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Preface 

One of the earliest applications of the computer was to the processing of information. These 
applications led to a revolution and created a whole discipline. During the recent decade we 
saw a second revolution in information processing motivated by the introduction of the 
Internet, which is essentially a confluence of the computing and communications 
technologies. 
We are now at the early stage of a new revolution in information processing technology. 
This revolution is focused on the introduction of intelligence to the processing of 
information. In large part this revolution is the next step in the development of Internet 
technology. We need intelligence to search the Internet in an efficient way, we need 
intelligence to build agents to prowl the Internet and do our bidding and of course we need 
intelligence to help us in understanding the multi-media environment of the Internet. 
However, the Internet is not the only place where this revolution is developing. The control 
systems, used in industrial processes, are getting more intelligent. 
The focus of the International Conference on Information Processing and Management of 
Uncertainty in Knowledge Based System (IPMU) is on the development of technology 
needed for the construction of intelligent systems. The ninth IPMU conference held in 
Annecy France, organized by the University of Savoie, brought together some of the 
world’s leading experts in these technologies. In this volume, we have collected and 
organized a selection of papers from this conference. 
The book starts with an introduction to perception-based information processing by Prof. 
L.A. Zadeh. This paper is reprinted from the Journal of Statistical Planning and Inference 
(2002) by Elsevier. Here Prof. Zadeh continues his development of a framework for 
computing with words by investigating perception-based probabilities, which are needed for 
the development of intelligent decision systems. 
An important task in the development of intelligent systems is the representation of 
knowledge in a manner that is rich enough to capture the subtlety of human intelligence, but 
still formal enough to allow computer manipulation. In the second section of this volume we 
present a number of papers on representing knowledge. 
The task of retrieving information is central to many activities involved in the processing of 
information. The third section addresses this important issue. A number of the selected 
papers focus on the development of aggregation operators. 
Reasoning is an important part in human intelligent activities. Modeling human activities by 
means of computers is a real challenge for the implementation of intelligent systems. 
Section 4 of this volume is concerned with these topics. 



vi 

Intelligent systems have to take into account the quality of the information they process. The 
representation and handling of uncertain information is one of the interesting aspects in the 
construction of intelligent systems and is tackled in the fifth section. 
The mining of information from the large amount of data available is one of the most active 
areas in information technology. Many new technologies and paradigms for the task are 
being developed. In the sixth section we provide some papers on data mining and the related 
issue of learning. 
The last two sections are respectively devoted to formal foundations of the technologies 
used for constructing intelligent systems and applications illustrating the wide spectrum of 
domains where the tools are applied. 

B. Bouchon-Meunier 
L. Foulloy 
R. R. Yager 
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Toward a perception-based theory of probabilistic reasoning 
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University of Culiforniu, Berkeley, CA 94720-1 776, USA 

To Herbert Robbins, Hung T. Nguyen and the memory of Professor Kampe de Feriet 

Abstract 

The perception-based theory of probabilistic reasoning which is outlined in this paper is not 
in the traditional spirit. Its principal aim is to lay the groundwork for a radical enlargement of 
the role of natural languages in probability theory and its applications, especially in the realm 
of decision analysis. To this end, probability theory is generalized by adding to the theory the 
capability to operate on perception-based information, e.g., “Usually Robert returns from work 
at about 6 p.m.” or “It is very unlikely that there will be a significant increase in the price of oil 
in the near future”. A key idea on which perception-based theory is based is that the meaning 
of a proposition, p ,  which describes a perception, may be expressed as a generalized constraint 
of the form X isr R,  where X is the constrained variable, R is the constraining relation and isr 
is a copula in which r is a discrete variable whose value defines the way in which R constrains 
X. In the theory, generalized constraints serve to define imprecise probabilities, utilities and 
other constructs, and generalized constraint propagation is employed as a mechanism for reason- 
ing with imprecise probabilities as well as for computation with perception-based information. 
@ 2002 Elsevier Science B.V. All rights reserved. 

MSC. primary 62A01; secondary 03B52 

Keywords: Perception-based information; Fuzzy set theory; Fuzzy logic; Generalized 
constraints; Constraint languages 

1. Introduction 

Interest in  probability theory has grown markedly during the past decade. Underlying 
this growth is the ballistic ascent in the importance of  information technology. A 
related cause is the concerted drive toward automation of  decision-making in a wide 
variety of  fields ranging from assessment of creditworthiness, biometric authentication, 

‘ Program of UC Berkeley. 
* Tel.. + 1-5 10-642-4959; fax: + I  -5 10-642-1 7 12. 

E-mail uddress: zadeh@cs.berkeley.edu (L.A. Zadeh) 
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and fraud detection to stock market forecasting, and management of uncertainty in 
knowledge-based systems. Probabilistic reasoning plays a key role in these and related 
applications. 

A side effect of the growth of interest in probability theory is the widening realization 
that most real-world probabilities are far from being precisely known or measurable 
numbers. Actually, reasoning with imprecise probabilities has a long history (Walley, 
1991) but the issue is of much greater importance today than it was in the past, largely 
because the vast increase in the computational power of information processing systems 
makes it practicable to compute with imprecise probabilities-to perform computations 
which are far more complex and less amenable to precise analysis than computations 
involving precise probabilities. 

Transition from precise probabilities to imprecise probabilities in probability theory is 
a form of generalization and as such it enhances the ability of probability theory to deal 
with real-world problems. The question is: Is this mode of generalization sufficient? Is 
there a need for additional modes of generalization? In what follows, I argue that the 
answers to these questions are, respectively, No and Yes. In essence, my thesis is that 
what is needed is a move from imprecise probabilities to perception-based probability 
theory-a theory in which perceptions and their descriptions in a natural language play 
a pivotal role. 

The perception-based theory of probabilistic reasoning which is outlined in the fol- 
lowing is not in the traditional spirit. Its principal aim is to lay the groundwork for 
a radical enlargement in the role of natural languages in probability theory and its 
applications, especially in the realm of decision analysis. 

For convenience, let PT denote standard probability theory of the kind found in 
textbooks and taught in courses. What is not in dispute is that standard probability 
theory provides a vast array of concepts and techniques which are highly effective in 
dealing with a wide variety of problems in which the available information is lacking 
in certainty. But alongside such problems we see many very simple problems for which 
PT offers no solutions. Here are a few typical examples: 

1. What is the probability that my tax return will be audited? 
2. What is the probability that my car may be stolen? 
3. How long does it take to get from the hotel to the airport by taxi? 
4. Usually Robert returns from work at about 6 p.m. What is the probability that he 

is home at 6:30 p.m.? 
5. A box contains about 20 balls of various sizes. A few are small and several are 

large. What is the probability that a ball drawn at random is neither large nor small? 

Another class of simple problems which PT cannot handle relates to commonsense 
reasoning (Kuipers, 1994; Fikes and Nilsson, 1971; Smithson, 1989; Shen and Leitch, 
1992; Novak et al., 1992; Krause and Clark, 1993) exemplified by 

6. Most young men are healthy; Robert is young. What can be said about Robert’s 
health? 



5 

7. Most young men are healthy; it is likely that Robert is young. What can be said 

8. Slimness is attractive; Cindy is slim. What can be said about Cindy’s attractive- 
about Robert’s health? 

ness? 

Questions of this kind are routinely faced and answered by humans. The answers, 
however, are not numbers; they are linguistic descriptions of fuzzy perceptions of 
probabilities, e.g., not very high, quite unlikely, about 0.8, etc. Such answers cannot 
be arrived at through the use of standard probability theory. This assertion may ap- 
pear to be in contradiction with the existence of a voluminous literature on imprecise 
probabilities (Walley, 1991). In may view, this is not the case. 

What are the sources of difficulty in using PT? In Problems 1 and 2, the difficulty is 
rooted in the basic property of conditional probabilities, namely, given P ( X ) ,  all that 
can be said about P(XIY) is that its value is between 0 and 1, assuming that Y is not 
contained in X or its complement. Thus, if I start with the knowledge that 1% of tax 
returns are audited, it tells me nothing about the probability that my tax return will 
be audited. The same holds true when I add more detailed information about myself, 
e.g., my profession, income, age, place of residence, etc. The Internal Revenue Service 
may be able to tell me what fraction of returns in a particular category are audited, 
but all that can be said about the probability that my return will be audited is that it 
is between 0 and 1. The tax-return-audit example raises some non-trivial issues which 
are analyzed in depth in a paper by Nguyen et al. (1999). 

A closely related problem which does not involve probabilities is the following. 
Consider a function, y = f (x), defined on an interval, say [0, lo], which takes values 

in the interval [0, 11. Suppose that I am given the average value, a, of f over [0, lo], 
and am asked: What is the value of f at x = 3? Clearly, all I can say is that the value 
is between 0 and 1. 

Next, assume that I am given the average value of f over the interval [2,4], and 
am asked the same question. Again, all I can say is that the value is between 0 and 
1. As the length of the interval decreases, the answer remains the same so long as the 
interval contains the point x = 3 and its length is not zero. As in the previous example, 
additional information does not improve my ability to estimate f ( 3 ) .  

The reason why this conclusion appears to be somewhat counterintuitive is that 
usually there is a tacit assumption that f is a smooth function. In this case, in the 
limit the average value will converge to f ( 3 ) .  Note that the answer depends on the 
way in which smoothness is defined. 

In Problem 3, the difficulty is that we are dealing with a time series drawn from a 
nonstationary process. When I pose the question to a hotel clerk, he/she may tell me 
that it would take approximately 20-25min. In giving this answer, the clerk may take 
into consideration that it is raining lightly and that as a result it would take a little 
longer than usual to get to the airport. PT does not have the capability to operate on 
the perception-based information that “it is raining lightly” and factor-in its effect on 
the time of travel to the airport. 
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In problems 4-8, the difficulty is more fundamental. Specifically, the problem 
is that PT-as stated above-has no capability to operate on perceptions described 
in a natural language, e.g., “usually Robert returns from work at about 6 p.m.”, 
or “the box contains several large balls” or “most young men are healthy”. This 
is a basic shortcoming that will be discussed in greater detail at a later 
point. 

What we see is that standard probability theory has many strengths and many lim- 
itations. The limitations of standard probability theory fall into several categories. To 
see them in a broad perspective, what has to be considered is that a basic concept 
which is immanent in human cognition is that of partiality. Thus, we accept the reality 
of partial certainty, partial truth, partial precision, partial possibility, partial knowledge, 
partial understanding, partial belief, partial solution and partial capability, whatever it 
may be. Viewed through the prism of partiality, probability theory is, in essence, a 
theory of partial certainty and random behavior, What it does not address-at least 
not explicitly-is partial truth, partial precision and partial possibility-facets which 
are distinct from partial certainty and fall within the province of fuzzy logic (FL) 
(Zadeh, 1978; Dubois and Prade, 1988; Novak, 1991; Klir and Folger, 1988; Reghis 
and Roventa, 1998; Klir and Yuan, 1995; Grabisch et al., 1995). This observation ex- 
plains why PT and FL are, for the most part, complementary rather than competitive 
(Zadeh, 1995; Krause and Clark, 1993; Thomas, 1995). 

A simple example will illustrate the point. Suppose that Robert is three-quarters 
German and one-quarter French. If he were characterized as German, the characteri- 
zation would be imprecise but not uncertain. Equivalently, if Robert stated that he is 
German, his statement would be partially true; more specifically, its truth value would 
be 0.75. Again, 0.75 has no relation to probability. 

Within probability theory, the basic concepts on which PT rests do not reflect the 
reality of partiality because probability theory is based on two-valued Aristotelian 
logic. Thus, in PT, a process is random or not random; a time series is station- 
ary or not stationary; an event happens or does not happen; events A and B are 
either independent or not independent; and so on. The denial of partiality of truth 
and possibility has the effect of seriously restricting the ability of probability the- 
ory to deal with those problems in which truth and possibility are matters of 
degree. 

A case in point is the concept of an event. A recent Associated Press article carried 
the headline, “Balding on Top Tied to Heart Problems; Risk of disease is 36 percent 
higher, a study finds”. Now it is evident that both “balding on top”, and “heart prob- 
lems”, are matters of degree or, more concretely, are fuzzy events, as defined in Zadeh 
(1968), Kruse and Meyer (1987) and Wang and Klir (1992). Such events are the norm 
rather than exception in real-world settings. And yet, in PT the basic concept of condi- 
tional probability of an event B given an event A is not defined when A and B are fuzzy 
events. 

Another basic, and perhaps more serious, limitation is rooted in the fact that, in 
general, our assessment of probabilities is based on information which is a mixture of 
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f-granularity is a reflection of the bounded ability of sensory 
organs and, ultimately, the brain, to resolve detail and store 
information 

Fig. 1. f-Granularity (hzzy  granularity) 

Fig. 2. Crisp and fuzzy granulation of Aye. 

measurements and perceptions (Vallee, 1995; Barsalou, 1999). Reflecting the bounded 
human ability to resolve detail and store information, perceptions are intrinsically 
imprecise. More specifically, perceptions are f-granular (Zadeh, 1979, 1997), that is: 
(a) perceptions are fuzzy in the sense that perceived values of variables are not sharply 
defined and (b) perceptions are granular in the sense that perceived values of variables 
are grouped into granules, with a granule being a clump of points drawn together by 
indistinguishability, similarity, proximity or functionality (Fig. 1 ). For example, the 
fuzzy granules of the variable Age might be young, middle-aged and old (Fig. 2). 
Similarly, the fuzzy granules of the variable Probability might be likely, not likely, 
very unlikely, very likely, etc. 
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Fig. 3. Coarse description of a function by a collection of linguistic rules. Linguistic representation is 
perception-based. 

Perceptions are described by propositions expressed in a natural language. For 
example 

0 Dana is young, 
0 it is a warm day, 
0 it is likely to rain in the evening, 
0 the economy is improving, 
0 a box contains several large balls, most of which are black. 

An important class of perceptions relates to mathematical constructs such as func- 
tions, relations and counts. For example, a function such as shown in Fig. 3 may 
be described in words by a collection of linguistic rules (Zadeh, 1973, 1975, 1996). 
In particular, a probability distribution, e.g., discrete-valued probability distribution of 
Carol’s age, P*, may be described in words as 

Prob(Caro1 is young} is low, 
Prob(Caro1 is middle-aged} is high, 
Prob(Caro1 is old} is low 

or as a linguistic rule-set 

if Age is young then P* is low, 
if Age is middle-aged then P* is high, 
if Age is old then P’ is low. 

For the latter representation, using the concept of a fuzzy graph (Zadeh, 1996, 1997), 
which will be discussed later, the probability distribution of Carol’s age may be 
represented as a fuzzy graph and written as 

P* = young x low + middle-aged x high + old x low 
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measurement-based 

numerical 

Fig. 4. Cartesian granulation. Granulation of X and Y induces granulation of (X, Y )  

perception-based 

linguistic 

I information I 

examples Dana is 25 Dana is young 
it is 85" it is hot 

Robert is honest 

pseudo-numerical 
~~ ~ 

checkout time is 11:OOam 
speed limit is 100 km/hour 

Fig. 5 .  Structure of information: measurement-based, perception-based and pseudo-measurement-based 
information. 

which, as shown in Fig. 4, should be interpreted as a disjunction of Cartesian products 
of linguistic values of Age and Probability (Zadeh, 1997; Pedrycz and Gomide, 1998). 

An important observation is in order. If I were asked to estimate Carol's age, it would 
be unrealistic to expect that I would come up with a numerical probability distribution. 
But I would be able to describe my perception of the probability distribution of Carol's 
age in a natural language in which Age and Probability are represented-as described 
above-as linguistic, that is, granular variables (Zadeh, 1973, 1975, 1996, 1997). 

Information which is conveyed by propositions drawn from a natural language 
will be said to be perception-based (Fig. 5 ) .  In my view, the most important 
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Fig. 6 .  f-Generalization (fuzzification). Fuzzification is a mode of generalization from crisp concepts to fuzzy 
concepts. 

shortcoming of standard probability theory is that it does not have the capability to 
process perception-based information. It does not have this capability principally be- 
cause there is no mechanism in PT for (a) representing the meaning of perceptions 
and (b) computing and reasoning with representations of meaning. 

To add this capability to standard probability theory, three stages of generalization 
are required. 

The first stage is referred to as f-generalization (Zadeh, 1997). In this mode of 
generalization, a point or a set is replaced by a fuzzy set. f-generalization of standard 
probability theory, PT, leads to a generalized probability theory which will be denoted 
as PT+. In relation to PT, PTf has the capability to deal with 

1. fuzzy numbers, quantifiers and probabilities, e.g., about 0.7, most, not very likely, 
2. fuzzy events, e.g., warm day, 
3. fuzzy relations, e.g., much larger than, 
4. fuzzy truths and fuzzy possibilities, e.g., very true, quite possible. 

In addition, PT+ has the potential-as yet largely unrealized-to fuzzify such basic 
concepts as independence, stationarity and causality. A move in this direction would 
be a significant paradigm shift in probability theory. 

The second stage is referred to as f.g-generalization (fuzzy granulation) (Zadeh, 
1997). In this mode of generalization, a point or a set is replaced by a granulated 
fuzzy set (Fig. 6). For example, a function, f, is replaced by its fuzzy graph, f* 
(Fig. 7). f.g-generalization of PT leads to a generalized probability theory denoted as 
PT++. 

P T f t  adds to PT+ further capabilities which derive from the use of granulation. 
They are, mainly 

1. linguistic (granular) variables, 
2 .  linguistic (granular) functions and relations, 
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Fig. 7 .  Fuzzy graph of a function. A fuzzy graph is a generalization of the concept of a graph of a function. 

Fig. 8. Representation of most. Crisp, fuzzy and f-granular 

3. fuzzy rule-sets and fuzzy graphs, 
4. granular goals and constraints, 
5. granular probability distributions. 

As a simple example, representation of the membership function of the fuzzy quantifier 
most (Zadeh, 1983) in PT, PT+ and PT++ is shown in Fig. 8. 

The third stage is referred to a p-generalization (perceptualization). In this mode of 
generalization, what is added to PT++ is the capability to process perception-based 
information through the use of the computational theory of perceptions (CTP) (Zadeh, 
1999, 2000). p-generalization of PT leads to what will be referred to as perception-based 
probability theory (PTp). 
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conversion computation 
perceptions - measurements - decisions 

countertraditional(CTP) 

conversion computation 
perceptions -W propositions - decisions 

conversion 
measurements - perceptions 

Fig. 9. Countertraditional conversion of measurements into perceptions. Traditionally, perceptions are 
converted into measurements. 

The capability of PTp to process perception-based information has an important im- 
plication. Specifically, it opens the door to a major enlargement of the role of natural 
languages in probability theory. As a simple illustration, instead of describing a prob- 
ability distribution, P ,  analytically or numerically, as we normally do, P could be 
interpreted as a perception and described as a collection of propositions expressed in 
a natural language. A special case of such description is the widely used technique 
of describing a function via a collection of linguistic if-then rules (Zadeh, 1996). For 
example, the function shown in Fig. 7 may be described coarsely by the rule-set 

f: if X is small then Y is small, 
if X is medium then Y is large, 
if X is large then Y is small, 

with the understanding that the coarseness of granulation is a matter of choice. 
In probability theory, as in other fields of science, it is a long-standing tradition 

to deal with perceptions by converting them into measurements. PT, does not put 
this tradition aside. Rather, it adds to PT a countertraditional capability to convert 
measurements into perceptions, or to deal with perceptions directly, when conver- 
sion of perceptions into measurements is infeasible, unrealistic or counterproductive 
(Fig. 9). 

There are three important points that are in need of clarification. First, when we 
allude to an enlarged role for natural languages in probability theory, what we have 
in mind is not a commonly used natural language but a subset which will be referred 
to as a precisiated natural language (PNL). In essence, PNL is a descriptive language 
which is intended to serve as a basis for representing the meaning of perceptions in a 
way that lends itself to computation. As will be seen later, PNL is a subset of a natural 
language which is equipped with constraint-centered semantics and is translatable into 
what is referred to as the generalized constraint language (GCL). At this point, it will 
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suffice to observe that the descriptive power of PNL is much higher than that of the 
subset of a natural language which is translatable into predicate logic. 

The second point is that in moving from measurements to perceptions, we move 
in the direction of lesser precision. The underlying rationale for this move is that 
precision carries a cost and that, in general, in any given situation there is a tolerance 
for imprecision that can be exploited to achieve tractability, robustness, lower cost and 
better rapport with reality. 

The third point is that perceptions are more general than measurements and PT, 
is more general that PT. Reflecting its greater generality, PT, has a more complex 
mathematical structure than PT and is computationally more intensive. Thus, to exploit 
the capabilities of PT, it is necessary to have the capability to perform large volumes 
of computation at a low level of precision. 

Perception-based probability theory goes far beyond standard probability theory both 
in spirit and in content. Full development of PT, will be a long and tortuous process. 
In this perspective, my paper should be viewed as a sign pointing in a direction that 
departs from the deep-seated tradition of according more respect to numbers than to 
words. 

Basically, perception-based probability theory may be regarded as the sum of stan- 
dard probability theory and the computational theory of perceptions. The principal 
components of the computational theory of perceptions are (a) meaning representation 
and (b) reasoning. These components of CTP are discussed in the following sections. 

2. The basics of perception-based probability theory; the concept of a generalized 
constraint 

As was stated already, perception-based probability theory may be viewed as a 
p-generalization of standard probability theory. In the main, this generalization adds 
to PT the capability to operate on perception-based information through the use of the 
computational theory of perceptions. What follows is an informal precis of some of 
the basic concepts which underlie this theory. 

To be able to compute and reason with perceptions, it is necessary to have a means 
of representing their meaning in a form that lends itself to computation. In CTP, 
this is done through the use of what is called constraint-centered semantics of natural 
languages (CSNL) (Zadeh, 1999). 

A concept which plays a key role in CSNL is that of a generalized constraint (Zadeh, 
1986). Introduction of this concept is motivated by the fact that conventional crisp 
constraints of the form X E C, where X is a variable and C is a set, are insufficient to 
represent the meaning of perceptions. 

A generalized constraint is, in effect, a family of constraints. An unconditional con- 
straint on a variable X is represented as 

X isr R, 
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Fig. 10. Membership function of young (context-dependent). Two modes of precisiation. 

where R is the constraining relation and isr, pronounced as ezar, is a variable copula 
in which the discrete-valued variable r defines the way in which R constrains X .  

The principal constraints are the following: 

r := 
r : blank 

r : v  

r :  p 

r : pv 

r : rs 

r :fg 

r : u  

equality constraint; X = R 
possibilistic constraint; X is R; R is the possibility distribution of X 
(Zadeh, 1978; Dubois and Prade, 1988) 
veristic constraint; X isv R; R is the verity distribution of X (Zadeh, 
1999) 
probabilistic constraint; X i sp  R;  R is the probability distribution 
of x 
probability-value constraint; X ispv R; X is the probability of a fuzzy 
event (Zadeh, 1968) and R is its value 
random set constraint; X isrs R; R is the fuzzy-set-valued probability 
distribution of X 
fuzzy graph constraint; X isfg R;  X is a function and R is its fuzzy 

usuality constraint; X isu R; means: usually (X is R ) .  
graph 

As an illustration, the constraint 

Carol is young 

in which young is a fuzzy set with a membership function such as shown in Fig. 10, 
is a possibilistic constraint on the variable X :  Age(Curol). This constraint defines the 
possibility distribution of X through the relation 

where u is a numerical value of Age; pLyounq is the membership function of young; and 
Poss{X = u }  is the possibility that Carol’s age is u. 
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Fig. 1 1. Membership fimction of likely (context-dependent) 

The veristic constraint 

X isv R (2.2) 

means that the verity (truth value) of the proposition {X = u }  is equal to the value of 
the verity distribution R at u. For example, in the proposition “Alan is half German, 
quarter French and quarter Italian”, the verity of the proposition “Alan is German” is 
0.5. It should be noted that the numbers 0.5 and 0.25 are not probabilities. 

The probabilistic constraint 

x isp N(m,  c2) (2.3) 

means that X is a normally distributed random variable with mean m and variance 02. 

The proposition 

p :  it is likely that Carol is young (2.4 1 
may be expressed as the probability-value constraint 

Prob{Age(Curol) is young} is likely. ( 2 . 5 )  

In this expression, the constrained variable is X :  Prob{Age(CavoZ) is young} and the 
constraint 

X is likely (2.6) 

is a possibilistic constraint in which likely is a fuzzy probability whose membership 
function is shown in Fig. 11. 

In the random-set constraint, X is a fuzzy-set-valued random variable. Assuming that 
the values of X are fuzzy sets {Ai, i = 1,. , . , n} with respective probabilities pi,. . . , P n ,  
the random-set constraint on X is expressed symbolically as 

(2.7) X isrs (pi \A, + . . . + pn\An). 

It should be noted that a random-set constraint may be viewed as a combination of 
(a) a probabilistic constraint, expressed as 

X i sp  (pi \.I + . . . + Pn\Un), ~i E U (2.8) 
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Fig. 12. Fuzzy-graph constraint. f* is a fuzzy graph which is an approximate representation o f f  

and a possibilistic constraint expressed as 

(X, Y )  is R, (2.9) 
where R is a fuzzy relation defined on U x V, with membership function p~ : U x V + 

[O, 11. 
If Ai is a section of R, defined as in Zadeh (1997) by 

p A , ( u )  = pR(ui,  01, (2.10) 

Y isrs (PI \ A I  + .  . . + p,\A,). (2.1 1 )  

Another point that should be noted is that the concept of a random-set constraint 
is closely related to the Dempster-Shafer theory of evidence (Dempster, 1967; Shafer, 
1976) in which the focal sets are allowed to be fuzzy sets (Zadeh, 1979). 

then the constraint on Y is a random-set constraint expressed as 

In the fuzzy-graph constraint 

X isfg R, (2.12) 

the constrained variable, X, is a function, f ,  and R is a fuzzy graph (Zadeh, 1997) 
which plays the role of a possibility distribution of X. More specifically, if f : U x V + 

[0,1] and A,,  i = 1,. . . , m and Bj, j = I , .  . . , n ,  are, respectively, fuzzy granules in U 
and V (Fig. 12), then the fuzzy graph of f is the disjunction of Cartesian products 
(granules) Ui x V,, expressed as 

m , n  
f *  = c ui x vj, (2.13) 

with the understanding that the symbol C should be interpreted as the union rather 
than as an arithmetic sum, and Ui and V ,  take values in the sets {A l ,  . . . ,  A m }  and 
{Bl,. . . , B,}, respectively. 

A fuzzy graph o f f  may be viewed as an approximate representation o f f .  Usually, 
the granules Ai and B, play the role of values of linguistic variables. Thus, in the case 
of the function shown in Fig. 7, its fuzzy graph may be expressed as 

i= l,j= I 

f * = small x small + medium x large + large x small. (2.14) 
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Equivalently, if f is written as Y = f (X), then f * may be expressed as the rule-set 

f’ : if X is small then Y is small, 
if X is medium then Y is large, 
if X is large then Y is small. (2.15) 

This rule-set may be interpreted as a description-in a natural language-of a 
perception of f .  

The usuality constraint is a special case of the probability-value constraint. Thus, 

X isu A (2.16) 

should be interpreted as an abbreviation of 

usually (X is A ) ,  (2.17) 

which in turn may be interpreted as 

Prob{X is A }  is usually, (2.18) 

with usually playing the role of a fuzzy probability which is close to 1. In this sense, A 
is a usual value of X .  More generally, A is a usual value of X if the fuzzy probability 
of the fuzzy event {X is A }  is close to one and A has high specificity, that is, has 
a tight possibility distribution, with tightness being a context-dependent characteristic 
of a fuzzy set. It is important to note that, unlike the concept of the expected value, 
the usual value of a random variable is not uniquely determined by its probability 
distribution. What this means is that the usual value depends on the calibration of the 
context-dependent natural language predicates “close to one” and “high specificity”. 

The difference between the concepts of the expected and usual values goes to the 
heart of the difference between precise and imprecise probability theories. The expected 
value is precisely defined and unique. The usual value is context-dependent and hence 
is not unique. However, its definition is precise if the natural language predicates which 
occur in its definition are defined precisely by their membership functions. In this sense, 
the concept of the usual value has a flexibility that the expected value does not have. 
Furthermore, it may be argued that the concept of the usual value is closer to our 
intuitive perception of “expected value” than the concept of the expected value as it 
is defined in PT. 

In the foregoing discussion, we have focused our attention on unconditional general- 
ized constraints. More generally, a generalized constraint may be conditional, in which 
case it is expressed in a generic form as an if-then rule 

if X isr R then Y iss S (2.19) 

or, equivalently, as 

Y iss S if X isr R. (2.20) 

Furthermore, a generalized constraint may be exception-qualified, in which case it is 
expressed as 

X isr R unless Y iss S. (2.21) 
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A generalized rule-set is a collection of generalized if-then rules which collectively 
serve as an approximate representation of a function or a relation. Equivalently, a 
generalized rule-set may be viewed as a description of a perception of a function or a 
relation. 

As an illustration, consider a function, f : (U x V )  4 [0,1], expressed as Y = f(X), 
where U and V are the domains of X and Y ,  respectively. Assume that U and I/ are 
granulated, with the granules of U and V denoted, respectively, as A , ,  i = 1,. . . , m, and 
B,, j = 1,. . . , n .  Then, a generic form of a generalized rule set may be expressed as 

f": {if X isr U, then Y iss 4) i =  1 ,..., m, j =  1 , . . . ,  n, (2.22) 

where U, and V, take values in the sets { A l ,  . . . , A , }  and { B I  , . .  . , Bn} ,  respectively. In 
this expression, f * represents a fuzzy graph of f .  

A concept which plays a key role in the computational theory of perceptions is 
that of the Generalized Constraint Language, GCL (Zadeh, 1999). Informally, GCL 
is a meaning-representation language in which the principal semantic elements are 
generalized constraints. The use of generalized constraints as its semantic elements 
makes a GCL a far more expressive language than conventional meaning-representation 
languages based on predicate logic. 

3. Meaning-representation: constraint-centered semantics of natural languages 

In perception-based probability theory, perceptions-and, in particular, perceptions 
of likelihood, dependency, count and variations in time and space-are described by 
propositions drawn from a natural language. To mechanize reasoning with perceptions, 
it is necessary to have a method of representing the meaning of propositions in a 
way that lends itself to computation. In the computational theory of perceptions, a 
system that is used for this purpose is called the constraint-centered semantics of natural 
language (CSNL) (Zadeh, 1999). 

Meaning-representation is a central part of every logical system. Why, then, is it 
necessary to introduce a system that is significantly different from the many meaning- 
representation methods that are in use? The reason has to do with the intrinsic impre- 
cision of perceptions and, more particularly, with their f-granularity. It is this charac- 
teristic of perceptions that puts them well beyond the expressive power of conventional 
meaning-representation methods, most of which are based on predicate logic. 

To illustrate, consider the following simple perceptions: 

0 Ann is much younger than Mary. 
0 A box contains black and white balls of various sizes. Most are large. Most of the 

Usually it is rather cold in San Francisco during the summer. 
0 It is very unlikely that there will be a significant increase in the price of oil in the 

large balls are black. 

near future. 
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Conventional meaning-representation methods do not have the capability to represent 
the meaning of such perceptions in a form that lends itself to computation. 

A key idea which differentiates CSNL from conventional methods is that the meaning 
of a proposition, p ,  drawn from a natural language, is represented as a generalized 
constraint, with the understanding that the constrained variable and the constraining 
relation are, in general, implicit rather than explicit in p .  For example, in the proposition 

p :  it is likely that Kate is young, 

the constraint is possibilistic; the constrained variable is the probability that Kate is 
young; and the constraining relation is likely. 

The principal ideas and assumptions which underlie CSNL may be summarized as 
follows: 

1. 
2. 

3. 
4. 

5 .  

Perceptions are described by propositions drawn from a natural language. 
A proposition, p ,  may be viewed as an answer to a question. 
In general, the question is implicit and not unique. For example, the proposition 
“Carol is young” may be viewed as an answer to the question: “How old is Carol”, 
or as the answer to “Who is young?” 
A proposition is a carrier of information. 
The meaning of a proposition, p ,  is represented as a generalized constraint which 
defines the information conveyed by p .  
Meaning-representation is viewed as translation from a language into the GCL. 

In CSNL, translation of a proposition, p ,  into GCL is equated to explicitation of the 
generalized constraint which represents the meaning of p .  In symbols 

translation 
explicitation 

X isr R. 

The right-hand member of this relation is referred to as a canonical form of p ,  written 
as CF(p) .  Thus, the canonical form of p places in evidence (a) the constrained variable 
which, in general, is implicit in p ;  (b) the constraining relation, R; and (c) the copula 
variable r which defines the way in which R constrains X. 

The canonical form of a question, q, may be expressed as 

CF(q): X isr ?R (3.2) 

and read as “What is the generalized value of X?” 
Similarly, the canonical form of p ,  viewed as an answer to q, is expressed as 

C F ( p ) :  X isr R (3.3) 

and reads “The generalized value of X isr R”. 

form is 
As a simple illustration, if the question is “How old is Carol?”, its canonical 

CF(q): Age(Carol) is ?R. (3.4) 
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Correspondingly, the canonical form of 

p :  Carol is young 

is 

(3.5) 

CF( p ) :  Age( Carol) is young. (3.6) 

If the answer to the question is 

p :  it is likely that Carol is young (3.7) 

then 

C F ( p ) :  Prob{Age(Carol) is young} is likely. (3.8) 

More explicitly, if Age(Curo1) is a random variable with probability density g, then 
the probability measure (Zadeh, 1968) of the fuzzy event “Carol is young” may be 
expressed as 

(3.9) 

where pYoung is the membership function of young. Thus, in this interpretation the con- 
strained variable is the probability density g, and, as will be seen later, the membership 
function of the constraining relation is given by 

(3.10) 

A concept which plays an important role in CSNL is that of cardinality, that is, the 
count of elements in a fuzzy set (Zadeh, 1983; Ralescu, 1995; Hajek, 1998). Basically, 
there are two ways in which cardinality can be defined: (a) crisp cardinality and 
(b) fuzzy cardinality (Zadeh, 1983; Ralescu et al., 1995; Ralescu, 1995). In the case 
of (a), the count of elements in a fuzzy set is a crisp number; in the case of (b) it is 
a fuzzy number. For our purposes, it will suffice to restrict our attention to the case 
where a fuzzy set is defined on a finite set and is associated with a crisp count of its 
elements. 

More specifically, consider a fuzzy set A defined on a finite set U = {u , ,  . . . , u,} 
through its membership function p A  : U i [0, I ] .  The sigma-count of A is defined as 

n 

i= I 
C Count(A) = C pA(ui). (3.11) 

If A and B are fuzzy sets defined on U ,  then the relative sigma-count, C Count(A/B), 
is defined as 

(3.12) 

where A = min, and summations are arithmetic. 
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As a simple illustration, consider the perception 

p :  most Swedes are tall. 

In this case, the canonical form of p may be expressed as 
I n  
n i=l 

CF( p ) :  C Count( tall . Swedes/Swedes) is - C ptali, swede(ui ), (3.13) 

where ui is the height of the ith Swede and piall, ~ ~ ~ d ~ ( ~ i )  is the grade of membership 
of the ith Swede in the fuzzy set of tall Swedes. 

In a general setting, how can a given proposition, p ,  be expressed in its canonical 
form? A framework for translation of propositions drawn from a natural language 
into GCL is partially provided by the conceptual structure of test-score semantics 
(Zadeh, 1981). In this semantics, X and R are defined by procedures which act on an 
explanatory database, ED, with ED playing the role of a collection of possible worlds 
in possible world semantics (Cresswell, 1973). As a very simple illustration, consider 
the proposition (Zadeh, 1999) 

p :  Carol lives in a small city near San Francisco 

and assume that the explanatory database consists of three relations: 

ED = POPULATION[Name; Residence] 
+SMALL[City; p] 
+ NEAR[Cityl; City2; p]. (3.14) 

In this case, 

X = Residence(Curo1) =Residence POPULATION[Nume = carol], (3.15) 

R = SMALL[City; p] nCriyl NEAR[City2 = SunJ'rancisco]. (3.16) 

In R, the first constituent is the fuzzy set of small cities; the second constituent is the 
fuzzy set of cities which are near San Francisco; and n denotes the intersection of 
these sets. Left subscripts denote projections, as defined in Zadeh (1981). 

There are many issues relating to meaning-representation of perception-based infor- 
mation which go beyond the scope of the present paper. The brief outline presented in 
this section is sufficient for our purposes. In the following section, our attention will be 
focused on the basic problem of reasoning based on generalized constraint propagation. 
The method which will be outlined contains as a special case a basic idea suggested 
in an early paper of Good (1962). A related idea was employed in Zadeh (1955). 

4. Reasoning based on propagation of generalized constraints 

One of the basic problems in probability theory is that of computation of the probabil- 
ity of a given event from a body of knowledge which consists of information about the 
relevant functions, relations, counts, dependencies and probabilities of related events. 
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As was alluded to earlier, in many cases the available information is a mixture of 
measurements and perceptions. Standard probability theory provides a vast array of 
tools for dealing with measurement-based information. But what is not provided is a 
machinery for dealing with information which is perception-based. This limitation of PT 
is exemplified by the following elementary problems-problems in which information 
is perception-based. 

1. X is a normally distributed random variable with small mean and small variance. 
Y is much larger than X. 
What is the probability that Y is neither small nor large? 

Most Swedes are blond. 
What is the probability that a Swede picked at random is tall and blond? 

2. Most Swedes are tall. 

3. Consider a perception-valued times series 

T = { t l ,  f2jt3,. . .}, 
in which the t i ’ s  are perceptions of, say temperature, e.g., warm, very warm, cold,. . . . 
For simplicity, assume that the t i ’ s  are independent and identically distributed. Fur- 
thermore, assume that the ti’s range over a finite set of linguistic values, A I  ,&, . . . ,A , ,  
with respective probabilities P I , .  . . , P,. What is the average value of T? 

To be able to compute with perceptions, it is necessary, as was stressed already, 
to have a mechanism for representing their meaning in a form that lends itself to 
computation. In the computational theory of perceptions, this purpose is served by 
the constraint-centered semantics of natural languages. Through the use of CSNL, 
propositions drawn from a natural language are translated into the GCL. 

The second stage of computation involves generalized constraint propagation from 
premises to conclusions. Restricted versions of constraint propagation are considered 
in Zadeh (1979), Bowen et al. (1992), Dubois et al. (1993), Katai et al. (1992) and 
Yager ( 1  989). The main steps in generalized constraint propagation are summarized in 
the following. As a preliminary, a simple example is analyzed. 

Assume that the premises consist of two perceptions: 
p i :  most Swedes are tall, 
p2: most Swedes are blond. 

and the question, q, is: What fraction of Swedes are tall and blond? This fraction, then, 
will be the linguistic value of the probability that a Swede picked at random is tall 
and blond. 

To answer the question, we first convert p l ,  p2 and q into their canonical forms: 

CF(p1) :  C Count(tal1. Swedes/Swedes) is most, (4.1) 

CF(p2):  C Count(b1ond. SwedesJSwedes) is most, (4.2) 

CF(q):  Count(tal1 n blond, SwedesfSwedes) is ?Q, (4.3) 
where Q is the desired fraction. 
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Next, we employ the identity (Zadeh, 1983) 

C Count(A n B )  + C Count(A U B )  = C Count(A) + C Count(B), (4.4) 

in which A and B are arbitrary fuzzy sets. From this identity, we can readily deduce 
that 

C Count(A) + C Count(B) - 1 < C Count(A n B )  
< min(C Count(A), C Count (B)) ,  (4.5) 

with the understanding that the lower bound is constrained to lie in the interval [0,1]. 
It should be noted that the identity in question is a generalization of the basic identity 
for probability measures 

P(A  n B )  + P(A  u B )  = P ( A )  + P(B) .  

Using the information conveyed by canonical forms, we obtain the bounds 

2most - 1 d C Count(tal1 n blond. SwedeslSwedes) < most, 

which may be expressed equivalently as 

C Count(tal1 n blond. SwedesfSwedes) is < most n 2 (2most - 1). 

Now 

< most = [0,1] 

and 

2 (2most - 1) = 2most - 1, 

in virtue of monotonicity of most (Zadeh, 1999). 
Consequently, 

C Count(tal1 n blond. SwedesfSwedes) is 2most - 1 

and hence the answer to the question is 

a: (2most - 1) Swedes are tall and blond. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

In a more general setting, the principal elements of the reasoning process are the 
following. 

1. Question (query), q. The canonical form of q is assumed to be 

X isr ?Q. (4.13) 

2. Premises. The collection of premises expressed in a natural language constitutes the 
initial data set (IDS). 

3. Additional premises which are needed to arrive at an answer to q. These premises 
constitute the external data set (EDS). Addition of EDS to IDS results in what is 
referred to as the augmented data set (IDS+). 
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Example. Assume that the initial data set consists of the propositions 

P I :  Carol lives near Berkeley, 

p2: Pat lives near Palo Alto. 

Suppose that the question is: How far is Carol from Pat? The external data set in this 
case consists of the proposition 

distance between Berkeley and Palo Alto is approximately 45 miles. (4.14) 

4. 

5 .  

Through the use of CSNL, propositions in IDS+ are translated into the GCL. The 
resulting collection of generalized constraints is referred to as the augmented initial 
constraint set ICS+. 
With the generalized constraints in ICS+ serving as antecedent constraints, the rules 
which govern generalized constraint propagation in CTP are applied to ICS+, with 
the goal of deducing a set of generalized constraints, referred to as the termi- 
nal constraint set, which collectively provide the information which is needed to 
compute q. 

The rules governing generalized constraint propagation in the computational theory of 
perceptions coincide with the rules of inference in fuzzy logic (Zadeh, 1999, 2000). In 
general, the chains of inference in CTP are short because of the intrinsic imprecision 
of perceptions. The shortness of chains of inference greatly simplifies what would 
otherwise be a complex problem, namely, the problem of selection of rules which 
should be applied in succession to arrive at the terminal constraint set. This basic 
problem plays a central role in theorem proving in the context of standard logical 
systems (Fikes and Nilsson, 1971). 

6. The generalized constraints in the terminal constraint set are re-translated into a 
natural language, leading to the terminal data set. This set serves as the answer to 
the posed question. The process of re-translation is referred to as linguistic approx- 
imation (Pedrycz and Gomide, 1998). Re-translation will not be addressed in this 
paper. 

The basic rules which govern generalized constraint propagation are of the general 
form 

PI 
P2 

(4.15) 

Pk 
Pk+l,  

where P I , .  . . , pk are the premises and Pk+l is the conclusion. Generally, k = 1 or 2. 
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In a generic form, the basic constraint-propagation rules in CTP are expressed as 

1. Conjunctive rule 1: 
follows (Zadeh, 1999): 

X isr R 
X iss S 
X ist T. 

(4.16) 

The different symbols r, s, t in constraint copulas signify that the constraints need not 
be of the same type. 

2. Conjunctive rule 2: 

X isr R 
Y iss S 

(X,  Y )  ist T. 

3. Disjunctive rule 1 

X isr R 
or X iss S 

(4. i 7) 

(4.18) 
X ist T. 

4. Disjunctive rule 2: 

X isr R 
or Y iss S 

(X,  Y )  ist T. 

5. Projective rule: 

(X, Y )  isr R 
Y iss S. 

6. Surjective rule: 

X isr R 
(X ,  Y )  iss S. 

7 .  Inversive rule: 

f(X) isr R 
X iss S, 

where f ( X )  is a function of X. 
From these basic rules the following frequently used rules may be derived: 
8. Compositional rule: 

X isr R 
(X, Y )  iss S 

Y ist T. 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 
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Fig. 13. Generalized extension principle. Constraint on f ( X )  induces a constraint on g(X). 

9. Generalized extension principle: 

(4.24) 

where f and g are given functions. The generalized extension principle is the principal 
rule of inference in fuzzy logic. 

The generic rules lead to specialized rules for various types of constraints. In par- 
ticular, for possibilistic constraints we have, for example (Pedrycz and Gomide, 1998) 

Conjunctive rule I :  
X is R 
X is S (4.25) 
X is R n S ,  

where R and S are fuzzy sets and R n S is their intersection. 
Compositional rule: 

X is R 
(X, Y )  is S 
Y is R o S ,  

(4.26) 

where R o S  is the composition of R and S .  If conjunction and disjunction are identified 
with min and max, respectively, then 

FR.S(v) =maxdmin(kR(u), /kdu, u) ) ) ,  (4.27) 

where p~ and ps are the membership functions of R and S.  
Generalized extension principle (Fig. 13): 

f ( X )  is R (4.28) 
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where 

(4.29) 

Compositional rule for probabilistic constraints (Bayes’ rule): 

X isp R 
YIX isp S 

Y isp R as, 
(4.30) 

where Y ( X  denotes Y conditioned on X, and R o S  is the composition of the probability 
distributions R and S.  

Compositional rule for probabilistic and possibilistic constraints (random-set 
constraint): 

X i sp  R 
(X,  Y )  is S 
Y isrs T, 

(4.3 1) 

where T is a random set. As was stated at an earlier point, if X takes values in a finite 
set { u1, . . . ) u,} with respective probabilities PI). . . , p,, then the constraint X isp R 
may be expressed compactly as 

(4.32) 

When X takes a value ui, the possibilistic constraint (4 Y )  is S induces a constraint 
on Y which is given by 

Y is Si, (4.33) 

where Si is a fuzzy set defined by 

sj = S(Uj, Y ) .  (4.34) 

From this it follows that when X takes the values U I ,  . . . , u, with respective probabilities 
P I , .  . . , pn,  the fuzzy-set-valued probability distribution of Y may be expressed as 

Y isp Cpi\Si . ) (4.35) 

This fuzzy-set-valued probability distribution defines the random set T in the random-set 
constraint 

Y ism T. (4.36) 

Conjunctive rule for random set constraints: For the special case in which R and S 
in the generic conjunctive rule are random fuzzy sets as defined above, the rule assumes 
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a more specific form: 
m 

i= 1 
X isrs C p i \ R i  

x isrs 2 qj\s, 
j =  1 

(4.37) 

m,n 

x isrs piqj\(Ri ~ S J ) .  
I =  I , J= I 

In this rule, R, and S, are assumed to be fuzzy sets. When R, and S, are crisp sets, 
the rule reduces to the Dempster rule of combination of evidence (Dempster, 1967; 
Shafer, 1976). An extension of Dempster’s rule to fuzzy sets was described in a paper 
dealing with fuzzy information granularity (Zadeh, 1979). It should be noted that in 
(4.37) the right-hand member is not normalized, as it is in the Dempster-Shafer theory 
(Strat, 1992). 

The few simple examples discussed above demonstrate that there are many ways in 
which generic rules can be specialized, with each specialization leading to a distinct 
theory in its own right. For example, possibilistic constraints lead to possibility theory 
(Zadeh, 1978; Dubois and Prade, 1988); probabilistic constraints lead to probability 
theory; and random-set constraints lead to the Dempster-Shafer theory of evidence. 
In combination, these and other specialized rules of generalized constraint propagation 
provide the machinery that is needed for a mechanization of reasoning processes in the 
logic of perceptions and, more particularly, in a perception-based theory of probabilistic 
reasoning with imprecise probabilities. 

As an illustration, let us consider a simple problem that was stated earlier-a typical 
problem which arises in situations in which the decision-relevant information is 
perception-based. Given the perception: Usually Robert returns from work at about 
6 p.m.; the question is: What is the probability that he is home at 6:30 p.m.? 

An applicable constraint-propagation rule in this case is the generalized extension 
principle. More specifically, let g denote the probability density of the time at which 
Robert returns from work. The initial data set is the proposition 

p :  usually Robert returns from work at about 6 p.m. 

This proposition may be expressed as the usuality constraint 

X isu 6*, (4.38) 

where 6* is an abbreviation for “about 6 p.m.”, and X is the time at which Robert 
returns from work. Equivalently, the constraint in question may be expressed as 

p :  Prob{X is 6*} is usually. (4.39) 

Using the definition of the probability measure of a fuzzy event (Zadeh, 1968), the 
constraint on g may be expressed as 

g ( u ) p p ( u )  du is usually, i’* 
where p 6 * ( U )  is the membership function of 6* (Fig. 14). 

(4.40) 
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Fig. 14. Application of the generalized extension principle. P is the probability that Robert is at home at 
6:30 p.m. 

Let P ( g )  denote the probability that Robert is at home at 6:30 p.m. This probability 
would be a number if g were known. In our case, information about g is conveyed by 
the given usuality constraint. This constraint defines the possibility distribution of g as 
a functional: 

(4.41) 

In terms of g, the probability that Robert is home at 6:30 p.m. may be written as a 
functional: 

r6:30 

(4.42) 

The generalized extension principle reduces computation of the possibility distribu- 
tion of P to the solution of the variational problem 

(4.43) 

subject to 
6:30 

I J = ~  g(u)du. 

The reduction of inference to solution of constrained variational problems is a basic 
feature of fuzzy logic (Zadeh, 1979). 

Solution of variational problems of form (4.43) may be simplified by a discretization 
of g. Thus, if u is assumed to take values in a finite set U = {u l ,  ..., un}, and the 
respective probabilities are PI,. . . , p n ,  then the variational problem (4.43) reduces to 
the nonlinear program 

(4.44) 
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subject to 
m 

j =  1 
u =  c Pj, 

O G P j 6 1 ,  

i= I 

where p = ( p ~  ,..., p n ) ,  and m is such that um =6:30. 
In general, probabilities serve as a basis for making a rational decision. As an 

illustration, assume that I want to call Robert at home at 6:30 p.m. and have to decide 
on whether I should call him person-to-person or station-to-station. Assume that we 
have solved the variational problem (4.43) and have in hand the value of P defined by 
its membership function pp( u ) .  Furthermore, assume that the costs of person-to-person 
and station-to-station calls are a and b, respectively. 

Then the expected cost of a person-to-person call is 

A = aP, 

while that of a station-to-station call is 

B = b, 

where A is a fuzzy number defined by (Kaufmann and Gupta, 1985) 

p,4(t') = app(u). 

More generally, if X is a random variable taking values in the set of numbers 
U = { U I ,  . . . ,a,} with respective imprecise (fuzzy) probabilities P I , .  . . , P,, then the 
expected value of X is the fuzzy number (Zadeh, 1975; Kruse and Meyer, 1987) 

n 

I =  1 
E ( X )  = C a lp I .  (4.45) 

The membership function of E ( X )  may be computed through the use of fuzzy arith- 
metic (Kaufmann and Gupta, 1985; Mares, 1994). More specifically, if the membership 
functions of PI are p l ,  then the membership function of E ( X )  is given by the solution 
of the variational problem 

P E ( X ) ( U )  = ma%,, ,U" ( P P , ( U I  1 A . . ' A ClP,(U,)) (4.46) 

subject to the constraints 

0 < UI < 1, 

n cuj= 1, 
i = l  

u = c aiui. 
i= 1 
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Returning to our discussion of the Robert example, if we employ a generalized 
version of the principle of maximization of expected utility to decide on how to place 
the call, then the problem reduces to that of ranking the fuzzy numbers A and B. 
The problem of ranking of fuzzy numbers has received considerable attention in the 
literature (see Pedrycz and Gomide, 1998), and a number of ranking algorithms have 
been described. 

Our discussion of the Robert example is aimed at highlighting some of the princi- 
pal facets of the perception-based approach to reasoning with imprecise probabilities. 
The key point is that reasoning with perception-based information may be reduced to 
solution of variational problems, In general, the problems are computationally inten- 
sive, even for simple examples, but well within the capabilities of desktop computers. 
Eventually, novel methods of computation involving neural computing, evolutionary 
computing, molecular computing or quantum computing may turn out to be effective in 
computing with imprecise probabilities in the context of perception-based information. 

As a further illustration of reasoning with perception-based information, it is instruc- 
tive to consider a perception-based version of a basic problem in probability theory. 

Let X and Y be random variables in U and V ,  respectively. Let f be a mapping 
from U to V .  The basic problem is: Given the probability distribution of X, P(X), what 
is the probability distribution of Y? 

In the perception-based version of this problem it is assumed that what we know are 
perceptions of f and P ( X ) ,  denoted as f * and P*(X), respectively. More specifically, 
we assume that X and f are granular (linguistic) variables and f *  is described by a 
collection of granular (linguistic) if-then rules: 

f *:  {if X is Ai then Y is Bi}, i = 1,. . . ,m ,  (4.47) 

where Ai and Bi are granules of X and Y, respectively (Fig. 12). Equivalently, f* 
may be expressed as a fuzzy graph 

(4.48) 

where Ai x Bi is a Cartesian granule in U x V .  Furthermore, we assume that the 
perception of P(X) is described as 

n 

j =  1 
P * ( X >  is C pj\cj, (4.49) 

where the Cj are granules of U, and 

p j  = Prob{X is Cj} .  (4.50) 

Now, let f * ( C j )  denote the image of Cj.  Then, application of the extension principle 
yields 

m 

i= 1 
f * (C j )  = C mij A Bi, (4.51) 

where the matching coefficient, mij, is given by 

mij = sup(Ai n Cj) ,  (4.52) 
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with the understanding that 

where u E U and p~~ and pc, are the membership functions of Ai and Cj, respectively. 
In terms of f * ( C j ) ,  the probability distribution of Y may be expressed as 

n 

or, more explicitly, as 

(4.54) 

(4.55) 

What these examples show is that computation with perception-based functions and 
probability distribution is both more general and more complex than computation with 
their measurement-based counterparts. 

5. Concluding remarks 

The perception-based theory of probabilistic reasoning which is outlined in this paper 
may be viewed as an attempt to add to probability theory a significant capability-a 
capability to operate on information which is perception-based. It is this capability that 
makes it possible for humans to perform a wide variety of physical and mental tasks 
without any measurements and any computations. 

Perceptions are intrinsically imprecise, reflecting a fundamental limitation on the 
cognitive ability of humans to resolve detail and store information. Imprecision of per- 
ceptions places them well beyond the scope of existing meaning-representation and 
deductive systems. In this paper, a recently developed computational theory of percep- 
tions is used for this purpose. Applicability of this theory depends in an essential way 
on the ability of modem computers to perform complex computations at a low cost 
and high reliability. 

Natural languages may be viewed as systems for describing perceptions. Thus, to 
be able to operate on perceptions, it is necessary to have a means of representing 
the meaning of propositions drawn from a natural language in a form that lends itself 
to computation. In this paper, the so-called constraint-centered semantics of natural 
languages serves this purpose. 

A conclusion which emerges from these observations is that to enable probability 
theory to deal with perceptions, it is necessary to add to it concepts and techniques 
drawn from semantics of natural languages. Without these concepts and techniques, 
there are many situations in which probability theory cannot answer questions that arise 
when everyday decisions have to be made on the basis of perception-based information. 
Examples of such questions are given in this paper. 

A related point is that, in perception-based theory of probabilistic reasoning, im- 
precision can occur on may different levels-and not just on the level of imprecise 
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probabilities. In particular, imprecision can occur on the level of events, counts and 
relations. More basically, it can occur on the level of definition of such basic concepts 
as random variable, causality, independence and stationarity. The concept of precisiated 
natural language may suggest a way of generalizing these and related concepts in a 
way that would enhance their expressiveness and operationality. 

The confluence of probability theory and the computational theory of perceptions 
opens the door to a radical enlargement of the role of natural languages in probability 
theory. The theory outlined in this paper is merely a first step in this direction. Many 
further steps will have to be taken to develop the theory more fully. This will happen 
because it is becoming increasingly clear that real-world applications of probability 
theory require the capability to process perception-based information as a basis for 
rational decisions in an environment of imprecision, uncertainty and partial truth. 
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Abstract 
We introduce a rough set model of uncertainty for object oriented databases (OODB). 
This model is formally defined, consistent with the notation of both rough set theory 
and object oriented database formalisms. Uncertainty and vagueness, which are 
inherent i n  all real world applications, are incorporated into the database model through 
the indiscernibility relation and approxirmtion regions of rough sets. Because spatial 
database and geographic information systems (GIS) have particular needs for 
uncertainty management in spatial data, examples from this type of application are used 
to illustrate the benefits of this rough OODB approach. 

Keywords: object-oriented database, rough sets, uncertainty, spatial data 

1 Introduction 
A database semantic model aims to capture the meaning of some enterprise in the real 
world, and is a high level, conceptual model that must then be implemented. At a lower, 
more practical level, the database is simply a collection of data and constraints stored in 
some schema, which attempts to model this enterprise in the real world. The real world 
abounds in uncertainty, and any attempt to model aspects of the world must therefore 
include some mechanism for incorporating uncertainty. There may be uncertainty in the 
understanding of the enterprise or in the quality or meaning of the data. There may be 
uncertainty in the modeling of the enterprise, which leads to uncertainty in entities, the 
attributes describing them, or the relationships that exist between various entities. There 
may also be uncertainty about the uncertainty itself, the degree or types of uncertainty 
present in the data. Because there is a particular need for uncertainty management in 
spatial data [ lo]  and in the relationships among various spatial entities and vague 
regions. we illustrate the formalisms of the rough object-oriented database with 
examples taken from a geographic information systems (GIS) perspective. 

It is well established that rough set techniques as part of an underlying relational 
database model effectively manages uncertainty in relational databases [ 1,  21. 
Additionally, the rough querying of crisp data [3] allows for rough set uncertainty to be 
applied to existing ordinary relational databases. In this paper we define a rough set 
model for an object-oriented database. 
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2 RoughSets 
Rough set theory, introduced by Pawlak [ l  I] and discussed in greater detail in [8,9,12], is a 
technique for dealing with uncertainty and for identifying cause-effect relationships in 
databases as a form of database learning [13]. It has also been used for improved 
information retrieval [ 141 and for uncertainty management in relational databases [2 ,  31. 

Rough sets involve the following: 

U is the universe, which cannot be empty, 
R is the indiscernibility (equivalence) relation, 
A = (U, R) is the approximation space, 
I;Y]R is the equivalence class of R containing x ,  
elernentar?, sets in A are the equivalence classes, 
dejnoble set in A is any finite union of elementary sets in A. 

Therefore, for any given approximation space defined on some universe U and having an 
equivalence relation R imposed upon it, U is partitioned into equivalence classes called 
elementary sets which may be used to define other sets in A. Given that X c U, X can be 
defined in terms of the definable sets in A by the following: 

1oLvei.approxirnatioti o f x i n  A :  -Ru = {x E U 1 [y]R s X} 

zipper approximation o fX  in A:  R X = {x E U 1 [y]R T'i X f 0). 
- 

Another way to describe the set approximations is as follows. Given the upper and lower 
approximations k X and 0, of X a subset of U, the R-positive region of X is POSR(X) = 

- RX, the R-negative region of X is NEGR(X) = U - R X, and the boundary or R-borderline 
region of X is BNR(X) = k X - u. X is called R-definable if and only if u = k X. 
Otherwise, Rx # k X  and X is rough with respect to R. In Figure 1 the universe U is 
partitioned into equivalence classes denoted by the rectangles. Those elements in the lower 
approximation of X, POSR(X), are denoted with the letter P and elements in the R-negative 
region by the letter N. All other classes belong to the boundary region of the upper 
approximation. 

- 

U 

N 

Figure 1. Example of a rough set X. 
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Consider the following example: 

Let U = {tower, stream, creek, river, forest, woodland, pasture, meadow}. 

Let the equivalence relation R’ be defined as follows: 

R’ = {[tower], [stream, creek, river], [forest, woodland], [pasture, meadow]} 

Given that some set X = {tower, stream, creek, river, forest, pasture}, we can define it in 
terms of its lower and upper approximations: 

EX = {tower, stream, creek, river}, and 
R X = {tower, stream, creek, river, forest, woodland, pasture, meadow} 
- 

A rough set in A is the group of subsets of U with the same upper and lower 
approximations. For this example, the rough set is 

{{tower, stream, creek, river, forest, pasture} 
{tower, stream, creek, river, forest, meadow} 
{tower, stream, creek, river, woodland, pasture} 
{tower, stream, creek, river, woodland, meadow}}. 

The major rough set concepts of interest are the use of an indiscemibility relation to 
partition domains into equivalence classes and the concept of lower and upper 
approximation regions to allow the distinction between certain and possible, or partial, 
inclusion in a rough set. 

The indiscemibility relation allows us to group items based on some definition of 
‘equivalence’ as it relates to the application domain. We may use this partitioning to 
increase or decrease the granularity of a domain, to group items together that are 
considered indiscernible for a given purpose, or to “bin” ordered domains into range 
groups. 

In order to allow possible results, in addition to the obvious, certain results encountered in 
querying an ordinary spatial database system, we may employ the use of the boundary 
region information in addition to that of the lower approximation region. The results in the 
lower approximation region are certain. These correspond to exact matches. The boundary 
region of the upper approximation contains those results that are possible, but not certain. 

3 Object Oriented Databases 
The obj ect-oriented programming paradigm has become quite popular in recent years, 
both as a modeling tool and for code development for databases and other applications. 
Often objects can more realistically model an enterprise, enabling developers to easily 
transition from a conceptual design to the implementation. The concepts of classes and 
inheritance allow for code reuse through specialization and generalization. A class 
hierarchy is designed such that classes at the top of the hierarchy are the most general 



40 

and those nearer the bottom more specialized. A class inherits data and behavior from 
classes at higher levels in the class hierarchy. This promotes reuse of existing 
functionality, which can save valuable programming time. If code is already available 
for a task and that code has been tested, it is often better to use that code, perhaps with 
some slight modification, than to develop and test code from scratch. The concept of 
poly?7orphism allows the same name to be used for methods differing in functionality 
for different object types. 

Essentially, an object is an instance of a class in a class hierarchy. Each class defines a 
particular type of object including its public and private variables and operations 
associated with the functionality of the object, which are called methods. An object 
method is invoked by the passing of a message to the object in which the method is 
defined. The data variables and methods are encapsulated in the object that defines 
them, which means that they are packaged in, and can only be accessed through, the 
object. Encapsulation enables a component of the system to be extended or modified 
with minimal impact on other parts of the system. 

There are many advantages of using an object-oriented database approach as compared 
to a relational database approach. A major advantage is that objects can be defined to 
represent very complex data structures and relationships in the data, as is often the case 
in spatial data. According to Fayad and Tsai [7],  object-oriented technology provides 
several other benefits. These include reusability, extensibility, robustness, reliability, 
and scalability. Object modeling helps in requirements understanding and collaboration 
of group members and the use of object-oriented techniques leads to high quality 
systems that are easy to modify and to maintain. 

Spatial data is particularly suited to object oriented modeling and implementation. 
Often this data is more complex than that of typical database applications requiring 
simple values and strings. The complex data types, data structures, and relationships 
between data objects in a spatial database can be modeled quite effectively with object 
oriented techniques, and the advantages discussed previously can also be realized. It is 
necessary, therefore, that we develop a mechanism for integrating uncertainty 
management into the OODB model. 

4 
In this section we develop the rough object-oriented database model. We follow the 
formal framework and type definitions for generalized object-oriented databases 
proposed by [ 6 ] ,  which conforms to the standards set forth by the Object Database 
Management Group [ 5 ] .  We extend this framework, however, to allow for rough set 
indiscernibility and approximation regions for the representation of uncertainty as we 
have previously done for relational databases [ 1,2]. The rough object database scheme 
is formally defined by the following type system and constraints. 

Rough Object-Oriented Database (ROODB) Model 

The type system, fs, contains literal types TI,,,,,,, which can be a base type, a collection 
literal type, or a structured literal type. It also contains Tab,,,,, which specifies object 
types, and Trcierellct, the set of specifications for reference types. In the type system, each 
domain do177,, E D,,, the set of domains. This domain set, along with a set of operators 
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O,, and a set of axioms A,,, capture the semantics of the type specification. The type 
system is then defined based on these type specifications, the set of all programs P, and 
the implementation function mapping each type specification for a domain onto a 
subset of the powerset of P that contains all the implementations for the type system. 

We are particularly interested in object types. Following [ 6 ] ,  we may specify a class t of 
object types as 

- - - - 
Class id(idi:si; . . .  ;  id,,:^,,) or Class id: id I , ..., id n(id/;s/; ... ; idl?:s,,) 

- - 
where id, an identifier, names an object type, {id, 1 1 i 5 in} is a finite set of 
identifiers denoting parent types of t, and { id,;s, 1 1 _< i I n} is the finite set of 
characteristics specified for object type t within its syntax. This set includes all the 
attributes, relationships and method signatures for the object type. The identifier for a 
characteristic is id, and the specification is s, for each of the id,:s,. 

Consider a GIS which stores spatial data concerning water and land forms, structures, 
and other geographic information. If we have simple types defined for string, set, geo, 
integer, etc., we can specify an object type 

Class ManMadeFeature ( 
Location: geo; 
Name: string; 
Height: integer; 
Material: Set(string)); 

Some example instances of the object type ManMadeFeature might include 

[oidl, 0, ManMudeFeattire, Struct(0289445, “KXYZ radio tower”, 60, 
Set(stee1, plastic, aluminum))] 

[oid2, 0, MunMudeFeufzire, Struct(O1122345, “Ourtown water tower”, 30, 
Set(stee1, water, iron))], 

or 

following the definition of instance of an object type [6], the quadruple o = [oid, N f, v] 
consisting of a unique object identifier, a possibly empty set of object names, the name 
of the object type, and for all attributes, the values (v, E dom,,) for that attribute, which 
represent the state of the object. The object type t is an instance of the type system fs 
and is formally defined in terms of the type system and its implementation function 
t = [ts, f ;:; ( t s ) ] .  

In the rough set object-oriented database, indiscernibility is managed through classes. 
Every domain is implemented as a class hierarchy, with the lowest elements of the 
hierarchy representing the equivalence classes based on the finest possible partitioning 
for the domain as it pertains to the application. Consider, for example, a GIs, where 
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objects have an attribute called landclass. Of the many different classifications for land 
area features, some are those categorized by water. This part of the hierarchy is 
depicted in Figure 2 .  

Figure 2 .  Part of the class hierarchy of landclass features involving water. 

Ignoring the non-water parts of the landclass domain, and focusing on the water- 
related parts, we see that the domain set 

domlandClass = {creek, brook, stream, branch, river, lake, pond, waterhole, slough} 

can be partitioned in several different ways. One partitioning, which represents the 
finest partitioning (more, but smaller, equivalence classes) is given by 

R1 = {[creek, brook, stream], [branch], [river], [lake], [pond, waterhole], slough]}. 

This can be discerned from the lowest level of the hierarchy. 

An object type (domain class) for landclass may be defined as 

Class landclass ( 
numEquivClass: integer; 
name: string; 
indiscernibility : Set(Ref(equivC1ass))) 

At this lowest level, each landclass object has only one reference in its attribute for 
indiscernibility, the object identifier for the particular equivalence class. These 
reference individual equivalence class objects defined by 
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Class equivClass( 
element: Set(string); 
N: integer; 
Name: string). 

In this case, we have six separate equivalence classes, three of which are shown below: 

[oid56, 0, eqziivclass, Struct(Set(“creek,” “brook,” “stream”), 3, “creek”)] 

[oid57, 0, eqziivCluss, Struct(Set(“branch”), 1, “branch”)] 

[oid6 1, 0, eqziivClass, Stmct(Set(“pond,” “waterhole”), 2, “pond”)] 

Note that the name of the class can be set equal to any of the values within the class. 

Let the other water classes be similarly defined with oid58 denoting the “river” class, 
oid59 denoting “lake”, and oid6O denoting “slough.” If we want to change the 
partitioning, such that our application only distinguishes between flowing and standing 
water, for example, our equivalence classes become 

R2 = {[creek, brook, river, stream, branch], [lake, pond, waterhole, slough]). 

We would then have the landclass objects 

[oidlOl, 0, landclass, 
Struct(3, “Flowing water,” 
Set(oid56, oid57, oid58))I and 

[oidl02, 0, landclass, 
Struct(3, “Standing water,” 
Set(oid59, oid60, oid61))I. 

Lastly, if the application only requires that a feature be categorized as water or non- 
water for land classification, an even coarser partitioning may be used that includes all 
the possible water values in one equivalence class: 

R3 = {[creek, brook, stream, branch, river, lake, pond, waterhole, slough]}. 

An instance of this class would be defined in a manner similar to those above. 

Each domain class i in the database, dom, E D,, has methods for maintaining the current 
level of granulation, changing the partitioning, adding new domain values to the hierarchy, 
and for determining equivalence based on the current indiscemibility relation imposed on 
the domain class. 
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Every domain class, then, must be able to not only store the legal values for that domain, 
but to maintain the grouping of these values into equivalence classes. This can be achieved 
through the type implementation function and class methods, and can be specified through 
the use of generalized constraints as in [6] for a generalized OODB. 

An ordinary (non-indiscemibility) object class in this database, having one of its 
attributes IandClass, may be defined as follows: 

Class RztralProperty ( 
Location: geo; 
Name: string; 
Owner: string; 
landclass: Set(string)); 

having particular instances of the class, for example: 

[oid24,0, Rzn*a/Propev/y, Struct(0 1987345, “Elm Plantation”, “Bob Owner”, 
Set(”waterhole,” “pasture”))], 

[oid27. 0, RztralProperty, Struct(Ol987355, 0 , “Betty Owner”, Set(“forest,” 
“lake”))], 

[oid3 1, 0, RzrralProper/y, Struct(O1987390, “Hodge Mill Runoff Lagoon”, 
“Hodge Mill”, Set(“waterhole”))], 

[oid32, 0, RLiralProperty, Struct(Ol987394, “Heart Lake”, “Blackham 
County”, Set(“lake”))]. 

[oid26, 0, RztralPvoperfy, Struct(0 1987358, 0 , “Brown County”, 
Set( “pond”))]. 

Now let us assume that we are trying to sell fish fingerlings and want to retrieve the 
names of all landowners that own land that contains ponds. Our query may look 
something like this: 

SELECT Owner 
FROM RuralProperty 
WHERE landclass = “pond”. 

If our goal is selling fish for stocking small ponds, we may want our indiscemibility 
relation to be defined with a very fine partitioning as discussed previously: 

R’ = {[creek, brook, stream],[branch], [river], [lake], [pond, waterhole], [slough]}. 

Here “pond” and “waterhole” are considered indiscernible and the query will match 
either as a certain result. Possible results will in addition contain those objects that have 
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“pond” or “waterhole” as one of the values in the set for landclass. (See [1,2] for 
complete semantics of rough database operations.) 

For the partitioning R’ and the five sample objects above, our rough set result would 
include the following: 

- RX = {Brown County, Hodge Mill} 
R X = {Brown County, Hodge Mill, Bob Owner] 
- 

Here, oid26 (Owner is “Brown County”) provides an exact match with “pond” SO it is 
included in the lower approximation region, which represents certain data. Because 
“waterhole” is in the same equivalence class as “pond”, oid3 1 (Owner is “Hodge Mill”) is 
also included in the lower approximation region. The upper approximation region contains 
those objects where at least one of the values in the set of values for that attribute match the 
request. Hence, oid21 (Owner is “Bob Owner”) is returned since “pond” and “waterhole” 
both belong to the class [pond] and this value is included in the set of values {waterhole, 
pasture}. 

If we had decided that all standing water locations are likely candidates for fish stocking, 
then we might have coarsened the partitioning, using the equivalence relation: 

R’ = {[creek, brook, river, stream, branch], [lake, pond, waterhole, slough]}. 

In this case, oid32 (Owner is Blackhain County) also belongs to the lower 
approximation region since “lake”, “pond”, “waterhole”, and “slough” are now 
indiscernible. Likewise, oid27 (Owner is Betty Owner) becomes part of the upper 
approximation since “lake” is a subset of (lake, forest}. Now the rough set results are 
given as: 

- RX = {Brown County, Hodge Mill, Blackham County} 
R X = {Brown County, Hodge Mill, Blackham County, Bob Owner, Betty 
- 

Owner}. 

The semantics of rough set operations discussed for relational databases in [ 1,2] apply 
similarly for the object database paradigm. However, the implementation of these 
operations is done via methods associated with the individual object classes. 

5 Conclusion and Related Work 
In this paper we used rough set formalisms to define a model for object-oriented 
databases. We showed that the rough set concepts of indiscernibility and approximation 
regions can be integrated into a rough object-oriented framework, resulting in a model 
that allows for the management of uncertainty. A geographic information system 
example illustrated the usefulness of this rough object oriented database model. 

We have further extended the rough object oriented database model to incorporate fuzzy 
set uncertainty as well as rough set uncertainty [4]. In [6], the generalized object database 
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model presented allowed the values of attributes to contain fuzzy sets. Our fuzzy rough 
model allows for the incorporation of these fuzzy membership values, as done for the 
fuzzy rough relational database in [I]. Having both rough and fuzzy set uncertainty 
makes possible the management of uncertainty through the use of indiscernibility 
relations and approximation regions, and also the ability to quantify the degree of 
uncertainty through the use of fuzzy sets. 
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Abstract 
Spatial directional relations, like “north of,” play an important role in the modeling of the 
environment by an autonomous robot. We propose an approach to represent spatial rela- 
tions grounded in fuzzy set theory and fuzzy mathematical morphology. We show how 
this approach can be applied to robot maps, and suggest that these relations can be used 
for self-localization and for reasoning about the environment. We illustrate our approach 
on real data collected by a mobile robot in an office environment. 

Keywords: autonomous robots, occupancy grids, topological maps, fuzzy spatial rela- 
tions, fuzzy mathematical morphology. 

1 Introduction 
Autonomous robots need the ability to perceive their environment, build a model of it, 
and use this model to effectively navigate and operate in that environment. One important 
aspect of these models is the ability to incorporate spatial directional relations, like “north 
of.” These relations are inherently vague, since they depend on how much of an object is 
in the specified direction with respect to the reference object. 

Relative directional relations have not been extensively studied in the mobile robotics 
literature. The field of image processing contains a comparatively larger body of work on 
spatial relations, although directional positions have received much less attention in that 
field than topological relations like set relationships, part-whole relationships, and adja- 
cency. Most non-fuzzy approaches use a set of basic relations based on Allen’s interval 
relations [I]  (e.g., [ 2 2 ] )  or on simplifications of objects (e.g. [lo]). Some approaches 
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use intervals to represent qualitative expressions about angular positions [ 151. Stochastic 
approaches have also been proposed for representing spatial uncertainty in robotics, e.g., 
[24]. Most of the above approaches, however, suffer from a somehow simplified treatment 
of the uncertainty and vagueness which is intrinsic in spatial relations. Concepts related to 
directional relative position are rather ambiguous, and defy precise definitions. However, 
humans have a rather intuitive and common way of understanding and interpreting them. 
From our everyday experience, it is clear that any “all-or-nothing” definition of these 
concepts leads to unsatisfactory results in several situations of even moderate complexity. 
Fuzzy set theory appears then as an appropriate tool for such modeling since it allows to 
integrate both quantitative and qualitative knowledge, using semiquantitative interpreta- 
tion of fuzzy sets. As noted by Freeman in 191, this allows us to provide a computational 
representation and interpretation of imprecise spatial relations, expressed in a linguistic 
way, possibly including quantitative knowledge. 

In this paper, we show how fuzzy mathematical morphology can be used to compute 
approximate spatial relations between objects in a robot map. The key step is to represent 
the space in the robot’s environment by an occupancy grid [7,20], and to treat this grid as 
a grey-scale image. This allows us to apply techniques from the field of image processing 
to extract spatial information from this grid. In particular, we are interested in the spatial 
relations between rooms and corridors in the environment. 

In the rest of this paper, we briefly introduce fuzzy mathematical morphology and we 
show how it can be used to define fuzzy spatial relations. We then discuss the use of 
this approach in the context of one particular type of robot maps, called topology-based 
maps, which are built from occupancy grids [8]. We illustrate our approach on real data 
collected by a mobile robot in an office environment. Finally, we discuss a few possible 
applications of fuzzy spatial relations to robot navigation. 

2 Fuzzy mathematical morphology 
Mathematical morphology is originally based on set theory. Introduced in 1964 by Math- 
eron [ 16; to study porous media, mathematical morphology has rapidly evolved into a 
general theory of shape and its transformations, and it has found wide applications in 
image processing and pattern recognition [2 11. 

The four basic operations of mathematical morphology are dilation, erosion, opening 
and closing. The dilution of a set X of an Euclidean space S (typically RBn or Z”) by a 
set B is defined by [21]: 

D ~ ( x )  = {X E s I B, n X # 0}, (1) 

where B, denotes the translation of B at 2. Similarly the erosion of X by B is defined 
by: 

(2) 
The set B, called structuring element, defines the neighborhood that is considered at each 
point. It controls the spatial extension of the operations: the result at a point only depends 
on the neighborhood of this point defined by B. 

From these two operators, opening and closing are defined respectively by: o ( x )  = 
DB[EB(X)],  and c(x) = EB[DB(x) ] ,  where B denotes the symmetrical of B with 
respect to the origin of the space. 

E B ( X )  = {X E S I B, 2 X}. 
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The above operators satisfy a number of algebraic properties [21]. Among the most 
important ones are commutativity of dilation (respectively erosion) with union or sup 
(respectively intersection or inf), increasingness’ of all operators, iteration properties of 
dilation and erosion, idempotency of opening and closing, extensivity’ of dilation (if the 
origin belongs to the structuring element) and of closing, anti-extensivity of erosion (if 
the origin belongs to the structuring element) and of opening. 

Mathematical morphology has been extended in many ways. In the following, we 
make use of fuzzy morphology, where operations are defined on fuzzy sets (representing 
spatial entities along with their imprecision) with respect to fuzzy structuring elements. 
Several definitions of fuzzy mathematical morphology have been proposed (e.g. [3, 5 ,  
231). Here, we define dilation and erosion of a fuzzy set p by a structuring element v for 
all z E S by, respectively: 

Dv(rU)(z) = sup,{t[v(y - x)>P(y)Il> 
Ev(P)(z) = inf,{T[c(v(y - 4 ) > P ( d I }  

where y ranges over the Euclidean space S where the objects are defined, t is a t-norm, 
and T its associated t-conorm with respect to the complementation c [27]. In these equa- 
tions, fuzzy sets are assimilated to their membership functions. These definitions extend 
classical morphology in a natural way, providing similar properties as in the crisp case 
[3, 191. 

Through the notion of structuring element, mathematical morphology can deal with 
local or regional spatial context. It also has some features that allow us to include more 
global information, which is particularly important when the spatial arrangement of ob- 
jects in a scene has to be assessed. This fact is exploited in the following. 

3 Spatial relations from fuzzy mathematical morphology 
Spatial relationships between the objects in the environment carry structural information 
about the environment, and provide important information for object recognition and for 
self localization [ 1 11, Fuzzy mathematical morphology can be used here to represent and 
compute in a uniform setting several types of relative position information, like distance, 
adjacency and directional relative position. In this section, we explain how we can use it 
to deal with directional relations. 

A few works propose fuzzy approaches for assessing the directional relative position 
between objects, which is an intrinsically vague relation [2, 12, 13, 17, 181. The approach 
used here and described in more details in [2] relies on a fuzzy dilation that provides a 
map (or fuzzy landscape) where the membership value of each point represents the degree 
of the satisfaction of the relation to the reference object. This approach has interesting 
features: it works directly in the image space, without reducing the objects to points or 
histograms, and it takes the object shape into account. 

We consider a (possibly fuzzy) object R in the space S, and denote by p,(R) the 
fuzzy subset of S such that points of areas which satisfy to a high degree the relation “to 
be in the direction 3, with respect to object R” have high membership values, where i?, 
is a vector making an angle o with respect to a reference axis. 

‘An operation II, is increasing if VX, Y X C Y 
*An operation $ is extensive if V X ,  X g + ( X )  and anti-extensive if V X ,  $ ( X )  C X .  

$ ( X )  C $(Y) .  
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The form of p,(R) may depend on the application domain. Here, we use the defini- 
tion proposed in [2], which considers those parts of the space that are visible from a refer- 
ence object point in the direction ii,, This can be expressed formally as the fuzzy dilation 
of p~ by v, where v is a fuzzy structuring element depending on a: p,(R) = D v ( p ~ )  
where p~ is the membership function of the reference object R. This definition applies 
both to crisp and fuzzy objects and behaves well even in case of objects with highly con- 
cave shape [2]. In polar coordinates, v is defined by: v ( p ,  6) = f ( 0  - a)  and v(0,6) = 1, 
where 6 - cy is defined modulo n and f is a decreasing function. In the experiments 
reported here, we have used f(z) = max[O, cos .I2 for 2 E [0, n] - see Figure 1. Tech- 
niques for reducing the computation cost have been proposed in [2]. 

Figure 1: Structuring element v for a = 0 (high grey values correspond to high member- 
ship values). 

Once we have defined pa(R),  we can use it to define the degree to which a given 
object A is in direction ii, with respect to R. Let us denote by p~ the membership 
function of the object A. The evaluation of relative position of A with respect to R is 
given by a function of p,(R)(z) and p ~ ( 2 )  for all z in S. The histogram of pa(R) 
conditionally to p~ is such a function. If A is a binary object, then the histogram of 
p, (R)  in A is given by: 

h(z )  = Card ({z E A 1 p,(R)(z) = z } )  , 
where z E [0,1]. This extends to the fuzzy case by: 

x : p L a ( R ) ( x ) = z  

While this histogram gives the most complete information about the relative spatial 
position of two objects, it is difficult to reason in an efficient way with it. A summary of 
the contained information could be more useful in practice. An appropriate tool for defin- 
ing this summary is the fuzzy pattern matching approach [ 6 ] .  Following this approach, the 
matching between two possibility distributions is summarized by two numbers, a neces- 
sity degree N (a pessimistic evaluation) and a possibility degree II (an optimistic evalua- 
tion), as often used in the fuzzy set community. In our application, they take the following 
forms: 

where t is a t-norm and T a t-conorm. The possibility corresponds to a degree of intersec- 
tion between the fuzzy sets A and p,(R), while the necessity corresponds to a degree of 
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Figure 2: The occupancy grid built by the robot from sensor data in a test environment. 

inclusion of A in pa(@. These operations can also be interpreted in terms of fuzzy math- 
ematical morphology, since IIg(A) is equal to the dilation of p~ by pa(@ at the origin 
of S,  while N Z ( A )  is equal to the erosion at the origin [3]. The set-theoretic and the 
morphological interpretations indicate how the shape of the objects is taken into account. 

It should be emphasized that, since the aim of these definitions is not to find only the 
dominant relationship, an object may satisfy several different relationships, for different 
angles, with high degrees. Therefore, “to be to the right of R’ does not mean that the 
object should be completely to the right of the reference object, but only that it is at least 
to the right of some part of it. 

The defined directional relations are symmetrical (only for ll), invariant with respect 
to translation, rotation and scaling, both for crisp and for fuzzy objects, and when the 
distance between the objects increases, the shape of the objects plays a smaller and smaller 
role in the assessment of their relative position [ 2 ] .  

4 Robotmaps 
We now study how fuzzy spatial relations can be used to enrich the spatial representa- 
tions used by a mobile robot, or robot maps. A number of different representations of 
space have been proposed in the literature on mobile robotics. Most of these fall into 
two categories: metric maps, which represent the environment according to the absolute 
geometric position of objects (or places); and topological maps, which represent the en- 
vironment according to the relationships among objects (or places) without an absolute 
reference system (e.g., [ 14,251). 

In this work, we consider robot maps in the form of digital grids (S  is therefore a 
2D discrete space) on which certain objects, corresponding to the sub-spaces of interest 
(rooms and corridors), have been isolated. The reason for this is that we can directly apply 
the above methods to these representations. 

More precisely, we consider the particular type of maps, called topology-based maps, 
proposed by Fabrizi and Saffiotti [S]. These maps represent the environment as a graph 
of rooms and corridors connected by doors and passages. The authors use image pro- 
cessing techniques to automatically extract regions that correspond to large open spaces 
(rooms and corridors) from a fuzzy occupancy grid that represents the free space in the 



52 

Figure 3: (top) regions extracted from the above occupancy grid; (bottom) the correspond- 
ing topology-based map. 

environment. This grid is built by the robot itself using the technique described in [201. 
Figure 2 shows a fuzzy occupancy grid built by a Nomad 200 robot in an office envi- 

ronment of 21 x 14 meters using sonar sensors. The environment consists of six rooms 
connected to a large corridor, which expands to a hall on the left hand side of the map. 
The dark areas in the corridor correspond to pieces of furniture. Each cell in the grid rep- 
resents a square of side lOcm, and its value, in the [O, 13 interval, represents the degree of 
necessity of that space being empty. White cells have received sensor evidence of being 
empty; darker cells have not-they are either occupied or unexplored. (A dual grid, not 
used here, represents the occupied space.) 

In order to extract the desired rooms and corridors, the authors in [8] regard this oc- 
cupancy grid as a grey-scale image and process it using a technique based on fuzzy math- 
ematical morphology. The open spaces can be extracted from the grid by performing a 
morphological opening by a fuzzy structuring element of a conic shape that represents the 
fuzzy concept of a large space. The result of the opening is then segmented by a watershed 
algorithm [26] in order to separate these spaces. Figure 3 (top) shows the result obtained 
by applying this procedure to our occupancy grid. The extracted regions correspond to 
the open spaces in the environment. These regions, together with the adjacency relation, 
constitute a topology-based map for our environment, summarized in graph form in Fig- 
ure 3 (bottom). This graph provides an abstract representation that captures the structure 
of the space with a reduced number of parameters. 
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5 Adding fuzzy spatial relations to a robot map 
Once we have segmented the environment into regions (rooms and corridors) we can use 
the technique described in the previous section to compute directional spatial relation- 
ships between these regions. These relations provide important information for object 
recognition and for self localization [ 1 I]. 

Figure 4: Fuzzy landscapes for being West, North, East and South of fuzzy region 4 

Figure 4 shows the fuzzy landscapes for the fuzzy notions of being, respectively, West, 
North, East, and South of the fuzzy region number 4 in Figure 3. These landscapes 
represent the pua(R) fuzzy sets (see Section 3 above) with R being the fuzzy occupancy 
grid restricted to region number 4, and cy taking the values 0, +T, T and :T, respectively. 

We can use these landscapes to compute the relative directional position of any other 
region in our map with respect to region 4. For instance, Figure 5 shows the histograms of 
these fuzzy landscapes computed conditionally to region 1. These histograms represent 
the satisfaction of the relationships “region 1 is to the West (respectively, North) of region 
4 .  

It should be noted that the direct computation of pa(R) can be very expensive. Inter- 
estingly, the interpretation of that definition as a fuzzy dilation may suggest a few ways 
to reduce the computation time by reducing the precision of pa(R):  e.g., we can perform 
the dilation with a limited support for the structuring element, which corresponds to using 
a rough quantification of angles. 

The above histograms can give the robot important information about the environ- 
ment. In practice, however, storing and manipulating the whole histograms for each pair 
of regions may be prohibitive, and in real applications it is convenient to summarize the 
information contained in the histograms by a few parameters. A common choice is to use 
a pair of necessity and possibility degrees, computed according to equations (3) and (4) 
above. 

The following table shows, for each region in our example, the degrees of necessity 
and possibility of being West, East, South and North of region 4. Degrees are written as a 
[ N ,  ll] interval. 
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Figure 5: Histograms of the fuzzy landscapes of region 4 (west and north) conditionally 
to region 1. 

South North 

-[O.O, 0.01 
I0.65, 0.871 [O.O, 0.01 [0.30, 0.561 [O.O, 0.01 

[0.98, 1.01 [0.02, 0.40]'rb.00, 0.591 

ro.17.0.541 ro.o.o.01 ro.86.0.991 1o.0.0.01 

These results correspond well to intuition. For instance, regions 2 and 3 are found to 
be fully West of region 4, and totally not East of it; while region 5 is fully East of it and 
totally not West. Region 1 offers an interesting example. This region surrounds region 4 
on the West and South side, and extends further East from it. Correspondingly, it has full 
possibility of being considered West, South and East of region 4, although no one of these 
relations is necessary. Its possibility of being considered North of region 4 is, however, 
neglectable, which is consistent with intuition. This can also be seen in the histogram, 
where no high degrees are obtained for the North direction, while many points satisfy the 
West relation to a degree close to 1. Finally, regions 6 and 7 are, at different degrees, both 
South and West of region 4, again conforming with intuition. 
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6 Discussion and conclusions 
The proposed approach to represent directional relations has several interesting features. 
The interval representation allows us to capture the ambiguity of some relations, like in 
the case of the relation between region 1 and region 4 in the above example. The for- 
mal properties listed at the end of Section 3 are also of direct interest for applications in 
autonomous robotics. For instance, the invariance with respect to geometrical transfor- 
mations is needed to guarantee that localization and recognition are independent of the 
frame of reference used to define directions. The fact that the shape of an object plays 
a smaller and smaller role as the distance of that object increases is useful when consid- 
ering relationships to the robot itself: far away objects are seen by the robot as points, 
which is consistent with the idea that the spatial extent of these objects becomes irrele- 
vant. The behavior of our definitions in case of concave objects agrees with intuition: an 
object can satisfy several relations with respect to a concave one at a high degree. In the 
above example, regions 2 , 3 , 4 , 5  are all both East and North of region 1 to a high degree, 
which expresses that they are in the upper-right concave area of region 1. This is a way to 
express more complex relationships. 

The computed fuzzy directional information can be used in several ways during au- 
tonomous navigation. Perhaps the most direct application is to improve the self-localization 
ability of the robot. The robot can perform coarse self-localization on the topological map 
by estimating, at every moment, the node (room) in which it is. Markov techniques can be 
used to update this estimate when the robot detects a transition from one node to the next: 
directional information can then be used to produce an expectation about the next node, 
by comparing the direction of travel with the distribution of possible directions associated 
to the outgoing links from the current node. 

The ability to produce a fuzzy landscape for a given direction with respect to a node 
opens the possibility of additional applications. For instance, the robot can use linguistic 
directional information to identify important areas in the environment. As an example, we 
can tell the robot that the door to a given room is North with respect to the room where it 
currently is: the corresponding fuzzy landscape limits the area where the door should be 
looked for. Alternatively, we can tell the robot that the area North of a given corridor is 
dangerous (e.g., there is a staircase) and it should be avoided. A similar use of fuzzy logic 
to incorporate linguistic information in a robot map has been proposed in [ 113. 

The proposed method to define directional information and fuzzy directional land- 
scapes is not limited to a fixed set of directions (e.g., North, South, West, East), but can 
be applied to any desired angle. Also, we can tune the f function used in the definition 
of the structuring element v in order to define directions which are more or less vague, 
depending on the application needs, The definition of fuzzy landscapes makes it easy 
to define complex directional relations by combining elementary relations using fuzzy 
operations. For instance, we can define a landscape for “North but not East” by fuzzy 
intersection of the landscape for North and the complement of the one for East. 

Finally, it should be noted that fuzzy mathematical morphology can be used to solve 
several other problems in mobile robot navigation, including self-localization and spatial 
object processing (see [4]). 

While the initial results reported in this paper show the viability of our technique, more 
experiments on real robotic applications are needed in order to establish the actual utility 
of this technique, for instance for robot self-localization or for human-robot interaction 
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by linguistic expressions. These experiments are part of our current work. 
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Abstract 
Ordering-based modifiers have fruitful applications in fuzzy rule-based systems. In con- 
tinuation of ongoing research work on this topic, this paper is concerned with the con- 
struction of two binary ordering-based modifiers that model a concept of fuzzy ‘between ’, 
both in an inclusive and a non-inclusive setting. 

Keywords: between operator, fuzzy ordering, fuzzy relation, interpretability, ordering- 
based modifier. 

1 Introduction 

Fuzzy systems have always been regarded as appropriate methodologies for controlling 
complex systems and for carrying out complicated decision processes [21]. The compact- 
ness of rule bases, however, is still a crucial issue-the surveyability and interpretability 
of a rule base decreases with its number of rules. In particular, if rule bases are repre- 
sented as complete tables, the number of rules grows exponentially with the number of 
variables. Therefore, techniques for reducing the number of rules in a rule base while 
still maintaining the system’s behavior and improving surveyability and interpretability 
should receive special interest. In this paper, we deal with operators which are supposed 
to serve as a key to rule base reduction-ordering-based modijers. 

Almost all fuzzy systems involving numerical variables implicitly use orderings. It is 
standard to decompose the universe of a linearly ordered system variable into a certain 
number of fuzzy sets by means of the ordering of the universe-typically resulting in 
labels like ‘srnall’, ‘mediiinz ’, or ‘large ’. 

Let us consider a simple example. Suppose that we have a system with two real- 
valued input variables XI .x2 and a real-valued output variable y ,  where all domains are 
divided into five fuzzy sets with the linguistic labels ‘Z’, ‘S’, ‘MI, ‘L’, and ‘V’ (standing 
for ‘rippox. zero ’, ‘snzall ’, ‘mediiim ’, ‘large ’, and ‘very large ’, respectively). 

, I  I I I I I v I l z I s I M / s l z /  



It is easy to see that, in the above table, there are several adjacent rules having the same 
consequent value. Assuming that we had a unique and unambiguous computational 
methodology to compute ‘at least A’ ,  ‘at most A’,  or ‘between A and B’, it would be 
possible to group and replace such neighboring rules. For instance, the three rules 

IFxl is ‘S’ ANDx2 is ‘Z’THENy is ‘S’ 
IFxl is ‘M’ANDxz is ‘Z’THENyis ‘S’ 
lFx1 is ‘L’  ANDx2 is ‘Z’THENyis ‘S’ 

could be replaced by the following rule’ (adopting an inclusive view on the adverb ‘be- 
hveet? ’): 

IFxj is ‘bet\r>ern SandL’ANDxz is ‘Z’THENy is ‘S’ 

Of course, there is actually no need to do so in such a simple case. Anyway, grouping 
neighboring rules in such a way could help to reduce the size of larger high-dimensional 
rule bases considerably. 

I t  is considered as another opportunity for reducing the size of a rule base to store 
only some representative rules and to “interpolate” between them [ 151, where, in this 
context, we understand interpolation as a computational method that is able to obtain a 
meaningful conclusion even if an observation does not match any antecedent in the rule 
base [ 141. In any case, it is indispensable to have criteria for determining between which 
rules the interpolation should take place. Beside distance, orderings play a fundamental 
role in this selection. As an alternative to distance-based methods [15], it is possible to 
f i l l  the gap between the antecedents of two rules using a non-inclusive concept of fuzzy 
‘between I .  

In [ 1,4], a basic framework for defining the unary modifiers ATL and ATM (short for 
‘at least ’ and ‘at most ’, respectively) by means of image operators of fuzzy orderings has 
been introduced. This general approach has the following advantages: it is applicable to 
any kind of fuzzy set, it can be used for any kind of fuzzy ordering without any restriction 
to linearly ordered or real-valued domains, and i t  even allows to take a domain-specific 
context of indistinguishability into account. 

This paper is concerned with an extension of this framework by two binary ordering- 
based modifiers named BTW and SBT which both represent fuzzy ‘between ’ operators, 
where BTW stands for the inclusive and SBT (“strictly between”) stands for the non- 
inclusive interpretation. 

2 Preliminaries 

Throughout the whole paper, we will not explicitly distinguish between fuzzy sets and 
their corresponding membership functions. Consequently, uppercase letters will be used 
for both synonymously. The set of all fuzzy sets on a domain X will be denoted with 
F ( X ) .  As usual, we call a fuzzy set A normalized if there exists an x E X such that 
A ( s )  = 1 holds. 

In general, triungulur norms [ 131, i.e. associative, commutative, and non-decreasing 
binary operations on the unit interval (i.e. a [0, 112 -+ [0, I ]  mappings) which have 1 as 

‘ I t  depends on the underlying inference scheme whether the result is actually the same; we leave this aspect 
aside for the present paper, since this is not its major concern. 
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neutral element, will be considered as our standard models of logical conjunction. In this 
paper, assume that T denotes a left-continuous triangular norm, i.e. a t-norm whose partial 
mappings T ( x ,  .) and T( . . x )  are left-continuous. 

Definition 1. Let T be a t-norm. The T-intersection of two fuzzy sets A.B E F ( X )  is 
defined by means of the following membership function: 

( A n T r ) ( x )  = T ( A ( x ) J ( x ) )  

For T = min, we will simply use the notation A fl B. Correspondingly, the max-union of 
two fuzzy sets A.  B E F ( X )  is defined as 

( A  U B )  (x) = max ( A  (x) , B ( x ) )  . 
So-called residual implications will be used as the concepts of logical implication 

Definition 2. For any left-continuous t-norm T ,  the corresponding residual implication 
T is defined as 

[7-9,131. 

- 
- 
T ( x . y )  = sup{u E [O, 11 1 T ( u . x )  S y } .  

The residual implication can be used to define a logical negation which logically fits 
to the t-nomi and its implication. 

Definition 3. The negation corresponding to a left-continuous t-norm T is defined as 

N T ( x )  = T ( x . 0 ) .  

Lemma 4. NT is a left-continuous non-increasing [O,1 ]  -+ [O.  11 mapping. Moreover, the 
so-called law of contraposition holds 

which also implies x 5 N r ( N r ( x ) ) .  

Note that the reverse inequality does not hold in general (unlike the Boolean case, 
where p + q is equivalent to ' q  +- l p ) .  

Definition 5. The T-complenzent of a fuzzy set A E F ( X )  is defined as 

(CTA) (x) = NT ( A  (x) . 
Lemma 6. The following holds for allfiizzy sets A.B E F ( X ) :  

1. A n ~ c j - A = 0  

3. A 
2. A 5 C&A 

B inzplies CTA 2 CTB 

Lemma 7. As long as only min-intersections and max-unions are Considered, the so- 
called De Morgan laws hold: 

C T ( A  U B )  = JCTA) n (CrB)  
c T ( A n B )  = (Cj-A) U (CTB) 
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As usual, we call a fuzzy set on a product space X x X binary fuzzy relation. The 
following two kinds of binary fuzzy relations will be essential. 

Definition 8. A binary fuzzy relation E on a domain X is calledfuzzy equivalence relation 
with respect to T ,  for brevity T-equivalence, if and only if the following three axioms are 
fulfilled for all x,y,z E X: 

Reflexivity: E(x,x) = 1 
Symmetry: E(x,y) = E(y,x) 
T-transitivity: T(E(x,y),  E(y,z)) 5 E(x,z) 

In contrast to previous definitions of fuzzy orderings [7,18,20], we consider a general 
concept of fuzzy orderings taking a given context of indistinguishability into account 
which is modeled by a fuzzy equivalence relation [2, lo]. 

Definition 9. Let L : X 2  -+ [0,1] be a binary fuzzy relation. L is calledfuzzy ordering 
with respect to T and a T-equivalence E ,  for brevity T-E-ordering, if and only if it is 
T-transitive and fulfills the following two axioms for all x,y E X: 

E-reflexivity: E(x,y) 5 L(x,y) 
T-E-antisymmetry: T ( L ( x ,  y),L(y,x)) 5 E(x,y) 

A subclass which will be of special importance in the following are so-called direct 
fuzzifications. 

Definition 10. A T-E-ordering L is called a direct fuzzijication of a crisp ordering 5 if 
and only if it admits the following resolution: 

1 i f x d y  
L(xly) = { E(x,y) otherwise 

It is worth to mention that there is a one-to-one correspondence between direct fuzzi- 
fications of crisp linear orderings and so-called fuzzy weak orderings, i.e. reflexive and 
T-transitive binary fuzzy relations which fulfill strong completeness (i.e., for all x,y E X ,  
max(L(x,u),L(y,x)) = 1) [1,21. 

3 Unary Ordering-Based Modifiers 

Throughout the remaining paper, assume that we are given a T-E-ordering L (for some 
left-continuous t-norm T and a given T-equivalence E). Then the unary ordering-based 
modifiers ATL and ATM are defined as follows [ 1,4]: 

In the case that L coincides with a crisp ordering 5, we will explicitly indicate that by us- 
ing the notations LTR and RTL (short for “left-to-right” and “right-to-left continuations”) 
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instead of ATL and ATM, respectively. It is easy to verify that the following simplified 
representation holds in such a case: 

LTR(A)(x) = sup{AO/) I Y i x> 
RTL(A)(x) = sup{AO/) I y ?z x> 

Moreover, for a given fizzy set A, LTR is the smallest superset ofA with a non-decreasing 
membership function and RTL is the smallest superset of A with a non-increasing mem- 
bership function. For convenience, let us use the notation EXT for the so-called exten- 
sional hull operator of the T-equivalence E: 

EXT(A)(x) = suP{TMJ),EOi,h-)) 1 Y E XI 

Note that, for an arbitrary fizzy set A ,  EXT(A) is the smallest superset fulfilling the 
property 

for all x,y E X. This property is usually called extensionality [6,5,11,12,16]. 

Lemma 11. [4,11,16] Let E be a T-equivalence and let A ,  B E y ( X )  be two extensional 
fiizzy sets. Then A n B, A U B, and CTA are also extensional. Moreover; EXT(A U B) = 
EXT(A) U EXT(B) holds. 

Lemma 12. [ 1,4] The operators ATL and ATM are non-decreasing with respect to the 
inclusion offiizzy sets and the following holds for  allAmy sets A .  B E S(X): 

TMx) ,E(x .y ) )  5 A@) 

I .  ATL(A UB) = ATL(A) UATL(B) 
2. ATM(A U B) = ATM(A) U ATM(B) 
3. ATL(A f l  B) & ATL(A) n ATL(B) 
4. ATM(A f l  B) & ATM(A) Ti ATM(B) 
5.  ATL(ATL(A)) = ATL(A) 
6. ATM(ATM(A)) = ATM(A) 

Theorem 13. [1,4] I f L  is a directjiizzijication of some crisp ordering 5, the following 
equalities hold: 

ATL(A) = EXT(LTR(A)) = LTR(EXT(A)) = EXT(A) ULTR(A) 
ATM(A) = EXT(RTL(A)) = RTL(EXT(A)) = EXT(A) URTL(A) 

Moreover; ATL(A) is the smallest fuzzy superset ofA which is extensional and has a non- 
decreasing membership ftlnction. Analogously, ATM(A) is the smallest fuzzy superset of 
A which is extensional and has a non-increasing membership function. 

