ 
results->add(p->get_entO) 

#define whichone(cont.class.query.result) \ 
defptrO\ 
for (p = cont->geCheadO;p!= NULL;p = p->geUightO)\ 

if «(class *)(p->geCent()->query())\ 
result = p->geCento 

#define whichone 1 (cont .class.query .arg l.result) \ 
defptrO\ 
for (p = cont->get_headO:p != NUlL;p = p->geUight(»\ 

if «(class *)(p->geCent()->query(argl))\ 
result = p->geCentO 

#define whichone2(cont.class.query.argl.arg2.result) \ 
defptrO\ 
for (p = cont->geCheadO:p != NULl:p = p->geUight(»\ 

if «(class *)(p->get_entO»->query(argl.arg2»\ 
result = p->geCentO 
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Appendix 2: C++ Typing Rules That Arise From Inheritance 

Since C++ requires that all slots (variables) be typed, we cannot arbitrarily assign 
instances of classes to slots. Many errors occur at run time when a message sent· to a slot 
does not match the method repertoire of its current occupant. The C++ compiler can pre­
vent many of such runtime errors by disallowing certain assignments at compile time. 
These assignments relate to base/derived class compatibilities. Consider for example, 
Figure 12 which illustrates the following (sketchy) class definitions: 

class airplane: public vehlcleO; 

class tank: public vehlcleO; 

vehicle 

~ 
airplane tank 

wings caterpillar-wheels 
show-wings 

Figure 12. Class hierarchy for vehicle. 

Figure 12 shows the inheritance hierarchy we are assuming, with vehicle as a base 
class to derived classes tank and airplane. Consider declaring variables v,a, and t as 
pointers to vehicles, airplanes, and tanks respectively. Let's assign them the addresses 
to new instance of their corresponding classes at the same time: 

vehicle • v = new vehlcleO; 
airplane· a = new alrplaneO; 
tank • t = new tankO; 
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vehicle 
move 

airplane 

stop 

OK 

show-wings 

airplane 

vehicle 

(tank) 

NOT OK 

Figure 13 Typing restrictions in C++ 

Figure 13 illustrates the following typing rules: 

• Assignment of a subclass (derived) instance to a superclass (base) slot is allowed by 
the compiler: 

v = t; / /put tank in vehicle slot --allowed by compiler 

• The reverse assignment (of a superclass instance to a subclass slot) is not allowed: 

t = v; / /attempt to put vehicle in tank slot -- not allowed by compiler 

To understand why we need to outlaw assigning base instances to derived class slots, 
assume such a law is not enforced. Then consider the sequence: 

v = t; / / put tank in vehicle slot - ok 

With the law unenforced we can put vehicle into airplane slot: 

a = v; / /assume this is not prohibited 

Now send the airplane slot a message it should be able to handle: 

a->show _ wingsO; 

But it can't, since it is currently holding a tank in disguise (see Figure 13). 

In other words, vehicles can't be put into airplane slots since they don't always have 
the specific features that are assumed for airplanes. 
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) 
vehicle 

vehicle vehicle vehicle 

t'~IQnel EJ t;,p~nel 

castdown 

vehicle 

EJ 

Figure 14. Illustrating type casting constraints. 

The compiler allows the occupant of a slot to receive only messages that belong to the 
class that has been declared for that slot. Thus, methods that are specific to a derived 
class (i.e., that are not defined for the base class) will not be accepted in a base class slot. 
For example, since v has been declared to be of type vehicle: 

v->move(): 

is allowed by compiler, but since show-wings is not a feature of vehicles: 
v->show-wings(): 

is not allowed. Once again, the reason is easy to see when we imagine that a tank might 
have been assigned to v and it would then not be able to respond to airplane messages. 
These typing rules have important implications for designing heterogeneous container 
classes. 

Strong typing presents challenges relating to both adding and removing. Figure 14 
illustrates these problems. First of all, the argument of the add method must be as gen­
eral as we need to make it to encompass all the classes of objects that we intend to place 
in the container. Second, when removing an object from the container, the compiler 
knows only that it is of the generic base type (e.g., vehicle) that has been declared upon 
entry. So we have to use our knowledge of the situation to tell the compiler exactly what 
subclass (e.g., airplane) the object really is. This is called casting down. 
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For example, if we know that the object that we have picked and assigned to v is 
really an airplane, then the casting operation looks like 

a = (airplane *)v 

This assigns to slot a the address that v holds along with the information that the lay­
out of the object for airplanes should be used when interpreting messages sent to v. The 
cast down can be done in one step, as in 

«airplane *)v) ->show_wingO; 

Note the enclosing parentheses which say that v is to be cast, not 
v->show_wingsO, the compiler's natural interpretation. 

Since we are interested in containers that can hold arbitrary types of objects, we cre­
ate a class called entity intended to be the base class for any user defined class. This 
means that if you want to use such containers, you must 

1. always derive your classes from entity (directly or indirectly) and 

2. remember to cast down the type of an extracted item to the particular type capa­
ble of receiving the messages you want to send it.. 

Virtuality and Dynamic Binding 

Returning to vehicles, airplanes and tanks, consider a method such as move() that has 
been defined for the base class, vehicles. By inheritance, each of the following would 
invoke the same version of moveO, namely, that of vehicles: 

v->moveO; 
a->moveO; 
t->moveO; 

Now suppose that airplanes overrides the inherited version with its own version of 
moveO: 

}; 

class airplane: public vehicle{ 

public: 

void moveO{ ... } 

The situation now is 

v->moveO; / /invokes vehicle::moveO 

a->moveO; //invokes airplane::moveO 

t->moveO; / /invokes vehicle::moveO 
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But what happens after assigning airplane in a to v? Look at 

v=a; 

v->moveO; Iistill invokes vehicle::moveO 

Since the compiler recognizes only the type of v which has been declared as vehicle, 
it invokes the method for vehicle as before. Knowledge of the type of the occupant of the 
slot v can be gained only at run time. The compiler must be told to offload this decision 
to the run-time system if we want the proper version of the method to be called. To cause 
this run-time processing to occur, we must declare a method to be virtual in the base 
class: 

class vehicle{ 

public: 

virtual void moveO{ ... ) 

The situation 

v= a; 

v->move(); II invokes airplane::move() 

now unfolds as we expect. The run-time system checks the class of the current occupant 
of v and invokes the code for the method of that class. The information required for this 
processing is placed into a table, called the virtual function table, associated with the base 
class. 

The virtual concept suggests another consequence for using containers in C++: we 
must declare methods that all subclasses of entity will use (such as printO, and equalO) 
to be virtual for base class entity. This is an essential condition for heterogeneity: - when 
the run-time system examines each object in a container, it can tell which version of a 
virtual method to apply to it. 
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Problems 
1. We can nondestructively append one container to another by 

void container::append(container * c) 
{ 
for (element *p = c->get_headO;p != NULL;p = p->geUightO) 
add(p->get_entO); 
I 

Explain what would happen if add_element(p) were to replace 

add(p->get_ent()) 

2. Write and test the helper functions for bag removal. Hint: use the helper methods: 

Bool is_head(entity *ent); 
element *previous(entity *ent); 
void remove_headO; 
void removeJistO; 
void remove_middle(entity *ent); 

3. Class relation's queries, domain_objects and range_objects, return sets of all 
keys and all values used in a relation's key-value pairs. Define these query methods 
in C++ .. 

4. Implement class list as a derived class of container in C++. (Hint: one way to do it is 
to keep the natural order given by pointer linkage and to count to get to the desired 
position. For example, list_ref(i), starting at the head, counts up to i while advancing 
to the right.) 

5. (Memory Management) C++ does not reclaim memory space automatically when an 
object is no longer usable (has no references to it) although it offers the programmer 
some convenient means to do so. Although beyond our scope we mention that classes 
have destructors that can be used to free up the memory held by an instance. 
However, the problem facing the C++ programmer is to avoid sending messages to 
an object that has been destroyed. With this in mind, design a derived class of entity 
that keeps track of all references to an instance and allows destruction only at the last 
reference. (Hint: use a class variable which maintains a bag of references and their 
occurrences. The declaration looks like: 

class en: public entity{ 
private: 
static bag· m; 
public: 
en(char * nm):entity(nm); 
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en * make_copyO;// use when adding a new reference. 
//-enO; don't use a destructor 

void releaseO; //use instead. Calls the destructor at the last moment. 
int numbecofO; //number of references to this entity in central bag 
} ; 

An example of use (although trivialized is: ) 

mainO{ 
en* a = new en("a"); 
en* b = a->make_copy(); 
en* c = a->make_copy(); 
en* d = a->make_copy(); 
a->releaseO; 
b->releaseO; 
c ->releaseO; 
d ->releaseO; 
} 
} 
) 

6. (Methods for Hierarchical Containers) Define method prlntO for class container that 
prints the names of the entities in a container; for any entity that is also a container, 
it recursively applies the printO method. (Hint: use polymorphism and virtual 
definition of print) 

Discuss a general approach to defining recursive methods for hierarchically con­
structed containers. 



7 
Testing Based on Behavior Specification 

While "getting it right the first time" is an admirable goal, no one is able to write code that 
is guaranteed to work as intended without testing and debugging. Testing is the process of 
uncovering errors or "bugs" in code. Debugging is the process of removing them. The 
many books on object-oriented programming, C++ and Java in particular, tend not to deal 
with these issues. Books on software engineering do discuss testing as an important phase 
within software system development, but a good approach to testing that is tuned to the 
special characteristics of object orientation is not yet available. This chapter will provide 
the beginnings of such an approach that emerges naturally from the concepts of behavior 
specification that we have developed. 

This methodology should attempt (or even guarantee) to produce a test suite that is as 
thorough as time and money allow. A failed test should output the behavioral aspect it was 
aimed at, thus providing a useful starting point for the debugging process. The test suite 
should be able to evolve as the software system evolves, making sure each update or 
release maintains the levels of performance achieved in the past. 

7.1 The Look-and-See Method 

Before proceeding with a systematic approach to testing, let's first consider one we might 
adopt called "look-and-see." In the method "look-and-see," after writing the code for a 
class, you create an instance of it and apply a method to it. This is the "look" part. You 
then see if the code runs and that the results are what you expect them to be. If not, you try 
to find out what's wrong and correct it. After you've finished debugging this method, you 
apply a second method to the instance. You continue in this manner until you are satisfied 
that the code is working as expected. 

There are three major problems with this haphazard and idiosyncratic approach: 

• Thoroughness: in all this looking and seeing there is no guarantee that you are 
looking in the right place for errors. Chances are that you are examining a part of 
the overall behavior that you personally are aware of. Other users, however, and 
this includes you later, will rarely be familiar with the assumptions you made and 
will attempt to use the class in ways you did not think of. The behavior they will 
be seeing will not have been tested and will probably be buggy. 

B. P. Zeigler, Objects and Systems
© Springer Science+Business Media New York 1997
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• Repeatability: debugging often introduces new bugs, so there is no guarantee that 
tests that were passed earlier will still be satisfied. So you really need to repeat all 
earlier tests after every code fix. Moreover, these tests need to be repeated for 
later reimplementations of the same behavior. Subsequent modifications of the 
behavior may be able to reuse many of the same tests. 

• Self-disclosure: the test results should be in the form of a binary decision, 
pass/fail, not requiring you, or later someone else, to stare at the output for a while 
before deciding whether or not it is correct and which part of the behavior it was 
addressing. 

In contrast, a systematic approach would attempt to produce a test suite that is as thorough 
as possible. Such a test suite could be reapplied as needed and produce crisp pass/fail 
results. Having tangible form, a test suite would be open to improvement as new conditions 
are discovered or to adaptation as new modifications are made. 

7.2 Testing Rudiments 

Some of the basic requirements for a systematic test methodology are easily met. Tests 
should be expressed in the language the software is written in and stored in files that can be 
compiled if necessary and executed. Every class should have an associated test file. Tests 
should provide crisp pass/fail results and document the underlying purpose. Here's an 
example of such a test in C++: 

cout « "TESTING IF NAME IS PROPERLY SET BY ENTITY CONSTRUCTOR" « endl; 

entity * e = new entity("trial"); 
if (strcmp(e->get_name(),Htrial") == 0) 

cout« "test satisfied"; 
cout« "test NOT satisfied"; 

Such tests can be entered into a file whose name associates to the name of the class 
under test. For example, the file "testentity.C" contains a sequence of tests such as the one 
just given. This test file was executed many times before the initial version of the entity 
class stabilized. Now, whenever there is modification to the "entity.h" or "entity.C" file 
(and there always seems to be a new reason for an enhancement!), "testentity.C" is 
modified, if necessary, and recompiled and executed to make sure the new code has not 
been inadvertently corrupted. 

Testing is by nature a tedious process. Tools can be developed to minimize the routine 
drudgery. For example, a class Test can be defined that supports testing C++ classes. 
Figure I illustrates the use of this class in a file that tests the container class. 
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mainO[ 

Test· ConTest = new Test; Ilmake a new instance of Test for this class 

ConTest->Showlnfo('Contalner Tests', 'container.h contalner.C' :contalner'); 

II print out relevant Information 
entity ·book = new entity('book'); 
ConTest->Prlnt(l, 'Creating new entity called book .. .'); 

ConTest->Exlsts(book); Ilwas book successfully created 

container· con I = new container; 
ConTest->Print(l, 'Creating new container conI with no name .. .'); 
ConTest->Exists(con I); 

ConTest->Series('container::addO & container::isJnO'); 
Ilstart a series of tests concerning add and is_In 

ConTest->Focus('container::emptyO'); 
Ilwlthln above series, focus on emptyO 

ConTest->ls_Equal('conl empty?', conl->emptyO, TRUE); 

II output 'test passed' if container is empty 
II otherwise 'test NOT passed' 

ConTest->Focus('container::slze()'); 
ConTest->ls_Equal('con I's $lze is O? " con 1->sizeO. 0); 

ConTest->Focus('container::add(entity·) & contalner::is_ln'); 
con I->add(book); 

ConTest->ls_Equal('book is added. is conI holding book now?', 
conl->Is_in(book), TRUE); 

II more focal tests in this series 
II additional series 

ConTest->Report(); II report the test result statistics: 

II how many series were done, 
II how many tests were done, how many were in error 

Figure 1. An example (partial) of a test file using class test. 

Note that Test supports documenting tests and their purposes, comparing query outputs 
with expected values, and automatically tallying test results, Figure 2 shows some the 
output of the test of an early version of the container class, We can see at a glance at the 
end of the printout that there were tests that failed, and then by scanning the file we can 
easily identify which ones they were. In the early stages, however, a full printout is most 
likely not to be had! Many "crashes" occur that halt execution. Worse, the run-time system 
may give little or no indication of the cause of the crash. Segmentation faults are a 
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notorious example: access was attempted to an undefined pointer-but which one was it? 
In such cases, the point at which printing stopped provides useful information since the 
point of failure must have occurred after it. In contrast, look-and-see testing of a complex 
program may result in a crash and offer no clue as to what caused it. 

Showlnfo: 

Title : Container Tests 

Test on File: container.h contalner.C 

Test Class : container 

Creating new entl1y book ". 

Object entl1y exists. 

Creating new container con 1 with no name ... 

Object container exists. 

container::addO & container::lsjn() tests series 

Test Focus: contalner::emp1yO 

con 1 emp1y? : True 

Test passed. 

Test Focus: container::sizeO 

con 1 's size Is O? : True 

Test passed. 

Test Focus: container::add(enti1y *) 

& contalner::lsjn(entl1y *) 
book is added, and Is in con 1? : False 

Test NOT passed. 

Report: 

Total Series : 7 

Total Test : 25 

Error Detected :5 

Figure 2. Output from test file (partial). 



7. Testing Behavior 105 

7.3 Blueprint-Based Testing 

Rudimentary test-supporting tools are fine, but they only raise new questions. How do we 
determine what series of tests to run? How do we come up with the purpose of each test 
and then implement it? How many tests are enough? 

For some insight, let's return to the diagram in Chapter 5 in which the "blueprint," the 
object behavior specification, formed the center of all interaction among designer, 
implementor, tester, and user (see Figure 3). A blueprint for a class, if complete and 
consistent, specifies exactly the behavior expected from the objects in this class. How the 
designer can provide a complete and consistent blueprint has been a main consideration 
until this point. Now, we focus on the guidance that the blueprint can offer in developing 
tests for a class. 

designer 

blueprint 

tester 

implementor 

class 
definition 

class test 

Figure 3. Software Blueprint as a contract between designer, implementor and tester. 

As pictured in Figure 3, the class specification for code development can be viewed as 
a contract between the implementor and the tester. The implementor agrees to bring the 
blueprint to life. The tester agrees to ascertain whether the living beast conforms to the 
blueprint specification - nothing more nor less. To fulfill her side of the bargain, the 
implementor supplies a class definition. To discharge his responsibility, the tester provides 
a test suite. Both class definition and test suite are based on the blueprint and are 
developed independently of each other and in parallel. When both are ready, they are 
combined into one executable file and the results observed. The reason they can be 
developed independently is that all the behavior to be expected from the implementation is 
specified in the blueprint, including the names of the methods and the types of their 
arguments. Realistically, the object behavior specification we have discussed does not 
provide lower-level details, such as whether a number is to be integer or floating point, or 
other considerations that are specific to the implementation language. So some adjustment 
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is needed to make the tests match the class definition. But since the basic interface specifi­
cation has been agreed to (in the blueprint), the adjustment needed is relatively minor. 

This is all well and good in the abstract, but practically speaking, how can the tester 
translate the blueprint into a concrete suite of tests? First, let's recall that the behavior of 
an object is the set of all the query-terminated sequences of commands that can be 
applied to it together with their responses. Mathematically, the behavior of a class is a 
relation where each pair consists of a legal query-terminated sequence of commands as 
key and the value is that returned by a newly constructed instance. One way to go about 
testing, therefore, is to list each legal query-terminated sequence of commands in a file and 
check whether the actual response agrees with the value dictated by the behavior 
specification. The tests we illustrated earlier for the entity and container classes fit this 
form. 

7.4 Constructing Behavior Samples 

In general, there are an infinite number of pairs in the behavior relation, so we can only 
sample a finite set of these pairs in a practical test suite. The question now is: how to 
choose such a sample? It would be nice if I could offer you an algorithm that took a 
behavior specification and automatically generated a finite subset of tests that was as 
thorough as can be within some prescribed limits of time and money. Unfortunately, such 
an algorithm cannot exist. However, there are two approaches we'll discuss that can go 
some distance toward the goal exemplified by such an algorithm. The first approach 
focuses on the intended functionality of the class - out of all the numerous legal query­
terminated sequence of commands, which ones represent normal scenarios intended for the 
users? 

