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Preface

One of the earliest applications of the computer was to the processing of information. These
applications led to a revolution and created a whole discipline. During the recent decade we
saw a second revolution in information processing motivated by the introduction of the
Internet, which is essentially a confluence of the computing and communications
technologies.

We are now at the early stage of a new revolution in information processing technology.
This revolution is focused on the introduction of intelligence to the processing of
information. In large part this revolution is the next step in the development of Internet
technology. We need intelligence to search the Internet in an efficient way, we need
intelligence to build agents to prowl the Internet and do our bidding and of course we need
intelligence to help us in understanding the multi-media environment of the Internet.
However, the Internet is not the only place where this revolution is developing. The control
systems, used in industrial processes, are getting more intelligent.

The focus of the International Conference on Information Processing and Management of
Uncertainty in Knowledge Based System (IPMU) is on the development of technology
needed for the construction of intelligent systems. The ninth IPMU conference held in
Annecy France, organized by the University of Savoie, brought together some of the
world’s leading experts in these technologies. In this volume, we have collected and
organized a selection of papers from this conference.

The book starts with an introduction to perception-based information processing by Prof.
L.A. Zadeh. This paper is reprinted from the Journal of Statistical Planning and Inference
(2002) by Elsevier. Here Prof. Zadeh continues his development of a framework for
computing with words by investigating perception-based probabilities, which are needed for
the development of intelligent decision systems.

An important task in the development of intelligent systems is the representation of
knowledge in a manner that is rich enough to capture the subtlety of human intelligence, but
still formal enough to allow computer manipulation. In the second section of this volume we
present a number of papers on representing knowledge.

The task of retrieving information is central to many activities involved in the processing of
information. The third section addresses this important issue. A number of the selected
papers focus on the development of aggregation operators.

Reasoning is an important part in human intelligent activities. Modeling human activities by
means of computers is a real challenge for the implementation of intelligent systems.
Section 4 of this volume is concerned with these topics.
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Intelligent systems have to take into account the quality of the information they process. The
representation and handling of uncertain information is one of the interesting aspects in the
construction of intelligent systems and is tackled in the fifth section.

The mining of information from the large amount of data available is one of the most active
areas in information technology. Many new technologies and paradigms for the task are
being developed. In the sixth section we provide some papers on data mining and the related
issue of learning.

The last two sections are respectively devoted to formal foundations of the technologies
used for constructing intelligent systems and applications illustrating the wide spectrum of
domains where the tools are applied.

B. Bouchon-Meunier
L. Foulloy
R.R. Yager
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Abstract

The perception-based theory of probabilistic reasoning which is outlined in this paper is not
in the traditional spirit. Its principal aim is to lay the groundwork for a radical enlargement of
the role of natural languages in probability theory and its applications, especially in the realm
of decision analysis. To this end, probability theory is generalized by adding to the theory the
capability to operate on perception-based information, e.g., “Usually Robert returns from work
at about 6 p.m.” or “It is very unlikely that there will be a significant increase in the price of oil
in the near future”. A key idea on which perception-based theory is based is that the meaning
of a proposition, p, which describes a perception, may be expressed as a generalized constraint
of the form X isr R, where X is the constrained variable, R is the constraining relation and isr
is a copula in which r is a discrete variable whose value defines the way in which R constrains
X. In the theory, generalized constraints serve to define imprecise probabilities, utilities and
other constructs, and generalized constraint propagation is employed as a mechanism for reason-
ing with imprecise probabilities as well as for computation with perception-based information.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Interest in probability theory has grown markedly during the past decade. Underlying
this growth is the ballistic ascent in the importance of information technology. A
related cause is the concerted drive toward automation of decision-making in a wide
variety of flelds ranging from assessment of creditworthiness, biometric authentication,

* Program of UC Berkeley.
* Tel.: +1-510-642-4959; fax: +1-510-642-1712.
E-mail address: zadeh@cs.berkeley.edu (L.A. Zadeh).



and fraud detection to stock market forecasting, and management of uncertainty in
knowledge-based systems. Probabilistic reasoning plays a key role in these and related
applications.

A side effect of the growth of interest in probability theory is the widening realization
that most real-world probabilities are far from being precisely known or measurable
numbers. Actually, reasoning with imprecise probabilities has a long history (Walley,
1991) but the issue is of much greater importance today than it was in the past, largely
because the vast increase in the computational power of information processing systems
makes it practicable to compute with imprecise probabilities—to perform computations
which are far more complex and less amenable to precise analysis than computations
involving precise probabilities.

Transition from precise probabilities to imprecise probabilities in probability theory is
a form of generalization and as such it enhances the ability of probability theory to deal
with real-world problems. The question is: Is this mode of generalization sufficient? Is
there a need for additional modes of generalization? In what follows, I argue that the
answers to these questions are, respectively, No and Yes. In essence, my thesis is that
what is needed is a move from imprecise probabilities to perception-based probability
theory—a theory in which perceptions and their descriptions in a natural language play
a pivotal role.

The perception-based theory of probabilistic reasoning which is outlined in the fol-
lowing is not in the traditional spirit. Its principal aim is to lay the groundwork for
a radical enlargement in the role of natural languages in probability theory and its
applications, especially in the realm of decision analysis.

For convenience, let PT denote standard probability theory of the kind found in
textbooks and taught in courses. What is not in dispute is that standard probability
theory provides a vast array of concepts and techniques which are highly effective in
dealing with a wide variety of problems in which the available information is lacking
in certainty. But alongside such problems we see many very simple problems for which
PT offers no solutions. Here are a few typical examples:

1. What is the probability that my tax return will be audited?

2. What is the probability that my car may be stolen?

3. How long does it take to get from the hotel to the airport by taxi?

4. Usually Robert returns from work at about 6 p.m. What is the probability that he
is home at 6:30 p.m.?

5. A box contains about 20 balls of various sizes. A few are small and several are
large. What is the probability that a ball drawn at random is neither large nor small?

Another class of simple problems which PT cannot handle relates to commonsense
reasoning (Kuipers, 1994; Fikes and Nilsson, 1971; Smithson, 1989; Shen and Leitch,
1992; Novak et al., 1992; Krause and Clark, 1993) exemplified by

6. Most young men are healthy; Robert is young. What can be said about Robert’s
health?



7. Most young men are healthy; it is likely that Robert is young. What can be said
about Robert’s health?

8. Slimness is attractive; Cindy is slim. What can be said about Cindy’s attractive-
ness?

Questions of this kind are routinely faced and answered by humans. The answers,
however, are not numbers; they are linguistic descriptions of fuzzy perceptions of
probabilities, e.g., not very high, quite unlikely, about 0.8, etc. Such answers cannot
be arrived at through the use of standard probability theory. This assertion may ap-
pear to be in contradiction with the existence of a voluminous literature on imprecise
probabilities (Walley, 1991). In may view, this is not the case.

What are the sources of difficulty in using PT? In Problems 1 and 2, the difficulty is
rooted in the basic property of conditional probabilities, namely, given P(X), all that
can be said about P(X|Y) is that its value is between O and 1, assuming that Y is not
contained in X or its complement. Thus, if I start with the knowledge that 1% of tax
returns are audited, it tells me nothing about the probability that my tax return will
be audited. The same holds true when I add more detailed information about myself,
e.g., my profession, income, age, place of residence, etc. The Internal Revenue Service
may be able to tell me what fraction of returns in a particular category are audited,
but all that can be said about the probability that my return will be audited is that it
is between 0 and 1. The tax-return-audit example raises some non-trivial issues which
are analyzed in depth in a paper by Nguyen et al. (1999).

A closely related problem which does not involve probabilities is the following.

Consider a function, y = f(x), defined on an interval, say [0, 10], which takes values
in the interval [0, 1]. Suppose that I am given the average value, a, of f over [0, 10],
and am asked: What is the value of f at x =37 Clearly, all I can say is that the value
is between 0 and 1.

Next, assume that I am given the average value of f over the interval [2,4], and
am asked the same question. Again, all I can say is that the value is between 0 and
1. As the length of the interval decreases, the answer remains the same so long as the
interval contains the point x =3 and its length is not zero. As in the previous example,
additional information does not improve my ability to estimate f(3).

The reason why this conclusion appears to be somewhat counterintuitive is that
usually there is a tacit assumption that f is a smooth function. In this case, in the
limit the average value will converge to f(3). Note that the answer depends on the
way in which smoothness is defined.