The notion of convexity and convex hulls will also be essential in the following. 

Definition 14. Provided that the domain X is equipped with some crisp ordering 5 (not 
necessarily linear), a fizzy set A E F ( X )  is called convex (compare with [ 17,191) if and 
only if, for all x,y,z E X, 

x d y 5 z  implies AO/) > m i n j ~ ( x ) , ~ ( z ) ) .  
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Lemma 15. Fuzzy sets with non-increasinghon-decreasing membership function are 
convex. For anv two convexfiizzy sets A. B E !F (X), A n B is convex. 

Lemma 16. Assume that 5 is an arbitrary, not necessarily linear ordering on a domain 
X .  Then the frizzy set 

CVX(A) = LTR(A) n RTL(A) 

is the smallest conve.x,cizzy siiperset of A .  

Theorem 17. [ I ,  41 With the assrrmptions of Theorem 13 and the dejnition 

ECX(A) = ATL(A) n ATM(A), 

the following representation holds: 

ECX(A) = EXTJCVX(A)) = CVX(EXT(A)) = EXT(A) UCVX(A) 

Fzirther~niore, ECX(A) is the srnullestfiizz~y sirperset o f A  which is extensional and convex. 

4 The Inclusive Operator 

Finally, we can now define an operator representing an inclusive version of ‘between ’ 
with respect to a fuzzy ordering. 

Definition 18. Given two fuzzy sets A ,  B E S ( X ) ,  the binary operator BTW is defined as 

BTW(A.B) = ECX(AUB). 

Note that it  can easily be inferred from basic properties of ATL and ATM (cf. Lemma 12) 
that the following alternative representation holds: 

(1) 

This representation is particularly helpful to prove the following basic properties of the 
BTW operator. 

Theorem 19. The,following holds for allfirzzy sets A ,  B E S(X): 

BTW(A.B) = (ATL(A) UATL(B)) n (ATM(A) UATM(B)) 

1. BTW(A.B) = BTW(B.A) 
2 ACBTW(A.B)  
3. BTW(A.O) = BTW(A.A) = ECX(A) 
4. BTW(A. B) is e.xtensionu1 

I f L  is a directfrrzzijication of a crisp ordering 5, then BTW(A.B) is convex as well and 
BTW(A. B) is the smallest c0nve.x and extensionalfiizzy set containing both A and B. 

Prooj Trivial by elementary properties of maximum union and the operator ECX (cf. 
Theorem 17). 0 

I t  is, therefore, justified (in particular due to Point 2 .  above) to speak of an inclusive 
interpretation. Moreover, it is even possible to show that BTW is an associative operation; 
hence ( F  ( X ) .  BTW) is a commutative semigroup. 
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5 The Non-Inclusive Operator 

Now let us study how a ‘strictly between ’ operator can be defined. It seems intuitively 
clear that ‘strictly between A and B ’ should be a subset of BTW(A, B )  which should not 
include any relevant parts of A and B. 

Definition 20. The ‘strictly between’ operator is a binary connective on F(X) which is 
defined as 

SBT(A,B) = BTW(A,B) nCT((ATL(A)nATL(B))U(ATM(A) nATM(B))).  

Note that Lemma 7 yields the following alternative representation: 

SBT(A.B) = BTW(A.B)nCr((ATL(A)nATL(B)) nCr(ATM(A) nATM(B))) ( 2 )  

Theorem 21. Thefollowing holds fo r  allfiizzy sets A .  B E F(X): 

1. SBT(A,B) = SBT(B,A) 
2. SBT(A,B) C BTW(A.B) 
3. SBT(A.O) = ECX(A) 
4. SBT(A.B) is extensional 

I f L  is a direct fuzzijication of a crisp ordering 5, SBT(A. B )  is convex as well. r f  we 
asstinze that L is a direct fuzzijication of a crisp linear ordering 5 and that A and B are 
normalized, the following holds: 

5. ECX(A) nr SBT(A,B) = 0 

Prooj The first two assertions follow trivially from the definition of SBT and elementary 
properties. For proving the third assertion, consider the following: 

SBT(A.O) = BTW(A,0) nCr((ATL(A)nATL(0)) U(ATM(A) nATM(0))) 
= ECX(A) n Cr(0) = ECX(A) 

The extensionality of SBT(A.B) follows from Lemma 11 and the fact that BTW(A,B), 
ATL(A), ATL(B), ATM(A), and ATM(B) are all extensional. 

Assume that L is a direct fuzzification. As ATL(A) and ATL(B) have non-decreasing 
membership functions, also ATL(A) n ATL(B) has a non-decreasing membership func- 
tion. Consequently, cj- (ATL(A) n ATL(B)) has a non-increasing membership function 
and, by Lemma 15, this fuzzy set is convex. Following analogous arguments, it can be 
proved that cr  (ATM(A) fl ATM(B)) is convex. Then we see from the alternative repre- 
sentation ( 2 )  that SBT(A.B) is an intersection of convex fuzzy sets. Therefore, by Lemma 
15, SBT(A.B) is convex. 

The following follows easily from the distributivity of minimum and maximum: 

(ATL(A) nATL(B)) U (ATM(A) nATM(B)) 
= (ATL(A) UATM(A)) n (ATL(A) UATM(B)) 

n (ATL(B) UATM(A)) n (ATL(B) UATM(B)) = (*) 
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Let A and B now be normalized and let L be a direct fuzzification of a crisp linear ordering 
5. It is easy to see that, in such a setting, ATLjA) u ATM(A) = X holds. Therefore, 

(*) = (ATL(A) UATM(B)) n (ATL(B) UATM(A)). 

As the fizzy sets (ATL(A) U ATM(B)) and (ATL(B) u ATM(A)) are both supersets of 
ECX(A), we obtain that (ATL(A) n ATL(B)) u (ATL(A) n ATM(B)) is a superset of 
ECX(A). Then we can infer the following: 

ECX(A) n r  SBT(A. B) 
= ECX(A) flr (BTW(A,B) nCr((ATL(A)nATL(B))U (ATM(A) nATM(B))))  
= ( E C X ( A )  flr BTW(A. B)) 

n (ECX(A) nr Cr((ATL(A) nATL(B)) U (ATM(A) nATM(B))))  
C ( E C X ( A )  nr BTW(A. B)) n (ECX(A) nr Cr(ECX(A))) 
= ( E C X ( A )  nr BTW(A. B)) n 0 = 0 0 

Note that the last equality particularly implies 

A nr SBT(A. B) = 0 

which justifies to speak of an non-inclusive concept. 

6 Ordering Properties 

Despite basic properties that have already been presented in the previous two sections, 
it remains to be clarified whether the results BTW(A. B) and SBT(A, B) obtained by the 
two operators are really lying befween A and B. We will approach this question from an 
ordinal perspective. I t  is straightforward to define the following binary relation on F ( X ) :  

A 5~ B if and only if ATL(A) 2 ATL(B) and ATM(A) C ATM(B) 

This relation is reflexive, transitive, and antisymmetric up to the following equivalence 
relation: 

A -L B if and only if ECX(A) = ECX(B) 

Moreover, if we restrict ourselves to fuzzy numbers and to the natural ordering of real 
numbers, it is relatively easy to see that 5~ coincides with the interval ordering of fuzzy 
numbers induced by the extension principle. I t  is, therefore, justified to consider ‘ r .  
as a meaningful general concept of ordering of fuzzy sets with respect to a given fiizzy 
ordering L [ 1,3]. 

The following theorem gives a clear justification that we may consider the definitions 
of the operators BTW and SBT as appropriate. 

Theorem 22. Suppose that we are given two nornzalizedfiizzy sets A ,  B E F ( X )  such that 
A ‘ L  B holds. Then the following inequality holds: 

A 3~ BTW(A.B) ir. B 
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Now let us assicme that L is strongly complete (therefore, a directfiizziJcation of a crisp 
linear ordering 5) and that there exists a value x E X n,hich separates A and B in the 
way that for all y.z  E X )  A@) > 0 implies y 3 x and B( z )  > 0 implies x 3 z. Then the 
following inequality holds too: 

A 3~ SBT(A.B) 5~ B 

Proof Assume thatA 3~ B holds, i.e. ATL(A) 2 ATL(B) and ATM(A) C ATM(B). Then 
we obtain using the alternative representation (1) and Lemma 12: 

ATL(BTW(A,B)) = ATL((ATL(A) UATL(B)) n (ATM(A) UATM(B))) 
= ATL(ATL(A) nATM(B)) C ATL(ATL(A)) = ATL(A) 

Moreover, ATM(A) C ATM(BTW(A.B)) must hold, since A is a subset of BTW(A,B) 
(non-decreasingness of ATM with respect to inclusion; cf. Lemma 12), and we have 
proved that A 5~ BTW(A,B) holds. The inequality BTW(A.B) 5~ B can be proved anal- 

We have proved above that ATL(BTW(A.B)) C ATL(A). As, trivially, SBT(A,B) C 
BTW(A.B) holds, we obtain ATL(SBT(A.B)) C ATL(A). Now fix the value x E X as 
described above. All values y with A@) > 0 are below x, i.e. y 3 .Y, and all values z 
with B(z )  > 0 are above x, i.e. x 3 z. That entails the four equalities ATL(A)(x) = 1, 
ATM(A) (x) = 0, ATL(B) (x) = 0, and ATM(B) (x) = 1, and we obtain the following: 

ogously. 

BTW(A.B)(x) = (ATL(A) UATL(B)) n (ATM(A) UATM(B))(x) 
= min ( max ( ATL ( A )  (x) , ATL ( B )  (x) ) , max( ATM(A ) (x) . ATM(B) (x) ) ) 
= min (max( 1. O ) ,  max(0, l ) )  = 1 

Moreover, 

(ATL(A)nATL(B)) U (ATM(A)nATM(B))(x) =max(min(l ,O).min(l ,O)) = 0. 

Therefore, SBT(A.B)(x) = 1. As all values of A having non-zero membership degrees 
are below x, it follows that 

ATM(A) C ATM(SBT(A.B)). 

Hence, A 5~ SBT(A,B) holds. The second inequality SBT(A.B) 5~ B can again be 
proved analogously. 0 

7 Examples 

In order to underline these rather abstract results with an example, let us consider two 
fuzzy subsets of the real numbers: 

A (x) = max( 1 - 3 
B(x )  = max(1 - 14-~1.0) 

- X I .  0.7 - 2 , j 1.5 - xi. 0) 

It is easy to see that both fuzzy sets are normalized; B is convex, while A is not convex. 
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The natural ordering of real numbers 5 is a fuzzy ordering with respect to any t- 
norm and the crisp equality. No matter which t-norm we choose, we obtain the fuzzy sets 
BTW(A,B) and SBT(A,B) as shown in Figure 1. 

Now let us consider the following two fuzzy relations: 

E(x,y) = max(1- In-yl,O) 

1 i fx  < y  
L(xly) = { E ( x , y )  otherwise 

One easily verifies that E is indeed a TL-equivalence on the real numbers and that L is a 
TL-E-ordering which directly fuzzifies the linear ordering of real numbers [ 1,2]. Figure 
2 shows the results of computing BTW(A, B) and SBT(A, B) for A and B from above. It 
is a routine matter to show that B is extensional and that A is not extensional. This means 
that A contains parts that are defined in an unnaturally precise way . Since the operators 
BTW and SBT have been designed to take the given context of indistinguishability into 
account, they try to remove all uncertainties arising from the non-extensionality of A. This 
is reflected in the fact that BTW(A, B) also contains some parts to the left of A that are 
potentially indistinguishable from A. In the same way, SBT(A, B) does not include those 
parts to the right of A that are potentially indistinguishable from elements in A.  

8 Conclusion 

This paper has been concerned with the definition of two binary ordering-based modifiers 
BTW and SBT. The operator BTW has been designed for computing the fuzzy set of all 
objects lying between two fuzzy sets including both boundaries. The purpose of SBT is 
to extract those objects which are lying strictly between two fuzzy sets-not including the 
two boundaries. We have shown several basic properties of the two operators and, from 
the viewpoint of orderings of fuzzy sets, that the two operators indeed yield meaningful 
results. Therefore, we conclude that the two operators are appropriate as modifiers for 
fuzzy systems applications and rule interpolation. 
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Figure 1:  Two fuzzy sets A , B  (top) and the results of BTW(A,B) (middle) and SBT(A,B) 
(bottom), using the crisp ordering of real numbers 
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Figure 2 :  Two h z z y  sets A , B  (top) and the results of BTW(A,B) (middle) and SBT(A,B) 
(bottom) with respect to a fuzzy ordering on R 
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Abstract 
This paper tries to explore some lines to improve Takagi-Sugeno’s Approximation from 
a point of view, joining both the logical rationale of Fuzzy Control as Intelligent Control 
and the numerical results’ accuracy. 

Keywords: Fuzzy Control, Takagi-Sugeno, Condictional Functions, Convolution. 

1 Introduction 
In the last years we have seen increasing interest in fuzzy systems research and appli- 
cations. This is mainly due to the success of fuzzy technologies in many fields of en- 
gineering including consumer products, transportation, manufacturing, medical, control 
and signal processing systems. 
Classical models try to avoid vague, imprecise or uncertain information because it is 
considered as having a negative influence in the corresponding technique. However, fuzzy 
systems take advantage of this kind of information because it leads to simpler and more 
suitable models, which are both easier to handle and more familiar to human thinking. 
During decades Fuzzy Control using Takagi-Sugeno’ Approximation has been success- 
fully applied to a wide range of control problems and have demonstrated significant ad- 
vances in non-linear control. 
A zero-order Takagi-Sugeno (T-S) model [4], specifies a fuzzy system by a set of rules of 
the form: 

“ Ifx1 is P; and . . and x, is P;” then y is 41’’ 

I ‘  I f x 1  is P,’ and.  . . and x, is P,“ then y is qi ” 
* This paper is partially supported by ClCYT (Spain) under project TIC2000-1420 
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where x3 are input variables, P,“ are linguistic labels on X represented by a fuzzy set 
pp;, y is the output variable and ql are constant values. 
The global output of a T-S model, given an input vector of values [XI, . . . $  x,] is: 

i 

where w, = T ( p p ;  (XI), pp; (x~),. . . . pp:, (x,)) is the matching degree between the in- 
puts and the antecedent of the rule, usually T = Prod. 
The other model widely used is Mamdani-Larsen (M-L) model [6], composed by a set of 
rules of the form: 

I‘ lfxl is P: a n d .  . . and x, is Pp then y is Q1 ” 

“ lfxl is P,‘ and ‘ , ‘ and x, is Pp then y is Qi ’’ 

where x1 are input variables, P,” are linguistic labels on X represented by a fuzzy set pp;. , 
QL are linguistic labels on B’ represented by a fuzzy set p ~ ? .  And each rule is represented 
using a conditional function J : [0,1] x [0,1] -+ [0,1].  
The fuzzy output of each single rule, given an input vector of values [XI, ..., xn] follows 
from Zadeh’s Compositional Rule of Inference, and is: 

PQ: (Y) = J(T(PcLql (XI), ’ ’  ‘ I PP: (xn)), PQ, (Y))). 

To obtain a numerical output it is needed to defuzzify this fuzzy output using either centre 
of gravity, or centre of area, or left or right most value, etcetera. 
Numerical functions J : [0,1] x [0,1] + [0, 11 such that for some continuous t-norm T 
verify the Modus Ponens inequality T(a ,  J ( a ,  b ) )  5 b, for all a,b in [0,1], are called T- 
Conditional Functions. They are used in Fuzzy Logic to represent conditional stetements 
or rules “ l f x  is P, then y is Q” as J ( p p ( x ) ,  p ~ ( y ) ) ,  provided x varies in a referential X , 
y in a referential Y, and P, Q are linguistic labels on X and Y, respectively. 
Fuzzy control begins with the linguistic rules describing the expert’s knowledge of the 
system’s behaviour, and in that kind of control it is usual to explicitly or implicitly rep- 
resent the rules by means of either the Min-Conditional function J ( a ,  b )  = Min(a ,  b )  - 
Mamdani -, or Prod-Conditional function J(uI b) = Prod(a, b )  - Larsen -. Both functions 
are particular cases of the general expression J ( a ,  b )  = T ( p ( a ) ,  $ ( b ) )  [l]  [2], where T is 
a continuous t-norm, p : [ O ,  11 -+ [0,1] any continuous function verifying p(0) = 0 and 
p(1) = 1 and $ : [O. 11 + [O. 11 a contractive function, that is, such that $ ( b )  5 b for all 
b in [0, 11. 
From: 

T(a ,  T ( p ( a ) ,  W))) 5 Min(a:  Mi.(p(.), W ) ) )  
= Min((Min(a,  p ( u ) ) ,  $(/I)) 5 $ ( b )  5 b 

because of T 5 Min, it follows that J(uI b) = T ( p ( a ) ,  $ ( b ) )  is always a T-Conditional 
Function. 
It should be pointed out that given a rule “ l f p p ( x ) ,  then p ~ ( y )  ’ I ,  to pass from the rep- 
resentation as J(pp(x), p ~ ( y ) )  = T(pp(x), p ~ ( y ) )  - with, for example, T = M i n  or 
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T = Prod - to a more general one J ( p p ( ~ ) , p ~ ( y ) )  = T ( ~ ” ( P ( Z ) ) , $ ( ~ Q ( Y ) ) ) ,  is 
equivalent to change the given rule to the new one “Zfy (pp(x ) ) ,  then $ ( ~ Q ( Y ) ) ”  and 
to maintain for this rule the old representation by means of J ( y ( p p ( ~ ) ) , $ ( p ~ ( y ) ) )  = 
T((P(pp(Z)), $(pQ (y))). 
A simple and useful type of this functions are obtained by taking p(a) = a‘ with T E JR 
and $J = id: J ( a ,  b )  = T(a‘. b ) .  With r = 1 it is J ( a ,  b )  = T ( a ,  b ) .  
It should be also noticed that given a system of several rules it can happen that each 
one of them can be more adequately represented by a different T-Conditional Function 
T ( p ( a ) ,  + ( b ) ) .  For example, given two rules “Zfx is PI, then y is & I ”  and “Zfx is Pz, 
then y is Q z ” ,  some respectiverepresentation T ~ ( p p ,  (z)‘~, p ~ ~ )  and T z ( p p ,  (z)‘,, p ~ , ) ,  
with TI # T2 and r1 # 7-2, can fit better their respective meanings or semantics in a 
concrete problem than the single representation obtained with TI = TZ and r1 = rz. 

2 Improving T-S model in two directions 
This paper takes the position of considering that if we can get a better representation of 
the rules and a better control surface then we can get get a better T-S model and therefore 
a better approximation. 

2.1 
By using the new representation of the rules means of operators J ( a ,  b )  = T(a‘, b )  then 
we can try to adjust each representation properly to obtain a better representation of the 
given rule. Taking into account that we can modify each exponent independently, in what 
follows we were modifying one exponent until the output was not closer to the expected 
output, and then did the same with the next one. 

By using a better representation of the rules 

2.2 
As T-S model is applied to control machines it is desirable for the correct work of a ma- 
chine that the changes in the output be smooth enough. Following this idea the convolu- 
tion technique transforms the input labels from triangular functions to smoother functions, 
without sudden changes. And thanks to that, the output of the T-S model is also smoother. 
The transform F, was defined in [3], consists on the convolution of a function d with a 
fuzzy set p, which yields a new fuzzy set p* : 

Looking for a better behaviour for control 

P * ( Z )  = ( 4  * P ) ( Z )  = / A 4  . d4u - z)du 
U 

Some important properties of this transform are (see [3]): 

0 The transform of a partition of the unity is another partition of the unity. 

0 The transform preserves the area if 4 has unity area. 

0 The transform is a smoothing one: if p and d have smoothness of order m and n 
respectively ( p E Cm-2 and 4 E Cn-2), then p* = p * 4 has smoothness of order 
m + n. Smoothness of order k means that the derivative of order k of the function 
becomes impulsive, and the differentiability class C1 is the space of functions that 
are 1 times continuously differentiable. 
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0 The transforms change a convex fuzzy set in another convex fuzzy set, but non in a 
necessarily normal one. 

The function o must be chosen for each case taking into account the smoothness wished 
for the surface output. 

3 Case Examples 
To illustrate how this changes in the representation of the rules and in the representation 
of the input labels can improve the result of T-S model in two ways, first, reducing the 
mean square error (MSE) between the known function and the approximating function, 
and second, obtaining a smoother function, we present the following two examples. 

3.1 A simple example 
We chose a non symmetrical function to show how we can reduce the MSE of the approx- 
imation and how we can increase the smoothness of the approximating function: 

s in (x )  y = -  
X 

Result of y=stn(x)!x 
~ 7 ---------- 

x 

Figure 1 : Simple example 

The T-S model composed by the following seven rules can approximate well enough the 
function: 

“ I f x  is Cto 0 then y = 1 ” 
“ I f x  is Cto 4/3 then y = zsin(4/3)” 

“ I f x  is Cto 4 then y = i s in (4 )”  
“ I f x  is Cto 16/3 then y = &sin( 16/3) ” 

“ I f x  is Cto 8 then y = i s in (8 )”  

I‘ I f x  is Cto 8/3 then y = Eszn(8/3) 4 

“ I f x  is Cro 20/3 then y = m~zn(20 /3 )”  Y 

” 

Suppose that predicate Close-to (Cto) is represented by the fuzzy sets in the figure 2. 
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Input Labels 

Figure 2: Input Labels 

This model allows us to obtain the next approximating function (see left side of figure 3) 
with mean square error IllSE = 0.00070459. 

- -- _L_---- - - - L - 
0 1 2 3 4 5 6 7 8  

0 5  0 5 L - - 1 -  L - _  - - J - - -  -- J 
0 1 2 3 4 5 . 5 7 8  

MSEi 0 00070459 MSE=000014209 

Result of T-S without Exponents Result of T-S with Exponents 

Figure 3: Result of Takagi-Sugeno 

If we use exponents: 

“ Zfx is (Cto O)(’.’) then y = 1 ”  
“ I f x  is (Cto 4/3)(’.’15) then y = i s in(4 /3)”  
“ I f x  is (Cto 8/3j(0.915) then y = gsin(8/3)” 
I ‘  ~ f x  is (C~O 4)(’.‘3 then y = is in(4)  
“ I f x  is (Cto 16/3)(0.8) then y = &sin(16/3)” 
“ I f x  is (Cto 20/3)(0.45) then y = &sin(20/3)” 
“ Zfx is (Cto then y = ~ s i n ( 8 ) ”  

we obtain the next approximating function (see right side of figure 3) with a considerable 
reduction of the error M S E  = 0.00014209. 
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Taking o as a triangular function defined by: 

We use this function to transform, applying convolution, the input labels to obtain the new 
fuzzy sets (see figure 4), which are smother 

Input Labels afler Convolution 

Figure 4: Input labels after convolution 

and the following approximating function (see figure 5) with a slight increase of the error 
M S E  = 0.00075886, but it is much smoother function. 

Without Exponents With Exponents 

Figure 5: Result of T-S with convolution 

If we apply convolution plus exponents they work better together than separate as it can 
be seen in figure 5 M S E  = 0.00008817. 
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3.2 A complex example 
Let's consider a more complex problem, that is, an approximation of the surface: 

szn(z2)e-" + sin(y2)e-Y + 0.2338 
0.8567 

z =  , for z E [O :  31 and y E [O. 31. 

Figure 6: Complex example 

zzy sets: 
Input Labels after Convolution r~~~ ..__ - ~~ ~~~ _. 