Normal Behavior Example: Testing the Alarm Class 

We have previously specified the alarm class behavior and discussed its application to a 
house alarm system. Let's see how an alarm implementation would be tested, focusing on 
its normal behavior. 

For convenience, we recall its object behavior specification (Figure 4). 



consiNctor 

alarm make-alarm(key) 

queries 

boolean armed?(alarm) Ills the alarm set to work? 
boolean open?(alarm) Ills the door (or window) open? 
boolean sound?(alarm) Ills the alarm screeching? 

hidden 

key key?(alarm) II what Is the required key? 

commands 

7. Testing Behavior 107 

alarm' arm(alarm,key) Ilset the alarm to work using the proper key 
alarm' disarm(alarm,key) IIturn off the alarm using the proper key 
alarm' open(alarm) II open the door 
alarm' close(alarm) II close the door 

Equivalences 

armed?(make-alarm(key» = F 
open?(make-alarm(key» = F 
sound?(make-alarm(key» = F 
key?(make-alarm(key» = key 

open?(alarm) = F & key?(alorm) = key =>ormed?(arm(alarm,key» = T 
armed?(arm(alarm,key» = F 

II only applies when above condition falls 
key?(alarm) = key => armed?(dlsarm(alarm,key» = F 
armed?(disorm(alarm,key» = armed?(alarm) 

armed?(open(alarm») = F 

armed?(close(alarm» = armed?(alarm) 

open?(arm(alarm,key» = open?(alarm) 
open?(dlsarm(alarm,key» = open?(alarm) 
open?(open(alorm» = T 
open?(close(alarm» = F 

sound?(orm(alarm,key» = sound?(alorm) 
key = key?(alarm) => sound?(disarm(alarm,key» = F 
sound?(dlsarm(alarm,key» = sound?(alorm) 

II only applies when above condition fails 

ormed?(alarm) = T => sound?(open(alarm» = T 
sound?(open(alarm»= sound?(alarm) 

II only applies when above condition fails 

sound?(close(alarm» = sound?(alarm) 

Figure 4. Object behavior specification for class alann. 
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The main function of the alarm is to sound when it is armed and a break-in occurs. 
Thus, if the alarm is armed with the right key and the door is subsequently opened, we 
want the alarm to sound. 

The following query-terminated sequence and response correspond to this scenario: 

alarm = make-alarm(keyl) 
alarm' = arm(alarm,keyl) 
alarm" = open(alarm') 
sound?(alarm")= T 

Somebody knowing the right key should be able to get in by disarming the alarm: 

alarm = make-alarm(keyl) 
alarm' = arm(alarm,keyl) 
alarm" = disarm(alarm' ,keyl) 
sound?(alarm") = F 

But not knowing the proper key, a burglar will not be able to disarm the alarm and it 
will still warn of a break-in: 

alarm = make-alarm(keyl) 
alarm' = arm(alarm,keyl) 
alarm" = disarm(alarm' ,key2) 
alarm'" = open(alarm") 
sound?(alarm''') = T 

These query-terminated sequences represent normal user scenarios for the alarm, and 
its proper response is critical to its existence. However, there are many other possible 
sequences that might arise in practice that must be tested. 

The following query-terminated sequence corresponds to arming the alarm with the 
wrong key and subsequently opening the door; does the alarm sound? 

alarm = make-alarm(keyl) 
alarm' = arm(alarm,key2) 
alarm" = open(alarm') 
sound?(alarm") = ? 

The following query-terminated sequence corresponds to arming the alarm with the 
right key,subsequently opening the door; then closing the door; can the alarm be armed? 

alarm = make-alarm(keyl) 
alarm' = arm(alarm,keyl) 
alarm" = open(alarm') 
alarm'" = close(alarm") 
alarm'v = arm(alarm"',keyl) 
armed?(alarmlv) =? 
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The following query-terminated sequence corresponds to arming the alarm with the 
right key, subsequently opening the door, then forgetting to close the door; can the alarm 
be armed? 

alarm = make-alarm(keyl) 
alarm' = arm(alarm,keyl) 
alarm" = open(alarm') 
alarm'" = arm(alarm" ,keyl) 
armed?(alarm''') =? 

Since the behavior specification is complete and consistent, each of the above 
responses can be worked out by simulation. Clearly, we should test for them and as many 
other scenarios that might arise as possible. In general, we must try to conjure the many 
unintended scenarios that the user is apt to get into. But is there any way of knowing if all 
the scenarios have been considered? No, but our second approach can guarantee that all 
"aspects" of the behavior have been considered. By "aspects" we mean query/command 
pairs, or equivalently, state transitions, as we will see in a moment. 

7.5 Testing Constructors for Correct Initialization 

Before proceeding with the query/command pairs, let's note that the query/constructor 
pairs in the object behavior specification provide the information for defining constructors 
and testing that they work properly. For example, the query/constructor pairs for class 
alarm are: 

armed?(make-alarm(key» = F 
open?(make-alarm(key» = F 
sound?(make-alarm(key» = F 
key?(make-alarm(key» = key 

They can be tested in a series of the form: 

alarm * a = new alarm("keyl "); 
AlarmTest->ls_Equal("a armed? ", a->armed_q(), FALSE); 
AlarmTest->ls_Equal("a open? ", a->open_q(), FALSE); 
AlarmTest->ls_Equal("a sound? ", a->sound_q(), FALSE); 
AlarmTest->ls_EquaICa key? ", a->key_q(), "keyl"); 

Since key? is a hidden query, we should treat it differently, as we discuss later. 
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7.6 State Transition-based Testing 

Earlier in Chapter 2, we recognized that objects are state machines (although not 
necessarily finite state machines). To fully test such a system obviously requires that we 
test the transitions and outputs of the object in each of its states. The state equations in an 
object behavior specification provide the information we need to do such testing. Recall 
that a complete specification contains all combinations of state representing queries and 
commands. For example, in the alarm class, there are 4 queries and 4 commands, so there 
are 16 query/command combinations. Each such query/command pair describes the effect 
of the command in changing the state as "seen" by the query. Each pair, therefore, 
represents an aspect of the object behavior that is independent from all the others. Thus, a 
thorough test suite must include at least one test of each query/command pair. However, 
the more tests we do of each aspect of behavior, the more opportunity to expose its bugs. 
So we should try to test each query/command pair on as many states of the object as time 
and money allow. Since an alarm object has a finite number of states, we can create an 
alarm instance for each state and apply each query/command pair to each instance. 

The alarm class has three state-representing queries: armed?, open? and sounding? 
(The query key? is not supposed to change once initialized, so we don' t count it for this 
purpose.) Each returns a boolean value, so there are at most 21\3 = 8 states (not all of which 
might be reachable from the initial state, as we will discuss later). Assuming the 
implementation uses instance variables armed, open, and sounding, let's make eight 
instances, each in a different state. 

alarm * alarm 1 = new alarm (/* armed * /F,/* open * /F,/* sounding * /F,/* key 
*rkeyl") 

alarm * alarm2 = new alarm (/* armed * /T.!* open * /F,/* sounding * /F,/* key 
*rkeylN) 

alarm * alarm3 = new alarm (/* armed */F,/* open */T,/* sounding */F,/* key 
*rkeyl") 

alarm * alarm4 = new alarm (/* armed */T,/* open */T,/* sounding */F./* key 
*rkeyl") 

alarm * alarm5 = new alarm (/* armed */F,/* open */F,/* sounding */T,/* key 
*rkeyl") 

alarm * alarm6 = new alarm (/* armed * /T,/* open * /F,/* sounding * /T,/* key 
*rkeyl") 

alarm * alarm7 = new alarm (/* armed */F.!* open */T,/* sounding */T./* key 
*rkeyr) 

alarm * alarm8 = new alarm (/* armed */T,/* open */T,/* sounding */T.!* key 
*rkeyl") 

Now we write tests for the 16 query/command pairs. We'll return later to consider this 
more fully, but to illustrate, let's write two easy ones. The equation 

armed?(open(alarm» = F 



can be readily transformed to the method 

alarm::armed_CLon_openO{ 
openO; 
return armed_qO == T; 

} 

The equation 

armed?(close(alarm» = armed?(alarm) 

7. Testing Behavior III 

states that the armed state is not affected by closing the door and is transformed into 

Bool alarm::armed_CLon_open(){ 
Bool * old_alarmed = armed_q(); 
close(); 
return armed_q() == old_alarmed; 

} 

After writing the tests for the 16 query/command pairs, we apply each test to the 8 test 
instances. For example, for the pair armed?-on-open, we have: 

test (alarm l->armed_CLon_open); 
test (alarm2->armed_q_on_open); 

where Test prints "test satisfied" if its argument is true and "test NOT satisfied" otherwise. 
Since the instances alarm 1,. .. ,alarmB are modified by the focal command, we need to 

recreate a new set of fresh instances for each test. Thus for example, 

alarm * alarm 1 = new alarm (/* armed * IF,/* open * IF,/* sounding * IF,/* key 
* /*keyl") 

alarm * alarm8 = new alarm (/* armed * IT,/* open * IT.!* sounding * IT,/* key 
*/*keyl") 

test (alarm l->armed_CLon_close); 
test (alarm2->armed_CLon_close); 

test (alarmB->armed_CLon_close); 

depicts the section relating to the armed?-on-close. All in all, we have a file containing at 
least 16 test functions each applied to 8 fresh instances, for a total of 128 pass/fail tests. 
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7.7 Transition-Based Test Methodology 

While the state transition-based testing approach can generate a thorough test suite, it 
clearly needs tool support to reduce the tedium and drudgery involved (not to mention, the 
errors that might be introduced in the tests themselves due to this drudgery). Before 
returning to the dangling threads of the last section, this section introduces methodology 
and tools in C++ that greatly reduce, but do not entirely eliminate, the work needed in 
transition-based testing. Before describing the tools, consider the main steps of the 
methodology: 

1. Write test methods for each query/command equation in the object behavior 
description, 

2. Form a container of these test methods, 
3. Form a container of instance makers in different states, 
4. Apply each test method to each instance (freshly reconstituted as necessary), 
5. Form a container of test results showing the pairs of tests and instances they failed 

on. 

Test 

purpose 
precondition 
postcondition 
virtual makejnstances 

tesUnstances 
test_results 
print 
execute 
apply_test 

testl 

testn 

Figure 5. Transition test framework. 

Figure 5 shows a framework for supporting this methodology. To test a class X , we 
define a define a subclass, test_oCX of class Test. For example, 

class test_oCalarm:public Test{}; 
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The methods of this class will implement the tests developed from the object behavior 
specification. Class Test has four instance variables whose roles are illustrated in the 
following prototype method description: 

Bool test_oCX ::query_on_command(X· testjnstance){ 

.. ..... ..... ;/ / local constants to be used for 

/ / arguments and tests 

purpose = ............ ;f /description of test objective 

precondition = ........ ;/ / condition that must be 

/ /satisfied by test instance 

tesUnstance-> ........ ;/ / command sent to test instance 

postcondition = ............ ; / / condition that should 

Ilbe true after commands 

For example, consider the equations for query/command pair, armed?/arm. For the 
first rule, 

open?(alarm) = F & key?(alarm) = key 
=> armed?(arm(alarm,key» = T 

we write 

tesCoCalarm::armed_CLon_arm 1 O{ 
char· key = "keyl"; 
purpose = "test if alarm can be armed under proper conditions"; 
precondition = !test-instance>open_q() && 

tesUnstance->key_q() = key; 

tesUnstance>arm(key); 
postcondition = test-instance>armed_qO; 

) 

Note that the precondition corresponds to the "if' part of the rule, while the 
postcondition represents the "then" part. In general, a rule in the behavior specification has 
the form 

precondition => postcondition 
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though in many rules the precondition is only implicitly there. For example, the second 
rule, 

armed?(arm(alarm,key» = F 

only applies when the previous rule does not. Thus, its explicit form is: 

not(open?(alarm) = F & key?(alarm) = key) 

=>armed?(arm(alarm,key)) = F 

Thus, this rule is translated as 

Bool tesCoCalarm: :armed_CLon_arm201 
char * key = "key]"; 
Bool complement = test-instance>open_qO && 

tesUnstance->key _qO ==key; 

purpose = "test if alarm rejects arming under right conditions"; 
precondition = !complement; 
tesUnstance>arm(key); 
postcondition = !test-instance>armed_qO; 

) 

Many rules are unconditional, which means their precondition is always true. For 
example, 

armed?(open(alarm)) = F 

is translated as 

Bool tesCoCalarm: :armed_CLon_openOI 
purpose = "test if alarm always is not armed after open"; 
precondition = T; 
tesUnstance>openO; 
postcondition = !test-instance>armed_qO; 

) 

Similarly, 

armed?(close(alarm)) = armed?(alarm) 

is translated as 

Bool test_ oCalarm: :armed_CLon_closeOI 
Bool old_armed = tesUnstance->armed_qO; 
purpose = "test if close does not affect alarm armed state·; 
precondition = T; 
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testjnstance>closeO; 
postcondition = test-instance>armed_qO == old_armed; 

) 

Note the definition of a local variable, old_armed to hold the value returned by 
armed? before sending the arm command. The rule says that this value should not 
change. 

Step 3 in the methodology calls for providing "instance makers" that can be called to 
generate fresh copies of instances. This is illustrated in Figure 6. 

class test_oCalarm:public Test{ 

public: 

tesCoC alarm():Test(){} 

void makejnstancesO { 

tesUnstances = new set; 

alarm * alarm 1 = new alarm (r armed * IF.r open * IF.r sounding * /F.r key 
*/"keylN); 

tesUnstances->add(alarm 1); 

alarm * alarm8 = new alarm (r armed * /T.r open * /T.r sounding * /T.r key 
*/"keylN); 

tesUnstances->add(alarm8); 

Figure 6. Generating test instances. 

For each test developed as above, we write a corresponding method for class 
test_oCalarm that uses a macro to apply the test to each of the test instances. For example, 
for the test 

tesCoCalarm::armed_q_on_arm 1 

we write the method: 

} 

void tesCoCalarm::armed_q_on_arm l_aIlO{ 
apply _test(armed_q_on_arm 1); 

We then write an executable file that invokes each of the tests on all the instances: 
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int main(){ 

test_oCalarm * t = new tesLoCalarmO; 

t-> armed_q_on_arm1_aIlO; 

t-> armed_CLon_arm2_aIlO; 

t-> armed_CLon_open_aIlO; 

t-> armed_CLon_close_aIlO; 

t->printO; 

The results appear in the form of an instance of test_result, which is an instance of 
class function, holding for each failure-detecting method the container of failed 
instances. For example, the print-out, 

«armed_CLon_arm1 (a2 a5» (open_q_on_arm (a1») 

indicates that armed_CLon_arm 1 failed on instances a2 and a5 while open_CLon_arm 
failed on a1. All other tests passed or were not applicable. To see how this is done, let's 
look at the code for the method execute which is automatically called after applying a test 
method: 

) 

Bool Test::execute(){ 
cout « purpose; 
if (!precondition) { 

cout« ": test not applicableN «endl; 
return TRUE; } 

else if (postcondition) ( 
cout« ": test satisfied· « endl; 
return TRUE; ) 

else { 

cout« ": test NOT satisfied N « endl; 
return FALSE; 

Note that a test is not applicable when the precondition is false. For example, 
armed_CLon_arm2 cannot be applied to alarm instance a3 since a closed door is needed 
to set the alarm. If the precondition is true and the postcondition is also true, the test is 
satisfied. Otherwise (when the test is applicable but the postcondition is false), the test 
fails. Note, that the method returns FALSE only in the last case, since we want to know only 
about applicable tests that failed. 
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7.8 Transition-Based Testing: More Considerations 

We'll apply the transition-based test methodology to class set to illustrate some useful tips. 
Consider defining class test_oCset: 

class tesCoUet: public Test{ 

} ; 

Incorporating Domain Restrictions in Preconditions 

Recall the restriction on removal expressed by 

remove(set.entity) = defined provided that 

is-in?(set.entity) = T 

In testing the equations for the pair is-in? jremove in the set behavior specification 

is-in?(remove(set,entity),entity)) = F 

we can incorporate this domain restriction into the precondition: 

) 

test_oCset: :is_noUn_on_remove(){ 
entity· a = new entity("a"); 
purpose = "test that item is not there after removing it"); 
precondition = tesUnstance-> isjn( a); 
tesUnstance-> remove (a); 
postcondition = !tesUnstance->is-in(a); 

This will prevent trying to remove an item that is not in the set. More generally, we 
should incorporate the domain restrictions of a specification into the precondition of any 
test for which it is relevant. 

Refining Tests by Splitting Preconditions 

There should be no effect of removing one item on the inclusion status of another: 

is-in?(remove(set.entity),entityl)) = is-in?(set.entityl) 

The test for this is straightforward: 

tesCoUet: :stilUsjn_on_remove(){ 
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entity· a = new entityCaH
); 

entity' b = new entityCb H
); 

Bool oldjsjn = testjnstance->namejsjn(b); 
purpose = "test that item is still there after removing another"); 
precondition = testjnstance-> isjn( a); 
testjnstance-> remove (a); 
postcondition = testjnstance->namejsjn(b) == oldjsjn; 

) 

However, if this test were to fail, we would not know whether it was because an 
existing entity was accidentally removed or because a new entity was accidentally added 
in. A little foresight can make it easier to diagnose problems such as this by splitting the 
possibilities as different tests. In this case, we can have two tests corresponding to the 
initial value of old-is-in . 

The first tests for the case of an existing item: 

test_oCset: :stilUsjn_on_remove(){ 
entity· a = new entityCaH

); 

entity· b = new entityCbH
); 

purpose = "test that item is still there after removing another"); 

precondition = testjnstance-> isjn( a) && testjnstance-> isjn( b); 

tesUnstance-> remove (a); 

postcondition = tesUnstance->namejsjn(b); 

The second tests for introduction of a new item: 

test_oCset: :stilUsjn_on_removeO{ 

entity' a = new entityCa"); 

entity * b = new entityCb"); 

purpose = "test that item is still there after removing another"; 

precondition = testjnstance-> isjn( a) && !testjnstance-> isjn( b); 

tesUnstance-> remove (a); 

postcondition = testjnstance->namejsjn(b) == F; 
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Another reason to split tests is to increase the sensitivity to boundary states that could 
be sources of error. For example, we might split the test for Is-in? /add into 3 regions of set 
size: 0, 1, and> 1. 

tesCoUet: :isjn_on_addOO{ 

precondition = tesUnstance->sizeO == 0; 

precondition = tesUnstance->sizeO == 1; 

precondition = testjnstance->sizeO > 1; 

For a set with a limited capacity, we might include tests that are sensitive to the sizes 
near and at the maximum. 