In Problem 3, the difficulty is that we are dealing with a time series drawn from a
nonstationary process. When I pose the question to a hotel clerk, he/she may tell me
that it would take approximately 20-25 min. In giving this answer, the clerk may take
into consideration that it is raining lightly and that as a result it would take a little
longer than usual to get to the airport. PT does not have the capability to operate on
the perception-based information that “it is raining lightly” and factor-in its effect on
the time of travel to the airport.



In problems 4-8, the difficulty is more fundamental. Specifically, the problem
is that PT—as stated above—has no capability to operate on perceptions described
in a natural language, e.g., “usually Robert returns from work at about 6 p.m.”,
or “the box contains several large balls” or “most young men are healthy”. This
is a basic shortcoming that will be discussed in greater detail at a later
point.

What we see is that standard probability theory has many strengths and many lim-
itations. The limitations of standard probability theory fall into several categories. To
see them in a broad perspective, what has to be considered is that a basic concept
which is immanent in human cognition is that of partiality. Thus, we accept the reality
of partial certainty, partial truth, partial precision, partial possibility, partial knowledge,
partial understanding, partial belief, partial solution and partial capability, whatever it
may be. Viewed through the prism of partiality, probability theory is, in essence, a
theory of partial certainty and random behavior. What it does not address—at least
not explicitly—is partial truth, partial precision and partial possibility—facets which
are distinct from partial certainty and fall within the province of fuzzy logic (FL)
(Zadeh, 1978; Dubois and Prade, 1988; Novak, 1991; Klir and Folger, 1988; Reghis
and Roventa, 1998; Klir and Yuan, 1995; Grabisch et al., 1995). This observation ex-
plains why PT and FL are, for the most part, complementary rather than competitive
(Zadeh, 1995; Krause and Clark, 1993; Thomas, 1995).

A simple example will illustrate the point. Suppose that Robert is three-quarters
German and one-quarter French. If he were characterized as German, the characteri-
zation would be imprecise but not uncertain. Equivalently, if Robert stated that he is
German, his statement would be partially true; more specifically, its truth value would
be 0.75. Again, 0.75 has no relation to probability.

Within probability theory, the basic concepts on which PT rests do not reflect the
reality of partiality because probability theory is based on two-valued Aristotelian
logic. Thus, in PT, a process is random or not random; a time series is station-
ary or not stationary; an event happens or does not happen; events A and B are
either independent or not independent; and so on. The denial of partiality of truth
and possibility has the effect of seriously restricting the ability of probability the-
ory to deal with those problems in which truth and possibility are matters of
degree.

A case in point is the concept of an event. A recent Associated Press article carried
the headline, “Balding on Top Tied to Heart Problems; Risk of disease is 36 percent
higher, a study finds”. Now it is evident that both “balding on top”, and “heart prob-
lems”, are matters of degree or, more concretely, are fuzzy events, as defined in Zadeh
(1968), Kruse and Meyer (1987) and Wang and Klir (1992). Such events are the norm
rather than exception in real-world settings. And yet, in PT the basic concept of condi-
tional probability of an event B given an event A4 is not defined when 4 and B are fuzzy
events,

Another basic, and perhaps more serious, limitation is rooted in the fact that, in
general, our assessment of probabilities is based on information which is a mixture of
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measurements and perceptions (Vallee, 1995; Barsalou, 1999). Reflecting the bounded
human ability to resolve detail and store information, perceptions are intrinsically
imprecise. More specifically, perceptions are f-granular (Zadeh, 1979, 1997), that is:
(a) perceptions are fuzzy in the sense that perceived values of variables are not sharply
defined and (b) perceptions are granular in the sense that perceived values of variables
are grouped into granules, with a granule being a clump of points drawn together by
indistinguishability, similarity, proximity or functionality (Fig. 1). For example, the
fuzzy granules of the variable Age might be young, middle-aged and old (Fig. 2).
Similarly, the fuzzy granules of the variable Probability might be likely, not likely,
very unlikely, very likely, ete.
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Perceptions are described by propositions expressed in a natural language. For
example

e Dana is young,

e it is a warm day,

e it is likely to rain in the evening,

o the economy is improving,

e a box contains several large balls, most of which are black.

An important class of perceptions relates to mathematical constructs such as func-
tions, relations and counts. For example, a function such as shown in Fig. 3 may
be described in words by a collection of linguistic rules (Zadeh, 1973, 1975, 1996).
In particular, a probability distribution, e.g., discrete-valued probability distribution of
Carol’s age, P*, may be described in words as

Prob{Carol is young} is low,

Prob{Carol is middle-aged} is high,
Prob{Carol is old} is low

or as a linguistic rule-set

if Age is young then P* is low,
if Age is middle-aged then P* is high,
if Age is old then P* is low.
For the latter representation, using the concept of a fuzzy graph (Zadeh, 1996, 1997),

which will be discussed later, the probability distribution of Carol’s age may be
represented as a fuzzy graph and written as

* = young X low + middle-aged x high + old x low
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which, as shown in Fig. 4, should be interpreted as a disjunction of cartesian products
of linguistic values of Age and Probability (Zadeh, 1997; Pedrycz and Gomide, 1998).
An important observation is in order. If I were asked to estimate Carol’s age, it would
be unrealistic to expect that I would come up with a numerical probability distribution.
But I would be able to describe my perception of the probability distribution of Carol’s
age in a natural language in which Age and Probability are represented—as described
above—as linguistic, that is, granular variables (Zadeh, 1973, 1975, 1996, 1997).
Information which is conveyed by propositions drawn from a natural language
will be said to be perception-based (Fig. 5). In my view, the most important
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probability —————fuzzy probability (very likely)
event ———fuzzy event (heavy rain, sharp decline)
relation —————fuzzy relation (much larger)

count ————- fuzzy count (most, several, about 0.3)

independence ————-fuzzy independence

stationarity ———————afuzzy stationarity

Fig. 6. f-Generalization (fuzzification). Fuzzification is a mode of generalization from crisp concepts to fuzzy
concepts.

shortcoming of standard probability theory is that it does not have the capability to
process perception-based information. It does not have this capability principally be-
cause there is no mechanism in PT for (a) representing the meaning of perceptions
and (b) computing and reasoning with representations of meaning.

To add this capability to standard probability theory, three stages of generalization
are required.

The first stage is referred to as f-generalization (Zadeh, 1997). In this mode of
generalization, a point or a set is replaced by a fuzzy set. f-generalization of standard
probability theory, PT, leads to a generalized probability theory which will be denoted
as PT+. In relation to PT, PT+ has the capability to deal with

1. fuzzy numbers, quantifiers and probabilities, e.g., about 0.7, most, not very likely,
2. fuzzy events, e.g., warm day,

3. fuzzy relations, e.g., much larger than,

4. fuzzy truths and fuzzy possibilities, e.g., very true, quite possible.

In addition, PT+ has the potential—as yet largely unrealized—to fuzzify such basic
concepts as independence, stationarity and causality. A move in this direction would
be a significant paradigm shift in probability theory.

The second stage is referred to as f.g-generalization (fuzzy granulation) (Zadeh,
1997). In this mode of generalization, a point or a set is replaced by a granulated
fuzzy set (Fig. 6). For example, a function, f, is replaced by its fuzzy graph, f~*
(Fig. 7). f.g-generalization of PT leads to a generalized probability theory denoted as
PT+-+.

PT++ adds to PT+ further capabilities which derive from the use of granulation.
They are, mainly

1. linguistic (granular) variables,
2. linguistic (granular) functions and relations,
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Fig. 7. Fuzzy graph of a function. A fuzzy graph is a generalization of the concept of a graph of a function.

|

crisp fuzzy f-granular
f-granulation

most is mosty + mosty + ... + most,
most; is a;xb;
\___ cartesian granule

Fig. 8. Representation of most. Crisp, fuzzy and f-granular.

3. fuzzy rule-sets and fuzzy graphs,
4. granular goals and constraints,
5. granular probability distributions.

As a simple example, representation of the membership function of the fuzzy quantifier
most (Zadeh, 1983) in PT, PT+ and PT++ is shown in Fig. 8.