lnpul Labels X and Y 
~~~~~~ 7 _ _ ~  ._.. __ 7 - ~~~ , 

. . .  . . . . . . .  . . .  1 t  

Before Convolution After Convolution 

Figure 7: Input labels 

Using a T-S model (see [ 5 ] )  composed by 49 rules, because seven input labels for each 
variable are used, we can model the above target function. 

" I f x  is Cto XI and y is Cto y1 then z = 41" 

" If. is Cto 2 7  and y is Cto y7 then z = 949 " 
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In the approximation obtained using Takagi-Sugeno M S E  = 0.20451039 (see figure 8). 

Figure 8: Result of Takagi-Sugeno 

In the approximation obtained using Takagi-Sugeno with exponents, in this case we use 
the same exponent for all rules, and the error is reduced up to a 10% until M S E  = 
0.18357553 (see figure 9). 

Figure 9: Result of Takagi-Sugeno with Exponents 

Input labels after convolution, applying same from previous example, can been see in 
figure 7. 
In the approximation obtained using Takagi-Sugeno with convolution, the error is slight 
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increased up to a 5% until M S E  = 0.21149813, but the smoothness is clearly improved, 
as can seen in figure 10. 

Figure 10: Result of Takagi-Sugeno after convolution 

In the approximation using Takagi-Sugeno with convolution plus exponents, the error is 
reduced up to a 25% M S E  = 0.15090679. And also smoothness is clearly improved 
(see figure 11). 

Figure 11: Result of T-S with convolution and exponents 
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4 Conclusion 
It has been shown that the benefits of the improvement in the representation of the rules 
and the improvement in the smoothness of the inputs can contribute to obtain a better 
approximation of a given function. 
These ideas need to be deeply explored to get a better understanding of the way they help 
to the T-S model to give a better approximation and the theoretical explanation of this 
improvement. 
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Abstract 
Decision processes for solving group decision making problems are composed of two 

phases: (i) aggregation and, (ii) exploitation. When experts that participate in the group 
decision making process are not able to express their opinions using a same expression 
domain, then the use of information assessed in different domains, i.e., heterogeneous 
information, is necessary. In these cases, the information can be assessed in domains with 
different nature as linguistic, numerical and interval-valued. The aim of this contribution 
is to present an aggregation process to manage heterogeneous information contexts in 
the case of linguistic, numerical and interval-valued information. To do this, we take as 
representation base the 2-tuple fuzzy linguistic representation model [5]. 
Keywords: decision making, aggregation, linguistic 2-tuples, heterogeneous information. 

1 Introduction 

Group Decision Making (GDM) problems have a finite set of alternatives X = { 51, .. . , z,} 
TI 2 2, as well as a finite set of experts E = {el,  ,.., e m }  m 2 2. Usually, each ex- 
pert e k  provides hidher preferences on X by means of a preference relation Pek , being 
Pek (xi, z j )  = p &  the degree of preference of alternative zi over z j .  

It seems difficult that the nature of the preference values, p f j ,  provided by the experts 
be the same. Because it depends on the knowledge of them over the alternatives (usually 
it is not precise). Therefore, the preference values have been expressed in different do- 
mains. Early in DM problems, the uncertainty were expressed in the preference values by 
means of real values assessed in a predefined range [ 11, 161, soon other approaches based 
on interval valued [12, 151 and linguistic one [4, 171 were proposed. The most of the pro- 
posals for solving GDM problems are focused on cases where all the experts provide their 
preferences in a unique domain, however, the experts could work in different knowledge 
fields and could express their preferences with different types of information depending 
on their knowledge. We shall call this type of information as Heterogeneous Information. 
Hence, the GDM problem is defined in a heterogeneous information context. 

A solution for a GDM problem is derived either from the individual preference re- 
lations, without constructing a social preference relation, or by computing first a social 
fuzzy preference relation and then using it to find a solution [lo]. In any of the above 

*This work is supported by Research Project TIC2002-03348 and FEDER fonds 
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approaches called direct and indirect approaches respectively the process for reaching a 
solution of the GDM problems is composed by two steps [14]: 

0 Aggregation phase: that combines the expert preferences, and 

0 Exploitation one: that obtains a solution set of alternatives from a preference rela- 

The main difficulty for managing GDM problems defined in heterogeneous informa- 
tion contexts is the aggregation phase, i.e., how to aggregate this type of information?. 
Because of, there not exist standard operators or processes for combining this type of 
information. 

The 2-tuple fuzzy linguistic representation model presented in [5] has shown itself as a 
good choice to manage non-homogeneous information in aggregation processes [6, 8,9].  
In this paper, we propose an aggregation process based on the 2-tuple model that is able 
to deal with heterogeneous information contexts. 

Our proposal for aggregating heterogeneous information follows a scheme comprised 
of three phases: 

1. Unification: The heterogeneous information is unified in an unique expression 
domain by means of fuzzy sets. Different transformation functions will be defined 
to transform the input information into fuzzy sets. 

2. Aggregation: The fuzzy sets will be aggregated by means of an aggregation oper- 
ator to obtain collective preference values expressed by fuzzy sets. 

3. Transformation: The collective preference values expressed by means of fuzzy 
sets will be transformed into linguistic 2-tuples. 

The exploitation phase of the decision process is carried out over the collective lin- 
guistic 2-tuples, to obtain the solution for the GDM problem. 

In order to do so, this paper is structured as follows: in Section 2 we shall review dif- 
ferent basic concepts; in Section 3 we shall propose the aggregation process for combining 
heterogeneous information; in Section 4 we shall solve an example of a GDM problem 
defined in a heterogeneous information context and finally, some concluding remarks are 
pointed out. 

tion. 

2 Preliminaries 

We have just seen that in GDM problems the experts express their preferences depending 
on their knowledge over the alternatives by means of preference relations. Here, we 
review different approaches to express those preferences. And afterwards, we shall review 
the 2-tuple fuzzy linguistic representation model. 

2.1 Approaches for Modelling Preferences 

2.1.1 Fuzzy Binary Relations 

A valued (fuzzy) binary relation R on X is defined as a fuzzy subset of the direct product 
X x X with values in [0,1), i.e, R : X x X + [0,1]. The value, R(zi1 zj) = p i j ,  
of a valued relation R denotes the degree to which ziRxj. In preference analysis, p i j  
denotes the degree to which an alternative xi is preferred to xj. These were the first type 
of relations used in decision making [ 10, 111. 
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2.1.2 Interval-valued Relations 

About the fuzzy binary approach has been argued that the most experts are unable to make 
a fair estimation of the inaccuracy of their judgements, making far larger estimation errors 
that the boundaries accepted by them as feasible [2]. 

A first approach to overcome this problem is to add some flexibility to the uncertainty 
representation problem by means of interval-valued relations: 

R : X x X + p([O, 11). 

Where R(zi,  zj) = p i j  denotes the interval-valued preference degree of the alterna- 
tive zi over xj . In these approaches [12, 151, the preferences provided by the ex- 
perts consist of interval values assessed in p([O, l]), where the preference is expressed 
as [a, ~ ] i j ,  with 3 I si. 

2.1.3 Linguistic Approach 

Usually, we work in a quantitative setting, where the information is expressed by means of 
numerical values. However, many aspects of different activities in the real world cannot 
be assessed in a quantitative form, but rather in a qualitative one, i.e., with vague or 
imprecise knowledge. In that case, a better approach may be to use linguistic assessments 
instead of numerical values. The fuzzy linguistic approach represents qualitative aspects 
as linguistic values by means of linguistic variables [18]. 

To use the linguistic approach we have to choose the appropriate linguistic descriptors 
for the term set and their semantics. In the literature, several possibilities can be found 
(see [7] for a wide description). An important aspect to analyze is the ”granularity of 
uncertainty ”, i.e., the level of discrimination among different counts of uncertainty. The 
”granularity of uncertainty” for the linguistic term set S = { S O ,  ..., sg} is g + 1, while its 
”interval of granularity” is [ O ,  g ] .  

One possibility of generating the linguistic term set consists of directly supplying the 
term set by considering all terms distributed on a scale on which a total order is defined 
[ 171. For example, a set of seven terms S, could be given as follows: 

Usually, in these cases, it is required that in the linguistic term set satisfy the following 
additional characteristics: 

1. There is a negation operator: Neg(si) = sj, with, j = g - i (g+l is the cardinality). 

2. si 5 sj 

The semantics of the linguistic terms are given by fuzzy numbers defined in the [O,  11 
interval. A way to characterize a fuzzy number is to use a representation based on parame- 
ters of its membership function [ 11. The linguistic assessments given by the users are just 
approximate ones, some authors consider that linear trapezoidal membership functions 
are good enough to capture the vagueness of those linguistic assessments. The parametric 
representation is achieved by the 4-tuple (a,  b,  d, c), where b and d indicate the interval 
in which the membership value is 1, with a and c indicating the left and right limits of 
the definition domain of the trapezoidal membership function [l]. A particular case of 
this type of representation are the linguistic assessments whose membership functions are 

i 5 j .  Therefore, there exists a min and a max operator. 
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triangular, i.e., b = d ,  then we represent this type of membership functions by a 3-tuple 
(a ,  b, c) .  A possible semantics for the above term set, S ,  may be the following (Figure 1): 

P = (.83,1,1) 
L = (-17, .33, . 5 )  

V H  = (.67, .83,1) 
V L  = (0, .17, .33) 

H = ( . 5 ,  .67, .83) 
N = ( O , O ,  .17) 

= (.33, . 5 ,  -67) 

Figure 1: A set of seven linguistic terms with its semantics 

2.2 

This model was presented in [ 5 ] ,  for overcoming the drawback of the loss of information 
presented by the classical linguistic computational models [7]: (i) The model based on the 
Extension Principle [I], (ii) and the symbolic one [3]. The 2-tuple fuzzy linguistic repre- 
sentation model is based on symbolic methods and takes as the base of its representation 
the concept of Symbolic Translation. 

Definition 1. The Symbolic Translation of a linguistic term si E S = { S O ,  ..., sg} is a nu- 
merical value assessed in [ - .5,  . 5 )  that support the ”difference of information” between 
a counting of information /? E [0,  g] and the closest value in (0, ..., g }  that indicates the 
index of the closest linguistic term in S (  si), being [O,g] the interval of granularity of S. 

LFrom this concept a new linguistic representation model is developed, which repre- 
sents the linguistic information by means of 2-tuples ( r i ,  a,) ,  ri E S and ai E [ - . 5 ,  . 5 ) .  
ri represents the linguistic label center of the information and ai is the Symbolic Trans- 
lation. 

This model defines a set of functions between linguistic 2-tuples and numerical values. 

Definition 2. Let S = {SO, ..., sg} be a linguistic term set and p E [0, g] a value sup- 
porting the result of a symbolic aggregation operation, then the 2-tuple that expresses the 
equivalent information to P is obtained with the following function: 

The 2-Tuple Fuzzy Linguistic Representation Model 

A : [O,g] --t S x [ - 0 . 5 , 0 . 5 )  

where r o u n d ( . )  is the usual round operation, si has the closest index label to ”p”  and 
”a” is the value of the symbolic translation. 
Proposition 1.Let S = {so, ..., sg} be a linguistic term set and (si, a )  be a linguistic 
2-tuple. There is always a A-lfunction, such that, from a 2-tuple it returns its equivalent 
numerical value p E [0, g] in the interval of granularity of S. 
Proof. It is trivial, we consider the following function: 

A--’ : S x [ - . 5 ,  . 5 )  - [O,g] 

Remark 1. From Definitions 1 and 2 and Proposition 1, it is obvious that the conver- 
sion of a linguistic term into a linguistic 2-tuple consist of adding a value 0 as symbolic 
translation: si E S =+ ( s i ,  0) 

A-’(S~,  a )  = i + = p 
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3 Aggregation Process for Heterogeneous Information in a GDM Problem 

In this section we propose a method to carry out the aggregation step of a GDM process 
defined in a heterogeneous information context. We focus on GDM problems in which 
the preference relations provided, can be: 

0 Fuzzy preference relations [ 1 11. 

0 Interval-valued preference relation [ 151. 

0 Linguistic preference relation assessed in a pre-established label set [4]. 

Our proposal for combining the heterogeneous information is composed of the fol- 
lowing phases: 

1. Making the information uniform. The heterogeneous information will be unified 
into a specific linguistic domain, called Basic Linguistic Term Set (BLTS) and sym- 
bolized as ST. Each numerical, interval-valued and linguistic performance value 
is transformed into a fuzzy set in ST, F(ST) .  The process is carried out in the 
following order: 

(a) Transforming numerical values in [0,1] into F ( S T ) .  

(b) Transforming linguistic terms into F ( S T ) .  

(c) Transforming interval-valued into F ( S T ) .  

2. Aggregating individual pe$ormance values. For each alternative, a collective per- 
formance value is obtained by means of the aggregation of the above fuzzy sets on 
the BLTS that represents the individual performance values assigned by the experts 
according to hislher preference. 

3. Transforming into 2-tuple. The collective performance values (fuzzy sets) are trans- 
formed into linguistic 2-tuples in the BLTS and obtained a collective 2-tuple lin- 
guistic preference relation. 

Following, we shall show in depth each phase of the aggregation process. 

3.1 Making the Information Uniform 

In this phase, we have to choose the domain, ST,  to unify the heterogeneous information 
and afterwards, the input information will be transformed into fuzzy sets in ST. 

3.1.1 

The heterogeneous information is unified in a unique expression domain. In this case, we 
shall use fuzzy sets over a BLTS, denoted as F ( S T ) .  We study the linguistic term set S 
used in the GDM problem. If 

Choosing the Basic Linguistic Term Set 

1. S is a fuzzy partition, 

2. and the membership functions of its terms are triangulal; i.e., si = (ai, bi, Ci) 
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Then, we select S as BLTS due to the fact that, these conditions are necessary and suffi- 
cient for the transformation between values in [0,1] and 2-tuples, being them carried out 
without loss of information [6]. 

If the linguistic term set S, used in the definition context of the problem, does not 
satisfy the above conditions then we shall choose as BLTS a term set with a larger number 
of terms than the number of terms that a person is able to discriminate (normally 11 
or 13, see [l]) and satisfies the above conditions. We choose the BLTS with 15 terms 
symmetrically distributed, with the following semantics (graphically, Figure 2). 

SO (0,0,0.07) ~1 (0,0.07,0.14) ~2 (0.07,0.14,0.21) 
~3 (0.14,0.21,0.28) ~4 (0.21,0.28,0.35) ~5 (0.28,0.35,0.42) 
S6 (0.35,0.42,0.5) S7 (0.42,0.5,0.58) 38 (0.5,0.58,0.65) 
sg (0.58,0.65,0.72) ~ 1 0  (0.65,0.72,0.79) ~ 1 1  (0.72,0.79,0.86) 

~ 1 2  (0.79,0.86,0.93) ~ 1 3  (0.86,0.93,1) 514 (0.93,1,1) 

Figure 2: A BLTS with 15 terms symmetrically distributed 

3.1.2 Transforming the Input Information Into F ( S T )  
Once chosen the BLTS, we shall define the transformation functions that will be neces- 
sary to unify the heterogeneous information. The process of unifying the heterogeneous 
information involves in any occasions the comparison between fuzzy sets. These compar- 
isons are usually carried out by means of a measure of comparison. We focus on measures 
of comparison which evaluate the resemblance or likeness of two objects (fuzzy sets in 
our case). These type of measures are called measures of similitude [13]. For simplic- 
ity, in this paper we shall choose a measure of similitude based on a possibility function 
S ( A ,  B )  = m a ,  min(pla(x), p g ( x ) ) ,  where p~ and pg are the membership function of 
the fuzzy sets A and B respectively. 
3.1.2.1. Transforming numerical values in [0,1] into F(ST) .  

Let F ( S T )  be the set of fuzzy sets in ST = { S O ,  . . . , ss}, we shall transform a nu- 
merical value 6 E [0,1] into a fuzzy set in F ( S T )  computing the membership value of 6 
in the membership functions associated with the linguistic terms of ST .  
Definition 3. [6] Thefunction r transforms a numerical value into a fuzzy set in ST: 

7 : [o, 11 + F ( S T )  
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Remark 2. We consider membership functions, psi  (.), for linguistic labels, si E ST,  
that achieved by a parametric function ( ai, bi , di , ci). A particular case are the linguistic 
assessments whose membership functions a triangular, i.e., bi = di. 

Example 1. 

{ S O ,  . . . , s4). The semantics of this term set is: 
Let 1.9 = 0.78 be a numerical value to be transformed into a fuzzy set in S = 

SO = (0,0,0.25) s1 = (0,, 0.25,0.5) s2 = (0.25,0.5,0.75) s3 = (0.5,0.75,1) s4 = (0.75, 1,l)  

Figure 3: Transforming a numerical value into a fuzzy set in S 

Then, the fuzzy set obtained is (See Fig. 3): 

3.1.2.2. Transforming Linguistic Terms in S into F ( S T ) .  

Definition 4.[9] Let S = { l o ,  . . . , l p }  and ST = {so,. . . , sg} be two linguistic term 
sets, such that, g 2 p .  Then, a multi-granularity transformation function, TSS,, is dejined 
as: 

TSST : A F ( S T )  
TSST (li) = { ( C k ,  7;) / k E (0, *.., S } } ,  vli E S 

7; = maxy min{Pl, (Y), P C k  (Y)} 

where F ( S T )  is the set offuzzy sets dejined in ST, and ~ 1 %  (.) and pCE (.) are the member- 
ship functions of thefuzzy sets associated with the terms l i  and C k ,  respectively. 

Therefore, the result of TSS, for any linguistic value of S is a fuzzy set defined in the 
BLTS, ST. 
Example 2. 

labels, respectively, and with the following semantics associated: 
Let S = { l o ,  ZI, . . . , Z4) and ST = { S O ,  sl,.. . , s6) be two term sets, with 5 and 7 

l o  = (O,O, 0.25) I 1  = (0, ,0.25,0.5) so = (0,0,0.16) 31 = (0,0.16,0.34) 
12 = (0.25,0.5,0.75) 13 = (0.5,0.75,1) s2 = (0.16,0.34,0.5) s 3  = (0.34,0.5,0.66) 
14 = (0.75, 1,1) s4 = (0.5,0.66,0.84) s j  = (0.66,0.84,1) 

S6 = (0.84, 1, 1) 
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Figure 4: Transforming 11 E S into a fuzzy set in ST 

3.1.2.3 Transforming Interval-Valued into F (  S T ) .  

Let I = [-,;I be an interval-valued in [0,1], to carry out this transformation we as- 
sume that the interval-valued has a representation, inspired in the membership function of 
a fuzzy set [ 121 as follows: 

0, i f 1 9 < 6  
PI(19)  = 1, i f i<19IZ i 0, i f ; < 1 9  

where 19 is a value in [0,1]. In Figure 5 can be observed the graphical representation of an 
interval. 

Figure 5: Membership function of I = [i, 4 

Definition 5. Let ST = { S O , .  . . , s g }  be a BLTS. Then, the function qsTtransforms a 
interval-valued I in [0,1] into afuzzy set in ST as follows 

‘Is, ‘ I F ( S T )  

‘IS,(I )  = {(Ck, 7;)  / k E (0, ... , g)), 
7; = maxy min{ P I  (Y) 1 P C k  (Y)} 

where F ( S T )  is the set offuzzy sets dejined in ST, and P I ( . )  and p C k  (.) are the member- 
ship functions associated with the interval-valued I and terms C k ,  respectively. 
Example 3. 

Let I = [0.6,0.78] be an interval-valued to be transformed into F ( S T ) .  The semantic 
of this term set is the same of Example 1. The fuzzy set obtained applying 718, is (see 
Fig. 6 )  : 
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Figure 6: Transforming [0.6,0.78] into a fuzzy set in ST 

3.2 Aggregating Individual Performance Values 
Using the above transformation functions we express the input information by means 
of fuzzy sets on the BLTS, ST = {so,, . . , s g } .  Now we use an aggregation function 
for combining the fuzzy sets on the BLTS to obtain a collective performance for each 
alternative that will be a fuzzy set on the BLTS. 

For the heterogeneous GDM the preference relations are expressed by means of fuzzy 
sets on the BLTS, as in the Table 1. Where p f j  is the preference degree of the alternative 
zi over xj provides by the expert e h .  

Table 1 : The preference relation 
P h  = { ( s o , r ~ ~ ) , . . . , ( s , , y ~ ~ ) )  . . .  P k  = {(SO,Y~,n),...,(,g1Y~gn)> 

P 5  = {(SO,Y~~),...,(Sg,Y~~)} . . *  P L  = {(so,Y~~,n,n),’.’,(sg,Yfcngn)} 

. . .  

. .  

pek = 

We shall represent each fuzzy set, p $ ,  as r$ = (7;; , . . . ,yX) being the values of 
rFj their respective membership degrees, Then, the collective performance value of the 
preference relation according to all preference relations provided by experts { r:, Vek} is 
obtained aggregating these fuzzy sets. These collective performance values are denoted 
as r t j  , form a new preference relation of fuzzy sets defined in ST, i.e., 

T . .  - ( ij 
23 - Yo ,‘.*,Yy) 

Y?? = f(rfj,,. * .  , Y k J  

characterized by the following membership function: 
ij 

where f is an “aggregation operator” and k is the number of experts. 

3.3 Transforming into Linguistic 2-Tuples 
In this phase we transform the fuzzy sets on the BLTS into linguistic 2-tuples over the 
BLTS. In [9] was presented a function x that transforms a fuzzy set in a linguistic term 
set into a numerical value in the interval of granularity of ST,  [0, g ] :  

x : F ( S T )  + [o,g]  cg= j Y j  
X ( T ( 4 )  = X({(Sj ,Yj )>  j = 0, ... 191) = = P*  

Therefore, applying the A function to p we shall obtain a collective preference relation 
whose values are linguistic 2-tuples. 
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4 A GDM Problem Defined in a Heterogeneous Information Context 

Let’s suppose that a company want to renew its computers. There exist four models of 
computers available, {HP, IBM, COMPAQ and DELL} and three experts provide hisher 
preference relations over the four cars. The first expert expresses hisher preference re- 
lation using numerical values in [0,1], p?. The second one expresses the preferences by 
means of linguistic values in a linguistic term set S (see Figure 1), Pz.  And the third 
expert can express them using interval-valued in [0, I],  P i .  The three experts attempt to 
reach a collective decision. 

Table 2: Preference relations 
p3’ 

- [.7, .8] [.65,.7] [.8, .9] 
[.7, .S] - [.6, .7] [.8, ,851 

.8 .9 V H  H - [.8, .9] [.6, .7] - [.7, .9] 

.4  .5 .4 - V H  V H  - [.8, .9] [.8, ,851 [.7,.9] - 

4.1 Decision Process 

We shall use the following decision process to solve this problem: 

A) Aggregation Phase 
We use the aggregation process presented in Section 3. 

1. Making the information uniform 

(a) Choose the BLTS. It will be S, due to the fact, it satisfies the conditions 
showed in Section 3.1.1. 

(b) Transforming rhe input information into F(ST). (e.g., see Table 3). 

Table 3: Fuzzy sets in a BLTS 
- ( O , O , O ,  1 ,0 ,0 ,0 )  ( O , O , O , O ,  .19, .81,0) (0,0, .59,  .41,0,0,0) 

- ( O , O ,  .59, .41,0,0,0)  
- ( O , O ,  O , O ,  0, .59, .41) ( O , O ,  0,1 ,0 ,0 ,0)  0 , L  o,o,  0 )  

(0 ,0 ,0 ,0 , . 19 , . 81 ,0 )  (0 ,0 ,0 ,0 ,0 , . 59 , . 41 )  
(0, 0, .59, .41,0,0,0) (0 ,  0, 0, 1, 0, 0, 0) (0, 0, .59, .41 ,0 ,0 ,0)  - 

P; = 

(c) Aggregating individual performance values. In this example we use as ag- 
gregation operator, f, the arithmetic mean obtaining the collective preference 
relation: 

Table 4: The collective Preference relation. 

( O , O , O ,  .14, .67, .26, .14) ( O , O , O ,  .33, .06, .67, 
( O , O ,  . 2 ,  .14, .27, .67, 

- ( O , O ,  O,O,  .6, .27,0) ( O , O ,  0, .04, .4, .67,0) ( O , o ,  .2, .47, .27, .33, .I4 
( O , O ,  O , O ,  .6, .27,0) - 

(0 ,0 ,0! .04 , .4 , .67 ,0)  (0 ,0 ,0 , .14 , .67 , .26 , .14)  - 
O ! O :  .2, .47, .27, .33, .14) ( O , O , O ,  .33, .06, .67, .04) ( O , O ,  .2, .14, .27, .67, .14) - 
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H P  I I B M  
(H,.23) I (H,.34) 

2. Transforming into linguistic 2-tuples. The result of this transformation is the 
following: 

COMPAQI DELL 
(H,.4) I (H,.16) 

- ( H ,  .31) ( V H ,  -.43) ( H ,  -.18) 
- ( H ,  .33) ( H ,  .38) 

- ( H ,  .29) 
( H ,  .31) 

( V H ,  -.43) ( H ,  .33) 
( H ,  -.18) ( H ,  .38) ( H ,  .29) - 

B) Exploitation Phase 

native zi over the rest of alternatives. To do so, we shall use the following function: 
To solve the GDM problem, finally we calculate the dominance degree for the alter- 

1 
n - 1  

h(zi)  = - 
j=o 1 j#i 

where n is the number of alternatives and Pij = A-l(pij) being pij  a linguistic 2-tuple. 
In this phase we shall calculate the dominance degree for this preference relation: 

Table 5: Dominance degree of the alternatives 

Then, dominance degrees rank the alternatives and we choose the best alternative@) 
as solution set of the GDM problem, in this example the solution set is {COMPAQ}. 

5 Concluding Remarks 

We have presented an aggregation process for aggregating heterogeneous information in 
the case of numerical, interval-valued and linguistic values. This aggregation process is 
based on the transformation of the heterogeneous information into fuzzy sets assessed in 
a unique basic linguistic term set. And afterwards, these fuzzy sets are converted into 
linguistic 2-tuples. The aggregation process has been applied to a GDM problem defined 
in a heterogeneous information context. 

In the future, we shall apply this aggregation process to other types of information 
used in the literature to express preference values as Interval-Valued Fuzzy Sets and Intu- 
itionistic Fuzzy Sets. 
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Abstract 
In this paper, we show a possible application of fuzzy rough sets to function approxi- 
mation based on decision tables. Through this study, we demonstrate that continuous 
attribute values can be treated by fuzzy rough sets. A general approach for reasoning of 
decision attribute values from condition attribute values based on a given decision table is 
presented. A specific method in one dimensional case is discussed and some properties of 
the method are shown. Some modifications are applied for getting a better approximation 
and a smaller body of rules. 

Keywords: Fuzzy rough sets, approximation, continuous attribute, inference 

1 Introduction 
Rough sets [ l ]  have been well applied to analyze information tables. By the method- 
ologies based on rough sets, we can find the reduced information tables without losing 
the accuracy of the object classification, and the minimum descriptive decision rules [2]. 
These methodologies are effective mainly when attribute values are discrete. To treat con- 
tinuous attribute values, some discretization is necessary. Thus these methodologies are 
not good at extraction of continuous functions implicit in given information tables. 

Recently rough sets are generalized in various ways. Yao and Lin [3] has shown 
the correspondence between rough sets and Kripke model of modal logic, and general- 
ized rough sets by extending equivalence relations to various relations from viewpoint of 
the correspondence. Slowinski and Vanderpooten [4] have discussed rough sets under a 
similarity relation which satisfies the reflexivity only. Greco et al. [5][6] have proposed 
rough sets under a dominance relation. Yao [7][8] and Inuiguchi and Tanino [9] have also 
investigated the extensions of rough sets. 

On the other hand, rough sets under fuzzy relations were discussed from relatively 
long ago [10][11]. However fuzzy rough sets have never been applied to analysis of 
information tables so far. Recently a new type of fuzzy rough sets has been proposed 
by Inuiguchi and Tanino [12]. It is shown that this new fuzzy rough sets give better 
approximations than the previous fuzzy rough sets [12]. 

Those generalizations reveal that several interpretations can be applied to rough sets. 
At the current, two interpretations are proposed, i.e., rough sets as classification among 
positive, negative and boundary elements, and rough sets as approximations of a set by 
means of elementary sets derived from a given relation [12]. The purpose of the applica- 
tion can be distinct depending on the interpretation of rough sets. Since the definition of 
rough sets is different by the interpretation, the application methods can also be different. 
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For the treatment of continuous attribute values, fuzzy rough sets would be useful 
since it might produce fuzzy if-then rules from the given information table and fuzzy if- 
then rules might be capable of interpolative reasoning. In order to produce fuzzy if-then 
rules for interpolative reasoning, we should apply the second interpretation of rough sets, 
i.e., rough sets as approximations of a set by means of elementary sets since by the first 
interpretation we will not obtain rules for all elements but only for positive and negative 
elements. While the traditional fuzzy rough sets are based on the first interpretation, the 
new fuzzy rough sets proposed by Inuiguchi and Tanino [12] are based on the second 
interpretation. 

In this paper, we discuss the treatment of continuous attribute values by fuzzy rough 
sets proposed by Inuiguchi and Tanino [12]. For the first step of the research, we discuss 
the approximation of a continuous function by means of fuzzy rough sets when some data 
about the function is given. In the next section, we describe fuzzy rough sets briefly. Then 
we propose an interpolative reasoning method derived from fuzzy rough sets in Section 3. 
We will show the correspondence between fuzzy rough sets and fuzzy if-then rules. A 
specific construction of fuzzy rules from a given information table (data) is discussed 
in Section 4. Some properties of the specific method are shown. A simple example 
of approximation of a function by means of fuzzy rough sets is given. In Section 5, 
modifications are proposed for getting a better approximation and for minimizing the 
number of rules. Concluding remarks are described in Section 6. 

2 Fuzzy Rough Sets 
Fuzzy rough sets are originally defined by Dubois and Prade [lo] (independently, Naka- 
mura [ 131 also defined fuzzy rough sets in a different way). In this definition, the lower 
and upper approximations are defined by necessity and possibility measures. The fuzzy 
rough sets are defined by pairs of lower and upper approximations. This definition is valid 
only when a fuzzy similarity relation is given. Recently, Inuiguchi and Tanino [12] de- 
fined a new type of fuzzy rough sets based on certainty qualifications. This type of fuzzy 
rough sets can be defined even if a family of normal fuzzy sets is given. Moreover the 
new fuzzy rough sets provide better lower and upper approximations. 

In the original fuzzy rough sets, membership function values of lower and upper ap- 
proximations show the degrees to what extent elements are included in positive and pos- 
sible regions of the given set, respectively, On the other hand, in the new fuzzy rough 
sets, lower and upper approximations are best approximations, i.e., largest and smallest 
fuzzy sets which take the same necessity degrees as a given fuzzy set takes. Thus the new 
fuzzy rough sets will be useful for approximate reasoning such as interpolative reason- 
ing while the original fuzzy sets will be useful for robust reasoning or for reasoning all 
possible conclusions. For the approximation of a continuous function implicit in a given 
information table, interpolation is necessary. We use the new fuzzy rough sets introduced 
below. 

Let 3 = {FI  , F . ,  . . . , F p }  be a family of fuzzy sets F, such that there exists w E R 
satisfying p ~ ~ ( w )  = 1, where p ~ ,  is a membership function of Fi and R is a universal 
set. Then, given a fuzzy set A 52, lower and upper approximations of A are defined as 
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Table 1 : Properties of FO (A)  and Fo (A)  
( 9  
(ii) 
(iii) F o ( A n B )  C F o ( A ) n F m ( B ) ,  F 0 ( A u B )  > F o ( A ) U F o ( B )  
(iv) 

(vi) 

.%(A) E X L 3,"(A) 
FO(0)  = 0, F0(a)  = R 

A C B implies &(A)  C Fo(B),  A C B implies Fo(A)  G Fo(B) 

Fo(R - X) = R - F0(A) ,  Fo(R - X )  = R - &(A)  
(v) 

(vii) 

Fo ( A  U B )  2 Fa (A)  U 3 0  (B) ,  Fo(A  n B)  C Fo(A) n Fo (B)  

.%(-%(A)) = -%(A), .%(A) C Fo(,TO(A)) C Fo(A) ,  
F0(F0(A))  = FO(A) ,  Fo(A) 1 Fo(FO(A)) 2 Fo(A) 

follows (see Inuiguchi and Tanino [12]): 

p3b ( A )  = i=y$x. ,~ ( [ I ]  (PFi  NFi ( A ) )  , (1) 

P F O ( A ) ( z )  = min n('$[I](PFi(z),NFi(R - A ) ) ) ,  (2) i=1,2,  ... ,p 

where I : [0,1] x [0,1] -+ [0,1] is an implication function satisfying 

(11) I(1,O) = 0 and I(0,O) = I ( 0 , l )  = I(1,l) = 1, 
(12) I ( c ,  b )  5 I ( a ,  d )  if 0 5 a 5 c 5 1 and 0 5 b 5 d 5 1, 
(13) I is upper semi-continuous. 

n : [0,1] -+ [0, 11 is a strong negation, i.e., a strictly decreasing function such that n(0) = 
1 and .(.(a)) = a. ([I], NF, and R - A are defined by 

UI(a ,  b) = inf { h  I I ( %  h)  L b},  (3) 

N F i  (A )  = inf I (  PFi ( W )  , P A  ( W )  ), (4) 

P.ln-A(w) = n ( P A ( W ) ) .  ( 5 )  

O<h<l 

w E n  

A fuzzy rough set is defined by a pair of the lower and upper approximations. 

listed in Table 1. 
The lower approximation Fo (A)  and the upper approximation Fo ( A )  have properties 

3 
We assume an information table is given. Let X = {z~,xz, . . . , z,, y} be a set of at- 
tributes. We divide the attributes into two groups: an attribute y composes a group and 
the remaining attributes compose the other group. Thus the information table is regarded 
as a decision table with criteria z l , x ~ ,  , . . , x, and a decision attribute y. Moreover we 
assume that attribute values of zi, i = 1 , 2 ,  . . . , m and y are continuous, i.e., real num- 
bers. The structure of the decision table is shown in Table 2. For the sake of simplicity, 
G ( W )  and y(w) denote the xi- and y-values of an object w. 

Let VZi and Vy be sets of possible attribute values of zi and y, respectively. Let 
Z(W)  = ( z ~ ( w ) , z ~ ( w ) ,  . . . , x , ( w ) ) ~  and Ci!j = (Z{,Z$, . . . , &)'. To apply fuzzy 
rough sets described in the previous section, we should define a family of fuzzy sets 
3 = { F1, Fz, . . . , Fp} on V,, x V,, x . . . x Vzm and fuzzy sets Y ,  on V,, i = 1 , 2 ,  . . . , q.  

Inference on Function Value from Information Table 
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Table 2: The structure of the decision table 

The interpolative reasoning from Table 2 will be based on the following rules: 

if z(w) is near xi then y(w) is near yi, j = 1 , 2 , .  . . , n. (6) 

We appropriately define a fuzzy set Fj so as to represent 'near ZJ', j = 1: 2, . . . , n. Sim- 
ilarly, we appropriately define a fuzzy set y3 so as to represent 'near yJ ' ,  j = 1 , 2 ,  . . . , n. 

Let F j  and % be fuzzy sets of objects on R = { w ~ ,  w2, . . . , wn} defined by 

Then we obtain a lower approximation FD (8,) for each % as 

PFD(Pj)(") = z=ynFIIl ( P P * ( W P i ( % ) ) .  (9) 

However to obtain FD(%) we should calculate N p , ( $ ) ,  i = 1 , 2 , .  . . , n. This will be 
computationally expensive and we expect Npt (%) = 0 for i # j in many cases. From 
this point of view, we use the following simple lower approximation .F($): 

P Z ( P j ) ( 4  = <[I1 ( P P , ( W F j ( % ) ) ~  (10) 

Obviously, we obtain 

.F($,) c &I(%) c %,* (1 1) 

Note that each E ( $ )  corresponds to a rule in (6). 

the membership degree to Yj more than p F ( ~ ,  (w). Namely, we have 
Using the lower approximation .F(%), for any z ( w )  = x*, we know that y(w) has 

- 

Y(W) E [qlfiE(p,)(u)l j = 1 , 2 1 . ' .  ,n1 (12) 

where [ q ] h  is an h-level set, i.e., 

[ q l h  = {Y E R I P Y j ( Y )  L h}. (13) 

By (12), we may estimate y(w) as 
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In the way described above, we can infer the range of y(w) as Y ( w )  defined in (14). 
However, there is no guarantee that Y ( w )  # @. It is said that rules (6) are consistent at 
z ( w )  if and only if Y ( w )  # 0. Moreover, it is said that rules (6) are globally consistent if 
and only if rules (6) are consistent at any w E R. Note that even if rules (6) are globally 
consistent, the estimation of y(w) based on rules (6) is not always precise, nor exact. 
Namely we may have lY (w) l  > 1 and y(w) $! Y ( w ) .  

4 A Specific Method 
In the previous section, we described an inference mechanism based on fuzzy rough sets. 
To actualize this inference, we should determine I ,  Fi and x, i = 1 , 2 ,  . . . , n, concretely. 
This section is devoted to this topic. 

(14) there exists i E (0,1] such that I (a ,  b) 2 i if and only if a I b. 

Then we have 

First of all, we use an arbitrary implication function I satisfying 

Godel, tukasiewicz, Goguyen implications and more generally, R-implication functions 
[14] defined by t-norms satisfy (14) with = 1. Moreover, implication functions proposed 
by Inuiguchi and Tanino [14] satisfy (14) with f i  = 0.5. 

We define Fi by 

pI7, (z*) = V,($(Z*)) ,  x* E v,, x v,, x . . . x vzm 1 (16) 

where 7, : [0, +m) -+ [0,1] is a quasi-concave function such that q($ (Z ' ) )  = 1 and 
limr++co ~ , ( r )  = qz(r )  = 0. $ : R" -+ R is a continuous scalarizing 
function such that $(O) = 0 and $ ( T ~ )  2 $(Q) if T I  2 T ~ .  For example, we may define 
vZ(r) = max(1 - /rI/d, 0) and $(z) = C,"=, zz, where d is a positive number showing 
the degree of tolerance. 

Consider points (9:' pLq), z = 1 , 2 , .  . . , n, j = 1 , 2 , .  . . , n defined by 

Y: = Y', PLq =s[11(P$t?14!hZ)1 (17) 

where hi E (0,1] is a predetermined value, By definition, p: = 1 and pi < 1, j # i. We 
define v i , i  = 1 , 2 , .  . . , n , j  = 1 , 2 , .  . . , n b y  

For each i E { 1 , 2 ,  . . . , n}, we define 
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We also define p; and P: by 

Renumber elements of a set {y: I j E J; U J,'} so that we have y:"(') < Y:"~) < 
. . *  < y:""). We may have { j t ( k )  I k = 1 , 2 , .  . . , sZ} c J; U J,' because we may have 
y,kl = y? for kl # k2 and kl, k2 E J; U J,'. We have pfl = pfz if y,kl = y,k2. Then 
we define Y ,  by the following piecewise linear membership function: 

where E > 0 is theoretically an infinitesimal nonstandard number, i.e., a number greater 
than zero yet smaller than any positive real number. However, in practice, we set E as a 
very small positive real number. 

Under the setting above, we have Npt (2) = hZ, i = 1 , 2 ,  . . . , n. Under certain 
conditions, we guarantee the global consistency as shown in the following theorem. 
Theorem 1. If 1 satisfies (I4), F, is defined by (16) with a convex function 77% and Y,  is 
defined by (23) with h2 = i, i = 1 , 2 ,  , , . , n, then rules (6) are globally consistent. 

The next theorems will be used for getting a minimal number of rules which are exact 
at any z ( w 2 ) ,  i = 1 , 2 , .  . . , n. 
Theorem 2. If there exist i, j E {1 ,2 , .  . . , n} such that k E J,' n J;, then Y ( w L )  = 

Theorem 3. If 1 J,' I > 1 and I JJ, I > 1 for i, j E { 1 , 2 ,  . . . , n}, then Y ( w )  is bounded 
for any object w such that p ~ , ( z ( w ) )  2 p: and p~~ ( z ( w ) )  L p:. 
Example 1. Let us apply the proposed method to a decision table given in Table 3 with 
two attributes z (criterion) and y (decision). We use z instead of z1 since we have m = 1 
in this example. Actually those data are obtained by a function y = z3 -9s with randomly 
generated z in the range [-7,7]. Thus we try to approximate a function y = z3 - 92 using 
fuzzy rough sets based on Table 3. 

{Y". 
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Table 3: A Simple Decision Table 
X 

5.850633977 
4.5555777 

4.036283714 
2.937410143 
0.821 639766 
-0.694559623 
-2.956441 836 
-4.575922623 
-5.08668439 

-6.71 1483266 

Y 
147.61 10151 
53.54301755 
29.43091069 
-1.09160521 
-6.840075536 
5.9 1597 1966 
0.767053774 
-54.63225069 
-85.83453386 
-241.908754 

We define qi(r) = max(1- 1r1/5,0) and $(z) = X. Thus we obtain triangular fuzzy 
numbers Fa, i = 1,2, .  . . , lo .  By (23), we can calculate each Yi with a piecewise linear 
membership function. 

For the obtained rules, Jar and J,’ are as follows: J;  = { 1,2,3,4}, J;’ = { 1}, J; = 
{2,3,4,5}, JZ = {l,2}, 5; = {3,4,5}, 5: = {1,3}, J L  = {4,5}, JZ = {1,4}, 
JL = {5}, J$ = {2,5}, J< = {6,8}, JZ = {3,6}, JF = {7,10}, J: = {6,7}, 
JF = (8, lo}, J$ = {6,7,8}, J; = (9, lo}, Jg’ = {6,7,8,9}, JG = {lo} and 
J,+O = {7,8,9,10}. 

For w E [-6.5,5.5], we estimate y ( w )  by (14). The upper and lower bounds of 
Y ( w )  are depicted as ‘estimat\:d upper curve’ and ‘estimated lower curve’ in Figure 1. In 
Figure 1, the curve y = z3 - 92 is also depicted. We can see that the obtained rules are 
globally consistent. 

5 Modifications 
5.1. Improving the approximation 
Even when the assumptions of Theorem 1 is satisfied, the approximation is not very good 
as shown in Figure 1. From Theorems 2 and 3, we expect that the approximation will be 
improved by increasing I Jt: 1 and 1 J: 1 for i = 1 ,2 ,  . . . , n. To increase I Jay I and I J: 1, 
we may update 7; so as to satisfy vi($(Zj)) = py, ($), for all j such that p ~ $  (3j) > 0. 
Because Fi means ‘near xa’, qa should satisfy vi($(Zj)) 5 q i ( $ ( Z k ) )  for j and k such 
that $ ( % j )  < $(Zk) < $(xi) or $ ( ~ j )  > $(&) > $(ZZ). Taking into account this 
requirement, qi can be updated by the following procedure. 
(a) Let 7r : {1,2,. . . , n} --f {1 ,2 , .  . . , n} be a permutation such that $(xm(’)) 5 

(b) Set k = 1 and vo = 1. 
(c) If qa($(%m(a*+k))) 5 0 then go to (0. 
(d) uk = min(uk-1, p ~ ~ ( f j ~ ( ~ * + ~ ) ) ) .  
(e) Update Ic = k + 1. Return to (c). 
(0 Set k = -1. 
(g) If qi($(zm(i*+k))) 5 0 then go to (0. 
(h) uk = min(w+l,  PY, (y 

$(5?m(2)) 5 . . . 5 $ I ( % ~ ( ~ ) ) .  Let i* be an index such that 7r(i*) = i. 

)). - T ( i * + k )  



100 

-250 

Figure 1: Y ( w )  for w E [-6.5,5.5] 

(i) Update k = k - 1. Return to (g). 
(j) qi is updated by (24). 

('uk - 'LJk+l)('$(%c"(i*ik) 1 - r )  
1 

(24) 
v k  - $(,c"(i*+lc)) - +(,7r(i*+k+l) 

11, if 31~; T E ($(itc"(i*+k) ), +(,T(i'+k+l) 

vk 3 if 3k; T = + ( , ~ ( i * + k ) ) ,  

qi(r),  otherwise. 

qi(r) = 

When assumptions of Theorem 1 are satisfied, we have the following theorem. 
Theorem 4. If assumptions of Theorem 1 are satisfied then rules (6 )  are globally consis- 
tent with the updated qi, i = 1 , 2 , .  . . , n. 

Theorem 5. Let m = 1. Assume that xi, j = 1 , 2 , .  . . , n are all different one 
another, that each vi is linear in the range ( 0 , l )  and that assumptions of Theorem 1 
are satisfied. Then, for rules (6) with updated qi's, the following assertion is valid: if 
the function implicitly in decision table is monotonously increasing or decreasing, then 

For rules (6) with modified qi's, we have the following theorem. 

for w with z1(w) E [mini=1,2 ,... ,n x l ,  a maxi=1,2 ,... ,n xi]  Y ( w )  = {yL(xl(w))), where 
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200 yl- 

-250 

Figure 2: Y ( w )  from the modified rules 

yL : [mini=l,z, ... ;n xi, m a x i , ~ ~ ,  ... ,R xi] + R is a piecewise linear function defined by 

where {x; I j = 1 , 2 ,  . . . , n}  are renumbered so that we have $) < < . . < 
x:i(n) 

1 '  

Example 2. Let us apply the modification to the rules obtained in Example 1. The results 
are depicted in Figure 2 .  Jt: and J? are obtained as follows: 51 = { 1,2,3,4}, 5: = 
{l}, J p  = {2,3,4,5}, J$ = {1,2}, 5; = {3,4,5}, 52 = {1,2,3}, 5; = {4,5}, 
52 = {1,2,3,4}, J L  = {5}, 5: = {2,3,4,5,6}, J L  = {5,6,7,8,9}, J6+ = {3,6}, 
JF = {7,8,9,10}, 5; = {6,7}, J i  = {8,9,10}, J z  = {6,7,8}, JG = (9, lo}, 
5: = {6,7,8,9}, J; = {lo} and J&, = {7,8,9,10}. iJt:\ and 1J;l are increased. 
As is shown in Figure 2 ,  the approximation is improved. Moreover, we can see that the 
monotonous parts of the function is approximated by linear interpolation. 

5.2. Minimizing the number of rules 
There is no guarantee that all of the obtained rules are indispensable. The obtained rules 
may include some superfluous rules. In this subsection, we select indispensable rules from 
the obtained ones under the restrictions that we can reproduce the given data precisely 



102 

and we obtain a bounded Y ( u )  for any z ( w )  such that +(z(w)) E [mini=l,,,, ,R $(%'), 
maxi=l, ... ,n + ( * z ) ] .  

index sets: 
To do this, Theorems 2 and 3 should be applied. We define the following two kinds of 

P ( k )  = {i I k E J,:'}, M ( k )  = {i I k E Jt:}. (26)  

From Theorem 2, if jP(k)l = 1 (resp. IM(k)I = l), we cannot reproduce the k-th 
data unless we select the only element in P ( k )  (resp. M ( k ) ) .  On the other hand, from 
Theorem 3, we can observe that even if there exists i, j such that k E P(i )  and j E N ( j )  
for any k E { 1 , 2 , .  . . , n}, we may have unbounded Y ( w )  for some z ( w )  such that 
$J(z(w)) E [mini=l,._. ,n +(%i), maxi,l,,,, ,n +(%a)]  if there is no J,:' (resp. Jt:) such 
that k E J,' (resp. k E Jz-) and IJ? I > 1 (resp. IJt: I > 1) for some k E (1,. . . , n}. 

Considering those facts, we can select the rules by the following procedure, where we 
suppose that the obtained n rules can reproduce the given data precisely and produce a 
bounded Y ( w )  for any z ( w )  such that +(z(w))  E [mini=l,, , ,  ,n +(S i ) ,  maxi,l, ... ,n +(%i)]. 

(a) Let N = {1 ,2 , .  . , , n}. Calculate P ( k )  and M ( k ) ,  k E N .  For k E N, calculate 
~ - ( k )  = min +(zi), q - ( k )  = max$(ii?), 

i € J ;  i e J ;  

Let K P  = K N  = Nand  R P  = RN = [mini,l,n ,... ,n l - ( i ) ,  maxi=l,:! ,... ,n q + ( i ) ] .  
(b) Let R = { k  I P ( k )  = { k }  or M ( k )  = { k } } .  Update N by N = N\R. 
(c) Update K P ,  K N ,  R P  and R N  by 

K P  = KP\R, R P  = RP\ U [ l + ( k ) , q + ( k ) ] ,  

K N  = KN\R, R N  = RN\ U [ l - ( k ) , q - ( k ) ] .  

(d) If K P  = K N  = 0 and R P  = R N  = 0 then terminate the algorithm. The members 
of R are indices of selected rules. Let I R P  = {i 1 $(ai )  E cl(RP)} and I R N  = 
{i I + ( % z )  E cl(RN)}.  

( e )  For each k E N ,  calculate 

k € R  

k € R  

Q ( k )  = {i I $(Zi) E cl(RP n [ l+(k ) ,  4+(k)l)>, 

(0 For each k E I R P ,  calculate P P ( k )  = { j  1 k E Q(j)}. For each k E I R N ,  
calculate M M ( k )  = { j  I k E L ( j ) }  

(g) Select a set 2 with minimum cardinality from { P ( k )  I k E K P }  U { M ( k )  I k E 
K P }  U { P P ( k )  1 k E I R P }  u { M M ( k )  I k E I R N } .  Select k E 2 lexico- 
graphically maximizes ( / K P  n J z  1 + IKN n J; 1 + IQ(k) I + IL(k) 1 ,  min( IKP n 
J : l ,  IKN n JLI, IQ(k)I, IL(k)l), IJZl + IJ;(,min(IJ:/, lJi-l),-k). Update R, 
R P  and RN by 

R = R U { k } ,  R P  = RP\[l+(k),q+(k)] and RN = RN\[l-(k), q - ( k ) ] .  

L ( k )  = {i I $ J ( Z i )  E cl(RN fl [ l - ( k ) , q - ( k ) ] ) } .  

Return to (d). 
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Y 
200 

Figure 3: Y ( w )  from the modified rules 

Example 3. Applying the algorithm above to the rules obtained in Example 2, rules 1, 
3, 5 ,6 ,  8 and 10 are selected. The results of approximation is depicted in Figure 3. 

6 Concluding Remarks 
In this paper, we showed that we can approximate a continuous function implicit in 

a given decision table by fuzzy rough sets. This fact shows a possibility of treatment of 
continuous attributes in decision tables by means of fuzzy rough sets. Moreover, as the 
first attempt, we proposed a specific method to obtain globally consistent rules. Some 
properties of the method are examined. Based on the properties, we may design an al- 
gorithm to obtain globally consistent rules which estimate values correctly for given data 
with a minimum number of rules. 

The application of fuzzy rough sets to approximation of a continuous function implicit 
in decision table has just proposed and it is still at a very beginning stage. There are a 
lot of open problems we should tackle. For example, in the proposed specific method, 
we implicitly assume that multiple attributes 51, 5 2 ,  . . . , 3, can be aggregated to one 
value by a function $. This assumption is very strong. We should consider other specific 
methods introducing a distance function or a similarity measure. Moreover, to obtain 
a better approximation, we may introduce the change rates of decision attribute values 
which can be calculated from a given decision table as a decision attribute. 
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Abstract. 
This paper discusses the problem of applying knowledge to guide the evaluation of 
queries. The objective is to apply common or domain-specific knowledge covering the 
content of an information base in connection with the evaluation of queries to the base. 
Two main issues are considered; the derivation of measures of similarity for properties 
from an ontology in the knowledge base and further the initiation of object similarity 
partly based on property similarity and partly on knowledge from the complementary 
knowledge base. 

Keywords: Fuzzy Aggregation, Knowledge-based Query-evaluation, Ontology 

1 Introduction 
The principle of knowledge-guided query evaluation described in this paper is 
considered in the context of an approach to ontology-based querying, where the 
employed knowledge base contains domain-specific knowledge comprising a dictionary 
and an ontology for a given domain. 
The general idea with this line of evaluation is to assimilate applicable knowledge 
during the evaluation to guide and improve this process. We consider two directions for 
application of knowledge - query transformation and similarity-based relaxation. 
A query, which is initially assumed to be posed as a list of words, either unstructured or 
forming natural language expressions, is transformed into a structured expression based 
on linguistic knowledge and knowledge about words and concepts of the domain. 
During the evaluation of the query, measures of similarity for words and concepts are 
applied to obtain answers that include not only what is strictly reflected by the query, 
but also what can be considered similar to this. 
The approach applies so-called descriptions derived for database objects as well as for 
queries. A description is an intermediate representation of the “content” derived as 
described above. In principle querying is performed by transforming into descriptions 
and evaluating through comparison at the level of these descriptions. 
The approach described in this paper is developed as part of the OntoQuery project [4,5] 
funded by the Danish Research Agency under the Information Technology Program. 

2 
This paper is related to the project OntoQuery [4,5] where the issue is querying to an 
information base that contains unstructured text documents, thus we are concerned with 
an information retrieval approach. A central aspect of the approach is that descriptions 
are created as intermediate representations of “content”. A description is a set of 
descriptors describing a text fragment. For a text fragment, e.g. a sentence, a simple 
form description expresses the content by means of a set of words from the sentence. 
The approach is however concept rather than word based and the set of words is only a 
special case. 

Descriptions, the knowledge base and queries 
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Descriptions have the general form: 

where each descriptor Di is a set of concepts. A concept is an expression in the OntoLog 
language [ 101, where words and concepts can be combined into new concepts by means 
of semantic relations. 
To generate descriptions, text fragments are prepared by a parser that employs the 
knowledge base. The parser can in principle scale from a simple word recognizer to a 
complex natural language parser that maps the full meaning content of the sentence into 
an internal representation. Since the issue here is IR the idea is of course to grab 
fragments of content rather than representing full meaning and the building stones are 
concepts. The structure of descriptions should be understood considering this aim. 
The approach to description generation in the OntoQuery project is a subject to ongoing 
development. In the present state descriptions are generated as follows. 
A tagger identifies heuristically categories for words. Based on tags and a simple 
grammar, a parser divides the sentence by framing identified noun phrases (NPs) in the 
sentence (producing a markup in the sentence identifying beginnings and endings of 
NP-fragments of the sentence). For each part of the sentence, corresponding to an NP, a 
descriptor is produced as a set of concepts, that is, a set of expressions in the applied 
concepts language (OntoLog). A concept produced in this second parse of the sentence 
have the form of a lemma (a word mapped into lemma form) or a combination of 
lemmas by semantic relations of the language (such as WRT - with respect to, CBY - 
caused by, CHR - characterized by, ...). Words and concepts that pass through to the 
description are only those that can be recognized in the knowledge base. Apart from a 
dictionary of words and morphological forms, the knowledge base includes an ontology 
relating words and concepts by a number of different relations. Semantic relations 
combine, as mentioned, words and concepts. The most central relation is concept 
inclusion (ISA) by which a central lattice of concepts is formed. Further relations as 
partonomy and association can also be introduced in the ontology. 

D={DI, ..., Dn} 

Take as an example the sentence: 
“Hasty postmen sometimes get serious injures from dog bites” 

A description in a simple form without taking into account the framing of NP’s in the 
sentence could be: 

(hasty), (postman), (serious), (injure) , (dog), (bite) 

With the framing of NP’s the descriptors can be gathered giving the description: 
(hasty, postman), (serious, injure), (dog bite) 

When also employing the semantic relations the descriptions can be enriched into for 
instance the following: 

(postman CHR hasty), (injure CHR serious CBY dog bite) 

Descriptions are obviously not unique. The resulting description from parsing a 
sentence depends on a number of different circumstances. Most important are the actual 
framing into noun phrases, the point of detail that the second-level (semantic) parser 
gather concepts and the domain-specific part of the knowledge base (that direct 
descriptions towards more domain-specific concepts). 
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This line of description generation is an important aspect of the OntoQuery project as 
explained in [4, 5 , 9 ,  101. 

Queries and objects in the database are preprocessed in a similar manner leading to 
descriptions, thus querying becomes a matter of comparing descriptions. This approach 
does not eliminate the possibility to pose queries in the typical (and more convenient) 
fragment style rather than in a full form natural language style. The fragmentation in the 
generation of descriptions may well lead to the same description regardless of whether a 
full form query like: 

“Is it so that hasty dogs sometimes get injures from heavy traffic?’ 
or a fragment-style query like: 

“hasty dogs, injures from heavy traffic?” 
is posed. One possible resulting description could be: 

(dog CHR hasty), (injure CBY traffic CHR heavy) 

3 Querying as similarity evaluation 
Querying in general is driven by query evaluation, where an answer is produced through 
comparing the query with objects from the information base. The answer can be 
considered to be a collection of the objects from the information base that are the most 
similar to the query according to the means of similarity exploited by the evaluation. 
The query can be considered to be an indication of the “ideal object”. The comparison 
measures, in principle for each object of the information base, the degree to which it is 
similar to the “ideal object” indicated by the query. 
The issue of query evaluation may thus be seen as a matter of exploiting measures of 
similarity between information base objects - in a uniform manner information base 
objects and the query are mapped into object descriptions and the answer is produced 
through measuring similarity between these object descriptions. 
The similarity evaluation view on the query processing applies regardless whether the 
information base is a conventional database, a base of documents of an information 
retrieval system or a collection of pages on the web. 
While object similarity measures in rare cases may be available directly as independent 
measures, it is more common to obtain these as derived from property similarity 
measures. A typical query states compound constraints in the properties of objects. A 
relational database query combines properties of set membership and attribute values 
such as ‘part where weight=l7’, where objects that have the property of being member 
of the relation part and the property of having the value 17 for the attribute weight are 
queried. A simple information retrieval query lists a number of words as being 
conjunctive properties of the ideal object. Similar objects to the query ‘hairy dogs’ are 
objects that includes both words. Natural language information retrieval can be regarded 
as retrieval where not only words but also concepts are properties, thus an object 
embedding the phrase ‘the hairy owner of the red dog’ is not necessarily among the 
most similar to the query ‘hairy dogs’, because the latter is considered to indicate the 
concept of dogs that are hairy. 
In most cases there is an intrinsic derivation of object similarity from property similarity 
- similar objects are objects with similar properties. A query embedding a number of 
property constraints describes an ideal object that fulfills these constraints. The answer 
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to the query is the information base objects that have the properties described in the 
query. 
Measuring similarity for crisp querying is in most cases a very simple matter. Similar 
objects are objects that strictly resemble the properties of the query. If property 
similarity is expressed as a truth value then the object similarity is derived from 
aggregating the property similarity values according to the logical connectors 
combining the properties in the query'. 
The softening of the query process goes in two directions. The property similarity may 
be relaxed. For instance, when distance measures can be defined on the property 
domains, the crisp similarity can be generalized to relate as similar values also values 
that are close according to the defined distance. 
The object similarity may be relaxed - that is, the aggregation of the query properties 
may be softened. As a simple example, in a conjunctive list-of-properties query this 
could correspond to a preference of most of the properties rather than an insistence on 
all. However when property similarity is relaxed far more advanced object similarity 
relaxation possibilities appears. 

4 Property similarity 
As indicated above the ontology in the knowledge base is assumed to explicate various 
relations between concepts. We consider below how such relations may contribute to 
similarity. Apart from hyponymy (concept inclusion) we briefly discuss the relations 
synonymy, partonomy and association. All of these contribute directly to similarity 
between concepts. Moreover we consider the semantic relations, used in forming 
concepts in the ontology. These indirectly contribute to similarity through subsumption. 

Until now the main concern in the OntoQuery project has been the hyponymy or 
concept inclusion relation. For this relation we should intuitively have strong similarity 
in the opposite direction of the inclusion (specialization), but also the direction of the 
inclusion (generalization) must contribute with some degree of similarity. 
Take as an example the small fraction of an ontology in figure 1. 

HYPonYmY 

Figure 1 : Inclusion relation (ISA) with upwards reading, e.g. dog ISA animal 

Queries as lists of properties with no explicit logical combination of properties I 

typically indicate the conjunction of the properties listed in the query. 
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Based on this the term dog could be expanded to for instance the set: 

reflecting that more general terms are less similar. 
dog+ = l/dog + 0.9/poodle + 0.9/alsatian + 0.3/animal 

While the hyponymy relation obviously is transitive (e.g. poodle ISA animal), a 
similarity measure based on this should reflect 'distance' in the relation, where greater 
distance - longer path in the relation graph - corresponds to smaller similarity. For 
instance an expansion of the terms animal and poodle into sets of similar values could 
be: 

poodle + = 1/ poodle + 0.3/ dog + 0.27/alsatian +0.09/animal+ O.O8l/cat 
animal+ = l/animal + 0.9/cat + 0.9/dog + 0.8l/poodle + 0.8l/alsatian 

If we in the knowledge base can distinguish explicitly stated, original references from 
derived, then we can define a (non-transitive) relation ISA- as consisting of these (such 
that ISA becomes the transitive closure of ISA-) and measure similarity from distance 
(minimal path-length) in the ISA- graph. 
A similarity function simIsA based on distance in ISA- dist(X,Y) should have the 
properties: 

sim: UxU + [0,1], where U is the universe of terms 
sim (X,Y) = 1 only if X=Y 
sim(X,Y) < sim(X,Z) if dist(X,Y) < and dist(X,Z) 

Based further on two factors o and y expressing costs of specialization and 
generalization respectively, we can define a simple similarity function as follows. 
If there is a path from nodes (terms) X and Y in the hyponymy relation then it has the 
form 

P = (5,. . . , P,) with X= P I  and Y= P,, and either 
Pi ISA- Pi+, or Pi+, ISA- Pi for each i 

Given a path P = (4 ,..., P, ) set s(P) and g(P) to the numbers of specializations and 
generalizations respectively along the path P thus: 

If Pl, . . . ,  P" are all paths connecting X and Y then the degree to which Y is similar to 
X can be defined as 

s(P)  = l[il4 ZSA - e.+l] and t (P)  = l[i14+l ISA - 4.1 

sirn(X, Y )  = minj,l ,,,,, 

Notice that the examples given above on expanding to sets of similar values can 
If there is no means to determine explicitly stated references in the knowledge base then 
ISA- can be derived as the transitive reduction of ISA. 

Synonymy 
Synonymy obviously implies strong similarity. A synonymy relation is rarely transitive 
and typically not reflexive. If the knowledge base includes a non-transitive, non- 
reflexive synonymy relation similarity based on this can be defined using a constant 
factor: 
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sim(X, Y )  = 6 if Y is a synonym for X 

Partonomy 
Partonomy, as exemplified in figure 2, is in general difficult to measure in terms of 
degrees of similarity. Related terms are often not very similar and the most obvious 
alternatives are either to drop the relation as basis for a similarity measure or to let it 
contribute to an association relation. 

bike 0 “k 
Figure 2 :  Partonomy relation (Part-of) 

Association 
Various sources can be used to set up an association relation. Probably among the most 
reliable and useful as domain-specific association relations, applied in connection with 
querying, are those variants that are statistically based on a corpus (see for instance [ 2 ] ) .  
Such a relation has an inherent grading from the statistics and is thus very accurately 
reflected in graded similarity. If associating statistically by: 

where a,  is the number of documents where term X appears, then a similarity 
measure following this association principle could simply be 

thus directly using the association grades as similarities. 

Semantic relations 
The semantic relations, used in forming concepts in the ontology, indirectly contribute 
to similarity through subsumption. For instance: 

is subsumed by - and thus included in - the more general concepts ‘disease CBY lack’ 
and ‘disease’. Thus while semantic relations does not directly contribute to similarity, 
they do add to the extension of concept inclusion and thus to similarities based on 

Using property similarity 
The purpose of similarity measures in connection with querying is of course to look for 
similar rather than for exactly matching values, that is, to introduce soft rather than crisp 

sim(X,  Y )  = assoc(X, Y )  

‘disease CBY lack WRT vitamin’ 

hYPonYmY * 
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evaluation. As indicated through examples above one approach to introduce similar 
values is to expand crisp values into fuzzy sets including also similar values. 
Expansion of this kind, applying similarity based on knowledge in the knowledge base, 
is a simplification replacing direct reasoning over the knowledge base during query 
evaluation. The graded similarity is the obvious means to make expansion a usehl -by 
using simple threshold values for similarity the size of the answer can be fully 
controlled. 

5 Object similarity 
Given a set of objects in the information base and an object in focus -the query (or the 
“ideal object” as indicated by the query) - the main exercise is to find those objects in 
the information base that or most similar to the query object. Object similarity may in 
rare cases be directly available as for instance from a relevance feedback procedure in 
Information Retrieval Systems or from other kinds of use, interest or purchase statistics 
on information base objects. However, more often it is needed to establish object 
similarity as derived from property similarity. In this case the problem is to choose an 
aggregation. 
In this direction of appropriate object similarity aggregations the class of order weighted 
averaging (OWA) operators [13] has been shown to be very useful [2, 81. These 
operators are especially suitable for aggregating a set of unstructured properties as a list- 
of words query to an Information Retrieval system. However when structure is 
introduced to the query expression the OWA principle becomes insufficient. This is the 
case when queries are mapped into descriptions as explained above where the need for 
nested aggregation arises. 
We describe briefly below OWA and an extension to nested aggregation based on 
OWA. While the general idea with the line of querying discussed in this paper is to 
provide an intuitive platform for posing queries we introduce, with the nested 
aggregation, a very complex specification of parameters for queries. The solution to this 
problem is to perform a knowledge based modification of query parameters as touched 
upon in the second subsection below. 

Aggregation of property similarities 
OWA (Order Weighted Averaging) utilizes an ordering vector W = [wl;..,w,]. The 
aggregation of values al, ..., a,, is 

Fw(al;~~,a,)=C~=,wjbj where C r = l w j  = 1 ,  wj ~ [ 0 , 1 ]  and 
bj is the j’th largest al; . - ,a ,  

Thus with bl, ..., b, is the (descending) ordering of the values al, ..., a,. By modifying W 
we obtain different aggregations, for instance F(l~o,o,,,,) is max F~,,n,l,,,,..,) is average and 
F(o,o,,,,,I) is min. Querying based on this may proceed from a query on attributes A I ,  ..., A,  
such that the value Ai(d) ~[0 ,1J  is the degree to which the document d satisfies the 
property Ai  The overall valuation of document d is 

Val(d) = Fw(Ai(d), . . .,A,,(d)). 
The OWA aggregation principle is very flexible and may hrther include importance 
weighting in the form of an n-vector M=<ml, ..., m,>, mjEIO,lJ giving attribute 
importances to Al,  ..., A ,  such that for instance M=<1,0.8,0.8, ... > gives more importance 
to A ] ,  while importances are not discriminated with M=<l, 1, ... >. Attribute importance 



114 

may be included as a modification that leads to a new set of order-weights individually 
for each document d see [ 141 for details. In addition, the aggregation may be modified 
by a ‘linguistic quantifier’, which basically is an increasing function Q:[O, 1]->[0, I ]  
with Q(O)=O and Q(I)=I, such that the order weights are prescribed as: 

Linguistic quantifiers lead to values of W and we can model for instance a quantifier 
EXISTS by Q(x)=I for x>O, FOR-ALL by Q(x)=O for x<I,  and SOME by Q(x)=x, 
while one (of many) possibility to introduce MOST is by a power of SOME, e.g. 
Q(x)=x’. 
Thus we have a general query expression: 

where A,,. . .,A, are the query attributes, M specifies attribute importance weighting and 
Q specifies a linguistic quantifier and thereby indicates an order weighting. 
In [ 141, Yager introduces a hierarchical approach to aggregation as a language intended 
for document retrieval based on order weighted averaging (OWA). The intention is to 
enable users to better represent their requirements using the language. Basically this is 
an extension to nested query specification. 
Query attributes may be grouped for individual aggregation and the language is 
orthogonal in the sense that aggregated values may appear as arguments to 
aggregations. Thus, queries may be viewed as hierarchies. 
As an example we could pose a nested query expression: 

<A 1, . . .,A,:M:Q> 

<A 1(d), 
< A2(d), A3(d), 

< A4(d), A5(d), A6(d):M3:Q3> 
:M2 :Q2>, 

:M1 :Q1> 

where Ai(d) E [0,1] measures the degree to which attribute Ai conforms to document d, 
while Mj and Qj are the importance and quantifier applied in the j’th aggregate. 

Rather than requiring the user to specify query at this level of detail the general idea is 
to perform a knowledge-based transformation of the query, heuristically deducing both 
nestings of the query attributes and aggregate operators, and inferring what parts of the 
query are more important as briefly discussed below. 

Knowledge-based modification of aggregation 
In the OntoQuery project an initial matching principle, which may be considered as 
based on two-level hierarchies, has been chosen for the first prototype. 
As mentioned in section 2 an NLP parsing is performed that heuristically identifies 
noun phrases (NPs) preparing for descriptions with nestings corresponding to the NPs. 
For instance the sentence “Is it so that hasty dogs sometimes get injures from heavy 
traffic?” may lead to the description: 

A nested aggregation can then be applied over the groups in the description, where each 
group is aggregated with individual importance weighting, and quantification. The 
aggregation parameters are to be derived during the query evaluation process. A simple 
general principle is that aggregation is restrictive for individual groups and relaxed for 

(hasty, dog), (injure), (heavy, traffic) 
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the overall query aggregate, corresponding to linguistic quantifiers like ‘most’ for 
individual groups and ‘some’ for the query. This can then be further modified through 
importance weighting based on domain knowledge, primarily from giving more 
importance to nouns in general and domain-specific concepts from the ontology in 
particular. 
The manipulation of the example sentence above may in this way result in the nested 
aggregation expression: 

<<hasty, dog : MOST : (%,l)>, 
< injure >, 
< heavy, traffic : MOST : (%,1)>, 

: SOME : (l,l,l)> 

Here, importance weighting is only exploited at the level of individual groups, where 
nouns are given more importance. The restrictive quantification for groups is by MOST 
and the relaxed quantification for the overall query is by SOME. 
The approach to querying is then to derive a knowledge-based nested aggregation 
expression for the initially posed query and then to evaluate this against the text objects 
in the information base, calculating degrees of conformity to each sentence description 
in the base. Based on this, the answer may be given as the most similar objects. 
The ontology in the knowledge base comes into play from applying property similarity. 
The query expression above can be expanded to cover also similar values for argument 
properties, as for instance hom replacing the subexpression 

with 
<< hasty, dog : MOST : (%,1)>, 

< hasty, <dog, animal : EXISTS : (1, .3)> : MOST : (%,1)>, 

The ontology is, as mentioned, also intended to be applied in a conceptual formation 
leading to concepts rather than words as the smallest units in descriptions. This will lead 
to modifications that can be introduced in a similar way as expansions to the query. 

6 Concluding remarks 
We have discussed similarity as derived fiom property relations in a knowledge base 
and further introduced an approach to query evaluation, where simple word lists or 
queries are posed in natural language are transformed into hierarchical expressions over 
quantified, importance-weighted groups of attributes for order-weighted evaluation. 
This transformation is also guided by the knowledge base. 
Basically, the query evaluation requires only sufficient knowledge to perform a 
grouping of properties. Improvements to the evaluation may be gained from knowledge 
about more important properties and from relations that allow deduction of degrees of 
conformity. 
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Abstract 
A constraint-based generalized object-oriented database model is adapted to manage spa- 
tio-temporal information. The presented adaptation is based on the definition of a new 
data type, which is suited to handle both temporal and spatial information. General- 
ized constraints are used to describe spatio-temporal data, to enforce integrity rules on 
databases, to specify the semantics of a database scheme and to impose selection criteria 
in flexible database querying. 

Keywords: Spatio-temporal information modelling, object-oriented database model, (gen- 
eralized) constraints. 

1 Introduction 
A constraint can formally be seen as a relationship, which has to be satisfied. With respect 
to database systems, constraints are considered to be an important and adequate means to 
define the semantics and the integrity of the data [ 1, 2, 3, 4, 51. This is especially true for 
spatial data and for temporal data. A (spatio-temporal) database instance then belongs to 
the database in as far as it satisfies all of its defining constraints. 

In practice, spatial data usually consist of line segments, and therefore linear arith- 
metic constraints are particularly appropriate for representing such data [ 5 ] .  For example, 
if spatial geographical information is handled, constraints can be used to define the bor- 
ders of a country, a city, a region, to define a river, a highway, etc. This is illustrated in 
Figure 1 and in Table 1, which respectively represent a map of France (a real map will be 
defined by many more constraints, but the basic ideas are the same) and some geometrical 
descriptions. 

Constraints can also be used to impose selection criteria for information retrieval. In 
this case, each constraint defines an extra condition for the database instances to belong to 
the result of the retrieval [6, 71. Every instance belongs to the result in as far as it satisfies 
all the imposed criteria. For example, if someone wants to retrieve all the young persons 
who live in Annecy, two constraints can be imposed: one that selects all the young persons 
and another that selects all persons living in Annecy. 

Spatio-temporal information can be fuzzy andor uncertain [8, 91. There has been a 
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Figure 1 : Spatial information: map of France. 

Table 1 : Geometrical descrbtions. 
Annecy: 
( 2  2 10.9) A ( 2  5 11.1) A (y 2 6) A (y 5 6.2) 
Seine: 
((Y 5 11) A (y + 0.72 = 15.2) A (y 2 9.6)) 
V ((Y 5 9.7) A (y - 0.22 = 8) A (y 2 9.6)) 
V ((y I 8) A (y + 1.22 = -20) A (y 2 9.7)) 
Haute-Savoie: 
(y - 0.12 5 8) A (y + 7 2  5 89.6) A (y - 0.4% 5 1.5) 
A (y + 0.22 2 8.2) A (y - 42  2 36.7) 

I 

considerable amount of research regarding fuzziness in spatio-temporal databases [ 8, 10, 
11, 121. In this paper an extension of a constraint-based fuzzy object-oriented database 
model [3] is presented. This extension is based on the introduction of a new data type and 
on the generalization of linear arithmetic constraints. 

In the following section, the main concepts of the fuzzy object-oriented database 
model are introduced. The modelling of fuzzy spatio-temporal information, by means of 
generalized linear arithmetic constraints, is discussed in Section 3. Finally, the achieved 
results and future developments are summarized in the concluding section. 

2 Generalized object-oriented database model 
The employed fuzzy object-oriented database model [3] has been obtained as a general- 
ization of a crisp object-oriented database model that is consistent with the ODMG de 
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facto standard [13]. The model is build upon a generalized algebraic type system and a 
generalized constraint system, which are both used for the definition of so-called gener- 
alized object schemes and generalized database schemes. 

2.1 ’Qpe system 
To support the definition of types, a (generalized) type system GTS has been built [3]. In 
order to be consistent with the ODMG data model, the type system supports the general- 
ized definitions of literal types, object types and reference types (which enable to refer to 
the instances of object types and are used to formalize the binary relationships between 
the object types in a database scheme). 

The semantic definition of a (generalized) type f is based on domains and operators 
(cf. [ 141) and is fully determined by: 

a set of domains D,- 

a designated domain domi E D; 

a set of operators 0,- and 

a set of axioms A; 

The designated domain dom; is called the domain of the type f and consists of the set 
of all the possible values for f .  Every domain value is represented by a fuzzy set, which 
is defined over the domain of the corresponding ordinary type t .  In order to deal with 
“undefined” values and inapplicability of domain values, a type specific bottom value 
it, has been added to the domain of every ordinary type t [15]. The set of operators 
0; contains all the operators that are defined on the domain domi. The set of domains 
D; consists of all the domains that are involved in the definition of the operators of Oi,  
whereas the set of axioms At contains all the axioms that are involved in the definition of 
the semantics of 0;. 

The instances of a literal type, an object type and a reference type are respectively 
called literals, objects and reference instances. Every instance is characterized by its type 
and a domain value of this type (also called the state of the instance). In accordance with 
the ODMG de facto standard [13], only objects can have a persistent lifetime. Persistent 
objects are additionally characterized by a unique object identifier and an optional set of 
unique object names. 

2.2 Constraint system 
Constraints are used to enforce integrity rules on databases (e.g. domain rules, referential 
integrity rules, etc.) and to specify the formal semantics of the database scheme (e.g. 
the applicability of null values, the definition of keys, etc.). To support the definition of 
constraints, a (generalized) constraint system GCS has been built. The set of generalized 
constraint definitions supported by the constraint system can be partitioned into a subset 
of constraints which can be applied to objects independent of any existing database (e.g. 
domain constraints) and a subset of “database” constraints which are defined for database 
objects (e.g. referential integrity constraints) [3, 41. 
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The semantics of a constraint 2: are defined by means of a function p ~ ,  which associates 
with every object 0 a fuzzy set 

which represents the extended possibilistic truth value [ 161 of the proposition 

“object 0 satisfies constraint E” 

The membership grades p~~~~ and p ~ ~ l ~ ~  indicate to which degree this proposition is 
respectively true and false. The membership grade p~~~~~~~~ denotes to which degree the 
proposition is not applicable, and is used to model those cases where the constraint 2. is 
(partially) not applicable to 0. 

2.3 Object schemes 
The full semantics of an object are described by an object scheme 6s. This scheme “in 
fine” completely defines the object, now including the definitions of the constraints that 
apply to it. Each object scheme is defined by an identifier id, an object type f, a “meaning” 
M and a conjunctive fuzzy set of constraints 6i, which all have to be applied onto the 
objects of type independently of any existing database 

6s = [id, t, lG, Z‘t] 

The “meaning” fi is provided to add comments and is usually described in a natural 
language. The membership grade of a constraint C of 6~ indicates to which degree C 
applies to the object type t and represents the relative importance of C within the definition 
of 6s. A membership grade pci(C) = 0 denotes ‘not important at all’, whereas pc+(C) = 
1 denotes ‘fully important’. In order to have an appropriate scaling it is assumed that 
maxt pci(C) = 1. 

An instance 0 of the object type t is defined to be an instance of the object scheme 6s, 
if it satisfies (with a truth value which differs from { (Fa l se ,  1))) all the constraints of 6~ 
and all the constraints of the sets c ,̂ of the object schemes, which have been defined for 

the supertypes t of t. 
e 

2.4 Database schemes 
A database scheme ds describes the full semantics of the objects which are stored in a 
generalized database and is defined by the quadruple 

ds = [id, D, Ul 6,] 
in which id is the identifier of the database scheme, 

D = {Osi/l 5 i 5 n, i, n E NO} 

is a finite set of object schemes, lG is provided to add comments, and 6, is a conjunctive 
fuzzy set of “database” constraints, which imposes extra conditions on the instances of 
the object schemes of 5, (e.g. referential constraints between two object schemes). Again, 
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[ type system 

the membership grades denote the relevance of the constraints. Every generalized object 
scheme in fi has a different object type. If an object scheme 6s E is defined for an 
object type t and tl‘ is a supertype of t ,  or 8 is an object type for which a binary relationship 
with is defined, then an object scheme 6s’ E fi has to be defined for t”. 

Every persistent instance 0 of an object scheme 6s E fi of a database scheme ds has 
to satisfy all the constraints of efi, with a truth value which differs from {(False ,  1)). 

I constraint system j 

Figure 2: Generalized object-oriented database model: an overview. 

3 Modelling of spatio-temporal information 
The generalized object-oriented database model presented in the previous section is ex- 
tended in order to support the modelling of both temporal and spatial information. This 
is done by adding a new generic literal type SpaceTime to the type system. The domain 
of this new type consists of all the fuzzy sets which are defined over the points of a given 
geometrical space, which on its turn is defined by a finite number of axes, which all have 
only one point in common, Each axis either represents a time dimension or a spatial di- 
mension. Generalized linear arithmetic constraints are defined and are used to describe 
the domain values of the SpaceTime type. 

In the next subsection the focus is on the modelling of one-dimensional temporal in- 
formation. In this special case, the literal type SpaceTime has to describe a temporal space, 
which is defined by one time axis. The modelling of spatial information is discussed 
in Subsection 3.2. The cases of one-dimensional, two-dimensional and n-dimensional 
spaces are handled. The formal definition of the SpaceTime type is given in Subsec- 
tion 3.3. 

3.1 Modelling of temporal information 
In order to model temporal information, a new data type TimeDim is defined. This data 
type will not be included directly in the database model, but is necessary for the definition 
of the type SpaceTime. 

The domain of TimeDim is defined by 

d o m r i r n e ~ i r n  = IR u { J - ~ i ~ e ~ i m )  
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where R denotes the set of real numbers and I T ~ ~ ~ D ~ ~ ~  represents an “undefined” domain 
value. 

The considered operators are the binary operators =, #, <, >, 5, 2, +, -, * and / 
and a null-ary operator 1, which always results in an “undefined” domain value. When 
restricted to the set d o m T z m e D z m  \ { . L ~ z m e ~ z m } ,  all binary operators have the same 
semantics as their counterparts within EX2.  For the bottom value I T ~ ~ ~ D ~ ~ ,  the semantics 
are: 

‘d z E domTimeDi7n : OP (z, L T i m e D i m )  = OP ( L T z m e D i m ,  z) = L T i m e D i m  

where ‘‘op” is a variable copula whose successive values are respectively the symbols =, 
#, <, >, 5 ,  2, +, -, * and /. 

The type TimeDim can be employed to model time, hereby using the set IW of real 
numbers as a representation of the continuum of physical time points [8]. However, in 
prospect of the generalization discussed in Subsections 3.2 and 3.3, the type SpaceTime 
is introduced. 

The type SpaceTime is structured and consists of a finite number of components. Each 
component either represents a temporal dimension or a spatial dimension. In this subsec- 
tion only one (temporal) component is considered, so that the specification of SpaceTime 
is defined as: 

SpaceTime i d ( i d 1  : TimeDim) 

where i d  is the identifier of the type and i d l  is the identifier of the component with asso- 
ciated type TimeDim. 

The domain of type 
SpaceTirne i d ( i d 1  : TimeDim) 

(shortly written as d o m i d )  is defined by 

d o m i d  = @({(x)lx E domTimeDzm}) u { L S p a c e T i m e }  

where @( U )  denotes the set of all fuzzy sets, which can be defined over the universe U 
and Lspace~irne represents an ‘‘undefined’’ domain value. 

With the previous definition, every “regular” value of d o m i d  is a fuzzy set, which 
is defined over the continuum of physical time points. In order to describe the values 
of d o m i d ,  linear arithmetic constraints are generalized. This is done by generalizing the 
comparison operators =, 5 and 2. 

Traditionally, these operators allow to describe crisp subsets of the continuum of phys- 
ical time points, e.g. V t E d o m i d ,  z = t describes the fuzzy set { ( t ,  1)) which represents 
the single time point t ,  z 5 t describes the fuzzy set { (z, 1)Iz 5 t }  which represents the 
time interval ] - co, t ]  and x 2 t describes the fuzzy set { (z, 1) /z  2 t }  which represents 
the time interval [t ,  +m[. 

has been associated with each oper- 
ator. This fuzzy set is defined over the universe of valid distances -the set EX’ of positive 
real numbers- and the boundary condition p ~ ( 0 )  = 1 must hold for it. 

If d ( z ,  z’) denotes the Euclidean distance between the defined elements z and z’ of 
d o m T i m e D i m ,  i.e. d(z?  5’)  = /z  - z’l, then the membership functions of the fuzzy sets 
described by the generalized operators =c, <v and >i, are defined as follows: 

For the generalization, a normalized fuzzy set 

z, t E d o m T i m e D i m  \ { L T i m e D i m }  : 
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0 P ~ = ~ ~ ( ( Z ) )  = pv(d’), with d’ = min{d(z, z’)lx’ E dOmTzmeDtm A 2’ = t }  
pL,lpt((z)) = pv(d’),  with d’ = min{d(x.z’)/z’ E dOmTzmeDtm A 5’ 5 t }  

p L , ~ p t ( ( x ) )  = pv(d’) ,  with d’ = min{d(z,x’)1x’ E ~ o v L T ~ ~ ~ D ~ ~  A x’ 1 t }  
Figure 3 illustrates the membership functions that result from the application - of the 

generalized comparison operators 5 p, 2 3 and =Q to a given fuzzy set V. 

, I  b idl 
60 - t’ 60 

c )  4 

1 )  :,/);-:”” 
0 id 

60 - t’ 60 60 + t’ 

Figure 3: Application of the generalized comparison operators. 

Linear arithmetic constraints have been generalized by replacing all regular compari- 
son operators by (adequate) generalized comparison operators and by replacing the regu- 
lar logical operators A, v and 7 by their fuzzy counterparts A, 5 and q, which semantics 
have been defined as follows: 

0 the impact of the i;\ operator is reflected by applying Zadeh’s (standard) intersection 
operator [17] onto the fuzzy sets described by the arguments of the operator, i.e. 
with arguments 0 and v,  the membership degree of (x), x E domTzmeDzm in the 
resulting fuzzy set equals 

min(cl&), P L i , ( X ) )  

0 the impact of the 3 operator is reflected by applying Zadeh’s (standard) union 
operator [17], i.e. with arguments 0 and v ,  the membership degree of (x), z E 
domTzmeDzm in the resulting fuzzy set equals 

max(l-l&), P v ( Z ) )  

0 the impact of the operator is reflected by applying Zadeh’s (standard) comple- 
ment operator [17], i.e. with argument 0, the membership degree of (z), x E 
domTtmeDtm in the resulting fuzzy set equals 

1 - cL&) 



124 

For example, with appropriate fuzzy sets 0, v and r?i, the fuzzy temporal information 
“around time point 60 or from time point about 100 until time point about 120” can be 
described as: 

(X =fi 60) 3 ((x 2~ 100) A (X <+ 120)) 

3.2 Modelling of spatial information 
The data type SpaceTirne can be adapted to model spatial information. A distinction is 
made between one-dimensional, two-dimensional and n-dimensional data. 

In order to model spatial information a new data type SpaceDim is defined. The 
definition of this type is similar to the definition of the type TimeDim, introduced in the 
previous section: the domain of SpaceDim is defined by 

d o m S p a c e D i m  = u { L S p a c e D i m }  

where i s p a c e ~ i r n  represents an “undefined” domain value; furthermore, the same oper- 
ators =, f, <, >, 5, 2, +, -, *, / and i have been defined. Hereby, the set IW of real 
numbers is used as a representation of a dimension in a spatial space. 

3.2.1 One-dimensional spatial data 

The type Spacerime is also suited for the modelling of spatial data. One-dimensional 
spatial data can be handled by considering one (spatial) component. The specification of 
SpaceTime then becomes: 

Spacerime i d ( id1  : SpaceDim) 

where i d  remains the identifier of the type and idl is the identifier of the component 
with associated type SpaceDim. In the one-dimensional case, the modelling of spatial 
information is then completely analogous to the temporal case discussed in the previous 
subsection. 

3.2.2 Two-dimensional spatial data 

Two-dimensional spatial data can be modelled by considering two (spatial) components 
for the type Spacerime, i.e. by considering the specification: 

Spacerime id( id1 : SpaceDim, i d 2  : SpaceDim) 

In this case, the domain domid is defined by 

domzd = @({(X, Y)Iz, Y E d o m s p a c e D z m } )  U { L S p a c e T i m e )  

With this definition, each “regular” value of d o m i d  is a fuzzy set, which is defined 
over the continuum of points in the plane defined by the two spatial axes with identifiers 
i d1  and idz. 

The generalization of the comparison operators =, 5 and 2 is obtained analogously 
as in the one-dimensional case. A normalized fuzzy set v, which is defined over the 



125 

universe of valid distances and for which the boundary condition pp(0) = 1 holds, is 
associated with each operator. 

If d ( ( z ,  y),  (d, y’)) denotes the Euclidean distance between the defined elements 
(x, Y) and (x’, Y’) of d o m s p a c e D i m  X d o m S p a c e D i m 3  i.e. 

d ( ( T  Y)1 b’, Y’)) = J(. - x ’ ) 2  + (Y - Y’I2 

then the membership functions of the fuzzy sets described by the generalized operators 
=p, 5 p  and l p  are defined as follows: 

v (xl Y) E ( d o m s p a c e D i m  \ { ~ S p a c e D i m } ) 2 , v  m11 E : 

P ~ + ~ ~ = , L ( ( X , Y ) )  = ~ p ( d ’ ) ,  with 

d’ = min{d((z, y), (5’: y’))l(~’? y’) E (domSpaceDirn)’  A z’ + my’ = 1 )  

For example, with the fuzzy set v of Figure 3 and the fuzzy set I@ = ((0, l)}, 
“the environment of Annecy” can be modelled by (z =p 11) (y =p 6.1) and 
“the neighborhood of the Lake of Geneva in Haute-Savoie” can be modelled by (y 2~ 

(Z 2 p  11). Both examples are illustrated in Figure 4 (drawn to scale). 
6.7) A (Y - 5 2 p  -3 .7)  A (y 5~ 6.7) A (9 - 2 &,, -3.7) A (X 5~ 11.9) A 

Figure 4: Illustration of the modelling of two-dimensional spatial data. 
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3.2.3 n-dimensional spatial data 

In order to model n-dimensional spatial data, the type SpaceTime can be constructed with 
n spatial components. In this case, the domain domid is defined by 

domid = @ ( { ( z I , ~ z , ,  . . , X n ) / z ~ , x ~ , . . .  ,zn E d o m s p a c e o i r n } )  U { I ~ p a c e ~ i m e }  

The comparison operators =, 5 and 2 can be generalized straightforwardly and analo- 
gously to previous cases by considering the Euclidean distance 

and an associated, normalized fuzzy set v, which is defined over the universe of valid 
distances and for which the boundary condition pp(0) = 1 holds. 

3.3 Literal type SpaceTime 
In general the literal type SpaceTime can have both spatial and temporal components. 
This allows to model spatio-temporal information in its most general form. The type 
specification then becomes: 

SpaceTime id ( id1  : t l ,  id2 : t z ,  . . . , id, : t n )  

where i d  remains the identifier of the type. Each component i d i  : t i ,  i = 1 , 2 , .  . . , n 
represents an axis, that is identified by the identifier i d i  and whose nature is denoted by 
the associated type ti E { T i m e D i m ,  SpaceDim}.  

The domain of the type SpaceTime is defined by 

domid = @ ( { ( X i , x z , .  . . ,xn)lzi  E domt,,i = 1 , 2 , .  . . ,n>)  U { l ~ p a c e ~ i m ~ }  

where Lspace~ime represents an “undefined” domain value. 
Because by definition all the elements of the domain are fuzzy sets, operators have 

been provided for the handling of fuzzy sets. Among the considered operators are: U, n, 
co, normalise,  support, core, cy - cut and 6 - cut. Each operator preserves its usual 
semantics. Additionally, a null-ary operator 1, which always results in an “undefined” 
domain value, is added. 

4 Conclusion 
A new approach for the handling of spatio-temporal information is presented. The ratio- 
nale behind this approach is the assumption that linear arithmetic constraints are particu- 
larly appropriate for representing such kind of information. 

The approach is presented as an extension of a constraint-based fuzzy object-oriented 
database model, but its application is definitely not restricted to database models. Cen- 
tral to the approach is the introduction of a new generic type SpaceTime, which is suited 
to handle fuzzy multi-dimensional temporal and/or spatial information. The description 
of domain values of SpaceTime by means of so-called generalized linear arithmetic con- 
straints, which have been obtained by generalizing the definition of the comparison op- 
erators =, 5 and 2, is typical. Future work includes the definition of appropriate data 
definition and data manipulation operators and the study of appropriate flexible querying 
techniques. 
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Abstract 
Meta-search engines arise to increase the coverage of single search-engines. Meta-search 
engines offer a unified way to access multiple search engines, avoiding the user to interact 
with all the underlying engines; but usually they do not merge results from different 
sources, neither they calculate a unique ranking for each item retrieved. We present a 
framework to develop meta-search engines allowing to rank documents retrieved from 
search-engines that originally do not give any rank; and a way to combine and integrate the 
results from different engines into a unique collection of documents ranked according to 
some relevance or utility criteria. Our approach is based on exploiting the filtering 
capabilities of search-engines and the generalized use of weights and aggregation operators 
to rank documents. 

Keywords: meta-search, query processing, aggregation operators, information integration. 

1 Introduction 
The vast amount of information available in the Web causes some serious problems to the 
users when looking for information: it is difficult to find all the relevant information; in 
addition, the information retrieved is rarely ranked or classified according to the user’s 
utility criteria. Meta-search is one of the most promising approaches to solve the first 
problem. If the single search-engines store only a portion of all the existing information 
about some particular domain, various searchers should be queried to increase the search 
coverage. But in practice, meta-search is under-exploited; existing meta-search engines do 
not combine results from the different single engines, neither they rank the information 
retrieved, or the ranking mechanisms are quite poor. 
Our approach overcomes these two limitations. We propose a framework to develop meta- 
search engines that can rank documents retrieved from engines that originally do not 
perform rankings; and a procedure to combine documents retrieved from different search 
engines. The originality of our vision is that we exploit the filtering capabilities of the 
search-engines, thus ranking is achieved with a little computation and storage requirements. 
We argue that our approach is so flexible that it can be applied in a wide range of search 
domains, including semi-structured and structured data. We will demonstrate the feasibility 
and utility of our ideas by showing some experimental results of an application to search 
bibliographic references in medicine. The case study uses knowledge about Evidence- 
Based Medicine (EBM) as the utility criteria to rank the bibliographic references. 
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2 Meta-search architecture 
2.1 Overview of the model 
We oriented this work towards a particular kind of meta-search where the queries are 
described as vectors of elements, The meta-search process is modelled as involving two 
main processes or phases: expansion and aggregation. Expansion means that a query is 
transformed into a collection of new queries by applying some transformation to the 
original query. Expansion is used to enrich or refine queries with different purposes and 
different meanings. We have considered different kinds of query expansion: 
a) At the domain level: using a thesaurus to elaborate semantically equivalent queries, 

generalise or specialise a query, or enrich a query with specific utility criteria. 
b) At the source level: customise a query for multiple search engines, using with different 

search-modes and filters to get more rich information. 
The outcome of query expansion is a new set of queries weighted according to some 
criteria, like specificity of the search modes in b) or strength of the semantic relationship in 
a). Queries generated during the expansion phase allow scoring documents although a 
search engine does not give any ranking by itself. Ranking can be done because the queries 
are weighted, thus their answers can be considered as inheriting the weight of the query as 
an assessment of relevance or utility. The answers to all the queries and search engines are 
combined to obtain a unique set of retrieved items, where repeated items are eliminated, 
keeping only one instance of each item, with a unique, overall ranking. Ranking synthesis 
is achieved by applying some aggregation operator, as explained in section 4. Expansion 
can occur at different levels; therefore aggregation can also be applied at different levels. 
We will show the weighted query expansion and aggregation procedures including some 
examples from MELISA [ 13, a medical literature search agent. 

2.2 Assigning weights during query expansion 
Query expansion refers to the process of transforming a query in a collection of new 
queries. The new queries enrich or transform the original query with additional domain 
information, including semantic and syntactic information. We can also distinguish 
between domain-based elaboration and source-based elaboration, that is to say, elaboration 
of queries using domain knowledge and elaboration based on particular characteristics of 
the information sources. 
The key idea is that if queries are weighted, then we can aggregate the results from these 
queries to obtain a unique ranking just using the weights of the queries as the values to be 
aggregated. The idea is simple but powerful. Suppose we have a collection of queries with 
different weights expressing the relative importance of each query with respect to the 
original query. Then, retrieved -non ranked- items can be assigned a rank equal to the 
weight of the query they are an answer for. For items already scored by the queried search- 
engines, a new rank can be calculated by aggregating the given score and the weight of the 
query. With semantic expansion we can generate queries where some keywords are 
replaced by synonyms, hyponyms' and hyperonyms. This kind of expansion is very useful 
to increase or decrease the coverage of search; synonyms and hyponyms will increase the 
recall, while hyperonyms are useful to restrict the search. Resulting queries are weighted 
according to the strength of the association -correlation- between words. Correlation 
between words can be obtained by statistical calculations, such as latent semantics analysis 
[21], or given by an expert. 

' A term a is an hyponym of the term !3 if the meaning of a subsumes the meaning of 0. Then p is an 
hyperonyms of a. 
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Example 1: Some possible term-correlations for the term “Guidelines” in the medical 
domain‘ are given below. 

Practice-guidelines, correlation = 0,s 
Guideline-Adherence, correlation = 0,6 
Clinical-Protocols, correlation = 0,4 

Given the query { Levofloxacin, Pneumonia, Guidelines] 3; three new queries are generated 
by replacing the term Guidelines by each of their correlated terms, assigning the query with 
a weight equals to the correlation coefficient. The original query is also included in the 
result of the expansion and is assigned with a unitary weight. 

Q 1 = { levofloxacin, pneumonia, guidelines}; weight=l 
42 = { levofloxacin, pneumonia, practice-guidelines} ; w=0,8 
4 3  = { levofloxacin, pneumonia, guideline-adherence} ; w=0,6 
Q4 = { levofloxacin, pneumonia, clinical-protocols} ; w=0,6 

The previous examples of query expansion belong to the class of domain-based expansion. 
In the other side, source-based expansion of queries allows to solve two problems: ranking 
items according to the strength of the matching, and adapting a query for different, 
heterogeneous search-engines. We consider a particular class of information, the filters and 
the search modifiers allowed by the search-engines. We call this procedure q u e r y  
customisation, as the queries are customised for each particular search-engine. If the 
generated queries are weighted taking into account the search modifiers applied by the 
expansion algorithm, then it is possible to rank items according to the search mode or the 
type of filter applied, it is not the same to search a keyword by title than by subject or 
abstract. 
Source expansion is very useful to perform more accurate rankings over the retrieved 
documents, but also generalisation or specialisation can be achieved by using different 
search modifiers. In addition, weights can depend on the particular search engines, thus 
allowing to have into account preferences about particular search engines. 
Example 2: To better understand the concept of search-modes, let us explain in detail the 
search modes allowed by the PubMed search-engine: 
1 .  MAJR: search for keywords appearing as major topics (the most important terms 

describing the subject of a document, belonging to the MeSH thesaurus) 
2 .  MHNOEXP: search terms appearing as MeSH terms (includes major topics) without 

term explosion4 
3. MH: search terms appearing as a MeSH term, with term explosion. This mode includes 

(subsumes) the two previous search modes. 
4. TI: search terms appearing in the title 
5. TW: search terms appearing in the abstract 
6. ALL: include all the former search modes, so it is the less restrictive search mode; in 

fact, this is the default search mode. 
We assign weights to the different search modifiers according to their specificity or relative 
importance. 

Vocabulary from the Medical Subject Heading (MeSH), a medical thesaurus from the National Library of 

’ We are considering conjunctive keyword-based queries. The meaning of this query is “to find references 

Term explosion refers to the fact that when looking for one MeSH term, it also will retrieve documents 

Medicine. 

about guidelines on the use of Levofloxacin in the treatment of pneumonia.” 

matching with hyponyms of that term. 
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<MAJR, 1>; <MHNOEXP, 0.8>; <MH, 0.6>; <TI, 0 . 5 ;  <TW, 0.4>; <ALL, 0.2> 
Given a query, we can elaborate new queries using the different search modifiers. If a query 
has more than one keyword, then different combinations of search-modifiers for the 
different keywords can be used. For example, we can generate new queries modifying only 
one keyword per query. 
More than one transformation can be applied to the same query, therefore it is necessary to 
combine the different weights to obtain a unique weight. This is similar to the necessity of a 
mechanism to propagate weights, that is to say, to obtain a new weight for a query that is 
already weighted. The way to propagate and combine weights is addressed in sections 2.3 
and 3. 
Given the query {AIDS, Diagnosis}, a possible expansion algorithm can generate these 
queries: 

Q1 = {AIDS [ALL], Diagnosis}; weight = 0,2 
Q2= {AIDS [TW], Diagnosis}; w = 0.4 
Q3= {AIDS [TI], Diagnosis}; w = 0.5 
Q2= {AIDS [MH], Diagnosis}; w = 0.6 
Q2= {AIDS [MHNOEXP], Diagnosis}; w = 0.8 
Q6 = {AIDS [MAJR], Diagnosis}; w = 1 

Therefore, when aggregation is carried on, the items retrieved for all this queries are 
combined and the different weights are aggregated to obtain the overall score for each item. 

2.3 Propagating and combining weights 
We have not discussed yet how to assign weights when two or more transformations are 
applied to the same query. A similar problem arises when applying a new transformation to 
a previously elaborated -and weighted- query. Both problems are in fact the same, how to 
combine or synthesise weights. 
Different functions can be used to combine weights. We can consider weights as 
membership values of queries with respect to the user request, or logical values expressing 
relevance or utility. Thus, weights can be combined by using numerical aggregation 
operators or multivalued logical operators. 
We will propose a very general rule that will facilitate the specification of the properties 
these functions must fulfil. This simple rule is that the weight of one query cannot be 
increased after applying a transformation; the meaning is that query transformations move 
queries further away from the user request. In other words, if we transform a query q with a 
weight w into a new query q '  with a weight w', w '  cannot be greater than w. Such class of 
operators includes -but is not reduced to- the family of t-norm operators. Next follows a 
formal description of our proposal to weight queries during query expansion. 

3 Formal description of query-weighting 

Definition 1: A query Q is a vector of non-repeated query-elements that can be either 
keywords or other elements (i.e. search filters). 
Q = ( k , . . k , )  V i , j : 1 5 i J 5 n ; k i  # k j  
Definition 2: A weighted-query is a pair with a query and a weight in the interval [0, 11: 
wQ=(Q,w)  W E  [OJ] 
Definition 3: A query-transformation z is a relation between two queries and a weight. It is 
defined as follows: 
z(Q,,Q,,w) w (3!k  I k E Q, ~k tz Q,)@!k'l  k ' ~  Q2 APE QJ ~ o ( k , k ' , w )  
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Where k and k' are query elements, and 0 is a relation between two elements and a weight 
in the interval [0,1]. 

Definition 4: A chain of query-transformations T is a relation between two queries and a 
weight defined recursively as a sequence of multiple query-transformations. 

r<Q, t Q2 W >  

T(Q,,Q2,w> @ ~ Q ' , T  I ~ ( Q ' , Q , , ~ ' > ~ " Q , , Q , w ' ' >  I A W  =@(W' ,WI ' )  

Where 0 is a t-norm operator. 

Definition 5: A query-weighting function r is a function to obtain a weight according to 
the chain of query-transformations between two queries 

Where QI, Q2, are queries and T is a chain of query-transformations. 

Definition 6: A weighted-query-weighting function SZ is a function to calculate a weight 
according to the chain of query-transformations between a weighted query and a non- 
weighted query. 

Where Q1, Q2, are queries, w is the weight assigned to one of the queries, T is a chain of 
query-transformations and 0 is a t-norm operator. 

The query-weighting and weighted-query-weighting functions are used to obtain the weight 
for the query resulting of applying one or more query-transformations. The former is used 
when the original query is not weighted, and the last when the original query is already 
weighted. In fact, both functions can be reduced to a unique function if we consider the 
non-weighted queries as having a weight equal to 1. 

4 Aggregation and fusion 
When we assign a weight to a query after applying a transformation, we are expressing the 
relative importance or representativity of that query with respect to the original one. The 
meaning of a weight assigned to a query is logically inherited by the documents or items 
retrieved for that query, thus we can say that the weights associated to the items retrieved 
represent the membership of those elements to the topic requested by the user. Aggregation 
operators for numeric values can be used here. See [34] for a review of such operators. 
The most widely used operators are the arithmetic mean and the weighted mean, but there 
is a big family of aggregation operators, including fuzzy measures. 
Example 3: Suppose we have queried PubMed with the four queries on the example 1. 
Suppose there is a reference that appears in queries 1 and 2, but not in 3 and 4. As PubMed 
do not rank documents, we assign by default a maximum score of one to both apparitions of 
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the same reference. When doing the aggregation, absences of items are also taken into 
account; they are scored with zero points, the minimum. 

Table 1: Example of aggregation 

Item Weight Norm-w Score To aggregate these items we can apply for instance a 
I 1,0 0,36 1 weighted-mean operator: 
a 2  0,8 0,29 1 WM(q, . . ,an)=XWiai  
a 3  0,6 0,21 0 
a 4  0,4 0,14 0 

w i  E [O,I] ,Xw,  = 1 

Normalizing the weights to fulfil the formal requisites of the weighted-mean operator we 
obtain the aggregated ranking for that item: WM(a,, ..., a,) = ( Z y s c o r e )  = 0.65 
Fusion refers to the aggregation of items retrieved from different information sources. In 
our framework, the same procedure used to aggregate items retrieved from a unique search- 
engine can be used in fusion. In this case, each source can be assigned with a weight 
expressing the reliability of that source or other kind of “goodness”. A query customized 
for multiple search-engines should take a weight that is a combination of the different 
weights applied during the different steps of query expansion, including also the goodness 
of the source. 

5 Applications 
We have developed two applications where this framework has been evaluated: MELISA 
and WIM’. 
MELISA[l] is a system to look for medical literature based on the use of ontologies to 
separate the domain knowledge from the source descriptions.. The notions of query 
weighting and exploiting the filtering capabilities of search-engines are already used here, 
but only one search-engine is included. The system demonstrated that the 
weighting/aggregating framework is an accurate approach to rank documents.6. In MELISA 
the query elaboration applies two kinds of query expansion, one at the domain level and the 
other at the source level. Query expansion at the domain level is carried over using 
knowledge categories; each category is a medical topic described as a collection of 
weighted elements. The elements used to describe medical categories are medical terms, 
used as keywords, and other search attributes used to look for bibliographic references.’ 
Query expansion at the source level is achieved by using the search modes explained in 
example 2 (section 2.2). 
After testing this framework in MELISA, we have modelled the query expansion and 
aggregation procedures as a library of reusable knowledge components. We have adopted 
UPML[13] as the modelling language. This approach aims to develop reusable libraries of 
problem-solving methods [27] based on a clear separation of tasks, problem-solving 
methods and domain models, plus the use of shared ontologies to facilitate reuse [ 171. Such 
a library of knowledge components for information search has been used to build WIM, a 
“spin-off’ application developed in the IBROW project [5]. 
WIM is a configurable multi agent system to look for medical literature on Internet. The 
system is configured at two layers. First a broker agent finds a configuration of agent 

* WIM stands for the Web Information Mediator 

’ Publication type is a good example of such an attribute. 
From the point of view of the Evidence-Based Medicine. 
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Relevance PubMed Melisa 

48% 2 3 8% 

1 16% 17% 

0 13% 

? 34% 27% 
9% ~ 

The utility of the proposed framework 
to develop and use new ranking 
criteria has also been tested. Some of 
the implemented medical categories 
are specifically designed to represent 
notions about evidence quality in 
medical references [l]. Using these 

7 

Evidence PubMed Melisa 

7% 20% Good 

2% 3% Medium 

2% 9% Poor 

69% 56% ? 

The conclusion of the experimental 
results are that MELISA has proven 
their utility of our framework to rank 
documents according to utility criteria 
-like evidence quality, as MELISA 
finds more “good” references than 
PubMed alone. 

Related work 

33% In progress 

A brief review of related areas of research is presented, following with a summary of the 
main contributions of our work in section 8. 
Information retrieval: deals with the problem of retrieving textual documents, where both 
the query and the documents have a word vector representation [31]. IR is based on 
matching documents and queries through the use of text analysis and statistical methods 
Some of the IR techniques could be used in Meta-search to score documents once they are 

0% 
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retrieved, but they are in fact two different approaches; while IR is well suited to work with 
local databases of large textual documents, it requires a lot of computation and space. In the 
other side, meta-search aims to take benefit of the existing search-engines, avoiding hard 
computation and space requirements, but rather limited by the speed of the network and the 
availability of existing search engines. 
Search engines: Search engines store large collections of documents indexed by keywords 
and classified into directories. Search engines are power and very quick tools to find 
information, but they cannot afford the vast amount of evolving information in Internet. 
The main research on search-engines is focused on the indexing and retrieval techniques, 
plus research on information gathering and crawling; hence it is quite different of our 
approach. 
Multiple databases: The term meta-search is mainly used to refer to those search engines 
that delegate the search task to other search-engines. But some people of the database 
community are also using this term to describe the activity of accessing and integrating 
information from multiple databases. Notions such as mediation, information integration 
and fusion are shared by both the meta-search and the database communities. Nowadays, it 
is very difficult to distinguish between classical databases and search engines, because 
databases can be accessed through web-based search engines* and vice-versa, search- 
engines are usually built as an interface to access a database. We think that the main 
distinction between both approaches is the kind of queries they handle. While our approach 
works with queries basically consisting of keywords, the database approach deals with 
more complex query languages, including rule-based languages [32], F-Logic [261, 
annotated logics [ l l ]  and object oriented languages [7] [15], hence the query processing 
techniques are quite different, see for example [ 10][20][4]. Mediators are responsible of 
offering a unified way to access heterogeneous information sources, while wrappers are 
responsible of translating queries and results between the mediator representation schema 
and the particular source schemas [16]. Other examples of ideas inspiring our work are the 
notions of source descriptions [23], query planning [3] and information fusion. A good 
example of the cross-fertilisation between heterogeneous databases and web meta-search is 
found in WebSrcMed [33]. 
Meta-search engines: There are a moderate number of implemented meta-search engines of 
general purpose, showing notable differences. From a list of 13 of such meta-search 
engines [25], we only found complete integration and ranking capabilities in two of them: 
Debriefingg and Metacrawler". Other engines allow to perform fusion, but not ranking, or 
the ranking is limited to some ordering functions. Some engines allow to refine queries by 
using logical operators. Other features are the selection of the search-engines to be used for 
a particular search and other kind of user preferences. Often, the time response is slow and 
only a subset of the results are really retrieved, See [25] for a review of some meta-search 
engines. 
Znformation Agents: Information agents is a new field that is becoming more and more 
interested in web-based services, including all the topics about information search and 
integration. Some examples of information agents and collaborative information agents can 
be found in [14][22][24][28][29]. We claim that our framework can be used inside 

PubMed is a good example, a web-based search-engine (h t tD : / IW~\4 . i i cb i .n ln i . i l i h .~~~ /PubMe~/ )  for the 

htt!7://u,ww.Jebriefinp.com 
lo I i t tn: / / \ \ww.metacs~i~~I~r ,c~tn 

Medline database. 
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information agents, or distributed among a multi agent system, like we have done in the 
WIM application. 
Ontologies: ontologies are shared vocabularies to describe particular worlds or domains, 
thus it should be very useful when interoperability among heterogeneous components is 
needed. You can see an overview of the field in [18], some applications in [9] [12] [191. We 
are using ontologies extensively, to model the knowledge used during the query expansion, 
and also to describe our library of components for meta-search that is being used in the 
WIM application. 

8 Conclusions and future work 
We claim our framework is able to rank items retrieved from search-engines that originally 
do not do that. This is not new; the novelty of our approach is that ranking can be achieved 
with a little computation effort. Our framework is well suited to exploit the search-engines 
filtering capabilities, while other approaches operates by retrieving all the information 
about target items, and then applying text analysis techniques similar to those used in IR to 
rank documents [30]. The advantages of our approach are the following: 
- It avoids hard computation requirements. The main computation effort is due to the 
aggregation and sorting algorithms. The overall time cost of the procedure could be high, 
because the expansion procedures can generate a lot of queries, thus system performance is 
very dependent of the network condition. But this is a problem of the particular expansion 
and querying algorithm, not a limitation of the very general framework we propose here. 
Massive parallelisation of query execution, query planning and propose & revise 
reformulation are some solutions that can improve the efficiency of such a kind of meta- 
search engines. Recently we have included a propose, critique and modify method in our 
library of methods for information search and aggregation:. 
- It reduces the amount of information retrieved that is needed to calculate rankings; for 
instance, MELISA only retrieves the Identifier of the documents during the retrieval phase, 
the rest of the data is retrieved only when needed, that is to say, when that information is of 
interest for the user. This feature is very useful when the information is retrieved from a 
slow and unreliable environment like the Internet. 
- Several weighting and aggregation functions are allowed, including multivalued and fuzzy 
logics. Different combinations of such functions can be used together in the same system. 
We claim that our approach is so flexible that it can be considered as a general framework 
to develop meta-search engines. Furthermore, we argue that the query- 
weightinglaggregation framework is a simple but powerful approach to rank documents, 
which is suitable to be used for other purposes not addressed here. Some possible 
applications of this approach include the following: 
- Score items according to the credibility or reliability of the sources from which they are 
retrieved. 
- Rank documents according to the user’s own utility criteria. 
- Combine different criteria and ranking scales to obtain an overall ranking. 
Other fruitful ideas to implement meta-search engines have been tested during the 
application of this framework, mainly the use of ontologies and a clear separation between 
the domain and the source levels. Having separate models for domain knowledge and 
information sources is useful to develop scalable systems. The key idea is that we only need 
a domain model to put queries, plus a collection of source models and mapping schemes 
between the domain and the source models. Ontologies are a promising approach to 
separate vocabularies and define mapping schemes between different vocabularies. 
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The project has evolved towards the development of a problem-solving library where this 
framework is being tested. Such a library is already implemented using the product t-norm 
to combine weights and the average, weighted-mean, OWA and WOWA as the aggregation 
operators. We expect to further parameterise such a library to test and compare different 
weighting and aggregation functions, but the main goal now is to demonstrate how such a 
library can be configured to build new applications in new domains, and how to integrate 
this work in a framework to develop configurable and reusable societies of information 
agents. 
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Abstract 

This paper deals with flexible queries addressed to regular relational databases where 
conditions are defined by fizzy sets. A particular type of fuzzy conditions is investigated, 
namely where two aggregates applying to fuzzy sets are compared. An example of such a 
condition is "the maximum salary of young employees is lower than the minimum salary 
of old employees". The contribution of the paper is to propose a sound interpretation for 
such statements in the context of flexible querying, i.e., such that a degree of satisfaction 
is obtained. 

Keywords: Relational databases, Flexible querying, Fuzzy sets, Aggregates. 

1 Introduction 

This paper considers flexible querying of relational databases where atomic conditions 
define preferences instead of strict requirements. As a consequence, the set of answers 
returned to the user is discriminated from the best answers to less satisfactory ones. 
Many approaches to define flexible querying have been proposed in the last decades and 
it has been shown that fuzzy set theory provides a unifying framework to define flexible 
queries [l] .  Atomic conditions are defined by fuzzy sets and are called vague or fuzzy 
conditions (or predicates). An example of a flexible query is: "retrieve young and well- 
paid employees working in a high-budget department" where young, well-paid and high- 
budget are vague predicates. The answer is a fuzzy set of employees and the higher the 
degree of membership of an employee, the more satisfactory heishe is. 

Vague conditions can be combined using various operators (generalized conjunctions 
and disjunctions, linguistic quantifiers [2, 101 for example) and, on this basis, an 
extension of the SQL language (called SQLQ has been proposed [3]. In SQLf, as well as 
in SQL, it is possible to consider aggregates which are functions applying to a set of 
items (such as cardinality, sum, maximum or average). Aggregates can be integrated into 
SQLf queries as in the following example calling on the aggregate maximum (denoted 
by max): 

select #firm from emp group by #firm having max(sa1ary) = 'high'. 

Here, relation emp whose schema is EMP(#emp, #firm, salary, age, job, education) is 
assumed to describe employees and this query retrieves firms where the maximum salary 
is high (more precisely, a firm is all the more preferred as it satisfies the fuzzy condition: 
"the maximum salary of its employees is high"). 
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This query does not raise particular difficulties since the aggregate applies to a crisp set 
(of salaries) and, for each firm, the average salary of its employees is computed and 
matched against the fuzzy condition "high". However, when the items to aggregate are 
issued from a fuzzy condition, the interpretation is no longer trivial since the referential 
to which the aggregate applies, becomes fuzzy. It is the case of the query aiming at the 
retrieval of firms where "the maximum salary of young employees is high" which could 
be expressed in SQLf as: 

select #firm from emp where age = 'young' 
group by #firm having max(sa1ary) = 'high'. 

In this case, the aggregate "max" applies to a fuzzy set made of salaries related to young 
employees. In general, such a condition is expressed: 

agg(A) is C 

where agg is an aggregate (maximum in the preceding example), A is the set onto which 
agg applies (fuzzy set of salaries related to young employees) and C is a fuzzy condition 
(high). 

Another example of a condition where aggregates are involved, is given by the query: 
"retrieve the firms where the maximum salary of young employees is lower than the 
minimum salary of old employees": 

select #firm from emp E 1 
where age = 'young' group by #firm 
having max(salary) < (select min(salary) from emp E2 