Making Test Instances 

Recall that test instances represent different states of an object. The approach of 
constructing such states by assigning values to instance variables depends on knowing 
what these are and having a general constructor that has arguments for all these variables. 
Moreover, such state combinations may not actually be of interest in that they may not be 
reachable by any legal sequence of commands. To make our test instance makers generic 
we can limit state construction to those states accessible by sequences of commands. Even 
more efficiently, in many cases, we can limit the commands used to a subset that can 
construct all legal states. For example, a list is most directly constructed from a sequence 
of insert commands (although we could also use remove methods, the same effect can be 
achieved with just insert commands alone). 
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How Many Test Instances Are Enough? 

In a relatively small finite state system such as alarms, it is feasible to completely cover the 
state space with test instances. However, this may not be feasible for a large state space or 
if the state space is infinite, as in the case of container classes. The guiding principle here 
must be to cover the tests rather than the states. In other words, use enough test instances 
so that every test is applicable at least once. Of course, within the limits of time and 
money, the more test instances, the better. It is easy to arrange minimal test coverage - for 
each test, we make a test instance that will apply to that test. Of course, a major advantage 
of using test-all is that all tests are tried on all instances, so a test instance might 
accommodate many more tests that it was designed for. Since the burden of test-suite 
thoroughness is now on the tests, we should be zealous in splitting tests where there is a 
real advantage to doing so, as just discussed. 

However, there are times when splitting tests is not enough and we have to add more 
instances. An example is illustrated in the alarm test armed?-on-arm2. Here, the 
precondition looks like 

!(!tesUnstance->open_q() && tesUnstance->key_q() == key) 

By Demorgan's law, this transforms into a disjunction of the basic conditions: 

tesUnstance->open_q() I I tesUnstance->key_q() != key 

The test will be applicable if either of the basic conditions is true. So the test will apply to 
any instance with an open door, independently of the input key. But, we would also like to 
test to make sure that the alarm doesn't get set when the input key is incorrect. So we 
should split the test into two: one with the precondition 

tesUnstance->open_q() 

and one with precondition, 

tesUnstance->key_q() != key 

But to cover the second test, we need to make at least two instances that differ in their key 
settings. Thus, where preconditions can be put into disjunctive form, we can split tests and 
make sure there are enough instances so that each can be tested (see the Problems). 

Opening Up the Black Box 

To characterize behavior using the state equation approach is it often necessary to add 
queries to properly represent the state. When they are not properly part of the public 
interface, such state-representing queries are marked "hidden" in the specification. In 
implementations, such queries might become instance variables or methods and in C++ 
they would be qualified as "private" (or "protected") and therefore not accessible for use in 
the test methods. Not being able to use these queries might severely limit testability. For 
example in class alarm, not being able to query for the hidden key would prevent us from 
testing the arming and disarming methods. Thus, we have to "open up the black box", that 
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is, extend the public interface, for testing purposes while making sure that its original form 
prevails for actual use. There are several ways to do this in C++. 

A straightforward solution is to add special access methods to the public interface. For 
example, 

class alarm{ 

public: 

int get_keyO; 

The problem then is resisting the temptation to use these special methods for other than 
testing purposes. Of course, we should impose a stricture against such use. Unfortunately, 
this stricture would not be enforceable by C++ itself since we declared the access methods 
to be pUblic. 

A more secure approach is to use the concept of friend in C++. We can make the test 
class a friend of the class under test: 

class alarm{ 

friend class tesCoCalarm; 

This gives tesCoCalarm direct access to all accessible methods and instance variables of 
alarm without exposing them to other clients. 

7.9 Combining the Approaches 

In general, a test suite should contain 

1. tests that constructors work properly: these come from the part of the object 
behavior specification that involve query/constructor pairs, 

2. samples of query-terminated sequences that characterize normal and abnormal 
scenarios, 

3. tests based on query/command pairs in the object behavior specification and test 
instances to cover them. 
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Problems 
1. Using the Test class in C++, write a test file for the alarm class based on the 

nonnal and abnonnal behavior query-tenninated sequences identified in the 
chapter. 

2. Using the state-transition approach, write a test suite for the class pair as specified 
below: 

pair inherit from entity 
constructor 
pair make-pair(key.value) 
queries 
entity key?(pair) 
entity value?(pair) 

commands 
pair' set-key(pair.entity) 
pair' set-value(pair.entity) 

Equivalences: 
key?(make-pair(key.value) = key 
value?(make-palr(key.value) = value 

key?(set-key(pair.entlty» = entity 
value?(set-key(palr.entity» = value?(pair) 

key?(set-value(pair.entity» = key?(palr) 
value?(set-value(pair.entity» = entity 

3. Write a specification for the cross product of two containers. A pair is in this cross 
product just in case its key entity is in the first container and its value entity is in 
the second container. Using the state-transition approach, write a test suite for this 
class. 

4. Write a specification for the test methodology implemented by the class hierarchy 
in Figure 5. For example, the final testing process can be represented by 

is-in?(container-of-test-methods.query?) = T 

& is-in?(container-of-test-instances.entity) = T 

& query?(entity) = F 

=> is-in?(container-of-results.query? ,test-instance) = T 
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5. Refine the test suite for alarms by splitting armed?-on-arm2 into two tests and 
add an additional test instance to provide for applicability requirements. 

6. Write a behavior specification and test suite for the n-counter class (see 
Problems, Chapter 1) in C++. Compare the approach of adding public methods 
intended only for testing purposes with that of making the test class a friend of the 
n-counter class. 

7. a) Write a behavior specification for the def state machine introduced in the 
Problems of Chapter 1. 

b) Assume that a class def has been defined in C++ using method names 
is_defined, set, and clear. Now define a class var whose instances each 
encapsulate a single variable and use def to keep track and control the definition 
of that variable, as in the following: 

class var{ 
private: 
intvalue; 
/ /assume that only non-negative integers are used 

def * d; 
public: 
varO; 
void set( int val ); 

/ / sets the value if allowed by d otherwise has no effect 
int get_vaIO; 

/ / gets the value if defined according to d, otherwise returns -1 
void resetO; 

/ / clears the def instance 
} ; 

c) Write a test suite for testing class var based on the methodology in this chapter. 
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Constructing Inheritance Class Hierarchies 

In this chapter we formulate a heuristic procedure that can produce an inheritance class 
hierarchy. The procedure is heuristic since we don't spell out how to make key decisions, 
such as finding common features for a group of classes. These decisions have to be made 
based on your knowledge of the application domain. 

8.1 How to Construct Inheritance Hierarchies 

Let's suppose that you have a collection of classes in mind already and are seeking to 
organize them to take the most advantage of commonalities using inheritance. For exam­
ple, you might know that investments can be made in a number of different ways and have 
formulated these ways as classes, such as various kinds of stocks, bonds, and ways to earn 
money from savings. After discussing the procedure for constructing a class hierarchy, we 
show how class variables and ensemble methods are useful in implementing the resulting 
system. 

Inheritance Hierarchy Construction Procedure 

Start with classes of interest := all the classes under consideration. Loop until all classes 
under consideration have been assigned a place in the hierarchy: 

1. Analyze the behaviors of the classes of interest, looking for features that are 
common to them all. 

2. Define a root class to contain the common features just identified 
3. Divide the classes of interest into groups, where each group consists of classes 

with many features in common 
4. For classes that seem not to fall into any of the groups just identified, let them be 

derived from the root class 
5. For each group, let it be called the classes of interest and recursively apply the 

procedure above (starting from step 1) to each such group. The root class 
formulated for each group is the subclass introduced to capture the common 
features of that group. 

In practice, you may not be able to formulate all the classes of interest explicitly. For 
example, you may know that investments come in the form of stocks, bonds, and bank 
accounts, but have not further elaborated these major divisions. The above procedure is 
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still applicable in that it encourages you to discover what features are common to group 
classes and what features differentiate them. The common features are incorporated into a 
subclass at the next level. Along the way, you may find that a division you originally 
thought was a good one (e.g., breaking bonds into municipal bonds and federal bonds) 
would be better replaced by another division that exhibited more commonality (e.g., bonds 
might be better broken up into short-term and long-term yielding bonds). 

8.2 Class Hierarchy Example: Investments 

We now examine a system that enables investors to assess the quality of potential 
investments. We will use this example to illustrate the heuristic procedure for constructing 
an inheritance class hierarchy. The investments will be represented by object classes. The 
methods of the classes must be able to apply the specific knowledge needed for 
determining how good investments are in these classes. After constructing the hierarchy, 
we will show how containers and ensemble methods can be used to organize groups of 
investments called portfolios and compute their money-earning potential. 

Figure 1 shows the investment class hierarchy. The features common to all investments 
are placed in the root-level investment class. It is made a subclass of entity so that its 
instances can be placed into containers. We then break up investments into stocks, bonds, 
and bank accounts, which all have a lot in common and are quite distinct from each other. 
We continue this process at the next level. For example, the features that are common to all 
stocks are placed in the class stock, and then the different types of stocks are categorized 
in fairly homogenous classes such as blue chip and high-technology stocks. Of course, 
many more subclasses would be differentiated in a real investment application design. 

Figure I. Investment class hierarchy. 
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Figure 2 shows how the root class - the most general class - investment is specified. 
Every class in the hierarchy will inherit methods such as get_name inherited from entity 
and compute_quality. But note that the method for computing quality may differ quite 
drastically for each class. Each class will use its own characteristic attributes, as 
represented by its instance variables, and specific formulas or other procedures, to compute 
such a quality figure. 

define class: investment 

methods: 

geCname(inherited from entity) 

compute_quantity (virtual) 

inheritance: entity 

Figure 2. Investment class specification. 

Next-level classes stock, bond, and bank_acct are specified in Figure 3. Notice that 
each has a different selection of instance variables that are pertinent to assessing the quality 
of its type of investment. For example stock uses price:earnings ratio while bond uses 
value_at _maturity among other similar attributes. While such attributes and means to 
employ them are different, the end result as returned by compute_quality has the same 
meaning. This is the essence of information hiding (how the computation is done is hidden 
within the object) and polymorphism (different classes provide different definitions for the 
method with the same name intended to perform similar behaviors). 

Further specializations of the major classes are defined in Figure 4. As shown, such 
specializations provide characteristic default values for the instance variables inherited 
from the parent class. However, a specialized class may override the inherited method for 
computing quality in favor of a more appropriate one of its own. In this case, all further 
specializations of this class will inherit this method. 
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define class: stock 
instance variables: 
price:eamings 
growth potential 
dividend potential 

methods: 
compute_quality 

retum estimate based on factors 

embodied in instance variables 
inheritance: investment 

define class: bond 
instance variables: 
value at maturity 
rating 
maturity period 
methods: 
compute_quality 

retum estimate based on factors 

embodied in instance variables 
inheritance: investment 

define class: bank acct 
instance variables 
interest rate 

methods: 
compute_quality 

return estimate based on factors 

embodied in instance variables 

inheritance: investment 

Figure 3. Specializations of the major classes. 
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define class: blue chip 
Instance variables 
price:earnings: 1 
growth potential: 1 
dividend potential: 2 

inheritance: stock 

define class hi tech 
instance variables: 
prlce:earnings: .5 
growth potential: 5 
dividend potential: .2 
inheritance: stock 

aeflne class: municipal 
instance variables: 
value at maturity: 1 
rating: 0.5 
maturity period: 10 

Inheritance: bond 

define class: federal 
Instance variables: 
value at maturity: 1 
rating: 2 
maturity period: 

Inheritance: bond 

define closs: pass book 
instance variables: 
interest rate: 1 

inheritance: bank acct 

define class: time deposit 
Instance variables: 
interest rate: 2 
period: 1 
penalty: 1 

Inheritance: bank acct 

Figure 4. Next-level specialized classes of investments. 
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8.3 Portfolio Selection and Rating Specification 

Let's consider a system that enables users to assess the quality of a portfolio of invest­
ments. Such a portfolio is a container of investment objects which users can construct and 
then evaluate. The user may experiment with variations, removing and adding invest­
ments, until satisfied that a best selection has been made. Compute_tota,-qua/i1y for a 
portfolio sums up the qualities of each of the investment objects in it. These values are 
obtained by asking each investment the message to compute its own quality using ensem­
ble methods. 

A specification of the portfolio selection and rating system is shown in Figure 5. 

portfolio: a container of instances of investments 

and Its specialized classes 

Method: select (portfOliO): 

for each investment in the container of investments 
query the user whether to add this investment 

Method: adjust(portfolio) 

for each investment In portfolio 
query the user whether to remove this investment 

Method: show(portfolio) 

for each investment In portfolio 
send Investment display information 

Method: compute_total quality(portfolio) 

total :=0 

for each investment In portfolio 
send investment compute_quality 
add result to total 

retum total 

Figure 5. Specification for portfolio selection and rating. 

To illustrate the desired operation, let's create a few investment instances: 

makejnvestment(blue_chips ibm with price:earnings .75) 
makejnvestment (blue_chips at&t with price:earnings .70) 
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makejnvestment (hUechs inferco with growth potential 10) 
makejnvestment (hUechs intel with growth potential 5) 
makejnvestment (municipals tucson_city_bond) 
makejnvestment (federals us_bond) 
makejnvestment (pass_books valley _sav) 
makejnvestment (time_deposits valley_time) 

The user selects a subset of such investments, or portfolio, using select. These can be 
displayed using show; for example: 

show(portfolio) -> (ibm intel us_bond) 

Then, by applying compute_toto I_quality to this portfolio, an estimate of its quality is 
obtained. To further experiment with the portfolio, the user might use adjust to add or 
remove investment objects. 

Notice that once these methods are implemented, they should not have to be modified 
later as new classes of investments are added. These methods only assume that any object 
they examine will have appropriate methods such as compute_quality, but they are not 
concerned about what lies hidden beneath such interfaces. 

8.4 Implementing the Investment System 

Having the HCCL class library at our disposal puts us in a good position to implement the 
portfolio selection and rating system. Basically, there are two types of containers needed: 
one that holds all investments and one for portfolios. Since only one copy of investments is 
needed, we can use a global variable to hold an instance of container. Even better, we can 
restrict direct access to such a variable to the instances of investment by defining it to be a 
class variable of investment. A class variable differs from an instance variable in that it 
can be directly read and written by any instance of the class (whereas an instance variable 
is local to each instance of the class). As we have seen, in C++ a class variable is declared 
using the qualifier static. In this context we have 

class investment: public entity{ 
protected: 
static set * investments; 

Such a class variable needs to be initialized outside the class definition, as in 

investment::investments == new setO; 

Then it can be accessed directly within class methods: 
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investment: :investment(char *nm):entity(nm){ 
investments->add(this); 
} 

Since there may be more than one portfolio, we define a class portfolio. Figure 6 shows 
how some methods of portfolio, which form the desired interface, call upon related 
methods in class investment. 

set 

portfolio 
select 
adjust 

entity 

. - -- -- -- - - - -

compute_totaC quality 

investment 

add_self 
remove_self 

_ _ compute_quality 

Figure 6. Portfolio methods invoke investment methods. 

The methods of class portfolio employ ensemble macros. Only a few statements are 
needed to realize the desired behavior: 

class portfolio: public sett 

portfoliO: :selectO{ 
tellalll (investment::investments,add_self. this); 
} 

portfolio: :adjustO{ 
tellalll (this,remove_self ,this); 
} 

portfolio: : compute_ total_qualityO{ 
total(this,totaLquality); 
) 
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Similarly, it is straightforward to realize the various subclasses of investment. For exam­
ple, the stock class take the form: 

class stock: public investment{ 
private: 
price_earnings_ratio 
growth_potential 
dividend_potential 

stock::stock(char * nm):investment(nm){} 
stock: :compute_quality(){ 
return price_earnings_ratio * 

growth_potential * dividend_potential; 

8.5 Polymorphism and Dynamic Binding 

In accord with polymorphism, each subclass can have its own version of com­
pute_quality. Dynamic binding enables porfolio's methods that call on virtual methods of 
investments to work no matter which subclasses of investments are present. For example, 
suppose a porfolio, p contains the objects: ibm at&t intel US_bond valley_sav. Then 
consider the processing required in compute_totaLquality: 

p->compute_totaLquality() 

calls on the ensemble method ask-all: 

ask-all p compute_qualityO 

which is expanded to: 

ibm->compute_qualityO 

at&t-> compute_qualityO 

intel-> compute_qualityO 

us_bond->compute_qualityO 

valley _sav->compute_qualityO 
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Note that the classes of the objects differ, and since compute_quality is virtual, its 
behavior depends on the class. Thus, the C++ run-time system must recognize the class to 
which it belongs and use the appropriate code for computing quality. This is called 
dynamic binding as opposed to static binding, which can be done at compile time. This 
contrasts to the case of a nonvirtual method such as show-self. Here the same code is used 
no matter what the class of the object, so dynamic binding is unnecessary. Recall that C++ 
can exploit such static binding, since it considers it as the default unless virtual is declared. 
Other languages, Java in particular, work with dynamic binding exclusively. Whether 
polymorphism requires static or dynamic binding, the fact remains that it supports 
extensibility - for example, new classes of investments can be easily added and 
compute_total_quality will continue to work without modification provided that each 
new class has a compute_quality method - either inherited or specially defined. 

8.6 Extensibility 

A major advantage of inheritance is that a hierarchy of classes does not have to remain 
fixed once and for all, but can continue to evolve as the need for new classes arises. The 
ideal case for such extensibility is where you only need to add a new class by finding a 
proper place for it in the hierarchy. The best place is where it can inherit the most features 
from a superclass, leaf number to be modified or added. For example, a new form of 
savings plan might fit well under bank_acct, while investment in real estate might need to 
be formulated as a new class under investment. A less ideal case is where we have to 
modify the definition of an existing class. The effects of this modification will then 
propagate down to all its subclasses. This more radical alteration might be avoided by 
coming up with a good hierarchy in the first place, following the hierarchy construction 
procedure discussed at the beginning of this chapter. 

Problems 
1. Draw the investment class behavior hierarchy showing the classes, their subclass 

relationships, and methods. Implement the investment class and its subclasses in 
C++. Prepare for your implementation by drawing the C++ implementation class 
hierarchy. For methods to compute quality, consult with someone knowledgeable, 
read a book, or make up some formulas based on your intuitive understanding. 

2. Add a new class of investments to the hierarchy. Choose the best level at which to 
add this new class. (Hint: decide this on the basis of how many features can be 
inherited from the potential superclass versus how many features have to be 
modified or added). 