The third stage is referred to a p-generalization (perceptualization). In this mode of
generalization, what is added to PT++ is the capability to process perception-based
information through the use of the computational theory of perceptions (CTP) (Zadeh,
1999, 2000). p-generalization of PT leads to what will be referred to as perception-based
probability theory (PTp).
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traditional

conversion computation
perceptions —————» measurements ——— decisions

countertraditional(CTP)

conversion computation
perceptions ——— propositions —————» decisions

conversion
measurements ———— perceplions

Fig. 9. Countertraditional conversion of measurements into perceptions. Traditionally, perceptions are
converted into measurements.

The capability of PTp to process perception-based information has an important im-
plication. Specifically, it opens the door to a major enlargement of the role of natural
languages in probability theory. As a simple illustration, instead of describing a prob-
ability distribution, P, analytically or numerically, as we normally do, P could be
interpreted as a perception and described as a collection of propositions expressed in
a natural language. A special case of such description is the widely used technique
of describing a function via a collection of linguistic if-then rules (Zadeh, 1996). For
example, the function shown in Fig. 7 may be described coarsely by the rule-set

[ if X is small then Y is small,
if X is medium then Y is large,
if X is large then Y is small,

with the understanding that the coarseness of granulation is a matter of choice.

In probability theory, as in other fields of science, it is a long-standing tradition
to deal with perceptions by converting them into measurements. PT, does not put
this tradition aside. Rather, it adds to PT a countertraditional capability to convert
measurements into perceptions, or to deal with perceptions directly, when conver-
sion of perceptions into measurements is infeasible, unrealistic or counterproductive
(Fig. 9).

There are three important points that are in need of clarification. First, when we
allude to an enlarged role for natural languages in probability theory, what we have
in mind is not a commonly used natural language but a subset which will be referred
to as a precisiated natural language (PNL). In essence, PNL is a descriptive language
which is intended to serve as a basis for representing the meaning of perceptions in a
way that lends itself to computation, As will be seen later, PNL is a subset of a natural
language which is equipped with constraint-centered semantics and is translatable into
what is referred to as the generalized constraint language (GCL). At this point, it will
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suffice to observe that the descriptive power of PNL is much higher than that of the
subset of a natural language which is translatable into predicate logic.

The second point is that in moving from measurements to perceptions, we move
in the direction of lesser precision. The underlying rationale for this move is that
precision carries a cost and that, in general, in any given situation there is a tolerance
for imprecision that can be exploited to achieve tractability, robustness, lower cost and
better rapport with reality.

The third point is that perceptions are more general than measurements and PT,
is more general that PT. Reflecting its greater generality, PT, has a more complex
mathematical structure than PT and is computationally more intensive. Thus, to exploit
the capabilities of PT, it is necessary to have the capability to perform large volumes
of computation at a low level of precision.

Perception-based probability theory goes far beyond standard probability theory both
in spirit and in content. Full development of PT, will be a long and tortuous process.
In this perspective, my paper should be viewed as a sign pointing in a direction that
departs from the deep-seated tradition of according more respect to numbers than to
words.

Basically, perception-based probability theory may be regarded as the sum of stan-
dard probability theory and the computational theory of perceptions. The principal
components of the computational theory of perceptions are (a) meaning representation
and (b) reasoning. These components of CTP are discussed in the following sections.

2. The basics of perception-based probability theory; the concept of a generalized
constraint

As was stated already, perception-based probability theory may be viewed as a
p-generalization of standard probability theory. In the main, this generalization adds
to PT the capability to operate on perception-based information through the use of the
computational theory of perceptions. What follows is an informal precis of some of
the basic concepts which underlie this theory.

To be able to compute and reason with perceptions, it is necessary to have a means
of representing their meaning in a form that lends itself to computation. In CTP,
this is done through the use of what is called constraint-centered semantics of natural
languages (CSNL) (Zadeh, 1999).

A concept which plays a key role in CSNL is that of a generalized constraint (Zadeh,
1986). Introduction of this concept is motivated by the fact that conventional crisp
constraints of the form X € C, where X is a variable and C is a set, are insufficient to
represent the meaning of perceptions.

A generalized constraint is, in effect, a family of constraints. An unconditional con-
straint on a variable X is represented as

X isr R, (2.1)
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precisiation of value

Carol is young — Carol is 25
precisiation of meaning
Carol is young —————» Age(Carol) is young

membership i
7

0.5

0 20 25 30 Age
crossover

Fig. 10. Membership function of young (context-dependent). Two modes of precisiation.

where R is the constraining relation and isr, pronounced as ezar, is a variable copula
in which the discrete-valued variable » defines the way in which R constrains X.
The principal constraints are the following:

ro= equality constraint; X =R
r : blank possibilistic constraint; X is R; R is the possibility distribution of X
(Zadeh, 1978; Dubois and Prade, 1988)

r.v veristic constraint; X isv R; R is the verity distribution of X (Zadeh,
1999)

r:p probabilistic constraint; X isp R; R is the probability distribution
of X

r:pv probability-value constraint; X ispv R; X is the probability of a fuzzy
event (Zadeh, 1968) and R is its value

rirs random set constraint; X isrs R; R is the fuzzy-set-valued probability
distribution of X

r:fy fuzzy graph constraint; X isfg R; X is a function and R is its fuzzy
graph

riu usuality constraint; X isu R; means: usually (X is R).

As an illustration, the constraint
Carol is young

in which young is a fuzzy set with a membership function such as shown in Fig. 10,
is a possibilistic constraint on the variable X: Age(Carol). This constraint defines the
possibility distribution of X through the relation

POSS{X = M} = Hyoung(u)’

where u is a numerical value of Age; fiyouny is the membership function of young; and
Poss{X =u} is the possibility that Carol’s age is u.
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Fig. 11. Membership function of likely (context-dependent).

The veristic constraint
X isv R (2.2)

means that the verity (truth value) of the proposition {X =u} is equal to the value of
the verity distribution R at u. For example, in the proposition “Alan is half German,
quarter French and quarter Italian”, the verity of the proposition “Alan is German” is
0.5. It should be noted that the numbers 0.5 and 0.25 are not probabilities.

The probabilistic constraint

X isp N(m,o?) (2.3)

means that X is a normally distributed random variable with mean m and variance 2.

The proposition
p: it is likely that Carol is young (24)
may be expressed as the probability-value constraint
Prob{4ge(Carol) is young} is likely. (2.5)

In this expression, the constrained variable is X: Prob{4ge(Carol) is young} and the
constraint

X is likely (2.6)

is a possibilistic constraint in which likely is a fuzzy probability whose membership
function is shown in Fig. 11.

In the random-set constraint, X is a fuzzy-set-valued random variable. Assuming that
the values of X are fuzzy sets {4;,i=1,...,n} with respective probabilities pi,..., py,
the random-set constraint on X is expressed symbolically as

X isrs (p\A1+ -+ + pa\An). 2.7)

It should be noted that a random-set constraint may be viewed as a combination of
(a) a probabilistic constraint, expressed as

Xisp(pi\ui + -+ pa\tn), w €U 2.8)
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Fig. 12. Fuzzy-graph constraint. f* is a fuzzy graph which is an approximate representation of f.

and a possibilistic constraint expressed as
(X, Y)is R, (2.9)

where R is a fuzzy relation defined on U x ¥V, with membership function up: U x ¥V —
[0, 1].
If 4; is a section of R, defined as in Zadeh (1997) by

pa (0} = pr(u;, v), (2.10)
then the constraint on Y is a random-set constraint expressed as
Yisrs (pi\A1 + -+ pu\dn). (2.11)

Another point that should be noted is that the concept of a random-set constraint
is closely related to the Dempster—Shafer theory of evidence (Dempster, 1967; Shafer,
1976) in which the focal sets are allowed to be fuzzy sets (Zadeh, 1979).

In the fuzzy-graph constraint

X isfg R, (2.12)

the constrained variable, X, is a function, f, and R is a fuzzy graph (Zadeh, 1997)
which plays the role of a possibility distribution of X. More specifically, if f:UxV —
[0,1] and 4;, i=1,...,m and B;, j=1,...,n, are, respectively, fuzzy granules in U
and V (Fig. 12), then the fuzzy graph of f is the disjunction of cartesian products
(granules) U; x V;, expressed as
m,n
fr= 3 UxV, (2.13)
i=1,j=1

with the understanding that the symbol > should be interpreted as the union rather
than as an arithmetic sum, and U; and V; take values in the sets {4;,...,4,} and
{Bi,...,Bu}, respectively.