where age = 'old' and El .#firm = E2.#firm). 

This query involves the condition "max(A) < min(B)" where A denotes the fuzzy set of 
salaries ofyoung employees of a given firm while B represents the fuzzy set of salaries of 
its old employees. The degree associated with each firm in the result, depends on the 
satisfaction of this condition. This second type of condition where two aggregates are 
compared is modeled in the general case by: 

where the sets A and B may be fuzzy and 8 is a fuzzy or crisp comparison operator. 

The previous approach to interpret statements of type "agg(A) is c" is based on a fuzzy 
pattern matching process [8, 91. As a consequence, this interpretation gives two indices, 
namely a possibility and a necessity degree. Since a unique degree of satisfaction is 
expected in our approach of flexible querying (SQLf), fuzzy pattern matching cannot be 
retained. Consequently, we make a new proposal to interpret flexible conditions 
involving aggregates. 

An approach to deal with conditions of type "agg(A) is c" in flexible querying has been 
suggested recently in [5, 61. The present paper focuses on conditions of type "aggl(A) 
8 agg2(B)" where the sets A and B are fuzzy. We limit ourselves to the case where 8 is a 
regular (nonfuzzy) comparison operator and the aggregates are monotonic. The 
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contribution of this work is to propose an interpretation for that kind of statements which 
is sound and coherent with SQLf, i.e., which returns a grade of satisfaction. The 
remainder of the paper is structured as follows. In section 2, the context of the paper is 
detailed and a previous work related to the interpretation of statements of type "agg(A) is 
C" statements is recalled. It offers a basis for an original approach to the interpretation of 
conditions of type "aggl(A) 6 agg2(B)" which is introduced in section 3. Finally, a 
conclusion summarizes the contribution of the paper and suggests some lines for future 
research. 

2 Context of the work and reminders 

2.1 Statement of interest 

The present paper is devoted to the interpretation of conditions of the form: 

where 6 belongs to {I, <, 2, >, =, #} .  

In the remainder of this paper, we limit ourselves to the study of these conditions where 
6 is Y'  since it can be easily shown that the other formulations can be derived from that 
case. For instance, "aggl(A) < agg2(B)" can be expressed as a conjunction : 

"agg,(A) 5 agg2(B)" and "aggl(A) f agg2(B)" 

which, in turn, can be rewritten: 

"aggl(A) 5 aggz(B)" and not ("aggl(A) I agg2(B)" and "aggz(B) 5 aggl(A)") 

which can be simplified, and finally, we have: 

"aggl(A) I agg2(B)" and not "agg2(B) 5 aggl(A)" 

where only statements of the considered type appear. 

2.2 About the interpretation of statements of the form "agg(A) is C" 

As we will see later, the interpretation of statements of type "aggl(A) 6 agg2(B)" calls on 
that of simpler ones of the form "agg(A) is C". It is the reason why we first recall the 
principle retained for interpreting such statements when A is a fuzzy set and C is a fuzzy 
condition. 

The proposed approach [5, 61 to evaluate "agg(A) is c" is restricted to monotonic fuzzy 
predicates C on the one hand and monotonic aggregates on the other hand. It covers the 
aggregates max, min and count, but also sum if the sign of all the values to be added is 
either positive or negative; of course, the average, the median and the standard deviation 
do not comply with this requirement and thus are excluded. The limitation to monotonic 
fuzzy predicates is not a severe limitation in practice since many non monotonic 
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predicates can be decomposed into monotonic predicates ("around 3" is the conjunction 
"at least 3" and "at most 3"). 

First, we consider the case where both the aggregate and the predicate are increasing. 
More precisely, the idea is to start from the following interpretation of the statement 
"agg(A) is C" when A is a regular set, agg is an increasing aggregate function and C is an 
increasing Boolean condition: 

"agg(A) is C" is true w 3 n such that C(n) and agg(A) 2 n. 

Since C is crisp and increasing, it is certain that "agg(A) is c" is true as soon as agg(A) is 
larger than (or equal to) a value which satisfies C. 

When A becomes a fuzzy set and C is a fuzzy condition, the idea is to extend the 
previous formula, and then, to look for a value n which maximizes (generalization of the 
existential quantifier) the conjunction of the following two fuzzy conditions: C(n) and 
agg(A) 2 n. Clearly, the hard point is the handling of the second component because the 
aggregate refers to a fizzy set. The idea is to consider the a-cuts of the fuzzy set A 
denoted by &. Since the aggregate is increasing, if agg(A,) 2 n it is sure that agg(Ah) 2 
n holds for any level h in (0, a] .  It is possible to show that the truth value of the 
statement "agg(A) is c" is given by (see [5, 61 for more details): 

In this last expression, a takes all values between [0,1] and it implies that the aggregate 
is defined for each a-level cut. As a consequence, expression (1) cannot be used in case 
of an aggregate not defined for the empty set (such as maximum or sum) applying to a 
not normalized fizzy set A (since a not normalized fizzy has empty a-cuts and vice- 
versa due to the inclusion of a-cuts). Thus when A is not normalized, only aggregates 
which are defined for the empty set (such as the cardinality) are supported by definition 
(1). In the following, we assume that either A is normalized or that the aggregate is 
defined for the empty set. 

Then, from a computational point of view, expression (1) can be rewritten in a more 
convenient manner: 

where the effective a-level cuts (i.e., the different membership degrees present in A )  are 
increasingly rank-ordered: a, < az < ... < a,. One may remark that when the aggregate 
computed on the support of A completely satisfies C (i.e., k(agg(Aal)) = 1) expression 
(2) is nothing but a Sugeno fuzzy integral. 

Example 1. Let us consider the following fuzzy set of salaries A = { 11800 + 0.7/12000 + 
0.7/10500 + 0.5/15000 + 0.2110000 + O.l/l lOOO} and the statement "max(A) is high". 
We get: 

t(max(A) is high) = maxi min(ai, phigh(max(A,,)), 
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where a1 = 0.1, a2 = 0.2, a3 = 0.5, a4 = 0.7 and a5 = 1. Thus t(max(A) is high) is: 

t(max(A) is high) = max(min(0.1, l), min(0.2, l), min(0.5, l),  
min(0.7, 0.8), min(l,O.2))) 

= 0.7. + 
Throughout the paper, the aggregate and the condition are assumed to be increasing, but 
the solution provided for that case can be straightforwardly adapted when at least one of 
them is decreasing. More precisely (see [5, 6]), expression (1) or (2) can be used when C 
and the aggregate are monotonic in the same way (both increasing or both decreasing). 
When the aggregate is increasing (resp. decreasing) while C is decreasing (resp. 
increasing), the condition "agg(A) is C" can be defined as the negation of the statement 
"agg(A) is not c". In this statement, both the aggregate and not C are either both 
increasing or both decreasing and the evaluation can be performed using expression (1) 
or (2). 

3 Principle of the evaluation of conditions involving two aggregates 

Section 3.1 is devoted to the approach proposed in this paper to evaluate a condition of 
the form "aggl(A) I agg2(B)". Section 3.2 establishes a proof of the given result while 
section 3.3 provides a final example. 

3.1 The approach 

Here again, the idea is to start with a definition valid for crisp sets, then to extend it to 
fuzzy sets. In the case where A and B are crisp, it is possible to express the meaning of 
the statement "aggl(A) 5 agg2(B)" using an implication according to the formula: 

where x is used to scan the definition domain of aggl and agg2. 

When A and B are two fuzzy sets, the expression "aggl(A) 2 x" (resp. "agg2(B) 2 x") is 
more or less satisfied. Its degree of truth t(aggl(A) 2 x) (resp. t(agg2(B) L x)) can be 
obtained by the approach proposed in section 2 (see 2.2). It is important to recall that 
only monotonic aggregates can be dealt with. For the sake of simplicity, increasing 
aggregates are considered and the statement "agg(A) 2 x" is then evaluated by: 

which stems from the general case (see formula (1) in section 2). Since "2 x" is a 
Boolean predicate, its value of truth is either 1 or 0 and we get: 
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If the universal quantifier in (3) is interpreted as a generalized conjunction, the degree of 
satisfaction of "aggl(A) I agg2(B)" is given by: 

where -+ stands for a fuzzy implication and D is the definition domain of aggl and agg2. 
Many implications are available [7] (for instance Godel, Goguen and Kleene-Dienes) 
and we suggest to choose among R-implications which can be easily interpreted by users 
in terms of thresholds and penalties [4]. In particular, Lukasiewicz implication (a -+Lu b 
= 1 if a I b and 1 - a + b otherwise) takes into account the difference (intuitively 
interpretable as a distance) between the antecedent and the conclusion. 

In principle, the computation of expression (5) needs to consider an infinity of x values. 
However, it is possible to restrict the computation to a finite set of x values, i.e., those 
which are aggregate values for a-cuts, which leads to: 

with AV = {agg,(A,) with a in (0,113 u {agg2(Bp) with p in (0,113 

3.2 A proof of the validity of the simplified calculus 

We demonstrate that x values that do not belong to AV are not useful in the computation 
of expression (5). Let us recall that a fuzzy implication satisfies the following properties: 

a) it is decreasing with respect to the first argument, i.e., 
tl (x, y, z) E [0,1] x [0,1] x [0,1] such that x I y : (x -+ z) 2 (y -+ z), 

b) it is increasing with respect to the second argument, i.e., 
tl (x, y, z) E [0,1] x [0,1] x [0,1] such that y I z : (x -+ y) I (x -+ z). 

In this proof, the n effective a-levels of fuzzy set A (i.e. membership degrees in A )  are 
ranked decreasingly: 

and due to the montonicity of aggl, we obviously get: 

The value for t(aggl(A) 2 x) depends on the position of x with respect to the aggregate 
values computed over a-cuts of A .  Three cases must be considered, i) when x is smaller 
then or equal to the smallest aggregate value (x I aggl(AaI)), ii) when x is between two 
aggregate values (aggl(A,i-l) I x I aggI(Aai)), iii) when x is larger then (or equal to) the 
largest aggregate value (aggl(A,J I x). 
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Table 1. Values for t(aggl(A) 2 x). 

Table 2. Values for t(agg2(B) 2 x). 

Case 1 : x I: aggl(Aa,). In this case, we get: 

which gives (using expression (4)): 

Case 2: aggl(AaiJ 5 x I aggl(Aa,). In this case, we get: 

which gives (using expression (4)): 

Case 3: aggl(Aa,) S x. In this case, we get: 

which gives (using expression (4)): 

These results are summarized in Table 1. 

Similar cases appear when considering the m effective a-levels of fuzzy set B: PI > ... > 
Dm and their results are given in Table 2. 

When considering a value x out of AV = {aggl(Aa) with a in (O,l]} u {agg2(Bp) with D 
in (O,l]}, 9 cases must be investigated (to situate x values with respect to aggl(A,) and 
agg2(Bp)). For each of these cases, we demonstrate that x does not play any role in the 
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computation of the final result by showing that one of the two following conditions 
holds: 

b) t(aggl(A) 2 x) + t(agg2(B) 2 x) = 1. 

As the minimum of implication values is delivered by expression (9, value x can be 
omitted by the computation process. 

Case 1: x < aggl(Aal) and x < agg2(Bpl). In that case, from Tables 1 and 2 ,  we get: 

The contribution of x to the final result is al -+ PI .  Value y from AV defined by 
min(aggl(AaI), agg2(Bpl)) is such that y I aggl(Aal) and y 5 agg2(Bp,). From Tables 1 
and 2 we get 

As a consequence we obtain: 

Case 2 :  x < aggl(Aal) and agg2(Bpja1) < x < agg2(Bp.). In that case (see Tables 1 and 2 ) :  
! 

The contribution of x to the final result is al + 0,. Value y from AV defined by 
aggl(Aal) is such that (see Table 1): 

Case 3: x < aggl(Aal) and agg2(Bpm) < x. In that case, from Tables 1 and 2 :  
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The value y = aggl(Aal) from AV is such that (see Table 1): 

Since x < aggl(A,,) = y and agg2(Bp,) < x, we get agg2(Bpm) < y and then (see Table 2): 

Thus, value y gives the same implication value as x. 

Case 4: aggl(AaiJ < x < aggl(A,i) and x < aggz(Bpl). In this case, we have (see Tables 1 
and 2): 

Consequently, the contribution of value x in the final result is: 

Value y = aggl(A,,) is such that (see Table 1): 

Since P1 is the maximum p-level and since t(aggl(A) 2 y) is one of them, we immediatly 
have t(aggl(A) 2 y) 5 pl. Since an implication is increasing with respect to the second 
argument we get: 

Case 5: aggl(AaiJ < x < aggl(A,,) and agg2(Bpj-l) < x < aggr(Bp.). From Tables 1 and 2, 
we get the following result : 

1 

t(aggl(A) 2 x) = ai and t(agg2(B) 2 x) = Pj. 

Consequently, the contribution of value x to the final result is : 

q + 0,. 

The value y = aggl(Aai) from AV is such that (see Table 1) : 
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Since an implication is increasing with respect to the second argument we get: 

Case 6: aggl(A,i-l) < x < aggl(A,I) and agg2(Bp,) < x. From Tables 1 and 2 we get: 

t(aggl(A) 1 x) = q and t(aggz(B) 2 x) = 0. 

If we consider the value y = aggl(A,,) from AV, we have (see Table 1): 

Since agg2(Bp,) < x and x < aggl(A,,) = y, we get aggz(Bp,) < y and then (see Table 2 ) :  

Thus, value y gives the same implication value. 

Case 7: aggl(A,n) < x and x < agg2(Bp,). From Tables 1 and 2 we get: 

t(aggl(A) 2 x) = 0 and t(aggz(B) 2 x) = PI .  
The value y from AV is agg2(Bpl). Since aggl(A,n) < x and x < agg2(Bp,) = y we get 
aggl(A,n) < y. From Table 1 : 

Since y = agg2(Ap,), we have from Table 2 :  

Thus, value y gives the same implication value as x. 

Case 8: aggl(A,n) < x and aggz(Bp,-,) < x < agg2(Bpj). Such a value x can be discarded 
because y = agg2(Ap) from AV has the same implication value (that case is similar to 
case 7) .  

J 

Case 9: aggl(Aan) < x and agg2(Bp,) < x. From Table 1 and 2 ,  we obtain that t(aggl(A) 2 
x) = 0 and t(agg2(B) 2 x) = 0. The contribution of element x is 0 + 0 = 1. As the 
minimum of the implication values is retained, this contribution can be discarded. 

3.3 A final example 

Let us consider a condition of the form "max(A) 5 max(B)" with: 
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X 

100 
550 
600 
650 
800 

A = { 1/500 + 11600 + 0.81400 + 0.81550 + 0.61650 + 0.31400}, 

B = { 11100 + 0.91550 + 0.81800 + 0.1/100}. 

We have: 

max(A,) = 600, max(Ao,s) = 600, max(Ao,6) = 650 and max(Ao,3) = 650, 

and: 

max(B1) = 100, max(Bo,9) = 550, max(Bo,,) = 800 and max(Bo.J = 800. 

The set AV of values to be considered in expression (6)  is: 

AV = { 100,550,600,650, S O O } .  

Using Lukasiewicz implication, we get the implication values given by Tables 3 and 4. 

Table 3:  Aggregate truth values 

t(max(A) 2 x) (1) t(max(i3) 1 x) (2) 
1 1 
1 0.9 
1 0.8 

0.6 0.8 
0 0.8 

650 
800 

Table 4: Implication values 

1 
1 

Finally, the minimal value of the implication results is taken, which yields 0.8. 

4 Conclusion 

In this paper, the issue of flexible querying of databases is considered. In such a 
framework, we advocate the use of fuzzy sets and a given condition leads to a degree of 
satisfaction. So far, conditions calling on aggregate functions (count, sum, max, min, avg, 
...) were restricted to regular sets and this paper tackles the situation where aggregates 
may apply to fuzzy sets. In order to be coherent with the considered context (Le, that of a 
flexible query language such as SQLf), the interpretation of such a condition must be a 
unique degree of fulfillment. 
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We have focused on conditions of type "agg,(A) 8 agg2(B)" where A and B may be fuzzy, 
8 is a regular (nonfuzzy) operator belonging to { S ,  >, 2, <, =, 2) and aggl, agg2 are 
monotonic aggregates. Such complex conditions are illustrated by the statement 
"max(sa1ary ofyoung employees) S min (salary of old employees)". An overall degree of 
satisfaction is defined as the minimum of implication values issued from simpler 
conditions, namely conditions of type "agg(A) is C" where the aggregate applies to a 
fuzzy set A and is matched against a crisp predicate C. These simpler conditions are 
interpreted by a unique degree (as suggested in [5, 61) and this interpretation for "agg(A) 
is C" differs from that based on a fuzzy pattern process where two indices are computed. 

In the near future, the next step will be the study of fuzzy comparison operators 8 (such 
as much larger than) in expressions of type "aggl(A) 8 agg2(B)". It seems that expression 
(3) used here cannot be the basis for the interpretation of such statements and a new 
approach must be suggested. Another matter of hture research is the design and 
implementation of algorithms aiming at evaluating conditions involving aggregates 
computed on fuzzy sets. Experimental measures should be performed in order to assess 
the extra cost induced by the hzzy  nature of the condition. 
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Abstract 
We propose the concept and implementation of a software system, 
TCAT (Text CATegorization) system, for an automatic recognition of a topic of an 
Internet document. In the training mode the user provides the system with a list of topics 
and sets of documents representing each topic (supervised learning). In the recognition 
mode the system automatically classifies previously unseen document to a topic 
category. A simple learning algorithm is devised and implemented. The results of the 
classification are presented to the user in the form of a set of linguistic terms. Some new 
measures of correctness of the classification are proposed. The implemented system 
processes documents in several popular Internet-related formats. 

Keywords: automatic classification of documents, Internet, linguistic terms 

1 Introduction 
The maintenance and processing (notably retrieving) of textual information by means of 
computerized systems was among the first applications of the computers. The need for 
such systems has grown essentially along with the popularity of the electronic form of 
documents implied by the recent widespread and easy access to the Internet. The Internet 
provides an excellent testbed for methods developed within information retrieval (IR). 
This encompasses various tasks addressed by IR such as fast textual documents retrieval 
or automatic text categorization. The latter may be understood in several ways. In order 
to make clearer the task addressed in this paper let us consider the scenarios in which our 
system may be applicable. The first one is that of a Web Spider: an agent software 
“traversing” the Web and automatically classifying documents found with the aim of 
providing us only with the documents of interest for us (i.e., belonging to a prespecified 
categorykategories). The second scenario is that of a “translation agency”. In this case, 
the aim of the system is to automatically assign to interpreters documents sent by 
customers. The interpreters prefer certain categories of documents and the aim is to 
match their preferences so as to secure a high efficiency of the whole translation process. 
In both cases the classification may be done manually. However, it may be not such a 
good solution as it may seem. Firstly, in particular in the first case, it is unreasonable to 
expect that all documents are classified by their authors or some other bodies (see, e.g., 
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Yahoo). Secondly, the classification provided by the author may be useless for, or 
inconsistent with the purposes of the document “consumer”. Both scenarios require a set 
of prespecified categories of documents and a training set of documents properly 
classified along this categories. Thus, we aim at the solution for filtering rather than 
clustering the documents. In other words, the targeted user is one with a fairly fixed set 
of categories of interest, who looks to assign new documents to this categories. This may 
be contrasted with the requirements of a general information retrieval system where a 
grouping of somehow similar documents is sought in order to make the retrieval more 
efficient, 
The problem concerned in our paper is usually addressed with the help of methods 
elaborated within the domains of information retrieval and pattern recognition (more 
specifically, classifier construction). Characteristic features of our approach described in 
this paper are the assumption of a high dimensional document representation space and 
the use of fuzzy logic elements both for the classification purposes as well as for the 
presentation of results obtained to the user. The starting point are our previous 
experiences with the fuzzy querying of databases [6] as well as the recent advances in 
the application of soft computing for information retrieval purposes [3]. 
In Section 2 we briefly review the literature relevant for the text categorization task. 
Sections 3 and 4 present the general concept of the TCAT system and employed 
algorithms. 

2 Text Categorization Task 
Text categorization as discussed here is a typical example of the classification task. More 
precisely, the process consists of two phases: 

the learning of classification rules (building a classifier) from examples of 
documents with known class assignment (supervised learning), 
the classification of documents unseen earlier using rules derived in Phase I 

A human being classifying a document may take into account its usually rich syntactic 
and semantic structure. In case of an automatic, computerized approach some 
simplifications as to the representation of the documents are usually done, i.e., only 
some features of the documents are taken into account. The most popular approach 
consists in treating a document as a sequence of words (a  bag of words). Many 
variations are possible as to which words are taken into account - from exactly all words 
present in the whole collection of documents under consideration up to a limited 
controlled vocabulaiy (keywords). Typically, a document is preprocessed to remove so 
called stopwords, extract some basic form of words (stemming) etc. Then, each 
document is represented as a vector. Each component of this vector corresponds to a, 
possibly normalized, frequency of appearance of a word (keyword) in that document. 
Sometimes binary vectors are used to represent documents, where 1 and 0 mean that a 
keyword occurs (no matter how often) or does not occur in the document, respectively. 
Having such a numerical representation of the documents one can apply one of 
numerous classifier construction algorithms including rule-based systems, decision trees, 
artificial neural networks, etc. (see, e.g., [7]). One of classical algorithms developed in 
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the area of information retrieval is that of Rocchio [12, 51. The learning phase consists in 
computing a centroid vector for each category of documents. Then, in the classification 
phase, a document is classified to a category whose centroid is most similar to this 
document. The similarity may be meant in several ways - in the original Rocchio’s 
approach it corresponds to the Euclidan distance. 
The text categorization task exhibits some imprecision. Even a human may be unsure as 
to a clear cut classification of a document to just one category. Moreover, it is quite 
natural to consider a degree of belongingness to a category. This becomes even more 
apparent in case of an automatic classification procedure. We may easily expect that the 
results of classification may be ambiguous. The fuzzy logic approach has proved to be 
useful in such a context. 
The quality of given text categorization system is assessed based on the error rate. The 
meaning and usefulness of this approach in the crisp case is quite obvious. However, 
when we assume a fuzzy response from a categorization system some special 
considerations are needed. 
In the next section we discuss in more detail how the above mentioned elements of a text 
categorization system have been adopted and implemented within our TCAT system. 

3 
Our assumptions for the construction of the TCAT (Text CATegorization) system were 
as follows: 

The Concept of the TCAT System 

1. 
2. 
3. 
4. 

a universal, language independent, representation of the documents 
a simple classifier learning algorithm 
a provision for the handling of ambiguous classification results 
an implementation as an Internet (WWW) based service. 

The first has been attained by the representation of document as a sequence of 5 or 10 (a 
parameter of the system) character long strings (tokens or n-gram). This gives rise to a 
very high dimensional representation space and requires a full fledged database 
management system to be a part of the text categorization system (in our case it is 

The classifier employed by the TCAT system is of Rocchio type. A simple formula is 
used to calculate for each token how representative it is for particular categories of 
documents. Effectively, it yields a kind of a centroid for each category of documents. In 
the classification phase the document to be classified is divided into tokens (only tokens 
extracted from training documents are taken into account). Then, the binary vector 
representing the document is compared with the categories’ centroids yielding the degree 
to which the document belongs to a given category. 
Due to a possible ambiguity of classification, its results are presented in the form of a 
linguistic expression. The degree to which a document belongs to a category is treated as 
the realization of a linguistic variable. As a result the user obtains a linguistic description 
of the membership degree of the document to the particular categories. 
The TCAT system processes documents in formats typical for the Internet (WWW). The 
current version of the system is able to classify documents available locally on the user’s 

MYSQL). 
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computer or somewhere in the Internet, as indicated by their URL (Uniform Resource 
Locator). 

4 

Let D = { u ' , } , , ~ ~ , ~ ~  be a set of training documents and T={tr} l s[ l ,Nl  be a set of all tokens 
occurring in them. A document is represented as the vector dI=(dl,, ..., dzN), where dI, 
denotes the number of occurrences of token t, in document d,. 
In the learning phase the TCAT system computes for each token its membership degree 
to particular categories. This degree indicates how characteristic a token is for given 
category. The following properties are assumed for this indicator: 

Representation of Documents and a Classification Algorithm 

1) is proportional to the number of occurrences of the token in the documents of a 
given category, 

2) is counter-proportional to the number of occurences of the token in documents of 
other categories, 

3) is biased towards the proportion 1). 

We will use the following notation: 

SP; - membership degree of token t to category k, 
K - the set of all categories considered, 
12' , n; - number of occurrences of token t in all training documents and in the training 

documents of category k ,  respectively, 
1 1 A> =- and A[ =- - some auxiliary coefficients; r is a parameter, in the 

n' rn' 
computational experiments assumed equal 4. 

Let wf; denote an indicator "favouring" token t proportionally to the number of its 
occurences in the documents belonging to the category k and "punishing" token t 
proportionally to the number of its occurrences in documents belonging to other 
categories: 

where v is an initial value of the indicator wi (it is a parameter of the method; by default 
v = 0.1). 
It is obvious that the indicator w i  meets conditions 1) - 3). Formula (1) may be 
expressed also as: 

what shows its relation to t y id f  weighting scheme. It provides also clear interpretation 
for the parameter r: a term that appears roughly more than r times in the documents 
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belonging to other than k categories gets negative membership degree to the category k .  
In order to to normalize the value of wf, we employ the following transformation 

yielding the formula for the indicator SP; sought: 

0 for w; I o 

1 for wL > 1 

3 2 
SPL = -wL + w i  +wL, forO<wL <=I  I (3) 

Thus, both formulas (1) and (2) and (3) taken together provide for the weighting of terms 
for particular categories as well as excercise a threshold rejecting terms being not- 
specific for a given category, Obviously, transformations other than (3) may be 
applicable to this aim and we treat it as a parameter of the method. 
Effectively, while computing the SP; indicators for all tokens we obtain a kind of a 
centroid, Ck , for each category of documents: 

ck=(sP; ,..., S P p  ) 

In our approach the centroids are computed directly during the analysis of the training 
documents. Usually, in the literature it is assumed that first the representation of 
particular documents is obtained. This representation may use various weights for the 
tokens, e.g., tf*idf[ 14,1].Then, the centroids are calculated using, e.g., averaging. 
In the classification phase the system computes for a document d its degree of 

membership to each of the categories k, spf . In this phase the document is represented 
as a set of tokens -i.e., the Boolean (binary) representation is assumed - occuring in it: 
d={ti}, ti E T (i.e., all tokens found in document d, but not present in the training 
documents, are ignored). The indicator spf is given by the formula: 

where nd and SP; denote the number of tokens representing document d and the degree 
of membership of token t to the category k (calculated in the learning phase according to 
(3)), respectively. Effectively, the formula (4) is a counterpart of the similarity measure 
between document d and the centroid of category k .  
Having calculated for a document d values spf for each category k ,  it is natural to 
classify document d as belonging to that category for which the value of this indicator 
attains a maximal value. In case the values of this indicator for a few different categories 
are close, the system is not in a position to propose clear-cut classification. In such a case 
it seems better to inform the user about all categories to which the document possibly 
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belongs. To this aim system TCAT provides the user with information about the values 
of indicator spf for all categories. However, the system does not present to the user raw 
numerical values of the indicator. Instead, a more human consistent form is employed 
referring to the concept of a linguistic variable. 
A linguistic variable is a variable taking on the values that are not numerical but are 
linguistic terms. Usually, semantics for ;his linguistic terms is provided by fuzzy sets 
defined over the universe under consideration. The linguistic variable is a tuple ( H ,  T(H), 
U ,  G, M), where H is a name of the variable, T(H) is a set of its values (linguistic terms); 
U = { u }  denotes the universe under consideration [fuzzy sets defined over U provide the 
interpretation for particular terms beonging to T(H)], G is a rule generating values for the 
linguistic variable [if T(H) is finite then G may be just simple enumeration of the 
linguistic terms]; M is a semantic rule providing for each value 1~ T(H) its meaning M(1) 
5 U. For example, treating age as a linguistic variable one may assume: 
T("age")={ "very young", "young", "middle aged", "old", "very old"}, U=[ 1,1001, M 
associates with particular values of T("age") fuzzy numbers defined over the interval 
[0,100] and intuitively corresponding to individual descriptions of the age. For example, 
with the term "young" a trapezoidal f u u y  number (0;0;25;35) may be associated. 
Treating the membership of a document to a category as a linguistic variable we may 
adopt the following interpretation for the components of the definition of the linguistic 
variable: the name is "connected with the category k" (H); the universe of discourse is U 
= [0,1] (i.e., the range of the indicator s p ; ) ;  as the set of linguistic terms we may 
assume: 

T(H) = {"not", "slightly", "medium", "strongly", "very strongly"}. ( 5 )  

The semantic rule M associates with particular linguistic terms fuzzy numbers defined 
over the interval [0,1]. For example, the term "very strongly" may be represented by the 
trapezoidal fuzzy number (0.85,0.95,1 .O,l.O). 
Thus, we treat the degrees of membership of a given document to particular categories as 
realizations of a linguistic variable. We adopt a simple scheme of the choice of a 
linguistic term to represent the computed value of indicator spf . Namely, we choose a 
term such that the computed value of the indicator belongs to it to a maximal degree: 

(6) SPk d =u + 1= argmax,uM([)(u) 

i.e., we represent the value u of indicator S p k  with a linguistic term 1, such that u 

belongs to a maximal degree to the fuzzy set M(1) being a semantic interpretation of the 
term 1. 
Thanks to the definition of indicator SPL a token often occuring in documents of 
different categories obtains a low value of membership to all categories. Thus, it has 
virtually no influence on the results of the classification phase.. In turn, a token occuring 
only in documents of one category obtains a high degree of membership to this category. 

I 
d 
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Intuitively, an occurence of such a token in a document strongly indicates its connection 
with a given category. This intuition is formalized by formula (4). 

Figure 1 : The structure of the TCAT system. 

5 Implementation 

The TCAT system is a sensu stricte Internet based system. It processes primarily 
documents available in the net. The system itself is implemented as a WWW based 
application. The system may be perceived in a broader sense as a set of collaborating 
modules written in PHP, WWW server (Apache) supported by the PHP interpreter, 
database management system MySQL and a WWW browser. In a narrower sense the 
TCAT system should be identified with the first of above mentioned components, i.e., a 
set of PHP modules accomplishing basic functions of the system. In what follows we do 
not make an explicit distinction as the context usually clearly indicates what meaning of 
the TCAT system is assumed. 
A basic architecture of the TCAT system is shown in Fig. 1. The system operates as 
follows. First, a user sends a request for the services of the system via a WWW browser. 
Then, the WWW server (Apache) starts the PHP interpreter. A PHP module - a 
component of the TCAT system - fetches necessary data from the database and the 
Internet and generates a HTML code enriched with JavaScript functions. 
Communication with the MySQL database is carried out using a standard PHP module 
exposing an interface for accessing this database. The HTML code is interpreted by the 
browser and the results are displayed as screens forming a user interface of the TCAT 
system. 
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The way of the interaction with the system in both phases is simple. The user interface 
consists of a logically connected set of WWW pages Interfejs containing regular forms. 
Processing of the documents goes in a few steps. First, the content of a document is read 
from either a local disk or directly from the Internet and stored in a buffer. Then, the text 
read in previous step is preprocessed. All elements of the HTML, DHTML, XHTML, 
XML, PHP and ASP code are removed. This is accomplished through a simple lexical 
scanner reading subsequent characters of the string, analyzing them and removing 
fragments semantically not important. This step is more sophisticated than a mere 
removal of the whole HTML tags or scriptlets. Their content is also analyzed and the 
substrings that are possibly important for text categorization are preserved. During the 
lexical analysis the addresses of the linked documents are extracted. Then, also these 
documents are processed. A further lexical processing includes the removal of all not 
alphanumerical characters, and the change of uppercase letters to lowercase. The text of 
a document preprocessed in such a way is then forwarded to the next stages of the 
an a1 ysi s. 
The database of the TCAT system is used mainly to store the characteristics of all tokens 
extracted from the training documents. The most important element of such a 
characteristic is the degree of membership of the token to particular categories. 

6 AnExample 
The TCAT system has been tested on the set of text documents representing 6 thematic 
categories. The choice of the testing material was motivated by the popularity of these 
categories in the resources of the leading Polish Internet portals. The selected categories 
are: 

nature and ecology, 
economy, 
movies, 
computers and the Internet, 
cars, 
politics, society and law 

In the learning phase 20 documents per category have been used. The results of this 
phase are illustrated in Fig. 2. This figure shows the degrees of membership of selected 
tokens to the category "politics, society and law". 
The testing documents, 10 per category, have been selected from the site of a Polish 
Internet multimedia encyclopedia (http://wiem.onet.pl/wiem). Each test documents is a 
description of a certain, relevant for a given category, keyword from the encyclopedia. 
While evaluating results of the categorization done by the TCAT system we have to take 
into account the fuzziness of response of the system. As it is described earlier, the 
system in  the classification phase yields degrees of membership of the document to all 
(in this case 6) categories. On the other hand, the information about the actual category 
of test documents is crisp and indicating exactly one category. In order to assess the 
correctness of fuzzy classification response of the system we have adopted two 
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approaches. In the first approach we accept a fuzzy response as correct if the actual 
category of the test document belongs to the set of categories for which the system 
produced the highest membership degree. The second approach poses a stronger 
requirement: we require that the actual category of the document is pointed out by the 
system unambigously. Formally it may be denoted as follows: 

Apuroach I (“simple correctness”) 

where MT is the cardinality of set DT={ di} of test documents and 

and k* is the actual category of document di. 

Tabela 1: Accuracy of the classification. 

I 1 PI: simple 1 ~ 2 :  strong 1 

Thus, P1 corresponds to the percentage of the documents correctly classified in the sense 
of the first approach. 

Approach II (“strong correctness”) 
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where p ( d ,  k,) assumes an integer value depending on what linguistic term [see (5 ) ]  the 
system has used to describe the membership degree of document d to category kj. For the 
terms "not", "slightly", "medium", "strongly" and "very strongly" the numbers 0, 25, 50, 
75 and 100 are used, respectively. As previously, k .  denotes the actual category of 
document d, and M T  - the cardinality of the set of test documents DT={di}. Thus, P2 
corresponds to the percentage of the documents correctly classified in the sense of the 
second approach. 

Figure 2: Degrees of membership of some tokens to the selected category 

The results of the classification done by the TCAT system as assessed using both 
approaches are illustrated in Table 1. In most cases the system pointed out the strongest 
membership of a document to the actual category of the document. 

7 Concluding Remarks 
We have presented a concept, architecture and implementation of the TCAT system 
performing an automatic categorization of Internet documents. The results of 
preliminary experiments with the system have been shown. The original features of our 
approach include: a human consistent user interface, new measures of accuracy, and a 
simple, parametrized classifier design. 
The proposed approach requires a further research. First of all, the classifier itself has to 
be thoroughly tested using standard sets of documents and widely adopted testing 
techniques (e.g., cross-validation). An approach to tuning the systems parameters has to 
be proposed. Possibly some changes to the very learning algorithm will be introduced. 
We hope to be able to present more rigorous tests results (for, e.g., Reuters-22173 
dataset) during the conference. We plan also to conduct some experiments on the 
multilingual documents sets. 
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A further study will also concentrate on the use of well knwn concepts developed within 
the theory of fuzzy sets. For example, the measure of accuracy (approach 11) may be 
further studied employing the concept of a specificity measure of a fuzzy set proposed 
by Yager (see [4]). Secondly, the concept of membership of a token to a category 
directly leads to the interpretation of the category as a fuzzy set defined over the space of 
tokens. Then, some well known approaches to the measuring of similarity of fuzzy sets 
may be employed. Finally, the very task of categorization may be redefined taking into 
account that a document usually belongs, to a varying degree, to different categories. 
Thus, fuzzy approaches to so-called multi-class or multi-label categorization problem 
(see, e.g., [9]) are certainly worth a further study. 
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Abstract 
We introduce the methodology of prototype based reasoning and discuss its role as a 

technology for supplying missing information about some object based on known 
information about related objects. We show that nearest neighbor based systems and 
fuzzy rule based models are examples of prototype based reasoning. This perspective 
allows us to extend the capabilities of fuzzy modeling technology in a number of 
directions. One such extension discussed here is to suggest a method for fusing multiple 
fuzzy systems models. 

Keywords: fuzzy modeling, fuzzy measures, nearest neighbor principle, information 
fusion 

1. Introduction 
An important class of models are those in which we use known information about a 

collection of objects to provide missing information about some other object of interest. 
Much of modern information based technologies focus on this problem. Here we consider 
one framework for modeling this type of inference called Prototype Based Reasoning 
(PBR). 

2. Prototype Based Reasoning Systems 
A PBR system consists of a collection of entities called prototypes, A = { A i ,  A2, 

..., An}. A common use of PBR is to determine, based on information about the 
prototypes, the degree to which some non-prototype object has a particular feature. We 
shall call the feature on which we are focusing the notable feature (NF). It is assumed 
that for any prototype we know the degree, ai, to which it has this notable feature, 
ai E [0, 11. An important part of a PBR system is credibility measure p. Formally 

A p: 2 + [0, 11 where for any subset E L A, p(E) is the degree of credibility associated 
with any conclusion based upon using the subset E of prototypes. Some natural 
properties of this credibility measure are: p ( 0 )  = 0 and if E c F then p(E) I p(F), the 
more prototypes used the more credible the conclusion. We shall assume p(A) = 1, any 
conclusion based upon all the prototype is completely credible. This last condition may 
not be necessary. We note that a set functions having these properties are called fuzzy 
measures [ l ,  21. In PBR we are interested in using the set of prototypes to determine the 
validity of the notable feature for some target object. In order to accomplish this we must 
assume the availability of some procedure to determine the similarity (relevance) of a 
given prototype to the target object. As we would expect the more similar a prototype 
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the more useful it is the determination of the information we are seeking. We shall 
indicate the degree of relevance of prototype Ai to the object of interest by q i  E [0, 11. 

A PBR reasoning system is a type of possibilistic inference engine. Under the 
prototype based reasoning paradigm we say that the degree to which the target object has 
the notable feature is equal to the degree to which we can find 

a relevant credible subset of prototypes having this feature 
That is if we find a relevant credibility set of prototypes that we assume the target has 
this feature. 

In order to formally express this imperative we shall introduce some fuzzy subsets 
over the power set of A ,  2 A .  First we note the p is a fuzzy subset of 2 A ,  p (E)  
indicating the degree of credibility of the subset E. We next introduce the fuzzy subset Q 
of 2*. We define i t  by Q(E) = Min [a,], it measures the degree to which all the 

A,€ E 
elements in E have the feature of interest. Finally we introduce the fuzzy subset R over 
2A in which R(E) indicates the relevancy of the subset E to the object of interest. We 
shall initially leave the definition of R open but we note that it should depend upon the 
similarity of the prototypes in E to object of interest: R(E) = f(q1, ..., qn)  

Using these fuzzy subsets we define the fuzzy set D = p n Q n R. D is the fuzzy 
subset of subsets of prototypes that are credible, similar to the object of interest and 
having elements that have the property of interest. Using this we calculate 

a = M~XELA[D(E)I = MaxEcA[P(E) - A Q(E) A R(E)1 
it is the degree to which our target object has the feature of interest. 

By appropriate selection of p and R we can generate different manifestations of this 
PBR paradigm. We shall look at the PBR systems resulting from some different 
assumptions about the form of p and R. However before preceding we shall look at some 
general formulation of these measures. First we shall look as the credibility measure p. 

One important class of credibility measures are cardinality based credibility measures. 
For these measures p(E) = WIEJ ,  the credibility of any subset E just depends upon the 
number of elements in E. Here then we only require we have wj 2 wi j > i and wo = 0 
and wn = 1. With cardinality based measures there is no distinction made between the 
credibilities of the different prototypes, all are assumed to be the same, the credibility just 
depends upon the number of prototypes considered. Three important special cases of 
cardinality based credibility measures are worth pointing out. The first is one in which 
w 1 = 1, here we deem any prototype to be completely credible. In this case a conclusion 
based upon any number of prototypes is assumed completely credible. The second case is 
the one in which w' - 0, for j = 1 to n - 1 and wn = 1. Here we any conclusion requires 
consideration of all the prototypes. A third special case is the one in which subset 
credibility is directly proportional to the number of prototypes in the subset, wi = i, . A 
general class of cardinality based measures can be defined by using a function f [0, 11 -+ 
[0, 11, called a BUM function, having the properties: 1. f(0) = 0, 2. f( 1) = 0 and 3. f(x) 
2 f(y) if x > y. Using this BUM function we define wi = f(i/n). 

Moving away from the cardinality based credibility measures, which make no 
distinction between the credibility of individual prototypes, a basic type of credibility 

.-- 

J -  

n 
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measure is one in which we associate with each Ai a value a i  E [0, 11 and then define 

p(E) = 1 

defined above and define p(E) = f(L I: a i ) .  

a i  A generalization of this is one in which we use a BUM function f as 
T ic  E 

TiE E 
We now briefly comment on the relevancy function R. One primal example of 

relevancy function is the one in which R(E) = 1 for all E. Essentially, in this case we are 
not using any information about the similarity of the prototypes to the object of interest. 
In this case a = MaxEcA[Q(E) A p(E)]. This is the fuzzy integral [ l ,  31. - 

3. Nearest Neighbor Type PBR Systems 
Here we begin to look at some special classes of prototype based reasoning systems. 

The first class we shall consider are nearest neighbor based systems [4-61. The 
fundamental feature of these systems is captured by the following imperative 
characterizing this approach. 
Nearest Neighbor imperative: 

Don't use any prototype object to determine the notable feature unless you also use all 
the prototypes that are more similar (more relevant). 

As we shall subsequently see, this imperative puts some very interesting restrictions 
on the form of the relevancy function R. In order to most easily implement this 
imperative we shall introduce some ideas developed in [7]. Let P be a partial ordering 
over the set A. We shall let Ai >p Aj indicate that Ai is higher in the ordering than A, 
and Ai =p Aj indicate that they are tied in the ordering. We shall call a subset E of A a 
rooted sub-ordering with respect to P if for any Aj E E we also have all Ak >p Aj. Thus 
E is a rooted sub-ordering if it contains all the elements ahead of its lowest element. It 
should be emphasized that elements tied with the lowest element may or may not be in 
the E. Using this definition we can now introduce the nearer neighbor imperative. Let P 
be a partial ordering induced by the relevancy of the prototypes to the object of interest 
thus if q j  is the relevancy of prototype Aj to the object of interest, then if q j  > q k  we 
have A, >p Ak and if q j  = q k  we have Aj =p Ak. The requirement of the nearer neighbor 
principal can now be introduced by specifying that the relevancy function R be such that 
R(E) = 1 if E is a rooted sub-ordering of P and R(E) = 0 otherwise. Thus in this case a = 
MinEE R S ~ [ ~ ( E )  A Q(E)] where RSP is the set of rooted sub-orderings of A with respect 
to P.  

In [7] Yager showed using the properties of p(E) and R(E) the following useful 
result. Let P be a linear ordering generated from the partial ordering P such that elements 
that are tied with respect their relevancy value are lexically adjudicated by their notable 
feature value in descending order, thus if two prototypes are tied in P we place the one 
with the larger aj value higher in P .  Let ^p-index(j) be the index of the prototype that ii in 

the jth position in the ordering P .  Yager showed [7] that a = Maxj,l to n[p(Gj) A 
Q(Gj>l where Gj = {A;-index(k) I k = 1 to j}. We note that Gj consists of the j top 

A 

A 

A 
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elements in the ordering induced by the relevancy, the j nearest neighbors. We further 
note that Q(Gj) = Mink = to j[a&dex(k)], it is the minimal satisfaction among the jth 
most relevant items. 

Special examples of nearest neighbor type prototype based reasoning can be exhibited 
by different selections of p. If we consider the case where all prototypes are considered 
fully credible, p(E) = 1 for all E # 0, then a = Maxj =1 to JQ(Gj)]. Since Q(E) is a 
decreasing function, Q(E) I Q(F) if F c E and since Gj c Gi if i > j then for this case of 
credibility function a = Q(G1) = a^p-index(l). The valuation is the same as that of the 
single nearest neighbor, this is the simple nearest neighbor rule. 

More generally if p(E) is a cardinality-based credibility measure such that p(E) = 0 
for IEl < K and p(E) = 1 for IEl 2 K we see that = Mini,l to K [ap-index(i)], the 
minimal satisfaction by any of the K closest neighbors. This can be seen as a kind of 
Kth nearest neighbor rule. 

In the preceding we just used the ordering over the prototypes. We can consider a 
modification of this to include the relevancy values in the actual calculation of a. Here 
we let R(E) = R1(E) n R2(E) where R1 enforces the nearest neighbor imperative, R1(E) 
= 1 if E f Gi and R1(E) = 0 if E # Gi. We use R2 to express information about the 

n 

actual relevancy values, R2(E) = Min [q ' ] .  Combining these we get R such that J j s.t. A, E E 
A R(Gi) = Min, = to i[qp-indexu)] and R(E) = 0 for E # Gi. Using this we have a = 

Maxi[p(Gi) A R(Gi) A Q(Gi)l with Q(Gi) = Mink=l to i[ap-index(k)]* 
If we further assume p is such that all p({ Ai}) = 1 for all i, p(E) = 1 for all E # 0, 

then a = qb-index(l) A a6-index(l), the score of the nearest neighbor "weighted" by its 
degree of relevance. If we assume p(E) = 0 for IEl < K and p(E) = 1 for /El 2 K, then it 
can be shown that a = Minj = 1 to K[(qp-indexCj) A a$ndexo)]. One final case is where 

n 

- 

A 

p({Ai)) = ai and p(E) = Max [ail.  Here after some calculations we get 
i s.t. Ai E E 

4. Fuzzy Modeling as Prototype Based Reasoning 
We now briefly review the fuzzy systems modeling approach as introduced by 

Mamdani [S, 91 and Zadeh [lo],  a more comprehensive discussion can be found in [ l l ,  
121. As we shall subsequently see this provides an example of prototype based reasoning. 
Our viewing this technology as a case of PBR will enable us to expand its modeling 
capabilities. 

The basic fuzzy systems model consists of a collection of n rules of the form: 

1J 
If V1 is B l j  and ...... and Vi is B..  and .... and Vm is Bmj then W is Dj 

Here the Vi are variables taking their values in the spaces Xi and W is a variable taking 
its value in the space Y. The Vi are called the antecedent (input) variables and W is called 
the consequent (output) variable. The Bij are fuzzy subsets of Xi and Dj is a fuzzy subset 
of Y. At times it may be more convenient to write a rule as If V is Bj then W is Dj here 
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V is a joint variable, V = (V1, ..., Vm), taking its value in X = X1 x ... x Xm and Bj is 
a fuzzy of X with Bj = B l j  x B2. x ... x Bmj, 

The typical application of fuzzy systems modeling consists of a situation in which 
we have information about the antecedent variable, Vi = xi*, i = 1 to m, and we are 
interested in determining the value of W. We shall denote the fuzzy subset of Y 
corresponding to this output as F. The procedure used to obtain F, called fuzzy 
inferences, is as follows. First we determine the firing level or relevancy of each rule, as 
q j  = Mini, 1 to m[Bi.(x,*)], here Bij(xi*) indicates the membership grade of xi* in Bij. 
We then calculate the effective output of each rule Fj, a fuzzy subset of Y with 
membership F,(y) = Dj(y) A qj. The next step is the aggregation of the individual rule 
effective outputs to give us the overall output fuzzy set F, F(y) = Maxj[F,(y)]. 

Often a step of defuzzification is applied to obtain a crisp output [13]. This step is 
not of concern to us here. 

What we shall show in the following is that this fuzzy modeling framework can be 
viewed as a type of prototype based reasoning with respect to the determination of the 
membership grades of F, the F(y). 

In the PBR framework we shall consider each rule as a prototype. We shall denote 
the j th  rule as Aj, thus A = { A l ,  ..., An} is our collection of prototypes. In the 
determination of the membership grade of the element y in the consequent, F(y), we shall 
associate with each prototype an argument Dj(y), the degree to which the prototype 
supports the element y. Given an input object, (XI*, ..., xm*) the relevancy of the 

J 

J 1  

prototype Aj is q ,  - Min [Bij(xi*)]. J - i = 1  t o m  
Using the PBR framework the desired output F(y) = MaxEcA[y(E) A Q(E) A R(E)]. 

Here R is the relevancy of the subset E of rules, Q(E) is the degree to which all the rules 
in E support the output value y and y(E) is the degree of credibility associated with using 
the subset E of rules. For the basic fuzzy model we define the relevancy function R as 

- 

R(E) = Min [qj]. The relevancy of a subset of rules is the minimum relevancy of 
j s.t. A, E E 

any rule in the subset. Q is defined as Q(E) = [Dj(y)]. The support for y 

associated with a subset of rules is the degree to which all the rules support y. Finally in 
this basic model we assume that v( { Ai}) = 1 for all i , each rule has complete credibility. 
This of course means that y(E) = 1 for all E # 0. Since y(E) = 1 for all E f 0 we get 
F(y) = M ~ X E + D [ Q ( E )  A R(E)]. Since Q(E) = Min [Dj(y)] and R(E) = 

Min [qj] then for any subset E we have Q(E) A R(E) I Q({Aj}> A R({Aj}) for Aj 
j s.t. A, E E 
E E. From this we get that F(y) = Maxj = 1 to n [q j  A D.(y)] which is the fuzzy 
systems model. 

Thus we see that with appropriate choice of relevancy (R), credibility (p) and support 
(Q) functions the basic fuzzy systems modeling can be viewed as an example of prototype 
based reasoning. 

Min 
j s.t. Aj E E 

j s.t. Aj E E 

J 
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5. Extending Fuzzy Systems Modeling with Weighted Rules 
Viewing the fuzzy system model as a type of PBR allows us to extend capabilities of 

fuzzy system modeling. As a first extension of the classic fuzzy model we shall look at 
the situation in which we don't assume all of the individual rules are completely credible 
we shall assume that p( { Ai}) = a i  and y(E) depends on the prototypes in E. 

Here we still have Q(E) = Min [Dj(y)] and R(E) = Min [q j ] .  In this 

situation using the PBR model we have F(y) = MaxEcA[p(E) A Q(E) A R(E)]. We 
shall find i t  convenient to denote dj = Dj(y) and to denote f .  - d .  A qj.  We shall call fj 
the effective value of prototype Ai. Also we shall denote QR = Q n R. We see that 

j s.t. A, E E j s.t. Aj E E 

- 
1 -  I 

from the current definitions of Q and R we have QR(E) = Q(E) A R(E) = Min [fj] j s.t. Ai E E 
Using this notation we have F(y) = MaxEcA[p(E) A QR(E)] 

While we have assumed that the credibilities of the individual prototype rules are a j  
we have not indicated any other structure on the credibility measure p. By imposing 
particular additional structure on p we can obtain useful formulations for the 
determination of the overall consequent value. 

As a first case we shall assume that the credibility measure has the properties of a 

- 

possibility measure [14], p(E) = Max [a ,] .  We can show under this assumption I j s.t. Ai E E 
about the form of the credibility functibn we obtain as our formulation for consequent 
fuzzy set a weighted aggregation of effective values of each prototype 

F(Y) = Maxj=l to n [aj A fjl. 
More generally we can assume a t-conorm S instead of Max in defining p. In this 

case F(y) = Maxi = 1 to n[ff-index(i) A sk= 1 to i[af-index(k)] In the case of the bounded 
sum, S(a, b) = (a + b) A 1, we get 

i 

k =  1 
F(y) = Maxi = 1 to n[ff-index(i) A af-index(k)l* 

To help better understand the relationship of the PBR reasoning to fuzzy modeling 
we introduce the idea of compounding of fuzzy rules. Let A1 and A2 be two fuzzy rules- 
A l :  If V1 is B2 then W is D1 and A2: If V2 is B2 the W is D2. Here V1 and V2 
may be atomic or joint variables, which may or may not be the same. We define a new 
rule called the compounding of A1 and A1 denoted Comp(A1, A2) as 

If V1 is B1 d V 2  i sB2 then W isD1 d D 2  
We see compounding A1 and A2 defines a new rule that is a conjunction of the 
antecedents and a conjunction of the consequents of each of the rules being compounded. 
For a given input x* if the firing levels of A1 and A2 are y11 and q 2  then the firing level 
of the compound rule is q 1 A 72,  the consequent membership grade is Dl(y) A D2(y) and 
the efficient value is Dl(y) A D2(y) A q l  A q 2  The extension to the compounding of 
any number of rules is straight forward. 

Using the definitions of Q(E) and R(E) we can see a relationship between the process 
of compounding and the PBR reasoning mechanism introduced. Let E be a subset of A 
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then compounding the rules in E generates a rule, Comp(E), whose antecedent is the 
conjunction of all the antecedents of the rules in E and whose consequent is the 
conjunction of all the consequents of the rules in E. If for a given input x* the firing 
level of the ith rule is q i  then the firing level of the rule Comp(E) is Q(E), the 
consequent of rule Comp(E) is Q(E) and the effective value of E, is Q(E) A R(E) = 
QR(E). Thus we see that in the PBR model when using the form F(y) = MaxEcA[p(E) 
A Q(E) A R(E)] we are considering the compounding of the all rules with p (E)  
representing the credibility of the rule Comp(E). 

- 

6. Partitioned Fuzzy Rule Sets 
We consider another formulation for the credibility function. Let 

A = {Ai, ..., An} be our collection of fuzzy rules and assume we partition these into q 

disjoint classes Mj, U j  Mj = A and Mj n Mi = 0, Using this we first define the degree 
of inclusion of Mj in E, INC[Mj/E], as follows: INC[Mj/El = 1 if E n Mj f 0 and 
INC[MjI/E] = 0 if E n M, = 0. Using this indicate the meta-cardinality of a subset E 

9 
with respect to the partition as M-C(E) = INC[MjlE]. Using this we can define a 

j = 1  
credibility function p on A :  p(E) = WM-C(E), where the w‘ are collection of weights 
such that: wo = 0, wq = 1 and wi 2 wj for i > j .  Here we see that p(E) is related to how 
many of the different classes of rules are contained in E. 

We now shall use the formulation for PBR, F(y) = MaXEcA[p(E) A Q(E) A R(E)] 
where R(E) = Min[qje El, Q(E) = Min[djE El and p(E) is as just defined. We note that if 
E’ c E then Q(E’) 2 Q(E) and R(E’) 2 R(E). We also note that for this p if E contains 
multiple elements from one class and, if G is a subset obtained from E by removing all 
the elements of a class except for one, then p(E) = p(G). In this situation since G c E 
then Q(G) 2 Q(E) and R(E) 2 R(E), this implies Q(G) A p(G) A R(G) 2 Q(E) A p(E) A 
R E ) .  

We shall let H denote the collection Minimal of subsets of A , .  a subset of A is 
contained H if it contains at most one element from each class. Using this notation we 
see that F(y) = MaxGE H [p(G) A Q(G) A R(G)]. We shall further use the notation 
fk = q k  A dk and recall Q(G) A R(G) = QR(G)= Min[fk€ GI. Using this F(y) = 
Max& H [p(G) A QR(G)]. Let Am be the prototype in M, having the largest value for 

fk.  We call Am Mj’s most effective prototype. Let H * be the subspace of H 

consisting of the collection of subsets of A where each subset in H* contains at most 
one element from any M. and that element is always the most effective prototype, Am.. 

From the preceding we see that F(y) = MaxGE H * [ ~ ( G )  A QR(G)]. Since p(G) = wk if 
M-C(G) = k then F(y) = Maxk, 1 to q[Wk A [QR(G)]. Let fm-index(k) be 

the index of the class having the kth largest value for fm.. Using this notation we can 

J 

- 

j 

j 

J J 

Max 
G E  H*,JGI=k 

J 
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show that F(y) = MaXk,l to 1[Wk A Ck] where Ck = f 
mfm-index( k) 

The procedure just described for obtaining F(y) can be simply expressed. For each 
prototype we obtain its firing level for the given input, vi ,  and we calculate fi = q i  A 
Di(y). For each class Mj, we determine the largest fi for any Ai E M,, we denote this 

fmj. We then order these fm. values such that Ck is the kth largest of these and then we 

In the following we define a situation which illustrates the preceding structure. 
Assume we have a model in which we have q antecedent variables, Vj, each with domain 
Xj  and let W be our consequent variable taking its value in Y. Assume we have a 
collection prototype fuzzy rules of the form Zf V j  is Bij then W is Fij. We shall denote 

a rule of this type as Aij, the ith rule involving the j th  variable. Thus here each rule 
expresses information about the consequent just based on one variable. Consider now a 
partitioning of these rules by the antecedent variable, for all i we have Aij E Mj. Here 
then we see that W k  will be the credibility associated with an inference using k different 
variables. 

We shall now consider an extension of the preceding. Here we still assume a 
partitioning of the prototypes but allow for different credibility for each of the prototypes. 
In the preceding illustration this may correspond to a situation in which we attribute more 
credibility to some variables over different ranges. For example rules over a range of 
values in which little experience may be stated with less credibility. With a partitioning 
of the prototypes into q disjoint subsets, Mj, and with Aij being the ith rule in the jth 
partition and we let a i j  be the credibility of Aij, p( ( Aij}) = a i j .  We let Nj be the 
number of rules in partition j .  We shall also assume for each partition there exists at 
least one element in each Mj with credibility equal one. 

We generalize the idea INC(Mj1E) to DINC[M,lE], the degree that Mj is included in 
E. We define this as DINC[MjlE] = MaxAikE ~ . [ a i k  A E(Aik)], maximal credibility of 
any rule in E. Now we now define p(E). In the early case we used p(E) = WM-C(E), 
where M-C(E) was the number of different classes included in E. Here we must generalize 
this idea. We shall suggest some ways to generalize this. One way to generalize this 
just using ordinal operations is as follows. Let DC-index(i) be the index of the partition 
with the ith largest value for DINC[M,IE] using this we define p(E) = Maxk = 1 to 
q[D"C(MDc-index(k)/) A Wk], Here the Wk are a set of weights as defined above. 

J 
CalCUlate F(y) = MaXk,l to l[Wk A ck]. 

J 

9 - 
Another approach is to calculate % = DINC[MjlE] and then let Int(DC) be the 

i = l  - N N 

integer portion of DC and A = DC - Int(DC) then define 
ME) = W I n t E )  + A(WInt(Z)+ 1 - WInt(i5E)) 

To help better understand the application of the PBR reasoning to fuzzy modeling we 
introduce the idea of compounding of fuzzy rules. Let A1 and A2 be two fuzzy rules- 
A1: If V1 is B2 then W is D1 and A2: If V2 is B2 the W is D2. Here V1 and V2 
may be atomic or joint variables, which may or may not be the same. We define a new 
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rule denoted Comp(A1, A2) as 
If V1 is B1 and V2 is B2 then W is D1 and D2 

We see compounding A1 and A2 defines a new rule that is a conjunction of the 
antecedents and a conjunction of the consequents of each of the rules being compounded. 
For a given input x* if the firing levels of A1 and A2 are q 1 and q 2  then the firing level 
of the compound rule is q l  A q2, the consequent membership grade is Dl(y) A D2(y) and 
the efficient value is Dl(y) A D2(y) A q l  A q2 The extension to the compounding of 
any number of rules is straight forward. 

Using the definitions of Q(E) and R(E) we can see a relationship between the process 
of compounding and the PBR reasoning mechanism introduced. Let E be a subset of A 
then compounding the rules in E generates a rule, Comp(E), whose antecedent is the 
conjunction of all the antecedents of the rules in E and whose consequent is the 
conjunction of all the consequents of the rules in E. If for a given input x* the firing 
level of the ith rule is q i  then the firing level of the rule Comp(E) is Q(E), the 
consequent of rule Comp(E) is Q(E) and the effective value of E, is Q(E) A R(E) = 
QR(E). Thus we see that in the PBR model when using the form F(y) = MaXEcA[p(E) 
A Q(E) A R(E)] we are considering the compounding of the all rules with p ( E )  
representing the credibility of the rule Comp(E). 

- 

7. Fuzzy Systems Models Using a Nearest Neighbor Principle 
Now we consider the application of a nearest neighbor principle to fuzzy systems 

modeling. We assume a collection of fuzzy rules A = { A l ,  ..., An} with consequent 
variable W taking its value on the space Y. We let the fuzzy subset corresponding to the 
output of this PBR system, F(y) = Max [p(E) A R(E) A Q(E)]. As in the preceding we 

shall assume Q(E) = Min[djEE]. 
We let q j  be the firing level of the jth rule and let q-index(i) be the index of the ith 

strongest firing rule.. The nearest neighbor principle says if a > b don't use prototype 
Aq-index(a) without using prototype Aq-index(b). Let Gi = {Aq-index(k)lk = 1 to i}, it 
is the set of the i most relevant rules. Under the nearest neighbor principle, R(Gi) = 1 
and R(E) = 0 for E #Gi. Using this principle we have 

E c A  

F(Y) = Maxi=l to nMGi)  A Q(Gi>l 
F(y) = Maxi=l to n[P(Gi) A Mink=l to i[dq-index(k)l)] 

Let us now focus on the function p, the credibility function. If p is, as it was in the 
basic case, defined as p(E) = 1 for all E then 

F(y) is the consequent value of the strongest fired rule, the rule whose antecedent is the 
nearest neighbor of the input. We note this is different from the usual case of fuzzy 
modeling in which F(y) = Maxi[di A qi] = Maxi[fi]. 

F(Y) = Maxi=1 to n[Q(Gi)l= dq-index(1) 9 

If we change p such that p(E) = 0 if IEl< K and p(E) = 1 if [El 2 K then 
F(Y) = . Min [$-index(i)l i = I t o K  

It is the minimal membership grade among the K rules that are nearest neighbors. 
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8. Combining Multiple Fuzzy Rule Based Models 
One issue of interest in the use of fuzzy systems modeling is the fusion of multiple 

fuzzy systems models with the same consequent variable. The PBR approach provides a 
framework for combining multiple fuzzy models. Assume we have a fuzzy systems 
model consisting of n1 rule of the form Ri: If V1 is Bi then W is Di, where i = 1 to "1. 
Here the antecedent V1 can be an atomic or a joint variable on X and the output W is a 
variable taking its values in the space Y. Assume we have another fuzzy system model 
consisting of n2 rules of the form Ri: If V2 is B, if W is Di here we let i = n1 + 1 to n1 
+ "2. Here again V2 can be an atomic variable or a joint variable which may or may not 
be the same as V 1. The consequent variable is the same 

In combining these two fuzzy models we desire that output values supported by both 
rules be stronger than those only supported by one rule. Here we shall let F indicate the 
fuzzy subset resulting from the application of these two rules with input x*. We use the 
notation q i  = Bi(x*), the firing level of ith rule, and let di = Di(y) the membership of y in 

We let A = { R l ,  ..., Rn19 Rn1+1$ ...' Rn1+n2 ) ,  We now apply PBR to determine 

F(y). In particular F(y) = MaxEcA[Q(E) A R(E) A p(E)] where Q(E) = Min[qjE El and 
R(E) = Minidjc El We see that F(y) =MaxEcA[Min[fjE E) A p(E)] where fj = dj A qj] 

We now consider the form of the credibility measure p which we define over the 
space A .  Here we want to give a degree of credibility of a 1  to those inferences just 
based on the first fuzzy rule base, we give a degree of credibility of a 2  for any output just 
based on the second fuzzy rule base and we give complete credibility of one to those based 
on both models. In order to capture this we must appropriately define p. With E 
denoting a subset of A , a collection of rules, we define p(E) as follows: 

p(E) = a 1  if all R, E E are s.t .j E [ l ,  1111 
p(E) = a 2  if all Rj E E are s.t. j .  E ( n l + l ,  n1, + "2) 
p(E) = 1 if there exists at least one Rj E E s.t. j E [ 1, n1] and one Rj s.t. j E 

[n l+ l ,  ni+n21. 
We note that if E l  c E2 then Min[fjE E l ]  2 Min[fjE E2]. Using this we see that for 

Di. 

the assumed form of credibility function p we get 
F(Y) = ( a 1  A . Max 

J = 1 ton1 IfjI) v ( a 2  A = n l + l  Max to n1+n2 [fjl) v 

J = n l + l  to n1+n2 (, Max [fj] A ,  Max [fjl) 
J = 1 to n1 

Let F1 and F2 denote the respective outputs of the individual models for the input 
x*. It is easily seen that the membership grade of y in the output of the first model FI(y) 
= Max [fj], and that the membership grade of y in the output of the second F ~ ( Y )  

j = l  ton1 
- - Max [fj]. Using this we can express combined rule membership grade for y 

in a more enlightening form as 
j = n l + l  to n1+n2 
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F(Y) = ( a1  A Fl(Y)) v ( a2  A F2(Y)) v (F1(Y) A F2(Y)) 
Here we see F(y) is a weighted combination of the outputs from the individual fuzzy 
models 

What has effectively happened in the PBR approach is that we have created a 
combined rule base. This rule base consists of the union of the rules making up the two 
models plus an set additional set of rules each consisting of a compounding of two rules, 
one from each of the models. Thus for each Ri in the first rule base and each Rj in the 
second rule base we get an additional rule 

Comp(Ri, Rj) = If V1 is Ai and V2 is Aj the W is Bi n Bj. 
We assign a credibility a1 to those rules coming from the first model, a credibility a 2  to 
those rules coming from the second model and a credibility of one to each of the 
compound rule. 

We note from the above formulation for F(y) that if a1 = 0.1 = 1 then our output is 
simply the union of the two models, F(y) = F l ( y )  v F2(y). If a 1  = a 2  = 0 then our 
output is the intersection of the two models, F(y) = F1(y) A F2(y). 

We can extend this technique for combining fuzzy models. Here we shall assume 
that we have q models and use the prototype based reasoning approach to obtain F(y), the 
combined output. Initially we shall assume all the models are equally valid. For j = 1 
to q we shall let wj be the credibility we associate with an output based on j of the 
models. Here we have w' J -  > w k if J ' > k and assume wq = 1. For a given input x* we let 
Fj(y) be the output value obtained from the jth model. We let index(k) be the index of 

kth largest of the Fj(y). Using this we obtain the combined output of these q models as 

A further generalization can be made which allows different credibilities to the 
different models Let T = (S1, ..., Sq}, where Sj indicates the jth fuzzy model. Let p: 2T 
-+ [0, 11 be a such that y(E) indicates the degree of credibility associated with a solution 
determined by the collection of rules bases in E. He we have p(T) = 1, p (0)  = 0 and 
p(E1) 2 p(E2) if E2 c E l .  Again let Fj(y) be the output obtained from the jth model 

and index(k) be the index of kth largest of the Fj(y). Let Hi = { Sindex(k)lk = 1 to i}, it 
is the set of the i models with the largest membership grade for y in the output. Using 

F(Y) = Maxk= 1 to q[Findex(k)(Y) A Wk] 

this we getF(y) = Maxk= 1 to q[Findex(k)(Y) A !@ill. 

9. Conclusion 
We introduced the general framework for prototype based reasoning. We explained its 

use as a technology for supplying missing information about some target object based on 
known information about related prototype objects. We looked at some types of 
prototype based reasoning systems. First we considered nearest neighbor based systems. 
We then looked at fuzzy rule based models and viewed these as prototype based reasoning. 
This perspective allowed us to extend the capabilities fuzzy modeling technology on a 
number of directions. We finally we used the tools provided here to suggest a method for 
fusing multiple fuzzy systems models. 
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Abstract 
Argumentation is based on the exchange and evaluation of interacting arguments. In this 
paper, we concentrate on the analysis of defeat interactions between arguments, within the 
argumentation framework of [ 31. We propose different principles for a gradual evaluation 
of arguments, which takes into account the defeaters, the defeaters of defeaters, and so on. 
Following these principles, two formalizations are presented. Finally, existing approaches 
are restated in our framework. 

Keywords: Argumentation, Interactions, Inconsistency, Nonmonotonic logics 

1 Introduction 
As shown by [3], argumentation frameworks provide a unifying and powerful tool for 
the study of many formal systems developed for common-sense reasoning, as well as for 
giving meaning to logic programs. Argumentation is based on the exchange and evalua- 
tion of interacting arguments. It can be applied, among others, in the legal domain, for 
collective decision support systems or for negotiation support. 
Two kinds of evaluation can be distinguished : 

intrinsic evaluation : an argument is considered independently of its interactions 
with other arguments. This enables to express to what extent an argument increases 
the confidence in the statement it supports. Such valuation methods can take differ- 
ent forms [5], including a numerical value which can be interpreted in probabilistic 
terms as in [6], or simply by a preference relation on the set of all arguments as 
in [7] and [ 13. 
interaction-based evaluation : an argument is valuated according to its defeaters, to 
the defeaters of its defeaters (the defenders), .,. 

Intrinsic evaluation and interaction-based evaluation have often been used separately, ac- 
cording to the considered applications. Some recent works however consider a combi- 
nation of both approaches (see eg. [ 11). Interaction-based approaches usually provide a 
crisp evaluation : the argument is accepted or not. Such an evaluation can be defined 
individually (per argument), for example by a labelling process [4], or globally, giving 
sets of arguments that are all accepted together [3]. The common idea is that an argument 
is acceptable if it can be argued successfully against defeating arguments. Recently, [2] 
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has proposed a gradual interaction-based evaluation in the specific case of deductive argu- 
ments (where an argument is a logical proof). An argument tree represents all the chains 
of defeaters for the argument at the root of the tree. The (computed) value of this tree 
represents the relative strength of the root argument. 
In this paper, we concentrate on the analysis of interactions between arguments, abstract- 
ing from the internal structure of an argument. We therefore ignore intrinsic evaluations. 
Our purpose is to provide a global evaluation of an argument according to the way this ar- 
gument is defeated by other arguments and by recursion on these defeaters. An argument 
will be thus considered as more or less acceptable. 
Section 2 introduces abstract argumentation frameworks and their representation as at- 
tack graphs. In section 3, we present relevant examples that enable us to draw the main 
principles underlying a gradual evaluation of interactions. Note that our interest is di- 
rected to the ordering relation between the values of the arguments and not to the values 
themselves. Following these principles, two formalizations are proposed in section 4, and 
related to other existing approaches in section 5. 
2 Notations 
We consider the abstract framework introduced in [3]. An argumentation system <A, R> 
is a set A of arguments and a binary relation R on A called an attack relation: let Ai and 
Aj E A, AiRAj means that Ai attacks Aj. 
Notations: Let A E A, The set {Ai  E AIAiRA} is denoted by %!,-(A) and the set 
{Ai E AlARAi} is denoted by 'R+(A). 

<A,R> defines a directed graph G (called A, , A2 
the attack graph). For example, the system 
<A,R> with A = { A I , A ~ , A ~ , A ~ }  and 

following graph 6: 

\ 
P A3 A4 

R = {(A2,A3),(A4,A3),(Al,AZ)} defines the 

Def 1 An argument A E A such that 72-(A) = 0 is a leaf of the attack graph dejned by 
<A, R>. 

Def 2 In the attack graph 6, a path from A to B, derioted by C(A, B ) ' ,  is a sequence of 
argutnents A1 . . .A,, such that A = Al,  AlRA2, . . . , An-1RA,, A, = B. The length 
of this path is n - 1 (the number of edges that are used in the path) and will be denoted 
by ~ c ( A , B ) .  

We now introduce the notions of direct and indirect attacks and defences. The notions 
introduced here are inspired by related definitions first introduced in [3] but are not strictly 
equivalent: in [3]'s work, direct attacks (resp. defences) are also indirect attacks (resp. 
defences) which is not true in our definitions: 

Def 3 Let A E A. The direct defeaters of A are the elements of R-(A) .  The direct 
defenders of A are the direct defeaters of the elements of R-(A) .  The indirect defeaters 
of A are the elements Ai such that: 3C(Ai, A)  such that Z C ( A ; , A )  = 2k+1 with k 2 1. The 
indirect defenders of A are the elements Ai such that: 3C(Ai ,  A )  such that ~ C ( A { , A )  = 2k 
with k 2 2. 

'If there are several paths from A to B, they are denoted by C(A, B ) I ,  C(A, B ) z  . . . 
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Def 4 Let A E A, an attack branch (resp. defence branch) for  A is an odd (resp. even) 
length path from a leaf to A in 6. When such a branch exists, A is said to be the root of 
the branch. 

3 Examples 
We have identified some specific relevant graphs which allow us to draw some funda- 
mental principles and also problems that will lead to the introduction of two different 
formalizations of gradual evaluation. 
We denote by w an assignment of values to a given ordered set from the arguments of A. 

1. case of a single node A: 
The value of A is maximal (the best value) since it suffers no attack. 

2. case of a single path of length n 2 1: 

A1 

t 
A2 
I 
I 
I 
I 
I 

An-1 

t 

According to the parity of n, we have different re- 
sults. If n is even, the path C(A,,Al) is an at- 
tack branch for A1 and the Ai such that i odd, 
1 < i 5 n - 1, are defenders of A1 and the other 
Ai are defeaters of A1 ; else (if n odd) the path 
C(A,, A l )  is a defence branch for A1 and the Ai 
such that i odd, 1 < i 5 n, are defenders of A1 
and the other Ai are defeaters of A1. 

An 
So, we have either w(A,) 2 v(A,-2) 2 . . . 2 w(A2) 2 v(A1) 2 v(A3) 2 . . . 2 

w(A,-3) 2 v(A,-1) (for n even), or v(A,) 2 U ( A , _ ~ )  2 . . . 2 v(A3) 2 
v(A1) 2 v(A2) 2 . . . 2 w(A,-3) 2 U ( A , _ ~ )  (for n odd). 

3. case of a non-linear acyclic attack graph (note that this type of graph is more general 
than a simple non-trivial tree; for example 

/ B 1 \ A  

‘b B 2 /  

is a non-linear acyclic attack graph): 

A 

This example raises the issue of the propagation 
of the modification of the value of a direct defeater 
when there are several defeaters. 

/I\ 
3 3 3  
B 1 -  - - - B i  - - - - B n  

4. case of an attack graph with cycles: 
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k ~ i  How to take into account the cycles (even or odd) 
and their lengths ? / 

An 

k. - -. 

4 Principles and formalization 
We will consider two types of evaluation: 

1. the evaluation of an argument is only a function of the direct defeaters of this argu- 
ment. Therefore, defenders are taken into account through the defeaters. 

2. the evaluation of an argument is a function of the set of all attack and defence 
branches for this argument. 

4.1 Approach I 
Underlying principles They are 4. 
P1: The evaluation is maximal for an argument without defeater and non maximal for an 
attacked and undefended argument. 
P2: The evaluation of an argument is a function of the evaluation of its direct defeaters 
(the “direct attack”). 
P3: The evaluation of an argument is a decreasing function of the evaluation of the direct 
attack. 
P4: Each defeater of an argument contributes to the increase of the evaluation of the direct 
attack for this argument. 
Formalization Let W be a totally ordered set with a minimum element (VMin) and a 
subset V of W that contains v~i, and with a maximum element V M ~ ~ .  

Def 5 Let <A, R> be an argumentation system. An evaluation is a function v : d + v 
such that: 

1. VA E d,V(A) 2 hln 
2. VA E d, ifR-(A) = 0 then v(A) = VM, 

3. VA E A, ifR-(A) = {Al , .  . . ,A,} # 0 then v(A)  = g(h(w(Ai), . . . , v ( & ) ) )  

where h : V* -+ W is such that (V’ denotes the set of alljnite sequences of elements of 

and g : W + V is such that g(VMrn) = VMnr, g(VMa) < V M ~ ,  g is decreasing (x 5 y * V) h(x )  = Z, h() = V~rn, h(z1,. . xn, xn+1) 2 h(x17. . . > xn) 

g(x) 2 S(Y)). 

Note: the fact that h ( m ,  . . . ,x,) 2 muz(z l , .  . . , 2,) is a logical consequence of the Properties 
of h. 
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Properties Existence of an evaluation w: see section 5 (property 3) for an example of 
an evaluation introduced in the framework of [4]. 
P1 is satisfied since VA E A if A has no defeater (R-(A) = a), then w(A) = VMax and 
g(VMa,y) < VMax. P2 is satisfied since if R- (A)  = (-41,. . . ,A,}, h(v(Al ) ,  . . . ,v(A,)) 
gives an evaluation of the direct attack of A. P3 and P4 are satisfied due to the properties 
of the functions g and h. 

Prop 1 The function g satisjies for all n 2 1: 

IJ moreovel; g is strictly decreasing and g(VMas) > V M ~ ~ ,  the inequalities become strict. 

Proof: By induction from VMin 5 g(YMax) < V M ~ ~  and by applying g twice consec- 
utively. 0 

Examples Let us consider again some examples from section 3. 

EX 1 U(A) = VMax 

Ex2 ~ ( A I )  = gn-l(T/jlax) 
If n is even v(A,-1) I . . . 5 w(A3) 5 w(A1) I w(A2) 5 . . . 5 w(A,) = VMax 
I f n  is odd v(A,-1) I . . . I w ( A ~ )  5 w(A1) 5 w(&) I . . . 5 w(An) = VMax 

Ex3 From the properties of g and h, we conclude that if w(Bi) increases (resp. de- 
creases), then w(A) decreases (resp. increases). Moreover, if a new defeater l l ,+~ 
is added: w(A) = g(h(w(B1), . . . , w(BnS1))) 5 g(h(w(B1), . . . , ~ ( l l , ) ) ) .  This 
example shows that if the number of defeaters is taken into account, then the eval- 
uation of an argument should be able to be strictly lower than g(vMax). This is for 
example the case if h is strictly decreasing. 

Ex 4 The study of the graphs with cycles lays bare the role played by the fixpoints of g, 
g2, . . . . In the case of cycles of length n: if n is odd, all the arguments of the cycle 
have the same value and this value is a fixpoint of g, if n is even, the values of all 
the arguments in the cycle are fixpoints of gn. 

4.2 Approach 2 
Underlying principles 
Pl': The evaluation is maximal for an argument without defeater and non maximal for an 
argument which is attacked (whether it is defended or not). 
P2': The evaluation of an argument takes into account all the branches which are rooted 
in this argument. 
P3': The improvement of the defence or the degradation of the attack of an argument 
leads to an increase of the value of this argument. 
P4': The improvement of the attack or the degradation of the defence of an argument 
leads to a decrease of the value of the argument. 
Let us define a tuple-based evaluation. 

There are some common items with the previous approach. 
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Formalization Let us define recursively the value of an argument A using the following 
idea: the value must describe the subgraph whose root is A, so we want to memorize in a 
tuple the length of each branch leading to A. We have two cases: 

Rule 1 (A does not belong to a cycle) Let A be an argument which does not belong to a 
cycle, the value v(A) of A is defined as follows: . $ A  is a leafof the attack graph: v(A) = () (also denoted by v(A) = ( O ) ) ,  . else: let B1,. . . , B, be the direct defeaters of A whose respective values are 

tuples of integers ordered by increasing values ( b ; ,  . . . , bhl), . . . , ( b y , .  . . , b;,,), 
then v(A) = f,(b; + 1,. . . , bh, + 1,. . . , b y  + 1,. . . , bzn + l), where fc is the 
function that orders a tuple by increasing values. 

The incrementation of each value in the tuple means that the argument A is more distant 
from the leaves than its defeaters. Second, the function fc guarantees that each tuple is 
ordered. 
When cycles occur, we have chosen to memorize only two “branches” (abuse of nota- 
tion !): the attack branch of minimal length and the defence branch of minimal length. 
The underlying idea is to consider each cycle as a kind of meta-argument whose value 
is equal to the tuple (1 ,2 ) .  The values of the arguments inside the cycle will be defined 
as the tuple built from the value of the meta-argument and from the values of the argu- 
ments that attack the meta-argument seen from the argument considered. This leads to the 
following computation rule: 

Rule 2 ( A  belongs to a cycle) Let A be an argument, A belongs to C1 . . . C, cycles. Let 
Ci . . . Ck other cycles which are interconnected with an Ci cycle or between them2 (so A 
does not belong to Ci . . . Ck). Let X’ . . , XP arguments which do not belong to the cycles 
and which are direct defeaters of an element of a cycle. We denote : . li : the shortest distance between the cycle C: and A (li = Minc;  EC; (lc(c; , A ) ) ) ,  . lx, = l C ( X i , A )  (distance between Xi et A), . each argument Xi has the following value : v(Xi) = (xi,. . . , xi l ) .  
So, the value v(A)  of A is defined as follows : - 

m. t i m a  
v ( A )  = f c ( l , 2 , .  . . ,I, 2, 

1 + 11 ,2  + 1 1 , .  . . , 1  + 1,, 2 + 1,, 
2:  +lXI,...,& + I X l ,  

2:+1xP,...,z;p +IX,) 
. . .  

Here is a example that summarizes the various cases that can be encountered when cycles 
are taken into account. 

*2 cycles are interconnected iff their intersection is not empty. 
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We then consider an algorithm that compares two values (ordered tuples of integers). See 
algorithm 1 where the following notations are used: 
Let X be an argument and v ( X )  its value. na(X) is the number of attack branches of 
X (0 if X is a leaf, the number of odd integers in the tuple w(X) otherwise). nd(X) is 
the number of defence branches of X (cc if X is a leaf, the number of even integers in 
the tuple w ( X )  otherwise). w p ( X )  (resp. wi(X))  is the ordered tuple of even (resp. odd) 
integers in the tuple v (X). 
Justification The underlying idea is that an argument A will be better than an argument 
B if it as a “stronger” defence and a “weaker” attack. 
In order to compare two arguments A and B,  we start from the numbers n,(A), n,(B) on 
one hand and nd(A), nd(B) on the other hand (for a quantitative aspect). We then aggre- 
gate these two criteria in the most cautious way (the two criteria have to be in agreement 
to conclude). 
In case of equality of n,(A), n,(B) and of nd(A), nd(B), we have chosen to take into 
account the “quality” of the attack and defence branches (again we get two criteria for the 
comparison), represented by their length. We have chosen to compare each of these crite- 
ria lexicographically. Then we cautiously aggregate the results of these two comparisons, 
as above. 
Note that, instead of a lexicographic comparison, one may rely on other mechanisms. 
Similarly, other types of aggregation may be used. 

Properties From the previous definitions, we get the following results: 

Prop 1 The relation defined by the comparison algorithm I is a partial order on the set 
V of all the finite tuples of integers ordered by increasing values and () is the maximum 
element of V .  

Proof: The fact that the relation is an order relation (reflexive, antisymmetric and 
transitive) and that () is a maximum element of this relation follows from the defini- 

0 tion of the comparison algorithm 1. 

We then define a per tuple evaluation: 

Def 6 Let V be the set of all the finite tuples of integers, ordered by increasing values. 
Let <A, R> be an argumentation system. The binary relation v on A x V such that, for 
any A E A, v(A) E V and v (A)  satisjies the computation rules 1 and 2 is called a per 
tuple evaluation of <A, R>. 
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Prop 2 Let v be a per tuple evaluation of <A, R>, v satisfies the principles Pl’, P2’, 
P3’ and P4’. 

Proof: P1’ is satisfied due to the use of the computation rules 1 and 2 and from the 
fact that () is the maximum element of V .  
P2’ is satisfied due to the computation rules 1 and 2. 
P3’ and P4’ are satisfied. It can be checked by examining, one after the other, all the 
basic possible cases of modification of a value and by comparing these values before 
and after the modification using the algorithm 1. For principle P3’, these different 
basic cases are removal or lengthening of an attack branch, addition or shortening of 
a defence branch. And for principle P4’, they are removal or lengthening of a defence 
branch, addition or shortening of an attack branch. Naturally, the change in the length 
of a branch should not modify the type of the branch itself or else we are no longer in 
a basic case but in the complex case of a branch removal from a given nature followed 

0 by the addition of a branch of another type. 

be 

en’ - 

Ise 

(nd(A) = nd(B)) then 
% lexicogra hical comparisons 8 
% of u,(Ayand v ( B )  and of % 

% v,(AP and v,(B)  % 

% Case 3 % 
B ) )  A (vi(A) 2 l e r  v i ( B ) )  then 

lse 

r L ( B )  2 v(A) and v(A) 2 v ( B )  
% Case 5 % 

Examples 

Ex 1 v(A) = () (max of V ) .  

E x 2  If n is even, v(A,) = () > v(A,-z) = (2) > . . .  > v(A2) = (n  - 2) > 
v(A1) = (n  - 1) > . . . > v(A,-~)  = (3) > v(A,-1) = (1). For n odd, 

On the examples cited in section 3, we  get the following results: 
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arguments 
arguments hav- having at- arguments 
ing only attack 1: tack branches 5 having only de- 5 
branches and defence fence branches 

branches 

v(An)  = () > v(A,-2) = (2) > . . . > v(A1) = (TI - 1) > v(A2) = (n - 2) > 
. . . > v (A , -~ )  = (3) > v(A,-i) = (1). 

Ex 3 If Bi is a defence branch for A and if Bi disappears, then v(A) will decrease. If 
Bi is an attack branch for A whose length increases then v(A) will increase (see 
principles P3’ and P4’). In the case of the addition of a new defeater B,+1, if Bn+l 
is on a defence branch for A then v(A)  will increase, and if B,+1 is on an attack 
branch for A, v(A) will decrease (see principles P3’ and P4’). 

Ex 4 Generally, the value of the arguments in the cycle is ( 1 , 2 )  < () 

4.3 
Even if these two approaches rely on different underlying principles, they may yield the 
same results in some cases. This is the case for example when the attack graph reduces to 
a unique branch (see example 2). Differences appear as soon as, for a given argument, it 
is possible to get both attack and defence branches (see example 3 and the following one). 

Comparison of these two approaches 

arguments 
never at- 
tacked 

On this example, B has two direct defeaters (C2 and Cl) 
and B’ has only one direct defeater (C’). So, with the 
approach 1, B’ is better than B. 
But, there are also two branches leading to B (one de- 
fence branch and one attack branch) and only one attack 
branch leading to B’. So, with the approach 2, B is better 
than B’ (since there is at least one defence for B and no 
defence for B’). In this case, the direct defeater C1 has 
lost its negatif status of defeater since it became a “carrier 
of defence” for B ! 

arguments 
arguments arguments 
having several 1 h i  ~ 1 havi; ;:;, 1 if:?: at? 1 unattacked one unattacked direct 
direct defeaters direct defeater feater (possibly 

defended 
arguments aving severa attac e irect e eaters pos- 
sibly defended) 

5 

B B’ 

arguments 
never at- 
tacked 

C’ c1 c2 

! 
D 

We can synthesize the resultats about these different evaluations on the following table: 

Approach I 
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5 Comparison with existing proposals 
5.1 The approach of [3] 
The argumentation schema introduced in [ 3 ]  enables the definition of sets of acceptable 
arguments, called extensions, along with different possible semantics. Under the pre- 
ferred extension semantics, an extension is an inclusion-maximal conflict-free set which 
defends all its elements. An argument is therefore accepted iff it belongs to a preferred ex- 
tension. One may therefore consider that for each semantics, there is a corresponding type 
of binary interaction-based evaluation and, under a given semantics, a binary evaluation 
corresponds to each extension. 
5.2 The approach of [4] 

In the approach of [4], a labelling of a set of arguments assigns a status (accepted, rejected, 
undecided) to each argument using labels from the set { +, -, ?}. + (resp. -, ?) represents 
the “accepted” (resp. “rejected”, “undecided”) status. Intuitively, an argument labelled 
with ? is both supported and weakened. 

Def 7 Let <A, R> be an argumentation system. A complete labelling of <A, R> is a 
function Lab : A -+ { +, ?, -} such that: 

I .  IfLab(A) E {?, -} then 3B E R-(A)  such that Lab(B) E {+,?} 

2. IfLab(A) E {+, ?} then VB E R-(A)  U R+(A),  Lab(B) E {?, -} 

The underlying intuition is that an argument can only be weakened (label - or ?) if one 
of its direct defeaters is supported (condition 1); an argument can get a support only if 
all its direct defeaters are weakened and an argument which is supported (label + or ?) 
weakens the arguments it attacks (condition 2 ) .  So: 

If A has no defeater Lab(A) = +. 
If Lab(A) =? then 3B E R-(A)  such that Lab(B) =?. . If (VB E R-(A) ,  Lab(B) = -) then Lab(A) = +. . If Lab(A) = + then V B  E %!-(A) u R+(A),  Lab(B) = -. 

Every argumentation system can be completely labelled. The associated semantics is that 
S is an acceptable set of arguments iff there exists a complete labelling Lab of <A, R> 
such that S = {AJLab(A) = +}. 
Other types of labellings are introduced in [4] among which the so-called “rooted la- 
belling” which induces a corresponding “rooted” semantics. The idea is to only reject 
arguments attacked by accepted arguments: an attack by an “undecided” argument is not 
rooted since an “undecided” defeater may become rejected. 

Def 8 The complete labelling Lab is rooted c j f  V A  E d, i f  Lab(A) = - then 3B E 
R-(A) such that Lab(B) = +. 
The rooted semantics allows to clarify the links between all the other semantics introduced 
in [4] and some semantics introduced in [3]. 
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On the examples of section 3 We get the following results: 

EX 1 v ( A )  = + 
Ex 2 For n even, v(A,) = v(A,-2) = . . . = v(A2)  = + and v(A,-1) = v(An-3) = 

. .. = v(A1) = -. For n odd, v(A,) = v(AnP2) = .. . = v(A1) = + and 
v(An-1) = v(A,-3) = . . . = w ( A ~ )  = - 

More generally, we proved: . In the directed acyclic graph case, every argument is labelled by + or -. An argu- 
ment A is accepted iff it is (indirectly) defended against each of its direct defeaters 
(Le., iff each of its direct defeaters is rejected). 

rn In the case of a graph with cycle: the arguments that appear on an odd length cycle 
are necessarily labelled by “undecided”. If Lab is a rooted labelling: . A is accepted (+) iff all its direct defeaters are rejected (-). . A is rejected iff one of its direct defeaters is accepted. . A is undecided iff one of its direct defeaters is undecided and none of its direct 

defeaters is accepted. 

Prop 3 (Link with the approach 1) Every rooted labelling of <A, R> can be dejined 
by an evaluation v such that: V = W = { -, ?, +} with - < ? < +, VM,,, denoted by - 
and denoted by +. 

Proof: g is defined by g(-) = +, g(+) = -, g(?)  =? and h is the function m a .  0 

5.3 The aggregation function of [2] 
[2]  introduces a logical framework for “deductive” arguments. The approach can be char- 
acterized as follows. An argument is structured as a pair (support, conclusion), where 
support is a consistent set of formulae that enables to prove the formula conclusion. The 
attack relation considered here is strict and cycles are not allowed. The notion of a “tree 
of arguments” allows a concise and exhaustive representation of defeaters and defenders 
of a given argument, root of the tree. A function, called a “categorizer”, allows to assign 
a value to a tree of arguments. This value represents the relative strength of an argument 
(root of the tree) given all its defeaters and defenders. A function, called an “accumula- 
tor”, allows to synthesize the values assigned to all the argument trees whose root is an 
argument for (resp. against) a given conclusion. 
The phase of cate orization therefore corresponds to an interaction-based evaluation. [2] 
introduces the folfowing function Cat: . if R-(A)  = 0, then Cat(A) = 1 . if R- ( A )  # with R-(A)  = f A 1 ,  ’ ’ . > A n ) ,  Cat(A) = l+Cat(A1): ...+C at(A,)  

Intuitively, the larger the number of direct defeaters of an argument, the lower its value. 
The larger the number of defenders of an argument, the larger its value. 
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On the examples of section 3 We get the following results: 

EX 1 v(A) = 1 

Ex 2 We get the same results as in section 4.1 

Prop 4 (Link with the approach 1) The categorization function of [2] is the restriction 
to acyclic graphs of an evaluation function as  introduced in section 4.1. 

Proof: Let us consider V = [O, 11, W = [O, m[, VM~" = 0 and V M ~ ~  = 1. We define 
0 g : W + V a s g ( z ) =  & a n d h b y h ( ( z 1 ,  . . . ,  z n } ) = z l  + . . . +  X n .  

The evaluation used in the above proof can be  used for any attack graph (acyclic or not). 
The function g defined has a single fixpoint 0 = (A - 1) /2 .  This is the inverse of the 
golden ratio. This is also the unique fixpoint of g2. Consequently, every argument in a 
cycle will be  assigned this value. 
6 Conclusion 
This paper gives a first analysis of gradual handling of defeat interaction between argu- 
ments. For that purpose, we  have chosen the abstract argumentation framework of Dung, 
represented by an attack graph. Considering some relevant examples, we have drawn prin- 
ciples for a gradual evaluation, and proposed two different formal models. One  of these 
models generalizes a previous proposal for handling interaction between deductive argu- 
ments. An extension of this work is to take into account intrinsic values of the arguments 
in order to define combined evaluation models. 
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Abstract 
In this paper we face the problem of representing default rules by means of a suitable 
coherent conditional probability, defined on a family of conditional events. An event 
is singled-out (in our approach) by a proposition, that is a statement that can be either 
true or false; a conditional event is consequently defined by means of two propositions 
and is a multi-valued entity related (in this context) to a conditional probability. We 
stress the simplicity of our approach (Occam’s razor... !), with respect to other well-known 
methodologies. 

Keywords: conditional probability, coherence, default reasoning. 

1 Introduction 
The concept of conditional event (as dealt with in this paper) plays a central role for the 
probabilistic reasoning. We generalize the idea of de Finetti of looking at a conditional 
event EIH, with H # 0 (the impossible event), as a three-valued logical entity (true 
when both E and H are true, false when H is true and E is false, “undetermined” when 
H is false) by letting the third value suitably depend on the given ordered pair ( E ,  H )  
and not being just an undetermined common value for all pairs: it turns out (as explained 
in detail in [4]) that this function can be seen as a measure of the degree of belief in 
the conditional event El H ,  which under “natural” conditions reduces to the conditional 
probability P(EIH),  in its most general sense related to the concept of cohetence, and 
satisfying the classic axioms as given by de Finetti [7], Rtnyi [15], Krauss 1121, Dubins 
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[8] (see Section 2). Notice that our concept of conditional event differs from that adopted, 
e.g., by PI, PI, [ I l l .  

Among the peculiarities (which entail a large flexibility in the management of any 
kind of uncertainty) of this concept of coherent conditional probability versus the usual 
one, we recall the following ones: 

due to its direct assignment as a whole, the knowledge (or the assessment) of the 
“joint” and “marginal” unconditional probabilities P ( E  A H )  and P ( H )  is not required; 

the conditioning event H (which must be a possible one) may have zero probability, 
but in the assignment of P(EIH) we are driven by coherence, contrary to what is done in 
those treatments where the relevant conditional probability is given an arbitrary value in 
the case of a conditioning event of zero probability; 

a suitable interpretation of its extreme values 0 and 1 for situations which are dif- 
ferent, respectively, from the trivial ones E A H = 0 and H C E ,  leads to a “natural” 
treatment of the default reasoning. 

In this paper we deal with the latter aspect. 

2 Coherent Conditional Probability 
Given a set C = G x B” of conditional events EIH such that G is a Boolean algebra and 
B 6 is closed with respect to (finite) logical sums, with B o  = B \ {0 } ,  the classic 
axioms for a conditional probability read as follows: 

( i )  P(HIH) = 1, for every H E B ” ,  

(ii) P(.IH) is a (finitely additive) probability on G for any given H E B’, 

(iii) P ( ( E  A A)IH) = P ( E I H ) .  P(AI(E A H ) ) ,  for any A ,  E E G ,  H ,  E A H E B”. 

Conditional probability P has been defined on 6 x 13”; however it is possible, through 
the concept of coherence, to handle also those situations where we need to assess P on 
an arbitraly set C of conditional events. 

Definition 1 - The assessment P(.l.) on C is coherent if there exists C‘ 3 c, with 
c’ = 6 x Bo, such that P(.l.) can be extended from C to C’ as a conditionalprobability. 

A characterization of coherence is given (see, e.g., [3]) by the following 
Theorem 1 - Let C be an arbitrary finite family of conditional events El IHI,  .. ., En IH, 

and do denote the set of atoms A ,  generated by the unconditional events E l ,  H i ,  ..., En, 
Hn. For a real function P on C the following two statements are equivalent: 

( i )  P is a coherent conditional probability on C; 
(ii) there exists (at least) a class of probabilities {Po, P I ,  . . . Pk}, each probability 

P, being defined on a suitable subset A, C do, such that for any EilHi E C there is a 
unique P, with 
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moreover A,! c A,>$ for a’ > a” and P,2> ( A T )  = 0 if A, E A,!. 0 

According to Theorem 1, a coherent conditional probability gives rise to a suitable 
class {Po, P I ,  . . . Pk} of “unconditional”probabi1ities. 

Where do the above classes of probabilities come from? Since P is coherent on C, 
there exists an extension P’ on Q x B0, where Q is the algebra generated by the set A,  of 
atoms and 23 the additive class generated by HI,. . . , H,: then, putting F = {fl, 0}, the 
restriction of P’ to A, x Fo satisfies (1) with a = 0 for any E, IH, such that P,(H,) > 0 .  
The subset A1 c A, contains only the atoms A ,  E H:, where HA is the union of H,’s 
with P,(H,) = 0 (and so on): we proved (see, e.g., [3], [4]) that, starting from a coherent 
assessment P(E,IH,) on C, a relevant family P = {P,} can be suitably defined that 
allows a representation such as (1). Every value P(E,IH,) constitutes a constraint in the 
construction of the probabilities P, (a  = 0,1, ...); in fact, given the set A, of atoms 
generated by El, ..., En, H1, ..., H,, and its subsets A, (such that Pp(A,) = 0 for any 
p < a,  with A, E A, ) each P, must satisfy the following system (S,) with unknowns 
Pa(&) 2 0 3 4  E A,, 

where P-I(Hi) = 0 for all Hi’s, and H,” denotes, for a 2 0, the union of the Hi’s such 
that 

Any class {Pa} singled-out by the condition (ii) is said to agree with the conditional 
probability P .  Notice that in general there are infinite classes of probabilities {P,} ; in 
particular we have only one agreeing class in the case that C = Q x G o ,  where 6 is a 
Boolean algebra. 

A coherent assessment P, defined on a set C of conditional events, can be extended 
in a natural way to all the conditional events EIH such that E A H is an element of the 
algebra Q spanned by the (unconditional) events Ei, Hi, i = 1 , 2 ,  ..., n taken from the 
elements of C, and H is an element of the additive class spanned by the Hi’s. Obviously, 
this extension is not unique, since there is no uniqueness in the choice of the class {P,} 
related to condition (i i)  of Theorem 1. 

(Hi) = 0; so, in particular, H,” = H, = H1 V . . . V H, . 

In general, we have the following result (see, e.g., [3]) 
Theorem 2 - If C is a given family of conditional events and P a corresponding 

assessment, then there exists a (possibly not unique) coherent extension of P to an arbi- 
trary family K: of conditional events, with K: 2 C, if and only if P is coherent on C. 0 

Notice that if P is coherent on a family C ,  it is coherent also on E C. 

3 Zero-layers 
Given a class P = {P,}, agreeing with a conditional probability, it naturally induces the 
zero-layer o ( H )  of an event H ,  defined as 

o ( H )  = a if P,(H) > 0 ,  
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and the zero-layer of a conditional event EIH as 

o(EIH) = o(E A H )  - o ( H ) .  

Obviously, for the certain event R and for any event E with positive probability, we have 
o(R)  = o(E)  = 0 (so that, if the class contains only an everywhere positive probability 
Po, there is only one (trivial) zero-layer, i.e. Q = 0) ,  while we put o(0) = +m. Clearly, 

o(A  V B )  = min{o(A), o(B)} .  

Moreover, notice that P ( E J H )  > 0 if and only if o(E A H )  = o ( H ) ,  i.e. o(E1H) = 0. 
On the other hand, Spohn (see, for example, [ 191) considers degrees of plausibility 

defined via a ranking function, that is a map IC that assigns to each possible proposition a 
natural number (its rank) such that 

(a) either K ( A )  = 0 or &(A‘) = 0, or both; 

(b) I C ( A  V B )  = min{rc(A), & ( E l ) }  ; 

(c) for all A A B # 0, the conditional rank of B given A is 
&(BIA) = & ( A  A B )  - & ( A ) .  

Ranks represent degrees of “disbelief”. For example, A is not disbelieved iff K ( A )  = 
0, and it is disbelieved iff &(A)  > 0. Ranking functions are seen by Spohn as a tool to 
manage plain belief and belief revision, since he maintains that probability is inadequate 
for this purpose. In our framework this claim can be challenged (see [6]), since our tools 
for belief revision are coherent conditional probabilities and the ensuing concept of zero- 
layers: it is easy to check that zero-layers have the same formal properties of ranking 
functions. 

4 Coherent Probability and Default Reasoning 
We recall that in [6] we showed that a sensible use of events whose probability is 0 (or 1) 
can be a more general tool in revising beliefs when new information comes to the fore, 
so that we have been able to challenge the claim contained in [18] that probability is 
inadequate for revising plain belief. Moreover, as recalled in Section 1, we may deal with 
the extreme value P(EIH)  = 1 also for situations which are different from the trivial one 
H C E .  

The aim of this Section is to handle, by means of a coherent conditional probability, 
some aspects of default reasoning (see, e.g., [ 141, [ 161): as it is well-known, a default rule 
is a sort of weak implication. 

First of all, we discuss briefly some aspects of the classic example of Tweety. The 
usual logical implication (denoted by C) can be anyway useful to express that a penguin 
(P) is certainly a bird ( B ) ,  i.e. P B ,  so that P(BlP) = 1; moreover we know that 
Tweety (‘T) is a penguin, and also this fact can be represented by P(P17) = 1. 

But we can express as well the statement “a penguin usually does not fly” (we denote 
by 3‘ the contrary of 3, the latter symbol denoting “flying”) by writing P(.FclP) = 1. 

Then the question “can Tweety fly?’ can be faced through an assessment of the con- 
ditional probability P(Fl7) ,  which must be coherent with the already assessed ones: by 
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Theorem 1, it can be shown that any value p E [0,1] is a coherent value for P(317) ,  
so that no conclusion can be reached -from the given premises - on Tweety’s ability of 
flying. In other words, interpreting an equality such as P(EIH) = 1 like a default rule 
(denoted by w), which in particular (when H C E )  reduces to the usual implication, 
we have shown its nontransitivity : in fact we have 

7 - P  and P w P ,  

but it does not necessarily follow that the default rule 7 +-+ 3‘ (even if we might have 
that P(Yc lT)  = 1, i.e. that “Tweety usually does not fly”). 

Definition 2 - Given a coherent conditional probability P on a family C of conditional 
events, a default rule, denoted by H - E ,  is any conditional event EIH E C such that 

Clearly, any logical implication A B (and so also any equality A = B )  between 
events can be seen as a (trivial) default rule. 

By resorting to the systems (S,) to check the coherence of the assessment P(EIH)  = 
1 (which implies, for the relevant zero-layer, o(EIH)  = 0), a simple computation gives 
Po(EC A H )  = 0 (notice that the class {Pa}  has in this case only one element Po). It 
follows o ( E c \ H )  = 1, so that 

P(EIH) = 1. 

o ( E c l H )  > o ( E I H ) .  

Obviously, also the converse is true, that is the validity of the latter relation is equivalent 
to the assessment P ( E ( H )  = 1. 

In terms of Spohn’s ranking functions (we recall -and underline - that our zero-layers 
are - so to say - “incorporated” into a coherent conditional probability, so that we do not 
need an “autonomous” definition of ranking !) we could say, when P(EIH) = 1, that 
the disbelief in E“IH is greater than that in EIH. This conclusion must not be read as 

C of default rules Hi w Ei , with i = 1, ..., n , we need to 
check its consistency, that is the coherence of the “global” assessment P on C such that 
P(EilHi) = 1 on A. We stress that, even if our definition involves a conditional proba- 
bility, the condition given in the following theorem refers only to logical (in the sense of 
Boolean logic) relations. 

Theorem 3 - Let P be a coherent conditional probability on a family C of conditional 
events. Then a set A C C of default rules 

P(EIH)  > P(E“H) ! 
Given a set A 

H i w E , ,  i = 1 , 2  ,..., n ,  

represented by the assessment 

P(EilHi) = 1 ,  i = 1 , 2 ,  ..., n ,  

is consistent (on A), i.e. the latter assessment is coherent, if for every subfamily of A 

{Hi, - Ei1, . . 9 , His i---) Ei,} s=1,2,  ..., n 
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we have 

Conversely, if A is consistent on C, then (2) holds. 
Proof - We prove that, assuming the above logical relations (2) ,  the assessment 

P(EiIHi) = 1 (for i = 1 , 2 ,  ..., n)  on A is coherent. We resort to the characteriza- 
tion Theorem 2 :  to begin with, put, for i = 1 , 2 ,  ..., n ,  P(EilHi) = 1 in the system 
(So ) ;  the unconditional probability Po can be obtained by putting P,(A,) = 0 for all 
atoms A, c v;=, ( E; A H ~ )  . 

Then for any atom A k  2 Ei A Hi and not contained in V,”=, (E,” A H j )  - notice 
that (2) ensures that there is such an atom A k ,  since V,”=, ( E j  A H j )  V,”=,(EjC A H j )  
- we may put P,(Ak) > 0 in such a way that these numbers sum up to 1. 

This clearly gives a solution of the first system ( S o ) .  If, for some i, we have that 
Ei A Hi 2 v,”=, (E,” A H j ) ,  then Po(Ei A H i )  = 0. Then we consider the second 
system (which refers to all Hi such that Po(Hi) = 0), proceeding as above to construct 
the probability PI ; and so on. Condition (2) ensures that at each step we can give positive 
probability Pa to (at least) one of the remaining atoms. 

Conversely, consider the (coherent) assignment P on C such that P(Ei1Hi) = 1 (for 
i = 1, ..., n) on A. Then, for any index j E { 1 , 2 , .  . , , n}  there exists a probability P,  
such that P,(Ej A H j )  > 0 while one has Pa(E,” A H j )  = 0. Notice that the restriction 
of P to some conditional events Ei, I H i , ,  ..., Ei, IHi, of A is coherent as well. 

Let Po be the first element of an agreeing class, and ik an index such that 
Po(Hi,;) > 0: then Po(Eik A H i k )  > 0 and Po(Efk A Hih) = 0. 

Suppose Eik A H i k  E V;=,(Etk  AH^^) : then Po(& A H i k )  = 0. This contradiction 
shows that condition (2) holds. 0 

Definition 3 - A set A C of default rules entails the default rule H + E if the only 
coherent value for P (  E I H )  is 1. 0 

In other words, the rule H -+ E is entailed by A (or by a subset of A) if every 
possible extension of the probability assessment P on C such that P(EilHi) = 1 (for 
i = 1 , .  . . , n )  on 4, assigns the value 1 also to P(EIH). 

Going back to the previous example of Tweety, its possible ability (or inability) of 
flying can be expressed by saying that the default rule T ++ cp (or T ++ pc)  is not 
entailed by the premises (the given set A). 

5 Default logic 
Several formalisms for default logic have been studied in the relevant literature with the 
aim of discussing the minimal conditions that an entailment should satisfy. In our frame- 
work this “inferential” process is ruled by the following 

Theorem 4 - Given a set A of consistent default rules, we have 
(Reflexivity) 
4 entails A ++ A for any A # 0 
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(Left logical equivalence) 
( A  = B) , ( A  c) C) E A entails B I---+ C 
(Right weakening) 
( A  2 B) , (C c) A)  E A entails C +-+ B 
(Cut) 
( A  A B c) C)  , ( A  ++ B) E A entails A I--+ C 
(Cautious Monotonicity) 
( A  H B) ( A  c) C) E A entails A A B I---+ C 
(Equivalence) 
( A  H B), ( B  c) A ) ,  ( A  c) C) E A entails B H C 

(And) 
( A  H B) , ( A  I---+ C) E A entails A ++ B A C 

(Or) 
( A  ++ C)  , ( B  H C) E A entails A V B I---+ C. 

Proof - Re$exivity amounts to P(A1A) = 1 for every possible event. 
Lej? Logical Equivalence and Right weakening trivially follow from elementary prop- 

Cut:  from P(CIA A B) = P(BIA) = 1 it follows that P(C1A) = 1, since 
erties of conditional probability. 

P(C1A) = P(CI44 A B)P(BIA) + P(CIA A BC)P(BC(A)  = P ( C / A  A B)P(BIA).  

CuutiousMonotonicity : since 1 = P ( B / A )  = P(CIA), we have that 

1 = P ( C / A )  = P(CIAAB)P(BIA) + P ( C ( A A B ~ ) P ( B ~ ~ A )  = P(CIAAB)P(BIA),  

hence P ( C / A  A B )  = 1. 

follows that A,  B, C have positive probability; moreover, 
Equivalence : since at least one conditioning event must have positive probability, it 

P ( A  A C)  = P(A)  = P ( A  A B) = P ( B )  

which implies P ( A  A B A C)  = P ( A )  = P(B), so P(CIB) = 1. 
And : since 

1 2 P(B V CIA) = P(B1A) + P(C1A) - P(B A CIA) = 2 - P(B A CIA),  

it follows P(B A CIA) = 1. 
O r :  since 

P(CIA v B) = 

= P(C/A)P(AJA  V B) + P(CIB)P(BJA V B) - P ( C J A  A B ) P ( A  A BIA V B) = 

= P(AIA V B) + P ( B ( A  V B) - P(CIA A B ) P ( A  A BIA V B) 2 1 ,  

we get P(CIA v B) = 1. 0 

also in our framework: 
Let us now discuss some “unpleasant” properties, that in fact do not necessarily hold 
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(Monotonicity) 
( A  
(Transitivity) 
( A  ++ B )  , ( B  I--+ C) E A entails A ++ C 
(Contraposition) 
( A  I--+ B )  E A entails B‘ c) A‘ 

B )  , ( B  c) C) E A entails A c) C 

The previous example about Tweety shows that Transitivity can fail. 
In the same example, if we add the evaluation P(Flf?) = 1 to the initial ones, the 

a), so also Monotonicity can assessment is still coherent (even if P(31P) = 0 and ’P 
fail. 

Now, consider the conditional probability P defined as follows 

1 
4 P(B1A) = 1 ,  P(AcIBC) = - ; 

it  is easy to check that it is coherent, and so Contraposition can fail. 
Many authors (cfr., e.g., [13]) claim (and we agree) that the previous unpleasant prop- 

erties should be replaced by others, that we express below in our own notation and inter- 
pretation: we show that these properties hold in our framework. Since a widespread con- 
sensus among their “right” formulation is lacking, we will denote them as cs-(Negation 
Rationality), cs-(Disjunctive Rationality), cs-(Rational Monotonicity), where “cs” stands 
for “in a coherent setting”. 

Notice that, given a default rule H c) E ,  to say ( H  c-$ E )  @ A means that the 
conditional event EIH belongs to the set C \ A .  

cs-(Negation Rationality) 
If ( A  A C +-+ B) , ( A  A Cc I-+ B )  @ A then A does not entail ( A  c) B ) .  

is P(BlA A C) < 1 and P(BIA A C‘) < 1, then 
Proof- Since we have ( A  A C I--+ B )  and ( A  A Cc +-+ B )  do not belong to A, that 

P ( B / A )  = P(BIA A C)P(CIA) + P(BIA A Cc)P(CclA)  < 1.  

cs-(Disjunctive Rationality) 
If ( A  ts C) , ( B  c) C) @ A then A does not entail ( A  V B c) C ) .  

Proof- Starting from the equalities 

P(CIA V B )  = P(CIA)P(A/A v B )  + P(C1A‘ A B)P(Ac A BIA V B )  = 

= P(C/B)P(BIA V B )  + P(CIA A Bc))P(A A BcIA V B ) ,  
since P ( C / A )  < 1 and P ( C / B )  < 1, assuming P(CIA V B) = 1 would imply (by the 
first equality) P ( A / A V B )  = 0 and (by the second one) P ( B J A V B )  = 0 (contradiction). 

cs-(Rational Monotonicity) 
If ( A  A B c) C )  , ( A  H B‘) @ A then A does not entail ( A  c) C). 
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Proof - If it were P(C1A) = 1, i.e. 

1 = P(CIA A B)P(BIA) + P(CIA A BC)P(BCIA) ,  

we would get either 

or one of the following 

P(CIA A B )  = P(CIA A Elc) = 1 

P ( C / A  A B )  = P(BIA) = 1 ,  

P(CIA A BC) = P(BCIA) = 1 
(contradiction). 

6 Conclusions 
We want to stress the simplicity of our direct approach to default logic with respect to 
other well-known methodologies, such as those, e.g., by Adams [ 11, Benferhat, Dubois 
and Prade [2], Gilio [9], Goldszmidt and Pearl [lo], Lehmann and Magidor [13], Schaub 
[17], etc. (to show this simplicity is the main aim of the paper). Our methodology, based 
on the concept of coherent conditional probability (whose peculiarities have been briefly 
recalled in Section l), encompasses many existing theories and our framework is clearly 
and rigorously settled: conditional events El H are not 3-valued entities whose third value 
is looked on as “undetermined” when H is false, but they have been defined instead (see, 
e.g., [4]) in a way which entails “automatically” (so-to-say) the axioms of conditional 
probability, which are those ruling coherence. In other words ... “tout se tient”. For a 
complete account, a relevant reference is the recent book [ 5 ] .  

Moreover, we deem it interesting that our results are - more or less - not in contrast 
with those contained in the aforementioned papers. A brief comparison is now in order. 

The concept of consistency is usually based on that of quasi conjunction: we do not 
refer to this notion, since it is a particular conditional event (and our concept of conditional 
event is different from theirs); also what is called verifiability of a conditional event EIH 
(that is E A H # 0 ) is a too weak notion - except in the case H = R - to express properly 
the relevant semantics. 

In Adams’ framework it is required to probability to be proper (i.e., positive) on the 
given events, but (since the domain of a probability P is an algebra) we need to extend 
P from the given events to other events (by the way, coherence is nothing but complying 
with this need). In particular, these “new” events may have zero probability: it follows, 
according to Adams’ definition of conditional probability (that is put equal to 1 when the 
conditioning event has zero probability), that we can easily get incoherent assessments. 
Consider in fact the following example. 

Given two (logically independent) events H I  and Hz, put 

For any E > 0, consider the assessment 
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so that {EllHl,  E2JH2} is consistent according to Adams, as can be easily checked 
giving the atoms the probabilities 

P(H1 A H2) = 6 , P(H1 A Hi) = 0, 

P(H,C A H i )  = 0 ,  P(H,C A H2) = 1 - E ,  

(notice that the assessment is proper). But for any event A c H I  A H,C we can extend P ,  
according to his definition of conditional probability, as 

P(AIH1 A H i )  = P(ACIH1 A H i )  = 1,  

which is not coherent. 
A coherence-based approach to default reasoning (but in the framework of "impre- 

cise" probability propagation), is that in [9], even if we claim (besides the utmost simplic- 
ity of our definitions and results) important semantic and syntactic differences. 

For example, our concept of entailment is certainly different, as shown by the follow- 
ing simple example. 

Consider two (logically independent) events HI and Ha, and put 

Given a ,  with 0 < a < 1, the assessment 

P(EiIH1) = P(E2lH2) = 1 ,  P(E31H3) = a 

on C = {El [ H I ,  Ez I H2, E3 I H 3 }  is coherent; the relevant probabilities of the atoms are 

P(H1 A H z )  = P(H1 A Hi) = 0, 

P ( H ; A H ; )  = a ,  P ( H ; r \ H z )  = 1 - a ,  

so that the set A of default rules corresponding to { E l  IH1, EZ IH2) is consistent. 
Does A entail EIH ? A simple check shows that the only coherent assessment for this 

conditional event is P ( E I H )  = 1 - a ,  Then the answer is NO, since we require (in the 
definition of entailment) that 1 is (the only) coherent extension. 

On the contrary, according to the characterization of entailment given in [9] - that 
is: A (our notation) entails EIH iff P(EclH)  = 1 is not coherent - the answer to the 
previous question is YES, since the only coherent value of this conditional probability is 
P(ECIH) = a (see the above computation). 

The System Z proposed in [ 101 is based on the concept of ranking function (introduced 
by Spohn). At the end of Section 3 and in Section 4 it has been discussed that our concept 
of zero-layer encompasses that of ranking function; moreover it is already part (so-to-say) 
of the coherent conditional probability structure, so that it does not need an autonomous 
definition. Notice that our concept of default, defined by the assessment P(EIH) = 1, 
coincides formally with that given in System Z through ranking functions, since (as we 
have discussed in Section 4) it is equivalent to the relation o(ECI H )  > o(EIH) between 
zero-layers. 
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Abstract 
This paper presents a simple method that reduces the problem of detecting conflict-free 
assumption-based knowledge bases to the problem of testing satisfiability. 
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1 Introduction 
Logic-based argumentative and abductive reasoning are closely related tasks of drawing 
inferences under uncertainty. In both cases, knowledge is expressed in a logic-based or 
constraint-based language. The complete description of the available knowledge is called 
knowledge base. A particular subset of variables called assumptions or assumables is used 
to describe uncertain or unknown circumstances such as possible failure states of system 
components, different ways of interpreting statements or evidence, unknown outcomes 
of events, situations of unreliable sensors, witnesses, or information sources, and many 
more. Because both abduction and argumentation are based on this simple concept, we 
use assumption-based reasoning as a general term that covers both disciplines.' 

The goal of argumentation is to derive from the given knowledge base arguments in fa- 
vor and counter-arguments against certain hypotheses about the future or unknown world 
[ 1 ,3 ,4 ,7 ,  12, 14, 15, 17, 181. Intuitively, every argument provides a possible proof of the 
hypothesis, while counter-arguments prove the contrary of the hypothesis. Abduction is 
very similar, as its goal is to derive from the given knowledge base possible explanations 
for some observations [19, 21, 22,  23, 241. A particular application of abduction is the 
problem of finding diagnoses for systems with an abnormal behavior [8, 16,20,251. 

A common feature of argumentation and abduction is that both arguments and expla- 
nations are terms (conjunctions of literals) containing assumptions only. These terms are 
usually assumed to be consistent with the given knowledge base. In order to guarantee 
consistency, it is important to know the set of inconsistent terms that are in conflict with 
the knowledge base. As a consequence, prior to computing arguments or explanations, it 

about hyporherical reasoning rather than assumption-based reasoning. 
' In Poole's abductive framework [2 I], assumptions are called hypotheses. As a consequence, Poole speaks 