3. An investment company has created the following class hierarchy: 



ENTITY 

INVESTMENT 

STOCK BOND 

Using Ensemble methods define the following: 

investment: :show _alUnvestmentsO 

investment: :show _all_stocksO 

investment: :show _all_bondsO 

investment: :show _all_bank_accountsO 
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BANK-ACCOUNT 

Investors purchase individual stocks, bonds or bank accounts, and place these objects 
in sets called portfolios. In other words, portfolio is derived from set: 

Using ensemble methods, define the following: 

set * portfolio::geUnvestments_greateUhan (n){ 
/ / returns the subset all investment objects in portfolio with value greater than n 

void portfolio: :deducCcharges(){ 
/ / decreases value of each investment object in portfolio by 
/ / calling each investment's method deduct_charges 

) 

Define the investment methods assumed in the above: 
boolean investment: :greateUhan (n){ 

void investment: :deduct_charges(){ 
/ /reduces value by an amount determined differently in each subclass 
/ / default is reduction by %5 

void stock::deduct_chargesO{ 
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void bond::deduct_chargesOI 

void bank_account::deduct_chargesOi 

4. Using the heuristic procedure in this chapter. develop a class hierarchy for em­
ployees of a company you are familiar with. Employ a class variable to keep track 
of all employee instances created. Develop methods to compute the salaries of 
employees that take full advantage of the hierarchy's inheritance properties. 

5. Consider the following class specialization hierarchy: 

1 
symme""'-T"" 

dlagonaLmatrix 

where matrix is a class of n by n matrices. For concreteness. we will assume that 
n = 2; so the displayed form is: 

all 012 
021 022 

• symmetric_matrix Is 0 class of symmetric 2 by 2 matrices. I.e .• 012 = 021. 
• dlagonoLmatrix is a class of dlagonol2 by 2 matrices. I.e .. 012 = 021 = 0 and. 
• ld_matrix is a class of one dimensional matrices. I.e .. all = 021 = 022 = 0 (012 is not zero) 

Consider methods for each of the following. 

1. transposeQ interchanges a 12 and a21. 
2. compute-determinantO retums the determinant of the matrix 

represented by A 

3. compute-traceO returns the trace of the matrix represented by A (i.e .• all + 
a22). 
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4. multiply_vector(v) applies the matrix to the vector represented by v and 
returns the resulting vector ( v is a pair (vl, v2». 

5. printO prints out the matrix in the manner above, i.e., 
all a12 
a21 a22 

Each of these methods can be inherited from the base class. However for efficiency of 
computation, it is better to override the inherited method in some of the classes. Place a 
check mark S in the following table for each case in which the inherited method should be 
overridden. Provide an explanation if you believe that the answer depends on assumptions. 

method matrix symmetric_ diagonal ld_matrix 
matrix matrix 

transpose x 
compute x 
determinant 

compute trace x 
multiply_ vector x 
print x 



9 
Ensemble-Based Implementation of Containers 

In earlier chapters, we discovered primitives for list implementation in serial computers. 
Historically, these pointer-based primitives were the first to be developed. But with the 
advent of parallel processing, and in view of new technologies likely to emerge for com­
putation, we should not be limited to the conventional primitives. Ensemble methods are 
very suited to exploit parallel computation. This chapter shows that the ensemble methods 
for containers can serve as primitives for implementing all the behaviors of the containers' 
hierarchy that we have identified. 

To be more specific we will show how the methods of all container subclasses can be 
implemented using only ensemble methods and a small number of ordinary methods. 
Moreover, we will not allow ourselves to use any information about containers' internal 
structure. In the language of C++, containers must serve as a private base class for any 
derived class. Working within this constraint forces us to be very explicit in our imple­
mentation. We can't use anything about a container's behavior that is not provided by the 
external interface. To implement a behavior, we must use only ensemble methods and 
introduce any new helping methods explicitly. The end result helps us to understand what 
basic functionality must be provided by an implementation in a new language, platform, or 
technology. 

te II-all command args 

ask-oil query? args 

which? query? args container 

whic h-one? query? args 

reduce query? token args 

Figure 1. Ensemble methods of container. 

B. P. Zeigler, Objects and Systems
© Springer Science+Business Media New York 1997
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9.1 More Ensemble Methods 

The three ensemble methods already discussed are depicted in 
Figure 1, along with two new ones. Recall the original methods 

• tell-all command args - send the command(args) message to all objects in the 
container, 

• ask-all query? args - send the query?(args) message to all objects in the container 
and collect the results in a returned container (see Figure 2). 

• which? query? args - send the query?(args) message to all objects in the con­
tainer and collect objects returning TRUE in a new container. 

container of results 

ask all query? orgs 

r---~L--- r---L~---
•• 1 ' • 1 

10 110 1 

querY? orgs- - - -. .- -- . . . 1 I result - - - -. " -- . . . I 

10000 1 ,0000' 
L ________ I L ________ I 

Figure 2. The ensemble method ask-a!. 

We add two new methods: 

• which-one? query? args - return the one entity in which? query? args provided 
there is exactly one; otherwise return an unspecified entity in which? query? args. 

• reduce query? token args - pass the token from object to object in the container in 
an unspecifed order. Each successive object replaces the token with the results of 
query?(token,args). After all replacements are done, the token is the fmal result 
returned. 
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I 
whlCh-one? query? ergs _I_ CJ8 

. , ' , , 

I 
I 
I 
I 
000'0 

DomCIIn R8IIIIc:IIon 
whlch-one?(contelner, query?,ergs) - defined 

provided that slze?(whlch?(contelner, query? ,ergs» - 1 
Equivalence 

whICh-<>ne?(contelner, query? .ergs) = entity 
=> Is-In?(contelner,entlty) & query?(entIty,args) = T 

Figure 3. Illustrating the which-one? ensemble method. 

Which-one? (Figure 3) is a variant of which? If there is a unique entity in a container that 
satisfies a query then which-one? returns this entity. However, the specification does not 
specify which particular item in the container is returned (of those that satisfy the query) in 
case more than one such entity exist. Specifications such this one, which do not specify a 
unique outcome are called non-deterministic. An implementation of such a specification 
must somehow make a decision if there are multiple choices. Such a choice might be 
based, for example, on the first satisfactory item encountered in some order of 
examination. Of course, the result may very well depend on the order chosen. 
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Reduction 

I 
I 

reduce query? tOk_e~ ~r~s f De 
L ________ -l 

Figure 4. The ensemble method reduce. 

Reduce (Figure 4) is similar to which-one? in that it returns a single entity rather than 
a container. Figure 5 gives the specification. 

Container Ensemble Method: reduce 

query 

entity reduce(container.query? .token.args)//token is entity 

Domain Restrictions 

reduce(container.query?token.args) = defined if 
is-in?( container .entity) 

=> query?(entity.args.token) = defined 

where query? has the prototype: 

entity2 query?(entity .args.entity 1) 

Equivalences 

reduce(make-container().query?.token.args) = token 
reduce(add(container .entity) .query? .token.args) 

= query?(entity.args.reduce(container.query? token.args» 

Figure 5. Specification of the reduce ensemble method. 
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For example, let's total up the numbers in a container (assume we have a class number 
that will be defined later). Then, 

number2 plus?(number ,number 1) 

fits the prototype of the query in Figure 5, where 

plus?(number(x),number(y» = number(x+y) 1 

Let's make a container with three numbers: 

c = make-containerO 
c' = add(make-containerO,number(x» 
c" = add(c' ,number(y» 
c'" = add(c" ,number(z» 

and define the token as: 

token = numbereD) 

Since reduction of an empty container just returns the token: 

reduce(c,plus?,token) = numbereD). 

Also reduction applied to a just-added entity applies the query to it and the 
previous reduction. Thus 

reduce(add(c,number(x» ,plus? ,token) 
= plus?(number(x),reduce(c,plus? ,token» 
= plus?( number(x), numbereD»~ 
= number(x) 

Continuing on in this way 

reduce(c" ,plus? ,token) 
= reduce(add(c' ,number(y»,plus? ,token) 
= plus?(number(y), reduce(c' ,plus? ,token» 
= plus?(number(y),number(x» 

= number(x+y) 

and 

1 Number(x) is a constructor with numerical argument x 
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reduce(c'" ,plus? .token) 
= reduce(add(c" ,number(z»,plus? .token) 
= plus?(number(z), reduce(c",plus?.token» 
= plus?(number(z),number(x+y» 

= number(x+y+z) 

Actually, reduce can be synthesized from tell-all. For example, given a query that accepts 
and returns an instance of the same class, we can define another method that tells each 
entity in container to apply the query to a token and return it as a result, thus 
implementing reduce for that query (see the Problems).2 Although it can be synthesized 
in each application, the general concept of reducing a container to an entity is worthy of 
embodying in a new ensemble method. Such a method is applicable to many computations. 
For example, finding the maximum or minimum of a collection of numbers are examples 
of reduction (see the Problems). 

9.2 Implementing Container Classes by Ensemble Methods 

Figure 6 shows the hierarchy of container classes as implemented using an ensemble­
based approach. The methods shown below the dotted lines are implemented using the 
methods appearing above the dotted lines. The (latter) primitive methods can be enu­
merated as follows: 

• the methods belonging to classes entity3 and pair, 
• the basic methods, size? and add, and ensemble methods of class container, 
• the method remove of class bag, and 
• the methods of class number (needed for ordered container classes). 

2 Note that, as specified, reduce produces a well defined value since computation 
follows the history of addition of entities to the container. However, in implementation, 
this history will usually not be known so that properties of the binary operation, query?, 
must justify order independence. The properties of associativity and commutativity are 
sufficient for this purpose. 

3 Except for add-self and remove-self. 
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pair 
key? 
value? 
equal-key? 
equal-value? 
set-key 
set-value 

between 

stock 

list-ref? 
Insert 
remove 

order 

queue 

Figure 6. Ensemble-based implementation hierarchy for container classes. 

Let's see how the methods of container and its subclasses are implemented using the 
primitives only. First we shall implement the unordered container classes. It is quite 
straightforward to implement lists and the other ordered classes once having implemented 
class function. 

Container's methods synthesis 

Since add and size? are primitives, is-in? is the only basic method requiring synthesis. To 
find out whether an item is in a container using ensemble methods, we ask each item if it is 
the one being sought. If any affirmative replies are received, we have an affirmative 
answer. 
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is-in?(container, entity) = 

not( empty?(which?( container ,equal-self? ,entity)) 

Observe that which? collects the entities equal to the input entity. We then test whether the 
resulting collection is empty? Recall that empty? is derivable from size? 
To synthesize append we make use of add-self defined for entity: 

add-self(entity, container) = add(container, entity) 

append(container,containerl) = 
tell-all(containerl, add-self, container) 

Thus all the non primitive methods of container can be synthesized using which? and 
tell-all of container and equal-self? of entity. 

Bag's Methods Synthesis 

We need to synthesize number-of? (the only new query introduced by class bag); bag's 
number-of? can be synthesized in a manner to similar to that used in is-in? of container: 

number-of?(bag,entity) = size?(which?(bag,equal-self? ,entity)) 

Set's methods synthesis 

Exactly following its specification, we can build set's add by calling on container's 
methods, is-in? and add. 

Pair and Relation's methods synthesis 

Just as in the C++ implementation, class relation is implemented as a set of pairs. In 
contrast to that implementation, no pointers are necessary. Thus, we bypass the class 
element in the definition of class pair (Figure 7) 



class pair inherit from entity 

constructor 
pair make-pair( entity ,entity 1 ) 

queries 
entity key?(pair) 
entity value?(pair) 
pair equal-key?(pair,pairl) 
pair equal-value?(pair ,pair 1) 

commands 

pair' set-key(pair,entity) 
pair' set-value(pair ,entity) 

Equivalences 
(equal(key?(pair); key?(pairl)) 

=> equal-key?(pair,pairl) = pair 

(The rest are left as an easy exercise for the reader) 
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Figure 7. Class pair specification. 

As indicated before, all of class pair's methods are considered to be primitives. 

The add and remove methods of relation can be easily synthesized from their 
inherited versions. This leaves remove-all and assoc-all? to synthesize. 

Remove-all is obtained by identifying the subset of pairs that match the input key, and 
telling the included pairs to remove themselves using entity's remove-self!: 

remove-all(relatlon,key) = 
tell-all(which?(relation, equal-key?, key),remove-self, relation) 

Methods key-Is-in? and assoc-all? use a similar approach 

key-is-in?(relation, key) = 

not (empty? (which?(relation, equal-key?, key» 

assoc-all?(relation, key) = 
ask-all (whlch?(relation, equal-key?, key), value?) 

4 Defined similarly to add-self. 
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Function's methods synthesis 

Following its specification, class function's add uses the inherited method key-is-in? to 
prevent adding multiple pairs with the same key. To find the unique value paired with a 
given key (if it exists) we use which-one? using class pair's equal-key?: 

assoc?(function. key) = 
value?( which-one?(function. equal-key? key» 

Function's replace is just the inherited method remove-all followed by add: 

replace(function.key.value) = 
add(remove-all(function.key) .key .value) 

List Synthesis 

List is synthesized as a subclass of function, the key plays the role of index, while the value 
is the associated entity. This is the formal version of the parallel implementation of list 
discussed in Chapter 3. To hold the index, we employ the class number (defined below). 
Thus, 

list-ref?(list.i) = assoc?(list.number(i» 

To insert an entity in position i. we tell all pairs with key greater or equal to iincrement 
themselves. Then we use function's add to insert the new pair. 

insert(list.entity.i) = add(tell-all(list. if-greater-inc.i).number(i).entity) 

Similarly to remove the entity at position i 

remove(list.i) = tell-all(remove-all(list. number(i».if-greater-dec.i). 

The helping methods, if-greater-inc and if-greater-dec, are easily defined in class 
number. They are called by methods of the same name from class pair to operate on the 
key component. The specification of class number is in Figure 8: 



class number inherit from entity 

constructor 

number make-number(integer) 

queries 

integer value?(number) 
bolean equal?(number.numberl) 

commands 

number'set-value(number.integer) 
number' if-greater-inc(number .integer) 
number' if-greater-dec(number. integer) 

Equivalences 

(j >= i) => if-greater-inc(number(j).i) 
= number(j+ 1) 

9. Ensemble Implementation 149 

(j > I) => if-greater-dec(number(j).i) = number(j-l) 

Figure 8. Class Number Specification. 

The synthesis of class order's methods will be addressed in Chapter 10. 

9.3 Lessons Learned 

This chapter shows that the ensemble methods and a few basic methods are sufficient to 
implement all the functionality identified in the containers class hierarchy. Since nowhere 
did we employ knowledge of container's internal structure (it acted as a private base 
class), the construction does not depend on how ensemble methods are implemented. One 
distinct possibility is to implement the HCCL this way in parallel and distributed 
computing environments. In such environments, we can exploit the inherent parallelism in 
the methods to speed up processing. It may certainly be beneficial to build in additional 
ensemble methods, but we have shown that the ones identified are a set of primitives and 
therefore a solid place to start. 

Problems 

1. Define appropriate queries matching the prototype required to apply reduction to 
compute the maximum of a container of numbers. Simulate the reduction process 
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for a container of 3 arbitrary numbers. (Hint: let the token be the number with 
minus infinity as its value.) 

Show how to compute the minimum using reduction. 
Use tell-all to synthesize the computation of the maximum of a container of 

numbers. 

2. Reduction applies to combination operations on containers such as append, 
union and intersection. For example, we have already defined append for 
container. Then the containers in a container can be combined into one following 
the specification: 

containerl append-all(container-of-containers) 

is-In?(container-of-containers, container) = T 
and is-in?(container,entity) 

=> is-in?(container-of-containers,entity) = T 

is-in?(container-of-containers,entity) = F 

Specify the union and intersection of a set-of-sets and show how to apply 
reduction to implement their computation. 

3. Synthesize ask-all and which? for a given query using tell-all and a command that 
is a modified version of the query. 

4. Synthesize which-one? using reduce and a modified query: 

which-one?(container. query?, args) 
= reduce(container. query-self? token. args) 

Define query-self? which makes this work properly. 

5. The ensemble command tell-all(container.command.args) sends the same com­
mand and arguments to each object in container. However, it is possible to have 
each object employ different arguments by sending the complete package of 
arguments indexed by container objects. The prototype then takes the following 
form: 

tell-all(contalner. execute-command. fn) 

where fn is a function with pairs (obj. args-for-obj). Define the command 
execute-command that interprets the arriving fn, extracts the proper arguments, 
and executes the command. 
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6. Consider a situation where multiple entities are being placed into multiple 
containers and we want to ask any entity to which containers it belongs. The 
standard approach would be to keep a container of containers so that an entity can 
use the which ensemble method to find out those in which it resides. Another 
approach is to have each entity keep a container to keep track of the containers it 
is in. In this (latter) case, there is no need for the original containers. They can be 
replaced by a single container holding all the entities. However, now to find out 
the contents of a container requires that an appropriate which ensemble method 
be broadcast to each entity in the "universal" container. Finally, both approaches 
can be combined (so that there is redundant information being kept). Implement 
the three alternatives and discuss the advantages and disadvantages of each. 
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Ordered Containers and Their Implementation 

We continue with the second branch of the containers specification hierarchy, that of 
ordered containers (Figure 1). Consideration starts with class order, which is general 
enough to serve as a base class not only for classes stack, queue, and list, but also for a 
great many other applications. The underlying new concept is a linear ordering method, 
called greater-than?, which is assumed to be available to order the items in a container. 
By characterizing this method as a state-representing query, we obtain a generic capability 
to order container contents that can be readily specialized to any appropriate subclass. In 
particular, by properly defining greater-than? for stack, queue, and list, we can derive 
their behaviors from the base class order. (We will show later in this chapter how this 
differs from the usual specifications of stacks and queues, which don't take advantage of 
state-representing queries.) 

The last part of the chapter discusses several alternative implementations of the order 
hierarchy. One approach employs ensemble methods and is therefore appropriate to both 
parallel and sequential implementation. Given the multiple implementations possible, the 
choice of which to use must depend on other considerations, such as efficiency. 

bag 

enHty 

name? 
equal-self? 

container 
Is-In? 
size? 

add 
ask-all 

tell-all 

number-of? 

remove 

queue 

remove 
front? 
(=max?) 

stack 
ve 

list 
push (=add) 

Insert 
pop (=remove) 

top? (=max?) 
remove 
list-ref? 

ask-all 

Figure 1. Subhierarchy of ordered containers. 