A fuzzy graph of f may be viewed as an approximate representation of f. Usually,
the granules 4; and B; play the role of values of linguistic variables. Thus, in the case
of the function shown in Fig. 7, its fuzzy graph may be expressed as

S =small x small + medium x large + large x small. (2.14)
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Equivalently, if f is written as ¥ = f(X), then f* may be expressed as the rule-set
f . if X is small then Y is small,

if X is medium then Y is large,
if X is large then Y is small. (2.15)
This rule-set may be interpreted as a description—in a natural language—of a
perception of f.
The usuality constraint is a special case of the probability-value constraint. Thus,

X isu A4 (2.16)
should be interpreted as an abbreviation of
usually (X is 4), (2.17)

which in turn may be interpreted as
Prob{X is A} is usually, (2.18)

with usually playing the role of a fuzzy probability which is close to 1. In this sense, 4
is a usual value of X. More generally, 4 is a usual value of X if the fuzzy probability
of the fuzzy event {X is 4} is close to one and A has high specificity, that is, has
a tight possibility distribution, with tightness being a context-dependent characteristic
of a fuzzy set. It is important to note that, unlike the concept of the expected value,
the usual value of a random variable is not uniquely determined by its probability
distribution. What this means is that the usual value depends on the calibration of the
context-dependent natural language predicates “close to one” and “high specificity”.

The difference between the concepts of the expected and usual values goes to the
heart of the difference between precise and imprecise probability theories. The expected
value is precisely defined and unique. The usual value is context-dependent and hence
is not unique. However, its definition is precise if the natural language predicates which
occur in its definition are defined precisely by their membership functions. In this sense,
the concept of the usual value has a flexibility that the expected value does not have.
Furthermore, it may be argued that the concept of the usual value is closer to our
intuitive perception of “expected value” than the concept of the expected value as it
is defined in PT.

In the foregoing discussion, we have focused our attention on unconditional general-
ized constraints. More generally, a generalized constraint may be conditional, in which
case it is expressed in a generic form as an if-then rule

if X isr R then Y iss S (2.19)
or, equivalently, as
Y iss S if X isr R. (2.20)

Furthermore, a generalized constraint may be exception-qualified, in which case it is
expressed as

X is» R unless Y iss S. (2.21)



18

A generalized rule-set is a collection of generalized if-then rules which collectively
serve as an approximate representation of a function or a relation. Equivalently, a
generalized rule-set may be viewed as a description of a perception of a function or a
relation.

As an illustration, consider a function, f: (U x V) — [0, 1], expressed as ¥ = f(X),
where U and V' are the domains of X and ¥, respectively. Assume that U and V' are
granulated, with the granules of U and V denoted, respectively, as 4;, i=1,...,m, and
Bj, j=1,...,n. Then, a generic form of a generalized rule set may be expressed as

S5 A{if Xisr Upthen Yiss V;} i=1,...,m, j=1,...,n, (2.22)

where U; and ¥, take values in the sets {4,...,4n} and {Bi,..., By}, respectively. In
this expression, f* represents a fuzzy graph of f.

A concept which plays a key role in the computational theory of perceptions is
that of the Generalized Constraint Language, GCL (Zadeh, 1999). Informally, GCL
is a meaning-representation language in which the principal semantic elements are
generalized constraints. The use of generalized constraints as its semantic elements
makes a GCL a far more expressive language than conventional meaning-representation
languages based on predicate logic.

3. Meaning-representation: constraint-centered semantics of natural languages

In perception-based probability theory, perceptions—and, in particular, perceptions
of likelihood, dependency, count and variations in time and space—are described by
propositions drawn from a natural language. To mechanize reasoning with perceptions,
it is necessary to have a method of representing the meaning of propositions in a
way that lends itself to computation. In the computational theory of perceptions, a
system that is used for this purpose is called the constraint-centered semantics of natural
language (CSNL) (Zadeh, 1999).

Meaning-representation is a central part of every logical system. Why, then, is it
necessary to introduce a system that is significantly different from the many meaning-
representation methods that are in use? The reason has to do with the intrinsic impre-
cision of perceptions and, more particularly, with their f-granularity. It is this charac-
teristic of perceptions that puts them well beyond the expressive power of conventional
meaning-representation methods, most of which are based on predicate logic.

To illustrate, consider the following simple perceptions:

e Ann is much younger than Mary.

e A box contains black and white balls of various sizes. Most are large. Most of the
large balls are black.

e Usually it is rather cold in San Francisco during the summer.

e It is very unlikely that there will be a significant increase in the price of oil in the
near future,
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Conventional meaning-representation methods do not have the capability to represent
the meaning of such perceptions in a form that lends itself to computation.

A key idea which differentiates CSNL from conventional methods is that the meaning
of a proposition, p, drawn from a natural language, is represented as a generalized
constraint, with the understanding that the constrained variable and the constraining
relation are, in general, implicit rather than explicit in p. For example, in the proposition

p: it is likely that Kate is young,

the constraint is possibilistic; the constrained variable is the probability that Kate is
young; and the constraining relation is likely.

The principal ideas and assumptions which underlie CSNL may be summarized as
follows:

1. Perceptions are described by propositions drawn from a natural language.

2. A proposition, p, may be viewed as an answer to a question.
In general, the question is implicit and not unique. For example, the proposition
“Carol is young” may be viewed as an answer to the question: “How old is Carol”,
or as the answer to “Who is young?”

3. A proposition is a carrier of information.

4. The meaning of a proposition, p, is represented as a generalized constraint which
defines the information conveyed by p.

5. Meaning-representation is viewed as translation from a language into the GCL.

In CSNL, translation of a proposition, p, into GCL is equated to explicitation of the
generalized constraint which represents the meaning of p. In symbols

translation

— R. 3.1
F explicitation S @1

The right-hand member of this relation is referred to as a canonical form of p, written
as CF(p). Thus, the canonical form of p places in evidence (a) the constrained variable
which, in general, is implicit in p; (b) the constraining relation, R; and (c) the copula
variable » which defines the way in which R constrains X.

The canonical form of a question, g, may be expressed as

CF(q): X isr 7R (3.2)

and read as “What is the generalized value of X?”
Similarly, the canonical form of p, viewed as an answer to g, is expressed as

CF(p): X isrR (3.3)

and reads “The generalized value of X isr R”.
As a simple illustration, if the question is “How old is Carol?”, its canonical
form is

CF(g): Age(Carol)is 7R, (34)
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Correspondingly, the canonical form of

p:  Carol is young 3.5)
is

CF(p). Age(Carol) is young. (3.6)
If the answer to the question is

p: it is likely that Carol is young (3.7)

then
CF(p): Prob{dge(Carol) is young} is likely. (3.8)

More explicitly, if Age(Carol) is a random variable with probability density g, then
the probability measure (Zadeh, 1968) of the fuzzy event “Carol is young” may be
expressed as

120
/0 souny ()9 (1) dit, (3.9)

where [1y0ung is the membership function of young. Thus, in this interpretation the con-
strained variable is the probability density g, and, as will be seen later, the membership
function of the constraining relation is given by

120
1r(9) = Wiikety (/0 uyouny(u)g(u)du> : (3.10)

A concept which plays an important role in CSNL is that of cardinality, that is, the
count of elements in a fuzzy set (Zadeh, 1983; Ralescu, 1995; Hajek, 1998). Basically,
there are two ways in which cardinality can be defined: (a) crisp cardinality and
(b) fuzzy cardinality (Zadeh, 1983; Ralescu et al, 1995; Ralescu, 1995). In the case
of (a), the count of elements in a fuzzy set is a crisp number; in the case of (b) it is
a fuzzy number. For our purposes, it will suffice to restrict our attention to the case
where a fuzzy set is defined on a finite set and is associated with a crisp count of its
elements.

More specifically, consider a fuzzy set 4 defined on a finite set U = {uy,...,u,}
through its membership function u4: U — [0,1]. The sigma-count of 4 is defined as

S Count(4) = 3 palur). G.11)
i=1

If A and B are fuzzy sets defined on U, then the relative sigma-count, > Count(A/B),
is defined as

S Count(4/B) = =i=La(4) N us(r) (3.12)
Zi:l us(u;)

where A =min, and summations are arithmetic.
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As a simple illustration, consider the perception
p:  most Swedes are tall.