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is usually necessary to compute the set of all such conflicts. However, the set of conflicts 
is sometimes empty. In such cases, in order to avoid unnecessary computations, it would 
be advantageous to detect conflict-free assumption-based knowledge bases in advance. 

This paper presents a simple method that reduces the problem of detecting conflict- 
free assumption-based knowledge bases to the problem of testing satisfiability (SAT). Of 
course, since SAT is a well-known member of the class of computationally intractable 
NP-complete problems [5, lo], it is unlikely to find a SAT algorithm that has a fast worst- 
case time behavior. However, there is a wide range of clever SAT algorithms that can 
rapidly solve many SAT problems of practical interest. As we do not further address SAT 
in this paper, we refer to the literature and especially to [ 111 for a comprehensive overview 
of existing techniques. 

2 Argumentative and Abductive Reasoning 
Let A and P be two distinct sets of propositions and the corresponding proposi- 
tional language.’ The propositions in A are the assumptions and < E denotes the 
knowledge base. Often, < is given by a conjunctively interpreted set C = {<I, . . I , E T }  
of sentences Et E C A u p  or, more specifically, as a set C = (71, . . . , r T }  of clauses 
y1 E C A ~ P ,  where C A ~ P  denotes the set of all (proper) clauses over A U P (including the 
empty clause 1). 

A term is a conjunction of non-repeating literals. We use & to denote the set of 
all terms consisting of assumptions only (including the empty term T). Furthermore, 
NA = ( 0 ,  1}IA’ denotes the set of all possible configurations relative to A. The elements 
s E NA are called scenarios and represent possible states of the unknown or future world.3 
Note that every term T E ‘;rA has a corresponding set M,(T) NA of possible scenarios 
called models of 7 for which T evaluates to 1. Both argumentation and abduction are 
based on the idea that one particular scenario d E N, is the true scenario. 

Of course, it is assumed that the true scenario is not in conflict with the given knowl- 
edge base. If s E NA is an arbitrary scenario and Ecs the formula obtained from E by 
instantiating all the assumptions according to their values in s, then 

(1) 

denotes the set of conflicting scenarios of < relative to A. Sometimes, the elements of 
CA(<) are also called contradictory or inconsistent scenarios. Since the set CA(<) is 
sometimes intractably large, an appropriate representation is needed. One possibility is to 
consider the set 

(2) 

of conflicting terms whose models are all conflicting scenarios. Note that C(<) is an 
upward-closed set. This means that T E C(<)  implies 7’ E C(<) for all longer terms 
T’ E ;TA with T’ 2 T .  Furthermore, a term T E C(E) is called minimal with respect 
to C(<) ,  if C(<) contains no shorter term T’ c T .  The corresponding set of minimal 
conflicting terms 

C A ( < )  = {s E N A  : ( - 8  b I} 

C(<) = { T  E IA : AIA(T) C CA(<)} = { T  E IA : T A <  -I-} 

p c ( < )  = { T  E C(<) : ~ 3 T ’ E C ( < ) , T ’ C T }  (3) 
’To simplify matters, we restrict our discussion in this paper to propositional logic. 
3Note that in Poole’s abductive framework [21], terms T E are called scenarios. 
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is obtained from C(()  by dropping all non-minimal terms. The elements of &([) are 
also called minimal conflicts of (. Note that 

CA(E) = u (MA(7) : 7 E C(()} = U(MA(7)  : 7 E pc('$)}. (4) 

Thus, in order to exclude conflicting scenarios, it is sufficient to know the minimal con- 
flicts. However, deriving pC([ )  from [ may be very expensive, even in cases where 
pC(()  is small or even empty. 

3 Computing Conflicts 
The problem of computing minimal conflicts is closely related to the problems of comput- 
ing prime implicates (or prime implicants). Conflicts are conjunctions r E for which 
T A C$ ~ r .  Conflicts are therefore 
negations of implicates of < which are in CA. In other words, if y E CA is an implicate 
of (, then ly E is a conflict of (. Furthermore, if y E CA is a prime implicate of 
(, then 7-i is a minimal conflict. We use PI(()  to denote the set of all prime implicates 
of (. If 19 is the set of conjunctions obtained from a set of clauses 9 by negating the 
corresponding clauses, then we can write 

i holds. This condition can be rewritten as ( 

pc(<)  = l(PI(E) n c A ) .  ( 5 )  

Since computing prime implicates is known to be NP-complete in general, the above 
approach is only feasible when ( is relatively small. However, when A is small enough, 
many prime implicates of ( are not in CA. Such irrelevant prime implicates can be avoided 
by the method described in [15, 12, 131. It is assumed that < is given as a set C C CAUP 
of clauses over A U P. The procedure is based on two operations 

ConsQ(C) = cons,, 0 ' ' '  0 cons,q(C)l (6 )  
E l i m ~ ( C )  = Elim,, o . . .  0 Elim,,(C), (7) 

where Q = ( X I ,  . . . , xq} C A U P is subset of propositions appearing in C. Both oper- 
ations repeatedly apply more specific operations Cons, (C) and Elim,(C), respectively, 
where z is a proposition in Q. Let C, denote the set of clauses of C containing z as a 
positive literal, C2 the set of clauses containing x as a negative literal, and Ck the set of 
clauses not containing x. Of course, we have C = C, U C, U Ch. Furthermore, if 

p(C,,C,) = (191Vd2 : xv191 E C,, 7xV192 E C,} 

denotes the set of all resolvents of C relative to x, then the two basic operations are defined 
by 

Cons,(C) = p(C Up(C, ,  &)),  Elim,(C) = p(Cs u p(C, ,  C,)), (9) 

where the p-operator means dropping non-minimal clauses. Thus,  cons^ (C) computes 
all the resolvents (consequences) of C relative to the propositions in Q and adds them 
to C. Note that if Q contains all the proposition in C, then C o n s ~ ( C )  = pI (C) .  In 
contrast, ElimQ(C) eliminates all the propositions in Q from C and returns a new set of 
clauses whose set of models corresponds to the projection of the original set of models to 
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( A  J P) \ Q. Elimination is sometimes calledjbrgetting and is known to be NP-complete 
[61. 

The set of the minimal conflicts can then be computed in two different ways by 

p . c ( ( )  = -lConsq (El imp(  C ) )  = 1El imp(  Cons/I( C)). (10) 

In most practical applications, computing the consequences relative to the propositions in 
A is trivial. In contrast, the elimination of the propositions in P is usually more difficult 
and becomes even infeasible as soon as C has a certain size. Note that from a theoret- 
ical point of view, the order in which the propositions in P are eliminated is irrelevant 
[ 151, whereas from a practical point of view, it critically influences the efficiency of the 
procedure. The elimination process is a particular instance of Shenoy’s fusion algorithm 
[26,27] as well as of Dechter’s bucket elimination procedure [9]. 

Today’s state of the art among the methods for computing conflicts, arguments, and 
abductive explanations is a convenient anytime algorithm that can be interrupted at any 
time returning the solution found so far [13]. The quality of the approximation increases 
monotonically when more computational resources are available. The method is based on 
cost functions [ 121 and returns lower and upper bounds. 

4 Detecting Non-Conflicting Knowledge Bases 
Let ( be an arbitrary assumption-based knowledge base. Of course, we can use the pro- 
cedure of the previous section to find out whether there are conflicts or not. However, 
running the complete elimination procedure may possibly be very expensive, even in 
cases where pC((‘) = 8. In the following, we will describe a method that simplifies the 
detection of conflict-free knowledge bases. 

Let y E C / I ~ ~  be an arbitrary clause over A u P. Without loss of generality, it is 
always possible to split y into sub-clauses ?/I E C,A and yp E C p  with y = ?A V yp. 
As we will see below, only the sub-clauses y p  are relevant for detecting conflict-free 
knowledge bases. Thus, if C C C / I ~ ~  is an arbitrary set of clauses over A U P ,  then 

C P  = {YP : Y E C> c CP (11) 

denotes a new set of clauses obtained by dropping all assumptions. As an effect of this, 
C p  may contain many clauses that are subsumed by others. A corresponding minimal set 
p C p  is obtained from C p  by removing all subsumed clauses. Of course, C p  and pCp 
are logically equivalent, but p C p  is often considerably smaller. 

Theorem 1 Let [ E be a knowledge base given as a set of clauses C G CAW. 
If C p  G Cp is the set of clauses obtainedfrom C as defned above, then C p  1 (or 
p C p  

Proof: Let [ p  = ACp be the conjunction of clauses of C p .  From yp y for all y E C 
follows < p  [. Now, suppose C(<) # 8 and T E C(<).  This implies T A < k 1 and 
thus T A (p 1. Since [p contains no assumptions, this is only possible if <p k 1. 
Thus, C(<) # 8 implies <P + I, and the other way round, < p  
0 

Note that C p  /= i does not necessarily mean that C / I ( ~ )  # 8. For example, if 
A = { u }  and P = { p } ,  then < = (u  v p )  A ( l u  v l p )  is a conflict-free knowledge base 

1) implies C(<) = 8 (and pC(5) = 8). 

1 implies C(<) = 8. 
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that implies t p  = p A i p  and thus [p 
some (but not all) cases of conflict-free assumption-based knowledge bases. 

Example 1 Let A = {al ,  . . . . a,, b l ,  . . . , b,} and P = {pl, . . . p,} be the given sets of 
propositions. Furthermore, suppose that [ is given as a set clauses 

1. The above theorem can thus be used to detect 

ai Vpi. bi Vpi,  
a2 v 'P1 v P 2 >  b2 v l P 1  v P21 

an v 1Pn-1 v Pn, bn v 1Pn-1 v Pn 
Obviously, < is a conflict-fiee knowledge base. By running the elimination procedure of 
the previous section, we observe a worst-case scenario with an exponentially increas- 
ing number oj clauses during the process. Bejore eliminating the last proposition, we 
always get a total number oj 2" clauses jor which no jurther resolutions are possible 
(independently of the actual elimination ordering). Of course, this is not feasible if n 
exceeds a certain limit. In contrast, by applying Theorem 1, we get 

cP  = {Pl, 'PlvP2, 'P2VP3,. * 1 'Pn-lVp,} 

for which C p  1 and thus CA([)  = 0 is easilyproved in linear time. 

Even if SAT is NP-complete in general, this example demonstrates how the method of 
Theorem 1 sometimes tremendously reduces the complexity of detecting conflict-free 
knowledge bases from O(2,) to O(n) .  This is typical in many practical examples from 
the author's domain of interest [2]. 

5 Conclusion 
Even if the set of minimal conflicts of an assumption-based knowledge base is small 
or empty, effectively computing the minimal conflicts is not feasible in the worst case. 
However, we have shown how conflict-free knowledge bases, which are common in many 
practical applications, can sometimes be detected more easily by testing the satisfiability 
of a corresponding simplified knowledge base. In certain cases, this reduces tremendously 
the necessary time of computation, even if SAT is also NP-complete in the worst case. 
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Abstract 

The origins and basic elements of the Dempster-Shafer theory of belief functions are 
explained, including the operations of combination of independent representations of 
uncertain evidence and propagation among margins of multivariate systems. The theory 
is described as a tool that scientists can use to formalize subjective uncertainties about 
objectively formalized unknowns. The future of the theory depends on the development 
of models that capture common situations and are amenable to modem computational 
methodologies. 

Keywords: Dempster-Shafer theory, subjective probability, propagation and fusion of 
evidence, independent sources of evidence. 

1. Orientation: From Precise Mathematics to Serious Science 
My undergraduate studies in Toronto emphasized mathematics, in a department that 
regularly won the North American Putnam problem-solving competitions. My instincts, 
however, were and remain to think of mathematics as a tool of science. So when I 
recognized pure mathematics to be primarily inner directed, I decided that the life of a 
mathematician, although an important and worthy calling, was not for me, and I 
switched to probability and statistics for my PhD studies in the Princeton mathematics 
department of the mid-l950s, where my teachers were S. S. Wilks and J. W. Tukey. 
Attempting to fashion bridges from mathematics to science has been the prime 
motivator of my subsequent career. What is science, however? Standard explanations 
are inadequate to support practice, in my view, because they stress the objective content 
of science, ignoring and effectively excluding subjective elements obviously present. 
Mathematics can and should be recognized as a basic support for the subjective side of 
science, in parallel with its traditional role as provider of models for the objective side. 
This is a central theme in what follows. 

Mathematics aids science through its beauty, clarity, and rigor. Along with this goes a 
belief among most mathematical scientists that objectivity is a sine qua non of science, 
an attitude that can seem borne out by the triumphs of physics, from mechanics to 
electro-magnetic theory, and from relativity to quantum theory, all of which are 
associated with a close symbiosis of detailed mathematical models and spectacularly 
successful empirical science and engineering. Applied probabilists and mathematical 
statisticians for the most part tacitly accept this philosophy of objectivity, while seeking 
with some success to develop parallels to success stories from the physical sciences. In 
particular, applied statistical scientists for the most part see themselves as applying 
objective procedures of design and analysis to objective empirical situations, thus 
obtaining objective results. Having been exposed to all this, and at first accepting the 
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faith with little questioning, I gradually moved to a different philosophy, recognizing 
obvious roles for subjective elements that complement traditional perceptions of 
objectivity. The daily work of science involves many choices: among procedures, 
among patterns of reasoned argument, and among selections of evidence, expert 
knowledge, and judgment. Much of the reasoning is informal, spontaneous, and 
unrecorded. A true understanding of specific studies, and thence of the scientific 
enterprise, is impossible without open recognition of thought processes whose 
subjective elements are obvious to anyone attuned to examine them. 

A fundamental mechanism for controlling subjectivity is to apply the methods of 
mathematical science to reasoning itself. All reasoning is subjective in the sense that it 
is the work of human minds. At the same time reasoning is itself amenable to precise 
mathematical modeling, providing useful tools for the practical scientist. A basic 
formulation that I find highly relevant for quantifying specific uncertainties combines 
propositional logic with probability in a way that developed out of my papers of the 
1960s, with syntax and semantics broadened in the 1970s by Glenn Shafer. Analyses 
that adopt this logic with realistic model assumptions are gradually becoming 
computationally feasible over broad areas of application, often in ways that are close to 
Bayesian methods, while taking limited but essential steps that extend Bayes to 
Dempster-Shafer (DS) methods when circumstances appear to warrant. Thus for me 
Bayes is not a final answer as maintained by many in the active Bayesian school of 
theoretical and applied statistics, 

Most of my statistical colleagues, including many who are deeply and successfully 
involved in scientific work, pay little heed to formal representations of uncertain 
reasoning. Their primary concern is with standards of good practice, specifically with 
choosing and justifying procedures classified under headings such as design, data 
analysis, estimation, hypothesis testing, and decision-making, While necessary and 
often admirable, this approach misses much of the story. Procedures should in parallel 
be seen as embodiments of scientific logic. Thus, for example, formal exploratory data 
analysis (EDA) tools should be evaluated not only through their mathematical 
properties, but also in situ as directly answering questions that have arisen in the normal 
course of less formal scientific reasoning. It is a mistake, in my judgment, to mistrust 
and effectively deny the natural direct interpretation of probabilities. Substitution of 
theoretical evaluation of procedures through hypothetical long mn averages only begs 
questions about the reasoning behind model choices on which the long run averages are 
based, and about deeper questions concerning why an unspecified long run has 
relevance to any specific situation under analysis. 

Everyone knows and accepts that science progresses through vigorous and sometimes 
controversial debates. Going further, a standard faith asserts that truth wins out in the 
end, once flaws in reasoning as well as gaps in empirical knowledge are all resolved, 
whence any element of subjectivity is regarded as transient, partly due to error and 
partly due to ignorance. But if reasoning can have flaws that are important, then 
reasoning that survives critical analysis is an essential element of findings. Subjective 
knowing and reasoning are as much part of the scientific process as are claims to have 
found truth about an objective ambient world. Once this is recognized more openly, the 
way will be smoothed for scientists to understand and practice the use of tools of formal 
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subjective reasoning, and thence to confidently cross bridges that connect formal logical 
assertions about idealized small worlds to informal statements of findings about the real 
objective world that are the bread and butter of normal science. In particular, probability 
statements about events before the fact or after the fact (“predictively” or 
“postdictively”) will be freed to assume their natural logical interpretations (Dempster, 
1998, 2002a). 

2. Some History 
The earliest history of formal subjective probability (FSP) is shrouded in language that 
can be interpreted differently through various modern viewpoints. Important references 
are Hacking (1975) and Shafer (1978). On rereading Shafer (1978) I am impressed by 
the close correspondence of my outlook with attitudes that he quotes from Part IV of 
Jakob Bernoulli’s posthumous Ars Conjectandi (171 3 )  about objective and subjective 
elements of science and about the fundamentally epistemic nature of formal 
probabilities. A die thrown by a gambler can only fall with certainty in accord with 
physical laws that are “necessary” and hence determine an outcome “objectively and in 
itself ’, while our knowledge is broadly “contingent” and can only determine an 
uncertain outcome “subjectively and in relation to us”. Bernoulli’s much quoted verbal 
characterization of probability is that a “probability is a degree of certainty and differs 
from it as a part from a whole”. Such probabilities are determined from “arguments” 
that involve facts about the external world that may be “necessary” or “contingent”, 
together with reasoned “proofs” that also may be “necessary” or “contingent”, resulting 
in three of four cases that yield less than full certainty. Bernoulli classified arguments as 
“pure” or “mixed”, where the former “prove a thing in certain cases in such a way that 
they prove nothing positively in other cases”, while the latter “prove the thing in some 
cases in such a way that they prove the contrary in the remaining cases”. Thus a mixed 
argument produces complementary probabilities that sum to unity while a pure 
argument supports only one side of a proposition in a way that presages belief function 
models, and that Shafer describes as yielding mathematically nonadditive measures. 
Most relevant to the present paper, Shafer discusses Bernoulli’s prescriptions for the 
combination of independent arguments, an integral part of his calculus of probability, 
and notes that Lambert (1764) in his Neues Organon criticizes Bernoulli’s prescriptions 
and introduces an alternative way to combine arguments that is a special case of the 
centerpiece combination rule of DS theory. Between Lambert and R. A. Fisher, I am 
not aware of clearly differentiated instances of DS theory. 

Jakob Bernoulli is best known among mathematical statisticians for his derivation of a 
simple form of what has become known as the law of large numbers. This pathbreaking 
mathematical work was motivated by his comparably innovative distinction between a 
priori and a posteriori scientific arguments, where the former refers to probabilities 
based solely on a perception of equally likely cases, as in the models for games of 
chance that had dominated discussions of probability before Bernoulli, while the latter 
is his at the time novel conception that scientifically useful probabilities often require in 
addition the input of empirical frequencies. It is interesting that the terms a priori and a 
posteriori were later adapted and narrowed to specific technical concepts in Bayesian 
methodology. Bernoulli did not have the fundamental concept of conditional probability 
introduced later by Bayes, but instead proposed to use binomial sampling distributions 
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as the basis of statistical inference. Once firmly established by Laplace, the Bayesian 
paradigm remained dominant in scientific circles throughout the 19th Century (Porter, 
1986), while the British-American school of applied statistics rose to prominence in the 
20th Century, based upon sampling theory derived by Karl Pearson, ‘Student’ (W. S .  
Gosset), and R. A. Fisher. 

My sense of relevant history from the middle years of the 20th Century is personal 
because it has directly motivated my work. When I first encountered probability and 
statistics, the field was preoccupied with a decision-theoretic frequentist formalism, and 
the fashion was to base theory on measure-theoretic mathematics derived from 
Kolmogorov’s axioms. Fortunately, I was on the East Coast not the West Coast and my 
teachers remained firmly in touch with a British tradition of applied statistics whose 
Fisherian roots had not yet been totally seduced by the siren call of frequentist theory. 
About the same time, the Bayesian countermovement to the dominant frequentist school 
started to gain a following, dating most notably from the pioneering book of Savage 
(1954). Inferential statistics thus became a three-corned battleground for a few years, 
involving R. A. Fisher who engaged in ceaseless controversy with Jerzy Neyman and 
his frequentist followers from the 1930s on, and the resurgent neoBayesian school. By 
the 1950s, however, Fisher was in decline, and his legacy largely vanished from 
textbooks after his death in 1962, while the other two schools had worn each other out 
by the 1970s without a resolution, and turned to face the new worlds of statistical 
science opened up by rapidly evolving information technologies. 

Why did Fisher lose his fight? My interpretation is that he was correct to be 
fundamentally epistemic in his outlook, but tried to tie logic to an objectivist attitude to 
science, and could never convey a satisfactory understanding of how the marriage 
worked. I believe that Fisher’s fate was unfortunate, because he developed so many 
genuinely novel and worthwhile inferential tools under the heading of “forms of 
quantitative inference” (Fisher, 1956) while his antagonists rejected logic altogether and 
in essence repeated prolonged controversies between Bayesians and frequentists from 
the 19th Century, as ably reviewed for example by Keynes (1921). The Fisherian 
initiative that most intrigued me in the 1950s and 1960s was his failed attempt to 
establish a method that he called the “fiducial argument” (Fisher, 1930) which was 
essentially an attempt to produce statements of uncertainty about objective unknowns, 
with precise posterior (“fiducial”) probabilities, but without the precise prior 
probabilities that had long been recognized to be, and indeed remain, a dominant 
sticking point in the way of scientific applications of Bayes. John Tukey (Dempster 
2002b) drew my attention to the central concept of the fiducial argument, namely the 
“pivotal quantity” that assigns a probability distribution to a margin of the relevant 
space of unknowns. This distribution became the “bpa” or “mass function” of belief 
function theory, and led to upper and lower posterior probabilities in the case of discrete 
sample data, whence the general form of the belief function became clear to me one day 
in 1965. This general form greatly extends the fiducial argument in that it unifies 
combination of information from many independent sources, including likelihoods and 
priors in Bayesian theory, and the familiar union and intersection rules of propositional 
logic. 
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3. Elements of DS Theory 
My elementary mathematical representation of objective and subjective elements of 
science is built around the two primitives, of “state space” and “statement space”, 
respectively. The simplest useful example defines the state space to consist of two 
elements, for convenience labelled here “0” and “1”. The term state space is commonly 
used in engineering sciences to represent the possible “states” of some objective small 
world under analysis, so “0” might mean “absence of abnormality” while “1” means 
“presence of abnormality” in a particular slide under a microscope. Evidently, a large 
amount of implicit understanding is required to make a state space meaningful, such as 
the source of the slide, the definitions of normal and abnormal in relation to the 
observational technique, the material being observed, and on and on. The real world is 
very complex, while formal analysis rests on precise but simplified idealizations. An 
obvious trend in modern science is to observe, record, and analyze phenomena of 
escalating complexity, whence formal state spaces are being increasingly challenged to 
mathematically model hugely complex phenomena, and thence to represent and perform 
logical analyses that vastly transcend what was contemplated a few short decades 
earlier. This reality needs to be kept in mind while I introduce my story in elementary 
terms. In the end I am aimed at many and varied sciences of complex systems. 

What can it possibly mean to assert, as I do, that a state space is objective? If you like, 
this is an “assumption”, one of many that are successively wheeled in to make a formal 
analysis operate. We think that part of an ambient world is captured by a state space, 
and choose after much review and thinking to base a particular formal analysis on that 
particular state space, putting aside for the time being urges to revise. Even here, 
objectivity is of course something of a pretence, designed to create separation between 
the limited subjectivity required to choose a state space, and the more direct epistemic 
subjectivity implied by formal statements about which member of the state space is the 
true member. 

Using notation that is easily extended, I represent my simple state space by a list of its 
elements, written 

X = ( O ,  1)  

where despite the appearance of the printed form, no meaning is attached to the order of 
the elements. X is abstractly a set with two elements, nothing more. Similarly, the 
statement space consists of the nonempty subsets of the state space, and will be written 

The interpretation of S is that each of its elements corresponds to a statement that some 
analyst might make about the true state of the small world. The three elements here 
correspond directly to what is called “three valued logic”, namely, the assertions: 

“the true state is 0”; “the true state is 1”; “the true state is unknown” 

Defenders of the objectivity of science by and large suppress the concept of statement, 
and make do with the state space alone, I mean this in the sense of formal analysis. The 
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language and notation of elementary propositional logic are foreign territory to most 
scientists, engineers, and statisticians, including those fluent in advanced mathematical 
modeling. A scientist will report that his or her slide shows abnormality and sees no 
need for a formal system of sets and subsets. In a similar way, one almost never 
encounters in scientific reports talk of disjunctions and conjunctions represented by 
intersections and unions of subsets of more complex state spaces, although these things 
are almost universally implied. A corollary is that formal reasoning, whether 
nonprobabilistic or probabilistic, is effectively sealed off from the everyday practice of 
science and engineering. Scientific reports are replete with statements about what is true 
and what is uncertain to varying degrees, but almost all conveyed by informal, often 
colloquial speech. 

Given this circumstance, it is natural for most scientists, engineers, and statisticians to 
think of probability as something objective. When probabilities are construed as part of 
“nature”, they connect only with the elements of state space X. Thus, in my simple 
example, it is natural to talk about “the” probability p ,  that the slide shows an abnormal 
result and “the” probability p o  = 1 - p I  that the slide shows a normal result. In practice, 
numerical values for such probabilities might be assigned from past experience with 
similar slides. Obviously there are important uses for such “frequency” probabilities, 
but it is mischievous to argue that they are the only kinds of quantities that deserve the 
name probability. Nor are they distinct from ordinary subjective probabilities. 
Probabilities directly “approximated” by frequencies are easily interpreted as formal 
logical inferences, and indeed must be so interpreted, depending upon judgments made 
in context as well as upon objective facts, in order for them to have the impact intended 
by their application. Standard practice implicitly leaves subjective interpretation 
informally understood. 

What has all this to do with my topic of “belief functions”? The point is that by 
associating probability with subjective uncertainty, it becomes natural to assign three 
probabilities to the elements of S, namelypio) ,piIr  andp(,,,,, rather than to the elements 
of the state space X as in objective science. These three probabilities provide a first 
example of what Shafer (1976) called the “basic probability assignment” or “bpa” of 
belief function theory, also referred to as the “mass function” and denoted m( .), where 
the argument is understood to be any element of statement space. The bpa is one of four 
functions over statement space taking values on the interval (0, 1). Two of these are 
generally called “belief” and “plausibility” and denoted Bel( .) and Pl( .), where in the 
simple example 

and 
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Shafer introduced these terms as improvements over my original “lower probability” 
and “upper probability” (Dempster, 1966, 1967) in order to distinguish our theory from 
other less articulated theories of bounded probability judgments. To me Be1 simply 
means formal subjective probability (FSP) that “must” be assigned to the truth of a 
statement about an objective state space, while PI concerns FSP that “may” be so 
assigned. The fourth set function named “commonality” by Shafer is the least 
interpretable of the four, and is mainly important for a technical role in the calculus of 
combination of independent pieces of evidence. Such combination or fusion stands at 
the center of DS theory. 

To bypass topological issues it is best to outline the general case using a finite state 
space X with n elements, whence the statement space S has 2” - 1 elements. The oft- 
repeated standard exposition following Dempster (1967) or Shafer (1976) then defines 
the four basic set functions and associated operations, with simple examples of various 
kinds. 

4. Two Operators that Drive the Theory. 
The direct sum operator (also known as the Dempster rule of combination or the 
product-intersection rule) takes as input two or more belief functions and outputs a 
combined belief function, all defined over the same state space. The rule is valid only if 
the inputs are independent. In another language, the combination rule is a technique for 
fusing evidence from independent sources. Independence is critical. Judging 
independence is an art that must be learned through practice. 

The marginalization operator inputs a belief function and returns the implied belief 
function over a partition (also called a margin) of the original state space. The extension 
operator inputs a belief function over a partition and outputs the implied belief function 
over the full state space. A general term that covers both operators is propagation, as in 
propagation of information through a network. 

These operators were presented in abstract form for the general case of a finite state 
space in Dempster (1 967) and Shafer (1976), where the state space may be denoted 

and the associated statement space denoted 

A belief function model is then defined mathematically by its bpa function m( .) defined 
over S. 

The formal definition of combination starts from a pair of such models with mass 
functions ml( .)  and m2( .) over a common statement space. I like to call the combination 
rule a product-intersection rule because it intersects pairs of elements from two copies 
of S and assigns the product of the associated bpa values to each such intersection. Since 
the same intersection may result from many such pair-intersections, it is necessary to 
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sum the corresponding product-probabilities within each distinct pair-intersection, and 
renormalize to account for empty intersections, thus obtaining the bpa of the 
combination. I state this in words rather than as the formula, which is available in many 
places, to emphasize the elements of the formula that must be parsed to understand why 
the rule is logically compelling. 

The combination rule may be studied mathematically, where its most hndamental 
properties are commutativity and associativity. These imply that any number of input 
belief functions have a unique combination, whatever the order of successive 
applications of pairwise combinations. Intuition may be built up by considering first the 
special case of propositional calculus where each input belief function assigns mass one 
to an individual statement and the rule then correctly assigns mass one to the 
intersection statement, as one might expect and require. 

Another fundamental special case reproduces the concept of product measure over a 
product space from standard textbook probability theory. Understanding the latter 
special case involves subtleties of interpretation that have sometimes led to 
misunderstandings, and thence criticisms of the rule. For example, suppose that one 
physician analyzing a slide gives probability 114 that it shows abnormalities while with 
probability 314 it is normal. Then a second “independent” physician views the same 
slide and assigns probabilities 1/3 and 213 for the same assertions. The basic rule would 
then assign probabilities 1/7 and 6/7, while common sense suggests that a judgment of 
abnormality in the range of 114 or 1/3 would be more sensible. In fact, these physicians 
are not independent in the sense of the theory, because they are accessing the same 
evidence. Such dependence is commonplace in the Bayesian special case of the theory, 
where successive sample observations, while independent in the sampling sense with a 
“fixed” parameter value are marginally dependent in the sense that matters for DS 
theory because they are dependent on a common unknown parameter value. 
Independence is a subtle concept, needing careful consideration in all applications of the 
product-intersection rule, and in particular underlies Bayesian analysis in a way that 
Bayesian adherents rarely think about, but is uncovered by recognition that the 
fundamental Bayesian tool of successive conditioning is a special case of the belief 
function rule (Dempster, 1968). A similar comment applies to routine use of 
intersections in the propositional calculus, One must always make a judgment that the 
pieces of evidence being combined do not contaminate each other, and so invalidate 
applications of the rule. 

That said, the application of the rule of combination to ordinary stochastic modeling, as 
illustrated by many complex stochastic models, such as hidden Markov models, shows 
that models built this way can provide deep insights into a wide range of scientific 
phenomena that are conventionally regarded as “random”. In a similar way, the 
combination of many independent elements is the standard way to build up a complex 
belief function model. 

To explain the second operator propagation the essential abstract concept is that of a 
partition of the state space X, namely, a collection of subsets whose intersections are all 
empty (they are “mutually exclusive”) and whose union is X itself (they are 
“exhaustive”). A partition P of a state space X can also be regarded as a state space 
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representing the same small world, but with less expressive power. That is, statements 
based on P when reinterpreted as statements about S correspond only to subsets of X 
that are unions of elements of P. Given a belief function over X with mass function 
mx( .) the marginal belief function over P is defined by summing collections of mx( .) to 
obtain a corresponding element of mp( .). Specifically, each statement in S projects into 
a unique statement in P, whence m p ( . )  is obtained by summing values of mx(*)  that 
project into each subset of P. Similarly, given any belief function defined on a partition 
P, the extension to S is defined by assigning the mp( * )  values to the cylinder sets in X 
that define the partition. A little thought shows that marginalization generally loses 
information because a marginal belief function does not in general return by extension 
to the original, while extension neither gains nor loses information. It is interesting that 
the ordinary theory of probability does not encompass extension, but if an ordinary 
probability distribution is extended it in fact does have a belief function extension. 

The general operator of propagation can now be defined as carrying a belief function on 
one margin of X to a second margin of X, by first extending to the full space and then 
marginalizing to the second margin, This operation is fundamental to computations with 
many useful examples. 

5. An Elementary Example 
Students of probability theory are typically taught about “product measures” on 
“product spaces” and then told that these represent “independent” random variables. For 
example, prior to knowing with certainty the contents of my hypothetical slide I might 
assign probabilitiesp, andps to the truth of A or B types, and independently po andp, to 
the truth of normal or abnormal cells, whence by assumption, and the definition of 
product measure, the four product probabilities are assigned to truth being in 
corresponding cells of the 2x2 table. The belief function reconstruction of the same 
story is more detailed. First, the probabilities pA and p B  are regarded as a belief function 
on the type margin having probabilities on { A }  and { B }  but no probability on {A,B} ,  
and similarly for the probabilities po and p1 for the normal/abnormal margin of the 2x2 
table. Each of these marginal beliefs is extended to the full table, in one case assigning 
probabilities to the rows, and in the other case assigning probabilities to the columns. 
Applying the product-intersection rule over the 2x2 table now produces the standard 
product measure of ordinary probability theory. 

Why should students be burdened with this long way around to a familiar end point? 
One reason is logical clarity. More important, however, is that belief functions provide a 
broader range of options for representing uncertainty. Thus on the type margin, I may 
assign probabilities to { A } ,  { B }  and {A,B} ,  and similarly three probabilities may be 
used for the normaUabnorma1 model, with the final result being a belief function over 
the four cells of the 2x2 array with positive mass values on nine of the 15 possible 
subsets. A common special case might have evidence pointing in special directions, as 
contemplated by Bernoulli, so that on one margin we might have P( { B }  ) = 0 and on the 
other margin P( {0}) = 0, in which case the mass function from fusion under 
independence has only four nonzero values as in the case of ordinary probability, but 
with genuine belief function uncertainty expressions. 
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6. What of the Future? 
A healthy future for the DS formulation of probabilistic reasoning depends on 
successful efforts to construct models with credible applications to real situations, and 
to develop accurate and fast algorithms and software to implement the models. DS 
theory has demonstrated its logical appeal through gradual development over four 
decades. The extension of ordinary probability measures from state spaces to statement 
spaces adds unfamiliarity and complexity, but the foundation of DS methods in the 
highly developed mathematical theory of probability lends fundamental simplicity, 
precision, and rigor. 
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Abstract 
Theory of Evidence is a mathematical theory which allows one to reason with uncertainty 
and which provides a rule for combining uncertain data. It has been shown that Theory of 
Evidence can be interpreted by logic and probability theory and that the degree of belief 
of a proposition A can be viewed as the probability that an agent knows (or proves) A. 
This present paper gives another logical interpretation of masses, when the numbers are 
rational, in which the degree of belief of a proposition A is interpreted by the proportion, 
in a given set, of proofs of A.  However, this new interpretation does not correctly inter- 
pret Dempster’s rule. So, a new rule of combination which fits more this interpretation 
is defined. We show that, in some applications, this new interpretation is adequate. In 
particular, we study an example that has been used by Zadeh and Smets to criticize nor- 
malisation in Dempster’s rule. We show that the new interpretation of this example and 
the new rule lead to acceptable results. 

Keywords: Theory of Evidence, logic, combination of uncertain data. 

1 Introduction 
Theory of Evidence is a mathematical theory defined by Dempster [5] and Shafer [ 141, 
which allows one to reason with uncertainty and which defines a rule for combining un- 
certain data provided by several information sources. 

In this theory, the uncertainty is represented by the fact that any proposition of the 
frame of discernment is associated with a real number, called its mass, which belongs to 
[0,1] and such that the mass of the contradiction is O’, and the sum of all the masses is 
1. These numbers intend to represent a measure of belief committed exactly to the propo- 
sitions. Given all the masses, one can define two other numbers: the degree of belief 
of a proposition, which is also a real number belonging to [0,1] and which represents 
the degree of support a body of evidence provides for this proposition, and the degree of 
plausibility of a proposition, which is also a real number belonging to [0,1] and which 

‘In some extensions of this theory, this constraint is relaxed. 
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represents the extend to which one fails to doubt the proposition. Furthermore, this theory 
also focuses on the combination of masses through Dempster’s rule of combination. This 
explains why Theory of Evidence is commonly applied in data fusion problems where 
data are uncertain. For instance, in object identification problems, (Le, situation assess- 
ment [ I], candidate assessment [6 ] ,  decision from MRI images [7], data association [111) 
the point is that several sources provide their own beliefs about an observed situation, and 
the problem is to decide which is the actual situation. For doing so, Theory of Evidence 
provides different decision strategies like, for instance, Maximum of plausibility strategy. 

However, for logicians, Shafer’s comments about Theory of Evidence are quite infor- 
mal. What does it mean that the mass intends to represent a measure of belief committed 
exactly to the proposition ? What does it mean that the degree of belief represents the 
degree of support a body of evidence provides for this proposition ? Finally, what does it 
mean the degree of plausibility represents the extend to which someone fails to doubt the 
proposition ? 

As far as we know, the main logical interpretations of Theory of Evidence have been 
provided first by Ruspini, then by Pearl and colleagues [12], [lo], [13]. They proved 
that Theory of Evidence can be interpreted by logic and probability theory. Thus, the 
degree of belief of a proposition A can be viewed as the probability that an agent knows 
(or proves) A, the mass of a A beeing the probability that the agent knows (or proves) A 
without knowing (or proving) none of its implicants. 

Here, we present a different view of Theory of Evidence, when it is restricted to 
rational numbers. We interpret the degree of belief of a proposition A as the proportion 
of proofs of A or, equivalently, the proportion of reasons to believe A. Although it looks 
close to the previous ones, this logical interpretation is really different. Indeed, even if it 
correctly interprets the main notions of Theory of Evidence, it fails to correctly interpret 
Dempster’s rule of combination. So we suggest to replace Dempster’s rule by a new rule 
which is more a rule for gathering assignments that a rule for combining assignments. 

This paper is organized as follows. 
Section 2 presents a new logical view of Theory of Evidence. It is based on the notion 

of knowledge-sets, introduced in the field of knowledge-bases merging. Section 3 defines 
a new rule for gathering assignments. It is illustrated in section 4 on an example. Finally, 
section 5 is devoted to a discussion. 

2 A logical interpretation of Theory of Evidence when numbers are ratio- 
nals 

This section presents a new logical interpretation of Theory of Evidence. This interpreta- 
tion is the one presented in [4], where we also proved some formal equivalences between 
the Maximum of Plausibility Strategy and one Knowledge-Base Merging operator defined 
by Konieczny and Pino-Perez [ 9 ] ,  [8]. 

Let us first recall some definitions. 

2.1 Preliminaries 
Definition 1. A multi-set is a set where repeated occurrences of an element may exist. A 
knowledge-set is a multi-set of propositional formulas’. 

*Konieczny and Pino-Perez define a knowledge-set as a multi-set of sets of formulas but, considering for- 
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Example 1. If A and B are propositional letters, then K S = [ B , A V B , A, A V B , A V 
B] is a knowledge-set. 

Definition2. Let KS1 = [ F l ,  ...,Fnl] and KS2 = [Fnl+ll  ..., Fp] betwoknowledge- 
sets. Their union is: KS1 U KS2 = [ F l ,  ..., F n l ,  Fnl+l, ..., Fp].  

Definition 3. Let KS1 = [ F l ,  ...,I?,] and KS2 = [GI, ..., G,] two knowledge-sets 
of the same size. KS1 and KS2 are equivalent, noted KS1 H KS2,  iff there exists a 
bijection f from K S1 to KS2 such that: V i  E { 1.. .n} + F, c+ f (Pi) 
2.2 Main concepts of Theory of Evidence 
Theory of Evidence assumes the existence of a frame of discernment which is defined 
as a set 0 of N hypothesis : 0 = { H I ,  ..., Hh}. Hypothesis correspond to propositions 
one is dealing with. Their intuitive meaning depend on the context of application. For 
instance, in an identification problem, the hypothesis Hi will represent the fact “the object 
to be identified is Hi”. The meaning given to hypothesis is out the Theory of Evidence. 
These hypothesis are supposed to be exclusive. This means for instance, that the object 
to be identified cannot be both Hi and H j  if i # j .  Furthermore, in the initial version 
of Theory of Evidence (and we will focus on it), the hypothesis are supposed to be ex- 
haustive. This means that the object to be identified is H I  or ... Hh. This assumption 
is called Closed-World Assumption. Finally, in the Theory of Evidence, propositions are 
represented by subsets of 0. The set 2’ is called Referential of definition. 

Let 0 = { H1 , . . ., H h }  be a frame of discernment. In the logical formulation, we will 
say that 0 is a propositional language whose propositional letters are H I  ... Hh. 

As usual, the relation of logical consequences will be denoted by k. 
Under the Closed-World Assumption and under the assumption of the hypothesis ex- 

haustivity, we will consider the theory EV whose proper axioms are: 

(CW)  H1 v ... v Hh 

(EXCL)  l ( H i  A H j )  if i # j 
In EV,  the only possible worlds are thus the h worlds w1, ... W h  where wi is the world 

in which only Hi is true. 
One can notice that in theory EV,  any proposition is equivalent to a positive clause 

(Le, a disjunction of positive literals). So here, the Referential of Definition is the set of 
positive clauses of 0. This means that any subset of the frame of discernement is logically 
represented by a positive propositional clause. For instance, the subset { H I ,  H2, H3} of 
0 is logically represented by the positive clause H I  V H2 V H3. 

The basic notions of the Theory of Evidence are the notion of assignment (or mass 
function), the notion of belief function, associated with an information source which, by 
this way, expresses its uncertainty about beliefs and the notion of plausibility function. 
They are mathematically defined by: 

An assignment is a function m : 2’ + [0,1] such that: 

(i) m(B) = 0 and (ii) m(A) = I 
A&’ 

mulas is enough by assimilating a set of formulas as the conjunction of its formulas 
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A belief function is a function Bel, : 2@ --t [0,1] which associates any A of to 
B el , ( A )  with: 

Bel,(A) = m(B)  
B C A  

A plausibility function is a function P1, : 2@ -+ [0,1] which associates any A to 
Pl,(A) with to Pl,(A) = 1 - Bel,(X), where 3 is the complement of A in 0. 

Shafer gave the following informal interpretation of these numbers: the number m ( A )  
is understood to be the measure of belief committed exactly to A (.... but) not the total 
belief that ones commits to A. To obtain the measure of the total belief committed to A, 
one must add to m(A)  the quantities m ( B )  for all proper subsets B of A. Finally, the 
degree of plausibility represents the extend to which one fails to doubt the proposition. 
SO, the problem for us is to give, in logical terms, a meaning to these comments. This is 
done in the remainding of this section, in the case when the numbers are rational. 

The logical representation of an assignment is given by the following definition: 
Definition 4. Let m be an assignment defined on 0 by: m(P1) = nl/n,  ...., 

m ( 4 )  = nk/n with n1+ ... +nk = n. The logical representation of m is the knowledge- 
set denoted k s ( m )  defined by: k s ( m )  = { K 1 ,  ..., K,} with: 

K1 = ... = Knl = {Pi}  
KLl+l = ... = Kn1+n2 = {PZl 

... 
K,-,,+1 = ... = K ,  = {Ph} 

Notation. One must notice that, in this definition, the same symbol P, is used to 
denote a subset of the Frame of discernment 0 and the propositional clause, of the propo- 
sitional language associated with 0, which logically represents it. However, it must be 
clear that m is defined on subsets while k s ( m )  is a multi-set of propositional positive 
clauses. 

Example 2. Let m(A)  = 2/3,  m(A,  B )  = 1/3. The logical representation of m is 
the knowledge-set: k s ( m )  = [A, A ,  A v B ] .  

Proposition 1. Let m be an assignment. The mass of a proposition P ,  m(P) ,  is 
the proportion of formulas Ki in k s ( m )  which are equivalent, under E V ,  to P. I.e, the 
proportion of Ki in k s ( m )  such that: EV + Ki c-) P. 

Proposition 2. Let m be an assignment. The degree of belief of a proposition P ,  
Bel,(P), is the proportion of K,  in k s ( m )  which, under EV,  imply P. I.e, the propor- 
tion of Ki in k s ( m )  such that: EV + Ki -+ P. 

Example 2 (continued). The three formulas of ks (m)  imply A V B ,  thus Bel,(A V 
B )  = 1. But only two formulas imply A so, Bel,(A) = 2/3. 

Proposition 3. Let m be an assignment, The degree of plausibility of a proposition 
P,  Pl,(P), is the proportion of Ki in k s ( m )  which do not, under EV, imply 1P.  I.e, 
the proportion of Ki in k s ( m )  such that: EV A Ki A P is consistent. 

Example 2 (continued). All the formulas in k s ( m )  are consistent (under EV)  with A, 
so Pl,(A) = 1. Only one formula is consistent (under EV)  with B, so PL,(B) = 1/3. 

To sum up this section, we can say that any assignment as defined by Shafer can, if 
the numbers are rational, be modelled by a knowledge-set as defined previously. Thus, 
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the mass of a proposition A is the proportion of formulas in this knowledge-set which are 
equivalent, under EV, to A. The degree of belief of A is the proportion offormulas which 
imply, under EV, A. The plausibility degree of A is the proportion of formulas which are 
consistent, under EV, with A. 

2.3 Dempster’s rule of combination 
Given two assignments ml and m2 defined over a frame 0, Dempster’s rule of combina- 
tion defines a third assignment denoted ml @ m2 by the following equation: 

C A i f l B j  =A ml(Ai).m2 (4) 
N m(A) = 

with 

A f 0  A ,  f lB,  = A  

Obviously, the fraction has a meaning only if N # 0. This assumption corresponds to 

In the following, we give the correspondance, in terms of knowledge-sets, of this rule. 
Definition 5 Let KS1 = { K i ,  ..., K;”} and KS2 = { K i ,  ...l K,”} be two knowledge 

sets of the same size. We say that they are in total conflict iff VK; E KS1 VK; E 
KS2 EV U ( K ;  A K;)  

the case when the two assignments are not totally in conflict. 

is inconsistent. 
Proposition 4. ks(m1) and k s ( m 2 )  are in total conflict iff N = 0. 
The following definition defines an operator, also denoted $, which combines two 

knowledge-sets which are not in total conflict. 
Definition 6Let  KS1 = { K i ,  ...) K;}  and KS2 = { K i ,  .,., K,”} be two knowledge- 

sets of the same size which are not in total conflict. The operator @ on knowledge-sets 
defines a third knowledge-set by: 
KS1 @ KS2 = [K : 3K; E KS1 3K; E KS2 : EVU { K ;  A K ; }  is consistent and 
EV ( K ;  A K;)  H K ]  

Proposition 5. Let ml and m2 be two assignments which are not in total conflict 
and let ks (m1)  and ks(m2)  be their logical representations. Then, ks(m1 69 m2) - 

This proves that the operator @ on knowledge-sets corresponds to the logical inter- 

Example 3. Let ml and m2 be two assignments defined by: ml(A,  B) = 1/2,  ml(B)  = 

ks (m1)  e3 ks (m2) .  

pretation of Dempster’s rule of combination. 

1 /2  and m2(A) = 2/3, mz(A,B)  = 1/3. Dempster’s rule defines the assignment 
ml @ m2 by: m l @  m2(A) = 1/2 ,  ml @ m2(A,  B )  = 1/4,  m l e  m2(B) = 1/4. Be- 
sides, the logical interpretation of ml and ma are: ks(m1) = [A V B ,  B]  and ks(m2) = 
[A, A,  A V B] .  We can then compute ks(m1) @ ks(m2) and get: ks (m1)  @ ks(m2)  = 
[A, A, A V B ,  B] .  We can easily check that: ks(ml @ m2) +-+ ks(m1)  @ ks(m2) 

TO sum up this section, we can say that the assignment ml $ m2, provided by Demp- 
ster’s rule on two assignments ml and m2, can be logically interpreted by the knowledge- 
set denoted ks(ml)@ks(m2) previously defined, ks(m1) and k s ( m 2 )  beeing the knowledge- 
sets which logically interpret ml and m2. 
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2.4 Comments about the logical interpretation of Dempster’s rule 
It has been previously shown that Dempster’s rule leads to an operator for combining 
two knowledge-sets. Properties of Dempster’s rule can thus easily be transfered to this 
new operator. It is obviously commutative and associative. Its neutral elements is the 
knowledge-set K S  = [H1 V ... V Hh].  However, it is difficult to give a meaning to 
that operator, from a knowledge-base point of view. Indeed, let us come back to the 
intuition underlying the notion of knowledge-set. One must keep in mind that the main 
characteristic of a knowledge-set is the fact that it is a multi-set (and not a set) of formulas. 
This can be a way to explicitely count the proofs an agent has made in order to conclude 
something. 

For instance, consider an identification problem in which a witness’s accounts is ex- 
pressed by the knowledge-set [Peter, Peter]. It represents the fact that the witness has 
made two different observations. For instance, it has observed that the person to be iden- 
tified smokes and is left-handed. Besides the witness knows that Peter is a left-handed 
smoker. Each observation is used by the witness to deduce that the person to be identified 
is Peter. So the conclusion Peter is deducible twice. This is why the formula Peter 
appears twice in the knowledge-set. 

So, underlying a knowldege-set is an implicit set of observations (see [3]) which is 
used by the agent to make proofs. Accepting this intuition, we can show that a combined 
knowledge-set KS1@ KS2 represents a way to count combined proofs or equivalently to 
consider conjunctions of observations. 

For instance, consider a second witness who is associated with the knowledge-set: 
[Peter V Paul] because he has observed that the person to be identified is a tall person 
and he knows that both Peter and Paul are tall. Combining the two accounts leads to 
[Peter, Peter]. We can show that it corresponds to the observations: the person smokes 
and is tall and the person is leji-handed and is tall. But giving a meaning to these con- 
junctions is not easy. In this example, what can be easily justified is the gathering of all 
the observations. Gathering the accounts comes to say that the two witnesses have made 
three observations: two of them leads to conclude that the person is Peter and one of 
them leads to conclude that it is Peter or Paul. 

This intuitive idea is developped in the next section. 

3 A rule for gathering assignments 
In this section, we define a rule for gathering two assignments. This rule is borrowed 
from the knowledge-base merging community. It is denoted U and is the reformulation, 
in Theory of Evidence, of the union of two knowledge-sets as defined in section 2.1. 

Definition 7 Let ml and m2 be two assignments defined by: ml (Pi) = nf / p l  and 
m2(Pi) = na/p2 (where Pi is any subset of the frame of discernment). The rule U defines 
a third assignment, denoted ml U m2 by: 

Example 3 (continued). ml U m2 is defined by: ml U m2(A) = 2/5, 

We can prove that U is commutative and associative. There is no neutral element and 
no absorbant element. However, ml Urn2 is always defined, even if ml and m2 are totally 

mi U m2(B) = 1/5, mi U m2(A, B )  = 2/5, 
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in conflict (Le, N = 0). 
Furthermore, it has been shown (see [2]) that for any assignment ml and m2, ml $m2 

and m1 U m2 characterize the same most plausible hypothesis, when there are hypoth- 
esis which are most plausible for both assigment. In this case, the same most plausible 
hypothesis are these ones. 

Finally, one must notice that, due to the definition of U, a mass n / p  cannot be replaced 
by the mass n’/p’ even if they denote the same rational number. This is illustrated by the 
following example. 

Example 3 (continued). According to ml U m2, the most plausible hypothesis is 
A. Consider now a third assignment mi defined by: rni(A, B) = 3/6 miB) = 3/6. 
3/6 and 1/2 denote the same number so we could consider that ml and mi represent 
the same assignemnt. But we can show that mi U rnz(A) = 2/9 mi U mz(B) = 
3/9 mi U mz(A, B )  = 4/9. Here, B is the most plausible hypothesis. 

Obviously, this means that the situation in which the agent has made two observations, 
one of them leading to A V B, one of them leading to B is not equivalent to the situation 
in which the agent has made 6 observations, 3 of them leading to A V B and 3 of them 
leading to B. These two situations are equivalent, from a decision strategy point of view. 
But they are not when gathering assignments. 

4 Application on an example 
Zadeh [ 161 and Smets [ 151 have critized the normalization introduced in Dempster’s rule 
by showing that, on some example, it leads to questionable results. This example is 
presented by Smets in these terms: Suppose a murder case with three suspects: A = 
{Henry, Tom, Sarah}, and two witnesses. For witness 1, the murderer is not Sarah, it 
is most probably Henry, but it might also be Tom. Witness 2 holds similar beliefs except 
for  the permutation between Henry and Sarah 

They thus consider the following assignments associated with the two witnesses: 

ml(Henry) = 0.99 
ml(Tom) = 0.01 
ml(sarah) = 0 

m~(Henry) = 0 
mZ(Torn) = 0.01 

rnz(sarah) = 0.99 

Dempster’s rule as defined in section 2, leads to the following combined assignment: 
ml @ m2(Tom) = 1 which means that Tom is certainly the murder. 

Citing Smets again: Zadeh does not accept this solution as it gives full certainly to a 
solution (Tom) that is hardly supported at all. In fact, in a totally different situation in 
which both witnesses migth have been sure that Tom was the murderel; the result of the 
combination would have been the same. 

Smets adheres to this critics and suggests to define an unormalized rule which leads 
to the following assignment: 

ml $’ mz(Tom) = 0.0001 and ml $’ m2(8) = 0.999 
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Citing Smets again: The unnormalized solution presented within our theory seems 
much more realistic as it shows Tom to be sligtly supported but @ to be highly supported. 
(...) the most obvious conclusion in the present situation is that the real murderer must be 
a fourth person 

In the following, we reformulate this example according to our point of view. We try 
to show that, in this example, the mass of a proposition can be seen as the proportion 
of proofs for deducing it without deducing none of its implicants. So using the rule for 
gathering assignments is more adequate. 

According to our interpretation, the assignment ml means that the first witness has 
made 100 observations. Among them, 99 lead him to believe that the murderer is Henry 
and only 1 leads him to believe that it is Tom. In the same way, the assignment m2 means 
that the second witness has made 100 observations. Among them, 99 lead him to believe 
that the murderer is Sarah and only 1 leads him to believe that it is Tom. 

By applying the rule defined in section 3, we get: 

ml U mz(Henry) = 99/200 
ml U mz(Sarah) = 99/200 

ml U mz(Tom) = 2/200 

I.e, gathering the two witnesses accounts, one can conclude that there are 99 reasons 
on 200 to believe that Henry (resp, Sarah) is the murderer, and only 2 reasons on 200 
to believe that Tom is the murderer. 

Obviously, Zadeh and Smets’s critics no longer stands: after gathering the two ac- 
counts, we still have few beliefs in Tom. And we have the same number of reasons for 
believing that the murderer is Henry (resp, Sarah). Thus, the most plausible hypothesis 
are Henry and Sarah. 

5 Discussion 
The logical interpretation we gave to masses, degrees of belief, degrees of plausibility, is 
quite different from the logical interpretations provided by Ruspini and Pearl. Even if it 
looks close, it has been shown that it is different because it fails to interpret Dempster’s 
rule of combination and suggests to gather assigments instead of combining them. 

One can thus argue that this logical interpretation does not interpret Theory of Ev- 
idence in a whole. However, in some applications, like the example of section 4, this 
interpretation looks to be more adequate. 

This positive result does not lead us to conclude that this interpretation is the only 
one valid and that the rule of gathering must always replace Dempster’s one. Our feeling 
is that Theory of Evidence, as defined by Shafer, said nothing formal about the meaning 
of the masses. Thus, this theory has been used in many applications where the meaning 
of the masses were completely different. Following Ruspini, we agree on the fact that 
Theory of Evidence (including Dempster’s rule) is adequate when there is an underlying 
probability measure on observations. Here, we suggest that another interpretation can 
be given if we only have a set of observations among which we count those which are 
used to conclude something. And more, following this point of view, Dempster’s rule of 
combination must be replaced by a rule of gathering. 

Notice that since this present interpretation rejects Demspter’s rule, a question is now: 
how does it define conditioning ? 



23 1 

Remind that, given an assignment m which represents the beliefs of an agent, con- 
ditioning defined a new assignment miA which is supposed to represent the beliefs of 
the agent after he learns that the proposition A is true for certain. Shafer suggested to 
define miA by combining with Dempster’s rule m and the assignment mA defined by 
mA(A) = 1. Thus miA = m CB mA. 

In the present interpretation, we suggest to solve the problem of learning that an infor- 
mation is certain in a slightly different way. Indeed, we think that the main point, when 
learning that an information is true for certain, is not to define a new assignment, but to 
characterize the hypothesis which are the most plausible (if the chosen decision strategy 
is the Maximum of Plausibility) given the initial beliefs of the agent and given this certain 
information. 

Thus, if, Mazpl(m, EV)  are the hypothesis which are the most plausible according 
to m we claim that the hypothesis which are the most plausible after learning that A is 
true are Mazpl( m,  EV A A) .  

So, in the present interpretation, integrating certain information does not come to 
modify the assignment but comes to modify the frame of discernment: not all the hy- 
pothesis of the initial frame of discernment are now to be considered: only the hypothesis 
defined by EV A A must now be considered. 

We can prove that this way of implementing conditioning extends Shafer’s one. In- 
deed, if some hypothesis in A are among the most plausible hypothesis according to m, 
then we get: Mazpl(mlA, EV)  = Marcpl(m, EV A A)  (i.e, we finally characterize the 
same most plausible hypothesis than Shafer’s conditioning). Obviously, results are dif- 
ferent if the premisse is not satisfied, since in this case, our solution gives results while 
Shafer’s one is not defined. However, when another decision strategy is chosen, the com- 
parision remains to be done. 
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Abstract 
Type-2 fuzzy sets let us model and minimize the effects of four kinds of uncertainties 
that can occur in type-2 fuzzy logic systems, The nature of these uncertainties is 
captured in the footprint of uncertainty (FOU) of a type-2 membership function. This 
paper describes the four kinds of uncertainties, defines type-2 fuzzy set terms and 
provides a small catalog of FOUs. Choosing a FOU is analogous to the well-known 
starting point of a probability-based design, where one must choose appropriate 
probability density functions. 

Keywords: Uncertainty, type-2 fuzzy sets, footprint of uncertainty, type-2 membership 
function, type-2 fuzzy logic system 

1. Introduction' 
The original fuzzy logic (FL), founded by Lotfi Zadeh, has been around for more than 
37 years, as of the year 2002, and yet it is unable to handle uncertainties. By handle, I 
mean to model and minimize the effect of. That the original FL-type-1 FL-cannot do 
this sounds paradoxical because the word fuzzy has the connotation of uncertainty. An 
expanded FL-type-2 FL-is now able to handle uncertainties because it can model 
them and minimize their effects. And, if all uncertainties disappear, type-2 FL reduces to 
type-1 FL in much the same way that if randomness disappears probability reduces to 
determinism. 
Although many applications have been found for type-1 FL, it is its application to rule- 
based systems that has most significantly demonstrated its importance as a powerful 
design methodology. A rule-based fuzzy logic system (FLS) contains four components 
-rules, fuzzifier, inference engine, and output processor-that are inter-connected, as 
shown in Figure 1. This kind of FLS is very widely used in many engineering 
applications of FL, and is also known as afuzzy controller,fuzzy system orfuzzy model. 
Rules may be provided by experts or can be extracted from numerical data. In either 
case, they can be expressed as a collection of IF-THEN statements. Fuzzy sets are 
associated with terms that appear in the antecedents or consequents of such rules, and 
with the inputs to and output of the FLS. Membership functions (MFs) are used to 
describe these fuzzy sets; they can be either type-1 or type-2 MFs. 

' Some parts of this paper have been taken from [l] since this material has not appeared in a journal 
publication. 
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Fuzzifier 

4 -------______...--.._______________.__._--...-...-..- -... 2 
Y = f ( X )  

Figure 1 : Fuzzy logic system. 

A FLS that is described completely in terms of type-1 fuzzy sets is called a type-I FLS, 
whereas a FLS that is described using at least one type-2 fuzzy set is called a type-2 
FLS. Type-1 FLSs are unable to directly handle rule uncertainties, because they use 
type-I fuzzy sets that are certain. Type-2 FLSs, on the other hand, are very useful in 
circumstances where it is difficult to determine an exact MF for a fuzzy set; hence, they 
can be used to handle rule uncertainties, and even measurement uncertainties. 
The FLS fuzzifier maps crisp numbers into fuzzy sets. It is needed to activate rules that 
are in terms of linguistic variables, which have fuzzy sets associated with them. The 
inputs to the FLS prior to fuzzification may be certain (e.g., perfect measurements) or 
uncertain (e.g., noisy measurements), The MF for a type-2 fuzzy set lets us handle either 
kind of measurement. 
The inference engine of the FLS maps fuzzy sets into fuzzy sets. It handles the way in 
which rules are activated and combined. Just as we humans use many different types of 
inferential procedures to help us understand things or to make decisions, there are many 
different FL inferential procedures. 
In many applications of a FLS, crisp numbers must be obtained at its output. This is 
accomplished by means of the output processor. The output processor for a type-1 FLS 
is just a defuzzij?er; however, the output processor of a type-2 FLS contains two 
components: the first maps a type-2 fuzzy set into a type-1 fuzzy set-a type-reduced 
set-and the second performs defuzzification on the type-reduced set. 
Just as random uncertainties flow through a system and their effects can be evaluated 
using the mean and variance, linguistic and random uncertainties flow through a type-2 
FLS and their effects can be evaluated using the defuzzified output and the type-reduced 
output of that system. Just as the variance provides a measure of dispersion about the 
mean, and is often used in confidence intervals, the type-reduced output can be 
interpreted as providing a measure of dispersion about the defuzzified output and can be 
thought of as (or related to) a linguistic confidence interval. Just as the variance 
increases as random uncertainty increases, the type-reduced set also increases as 
linguistic or random uncertainties increase. So, a type-2 FLS is analogous to (but not the 
same as) a probabilistic system through first and second moments, whereas a type-1 FLS 
is analogous to a probabilistic system only through the first moment. 
Uncertainty comes in many guises and is independent of what kind of FL, or any kind of 
methodology, one uses to handle it. One of the best sources for general discussions 
about uncertainty is Klir and Wiennan [2]. Regarding the nature of uncertainty, they 
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state (p. 43): 
Three types of uncertainty are now recognized . . . fuzziness (or vagueness), which 
results from the imprecise boundaries of fuzzy sets; non-spec$city (or imprecision’), 
which is connected with sizes (cardinalities) of relevant sets of alternatives; and 
strife (or discord), which expresses conflicts among the various sets of alternatives. 

They divide these three types of uncertainty into two major classes, fuzziness and 
ambiguity, where ambiguity (“one to many relationships”) includes nonspec$city and 
strife. 
The following sources of uncertainty can occur for the FLS in Figure 1 : 

Uncertainty about the meanings of the words that are used in the rules 
Uncertainty about the consequent that is used in a rule 
Uncertainty about the measurements that activate the FLS 
Uncertainty about the data that are used to tune the parameters of a FLS 

Type-1 FL handles uncertainties about the meanings of words by using precise 
membership functions that the user believes capture the uncertainty of the words. Once 
the type-1 MFs have been chosen, all uncertainty about the words disappears, because 
type-1 MFs are totally precise. Type-2 FL, on the other hand, handles uncertainties 
about the meanings of words3 by modeling the uncertainties. This is described in 
Sections 2 and 3. The uncertainty about the meanings of the words that are used in rules 
seems to be in accord withfuuiness, which results from imprecise boundaries of fuzzy 
sets. 
Consequents for rules are either obtained from experts, by means of knowledge mining 
(engineering), or are extracted directly from data. Because experts don’t all agree, a 
survey of experts will usually lead to a histogram of possibilities for the consequent of a 
rule. This histogram represents the uncertainty about the consequent of a rule, and 
this kind of uncertainty is different from that associated with the meanings of the words 
used in the rules. A histogram of consequent possibilities can be handled by a type-2 
FLS. Uncertainty about the consequent used in a rule, as established by a histogram of 
possibilities, seems to be in accord with strife, which expresses conflicts among the 
various sets of alternatives. 
Measurements are usually corrupted by noise; hence, they are uncertain. We do not 
propose to abandon traditional ideas about noisy measurements (i.e., measurement = 
signal + noise). What we propose to abandon (when appropriate) is the frequently made 
assumption of a priori knowledge of a probability model (i.e., a probability density 
function) for either the signal or the noise. Doing this gets around the major shortcoming 
of a probability-based model, namely the assumed probability model, for which results 
will be good if the data agree with the model, but may not be so good if the data do not. 
Uncertain measurements (i.e., randomness in the data) can be handled very naturally 
within the framework of a FLS; they can be modeled as fuzzy sets (type-1 or type-2); 
hence, uncertainty about the measurements that activate the FLS seems to be in 
accord with non-specijkity when nonspecificity is associated with information-based 
imprecision. 
Finally, a FLS contains many design parameters whose values must be set by the 

This is informution-bused imprecision rather than linguistic imprecision (which is equivalent to fuzziness). 
In rules, we distinguish between antecedent words and consequent words; but, there are also connector words 

(e.g., and/ or). There may even be uncertainties associated with them [3], [4]; but, in this paper, we do not 
focus on such uncertainties. 
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designer before the FLS is operational. There are many ways to do this, and all make use 
of a set of data, usually called the training set. This set consists of input-output pairs for 
the FLS, and, if these pairs are measured signals, then usually they are as uncertain as 
the measurements that excite the FLS. In this case the FLS must be tuned using 
unreliable data, which is yet another form of uncertainty that can be handled by a type-2 
FLS. The uncertainty about the data that are used to tune the parameters of a FLS 
also seems to be in accord with nonspec$city. 
It would appear that a type-2 FLS is able to directly address all three types of 
uncertainty-fuzziness, strife, and nonspecijicity. Type-2 fuzzy sets are the means to 
handling all three types of uncertainty totally within the framework of fuzzy set theory. 
They are able to do this because they directly model uncertainties. 
Next, we define type-2 fuzzy sets and some important associated concepts. By doing 
this we provide a simple collection of mathematically well-defined terms that will let us 
effectively communicate about type-2 fuzzy sets. 

2. Type-2 Fuzzy Sets: Definitions 
Imagine blurring the type-1 MF depicted in Figure 2 (a) by shifting the points on the 
triangle either to the left or to the right and not necessarily by the same amounts, as in 
Figure 2 (b). Then, at a specific value of x, say x', there no longer is a single value for 
the MF (~(x')); instead, the MF takes on values wherever the vertical line intersects the 
blur. Those values need not all be weighted the same; hence, we can assign an amplitude 
distribution to all of those points. Doing this for all x E X ,  we create a three- 
dimensional MF-a type-2 MF-that characterizes a type-2 fuzzy set. 

Figure 2: (a) Type-1 MF and (b) blurred type-1 MF 

Definition 1: A type-2 fuuy set, denoted A ,  is characterized by a type-2 M F  pi (x, u ) ,  

where x E X  and u E J, c [0,1], i.e., 

ki = [ ( ( x , u ) ,  pi ( x , u ) )  I vxg x,vu € J ,  m1} 

A = I , , x J . d , p i ( X u ) I  (x,u> J ,  c[0911 (2) 

(1) 

in which 0 I pi (x, u)  I 1 . A" can also be expressed as 

where denotes union over all admissible x and u. For discrete universes of discourse 

In Definition 1, the first restriction that 'du E J, c [0,1] is consistent with the type-1 
constraint that 0 p,(x) I 1, i.e., when uncertainties disappear a type-2 MF must 

is replaced by x. 
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reduce to a type-1 MF, in which case the variable u equals pLA ( x )  and 0 I p A ( x )  5 1. 
The second restriction that 0 5 pi ( x ,  u)  5 1 is consistent with the fact that the amplitudes 
of a MF should lie between or be equal to 0 and 1. 
Definition 2: At each value of x ,  say x = x ’ ,  the 2D plane whose axes are u and 
pi (x’,  u)  is called a vertical slice of pi (X u) .  A secondary M F  is a vertical slice of 
p i (xu ) . I t i s  pi (x=x’ ,u)  for X’EX and V u ~ J , . ~ [ 0 , 1 ] , i . e . ,  

p, ( x =  x’9 u>= pi(x’)=~~.,,,,,,,f..c”)/u (3) 

in which 0 5 f,,( u) 5 1. Because VX’E x, we drop the prime notation on pi (x’) , and 
refer to pi ( x )  as a secondary MF; it is a type-1 fuzzy set, which we also refer to as a 
secondary set. H 
Based on the concept of secondary sets, we can reinterpret a type-2 fuzzy set as the 
union of all secondary sets, i.e., using (3), we can re-express in a vertical-slice 
manner, as: 

or, as 
= I ( X ’ P i ( X )  1 P X  E a (4) 

( 5 )  2 = I,, Pi ( x ) / x  =I,,, [l,x,,,,, f, (u)  
Definition 3: The domain of a secondary MF is called the primary membership of x. In 
(3, J, is the primary membership of x, where J ,  
Definition 4: The amplitude of a secondary MF is called a secondary grade. In (3, 
f, ( u )  is a secondary grade; in (l), pi (x’, u’) (x ’  E X ,  u’ E J,)  is a secondary grade. 

H Definition 5: Uncertainty in the primary memberships of a type-2 fuzzy set, i, 
consists of a bounded region that we call the footprint of uncertainty (FOU). It is the 
union of all primary memberships, i.e., 

The shaded region in Figure 2 (b) is the FOU. Other examples of FOUs are given in 
Section 3. The term footprint of uncertainty is very useful, because it not only focuses 
our attention on the uncertainties inherent in a specific type-2 MF, whose shape is a 
direct consequence of the nature of these uncertainties, but it also provides a very 
convenient verbal description of the entire domain of support for all the secondary 
grades of a type-2 MF. It also lets us depict a type-2 fuzzy set graphically in two- 
dimensions instead of three dimensions, and in so doing lets us overcome a difficulty 
about type-2 fuzzy sets-their three-dimensional nature which makes them very difficult 
to draw. The shaded FOUs imply that there is a distribution that sits on top of it-the 
new third dimension of type-2 fuzzy sets. What that distribution looks like depends on 
the specific choice made for the secondary grades. When they all equal one, the 
resulting type-2 fuzzy sets are called interval type-2 fuzzy sets. Such sets are the most 
widely used type-2 fuzzy sets to date. 
Definition 6: Consider a family of type-1 MFs pa ( x  I pl ,p2 ,..., p ,  ) where p,, p *,..., p, 
are parameters, some or all of which vary over some range of values, i.e., pi E Pi ( i  = 1, 
. . . , v). A primary M F  is any one of these type- 1 MFs, e.g., 

For short, we use pA ( x )  to denote a primary MF. It will be subject to some restrictions 

[0,1] for Vx E X. H 

F O U ( i )  = uxa J,  a (6) 

p A ( X I P 1  = P I , P 2  =Pz,...,P” = P # ) *  
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on its parameters. The family of all primary MFs creates a FOU. 

3. Footprints of Uncertainty 
The starting point for all applications of type-2 FLSs is choosing appropriate FOUs for 
i t .  This is presently done in any one of the following ways, by: (1) Analyzing the 
available data using statistical techniques and examining the variations of the 
appropriate statistics, (2) Analyzing the natures of the uncertainties by understanding the 
problem being solved, (3) Collecting surveys about the words that will be used in 
knowledge-mining questionnaires, or (4) Deciding on the natures of the uncertainties of 
the measurements that activate a FLS. In this section we provide a catalog of some 
FOUs that we have found to be useful in applications. 
3.1 Triangular Primary MFs 
Triangles are perhaps the most popular of all MFs. When there only is uncertainty about 
the location of the triangle’s two base points, then the FOU for a triangular primary MF 
is the one depicted in Figure 3. Such a FOU can be constructed when people are asked 
to provide interval end-point information about locations of words on a scale (e.g., 
“Where on a scale of 0-10 would you locate the end points of an interval associated 
with the word some?”). In Figure 3, the uncertainty interval4 for point a does not overlap 
with the uncertainty interval for point 6. When the uncertainty interval for point a does 
overlap with the uncertainty interval for point b, we obtain the FOU depicted in Figure 
4. In this case, the entire triangle is the FOU. 

Figure 3: FOU when end-point information is requested. Uncertainty interval for a does 
not overlap with the uncertainty interval forb. 

When there is uncertainty about the location of the triangle’s apex as well as its two base 
points, then the FOU for a triangular primary MF is the one depicted in Figure 5.  Such a 
FOU can be constructed when people are asked to provide center location and interval 
length about locations of words on a scale (e.g., “Where on a scale of 0-10 would you 
locate the center of an interval associated with the word some and how large would that 
interval be?’). It is easy to show that the general shape of this FOU is the same when the 
uncertainty interval for the center location either does or does not overlap with the 
uncertainty interval for the interval end-points (except for some re-labeling of lengths). 

In this section and Section 3.2 the uncertainty interval is shown by f one standard deviation about the mean. 
How much uncertainty to include in the FOUs in these two sections is somewhat subjective. 
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Figure 4: FOU when end-point information is requested. Uncertainty interval for a 
overlaps with the uncertainty interval for b. 

Figure 5: FOU when center location and interval length information is requested. 

3.2 Trapezoidal Primary MFs 
Another popular primary MF is the trapezoid. Figure 6 depicts the FOU for a trapezoidal 
primary MF when there is uncertainty about the location of its four defining points, and 
the amount of uncertainty can be different for each point. When the amount of 
uncertainty is the same for each point, the FOU is depicted in Figure 7. 
3.3 Gaussian Primary MFs 
Yet another popular primary MF is the Gaussian. The FOU for a Gaussian primary MF 
with uncertain mean but certain standard deviation is depicted in Figure 8. We have 
used this FOU a lot to model antecedents in rule-based forecasters of chaotic time series 
when only noisy training data are available to tune the parameters of the FLS forecaster. 
The FOU for a Gaussian primary MF with uncertain standard deviation but certain mean 
is depicted in Figure 9. We have used this FOU a lot to model non-stationary noisy 
measurements in rule-based forecasters of chaotic time series. 
The FOU for a Gaussian primary MF with uncertain standard deviation and mean is 
depicted in Figure 10. We are presently using this FOU is a rule-based pattern 
classification problem for which the measured data is noisy and the features are non- 
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stationary. 
Finally, the FOU for a scaled Gaussian primary MF is depicted in Figure 1 1. The scaling 
factor is s where s<l. 

Figure 6: FOU when there is unequal uncertainty about trapezoid’s defining points. 

Figure 7: FOU when there is equal uncertainty about trapezoid’s defining points. 

Figure 8: FOU for Gaussian primary MF with uncertain mean. 
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Figure 9: FOU for Gaussian primary MF with uncertain standard deviation. 

Figure 10: FOU for Gaussian primary MF with uncertain mean and standard deviation. 

t "  
1 

S 

X 

m 
Figure 11: FOU or a scaled Gaussian primary MF. 
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3.4 Observation 
Comparing Figures 5-7 and 10, we see that they are quite similar. Each FOU looks 
about the same, and if its design parameters are tuned using some training data, our 
conjecture is that they will look even more the same. We view this as a very healthy 
development in that it demonstrates that when uncertainties about a primary MF are 
captured by a FOU then the specific choice for the primary MF is no longer important. 
This supports the generally known fact that the choice of the shape for a MF is not that 
critical in a FL controller or FLS, i.e., the designs are robust to that choice. 

4. Conclusions 
Type-2 fuzzy sets let us model four kinds of uncertainties that can occur in a FLS. The 
effects of these uncertainties can be minimized by optimizing the MF parameter values 
of type-2 fuzzy sets. An interval type-2 fuzzy set is completely specified by its FOU. In 
all of our applications of type-2 FLSs, the very first step in their design is establishing 
an appropriate FOU. We have provided a small catalog of very useful FOUs in this 
paper. We have demonstrated that the FOUs of a triangle primary MF that has 
uncertainties associated with all three of its vertices, a trapezoidal primary MF that has 
uncertainties associated with all four of its vertices, and a Gaussian primary MF that has 
uncertainties associated with both its mean and standard deviation all look quite similar. 
This seems to demonstrate that when uncertainties about a primary MF are captured by a 
FOU then the specific choice for a primary MF no longer is important. 
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Abstract 
Rough set theory is a new approach to vagueness and uncertainty. The theory of rough 
sets has an overlap with many other theories. Specially interesting is the relationship to 
fuzzy set theory and the theory of evidence. Recently, it turned out that the theory has 
very interesting connections with Bayes’ theorem. The look on Bayes’ theorem offered 
by rough set theory reveals that any data set (decision table) satisfies total probability 
theorem and Bayes’ theorem. These properties can be used directly to draw conclusions 
from objective data without referring to subjective prior knowledge and its revision if 
new evidence is available. Thus the rough set view on Bayes’ theorem is rather objective 
in contrast to subjective “classical” interpretation of the theorem. Besides, it is revealed 
that Bayes‘ theorem can be interpreted as a flow conservation equation in a flow graph. 
However the flow graphs considered here are different from those introduced by Ford 
and Fulkerson. This property gives new perspective for applications of Bayes’ theorem. 
Thus the paper brings two new interpretation of Bayes’ theorem, without referring to its 
classical probabilistic interpretation: as properties of data tables and properties of flow 
graphs. 

Keywords: roughs sets, Bayes’ theorem, decision rules, flow graphs. 

1 Introduction 
Rough set theory is a new approach to vagueness and uncertainty. Foundation of rough 
sets can be found in [9] .  The theory has found many applications, in particular in data 
analysis and data mining, offering new look and tools for these domains. 
The theory of rough sets has an overlap with many other theories. Specially interesting 
is the relationship to fuzzy set theory and the theory of evidence. Recently, it turned out 
that the theory has very interesting connections with Bayes’ theorem. This link gives a 
new look on Bayes‘ theorem which is significant not only from philosophical point of 
view but also offers new methods of data analysis. 
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The look on Bayes’ theorem offered by rough set theory reveals that any data set 
(decision table) satisfies total probability theorem and Bayes’ theorem. These properties 
can be used directly to draw conclusions from objective data without referring to 
subjective prior knowledge and its revision if new evidence is available. Thus the rough 
set view on Bayes’ theorem is rather objective in contrast to subjective “classical” 
interpretation of the theorem [6 ,  7, 81. 
It is also interesting that Bayes’ theorem can be interpreted as afrow conservation 
equation in a flow graph. However the flow graphs considered here are different from 
those introduced by Ford and Fulkerson [4]. 

2 
In this section we define basic concepts of rough set theory: information system and 
approximation of sets. 
An information system is a data table, whose columns are labeled by attributes, rows are 
labeled by objects of interest and entries of the table are attribute values. 
Formally, by an information system we will understand a pair S = (U, A) ,  where U and 
A ,  are finite, nonempty sets called the universe, and the set of attributes, respectively. 
With every attribute a E A we associate a set V,, of its values, called the domain of a. 
Any subset B of A determines a binary relation Z(B) on U, which will be called an 
indiscernibility relation, and defined as follows: (x,  y )€ I (B)  if and only if a(x) = a b )  for 
every aEA, where a(x) denotes the value of attribute a for element x. Obviously Z(B) is 
an equivalence relation. The family of all equivalence classes of Z(B), i.e., a partition 
determined by B, will be denoted by UIZ(B), or simply by UIB; an equivalence class of 
Z(B), i.e., block of the partition UIB, containing x will be denoted by B(x). 
If (x,  y )  belongs to Z(B) we will say that x and y are B-indiscernible (indiscernible with 
respect to B). Equivalence classes of the relation Z(B) (or blocks of the partition UIB) are 
referred to as B-elementary sets or B-granules. If we distinguish in an information 
system two disjoint classes of attributes, called condition and decision attributes, 
respectively, then the system will be called a decision table and will be denoted by 
S = (U, C, D), where C and D are disjoint sets of condition and decision attributes, 
respectively. 
Thus the decision table determines decisions which must be taken, when some 
conditions are satisfied. In other words each row of the decision table specifies a 
decision rule which determines decisions in terms of conditions. 
Observe, that elements of the universe are in the case of decision tables simply labels of 
decision rules. 
Suppose we are given an information system S = (U, A ) ,  XcU,  and BgA. Our task is to 
describe the set X in terms of attribute values from B. To this end we define two 
operations assigning to every X c U  two sets BI(X) and B*(X) called the B-lower and the 
B-upper approximation of X, respectively, and defined as follows: 

Rough Set Theory - Basic Concepts 

B, (x) = u {B(x): B(x)  E x} 9 

X€U 

B * ( X ) =  u {B(x): B ( x ) n  X f 0} .  
xsu 
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Hence, the B-lower approximation of a set is the union of all B-granules that are 
included in the set, whereas the B-upper approximation of a set is the union of all B- 
granules that have a nonempty intersection with the set. The set 

BN, (x) = B’(X)-  B, (x) 
will be referred to as the B-boundary region of X. 
If the boundary region of X is the empty set, i.e., BNB(X) = 0, then X is crisp (exact) 
with respect to B; in the opposite case, i.e., if BNB(X) z 0, X is referred to as rough 
(inexact) with respect to B. 
Rough sets can be also defined employing instead of approximations rough membership 
fimction, which is defined as follows: 

p; : u + [0,1] 

and 

where X E U, B E A and card(X) denotes the cardinality of X. 
The function measures the degree that x belongs to X in view of information about x 
expressed by the set of attributes B. 
The rough membership function has the following properties [ 9 ] :  

1. 

2. 

3. 

4. 

5 .  pxvy (x) 2 mM: (p; (x), p; (x)) for any x E u 
6. pXnY (x) min (pi  (x), puy” (x)) for any x E U 

Compare these properties to those of fuzzy membership. Obviously rough membership 
is a generalization of fuzzy membership. 
The rough membership function can be used to define approximations and the boundary 
region of a set, as shown below: 

B, (X)= {x E U : pi (x)=  l), 

p i  (x)= 1 iff x E B, (X) 

p i  (x) = 0 iff x E U - B’(X) 

0 < p i  (x)< 1 iff x E BN,(X) 

(x) = 1 - p i  (x) for any x E u 

qx) =G( E U :  &(XI .o} 3 

Bn,C(X) ={x EU: O<&(X) <I}. 
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3 Decision Rules 
Every decision table describes decisions determined, when some conditions are 
satisfied. In other words each row of the decision table specifies a decision rule which 
determines decisions in terms of conditions. 
Let us describe decision rules more exactly. 
Let S = (U, C, D )  be a decision table. Every X E  U determines a sequence C I ( X ) ,  ..., c,,(x), 
dl(x),.. .,d,(x) where {cl,. ..,c,} = C and {dl ,..., d,} = D. 
The sequence will be called a decision rule induced by x (in S) and denoted by 
cI(x),. . .,c,(x) dl(x) ,..., d,(x), in short C +, D. 
The number supp,(C, D )  = card(C(x) n D(x)) will be called the support of the decision 
rule C +, D and the number 

will be referred to as the strength of the decision rule C +, D. With every decision rule 
C +, D we associate the certainty factor of the decision rule, denoted cer,(C, D )  and 
defined as follows: 

card( C(x))  where o,(C) = 
card(U) * 

The certainty factor may be interpreted as conditional probability that y belongs to D(x) 
given y belongs to C(x), symbolically o,(DIC). If cer,(C, D )  = 1, then C +, D will be 
called a certain decision rule in S; if 0 < cer,(C, D )  < 1 the decision rule will be referred 
to as an uncertain decision rule in S. 
Besides, we will also use a coverage factor of the decision rule, denoted cov,(C, 0) and 
defined as 

card( D(x)) where a,(D) = 
card(U) ‘ 

Similarly 

COV, (c, D) = 0, (C I D )  , 

The certainty and coverage factors have been for a long time used in machine learning 
and data mining, [ l l ,  121 but in fact they have been first introduced in 1913 by Jan 
Lukasiewicz, in connection with his study of logic and probability [ 5 ] .  
If C +, D is a decision rule then D +, C will be called an inverse decision rule. The 
inverse decision rules can be used to give explanations (reasons) for decisions. 
Let us observe that 
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That means that the certainty factor expresses the degree of membership of x to the 
decision class D(x), given C, whereas the coverage factor expresses the degree of 
membership of x to condition class C(x), given D. 
Decision rules are often represented in the form of “$..then...” implications. Thus any 
decision table can be transformed in a set of “$ .. then ...” rules, called a decision 
algorithm. Generation of minimal decision algorithms from decision tables is rather 
difficult. Many methods for solving this problem have been proposed but we will not 
discuss this issue in this paper. 

4 Properties of Decision Rules 
Decision rules have important properties which are discussed below. 
Let C +x D be a decision rule in S.  Then the following properties are valid: 

YeC ?cery(cyD)=l x) 

?cOvY(c’ D)=l  Y S D  x i  

q & D )  o,(D)= ?cer,(C,D).cr,(C)= 
Y S C  x) Y S C  1) 

&)= ~ c 0 ~ , ( c , D ) ~ 0 , ( D ) =  C O , ( C , D )  
Y 4 X )  y e D ( x )  

Observe that (3) and (4) refer to the well known total probability theorem, whereas ( 5 )  
and (6 )  refer to Bayes‘theorem. 
Thus in order to compute the certainty and coverage factors of decision rules according 
to formulas ( 5 )  and ( 6 )  it is enough to know the strength (support) of all decision rules 
only. The strength of decision rules can be computed from data or can be a subjective 
assessment. 

5 Dependences in decision Tables 
Next important issue in decision table analysis is the dependency of attributes, 
particularly dependency of decision attributes on condition attributes [lo]. 
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Intuitively speaking the set of decision attributes depends on the set of condition 
attributes if values of decision attributes are totally (or partially) determined by values 
of condition attributes. 
In other words, this kind of dependency describes which decisions specified in a 
decision table are to by obeyed if some conditions are satisfied. 
In this paper we will introduce another kind of dependences in decision tables, based on 
some ideas of statistics. 
Let S = (U,C,D) be a decision table and let X E  U. We say that decisions dl(x), ..., dm(x) 
are independent on conditions c,(x),. . .,cn(x), where C = {cl,. . .,cn}, D = {d,,. . .,dm}, if 

o,(C, 0) = o,(C)o,(D). 

In other words conditions and decisions in a decision rule C +x D are independent if 

or 

If 

or 

We say that D dependspositively on C in a decision rule C +x D. Similarly if 

or 

We say that D depends negatively on C in a decision rule C +x D. 
Obviously, the relations of independence and positive and negative dependence are 
symmetric ones. 
Again borrowing from statistics the idea of a correlation coefficient we can determine 
the degree of dependency numerically, defining the correlation factor, defined as 
follows: 

Obviously, 0 I q,(C, D )  I 1 and if qx(C, D )  = 0 then C and D are independent, if 
q,(C, D )  < 0 then C and D are negatively dependent if q,(C, D )  > 0 ,  then C and D are 
positively dependent. 

6 Flow Graphs 
With every decision table we associate ajlow graph, i.e., a directed, connected, acyclic 
graph defined as follows: to every decision rule C+,D we assign a directed branch x 
connecting the input node C(x) and the output node D(x). Strength of the decision rule 
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5 

6 

represents a throughflow of the corresponding branch. The throughflow of the graph is 
governed by formulas (1),.,.,(6), and can be considered as aflow conservation equation 
similar to that introduced by Ford and Fulkerson [4]. However, let us observe that flow 
graphs presented in this paper are different from flow networks of Ford and Fulkerson. 
Formulas (1) and (2) say that the outflow of an input node or an output node is equal to 
their inflows. Formula (3) states that the outflow of the output node amounts to the sum 
of its inflows, whereas formula (4) says that the sum of outflows of the input node 
equals to its inflow. Finally, formulas ( 5 )  and (6)  reveal how throughflow in the flow 
graph is distributed between its inputs and outputs. 
It is obvious that the idea of flow graph can be also formulated more generally, 
independently of decision tables, but we will not consider this issue here. 

no young woman - 220 

yes middle woman - 60 

7 AnExample 
Let us now illustrate the above ideas by means of a simple example shown in Table 1. 

Table 1 : Decision table 

~ ~~ ~~~ ~ 

Attributes DISEASE, AGE and SEX are condition attributes, whereas TEST is the 
decision attribute. 
Below a decision algorithm associated with Table 1 is presented. 

1. 
2. 
3. 
4. 
5. 
The certainty and coverage factors for the above algorithm are given in Table 2 ,  

$(disease, yes) and (age, old) then (test, +) 
$(age, middle) then (test, +) 
$(disease, no) then (test, -) 
$(disease, yes) and (age, old) then (test, -) 
$(age, middle) then (test, -) 
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Table 2: Certainty and coverage factors 

Remark. Due to the round-off errors in computations the properties (1). . .(6) may not 
always be satisfied in the table. 

The certainty factors of the decision rules lead to the following conclusions: 

- 
- 
- 
- 
- 

In other words: 

90% ill and old patients have positive test result 
56% ill and middle aged patients have positive test result 
all healthy patients have negative test result 
8% ill and old patients have negative test result 
44% ill and middle aged patients have negative test result 

- 
- 
- 

The inverse decision algorithm is given below: 

1 '. $(test, f) then (disease, yes) and (age, old) 
2'. if(test, +) then (age, middle) 
3'. $(test, -) then (disease, no) 
4'. $(test, -) then (disease, yes) and (age, old) 
5'.  $(test, -) then (age. middle) 

Employing the inverse decision algorithm and the coverage factors we get the following 
explanation of test result: 

- 

ill and old patients most probably have positive test result (probability = 0.90) 
middle aged patients most probably have positive test result (probability = 0.56) 
healthy patients have certainly negative test result (probability = 1 .OO) 

reasons for positive test results are most probably disease and old age (probability = 
0.83) 

- reason for negative test result is most probably lack of the disease (probability = 
0.77) 

The flow graph for the decision algorithm is presented in Fig. 1. 
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= 6,) = 

0.49 

0.16 

0.36 

o(yl) = 0.53 

o(y2) = 0.47 

Figure 1: Flow graph 

Intheflowgraphwehavexl= {1,4},x2= (2,6},x3= {3,5},yl= {1,2} andyZ= {3,4, 

That means that we have in our data base the following groups of patients: 

440 - ill and old (xl) 
140 - middle aged (x2) 
320 -healthy (x3) 
and 
480 - with positive test result oil) 
420 - with negative test result 02) 
Each input node of the flow graph represents a condition of corresponding decision rule, 
whereas each output node reveals decisions of the rules. The associated numbers can be 
understood as probabilities (frequencies) of conditions and decisions respectively. 
Branches of the graph are labeled by strength of associated decision rules. 
The flow graph of a decision algorithm shows how probabilities of decisions and 
conditions are related. 
Each node of the graph satisfies equations (1)..,(6). Observe, that in order to compute all 
the conditional and total probabilities it is enough to know the strength of the decision 
rules only, which makes the computations very easy, and gives also clear insight into 
the structure of the decision algorithms. 
Let us notice that, for example, old age and illness are positively correlated with 
positive test result, whereas old age and illness are negatively correlated with negative 
test result. 
The corresponding correlation coefficients are 0.26 and - 0.71 respectively. 

5,6}. 

8 Conclusion 
It is clearly seen from the above considerations the difference between Bayesian data 
analysis and the rough set approach. In the Bayesian inference the data is used to update 
prior probability (knowledge) into a posterior probability, whereas rough set based 
Bayesian inference is used to reason directly from data. 
The relationship of rough set theory with Bayes' theorem and flow graphs gives new 
look on Bayesian inference and leads to efficient algorithms for data analysis. 
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Abstract 
AGM framework includes principles for systematic revision of probabilistic beliefs. The 
key is the principle of minimal change. Expansion P+ is to be done, by preference, as 
conditioning, though some form of imaging also gets a nod. Contraction P- , intended as 
inverse conditioning, is axiomatized but not actually computed. 
We demonstrate how both can be achieved through a very natural form of combinato- 
rial optimization. Basic modeling can be effected using standard entropy as the objective 
function. A reinterpretation of minimality of change leads to plausible and nontrivial for- 
mulae for P- . We next show that stronger results can be obtained using graph entropies. 
We define graph information distance, which together give a GraphMuxEnt revision rule. 
It permits modeling of essentially all AGM protocols for P+ and P-. More complex 
patterns, involving conditional probability assertions, can also be realized through this 
method. 

Keywords: AGM model, belief revision, probability revision, graph entropy. 

1 Introduction 

Our paper deals with reasoning about changes in two types of knowledge-one expressed 
through logical assertions, the other of quantitative nature (mainly probabilistic). Both 
domains have their own precise notations; however, when put together, they warrant cer- 
tain simplifying conventions. 
We adopt certain common abbreviations to keep the phrasing of statements and appear- 
ance of formulae uncluttered. We write wvt for with respect to and zfffor ifand only $ In 
summations we do not state the range if it is the entire permissible domain; on occasion 
we may omit the index of summation. 
For a logical assertion A applicable to the elements of the domain X we write Ax  for the 
set of xi where A holds; thus z E A x  is the same as A(z ) .  
We deal with probability distributions P, Q, . . . on a given domain X .  We write pi for 
P(z i ) ,  qi for &(xi) and so forth. For brevity, in some summations, we have pi (or q i )  to 
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stand for zi, eg. we may simplify Ci:ziEApi logpi to just CApi logpi.' 
In the later sections we need to refer to various probabilistic entropies. We use the term 
entropy to stand for Shannon entropy H ( P )  for a finite probability distribution P, without 
considering any structure on its domain. Its related information distance is information 
divergence D( P11Q) (also termed cross-entropy. Change of the defining formulae gives 
other entropies, like the Renyi family H" ( P )  and D" (PI1 Q ) .  
Graph entropies recognize a double structure - an unordered graph G on the domain 
X and a probability distribution P : zi H pi. They are defined through information- 
theoretic computations based on ordinary entropies. Thus we write H(G,  P )  for the graph 
entropy computed on the basis of Shannon entropy, H"(G, P )  for Renyi and so forth. 

2 AGM Probability revisions 
Formalizations of belief change have been discussed, in various contexts, since 1970's. 
Notable specific applications are 'truth maintenance systems' [4] and 'database priorities' 
[ 5 ] .  General, abstract protocols were introduced by philosophers Levi [ 15, 161, Harper [91, 
and then a series of works by Alchourron, Gardenfors and Makinson [ 1,2,6]. The last one 
gave the name to the system of postulates for belief revision as the AGM framework. Its 
basic design is founded on a revision scheme addressing needs of the finite propositional 
knowledge bases. In parallel with the purely logical framework has been proposed a 
scheme for modifying beliefs about probability [6]. Here we consider a finite collection 
of possible worlds X and a probability distribution thereupon. Any proposition A may be 
held in some subcollection X A  of these worlds, with its probability defined as the sum of 
probabilities of the worlds where it is held P(A)  := P ( X A ) .  A proposition is accepted 
if its probability is 1; it is important to remember that it does not signify a universal 
acceptance, as there (usually) will be worlds, of probability 0, where the proposition may 
not hold. 
Expansion of the state of beliefs wrt A will mean adjusting the probability distribution to 
a such Pi that A is accepted P + A  ( A )  = 1. In keeping with the overall philosophy 
of such change, it is postulated that the passage from P to P i  should be effected with 
a minimal change. On a combination of philosophical and logical grounds it is strongly 
argued that such an expansion should be the conditioning wrt A, understood as 

PAf(B) := P ( A  A B ) / P ( A ) ,  P(A)  > 0 

and with a pseudo-distribution for the case of P(A)  = 0. As a probabilistic operation it 
should be viewed as conditioning wrt the subset A x ;  this subset may include some worlds 
of probability 0, but where A is held. A group of four postulates is given to axiomatize it 
161 

P+1 For disjoint A and B (I- ' ( A  A B)) ,  the distribution PivvB is a suitable convex 
,B = 1 - cy = combination of P i  and P i ;  taking cy = P ( A ) / P ( A  A B ) ,  

P ( B ) / P ( A  A B) ,  one requires PivvB = a P i  + PP;. 

P+2 P i ( A )  = 1 

'"Entropy measures information regardless of its content."[3] 
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P+3 If t- A then PA' = P 

P+4 If P ( A )  then PAf = Pl - the 'absurd' pseudo-distribution' 

These axioms do not state that the change from P to PA' should be, in some way, minimal 
though this is clearly a main concern, which is made explicit in the axioms for knowledge 
base expansions. It is postulated and discussed at length in the context of contractions 
and revisions of probability assignments. 
It is known [19, 221 that if such minimality is viewed as minimum information diver- 
gence3 then conditioning can be derived from just one axiom above-(P+2), which 
simply says that P i  is a probability distribution supported on the worlds where A is 
accepted. 
Although Ramer [ 191 observes that the use of symmetric divergence would be as effective, 
and Williams [22] that Je f rq  's conditionalization also obtains, neither notes that use of 
other entropies would produce exactly the same conditioning and could also be applied to 
conditioning wrt an arbitrary partition. We discuss these issues in the section below. 
The generalization proposed by Jeffrey [ 101 was to combine conditioning wrt A and its 
logical complement T A  as method of revision of probability functions. A revised func- 
tion P+J should compute probability of an arbitrary assertion B by conditioning wrt the 
property that P+J ( A )  = a for some 0 < a < 1. He was led to the formula 

P+J(A)  = aP(B1A) + (1 - a)P(BIiA) .  
It is convenient to express it in the language of expansions-Jeffrey conditionalization 
becomes a linear combination of expansions wrt proposition A and its complement 1A. 
For the specified 0 < a < 1 

PA'J = UP; + (1 - a)P,S,. 
This formulation permits formulating Jefrey expansions in context of imaging and other 
revision methods. 
Philosophers proposed alternatives to conditioning when restriction of the domain (ex- 
pansion of beliefs) is imposed. The principal model is imaging [17] and preservative 
imaging [14]. These cannot be obtained through simple entropy; we propose using graph 
entropies [ 13,201, applied extensively in communication theory and graph combinatorics. 
These entropies can be linked to plausibility measures, and through those suggest a new 
distance - graph information divergence. Minimization based on this distance appears 
flexible enough to permit modeling of virtually all probability expansions considered in 
the literature. We outline this technique in the following section. 
While probability expansion can be handled fairly expediently through entropy formalisms, 
the dual operation of probability contraction has been much less clear. The basic idea, 
propounded by AGM, is to adjust 'minimally' the distribution P so that some logical con- 
dition A, for which currently P(A)  = 1, is no longer a 'sure thing'. Namely, we need to 
define P i  such that P i  ( A )  < 1, and such that its conditioning wrt A would restore P 

( P i ) :  = P. 
21t is defined as assigning probability value 1 to all subsets. 
3An information distance, based on entropy; not a metric, failing both symmetry and triangle inequalities. 
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A precise setting is one of Ax c X such that P(x) = 0 for x E X \ A x .  We want to 
reduce the probability of A to less than one, and distribute the resulting excess among the 
elements of its complement. We also require that the original distribution, concentrated 
on A be obtainable by conditioning from the new distribution. 
In the original proposal [6] the philosophical considerations are discussed, but nothing is 
computed. Following a series of contraction postulates, from P-1 to P-6,  Garderfors 
still notes (in page 92) It is, however; by no means clear how such a theory of information can 
be helpful for constructing contractions . . . the sentences that are accepted . . . have probability 1. 
. . . a minimal change would would be to assign these sentences probability values that are close to 
I .  Such an assignment is, however; unrealistic as a model of contraction.. . and further (in page 
106) . . . neither the traditional conditionalization process nor Jeffrey conditionalization helps us 
with the problems of how to define contractions and revisions of probabilityfunctions. 
We show that they can help very significantly, provided we reinterpret correctly the notion 
of minimal change. We argue that such minimality can take uniform distribution as the 
reference point. We then minimize the distance from the most uninformed prior and im- 
pose the recovery constraint on the contraction p-, namely that ( P i ) :  = P. It produces 
a series of very attractive solutions for the basic model, all relying on Shannon entropy. 
It is reasonable to posit that an extension to graph entropy would permit modeling of al- 
most any of the main considered proposals. However, a very significant contradistinction 
arises-as opposed to the conditioning processes-the numerical results depend now on 
which specific entropy function we use. For example, whether we use Shannon or Renyi 
entropies we get the same conditional distribution; it applies to equally to the standard 
case (no special structure on the domain) and to graph entropies. Inverse conditioning 
(contraction) has different numerical results when the entropy function changes. 
This is far from being fully understood. It suggests that conditioning wrt a subset (defined 
by the logical assertion) is essentially a structural change, while the inverse conditioning 
is numerical. 

3 Conditional assertions 
A somewhat controversial issue is the suitability of entropy for conditionalization based 
itself on conditional premises [7,21]. A prototypical situation is usually framed as the JB 
problem (after the film ‘Private (Judy) Benjamin’). We show that the ‘obvious’ answer 
obtains if the entropy on an incomplete graph is used. It appears that similar ‘successes’ 
can be generated for majority of like cases. However, it is the ease of creating such 
solutions that cautions against the automatic use of entropy as the normative decision 
rule. The JB problem is tackled by omitting a specific edge from the complete graph. This 
can be given a logical basis, but it feels more like an explanation ex post, and suggests 
that the MaxEnt and MinInf are best kept as descriptive rules, occasional successes to the 
contrary notwithstanding [ 181. Their prescriptive use would require a supporting logical 
framework that could decide ex ante on choice of the graph of ‘information’ transfers. 
The JB problem is a case in point. The setting consists of four states BH, B2, RH, and 
R2 (after the ‘Blue’ and ‘Red’ armies headquarters and 2nd company areas). Initially JB, 
totally disoriented, assigns probabilities uniformly to all four states. Receiving a message 
she needs to reasses the probabilities so that P(RH1RH V R2) = 0.75. The intuitive 
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answer (3, 3, i, $) preserving independence between the 'Red' and 'Blue' states, does 
not follow from the use of any unstructured entropy. A direct conditional reasoning [7] 
restores the independence, but cannot be reduced to the basic MaxEnt. 
We recover the answer by removing the edge (RH, R2) from the interconnection graph. 
It can be justified as the explication of the fact that states RH and R2 can confused. We 
feel it is best viewed as simply explaining the success of GraphMaxEnt in this instance. 

4 Entropies and graph entropies 
Given a probability distribution its (Shannon) entropy 

H ( P )  = - E p i l o g p i .  

Its generalization is the Renyi family of a-order entropies 

1 H"(P) = -log cpz", 
1 - C r  

where Ho(p)  := lim,,o H"(P) = H ( P ) .  Related information divergence captures the 
change of information entailed by passing from P to Q 

Its Renyi analogs are 

Many other entropies have been proposed in the literature, eg.[ 111. While their initial 
definitions were often ad hoc, several of them can be obtained systematically from certain 
generating functions of Dirichlet type, defined for the underlying probability distributions. 
These functions can also be viewed as Laplace transforms and they appear in the thermo- 
dynamic formalism. There are strong reasons to posit that only the entropies which arise 
from the analytic expansions of these functions are 'reasonable'. We believe that all such 
reasonable entropies would lead to the same (direct) conditioning formulae, at least on 
simple domains without a graph structure. Some evidence is given in the next section. 
These entropies have an implicit underlying assumption that once the information about 
X i  E X is transmitted there is no further confusion about the identity of that xi.  (Such a 
transmission or choice from X is obviously subject to a probabilistic chance.) Allowing 
for such confusion should lower the entropy-indistinguishable elements could be, in a 
sense, transmitted together. A formal model [ 12, 131 recognizes graph G on the vertices 
{ X i } ,  where an edge ( x i ,  z j )  is formed whenever these two vertices cannot be confused. 
Thus the standard entropy corresponds to the complete graph K,, n = I X 1. Contrariwise, 
a fully confusable arrangement consists of n isolated vertices, with the presumed entropy 
0. 
Given the distribution P on X ,  the definition of H(G,  P )  requires considering probability 
distributions on the collection Z of the maximal independent sets of vertices4 Denoting 

41ndependent means that no two vertices form an edge. 
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2 = {Y C X, Y- max ind}, we first need a joint probability distribution W on 2 x X, 
such that 

0 S ( Y , z ) = O i f z $ Y  

0 S projected onto X is precisely P 

Let R be its projection onto 2. We put 

H(G,  P) = mjn(H(P) + H ( R )  - H ( S ) ) .  

Although the expression may seem convoluted, it is actually quite easy to work with; in 
particular, there is a simple algorithm finding the minimizing S and computing the en- 
tropy. There is an equivalent definition due to Simonyi [20], based on the notion of vertex 
packing polytope. This is less suitable for computations, but better for generalizations. 
However, it can be recast into a very useful formula using the notion of plausibility. With 
notation as above, we first consider arbitrary probability distribution R defined on Z and 
vut 

P1(R)(z) = C R(Y).  
Y:xEY 

We have a fairly easy result 

It holds that R that minimizes the expression above is the same distribution as in Korner 
and Simonyi definitions. We use it to define the plausibility wrt P on X 

Plp(z)  = P1(R)(z), R = argminH(G, P). 

It serves to define the graph information divergence 

for two distributions Q and P on X, given a (fixed) graph structure G. It is straightforward 
to offer a similar definition wrt the change of G, but it produces useful results only in 
restricted cases. 
All these entropies have generalized Shannon formula. Variations based on Renyi or other 
entropies are readily available, along with various limiting and bounding formulae. Graph 
entropies satisfy additivity [20] wrt vertex substitution, a construction which subsumes 
additivity and branching properties of the standard entropy. This property seems useful 
for the future investigations of their uses in belief revision. They also satisfy subadditivity 
wrt graph complementation (with equality for perfect graphs). Its extreme importance for 
graph theory suggests relevance for probability revisions. 
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5 Conditioning and entropy 
The simplest expansion problem can be posed as a question about finding Q on X where 
Q ( A x )  = 1 for A x  C X - the subset where A holds. This Q should be as close as 
possible to the given P on X .  A natural solution would be 

The solution is the familiar conditional distribution P(iA) : zi H pi /P(Ax)  if A(zi) ,  
and zi H 0 if 7A(z i ) .  The same result obtains if D(PIIQ) be used instead (hence also for 
the symmetric distance D(QIIP) + D(P1IQ)). More significantly, use of Renyi entropy 
(or many others) does not affect the result. 
Jeffrey formula intends an expansion where P;(A) = a for some 0 < a < 1, leaving 
P i  ( T A )  = 1 - a, and is defined through 

PZJ(z i )  = pi/a if A(rci), 
PiJ(zi) = pi/ ( l  - a)  otherwise. 

It is immediate that 

gives this conditionalization. An easy extension is to specify a partition X = A(1)  U 
. . . U A(”), a probability assignment on its elements A(i) H ai, C ai = 1 and require 
that Pt (A( i ) )  = ai. Such a generalized Jeffrey rule results from a like minimization of 
information divergence. Again, change of entropy function turns out to be immaterial. 
We should also note that we need to use D(QIIP) and cannot obtain a reasonable answer 
directly from H ( Q ) .  The proximate cause seems to be that we must ‘retain’ the knowl- 
edge of P and then add the fact that Ps(A)  = 1. Using H ( P )  would appear to recognize 
only the latter fact. 

6 Inverse conditioning 
An attempt to replicate the previous method of direct minimization of a distance between 
the distributions is bound to fail. The nearest P i  which conditionalizes back to P is the 
very same P. If we insist that P- must be different, an €-change to P- (A)  = 1 - E would 
ensue. However, we observe that in case of conditionalization the entropy H ( P t )  < 
H ( P ) ,  therefore the minimum of D(QIIP) is somewhat related to minimizing the dis- 
tance from Q to the most uninformed ie. uniform distribution. While this cannot used for 
deciding on Ps (as we would loose the knowledge of P) ,  it suggests a useful approach 
to the P- problem. 
To make the question specific, we assume that P is supported on Ax  C X and that there 
are m elements outside A x .  We shall seek distribution Q, with maximum entropy, that 
conditionalizes back to P. We need to compute 

arg max H ( Q ) .  
Q :Q 1; ( A )  =P 
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The answer has a very attractive form 

Noting that m = 2 l 0 g r n ,  which is the entropy of the uniform distribution on m elements, 
permits to anticipate the effect of inverting Jeffrey conditioning. We first compute H(PAf) 
and H(P2A). Denoting P-J for the inverse Jeffrey rule 

The extension to an arbitrary partition is straightforward. Moreover, while ‘simple’ in- 
verse conditioning assigns to all the elements outside Ax the same probability, one can 
adopt the inverse Jeffrey rule to recognize some specified proportions. The simplest, albeit 
somewhat informal method is to view P ( 7 A )  as having an ‘infinitesimal’ value, which 
becomes 0 in actual computations, but permits retaining some meaningful proportions. 
The appearance of terms of form 2 H ( P )  seems to us significant. Such expressions are 
closely related to probabilities of typical events in coding theory [3] and in thermodynam- 
ics, or to the most likely worlds in the probabilistic logic [8]. Another significant matter 
is the dependence of the results on a choice of the entropy. Unlike the expansion, in case 
of contraction selection of entropy function matters. 

7 Graph entropies, imaging and JB problem 
As mentioned earlier, alternatives other than conditioning were considered for probability 
expansions. Conditioning reassigns the weight of probabilities on ( 1 A ) x  to the elements 
of A x  in proportion to the latter original weights. One can conceive of the universe where 
each world has a closest (most similar) counterpart where A is satisfied [ 171. One then 
wants to reassign the weight entirely to that most similar world, rather than spreading it 
around. More refined is preservative imaging where certain worlds ‘communicate’ with 
certain other worlds (for the purpose of weight transfer) but not with all the worlds. 
We report in detail only on the simplest case of a graph on three vertices and conditioning 
onto a set of two vertices (or inverse conditioning from such a set). We denote both the 
vertices and their probabilities p l  , p 2 ,  p 3 .  We write the formulae in a form which makes 
the minimizing plausibilities apparent. 
For the complete graph (all three edges) the usual conditioning results - arranging for A 
so that A x  = { P I ,  p 2 )  gives 

Pl P2 PAf : p 1  H - , P 2 H - *  
Pi + P2 Pi + P2 
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The inverse conditioning P i  admits an interesting presentation (equivalent to one given 
earlier) 

1 - - 
1 + (??L)PZ + ( E ) P l  

For a completely disconnected graph, conditioning is no longer specific - any distribution 
on {PI, p 2 )  is equally good-all entropies are 0 and, indeed, there is nothing to choose if 
any two vertices can be confused. The same holds for the inverse conditioning. 
For two edges {(PI, p 3 ) ,  ( p z ,  p 3 ) )  there are two maximal independent sets {PI, p 2 )  and 
( ~ 3 ) ~  with 

H ( G , P )  = -(P1 + P z ) l O g ( P 1  + P 2 )  - P 3 h P 3 .  

Conditioning onto {PI, p 2 )  is nonspecific for the same reasons as above. Conditioning 
onto {pl, p 3 }  gives imaging of p2 onto p l  (correctly, as these two are ‘confusable’). 
Inverse conditioning from { P I ,  p 2 )  is best viewed as ‘unconstrained’, thus giving a uni- 
form distribution (i, $, $), while starting from { p l , p 3 )  we should split evenly PI for 

For a single edge ( P I ,  p2)  there are also two maximal independent sets, but no longer 