B. P. Zeigler, Objects and Systems
© Springer Science+Business Media New York 1997
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10.1 Class Order 
The concept of ordered containers is illustrated in Figure 2. At any time that the container is 
not empty, we can use max? to ask for the largest item in it. We can add items to the 
container with the same result as in the base class container, except that add may do 
more work to help max? do its job. We can also invoke a remove command, which in this 
case always removes the largest item. This restricted form of removal corresponds to just 
that required for stack (where it is called pop) and queue. It is not difficult to extend the 
specification to allow for removal of an arbitrary item. 

max?' 0 0 

~~~ add 

max? 
order 

remove 

~ 
Figure 2. Illustrating class order behavior. 

The behavior specification of class order is given in Figure 3:\ 

I The requirement for linear ordering is omitted from the specification for simplicity. It 
assures that there is essentially only one maximum for any subcollection of items in the 
container. 
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order(entity) inherits from bag 

construclor 

make- order 0 

queries 

entity max? ( order) 

Virtual ,hidden 

boolean greater-than?( order, entity L entity2) 

commands 

order' add( order, entity 
order' remove( order) 

Domain Ilestrlcllons 

max?( order) = defined provided that empty?( 
remove( order) = defined provided that empty?( 
greater-than?(order, entity 1 , entity2) = defined 

provided that is-in?(order, entityi) = T, i = 1,2 

Equivalences 

number-of?(remove(order),max?(order» = 

number-of?(order,max?(order» - 1 

lIthe usual axioms defining an 
//asymmetry: 

greater-than?(order,entityl,entity2) = T 

ordering 

=> greater-than?(order,entity2,entityl) = F 

/ /transltivity: 
greater-than?(order,entityl ,entity2) = T 

greater-than?(order,entity2,entity3) = T 
=> greater-than?(order,entityLentity3) = F 

II adding or removing an entity 
II has no effect on relations among other entities: 

greater-than?(add(order,entity), entity2,entity2) 

greater-than?(order, entity 1 , entity2) 

greater-than?(remove(order), entity 1 ,entity2) = 

greater-than?(order, entity 1 ,entity2) 

II the following express the properties of the maximum: 

size?(order) = land is-in?(order,entity) = T 

=> max?(order)= entity 

s-in?(order,entity) = T and equal(entity,max?(order)) = F 

=>greater-than?(order, max?(order) ,entity) 

order ) = F 
order ) = F 

relation: 

Figure 3. Object behavior specification of class order, 
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Having probably run across discussions of sorting algorithms before, you may be won­
dering why sorting is not mentioned explicitly in the specification. The reason is that class 
order characterizes the most basic behavior required for sorting. Indeed, successively 
removing the maximum from an order instance generates a sorted sequence of its objects. 
However, there are many uses of class order where we are not interested in a complete sort 
of items but rather only in the maximum. For example, if you are considering several cars 
to buy, then you are interested in finding the best one for your needs, not in ranking them 
all. 

Implementation Preliminaries 

Let's first consider a special case of the implementation of the order class in the form of a 
subclass containing only numerical items. In this implementation, we will keep only a 
single instance variable - for the maximum so far observed. We assume that the class 
number, a derived class of entity, has been correctly implemented as specified in Chapter 
9. 

class num_order:public bag{ 
private: 
number * maximum; 
public: 
void add (number *n); 
number' n geCmaxO; 
void removeO; 
} ; 

Further, to implement the updating of the maximum performed by the add command, a 
newly added number that exceeds the existing maximum replaces it: 

void num_order::add(number' n){ 
if (maximum == NULL I I 

n->get_valueO > maximum->get_value())) 
maximum = n; 
} 

The query for maximum merely reads the updated maximum: 

number' num_order::geCmaxOI 
return maximum; 
} 

Note that this stripped down version of order having only methods, add, greater-than? 
and max? is all we need for finding the best of a given collection of alternatives. The 
problem comes when we include remove. When the maximum is removed, the next 
greatest item needs to be computed. Since there can be any number of removes (of course, 
less than the number of items), it won't suffice to keep track of just the previous maximum. 
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One simple solution is to employ bag's add and remove to maintain the correct state of 
the container: 

void num_order::add(number * n){ 
if (maximum == NULL I I 

n->geCvalueO > maximum->geCvalueO» 
maximum=n; 

bag::add(n); 
} 

void num_order::remove(){ 
bag::remove(maximum ); 
compute_maxO; 

} 

Here compute_max scans through all items in the bag and selects the maximum. One 
way to do this takes advantage of the comparison already performed in order's add: 

void compute_maxO{ 
num_order * temp = new num_order(); 
tellalll (this, number, add_self ,temp); 
maximum = temp->geCmax(); 
} 

Explanation: the new maximum will emerge after the end of adding all the numbers to the 
temporary num_order instance. Note that this is a reduction implemented with the tellall 
ensemble method. 

The implementation just given requires a complete scan of all items each time the 
maximum needs to be recomputed. This can be very time consuming for large containers. 
Many other implementations are possible. Typically they create an explicit representation 
of the greater-than? relation and use this to retrieve the maximum in one step. The cost 
for this benefit is that a newly added entity must be inserted in the right place in the ex­
plicit representation on each insertion. However, this process does not necessarily have to 
traverse all the items. In the simplest approach, discussed at the end of this Chapter, only 
half the items have to be traversed on the average. Sorting algorithms such as bubble sort 
and quick sort do even less traversal. In the case of stacks and the queues, we will see 
that the insertion point is known in advance and the result is similar to the usual linked list 
implementations of these behaviors (see the Problems). 

Recall however, that many applications of order require only computing a best alter­
native. In such cases, the work required to place items in sorted order would not be justi­
fied. 
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Generic Implementation 

We develop a generic implementation of class order by generalizing the specific approach 
just discussed: 

class order:public bag! 
protected: 
entity * maximum; 
public: 
void add(entity *n); 
entity * n geCmaxO; 
void removeO; 
virtual Bool greateUhan(entity *n, entity *m); 
} ; 

The greater_than relation is virtual for order and supplied by the specific derived class 
order under consideration. For example, with number is derived from entity, then we 
declare: 

class num_order: public order! 
Bool greateUhan(number *n, number *m)! 
return «number *)n->get_valueO > 

«number *)m->geCvalueO)); 

The relationship between abstract and concrete classes is shown in Figure 4. 

order entity 

virtual greater_than 

number 

Figure 4. Abstract and concrete classes for ordering. 

Now the rest of the definitions are (mostly) straightforward: 



void order::add(entity * n){ 
(if (maximum == NULL I I greateUhan(n,maximum)) 

maximum=n; 
bag::add(n) 
} 

entity * order::get_maxO{ 
return maximum; 
} 

void order::remove()( 
bag::remove(maximum ); 
compute_max(); 

} 
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For compute_max we would like to use similar text to that above. But it turns out that 
this will not allow the proper bindings to work when order and entity are replaced by their 
concrete derived class counterparts. This would mean that we would have to rewrite 
compute_max in every such concrete class. However, there is an approach that does 
allow the bindings to be made properly. This is done using the copy macro: 

void order: :compute_max()( 
container * r = new container(); 
copy_to(r); 
copy_back(r); 
} 

void order::copy_to(container * r)( 
copy(this, entity.r); 
} 

void order::copy_back(container' r){ 
maximum = NULL; 
head = NULL; 
length = 0; 
copy(r, entity,this); 
} 

Note that we copy the elements into a temporary container, then clear, and add them back. 
This works because the latter add operation employs the method of the current derived 
subclass of order, thereby invoking the right version of greateUhan to order the entries. 
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10.2 Stacks and Queues 
We can easily formulate the appropriate greater_than relation for classes stack and 
queue. The ordering for these classes will be based on a sequence number. For stack, the 
most recently added entity will have the higher sequence number and will be ranked 
highest. Since we always look at and remove the highest ranked item, this gives the 
required last-inJ-first-out (LIFO) behavior. For queue, the ranking is exactly the opposite -
the lower the sequence number the higher the ranking. This gives rise to first-inlfirst-out 
(FIFO) behavior because the highest ranked item (with the lowest sequence number) has 
been waiting the longest in the queue. 

G2J add x 11 x 11 
(push) i 10 sequence number 

a 9 
0 8 

max? (top. 
i 

e 7 

i 10 
u 6 

a 9 a 5 

o 8 
e 7 
u 6 ·remove 
f"I !) .. (f.?Op) 

a 9 
o 8 
e 7 
u 6 
a 5 

Figure 5. Class stack as a derived class of order. 

The formulation of stack and queue as subclasses of order is illustrated in Figure 5 
and Figure 6, respectively. Note that there may be several occurrences of the same object. 
For example, a appears twice, with different order positions. A model of a stack is a 
physical pile of trays. A new item (tray) is pushed on top of the stack. The tray removed 
from, or popped off, the stack is the one that has been most recently pushed on to it. Think 
of the sequence number as the ticket that some stores, post offices, or vehicle registration 
bureaus, require you to take upon entering. 

A model for a queue is a line of cars waiting at a red light (or indeed, any line of 
customers waiting for service). A new item (car) is added to the end of the line. Items 
(cars) leave the line in the order of arrival since they are removed from the front of the 
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line. Note that sequence numbers (tickets) are used to relieve customers of having to stand 
in, or form, a physical waiting line. Usually the lowest numbered customer is the one next 
served (removed) - just as in our queue implementation. 
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Figure 6. Class queue as a derived class of Order. 

To implement classes stack and queue, we define them as subclasses of order: 

class stack:public order! 
private: 
number seq_num; 

class queue:public order 
( 

private: 
number seq_num; 

We employ the class number for sequence numbering capability and combine it with the 
subclass of entity for items that will be stacked or queued. If only a name is needed, we 
can use number itself. We then define the greater_than method for stack to be directly 
based on highest sequence number: 

Bool stack::greateUhan(number *n, number *m)! 
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return n->greateUhan(m); 
} 

Conversely, the greater-than method for queues ranks low sequence number over high 
sequence number: 

Bool queue::greateUhan(number *n, number *m){ 
return m->greateUhan(n); 
I 

The rest is just to rename the methods of stacks and queues to their more common forms: 

stack::push(char *nm){ 
seq_num++; 
add(new number(nm ,seq_num»; 
} 

stack: :popO{ 
removeO 
I 

stack::topO{ 
return get_maxO: 
} 

queue::add(char *nm){ 
seq_num++; 
bag::add(new number(nm,seq_num»; 
I 

queue: :frontO{ 
return geCmaxO; 
I 

Object Behavior Specifications: Stack and Queue 

Although we implemented classes stack and queue, we did not provide the required 
object behavior specifications for them. This just requires that we provide the specific form 
of the linear order, greater-than?, that enables max? to select the proper item in the 
container. The right forms of the linear order to use are suggested by the role of the 
sequence-number in the above implementation. Indeed, in a stack, the most recent addition 
outranks all included items; in a queue, the most recent addition ranks below all other 
items in the container. This suggests the following specifications 



stack inherits from order 
/ /specify greater-than? ordering 
/ /a,b,c,x are entities 

greater-than?(add(order,a),a,x) = T 
/ /just added entity ranks higher 
/ /than those already present 

greater-than? (add( order,a) ,b ,c) 
= greater-than?(order,b,c) 

and 

queue inherit from order 

greater-than?(add(order,a),a,x) = F 
/ /just added entity ranks be/ow 
/ /those already present 

greater-than?(add(order,a),b,c) 
= greater-than?(order,b,c) 
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With these specific orderings, stack and queue specifications can be shown to satisfy the 
traditional axioms of stack and queue (Problem 3). 

10.3 List as a Subclass of Order 
Recall that list behavior was specified directly in Chapter 3. However, a list can be viewed 
more systematically as an ordered container and hence as a subclass of order. The 
greater-than? ordering in this case is based on the positions of items in the list. The 
beginning of the list can be taken as the largest item, with each successive position being 
ranked lower. Full details are worked out in the Problems. 

Although we have specified list as a subclass of order, it may be more efficient to 
implement the classes in the reverse order. Once more, please note the distinction between 
specification and implementation: we can specify the behavior of a class one way and 
implement this behavior in yet another. This approach will be discussed next when we 
consider a list-based implementation of class order. 

Implementing Order Classes with List and Ensemble Methods 

Earlier in the chapter, we have saw how class order can be implemented with ensemble 
methods. However, that implementation used copying back and forth, an inefficient 
approach. We will now employ ensemble methods to derive class order from class list in a 
manner that avoids copying. Recall that we saw how ensemble methods can synthesize list 
behavior in Chapter 9. To implement an order we will let the list hold items in descending 
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order according to the greater-than? relation of order. Thus the max? query is 
implemented by calling list-ref? with argument O. Likewise, order's remove command is 
implemented by list's removal of the Oth item. Now, in this approach, order's add 
command must find the right position to insert its entity argument. Either the new entity is 
a new maximum, in which case it must be inserted in the Oth position, or else the incoming 
entity must be inserted at the smallest index whose associated entity is greater than it. The 
latter search can be done by a reduction, which is the last of the ensemble methods. 

Figure 7. Illustrating reduction to find the insertion point. 

In Figure 7 the incoming entity with value 6 should be placed into the slot between the 5 
and the 7. Imagine a token that circulates among the items (not necessarily in any fixed 
order) and checks whether the item lies between 6 and its current value; if so, it takes the 
place of the current value in the token. Items less than 6 can't satisfy this criterion. Among 
those greater than 6, the 7 is the smallest and therefore will be the final token value 
independently of the scanning order. Thus, the 6 must be inserted just before the 7. 

As discussed earlier, classes stack and queue were specified as derived from class 
order. Also, we have seen that they can be implemented directly from class list. Using the 
approach just taken for order, it is not hard to see how stack and queue can be imple­
mented with ensemble methods (see the Problems). 

Problems 
1. Extend the specification of class order to include removal of an arbitrary entity, as 

in bag. Implement this removal command for all the implementations given in the text. 

2.(a) Implement class order using ensemble methods with a more straightforward 
approach than given in the text. (Hint: use reduce to implement compute-max.) 

(b) Implement classes stack and queue using ensemble methods. 
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3. Traditional abstract data type (ADT) specifications of stack and queue employ the 
following equivalences: 

stack 

max?(add(order,entity» = entity 
remove(add(order,entity» = order 

queue 

max?(add(order,entity» = max?(order) 
size(order) > 0 => 

remove(add(order,entity» = add(remove(order),entity) 
remove(add(order,entity» = order 

Use the equations for the stack and queue behavior (in the text) to prove that stack and 
queue satisfy these axioms. 

Although the traditional specifications happen to be simpler in the case of stack and 
queue, this is somewhat of an accident. Since ADTs do not recognize the concept of state­
representing queries, they do not support a straightforward specification methodology. For 
example, try to express the list object behavior in ADT format. 
4. Specify list behavior as a subclass of order (see the Appendix for the answer). 
5. Some of the ensemble methods must be specialized for class list so as to preserve the 
order in which the elements are found. The specifications for tell-all and ask-all for list are: 

list' tell-all(list,command,args) 

size?(tell-all(list ,command,args) ,i)= size?(list) 

Iist-ref?(tell-all(list ,command ,args) ,i) 

= command(list-ref?(list,i), args) 

list 1 ask-all(list,query,args) 

size?(ask-all(list.query, args)J) = size?(list) 

list-ref?(ask-all(list ,query ,args) ,j) 

= query(list-ref?(list.i) , args) 

Write macros analogous to those in the appendix of Chapter 6 to implement these ensemble 
methods for list. 

Write specifications for the ensemble methods which?, which-one? and reduce. Write 
macros to implement these methods in C++. 
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Appendix: Specifying list as a subclass of order 

list inherits from order 

queries 

entity list-ref?(list.i) 
number length?(list) 

commands 

list' insert(list,i,entity) 
list'remove(list.i) 

Equivalences 

length?(list) = size?(list) 

list-ref?(list.i) = max?(removei(list)) 

where removeO(list)=list 

and removei+ 1 (list)= remove(removei(list)) 

(remove refers to the remove command inherited from order which removes the max?; 

removei(list) removes the i highest items in the container) 

Specify the effect of insert on greater-than? as follows: 

Let entityj = Iist-ref?(list.i) . entityj = Iist-ref?(list.j). 

k < i => 
greater-than?(insert(list.entity.k).entity .entity j.) = F 

i < k <j => 
greater-than ?(insert(list .entity .k) .entity .entity j) = T 
and 
greater-than?(insert(list.entity.k).entity .entityj) = F 

k > j => 
greater-than?(insert(list .entity .k) .entity .entity j) = T 

greater-than?(insert(list.entity .i) .entity j.entity j) 
= greater-than?(list.entityj.entityj) 

The effect of removal is not to disturb the order of items still in the container: 



greaterthan ?(remove(list ,k) ,entity J ,entity j) 
= greater-than?(list.entity J.entityj) 
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(Domain restrictions are the same as in the direct specification given earlier.) 



11 
More Useful Concepts for Containers 

This chapter starts by showing how predicate logic constructs, such as V (for all) and 3 
(there exists), can be formulated as ensemble methods for containers. Such methods are 
not really new since they can be derived from those already discussed. However, for effi­
ciency reasons, it may be desirable to implement them as primitives in an OOP environ­
ment. 

We then discuss the problem of defining equality for the different container classes. 
The approach we adopted earlier, of using state-representing queries, helps to formulate 
the appropriate concepts. This leads to a discussion of general set theory operations. 
Finally, we show how logic ensemble methods make it straightforward to implement 
equality and set theory methods. 

11.1 Logic Ensemble Methods 

We have seen ensemble methods for containers that deal with all items as a group. We 
claimed that the five we enumerated - tell-all, ask-all, which?, which-one?, and reduce­
are primitives so that any other ensemble method can be built up using these methods. 
Let's now examine some very useful ensemble methods that express the fundamental 
queries of predicate logic. In such a logical language, we form sentences out of predicates 
that apply to individuals by applying the quantifiers V and 3, which mean for every and 
there exists, respectively. For example, let P(x) mean "property P is true of individual x." 
Then VxP(x) means that "property P is true of every individual", and 3xP(x) means that 
"there is an individual for which property P is true." Another way of expressing that last 
idea is that that property P is true of some individuals (at least one). 

In basic logic, the set of all individuals under consideration is called the universe and 
is not further divided into subsets. However, if we think of individuals as items in a con­
tainer, then the extrapolation of the concepts VxP(x) and 3xP(x) is immediate. They 
become boolean queries that summarize the results of asking all entities in a container a 
particular boolean query, P. 

For example, think of an airplane ready for takeoff. The cabin crew are responsible 
for checking that all passengers have their seatbelts fastened. If any passenger has a dan­
gling seatbelt, the plane is not allowed to take off. Let's express this using HCCL con­
cepts. 

B. P. Zeigler, Objects and Systems
© Springer Science+Business Media New York 1997