In this case, the canonical form of p may be expressed as

CF(p): > Count(tall . Swedes/Swedes) is ;11—2 Heall . Swede (Ui ), (3.13)
=1

where u; is the height of the ith Swede and py . sweqe(u:) is the grade of membership
of the ith Swede in the fuzzy set of tall Swedes,

In a general setting, how can a given proposition, p, be expressed in its canonical
form? A framework for translation of propositions drawn from a natural language
into GCL is partially provided by the conceptual structure of test-score semantics
(Zadeh, 1981). In this semantics, X and R are defined by procedures which act on an
explanatory database, £D, with ED playing the role of a collection of possible worlds
in possible world semantics (Cresswell, 1973). As a very simple illustration, consider
the proposition (Zadeh, 1999)

p:  Carol lives in a small city near San Francisco
and assume that the explanatory database consists of three relations:

ED = POPULATION [Name; Residence)
+ SMALL[ City; u]

+ NEAR[Cityl; City2; u]. (3.14)

In this case,
X = Residence(Carol) =gesidence POPULATION [Name = Carol], (3.15)
R =SMALL[City; u] Nyt NEAR[City2 = San_Francisco]. (3.16)

In R, the first constituent is the fuzzy set of small cities; the second constituent is the
fuzzy set of cities which are near San Francisco; and N denotes the intersection of
these sets. Left subscripts denote projections, as defined in Zadeh (1981).

There are many issues relating to meaning-representation of perception-based infor-
mation which go beyond the scope of the present paper. The brief outline presented in
this section is sufficient for our purposes. In the following section, our attention will be
focused on the basic problem of reasoning based on generalized constraint propagation.
The method which will be outlined contains as a special case a basic idea suggested
in an early paper of Good (1962). A related idea was employed in Zadeh (1955).

4. Reasoning based on propagation of generalized constraints

One of the basic problems in probability theory is that of computation of the probabil-
ity of a given event from a body of knowledge which consists of information about the
relevant functions, relations, counts, dependencies and probabilities of related events.
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As was alluded to earlier, in many cases the available information is a mixture of
measurements and perceptions. Standard probability theory provides a vast array of
tools for dealing with measurement-based information. But what is not provided is a
machinery for dealing with information which is perception-based. This limitation of PT
is exemplified by the following elementary problems—problems in which information
is perception-based.

1. X is a normally distributed random variable with small mean and small variance.
Y is much larger than X.
What is the probability that Y is neither small nor large?
2. Most Swedes are tall.
Most Swedes are blond.
What is the probability that a Swede picked at random is tall and blond?
3. Consider a perception-valued times series

T={t,nt,.. .}

in which the ¢;’s are perceptions of, say temperature, ¢.g., warm, very warm, cold,... .
For simplicity, assume that the #’s are independent and identically distributed. Fur-
thermore, assume that the #;’s range over a finite set of linguistic values, 41,42,...,4,,
with respective probabilities Py,...,P,. What is the average value of T'?

To be able to compute with perceptions, it is necessary, as was stressed already,
to have a mechanism for representing their meaning in a form that lends itself to
computation. In the computational theory of perceptions, this purpose is served by
the constraint-centered semantics of natural languages. Through the use of CSNL,
propositions drawn from a natural language are translated into the GCL.

The second stage of computation involves generalized constraint propagation from
premises to conclusions. Restricted versions of constraint propagation are considered
in Zadeh (1979), Bowen et al. (1992), Dubois et al. (1993), Katai et al. (1992) and
Yager (1989). The main steps in generalized constraint propagation are summarized in
the following. As a preliminary, a simple example is analyzed.

Assume that the premises consist of two perceptions:

pi:.  most Swedes are tall,

p2:  most Swedes are blond.
and the question, ¢, is: What fraction of Swedes are tall and blond? This fraction, then,
will be the linguistic value of the probability that a Swede picked at random is tall
and blond.

To answer the question, we first convert p|, p; and ¢ into their canonical forms:

CF(p1): Y. Count(tall . Swedes/Swedes) is most, 4.0
CF(p2): Y Count(blond . Swedes/Swedes) is most, (4.2)
CF(q): > Count(tall N blond . Swedes/Swedes) is ?Q, (43)

where Q is the desired fraction.
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Next, we employ the identity (Zadeh, 1983)
>~ Count(ANB)+ 5 Count(4 U B)=Y_, Count(4) + >_ Count(B), (4.4)

in which A4 and B are arbitrary fuzzy sets. From this identity, we can readily deduce
that

Y- Count(A) + 3 Count(B) — 1 < > Count(4 N B)
< min(d_ Count(4), > Count(B)), (4.5)

with the understanding that the lower bound is constrained to lie in the interval [0, i].
It should be noted that the identity in question is a generalization of the basic identity
for probability measures

P(ANB)+P(AUB)=P(4) + P(B). (4.6)
Using the information conveyed by canonical forms, we obtain the bounds
2most — 1 <, Count(tall N blond . Swedes/Swedes) < most, 4.7

which may be expressed equivalently as

>~ Count(tall N blond . Swedes/Swedes) is < most N = (2most — 1). (4.8)
Now

< most =[0,1] (4.9)
and

= (2most — 1) =2most — 1, (4.10)
in virtue of monotonicity of most (Zadeh, 1999).

Consequently,
>~ Count(tall N blond . Swedes/Swedes) is 2most — 1 (4.11)

and hence the answer to the question is
a: (2most — 1) Swedes are tall and blond. (4.12)

In a more general setting, the principal elements of the reasoning process are the
following.

1. Question (query), ¢. The canonical form of ¢ is assumed to be
X isr 20Q. (4.13)

2. Premises. The collection of premises expressed in a natural language constitutes the
initial data set (IDS).

3. Additional premises which are needed to arrive at an answer to g. These premises
constitute the external data set (EDS). Addition of EDS to IDS results in what is
referred to as the augmented data set (IDS+). s
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Example. Assume that the initial data set consists of the propositions

pi: Carol lives near Berkeley,
p2: Pat lives near Palo Alto.

Suppose that the question is: How far is Carol from Pat? The external data set in this
case consists of the proposition

distance between Berkeley and Palo Alto is approximately 45 miles. (4.14)

4. Through the use of CSNL, propositions in IDS+ are translated into the GCL. The
resulting collection of generalized constraints is referred to as the augmented initial
constraint set ICS+.

5. With the generalized constraints in ICS+ serving as antecedent constraints, the rules
which govern generalized constraint propagation in CTP are applied to ICS+, with
the goal of deducing a set of generalized constraints, referred to as the termi-
nal constraint set, which collectively provide the information which is needed to
compute g.

The rules governing generalized constraint propagation in the computational theory of
perceptions coincide with the rules of inference in fuzzy logic (Zadeh, 1999, 2000). In
general, the chains of inference in CTP are short because of the intrinsic imprecision
of perceptions. The shortness of chains of inference greatly simplifies what would
otherwise be a complex problem, namely, the problem of selection of rules which
should be applied in succession to arrive at the terminal constraint set. This basic
problem plays a central role in theorem proving in the context of standard logical
systems (Fikes and Nilsson, 1971).

6. The generalized constraints in the terminal constraint set are re-translated into a
natural language, leading to the terminal data set. This set serves as the answer to
the posed question. The process of re-translation is referred to as linguistic approx-
imation (Pedrycz and Gomide, 1998). Re-translation will not be addressed in this

paper.

The basic rules which govern generalized constraint propagation are of the general
form

P
D2

(4.15)
Pk
Pl+1,

where pi,..., pr are the premises and py.; is the conclusion. Generally, k=1 or 2.
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In a generic form, the basic constraint-propagation rules in CTP are expressed as
follows (Zadeh, 1999):
1. Conjunctive rule 1:

X isr R
X iss S (4.16)
X ist T

The different symbols 7,s,¢ in constraint copulas signify that the constraints need not
be of the same type.
2. Conjunctive rule 2:

X isr R
Y iss S (4.17)
(X,Y) ist T

3. Disjunctive rule 1:

X isr R
or X iss S (4.18)
X ist T

4. Disjunctive rule 2:

X isr R
or Y iss S (4.19)
X, Y) ist T

5. Projective rule:

X,Y) isr R

4.20
Y 1ss S ( )

6. Surjective rule:

X isr R

(X,Y) iss S (4.21)

7. Inversive rule:

f(X) isr R

422
X iss S, ( )

where f(X) is a function of X.
From these basic rules the following frequently used rules may be derived:
8. Compositional rule:

X isr R

(X,Y) iss S (4.23)
Y ist T.
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Fig. 13. Generalized extension principle. Constraint on f(X) induces a constraint on g(X).