disjoint {Pl,P3} and {P2,P3} .  The entropy becomes 

( 2 , 2 , P 3 ) .  

P1 P2 H(G,  P )  = -PI log - - ~2 log -. 
Pl + P2 P1+ P2 

Conditioning onto { P I ,  p 2 )  is now identical to the standard one, while conditioning onto 
{PI, p 3 )  is nonspecific. Inverse conditioning from {pl, p z }  entails no change, giving 
(PI, p 2 ,  0), while from {PI, p 3 )  it is always (i, i, 0). 
For the JB problem we use a graph G on four vertices BH, B2, RH, and R2, with proba- 
bilities P = (bh, b2, rh, r l ) .  It results form the complete graph K4 on these vertices, by 
removing the edge (RH, R2). Its entropy is 

H ( G , P )  = -bhlogbh-b2logb2-(rh+rl) log(rh+rl) ,  

while the distance from the distribution Q = (ah, a2, sh, 5 2 )  is 

ah a2 sh + s2 
bh b2 rh + r2’ D(G,  QllP) = ahlog - + ~ 2 1 0 g  - + (sh + ~ 2 )  log - 

For P uniform, the assignment Q satisfying sh+s2 = 3+ 1 and closest to P is necessarily 
Q = (i, i, $, i).  Other edge structures of G can represent interactions between the 
‘Blue’ and ‘Red’ states, also supporting two different (undesirable) solutions considered 
in [21]. 
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We have not computed all the cases of graph entropies based on other than Shannon 
formulae. However, it seems that the choice of entropies does not affect conditioning, but 
is material for inverse conditioning. 
For graphs on four and five vertices another phenomenon appears-certain coefficients 
in the graph entropy formulae combine the original probabilities p l  , p2,  . . . with both 
positive and negative signs. It implies that the minimizing solutions to conditioning (resp. 
maximizing for the inverse conditioning) cannot always be obtained by solving Lagrange 
multipliers equations, but may lie on the boundary of the feasible region. 
However, in all the cases we computed, the answers are always simple fractions (rational 
functions of degree 1) formed from the initial probabilities. We believe it is always the 
case, and expect the proof to be not too difficult. A different matter might be finding a 
methodological explanation. 

8 Remarks on possibilistic and evidential conditioning 
It is known that conditional possibility assignments can be defined on the basis of max- 
imizing the uncertainty measures [ 181. In the spirit of the earlier discussion one define 
inverse possibilistic conditioning. The results are quite straightforward - one either ‘trun- 
cates’ a given assignment or leaves is completely intact, and then puts the maximal pos- 
sibility value of 1 for the ‘outside’ elements. This pattern is independent of the choice of 
information measure; moreover, it makes the ‘contracted’ assignment very similar to the 
‘expanded’ one. A further study is clearly warranted. 
A direct use of graph uncertainty measures is not feasible. Possibility assignments have a 
natural ‘built-in’ order structure, which needs to be put in a suitable correspondence with 
any intended graph structure on the underlying domain of discourse. 
Similar considerations apply to models based on various forms of Dempster-Shafer theory 
of evidence. Typical evidence assignments are functions over the complete powersets of 
the (finite) domain of discourse. Such powersets are boolean algebras and any use of 
graph entropies should be coordinated with this structure. 
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Abstract 
In [8, 101, we present an axiomatic justification for the fact that quantified beliefs should 
be represented by belief functions. We show that the mathematical function that can 
represent quantified beliefs should be a Choquet capacity monotone of order 2. In order 
to show that it must be monotone of order infinite, thus a belief function, we propose 
several extra rationality requirements. One of them is based on the negation of a belief 
function, a concept introduced by Dubois and Prade [2]. This concept was essentially 
abstract, and its applicability was neither established nor illustrated. Here we present an 
illustrative example of this negation process. This example gives ground to the use of 
belief functions to represent quantified beliefs. 

Keywords: TBM, belief function, belief representation 

1 Introduction 
The use of any mathematical model to represent quantified beliefs, i.e., weighted opinions, 
can be supported either by defending convincing definitions with illustrative examples or 
by producing a set of axioms that justify it, For what concerns the models based on 
belief functions, examples illustrating the first approach can be found among others in 
[7,4, 12, 113 whereas the second approach is developed in [ 15,8,  lo]). 

In any model for quantified beliefs, one considers an agent, the belief holder, called 
You hereafter, and a finite frame of discernment, denoted R. One of the worlds in R, 
denoted wg, is the actual world, but, due to Your limited understanding, You cannot state 
which world is the actual one. All You can express is the strength of Your opinions, called 
hereafter beliefs, that wo belongs to A for every A C R. We assume that this belief is 
represented by a pointwise measure defined on 2", the power set of R. 

This measure is temporarily denoted by Cr and called a 'credibility function'. SO 
for every A C_ R, CT(A)  expresses (the strength of) Your belief that the actual world wo 
belongs to A. 

In [8, lo], we produce sets of rationality requirements that should be satisfied by any 
credibility function and we prove 1) belief functions satisfy them, 2) probability functions, 
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that are special cases of belief functions, are insufficiently expressive to represent degrees 
of belief and 3) Choquet capacities [ l] ,  that are the generalization of belief functions, 
violate some of the requirements. 

During the demonstration, we produce requirements from which we prove 1) the con- 
vexity of the set of credibility functions, 2) how credibility functions are adapted by un- 
informative modifications of the frame of discernment (refinement and coarsening), and 
3) how they are revised by conditioning. At that level, we prove that Cr is a Choquet ca- 
pacity monotone of order 2 [ ll. To show that it is monotone of infinite order (i.e., a belief 
function), we propose several extra requirements. One of them is based on the negation of 
a belief function, a concept invented by Dubois and Prade [2]. It states: 'the negation of 
a credibility function is a credibility function'. In that case credibility functions are belief 
functions. 

Unfortunately, this negation concept was only a mathematical property. To be used as 
a rationality requirement, one must produce at least one practical illustrative and convinc- 
ing example where the negation is used. 

In this paper, we present such an example. Thanks to it, our axiomatic justification 
presented in [8, 101, is simplified. 

2 Credibility functions 
Let Cr represent Your belief over R, a finite frame of discernment. The only properties 
of Cr used in this paper are: 

1. Bounded non negativity: Cr : 2" --t [0, 11 where Cr(B) = 0 and Cr(R)  L 1 

2. Monotony to inclusion: VA, B R, if A 

3. Revision: the revision of Cr by a piece of evidence Ew is represented by a 2l"l x 
2l"I matrix H* which depends on Ev but not on Cr, and the revised credibility 
function Cr[Ev] is given by the matricial product Cr[Ew] = H* - Cr. 

B ,  then C r ( A )  5 C r ( B )  

The first requirement is quite strong as it eliminates models based on sets of probabil- 
ity functions [5 ,6 ,  131 or on interval valued probabilities [14]. We accept the closed world 
assumption (Cr(R)  = 1) in order to avoid useless discussions. The second requirement 
is assumed by any model of uncertainty and hardly questionable. The third requirement 
translates into the belief function framework the transformation achieved by a Markow 
matrix in classical probability theory. It satisfies quite natural requirements, and could 
almost be just assumed, what we do here. Proving that it is a necessary property will be 
presented in a forthcoming paper, That H' is a stochastic matrix can be deduced when 
Cr is a belief function. But as far as the purpose of this paper is to prove that Cr is a 
belief function, we can neither assume nor deduce it. 

We present some needed background material (see [ 12, 111). 

2.1 Notation convention 
Cr"[Ew](B) is the degree of belief given by You that the actual world belongs to B,  
which is a subset of R, Ew is a set of propositions (called the Evidential Corpus) and 
You accept as true the propositions deduced from those in Ew (Ev covers the classical 
conditioning event). The domain will be omitted when no confusion can occur. 
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The term between [ and 3 is what You accept as true. In particular, it can be the 
conditioning event encountered in probability theory. Note that Your beliefs are based on 
what You accept as true, not on what is true. There is no necessity that what You accept as 
true is true, it might perfectly be false. Your beliefs would be 'unjustified', 'inadequate', 
'erroneous', but so it is. Rationality is trying to accept only what is true, but this is only 
an ideal goal, and daily reality is far from that ideal. 

By convention when we write Cr"[w] for w E R, we mean that You accept as true 
that wo E w and do not accept as true that wo E w* for any w* C w (where C denotes 
strict subset). We will say that w is 'all You accept as true'. 

A credibility function can itself be part of the evidential corpus. For example, we write 
Cr" [w, Cro] to mean that You accept as true both that wo E w and that Your beliefs about 
0 is represented by Cr". 

2.2 Doxastic equivalence and consistency 
The next definition translates the idea that if two propositions are equivalent given what 
You know, the credibility functions they induce are equal. 

Definition 2.1 Doxastic equivalence. Let Ev be an 'Evidential Corpus', that is a set of 
propositions that You accept as true. Two propositions p l  and p2 are said to be doxas- 
tically equivalent under an Evidential Corpus Ev, what is denoted by p l  - E ~  p2, when 
p i  A Ev and p2 A Ev are logically equivalent. 

We then assume: 

Proposition 2.1 Doxastic consistency. Ifpl - E ~  p2, then 

Cr"[Ev](p1) = Cr"[Ev](p2). 

2.3 The Mobius transform 
Let Cr" be a credibility function defined on R, its Mobius transform, denoted m" is 
defined as: 

m"(A) = (-l)IAI-IBICr"(B), VA C R 
BC_A 

We call m" the Mobius mass function and m ( A )  a Mobius mass. In particular, the basic 
belief assignment is the Mobius transform of a belief function. Cr" is a belief function 
iff rnn(A) 2 0 for all A G R and xAcn mn(A)  = 1. 

2.4 Coarsening 
Let R and R* be two frame of discernments where the elements of R* are the elements of 
a partition of R. For B C R, let Coars(B) denote the smallest subset of R* that contains 
B. We call R* an uninformative (it means 'just redefining the frame') coarsening of 0. 
Given Cr" on R, Cr"*(A) = Cr"(A) for all A g R* (if A C R*, then A C R). It 
results from the doxastic consistency requirement. In that case, 

- 
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2.5 All You accept as true 
Let the frame of discernment s1, and suppose all You accept as true is that wo E w for 
an w C s1. What is the credibility function Cr" [w] induced on R under that condition? 
Requiring Cr" [w] ( w )  = 1 and Cr" [w] (a) = 0 seem natural. 

What about You beliefs about w* c w? It seems also natural to require that all strict 
subsets w* of w receive the same belief. For instance, why should any of them be better 
supported that it complement relative to w? The concept of cardinality of the set w cannot 
be used, as beliefs would otherwise violate the doxastic consistency requirement (see 
[lo]). Let p be that particular value. The term p cannot be negative as it is among others 
the belief given to the singletons of w. If furthermore we require that beliefs can never be 
smaller than P, then /? = 0 as for W, Cr"[w](a) = 0. 

Finally, the beliefs given to any w* is equal to the beliefs given to w* nu, as the worlds 
in w* but not in W *  n w belong to a and are thus accepted by You as impossible given You 
accept w as true. 

The next proposition express these ideas: 

Proposition 2.2 The credibilityfunction that represents Your beliefs given all You accept 
as true is wo E w is given by: 

[2]~r"[w](w*)  = 1 i f w  g w* 
= o  i fw*  c w  

= c ~ " [ w ] ( w *  n w )  otherwise 

The Mobius transform of Cr" [w] is given by: 

[2]m"[w](w*)  = 1 
= o  

if w = w* 
otherwise 

2.6 Revision 
The next theorem reexpresses the Cr revision requirement under an equivalent but more 
convenient form. We had assumed that the revision of a credibility function Cr by a 
piece of evidence Ew can be represented by a matrix H* such that the revised credibility 
function Cr[Ew] is equal to H* . Cr. 

Theorem 2.1 Let Cr and Cr* be two credibilityfunctions defined on s1. IfCr* = H* . 
Cr, there exists a 2l"I x 21'1 matrix H such that Cr* = H ' m where m is the Mobius 
transforms of Cr. In that case, 

Cr*(A)  = h(A,B)m(B) ,  VA C R 
BC" 

where h(A, B )  are the elements of the matrix H. 

Proof. Let M be the operator (a matrix) that transforms any credibility function on into 
its Mobius transforms [ll]. M is not singular, so M-l  exists. Cr* = H* . Cr can be 
rewritten as Cr* = H* . M-l  . M .  Cr, thus Cr* = H ' m where H = H* . M - l .  The 

0 equation is just a rewriting of the matricial equality. 
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In order to prove that Cr is a belief function, we must produce an example that shows 
that if some of the values of m are negative, there exists a H matrix such that some values 
of Cr" are negative. To produce such a matrix is mathematically trivial, but the challenge 
was to find a practical example that leads to such a matrix. This is what we achieve in the 
next section. 

3 The Mischievous Killer 
We consider here only the proof that the Mobius mass given to the R when IR/ = 3 may 
not be negative. The case with 2 was proved in [lo]. The real challenge was to go from 2 
to 3. So we consider that case first. 

Our example is based on a murder scenario, but could as well be rephrased as any 
diagnostic - detection problem. 

3.1 The scenario 
Suppose a murder has been committed by a single killer, denoted ko,  and there are three 
suspects named A, B, and C.  We denote by D 'anybody else'. So You know for sure that 
the killer ko E R with R = { A ,  B ,  C,  D}. 

You collect a piece of evidence, a cigarette butt which brand, denoted 60.  The domain 
for 00 is 0 = {a, b,  c, d } .  The butt you observe can only be one of { a ,  b,  c}. You look at 
the butt and build a belief Cr' about the actual value 6 0 .  

The CB piece of evidence. You know the next piece of evidence, denoted CB for 

1. Q o = a i f f k o = A  

2. 60 = b iff ko = B 

3. 60 = c iff ko = C 

4. Bo = d iff ko = D 

cigarette butt, 

5 .  00 E {a, b,  C }  

Using the doxastic consistency property, Cr' induces a credibility function Cr" [CB] 
about ko given by: 

Cr"[CB](A) = Cr'(a), 
Cr"[CB](B) = Cr'(b), 
Cr"[CB](C) = Cr'(c), 

Cr"[CB](A, B )  = Cr'(u, b ) ,  
Cr"[CB](A, C )  = Cr'(u, c), 
Cr"[CB](B, C )  = Cr'(b, c), 

Cr"[CB](A, B, C )  = CT'(U, b,  c ) ,  
C ~ " [ C B ] ( D , U )  = Cr"[CB](w),  ' d ~  C { A , B , C }  
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The FT piece of evidence. Now You learn for sure that if the killer was one of 
A,  B ,  C ,  the killer would manage to create a false track. Cigarettes a, b and c can be 
recognized because, respectively, they have the letters X Y ,  XZ and Y Z written on them. 
The killer will purposely drop a butt that points to the other suspects and surely not to him. 
For example, if the killer was A,  A would have managed to let a butt with X Z  or Y Z  or 
Z written on it, the last case corresponding to the case where A has erased the missing 
letter. In the three cases, the butt does not point to A.  

What D would do is unknown to You. 
Let W be the predicate 'You accept as true that exactly . . . is written on the butt', 

so W ( Z )  means that 'You accept as true that exactly Z is written on the butt' (and thus 
nothing more, what means in fact that the butt is either a b or a c butt). This information 
can be written as: 

1. If ko = A then W ( X 2 )  V W ( Y 2 )  V W ( Z )  

2. If ko = B then W ( X Y )  V W ( Y Z )  V W ( Y )  

3. If ko = C then W ( X Y )  V W ( X 2 )  V W ( X )  

We write W ( )  to express that nothing is written on the butt. The proposition 
W ( )  v W ( X )  v W ( Y )  v W ( 2 )  v W ( X Y )  * . . 

v W ( X Z )  v W ( Y Z )  

7 ( W ( X Z )  v W ( Y Z )  v W ( Z ) )  = . . . 
W ( )  v W ( X Y )  v W ( X )  v W ( Y )  

is true. So we have: 

and similarly with the other two consequences. 
The three rules can be rewritten as 

1. If W ( )  V "(XU) V W ( X )  v W ( Y )  then ko E { B ,  C, D }  

2. If W ( )  V W ( X 2 )  V W ( X )  V W ( 2 )  then ko E { A ,  C, D }  

3. If W ( )  V W ( Y Z )  V W ( Y )  v W ( 2 )  then ko E { A ,  B, D} 

Let this piece of evidence be denoted by FT (from False Track). 
The problem is to build Cr"[FT] and to find out what is the matrix H that trans- 

forms Cr"[CB] into Cr"[FT]. This revision is achieved by a contraction on C B  and an 
expansion by FT [3]. The whole subtlety of the example comes from the fact that both 
Cr" [CB] and Cr" [FT] can be deduced from Cr' and that Cr' is not changed by the 
pieces of evidence CB or FT. It results from the fact that Your beliefs about the cigarette 
brand is not affected by what it implies on who is the killer. 

3.2 Building the H matrix 
Case 1. 
antecedent of the third rule in FT is true and You deduce Ico E { A ,  B, D}. 

Suppose You accept as true that the butt is a c butt, thus W ( Y Z ) .  So the 

In that case, Your belief state is represented by Cr'(c) = 1, in which case: 
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- 
A 

- 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 - 

- 
B 

- 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 - 

- 
C 

- 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 - 

- 
A 
B 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
1 

- 

- 

- 
A 
C 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
1 
1 

- 

- 

- 
B 
C 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
1 
0 
1 

- 

- 

- 
A 
B 
C 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

- 

- 

Table 1: The H matrix to transform Crn[CB] into Cr"[FT]. 

0 before revision on F T ,  Your beliefs were represented by 

c~"[cB, w ( Y z ) ] ( ~ )  = 1 i f C  E w 

= 0 otherwise 

which Mobius transform is given by 

V L ~ [ C B , W ( Y Z ) ] ( ~ )  = 1 ifw = c 
= 0 otherwise. 

0 after revision on F T ,  it becomes 

Cr"[FT, W ( Y Z ) ] ( w )  = 1 if {A ,  B, D} E w 

= 0 otherwise 

In that case the coefficients of the { C} column of H satisfy 

h(w, {C}) = 1 if { A ,  B ,  D} & w 
= 0 otherwise 

The same holds up to a permutation with a and b (see Table 1). 

Case 2. Suppose You are sure that Z is written on the butt, but You could not recognize 
the other letter. So You accept W ( 2 )  as true. It means in fact that You are sure the butt is a 
b or a c butt and You have no idea to decide if it is a b or if it is a c. So the antecedents of the 
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second and third rules in FT are satisfied and You deduce ko E {A,  C, D}n {A,  B, D} = 

In that case, Your belief state on 0 is represented by Cr'(8) = 1 if { b ,  c} C 8, and 0 
{A,  D} 

otherwise. (see proposition 2.2) in which case: 

0 before revision on FT, the unique non mull mass of the Mobius transform of Your 

0 after revision on FT, Your beliefs become: Cr"[FT, W(Z)] (w)  = 1 if {A ,  D} G 

beliefs Cr"[CB, W ( Z ) ]  was m"[CB, W ( Z ) ] ( B ,  C) = 1 

w and 0 otherwise. 

In that case the coefficients of the {B, C} column of H satisfy 

h ( w ,  {B, C}) = 1 if {A,  D} C w 
= 0 otherwise. 

The same hold up to a permutation with a and b (see Table 1). 

Case 3. Suppose You are sure that something is written on the butt, but You could not 
recognize any letter. It means in fact that You are sure the butt is a a or a b or a c butt and 
nothing more. So you accept W() as true. So the antecedents of the three rules in FT are 
satisfied and You deduce ko E {A,  C, D} n { A ,  B, D} n {B, C, D} = {D} This implies 
that Cr'(8) = 1 if 8 = 0 and 0 otherwise, in which case: 

0 before revision on FT, the unique non mull mass of the Mobius transform of Your 

0 after revision on FT, Your beliefs become: Cr"[FT, W ( ) ] ( w )  = 1 if {D} C w 

beliefs Cr"[CB, W ( ) ]  was m"[CB, W ( ) ] ( A ,  B ,  C )  = 1 

and 0 otherwise. 

In that case the coefficients of the { A ,  B ,  C} column of H satisfy 

h ( w ,  {A ,  B ,  C } )  = 1 if {D} C w 

= 0 otherwise. 

The nature of the columns of H for those w that contain D is not required here as 
m"[CG, m'](u) = 0 for all w such that D E w .  

3.3 General belief on 0 
In general, Your belief on 0 is represented by a credibility function Cr' with m' being 
its Mobius transform. Under CB,  this credibility function on 0 induced a credibility 
function Cr"[CB, Cr'] on 0. Its Mobius transform is given by: m"[CB, Cr'] ( w )  = 
m'(0) where w contains the same letters as 8, but capitalized, and m" [CB, Cr'] ( w )  = 0 
i f D E w .  

Suppose m'(8) < 0 for some 8 2 0. We consider only two cases: either 8 = 0 or 8 
satisfies 181 = 101 - 1. 

Suppose m'(0) is negative. Then m"[CB, Cr']({A, B, C } )  = me(@) < 0. Ap- 
ply the H transform. That negative mass is allocated to the belief given under FT to 



D,  and no other mass is given to D,  so Cr"[FT, Cr '](D) < 0 what violates the non 
negativity of the credibility functions. Hence me(@) may not be negative. 

Suppose 0 = {a ,  b }  and m'({a, b } )  is negative. Then m"[CB, Cr@]({A,  B } )  = 
m'({a, b } )  < 0. Apply the H transform. We have 

Cr"[FT, Cr '](D) = m"[CB, Cr']({A, B ,  C } )  2 0 

as just shown and 

Cr"[FT, Cr ' ] ( {C ,D) )  = mR[CB,Cre]({A,  B , C } )  + m R [ C B , C ~ ' ] ( { A , B } ) .  

The negativity of m" [CB, Cr'] ( {A ,  B}) implies that 

Cr" [FT ,  Cr'] ({ C, D } )  5 Cr" [ F T ,  Cr'] ({ D } )  

what violates the monotony to inclusion requirement. Hence m' ( {a ,  b } )  may not be neg- 
ative. 

4 Generalization to any R 
The previous example can be extended to any set 0. It is just a matter of rephrasing it 
accordingly by multiplying the number of cigarette brands and of suspects. So what it 
proves is that for any 0, m' (0) 2 0 whenever 10 I 2 10 I - 1. 

To prove that credibility functions are belief functions, all we need is to show that if 
a Mobius mass of the credibility function is negative, we can generate an example where 
such a credibility function would induce another credibility function where some values 
are negative. 

Suppose a credibility function Cr" with m" its Mobius masses. Suppose that for 
w C R, m"(w) < 0. Three cases must be considered. Either w = R or w C R, w # 0 or 
w = 0. 

Case w = 0. In that case, Cr" (0) > 1 contrary to the boundness requirement. 

Case w = R. We already know that this case is not acceptable. 

Case w c R,  w # 0. Build a coarsening R" of R such that the elements of 53 are mapped 
into one singleton of R*, the others being mapped into themselves. Then ma* (w) = 
m"(w) is negative. Thus we have build a credibility function on R* that allocates a 
negative mass to a subset of R* such that /wI = /R*l - 1. We know that this case is not 
acceptable. 

Therefore the Mobius mass of any credibility function must be non negative, thus 
credibility functions are belief functions. 

4.1 
Dubois and Prade [2] have introduced the concept of the negation of a belief function. The 
basic belief assignment of the negation of a belief function is obtained by transferring the 
basic belief mass mn(w) to m"(53) for all w C R. In [9], we have shown that this 
transformation fits with the idea of a source of evidence that is an absolute liar. Our 
present example illustrates how to generate such a belief function. 

The Negation of a belief function 
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5 Conclusions 
We show that if revision of any measure representing quantified beliefs can be represented 
by a matrix multiplication of the initial beliefs, then the Mobius mass related to the mea- 
sure must be non negative. This implies that any measure representing quantified beliefs 
is a belief function. The challenge was to produce an example that produces this effect. 
Our Mischievous Killer story provides such an example. During this derivation we also 
illustrate how one can produce the negation of a belief function. 
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Abstract 
We consider the extension of coherent lower previsions from the set of bounded random 
variables to a larger set. An ad hoc method in the literature consists in approximating an 
unbounded random variable by a sequence of bounded ones. Its ‘extended’ lower previ- 
sion is then defined as the limit of the sequence of lower previsions of its approximations. 
We identify the random variables for which this limit does not depend on the details of the 
approximation, and call them previsible. We thus extend a lower prevision to previsible 
random variables, and we study the properties of this extension. 

Keywords: imprecise probabilities, lower prevision , coherence, unbounded random vari- 
able, Dunford integral 

1 Introduction 
When modelling a system, it often occurs that we do not know all of its aspects, or that we 
wish to discard certain details in order to simplify the system analysis. These situations 
give rise to uncertainty, and consequently, we are challenged to find an appropriate system 
description which takes the uncertainty into account. One particularly successful way of 
doing so, consists in using a probabilistic description of the uncertainty. Despite its many 
successes, however, there are quite a number of situations in which this method does not 
lead to sensible results, simply because there may not be sufficient information available 
to allow us to select a single probability distribution as an appropriate model. There are 
in the literature a number of uncertainty models that do not assume the uncertainty to be 
described by a single probability distribution. Among these, Walley’s behavioural theory 
of imprecise probabilities [ 121 stands out as a very satisfactory choice, certainly from the 
foundational point of view. It has a clear behavioural interpretation, which leads naturally 
to a theory of decision making under uncertainty. Moreover, it unifies a large number of 
other uncertainty models, such as 2-monotone capacities [2], possibility measures [3, 131, 
comparative and modal probabilities [ 111, and convex sets of probability measures [8]. 

One important shortcoming of the existing theory of coherent lower previsions is that 
it only deals with random variables that are bounded, whereas in engineering, for instance, 
applications involving unbounded random variables abound. To give only a few examples, 
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the following classes of problems would certainly benefit from an extension of imprecise 
probability theory able to deal with unbounded random variables: (i) the estimation of 
unbounded quantities, such as the time to failure of a component in a system [91; and (ii) 
optimisation involving an unbounded cost [4]. An intuitive, ad hoc way of dealing with 
an unbounded random variable is to approximate it by a sequence of bounded ones, and 
to use limit arguments in order to extend notions defined in the context of the bounded 
random variables to their unbounded counterparts, in the hope that the eventual result will 
not depend on the exact form of the approximation. Similar types of construction exist in 
the theory of integration-we shall use them as a source of inspiration. 

Our main objectives in this paper are twofold: ( i )  to construct an extension of coherent 
lower previsions from bounded random variables to a larger set; and (ii) to study of the 
properties of this extension in order to motivate that its result can be seen as a coherent 
lower prevision in its own right. The paper is organised as follows. We give a brief in- 
troduction to the theory of imprecise probabilities in Section 2. In Section 3 we introduce 
the basic concepts of our extension. Important properties are listed in Section 4. Finally, 
in Section 5 we show that for linear previsions, there is a Dunford integral representation 
for their extension to unbounded random variables. 

2 Imprecise probabilities 
We start with a brief introduction to the most important aspects of the existing behavioural 
theory of imprecise probabilities that are relevant to the problem at hand. More details can 
be found in [ 121. Consider an agent who is uncertain about something, say, the outcome 
of some experiment. If the set of possible outcomes is R, then a random variable is a 
mapping from R to R, and it is interpreted as an uncertain reward: if w E R turns out to be 
the actual outcome of the experiment then the agent receives the amount X ( w ) ,  expressed 
in units of some linear utility. Bounded random variables are also called gambles. They 
play a very important part in the existing theory. Denote the set of all gambles by -!Y(R). 

The information the agent has about the outcome of the experiment will lead him to 
accept or reject transactions whose reward depends on this outcome. We can formulate 
a model for his uncertainty by looking at a specific type of transaction: buying gambles. 
The agent's lower prevision (or supremum acceptable buying price) p ( X )  for a gamble 
X is the highest price s such that he is disposed to buy the gamble X for any price strictly 
lower than s. If the agent assesses a supremum acceptable buying price for every gamble 
X in a subset K: of -!Y(R), the resulting mapping P : K + R is called a lowerprevision. 

It can be argued that E must satisfy the following rationality constraint: for all n E N, 
all XO, . . . , A, 2 0, and all XO, . . . , X, E K: we must have that' 

r n  l n  

Here and elsewhere, we denote by sup[X]  the supremum value supwGnX(w)  of the 
gamble X (and similarly for inf [XI). If the lower prevision satisfies this constraint, we 
say that it is coherent. If K is a linear space, e.g., when K: = -!Y(R), then is coherent if 
and only if 

should be willing to pay at least the lowest possible reward. 
'For example, take 7~ = 0 and A0 = 1, then we find that p(X) 2 inf[X], which means that the agent 



279 

(9 P ( X )  2. in f [X] ,  

(ii) P(XX) = XP(X), and 

(iii) P ( X  + Y) L P ( X )  +P(  Y). 
for all gambles X, Y in K and X 2 0. This result can be given a simple and natural 
interpretation: the supremum buying prices should accept a sure gain, they should be 
independent of the utility scale, and finally, if we are willing to buy X for price s and Y 
for price t ,  then we should also be willing to buy X + Y for price s + t .  The following 
consequences of coherence will also be used in proofs further on (see [ 121 for details). 

(i) P(X + Y) 5 P ( x )  + P (  Y) 
(ii) X 5 Y * f(X) 5 E ( Y )  a n d p ( X )  5 H(Y) 

(iii) I P ( X )  - P(Y)I 5 P(lX - Yl)  and lP(X) - p(Y)I 5 P ( l X  - Yi)  

It can be shown that i f f  is coherent, there is always a (unique) smallest coherent 
extension of P from its domain K to Y ( R ) .  We call this extension the natural extension 
of e. It is given by 

where X E Y ( R )  and the supremum runs over n E N, XI, . . . , A, 2. 0 and XI, . . . , X, 
in K. This shows that without loss of generality, we may from now on assume that P is a 
coherent lower prevision defined on all of 2( R). 

P denotes the conjugate upperprevision of P, and is defined by P(X) = -P(-X) 
for every X E 2 j Q ) .  P(X) represents the agent’s infimum acceptable selling price for 
X .  The difference P(X) - P(X) measures the amount of imprecision in the agent’s 
behavioural dispositions toward the gamble X. An event A is a subset of R.  It will 
be identified with its indicator I A ,  which is a gamble.* The lower probability P(A) is 
then defined as the lower prevision ~ ( I A )  of its indicator IA ,  and similarly for the upper 
probability P(  A ) .  

If it so happens that P(X) = P(X) for every gamble X,  then f is called a linear 
prevision, and it is denoted by P .  Linear previsions are linear functionals on the linear 
space 9 ( R )  that are positive and have unit norm ( P ( I n )  = 1). They are thefairprices or 
previsions in the sense of de Finetti [6,7], The restriction of a linear prevision P to events 
is a finitely additive probability (also called a probability charge [ 11) and P(X) is equal 
to the expected value of the bounded random variable X with respect to this probability 
charge (see for instance [ l ,  Theorem 4.7.41). In this way, any Bayesian model can be 
considered to be a linear prevision, which is a special kind of lower prevision. The set of 
all linear previsions on 9 ( R )  is denoted by P ( R ) .  

M ( P )  will denote the set of all linear previsions that dominate P point-wise on 
2 ( R ) :  M ( P )  = { Q  E 9 ( R )  : Q 2 P } .  One can show that M ( P )  is a non-empty, 

- 

21a is the random variable that takes the value 1 on A and 0 elsewhere. 
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convex and compact3 subset of 9 ( R ) ,  and that 2 is the lower envelope of M ( P ) ,  that is, 

- P ( X )  = min Q ( X ) ,  
Q E M ( P )  

for all X E T(S2). This equality, and the fact that the lower envelope of any non-empty 
set of linear previsions is a coherent lower prevision, gives rise to what is called the 
Bayesian sensitivity analysis interpretation, or Quasi-Bayesian interpretation of lower 
previsions: specifying a coherent lower prevision is formally equivalent to specifying a 
non-empty, convex and compact set of linear previsions (or probability charges). 

3 Previsibility 
In the previous section, we have seen that within the existing framework it is possible to 
extend any given coherent lower prevision to the set of all bounded random variables in 
a natural way. We now investigate whether it can be extended still further to a larger set 
that includes some unbounded random variables. The first step of our investigation will 
be the construction of a limit procedure-approximating unbounded random variables by 
bounded ones-taking the necessary care to ensure that the procedure yields a unique 
result: we do not want our result to depend on the details of the approximation. 

We begin therefore by defining the f - n o r m  of a gamble X by JJX1(, = P(lX1). 
Using the coherence of p. it  can be shown that J l . l l p  is a semi-norm on 9 ( R $  A sequence 
( X n )  of gambles is called f-fundamenta14 if it is Cauchy with respect to I l , l i p ,  - i.e., if 
IIX, - Xmiip -+ 0 as n, m + 00. We say that a sequence of gambles (X,) converges 
- P-hazily5 to the random variable X if for every E > 0 we have that 

lim P ( { u  E R :  ( ~ ( w )  - xn(u)/ > E } )  = 0. 

Observe that we do not need to impose any measurability conditions, since P(A) is de- 
fined for every A C R. The following lemma is the basic result that will guarantee the 
unicity of the extension introduced in Definition 1. 

Lemma 1. I f  (X,) and ( Y,) are P-fundamental sequences of gambles converging - P- 
hazily to the same random variable 2, then it holds that the limits limn.+- P ( X n )  and 
limn.+- P( Y,) exist, are finite real numbers and coincide, and similarily, the limits 
limn.+cs p(Xn) and limn.+cs p( Y,) exist, arefinite real numbers and coincide. 

Proo$ We first prove that the limits exist and are finite. This follows from the following 
inequalities, which are consequences of the coherence of p, 

n-cs 

- 

I P ( x n )  - PC~rn)l 5 P ( I x ~  - ~ m l ) ,  

IP(Yn)-P(ym)I <P( IYn-  yml), 
I P ( X ~ )  - ~ ( ~ m ) l  i P(IXn - XmI), 
IE(Yn)-P(ym)I < P ( / Y n -  YmI). 

3We assume in this paper that 9(0) is provided with its topology of point-wise convergence: the rela- 
tivisation to P ( R )  of the weak*-topology on the topological dual 9(0)*, where 9 ( R )  is provided with the 
supremum norm topology. 

4Cf. mean fundamental in the theory of measures. 
'Cf. convergence in measure in measure theory, and hazy convergence [l] in the theory of finitely additive 

measures. 
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Since the right hand sides converge to zero, the left hand sides must converge to zero 
too. This means that P(X,), P(X,), P (  YTL) and f( Y,) are Cauchy sequences. By the 
completeness of R, their limits exist and are finite real numbers. 

P( Y,) and limn+m f(X,) = 
limnimI'( Y,). Let N, := IX, - Y,i. Again by the coherence of E,  we have that 
[f(X,) - f( Y,)I 5 P(N,) and IF(&) - P(  Y,)l 5 P(N,).  The proof is complete if 
we can show that P(N,) converges to zero. For every n E N and every A C: R, define 
a n ( A )  := P(NnA) .  We must prove that 

Every a, is an element of the function space Rp(R).  Equip this space with the topol- 
ogy of uniform convergence on p(0) .  Note that by the completeness of R, it follows 
by that R"(") is complete with respect to the topology of uniform convergence on p( a) 
(see for instance [lo, Section 19.121). We first claim that a, converges with respect to 
the topology of uniform convergence on p( 0) .  Indeed, consider A C R, then, using the 
coherence o f f ,  we find that 

Ian(A) - am(A)I = lP(lX, - Y,l A )  -P(lXm - Yml A)l 

- - 
Next, we prove that limnim P(X,)  = 

an(R) = 0. 

IP( l lX,  - Y,/ - IXm - YmliA) 

I P(I(X, - Y,) - ( X m  - Ym)lA)  

I P ( I ( X ,  - X m )  - ( Y, - Ym) I )  
5 P(lX, - Xml) +P(I yn - Yml). 

Since the right hand side converges to zero independently of A, it follows that a, is 
Cauchy with respect to the topology of uniform convergence on p(0) .  By the complete- 
ness of I?@(') with respect to the topology of uniform convergence on @(a), we find that 
a, converges with respect to the topology of uniform convergence on p( 0) .  

Uniform convergence implies point-wise convergence, so for every A 2 R we can 
define a ( A )  := lim,-03a,(A). We must prove that a(R) = 0. Let E > 0. By the 
convergence of a, with respect to the topology of uniform convergence on p( n),  there is 
an ME E ti.] such that for all A C: R and all n 2 &If 

Define { ;( S U P  N M e  if S U P  N M e  > 0, 6, := 
otherwise. 

For every A C R, if T(A) < 6, then a . ~ ,  ( A )  = P ( N M , A )  5 sup NM,P( A )  < E .  Since 
u ( A )  5 la(A) - a ~ ,  (A)l + U M ,  ( A ) ,  it holds by (1) that 

- 
P ( A )  < 6, ==+ a ( A )  < 2 6 .  (2) 

Define B := {w E R;  NM? (w) # 0}, then NM,CB = 0. We infer that P ( N M ~ C B )  = 
a ~ , ( c B )  = 0. From (1) it follows that a(CB) < E .  We now prove that a(R) < 5 6 .  
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- 
(a) Consider the case that P ( B )  = 0. Then a ( B )  = P(N,B) = 0 since 

0 5 P(N,B) 5 supN,F(B) = 0 for every n E N. By the coherence of P it 
follows that a(R) 5 a ( B )  + a(CB) < 0 + E < 5 6 .  

(b) Now consider the other case that F ( B )  > 0. Since X ,  and Y, converge to 2 f- 
hazily, it follows easily from coherence of f that N, = ( X ,  - Y,( converges f- 
hazily to 0. This implies that there is a K,  2 A!?, such that for all n 2 K,  

(3) 

Define C := {w E R:  NK,  5 E / ~ ( B ) } .  By the coherence of 2 we have that 
a (R)  5 a(B  n C )  + a ( B  n CC) + a(CB). We now investigate each term. 

(i) By (1) we have that a ( B  n C )  < aKc(B n C )  + E ,  since K,  2 M,. Since 
N K , ( w )  5 E / F ( B )  for all w E C and p(B n C )  5 P ( B ) ,  we have that 
a K e ( B  n C )  = P ( N K , [ B  n C ] )  5 ( E / P ( B ) ) P ( B  n C )  5 E .  We find that 

(ii) We claim that a ( B  n CC) < 26.  By (3) it follows that P ( c C )  < 6,. The claim 

(iii) We already proved that a(CB) < E .  

- 
P ( { w  E R;  N, > E / P ( B ) } )  < 6,. 

a ( B  n C) < 2 ~ .  

is established using P(  B n c C )  5 P(c C )  and (2) .  

In both cases it follows that a (R)  < 5 6 .  Since this holds for any E > 0, we find that 
a(R) = 0. 

Observe that the proof given here uses the same techniques as its counterpart in the 
theory of charges (see for instance the proof of Proposition 4.4.10 in [l]). 

Definition 1. A random variable 2 is said to be f-previsible if there is a f-fundamental 
sequence (X,) of gambles that converges f-hazily to 2. We then define P"(Z) = 
l im,+mf(X, ) ,  and (X,) is called a P-determining sequence for 2, or simply a de- 
termining sequence if there is no ambiguity regarding f. 

By Lemma 1, the limit Ex( 2) is a finite real number, and is independent of the details 
of the determining sequence ( X n ) .  Moreover, f" extends f in the mathematical sense. 
This follows simply from the observation that the constant sequence ( X n )  defined by 
X ,  = X for each n is a determining sequence for X ,  whenever X is a gamble. 

Proposition 1. f"(X) = P ( X ) f o r  every X E Y ( R ) .  

The set of all f-previsible random variables will be denoted by -Y$((R). By Propo- 
sition 1 it contains all gambles (bounded random variables). Using thecoherence of 2, 
the following properties of -YF(R) can be easily established (denoting the point-wise 
maximum by V and the point-wise minimum by A). 

Proposition 2. Let X and Y E Y$(R), and a E R. Then X + Y, a x ,  X V Y, x A Y, 
and 1x1 E -Y$(R). - 

This means that Y$(R) is a linear lattice with respect to the point-wise order. In 
particular, 121 is f-prezsible if 2 is, and therefore we can extend the semi-norm l l . l l p  - in- 
troducedaboveto-Y$(R) through I/Zllp = P"(IZ1) forall Z i n Z $ ( R ) .  - Itisnotdifficult 

- 

- - 
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to show that 1 1  1 1  is also a semi-norm on 2; (a), using Proposition 3 below. Moreover, if 
( 2,) is a sequence of f-previsible random variables and limn+m 1 1  2 - 2, = 0 then 

Ex( 2,) = Ex( 2). This shows that topologically indistinguishable random 
variables are also behaviourally indistinguishable, that is, they have the same extended 
lower (and upper) prevision. 

- 

4 Properties 
4.1 Coherence 
It turns out that all of the properties of coherent lower previsions listed in [12, Sec- 
tion 2.6.11 extend to the extension f". We mention the three most important ones, which 
also establish "coherence" of the extension: the supremum buying prices must accept sure 
gain, they must be independent of the utility scale, and, if we are willing to buy X for 
price s and Y for price t ,  then we should certainly be willing to buy X + Y for price s + t .  
Proposition 3. Let X and Y in 2$(R), and let X _> 0. It holds that - 

( i )  f"(X) 2 inf[X] 

(i i)  f " ( X X )  = XE"(X) 

(iii) p"(X + Y )  2 f"(X) +Ex( Y )  
ProoJ The last two properties follow immediately from the coherence of f and the fact 
that (in)equalities are preserved when taking limits whenever both sides of the (in)equality 
converge. To prove the first property, let (X,)  be a determining sequence for X .  Define 
for every n E N 

X,(w), if X,(w) 2 inf[X],  
inf [ X I ,  otherwise. i X&) = 

Since IX - XAi 5 IX - X,/ and IX; - Xki 5 IX, - X,l for every n, m E N, it 
follows easily from the coherence of p that (XA)  is also a determining sequence for X .  
Observe that X h  _> inf[X]. From the coherence of E we know that f(xh) 2 inf[X]. 
Now rely on the fact that this inequality is preserved when taking the limit to conclude 

cl tha t fx(X)  = limn-ml'(X;) 2 inf[X].  

4.2 Increasing domain under increasing precision 
It turns out that as the precision of a coherent lower prevision increases, its extension will 
also become more precise, and more random variables become previsible. The proof of 
this fact is left to the reader as a simple exercise. 

Proposition 4. I f  Q point-wise dominates E then 96 (R)  2 9'( a), and - Q" point-wise 
dominates f" on 3F(a), - i.e., - Q " ( X )  2 f " ( X ) f o r a l l  X E -Y;(R). - 

As an example, we consider the case in which the lower prevision p describes com- 
plete ignorance. In such a case, the supremum price we are willing to buy a gamble X 
for is given by the lowest possible reward we may expect from X ,  that is, in fwEn X ( w ) .  
This lower prevision is called the vacuous lower prevision, and we denote it by p,. The 
- P,-norm is the supremum norm, and 9; (R)  = 2 ( R ) .  Thus the set of all vacuously 
previsible random variables is exactly thclet  of bounded random variables. 
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4.3 
Let 9 p x  (R) denote the set of all real-valued linear functionals on the linear space 9$(R) 
that dominate Ex point-wise. These linear functionals have all the properties of a h e a r  
prevision-they are linear and positive, and have unit norm. 

Theorem 1. 9 p x  - (0) is weak*-compact. 

Proofi 9 p - ( R )  is a subset of the topological dual 9$(Q)*. The weak*-topology on 
2'$(R)* ;the topology of point-wise convergence, andThe theorem states that 9 ~ x  (0)  
is compact as a subset of 9$(R)* with respect to this topology. Define the set 

Weak* -compactness and a lower envelope theorem 

- 

Members of Y are mappings f on Y$(R) satisfying f ( X )  E [P"(X), F x ( X ) ]  for each 
X E 9$(R). In particular, P p ( R 7  is a subset of Y .  We equip Y with the product 
topolog<which is the topology of point-wise convergence. 

We see that the relativisation of the weak*-topology on Y$(R)* to 92. (a) is equal 
to the relativisation of the product topology on Y to 9 p x  (R),<ince they are both topolo- 
gies of point-wise convergence. Since compactness of a set is only determined by the 
relativisation of the topology to that set, the theorem is established if we can show that 
P p x  - (R) is a compact subset of Y with respect to the product topology on Y .  

By the ultrafilter principle (i.e., Tychonov's theorem for Hausdorff spaces, see for 
instance [ 10, Section 17.22]), Y is compact. Hence, we only need to show that 9p (a) 
is a closed subset of Y ,  since any closed subset of a compact space is also compact. By 
its definition, @px(R) is the set of linear mappings in Y .  Assume that (T,) is a net in 
9 p - ( R )  that converges to T E Y with respect to the product topology in Y .  Then T is 
linear. Indeed, by the point-wise convergence of (To) to T we have that 

T(XX) = limT,(XX) = limXTa(X) = AlimTa(X) = X T ( X ) ,  
a a c1 

for any X E 9$(R) and any X E lR, and - 

T(X + Y) = limTa(X + Y) = lim[T,(X) + Ta(Y)] 
a a 

= limT,(X) + limTa(Y) = T ( X )  + T ( Y ) ,  
a a 

for any X, Y E 2'$(R). This shows that T E 9 p X  - (R), so 9 p x  - (R)  must be closed with 
0 

It is not so difficult to establish the following, quite remarkable result (where we 
denote by f l ~  the restriction of a mapping f to the subset A of its domain). 

Theorem 2. There is a canonical one-to-one correspondence between the sets M ( E )  
and 9 p ~ ( R ) ,  - given by 

respect to the topology of point-wise convergence. 

for any Q E M (f) and any R E 9 p x  - (a). 
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Abstract 
A new clustering method for relational data is proposed, based on Evidence theory. In this 
approach, masses of belief assigned to subsets of classes are used to compute the plausi- 
bility that two objects belong to the same class. It is then required that these plausibilities 
be compatible with the observed dissimilarities between objects. Experiments illustrate 
the ability of the method to handle noisy or non Euclidean data. 

Keywords: Relational clustering, belief functions, outliers, non Euclidean data. 

1 Introduction 
Whereas evidence theory has been applied to supervised classification problems for a long 
time (see, e.g., [4]), the work presented in this paper is, to our knowledge, the first incur- 
sion of belief functions into the cluster analysis domain. Cluster analysis is concerned 
with methods for finding groups in data, groups (or classes) being defined as subsets of 
more or less “similar” objects [l 13. The two most frequent data types are object data, 
in which each object is described explicitly by a list of attributes, and proximity (or re- 
lational) data, in which only pairwise similarities, or dissimilarities are given. A quite 
extensive review of crisp and fuzzy relational clustering models can by found in [ 1, chap- 
ter 31. These methods can be classified into three broad categories: hierarchical methods, 
methods based on the decomposition of fuzzy relations, and methods based on the opti- 
mization of an objective function. Given n objects to be classified in c classes, methods 
in the latter category aim at finding a fuzzy partition matrix U = ( ~ i k )  of size n x c such 
that: 

C c U i k  = 1 v 2 E (1,. . . , n} 
k= 1 

and 
n 

C U i k  > 0 v k E (1;. . . , c }  . 
i=l 

Each number u i k  E [0,1] is interpreted as a degree of membership of object i to cluster k .  
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Examples of such methods are the fuzzy non metric (FNM) model [ 161, the assignment- 
prototype (AP) model [20] and the relational fuzzy c-means (RFCM) model [9] (a similar 
approach may be found in [ 121). The latter approach was later extended by Hathaway and 
Bezdek [8] to cope with non-Euclidean dissimilarity data, leading to the non-Euclidean 
relational fuzzy c-means (NERFCM) model. Finally, robust versions of the FNM and 
RFCM algorithms were proposed by Dave [3]. 

In this paper, a novel approach to clustering proximity data is presented, based on 
Dempster-Shafer (DS) theory of belief functions, also referred to as “Evidence theory”. In 
this approach, the allocation of objects to classes is performed using the concept of basic 
belief asignment (bba), whereby a “mass of belief’ is assigned to each possible subset of 
classes. Using a suitable noninteractivity assumption, it is possible to compute, for each 
two objects, the plausibility that they belong to the same class. It is then required that these 
plausibilities be, in some sense, compatible with the observed painvise dissimilarities 
between objects. The rest of this paper is organized as follows. The necessary background 
on belief functions will be recalled in Section 2 .  Our method will then be exposed in 
Section 3 ,  and experimental results will be presented in Section 4. Section 5 will conclude 
the paper. 

2 Evidence theory 
Let us consider a variable x taking values in a finite and unordered set R. Partial knowl- 
edge regarding the actual value taken by x can be represented by a basic belief assignment 
(bba) [18, 191, defined as a function m from 2” to [0,1], verifying: 

m(A)  = 1. (1) 
A&n 

The subsets A of R such that m(A)  > 0 are the focal sets of m. Each focal set A is 
a set of possible values for x, and the number m(A)  can be interpreted as a fraction of 
a unit mass of belief, which is allocated to A on the basis of a given evidential corpus. 
Complete ignorance corresponds to m(R) = 1, and perfect knowledge of the value of x 
is represented by the allocation of the whole mass of belief to a unique singleton of R (m 
is then called a certain bba). Another particular case is that where all focal sets of m are 
singletons: m is then equivalent to a probability function, and is called a Bayesian bba. 

A bba m such that m(0) = 0 is said to be normal. This condition was originally 
imposed by Shafer [18], but it may be relaxed if one accepts the open-world assumption 
stating that the set R might not be complete, and x might take its value outside R [19]. 
The quantity m(0) is then interpreted as a mass of belief given to the hypothesis that x 
might not lie in R. 

A bba m can be equivalently represented by any of two non additive fuzzy measures: 
a belief function (BF) be1 : 2” H [0,1], defined as 

bel(A) m(B)  V A G O ,  
0 f B C A  

and a plausibility function pl : 2” +.+ [0,1], defined as 

pl(A) bel(R) - bel(2) VA C R , (3 1 
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where 2 denotes the complement of A. Whereas bel(A) represents the amount of support 
given to A, the potential amount of support that could be given to A is measured by pl(A). 
Note that both be1 and pl boil down to a unique probability measure when m is a Bayesian 
bba. 

Let us now assume that we have two bba's ml and mz representing distinct items of 
evidence concerning the value of 5. The standard way of combining them is through the 
conjunctive sum operation n defined as: 

(m1 n m z ) ( A )  f c m1(B)mz(C) 3 (4) 
BnC=A 

for all A c R. The quantity K = (ml n mz)(0) is called the degree ofconflict between 
ml and mz. It may be seen as a degree of disagreement between the two information 
sources. If necessary, the normality condition m(0) = 0 may be recovered by dividing 
each mass (ml n m2)(A) by 1 - K .  The resulting operation is noted @ and is called 
Dempster's rule of combination [ 181: 

Consider now a bba m" defined on the Cartesian product R = R1 x Rz (from now 
on, the domain of a bba will be indicated as superscript when necessary). The marginal 
bba m"l on R1 is defined for all A f l 1  as 

m"l(A) f c m W 1  (6) 
{Ben I Proj(BLnl)=A} 

where Proj(B J, 01) denotes the projection of B onto R1, defined as 

Proj(B J, R ~ )  f 
{ W i  E 01 I 3wz E Rz, (w1,wz) E B} . (7 )  

The two marginal bba's mR1 and mnz are said to be noninteractive iff for all A C 01 and 
for all B c Rz 

(8) 
These definitions can be easily extended to bba's defined over the Cartesian product of n 
sets a l l . .  . , R,. 

m"(A x B) = m"l(A)mnZ(B) .  

3 Themethod 
3.1 
Let us consider a collection 0 = (01, . . . , o,} of n objects, and a set R = { W I  . . . , w,} 
of c classes forming a partition of 0. Let us assume that we have only partial knowledge 
concerning the class membership of each object oi, and that this knowledge is represented 
by a bba mi on the set R. We recall that mi(R) stands for complete ignorance of the class 
of object i, whereas m i ( { w k } )  = 1 corresponds to full certainty that object i belongs 

Credal partition of a set of n objects 
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to class k. All other situations correspond to partial knowledge of the class of oi. For 
instance, the following bba: 

% ( { W l c , w c I )  = 0.7 
mi(R) = 0.3 

means that we have some belief that object i belongs either to class wk or to class we, and 
the weight of this belief is equal to 0.7. 

Let M = (ml ,  . . . m,) denote the n-tuple of bba’s related to the n objects. We shall 
call A4 a credalpartition of 0. Two particular cases are of interest: 

when each mi is a certain bba, then M defines a conventional, crisp partition of 0; 
this corresponds to a situation of complete knowledge; 

when each mi is a Bayesian bba, then M specifies a fuzzy partition of R, as defined 
by Bezdek [ 11. 

A credal c-partition (or partition of size c) will be defined as a credal partition M = 
(ml . . . , m,) such that, for all w E R, we have 

Plz({wI) > 0 

for some i E { 1, . . . , n}, pli being the plausibility function associated to mi. 

Example 1 Let us consider a collection 0 of n = 4 objects and c = 3 classes. A credal 
partition M of 0 is given in Table 1. The class of object 0 2  is known with certainty, 
whereas the class of 0 4  is completely unknown. The two other cases correspond to sit- 
uations of partial knowledge. The plausibilities pli({w}) of each singleton are given in 
Table 2. Since each class is plausible for at least one object, M is a credal3-partition of 
0. Note that the matrix given in Table 2 defines a possibilistic partition as defined in [l]. 

Table 1 : Credal partition of Example 1 
F mi(F) m z ( F )  m s ( F )  m4(F) 
0 0 0 0 0 

{w1} 0 0 0 0 
{w2 } 0 1 0 0 

{wi1w2}  0.7 0 0 0 
{w3 I 0 0 0.2 0 

{ W l i w 3 }  0 0.5 0 
{“J2,w3} 0 0 0 0 

R 0.3 0 0.3 1 

3.2 
In this section, we propose a principle that will provide the basis for inferring a credal 
partition from proximity data. 

Compatibility of an evidential partition with a dissimilarity matrix 
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Table 2: Plausibilities of the singletons for the credal partition of Example 1 
Pl,({Wd) Pl,@JiH Pl,({WiH P l , ( { 4 )  

1 1 0 0.8 1 
2 1 1 0.3 1 
3 0.3 0 1 1 

Without loss of generality, let us assume the available data to consist of a n x rz 
dissimilarity matrix D = ( d i j ) ,  where dij 2 0 measures the degree of dissimilarity 
between objects oi and o j .  Matrix D will be supposed to be symmetric, with null diagonal 
elements. 

It is reasonable to assume that two similar objects are more likely to be in the same 
class, than two dissimilar ones. The more similar, the moreplausible it is that they belong 
to the same group. To formalize this idea, we need to calculate the plausibility, based on a 
credal partition, that two objects oi and oj are in the same group. This will then allow us 
to formulate a criterion of compatibility between a dissimililarity matrix D and a credal 
partition M .  

Consider two objects oi and o j ,  and two bba’s mi and mj quantifying one’s beliefs 
regarding the class of objects i and j .  To compute the plausibility that these two objects 
belong to the same class, we have to place ourselves in the Cartesian product R 2  = R x R, 
and to consider the joint bba mixj on R2 related to the vector variable (yil yj) .  If mi and 
mj are assumed to be noninteractive, then mixj is completely determined by mi and mj, 
and we have ‘dA, B 5 R: 

mixj(A x B) = mi(A)mj(B). (9 )  

In R2, the event “Objects oi and oj belong to the same class” corresponds to the 
following subset of R2: 

s = { ( W I > W l ) ,  ( W 2 , W 2 ) ; .  . . , (%4} 
Let plixj be the plausibility function associated to mixj. We have 

= 1 - Kij 

where Kij is the degree of conflict between mi and mj. 
Hence, the plausibility that objects oi and oj belong to the same class is simply equal 

to one minus the degree of conflict between the bba’s mi and mj associated to the two 
objects. Given any two pairs of objects (oil  o j )  and (oi’, o j ! ) ,  it is natural to impose the 
following condition: 
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or, equivalently: 

i.e., the more dissimilar the objects, the less plausible it is that they belong to the same 
class, and the higher the conflict between the bba’s. A credal partition 111 verifying this 
condition will be said to be compatible with D .  

dij  > diij/ + Kij 2 Kiiji , (12) 

3.3 Learning a credal partition from data 
To extract a credal partition from dissimilarity data, we need a method that, given a dis- 
similarity matrix D, generates a credal partition 111 that is either compatible with D, or at 
least “almost compatible” (in a sense to be defined). 

This problem happens to be quite similar to the one addressed by multidimensional 
scaling (MDS) methods [2]. The purpose of MDS methods is, given a dissimilarity matrix 
D, to find a configuration of points in a p-dimensional space, such that the distances be- 
tween points approximate the dissimilarities. There is a large literature on MDS methods, 
which are used extensively in sensory data analysis for interpreting subjectively assessed 
dissimilarities, and more generally in exploratory analysis for visualizing proximity data 
as well as high dimensional attribute data (in this case, the dissimilarities are computed as 
distances in the original feature space). 

In our problem, each object is represented as a bba, which can be seen as a point in 
a 2‘-dimensional space. Hence, the concept of “credal partition” parallels that of “con- 
figuration” in MDS. The degree of conflict Kij between two bba’s mi and mj may be 
seen as a form of “distance” between the representations of objects oi and oj . This close 
connection allows us to transpose MDS algorithms to our problem. 

MDS algorithms generally consist in the iterative minimization of a stress function 
measuring the discrepancies between observed dissimilarities and reconstructed distances 
in the configuration space. The various methods available differ by the choice of the 
stress function, and the optimization algorithm used. The simplest one is obtained by 
imposing a linear relationship between “distances” (i.e., degrees of conflict in our case) 
and dissimilarities, which is referred to as metric MDS. The stress function used in our 
case is: 

where a and b are two coefficients, and the denominator is a normalizing constant. This 
stress function can be minimized iteratively with respect to M ,  a and b using a gradient- 
based procedure. Note that this method is invariant under any affine transformation of the 
dissimilarities. 

Remark 1 Each bba mi must satisfy Eq. (1). Hence, the optimization of a with respect 
to M is a constrained optimization problem. However, the contraints vanish if one uses 
the following parameterization: 

where All 1 = 1, .  . . , 2“ are the subsets of 0, and the ail for i = 1,. . . ,n and 1 = 
1 . . . 2“ are n2“ real parameters. 
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3.4 
An important issue is the dimension of the non linear optimization problem to be solved. 
The number of parameters to be optimized is linear in the number of objects but expo- 
nential in the number of clusters. If c is large, the number of free parameters has to be 
controlled. This can be achieved in two ways: 

First, the number of parameters may be drastically decreased by considering only a 
subclass of bba’s with a limited number of focal sets. For example, we may constrain the 
focal sets to be either R, the empty set, or a singleton. In this way, the total number of 
parameters is reduced to n(c  + 2 ) ,  without sacrificing too much of the flexibility of belief 
functions. 

Another very efficient means of reducing the number of free parameters is to add a 
penalization term to the stress function. This approach does not reduce the number of 
parameters to be optimized but limits the effective number of parameters of the method. It 
is thus a way to control the complexity of the classification model. In our case, we would 
like to extract as much information as possible from the data, so that it is reasonable to 
require the bba’s to be as “informative” as possible. The definition of the “quantity of 
information” contained in a belief function has been the subject of a lot of research in the 
past few years [ 14, 131, and it is still, to some extent, an open question. However, several 
entropy measures have been proposed. The total uncertainty introduced by Pal et al. [ 151 
satisfies natural requirements and has interesting properties. It is defined, for a normal 
bba m. as: 

Controlling the number of parameters 

where F(m)  denotes the set of focal sets of m. H ( m )  is minimized when the mass is 
assigned to few focal sets, with small cardinality (it is proved in [15] that H(m) = 0 iff 
m ( { w } )  = 1 for some w E R). 

To apply (15) to a subnormal bba m (i.e., such that m(8) > 0), some normalization 
has to be performed. Two common normalization procedures are Dempster’s normaliza- 
tion (in which the mass given to 8 is deleted and all other belief masses are divided by 
1 m(0) [18], and Yager’s normalization, in which the mass m(@) is transferred to R 
[21]. The latter approach has been preferred in our approach, because it allows to penal- 
ize subnormal bba’s more efficiently. The expression of total uncertainty for a subnormal 
bba m then becomes: 

Finally, the objective function to be minimized is: 

n 

J ( M ,  a, b)  a ( M ,  a, b )  + x c H(mi) 
t=l 



298 

3.5 
Although we believe that a lot of information may be gained in analyzing a credal parti- 
tion, it is always possible to transform it into a fuzzy or hard partition. This conversion is 
based on the concept ofpignistic probability [ 191 defined, for a normalized bba m, by: 

From credal clustering to fuzzy or hard clustering 

To obtain a fuzzy partition, one calculates the pignistic probability of each singleton w k .  

In the case where these singletons, R and the empty set are the only focal sets of the bba, 
the expression of the pignistic probabilities is given by: 

for all k = 1, c (we assume that Yager’s normalization is used). A hard partition can 
then be easily obtained from the values of pignistic probabilities. In this sense, a credal 
partition may be viewed as a general model of partionning, including fuzzy and hard 
partitions. 

4 Results 
4.1 Synthetic dataset 
This first example is inspired from a classical dataset [20]. A (13 x 13) dissimilarity 
matrix was generated by computing the squared Euclidean distances of a two dimensional 
object dataset represented in figure 1.  The 13th object, an outlier, is useful to study the 
robustness of the method. The first object is assumed to be close to all other objets, and is 
not represented in this figure. The dissimilarity between this point and objects 2 to 12 is 
arbitrarily set to 1 and to 200 with the 13th object. This object is intended to reflect either 
noisy, unreliable data, or imprecise evaluations coming from subjective assessments. We 
compare the results obtained with our method and five classical clustering methods based 
on relationnal data: Windham’s assignment-prototype algorithm (AP) [20], the Fuzzy 
Non Metric algorithm (FNM) [ 161, the Relational Fuzzy c-means algorithm (RFCM) [9], 
and its “Noise” version (NRFCM) [3], and the non-Euclidean RFCM algorithm (NERF) 
[8]. NRFCM, by using a “noise” cluster, is well-adapted to datasets containing noise 
and outliers, whereas N E W  is intended to cope with non-Euclidean dissimilarities. The 
task is to find a reasonable 2-partition of object 2 to 12 and to detect the particularity 
of objects 1 and 13. The figure 2 shows the resulting fuzzy membership functions for 
the five classical algorithms, and the bba obtained with evidential clustering. Note that 
only 4 focal elements were considered: {wl1  wZl SZ, S}. As could be expected, among the 
five algorithms, only NRFCM is able to detect the outlier but the method fails with the 
first object (which is classified in class 2). The evidential clustering method (EVCLUS) 
provides a clear understanding of the data by allocating an important mass to the empty 
set for the outlier and to R for the first point. 

4.2 “Cat cortex” data set 
This real data set consists of a matrix of connection strengths between 65 cortical areas 
of the cat. It was collected by Scannell [17] and used by several authors to test visual- 
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Figure 1 : Synthetic dataset. 

ization, discrimination or clustering algorithms based on proximity data [6, 7, lo]. The 
proximity values range from 0 (self-connection), to 4 (absent or unreported connection) 
with intermediate values : 1 (dense connection), 2 (intermediate connection) and 3 (weak 
connection). The cortex has been divided into four functional areas: auditory (A), visual 
(V), somatosensory (S), and frontolimbic (F). The clustering task is to find a four-class 
partition of the 65 cortical areas, based on the dissimilarity data, which is consistent with 
the functional regions. Six focal elements were considered for applying the evidential 
clustering method: 4 singletons {q} (i = 1,4), R and 0. In order to provide a simple dis- 
play of the results with EVCLUS, a two dimensional representation of the cortical areas 
has been obtained from the proximity matrix using a classical MDS algorithm [2]. The 
classification displayed on figure 3 is done according to the maximum of the pignistic 
probabilities. The clusters are represented by different symbols and the size of the sym- 
bols is proportional to the maximum of the pignistic probabilities. It can be seen that the 
four functional areas of the cortex are well-recovered. The error rate (only three points 
among 65 are misclassified), competes honourably with those reported in discrimination 
studies [6, 71. 

5 Conclusion 
In this paper we have suggested a new way of classifying relational data based on the 
theory of evidence. The classification task is performed in a very natural way, by only 
imposing that, the more two objects are similar, the more likely they belong to the same 
cluster. The concept of credal partition can be considered as a generalization of a prob- 
abilistic or possibilistic partition and offers a very flexible framework to handle noisy, 
imprecise or non-Euclidean data. Experiments on various datasets, which are not all re- 
ported here, have shown the efficiency of this approach. 
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Figure 2: Synthetic dataset. Results of the six algorithms. 
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Abstract 
A clustering algorithm is described which learns fuzzy prototypes to represent data sets 
and decides the number of prototypes needed. This algorithm is based on a modified 
hierarchical clustering scheme and incorporates ideas taken from mass assignment theory. 
It is illustrated using a model classification problem and its potential is shown by its 
application to a benchmark problem for glass identification. 

Keywords: Fuzzy Prototypes, Clustering, Mass Assignment. 

1 Introduction 
In many of the emerging information technologies, there is a clear need for automated 
learning from databases. Data mining methods attempt to extract useful general knowl- 
edge from the implicit patterns contained in databases. Machine learning approaches learn 
models of complex systems capable of accurate prediction. Such methods have applica- 
tions to classification problems, as well as vision, function approximation and control. For 
example, supermarkets are interested in learning prototypical descriptions of customers 
with certain purchasing behaviour; these models can then be used to learn descriptions of 
certain types of customers and to make informed decisions about levels of certain goods 
to stock, as well as pricing. 

It is this need for automated learning that motivates our clustering algorithm, which 
tries to learn fuzzy prototypes to represent data sets and also decides the number of proto- 
types needed. Here, prototypes correspond to tuples of fuzzy sets on words over attribute 
universes and as such represent amalgams of similar objects sharing particular properties. 
It is this idea of grouping similar object that is central to the model of prototype induction 
proposed in this paper. 
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2 Basic Mass Assignment Theory 
The mass assignment for a fuzzy concept, first introduced by Baldwin [l, 41, can be 
interpreted as a probability distribution over possible crisp definitions of the concept. We 
might think of these varying definitions as being provided by a population of voters where 
each voter is asked to give his or her crisp definition of the concept. 

Definition (Mass Assignment) Let f be a fuzzy set on a finite universe R such that the 
range of the membership function of f ,  X f ,  is {yl ,  , . . , yn} where yi > yi+l > 0. Then, 
the mass assignment of f ,  denoted m f ,  is a probability distribution on 2" satisfying 

mf(0 )  = 1-31 
m f ( F i )  = yi - yi+l for i = 1, ..., n - 1 
m f ( F n )  = Yn 

where Fi = {x E R 1 ~ f ( x )  2 yi} for a = 1, .  . , , n. {Fi}r=l are referred to as the focal 
elements(sets) of mf . 

The notion of mass assignment suggests a means of conditioning a variable X relative 
to a fuzzy constraint 'X is f' to obtain a probability distribution, by redistributing the 
mass associated with every focal set uniformly to the elements of that set. The probability 
distribution on X generated in this way is referred to as the least prejudiced distribution 
o f f  [I] .  

Definition (Least Prejudiced Distribution) For f a fuzzy subset of a finite universe 
0 such that f is normalised, the least prejudiced distribution of f, denoted l p f ,  is a 
probability distribution on R given by 

The idea of least prejudiced distribution provides us with an alternative definition of 
the conditional probability of fuzzy events [ 11. 

Definition (Conditional Probability) For f and g fuzzy subsets of a finite universe R 
where g is normalised assuming no prior knowledge we define 

The least prejudiced distribution allows us, in a sense, to convert a fuzzy set into a 
probability distribution. That is, in the absence of any prior knowledge, we might on being 
told f naturally infer the distribution l p f .  Now, if we can find a method by which, when 
presented with a probability distribution, we can infer the fuzzy constraint generating that 
distribution, we can use fuzzy sets as descriptors of probability distributions. 
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Theorem Let P r  be a probability distribution on a finite universe R taking as a range of 
values {PI, . . . , pn} where 0 5 pi+l < pi 5 1 and C&, pi = 1. Then, P r  is the least 
prejudiced distribution of a fuzzy set f if and only i f f  has a mass assignment given by 

where 

j=i+l 

Proof (See [2]) 
It is interesting to note that this transformation algorithm is identical to the bijective 

transformation method proposed by Dubois and Prade [ 6 ] ,  although the motivation here 
is quite different. A further justification for this transformation can be found in [lo]. 

Definition (Fuzzy Description) For a probability distribution P r  on a finite universe 0, 
we refer to the fuzzy set generated from P r  according to the previous theorem as the fuzzy 
description of P r ,  denoted FD(Pr) .  

3 Fuzzy Prototypes 
We now use ideas from mass assignment theory to infer a number of prototypes repre- 
senting a set of instances and where each prototype corresponds to a grouping of similar 
points (sometimes called a granule [ 113). Unlike many current clustering methods, we do 
not intend to define single instances as being prototypical. Instead, a prototype is taken 
to be an amalgam of points represented by a tuple of fuzzy sets on each of the attributes 
describing an instance. 

Definition (Fuzzy Prototype) A fuzzy prototype in R1 x . . . x Rn is a n-tuple of fuzzy 
sets (f1, . . . , fn) where fi is a fuzzy subset of Ri. 

In particular, we are interested in fuzzy prototypes generated from a set of elements so 
that they constitute a description of these elements. In order to determine which vectors 
should be associated with which prototypes, we need to define a notion of similarity. 
Furthermore, since data vectors can be viewed as a special case of prototypes, we need to 
define a similarity relation between fuzzy prototypes. Tversky’s statement that similarity 
“may be better described as a comparison of features rather than as a computation of 
metric distance between points” [ 81 inspires the following definition, based on similarity 
measures between fuzzy sets. 

Definition (Prototype Similarity) Let si be a similarity measure between fuzzy subsets 
on Ri and II the class of all prototypes in R1 x . . . x R,. The prototype similarity measure 
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is a function Sim : II x I2 H [0,1] where, given the prototypes PI = (fl1 . . . f,) and 
PZ = (91, . . . , gn) in n, 

There is wide variety of similarity measures proposed in the literature which are pos- 
sible candidates for si. For example, in [7, p24] there is a list of similarity indices which 
are a generalisation of the classical set-theory similarity functions. It is from this list that 
we have chosen a specific similarity measure to obtain the results shown in sections 6 and 
7. Given f l  g fuzzy sets on a finite universe R, we will take the similarity between them 
to be: 

Once it is clear what we understand by similar points (or prototypes), we need to 
define a means of grouping them. We do so by defining prototype addition. 

Definition (Prototype Addition) Let Pl = (fl ,  . . . fn) and PZ = (91, . . . , gn) be 
prototypes in R1 x . . . x R, representing a granule of k and c data points respectively. 
Then, Pl[+]Pz is a prototype in (R1, .  . . R,} such that 

Pl[+]PZ = (FD(Tl), * .  . 1  FD(rn))  
where ri is the probability distribution in Ri given by 

4 Linguistic Variables 
In the above, we have only considered finite universes, but most real-world problems 
involve continuous attributes. In this case, we need some way of converting infinite uni- 
verses into finite ones so that the methods described in section 2 can be applied. Thus, we 
require some way of partitioning the universes associated with the continuous attributes. 
Fuzzy sets can be used to divide such universes into information granules, a term defined 
by Zadeh [ 111 as a group drawn together by similarity which can be viewed as corre- 
sponding to the meaning of words from natural language. Then, a linguistic variable can 
be defined which is associated with the original continuous attribute and takes as it values 
the words. Fuzzy sets on words can then be inferred. 

Definition (Linguistic Variable) A linguistic variable is a quadruple' 

(4 V L ) ,  a, M )  
'Zadeh [12] originally defined linguistic variable as a quintuple by including syntactic rule according to 

which new terms (i.e. linguistic values) could be formed by applying quantifiers and hedges to existing words. 
In this context, however, we shall asume that the term set is predefined and finite 
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in which L is the name of the variable, T ( L )  is a finite term set of labels or words (i.e. 
the linguistic values), R is a universe of discourse and M is a semantic rule. 

The semantic rule M is defined as a function that associates a normalised fuzzy subset 
of R with each word in T ( L ) .  In other words, the fuzzy set M(w) can be viewed as 
encoding the meaning of w so that for z E R the membership value x ~ ( ~ )  (z) quantifies 
the suitability or applicability of the word w as a label for the value 5 .  This generates a 
fuzzy subset of T ( L )  describing the value of z. 

Definition (Linguistic Description of a Value) For z E R, the linguistic description of 
z relative to the linguistic variable L is the fuzzy subset of T (  L )  

desr;(z) = c WlXM(w)(4 
w E T ( L )  

In cases where the linguistic variable is fixed, the subscript L is dropped and we write 
des(z ) .  

Once we have a fuzzy set on words for a given z E R, d e s ( z ) ,  which is a fuzzy subset 
of a finite universe T ( L ) ,  the basic mass assignment theory is applicable and it is possible 
to consider the least prejudiced distribution of d e s ( z ) ,  I p d e s ( z ) ,  this being a probability 
distribution in the set of labels T ( L ) .  

Now recall that the least prejudiced distribution is defined only for normalised fuzzy 
sets and, hence, it is desirable that linguistic descriptions as defined above be normalised. 
This will hold if and only if the semantic function generates a linguistic covering defined 
as follows. 

Definition (Linguistic Covering) 
ing of the universe R if and only if 

A set of fuzzy sets {fi}Tz1 forms a linguistic cover- 

vz E R r n k  (Xft (z)) = 1 
i=l 

Having described how fuzzy sets can be used as descriptors for probability distri- 
butions, we shall introduce a prototype induction algorithm based on these ideas. The 
prototypes induced belong to an specific type of fuzzy prototype (as described in section 
3) where each attribute is described by a fuzzy set on words, with labels provided by the 
linguistic covering of the attribute’s universe. We may think of each of these fuzzy sets as 
a possibility distribution on the set of linguistic labels describing the attribute’s universe. 
In this way we can evaluate the possibility that a particular label describes an attribute for 
a certain prototype. 

5 A Hierarchical Linguistic Clustering Algorithm 
Traditional hierarchical clustering algorithms produce a series of partitions of the data, 
P,, Pn-l, . . . , PI.  The first, P,, consists of n single-member clusters, the last PI consists 
of a single group containing all n individuals. At each particular stage, the methods fuse 
individuals or groups of individuals which are closest (or most similar), it being the chosen 
definition of ‘closeness’ that differentiates one method from another. A description of 
these methods can be found in [5 ,  pp55-901. 



However, it is often the case, when hierarchical clustering techniques are used, that 
what is of interest is not the complete hierarchy obtained by the clustering, but only one 
or two partitions obtained from it that contain an ‘optimal’ number of clusters. Therefore, 
it is necessary to select one of the solutions in the nested sequence of clusterings that 
comprise the hierarchy. This in itself is a very challenging problem. 

Another issue that should be addressed is the computational complexity of exhaus- 
tively searching for the pair of most similar elements at each stage of the clustering. This 
may become an important issue when the number of data points n is ‘large’, which is 
usually the case in practical applications. 

In our algorithm, we try to overcome these problems by introducing several changes in 
the scheme described above. First of all, we have already mentioned that each prototype 
corresponds to a grouping of similar points. Therefore, if two prototypes are not ‘similar 
enough’, this implies that the elements in the clusters they represent are not close and 
should not be merged into a single group. For this reason, we define a similarity threshold 
c E [0,1] , according to which the grouping of clusters will terminate once the similarity 
between prototypes falls below cr. 

Also, we will introduce a heuristic search for pairs of similar prototypes and we will 
allow more than one pair to fuse at each level of the clustering. The search for similar ele- 
ments in one partition Pi will start with the first cluster in Pi, according to some arbitrary 
ordering, and will go through the elements in this partition to select the most similar one 
to it. If the similarity between these two clusters is high enough according to the threshold 
cr, then they should be merged into only one cluster and this new group should be added 
to the next partition Pi-1. If, on the contrary, they are not similar enough, the first clus- 
ter alone will be added to the next partition. We repeat this process with the remaining 
clusters in Pi until all of them have been considered. 

This reduces the complexity of the original algorithms in two ways. First of all, by 
using this heurisric we do not need to compare all the elements to find the most similar 
pair. Secondly, if we have m clusters, our search will allow us to find up to m/2 pairs of 
similar prototypes as our candidates to merge. Whilst the standard hierarchical algorithms 
reduce the number of elements from one partition, Pi, to the next one, Pi-1, by only one 
cluster, our search allows us to reduce the number of clusters by up to m/2. 

Let S = {(i,i?(i)) 1 i = l , . .  , , N } ,  where Z(z) E R1 x . . .  x R,, be a data set. 
For each continuous attribute j E { 1, . . . , n}, let us suppose that we have a linguistic 
covering of the universe Ri. We can rewrite the attribute’s value for each data point in S ,  
z j ( i )  as a fuzzy set of words, namely, its linguistic description des(zj(i)). For the sake 
of a simpler notation, let us identify x j ( i )  with des(zj(i)). Finally, let us suppose that 
we have Sim the similarity measure between fuzzy objects defined in section 3. Then, 
having set a threshold cr E [0,1] for the similarity, our linguistic hierarchical clustering 
algorithm is described as follows: 

c= {Z(i)I(Z,Z(i)) E S }  
CH A N  GED=true 
while CHANGED==true do 

NEWC= 8 
CHANGED=false 
TO-MERGE= ( 2  I(i,z(z)) E C} 
MERGED= 0 
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while TO-MERGE# 0 do 
pick i E TO-MERGE 
pick j E TO-MERGE such that 

Sim(?(Z), qj))  = 
~ ~ ~ ~ ~ E T O - M E R G E  Sim(Z(i) ,  z(k)) 

if Sim(Z(i) ,  ? ( j ) )  > CT then 
add .‘(i)[+]Z(j) to NEWC 
delete { i , j }  from TO-MERGE 
add ( 2 ,  j }  to MERGED 
CHANGED=true 

add ?(i) to NEWC 
delete {i} from TO-MERGE 
add { i} to MERGED 

else 

end if 
end while 
C=NEWC 

end while 
NEWC contains the final clusters for S 

It may be worth noting that, in the case that new data points are obtained, there is no 
need to re-run the clustering from the beginning with the enhanced data set in order to 
update the final set of prototypes. Instead, it is enough to run the clustering algorithm 
with the union of the old prototypes and the new data points as our new data set. 

For supervised learning where the data set is partitioned according to class, S = uf=l Si where Si is the set of data points in S of class Ci, the hierarchical linguistic 
clustering algorithm is applied to the subsets of data formed by each of the classes. 

Having learnt a set of fuzzy prototypes describing the set S and given any tuple of 
values ? E R1 x . . . x R,, we can determine the support for it belonging to or being 
associated with a particular fuzzy prototype P = ( f l ,  . . . , fn) as follows: 

n 

S W P ( P I ~ )  = n Pr(fildes(xi)) 
i= 1 

In particular, for supervised learning, if we are given a tuple of values ? E R1 x 
. * .  x R, and we are asked to classify it, we can evaluate the support for each of the 
prototypes learned. Then, the vector is classified as belonging to the class associated with 
the prototype with highest support. 

6 Application to a Model Classification Problem 
To illustrate the above algorithm and its potential, let us consider a toy problem. In this 
problem, the data set consists of 916 data points in [-1,1] x [-1,1]. The data set is 
divided in two classes, legal and illegal. If we consider two concentric circles, then the 
345 points in the inner circle and the exterior circular crown are labelled as legal; the other 
616 points in [-1,1] x [-l l  11 are labelled as illegal. A plot of the legal points can be 
seen in Figure 1 .a. 
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threshold 

u = 0.5 
u = 0.4 

As we have continuous attributes, we use linguistic coverings with 12 trapezoidal 
fuzzy sets uniformly distributed over each universe. If we set our similarity threshold to 
u = 0.5, the clustering terminates with 36 prototypes to represent the illegal points and 
31 to represent the legal ones. Even though there has been a considerable reduction in 
the number of clusters from our initial partitions of 616 and 345 data points respectively, 
we might want to merge more and reduce even further the number of final clusters. If we 
lower the similarity threshold to u = 0.4, we allow clustering at one partition level higher 
and reduce the number of final prototypes to 17 for each class. Therefore, with only one 
more intermediate partition, we have approximately halved the number of final clusters 
for each class. This information is sumarised in Table 1. Of course, we are interested 

NoCS NoP 
illegal legal illegal legal 

6 5 36 31 
7 6 17 17 

Table 1: Number of Clustering Stages (NoCS) and Number of Prototypes (NoP) for each 
class 
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Figure 1: Concentric Circles 

in knowing how well these prototypes represent our original data. For this purpose, we 
ran a classifier through the same data and obtained a predictive accuracy of 95.4% for the 
threshold u = 0.5 and of 93% for the threshold u = 0.4. Obviously, the reduction in the 
number of prototypes gives some loss of predictive accuracy, although both results can 
be considered as good. Figure 1.b is a plot of those points predicted legal according to 
prototypes learned with u = 0.4. 
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7 Application to a Real-World Classification Problem 
This database was taken from the UCI machine learning repository [9] and originates 
from a project carried out by the British Home Office Forensic Science Service Central 
Research Establishment on the identification of glass fragments found at crime scenes [41. 
The study is motivated by the fact that in a criminal investigation the glass found at the 
scene of the crime can only be used as evidence if it is correctly identified. Glass frag- 
ments are divided into 7 possible classes, although the database only contains examples 
of six (there are no instances of class 4). These are: 

1. Building windows-float processed 
2 .  Building windows-non float processed 
3. Vehlcle windows-float processed 
4. Vehicle windows-non float processed 
5. Containers 
6. Tableware 
7. Headlamps 

The classification is to be made on the basis of the following 9 attributes, relating to 
certain chemical properties of the glass (the unit measurement for attributes 2-9 is the 
weight percent of the corresponding oxide): 

1. RI-refractive index 
2 .  Na-sodium 
3. Mg-magnesium 
4. Al-aluminium 
5. Si-silicon 
6. K-potasium 
7. Ca-calcium 
8. Ba-barium 
9. Fe-iron 

The database, consisting of 214 instances, was split into a training and test set of 
107 instances each in such a way that the instances of each class were divided equally 
between the two sets. A linguistic covering of 5 trapezoidal fuzzy sets was then defined 
for each attribute where a percentile approach was used to determine the exact position of 
the fuzzy sets (see Figure 2). 

The threshold parameter for the similarity was set at CT = 0.5 and the linguistic hier- 
archical clustering was applied to the data. The number of clustering stages (consecutive 
partitions of the data) used and the number of ‘optimal’ prototypes for each class can be 
seen in Table 2. 

Figure 3 shows the first attribute, RI, of the 5 prototypes obtained for the first class, 
building windows-float processed. 

The accuracy obtained using the prototypes for classification was 98% on the training 
set and 77.5% on the test set. This compares favourably with other learning algorithms. 
For instance, a previous mass assignment based prototype induction algorithm [41 gave 



312 

1 2 -  

wl  w2 w3 w4 w5 

7 1  

I 
I 

~ I 
I 

0 8 ;  I I 

I I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 
I I 

I 
I 

I I 

I 
0-- 

I '  
I !  
I !  IJ I!  

1 5 1 2  1 5 1 4  1 5 1 6  I518 1 5 2  1 5 2 2  1 5 2 1  1 5 2 6  1 5 2 8  

Figure 2: Linguistic covering for attribute 1, RI 

Table 2: Number of Clustering Stages (NoCS) and Number of Prototypes (NoP) for each 
class 

an accuracy of 71% on the test set. Also, mass assignment ID3 [3] gave an accuracy of 
68% on the test set and a neural network with topology 9-6-6 gave 72% on a smaller test 
set where the network was trained on 50% of the data and validated on 25% and tested on 
25% [4]. 

8 Conclusions 
A linguistic hierarchical clustering algorithm has been described for learning fuzzy pro- 
totypes to represent a data set as well as the number of prototypes needed. This algorithm 
incorporates ideas from mass assignment theory and similarity relations between fuzzy 
objects. The potential of the linguistic hierarchical clustering has been illustrated with 
both a toy example and a real world problem. 
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Figure 3: RI in the prototypes for class I 
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In this contribution, we propose a genetic process to select an appropiate set of features 

in a Fuzzy Rule-Based Classification System (FRBCS) and to automatically learn the 
whole Data Base definition. An ad-hoc data covering learning method is considered to 
obtain the Rule Base. The method uses a multiobjective genetic algorithm in order to 
obtain a good balance between accuracy and interpretability. 

Keywords: Fuzzy Rule-Based Classification Systems, Data Base, Learning, Multiobjec- 
tive Genetic Algorithms 

1 Introduction 

An FRBCS presents two main components: the Inference System and the Knowledge 
Base (KB). The KB is composed of the Rule Base (RB) constituted by the collection of 
fuzzy rules, and of the Data Base (DB), containing the membership functions of the fuzzy 
partitions associated to the linguistic variables. The composition of the KB of an FRBCS 
directly depends on the problem being solved. If there is no expert information about the 
problem under solving, an automatic learning process must be used to derive the KB from 
examples. 

Although, there is a large quantity of RB learning methods proposed in the specialized 
literature [3, 4, 10, 1-51, among others, there is not much information about the way to 

*This research has been supported by CICYT under project TIC2002-04036-C05-01 
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derive the DB and most of these RB learning methods need of the existence of a previous 
definition for it. The usual way to proceed involves choosing a number of linguistic terms 
(granularity) for each linguistic variable, which is normally the same for all of them, and 
building the fuzzy partition by a uniform partitioning of the variable domain into this 
number of terms. This operation mode makes the granularity and fuzzy set definitions 
have a significant influence on the FRBCS performance. 

Moreover, high dimensionality problems present a new trouble to obtain FRBCSs with 
good behaviour: the large number of features, that can originate a RB with a high number 
of rules, thus presenting a low degree of interpretability and a possible over-fitting. This 
problem can be tackled from a double perspective: 

0 Via the compactness and reduction of the rule set, minimising the number of fuzzy 
rules included in it. 

0 Via a feature selection process that reduces the number of features used by the 
FRBCS. 

Rule reduction methods have been formulated using different approaches (Neural 
Networks, clustering techniques, orthogonal transformation methods, similarity measures 
and Genetic Algorithms). Notice that, for high dimensional problems and problems where 
a high number of instances is available, it is difficult for the latter approaches to get small 
rule sets, and therefore the system comprehensibility and interpretability may not be as 
good as desired. For high dimensionality classification problems, a feature selection pro- 
cess, that determines the most relevant variables before or during the FRBCS inductive 
learning process, must be considered [2, 191. It increases the efficiency and accuracy of 
the learning and classification stages. 

Our objective is to develop a genetic process for feature selection and whole DB learn- 
ing (granularity and membership functions for each variable) to obtain FRBCSs composed 
of a compact set of comprehensible fuzzy rules with high classification ability. This 
method uses a multiobjective GA and considers a simple generation method to derive 
the RB. 

To carry out this task, this paper is organised as follows. In Section 2, the FRBCS 
components will be introduced joint with a brief description of the two main problems 
tackled by the learning method proposed, feature selection and DB learning. In Section 
3 we will expose the characteristics of our proposal for the FRBCS design. The results 
obtained with Sonar data set will be shown in Section 4. In the last section, some conclu- 
sions will be pointed out. 

2 Preliminaries 

2.1 Fuzzy Rule-Based Classification Systems 

An FRBCS is an automatic classification system that uses fuzzy rules as knowledge rep- 
resentation tool. Two different components are distinguished within it: 

1. The KB, composed of 



317 

0 DB, which contains the fuzzy set definitions related to the labels used in 
the fuzzy rules. So, the DB components for every variable are the number 
of linguistic terms (granularity) and the membership function shape of each 
term. 

RB, comprised by a set of fuzzy rules that in this work are considered to have 
the following structure: 

R k  : If X I  is A! and . . . and XN is Ak then Y is Cj with rk 

where X I ,  . . . , XN are features considered in the problem and A!, . . . , Ak 
are linguistic labels employed to represent the values of the variables. These 
kinds of fuzzy rules represent, in the antecedent part, a subspace of the com- 
plete search space by means of a linguistic label for each considered variable 
and, in the consequent part, a class label (Cj) and a certainty degree (T ' ) .  

This numerical value indicates the degree of certainty of the classification in 
that class for the examples belonging to the fuzzy subspace delimited by the 
antecedent part. 

2. The Fuzzy Reasoning Method (FRM), an inference procedure which, combining 
the information provided by the fuzzy rules related with the example to classify, 
determines the class to which it belongs to. 

The majority of FRBCSs (see [3, 101 among others) use the classical FRM that clas- 
sifies a new example with the consequent of the fuzzy rule having the highest degree of 
association. Another family of FRMs that use the information provided by all the rules 
compatible with the example (or a subset of them) have been developed [3, 51. In this 
work, we use two different FRMs, each one belonging to one of the said groups: maxi- 
mum and normalised sum. 

2.2 Feature Selection and DB Learning in FRBCS design 

As we mentioned before, our FRBCS learning method generates the KB by selecting 
an adequate feature set and by learning the appropiate DB components for each selected 
variable. In this section, we briefly describe these problems jointly solved in our proposal. 

2.2.1 Feature Selection Process 

The main objective of any feature selection process is to reduce the dimensionality of the 
problem for the supervised inductive learning process. This fact implies that the feature 
selection algorithm must determine the best features for its design. 

There are two kinds of feature selection algorithms: 

0 Filterfeature selection algorithms [ 171, which remove the irrelevant characteristics 
without using a learning algorithm (e.g. by means of class separability measures). 
They are efficient processes but, on the other hand, the feature subsets obtained by 
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them may not be the best ones for a specific learning process because of the exclu- 
sion of the heuristic and the bias of the learning process in the selection procedure 
[161. 

0 Wrapperfeature selection algorithms [16, 171. This kind of feature selection algo- 
rithms selects feature subsets by means of the evaluation of each candidate subset 
with the precision estimation obtained by the learning algorithm. In this form, they 
obtain feature subsets with the best behaviour in the classifier design. Their prob- 
lem is their inefficiency since the classifier has to be built for the evaluation of each 
candidate feature subset. 

In our proposal we will use a wrapper feature selection algorithm which utilises the 
precision estimation provided by an efficient fuzzy rule generation process (Wang and 
Mendel’s fuzzy rule generation process) and a GA as search algorithm. Inside the DB 
derivation, the granularity learning will provide us an additional way to select features 
when the number of linguistic labels assigned to a specific variable is only one (we will 
explain this in a further section). 

2.2.2 DB Learning 

As previously said, the derivation of the DB highly influences the FRBCS performance. In 
fact, some studies in Fuzzy Rule-Based Systems have shown that the system performance 
is much more sensitive to the choice of the semantics in the DB than to the composition 
of the RB [7]. Some approaches have been proposed to improve the FRBCS behaviour 
by means of a tuning process once the RB has been derived [4]. However, these tuning 
processes only adjust the shapes of the membership functions and not the number of 
linguistic terms in each fuzzy partition, which remains fixed from the begining of the 
design process. 

The methods that try to learn appropiate DB components per variable usually work 
in collaboration with an RB derivation method. A DB generation process wraps an RB 
learning one working as follows: each time a DB has been obtained by the DB definition 
process, the RB generation method is used to derive the rules, and some type of error 
measure is used to validate the whole KB obtained. The works proposed in [6,7, 81 use 
Simulated Annealing and GAS to learn an appropiate DB in a Fuzzy Rule-Based System. 
The method proposed in [ 141 considers a GA to design an FRBCS, working in the said 
way. 

3 Genetic Algorithm for Feature Selection and DB Learning 

In this section, we propose a new learning approach to automatically generate the KB of 
an FRBCS composed of two methods with different goals: 

0 A genetic learning process for the DB that allows us to define: 

- The relevant variables for the classification process (feature selection). 

- The number of labels for each variable (granularity learning). 
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- The form of each fuzzy membership function in non-uniform fuzzy parti- 
tions, using a non-linear scaling function that defines different areas in the 
variable working range where the FRBCS has a higher or a lower relative 
sensibility. 

A quick ad hoc data-driven method that derives the fuzzy classification rules con- 
sidering the DB previously obtained. In this work we use the extension of Wang 
and Mendel’s fuzzy rule generation method [21] for classification problems [3], but 
other efficient generation methods can be considered. 

We should note that the granularity learning allows us another way of feature selec- 
tion: if a variable is assigned only to one label, it has no influence in the RB, so it will 
not be considered as a relevant variable. A similar double-level feature selection process 
has been previously considered in genetic learning processes of FRBCSs such as SLAVE 
[I l l .  

All the components of the DB will be adapted throughout a genetic process. Since 
it is interesting to reduce the dimensionality of the search space for that process, the 
use of non-linear scaling functions is conditioned by the necessity of using parameterized 
functions with a reduced number of parameters. We consider the scaling funtion proposed 
in [6],  that has a single sensibility parameter called a (a E R). The function used is 
(f [-1,11 --$ [-I, 11) 

f(z) = s ign(z)  . lzla, with a > 0 

The final result is a value in [ - 1,1] where the parameter a produces uniform sensibil- 
ity (a = l) ,  higher sensibility for center values (a > l), or higher sensibility for extreme 
values (a < 1). In this paper, triangular membership functions are considered due to their 
simplicity. So, the non-linear scaling function will only be applied on the three defini- 
tion points of the membership function (which is equal to transform the scaling function 
in a continuous piece-wise linear function), in order to make easier the structure of the 
generated DB and to simplify the defuzzification process. Figure 1 shows a graphical 
representation of the three possibilities of fuzzy partition depending on the value of pa- 
rameter a. 

We should note that the previous scaling function is recommended to be used with 
symmetrical variables since it causes symetrical effects around the center point of the 
interval. For example, it can not produce higher sensibility in only one of the working 
range extents. In the method presented in this paper, we add a new parameter (called S) 
to the non-linear scaling function as described also in [6]. S is a parameter in ( 0 , l )  to 
distinguish between non-linearities with symmetric shape (lower sensibility for middle or 
for extreme values, Figure 1) and asymmetric shape (lower sensibility for the lowest or 
for the highest values, Figure 2) .  

Furthermore, the main purpose of our KB design process is to obtain FRBCSs with 
good accuracy and high interpretability. Unfortunately, it is not easy to achieve these 
two objectives at the same time. Normally, FRBCSs with good performance have a high 
number of selected variables and also a high number of rules, thus presenting a low degree 
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Figure 1: Fuzzy partitions with a = 1 (top), a > 1 (down left), and a < 1 (down right) 

of readability. On the other hand, the KB design methods sometimes lead to a certain 
overfitting to the training data set used for the learning process. 

To avoid these problems, our genetic process uses a multiobjective GA with two goals: 

0 Minimise the classification error percentage over the training data set. 

0 Design a compact and interpretable KB. This objective is performed by penalising 
FRBCSs with a large number of selected features and high granularity. 

The next subsections describe the main components of the genetic learning process. 

Figure 2: Fuzzy partitions with S = 1 (left with a > 1 and right with a < 1) 

3.1 Encoding the DB 

The two main DB components of the selected variables are the number of linguistic terms 
and the membership functions that define their semantics. Therefore, each chromosome 
will be composed of three parts: 

0 Relevant variables (Cl): For a classification problem with N variables, the selected 
features are stored into a binary coded array of length N .  In this array, an 1 indicates 
that the corresponding variable is selected for the FRBCS. 
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Number of labels (C2): The number of labels per variable is stored into an integer 
array of length N .  In this contribution, the possible values considered are taken from 
the set {I , .  . . ,5} .  

Sensibility parameters (C3): An array of lenght N x 2, where the sensibility pa- 
rameters (a,S) are stored for each variable. In our case, the range considered for the 
parameter a is the interval (0,8]. 

If wi is the bit that represents whether the variable i is selected and li is the granularity 
of variable i, a graphical representation of the chromosome is shown next: 

3.2 Evaluating the chromosome 

There are three steps that must be done to evaluate each chromosome: 

1. Generate the fuzzy partitions using the information contained in the chromosome. 
Obviously, this process is only applied to the selected variables (vi = 1 and li > 1). 
First, each variable is linearly mapped from its working range to [-1,1]. In a sec- 
ond step, uniform fuzzy partitions for all the variables are created considering the 
number of labels per variable ( l i ) .  Finally, the non-linear scaling function with its 
sensibility parameters (ai, Si) is applied to the definition points of the membership 
functions obtained in the previous step, obtaining the whole DB definition. 

2. Generate the RB by running a fuzzy rule learning method considering the DB ob- 
tained in the previous step. 

3. Calculate the two values of the evaluation function: 

0 CPE: classification percentage error over the training set. 

0 SV AL: with SV being the number of selected variables and AL being the 
averaged granularity of the selected variables. 

3.3 Genetic operators 

The initial population is selected considering several groups of chromosomes, each one of 
them with different percentage for the selected variables (randomly chosen).The remain- 
ing values of the chromosome are chosen at random. For the rest of GA components, the 
following operators are considered. 
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3.3.1 Selection 

We have used the selection mechanism of MOGA [9], which is based on the definition of 
Pareto-optimality. It is said that a solution dominates another when the former achieves 
better or equal values than the latter in all but one objective, where the former outperforms 
the latter. Hence, the pareto is composed of all the non-dominated solutions. 

Taking this idea as a base, MOGA assigns the same selection probability to all non- 
dominated solutions in the current population. The method involves dividing the popula- 
tion into several classes depending on the number of individuals dominating the members 
of each class. Therefore, the selection scheme of our multiobjective GA involves the 
following five steps: 

1. Each individual is assigned a rank equal to the number of individuals dominating it 
plus one (chromosomes encoding non-dominated solutions receive rank 1). 

2 .  The population is increasingly sorted according to that rank. 

3. Each individual is assigned a selection probability which depends on its ranking in 
the population, with lower ranking receiving lesser probabilities. 

4. The selection probability of each equivalence class (group of chromosomes with 
the same rank, i.e., which are non-dominated among them) is averaged. 

5. The new population is created by following the Baker’s stochastic universal sam- 
pling [ 13. 

3.3.2 Crossover 

Two different crossover operators are considered depending on the two parents’ scope: 

Crossover when both parents have the same selected variables and equal granu- 
larity level per variable: If the two parents have the same values in C1 and C2, 

the genetic search has located a promising space zone that has to be adequatelly 
exploitated. This task is developed by applying the max-min-arithmetical (MMA) 
crossover operator [ 131 in the chromosome part based on real-coding scheme (pa- 
rameters a i )  and obviously by maintaining the parent C1 and C2 values in the off- 
spring. Both combinations of parameter Si are tested and the best two chromo- 
somes are selected. 

Crossover when the parents encode different selected variables or granularity lev- 
els: This second case highly recommends the use of the information encoded by 
the parents to explore the search space in order to discover new promising zones. 
So, a standard crossover operator is applied over the three parts of the chromosome. 
This operator performs as follows: a crossover point p is randomly generated in C1 
and the two parents are crossed at the p-th variable in all the chromosome parts, 
thereby producing two meaningful descendents. 
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3.3.3 Mutation 

Three different operators are used, each one of them acting on different chromosome 
parts: 

0 Mutation on C1 and on the second part of C, (parameters Si): As these parts of 
the chromosome are binary coded, a simple binary mutation is developed, flipping 
the value of the gene. 

0 Mutation on C2: The mutation operator selected for the granularity levels is similar 
to the one proposed by Thrift in [20]. A local modification is developed by changing 
the number of labels of the variable to the immediately upper or lower value (the 
decision is made at random). When the value to be changed is the lowest (1) or the 
highest one, the only possible change is developed. 

Mutation onfirst part of C, (parameters ai): As this part is based on a real-coding 
scheme, Michalewicz’s non-uniform mutation operator is employed [ 181. 

4 Experimentation 

We have applied the learning method to an example base with a high number of features, 
Sonar data set [12], which has 208 instances of a sonar objective classification problem. 
Each one of these instances is described by 60 features to discriminate between a sonar 
output corresponding to a cylindrical metal or an approximately cylindrical rock. The 
training set contains 104 elements and the test set contains the remaining 104 elements. 
Table 1 shows the parameter values considered for the experiments developed. 

Table 1: Parameter values 
Parameter Value 

Granularity values { 1, . . . , 5 }  
Population size 100 

Mutation probability 0.2 
Crossover probability 0.6 

Number of generations {loo, 5001 

The best results obtained by our genetic learning process for the two FRMs considered 
are shown in Table 2. The best results found with the Wang and Mendel’s RB generation 
method considering all the features selected and the same number of labels for each one 
of them are also shown in the top line of each FRM. The table contains the following 
columns: 

0 FRM: Fuzzy Reasoning Method used. 

0 SV: Number of selected variables. 

0 AL: Average of the number of labels considered for the selected variables. 
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60 
9 

0 NR: The number of rules of the FRBCS. 

3 104 2.8 25.9 
4.1 100 0.0 18.2 

0 % tra: Classification percentage error obtained in the training data set. 

0 % tst: Classification percentage error obtained in the test data set. 

Normalised 

Table 2: Best results obtained (% error) 
FRM I sv I AL I NR I %tra I %tst 1 

7 4.1 92 1.9 19.2 
6 3.8 93 6.7 13.4 

4.0 25 19.2 20.1 
24.1 22.1 

As it can be observed, the proposed method achieves a significant reduction in the 
number of variables selected (about the 90% of the original number of features, or even 
more in some cases) even with an important increase of the generalization capability (clas- 
sification rate over the test data set). Besides, many solutions present also a significant 
decrease in the number of rules, reducing the complexity of the KB. Therefore, our mul- 
tiobjective GA provides a wide set of solutions that permit an adequate choice depending 
on the main goal required: good performance or high degree of interpretability. 

5 Conclusions 

This contribution has proposed a multiobjective genetic process for jointly performing 
feature selection and DB components learning, which is combined with an efficient fuzzy 
classification rule generation method to obtain the complete KB for a descriptive FRBCS. 
Our method achieves an important reduction of the relevant variables selected for the 
final system and also adapts the fuzzy partition of each variable to the problem being 
solved. So, we can conclude that the proposed method allows us to significantly enhance 
the interpretability and accuracy of the FRBCSs generated. We have used a simple RB 
generation algorithm but another more accurate one can be used, having in mind its run 
time. Our future work will focus on improving the performance of the multiobjective 
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GA by using a niching technique or employing a co-evolutive GA and on comparing the 
results with other feature selection approaches. 
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Abstract 
We introduce a model of fuzzy association rules that employs multiple-valued implication 
operators in order to represent the relation between the antecedent and the consequent of 
a rule. For this type of association, adequate quality measures are proposed and some 
semantic issues are discussed. Moreover, we outline an efficient data mining algorithm for 
discovering implication-based fuzzy associations in (relational) databases and illustrate 
this algorithm by means of an example. 

Keywords: Data mining, association rules, fuzzy sets, generalized implications. 

1 Introduction 
Among the techniques that have recently been developed in the field of data mining, 
so-called association rules (or associations for short) have gained considerable attraction 
[ 11. Such rules, syntactically written A - B,  provide a means for representing (apparent) 
dependencies between attributes in a database. Typically, A and B denote sets of binary 
attributes, also called features or items. The intended meaning of a (binary) rule A 2 

B is that a data record (or transaction) stored in the database that contains the set of 
items A is likely to contain the items B as well. To illustrate, consider the simple rule 
{eggs, butter} 2 {sugar},  suggesting that it is likely to find sugar in a transaction 
(which is here a purchase) which does already contain eggs and butter. Several efficient 
algorithms have been devised for mining association rules in large databases [2, 10, 131. 

Generalizations of (binary) associations of this type have been developed in order 
to cope with quantitative (e.g. cardinal or ordinal) attributes. Typically, a quantitative 
association rule specifies attribute values by means of intervals, as e.g. in the simple 
rule “Employees at the age of 30 to 40 have incomes between $50,000 and $70,000.” 
This paper investigatesfuzzy association rules, which are basically obtained by replacing 
intervals in quantitative rules by fuzzy sets (fuzzy intervals). The use of fuzzy sets in 
connection with association rules -as with data mining in general [ 1 11 - has recently been 
motivated by several authors (e.g. [3, 4, 61). Among other aspects, fuzzy sets avoid an 
arbitrary determination of crisp boundaries for intervals. Furthermore, fuzzy association 
rules are very interesting from a knowledge representational point of view: By acting 
as an interface between a numeric scale and a symbolic scale composed of linguistic 
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terms, fuzzy sets allow for representing the rules discovered in a database in a linguistic 
and hence comprehensible and user-friendly way. Example: “Middle-aged employees 
dispose of considerable incomes.” 

The common approach to fuzzy association rules is to replace set-theoretical by fuzzy 
set-theoretical operations. The type of rule thus obtained is conjunction-based, as will be 
explained later on. In this paper, we are concerned with an alternative type of fuzzy associ- 
ation rule, namely implication-based rules which make use of multiple-valued implication 
operators for modeling associations. A formal foundation and semantic interpretation of 
this type of association rule has been presented in [5]. Here, we focus on algorithmic 
aspects and the practical realization of these results. By way of background, Section 2 
reviews some basics of association rules. Implication-based fuzzy association rules and 
quality measures for rating them are introduced in Section 3. In Section 4, we discuss 
an algorithm for mining fuzzy association rules. Finally, this algorithm is illustrated by 
means of an example in Section 5. 

2 Association Rules 
Consider a set A = {.I,. . . , a,} of items, and let a transaction be a subset T C A. The 
intended meaning of the association rule A - B,  where A, B C A, is that a transaction 
T which contains the items in A is likely to contain the items in B as well. 

A rule A 2 B is generally rated according to several criteria and is “accepted” if 
none of them falls below a certain (user-defined) threshold. The most important measures 
are the following ( D x  = {T E D I X T }  denotes the transactions in the database D 
which contain the items X C A, and 1 D x  I = card(Dx) is its cardinality): A measure 
of support defines the absolute number or the proportion of transactions in D that contain 
both, A and B: 

or s ~ p p ( A  - B )  = /DA,B//JD/. Theconfidenceis the proportionofcorrect applications 
of the rule: 

These criteria can be complemented by other measures, e.g. a criterion that favors “unex- 
pected” over “expected” associations [ 141. 

In the above setting, a transaction T can be identified with a data record (tuple) 
(51, . . . , 2,) E ( 0 ,  l}” in a unique way. To this end, one simply identifies each item a, 
with a binary variables X, and lets 2,  = T[X,] = 1 if a, is contained in T and 5 ,  = 0 
otherwise. 

Now, let X and Y be quantitative attributes (such as age or income) with completely 
ordered domains 9 x and 9 y ,  respectively. Without loss of generality we can assume that 
ax, 9 y  are subsets of the real numbers, %. A quantitative association rule involving the 
variables X and Y is then of the following form: 

A 2 B :  I f X  E A = [ ~ 1 , 5 2 ]  THENY E B = [ ~ 1 , ~ 2 ] ,  (3) 
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where 21, x2 E 9 x  and y1, y2 E 9 y .  This approach can quite simply be generalized 
to the case where X and Y are multi-dimensional vectors and, hence, A and B hyper- 
rectangles rather than intervals. Subsequently, we proceed from fixed variables X and 
Y ,  and consider the database D as a collection of tuples (z, y) = ( T [ X ] ,  T [ Y ] ) ,  i.e. as a 
projection of the original database. 

Note that the quality measures from Section 2 are applicable in the quantitative case 
as well:' 

(4) supp(A 2 B) = card{(z, y) E D 1 z E A A y E B} 
= I ~ A ~ ~ , ~ , U B ~ , , ~ ~  1 ,  

card{(x,y) E 013: E A A y  E B} 
card{(x, y) E D 13: E A} 

conf(A-B) = ( 5 )  

In fact, each interval [XI, z2] does again define a binary attribute A,,,,, = l[,,.,,~. Thus, 
not only the rating but also the mining of quantitative rules can be reduced to the mining of 
binary association rules by simply fixing a class of intervals and transforming the numeri- 
cal data into binary data [9, 141. Still, finding a useful transformation (binarization) of the 
data is a non-trivial problem by itself which affects both, the efficiency of subsequently 
applied mining algorithms and the potential quality of discovered rules. Apart from data 
transformation methods, clustering techniques can be applied which create intervals and 
rules at the same time [7, 151. 

3 Fuzzy Association Rules 
Replacing the sets (intervals) A and B in ( 3 )  by fuzzy sets (intervals) leads to fuzzy 
(quantitative) association rules. Thus, a fuzzy association rule is understood as a rule of 
the form A 2 B, where A and B are now fuzzy subsets rather than crisp subsets of 
the domains 9 x  and 9 y  of variables X and Y ,  respectively. We shall use the same 
notation for ordinary sets and fuzzy sets. Moreover, we shall not distinguish between a 
fuzzy set and its membership function, that is, A(%) denotes the degree of membership 
of the element z in the fuzzy set A. Recall that an ordinary set A can be considered as a 
"degenerate" fuzzy set with membership degrees A(z) = I[A(z) E {0,1}. 

The standard approach to generalizing the quality measures for fuzzy association rules 
is to replace set-theoretic by fuzzy set-theoretic operations. The Cartesian product A x B 
of two fuzzy sets A and B is usually defined by the membership function (z, y) ++ A(z)€3 
B(y) ,  where €3 is a t-norm. Moreover, the cardinality of a finite fuzzy set is simply the 
sum of its membership degrees [8]. Thus, (4) and (5) can be generalized as follows: 

'Subsequently we focus on support and conjdence measures. The results can be transferred to other mea. 
sures in a straightforward way. 
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Note that the support of A - B corresponds to the sum of the individual supports pro- 
vided by tuples ( 2 ,  y) E D: 

(8) suPP[,,,](A - B) = 4 x 1  @ B(Y). 

According to (8), the tuple ( 2 ,  y)  supports A - B if both, z E A and y E B. 
In the non-fuzzy case, a tuple (z, y)  supports a rule A - B iff the conjunction 

A(z )  A B(Y) (9) 

holds true. The measure (8) is a straightforward generalization of this condition, replacing 
the conjunction by a t-norm. One might object, however, that this approach does not take 
the implicative nature of a rule into account. And indeed, (6) and (7) entail properties that 
might appear questionable. For example, consider a rule A - B, where A is perfectly 
associated with B. By this we mean that A(z)  = B(y)  for all tuples (z, y) E D. Of 
course, one would expect this rule to have full confidence: conf(A 2 B )  = 1. However, 
since a: @ a: < a: if 8 is not idempotent (i.e. @ # min), we usually have 

3.1 Support 
The above problem can be avoided if one takes an alternative specification of the (non- 
fuzzy) support measure as a point of departure, namely the condition 

A ( z )  * (A(z) =+ B(Y)), (10) 

where + is the standard (material) implication. In fact, (9) and (10) are logically equiva- 
lent. 

Proceeding from (10) rather than (9), we obtain the following measure of individual 
support in the fuzzy case: 

suPP[,,,](A - B) = A(z) @ (A(%) --+ B(Y)), (11) 

where -+ is a multiple-valued implication operator. This measure has been proposed 
recently in [ 5 ] ,  with a special justification for letting @ the product operator. From a 
semantic point of view, (1 1) makes (individual) support conditional on two properties 
that must be satisfied: 

0 Correctness: The rule is correct for the tuple (5 ,  y) in a logical sense. 

0 Non-triviality: The rule is not trivially satisfied for (z, y)  in the sense that the 
premise is not completely false. 

Correctness is modeled by the second term in ( l l ) ,  A ( s )  --+ B(y) ,  non-triviality by the 
first term, A(%), and these two conditions are combined in a conjunctive way through 8. 

Interestingly enough, (8) and (11) are identical if A and B are intervals, that is 
A(z ) ,  B(y)  E (0 , l ) .  Thus, the difference between the implication-based and the clas- 
sical (conjunction-based) approach to association rules disappears in the non-fuzzy case, 
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which might explain why semantic issues have not received much attention as yet. Fur- 
ther, it is interesting to mention that (8) and ( I  l )  coincide if the following conditions hold: 
63 = min in (8), the t-norm 63 in (1 1) is continuous and y-1 is the residuated implication 
associated with 8. 

Subsequently, we proceed from (1 1) with product t-norm as an individual support 
measure. Moreover, the overall support of a rule A - B is again the sum of the individual 
supports: 

3.2 Confidence 
As in the non-fuzzy case, a measure of confidence of an association rule can be derived 
from a corresponding measure of support. Interestingly enough, however, the minimal 
confidence condition, conf(A - B )  2 A, can be interpreted in different ways, which in 
turn suggest different generalizations in the fuzzy case. 

First, the support of A - B can be related to the support of A, that is to the support 
of the default rule A - 9 y . Thus, one obtains 

since a -+ 1 = 1 for all a and, hence, s ~ p p [ ~ , ~ ~ ( A  - 9 y )  = A(z) according to (11). A 
second possibility is to relate the support of A - B to the support of A 3 1 B .  In that 
case, the minimal confidence condition means that the rule A - B should be supported 
much better than A - TB: 
where i B ( y )  = 1 - B(y). Interestingly enough, (13) and (14) are again equivalent in 
the non-fuzzy case, in the sense that conf(A - B )  2 A according to (13) iff conf(A - 
B )  2 A/( l  - A) according to (14). This is due to the fact that 

for all (z, y), an equation which is no longer valid in the fuzzy case. 

4 Mining Fuzzy Association Rules 
We proceed from a set of variables (attributes) X I , .  . . , XN (a relational database or 
a projection thereof) and fixed fuzzy partitions of the domains 9 X, of these variables; a 
fuzzy partition is simply a collection F, = {A,,I, . . . , A,,nt} of fuzzy subsets of 9x, that 
cover the domain: For each z E Dx, there is a fuzzy set A,, E F, such that Ao,(z) > 0. 
Besides, the stronger condition CyAI A2,(z) = 1 is often imposed [ 121. This, however, 
is by no means imperative for our approach. 

Note that Ft defines a new domain for the variable X ,  on a more abstract level. That 
is, each fuzzy set A,, corresponds to an attribute value and “ X ,  is AZJ” means that X ,  
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takes the “fuzzy value” At,. We shall also refer to an A,, as afuzzy item or simply an 
item; an itemset is a collection of attribute values related to different variables. (Our cur- 
rent implementation does not support the generation of new items (= fuzzy intervals) by 
merging adjacent (fuzzy) intervals [ 141, but it could clearly be extended in this direction.) 

The general form a fuzzy association rule is 

IF 
THEN 

X1 is A1 and . . . and X, is A, 
Yl is B1 and . . . and Y, is B,, 

where the involved variables X I ,  . . . , X ,  and Y1, . . . , Y, constitute a subset of the vari- 
ables in the database and none of them occurs more than once (the fuzzy sets A and B, 
are elements of the corresponding fuzzy partitions). Compactly, this can again be written 
as 

If X = (XI , .  . . , X,) is A THEN Y = (YI , .  . . , Ym) is B ,  

where the membership functions of the multi-dimensional fuzzy sets A and B are defined 
through 

In the non-fuzzy case, the assumption of a fixed partition of a numerical domain, de- 
fined by a set of (mutually exclusive and exhaustive) intervals, is often regarded as critical. 
In the fuzzy case, however, the specification of a fixed partition appears reasonable. In 