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Let the airplane be modeled as a container, p of objects of class passenger. Let this 
class have a boolean query, seat_beICfastened? Then the cabin crew are performing 
the ensemble method all?(p, seat_beIUastened?),which returns TRUE only if all the 
objects in p return TRUE to the query, seaCbelt_fastened? Similarly, let 
seat_belt_dangling? be the negation of seaCbelt_fastened? Then if some?(p, 
seat_beICdangling?) = TRUE, the crew will politely tell the offending passenger(s) to 
buckle up. Only when all?(p, seat_belt_fastened) = TRUE will the plane be able to take 
off. 

The object behavior specifications of ensemble methods all?, some?, and none? are 
given in Figure 1. 

boo/eon all?(container,query,args) 

all?(container ,query ,args) == 

(size?(which?(container ,query ,args») = size?(container») 

boo/eon some?(container,query,args) 

some?(container,query,args) == 
(size?(which?(container») > 0 ) 

boo/eon none?(container,query,args) 

none?(container ,query ,args) == 

(not (some?(container,query,args») 

Figure 1. Specification of ensemble logic methods. 

Implementation 

If our claim is true that tell-all, ask-all, which?, which-one?, and reduce are primi­
tives, then we should be able to synthesize the logic ensemble methods from them. In­
deed, the specifications in Figure I are stated in terms of ensemble methods. Let's 
investigate alternative implementations. One way to implement all? in a C++ macro has 
this form: 



all (container ,query ,args) { 
container * results = new container(); 
which(container ,entity, query ,args,results); 
return results->sizeO == container()->size(); 
} 
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Here we collect the entities that return T to a query in a container and compare its size 
with the size of the original container. Another possibility is to check which entities 
return F; we return F if any do: 

all( container ,query ,args){ 
container * results = new containerO; 
which_not( container ,entity, query ,args.results); 
return results->empty(); 
} 

A simple transformation of the second implementation gives an implementation of 
some? : 

some(container ,query ,args){ 
container * results = new container(); 
which(container ,entity, query ,argsJesults); 
return !results->emptyO; 
} 

We said earlier that even though tell-all, ask-all, which?, which-one?, and reduce 
are primitives, we may want to implement other methods directly for efficiency reasons. 
For example, we can tell that all? is false as soon as one counterexample has been found. 
Thus, in a sequential processing environment, we would prefer an implementation of this 
form: 

all(container, class, query,args){ 
for (p = container->get_head(), pl=NULL, p =p>geUight()){ 
if (!(class *)p->get_entO->query(args») return F; 
return T; 
} 

Here we stop as soon as one F is obtained, thus reducing computation time. 

Example: Room, Doors, Alarms 

Let's put alarms on windows and doors of a room. A container, alarms, will hold the in­
stances of the alarm class, discussed earlier. To close the doors and windows and arm the 
alarms, we use the ensemble method tell-all: 
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tellall( alarms,alarm ,close); 
tellall( alarms,alarm,arm); 

To ask if all alarms are anned and ready to do their jobs, we use the logic ensemble 
method all?: 

all?(alarms,armed?) 

To ask if some door or window has been broken into, we use the logic ensemble method, 
some?: 

some?( alarms, sounding?) 

11.2 Container Equality 

When are two containers equal? The answer is easy, if by "equality" we mean "identity," 
that is, containers are equal only if they are really the same object. This is the equality 
that is implemented in the default method equal in HCCL (see Chapter 6). However, 
often we want to compare nonidentical containers to see if they are "essentially" the 
same. What can this mean? Actually, the same considerations hold for every class of 
objects. Indeed, there are some properties of "equality" in general that constrain the 
meanings we can give it. Think of triangles in plane geometry. When are two triangles 
essentially the same? You'll remember the answer: when they are congruent, that is , 
when one can be moved and rotated to fit exactly over the other. More concretely, it turns 
out that such congruence requires, for example, that the triangles have an equal side and 
two equal angles. More abstractly, congruence is an equivalence relation, having the 
properties of reflexivity, symmetry, and transitivity. In general, equality must have these 
properties. 

In the case of containers, no matter how we define the query Equal: 1 

boolean Equal(container ,container 1) 

we would require that 

Equal(c 1 ,c 1) (reflexivity: identical containers are Equal) 
Equal(c l,c2) = T ~ Equal(c2,c 1) = T (symmetry) 
Equal(c 1 ,c2) = T 

and Equal(c2,c3) = T ~ Equal(c 1 ,c3) = T (transitivity). 

1 using the capital E, to distinguish it from the existing equal in HCCL 
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G;] ~ I bboc 
bog 

list 

Figure 2. Which pairs are Equal? 

Now looking at Figure 2, we have some typical examples of pairs of containers that beg 
to be judged for equality. Although none of the pairs is identical, we would judge the 
bags and sets to be Equal, but not the lists. Why? 

In the specification of class container, we employed the two state-representing que­
ries: is-in? and size? Therefore we should consider two containers to be equal if they 
can't be distinguished by the state-representing queries. In other words, two containers 
are equal if they have been brought to the same state, as far as the state-representing que­
ries are concerned, by their respective construction sequences. The same concept obvi­
ously applies to any class of objects. 

This leads us to consider two containers to be equal if they have the same size (we 
can't tell them apart by the size? query) and if they have the same items (we can't tell 
them apart by the is-in? query). 

This can be expressed as 

Equal(cl,c2) = 
(size?(cl) = size?(c2) 
and (Ve)( is-in?(cl,e) = T ~ is-in?(c2,e) = D)) 

Notice that we have to use the universal quantifier V to express this definition. (Since 
we now have its ensemble method equivalent all? at our disposal, we can express the 
specification using it.) However, to avoid getting too bound up in abstract definitions, we 
will skip right to an implementation in C++. 

Bool container::Equal(container *c){ 
if (sizeO != c->size()) 
return F; 
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else 
return all 1 (this,entity,amjn,c); 
} 

where 

entity::amjn(container ·c){ 
c->isjn(this); 
} 

In other words, if the size of an incoming container is not the same as this one, they are 
not Equal; otherwise (the sizes match and) we ask each entity in our container if it is in 
the incoming container. If they all respond affirmatively, then we have equality as meas­
ured by Equal. 

Defining equality in terms of state-representing queries works for all container 
classes. For example, the state representing queries of class bag are size? and number­
of? So the appropriate definition is: 

Equal(b 1 ,b2) = 
(size?(b 1) = size?(b2) 

and every item in b 1 
has the same number of occurrences in b2) 

An implementation using the logic ensemble method all? is 

Bool bag::Equal(bag· b){ 
if (sizeO != b->sizeO) 
return F; 
else 
aIl2(this,entity,e<Lnum,this,b); 
} 

where 

entity::e<Lnum(bag • b 1 ,bag· b2){ 
return b1->number_of(this) == b2->numbecof(this); 

} 

Equality for classes set and list can be defined in the same manner (see the Problems). 

11.3 Inclusion, Union, Intersection, and Difference 

Equality in classical set theory is actually one of a few fundamental binary operations. 
For example, we have the following: 
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• S ~ S' (subset or inclusion: every element in S is a member of S') 
• Su S' (union: the smallest set that includes both S and S') 
• Sn S' (intersection: the largest set that is included in both Sand S') 
• S- S' (difference: the largest set that is included in S but not included in S') 

Set equality can then be defined as 

S = S' if S ~ S' and S' !:: S, 

that is, two sets are equal if each one is a subset of the other. 
Indeed, by dropping the requirement that containers have the same size, the definition 

of Equal becomes the one for inclusion: 

includedjn?(c 1 ,c2) = 
( 'v'e)( is-in?(c 1 ,e) = T => is-in?(c2,e) = D) 

and this can be implemented in C++ by 

Bool container:: includedjn (container *c){ 
all 1 (this,enti1y ,amjn,c); 
} 

The definition and implementation of includedjn for classes bag, set and list follow 
this same pattern (see Problems). 

The union, intersection, and difference operations can be similarly implemented with 
ensemble methods (see the Problems and the Appendix). 

11.4 Conversion 

In the chain of derived classes: container~bag~set~order, a higher-level class can 
be converted to a lower-level one. As illustrated in Table 1, when such a conversion is 
performed, some useful work is accomplished. 

Table 1. Work done by conversion from container to subclass. 

container Word done 

bag counts of occurrences 

set identify distinct members 

order sort according to "greater than" 
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Each of these conversions follows the pattern in the example: 

bag * container::containeUo_bagO{ 
bag * b = new bag(); 
copy(this, entity,b); 
return b; 
} 

You should remember the work done by conversion for application in many situa­
tions. For example, converting a container of text to a bag will provide word frequen­
cies in the text. Converting the bag to a set will identity the words found in the text. 
Converting this set to the appropriate order subclass will sort the words according to 
their frequencies of occurrence in the text (see the Problems). 

11.5 Container Comparison 

The next step beyond judging whether containers are equal is to compare them for 
insertion them in an order. One simple means of comparing containers employs their 
sizes. Such a concept of greater-than? can be used to sort a container of containers. 
Here we would define an appropriate greater-than? method to compare sizes: 

greater -than?(container ,container 1) 
= (size?(container) > size?(containerl)) 

Notice that any definition of greater-than? has to be compatible with the definition 
of equality given earlier - if greater-than? returns TRUE then Equal must return FALSE. 

More general comparison can be obtained by using reduction on containers and com­
paring the results. For example, containers of numbers might be reduced to their maxi­
mum values with comparison based on these maxima (see the Problems). 

For ordered containers, the underlying order itself can playa role in their comparison. 
For example, two lists of equal length can be compared by comparing their first elements 
- if these are equal then we go on to compare the second elements, otherwise we return 
the results as the result of the comparison. This iteration continues to successive elements 
as needed. Lexicographical ordering is the name given to this form of comparison since 
it corresponds to the ordering of words in a dictionary - shorter words come before 
longer words and words of equal length are ordered by their first letter, then by their sec­
ond if necessary, and on (see Problems). 

Lexicographical ordering can also be used to order general objects based on their 
states. For example, let class house have instance variables, location, price, and 
square-footage. Then home buyers might rank houses by deciding on a priority order­
ing of these features and then employing a lexicographical principle. For example, with 
the priority just given, the location of a house is considered first - only if two houses are 
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equally ranked in location would one go on to consider their price and square-footage 
rankings (see the Problems). 

Problems 

1. Define the method Equal for classes set and list. (Hint: Equal for set can be 
inherited from bag; use the state-defining queries geUength and IisUef for 
Iist::Equal.) 

2. Define the method includedjn for classes bag, set and list. (Hint: drop the re­
quirement for equal sizes from the definition of Equal. For list, interpret 
includedjn as sublist, i.e., the first list can be found in the second list, though 
not necessarily starting from position 0.) 

3. As discussed in the text, set theory defines operations on sets such as union, 
intersection, and difference. Specify these operations in class set and 
implement them in C++ (answers are in the appendix). 

4. Test your implementations based on your specifications using the methodology 
of Chapter 7. 

5. Specify, implement, and test a class String, each instance of which is a list of 
character entities. String is an object-oriented formulation of the type char * 
which represents a string as an array of characters. Provide methods for String 
that correspond to those provided in C++ such as strcpy, strcmp, substr, and 
strlen. (Hint: define class character as a subclass of entity and derive String 
from list inheriting its Equal query. Define greateUhan for String based on the 
lexicographical principle discussed in the text.) 

6. Write a procedure to print out the String instances in a container in the order of 
their frequency of occurrences, the most frequent first. (Hint: carry out the 
conversions discussed in the text.) 

7. Write a conversion for each of the cases corresponding to the "x" in the follow­
ing table: 

fromJ- to ~ container bag set list 

container x x x 
bag x x 
set x 
list x x 

Give an example of application for each of the checked cases. 
8. Consider the following inheritance hierarchy: 
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entity 

I 
sensor 

I m:sense? 

/\ /\ 
blue red green boss treble salty sweet 

as well as: 

entity 

electromagnetic properties 
acoustic properties 
chemical properties 

physicaLobject 

Method sensor::sense?(physica'-objecUnstance) returns a container of 
sensor instances that report TRUE when their methods sense? is applied to 
physica'-objecUnstance. 

In C++ implement the class hierarchy and methods in such a way that the 
definitions of the methods of all existing classes are not affected when a new 
subclass of sensor is added. Also take maximum advantage of inheritance in 
minimizing the amount of code. 

Show that to add a new subclass of sensor named tactile, with subclasses 
soft and hard, none of the previous definitions need be modified to continue to 
work properly. 

9. A region is a set of points. Set-of-regions is a set of regions. A method 
assign-region decides to which region of set-of-regions a given point belongs. 
It does so by returning the region whose average of the distances of its points to 
the given point is the smallest (assume that no ties occur). 
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• 
in which region does this point belong? 

• region .-----
region 

In C++ define the classes for points and regions as well as a subclass of order 
for ordering regions. Using ensemble methods define the method assign-region 
for the order subclass. 

10. Specify, implement, and test a software system for helping home buyers evaluate 
houses. Employ the lexicographical principle discussed in the text but in 
addition, give buyers the flexibility to choose the priority ranking of features to 
reflects their most important concerns. 

Appendix: Specifying and Implementing Set theory Operations 

The specifications for union, intersection, and difference are given as well as their 
implementation in C++ using ensemble methods. 

For union the specification is 

set2 union(set ,set 1 ) 

is-in?(union(set ,set 1) ,entity) = 
(is-in?(set.entity» = T 

or is-in?(setl ,entity» = T) 

An implementation is 

set * set::union(set * setl){ 
set * set2 = new setO; 
tellalll (this, entity, add_self, set2); 
tell all 1 (set 1 , entity, add_self, set2); 
return set2; 
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} 

For intersection the specification is 

set2 intersection(set ,setl) 

is-in?(intersection(set ,set 1) ,entity) = 
(is-in?(set.entity)) = T 

and is-in?(setl ,entity)) = n 

An implementation is 

set • set: :intersection(set • set l){ 
set· set2 = new seto; 
tellaIl2(this, entity, iUn_add_self, setl ,set2); 
return set2; 

where iUn_add_self(setl ,set2) adds an entity to set2 only if it is in setl. 

For difference the specification is 

set2 difference(set ,set 1) 

is-in?(difference(set ,setl) ,entity) = 
(is-in?(set,entity)) = T 

and is-in?(setl ,entity») = F) 

An implementation is: 

set2 • set::difference(set • setl){ 
set * set2 = new setO; 
tellaIl2(this, entity, iCnoUn_add_self, setl ,set2); 
return set2; 
I 



12 
Design Based on Hierarchical Decomposition 
and Ensemble Methods 

This chapter presents a variety of examples of fairly complex systems that can be given 
quite elegant constructions using the concepts developed in the previous chapters. The 
key concept is to decompose a system in a top down manner so that a hierarchically 
constructed container is obtained. This enables the required behavior to be implemented 
with ensemble methods at each level. 

12.1 Trees as Hierarchical Containers 

We start with the specification and implementation of tree structures. These classical 
data structures can be viewed as hierarchical containers, as illustrated in Figure 1. 
Viewing trees as hierarchical containers enables us to apply container methods and 
especially the ensemble methods for sequential and parallel computation. Each node is 
either a leaf or a container of lower level nodes, called its children. The root is the only 
node not in a such a container. In Figure 1, node a is the root and has children b,c, and 
d. The leaves are b,ej, and d. A tree does not permit cyclic paths. For example, node c 
cannot be added as a child of node jlest it become its own ancestor. However, checking 
for such cyclic paths is time consuming. Often, one can avoid such checking by ensur­
ing that only new entities are added to the tree. 

Different types of containers can be used to hold children of nodes. The class set 
would be appropriate where we want to maintain only distinct entities as siblings. The 
class bag allows multiple copies of entities. An ordered container, such as a list, keeps 
siblings in a specified order, which is useful for evaluating expressions. 

B. P. Zeigler, Objects and Systems
© Springer Science+Business Media New York 1997
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a 

0-

b 

·c 

Figure I. Representing a tree as a container of containers. 

A tree class can be specified as a subclass of container. Actually, a tree is a kind 
of ordered container where the contents, or nodes, are ordered by a parent-child rela­
tionship. The most straightforward specification, given in Figure 2, allows adding only 
new entities (not already in the tree, so an entity occurs at most once). In this case sets 
can be used as the containers. The specification does not assume that such a tree is 
actually implemented as a set of sets, although that would be one possible implemen­
tation for it. 



tree(entfty) 

constructor 

tree make-tree(entlty) Ilentity will be the root 

queries 

entity root?(tree) 
boolean leaf?(tree. entity) 
boolean node?{tree.entity) 
boolean child?{tree.entlty.entltyl) 

command 
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tree' add(tree .parent .child) II parent and child are entities 

Domain Restrictions 

add(tree.parent.child) = defined 

provided that node?{tree. child) = F 

child?{tree. parent.chlld) = defined 

provided that leaf?(tree. parent) = F 

Equivalences 

root?(make-tree(root» = root 
root?(add(tree.parent.child).chlld» = root 

leaf?(make-tree(root)Joot) = T 
leaf?(add(tree.parent.chlld).chlld) = T 
leaf?(add(tree.parent.child).parent) =F 
leaf?(add(tree.parent .child).entlty) = leaf?(tree.entlty) 

node?(make-tree(root).root) = T 
node?(make-tree(root).entity) = F 
node?(add(tree,parent.child).chlld) = T 
node?(add(tree.parent.chlld).entlty) = node?{tree.entlty) 

child?(make-tree(root).parent.child) = F 
child?(add(tree.parent.child).parent.chlld) = T 
child?(add(tree.parent .child).entlty .entltyl) 

= chlld?(tree. parent.child) 

Figure 2. Specification of class tree. 
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If we allow multiple instances of entities as nodes in a tree, there is a danger that an 
entity will be added under one parent that is already a child of another. To disallow 
mUltiple parentage in a tree, we can restrict the add command appropriately (see the 
Problems). 

Since single parentage is very restrictive, we can allow multiple parentage but take 
precautions to prevent cycles from occurring. This requires us to keep track of the 
ancestry of nodes. Let's examine how ancestor? is specified. 

When the tree is constructed, there are no pairs related by ancestry: 

ancestor?(make-tree(root), grandparent, child) = F 

When we add a child beneath a parent, the parent becomes an ancestor of the child: 

ancestor?(add(tree, parent, child),parent. child) = T 

But also any ancestor of the parent becomes an ancestor of the child as well: 

ancestor?(tree,grandparent,parent) = T 

=> ancestor?(add(tree, parent.child),grandparent, child) 

The relationship of any other pairs of nodes is not affected by this particular addition: 

ancestor?(add(tree, parent, child),entityl ,entity2) 

= ancestor?(tree, entity 1 , entity2) 

In this mUltiple occurrence specification, we did not impose any restriction on the chil­
dren that could be added to a parent. Thus, the generic class container can be used to 
hold these children. Adding such restrictions might determine the appropriate type of 
container. For example, we could add a query eldest? that returns the earliest child 
added to a parent. Indeed we could ask for the children of a parent in the order of age 
(order in which they were added). Then a queue would be the appropriate container for 
children. 