9. Generalized extension principle:

f(X) isr R

0 s S (4.24)

where f and g are given functions. The generalized extension principle is the principal
rule of inference in fuzzy logic.
The generic rules lead to specialized rules for various types of constraints. In par-
ticular, for possibilistic constraints we have, for example (Pedrycz and Gomide, 1998)
Conjunctive rule I.

X is R
X 18 § (4.25)
X is RNS,

where R and S are fuzzy sets and RN S is their intersection.
Compositional rule:

X is R
XY) is S (4.26)
Y is ReS,

where ReS is the composition of R and S. If conjunction and disjunction are identified
with min and max, respectively, then

Hres(v) = max,(min(ug(u), us(u, v))), (4.27)

where up and ug are the membership functions of R and S.
Generalized extension principle (Fig. 13):

f(X) is R

428
o) B 907 R, (4.28)
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where
N O max Hr(f (). (4.29)

Compositional rule for probabilistic constraints (Bayes’ rule):

X isp R
YIX isp S (4.30)
Y isp ReS§,

where Y|X denotes ¥ conditioned on X, and ReS is the composition of the probability
distributions R and S.

Compositional rule for probabilistic and possibilistic constraints (random-set
constraint);

X isp R
(X,Y) is S 4.31)
Y isrs T,

where T is a random set. As was stated at an earlier point, if X takes values in a finite
set {uy,...,u,} with respective probabilities pi,..., p,, then the constraint X isp R
may be expressed compactly as

X isp (Zn: p,~\u,»> . (4.32)
i=1

When X takes a value u;, the possibilistic constraint (X,Y) is S induces a constraint
on Y which is given by

Yis S, (433)
where S; is a fuzzy set defined by
Si=Su;,Y). (4.34)

From this it follows that when X takes the values u,...,u, with respective probabilities
Pis..., pn, the fuzzy-set-valued probability distribution of ¥ may be expressed as

Y isp (Z pi\si>. (4.35)
j=1

This fuzzy-set-valued probability distribution defines the random set 7 in the random-set
constraint

Y isrs T. (4.36)

Conjunctive rule for random set constraints: For the special case in which R and §
in the generic conjunctive rule are random fuzzy sets as defined above, the rule assumes
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a more specific form:

m
X isrs Y p\R
i=1

n
X isrs >0 gi\S, (4.37)
j=1
2

X isrs pigi\(Ri N S)).

i=1,j=1

In this rule, R; and S; are assumed to be fuzzy sets. When R; and S; are crisp sets,
the rule reduces to the Dempster rule of combination of evidence (Dempster, 1967,
Shafer, 1976). An extension of Dempster’s rule to fuzzy sets was described in a paper
dealing with fuzzy information granularity (Zadeh, 1979). It should be noted that in
(4.37) the right-hand member is not normalized, as it is in the Dempster—Shafer theory
(Strat, 1992).

The few simple examples discussed above demonstrate that there are many ways in
which generic rules can be specialized, with each specialization leading to a distinct
theory in its own right. For example, possibilistic constraints lead to possibility theory
(Zadeh, 1978; Dubois and Prade, 1988); probabilistic constraints lead to probability
theory; and random-set constraints lead to the Dempster—Shafer theory of evidence.
In combination, these and other specialized rules of generalized constraint propagation
provide the machinery that is needed for a mechanization of reasoning processes in the
logic of perceptions and, more particularly, in a perception-based theory of probabilistic
reasoning with imprecise probabilities.

As an illustration, let us consider a simple problem that was stated earlier—a typical
problem which arises in situations in which the decision-relevant information is
perception-based. Given the perception: Usually Robert returns from work at about
6 p.m.; the question is: What is the probability that he is home at 6:30 p.m.?

An applicable constraint-propagation rule in this case is the generalized extension
principle. More specifically, let g denote the probability density of the time at which
Robert returns from work. The initial data set is the proposition

p.  usually Robert returns from work at about 6 p.m.
This proposition may be expressed as the usuality constraint
X isu 6%, (4.38)

where 6* is an abbreviation for “about 6 p.m.”, and X is the time at which Robert
returns from work. Equivalently, the constraint in question may be expressed as

p: Prob{X is 6"} is usually. (4.39)

Using the definition of the probability measure of a fuzzy event (Zadeh, 1968), the
constraint on g may be expressed as

12
/ g(u)pe-(w) du is usually, (4.40)
0

where pg«(u) is the membership function of 6* (Fig. 14).
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Fig. 14. Application of the generalized extension principle. P is the probability that Robert is at home at
6:30 p.m.

Let P(g) denote the probability that Robert is at home at 6:30 p.m. This probability
would be a number if g were known. In our case, information about g is conveyed by
the given usuality constraint. This constraint defines the possibility distribution of g as
a functional:

12
1(9) = Husually < /O g(u)us*(u)du> : (4.41)

In terms of g, the probability that Robert is home at 6:30 p.m. may be written as a
functional:

6:30
P(g):/0 g(u)du. (4.42)

The generalized extension principle reduces computation of the possibility distribu-
tion of P to the solution of the variational problem

12
,uP(U) =maXy (ﬂusually (/0 g(”)MG* (u) du) > (4-43)

subject to

6:30
v= / g(u) du.
0

The reduction of inference to solution of constrained variational problems is a basic
feature of fuzzy logic (Zadeh, 1979).

Solution of variational problems of form (4.43) may be simplified by a discretization
of g. Thus, if u is assumed to take values in a finite set U ={uy,...,u,}, and the
respective probabilities are py,..., p,, then the variational problem (4.43) reduces to
the nonlinear program

:uP(U) = maxp (,uusually (é Pillex (uz)>> (444)



where p=(p1,..., pn), and m is such that u,, = 6:30.

In general, probabilities serve as a basis for making a rational decision. As an
illustration, assume that I want to call Robert at home at 6:30 p.m. and have to decide
on whether I should call him person-to-person or station-to-station. Assume that we
have solved the variational problem (4.43) and have in hand the value of P defined by
its membership function pp(v). Furthermore, assume that the costs of person-to-person
and station-to-station calls are a and b, respectively.

Then the expected cost of a person-to-person call is

A=aP,

while that of a station-to-station call is
B=b,

where A is a fuzzy number defined by (Kaufmann and Gupta, 1985)
ta(v) = aup(v).

More generally, if X is a random variable taking values in the set of numbers
U={ay,...,a,} with respective imprecise (fuzzy) probabilities Pi,...,P,, then the
expected value of X is the fuzzy number (Zadeh, 1975; Kruse and Meyer, 1987)

E(X)= Z a;P;. (4.45)
i=1

The membership function of E(X) may be computed through the use of fuzzy arith-
metic (Kaufmann and Gupta, 1985; Mares, 1994). More specifically, if the membership
functions of P; are y;, then the membership function of E(X) is given by the solution
of the variational problem

pe(v) =maxy, .y, (up, (u ) A< A pp,(n)) (4.46)

subject to the constraints

O<u,- < 1,
n
Zuizl,
i=1

n
V=) aiu;.
i=1
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Returning to our discussion of the Robert example, if we employ a generalized
version of the principle of maximization of expected utility to decide on how to place
the call, then the problem reduces to that of ranking the fuzzy numbers 4 and B.
The problem of ranking of fuzzy numbers has received considerable attention in the
literature (see Pedrycz and Gomide, 1998), and a number of ranking algorithms have
been described.

Our discussion of the Robert example is aimed at highlighting some of the princi-
pal facets of the perception-based approach to reasoning with imprecise probabilities.
The key point is that reasoning with perception-based information may be reduced to
solution of variational problems. In general, the problems are computationally inten-
sive, even for simple examples, but well within the capabilities of desktop computers.
Eventually, novel methods of computation involving neural computing, evolutionary
computing, molecular computing or quantum computing may turn out to be effective in
computing with imprecise probabilities in the context of perception-based information.

As a further illustration of reasoning with perception-based information, it is instruc-
tive to consider a perception-based version of a basic problem in probability theory.