fact, one of the main reasons to employ fuzzy sets is the possibility of expressing rela- 
tionships between variables in a linguistic form, using terms such as “young” or “high 
income.” Of course, the user or data miner will generally have a concrete idea of such 
terms, which may depend on the specific context at hand but not on the data. Since it is the 
user who interprets the association rules, these rules should exactly reflect the meaning 
he has in mind and, hence, the user himself should characterize each linguistic expression 
in terms of a fuzzy set. Loosely speaking, it is the user’s linguistic concepts rather than 
the data that defines the fuzzy partition and, hence, the class of rules expressible in the 
corresponding language. Clearly, one might also think of adapting a fuzzy partition to the 
data. Then, however, the resulting fuzzy sets might not agree with the idea of the user. 
Even worse, for some of these sets it might be impossible to find a suitable linguistic term. 

Below we propose an extension of the well-known APRIORI algorithm [2] for mining 
fuzzy association rules. The original APRIORI algorithm generates rules from so-called 
frequent itemsets: One subset of the itemset becomes the premise of the rule and the 
complement becomes the conclusion. Due to definition (l), the support of any rule derived 
from a frequent itemset equals the support of the itemset itself. Thus, the problem of 
finding minimally supported rules reduces to the problem of finding frequent (= minimally 
supported) itemsets, which constitutes the main part of the APRIORI algorithm. In order 
to find these itemsets, APRIORI  efficiently exploits the following monotonicity property: 
Each subset of a frequent itemset is a frequent itemset by itself or, stated differently, a set 
of items having a non-frequent itemset as a subset cannot be a frequent itemset. 

In our implication-based approach to association rules, the premise and the conclusion 
do no longer play symmetric roles. Consequently, the support of an implication-based rule 
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A 3 B is not determined by the support of the associated itemset A U B. However, one 
can take advantage of the fact that the support (1 1) of A B is lower-bounded by the 
support of the premise A: 

suPP[,,,](A - B) = 4 x 1  @ (A(z)  -.-+ B(Y)) 5 A(z) .  

Consequently, the premise A of a minimally supported rule A 2 B must be a frequent 
itemset or, put in a different way, the frequent itemsets constitute a superset of the condi- 
tion parts of minimally supported association rules. Therefore, it is reasonable to deter- 
mine the frequent itemsets in a first step. This can be realized by means of the standard 
APRIORI algorithm with the only difference that an observation z = (x 1, . . . , zn)  incre- 
ments the support of an itemset {Al ,  . . . , A,} not by 1 but by 

SUPP,(A) = 4 x 1  (15) 
A i ( z i )  @ A z ( x z )  @ . . I @ An(z,). = 

Now, let S denote the set of frequent itemsets found by APRIORI. For each A E S, a 
Candidate rule of level one is a rule of the form A {Bl}, where B1 @ A. The sup- 
port and confidence (and maybe other measures) of all candidate rules are computed by 
scanning the database. Only those rules which do not fall below one of the corresponding 
thresholds are accepted. 

The rules of level one, i.e. with only one attribute in the conclusion part, are perhaps 
most convenient from a knowledge representational point of view. Yet, rules of higher 
order can be derived as well. To this end, one can take advantage of the following mono- 
tonicity property: 

VB’ C_ B : supp(A - B) 5 supp(A - B’). 

This inequality holds, since an implication -.-+ is non-decreasing in the second argument 
and, moreover, B(y)  5 B’(y’) if the itemset B’ is a subset of the itemset B (and y 
an extension of y’). If the rule A - B satisfies the minimum support condition, the 
same condition hence holds for each rule A - B’. Moreover, the same relation holds 
for the confidence since the premise A (hence the denominator in (13)) does not change: 
conf(A - B) 5 conf(A - B’). Therefore, the rules A - B of level m satisfying 
the minimal support and minimal confidence condition have the following property: Each 
rule A 3 B’, where B’ is derived from B by taking one item away, also has minimal 
confidence and minimal support. In other words, the candidate rules of level m can be 
obtained by joining the set of rules of level m - 1 with itself Two rules A 3 B and 
A’ B’ are joined if A = A’, B and B’ share exactly m - 2 items, and the items that 
distinguish them are not related to the same attribute (hence each of B and B ’ involve 
m - 1 variables, and B U B’ involves m variables). This yields the candidate rule A 2 
B U B’. In a pruning step, the candidate rules of level m can be filtered according to the 
following criterion: A rule A - B is deleted if there is an itemset B’ C B of size m - 1 
such that A B’ is not an accepted rule of level m - 1. Finally, the acceptance of the 
remaining candidate rules is determined by computing their support and confidence. 

In summary, our approach to mining implication-based fuzzy association rules con- 
sists of the following steps: (1) Apply the APRIORI algorithm (with fuzzy support mea- 
sure (15)) in order to derive the frequent itemsets. (2) Use the frequent itemsets in order 
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to generate cadidate rules of level one. (3) Filter these rules, using the minimum support 
and confidence conditions. (4) Derive accepted rules of order m from accepted rules of 
order m - 1 by joining the latter, pruning the rules thus obtained, and computing support 
and confidence for the remaining candidates. 

We refrain from describing implementational details here. Still, concerning imple- 
mentation and computational complexity let us mention that also the second part of our 
algorithm is quite similar to the APRIORI algorithm (for quantitative attributes [14]). In 
fact, each pass first generates candidate rules from lower-level rules and then derives sup- 
port and confidence measures by scanning the database. The generation of candidates 
in turn consists of a join and a prune procedure. Roughly, our procedure can hence be 
seen as a composition of two APRIORI-like algorithms. Experimental results have shown, 
however, that the execution time is not doubled, which can be explained by the fact that 
less attributes are considered in the second part (only attributes which are not already part 
of the antecedent of a rule can appear in the precedent). 

Note that usually a kind of post-processing of the accepted association rules is advised, 
since several of these rules might provide redundant information. For example, consider 
two accepted rules d 2 B and A’ 2 B where the first one is more general than the 
second one in the sense that d 2 A’. Retaining the second rule has then to be justified, 
for example through a comparatively high confidence. Thus, it might be pruned if, e.g., 

conf(d’ - B )  - conf(d 2 B )  < E .  (16) 

An interesting idea is to “tune” the accepted association rules by applying so-called 
modiJer functions to their attribute values. In connection with the linguistic modeling 
of fuzzy concepts, modifiers such as 2 H z2 or 2 H fi are utilized for depicting the 
effect of linguistic hedges such as “very” or “almost” [16]. For example, if the fuzzy 
set A represents the linguistic expression “high income,” the modified fuzzy set with 
membership function m o A = A 2  models the concept “very high income.” Now, suppose 
a (small) class of such modifier functions to be given. A rule with n items in the condition 
part and m items in the conclusion part can then be adapted by applying a modifier to 
each of these items. Thus, kn+m rules can be defined if k modifiers are available. One 
can then assess these rules by computing their support and confidence and finally replace 
the original rule by the best modification. Of course, this procedure is practicable only for 
small k.’ Apart from that, it is nothing more than an option which might slightly improve 
the rules which are accepted anyhow. 

5 Illustrative Example 
To illustrate our approach, we have applied it to the ADULT data set. This data is com- 
prised of 48842 instances (45222 of which remain after removing those containing miss- 
ing values), where each instance corresponds to a person characterized by 14 attributes, 
see Table 1. Most attribute names are self explaining, and we refrain from listing the 
corresponding domains (fnlwgt is the “final weight” of a person as computed by the 
U.S. Census Bureau according to specific criteria, education-num specifies the duration 
of education in years). Table 1 also shows the sizes of the fuzzy partitions underlying 

*A reasonable choice is the set of k = 3 modifiers I H 6, I ++ z, z H zz. 
3Available a t h t t p :  //w. ics .uci .edu/-mlearn/MLRepository.html. 
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I Attribute Name Attribute TvDe Fuzzv Partition 
I 1 age continuous 3 

2 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

: 3  
workclass 
fnlwgt 
education 
education-num 
marital-status 
occupation 
relationship 
race 
sex 
capital-gain 
capital-loss 
hours-per-week 
native-countrv 

discrete (8 values) 
continuous 
discrete (16 values) 
continuous 
discrete (7 values) 
discrete (14 values) 
discrete (6 values) 
discrete (5  values) 
discrete (2  values) 
continuous 
continuous 
continuous 
discrete (41 values) 

8 
3 
3 
3 
7 
14 
6 
5 
2 
1 
1 
3 

41 

Table 1: Attributes in the ADULT data set. 

our data mining procedure (we used standard equi-width partitions with triangular fuzzy 
sets). If the size of a partition equals the cardinality of the attribute’s domain, it simply 
means that we used the degenerate partition in which each value defines a singleton fuzzy 
set. To illustrate, Table 2 shows the definition of the fuzzy partition used for the attribute 
education which is comprised of fuzzy sets for low, middle, and high qualification. 

In our experiments, we used the measures (12) and (13) with the product t-norm and 
the Goguen implication (a y-i ,8 = 1 if o 5 ,8 and p / a  otherwise). The support and con- 
fidence threshold were set to 1,200 and .7, respectively. Moreover, we used the pruning 
rule described in the previous section with E in (16) given by .05. Table 3 shows a list of 
the ten most confident implication-based rules among those that satisfy the support and 
confidence conditions (and have not been pruned). As can be seen, the first rules establish 
a close relationship between the attributes education and education-num. On the one hand, 
this is hardly astonishing and, hence, hardly interesting. On the other hand, it proves the 
plausibility of the results. Moreover, it is a nice example for the problem pointed out in 
Section 3: The duration of the education in years allows for a more or less precise predic- 
tion of the level of qualification and vice versa (at least if one defines the corresponding 
fuzzy partitions in a suitable way, as we have done). This fact is correctly reflected by the 
implication-based approach but not by the conjunction-based model which assigns, e.g., 
to the first rule a confidence of only 0.67. More generally, when we compare our result 
with the rules obtained for the standard approach (also using the product as a t-norm) we 
find that the respective top 20 rules have only 7 rules in common. 

6 Summary 
We have introduced an alternative type of fuzzy association rule which is more logic- 
oriented and makes use of a multiple-valued implication operator in order to connect the 
condition and conclusion parts of a rule. Consequently, the two parts do no longer play 
symmetric roles in associations, a property that appears quite reasonable and that avoids 
some difficulties of the classical (conjunction-based) approach. Interestingly enough, the 
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Attribute Value 
Bachelors 
Some-college 
11th 
HS-grad 
Prof-school 
Assoc-acdm 

9th 

12th 
Masters 

10th 
Doctorate 

Preschool 

ASSOC-voc 

7th-8th 

lst-4th 

5th-6th 

low qual. 
0 
0 

0.2 
0 
0 
0 
0 

0.6 
0.8 
0 
0 
1 

0.4 
0 
1 
1 

middle qual. 
0 

0.75 
0.75 

1 
0 

0.25 
0.5 

0.25 
0 
1 
0 
0 

0.5 
0 
0 
0 

h g h  qual. 
0.8 
0.2 
0 
0 
1 

0.6 
0.4 
0 
0 
0 
1 
0 
0 
1 
0 
0 

Table 2: Fuzzy partition for the attribute education. 

Rule 
education-nurn.low 2 education.low 
education.low - education-num.low 
education.high - education-nurn.high 
education.middle 2 education-num.middle 
education-num.middle - educationmiddle 
education-num.high - education. high 
age.middle-age, fnlwgtmiddle - hours-per-week.middle 
age.middle-age, fnlwgt.high fnlwgt - hours-per-weekmiddle 
education.high edu, education-num.middle - hours-per-weekmiddle 
education.middle edu, education-num.high - hours-per-weekmiddle 

conf 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
0.78 
0.78 
0.77 
0.77 

Table 3: Ten most confident implication-based association rules. 
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difference between the implication-based and the classical approach becomes obvious 
only in the fuzzy case, while both approaches are equivalent in the non-fuzzy case. 

Our method for mining fuzzy associations in databases is an extension of the well- 
known APRIORI algorithm. The basic difference concerns the generation of association 
rules from frequent itemsets. In our approach, these itemsets are merely used to generate 
condition parts, not complete rules. Finding accepted rules thus requires an additional 
step in which the conclusion parts are defined. Still, this can be realized quite efficiently 
by exploiting a monotonicity property for the support and confidence of implication-based 
rules, by analogy with the generation of frequent itemsets in APRIORI. 
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Abstract 

In learning graphical models we often face the problem that a good fit to the data may call 
for a complex model, while real time requirements for later inferences force us to strive 
for a simpler one. In this paper we suggest a learning algorithm that tries to achieve a 
compromise between the goodness of fit of the learned graphical model and the complex- 
ity of inferences in it. It is based on the idea to extend an optimal spanning tree in order to 
improve the fit to the data, while restricting the extension in such a way that the resulting 
graph has hypertree structure with maximal cliques of at most size 3 .  

Keywords: Graphical Model, Learning from Data, Optimal Spanning Tree 

1 Introduction 
In recent years graphical models [Whittaker 1990, Lauritzen 1996]--especially Bayesian 
networks [Pearl 1988, Jensen 19961 and Markov networks [Lauritzen and Spiegelhalter 
19881, but also the more general valuation-based networks [Shafer and Shenoy 19881 and, 
though to a lesser degree, the newer possibilistic networks [Gebhardt 1997, Borgelt and 
Kruse 20021-gained considerable popularity as powerful tools to model dependences in 
complex domains and thus to make inferences under uncertainty in these domains fea- 
sible. Graphical models are based on the idea that under certain conditions a multidi- 
mensional (probability or possibility) distribution can be decomposed into (conditional 
or marginal) distributions on lower dimensional subspaces. This decomposition is repre- 
sented by a graph, in which each node stands for an attribute and each edge for a direct 
dependence between two attributes. 

The graph representation also supports drawing inferences, because the edges indi- 
cate the paths along which evidence has to be transmitted [Jensen 1996, Castillo et a1 
19971. However, in order to derive correct and efficient evidence propagation methods, 
the graphs have to satisfy certain conditions. In general, cycles can pose unpleasant prob- 
lems, because they make it possible that the same information can travel on different 
routes to other attributes. In order to avoid erroneous results in this case, the graphs are 
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often transformed into singly connected structures, namely so-calledjoin or junction trees 
[Lauritzen and Spiegelhalter 1988, Jensen 1996, Castillo et a1 19971. 

Since constructing graphical models manually can be tedious and time consuming, a 
large part of recent research has been devoted to learning them from a dataset of sample 
cases [Cooper and Herskovits 1992, Heckerman et a1 1995, Gebhardt and Kruse 1995, 
Gebhardt 1997, Borgelt and Kruse 20021. However, many known learning algorithms do 
not take into account that the learned graphical model may later be used to draw time- 
critical inferences and that in this case the time complexity of evidence propagation may 
have to be restricted, even if this can only be achieved by accepting approximations. The 
main problem is that during join tree construction edges may have to be added, which can 
make the graph more complex than is acceptable. In such situations it is desirable that the 
complexity of the join tree can be controlled at learning time, even at the cost of a less 
exact representation of the domain under consideration. 

To achieve this we suggest an algorithm that constructs a graphical model by extend- 
ing an optimal spanning tree in such a way that the resulting graph has hypertree structure 
with maximal cliques of at most size 3. 

2 Optimal Spanning Trees 
Constructing an optimum weight spanning tree is a special case of methods that learn a 
graphical model by measuring the strength of marginal dependences between attributes. 
The idea underlying these heuristic, but often highly successful approaches is the fre- 
quently valid assumption that in a graphical model correctly representing the probability 
or possibility distribution on the domain of interest an attribute is more strongly depen- 
dent on adjacent attributes than on attributes that are not directly connected to it. Con- 
sequently, it should be possible to find a proper graphical model by selecting edges that 
connect strongly dependent attributes. Among the methods based on this idea construct- 
ing an optimum weight spanning tree is the simplest and best known learning algorithm. 
It is at the same time the oldest approach, as it was suggested in [Chow and Liu 19681. 

In general, the algorithm consists of two components: an evaluation measure, which is 
used to assess the strength of dependence of two attributes, and a method to construct an 
optimum weight spanning tree from given edge weights (which are, of course, provided 
by the evaluation measure). The latter component may be, for example, the well-known 
Kruskal algorithm [Kruskal 19561 or the Prim algorithm [Prim 19571. For the former 
component, i.e., the evaluation measure, there is a variety of measures to choose from. In 
[Chow and Liu 19681, in which learning probabilistic graphical models was considered, 
mutual information (also called information gain or cross entropy) was used. It is defined 
as ( A  and B are attributes): 

I m u t ( A ,  B )  = H ( A )  + H ( B )  - H(AB) ,  

where H ( A )  is the Shannon entropy of the probability distribution on A, i.e., 

H ( A )  = - C P ( a ) l o g z P ( a ) .  
aEdom(A)  

(Here P ( a )  is an abbreviation of P ( A  = a) and denotes the probability that A assumes- 
as a random variable-the value a. We will adopt such abbreviations throughout this 
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paper.) H ( B )  and H ( A B )  are defined analogously. Alternatively, one may use the x2 
measure 

where N is the number of cases in the dataset to learn from (which is often dropped from 
this measure in applications). Furthermore one may use the symmetric Gini index (see, 
for example, [Zhou and Dillon 1991, Borgelt and Kruse 20021 for a definition), or one 
of several other symmetric evaluation measures (see [Borgelt and Kruse 2002]), where 
symmetric means that the measure does not change its value if its arguments A and B are 
exchanged. 

While the above measures are designed for learning probabilistic networks, it is clear 
that the same approach may also be used to learn possibilistic networks: We only have to 
choose a measure for the possibilistic dependence of two attributes (while the method to 
construct an optimal spanning tree can be kept). Best known among such measures is the 
specificity gain 

Sgain(A, B) = nsp(A) + nsp(B)  - nsp(AB), 
where nsp( A) denotes the U-uncertainty measure of nonspecificity [Klir and Mariano 
19871 of the (marginal) possibility distribution T A  on attribute A: 

s u P ( T A )  

nsp(A) = 1 log2 I [TAIa Ida. 

( [ T A ] ~  denotes the a-cut of the possibility distribution, i.e., the set of values that have 
a degree of possibility of at least a.) nsp(B)  and nsp(AB) are defined analogously. 
It should be noted that the formula of specificity gain is very similar to the formula of 
information gaidmutual information due to the fact that in possibility theory the measure 
of nonspecificity plays roughly the same role Shannon entropy plays in probability theory. 

Alternatively, one may use possibilistic mutual information [Borgelt and Kruse 20021 : 

which is based on a transfer of a different way of writing mutual information to the pos- 
sibilistic setting. The idea is that by writing mutual information as 

b E d o m ( B )  

it can be interpreted as measuring the difference between the actual joint distribution 
P ( u l  b)  and a hypothetical independent distribution P(a)P(b).  The transfer to the POS- 
sibilistic case is achieved by simply inserting the corresponding notion of independence 
(i.e., that the joint distribution can be constructed as the minimum of the marginal distri- 
butions). 
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Furthermore, a possibilistic version of the x2 measure [Borgelt and Kruse 20021 can 
be employed, which is based on basically the same idea: 

(min{rA(a), r ~ ( b ) }  -  TAB(^, b)12 
min{.irA(a), . i r ~ ( b ) }  

+ ( A , B )  = 1 
a E d o m ( A )  
b € d o m ( B )  

It is worth noting that the optimum weight spanning tree approach has an interesting 
property in the probabilistic setting: Provided that there is a perfect tree-structured graph- 
ical model of the domain of interest and the evaluation measure m that is used satisfies 

VA, B ,  C : m(C, AB)  2 m(C, B )  

with equality obtaining only if the attributes A and C are conditionally independent given 
B and 

VA, C : m(C, A )  2 0 
with equality obtaining only if the attributes A and C are (marginally) independent (at 
least mutual information and the x2 measure satisfy these conditions), then the perfect 
model (directed or undirected) can be found by constructing an optimum weight span- 
ning tree (see [Borgelt and Kruse 20021 for the proof and further details). For mutual 
information even more can be shown: Constructing an optimum weight spanning tree 
with this measure yields the best tree-structured approximation of the probability distri- 
bution on the domain of interest w.r.t. Kullback-Leibler information divergence [Chow 
and Liu 1968, Pearl 19881. 

Unfortunately, these properties do not carry over to the possibilistic setting. Even if 
there is a perfect graphical model with tree structure, constructing an optimum weight 
spanning tree with any of the possibilistic measures mentioned above is not guaranteed 
to find this tree (see [Borgelt and Kruse 20021 for a counterexample). As a consequence 
there is no analog of the stronger approximation statement either. Nevertheless, the op- 
timum weight spanning tree approach usually leads to good results when constructing 
possibilistic graphical models, so that the sometimes suboptimal results can be accepted. 

3 Extending Spanning Trees 
Even if there is no perfect tree-structured graphical model of the domain of interest, con- 
structing an optimum weight spanning tree can be a good starting point for learning a 
graphical model. The algorithm suggested in [Rebane and Pearl 19871, for example, starts 
by constructing a(n undirected) spanning tree and then turns it into a (directed) polytree 
by directing the edges based on the outcomes of conditional independence tests. The ad- 
vantage of this approach is that it keeps the single-connectedness of the graph and thus 
allows for a simple derivation of evidence propagation methods. However, by doing so, it 
does not really restrict the complexity of later inferences, as this complexity depends on 
the number of parents an attribute has in the polytree. This can be seen by considering 
the construction of a join tree for the polytree [Castillo et a1 19971. The first step consists 
in forming a so-called moral graph by “marrying” the parents of an attribute (i.e., con- 
necting them with an edge). In this way the set of parents of an attribute together with the 
attribute itself become a clique in the resulting graph and thus a node in the final join tree. 
As the size of the nodes in the join tree is a decisive factor of the complexity of inferences, 
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Figure 1: The dotted edges cannot both be the result of “marrying” parents in a directed 
graph, but may be generated in our algorithm. 

the number of parents directly determines this complexity. Unfortunately, there is no way 
to restrict the number of parents in this algorithm. On the other hand, the restriction to 
singly connected graphs may be too strong for some learning tasks, as such graphs cannot 
capture certain rather simple dependence structures. 

To amend these drawbacks, we suggest a simple learning algorithm, which also starts 
from an initial optimum weight spanning tree, but may yield more complex structures than 
polytrees, while at the same time restricting the size of the nodes in the join tree (which, 
of course, means that in some respect the structures may also be simpler than a poly- 
tree). The basic idea of this algorithm is as follows: First an (undirected) optimum weight 
spanning tree is constructed. Then this tree is enhanced by edges where a conditional 
independence statement implied by the tree does not hold. However, we do not check 
arbitrary conditional independence statements, but only those that refer to edges that con- 
nect nodes having a common neighbor in the optimum weight spanning tree. It should be 
noted that this restriction is similar to directing the edges of the spanning tree, because 
adding an edge between two nodes having a common neighbor is similar to directing 
the edges of the spanning tree towards the common neighbor (since the construction of a 
moral graph would add exactly this edge). However, our approach is more general, since 
it allows for structures like those shown in figure 1, which cannot result from directing 
edges alone. 

A further restriction of which edges may be added is achieved by the following re- 
quirement: If all edges of the optimum weight spanning tree are removed, the remaining 
graph must be acyclic. This condition is interesting, because it guarantees that the result- 
ing graph has hypertree structure (a precondition for the construction of a join tree, see 
[Lauritzen and Spiegelhalter 1988, Castillo et a1 19971 for details) and that its maximal 
cliques comprise at most three nodes. Consequently, with this condition we can restrict 
the size of the join tree nodes and thus the complexity of inferences. 

Theorem: If an undirected tree is extended by adding edges only between nodes with a 
common neighbor in the tree and if the added edges do not form a cycle, then the resulting 
graph has hypertree structure and its maximal cliques contain at most three nodes. 

Proof: Consider first the size of the maximal cliques. Figure 2 shows, with solid edges, 
the two possible structurally different spanning trees with four nodes. In order to turn 
these into cliques the dotted edges have to be added. However, in the graph on the left the 
edge ( B ,  D) connects two nodes not having a common neighbor in the original tree and 
in the graph on the right the additional edges form a cycle. Therefore it is impossible to 
get a clique with a size greater than three without breaking the rules for adding edges. 
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Figure 2: Maximal cliques with four or more nodes cannot be created without breaking 
the rules for adding edges. 

Figure 3: The node A can be bypassed only by an edge connecting the node D to a 
neighbor of A (which may or may not be B). 

In order to show that the resulting graph has hypertree structure, it is sufficient to show 
that all cycles with a length greater than three have a chord (Lee, an edge connecting two 
nodes of the cycle that are not adjacent in the considered cycle). This is easily verified 
with the following argument. Neither the original tree nor the graph without the edges of 
this tree contain a cycle. Therefore in all cycles there must be a node A at which an edge 
from the original tree meets an added edge. Let the former edge connect the nodes B and 
A and the latter connect the nodes C and A. Since edges may only be added between 
nodes that have a common neighbor in the tree, there must be a node D that is adjacent to 
A as well as to C in the original tree. This node may or may not be identical to B. If it is 
identical to B and the cycle has a length greater than three, then the edge ( B ,  C) clearly 
is a chord. Otherwise the edge ( A ,  D) is a chord, because D must also be in the cycle. To 
see this, consider Figure 3, which depicts the situation referred to. To close the cycle we 
are studying there must be a path connecting B and C that does not contain A. However, 
from the figure it is immediately clear that any such path must contain D, because A can 
only be bypassed via an edge that has been added between D and a neighbor of A (note 

In order to test for conditional (in)dependence, we simply use the conditional forms 
of the marginal dependence measures mentioned above. That is, in the probabilistic case 
we compute for a measure m 

that this neighbor may or may not be B). 

mci(A, I C )  = C ~ ( c )  m ( ~ ,  B I c ) ,  
cEdom(C) 

where m(A,  B 1 c) is defined as m(A, B) with all marginal probabilities P(a)  and P(b) 
replaced by their conditional counterparts P(u 1 c) and P(b 1 c). The possibilistic case is 
analogous. We only have to take into account that the possibility degrees may not add up 
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Table 1: Probabilistic network learning. 

be 1, so that a normalization is necessary, i.e.: 

rn,i(A,B 1 C )  = -. Tc(c)  rn(A,B 1 c), 
cEdom(C) S 

where 
s = c .C(C). 

cE dom (C) 

Based on these measures we select the additional edges greedily (similar to the selection 
of edges in the Kruskal algorithm). 

As a final remark we would like to point out that this approach is not guaranteed to 
find the best possible graph with the stated properties, neither in the probabilistic nor in 
the possibilistic setting. That is, if there is a perfect graphical model of the domain under 
consideration, which has hypertree structure and the maximal cliques of which have at 
most size 3, then this approach may not find it. An example of such a case can be found 
in [Borgelt and Kruse 20021. 

4 Experimental Results 
We implemented our algorithm in a prototypical fashion as part of the INES program 
(Induction of NEtwork Structures) [Borgelt and Kruse 20021 and tested it on the well- 
known Danish Jersey cattle blood group determination problem [Rasmussen 19921. 

For our probabilistic tests, we used databases randomly generated from a human 
expert designed Bayesian network for the Danish Jersey cattle domain. We generated 
20 datasets, which where organized into 10 pairs. One dataset of each pair was used for 
training the network, the other for testing. All networks were evaluated by computing 
the log-likelihood of the training and the test dataset. Table 1 shows the results, which 
are averages over the ten trials executed. The first section contains the results for a net- 
work without any edges and the original network, followed by results obtained with a 
pure optimal spanning tree approach. The third section lists the results of the algorithm 
suggested in this paper and the final section shows the result of greedy parent selection 
w.r.t. a topological order (the so-called K2-algorithm [Cooper and Herskovits 19921). 
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orig. 
Sgain 

dX2 
dmi  
Sgain 

4 2  

dmi  
Sgain 

d X 2  
dmi  

net I eds. pars. I min. I avg. I max. 
indep. 1 80 I 10.06 I 10.16 I 11.39 0 I 

22 308 9.89 9.92 11.32 
20 415 8.88 8.99 10.71 
20 449 8.66 8.82 10.33 
20 372 8.47 8.60 10.39 
29 2110 8.14 8.30 10.13 
35 1672 8.10 8.28 10.18 
31 1353 7.97 8.14 10.25 
31 1630 8.52 8.62 10.29 
35 1486 8.15 8.33 10.20 
33 774 8.21 8.34 10.42 

For our possibilistic tests we used a database of 500 real world sample cases, which 
contains a large number of missing values and is thus well suited for a possibilistic ap- 
proach. The results are shown in table 2. The meaning of the sections is the same as 
for table 1, although the evaluation is done differently (details about how we assess the 
quality of a possibilistic network can be found in [Borgelt and Kruse 20021). 

As was to be expected, in both cases, probabilistic as well as possibilistic, the results 
are in between those of the pure optimum weight spanning tree algorithm and the greedy 
parent selection algorithm. However, in comparisons with the latter it should be noted 
that the greedy parent selection needs a topological order to work on and is thus provided 
with important additional information, while our algorithm relies on the data alone. 

5 Conclusions and Future Work 
In this paper we suggested a learning algorithm for graphical models, which extends an 
optimal spanning tree by adding edges. Due to specific restrictions, which edges may be 
added, the result is guaranteed to have hypertree structure and maximal cliques of lim- 
ited size, thus providing for efficient inferences. The experimental results are promising, 
especially for possibilistic networks. 

A drawback of the suggested algorithm is that the size of the maximal cliques is re- 
stricted to a fixed value, namely 3. Obviously, it would be more desirable if the size 
restriction were a parameter. Therefore in our future research we plan to search for con- 
ditions that enable us to extend optimal spanning trees in more complex ways, while 
restricting the model to hypertrees with maximal cliques of at most size 4, 5 etc. Unfor- 
tunately, such conditions seem to be much more complex and thus difficult to find. 
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Abstract 
In this paper we develop a method for clustering belief functions based on 
attracting and conflicting metalevel evidence. Such clustering is done when the 
belief functions concern multiple events, and all belief functions are mixed up. 
The clustering process is used as the means for separating the belief functions 
into subsets that should be handled independently. While the conflicting 
metalevel evidence is generated internally from pairwise conflicts of all belief 
functions, the attracting metalevel evidence is assumed given by some external 
source. 

Kewords: belief functions, Dempster-Shafer theory, clustering. 

1 Introduction 
In this paper we extend an earlier method within Dempster-Shafer theory [3, 101 
for handling belief functions that concern multiple events. This is the case when 
it is not known a priori to which event each belief function is related. The belief 
functions are clustered into subsets that should be handled independently. 
Previously, we developed methods for clustering belief functions based on their 
pairwise conflict [2, 7, 81. These conflicts were interpreted as metalevel evidence 
about the partition of the set of belief functions [ 5 ] .  Each piece of conflicting 
metalevel evidence states that the two belief functions do not belong to the same 
subset. 
The method previously developed is here extended into also being able to handle 
the case of attracting metalevel evidence. Such evidence is not generated 
internally in the same way as the conflicting metalevel evidence. Instead, we 
assume that it is given from some external source as additional information about 
the partitioning of the set of all belief functions. 
For example, in intelligence analysis we may have conflicts (metalevel evidence) 
between two different intelligence reports about sighted objects, indicating that 
two objects probably does not belong to the same unit (subset). At the same time 
we may have information from communication intelligence as an external 
source (providing attracting metalevel evidence), indicating that the two objects 
probably do belong to the same unit (subset) as they are in communication. 
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We begin (Section 2) by giving an introductory problem description. In Section 3 
we interpret the meaning of attracting and conflicting metalevel evidence. We 
assign values to all such pieces of evidence. In Section 4 we combine the 
metalevel evidence separately for each subset. Here, all attracting metalevel 
evidence, and all conflicting metalevel evidence are combined as two 
independent combinations within each subset. At the partition level (Section 5 )  
we combine all metalevel evidence from the subsets, yielding basic beliefs for 
and against the adequacy of the partition. In Section 6 we compare the 
information content of attracting metalevel evidence with conflicting metalevel 
evidence. This is done in order to find a weighting between the basic beliefs for 
and against the adequacy of the partition in the formulation of a metaconflict 
function. The order of processing is shown in Figure 1. Finally, the metaconflict 
function is minimized as the method of finding the best partition of the set of 
belief functions (Section 7). 

Figure 1 : Order of processing. 

2 Problem description 
When we have several belief functions regarding different events that should be 
handled independently we want to arrange them according to which event they 
are referring to. We partition the set of belief function X into subsets where each 
subset X i  refers to a particular event, Figure 2. The conflict of Dempster’s rule 
when all belief functions in Xi are combined is denoted ci. In Figure 2, thirteen 
belief functions ei are partitioned into four subsets. As these events have nothing 
to do with each other, they should be analyzed independently. 
If it is uncertain whether two different belief functions are referring to the same 
event we do not know if we should put them into the same subset or not. We can 
then use the conflict of Dempster’s rule when the two belief functions are 
combined, as an indication of whether belong together. A high conflict between 
the two functions is an indication of repellency that they do not belong together 
in the same subset. The higher this conflict is, the less credible that they belong 
to the same subset. A zero conflict, on the other hand, is no indication at all. 
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Figure 2: The conflict in each subset is interpreted as evidence at the metalevel. 

For each subset we may create a new belief function on the metalevel with a 
proposition that we do not have an “adequate partition.” The new belief functions 
does not reason about any of the original problems corresponding to the subsets. 
Rather they reason about the partition of the other belief functions into the 
different subsets. Just so we do not confuse the two types of belief functions, let 
us call the new ones “metalevel evidence” and let us say that their combination 
take place at the metalevel, Figure 2. 
On the metalevel we have a simple frame of discernment where 0 = 
{ AdP, 7AdP }, where AdP is short for “adequate partition.” Let the proposition 
take a value equal to the conflict of the combination within the subset, 

rn,,(lAdP) 2 Conf({ e j l e j  E xi}) 

where Conf({ejlejE xi}) is the conflict of Dempster’s rule when combining all 
basic probability assignments in X i .  
In [ 5 ]  we established a criterion function of overall conflict for the entire 
partition called the metaconflict function (Mcf). The metaconflict is derived as 
the plausibility of having an adequate partitioning based on CD{rnxi(4dP)} for 
all subsets Xi. 
DEFINITION. Let the metaconflict function, 

be the conflict against a partitioning of n belief functions of the set X into r 
disjoint subsets Xi. 
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Minimizing the metaconflict function was the method of partitioning the belief 
functions into subsets representing the different events. 
However, instead of considering the conflict in each subset we may refine our 
analysis and consider all pairwise conflicts between the belief functions in xi [7], 
mL;(.) = c i j ,  where cii is the conflict of Dempster’s rule when combining ei and 
ej. When cii = 1, ei and ej must not be in the same subset, when cii = 0 there 
simply is no indication of the repellent type. It was demonstrated in [7] that 
minimizing a sum of logarithmized pairwise conflicts, 

is with a small approximation identical to minimizing the metaconflict function, 
making it possible the map the optimization problem onto a neural network for 
neural optimization [2, 91. 
In section 3 we will refine the frame of discernment and the proposition of m$.) 
in order to make such a refined analysis possible. 
In addition to this conflicting metalevel evidence from internal conflicts between 
belief functions, it is in many applications important to be able to handle 
attracting metalevel evidence from some external source stating that things do 
belong together, Figure 3. The analysis of this case is the contribution of the 
current paper. 

Figure 3: Conflict evidence from subsets and attracting evidence from an 
external source. 

Let m$(.) = pii  , where pii is a degree of attraction, be such an external metalevel 
evidence. When pii  = 1, ei and ej must be in the same subset, when pii  = 0 we 
have no indication of the attracting type. 
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Of course, we can also have external conflicting metalevel evidence. It is then 
combined with m i . ( . ) ,  and henceforth we will use m$.) as the combined result if 
such external evidence is present. 

3 Evidence level 
Looking at a series of single subset problems, our frame of discernment for the 
metalevel of each subset xu was initially represented as 0, = {AdP, TAdP}, [ 5 ] .  
It is here refined to 

where “adequate partition” AdP is refined to the proposition V j . e j  E xu, that 
each belief function ej placed in subset xu actually belongs to xu. On the other 
hand, “not adequate partition” 7AdP is refined to a set of lx,I propositions 
e j  e xu, each stating that a particular belief function is misplaced. 
Thus, l0,l = 1 + Ix,I, where lxal is the number of pieces of evidence in xu. 
Let us assign values to all conflicting and attracting pieces of metalevel 
evidence. However, we will not combine the attracting and conflicting evidence 
regarding each pair here on the evidence level as this result is currently not our 
concern. 

3.1 Conflicting evidence: mi(.). 
For each pair of belief functions we may receive a conflict. We interpret this as a 
piece of metalevel evidence indicating that the two belief functions do not 
belong to the same subset, 

Here, we simply state that if ei belongs to a subset xu then ej must not belong to 
the same subset. Instead, we could have made a disjunction of two different 
propositions [ ( e i  E x, * e j  e X , ) v ( e j  E x, ei ei xu)] where i t) j is permuted 
in the second term, but this is unnecessary and redundant information because of 
symmetry. 
The metalevel evidence may be simplified to 

since 
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by implication replacement and dropping universal quantifiers. 
We calculate m b  for all pairs (ij). 

3.2 Attracting evidence: mt( . ) .  
In addition we may also have attracting evidence brought in externally. Such a 
piece of metalevel evidence is interpreted as the negation of the previous 
proposition, i.e., that the two pieces of evidence belong to the same cluster, 

mG(lVa.ei E xu * e j  P xu) = p i j ,  

m+(@)  = 1 - p i j .  
I /  

Simplified to 

m+(e i r \ e jE  xu) = p . . ,  'J I /  

m+(@)  = 1 - p . . ,  
IJ I /  

since 

by bringing in negation, implication replacement and dropping of universal 
quantifiers. 
We calculate m$ for all pairs (0). 
Having assigned values to all conflicting and attracting metalevel evidence 
regarding every pair of belief functions we take the analysis to the cluster level. 

4 Cluster level 
At the cluster level we use the evidence derived in the previous level. We also 
use the same frame of discernment. Let us separately combine all conflicting 
{ m b }  and all attracting evidence { m ; }  for each cluster. 

4.1 Combine all conflicting evidence within each cluster 
Let us combine Vi,  j ,  a. 0 {mblm;  E x u } ,  i.e., all conflicting metalevel evidence 
within each subset where m$ei v e j  P xu)  = c i j ,  Section 3 . 1 .  
In [ 6 ]  we refined the proposition 7AdP separately for each cluster X a  to 
3 j . e j  E x u ,  i.e., that there is at least one belief function misplaced in the subset. 
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Consequently, from the result of the above combination we have, 

mia(,AdP) = mi,(3j.ej e x,) = 1 - n (1 -c i j ) ,  
(0) E x, 

mi,(@) = 1 - mia(1AdP). 

We calculate m i a  for all subsets xu. This is the conflicting metalevel evidence 
derived at the cluster level. 
In addition, this piece of evidence mi,  with proposition TAdP may at the next 
level be refined as x, e x ,  where x is the set of all subsets. That is, the same 
conflict that on the cluster level is interpreted as if there is at least one belief 
function that does not belong to xa, will on the partition level be interpreted as if 
xu (i.e., with all its content) does not belong to x. This will be useful at the 
partition level when combining all m i a  for different subsets xu. 

4.2 Combine all attracting evidence within each cluster 
Similarly to the previous section we begin by combining all attracting metalevel 
evidence within each individual subset, Vi, j, a. 0 {mGlm$ E xu}, where m$ 
was derived as m$(ei A e j  E xu) = p i j  in Section 3.2. 
For attracting metalevel evidence we refine AdP as the negation of the refinement 
of TAdP . We have, 

We need to calculate the support for an adequate partition from all attracting 
evidence mio(AdP) in each subset xa. Thus, we will sum up the contribution 
from all intersections corresponding to a proposition that a conjunction of all 
pieces of evidence placed in the cluster actually belongs to the subset in 
question, i.e., A {ej E xa}k4 . 
From the combination of ah-{m$} we have, 

mia(@) = 1 - mio(AdP), 

where Pixel = { (ij)ll I i < j I lxal } is a set of all pairs of ordered numbers I , 
M I  = { i l 3 p . ( i p ) v ( p i )  E I }  is the set of all numbers in the pairs of I ,  and 
Nlx,l = { 1, ..., I x , ~ }  is the set of all numbers 5 Ix,I . 
We calculate m& for all subsets xu. This is the attracting metalevel evidence on 
the cluster level. 
In addition AdP may on the next level be refined as x, E x , This will be useful at 
the partition level when combining all m i o  from the different subsets. 
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5 Partition level 
The partition level is where all things come together, Figure 1. First, we combine 
all conflicting metalevel evidence from the subsets, mi., Section 5.1. Secondly, 
we combine all attracting metalevel evidence from the same subsets, m i a ,  
Section 5.2. Finally, we combine the conflicting and attracting metalevel 
evidence (in Section 5.3). 
However, before we start, let us notice that on the partition level we do not 
reason about misplaced belief functions. Instead, we reason about the different 
parts of the partition (i.e., the subsets), and whether each of the subsets can make 
up part of an adequate partition. For this reason we should represent the frame of 
discernment differently than on previous levels. 
The frame of discernment on the partition level 0 = {AdP, lAdP}  is refined as 

where “adequate partition” AdP is refined to a the proposition Va.Xa E x ,  stating 
that every subset xa does make up part of an adequate partition. On the other 
hand, “not adequate partition” lAdP is refined to a set of 1x1 propositions 
xlle x ,  each stating that a particular subset does not make up part of an 
adequate partition. 
Thus, the size of the frame is 101 = 1 + 1x1, where 1x1 is the number of subsets in 
X. 

5.1 
We begin by combining Va.  63 {m- } ,  i.e., all conflicting metalevel evidence 
from the subsets xa that we derived in Section 4.1. 
Let us then refine the proposition lAdP of mia(,AdP) such that 
TAdP = 3u.xa e x, i.e., that there is at least one subset that does not make up 
part of an adequate partition. 
From the combination of all {mi.} we have, 

Combine all conflicting evidence at the partition level 

E 

mi(@) = 1 -mi(lAdP).  

This is the conflicting metalevel evidence at the partition level. 

5.2 Combine all attracting evidence at the partition level 
Let us combine all attracting metalevel evidence Va.  63 { m i a } ,  derived in 
Section 4.2. 
For attracting metalevel evidence at the partition level we refine the proposition 
AdP of m;(AdP) as the negation of the refinement for lAdP at this level, 
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From the combination of all { m i a }  we find, 

This is the attracting metalevel evidence at the partition level. 

5.3 Combine conflicting and attracting evidence 
As the final step on the partition level (Figure 1) we combine all already 
combined conflicting evidence (Section 5.1) with all already combined attracting 
evidence (Section 5.2) ,  m, = m,+ Ql m i .  We receive, 

With a conflict m,(0 ) ,  since 

(Va.xa E x) A (3a.xa P x) = False 

This is the amount of support awarded to the proposition that we have an 
“adequate partition” m (AdP), and awarded to the proposition that we do not 
have an “adequate partition” m,(TAdP) , respectively, when taking everything 
into account. 

I I  

6 Weighting by information content 
In order to find the best partition we might want to maximize m,(AdP) . However, 
in the special case when there is no positive metalevel evidence then mz(AdP) 
= m;(AdP) = 0 .  Alternative, we might like to minimize m,(TAdP). This is what 
was done in [ 5 ]  when only negative metalevel evidence was available. However, 
here we also have a special case when there is no negative metalevel evidence. 
Then, m,(7AdP) = mi(7AdP) = 0 .  The obvious solution is to minimize a 
function of m,(’AdP) and -m,(AdP) . In doing this, we want to give each term a 
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weighting corresponding to the information content of all conflicting and all 
attracting metalevel evidence, respectively. This is done in order to let each part 
have an influence corresponding to its information content. 
Thus, let us minimize a metaconflict function 

Mcf = a[ 1 - mx(AdP)] + (1 - a)mx(,AdP), 

0 I a I 1, where a = 0 when a l lp i j  = 0, and a = 1 when all cij = 0. 
Let 

where H(m) is the expected value of the entropy -log2[m(A)/IAl]. H(m) is called 
the average total uncertainty [4], measuring both scattering and nonspecificity, 
and may be written as the sum of Shannon entropy, G(.), and Hartley information, 
I ( . ) ,  

Here, m;, and mio are calculated on the cluster level, as if all evidence is put 
into one large imaginary cluster xo. 
6.1 Entropy of conflicting metalevel evidence H(mi ,> .  
First, we combine Vi, j .  CB {mb} , i.e., all conflicting metalevel evidence, taking 
no account of which subset the different m b  actually belongs to. 
In this combination all intersections in the combined result are unique. Thus, the 
number of focal elements are equal to the number of intersections as no two 
intersections add up. Calculating the average total uncertainty of all conflicting 
metalevel evidence H(mi,)  = G(mi,) + '(mi,) is then rather simple, 

where P, = { (ij) 11 I i < j I n }  is a set of pairs ( i j ) ,  and n is the number of belief 
functions, with 
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The Hartley information is calculated as 

6.2 Entropy of attracting metalevel evidence H ( m l ) .  
Similarly, we combine Vi,  j .  0 {mi:.}, i.e., regardless of which subset the m$'s  
actually belongs to. 
When calculating H(m;Zo) = G(mio) + Z(mio) the Shannon entropy may be 
calculated as 

where N = { 1, ..., n} , and n is the number of belief functions, and 

where P = {(ij)ll S i < j S n } ,  
With Hartley information calculated as 

7 Clustering belief functions 
The best partition of all belief functions is found by minimizing 

MCf = a[ 1 - mx(AdP)] + ( 1 - a)mx(TAdP) 

over all possible partitions. For a small number of belief functions this may be 
achieved through iterative optimization, but for a larger number of belief 
functions we need a method with a lower computational complexity, e.g., some 
neural clustering method similar to what was done in the case with only 
conflicting metalevel evidence [2]. 
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8 Conclusions 
We have extended the methodology for clustering belief function from only 
being able to manage conflicting information [ l ,  2, 91 to also being able to 
handle attracting information. This is important in many practical applications 
within information fusion. 
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Abstract 
This paper is a contribution to the development of the model theory of fuzzy logic in 
narrow sense with evaluated syntax whose are connectives interpreted in Eukasiewicz 
algebra. We will define several generalizations of the concept of submodel which have no 
counterpart in classical logic and demonstrate some properties of them. The main results 
concern elementary extensions and elementary chains. As a consequence, we will also 
present a generalization of the well known Craig’s interpolation theorem for fuzzy logic. 

Keywords: Fuzzy logic in narrow sense, Eukasiewicz logic, fuzzy theory, model theory 
of fuzzy logic. 

1 Introduction 
This paper is a contribution to the theory of predicate first-order fuzzy logic in narrow 
sense with evaluated syntax (FLn), which has been extensively presented in [4]. It is 
based on the set of truth values, which forms the Lukasiewicz MV-algebra 

c = ([0,11,@, @,7 0,1) 

(see also [2] and elsewhere). Recall that we may define the lattice join V and meet A 
operations in L as well as the residuation operation a 4 b = l a  @ b = 1 A (1 - a + b) .  
We work with graded concepts of provability and model. Therefore, each formula A is 
assigned a provability degree being supremum of the values of all its proofs, and a truth 
degree being infimum of its truth value in all models. The completeness theorem states 
that for each formula and each fuzzy theory both degrees coincide. Let us remark that 
classical logic becomes isomorphic to this logic when confining C to the classical two- 
valued boolean algebra. 

FLn with evaluated syntax possesses a lot of properties which are generalizations 
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of the corresponding properties of classical logic. Their proofs are mostly non-trivial 
and more complex. Besides other outcomes, they enable us to see classical logic from 
different point of view. 

This paper confirms such claims. Its results are two-fold: we contribute to model 
theory of FLn and present a theorem on joint consistency of fuzzy theories. The latter is 
a generalization of the classical Craig-Robinson's one. 

2 Preliminaries 
We will use notation introduced in [4]. The language of FLn is denoted by J ;  terms are 
defined as usual. Formulas are formed using the connectives V (disjunction, interpreted 
by V), V (tukasiewicz disjunction, interpreted by @), A (conjunction, interpreted by A), 
& (tukasiewicz conjunction, interpreted by @I), + (implication, interpreted by -+) and 7 
(negation, interpreted by 7).  The set of all the well-formed formulas for the language J 
is denoted by FJ and the set of all the closed terms by M J .  The couple a /A  where a E L 
and A E FJ is an evaluated formula. Moreover, the language J is supposed to contain 
logical constants a being names of all the truth values a E L.  Similarly as in classical 
logic, we use the symbol T instead of 1 and 1. instead of 0 .  The symbol A" denotes 
n-fold tukasiewicz conjunction and nA n-fold tukasiewicz disjunction. 

A fuzzy theory T is a fuzzy set T C, FJ of formulas given by a triple 

T = (LAX, SAX, R)  
where LAX C, FJ is a fuzzy set of logical axioms, SAX C, FJ is a fuzzy set of special 
axioms and R is a set of inference rules which includes the rules modus ponens ( T M P ) ,  
generalization ( T G )  and logical constant introduction (TLC).  If T is a fuzzy theory then 
its language is denoted by J (T) .  Note that we may equivalently speak about a set of 
evaluated formulas, or about afuzzy set of formulas. This double view is quite common 
and makes no harm to definiteness of the explanation. We will usually define a fuzzy 
theory only by the fuzzy set of its special axioms 

Given a fuzzy theory T and a formula A. If W A  is its proof with the value Val(wa) 
then T Fa A means that A is provable in T (a theorem of T )  in the degree 

a = V{Val(w,) I WA is a proof of A E T } .  

If a = 1 then we simply write T I- A. 
Let T be a fuzzy theory and r C, J ( T )  be a fuzzy set of formulas. Then the extension 

of T by the special axioms from r is a fuzzy theory T' = T u r given by the fuzzy set of 
special axioms SAX' = SAX U r. 
Theorem 1 (deduction theorem) 
Let T be a fuzzy theory, A be a closed formula and T' = T U {1 /A} .  Then to every 
formula B E FJ(T)  there is an n such that 

T k a  A" + B iff TI!-, B .  
Theorem 2 (reduction wrt. consistency) 
Let T be a fuzzy theory and r C, F J p )  a fuzzy set of closed formulas. A fuzzy theory 
T' = T U I' is contradictory iff there are ml,  . , , , m, and Al,  . . . , A, E Supp(r) such 
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that 
T kc 7AY1V * .  ' V I A F n  

a n d a Y 1 @ . . . @ a r n  > 0 wherec >* -( a p l @ . . . @ a r n ) , a l  =I?(Al) ,  . . . ,  un =I?(A,) 
(we write a >* b iff 1 2 a > b or a = b = 1). 

An extension T' of T is conservative if T' F a  A implies T t-, A for every A E 
F J ~ ) .  In [4], Theorem 4.11, it has been proved that extension of T by new constants not 
belonging to J ( T )  is conservative. 

Semantics of FLn is defined by generalization of the classical semantics of predicate 
logic. The structure for J is 

V = (V, fv,. * 1 ,  Pv, . . .  ,uv,. . .) 

where fv : V" + V are n-aryt) functions on V assigned to the functional symbols f E J ,  
Pv C, V" are n-ary fuzzy relations on V assigned to the predicate symbols P E J and 
uv E V are designated elements assigned to the object constants u E J .  

V ( t )  = w E V is an element being interpretation of the term t in V .  To interpret 
the formula A(z1, , , . , 2,) E F J ,  we must assign elements of V to its free variables. 
Therefore, we temporarily extend the language J into the language 

J ( V )  = J u {v 1 w E V} 

where v are new names for all the elements of V, i.e. if v E J ( V )  is a name of w E V 
then V(v) = w. Thus 

(1) 

is an interpretation of A (truth value) obtained after assignment of the elements w1, . . . , w, E 
V to the respective free variables z1, . . . , 5,.  

SAx(A) 5 V ( A )  holds for all A. Then we say that A is true in T ,  T +a A if 

V(Azl,...,zn[vl, 3 . .  ,vn]) E L 

Given a fuzzy theory T .  The structure V for J ( T )  is a model of T ,  V T ,  if 

u = V(A)  = A { V ( A )  1 V + T } .  

If a = 1 then we simply write T 
A fuzzy theory T is consistent if T t-, A and T t b  -A implies a @ b = 0; otherwise 

it is inconsistent. It can be proved that T = FJ for an inconsistent T (FJ  is seen as a 
fuzzy set with all the membership degrees equal to 1). 

A. 

As mentioned, the completeness theorem states that 

T Fa A iff T +, A 

holds for each fuzzy theory T and a formula A E F J ( T )  (for the details see [4]). 

t)The arity n, of course, depends on the symbol in concern. However, we will not explicitly stress this 
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3 Model theory in FLn 
In [4], the concepts of submodel (substructure), elementary submodel, elementary equiv- 
alence, homomorphism and isomorphism of models have been defined. We will slightly 
modify the definition of substructure since a more subtle classification is necessary. 

Definition 1 
Let V ,  W be two structures for the language J and let r C FJ .  

(i) The V is a weak substructure of W ,  in symbols 

if V C W, fv = fwlVn holds for every n-ary function assigned to a functional 
symbol f E J ,  uv = uw for every object constant u E J and 

pv I P W l V "  ( 2 )  

holds for the n-ary fuzzy relations PV and PW assigned to all the predicate symbols 
P E J in V and W ,  respectively. 

(ii) The V is a substructure of W ,  in symbols 

v c W ,  

if the equality holds in ( 2 )  for all the predicate symbols P E J .  
(iii) The V is a strong r-substructure of W (W is a strong r-extension of V ) ,  in symbols 

V Ir W ,  

if V C W and 

V ( A z ,  ,.... z , [ v l , ~ ~ ~ l V n l )  I W A z ,  ( . . . (  z , [ V l r - . , V n 1 )  (3) 

holds for every formula A E r and v1, . . . , v, E V .  If V Ir W for r = FJ then V 
is a strong substructure of W (W is a strong extension of V )  and we write V 5 W .  

(iv) Let V C W. The expanded structure is 

W v  = (W,{v 121 E VH 

where v are names for all the elements v E V taken in Wv as new object constants, 
which, however, are interpreted by the same elements, i.e. Wv(v) = 'u for all 
v E v. 

(v) The V is an elementary r-substructure of W (W is an elementary I?-extension of 
V ) ,  in symbols V +l- W ,  if V W and 

V(Az, , . . . ,  z, [VI 1 . . . , v n ] )  = W(Az,  ,..., z, [VI,  9 * * , v n ] )  (4) 

where A(z1,. . . , z,) E I? and v l , .  . . , v, E V. If r = FJ then V is an elementary 
substructure of W (W is an elementary extension of V )  and write V + W .  
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Lemma 1 
(a) If V1 C V Z  (Vl c V Z )  and VZ C V1 (VZ c Vl) then VI = V Z  
(b) If V1 5 VZ then V I  C V Z .  

Note, however, that if V1 C VZ then there is no explicit relation between %(A)  and 
VZ ( A )  for an arbitrary formula A. Note also that the distinction between strong and weak 
substructures has no sense in classical logic. 

Definition 2 
Two structures V and W are isomorphic, V g W ,  if there is a bijection g : V + w such 
that the following holds for all wl , . . . , w, E V :  

(i) For each couple of functions fv in V and fw in W assigned to a functional symbol 
f E J ,  

g(fv(w1,... 1%)) = f w ( g ( ~ l ) l ' . ' l g ( ~ n ) ) .  

(ii) For each predicate symbol P E J ,  

P V ( V 1 , .  . . 1 % )  = Pw(g(vl ) l . .  . , g(.un)). ( 5 )  

(iii) For each couple of constants u in V and w in W assigned to a constant symbol 
u E J ,  

g(u) = u'. 

Note that Definitions 1 and 2 are simplified with respect to the corresponding ones intro- 
duced in [4]. 

Lemma 2 
Let V E W be two isomorphic structures. Then 

holds for every closed term t and 

V(A)  = W ( A )  

holds for every formula A E FJ 

PROOF: By induction on the complexity of terms and formulas. 

The r-diagram Dr ( V )  of V is a fuzzy theory with the special axioms 

0 
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Lemma 3 
Let V ,  W be two structures for the language J and V c W .  Then V is a r-substructure 
ofW iffWv + Dr(V) .  

PROOF: Let A E I? and v l r  . . . , v, E V .  Then 

V(Az1, ..., z,,[vlr..  . , vn ] )  5 W(Az1 ,..., z,[v1, . . .  jvn]) 

which means that Wv 
of Wv. The converse is obvious. 

instance of A then also A E r. 

D r ( V )  since vl ,  . . . , vn are, at the same time, object constants 
0 

is an A set r of formulas is called regular if z = y E I? or z # y E r and if A' E 

Theorem 3 
Let T be a (consistent) fuzzy theory, V a structure for J ( T )  and r 2 F J ( T )  be a regular 
set of formulas. Then the following is equivalent. 

(a) There is a I?-extension of V ,  V 5r  W ,  being a model of T ,  i.e. W 
(b) Let B := 1 A r ' V .  . . V 7 A T n  be a formula whereA1,. . . , An E 

T .  
a n d m l ,  . . . , m, E 

Wt such that 
T k b  B. 

Then 
b 5 V(-IA;"'V...V~A:-). 

PROOF: 
(a)=$ (b): Let V 5r  W where W + T .  Let Al . . . , A, E 

for some m l ,  . . . , m, E Nt. Then there are q, . . . , up such that 
and T kb -(A';"' & . . . & AT"-) 

T k b /  l((A;)"' &.. .&(Ak)"-,  b' 2 b,  (7) 

where (A:)". := AY'[v1,. . . , vp] is a V-instance of A;', a = 1,. . . , n. 
It follows from the assumption, the substitution axiom and monotonicity of @ that 

Since W + T ,  we obtain 

by the properties of negation operation. 

fuzzy theory T' and, furthermore, put 
(b)+ (a): Let us extend conservatively T by constants for elements of V into the 

T" = T' U Dr(V)  
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where &(V)  is the r-diagram (6) of V .  By contradiction, we may show that TI’ is 
consistent. Hence, it has a model W” + 2’”. Moreover, since W” /= Dr(V) ,  we have 
V(A) 5 W”(A) for every A E r. This means that V <r W”. 

Dr(V). 
The problem is that there may be constants v1, v2 in W” assigned to only a single element 
w E V. Thus, let q ,  212 E V be different elements. Since r is regular, V(v1 $: v2) = 1 
and so, D r ( V )  k v1 f v2. Therefore also W”(v1 f v2) = 1 and consequently, we can 
consider an isomorphic structure W’ instead of the original W”. When considering its 
restriction W by names of elements from V, we realize that W’ = Wv. Since Wv T”, 

O 

We must now show that there is an isomorphic structure W such that Wv 

we have Wv + D r ( V )  and thus, W is a r-extension of V such that W T .  

Corollary 1 
Let V + T .  Then there is a strong extension W ,  V 5 W such that W + 2‘. 
PROOF: The existence of such structure follows from Theorem 3 by setting = FJ(T) .  
Then for every formula T Fa A implies a 5 V(A) since V + T .  

Theorem 4 
Let T be a fuzzy theory of the language J ,  V be a structure and r 5 F J .  Then there is a 
model W + T which is an elementary I?-extension of V .  

PROOF-: Similarly as in the proof of Theorem 3, we will consider a fuzzy theory T” = 
2” U D ( V )  where T’ is a conservative extension of T by constants for the elements of V 
and D ( V )  is the diagram of V .  

and ml ,  . . . , m, E N’ such that T’ kd -1((Ai)”1& + .  .&(A;)”-)) (A: are V-instances 
of Ai) so that 

where ai = Vv(A:). Since Vv + T’, we obtain 

The fuzzy theory T” is consistent since otherwise there should exist formulas A1, . . . , A, 

d > l(aY1 @ .  * * @ a:-) 

which is a contradiction. Hence, there is a model W” + TI‘. We will now replace W” by 
an isomorphic structure W and by induction on the complexity of formula, we show that 
W(A)  = V(A) holds for every V-instance of a formula A. Thus, we obtain an elementary 

0 extension of V .  Finally, since r C F J ,  W is an elementary r-extension. 

Definition 3 
Let VI c V2 c . . . C V ,  c . . . (or V1 C V2 C . . . C V ,  5 . . .) be a chain of structures, 
cy < 5 for some ordinal number E .  Put V = Ua<< V, and each fv  = U,<E fv,. 
Furthermore, we extend Pv, into V by putting 



370 

for each predicate symbol P and each sequence vl , . . , v, E V, where P is the first 
ordinal such that 211, . . . , v, E Vp. Then the union of the above chain of structures is the 
structure 

V = u V ,  = (V1 Pv , .  . . , f v , .  . . , u v l .  . .). 
a<€ 

Theorem 5 
Let Vi C V2 C . . . c V ,  c . . ., V ,  + T ,  be a chain of models of some fuzzy theory T ,  
a < E .  Then V T where V is the union of this chain. 

PROOF: We may confine only to formulas in prenex form. Let A be a formula and 
T Fa A. We will show that a 5 V(A). 

First, let A := (VQ) . . . (Vzn)B(zl,. . , , z,) for some formula B. Then 

by the assumption on V,. 
It remains to show that if A does not contain quantifiers then a 5 V(A). This will be 

done by induction on the complexity of A. 
(a) Let A := P2, ,..., z, [ t l ,  . . , , t,] be a closed atomic formula and V ( t i )  = wi E V ,  

i = 1,. . . , n. Then there is P < 5 such that w1, . . . , v, E V, for all P 5 a. By (8), the 
assumed equality in (2) and the assumption on V ,  we have 

u 5 V,(A) = Pv,(v1,. . . ,u,) = V P v , ( w ~ ,  . . . ,u,) = F j ~ ( v 1 , .  . . ,vn) = V(A). 
PSa<S 

(b) The case when A := B + C is a closed formula without quantifiers follows from 

The following theorem has been proved in [4]. 

the induction assumption. 0 

Theorem 6 
Let VI 3 V2 3 . . . 4 V ,  4 . , , be an elementary chain of models, a < E for some 
ordinal number E .  Then 

V =  uu, 
a<€ 

is an elementary extension of each V,, i.e., V ,  4 V for every a. 

The following is a fuzzy logic version of the classical Craig-Robinson’s theorem on 
simultaneous consistency of theories (cf. [7]) whose proof is based on the application of 
the previous theorems and can be found in [ 5 ] .  
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Theorem 7 (simultaneous consistency) 
Let T and T‘ be consistent fuzzy theories. Then T U T‘ is contradictory iff there is a 
closed formula A E F J ( T )  n FJ(T, )  and a, b E L such that 

T I-, A and T‘kb -A and a@ b > 0. 

Using Theorem 7 we can, analogously as in classical logic, prove also generalization 
of the classical Craig’s interpolation theorem. 

Theorem 8 (interpolation theorem) 
Let T and T’ be fuzzy theories, A E FJ(T)  and B E F J ( T ~ .  Let 

T u T’ I-, A + B 

where a > 0. Then there is a closed formula C E F J ( T )  n F J ( T , )  and m, n E N+ such 
that 

and T’ k-d C + nB T kc A” + C 
for some c and d such that c @ d > 0. 

PROOF: It is sufficient to consider only closed formulas because for open formulas we 
can use the theorem on constants (which is valid in fuzzy logic, as well). 

Let A, B be closed formulas and let us consider the fuzzy theory 

T = (T U { 1 / A } )  U (T’U { l / - B } ) .  

This fuzzy theory is contradictory since T Fa, A + B where a’ 2 a,  t- A, T 1 d 3  
and thus, T Fa/ ,  B & i B  where a” 2 a > 0. By Theorem 7, there is a closed formula 
C E F J ( T )  n F J ~ )  such that 

T U { 1 / A }  kc C and T’ U {1/-B} kd 1C and c @ d > 0. 

By the deduction theorem there are m, n 2 1 such that 

where the right part implies T‘ kd C + nB. 0 

Corollary 2 
Let T be a fuzzy theory and A, B E F ~ ( T )  formulas. Let 

T F , A + B  

where a > 0. Then there is a closed formula C E F J ~ )  andp  E N’ such that 

T t , A P + C  and T k d C j p B  (9) 

for some c and d such that c @ d > 0. 
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PROOF: Take T = T' in the above theorem and put p = max(m, n). 0 

The above interpolation theorem raises a question what should be the numbers m,  n. It 
is not possible to derive them syntactically because the proof uses the deduction theorem 
in which the exponent n depends on the number of usages of the modus ponens rule. 
Therefore, we offer a semantic criterion. 

Corollary 3 
Let T be a fuzzy theory and A,  B E FJ(T)  formulas. Lei 

T t , A = + B  

where a > 0. Let C E F J ~ )  be a closed formula such that 

T U {1 /A}  I-, C and T u {1/-.B} k d  i C  and c @3 d > 0. (10) 

Then there are the least m, n E N+ such that 

T t, A" + C and T kd C + nB. (11) 

PROOF: The existence of m,  n follows from the deduction theorem using the reasoning 
in the proof of Theorem 8. Let T kf A,  T t-b B and T ke C for some f ,  b,  e E L 
(this assumption is sound since in fuzzy logic, every formula is provable in some degree). 
Then using the completeness theorem we obtain c @ f" 5 e and d @3 e 5 nb for some 
m,  n (in the proof we must use the identities Ai a? = (Ai ~ i ) ~  and n Ai ai = Ai nai 
which hold in the tukasiewicz MV-algebra). These inequalities enable us to find the least 

It follows from this corollary that the (least) exponents m,  n depend on the provability 
degrees of the formula C and its negation in the extensions (10) of the fuzzy theory T .  
Note that since c, d are some general degrees, the formulas in (1 1) are nontrivial (i.e. they 
do not collapse into T). 

m, n fulfiling them. o 

4 Conclusion 
In this paper, we have discussed some properties of model theory of fuzzy logic in nar- 
row sense with evaluated syntax. It can be seen that when dealing with degrees, we can 
introduce a lot of special properties which have no counterpart in classical logic. This 
concerns various kinds of relations among models of fuzzy theories. Note also, that they 
can be generalized to hold in some general degree only. Such generalization can be use- 
ful, e.g. in areas such as modeling of natural language semantics, or theories dealing with 
prototypes (cf. e.g. [6 ] ) .  
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Abstract 
We show that there exists a continuous fuzzy quasi-rder E on the set of real numbers R 
such that for any fuzzy quasi-order R on a finite set X there is a mapping f : X + R 
such that R(z ,  y) = R ( f ( z ) ,  f (y ) )  for all z, y E X .  

Keywords: Fuzzy relational system, Fuzzy quasi-order 

1 Introduction 
The paper is concerned with numerical representations of fuzzy relational systems. A 
fuzzy relational system is a pair (X, R) where X is a set and R is a fuzzy binary relation 
on X. In addition, we assume that X is a topological space and the membership function 
R(z ,  y) of R is a continuous function on X x X. (Finite sets are assumed to be endowed 
with the discrete topology.) In the case when X = R, the set of real numbers, (R. R) is 
said to be a numerical fuzzy relational system. 

Given two fuzzy relational systems ( X ,  P )  and (Y, Q), a homomorphism from ( X ,  P )  
to (Y, Q) is a continuous mapping f : X + Y such that 

P ( z ,  Y> = Q(f(z), f ( y ) ) ,  for all z, Y E X .  
A homomorphism from ( X ,  R) to a numerical fuzzy relational system (R, E )  is said to 
be a numerical representation of ( X ,  R) in (JR, ff). 

In this paper, all fuzzy relations R on a given space X are assumed to be fuzzy quasi- 
orders, i.e., fuzzy binary relations satisfying conditions: 

(i) R(z ,  z) = 1, (reflexivity), 

(ii) R(x ,  y)R(y, z )  5 R(z ,  z ) ,  (max-product transitivity), 
for all X ,  y E X .  

Main Theorem. There exists a numerical fuzzy relational system (R ,  E )  such that any 
fuz zy  relational system ( X ,  R) with$nite X andpositive R (R(z ,  y)  > 0 for all X ,  y E x) 
admits a numerical representation in (R, E ) .  

The following theorem is the main result of the paper. 

Similar results for arbitrary fuzzy transitive relations are established in [31. 



376 

2 Preliminaries 
First, we show that a continuous fuzzy quasi-rder R on R must have a positive mem- 
bership function R(z ,  y), This fact explains why we need the positivity condition in the 
Main Theorem. We define 

2 N O  Y * R(z ,  y) > 0 and R(y,z)  > 0, 

for all z, y E R. Thus defined wO is obviously a reflexive and symmetric relation. By 
the transitivity of R, the relation -0 is an equivalence relation on R. Clearly, { (5, y)  : 
n: NO y} is an open subset of R2. Since equivalence classes of -0 are open sets and IR is 
connected, z -0 y for all z, y E R. Hence, R(z ,  y) is positive. 

A fuzzy quasi-order R on X is said to be strict if 

min{R(z,y),R(y,z)} < 1, Vx # y i n X .  

We show now that in order to prove the Main Theorem it suffices to consider only the 
case of strict quasi-orders. We define 

z -1 y * R(z ,y)  = 1 a n d R ( y , z )  = 1, 

for all z, y E X. Thus defined -1 is an equivalence relation on X .  Let us define 

By symmetry, R(z ,  y)  = R(z’, y’). Clearly, R/ m1 is a strict fuzzy quasi-rder on X/ 
-1. 

The canonical mapping ‘p : X + X/ -1 defines a homomorphism from (X, R) to 

(X/ -1, R/ Y ) .  

Let f be a numerical representation of 
(X/ -1, R/ ~ 1 ) .  Then the mapping f o cp defines a numerical representation of (X, R).  

3 Proof of the Main Theorem 
According to the previous section, we may restrict our attention to numerical represen- 
tations of fuzzy relational systems (X, R)  with positive strict fuzzy quasi-rders R. We 
also assume that X is a finite set. 

Let 

1 
n 

Mn = {z:  - 5x2 5 1, 15 i 5 n}  = 



377 

where Z = {q, . . . , x,}. We define 

for all Z, jj E M,. Clearly, 

Rn (Z, Y) R n  (Y, 3) I Rn(% 3) 
Thus, R, is a strict fuzzy quasi-order on M,. 

M ,  (a “Peano curve” [ 1, IV(4)l). We define a fuzzy relation En on I ,  by 
Let I ,  = [n - 1, n] for n > 0. There exists a continuous surjection f, from I ,  onto 

1 
k,(x,y) == min{max{min{eY-”, l}, 1 - --}, R,(.fn(x), f,(y))). (1) 

Clearly, En is a continuous function. 

Lemma 1. R, is a strict fuzzy quasi-order on I,. 

Prooj First, we show that 
a transitive relation on I,. Let Q be defined by 

I 

is transitive, Note, that P ( x ,  y) = min{ey-z, 1) defines 

1 
Q ( x 1  Y) = max{P(zl Y), 1 - -1 n 

on I,. Thus defined Q is transitive. Indeed, 

Q ( z ,  v ) Q b ,  z )  = 
1 1 
n n max{P(cc, y), 1 - -} . max{P(y, z ) ,  1 - -}  

Finally, a simple calculation shows that 

En(~,Y)~ , (Y ,  .) = RJz, 2). 

It follows from (1) that gn(z, y) = 1 implies x 2 y. Hence, k,  is a strict fuzzy 
quasi-order. 

0 

Lemma 2. Let Y be a jn i t e  subset of M ,  such that Rn(Z, g) I 1 - 
Y .  There is a homomorphism from (Y, R,) to (I,, En). 

for all Z # jJ in 

Prooj Since f, is a surjection, for any Z E Y ,  there is xz  E I ,  such that f,(xp) = Z. 
Let 2 = {zz : 3 E Y }  C I,. Then gn : Z H ZF is a bijection from Y to 2. Since 
R,(F,F’)  5 1 - $, we have, by (l) ,  R,(2,d) = E,(g,(Z),g,(Z’)). 

0 
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Let R be a positive strict fuzzy quasi-order on a finite set X = {XI, . . . , z,} and let 
Q = min{R(z, y ) }  and ,B = min(1 - R(z ,  y )  : 2 # y}. We define 

n(R)  = max{m, La-'], L P - ' ] } .  
Clearly, 

for z # y. 
The following lemma is a special case of Theorem 1 in [ 2 ] .  

Lemma 3. Let n = n(R).  There exists a homomorphism from ( X ,  R )  to ( M n ,  Rn). 

Prooj We define f : X --+ M ,  by 

f(zi) = (R(zi ,  X I ) ,  . . . , R(G,  z,), 1, '  . . , 1 ), - 
(n-m) 1's 

for 1 I i 2 m. We have, by the transitivity property, 

and, for k = j, R(zi' = R(zi ,  z j ) .  R(zj , zk) 
Hence, R(zi,  z j )  = R n ( f ( z i ) ,  f (z j ) )  for all 1 2 i, j 5 m. 

Let R be a positive strict fuzzy quasi-order on X and n = n(R) .  It follows from 
Lemma 3, inequalities ( 2 )  and Lemma 2 that there exists a homomorphism from ( X ,  R) 

on IR such that 
to ( I n ,  

It remains to show that there exists a continuous - hzzy  quasi-order 
its restriction on each interval I ,  coincides with R,. 

Lemma 4. Let R1 and R2 be two continuous f u z q  quasi-orders defined on intervals 
[a ,  b] and [b,  c ] ,  respectively. Then R defined by 

R(z , y )  = R ~ ( z , Y ) ,  on Ti = [a,b] x [u,bI, 
R(z , y )  = R ~ ( Z , Y ) ,  on TZ = [ k c ]  x [ k c ] ,  
R(x,  Y )  = Rl(Z, b )Rz (b ,  Y ) ,  

R ( z , y )  = Rz(z,b)R1(b,y), 
on T3 = [a ,  b] x [ b ,  c ] ,  

on T4 = [b ,c ]  x [a ,  b] 

is a continuous fuzzy quasi-order on [a,  c ] .  
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ProoJ Clearly, R(z ,  y) is well-defined on the rectangle [a,  c] x [a,  c] .  Since R(z ,  y) is 
continuous on each Tl, , , . , T4, it is continuous on [a,  c] x [a,  c]. 

To show that 
R(z,  y)R(y,z) I R(z ,  z ) ,  

for all 2,  y, z E [a,  c ] ,  we first consider the following three cases: 
1) z E [a,  b],  y, z E [b,  c] .  Then 

R(z,  Y)R(Y, 2) = Rl(Z, b ) R z ( b ,  9)RZ(Yl 2) I 
&(z, b)Rz(b,z)  = R ( z ,  2). 

2) y E [a ,b] ,  z , z  E [b,c].  Then 

R(z ,  Y M Y ,  2) = 

RZ(.,b)Rl(b,Y)Rl(Y,b)RZ(b,.) I 
Rz(2 , z )  = R(z,  z ) .  

3) z E [a, b] , z, y E [b, c ] .  Then 

R(z1 Y M Y ,  2) = 

Rz(z1Y)R2(Y,b)R1(b,z) I 
RZ(2, b)Rl(b, z )  = R(z,  

The remaining alternatives are similar to these three and omitted. 

Note that the previous proof is valid in the case when one (or both) of the intervals 
[a,  b] and [b,  c] is unbounded. 

We define &(x,y) = min{eY-z, 1) on 10 = (_t : t 5 O}. It follows from the 
Fevious lemma that there exists a fuzzy quasi-order R on R which coincides with each 
R, on In for n = 0,1 , .  . .. 

This completes the proof of the Main Theorem. 
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Abstract 
This paper continues the investigation of approximating properties of generalized normal 
forms in fuzzy logic. The problem is formalized and solved algebraically. Normal forms 
are considered in two variants: infinite and finite. It is proved that infinite normal forms 
are universal representation formulas whereas finite normal forms are universal approxi- 
mation formulas for extensional functions. The estimation of the quality of approximation 
is suggested. Moreover, functions which can be precisely represented by the discrete nor- 
mal forms are considered. 

Keywords: Fuzzy relations, disjunctive and conjunctive normal forms, BL-algebra, uni- 
versal approximation, extensional functions 

1 Introduction 
This paper is a contribution to the theory of representatiodapproximation of fuzzy rela- 
tions by special formulas. By a fuzzy relation we mean a function which is defined on 
an arbitrary set and takes values from some set of truth values L. Normally, L = [0,1] 
and in this case we do not distinguish between fuzzy relations and bounded real valued 
functions. Based on this remark, we will further use term “L-valued function” instead of 
“fuzzy relation”. 

The theory of representation has many practical applications because it provides a 
formal description (precise or approximate) of functions which can be used for different 
purposes. What makes this theory general is the fact that one formal description given by 
a certain formula with a number of parameters can represent (precisely or approximately) 
a class of functions. The respective formulas are therefore, called universal formulas. 

The following examples serve us as prototypes of universal formulas. In boolean alge- 
bra of logical functions, each function can be represented by disjunctive and conjunctive 
normal forms. In this connection we say that normal forms in this boolean algebra play the 
role of universal representation formulas. In the algebra of many-valued logical functions, 

*This paper has been partially supported by grant IAAll87301 of the GA AV CR 
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the Rosser-Turquette formula generalizes the disjunctive normal (boolean) form and also 
serves as universal representation formula. From the theory of approximation, we know 
that e.g., Lagrange polynomials or Fourier series are examples of universal approximation 
formulas for continuous functions defined on bounded intervals. 

Fuzzy logic also contributed to this particular problem. It offers formulas of a first 
order calculus with fuzzy predicates which formalize a linguistic description given by a 
set of IF-THEN rules and thus, serve as universal approximation formulas for continuous 
functions defined on a compact set (see e.g.,[l, 3, 6, 71). Later, it has been shown that 
these formulas can be regarded as generalizations of boolean normal forms ([5,7, 8, 91). 
Moreover, in [9]  this fact has been proved using formal logical means. 

This paper continues the investigation of approximation properties of generalized nor- 
mal forms in fuzzy logic. The problem is formalized and solved algebraically. To be more 
general, an arbitrary BL-algebra has been chosen as an algebra of fuzzy logic operations 
(Section 2). This implies that the construction of the normal forms remains unchanged in- 
dependently on which concrete operations we use: Godel, tukasiewicz, product or others 
based on a choice of a t-norm. Normal forms are considered in two variants: infinite and 
finite (Sections 4, 5). It is proved that infinite normal forms are universal representation 
formulas whereas finite normal forms are universal approximation formulas for exten- 
sional functions (Section 3). The estimation of the quality of approximation is suggested. 
The proofs of the statements are not included due to the limitation of space, they can be 
found in [lo]. 

2 BL-algebra 
BL-algebra has been introduced in [2] as the algebra of logic operations which correspond 
to connectives of basic logic (BL). In the same sense as BL generalizes boolean logic we 
can say that BL-algebra generalizes boolean algebra. This appears in the extension of the 
set of boolean operations by two semigroup operations which constitute so called adjoined 
couple. The following definition summarizes definitions which have been introduced in 
P I .  
Definition 1 
A BL-algebra is an algebra 

c = ( L ,  V, A, *, -+,O, 1) 
with four binary operations and two constants such that 

(i) ( L ,  V, A, 0 , l )  is a lattice with 0 and 1 as the least and largest elements w.r.t. the 
lattice ordering, 

associative, commutative and 1 * z = 2 for all z E L,  

(iii) * and + form an adjoint pair, i.e. 
z 5 (z -+ y) iff Z * Z  5 y,  

(iv) and moreover, for all 2, y E L 

(ii) ( L ,  *, 1) is a commutative semigroup with the unit 1, such that multiplication * is 

z,y,z E L,  

z *(x + y) = z A y, 
(. 4 y) v (y 4 z) = 1. 
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Another two operations of C: unary 1 and binary c) can be defined by 

-lz = z 4 0, 
x tf y = (5  + y) A (y -+ z). 

The following property will be widely used in the sequel: 

5 y iff (z -+ y)  = 1. 

Note that if a lattice ( L ,  V, A, 0 , l )  is given, then BL-algebra is completely defined 
by the choice of multiplication operation *. In particular, L = [0,1] and * is known as a 
t-norm (see examples below). 

The following are examples of BL-algebras. 

Example 1 (Godel algebra) 

Example 2 (Goguen algebra) 

.cP = ( [ O ,  11, v, A, 0, -tPlO, 1) 
where the multiplication 0 = . is the ordinary product of reals and 

1 if z 5 y, 
2 if y < x. z - i p y =  

Example 3 (tukasiewicz algebra) 

3 

Let X be a nonempty set, C a BL-algebra on L,  and PL a set of all L-valued functions 
f(x1,. . . , x,), n 2 0, which are defined on X and take values from L.  To shorten the 
denotation we will write d") instead of (q, , . . , z,), Let us extend the operations from 
C on PL so that for each f(d")), g ( 5 i ( n ) )  E PL 

BL-algebras of L-valued Functions and Extensional 
Functions 

(f v g)(&))  = f(d,)) v g ( d " ' ) ,  
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( f * g ) ( X ' " ' )  = f(2'"') * g ( 2 ( " ) ) ,  

(f -+ g ) ( 2 ' " ) )  = f(%'"') -+ g ( 2 ' " ) ) .  
(f A g)(g("))  = f(2'"') A g(%'"'), 

Furthermore, let U and 0 be constant functions from PL taking the values 1 and 0, re- 
spectively. Then 

pr = P L ,  v, A, *, - + r  U, 0) 
is a BL-algebra. 

Note that 

(i) in case n = 0, L-valued functions degenerate to constants (elements of L),  

(ii) in case n = 1, L-valued functions are usually considered as membership functions 
of L-valued fuzzy sets, 

(iii) in other cases, L-valued functions are identified with fuzzy relations. 

We will be concerned with the subclass of L-valued functions formed by so called 
extensional functions. The reason comes from the fact that extensional functions have 
properties similar to continuity and therefore, they can be represented (precisely or ap- 
proximately) by special formulas over Pr (see [8, 91). But before we give the definition 
of extensional functions we will introduce the similarity relation on X which helps to 
describe a neighborhood of a point. 

Definition 2 
A binary fuzzy relation E on X given by L-valued function E ( z ,  y) is called a similarity 
if for each z, y,  z E X the following properties hold true 

E(z,y) = 1, (reflexivity) 
E ( z ,  Y) = E(Y, XI1 (symmetry) 

(transitivity) E ( z ,  y) * E ( y ,  z )  5 E ( z ,  2). 

In our text we will formally distinguish between the similarity relation (denoted by 
E )  and the (membership) function representing it (denoted by E ( z ,  y)), although they are 
closely connected. The value E ( z ,  y)  can be interpreted as the degree of similarity of z 
and y or the degree which characterizes that z belongs to a neighborhood of y. 

Let us consider some examples of similarity. Note that each crisp equivalence on X 
is also a similarity on X in any BL-algebra Pr. If L = [0, 11 and the multiplication 
* is a continuous Archimedian t-norm with continuous generator g : [0, 11 - [0, 001, 

then for any pseudo-metric d : X 2  - [0, co] on X the fuzzy relation Ed on X given 
by Ed(z, y)  = g(- ' ) (d(z ,  y))  is a similarity (see [4]). For example, if * is Lukasiewicz 
conjunction A with generator 1 - z then Ed(z, y) = max(0,l - d(z,  y))  defines the 
similarity on X in BL-algebra PcL. 

The following definition of extensional function is taken from 121. 
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Definition 3 
An L-valued function f (z1 .  . , , , z,) is extensional w.r.t. a similarity relation E on X if 
for all 21, . . . , z,, y1 , . . . , yn E X 

E(Q,Yl)  * .  . .  * E(%,Yn) * f(z1,. . . , zn) I f(Y1,. . .1Yn). 

It is easy to see that if f (z ,  y) = E ( z ,  y) or f(z, y) = E ( z ,  y) *a where a is an 
arbitrary element of L then f(z, y) is extensional w.r.t. similarity E. A general character- 
ization of extensional functions can be given in the BL-algebras where the operation * is 
a continuous Archimedian t-norm. This characterization is based on the property which 
is analogous to Lipschitz continuity. 

Theorem 1 
Let L = [ O , 1 ]  and multiplication * be a continuous Archimedian t-norm with the contin- 
uous generatorg : [ O , 1 ]  - [0, co]. Let d : X + [0, m] be a pseudo-metric on X and 
the fuzzyrelation Ed on X given by Ed(z,  y) = g(-l)(d(z,  y ) )  be a similarity. Then any 
extensional function f (21, . . . , x,), w.r.t. the similarity Ed fulfils the inequality 

where n 2 2 or (in case n = 1) 

Particularly, if the underlying BL-algebra is the Eukasiewicz algebra LL then exten- 
sional functions are Lipschitz continuous in classical sense. 

Corollary 1 
Suppose that the above given conditions are fulfilled, and * is the Eukasiewicz t-norm 
with generator g(z)  = 1 - x. Then any extensional function f (z1 ,  . . . , z,) fulfils the 
inequality 

lf(zi,. . . , z,) - f (y1 , .  . . , yn)l I min(1, d(z1, y1) + 5 .  -d(z,, Y,)). 

It is worth noticing that a class of extensional functions w.r.t. one specific similarity 
do not form a subalgebra of PL, This can be illustrated by the following example: the 
function f ( x l  y) = E2(z ,  y) (this is a short for E(x ,  y) * E ( z ,  y)) is not extensional w.r.t. 
similarity E .  A class of extensional functions w.r.t. one specific similarity is a subalgebra 
of a weaker algebra than PL. 

Lemma 1 
Let E ( x ,  y) define a similarityon X, n 2 1 a natural number. A class of extensional w.r. t. 
E functions depending on n variables, forms a sublattice of (PL,  V, A, UJ, 0). 
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4 Normal Forms for L-valued Functions 
In this section, we will introduce three normal forms for L-valued functions analogously 
to that, how it is done for boolean two-valued functions. We will construct one generalized 
disjunctive normal form and mo generalized conjunctive normal forms. The latter fact is 
due to the absence of the law of double negation in BL-algebra. 

Let us fix some complete BL-algebra C and a similarity E on a set X. The following 
lemma introduces so called constituents of normal forms and shows their relation to the 
original function. 

Lemma 2 
Let c1,. . . , c, where n 2 1, be arbitrary elements of X and d E L. Then functions 
represented by 

(7) 
and 

(8) 
are extensional w.r.t. similarity E .  

E(z1,  ~ 1 )  * .  . . * E(x,, c,) * d 

E(z1, ~ 1 )  * .  . . * E(z,, c,) + d, 

Let moreover, f(z1, . . . , z,) be an extensional w.r.t. E function such that 

f (c1 ,  . . . , c,) = d. 

Then for all 2 1 ,  . . . , z, E X 

The functions represented by the formula 

or 
( E ( z i , c i )  * * . . * E ( ~ , , c , )  d )  

will be called lower and upper constituents of the function f(z1 , . . . , z,), respectively 
provided that f(c1 , . , . , c,) = d. Using them, we can introduce the disjunctive normal 
form (DNF) o f f  as a supremum of all its lower constituents and the second conjunctive 
normal form of f as an infimum of all its upper constituents. The first conjunctive normal 
form o f f  will be introduced as the formula dual to DNF. 

Definition 4 
Let f(z1,. . . , 2,) E PF be an L-valued function. The following formulas over Pr: are 
called the disjunctive normal form of f 

~ D N F ( ~ I , . . . , ~ , )  = v (E(zl,cl)*...*E(zn,c,)*f(Cl,.’.,Cn)) (11) 
c1 ,..., C , E X  

and the conjunctive normal forms o f f  

~ c N F ~ ( z ~ , .  ..,z,) = -  V (~(zi,ci)*...*~(z,,c,)*(-f(ci,. . . , c , ) ) )  
Cl, ..., C,EX 

(12) 
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and 

fCNFII (51 , . . . , xn) = A (E(zi,ci)*...*E(x,,c,) -+ f(ci,~~~,cn))~ (13) 
c1 ,..., c,EX 

Remark 1 
Two conjunctive normal forms are generally not equivalent except for the case of tukasiewicz 
algebra. 

At first, we will investigate whether the functions represented by normal forms are 
extensional w.r.t. similarity E? 

Theorem 2 
The functions 

V (E(xi, ci)  * * * * * E(x,, cn) * dcl...c,) (14) 
c1, ..., c,EX 

1 v (E(z1, c1) * .  . . * q z n ,  en) *( l d C 1 . . . C n ) )  (15) 
C l ,  ..., C,EX 

A (E(zi, ci)  * * .  * * E(xn,  cn) -+ dcl.. .c,) (16) 
C l ,  ..., %EX 

where dcl,,,c,, E L,  are extensional w.r.t. similarity E. 

Now, we will investigate the relation between the original function f and the functions 
represented by normal forms o f f .  

Theorem 3 
Let f(q, . . . , 2,) be an extensional function w.r.t. similarity E .  Then 

Let us stress that Theorem 3 demonstrates very convincing results, asserting that even 
in the fuzzy case, normal forms can be equal to the original function. Moreover, the 
construction of normal forms gives us the idea of how they can be simplified without 
significant loss of their ability to represent (at least approximately) the original function. 

5 Discrete Normal Forms 
The normal forms introduced above can hardly be used in practice because they are based 
on the full knowledge of the represented function in all its points. Having on mind prac- 
tical applications, we have to simplify normal forms. We will do this by removing some 
of its elementary terms. Of course, after such removing we cannot expect that thus ob- 
tained simplified formulas will represent the original function precisely. But we expect 
an approximate representation which in many cases is sufficient. Aiming at this, we will 
introduce discrete normal forms which are based on partial knowledge of the represented 
function in some nodes. 

Let BL-algebra C and a similarity E on the set X be given. 
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Definition 5 
Let f(z1, . . . xn) be an L-valued function defined on X, c1, . . . , Ck some chosen ele- 
ments (nodes) from X. Let elements &,,,,in E L be chosen so that 

di1...in = f(Ci, 1 . ' . , Ci,) 
for each collection of indices (21 . . . in) where 1 5 21, . . . in 5 k. Then the following 
formulas over PL are called the discrete disjunctive normal form of f 

k 

fDNF(Zl,.. . ,xn) = v (E(xi,Cil)*."*E(xn,ci,)*di ,...in) 
il,,..,in=l 

and the discrete conjunctive normal forms off  

k 

fCNFr(xi,. ..,z,) =i V (~(zi,ci,)*...*~(zn,ci,)*(~di ,...in)) 

2 1 ,  ..., Z,=l 

and 

k 

fCNFII(xl,...,xn) = A (E(x11Cil) *"'*E(xn,Ci,) dil ... in). 
21 , . . . ,a ,  = 1 

5.1 Universal Approximation of Functions by Discrete Normal Forms 
We will show that the discrete normal forms do approximate the original function if the 
nodes are chosen properly. It is interesting that, independently on the choice of nodes, 
DNF and both CNF's can be considered as lower and upper approximate representations 
of the given function, respectively. This fact is proved in the theorem given below. 

Theorem 4 
Let f ( 5 1  . . . 2,) be an extensional function w.r.t. similarity E defined on X, c1 . . . , ck  
be nodes from X. Let elements di, E L be chosen so that 

4, ... 2, = f(c2,, . . . , Ci,) 

for each collection of indices (il . . . in) where 1 5 i l ,  . . . , in 5 k. Then discrete normal 
forms given by (20)-(22) fulfil the following inequalities: 

The following theorem exposes the approximation property of discrete normal forms. 
By this we mean, that the equivalence between an extensional function and the functions 
represented by each of its discrete normal forms can be estimated from below. Thus, in 
the language of BL-algebra Pc, the approximation means the conditional equivalence. 



389 

Theorem 5 
Let f (21,. . . , x,) be an extensional function w.r.t. similarity E defined on X ,  c1, . . . , Ck 

be nodes from X .  Let elements di,,,,in E L be chosen so that 

di, ... in = f(Ci, 1 .  . ' , Ci,) 

for each collection of indices (il . . . in) where 1 5 i l ,  . . . , i, 5 k. Then functions rep- 
resented by the discrete normal forms given by (20) and (22) are conditionally equivalent 
to the original function f which means 

fDNF(Zl,...iZn) * f(xl,...rZn) 2 v (E2(21,Cil)*"'*E2(Zn,Ci,)) (26) 
. ,  
2 1  ... 2, 

fCNFir(Zl,...,xn) f ( Z l , . . . , % )  2 v (E2(Z1,Cil)*"'*E2(Zn,Ci,)) (27) 
, .  

21 ... 2, 

Note, that the condition Vil,,,in(E2(x1, cil) * G . * E2(xn, ci,)) of equivalences (26) 
and (27) describes the quality of approximation which is the degree of similarity between 
two points (21, . . . , x,) and (cil,. . . , tin), The direct estimation of thus expressed qual- 
ity of approximation is given below for special BL-algebras. 

Corollary 2 
Let the conditions of the above theorem be fulfilled. Moreover, let L = [0,1] and * be 
a continuous Archimedian t-norm with a continuous additive generator g : [0,1] - 
[0, m]. Let d : X - [ O ,  m] be a pseudo-metric on X and the similarity E on X be 
given by E ( x ,  y)  = t(-')(d(x, y)).  Then we can estimate the quality of approximation 
of the original function f by functions represented by the discrete normal forms given by 
(20) or (22) 

n 

Ig(f(xi , .  . .,xn)) - g(fDNF(xir.. . x , ) ) ~  5 min(t(o), , min C ~ z j ,  cij)), (28) 
2 1  ,. . . ,tn j=1 

n 

lg(f(xl,...,xn)) -g(fCNFlr(Zl,*. . ,%))I  5 min(t(o)i , m i n  C 2 d ( Z j , c i j ) ) .  
a i , . . . , i n  j=l  

(29) 

Figures 1-4  illustrate how the extensional function can be approximated by the cor- 
responding normal forms. In fact, the function represented by DNF coincides with the 
original one while the function represented by CNF really approximates the original one. 
The approximation error is shown on Figure 4. 

Remark 2 
It is worth noticing that the discrete normal forms model what is known in fuzzy literature 
as fuzzy systems. Usually, fuzzy systems are developed with the help of IF-THEN rules 
which describe a behaviour of a dynamic system in a language close to the natural one. 
The proof that fuzzy systems are really able to do this job is given in a number of papers 
unified by the key words "universal approximation" (see e.g.,[ 1,3 ,7] ) .  The result proved 
in Theorem 5 also belongs to this family. However, the method of a proof suggested here, 
differs from the other ones by its algebraic origin. 
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Figure 1 : Original function 

Figure 2: The corresponding d.n.f.. 

5.2 Representation of Bounded Functions with One Variable by Discrete Normal 
Forms 

In this subsection we will consider the problem whether there exist functions admitting 
a precise representation by the discrete normal forms. It would be nice to find a full 
characterization of all such functions, but the problem seems to be very difficult. We 
suggest a partial answer for the case of functions of one variable defined on a closed 
interval of the real line. 

Theorem 6 
Let L be a support of some BL-algebra C and an L-valued function f (x) be defined on 
the interval [a, b] .  Moreover, let f(x) have its largest value at point c E [a,  b] .  Then f(z) 
can be precisely represented by the respective discrete disjunctive normal form. 

An analogous representation of f by the discrete conjunctive normal form requires a 
stronger algebra than BL. Without going into the details, we give the following definition. 

Definition 6 
A BL-algebra C = ( L ,  V, A, *, -+, 0 , l )  where the double negation law z = 77% is valid 
for all z E L, is called an MV-algebra. 
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Figure 3: The corresponding c.n.f.. 

Figure 4: The difference between g(x ,  y) and the corresponding c.n.f.. 

Now, using the means of MV-algebra we can prove the second representation theorem, 

Theorem 7 
Let L be a support of some MV-algebra C and an L-valued function f (x) be defined on 
the interval [a, b] .  Moreover, Jet f(x) have its least value at point c E [a, b ] .  Then f (x) 
can be precisely represented by the respective discrete conjunctive normal form. 

6 Conclusions 
In this paper we have introduced the disjunctive and conjunctive normal forms as special 
formulas of BL-algebra of functions. On the one side, the expressions for the normal 
forms generalize boolean ones which are used for the representation of logical functions. 
On the other side, they generalize formulas known in fuzzy literature as universal approx- 
imation formulas. The latter has been used for approximate description of continuous 
functions defined on compact domains. 
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Abstract 
This work presents several alternative definitions of uninorm and it is proved that all of 
them are equivalent to the initial one given by Yager-Rybalov. Special cases are studied 
for uninorms in Urnin and Urn,,, from this study some new kinds of operators appear 
which are a generalization of both: t-operators and uninorms. Moreover, the same kinds 
of operators are obtained, from an alternative approach, as a kind of median operators 
following the notation in [6]. 

Keywords: Uninorm, t-operator, associativity, bisymmetry, boundary conditions. 

1 Introduction 
Associative operators acting on intervals were studied already by Abel [ l ] ,  compare also 
AczCl [2]. A prominent role among these operators play t-norms and t-conorms intro- 
duced by Schweizer and Sklar [ 141 and extensively studied in [ 1451 and [ 101. A specific 
class of associative operators on [0,1] containing t-norms and t-conorms as border cases is 
the class of uninorms. From their introduction by Yager-Rybalov in [16], uninorms have 
been extensively studied by many authors from both: the applicational and the theoretical 
point of view. The first study has proved that uninorms are useful in many fields like ag- 
gregation, expert systems, neural networks or fuzzy system modelling. On the other hand, 
the theoretical study of uninorms has allowed to obtain a complete description of their 
structure in some distinguished cases in [8], their classification in some classes in [4], the 
characterization of idempotent uninorms in [3] and also some generalizations of uninorm 
have appeared, e.g. in [ 131. Recall also that uninorms have been studied already by Golan 
[9] as multiplications U in distributive semirings ([0,1],  sup, V) and ([0,1],  inf, V). 

*Correspondence author 
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Another kind of operators closely related to t-norms and t-conorms are t-operators 
studied in [ 111. The structure of both t-operators and uninorms is similar enough with the 
particularity that t-operators have a null element instead of a neutral one. However, the 
existence of this null element for t-operators is derived from their definition whereas for 
uninorms the existence of the neutral element is one of the conditions in the definition. 
Observe that nullnorms introduced in [5] turn out to be exactly the earlier introduced 
t-operators. 

Can we give an alternative definition of uninorm in such a way that the existence of 
the neutral element is derived from? Or also, can any other condition on the definition 
be changed by some other obtaining an equivalent definition? In this work we present 
positive answers to these questions. In particular we prove that associativity and com- 
mutativity can be substituted by bisymmetry. Moreover, in cases of uninorms in Umjn 

and Urnax it is proved that the existence of the neutral element can be derived from some 
border conditions plus a condition on continuity. From this study two new classes of op- 
erators appear which we have called S-uninorms in Urnin and 7'-uninorms in Urnax, The 
first class presents a generalization of t-operators and uninorms in Urnin and the second 
one a generalization of t-operators and uninorms in Urnax. Moreover, both classes are 
dual one of the other. Finally, we introduce a common generalization of all classes of 
associative operators discussed above. 

2 Preliminaries 
We assume the reader to be familiar with basic notions concerning t-norms and t-conorms 
(see e.g. [lo]). On the other hand, we recall here some definitions and results about 
uninorms and t-operators. 

Definition 1 A uninorm is a two-place function U : [0, 112 - [0,1] which is asso- 
ciative, commutative, non-decreasing in each place and such that there exists an element 
e E [0,1] called the neutral element such that U ( e ,  z) = z f o r  all z E [0,1]. 

It is clear that, when e = 1, the function U becomes a t-norm and, when e = 0, a 
t-conorm. For any uninorm we have U ( 0 , l )  E (0, l}. Uninorms satisfying that both 
functions U(x ,  0) and U ( z ,  1) are continuous except perhaps at the point e are character- 
ized in [8] as follows: 

Theorem 1 (see Theorem 1 in [8]) Let U be a uninorm with neutral element e # 0 , l  and 
such that bothfunctions U ( z ,  1) and U ( z ,  0) are continuous except fit the point z = e. 

i )  I f U ( 0 , l )  = 0,  then 

eT (:, :) i f 0  5 2,  y 5 e 

e +  (1 -e)s (E,E) i f e  5 z , y  I 1 
min(x, Y) otherwise 

U ( ~ , Y )  = 

eT (5,:) 

max(x, Y) otherwise 

i f 0  5 x ,y  5 e 

i 
ii) I f U ( 0 , l )  = 1, then 

e +  (1 - e)s (z,~) i f e  5 z, y 5 1 
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In both formulas T is a t-norm and S is a t-conorm. It is denoted by Urnin the class of 
uninorms as in i)  and by Urnax the class of uninorms as in ii). 

Note that in both cases the uninorm U is an ordinal sum of semigroups in the sense of 
Clifford [7]. 

Remark 1 Without the assumption of continuity of the functions U(x, 1) and U(x, 0 ) ,  the 
same structure holds but the values of U(x, y) when min(x, y)  < e < max(x, y) are not 
determined and it is only known that they are somewhere between min and max. 

From now on, given any binary operator U : [0, 112 -+ [0,1], and any element a E 
[0,1], we will denote by U, the section U, : [0,1] -+ [0,1] given by U,(x) = U ( a ,  x). 

Definition 2 A t-operator is a two-placefunction F : [0,1]’ - [0,1] which is associa- 
tive, commutative, non-decreasing in each place and such that: 

0 F(0,O) = 0; F(1,l) = 1. 

The sections Fo and FI are continuous on [0,1]. 

Remark 2 When F is a t-operator, the element k = F(1,O) is a null (or absorbent) 
element in the sense that F(x ,  k)  = k for all x E [0,  11 and therefore, the function F 
becomes a t-norm when k = 0 and a t-conorm when k = 1. 

The proof of the following theorem can be found in [ 1 11. 

Theorem 2 Let F : [0, 11’ - [0,1] be a t-operator with F(1,O) = k # 0 , l .  Then: 

k S  (2 ,  E) i f 0  5 x ,y  5 k 
k +  (1 - k)T (=, 1 - k )  i f k  5 z ,y  5 1 

ifmin(x, y) 5 k 5 max(x, y) 

x - k  & F ( X , Y )  = (i 
where S is a t-conorm and T a t-norm. 

Note that following [6] each t-operator F with null-element k can be represented in 
the form F = rned(k ,  T ,  S )  for some t-norm T and some t-conorm S.  Viceversa, given 
any t-norm T and any t-conorm S,  each operator F defined by F = rned(k ,  T ,  S )  is a 
t-operator. Moreover, for the genuine n-ary extension of F (due to its associativity) we 
have: 

F (XI ,  ..., x,) = med (k, T(x1, ..., x,), S(x1, ..., 2,)). 

3 New look on uninorms 
We begin with equivalent definitions of uninorm in the general case and we deal with the 
case of uninorms in Urnin and Urn,, later. The first modification involves the bisymmetric 
property which we recall here. 

Definition 3 An operator U : [0,1]’ - [0,1] is said to be bisymmetric if 

U(U(X, Y ) ,  U ( U ,  w)) = U ( U ( x ,  U ) ,  U(Y, 

for all x, y, u, w E [0,1]. 
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Proposition 1 Let U : [0, 112 4 [0,1] be a binary operatol: Then U is a uninorm ifand 
only if U is non-decreasing in each place, bisymmetric and has a neutral element. 

Proof: It is well known that associativity and commutativity imply bisymmetry. Con- 
versely, if U is bisymmetric and has a neutral element e E [ O , 1 ] ,  then for all z, y, z € [ O , 1 ]  
we have 

and commutativity follows. 
The next proposition shows that the existence of a neutral element can be replaced by 

the existence of an idempotent element with onto section. 

Proposition 2 Let U : [0,  112 - [0,1] be a binary operator: Then U is a uninorm 
i f  and only if U is non-decreasing in each place, associative, commutative and has an 
idempotent element e whose section Ue is an onto map. 

Proof: It is obvious that if U is a uninorm then its neutral element e is idempotent and its 
section is the identity map. 

Conversely, let us suppose that e is an idempotent element of U for which U, is onto. 
Thus, given z E [0,1] there exists y E [0, 11 such that 

5 = Ue(Y) = U ( ~ , Y )  = U(yie).  

and therefore 

consequently e is a neutral element of U and U is a uninorm. 
From now on, let us deal with uninorms in Umin and in Urnax. For these classes of 

uninorms, the sections UO and Ul are such that one is continuous and the other is also 
continuous except perhaps at the neutral element. Recall on the other hand that, for a 
t-operator F ,  the existence of the null element follows precisely from the continuity of its 
sections FO and Fl.  So the question is: Are there some additional conditions on sections 
UO and U1 in such a way that the existence of the neutral element of U can be derived 
from these additional conditions? 

Unfortunately the answer is negative as the following example shows. 

Example 1 Let T be a t-norm, e E ( 0 , l )  and let us consider the operator U : [0, 112 -+ 

[0, 11 dejined by 

e T  (:, $) i f z ,  Y E [O, el2 
i f x ,  Y E [e,  112 - {(e, e)> 

min(z, y) otherwise 
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It is easy to see that U is associative, commutative and non-decreasing in each place. 
Moreovel; the sections UO and U1 are exactly those of a uninorm in Urnin although U is not 
a uninorm since it has no neutral element. Howevel; U is an ordinal sum of semigroups 
in the sense of Clifford [7] with one t-norm summand T and one t-superconorm summand 
constant 1. This operator can be viewed on figure 1. 

0 e 1 
Figure 1 : Operator given in Example 1 

From the example above, if we want to derive the existence of the neutral element 
from conditions on the sections Uo and U, we will need at least one additional condition. 
We will reduce now our reasonings to uninorms in Urnin and similar results for uninorms 
in Umax will follow later. 

The following theorem is essential in the paper for two reasons. On one hand, it 
introduces a new kind of operators which are a generalization of both; t-operators and 
uninorms in Umin and, on the other hand, an immediate corollary will give us another 
equivalent definition of uninorm in Urnin, 

Theorem 3 Let U : [0,  112 4 [0,1] be a binary operator. Then: U satisfies theproperties 

associative, commutative, non-decreasing in each place 

UO is continuous with UO ( 0 )  = 0 

U1 (x) 2 x for all x E [0,1] and U1 is continuous except perhaps at one point e but 
then U1 (e) = 1 and the section U,  is continuous 

if and only ifthere exist t-conorms S,  S’ and a t-norm TI such that U is given by 

kS (:, f )  
k 

i f 0  5 x ,y  5 k 
ifmin(x, y) 5 k 5 max(x, y)  

(1) 
x-k & + (. - k)T’ (x I  €-k) if 5 z, y 5 

e t ( l - e ) S ’ ( = ,  5-€ 1-J i f e I z , y 5 1  

min(x, Y) otherwise 

U ( X > Y )  = 
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In expression (1) it is understood that: The part involving S must be omitted when k = 0 
and analogously the part involving S' when e = 1. Moreovel; the case when U1 is 
continuous corresponds in expression (1 )  with e = 1. 

Before prove this theorem let us introduce a name for this kind of operators and let us 
also give the promised corollary. 

Definition 4 Any binary operator satisfying the properties stated in the theorem above 
will be called, according to its structure, an S-uninorm in Umin.  

From their structure, which can be viewed in Figure 2, it is clear that S-uninoms 
in Umin are a generalization of t-operators (cases when e = 1, that is, when U1 is also 
continuous) and they are also a generalization of uninorms in Urnin (cases when k = 0, 
that is, when Ul(0) = 0). As an immediate consequence of this observation we have the 
following corollary. 

Corollary 1 Let U : [0,  1]* -+ [0,1] be a binary operator. Then U is a uninorm in Umin  
ifand only i fU  is 

associative, commutative, non-decreasing in each place, 

U,(z) 2 x for all z E [0,  11, UI(0) = 0 and U1 is continuous except perhaps at 
one point e but then U1 ( e )  = 1 and the section U, is continuous 

Let us now deal with the proof of the theorem. 

Proof of Theorem 3: It is a straightforward computation to prove that all binary operators 
given by expressions (1) satisfy the properties stated in the theorem. 

Conversely, let U be a binary operator satisfying these properties and let US say k = 
U(0 , l ) .  Then we have by associativity 

U ( k ,  1) = U ( U ( 0 ,  l) ,  1) = U ( 0 , l )  = k 

and similarly U ( 0 ,  k )  = k .  Moreover, 

U ( k ,  k )  = U ( U ( 0 ,  l) ,  k )  = U ( 0 ,  U(1, k ) )  = U ( 0 ,  k )  = k 

and consequently U ( z ,  y)  = k for all (z, y) such that min(x, y) 5 k I max(z, y) .  Now 
we continue our proof by distinguishing some cases: 

If U1 is continuous then, since Vl(z) 2 z, we have Ul(1) = 1 and consequently 
U is a t-operator. 

If there exists e E [0,1] such that U1 is continuous except at point z = e then we 
necessarily have k < e, because U l ( k )  = k whereas Ul(e) = 1. Thus, for any 
k 5 z < e there exists y such that U(1, y) = x, again by continuity and the fact 
that Vl(z) 2 z, but then 

U(1,z)  = U(1, U(1,y)) = U(1,y) = 5.  
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Moreover 

U ( e , z )  = U ( e , U ( l , z ) )  = U ( U ( e , l ) , x )  = U(1,z)  = x  

for all x such that k 5 x < e and since U, is continuous we obtain that e is an 
idempotent element. This proves that U ( x ,  y) = min(x, y) for all (x, y) such that 
k < min(z ,  y) < e 5 max(x, y). Finally, for all x > e there exists an element y 
such that U ( e ,  y) = x and then 

U ( e ,  x) = U ( e ,  U ( e ,  y)) = z 

To end the proof let us define S ,  T‘ and S‘ by 

u ( k z j  k y )  T’(z,  y) = U ( ( e  - k ) x  + k ,  ( e  - k)y + k )  - k 
e - k  

U ( ( I - e ) x + e , ( I - e ) y + e ) - e  
l - e  

s ( z , Y )  = k > > 

S’hY) = 

they are such that U is given by equation (1). 
It is a simple computation to verify that T’ is a t-norm, S and S’ are t-conorms and 

0 k e 1 
Figure 2: General structure of S-uninorms in Urnin 

Similarly, we can give an analogous study for uninorms in Urnax. Following the same 
line of reasonings let us give an example analogous to Example 1 proving that the exis- 
tence of a neutral element can not be derived from boundary conditions. 

Example 2 Let S be a t-conorm, e E ( 0 , l )  and let us consider the operator U : 
[0,1]’ + [0,1] defined by 

i f z ,  Y E 10, 4’ - { ( e ,  el> 
i j x , y ~  [e,112 
otherwise 
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It is easy to see that U is associative, commutative and non-decreasing in each place. 
Moreover; the sections UO and U1 are exactly those of a uninorm in Urnax. However U is 
not a uninorm since it has no neutral element. 

On the other hand, we have the following results that we present without proofs since 
they are quite similar to those given for uninorms in Urnin. 

Theorem 4 Let U : [0,1]’ + [0,1] be a binary operator. Then: U satisfies the properties 

associative, commutative, non-decreasing in each place 

UI is continuous with UI(1) = 1 

UO (x) 5 x for  all x E [0,1] and UO is continuous except perhaps at one point e but 
then Uo ( e )  = 0 and the section U ,  is continuous 

if and only if there exist t-norms T ,  TI and a t-conorm S‘ such that U is given by 

1 k otherwise 

0’ ( 5 ,  :) 
max(x, Y) 

i f0 5 x, y 5 e 
ifmin(x, y)  5 e < max(x, y) 

~ ( x , y )  = e + ( k - e ) S ’  (E,E) i f e  < x , y  5 k ( 2 )  
) i f k S X , Y 5 1  k + (1 - k ) T  (- z-k ~ 

1 - k ’  1-k 

In expression ( 2 )  it is understood that: The part involving T‘ must be omitted when e = 
0 and analogously the part involving T when k = 1. Moreover; the case when UO is 
continuous corresponds in expression ( 2 )  with e = 0. 

Definition 5 Any binary operator satisfying the properties of the theorem above will be 
called, attending to its structure, a T-uninorm in Urnax. 

From their structure, which can be viewed in Figure 3, it is clear that 2”-uninorms 
in U,,, are a generalization of t-operators (cases when e = 0, that is, when UO is also 
continuous) and they are also a generalization of uninorms in Urn,, (cases when k = 1, 
that is, when Uo(1) = 1). As an immediate consequence of this observation we have the 
following corollary. 

Corollary 2 Let U : [0,1]’ -+ [0,1] be a binary operator. Then u is a uninorm in tYm,, 
if and only if U is 

associative, commutative, non-decreasing in each place, 

UO(X) 5 x for all x E [0,1], UO(1) = 1 and UO is continuous except perhaps at 
one point e but then Uo( e )  = 0 and the section U, is continuous 
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k 

e k 

T 

k 

1 
Figure 3: General structure of T-uninorms in Urn,, 

Finally, let us point out that, given any strong negation N ,  the two kinds of operators 
introduced in this paper, S-uninorms in Urnin and T-uninorms in Urn,,, are N-dual 
one of each other. Namely, given any strong negation N and any binary operator U : 
[0,1]' + [0,1], let us denote by UN the N-dual operator of U, that is, 

UN(2, Y) = N ( U ( N ( 2 ) ,  N(Y))) 

for all 2,  y E [0,1]. 
Then, we have the following theorem. 

Theorem 5 Let N be a strong negation and U : [0, 112 + [0,1] a binary operator: Then 
li is an S-uninorm in Urnin ifand only i f  UN is a T-uninorm in Urnax. 

Proof: It is well known that if U is associative, commutative and non-decreasing in each 
place then so is U,v. Moreover it is trivial that the boundary sections of UN are given by 

and ( U N ) O  = N o UI o N ( U N ) ~  = N o UO o N 

and then the boundary conditions also follow. w 

4 Alternative approach 
As already observed, S-uninorms in Urnin as well as 5"-uninorms in Urnax generalize both 
uninorms and t-operators. Taking into account the representation F = m e d ( k ,  T ,  S )  of 
t-operators from [ 6 ] ,  we may try to define new type of binary operators on the unit interval 
[O? 11 

where k E [0, 11 is a constant, and G, H are from the class A = 7 U S U U, where I is 
the class of all t-norms, S is the class of all t-conorms and U is the class of all uninorms 
in Urnin u Urnax. 

Obviously, any operator F : [0, 11' + [0,1] given by ( 3 )  is nondecreasing, commu- 
tative and F(0,O) = 0, F ( 1 , l )  = 1. However, F is not associative and k need not be a 

F = m e d ( k ,  G ,  H )  ( 3 )  
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null-element of F, in general. To ensure that k is the null-element of F , it is enough to 
suppose that 

but still associativity is not guaranteed. 

Example 3 Just taking F = m e d (  1/2,  T ,  U )  where T is the Hamacher t-norm with pa- 
rameter X = 0 and U is the uninorm given by 

G ( k , x )  5 k 5 H ( k , z )  fo ra l lx  E [0,1] (4) 

ifx = 0,y = 1 o r x  = 1 , y  = 0 
otherwise x Y + ( l - X ) ( l - Y )  

we obtain an operator satisfying (4 )  that is not associative. Indeed, we have 

F(F(1/5,2/5), 3/10) = 6/53 while F(1/5, F(2/5,3/10)) = 2/13 

violating the associativity of F. 

A property that can be extended to this kind of operators is the one given in Theorem 
5 concerning duality. Namely, the following result holds trivially. 

Theorem 6 Let k E [0,1] be a f i e d  constant, let G,  H be two binary operators from A 
and N a strong negation. The N-dual Dperator of F = m e d ( k ,  G ,  H), denoted by FN is 
given by FN = m e d ( N ( k ) ,  HN, G N ) .  Moreover; F satisfies condition ( 4 )  ifand only if 
FN satisfies it. 

Let us now deal with associativity of operators given by (3). First we need the follow- 
ing definition. 

Definition 6 Let F : [0,1]’ --i [0,1] be a binary operator F will be called a bi-uninorm 
ifand only ifthere exist e l ,  e2 E [0,1] such that e2 < k < el and two uninorms, U1 and 
u2 with neutral elements e l  and e2 respectively, such that F is given by: 

kU2 (:, f )  i f 0  5 x , y  5 k 
i fmin(x ,y)  5 k 5 max(x ,y )  

x-k & { *  f (l - k ) U 1  (-1 1 - k )  i f k  5 z > y  
F ( X , Y )  = 

Theorem 7 Let k E ( 0 , l )  be afixed constant, let G ,  H be two binary operators from A 
with G(0 , l )  = 0 ,  H ( 0 , l )  = 1 and let F = m e d ( k ,  G, H). Then the following conditions 
are equivalent: 

i )  F is associative 

ii) F is either a t-operator; a T-uninorm in Urn,,, a S-uninorm in Urnin or a bi- 
uninorm with underlying uninorms U1 in Umin and Uz in Urnax. 

iii) There exist two binary operators from A, GI, HI with GI 5 HI, G ‘ ( k ,  X) 5 k 5 
H ’ ( k ,  x)  for  all x E [0,1] such that F = m e d ( k ,  GI, H’). 

Moreover; in this case, k is always a null-element for F. 

Proof: Full proof of this result can be found in [ 121 rn 
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Example 4 Take k = 1 / 2  and U1, U2 the following uninorms: 

Note that U1 and U2 are dual one to another with respect to the usual negation N = 
1 - Id. Then 

F = med(l/2, U1, Vz) 
is a commutative, nondecreasing, associative operatol; with 0, I idempotent elements and 
1/2 null-element. Moreovel; F is self-dual and it is given by: 

{ 1/2  otherwise 

min(z, y) 
max(z,y)  

ifmax(z,  y) <_ 1/5 or 1/2 5 min(z, y) < 4/5 
$1/5 < max(z,y)  <_ 1/2  o rmin (z ,y )  2 4/5 . F(z,y) = 

This operator can be viewed in Figure 4 .  

I"" 
I min 

7 min 

0 1/5 1 / 2  4/5 I 
Figure 4: The bi-uninorm given in example 4 
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Abstract 
The paper deals with the treatment of modeling uncertainties in model-based fault de- 
tection and isolation (FDI) systems using different kinds of non-analytical models 
which allow accurate FDI under even imprecise observations and at reduced complex- 
ity. 

Keywords: Fault detection and isolation, modeling uncertainty, robustness, qualitative 
models. 

1 Introduction 
The classical approach to model-based fault detection and isolation FDI makes use of 
functional models in terms of analytical (“parametric ”) mathematical models. A fun- 
damental difficulty with analytical models is that there are always modeling uncertain- 
ties due to unmodeled disturbances, simplifications, idealizations and parameter mis- 
matches which are basically unavoidable in the mathematical modeling of a real system. 
They may be subsumed under the term unknown inputs. They are not mission-critical, 
but they can obscure small faults, and if they are misinterpreted as faults they cause 
false alarms which can make an FDI system totally useless. Hence, the most essential 
requirement for an analytical model-based FDI algorithm is robustness w. r. t. the dif- 
ferent kinds of modeling uncertainties. Analytical approaches to robust FDI schemes 
that enable the detection and isolation of faults with low false alarm rates in the pres- 
ence of modeling uncertainties have attracted increasing research attention in the past 
two decades and there is a great number of solutions to this problem [7, 11, 12, 14, 16, 
30, 31, 32 ,33,  381. 

Surprisingly, much less attention has been paid to the use of qualitative models in FDI 
systems, in which case the parameter uncertainty problem does inherently not appear at 
all. The appeal of the qualitative approaches lies in the fact that qualitative models per- 
mit accurate FDI decision making even under imperfect system modeling and imprecise 
measurements. Moreover, qualitative models may be less complex than comparably 
powerhl analytical models. At present, increased research is going on in the field of 
FDI using qualitative modeling and computational intelligence, and there is a good deal 
of publications with most encouraging results, see, for example, [ l ,  10, 11, 13, 15, 21, 
23,24,25, 26, 33, 37, 39,461. 

In this paper, we focus our attention on how to cope with modeling uncertainties and 
imprecise measurements by using non-analytical, i.e., qualitative, structural, data-based 
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and computationally intelligent models. Our intention is to stress the fact that modeling 
abstraction enables us to make accurate decisions for FDI with less complexity even in 
the face of large modeling uncertainty, measurement imprecision and lack of system 
knowledge. 

2 
2.1. Diagnostic strategy 
The basic idea of the model-based approach to FDI is to compare the behavior of the 
actual system with that of its finctional model. The diagnostic strategy can follow either 
of the two policies: 

The model-based approach to FDI 

I )  rfthe measurements of outputs are inconsistent with those of afault-free model with 
the same input, this indicates that a fault has occurred. 
2) rfthe measurements are consistent with the model behavior corresponding to a cer- 
tain fault scenario, f;, then the fault scenario, f; is declared. 

In general, the FDI task is accomplished by the following two-step procedure (Figure 

1) Residuallsymptom generation. This means to generate residualslsymptoms that re- 
flect the faults of interest from the measurements or observations of the actual SYS- 
tem. If the individual faults in a set of faults are to be isolated, one has to generate 
properly structured residuals or directed residual vectors. 

1): 

2) Residuallsymptom evaluation. This is a logical decision making process to determine 
the time of occurrence of faults (fault detection) and to localize them (fault isola- 
tion). If, in addition, faults are to be identified, this requires the determination of the 
type, size and cause of a fault (fault analysis). 

Measurements Timeand ~ypud 
Infomiation Symptoms Location of Cause of 
h o d e d g e  Residuals PdUhS Faults 

Figure I : The two-step process of residual generation and evaluation. 

2.2. 
It has been mentioned earlier that any kind of model that reflects the faults can be used 
for residual generation. The most appropriate model is the one which allows a acurrate 
fault decision at a minimum false alarm rate and low complexity. There is a variety of 
different kinds of non-analytical models that can be used for this task. The types of 
models can roughly be classified into four categories, namely analytical (quantitative), 
qualitative, knowledge-based (statistical, fuzzy, computationally intelligent), data-based 

Types of models for residual generation 
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(fuzzy, neural), structural, The classification of the corresponding residual generation 
methods is shown in Figure 2. 

Analytical models are problematic unless one can renounce those parts of the model 
which carry substantial uncertainty, knows as robust FDI strategies. This means that one 