Using the HCCL, implementation of trees is straightforward (see the Problems). 

12.2 Tree Computations with Ensemble Methods 

Tree structures are often used in computations. They might be constructed during an 
analysis phase (top down) that is later foIl owed by a synthesis phase that starts from the 
leaves (bottom up). Both the top-down and bottom-up processing can exploit parallel­
ism. In the top-down phase, as the tree fans out, individual computations and construc­
tion of children can be performed in parallel within echelons (all nodes at the same 
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level; see the Problems). The reverse wave of computation starts from the bottom up, 
when the leaves begin their computations. As nodes complete their computations, they 
send the results to their parents. A parent waits for all of its children's results before 
proceeding with its own. Once again, computations by nodes in the same echelon are 
parallelizable. Using this approach, the basic ensemble methods of containers can be 
implemented in a parallel environment (see the Problems). Since, as will be discussed 
in Chapter 13, the Java language supports multithreading, it offers a medium for such 
parallelization. 

The use of tree structures and computations just discussed is exemplified in object­
oriented parsing and evaluation of expressions. An incoming nested expression can be 
parsed and mapped into a tree whose nodes represent the operators invoked in the 
expression. To preserve the order of the arguments in an operator, the list class can be 
used. The expression can then be evaluated by having each node work on the results of 
its children's evaluations (see the Problems). 

12.3 A Class of Graphics Puzzles 

A framework for graphics puzzles is given by the class hierarchy in Figure 3. Three 
kinds of objects are distinguished, as illustrated in Figure 4: 

• movable visible figures, shown crosshatched, are the eyes, ears, nose, and 
mouth in the face puzzle. They can be dragged by the pointer (arrow) and have 
to be placed within the correct, fixed, invisible figure. 

• fixed invisible figures, shown with dash-dotted boundary lines, form the 
invisible zones within which one or more appropriate visible figures must be 
placed. 

• fixed visible figures, shown with solid lines (e.g., the face outline), provide the 
cues that give structure to the puzzle and enable it to be solved. 

figure 

A 
fixed visible figure fixed Invisible figure 

I 
movable visible figure 

Figure 3. Class hierarchy for the face puzzle. 
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Figure 4. Illustrating the face puzzle. 
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Figure 6 illustrates a solution to the puzzle characterized by the fact that all mov­
able, visible figures have been placed within the allowed invisible areas. 
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Figure 5. A solution to the face puzzle. 

Our approach to specifying this fairly complex behavior is first to decide on what 
state information will be needed for the user actions and system responses to work as 
intended. After some experimentation, we come up with the informal description in 
Figure 6. The acceptance zones mentioned in the description are illustrated in Figure 7. 
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state: location of the pointer 
attachment status of the pointer 
location of each movable visible figure 
acceptance status of each movable visible figure (initially unaccepted) 
location of each of the fixed invisible figures 

(unchanged after initialization) 
location of each of the fixed visible figures (unchanged after 

initialization) 

actions: move the pointer 
press the pointer 
release the pointer 

responses: cheer when a movable visible figure is accepted 
jeer when a movable visible figure is deposited 

in the wrong acceptance zone 
terminate when all the movable visible figures are accepted 

The effect of the actions on the state is: 

move the pointer: 

press the pointer: 

release the pointer: 

response 

affects the location of the pointer and the location 
of the attached movable visible figure, if any 

affects the attachment status of the pointer, 
if its location is within a movable visible figure 

affects the acceptance status of the attached movable visible 
figure (if any) if within the correct acceptance zone, while 

responding cheer; otherwise no change in state and 

is jeer; also terminates when no unaccepted movable visible 
figures remain. 

Figure 6. Informal description of face puzzle. 
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Figure 7. Acceptance zones and associated acceptance sets for face puzzle. 

These informal concepts form the basis of a specification which we encourage the 
reader to attempt (check your results with the specification in the appendix to this chap­
ter). 

An implementation can be built around the methods for a pointer class that can be 
easily synthesized from ensemble methods. A pointer object's first task is to identify 
which of the movable figure zones contains its current location. After defining a 
method, is-within?, that checks whether a point lies within the zone of an object, we can 
implement the pick method for pointer using the ensemble method which-one?: 

pointer: :pick 

attached = which-one?(movables, is-within?, location) 

The pointer then drags the attached object to a new location where the user thinks 
that the object can be dropped. The drop method can be described as follows: 

pointer:: drop 

invisible = which-one?(invisibles,is-within? ,location) 

if(is-in?( acceptable?(invisble), attached) 

then accept(invisible) 

In other words, the invisible object whose zone (if any) contains the pointer location 
is identified using which-one? We then test whether the attached object is in the 
acceptable container of objects defined by this invisible zone. If so, we remove the 
object from the acceptable container and fix its location, i.e., it is moved from the 
movables to the fixed visibles class. 
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12.4 General Approach to 00 Software Development 

This example illustrates a general approach to developing object-oriented software 
for complex processing tasks. 

1. The first step is to analyze the task using state representing query and com­
mand concepts and describe it an easily understood, informal manner. The aim 
of this step is to clarify what the state is, how it is transformed by actions 
(inputs) and how responses are generated. 

2. An object behavior specification is then developed based on this informal 
description and employs ensemble methods as needed. When the underlying 
structure is hierarchical, the methods can be developed in a top-down fashion 
(see next example). 

3. The specification is then implemented. The HCCL realization in C++, Java or 
other languages, is especially convenient in that it enables the powerful 
ensemble methods of containers to be directly applied. However, even if an 
object-oriented language does not support generic ensemble methods, their 
behaviors can still be implemented in lower-level code. 

Of course, comprehensive testing is required to ensure that the implementation 
works as intended. Following the methodology introduced in Chapter 7, the develop­
ment of the test plan should be done after the specification is ready in step 2. Then the 
test suite should be ready by the time the specification is implemented. 

12.5 Alanning a Building 

The final example in this chapter will illustrate the use of containers and ensemble 
methods in a more complex example. Consider installing alarms in a house to prevent 
break-ins. We want to put alarms on all exterior doors so that when a break-in occurs, 
appropriate action will be taken. What should this action be? We will first require that 
the rooms that have been entered be sealed off. But also, to be doubly safe, we want to 
seal off the rooms that are adjacent to those rooms. By an adjacent room, we mean one 
that can be entered by an interior door connecting to the room in question. 
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bed-hall STUDY 

Figure 8. Floor plan of example house. 

Based on the floor plan of Figure 8, let's make a catalog of all interior doors and 
exterior doors in the house. Interior doors are repeated at least twice, under each of the 
rooms they connect (Figure 9). 

BEDROOM 
bed-kitchen 
bed-hall 
back-door exterior 

DEN 
den-study 

HALL 
bed-hall 
kitchen-hall 
study-hall 
front-door exterior 

KITCHEN 
bed-kitchen 

kitchen-play 

PLAY 
kitchen-play 
play-study 
side-door exterior 

STUDY 
den-study 
study-hall 
play-study 

Figure 9. Cataloguing all doors under rooms. 

Our task now is to define classes that enable a computer to respond to an alarm by 
sealing off the room in which the alarm sounded as well as its adjacent rooms. In the 
hierarchy of classes shown in Figure 10, the class house has an instance variable 
rooms-in-house and the class room has two instance variables, ext-doors and int­
doors, one for each class of door. These instance variables are containers - indeed, 
they are best made to be sets, because a door is listed at most once under a room 
(although it must be listed in the catalog twice if it connects between two rooms). We 
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distinguish the two classes of doors, because exterior doors have alarms with associated 
behavior that interior doors do not. 

Recall that we required that, when an alarm goes off in a room, the adjacent rooms 
are also sealed off. Thus, each room has to have knowledge of its adjacent rooms. But 
this knowledge is not independent from the cataloging of doors under rooms - indeed, 
it can be computed from that information. Thus, we give each room an instance vari­
able, adjacent-rooms. A house method will compute which rooms are to be included 
in this container. This method can be an intialization method, which means that it will 
be called right after the house has been constructed (i.e., when all the information is 
available), and before invoking any of the operational methods. 

entity 

house 

~A~~ 
exterior-door 

aIatm interlor-door 

Figure 10. Class hierarchy showing essential instance variables. 

Since a house has a hierarchical structure, we can take a top-down approach to defining 
constructors: 

• make-house(container-of-rooms) creates an instance of a house with rooms­
in-house:= container-of-rooms. 

• make-room(exterior doors,interior doors) creates an instance of a room with 
containers: 

• ext-doors := exterior doors, 
• int-doors := interior doors. 

• make-int-door creates an interior door. 
• make-ext-door creates an exterior door equipped with an alarm. 

Although defined top-down, constructors are used to build a house from the bottom 
up. We can, for example, construct the house in Figure 8 by creating room instances for 
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each of the six rooms, adding them to a container, and calling the constructor, make­
house. Similarly, we create appropriate interior-door and exterior-door instances for 
each room instance and then add them to its int-doors and ext-doors using make­
room. This gives us enough information for the method compute-adjacent-rooms to 
work properly. 

Once more, progressing from the top downward, a house will tell-all its rooms to 
compute-adjacent -rooms: 

house: :compute-adjacent-roomsO: 

tell-all(rooms-in-house, compute-adjacent-rooms, rooms-in-house) 

For a room to be able to compute its adjacent rooms, it must find all the rooms that 
share a common int-door with it: 

room: :compute-adjacent-rooms(container-of-rooms): 

adjacent-rooms 

= which?(container-of-rooms, have-door-in?, int-doors) 

The boolean query have-door-in?(doors) checks whether a room has an interior-door 
in common with doors: 

room:: have-door-in?(doors): 

!empty?( intersection (doors, int-doors» 

(The intersection of two sets was discussed in Chapter 11.) 

Having computed adjacent-rooms for each room, we can call upon the ensemble 
methods, including the logical ensemble methods of Chapter 11, to express the required 
behavior of the system. For example, starting at the top: 

house: :close&arm-aU-ext -doorsO: 

tell-all(rooms-in-house, close&arm-all-ext-doors) 

room: :close&arm-all-ext-doorsO: 

teU-aU(ext-doors, close&arm) 

To express the break-in detection behavior: 

house: :detect&respondO: 

house: :seal-rooms(house: :which-rooms-broken-into?) 

house: :which-rooms-broken-into?O: 

which?(rooms-in-house, broken-into?) 
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room: :broken-into?(): 

some?(ext-doors. alarm-sounding?) 

To seal off the rooms in a container and their nearest neighbors: 

house: :seal-rooms(container): 

tell-all(container. seal-room&adjacent-rooms) 

room: :seal-room&adjacent-roomsO: 

room::seal-room l 

tell-all(adjacent-rooms, seal-room) 

room:: seal-room(): 

tell-all (union(ext-doors, int-doors).close) 

To test such a design we must set a house instance into an appropriate state before 
applying a query-terminated sequence of commands. For example, to test which­
rooms-broken-into?, we might trip the alarm in the back-door instance made 
initially. We then test if which-rooms-broken-into? returns the bedroom instance 
that it should. 

12.6 Summary 

We have suggested a general approach to developing software for complex tasks based 
on the containers class hierarchy and its associated ensemble methods. Generally, such 
tasks require hierarchical compositions in which containers can be components of other 
containers. Information flow between levels in the hierarchy can be expressed with 
ensemble methods. Moreover, the hierarchical structure supports top down design of 
methods and constructors. Implementation of such designs is facilitated by the hierar­
chical containers with ensemble methods applied at the various levels. As suggested in 
the Problems, efficient realization of the ensemble methods in parallel environments 
enables exploitation of mUltiprocessor architectures to obtain high-speed responses. 

Problems 

1. 
(a) Implement, and test, the acyclic tree class specified in the text using the 

C++ class declarations: 

I Actually, this line is not needed; Since a room has doors in common with its own doors, it 
will always be included in its adjacent rooms. 



class node: public entity{ 
protected: 

container • children; 
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... /ladd in the additional methods 

} ; 

class tree: public container{ 

protected: 

node' root; 

container' leaves; 

relation * ancestors; 

public: 

node * get_rootO; 

Bool isJeaf(node *); 

Bool is_node(node *); 

... //add in the additional methods 

} ; 

Note that since class container is the base class, its add, iSjn, and 
get_size can be reused in tree. To test whether a named entity can be 
added as a leaf, a search of ancestors must be done for this name. Use 
ensemble methods to create ancestors and perform the search. 

Develop a test suite following the methodology in Chapter 7 based on the 
specification and the tree class interface declaration before you write the 
implementation of the methods. 

(b) Enhance the previous implementation so that a node has an instance variable 
to keep track of its parent. Redefine the method for searching for ancestors 
in this new implementation. Discuss the tradeoff between time and memory 
exhibited in these implementations. Employ the same test suite of Problem 
l(a) to test the enhanced implementation. 

2. Write a specification that restricts children to single parentage but still allows 
multiple occurrences of the same entity within sibling containers. Implement this 
specification by employing the parent instance variable in l(b). 

3. Implement and test the following methods in the class tree: 
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number level?(tree,node) 

/ /tells how far down the tree a node is 

level?(make-tree(root),root) = 0 

level?(add(tree,parent.child),child) = level?(tree,parent) + 1 

level?(add(tree ,parent ,child) ,node) = level?(tree ,node) 

number depth?(tree)/ / this is the maximum level 

depth?(make-tree(root» = 0 

depth?(tree) = level?(tree,parent) ~ 

depth?(add(tree,parent,child» = depth?(tree) + 1 

depth?(add(tree,parent.child» = depth?(tree) 

number identifier?(tree,node) 

/ /gives a unique number to each node in a binary tree 

identifier?(tree,root) = 0 

identifier?(add(tree,parent,childl ,child2), childl) 

= 2*identifier?(tree,parent) + 1 

identifier?(add(tree ,parent ,child 1 ,child2), child2) 

= 2*identifier?(tree,parent) + 2 

identifier?( add(tree,parent,childl ,child2), entity) 

= identifier?(tree ,entity) 

(Nodes with identifiers between 2lev -I and 2lev + 1 are found at level lev in the 
tree.) 

Test your implementation with tests developed from the specification. 

4. Using your tree class definition as a prototype, implement object-oriented 
expression evaluation in C++. As an example, consider logical expressions built up 
as in the following example: 

AND * andl = new ANDCandl "); 



AND * and2 = new ANDCand2"); 

OR • or = new ORCor"); 

NOT· not = new NOTCnot"); 

logic· a = new 10gic("a"JRUE); 

logic * b = new 10gicCb" ,FALSE); 

and l->insert(a,O); 

and1->insert(or,1 ); 

and 1->insert(b ,2); 

or ->insert(not ,0); 

not ->insert( a); 

or->insert(and2, 1 ) 

and2->insert(b,0); 

and2->insert(a,1); 
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and1->printO; Ilprints the expression "andl(a or(not(a) and2(b a»)" 

cout« and1->evaluateO; /Iprints "0" (for FALSE) 

The implementation should also support extensibility; namely, any new 
operator should be able to be incorporated as in the following: 

class NEWOP: public OP{ 

public: 

Bool evaluateO{ 

/ I a computation based on evaluating the arguments. 

I I For example, the computation for AND is: 

II return lisUef(O) && IisUef(l); 

} ; 

Then newop->printO and newop->evaluateO should work together with existing 
operators in expressions such as that above. (Hint: define OP as a derived class of 
list with evaluate as a virtual method. Define AND, OR, and NOT as derived 
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classes of OP, each with their appropriate evaluate methods (use the logic 
ensemble methods of Chapter 11). Also define logiC (which is employed to enter 
boolean values) as a derived class of OP with its evaluate returning the assigned 
truth value). 

Write a test suite for your implementation before you start implementing. 

5. Instead of synthesizing trees manually, they can be constructed by a parsing 
process. For example, the string expression and(a, or(not(a),and(b a») should be 
automatically mapped into the same tree as in Problem 4. Design the parser, 
exploiting object-orientated extensibility, such that when new operators are added, 
the parser code is not modified. (Hint: the parser performs a which? scan of a set 
containing an instance of each operator class looking for the instance whose class 
name matches the string it is currently examining.) 

6. In current massively parallel computers, each processor has an integer 
identification ranging from 1 to n, the number of processors. Show how to 
implement the ensemble methods where the command or query arrives to processor 
1, which broadcasts it to all the other processors (and, for a query, collects the 
results). (Hint: use level assignment in Problem 3 to set up a tree of computations 
discussed in the text (i.e., processor 0 sends to processors 1 and 2 which send to 
{3,4} and {5,6}, and so on). Also, store parent information in each processor for 
the reverse flow of query results.)2 

As an application example, assume that each processor has stored an arbitrary 
number. Show how a reduction ensemble method can be implemented to compute 
their maximum. 

7. Specify, implement and test the following variations of the face puzzle: 

(a) diet game: each of the standard food groups accepts instances of associated 
types of food. For example, milk goes into the diary food group but not into 
the vegetable group 

(b) money change game: each coin has container for each type of change that can 
be applied to it. For example, a quarter has a container with two dimes and a 
nickel, another container for 5 nickels, etc. 

8. Design a watering system for lawns. Trees, plants, bushes, flowers, and grass have 
differing watering needs, and employ different water delivery systems, such as 
emitters and sprinklers. Further, plants close to certain others, such as cactii, need 
to have reduced watering. Assume that your highest level class is lawn which has a 
method which reports the passage of time in fifteen minute intervals. 

2 The advantage of the tree-style messaging is that it obviates sending n messages one after 
the other at processor 1. Instead, each node need only send two messages. A similar distribution 
of overhead occurs in the reverse flow of results: the receiving bottleneck at processor 1 is 
replaced by each node receiving two messages from its children and passing on one message to 
its parent. 
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Appendix: Specifying a Graphics Puzzle 

constructor 

puzzle make-puzzle(movable_vlslbles, fixedjnvlslbles, acceptance) 

/ / for simplicity the fixed_ visibles are not considered 

/ / also the initial locations of figures are not given 

queries 

coordinate pOinter-location?(puzzle) 
boolean pointer-dragging?(puzzle) 
boolean pointer-is-free?(puzzle) 
boolean is-attached?(puzzle, entity) 
boolean is-accepted?(puzzle,entity) 
coordinate entity-Iocatlon?(puzzle,entity) 

hidden 
boolean is-movable?(puzzle,entity) 
boolean is-invisible?(puzzle,entity) 
boolean is-acceptable?(puzzie,entlty,entity 1) 
boolean pointer-within?(puzzle,entity) / /Virtual 

commands 

puzzle' pointer-move(puzzle,coordinate) 
puzzle' pick(puzzle) 
puzzle'drop(puzzle) 

Equivalences 

pointer-Iocatlon? 
(make-puzzle( 

movable_visibles, fixedjnvisibles, acceptance»= 0 

pointer-dragging? 
(make-puzzle( 
movable_visibles, fixedjnvisibles, acceptance» = F 

pointer -is-free? 