Let X and Y be random variables in U and V, respectively. Let / be a mapping
from U to V. The basic problem is: Given the probability distribution of X, P(X'), what
is the probability distribution of ¥?

In the perception-based version of this problem it is assumed that what we know are
perceptions of f and P(X), denoted as f* and P*(X), respectively. More specifically,
we assume that X and f are granular (linguistic) variables and f™ is described by a
collection of granular (linguistic) if-then rules:

7 {if X is 4; then Y is B;}, i=1,...,m, (4.47)

where 4; and B; are granules of X and Y, respectively (Fig. 12). Equivalently, f*
may be expressed as a fuzzy graph

fr=2_4: x B, (4.48)
i=1

where A4; x B; is a cartesian granule in U x V. Furthermore, we assume that the
perception of P(X) is described as

14
PX(X)is 3 p,\C), (4.49)
j=1
where the C; are granules of U, and

pj=Prob{X is C;}. (4.50)

Now, let f*(C;) denote the image of C;. Then, application of the extension principle
yields

m
S(C= " my ABy, (4.51)
i=1
where the matching coefficient, my;, is given by

my; = sup(4; N Cj), (4.52)
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with the understanding that

sup(4; 0 C;) = sup,, (s, (1) A e, (u)), (4.53)

where u€ U and py4, and pc, are the membership functions of 4; and C;, respectively.
In terms of f*(C;), the probability distribution of ¥ may be expressed as

P*(Y)is 21 p\S(C)) (4.54)
j=
or, more explicitly, as

n

P*(Y) is Z pj\(Z mj; A B,) . (455)

j=1 i

What these examples show is that computation with perception-based functions and

probability distribution is both more general and more complex than computation with
their measurement-based counterparts.

5. Concluding remarks

The perception-based theory of probabilistic reasoning which is outlined in this paper
may be viewed as an attempt to add to probability theory a significant capability—a
capability to operate on information which is perception-based. It is this capability that
makes it possible for humans to perform a wide variety of physical and mental tasks
without any measurements and any computations.

Perceptions are intrinsically imprecise, reflecting a fundamental limitation on the
cognitive ability of humans to resolve detail and store information. Imprecision of per-
ceptions places them well beyond the scope of existing meaning-representation and
deductive systems. In this paper, a recently developed computational theory of percep-
tions is used for this purpose. Applicability of this theory depends in an essential way
on the ability of modem computers to perform complex computations at a low cost
and high reliability.

Natural languages may be viewed as systems for describing perceptions. Thus, to
be able to operate on perceptions, it is necessary to have a means of representing
the meaning of propositions drawn from a natural language in a form that lends itself
to computation. In this paper, the so-called constraint-centered semantics of natural
languages serves this purpose.

A conclusion which emerges from these observations is that to enable probability
theory to deal with perceptions, it is necessary to add to it concepts and techniques
drawn from semantics of natural languages. Without these concepts and techniques,
there are many situations in which probability theory cannot answer questions that arise
when everyday decisions have to be made on the basis of perception-based information.
Examples of such questions are given in this paper.

A related point is that, in perception-based theory of probabilistic reasoning, im-
precision can occur on may different levels—and not just on the level of imprecise
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probabilities. In particular, imprecision can occur on the level of events, counts and
relations. More basically, it can occur on the level of definition of such basic concepts
as random variable, causality, independence and stationarity. The concept of precisiated
natural language may suggest a way of generalizing these and related concepts in a
way that would enhance their expressiveness and operationality.

The confluence of probability theory and the computational theory of perceptions
opens the door to a radical enlargement of the role of natural languages in probability
theory. The theory outlined in this paper is merely a first step in this direction. Many
further steps will have to be taken to develop the theory more fully. This will happen
because it is becoming increasingly clear that real-world applications of probability
theory require the capability to process perception-based information as a basis for
rational decisions in an environment of imprecision, uncertainty and partial truth.
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Abstract

We introduce a rough set model of uncertainty for object oriented databases (OODB).
This mode] is formally defined, consistent with the notation of both rough set theory
and object oriented database formalisms. Uncertainty and vagueness, which are
inherent in all real world applications, are incorporated into the database model through
the indiscernibility relation and approximation regions of rough sets. Because spatial
database and geographic information systems (GIS) have particular needs for
uncertainty management in spatial data, examples from this type of application are used
to illustrate the benefits of this rough OODB approach.

Keywords: object-oriented database, rough sets, uncertainty, spatial data

1 Introduction

A database semantic model aims to capture the meaning of some enterprise in the real
world, and is a high level, conceptual model that must then be implemented. At a lower,
more practical level, the database is simply a collection of data and constraints stored in
some schema, which attempts to model this enterprise in the real world. The real world
abounds in uncertainty, and any attempt to model aspects of the world must therefore
include some mechanism for incorporating uncertainty. There may be uncertainty in the
understanding of the enterprise or in the quality or meaning of the data. There may be
uncertainty in the modeling of the enterprise, which leads to uncertainty in entities, the
attributes describing them, or the relationships that exist between various entities. There
may also be uncertainty about the uncertainty itself, the degree or types of uncertainty
present in the data. Because there is a particular need for uncertainty management in
spatial data [10] and in the relationships among various spatial entities and vague
regions, we illustrate the formalisms of the rough object-oriented database with
examples taken from a geographic information systems (GIS) perspective.

It is well established that rough set techniques as part of an underlying relational
database model effectively manages uncertainty in relational databases [1, 2].
Additionally, the rough querying of crisp data [3] allows for rough set uncertainty to be
applied to existing ordinary relational databases. In this paper we define a rough set
model for an object-oriented database.
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2 Rough Sets

Rough set theory, introduced by Pawlak [11] and discussed in greater detail in [8,9,12], is a
technique for dealing with uncertainty and for identifying cause-effect relationships in
databases as a form of database learning [13]. It has also been used for improved
information retrieval [14] and for uncertainty management in relational databases [2, 3].

Rough sets involve the following:

U is the universe, which cannot be empty,

R is the indiscernibility (equivalence) relation,

A4 = (UR) is the approximation space,

[x]r is the equivalence class of R containing x,

elementary sets in A are the equivalence classes,

definable set in A is any finite union of elementary sets in A.

Therefore, for any given approximation space defined on some universe U and having an
equivalence relation R imposed upon it, U is partitioned into equivalence classes called
elementary sets which may be used to define other sets in A. Given that X < U, X can be
defined in terms of the definable sets in A by the following:

lower approximation of Xin A: RX={x €€ U | [x]z < X}
upper approximation of X in A: RX= xEU | [x]pn X = D).

Another way to describe the set approximations is as follows. Given the upper and lower
approximations R X and RX, of X a subset of U, the R-positive region of X is POSg(X) =
RX, the R-negative region of X is NEGy(X) = U - R X, and the boundary or R-borderline
region of X is BN(X) = R X - RX. X is called R-definable if and only if RX = R X.

Otherwise, RX # R X and X is rough with respect to R. In Figure 1 the universe U is
partitioned into equivalence classes denoted by the rectangles. Those elements in the lower
approximation of X, POSy(X), are denoted with the letter P and elements in the R-negative
region by the letter N. All other classes belong to the boundary region of the upper
approximation.

U
N~—
IR

P P P / N

Figure 1. Example of a rough set X.
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/x p
—
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Consider the following example:

Let U = {tower, stream, creek, river, forest, woodland, pasture, meadow}.
Let the equivalence relation R' be defined as follows:

R' = {[tower], [stream, creek, river], [forest, woodland], {pasture, meadow]}.

Given that some set X = {tower, stream, creek, river, forest, pasture}, we can define it in
terms of its lower and upper approximations:

RX = {tower, stream, creek, river}, and
R X = {tower, stream, creek, river, forest, woodland, pasture, meadow}.

A rough set in A is the group of subsets of U with the same upper and lower
approximations. For this example, the rough set is

{ {tower, stream, creek, river, forest, pasture}
{tower, stream, creek, river, forest, meadow}
{tower, stream, creek, river, woodland, pasture}
{tower, stream, creek, river, woodland, meadow}}.

The major rough set concepts of interest are the use of an indiscernibility relation to
partition domains into equivalence classes and the concept of lower and upper
approximation regions to allow the distinction between certain and possible, or partial,
inclusion in a rough set.