concentrates on the certain part of the model, which reflects the faults of interest. 

( SYMPTOM GENERATION ) 
I 

SIGNAL-BASED MODEL-BASED 
I 
I I I 

KNOWLEDGE- DATA- STRUC- , T I r  , B A p  l B A S E D ,  TURAL 

PARITY OBSER- PARA- QUALI- FUZZY NEURAL 
SPACE VER METER TATIVE 

ESTIM. (FUZZY) 

Figure 2 :  Classification of different model-based approaches to residual generation 

3 FDI with non-analytical models 
3.1. The power of abstraction 
The best way to overcome model uncertainties is to avoid them from the very begin- 
ning. That is to say, to use such kinds of models that are not precisely (analytically) 
defined in terms of parameters. The use of non-analytical, such as qualitative or struc- 
tural models associated with the dealing with symptoms rather than signals means an 
increase of the degree of abstraction, which plays a fundamental role in reaching accu- 
rate results. Logically, achieving accurateness in FDI implies that the check of the refer- 
ence model must be accurate, i.e., it must be in agreement with the observations of the 
fault-free system even if the observations are imprecise. This is possible with an ac- 
cording degree of abstraction of the model. In addition, abstraction may reduce the 
complexity of the model and consequently of the FDI system. 

Figure 3: Complexity of an accurate model for FDI versus uncertainty and imprecision. 
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Figure 3 shows the typical relationship between model complexity, measurement im- 
precision and modelling uncertainty of an accurate model for FDI depending on differ- 
ent kinds of modeling. It can be seen that, to reach accuracy, the required complexity is 
maximum for precise, i.e. quantitative analytical models, and it decreases considerably 
with the degree of abstraction obtained by the use of non-analytical models. This means 
that accurate decisions are possible even in case of imprecise observations if abstract 
(non-analytic) modeling is applied, or, in other words: 

A reduction of complexity of robust FDI algorithms can be obtained by increasing the 
degree of abstraction of the model. 

3.2. 
3.2.1. Qualitative approaches to FDI 
Qualitative models reduce the resolution of the representations by introducing toler- 
ances in order to emphasize relevant distinctions and ignore unimportant or unknown 
details. Under imprecise observations this description represents the systems accurately 
if a set of values rather than single values become the primitives of representation. 

FDI based on qualitative models 

In the last decade, the study of applying qualitative models to system monitoring and 
FDI received much attention, see, e.g., [ lo,  21, 22, 23, 341, and the concept of qualita- 
tive (knowledgebased) obsewer was introduced [ 131. Typical qualitative descriptions of 
variables are signs [9], intervals [20], [23] or fuzzy sets [35]. As a fuizzy set can be di- 
vided into a series of intervals, the use of the a - c u t  identity principle proposed by 
Nguyen [29] allows to reduce fuzzy mappings into interval computations. Therefore, 
intervals are the fundamental representations in qualitative modeling. The rough repre- 
sentation of variables leads to the imprecision of the qualitative model which relates the 
variables to each other. 

According to the available information about a system, there are different possibilities 
for a qualitatively representation of the information of the dynamic pr'ocess. Basically, a 
qualitative simulation method should be responsible for retaining the accuracy of the 
represented system behavior (so called soundness property following the definition of 
Kuipers [20]), so that the FDI approaches based on them can avoid false alarms. The 
most important types of representation known are: 

Qualitative differential equations (QDE) [20, 351 
Envelope behavior (e.g., [5, 181 
Stochastic qualitative behavior [23, 461. 

Other relevant methods to qualitative models for fault diagnosis are, e.g., signed di- 
rected graphs [22], logical based diagnosis [24] and structural analysis [36]. Dynamic 
behaviors are not emphasized in these methods, their main concern .is the causality or 
correlativity among various parts of the systems, which are useful for performing fault 
isolation and fault analysis. 
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3.2.2. FDI using qualitative observers based on QDE 
Conceptually, a qualitative differential equation can be considered as the extension of 
an ordinary differential equation 

where x, u and 8 denote the vectors of state variables, known inputs and parameters 
with the dimension of n, Y and s, respectively. However, in a QDE, the variables take 
intervals as their values and the variant of the non-linear function g(.) is allowed to 
include various imprecise representations: e.g., interval parameters, non-analytical 
functions empirically represented by IF-THEN rules and even, in the algorithm QSIM 
of Kuipers [18], unknown monotonic functions. If the non-linear function g(.) is ra- 
tional, its corresponding QDE can be readily derived from it by using the natural inter- 
val extension of the real function [28].Qualitative simulation procedures that are com- 
posed of the two main steps “generation” and “test/exclusion” are basically different 
from the numerical ones. The behavior of continuous variables is discretely represented 
by a branching tree of qualitative states. 

The resulting qualitative observer (QOB) based on QDE is an extension of a qualitative 
simulator, and it functions in further reducing the number of irrelevant behaviors (in- 
cluding spurious solutions) to the system under consideration [39] as illustrated in Fig. 
4. The principle of observation filtering is that the simulated qualitative behavior of a 
variable must cover its counterpart of the measurements obtained from the system itself; 
otherwise the simulated behavioral path is inconsistent and can be eliminated. Since 
these procedures do not lead to the violation of the accuracy of the qualitative behavior 
under fault free condition, the output of QOB is the refined prediction behavior in this 
case. 

However, when a fault occurs which causes a significant deviation of the system output 
such that no consistent predicted counterpart of the output could be generated, the out- 
put of the QOB becomes an empty set, which indicates the fault occurrence. Following 
this principle, fault detection and sensor fault isolation can be implemented [39]. It is 
important to note that, in exchange with the advantage of requiring weaker process 
knowledge in this method, one has to put up with an increase in computational com- 
plexity and less sensitivity to small faults. 

Figure 4: Qualitative observer 
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3.2.3. Fault detection based on envelope behaviors 
A key issue of improving the small fault detectability when applying qualitative meth- 
ods is that the qualitative system behavior should be predicted as precisely as possible. 
Different from the qualitative model and the simulation method presented above, the 
model considered in this and the next sections is of less ambiguity. In other words, im- 
precision in Equ. (1) is caused only by interval parameters and interval initial states, the 
structure of g(.) is considered to be fully known. While qualitative behaviors here are 
interval values of system variables against time, qualitative simulation aiming at pro- 
ducing all possible dynamic behaviors means the generation of their envelope. Once the 
envelope is generated, the fault detection task is a direct comparison between the enve- 
lope and the measurements. In fault-free case, the measurements are contained in the 
envelope; otherwise, it indicates a fault. 

Recently, many efforts have been made to increase the efficiency of classical qualitative 
simulation, i.e., to avoid unnecessary conservativeness. More quantitative information is 
brought into the model representation [3], and simulation methods tend to be more con- 
structive. Kay and Kuipers [18] and Verscovi et al. [38] propose approaches based on 
standard numerical methods to obtain the bounding behavior. In [ 5 ,  191 Bonarini et al. 
and Keller et al. treat the interval parameters and the state variables as a super-cube, 
whose evolution at any time is specified by its external surface. Armengo et al. [ 13 pres- 
ent the computation of envelopes making use of modal interval analysis. 

3.2.4. Residual generation via stochastic qualitative behaviors 
Another qualitative representation of system behaviors is the stochastic distribution 
under partitioned state and output spaces. Beginning with the similar model assump- 
tions as in section 3.3.1, the parameter vector is in 8 and the initial state is uniformly 
distributed within a prescribed area, say cell 0. X,(t) and K ( t )  denote the probabilities 
that the trajectories of the respective state and output variables, which start from all 
initial states in cell 0, fall into the i-th cell at any time t. The behavior can be approxi- 
mately represented by a Markov chain [46]. It turns out that the new state and output 
variables X and Y can be described by the following discrete hidden Markov model 
(HMM): 

x ( k  + r )  = A ( ~ ,  e x(q + v(k) 

~ ( k  + I )  = c(e)x(k + r ) ,  
where V represents the influence of spurious solutions. 

A fault detection scheme based on the HMM is shown in Fig. 5 [46]. A qualitative ob- 
server (QOB) aiming at attenuating the effect of V and watching over the possible ab- 
normal behavior of measurements is applied. The residual r and its credibility V can be 
calculated, the latter reflects the degree of spurious solutions. 

3.3. 
In the case of fault diagnosis in complex systems, one is faced with the problem that no 
or insufficiently accurate mathematical models are available. The use of data-model- 
based (neural) diagnosis expert systems or in combination with a human expert, is then 

Residual generation employing computational intelligence 
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a much more appropriate way to proceed. The approaches presented in the following 
section employ computational intelligence techniques such as neural networks, fuzzy 
logic, genetic algorithms and combinations of them in order to cope with the problem of 
uncertainty, lacking analytical knowledge and non-linearity [ 151. 

Figure 5 : Observer-based residual generation using HMM 

3.3.1. Neural observer-based residual generation 
Neural networks can be used as non-linear multiple-input single-output (MISO) models 
of ARMA type to set up different kinds of observer schemes [15, 271. The neural net- 
works replace the analytical models of observer-based FDI. If instead of a single multi- 
ple-input multiple-output structure a separate neural network is taken for each output, a 
set of smaller neural networks can be used for each class of system behavior. 

The type of neural network employed for this task is of a mixed structure called dy- 
namic multi-layer perceptron (DMLP-MIX) integrating three generalized structures of a 
DMLP [25]. These three are: the DMLP with synaptic generalized filters, which have 
each synapse represented by an ARMA filter with different orders for denominator and 
numerator, the DMLP with internal generalized filters [2] integrating an ARMA filter 
within the neurons before the activation function, and the DMLP with a connectionist 
hidden layer, which has a partially recurrent structure interconnecting only the hidden 
units. The mixed structure is implemented selecting either a basic architecture or a 
combination of them. The training of the DMLP-MIX neural network is performed by 
applying dynamic back propagation, the problem of structural optimization is solved 
with the help of a genetic algorithm [26]. Two types of observer schemes for actuator, 
component and instrument fault detection have been proposed by Marcu et al. [27]: the 
neural single observer scheme (NSOS) and the neural dedicated observer scheme 
(NDOS). 

3.3.2. Fuzzy observer-based residual generation 
There are many ways of using fuzzy logic to cope with uncertainty in observer-based 
residual generation [ 151. The resulting type of fuzzy observer depends upon the type of 
the fuzzy model used. Fuzzy modelling can roughly be classified into four categories: 
fuzzy rule-based, fuzzy qualitative, fuzzy relational and fuzzy functional (Tagaki- 
Sugeno type). 
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3.3.3. Residual generation with hierarchical fuzzy neural networks 
Here the fault diagnosis system is designed by a knowledge-based approach and organ- 
ized as a hierarchical structure of fuzzy neural networks (FNN) [6] .  FNNs combine the 
advantage of fizzy reasoning, i.e. being capable of handling uncertain and imprecise 
information, with the advantage of neural networks, i.e. being capable of learning from 
examples. The neural nets consist of a fuzzification layer, a hidden layer and an output 
layer. Fault detection is performed through the knowledge-based system, where the 
detection rules are generated from knowledge obtained from the structural decomposi- 
tion of the overall system into subsystems and operational experience. After detecting a 
fault the diagnostic module is triggered which consists of a hierarchical structure (usu- 
ally three layers) of FNNs. The number of FNNs is determined by the number of faults 
considered. The lower level only contains one FNN, which processes all measured vari- 
ables. The FNNs on the medium level are fed by all measurements but also by the out- 
puts of the previous level. The upper level consists of an OR operation on the outputs of 
the medium level. This hierarchical structure can cope with multiple simultaneous faults 
under highly uncertain conditions. 

3.3.4. Fuzzy residual evaluation 
Fuzzy logic is especially useful for decision making under considerable uncertainty. 
The three main categories of current residual evaluation methods are: classification 
(clustering) or pattern recognition, inference or reasoning, and threshold adaptation. 
Although all approaches employ fuzzy logic, the first one is actually data-based while 
the other two are knowledge-based. 

Fuzzy clustering 

The approach of fuzzy clustering actually consists of a combination of statistical tests to 
evaluate the time of occurrence of the fault and the fuzzy clustering to provide isolation 
of the fault [8]. The statistical tests are based on the analysis of the mean and the vari- 
ance of the residuals, e.g., the CUSUM test [17]. The subsequent fault isolation by 
means of fuzzy clustering consists of the two following steps: In an online phase the 
characteristics of the different classes are determined. A learning set which contains 
residuals for all known faults is necessary for this online phase. In the online phase the 
membership degree of the current residuals to each of the known classes is calculated. A 
commonly used algorithm is the fuzzy C-means algorithm [4]. 

Fuzzy reasoning 

The basic idea behind the application of fuzzy reasoning for residual evaluation is that 
each residual is declared as normal, high or low with respect to the nominal residual 
value [8, 371. These linguistic attributes are defined in terms of fuzzy sets, and the rules 
among the fuzzy sets are derived from the dynamics of the system. For fault detection, 
the only relevant information is whether or not the residual has deviated from the fault 
free value, and hence it is only necessary to differentiate between normal and abnormal 
behavior. However, if isolation of faults is desired, it may be necessary to consider both 
the direction and magnitude of the deviation. 
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Fuzzy threshold adaptation 

Fuzzy reasoning has been applied with great success to threshold adaptation [13, 331. In 
the case of poorly defined systems it is difficult or even impossible to determine adap- 
tive thresholds. In such situations the fuzzy logic approach is much more efficient. The 
relation for the adaptive threshold can be defined as a function of input u and output y 
by 

Here To = TO(u0, yo) denotes a constant threshold for nominal operation at the operational 
point (uo, yo) where only the effects of the stationary disturbances including measure- 
ment noise are taken into account. The increment AT(u, y )  represents the effects of u(t) 
and y(t)  caused by the modeling errors. These effects are described in terms of IF- 
THEN rules and the variables by fuzzy sets (e.g. SMALL, MIDDLE, LARGE, etc.) that 
are characterized by proper membership functions. 

As a typical example of an industrial application we consider the residual evaluation via 
fuzzy adaptive threshold of a six-axis industrial robot (Manutec R3) [13, 331. Let the 
goal be to detect a collision of the robot by checking the moments of the drives. A 
model of the robot is available, but without knowledge of the friction of the bearings, 
which is highly uncertain. It is known, however, that the residual of the moment is 
heavily distorted by the friction which strongly depends on the arm acceleration. This 
knowledge can be formulated by rules. For example for the third axis the following 
rules apply: 

IF{speed small), THEN{threshold middle) 
IF{ acceleration high}, THEN{ threshold large} 
IF{acceleration very high}, THEN {threshold very large} 
IF {acceleration ofany other axis very high}, THEN {threshold middle}. 

The linguistic variables small, middle, high, very high, large, very large are defined by 
proper membership functions [33], they are assigned intuitively based on the experience 
of the operators or the manufacturers of the robot. 

Figure 6 shows the time shape of the threshold together with the shape of the residual 
of axis 3 for a particular manoeuvre of the robot. Note that at t = 4,5 sec the heavy ro- 
bot which can handle 15 kg objects in its gripper, hits an obstacle which causes a mo- 
mentum of about 5 Nm. As can be seen, this small fault can be detected at high robust- 
ness to the uncertainty caused by the neglected unknown friction. 

3.4. 
The use of structural system models together with structural analysis is another way of 
abstraction of the modelling of the system behavior in order to increase the robustness 
of the FDI algorithm to model uncertainties. Here we only consider the structure of the 
constraints, i.e., the existence of links between variables and parameters rather than the 
constraints themselves [36]. The links are usually represented by a bi-partite graph, 

FDI based on structural models 
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which is independent of the nature of the constraints and variables (quantitative, quali- 
tative, equations, rules, etc.) and of the values of the parameters. Structural properties 
are true almost everywhere in the system parameter space. 

Figure 6: Obstacle detection of a robot with fuzzy adaptive threshold. 

This represents indeed a very low-level easy-to-obtain model of the system behavior, 
which is logically extremely insensitive to changes in the system parameters but, of 
course, also to parametric faults. The important tasks of structural analysis are solved 
with the aid of the analysis of the system structural graph and its canonical decomposi- 
tion. An important factor in the canonical decomposition is the property of causality 
which complements the bi-partite graph with an orientation. FDI is performed with the 
aid of analytical redundancy relations based on a structural analysis and the generation 
of structured residuals. 

Note that the use of structural models together with the strong decoupling approach 
solves automatically the robustness problem in structurally observable systems. 

4 Conclusion 
The paper reviews the methods of handling modelling uncertainties, incomplete system 
knowledge and measurement imprecision in model-based fault detection and isolation 
by using non-analytical models. It is pointed out that abstract non-analytical models 
may be superior over analytical models with respect to uncertainty, impresision and 
complexity. The paper outlines the state of the art and relevant on-going research in the 
field approaching the modeling uncertainty and measurement imprecision problem in 
FDI by various types of non-analytical models. 
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Abstract 
We describe in this paper a new hybrid fizzy-fractal approach for plant monitoring. We 
use the concept of the fractal dimension to measure the complexity of a time series of 
observed data from the plant. We also use fuzzy logic to represent expert knowledge on 
monitoring the process in the plant. In the hybrid fuzzy-fractal approach a set of fuzzy 
if-then rules is used to classify different conditions of the plant. The fractal dimension is 
used as input linguistic variable in the fizzy system to improve the accuracy in the 
classification. An implementation of the proposed approach is shown to describe in 
more detail the method. 

Keywords: Fuzzy Logic, Fractal Theory, Time Series Analysis, Plant Monitoring 

1 Introduction 
Diagnostic systems are used to monitor the behavior of a process and identify certain 
pre-defined patterns that are associated with well-known problems [lo]. These 
problems, once identified, imply suggestions for specific solutions. Most diagnostic 
systems are in the form of a rule-based expert system: a set of rules is used to describe 
certain patterns. Observed data are collected and used to evaluate these rules. If the 
rules are logically satisfied, the pattern is identified, and the problem associated with 
that pattern is suggested. In general, the diagnostic systems are used for consultation 
rather than replacement of human expert [ 151. 

Most current plant monitoring systems only check a few variables against 
individual upper and lower limits, and start an audible alarm should each variable move 
out of its predefined range [ 9 ] .  Other more complicated systems normally involve more 
sensors that provide more data but still follow the same pattern of independently 
checking individual sets of data against some upper and lower limits. The warning 
alarm from these systems only carries a meaning that there is something wrong with the 
process in the plant [12]. 

In this paper a new fuzzy-fractal approach for plant monitoring is proposed. 
The concept of the fractal dimension is used to measure the complexity of the time 
series of relevant variables for the process [3]. A set of fuzzy rules is used to represent 
the knowledge for monitoring the process [ 1 11. In the fuzzy rules, the fractal dimension 
is used as a linguistic variable to help in recognizing specific patterns in the measured 
data. The fuzzy-fractal approach has been applied before in problems of financial time 
series prediction [4, 5, 71 and for other types of problems [6, 141, but now it is proposed 
to the monitoring of plants. 
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This paper is structured as follows. First, the problem of plant monitoring and 
diagnosis is described in more detail. Second, some basic concepts of fractal theory are 
given. Third, the problem of fuzzy modelling for monitoring and diagnosis is described 
in more detail. Then, the fuzzy-fractal approach for plant monitoring is proposed and 
explained. Finally, some experimental results are given and future work is proposed. 

~ v 

Dynamic b Signal X b  

system processlng 

2 Monitoring and Diagnosis 
Monitoring means checking or regulating the performance of a machine, a process, or a 
system [lo]. Diagnosis, on the other hand, means deciding the nature and the cause of a 
diseased condition of a machine, a process, or a system by examining the symptoms. In 
other words, monitoring is detecting suspect symptoms, whereas diagnosis is 
determining the cause of the symptoms. 

The importance of monitoring and diagnosis of plant processes now is widely 
recognized because it results in increased productivity, improved product quality and 
decreased production cost. As a result, in the past decade, a large number of research 
and development projects have been carried and many monitoring and diagnosis 
methods have been developed [ 10, 111. The commonly used monitoring and diagnosis 
methods include modeling-based methods, pattern recognition methods, fuzzy systems 
methods, knowledge-based systems methods, and artificial neural networks [ 81. It is 
interesting to note that even though these methods are rather different, they share a very 
similar structure as shown in Figure 1. 

Figure 1: Plant monitoring and diagnosis. 

The “health” of a machine, a process, or an engineering system (which will be 
referred to as system condition and denoted by c E {c,, c2, ..., c,}) can be considered as 
the “input”, the system working conditions and noises (including system noise and 
sampling noise) can be considered as the “noise”, and the sensor signals are the 
“outputs” from the system. Typically, the sensor signals are processed by a computer, 
after which the signals are transformed into a set of features called feature signals, 
denoted as x = {xl, x2, ..., x”}. In general, the systems conditions are predefined, such as 
normal, critical, etc. On the other hand, the features may be the mean of a temperature 
signal, the variance of a displacement signal, etc. Sensing and signal processing are very 
important to the success of plant monitoring and diagnosis [9 ] .  

More formally, the goal of monitoring is to use the feature signals, x, to 
determine whether the plant is in an acceptable condition(s) (a subset of {CI, CZ, ..., c,}). 
On the other hand, the objective of diagnosis is to use the feature signals, x, to 
determine the system condition, c E {cl, c 2 , , ,  c,}. No matter how monitoring and 
diagnosis methods may differ, monitoring and diagnosis always consist of two phases: 
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training and decision making. Training is to establish a relationship between the feature 
signals and the systems conditions. Without losing generality, this relationship can be 
represented as 

It should be pointed out that F(c) represents a fuzzy system, a neural network or another 
method that could be used to obtain this relationship. In fact, it is the form of the 
relationship that determines the methods of monitoring and diagnosis, as well as the 
performance of the methods. The relationship F(c) is established based on training 
samples, denoted by xl, x2, ..., xk, ..., xN, where the system condition for each training 
sample is known [and denoted as c(xk)]. 

After the relationship is established, when a new sample is given (from an 
unknown system condition), its corresponding condition is estimated based on the 
inverse relationship 

This is called decision-making, or classifying. Whereas it is not likely that the training 
samples will cover all possible cases, decision making often involves reasoning or 
inferencing. 

In particular, when a fuzzy system is used, the relationship is given by a set of 
fuzzy rules as shown in Figure 2. The input to the fizzy system is the feature signal and 
the output of the fuzzy system is the estimated plant condition(s) [i.e., z = (zl, 22, ..., z,) 
is an estimate of c = (cl, c2, ..., c,)]. In other words, the fuzzy system models the inverse 
relationship between the system conditions and the feature signals. 

x = F(c). (1) 

c = F-' (x). ( 2 )  

- 
z1 

- 22 
- a  
-zq 

- h  

Figure 2: Fuzzy system for plant monitoring and diagnosis. 

3 Fractal Dimension of a Geometrical Object 
Recently, considerable progress has been made in understanding the complexity of an 
object through the application of fractal concepts [13], and dynamic scaling theory. For 
example, financial time series show scaled properties suggesting a fractal structure [2, 5 ,  
71. The fractal dimension of a geometrical object can be defined as follows: 

d = lim [lnN(r)] / [ln(l/r)] (3 ) 
r - r O  

where N(r) is the number of boxes covering the object and r is the size of the box. An 
approximation to the fractal dimension can be obtained by counting the number of 
boxes covering the boundary of the object for different r sizes and then performing a 
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4 Fuzzy Estimation of the Fractal Dimension 
The fractal dimension of a geometrical object is a crisp numerical value measuring the 
geometrical complexity of the object. However, in practice it is difficult to assign a 
unique numerical value to an object. It is more appropriate to assign a range of 
numerical values in which there exists a membership degree for this object. For this 
reason, we will assign to an object 0 a fuzzy set po, which measures the membership 
degree for that object. 

Lets consider that the object 0 is in the plane xy, then a suitable membership 
function is a generalized bell function: 

po= 
where a, b and c are the parameters of the membership function. Of course other types 
of membership functions could be used depending on the characteristics of the 
application. 

By using the concept of a fuzzy set [17, 18, 19, 201 we are in fact generalizing 
the mathematical concept of the fractal dimension. In fact, our definition of the fizzy 
fractal dimension is as follows. 

1 / [ 1 + I (x-c) / a 1 2 b  1 ( 5 )  

Defmition 1: Let 0 be an arbitrary geometrical object in the plane xy. Then the fizzy 

where do is the numerical value of the fractal dimension calculated by the box counting 
algorithm, and po is the membership function for the object. 

With this new definition we can account for the uncertainty in the estimation of 
the fractal dimension of an object. Also, this new definition enables easier pattern 
recognition for objects, because it is not necessary to match an exact numerical value to 
recognize a particular object [ 1, 161. 

fractal dimension is the pair: (do, Po) 

5 Plant Monitoring using the Fuzzy-Fractal Approach 
In this section, we show how to implement a fuzzy rule-based expert monitoring system 
with two basic sensors: temperature, and pressure. We also use as input the fuzzy fractal 
dimension of the time series of the measured variables. Individual sensors can identify 
three linguistic values (normal, high, and low). The three inputs can be combined to 
give 9 different scenarios. With the perfectly normal case (where all three input 
variables have normal values), there are additionally 9 more cases where combinations 
of abnormal readings can be observed. 

Let x1 be the temperature, x2 the pressure, x3 the fuzzy fractal dimension, and y 
the diagnostic statement. Let Li, Ni, and H,, represent the three sets of low range, normal 
range, and high range for input data xi, where i = 1, 2, or 3 .  Furthermore, let C1, Cz, ..., 
C g  be the individual scenarios that could happen for each combination of the different 
data sets. The fuzzy rules have the general form: 

R'O): IF x1 is N1 AND x2 is N2 AND x3 is N3 THEN y is C1 
... ... 
R? IF x1 is v1 AND x2 is v2 AND x3 is v3 THEN y is Ci (6) 
... 
R(26): IF XI is H1 AND x2 is H2 AND x3 is H3'THEN y is C9 
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In this case, V, represents L,, HI, or N,, depending on the condition for the plant. Experts 
have to provide their knowledge in plant monitoring to label the individual cases Ci for i 
- 1, 2, ..., 9. Also, the membership functions for the linguistic values of variables have to 
be defined according to historical data of the problem and expert knowledge. 

We can use the Fuzzy Logic Toolbox of the MATLAB programming language 
to implement the fuzzy monitoring system described above. In this case, we need to 
specify the particular fuzzy rules and the corresponding membership functions for the 
problem. We show bellow a sample implementation of a health monitoring system 
using MATLAB. First, we show in Figure 5 the general architecture of the fuzzy 
monitoring system. In this figure, we can see the input linguistic variables (temperature, 
pressure, and fractal dimension) and the output linguistic variable (condition of the 
plant) of the fuzzy monitoring system. Of course, in this case the fractal dimension is 
estimated using the box counting algorithm, which was implemented also as a computer 
program in MATLAB. 

In Figure 6 the implementation of the fuzzy rule base in MATLAB is shown. 
The actual 27 rules were defmed according to expert knowledge on the process. In 
Figure 7, the Gaussian membership functions for the output variable (condition of the 
plant) are shown. In Figure 8 the non-linear surface for the problem of plant monitoring 
is shown. In this figure, we show two ways of viewing the surface because there are 
four linguistic variables in the fuzzy system. 

- 

Figure 5: Architecture of the hzzy  system for plant monitoring. 
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Figure 6: Fuzzy rule base for plant monitoring. 

Figure 7: Membership functions for the output variable. 
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Figure 8: Non-linear surface for plant monitoring: (a) three-dimensional view of 
temperature and fractal dimension, (b) three-dimensional view of pressure and fractal 

dimension. 
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6 Experimental Results 
In this section, numerical simulations are given to demonstrate the workability of the 27 
rules given in the previous section representing a monitoring expert system. 
Case 1 .  In this case, the f rs t  rule for normal condition is tested. The temperature profile 
xl(t), and pressure profile x2(t) are generated according to the following equations: 

xl(t) = 100 + 4sin (xt/20)e(-t/20) + n(t) (7) 

xz(t) = 120 + 40sin (nt/20)e(-(t - 20)/20) + n(t) (8) 

Where the function n(t) is random white noise and e(t) the exponential function of the 
form: 

e(t) = e‘ if 0 <t< 100, e(t) = 0 otherwise. (9) 
The x3(t) variable is calculated from the time series of the xl(t) and xZ(t) variables using 
the fractal dimension concept. The above formulas create three separate time intervals, 
I1 = [7, 141, I2 = [27, 341, and I3 = [47, 541. These data profiles will result in the first rule 
being valid in 11, the second rule being valid in 12, and the third rule being valid in 13. 

Thus, the corresponding membership fbnction should yield the value 1 for t E I1 and the 
value 0 for everywhere else. Similarly, for the other two intervals. 
Case 2. In this case, the rule R(20) is tested. The temperature profile xl(t), and pressure 
profile x2(t) are generated according to the following equations: 

xl(t) = 100 + 4sin (nt/40)e(-t/20) + n(t) (10) 

x2(t) = 120 - 40sin (nt/40)e(-t/20) + n(t) (11) 
Where the function n(t) is random white noise and e(t) the exponential function 
described in the previous case. These formulas create an interval I4 = [ 10, 301 where the 
rule R(’’) will be valid, i.e., the corresponding membership function should yield the 
value 1 for t E I4 and the value 0 for everywhere else. 
Case 3. In this case, the rule R(26) is tested. The temperature profile xl(t), and pressure 
profile x2(t) are generated according to the following equations: 

xl(t) = 100 + 4sin (nt/40)e(-t/20) + n(t) (12) 

xZ(t) = 120 + 40sin (xt/40)e(-t/20) + n(t) (13) 
Where the function n(t) is random white noise and e(t) the exponential function 
described in case 1. These formulas create an interval I4 = [lo, 301 where the rule R(26) 
will be valid, i.e., the corresponding membership function should yield the value lfor t 
E 15 and the value 0 for everywhere else. 
Figures 9 and 10 show the plot of the data xl(t) for temperature, and x2(t) for pressure 
for Case 1. In the first 20 seconds, x2(t) is in the normal range, and xl(t) is gradually 
moving toward the high range, causing the membership function of condition CZ to rise 
toward 1. Similarly, during the time interval [20,40], xl(t) is in the normal range, and 
x2(t) is gradually moving toward the high range, causing the membership function of 
condition C3 to rise toward 1; and during the time interval [40,60], xl(t) and xZ(t) are in 
the normal range, causing the membership fbnction of condition C 1 to rise toward 1. 
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Temperature Profile in Time 
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Figure 9: Temperature profile in time for case 1 

Pressure Profile in Time 
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Figure 10: Pressure profile in time for case 1. 

Based on the examples presented in this section, we see that using fuzzy logic in 
monitoring and diagnostics always results in improved performance. Also, the use of 
the fractal dimension improves the accuracy of the method. We have compared the 
success rate of the fuzzy-fractal approach against the use of only fuzzy logic, using the 
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simulated data described before. The results are shown in Table 1. We are using in all of 
the cases a specific biochemical reactor. The reactor is considered to be in a different 
condition in each of the three cases. The comparison is between the results of the 
intelligent system using the fuzzy-fractal approach, and a computer program using only 
fuzzy logic with the Mamdani approach. 

Table 1 : Success Rate of the fuzzy-fractal approach for monitoring. 

Applications Fuzzy-Fractal Fuzzy Logic 
condition monitoring in a 98% 82% 
biochemical reactor 
(case 1) 
condition monitoring in a 86% 
biochemical reactor 
(case 2) 
condition monitoring in a 90% 
biochemical reactor 

73% 

79% 

(case 3) 

It should be pointed out that no matter what techniques are used, there is no guarantee 
of success because monitoring and diagnosis is a process of abduction. First, the 
training samples may not represent all the patterns of different system conditions. An 
effective solution to this problem is to add more training samples. Second the patterns 
of different system conditions overlap and/or are inseparable owing to the defmition of 
system conditions and the use of monitoring indices. 

Finally, it is interesting to compare the performance of the fuzzy-fractal 
approach with that of using only fuzzy logic (see Table 1). We see that the fuzzy-fractal 
approach outperforms the fuzzy logic approach by at least 10% in all the cases. This 
demonstrates that the fuzzy-fractal approach is indeed a more effective method and, in 
general outperforms the use of fuzzy logic alone. 

7 Conclusions 
In this paper a hybrid fuzzy-fractal approach for plant monitoring has been proposed. 
An implementation in MATLAB has been shown, to describe in more detail the 
advantages of the new approach. The hybrid fuzzy-fractal approach combines the 
advantages of fuzzy logic (expert knowledge representation) with the advantages of the 
fractal dimension concept (ability to measure object complexity), to achieve efficient 
monitoring and diagnostics. A problem yet to be considered, is how to automatically 
learn (or adapt) the membership functions and rules of the fuzzy system using real data 
for the problem. A genetic approach could be used to evolve the fuzzy system 
(including the fractal dimension). 
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Abstract 

This paper describes an approach to linguistic modeling based on fuzzy sets applied to 
modeling the meaning of linguistic descriptions for lifting task variables. The model 
aims at capturing the correspondence between numerical values and their 
qualitative/linguistic descriptions as perceived by human experts (workers performing 
lifting). The performance of the model obtained is compared to that using a neural 
network approach. 

Keywords: fuzzy models, neural networks, lifting task variables. 

1 Introduction 

The current study is motivated by the desire to model the perception of the lifting task 
variables by manual workers whose activity consists in frequent lifting. The objective is 
to obtain a correspondence between the actual physical characteristics of the lifting task 
and its perception, as expressed in words. Modeling this correspondence is part of a 
larger study in the field of manual labor safety, in which the relationships between 
workers' abilities, tasks characteristics are studied with the goal to achieve better task 
design, so as to minimize the risks (and therefore injuries) associated with performing 
of such tasks. So far, research in this field has concentrated on developing an equation 
with seven variables associated with lifting (the NIOSH lifting task equation), [ 6 ] ,  using 
knowledge from labor safety experts. No perception of the task difficulty from the 
actual workers has been included in that approach. Yet, it seems natural to assume that 
an actual worker's experience with lifting tasks should be useful in describing the 
perception of the effort required for such a task. Moreover, it is also reasonable to 
assume that the individual worker characteristics, not all of which can be explicitly 
captured, should affect this perception. 

The values of the lifting task variables are described by words rather than exact 
numbers. For example, weight of load (W) is a variable which determines the difficulty 
of lifting. Verbal descriptions of measurements, such as light, medium light, heavy, 
medium heavy, very heavy, etc. are natural to people. Yet, these descriptions are 
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subjective, the quantities which one description applies to vary, and different such 
descriptions may describe, eventually to a different degree, the same value. 

If a computer based approach is to capture the correspondence between the actual 
values of a variable and their linguistic description, a paradigm that accommodates both 
the numeric and symbolicAinguistic descriptions of values, that allows for categories to 
be both distinct and somewhat overlapping, that distinguishes between members of the 
same category is needed. Fuzzy sets theory [9] is one such paradigm which has proved 
successful in many similar problems [8] and is adopted in this study. Although the use 
of fuzzy sets for the purpose described above is not new, their use in this particular 
application is. 

The remainder of this paper is organized as follows: Section 2 presents a brief 
introduction to fuzzy sets, their definition, the relation of fuzzy sets to probability 
distributions and the use of this to determining the membership function of a fuzzy set. 
The actual application, the lifting task variables data and the use of Section 2 to this 
application are described in Section 3. For comparison purposes, a feed forward neural 
network, trained on the same data is described in Section 4. A data adjustment step and 
its effects both on the fuzzy model and the neural network are presented in Section 5 .  

2 Elements of fuzzy sets theory 

Fuzzy sets were introduced in 1965 [9]. They aim at capturing and describing concepts 
that do not have sharp boundaries. Such natural concepts abound in the real world and 
are to be distinguished from man-made, technical (mathematical) concepts defined in 
terms of necessary and sufficient conditions. Given a universe of discourse, S ,  a 
(classical) set A is identified by an indicator function, z A  : s --f {OJ} such that I A ( x )  = 1 if 
x E A and Z A ( x )  = o otherwise. Similarly, a fuzzy set, Ti is identified by a membership 
function, p x  : s +[0,1] such that pX(x) is the degree to which x is in 7. Fuzziness 
arises in the process of assigning linguistic descriptions to numerical values, and is due 
what can be called lack of definition. Fuzzy sets and classical sets do share certain 
similarities but they are also different in what they can capture. Table 1 summarizes the 
features of these two representations. 

Table 1: Fuzzy sets versus classical sets to model linguistic labels. 

Features 

Between-label distinction 
Within-label distinction J X 
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2.1 Determining the membership function 

An important issue in connection with fuzzy sets is that of determining their 
membership function. It can be seen that, given a label, e.g. tall for the variable height, 
the membership function that describes it is not necessarily unique. More precisely, 
while it is accepted that for heights under a certain value, a ,  the membership function is 
o , for heights exceeding a value p > a it is 1, and we expect it to be nondecreasing 
between a and p , the exact values as well as exact definition in the interval [a,PI are 
not fixed, their choices reflecting various conditions under which the concept tall may 
be considered. Without doubt there is a statistical aspect underlying the notion of a 
fuzzy set, in the sense that several different in- stances must have been given as 
examples of the concept to be represented as a fuzzy set (alternatively, the notion of 
degree of membership seems to make little sense, when all that is known about such a 
concept is only one instance). It is therefore natural to relate the notion of fuzziness to 
the notion of frequency and, moreover, to do so in a formal manner. This idea is at the 
basis of work done by [l], in which a formal correspondence between fuzzy sets on a 
universe of discourse and a probability distribution on it is established. The same was 
further studied in [2] and was the basis for an approach to derive subjective membership 
functions [3], [5] .  For the current problem the basic mechanism for converting a relative 
frequency distribution (discrete probability distribution) into fuzzy sets is used. This 
mechanism can be presented independently of the more advanced aspects of the general 
theory. 

From this point on A denotes a discrete fuzzy set with membership function ~ A ( x ~ ) ,  

i = 1, ..., n. For o < a I 1 the a - level, A, is the crisp set defined as A,  = {x I p~ ( x )  2 a] The 
representation theorem [4] shows how a fuzzy set and its level sets are connected. In 
particular, { A ~ } , ~ ( ~ , ~ ,  is a collection of nested sets such that A = U a A a  . Let 0 < ai I1 0 
denote a sequence of non-increasing levels, al 2 az z..., 2 an , and Ai their 
corresponding level sets. It can be verified that Cr=l(ai -ai+l)=al ,  and therefore, it is 
equal to 1, when al = 1. 

Let pu0) denote the values of p A ( x i )  arranged in nondecreasing order and Ai the level 
set corresponding to p A ( x i )  . For simplicity, it is assumed that ,qi) = ~ A ( x ~ ) .  Then 
Ai = {xl, ..., x i } .  Let pik denote a selection rule from the level A~ as defined in [ 5 ] .  That 
is, pik = p i ( x k ) ,  k = 1, ..., i , denotes the probability of selecting the element X k  from the 
level set A~ such that o I pik I 1 and C r = l p i k  = 1 . Let m : p ( s )  -+ [o,I] be defined as 

m ( A )  = { ~ - - C Z ~ + ~  i f A = A i  
otherwise 

and as in [3], let fk : s -+ [OJ] be defined as 
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It can be easily verified that o < f k ( x )  1 1  and that&fk(.x) =1  . That is, {fk}k is a 
probability distribution on {xl, ..., x n } .  It can also be seen easily that 
[ X I  f k ( x )  t f k ( x i ) )  = A ~ .  As shown in [5] (2) can be used to derive the membership function 
pA when the frequency f k  and the selection rules pik  are known. The special case, 
Pik = 1/1 Ai I = I/i , usually referred to as the least prejudiced distribution (lpd), was known 
for quite some time in the literature of fuzzy sets (see for example [ 11). A discussion of 
the general case can be found in [3], [2]. For the (lpd) case it follows from (2) that the 
membership function pA is determined (setting fnil = o ) by (3). 

n 

i = k t l  
p ( k )  = k f ( k )  + cf(i) f O r k = l ,  ... ,n (3) 

In (3) f ( k )  and &k) denote the k th largest value of the frequency distribution and 
membership function respectively. 

3 Fuzzy sets for the lifting task variables 

Using the mechanism outlined above the data for seven lifting task variables were 
assigned to three linguistic labels on their corresponding universe of discourse, 
represented as fuzzy sets. 

3.1 Data collection 

The data set used in this study, obtained from a questionnaire of 217 workers carried out 
at the Hong Kong Polytechnic, consists of 4,557 lines of input: each individual assessed 
the meaning of three linguistic labels for each of the seven lifting task variables. A 
typical data item consists of a numeric range for the value of the variable and the 
linguistic description assigned by a worker. Table 2 shows the labels assigned to values 
of the variable horizontal distance (HD). It can be seen from this table the variability of 
values within labels as well as the variability of labels for the same value. 

Table 2: Between-label and within-label variability for the 
variable horizontal distance (HD). 

40-45 

50-59 

A mild preprocessing step was applied to data which eliminated what was deemed as 
incorrect: entries in which one of the endpoints of the interval for values of the variable 
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B:160 

S:216 
M:216 
B:216 

was not specified, or the endpoints were specified in reverse order. The final data set, 
shown in Table 3, for each variable and, for the fuzzy set approach, by labels within 
each variable, has 4,232 entries. Of these, half, selected randomly, are used to model the 
fuzzy sets and train the neural network. The remaining are used with each model for 
testing purposes. The corresponding domains of the fuzzy sets are contiguous intervals 
of the real line obtained from the initial data (intervals which may overlap) through a 
step of refinement. For two intervals I and J the refinement operation is defined by (4). 

240 test 

324 train 
324 test 

if I n J = 0  
r(Z, J )  = {:ifj,ZnJ,J\Z} otherwise (4) 

The frequency distribution is then calculated on the newly obtained set of intervals. 
Example 1 illustrates this step on a small data set. 

Example 1 Let {[2,6],[1,3],[4,7],[5,6]} be the data provided by different subjects for a 
linguistic label 1. Successive overlapping of these intervals, results in the following 
collection of non overlapping intervals { [1,2],[2,31,[3,41,[4,51,[5,61,[6,71 I with the 
corresponding frequencies {1,2,1,2,3,1}. 

Table 3: 
Breakdown of the data by variables and variable labels; floor level (FW), 

waist level (W), horizontal distance(HD), twisting angle (TA), 
frequency(F), work duration(WD), vertical distance(VD). 

.Variable Total data P oints 

for each 
WD variable 

M:168 
B:168 

Table 4 lists the seven lifting tasks variables along with dictionaries of linguistic labels, 
and statistics for these labels for the samples used. Figures 1 and 2 show the frequency 
distributions and the fuzzy sets for the two variables highlighted in Table 4. 

3.2 Testing the fuzzy model 

The fuzzy sets obtained are used for classification of a given data point as follows. 
Given the value x, a point or interval value, for a lifting variable the following steps are 
applied: 
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horizontal 
distance/HD 

1. Match x to each label: Calculate the degrees ps ( x ) ,  pM (x), plg(x).  
2. Assign x to a label: Based on the degrees computed at the preceding point assign n to 
that category for which its degree is highest. More precisely, if pred-1 denotes the label 
predicted for the data x , then 

5-25 11.1-17.2 2.5-2.9 
2.27-17 3-8.7 1.5-2.6 
33-75 52.7-65.3 8.1-9.4 
25-70 38.3-49.6 5.5-7.9 

Table 4: Characteristics of data. 

twist angle/TA 

Variable 
namelsymbol within labels Deviation 

labels 
10-45 18.2-24 3-3.6 

weightNW 9.8-15.9 2.2-2.9 

25-55 25.5-35.2 1.7-5.2 
21-180 56-78.3 13.6-16.9 
11-80 32.3-51.4 8.6-12.5 

I 2.27-14 I 2.7-7.4 I 0.9-2.1 
waist weight/W I 10-40 I 19.2-24.2 I 2.87-2.82 

vertical 
0.3-3 0.3-1.6 0.3-0.8 

55-200 106.8-146.7 23.9-30.1 

10-5 1 10.8-27.1 2.6-7.6 
1 1.5- 16.5 3.7-4.8 

frequenc y/F 5.9-10.5 2.6-3.9 
0.6-4.8 1.3-2.4 
4.3-6.4 1.4-1.6 

duration/D 0.5-7 2.2.-3.8 0.9-1.3 

distance/VD 1 36-175 1 54.3-98.7 I 17.2-22.8 
25-205 27.4-55.7 7.4-14.8 

Dictionary 
of labels 

heavyhi@ 

moderatem 

light/small/S 



437 

3.3 Classification error 

Due to the variability of descriptions among various subjects, and to the overlap 
between various labels, a given value x may be misclassified. To track the errors of 
classification a simple error model (6) is used. 

(6) 
0 pred-l(x) = actual-l(x) 

For a collection of data, V, the overall error is simply the average number of errors (7). 
{ 1 otherwise 

error(x) = 

(7) CXE" error(x) 
I V I  

error(V) = 

Ill 
80 

0 
0 5 10 15 20 25 30 35 40 45 

Figure 1: Frequency distribution (a) and 
fuzzy sets (b, c, d) for the FW variable. 

Figure 2: Frequency distribution (a) and 
fuzzy sets (b, c, d) for the HD variable. 

3.4 Modeling error versus predictive error 

For fuzzy models (as well as in other approaches, e.g. neural networks) the error of 
classification cannot be excluded even for the training data. This is known as the 
modeling error and the corresponding correct classification of the training data is 
known as modeling power. For the test data these are called generalization error and 
generalization power respectively. The idea behind modeling approaches such the one 
used in this study is to give up some of the modeling power, in order to achieve 
acceptable levels of generalization power of the model. 
Table 5 shows the generalization error of the fuzzy sets based model for the seven 
variables considered. The modeling error for the two variables highlighted in Table 5, 
FW (lowest error) and HD (largest error), are 5.5% and 15.75 % respectively. Note that 
these are cumulative errors for each variable, and that within each label, the errors are 
much smaller. It should also be noted that the fuzzy model loses very little from its 
power when it is applied to test data. 
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W 

The overlap between data evident from Table 4 indicates how fuzzy the labels and 
therefore, the underlying fuzzy sets are, It can be seen that the extent to which data 
corresponding to different labels overlap affects the accuracy of the prediction. 

6.7 

Table 5: Generalization error of the fuzzy model. For the variables FW and HD 
corresponding to best and worst case respectively, the error is shown for each label. 

TA 

I Variable I % error for test data I 

15.75 

D 
L F I 15.13 

15.2 
VD 

8.93 - B 
13.28 

4 Neural network modeling of the lifting task variables 

For comparison purposes, neural networks were trained to capture the meaning of the 
linguistic labels for each variable. The training and test data are shown in Table 3. Feed 
forward neural networks, with one hidden layer of ten neurons, sigmoidal activation 
function, back-propagation learning algorithm, training error 0: 1, two input values and 
one output were used. The input values correspond to the endpoints of the interval given 
as data to be assigned to a linguistic label. The output, corresponding to the class label, 
is 1 for Small, 0 for Medium and +1 for Big respectively. 

Figure 3: Neural networks results. 
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4.1 Testing the feed forward neural network model 

After training, for each input data the neural network outputs a value in the interval 
[-1,1]. A particular test data, the endpoints of an interval, is classified to the label S, M, 
B according to whether the corresponding output is close enough to -1 ,O  , or1 
respectively. This rule of thumb is implemented simply by selecting a threshold such 
that if N N ~ ( X )  denotes the neural network output for the variable V , at x , x is assigned 
the label L~ if 1 NN" ( x )  - L~ 11 y. 

Figure 3 shows the neural network prediction results for the twisting angle (TA) 
variable. These results are typical for all variables. It can be seen from these that the 
neural network model distinguishes better between the labels S and M than between M 
and B. With the error model of (6) and (7) and y=0.5 for FW, W, HD, TA, F, and 
y = 0.4, for D and VD the best prediction power of the neural network approach 
compared to that of the fuzzy approach, is shown in Figure 4 and Table 6 which show 
that fuzzy set and neural network approaches have comparable performance. 

Figure 4: Comparison of the prediction power for fuzzy sets and neural network. 

The selection of the threshold values requires an added step afer the training of the 
network. No such step is required by the fuzzy model. From a different point of view, 
once an input data is to a label is done, the neural network cannot distinguish between 
different instances of the same label, implementing in effect, each label as a crisp 
category. Alternatively, one could come up with a way of differentiating between the 
elements of the same label. However, such a step would be yet another additional step 
and, more importantly, it would be ad-hoc without a clear meaning. 

Table 6: Complete results for fuzzy sets and neural networks. 
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Label 

S 

M 

B 

5 Data adjustment for improving the fuzzy model 

Initial value + Adjusted value 
30-40 + 25-40 
40-45 + 25-55 
28-53 + 25-32 
40-65 + 40-65 
50-60 + 50-60 
35-45 + 35-45 
33-45 + 33-75 
50-59 + 50-75 
48-63 + 48-75 

Although the fuzzy model performance is satisfactory, both from the point of view of 
the modeling and prediction power, and by comparison to the neural network selected, it 
is interesting to investigate if indeed this performance cannot be improved. The 
performance of the fuzzy model depends on the variability within labels (as illustrated 
in Table 2). This variability is further augmented by the procedure of extracting the unit 
intervals from each data item. 

Table 7: Adjustment of variable intervals for the variable HD. 

To reduce this variability a rationality assumption is introduced as follows: When a 
subject estimates the interval [a,b] as hidher perception of the concept smalWlight 
assume that this subject will also accept any interval [x ,b]  for anyxsa .  It is possible 
that the reason for which the subject produced the interval [a,b] is that for 
values x < a this subject would have associated another label, e.g. very small. Yet in the 
experiments which produced the data for this study there was no other option except 
that of using labels from the set { s , M , B ) .  A similar adjustment, of the upper limit of the 
interval, is done for intervals which are used to estimate the label bigAarge. Intervals 
corresponding to the label medium are not adjusted. Equation (8) describes the above 
adjustment procedure. 

[rnl,b] if L =  S 1 [ a , M / ]  if L = B  
adj([a,b],l) = [a,b] if L = M (8) 

whereml = m i n L { a ; [ a , b ] )  and MI =maxL{b;[a,b]]. 

Table 7 illustrates the result of the adjustment for the data in Table 2. The recognition 
procedure remains the same as for the case of the original data. 
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The neural network described in Section 4 was also trained (with training error 0.1 ) and 
tested (with y = 0.5 ) on the adjusted data. The complete results for the fuzzy model and 
the neural network are in Table 8. 

Table 8: Prediction results for fuzzy sets and neural networks on the adjusted data. 

6 Conclusions 

This study addressed the problem of modeling human perception of the linguistic 
descriptions of numerical values. Two approaches, a fuzzy set and neural network 
approach, were considered and their results evaluated. From these results it can be 
concluded that the two approaches give similar results and that the choice of one over 
the other may depend on several factors, including the goal of the modeling, further use 
of the results, etc. Unlike the neural network approach, the fuzzy model requires no 
additional steps beyond training in order to classify given data. However, more 
importantly it was also found that it converges much faster. Not included in this paper 
are results showing the learning curves for the fuzzy model: the generalization power of 
the model exceeds 84% for training sets as small as 30% of the data set. An application in 
the domain of manual labor workers' safety was considered. From this point of view the 
use of both approaches is novel. Although the fuzzy approach is more transparent and 
easier to link with the actual data, further research in the application domain is needed 
to decide which of these two approaches is more suitable. 
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Abstract 
A system that facilitates airplane maintenance provides decision support for finding the 
root-cause of a failure from observed symptoms and findings. Such system provides 
diagnostic advice listing the most probable causes and recommending possible remedial 
actions. Furthermore, its goal is to reduce the number of delays and cancellations and 
unnecessary parts removal, which add significant costs to airplane maintenance 
operations. Bayesian belief networks, a model-based approach, are presently being used 
for building such diagnostic models. The paper describes the pertinent issues in using 
such models. 

Keywords: Bayesian networks, diagnostics, model validation, sensitivity analysis. 

1 
Delays and cancellations add significant cost to airline maintenance operations. 
Unnecessary part removals, in addition, compound the problem. Much of this 
operational costs are attributed to a decrease in diagnostics ability of airline mechanics 
as a result of lack of experience with an increasing variety of airplane types in the fleet 
and the increasing practice of outsourcing maintenance operations by airlines. 
The critical factors in commercial airline maintenance operations are airplane safety, 
dispatch reliability and turn-around time. To ensure safety and reliability, airline 
operators must adhere to government regulatory agencies' standards, which require a 
Minimum Equipment List (MEL) with the minimal set of Line Replaceable Units 
(LRUs) that must be in working order before dispatch is approved. In response to a 
reported fault and under time pressure to meet scheduled departures, the tendency of 
operators is to replace suspect parts unnecessarily. Seasoned mechanics can quickly 
narrow the list of possible causes to a small number of replaceable units. The challenge 
is to disambiguate between the most probable parts by further performing 
troubleshooting tests, before departure time. To avoid costly delays and potential 
cancellations, the mechanics have to decide what action to take before departure, which 
suspect LRUs should be replaced and what remedial actions can be deferred to the next 
destination. 

Decision Support Methods for Diagnosis 

Coirespondence author 1 
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A diagnostic decision support system for airplane maintenance should be designed to 
facilitate the decision process in such a way as to improve the accuracy of airplane 
diagnosis without compromising safety and reliability. This paper describes the basis 
for such system. 

2 
There are several methods for building diagnostic models, and tools to help build them. 
Model-based reasoning systems rely on physical models that describe the input/output 
relations between system sub-components and the fault-propagation dependencies 
between them [3,5,4]. Case-based reasoning systems, rely on historical references to 
associations between feature problem descriptions and actions taken to correct them 
[ 15,6]. Although several approaches incorporate measures of uncertainty to help resolve 
ambiguities, there are methods that are inherently probabilistic. One such method uses 
Bayesian belief networks to encode probabilistic dependencies between the variables of 
a diagnostic problem into the structure of a directed acyclic graph [16,12]. Such graph is 
capable of updating probabilities of component failures when evidence of a fault is 
observed. Other approaches to diagnosis include the use of rule-based expert systems, 
fuzzy logic, and neural networks, etc.[ 1,13,11]. 
In this paper, we suggest to define a diagnostic model as a transfer function between the 
causes of a problem and their observed effects. In airplane maintenance, the causes are 
LRUs, and the observed effects are either Flight Deck Effects (FDEs), which are failure 
triggered events visible to pilots in the cockpit, or other perceived anomalies such as 
unordinary sounds, smells or visible cues (e.g, smoke in the cabin). Once such function 
is defined, the diagnostic problem is reduced to that of computing the problem root- 
causes given the observed effects. In this manner, a diagnostic model is directly built to 
simulate the way a system fails, rather than to simulate the way the system deviates 
from its normal behavior. Airplane diagnosticians do not rely only on their systemic 
knowledge of the system, just as medical diagnosticians do not only rely on their 
understanding of the physiology and bio-chemistry of the body when seeing a patient. 
Beyond systemic knowledge, diagnosis-sis is also reliant on experiential knowledge 
accumulated over repeated exposure to similar problems and associations between 
causes and effects. 

Decision Support Methods for Diagnosis 

“Systemic” “Expertise” “Factual” 
Knowledge Knowledge Knowledge 

J. J. J. 
Engineehg-Design Expertise in Sewice Data 
Basic Principles Anecdotal Airline/Supplier/Airame 

(LRU Level) (cause-effect associations) maintenance records 
(numeridtextual data) c 1 

I 
Heuristic t4jintainabllity Reliability 8 Understanding how 

the System behaves Rules of thumb 

the systems fails? 

Figure 1. Three types of knowledge needed to diagnose complex airplane systems. 



445 

Figure 1 shows the three sources of knowledge that are critical for diagnosis of a 
complex system such as an airplane. First, the “systemic” knowledge, which entails the 
understanding of how the sub-components of the system relate to each other and operate 
under normal conditions, so it is possible to understand the different operational 
pathways conducive to failures. This is the type of knowledge possessed mostly by 
engineers responsible for designing and building the various systems. Secondly, the 
“experiential” knowledge, which entails the cause-and-effect associations learned over 
long periods of maintenance exposure and familiarity with the system. Mechanics and 
engineers who are the maintenance operators of the systems mostly possess this type of 
knowledge. And thirdly, the “factual” knowledge, which is a combination of text and 
numeric records that capture the actual field experience, i.e., the history of the actions 
taken in the field, and the component reliability data for each replaceable component. 
The latter is usually in the form of Mean Times Between Failures (MTBFs) or 
Unscheduled Removals (MTBURs). These three essential sources of knowledge 
provide the required information content for any comprehensive airplane diagnosis 
decision support system. 

3 
Diagnosis at an airport gate is done as part of a decision support process to determine: 
a) which LRUs, if possible, should be fixed on the ground before scheduled departure, 
b) which LRUs should be replaced before scheduled departure, c) whether scheduled 
departure should be delayed to support either a or b and if so, for how long, and d) 
whether the flight should be cancelled all together. 

The Preflight Troubleshooting Process at the Airport Gate 

Figure 2. Maintenance process at the airport gate. 

Described in Figure 2 is the maintenance cycle process that takes place at the airport 
gate. Preflight troubleshooting begins when the aircraft arrives and is scheduled to 
depart on an outgoing flight. If a failure is detected by the pilot or flight crew in the 
preceding flight, or by the maintenance crew while on the ground, troubleshooting 
begins to ensure safe and timely airplane dispatch. The deadline for decisions is the 
departure time of the next scheduled flight. Troubleshooting is the responsibility of 
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several decision makers including Airline Maintenance Operation Control (MOC), the 
ground maintenance staff, and the airplane flight crew. 

4 
Bayesian belief networks are directed acyclic graphs that capture probabilistic 
dependencies between the variables of a problem. Bayesian networks approximate the 
joint probability distribution over the variables of the diagnosis problem using the chain 
rule of probability, which, subject to simplifying conditional independence assumptions, 
results in the product of probabilities of the variables conditioned on their parents: 

Building Bayesian Belief Networks for Airplane Diagnosis 

n 

P(XI,X*,...,X,) = n P ( x ,  IP@,)) (1) 
k = l  

where a set X = { XI, ..., X, } denotes the domain variables of interest, and Pa(Xi) 
denotes the parents of a node X, (the nodes pointing to Xi in the graph). 
The general approach to building Bayesian networks is to map the fault causes (LRUs) 
to the observed effects (FDEs), keeping in mind that what is being modeled is not the 
normal behavior of the system but rather the behavior of the system when one or more 
of its parts fail. 
The construction of a Bayesian network requires: first, the identification of nodes with 
associated discrete or continuous states, secondly, connecting the nodes with arcs 
according to their dependence relationships, and thirdly, establishing probability 
distributions for each node conditioned on the states of the parents. Figure 3 shows a 
segment of a Bayesian network in a model built for air-conditioning system diagnosis. 
From the figure, we can see that the connection channels between LRUs and FDEs 
often go through intermediate nodes. 

Figure 3. Section of a Bayesian network connecting causes (LRUs) to effects (FDEs). 

The process of building such networks requires the elicitation of knowledge from 
domain experts. In the case of an airplane system diagnosis model the experts should 
represent the three types of knowledge shown in Figure 1.To improve knowledge 
elicitation in the creation of an airplane diagnostic model, we have found that the 
modeler must become familiar with the functionality and terminology of the system, 
and understand its behavior well enough to be conversant about it with the experts. One 
can achieve such level of understanding from system manuals (also used for training 
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mechanics), maintenance manuals, and system schematics. Building the network 
requires to start from a list of the most problematic system faults. 
The faults are not necessarily those that occur the most frequently, but rather, they are 
the most difficult to troubleshoot. Parentless nodes in the network are populated with 
prior probabilities derived from component reliability data. The data is available from 
various sources in the form of Mean Time Between Unscheduled Removals (MTBUR). 
These estimates can be converted into probability estimates using the exponential 
distribution assuming a Poisson process, 

where l /  h is the long-term average life-time of the LRU and x can be interpreted as a 
single cycle of operation, equivalent, for example, to the average duration of the last 
flight leg. Typical values of MTBURs are of order greater than lo5 hours. Since h << 1, 
Equation 2 can be approximated by F - A. These probability estimates constitute the 
priors for the LRU components. For nodes with parents, the conditional probability 
tables (CPTs) are elicited from expert opinion during the knowledge acquisition and 
building of the network. 
The probability model of Equation 2 for the parentless priors of the network can 
certainly be improved to better reflect the true lifetime of the replaceable parts. 
Furthermore, better estimates can also be obtained by replacing MTBURs with the 
Mean Time Between Failures (MTBF). This will require a much higher cost since 
MTBF is a more difficult quantity to obtain. Whether it is necessary to improve the 
estimates of the priors can be addressed by conducting sensitivity analysis. With 
sensitivity analysis, one can assess how much noise can be tolerated for the prior 
estimates before it can significantly impact the diagnosis outcome of the Bayesian 
models. 
Although the process of building Bayesian networks by hand is as much an art as it is a 
science, there are several reported methods and techniques that can help improve the 
efficiency and accuracy of the process by addressing knowledge acquisition issues 
[18,19,8-lo]. Methods are also available to acquire the parameters of the network or 
even to derive its structure directly from data [2,7]. The latter approach currently being 
an active research area with results that offer significant promise [7]. 

5 Validation of Diagnostic Models 
Three important validations that need to be performed when building Bayesian 
networks are, a) validation for knowledge accuracy, b) sensitivity analysis for 
robustness of the network’s performance, and c) network evaluation for the quality of 
diagnostic recommendations obtained using the models. 

5.1. Knowledge Accuracy 
Bayesian networks are built using an iterative process that includes repeated knowledge 
testing as part of the process. The networks are tested for their ability to pro-vide 
accurate diagnosis, which for an airplane diagnosis system, it constitutes a partial- 
ordered list of probable causes ranked by probability. During knowledge validation of 
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the models the experts must agree on the recommended diagnosis for each test-case 
scenario. The more test cases used, the better. 
Knowledge validation is key to the performance of the network and should be an 
ongoing process throughout the life and use of the network. Techniques have been 
developed to evaluate elicitation schemes when building probabilistic models based on 
knowledge acquisition from domain experts [ 181. Learning network parameters from 
numerical or textual data could be complementary to direct validation from the experts. 

5.2. Sensitivity Analysis 
In probabilistic models, robustness of the output is measured by sensitivity, i.e., how 
inaccurate probability values affect diagnostic performance of the models. For networks 
with high sensitivity to noise, the nominal diagnosis could advise the airplane 
maintainer to follow a series of irrelevant actions that could result in un-necessary and 
costly part removals, delays or cancellations. 
Empirical study of sensitivity analysis on a Bayesian network examines the effects of 
varying the network’s probability parameters on the posterior probabilities of the true 
hypothesis. One approach to modeling the variation of the probability parameters is to 
add normal noise to the log-odds of the nominal probabilities. 
Equation 3 illustrates the probability density of the log-odds normal distribution, in 
terms of the nominal probability p and noise E : 

log-=log---+& 1-p’ 1- P 
P P 

(3) 

where p’ is the noisy value of p after imparted noise &, and & - N(0,d). The relation 
between the noisy odds and the nominal odds is then: 

--- 1-P’  - l - P I O &  
P’ P 

(4) 

or Odds’ = Odds * loE, where Odds’ = (1-p’)/p’ and Odds = (1-p)/p. 
This indicates that error introduced by the log-odds normal noise & reflects the scale of 
the change of odds by a factor of loE. Therefore, for example, an approximate increase 
in odds of 25% due to noise in the priors corresponds to the noise level with a standard 
deviation of 0.1. Note that this model for probability noise is only valid for values of d 
< 1, which allows for a unimodal of log-odds normal distribution. For values of d > 1, 
the distribution becomes bimodal with values of zero and one. Using the distribution in 
that range is not valid to describe the noise on the probability values. As an expert is 
unlikely to err in estimate and misjudges a probability value as one, but in fact it is near 
zero. In [14], we give a more detailed explanation on how to model the variation of 
probability estimates in empirical sensitivity analysis. 
Typically, for airplane diagnosis, the reliability estimates of most airplane parts is of 
order greater than 1 O5 hours for the mean time between part failures. The corresponding 
prior probabilities are therefore approximately of order smaller than At such low 
probabilities the log-odds normal distribution is very asymmetric and the average rank 
does not adequately represent the effect that the noise imparts on the network. AS an 
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example, Figure 4 illustrates the lower-bound confidence estimates for confidence 
levels from 50% to 99% of the rank changes of the most probable failed parts in a 
production Bayesian network built for a particular airplane system diagnosis. In the 
figure, five levels of prior noise are used to affect the nominal network. As expected, 
performance degrades as the noise increases. The rank of the most probable failed part 
drops about one position when noise is distributed with standard deviation (std) of 
CT= 0.1. There is only a 10% chance that the most probable suspect part may drop in 
rank by more than two positions, due to inaccuracies in prior estimates. That is a 
reasonably small risk for that level of noise. Note that 50th percentile lower bounds are 
smaller than rank averages, further indicating the asymmetry of the noise distribution. 

Figure 4. Posterior rank changes of the most probable failed parts in an airplane 
diagnosis network using 100 run cases across different test scenarios and prior noise. 

The suggested diagnosis, then, should be considered according to the partial ordering of 
probable causes resulting from the update of the posterior probabilities given a set of 
findings. While the most probable cause is often given the highest consideration, 
typically, in multiple-fault diagnostic systems, it is the set of top causes (e.g. the top 
five) and their partial ordering that is most informative. Since very seldom the diagnosis 
singles out a particular cause, the partial ordering provides guidance for subsequent 
actions. The effect that noise has on the posterior partial ordering of the causes is, 
therefore, a significant measure of the network sensitivity. Hence, a suitable lower 
confidence bound on the posterior rank changes of the partial ordering is an adequate 
measure to assess the effect of noise on network probabilities. Figure 5 plots the 
posterior rank changes for the top five most probable failed parts at the noise level & - 
N(0, 1 .O) in the same experimental test as Figure 4. 
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Figure 5. Posterior rank changes of the top five most probable failed parts in an airplane 
diagnosis network using 100 run cases across different test scenarios and prior noise 

& - N (0, 1.0). 

5.3. Network Evaluation 
Prior to their use, Bayesian network models need to be tested for their diagnostic 
performance. In addition to their knowledge accuracy and sensitivity evaluations, it is 
also important to validate Bayesian networks for the quality of their recommended 
diagnosis, because the system being modeled may have diagnostic limitations such as 
missing or improperly located sensors. It happens often that failures of the components 
cannot be diagnosed convincingly, or implicate each other with high ambiguity, or are 
consistently misinterpreted as failures of other components. Techniques were recently 
developed to help identify the critical elements of Bayesian network models that are 
responsible for incorrect diagnosis [ 171. 

6 Conclusion 
A diagnosis decision support approach was described using Bayesian belief networks 
for facilitating airplane maintenance at an airport gate. The approach com-bines 
engineering and mechanic knowledge with statistical component reliability data. It is 
argued that Bayesian network framework contains a rich representation language that 
permits to encode the different types of knowledge needed for airplane diagnosis. The 
high degree of system integration in an airplane typically results in ambiguous 
diagnoses. The inference engine of a Bayesian network provides a consistent probability 
update mechanism to help disambiguate between the possible causes of a failure. 
Sensitivity analysis of the networks to noisy priors justifies the use of simple probability 
models from MTBUR data, and also shows reason-able robustness of the network 
diagnosis resulting from limited sensitivity of the network to noise in the priors. 
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Abstract 

Multi-agent control is an efficient optimization and control method for local systems in 
large decentralized environments. Market-oriented algorithms work in multi-agent 
scenarios in which producer and consumer agents compete and cooperate on a virtual 
market of commodities. The method is applied to a set of parallel birth and death 
processes where the local death rates can be influenced by some control strategy. The 
goal of the control strategy is to change the individual death rates so that, after some 
finite time, the distributions of all queuing processes are adjusted. The death rates of the 
local queuing processes are changed on the basis of the probabilities of the occurence of 
a selected event in each of the local queuing processes. 

Keywords: Multi-agent control, market-based control, decentralized systems, queuing 
process, birth and death process, Markov process 

1. Introduction 

The control of distributed systems is difficult especially in the case when the system 
consists of a large number of local systems. Normally, this control is done in a 
centralized way which can lead to problems with respect to the exchange of information 
and to find an appropriate optimum. A decentralized option is multi agent control which 
may be able to cope better with the problems arising with centralized control and 
optimization methods. Multi agent control methods are applied in congestion control of 
traffic networks [l] and manufacturing systems [3,13,15]. In [7] a multi-agent 
framework is presented that deals with logistic operations in a distributed network 
environment which is another growing field of application. This approach is used both 
for analysis and for the design of a distributed intelligent agent architecture. In [5]  a 
multi-level warehouse hierarchy with its market mechanisms is applied to real- 
timetransportation, dynamic freight allotment, depot agents, scheduling problems, and 
production planning. An interesting and promising approach is market-based control. 
Market-based control imitates the behavior of economic systems. In this framework so- 
called producer and consumer agents both compete and cooperate on a market of certain 
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commodities. Several market-based control and optimization strategies are presented 
in [2, 41. In [6,11,12] market-based control algorithms are presented in more detail. On 
the basis of cost functions used by producer and consumer agents the optimization of 
distributed coupled linear systems is shown. The present paper mainly adopts ideas from 
[6, 111 (see also [8,9]). The method is applied to a set of local Markov processes , e.g. 
queuing processes, respectively. In the case of several queues of customers it might be of 
interest to keep all queue lengths approximately the same in order to occupy the whole 
system equally. In contrast to the local birth rates it is assumed that the local death rates 
can be influenced by some external control. The main goal is to change the individual 
death rates so that, after some finite time, the distributions of all queuing processes are 
adjusted. The death rates of the local queuing processes are changed on the basis of the 
probabilities of the occurence of a selected event in each of the local queuing processes. 
The paper is organized as follows. Section 2 gives an introduction into the problem of 
decentral queuing (birth and death) processes acting in parallel. In Section 3 the market- 
based algorithm is applied to a set of birth and death processes. In Section 4 simulation 
results are presented. Section 5 concludes with a short summary of the methods 
presented. 

2. Decentral queuing processes 

Decentral queuing processes acting in parallel can be explained by the following simple 
application example. Given a company producing n types of commodities (e.g. 
computers). Furthermore, let an unknown number of customers order different numbers 
of each type of commodity. Some of the customers may, for example , order a number 
of computers of type 1, and others may order another number of computers of type 2 
etc. Each computer needs for its production different materials (elements) some of them 
may be used for both types of computers. 
Let both the stream of demands by the customers and the times for handling the 
commissions by the company be exponentially distributed (see Fig 1). Furthermore, for 
simplicity we assume that a customer orders only one piece of a special type of 
commodity. We also assume that at a time instant t the change in the number of demands 
is 0 or 1. 

type 1 
I 

ti-start ti+l-start ti-stor, ti+l-stor, 4 
t 

Figure 1 : Occurence of demands and handling times of the commissions 
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Let the time difference between two demands be Atistart = ti+lstart - tistart . Let 
further the difference between the stops of orders be Atistop = ti+lstop - tistop. The 

corresponding probability functions for t ,  Z > 0 are 

P(Atistart < t )  = 1 - e-' t > O  

and 

P(Atistop < z) = 1 - e-p'" Z > O  ( 2 )  

respectively. 2, p > 0 are the parameters of the exponential processes (1) and (2). This 
type of stochastic process can be modeled by a homogeneous Markov process [lo, 141. 
Since the demands are stochastically "born" and the corresponding handlings of 
commissions "die out" the process can be modeled by a so-called birth and death 
process. In the differential equations for the probability of the occurence of the states 
j = 42, ... 

Po (t> = -&Po (t> + (0 
Pj ('1 = Aj-lPj-1 (t> - (Aj + ~j >Pj (t> + ~j+lP j+l ( t>  

(3) 

are Aj  's the birth rates and the p 's are the death rates. Pj ( t )  is the probability to 

reach the state j at time t when having started in state i at time t o .  In (3) the birth and 
death rates are different for every state j. When assuming the rates to be constant for all 
states one obtains instead 

Po 0) = - e o  0) + p 4  (0 
Pj ('1 = APj-l(t> - (1 + Y>Pj (t> + luP,+, ('1 

(4) 

We call a process ergodic or stable, respectively, if 0 < A/,U < 1. In this case the 

process converges. That is, for a specific state 7 the probability to reach a higher state 

becomes increasingly unlikely Pj < PJ-l j > j . For our example the states 

j are the number of handled commissions at time t. Pj ( t )  is the probability to have j 

commissions in the queue at time t. Pj ( t )  is the change in the probability Pj ( t )  at time 
t. Equation (4) can therefore be rewritten 

- 
for 

Pok@) = -AkPok( t )+pkCk( t )  

Pjk (t> = AkPj-lk ( t )  - (2  + P k ) P j k ( f )  + p"p,,,k ( t )  
j = 1,2, ..., k = 1,2, ..., M 
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Observe here that for each type of commodity the A 's and p 's are supposed to be 
different. Equations (4) can be considered as a system of equations concerning all types 
of commodities. Equations (4) correspond to the graph depicted in Fig.2 which deals 
with the total Markov process of all events with n different states. That is, in (4) and Fig. 
2 we do not distinguish between different types of commodities. 

A A A 

P P P 
Figure 2:  Ciraph of the centralized Markov process 

State j denotes "j active commissions" of an arbitrary commodity. When we split the 
process into subprocesses each of which regarding a special type of commodity we 
obtain M different Markov processes ( 5 )  and the corresponding graphs (see Fig 3) each 
of which having nk  statPC 

Ak Ak ,:y_-d .> 
P k  P k  P k  

Figure 3: Graph of the decentralized Markov processes 

State j k  denotes " j k  active commissions" of commodity type k. The relation between 
the the A 's and ,U 's of the centralized process and the decentralized processes can be 
found by 

k=I k = l  
because of the OR-combinations of probabilities. That is, the individual graphs are 
connected via (6). In addition the total number rn of active commissions and the numbers 
mk of individual active commissions are connected by 

M 

m = E m k ;  (7) 
k =1 
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However, since m can be obtained in many ways the number of possible 
combinations to get the same total number m can be very high. 

3. Market-based algorithms and process control 

In general, a queuing system consists of a buffer or a queue and a service station (see 
Fig. 4). Each type of order k arrives with an interarrival rate ;1" and is handled at the 
service station with a service rate p k  . The orders leave the system with the 

interdeparture rate ,U d e p .  The process is said to be stable if for large times t the service 

rate,Uk is greater than the interarrival rate ;1" : ,Uk > kk . In this case the 

interdeparture rate ,U ' d e P  of the process is equal to the interarrival rate ak independent 

of the servicerate ,U : ,U kdep = ;1" . It can further be shown that not only the rates but 
also the distributions of the interdeparture and the interarrival process are equal if the 
service distribution is exponential [lo]. 

k 

service 
buffer station 

inter departure 
rate rate 

Figure 4: Block scheme of a queuing process 

In the following a decentral control method for both the subprocesses and the complete 
process is investigated. The birth (interarrival) and death (service) processes ( 5 )  are 
completely determined by their initial conditions and their parameters ak and ,Uk . 
Since the birth rates iz" completely depend on the customer the ;1" 's cannot be changed 
or influenced in some way. Therefore, only the death (service) rates ,U can be changed 

or influenced by some control or optimization strategy. Increasing ,Uk means that a 

commodity can be delivered faster (earlier). One way of increasing ,Uk is, e.g., the 
exchange or loaning of materials (elements), respectively, from other types of 
commodities. This, however, leads to a decrease of the ,U for these other types. To 
reach a compromise for all subsystems a market-based algorithm is applied to find a so- 
called Pareto-optimum for the complete set of subprocesses . One may argue that it may 
be sufficient to make the queues as fast as possible. But under the condition of restricted 
recources of the suppliers this control policy may lead to longer queues, larger buffer 
capacities, and lower quality of service. Instead, the control policy applied here is to 
change the death (service) rates of the individual queues in a way that their dynamical 
behaviors become equal. This is identical with the requirement for using the capacity of 
all subprocesses in a well-balanced way which in turn leads to a synchronization of the 

k 

k 
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queues. This can be obtained by minimizing a cost /energy function of the total 
process via the local cosvenergy functions. An appropriate calculation of the death rates 
is done by a market-based approach that is presented in the following. In order to avoid 
misinterpretations one has to note that the below-mentioned terms "producer" and 
"consumer" should not be confused with real customers/consumers and 
suppliers/producers acting in the commisioning process described in the previous 
section. Subsequently, producer and consumer agents are virtual actors trading with 
virtual commodities like, e.g., death rates. Let now be defined a producer agent 
Pug: and a consumer agent Cug: , respectively, for each state j k  belonging to a 

commodity of type k .  Pug: "produces" a certain death rate ,LLp , and tries to 

maximize a local profit function p: > 0 .  Cugt "demands" for a certain death rate 

pu," , and tries to maximize a local utility function U: > 0 .  The trade between 
producer and consumers agents takes place on the basis the local profit and utility 
functions P, and U ,  , and common prices p ,  . The prices p ,  can be calculated 
from the equlibrium of the whole "economy" at every time step. Then, an equilibrium 
is reached as the sum over all supplied death ratespU, is equal to the sum over all 

k 

k k 

k 

utilized death rates p," 

Then, from (8) the common prices p ,  can 

for the consumer agent Cug is now defined by 
Utility = benefit - expenditure 
u; = q p :  - q p j ( & )  k 2  

(8) 

be calculated. The quadratic utility function 

(9) 

where g: ,t?: > 0 will be determined later in connection with the queue 

dynamics (5) .  The quadratic profit function for the producer Pug: is defined by 
profit =income - costs 

P: = R:PlrU; - e : ( P ; ) 2  (10) 

where g;' , e;' > 0 are free parameters that determine the average price level. p I  is the 

actual price that has to be payed for p i  by each consumer Gag:. According to [6] 

the individual terms in U:  and p: are chosen so that benefit and income increase with 

,flu," and p p  , respectively. On the other hand, the expenditure per p ,  and costs per k k 
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k k ,Up" , respectively, are assumed to increase with p ,  and 

parameters b, , c 
the dynamics (5) where, for simplicity, the argument t is eliminated 

p p  , respectively . The 

in (9) can be determined by using local energy functions based on " k  - k  

(11) 

(12) 

Pjk  = akpj-l k -(A~ +p,")pjk + p , k ~ ~ + ~  k 

From (1 1) a local energy function for each subprocess is defined as 
J;,. = (P, * k 2  ) = a; + prp:  + y;(p,k)' 

where 
k k 2  a; = (aki2 .(P,-~ -P, 2 0  

y, = (P, - Pjtl ) 

k p: = -2ak . (P,-l - Pj+,k)(Plk - Pjtlk) I 0  

2 0  

It can be shown that for the stationary case P, = 0 ,  and for p j  = 1,  the energy 
function (12) reaches its minimum at the maximum of the utility function (9), 
independently of the parameter a;. Therefore, a comparison of (9) and (12) leads to 

for small I pik I (13) 
k k k 2  

' k  

the intuitive choice 

k in order to guarantee p ,  2 0 .  The optimization of the whole process takes place by 
individual maximization of the local utility and profit functions, respectively. 
Maximization of the utility function (9) yields 

from which optimum "demanded" p," 's are obtained 

Maximization of the profit function (10) yields 

- = -gJp, + 2ejpu, k k  = 0 

from which optimum "produced" p i  's are obtained 
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The requirement for an equilibrium between the sums of the "produced" ,U: 's and the 

"demanded" p," 's led to the balance equation (8). Substituting (16) and (18) into (8) 

gives the price p for ,Up and p C  , respectively. k k 

Substituting (19) into (16) yields the final equation for the death rate to be implemented 
in each subsystem.77, can be chosen as a constant which gives reasonable results. A k 

k f l k  k better choice, however, is v j  = - to let 7; be dependent on ,Ll and ;1". For the ak 
stationary case we obtain 

For p:, and y: we obtain with (13) and (20) 

p; = - 2 p k  .(1+,)(1-,)2(P,k)2 Ak x 5 0  y,  k =(1-+2(Pl ak k 2  ) 2 0  (21) 

P P P 
The determination of p: and y: for the nonstationary case, however, requires the 

computation/measurement of the probabilities PI" ( t )  that can be done by constructing 

histograms for every point in time. The probability of a state P,! ( t )  is approximated by 

the number of events j k  divided by the total number of events 

4. Simulation examples 

Example 1 
The first example deal with 3 different Markov processes with 11 states for each 
process. The continuous processes and the optimization strategy are implemented as 
discrete models. The simulations have been done on a small time scale which can be 
changed for a real process accordingly. The initial values are 



Process P I :  
PO-1=1; P1-1=0; P2-1=0; P3-1=0; P4-1=0; P5-1=0; P6-1=0; 
P7-1=0; P8-1=0; P9-1=0; P10-1=0; 
Process P2: 
PO-2=1; P1-2=0; P2-2=0; P3-2=0; P4-2=0; P5-2=0; P6-2=0; 
P7-2=0; P8-2=0; P9-2=0; P10-2=0; 
Process P3: 
P0-3=1; P1-3=0; P2-3=0; P3-3=0; P4-3=0; P5-3=0; P6-3=0; 
P7-3=0; P8-3=0; P9-3=0; P10-3=0; 
The corresponding parameters are 
lambda- 1 = 1 ; lambda-2=2.5; lambda-3=3.8; muJ= 1.4; mu-2= 1.7; mu-3= 1.9; 
Process P1 is ergodic since lambda-l< mu-1 . The processes P2 and P3 are non- 
ergodicsince lambda-2 > mu-2 and lambda-3 > mu-3. 

Figure 5. Process evolution P1- P3 
(no optimization) 

Figure 6. Process evolution Pl-P3 
(with optimization) 
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Figure 5 shows the evolution of Pl-P3 without any cooperation or interconnection 
between the processes. After 10s the processes are almost stationary. For this case P1 
shows the characteristic ergodic feature with Pk > Pk+l where, on the other hand, for 

the processes P2 and P3 we have the non-ergodic feature Pk < Pk+l.  Despite of this, P2 
and P3 are not unstable but come to rest at a stationary distribution depicted in Fig. 5. 
The reason is that the number of states is restricted. Figure 6 presents the case in which 
the processes cooperate (compete) with each other. The corresponding parameters for 
the market-based algorithm are 
e-l=2; g-1=1; eta-l=e-l/g-l; 
e-2=2; g-2=1; eta-2=e-2/g-2; 
e-3=2; g-3=1; eta-3=e-3/g-3; 
The initial distribution is the same as in the previous case. The ,U ‘s are changed at each 
time step according to (16) . Already after 1s it can be observed that the process 
distributions approach to each other. After 10s all processes exhibit ergodic features 
which means that, finally, the corresponding ,U ‘s take larger values than the 
corresponding /z ‘s 
lambda-1 = 1; lambda-2= 2.5; lambda-3 = 3.8; 
mu-1 = 1.3799; mu-2 = 3.5065 ; mu-3 = 5.3328. 

Example 2 
In the previous example the distributions shown in Figs. 5 and 6 were generated directly 
by the differential equations (5) and (lo), respectively. Instead, in the following example 
the distributions are the result of stochastic processes generated by noise generators that 
produce both the birth processes of demands and the death processes of handling the 
commissions. 
We assume to have only one time series available, and we make also the assumption that 
all birth and death processes are stochastically independent, stationary, and ergodic. The 
whole time series is divided into 1 time intervals N1. Then the time intervals N1 are 
divided into smaller time intervals T. For these intervals we calculate histograms and , 
by normalization , corresponding distributions. Figure 7a shows an example for t=lOs 
and no optimization from the market-based algorithm. and Fig. 8b shows the same with 
optimization. We observe that the results are comparable with the results from the 
differential equations. 
The birth and death rates /z and ,U in Fig.7a,b are the final rates after the experiment. 
Figure 8 shows the evolution of the price. It can be noticed that after 30 cycles (3s) the 
price and the final ,U values have already been established. 
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O B I  , , , , , , , , , , , , 0 7 ,  

lambda=3.8; lambda=3.8; 
mu=1.9 mu=6.95 

0 2  

0 I 2  3 1 6  8 7 B * 1 0 / ,  0 1 2  3 1 s B 7 I * l o  

Figure 7: Processing of the death rates; a/b no/with optimization 

0 10 20 30 40 50 60 70 80 90 100 

Fig. 8 Evolution of the price 
5. Conclusions 

In the paper a set of local birth and death processes was presented whose local birth 
rates are fixed but the local death rates are influenced by market-based control 
algorithms. The control goal is to change the local death rates so that the distributions of 
all queuing processes are adjusted. In the paper an introduction into distributed birth and 
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death processes is given, and the problem of their centralized or decentral 
representation is discussed. For the market-based algorithm applied here local utility and 
profit functions, respectively, are defined on the basis of which the particular Markov 
processes are optimized. The result of the optimization is a so-called Pareto-optimum 
which represents a compromise between the competing processes. The simulation 
experiments show that the algorithm leads to excellent results for the adjustment of 
local queuing processes. 
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Abstract 
A framework for the automated visual inspection of texture surfaces was implemented 
and used in an industrial application for the evaluation of fault perceptual relevance. This 
new paradigm for automated visual inspection systems, whose appearance is due to de- 
mands from the industry, allows attaining the objective reproduction of the end user’s 
subjective decisions on texture surface quality of a particular product. The here presented 
paper analyzes in detail the fuzzy fusion methodologies used in this framework in order 
to predict the end user’s opinion. Finally the paper presents the results obtained in a real 
industrial application, namely the inspection of organic material plates. 

Keywords: Automated Visual Inspection, Fuzzy Aggregation, Order Weighted Averag- 
ing, Choquet Fuzzy Integral, Pattern Recognition. 

1 Introduction 
The utilization of automated visual inspection systems for quality control on textured 
surfaces has been an outstanding field of research in computer vision. In this context 
industrial visual inspection is leaving behind the traditional application goal of finding 
functional faults in textured materials trying to conquer new and more complex goals. 
Nowadays the classical approach of detecting a fault, assigning it to a fault class, and 
delivering the crisp results to the superposed production system has lost importance due 
to economic demands. The possibility to reuse some parts of the produced goods, to 
redirect its selling to alternative channels of distribution or to take advantage of the long 
experience of human operators in inspection tasks encourage the establishment of new 
paradigms for automated visual inspection systems. The paradigm proposed in this paper 
is denoted as perceptual relevance evaluation. 

The systems developed within perceptual relevance evaluation basically attain the de- 
tection of perceptually relevant anomalies of any kind, which might disturb the total visual 
appearance of the surface texture. Furthermore such a system attempts to predict the re- 
sponse of an end user in front of a particular object. In this case the quality control is 
preventing a product end user of eventually rejecting some items due to their aesthetic 
value. The resolution of such problems are characterized by the following main features: 

0 The items subject to inspection are in its majority end consumer goods. 

Only part of such faults are of functional nature, or at least malfunction plays a 
secondary role. 
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0 It is desired that the inspection system delivers a bit more complex description of 
the faultiness degree than the two-valued decision fault or not. 

Summarizing, where traditional visual inspection systems detect, modern ones have to 
interpret (see Fig. 1). Wooden and textile surfaces have been a long-termed research target 
in this direction. However, a general attempt to treat this class of inspection problems has 
not been considered so far. 

Figure 1: Challenge for automated visual inspection systems of textured surfaces: from 
the detection of faults eventual producing malfunctioning (a) to the the interpretation of 
“ugliness” (b). (a): Mechanical piece. (b): Example of organic material plate analyzed 
with the here presented framework. 

Perceptual relevance evaluation is mainly characterized by its subjective nature. Also, 
perceptual faults are stuck on both, local and global image properties. A floor tile might 
successfully pass all fault tests by itself, whereas it may fail in a pavement due to its 
perceptual relevance (e.g. a large-scale unintended regularity). So far the consideration 
of fuzzy methodologies [ 181 in the prediction process seems unavoidable. 

Taking all these facts into consideration a framework for fuzzy evaluation of percep- 
tually relevant faults was developed [9]. The components of the framework treat specific 
texture detection problems with different binarization approaches. The evaluation of the 
binary images delivered by the binarization modules is realized through a hierarchical 
network of fuzzy fusion operators. The purpose of the here presented paper is to analyze 
in detail the fuzzy strategies employed in that framework [9]. 

The paper is organized as follows. In section 2 a brief overview on fuzzy fusion 
strategies is given. The framework is presented in section 3. The usage of the hierarchical 
network of fuzzy aggregation operators is described in section 4. The framework was 
applied in the evaluation of organic material plates. In section 5 the perceptual relevance 
evaluation of the faults in a test set and the results obtained by the final industrial system 
are presented. Finally, the reader can find the conclusions in section 6. 
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2 Fuzzy Fusion Approaches 
Sugeno's work on fuzzy integrals [ 121 incorporate the subjectivity, which was already 
considered by Zadeh [ 181 in the case of the classical set theory, into the mathematical 
concept of integration. The final goal was the approximation of such an operation to 
different aggregation processes undertaken by human beings. The successful usage of the 
fuzzy measures theoretical framework [ 141 in problems of fuzzy classification in pattern 
recognition [4], multicriteria decision making [5] ,and multiattribute subjective evaluation 
11 31 constitute good antecedents for the problem of perceptual relevance evaluation. 

In the here presented framework, an OWA and a Choquet Fuzzy Integral are used as 
fusion operators. OWAs [ 161 used a weighting of the different factors being aggregated. 
The OWAs weighting scheme is based on the numerical ranking of the channel values 
presented to the aggregation function. Formally, being X the set of values to be aggre- 
gated, X = {XI ,x2,. . . ,xn}, and 74' the set of weights, 74' = {wl, w2,. . . , wn}, the result 
0 of the fusion operation can be expressed as: 

where the weights satisfy I. wi E [0,1] and 11. & wi = 1. Moreover the enclosed subindex 
express the result of the sorting operation in ascending order: x( 1) 5 x(2) 5 . . . 5  x("). 

In the Choquet Fuzzy Integral the weighting procedure is made through so-called 
fuzzy measures p, which are functions on fuzzy sets defined as p : P ( X )  + [0,1] for 
P(X) being the set of all subsets of X. Fuzzy measures satisfy the following conditions 
when being considered on sets of a finite number of elements: I. p{0 }  = O ; p { X }  = 1 and 
11. A c B + p(A) 5 p(B)VA,B E P ( X ) .  

The quantification of the a priori importance is made assigning values to the fuzzy 
measure coefficients. Different types of fuzzy measures are used in different theoretical 
frameworks. In the h-fuzzy measures [ 121 only the fuzzy measure coefficients of the indi- 
vidual components and a parameter h, which characterizes the computation of component 
coalitions coefficients as p ( A  U B )  = p ( A )  + p ( B )  + hp(A)p(B), have to be determined. 

The formal expression of the Choquet Fuzzy Integral, (C) J f d p ,  is: 

with A ( i )  = {x(i), . . .,+I} and A(o) = 0. 
The utilization of fuzzy fusion operators in the here presented framework allows the 

flexible representation of subjective reasoning present in the human task of perceptual 
relevance evaluation. Moreover, the admission of several operators and the possibility of 
considering different types of weighting make the fuzzy fusion framework the adequate 
one for the resolution of the application on hand. Finally the deliverance of the result to 
the production system in form of fuzzy membership degrees allows its flexible utilization. 

3 Framework for Perceptual Relevance Evaluation 
A system for the automated visual inspection of texture surfaces was implemented 191. 
The purpose of the visual inspection system is the evaluation of the perceptual relevance 
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of different fault types (e.g. holes, cracks) on plates of an organic material (see Fig. lb). 
The framework is basically composed of a processing chain of alternating Binary Pattern 
Processing Modules (BPPMi) ,  each of them having the same internal structure. These 
modules reduce the grayvalue domain of the input images to a common binary one by 
detecting a specific type of faults. Thus all fault types can be further analyzed in the 
same way. Some additional testing modules can be found between such modules (see 
Fig. 2 ) .  The testing modules, where a fast testing routine based on reduced information 
is undertaken, are optional design components. Their main purpose is to bypass a BPPM 
computations, if there is no evidence for the faults, which are processed by that BPPM. 

F F F 

Figure 2: Framework for perceptual relevance evaluation. Different fault types, whose 
detection presents increasing complexity from the left to the right, are detected through 
different Binary Pattern Processing Module (BPPMi). Different Test modules (Testij) are 
interpolated among them in order to break the analysis and thus to optimize the perfor- 
mance of the system in terms of detection time. The BPPMs deliver a decision on the 
relevance of the analyzed fault (F). 

Each BPPM has access to the acquired image and to the evaluation of the foregoing 
testing module. Hence, the processing of each BPPM is independent of the processing of 
the others, but may refer to the results of the foregoing modules. Modules for the detec- 
tion of the more frequent faults, or of the more simple to detect faults should come first in 
the chain. Since the appearance of a sufficient relevant fault in foregoing modules can in- 
terrupt the more time consuming computation in later ones, the system is computationally 
optimized. 

Each single BPPM is designed for a particular fault type, which is defined with re- 
spect to the fault’s morphological and contrast structure. Each module is composed by a 
preprocessing, a binarization, a fuzzy feature extraction and a fuzzy evaluation stages (see 
Fig. 3). In the binarization stage, a set of k binarizing procedures is performed in parallel, 
giving k resulting binary images. These images act as complementary pieces of evidence 
in the analysis of the object under inspection. So far, four basic designs of a BPPM for 
four different fault types have been implemented (for a detailed explanation the reader is 
referred to [9]). A taxonomy of these types is given following: 

Strong-contrast localized faults appear as an area presenting a grayvalue very differ- 
ent from the image background. Only one binarization operation is applied, which may 
be an interval thresholding. 

Long-range faults are not related to a strong local contrast, but to a distortion within 
the global distributionof grayvalues within the image. Such faults may be detected by em- 
ploying the auto-lookup procedure [9] based on the co-occurrence matrix [7] of a subset 
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Figure 3: Structure of a Binary Pattern Processing Module. Although the faults to be 
treated are different, the BPPM maintain the same structure up to the number of parallel 
binarizations. CCA: Connected Component Analysis. 

of pixels from the image. The procedure acts as a novelty filter (see Fig. 4). 
Low-contrast faults are characterized by its low contrast in the image grayvalues. 

For their treatment, the framework called Lucifer2 [8] may be used. The purpose of 
the framework is the automated generation of texture filters given the original and the 
expected goal images. 

Frequency related faults appear in form of a disruption of the uniformity resulting 
from the repetition of a basic element. For its detection a Gabor image decomposition [2] 
for different spectral bands are calculated following the schemata presented in [lo]. Fi- 
nally, the total image energy in the analyzed spectral bands is computed and thresholded. 

A fusion procedure derives a binary image by applying logical operators on the k 
images delivered by the binarization stage. The foreground (or Black pixels) of that binary 
image are candidates for perceptual faults which will be fuzzy processed in the following 
stages. The CCA module connects components from the binary fused image, which are 
perceptual fault regions, and removes noise that remained after the binary fusion. 

The fuzzy evaluation of the binary image is undertaken by a network of fusion opera- 
tors (see Sect. 4). Thus, the network achieves the path between binary pixel information 
and the relevance of the defect under inspection. As a result each BPPM delivers a two- 
tuple of fuzzy membership degrees upon two classes (“no relevant faultiness”, “relevant 
faultiness”). For instance, the vector (0.3,0.7) would indicate an inspected objet where 
the analyzed texture fault are perceptually relevant. 

The final decision for the rejection of a piece upon each defect type is undertaken by 
the production system based on this information. In case of a very complex interaction 
between the different defect types another fuzzy integral could be used in the highest level 
of abstraction for the integration of their (“no relevant faultiness”,”relevant faultiness”) 
membership degrees. 
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Figure 4: Auto-Lookup based procedure. From the acquired image, five co-occurrence 
matrices [7] are derived at five randomly located windows. Then, for each co-occurrence 
matrix, the auto-lookup procedure [9] is performed on the whole image. As a result dark 
regions stand for “atypical” regions. 

4 Fuzzy Aggregation for Perceptual Relevance Evaluation 
The binary images extracted by the parallel binarization submodules (see Fig. 3) have to 
be fuzzy processed in order to better approximate the desired subjective evaluation (see 
Sect. 2). 

The analysis of the binary images obtained is undertaken at this point by a network of 
fuzzy aggregation operators (see Fig. 3, where the complexity of the problem attached 
in each following stage needs the usage of operators of also increasing complexity. This 
concept has been analyzed in detail in [ 1 I]. With each fusion operator in the network 
a new abstraction level in the way from pixel information to the quantification of the 
perceptual relevance of the defects is achieved. The different stages will be analyzed in 
the following. 

At first the remaining connected components are measured (see Fig. 6) through classi- 
cal operators as the statistical first moment of the black pixel positions or the sum of pixel 
values (1 or 0). As a result, local geometric features for each detected fault are extracted. 
E.g. height, width, area, perimeter, roundness. 

4.1 
A holistic description of the local features is needed, in order to get global description of 
the elements under analysis. For that end, traditional fusion operators on the one hand 
and Ordered Weighted Averaging (OWA) operators on the other are applied on them. The 
employment of traditional fusion operators is trivial, e.g. computation of the number of 
faults in an item. On the other hand it is worth detailing the employment of OWAs. The 

Fuzzy Meta-Feature Extraction through OWAs 
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Figure 5 :  Hierarchically organized network of fusion operators used in the here presented 
paper for the fuzzy evaluation of binary images. The operators of increasing softiness [ 111 
are in charge of tasks of increasing complexity. These correspond to increasing levels of 
abstraction in the evaluation from the consideration of pixel information, value(x, y ) ,  to 
the result in form of a double fuzzy membership degree expressing “faultiness”. CLOP: 
Classical Operators; OWA: Ordered Weighted Averaging operators; FUZZ: fuzzification 
stage; CFI: Choquet Fuzzy Integral. 

global descriptor obtained up to them can be considered as a meta-feature, resulting from 
the fuzzy aggregation of the local fault features. 

The weighting configuration of the OWAs, which are softer aggregation operators than 
traditionally used ones, increase the flexibility. Since the weighting is done by taking into 
consideration the numerical ranking of the features, the result can be biased for giving 
preference to a determined range of values or for reinforcing the presence of coincident 
ones [ 171. Furthermore, the usage of the OWAs allows the comparison of vectors with 
different number of components without suffering the low-pass filtering effect of tradi- 
tionally used ones, e.g. average. An example of the usage of the OWA weights and its 
effect on the result is shown in Fig. 7b. 

The global descriptors till this stage are fuzzified when necessary by defining linguis- 
tic terms with trapezoidal fuzzy membership functions (see Fig. 7c). The fuzzification 
of the metu-features, which apply a linguistic descriptor on them, eases the conceptual 
development and parameterization of the following stages. Moreover the usage of two 
opposed fuzzy features increase the robustness of the evaluation system. 
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Figure 6: Measuring of binary patterns after CCA. Geometric features for each detected 
fault are extracted. COG: Center of gravity. 

4.2 Decision Making over Perceptual Relevance through the Choquet Fuzzy Inte- 
gral 

The last stage of the hierarchical network of fuzzy aggregation operators (see Fig. 5 )  is 
implemented through a Choquet Integral. This operator attains binding the differentfuzzy 
meta-features in order to make a decision over the goodness of the item. Thus for each 
perceptual fault class thefuzzy meta-features are fused into a value from [0,1] by using 
the Choquet fuzzy integral in order to characterize the faultiness perceptual relevance in 
form of a membership degree. The application of an aggregation operator can produce 
such a membership function. 

The most important reason for the application of the fuzzy integral is the capability 
of this fuzzy operator for fusing information taking into consideration the a priori im- 
portance of both individual and groups of attributes. The fusion of the different fuzzy 
features is needed in order to find the joint perceptual relevance of the faults in the object 
under inspection. In such a process the interaction between the different fuzzy features 
has to be considered. The fuzzy integral is the only fuzzy fusion operator to allow such a 
characterization [5] .  

The kind of analysis undertaken reflects in the result the different possibilities of in- 
teraction. E.g., if the presence of defects on the plate border is very important, the result 
of the relevance quantification should increase; if such a presence is not so important but 
coincides with a very big defect, the relevance should also increase; if the defects are 
small and there are not so much of them, the relevance decreases. Such a characterization 
could have been undertaken also with a system of fuzzy rules. However, the fuzzy integral 
approach is more synthetic and understandable from the developer point of view. When 
the kind of interactions to be characterized are very complex or numerous, the number 
of rules increase so much that the problem is no longer tractable. Furthermore, in many 
cases the descriptions delivered by the inspection experts are difficult to collect, when not 
full of contradictions. The automated finding of the fuzzy measures helps avoiding this 
problem and allows an easier redesign of the feature extraction stage. 

Furthermore the Choquet Fuzzy Integral has been already used as classificator in pat- 
tern recognition problems, where its performance was superior to that of other classifi- 
cators, e.g. multilayer perceptron, bayesian independent classification [4]. Moreover the 
parameterization of the fuzzy integral was taken into consideration. Diverse algorithms 
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Figure 7: Example of the employment of OWAs in the computation offuzzy rneta-features. 
The image shows the exemplary computation of the meta-roundness of a plate based 
on the fuzzy aggregation of the local features PerirnetedArea (P/A) (a). (b) A weight 
configuration very sensitive to the presence of just one fault with circular form is displayed 
at the top. On the contrary if a detection of more than one elongated fault is desired, a 
configuration like the one at the bottom would be used. (c) Example of fuzzification 
functions for the computation offuzzy meta-features (in this case, meta-roundness). The 
result of the OWAs is fuzzified with trapezoidal fuzzifying functions. 

have been presented for the parameterization of the Choquet integral [4][5][ 151, while the 
Sugeno integral lacks of such a diversity. 

4.3 
It is worth making a detailed analysis of the automated parameterization of the Choquet 
Fuzzy Integral. In such an industrial application as the one presented here the expert 
knowledge is difficult to collect from the system end-users. The subjective characteriza- 
tion of the “ugliness” of an object with respect to itsfuzzy rneta-features is not exact, if 
not even presenting some contradictions. Moreover the importance of the different object 
rneta-features and of its interaction is neither easy to characterize. Since the automated 
parameterization is based on examples of “ugly” plates, it facilitates the characterization 
of the fuzzy metu-features’ importance and that of their interactions. Finally the auto- 
mated parameterization increases the flexibility of the system in front of changes in such 
specification. 

So far, some experiments were done on the problem at hand for the automated con- 
struction of the fuzzy measures for the Choquet integral by using an optimization tech- 
nique based on quadratic programming [4]. Those experiments were not successful. This 
may lie on the necessity for the optimization technique to have a clear distinction among 
the memberships of the classes. In case of unclear definition of them the quadratic pro- 
gramming delivers trivial solutions, i.e. a fuzzy integral equivalent to a maximum opera- 
tor. 

Some previous works [5] take into consideration histograms and two-scatter plots 
for the importance assessment. This approach was not implemented in the final system 
because it does not result in a full automation of the parameterization. 

Automated Parameterization of the Fuzzy Integral 
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Genetic Algorithms [ 3 ]  constitute a good, though not trivial, alternative for the pur- 
pose under consideration [ 151. This approach makes possible the consideration of a search 
in the parameter space in form of a trend instead of the comparison with an expected final 
value of traditional supervised approaches. This type of setting was considered in the final 
system. The applied GA uses a real codification of the fuzzy measure coefficients, lin- 
ear scaling for fitness, roulette wheel as selection operator and and a two-point crossover 
operator [3]. All of them are GA’s standard operators. 

One important discussion point in the parameterization through GAS is which fitness 
function to use. The implemented fitness function takes two factors into consideration. On 
the one hand the minimization of the error between the fault perceptual relevance estab- 
lished by the experts on the plates belonging to the training set and the result delivered by 
the fuzzy integral is attained. On the other hand the result of the fuzzy integral is biased 
in order to presznt a maximal difference between the classes (“no relevant faultiness”, 
“relevant faultiness”). 

A h-fuzzy measure was used for the computation of the fuzzy integral. Such an elec- 
tion avoids the consideration of the monotonicity condition of general fuzzy measures, 
since only the coefficients for the individual components have to be determined. More- 
over, it reduces the search space of the GA, what leads to shorter computation times. 

5 Results 
The framework for the evaluation of fault perceptual relevance is implemented in an au- 
tomated visual inspection system for the industrial evaluation of organic material plates 
(see Fig. lb). The results for a particular fault type are presented following. The training 
of the fuzzy integral was undertaken for this BPPM based on a set of 39 plates. The in- 
dustry experts had determined the expected output membership degrees in advance. The 
obtained results on the training set after determining the fuzzy measure coefficients is 
depicted in Fig. 8a. Taking into consideration the maximal difference between classes 
within the fitness function improved the results in terms of false acceptedrejected rates 
and of approximation to the relevance established by the experts. Taking into considera- 
tion the larger membership degree as a crisp result the system achieved a recognition rate 
of 84.61% on the training set. 

The results obtained on a test set of 84 plates are depicted in Fig. 8b. The recognition 
rate with the test set was of 70.23%. On hand of these results the generalization capability 
of the evaluation framework can be analyzed. 

The implemented industrial system was tested with 11 different evaluation data sets, 
which are composed by 100 plates taken directly from the production line. The results 
obtained on these evaluation sets can be observed in Tab. 1. Three parameters characterize 
the goodness of the system. First the percentage of plates with relevant faultiness that 
present a false fault type as the principal factor influencing its final classification (EFT). 
Finally the false rejectance (FR) and acceptance (FA) rates are given. 

6 Conclusions 
The here presented framework has been successfully implemented. The slight differences 
between the recognition rates of the experimental results and those of the industrial system 
lays on the fact that the training and test sets just take faulty plates into consideration. 
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Figure 8: (a) Results obtained on a 39 plates training set. (b) Results obtained on a 84 
plates test set with the automatically determined fuzzy measure coefficients. 

Table 1: Results (in %) of automated industrial system in 11 evaluation data sets from 
production line. ET: Error in fault type. FR: False rejectance. FA: False acceptance. 

111 ~ 2 ~ 3 ( 4 / 5 1 6 ~ 7 1 8 1 9 / 1 0 / 1 I I ( ~ , I  E 1 0 E l ~ l l . 1 1  

After analyzing the results on hand of the binary images entering the fuzzy evaluation 
subsystem it could be stated that a great part of the errors were due to external factors. 
Among them is worth mentioning the presence of contradictions in the expected output 
membership degrees established by the experts. The interactive assessment of these out- 
put membership degrees taking into consideration the results of the automated system 
should be undertaken in order to minimize such errors. 

The utilization of general fuzzy measures in the fuzzy integral, the employment of a 
more balanced (in terms of expected membership values) training set, and the character- 
ization of GAS for the determination of fuzzy measure coefficients are some of the lines 
of future research that is expected to improve the performance of the industrial system. 
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