(make-puzzle 
(movable_visibles, fixedjnvisibles, acceptance» = T 
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is-attached? 
(make-puzzle(movable_ visibles,fixedJnvisibles.acceptance). entity) = F 

is-accepted? 
(make-puzzle(movable_visibles.fixedjnvisibles. acceptance).entity) = F 

entity-location? 
(make-puzzle 
(movable_ visibles.fixedjnvisibles.acceptance). 

entity) = 0 

is-in?(movable visibles.entity) = T => 
is-movable? 
(make-puzzle 

(movable_visibles,fixedjnvisibles.acceptance) 
.entity) =T 

is-in?(fixed invisibles.entity) = T => 
is-invisable? 

(make-puzzle 
(movable_visibles.fixedjnvisibles. acceptance).entity) = T 

is-in?(acceptance. entity. entityl) => 
is-acceptable? 
(make-puzzle 
(movable_ visibles. fixed invisibles. acceptance)entity .entityl) 

/ / this ends the constructor sections 

pOinter-location?(pointer-move(puzzle.coordinate» 
= coordinate 

is-attached?(puzzle .entity) = T => 
entity-location? 

(pointer-move(puzzle.coordinate).entity) = coordinate 

pointer-is-free?(puzzle) = T 
and pointer-within?(puzzle. entity) = T 

and is-movable?(puzzle. entity) = T 
~ (pointer-dragging?(pick(puzzle» = T; 



is-attached?(pick(puzzle).entity) = n3 
pointer-within?(puzzle. entity1) = T 

and is-invisible?(puzzle. entityl) = T 
and is-attached?(puzzle.entlty) = T 
and 

is-acceptable?(puzzle.entlty .entity 1) = 

accepted?«drop(puzzle).entity» = T; 
is-attached? «drop(puzzle).entity» = F; 

/ / pOinter-Is-free? 
(drop(puzzle» = n 
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Note: for all other combinations no change in state occurs. 

3 The change of state caused by pick is described by changes in two queries, polnter­
dragging? and is-attached? The use of ~.Jis short for writing the effects on each of the 
enclosed queries separately. 
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Java and Threaded Containers 

Java was developed as an object-oriented language especially suited to programming for 
the World Wide Web. It can be regarded as a kind of hybrid between C++ and Smalltalk. 
Syntactically, it resembles the former. Java is more similar to Smalltalk, however, in sev­
eral semantic respects. It is interpreted rather than compiled into executable form. Its 
suitability as an open language for Web programming stems from the fact that source 
code is translated into an intermediate form, called bytecode, which can be interpreted on 
major platforms such as PCs, Macs, and Unix workstations. This enables code residing on 
a server to be sent to a client for interpretation. This means that users can transparently 
run applications, called applets, that were developed at some other remote site. 

13.1 Basic Java 

Let's first look at the basic syntax and concepts of Java. Since it looks very much like 
C++, we can examine the way HCCL is transcribed from C++ to Java as a means to 
compare and contrast. Here is an extract of the definition of class entity with comments 
highlighting the similarities and differences. 

class entity { / / Java uses class concepts similar to that of C++ 

static String classname = "entity"; 

/ / private is the default accessibility mode 
/ / class variables can be declared and defined at the same time 

protected String name; / / String is a Java class for strings 

protected entity right; 

/ /pointers are implicit (not explicit as in C++) 

public entity( String NAME ){ 

{name = NAME; right = null;} / /null is the official null object 

/* entity::-entityOO • / 
/ / Java does all garbage collection 

B. P. Zeigler, Objects and Systems
© Springer Science+Business Media New York 1997
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II so no need for destructors 

public boolean equal(entity ENT) 

return 

II boolean is a Java class with 

II true and false values 

get_classnameO. 

compareTo(ENT.geCclassname()) == 0 

&& geCentO == ENT; 

II compareTo is a method of class String 

II the ~. R notation is used for sending messages 

public entity equaLself(entity ENT) 

if ( equal(ENT) ) 

return this; /I self-reference as in C++ 

else return null; 

public void printO 

( System.out.println( get_name(»; } 

} II no semi-colon is used to end class definition 

In contrast to C++, Java supports only single inheritance, which sets up inheritance hier­
archies like those described in this book. To see how derived classes are introduced, let's 
examine the following example from HCCL. 



class set extends bag { 

II declares set as derived from class bag 

public void add(entity ent) 

if (!isjn(ent» 

super.add(ent); 

13. Java Threaded Containers 205 

II use add method of unique parent In class hierarchy. 

II Java doesn't use global method names and only the 

II the superclass methods are invokable by name 

publicsetO 

{super();} 

II superclass constructors can be invoked like any method 

Java employs the main function within a class to start execution: 

class TestEnt { II use class to execute program 

public static void main 0 { II main program 

entity e = new containerO; II new constructs Instances 

(container)e.printO; II cast down as In C++ 

)} 
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13.2 Distinctive Java Features 

Java has some features not found in C++. These are some of the main ones: 
• abstract classes: provide high-level classes at the top of inheritance hierarchies 

whose methods would be considered virtual in C++. Such classes cannot have 
any instances. 

• final methods: at the opposite extreme from abstract class methods, such meth­
ods are final in the sense that they cannot be overriden when inherited. 

• packages: provide a means of encapsulating related classes together so that they 
can all be imported into a program together. Classes can be hidden within pack­
ages so that they are not visible to clients of the package, bringing information 
hiding to a level above classes. Packages can be organized into hierarchies as 
well. 

• interfaces: can be "mixed in" to provide a restricted means of multiple inheri­
tance. A class can be declared to implement one or more interfaces and thus 
inherit their declarations. However, these declarations must be only variables or 
nonimplemented methods, so the class cannot inherit actual code but must sup­
ply it itself. 

• exception handling: exceptions, such as attempting to remove from an empty 
container, can be systematically managed so that appropriate notices or correc­
tive actions are initiated. 

13.3 Ensemble Methods in Java 

Ensemble methods offer a challenge for Java implementation for two reasons: 

1. Unlike C++, Java does not have a preprocessor 

2. Java does support multithreading. 

The first reason means that we do not have the ability to write macros enabling ensemble 
methods to flexibly accept method names and other arguments. The second reason, how­
ever, gives us the ability to implement ensemble methods in a truly parallel/distributed 
processing environment. Working within these constraints, we'll discuss an approach to 
implementing ensemble methods in Java. 

To understand threads, let's start with a most straightforward example: how to have 
each entity in a container print out its name by running a thread through each one. Java 
has a class Thread whose instances can all be executing in parallel on a multiprocessor 
system or in virtual parallelism in the sense that a single processor will allocate a certain 
amount of execution time to each one in tum. Each such instance corresponds to the gen­
eral programming concept of thread. We can easily extend class Thread so as to accept 
an entity argument in its constructor: 



class printThread extends Thread I 

protected entity e; 

printThread (entity E) Ie = E;} 
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Telling the thread what to do when executed is specified by overriding its run method: 

public void runOI 

e.printO; 

}} 

Now, we can arrange to have threads started up with the entities in a container. For 
example, we could define a method for class container: 

public void printall 

for (element p=get_headO;p!=null;p = p.geUight()) 

printThread pt = new printThread( p.get_entO); 

pt.startO; 

}} 

Here we visit each element in a container and create a new thread for its entity. We start 
up each such thread using the Thread method start. This is illustrated in Figure 1. Note 
that we don't wait for one thread to finish before starting another. Thus all threads can be 
executing in parallel. Of course, for true parallelism, each must be executing on a sepa­
rate processor and printing on its own screen. Nevertheless, multithreading can still make 
a big performance difference on a single processor. This happens when you have many 
jobs to do, such as downloading files and editing files, that differ greatly in their 
execution-time requirements. If each is being managed by a thread, then the faster jobs 
such as editing can be done while the slower jobs, in effect, run in the background. 
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Multithreading is also important for graphical interfaces - many windows and other 
graphical objects can be active simultaneously. 

printThreacls 

Emine0- 0 DO 
Printoll 

Figure 1. Printing a container's entity names with threads. 

13.4 General Approach to Ensemble Methods in Java 

Recall that Java does not supply a macro facility that would alleviate the need to rewrite 
the scanning code in printall each time it is required for a different command or query. 
The best we can do is provide a framework that saves much labor as possible, and makes 
clear how to write a desired ensemble method for a particular application. Figure 2 illus~ 
trates a class hierarchy that does this. To define an ensemble method for an application, 
we need to define an appropriate extension of class ensemble and a matching subclass of 
entityContainerThread. 



I runO 

RUNNABLE 

enllly 

I runO 

whichEqualThreacl 

I enHty Ent 

runO 

tellaHPrint 
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I runO 

Thread 

askailName 

I runO 

whlchEquai 

I runO 

Figure 2. Java class hierarchy to support ensemble method development. 

To see how this works, let's start at the top. Runnable is an interface that supports 
the facilities required by the run method. The instances of any class that implements 
Runnable can have any number of threads running through its implemented run method. 
Class Thread also implements Runnable, so it also has a run method. It executes this 
method unless it is given another Runnable instance explicitly, in which case it executes 
that instance's run method. 

To provide class entity execution capability, we have it implement Runnable and 
give it a Thread instance variable: 

class entity implements Thread{ 

protected Thread myThread; 

entltyO{ 

myThread = new Thread(this); 
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public start(){ 

myThread.startO; 

Two classes are derived from entity and inherit its execution capability. entityCon­
tainerThread provides entity and container instance variables for ensemble method use. 
The programmer must add additional instance variables to hold incoming arguments; for 
example, as in the case of whichEqualThread, an entity to holds one argument. 

class entityContainerThread extends entity ( 

protected container c; 

public entityContainerTIhread(entity E){ 

e= E; 

public entityContainerThread(entity E.container C){ 

e= E; 

c=C; 

}} 

Likewise, the ensemble subclass of entity supplies two containers, one to be 
scanned and one for results. Class ensemble must be extended to provide the particular 
code needed for scanning the first container. Note that since ensemble contains a 
thread, it can be started at any time within the execution of another thread. This supports 
application to hierarchical containers. l 

1 Why not let container itself serve as the base class for all ensemble extensions? Consider 
tellAIIPrlnt - being derived from container, it cannot be used with any other class. In contrast, the 
container slot in ensemble can accommodate any derived class of container by polymorphism. 



class ensemble extends entity{ 

protected container c; 

protected container r; 

public ensemble(container C) { 

c=C; 

r = new container(); 

public container resultsO{ 

waitFor AIiThreadsO; 2 

return r; 
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To reimplement printing of container contents, we provide extensions for the entity 
and ensemble classes: 

class prlntThread extends entityContainerThread { 

public void run(){ 

prlntO; 

}} 

2 This "barrier" is needed to prevent returning the results container before all threads have 
finished. Its definition is not difficult but beyond the scope of this book. 
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class tellallPrint extends ensemble{ 

public telialiPrint(container C){super(C) ;} 

public void runO { 

for (element p=c.get_head();p 1= null;p = p.geUight()) 

nameThread nt = new nameThread(p.geCent()); 

nt.startO; 

}} 

A test of this implementation might look as follows: 

class TestTellallPrint{ 

public static void main () ( 

entity entl = new entity ("entl'); 

entity ent2 = new entity ("ent2"); 

container c = new container(); 

c.add(entl); 

c.add(ent2); 

tellallPrint tc = new tellaIlPrint(c); 

tC.start(); 

}} 

Notice that we can make full use of polymorphism - any subclass of container can be 
input to tellaliPrint, and the container can have any subtype of entity as its contents. To 
enable printing of a hierarchical container, we create a telialiPrint instance within the 
print method of container: 

public void print{ 

telialiPrint tc = new teliaIlPrint(this); 

tC.startO; 
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The nonnal polymorphism rules apply when the entity in a container happens to be a 
container itself (recall the discussion of hierarchical methods in the Problems of Chapter 
6). In this case, the print method will be executed, which in tum starts up a new Thread 
to print the container. 

Implementing Askall and Which? 

Implementing an askall method can build upon the experience with tellall. We define 
extensions for classes ensemble and entityContainerThread: 

class askaliName extends ensemble{ 

public askaliName (container C) {super(C);} 

public void runO{ 

{ for (element p=c.get_headO;p!=null;p= p.geUight(» { 

nameThread nt = new nameThread(p.get_entO.r); 

nt.start(); 

}} 

class nameThread extends entityContainerThread { 

public void runO{ 

c.add(newentity(geLname())); 

}} 

As before, we can package askaliName as a method of container: 

public geLnamesO{ 

askaliName t = new askaIiName(this); 

t.startO; 

return t.resultsO; 
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13.5 Synchronization 

There is, however, a complication that arises in askaliName, which is illustrated in 
Figure 3. Notice that the threads for the entities in the source container may be concur­
rently attempting to add items to the results container. Unless we take preventive action, 
a thread can be suspended in the middle of processing its add method, in favor of 
another thread that can start its own add method processing. This can wreak havoc since 
each thread can leave the container in an inconsistent state with respect to the other. 

enlityContolnerThreods 

- - ____ --r- ---1 

o DO 
, 

odd opct 
_ 1-- _--'" 

€:> 

Figure 3. Illustrating the need for Synchronization. 

To ensure that threads mutually exclude themselves in critical methods, Java provides 
synchronization features. For example, the add method of container can be made 
thread-safe by adding the synchronizing specification: 

public synchronized void add (entity E){ 

Now Threads must wait for the current Thread to complete its processing of the add 
method. Only one Thread can be performing such processing at a time. Of course, this is 
now a potential bottleneck to slow down processing.3 So we'll want to keep the use of 
such synchronization to a minimum. 

3 The extent to which such "barrier" synchronization is a bottleneck depends on how fast threads 
accumulate there relative to how fast they are "serviced". In the ideal case, the time required for 
each thread to compute its entity's response is much larger than the time required to add the 
response to the target container. In this case, most of the work is done in parallel. 
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Adding Capability to Transmit Arguments 

So far the queries and commands multicast by the ensemble methods have not required 
arguments. To add this capability, we can extend entity ContainerThread to include 
placeholders for such arguments. For example, to implement a which? ensemble method 
such as which Equal (which entities in a container are equal to a given entity?), we can 
do the following: 

class which Equal extends ensemble{ 

protected entity Ent; 

public whichEqual(confainer C,entity E) { 

super(C); 

Ent = E; 

} 

public void runO{ 

{ 

for 

(element p=c.get_headO;p!=null;p= p.geUight()) { 

whichEqualThread nt = new whichEqualThread( p.get_entO. Ent.r); 

nt.startO; 

Here the extension of entityContainerThread is defined with an additional instance vari­
able, Ent. This enables it to store the argument passed by which Equal for use in the exe­
cution of the run method. The implementation is given by 

class whichEqualThread extends entityContainerThread { 

public entity Ent; 

public whichEqualThread(entity E, entity ENT. container C){ 

super(E,C); 

Ent = ENT; 

} 

public void runO{ 

if (e.equal(Ent)) c.add(e); 

}} 
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13.6 Hierarchical Graphics Construction in Java 

Java provides support for hierarchical construction of graphical user interfaces (GUIs) 
through its abstract window tool kit. In the class hierarchy that forms this tool kit, the 
Container class can contain graphical objects, called Components. As illustrated in 
Figure 4, class Components includes buttons, scrollbars, drawing canvasses, and other 
commonly employed interface objects. Since Container is also an extension of 
Component (just as container extends entity in HCCL), hierarchical construction is 
enabled. Such construction greatly simplifies the task of building complex interfaces. For 
example, Figure 5 illustrates a GUI that consists of a TextField and two identical Panels. 
A Panel is composed of a Canvas, a Scrollbar, and two Buttons with specific 
dimensions and placed in specific locations. Hierarchical construction allows us to layout 
the Panel once and then make any number of copies of it. In contrast, if Components 
could not be used to make larger Components, then each low-level component 
(buttons, canvasses, and so on) would have to be individually configured and located 
on the overall Panel - a very tedious and errorprone task. 

Object 

I 

Canvas 

Panel Window 

Figure 4. Java class hierarchy (partial). 

I TextFleld I 
P,m I 

D~ EJ~ 011 or 

DO DO 
Button 

Figure 5. Example of a Java GUI. 
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13.6 Summary 
This book comes to an end in full circle with its beginning. We began with the premise 
that it is valuable to be able to specify object behavior before implementing it. One of the 
important reasons is that a specification can have a longer lifetime than any of its imple­
mentations - indeed, it may be implemented to take advantage of emerging technologies. 
In this chapter, we have seen how the specification of the Container class hierarchy 
remained invariant as we migrated the implementation from C++ to Java. The mul­
tithreading capabilities of Java enabled us to implement the ensemble methods so as to 
exploit their intrinsic parallelism and speed up their execution. One certainty about the 
future is that technologies will continue to evolve. The ability to work with abstract con­
cepts - which are much more stable than their concrete realizations - will enable soft­
ware developers to stay ahead of the ever-evolving technology development curve. 

Problems 

1. Implement the remaining ensemble methods (which-one? and reduce) in Java 
using multithreading. Test your implementations using a test suite that is pre­
designed and based on their specified behavior. 

2. Some ensemble methods, such as which-one?, some?, and all?, can, under 
certain conditions, have their execution terminated as soon as an answer is defi­
nitely known. Write implementations that kill all outstanding threads once a 
known-to-be-final answer is obtained. (Hint: send the Thread method stopO to a 
Container of threads that have not yet completed.) 

3. The execution order of threads in Java is controlled by a scheduler. The opera­
tion can be emulated as follows: class scheduler is derived from class order. 
When a thread is created, it is added to a scheduler instance with a given prior­
ity. The threads currently in the scheduler are ordered by priority; those having 
the same priority are ordered according to time spent waiting since last receiving 
execution. The thread chosen for next execution is the one highest in priority 
with the most time spent waiting since last receiving execution. This thread is 
given some execution and then returned to schedule unless it has completed its 
execution. Implement your own classes thread and schedule to model the 
thread management algorithm just discussed. 

4. Write an object behavior specification for a button that toggles between the on 
and off states each time it is pressed. (Hint: compare with the binary counter in 
Chapter 1.) Contrast this toggle switch behavior with a pair of check boxes 
(checking one box unchecks the other).) 

5. Implement the face puzzle specified in Chapter 12. Use Java's abstract window 
class hierarchy to realize the graphical objects as well as the multithreaded 
implementations of ensemble methods given in this chapter. 

6. Implement a simulation of the house alarm system discussed in Chapter 12. Pro­
vide a GUI that depicts the layout of the house and the alarm placement. Ani­
mate the flashing/sounding of alarms and the actions of door opening/closings in 
a break-in. 
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