The indiscernibility relation allows us to group items based on some definition of
‘equivalence’ as it relates to the application domain. We may use this partitioning to
increase or decrease the granularity of a domain, to group items together that are
considered indiscernible for a given purpose, or to “bin” ordered domains into range
groups.

In order to allow possible results, in addition to the obvious, certain results encountered in
querying an ordinary spatial database system, we may employ the use of the boundary
region information in addition to that of the lower approximation region. The results in the
lower approximation region are certain. These correspond to exact matches. The boundary
region of the upper approximation contains those results that are possible, but not certain.

3 Object Oriented Databases

The object-oriented programming paradigm has become quite popular in recent years,
both as a modeling tool and for code development for databases and other applications.
Often objects can more realistically model an enterprise, enabling developers to easily
transition from a conceptual design to the implementation. The concepts of classes and
inheritance allow for code reuse through specialization and generalization. A class
hierarchy is designed such that classes at the top of the hierarchy are the most general
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and those nearer the bottom more specialized. A class inherits data and behavior from
classes at higher levels in the class hierarchy. This promotes reuse of existing
functionality, which can save valuable programming time. If code is already available
for a task and that code has been tested, it is often better to use that code, perhaps with
some slight modification, than to develop and test code from scratch. The concept of
polvmorphism allows the same name to be used for methods differing in functionality
for different object types.

Essentially, an object is an instance of a c/ass in a class hierarchy. Each class defines a
particular type of object including its public and private variables and operations
associated with the functionality of the object, which are called methods. An object
method is invoked by the passing of a message to the object in which the method is
defined. The data variables and methods are encapsulated in the object that defines
them, which means that they are packaged in, and can only be accessed through, the
object. Encapsulation enables a component of the system to be extended or modified
with minimal impact on other parts of the system.

There are many advantages of using an object-oriented database approach as compared
to a relational database approach. A major advantage is that objects can be defined to
represent very complex data structures and relationships in the data, as is often the case
in spatial data. According to Fayad and Tsai [7], object-oriented technology provides
several other benefits. These include reusability, extensibility, robustness, reliability,
and scalability. Object modeling helps in requirements understanding and collaboration
of group members and the use of object-oriented techniques leads to high quality
systems that are easy to modify and to maintain.

Spatial data is particularly suited to object oriented modeling and implementation.
Often this data is more complex than that of typical database applications requiring
simple values and strings. The complex data types, data structures, and relationships
between data objects in a spatial database can be modeled quite effectively with object
oriented techniques, and the advantages discussed previously can also be realized. It is
necessary, therefore, that we develop a mechanism for integrating uncertainty
management into the OODB model.

4 Rough Object-Oriented Database (ROODB) Model

In this section we develop the rough object-oriented database model. We follow the
formal framework and type definitions for generalized object-oriented databases
proposed by [6], which conforms to the standards set forth by the Object Database
Management Group [5]. We extend this framework, however, to allow for rough set
indiscernibility and approximation regions for the representation of uncertainty as we
have previously done for relational databases [1,2]. The rough object database scheme
is formally defined by the following type system and constraints.

The type system, s, contains literal types Tyi.rs, Which can be a base type, a collection
literal type, or a structured literal type. It also contains Topee, Which specifies object
types, and Tyerrences the set of specifications for reference types. In the type system, each

domain dom,, € D, the set of domains. This domain set, along with a set of operators
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Oy and a set of axioms Ay, capture the semantics of the type specification. The type
system is then defined based on these type specifications, the set of all programs P, and
the implementation function mapping each type specification for a domain onto a
subset of the powerset of P that contains all the implementations for the type system.

We are particularly interested in object types. Following [6], we may specify a class ¢ of
object types as

Class id(id,:s); ..., id,:s,)  or Class id: El R gn(id1.'s,,' N 17 XN

where id, an identifier, names an object type, {id; | | < i < m} is a finite set of

identifiers denoting parent types of t, and { idys; | | < 1 < n} is the finite set of
characteristics specified for object type t within its syntax. This set includes all the
attributes, relationships and method signatures for the object type. The identifier for a
characteristic is id; and the specification is s; for each of the id:s;.

Consider a GIS which stores spatial data concerning water and land forms, structures,
and other geographic information. If we have simple types defined for string, set, geo,
integer, etc., we can specify an object type

Class ManMadeFeature (
Location: geo;
Name: string;
Height: integer;
Material: Set(string));

Some example instances of the object type ManMadeFeature might include

[oidl, @, ManMadeFeature, Struct(0289445, “KXYZ radio tower”, 60,
Set(steel, plastic, aluminum))]

or
[01d2, @, ManMadeFeature, Struct(011223435, “Ourtown water tower”, 30,
Set(steel, water, iron))],

following the definition of instance of an object type [6], the quadruple o = {oid, N, 7, V]
consisting of a unique object identifier, a possibly empty set of object names, the name
of the object type, and for all attributes, the values (v; € domy,) for that attribute, which

represent the state of the object. The object type t is an instance of the type system s
and is formally defined in terms of the type system and its implementation function

t=[rs, / fioy (19)].

In the rough set object-oriented database, indiscernibility is managed through classes.
Every domain is implemented as a class hierarchy, with the lowest elements of the
hierarchy representing the equivalence classes based on the finest possible partitioning
for the domain as it pertains to the application. Consider, for example, a GIS, where
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objects have an attribute called /andClass. Of the many different classifications for land
area features, some are those categorized by water. This part of the hierarchy is
depicted in Figure 2.

(Flowing (Standing

brook
stream

waterhole

Figure 2. Part of the class hierarchy of landClass features involving water.

Ignoring the non-water parts of the /andClass domain, and focusing on the water-
related parts, we see that the domain set

domyaciass = {creek, brook, stream, branch, river, lake, pond, waterhole, slough}

can be partitioned in several different ways. One partitioning, which represents the
finest partitioning (more, but smaller, equivalence classes) is given by

R1 = {[creek, brook, stream], [branch], [river], [lake], [pond, waterhole], slough]}.
This can be discerned from the lowest level of the hierarchy.
An object type (domain class) for landClass may be defined as
Class landClass (
numEquivClass: integer;
name: string;
indiscemibility: Set(Ref(equivClass)))
At this lowest level, each landClass object has only one reference in its attribute for

indiscernibility, the object identifier for the particular equivalence class. These
reference individual equivalence class objects defined by
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Class equivClass(
element: Set(string);
N: integer;

Name: string).

In this case, we have six separate equivalence classes, three of which are shown below:

[0id56, @, equivClass, Struct(Set(“creek,” “brook,” “stream™), 3, “creek”)]

[0id57, @, equivClass, Struct(Set(“branch™), 1, “branch”)]

[0id61, @, equivClass, Struct(Set(“pond,” “waterhole™), 2, “pond”)]
Note that the name of the class can be set equal to any of the values within the class.
Let the other water classes be similarly defined with 0id58 denoting the “river” class,
0id59 denoting “lake”, and 0id60 denoting “slough.” If we want to change the
partitioning, such that our application only distinguishes between flowing and standing
water, for example, our equivalence classes become

R® = {[creek, brook, river, stream, branch], [lake, pond, waterhole, slough]}.

We would then have the landClass objects

[0id101, @, landClass,

Struct(3, “Flowing water,”

Set(0id56, 0id57, 0id58))] and

[0id102, @, landClass,

Struct(3, “Standing water,”

Set(0id59, 0id60, 0id61))].
Lastly, if the application only requires that a feature be categorized as water or non-
water for land classification, an even coarser partitioning may be used that includes all
the possible water values in one equivalence class:

R}= {[creek, brook, stream, branch, river, lake, pond, waterhole, slough]}.

An instance of this class would be defined in a manner similar to those above.

Each domain class i in the database, dom; € D;, has methods for maintaining the current
level of granulation, changing the partitioning, adding new domain values to the hierarchy,
and for determining equivalence based on the current indiscernibility relation imposed on
the domain class.
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Every domain class, then, must be able to not only store the legal values for that domain,
but to maintain the grouping of these values into equivalence classes. This can be achieved
through the type implementation function and class methods, and can be specified through
the use of generalized constraints as in [6] for a generalized OODB.

An ordinary (non-indiscernibility) object class in this database, having one of its
attributes /andClass, may be defined as follows:

Class RuralProperty (
Location: geo;
Name: string;
Owner: string;
landClass: Set(string));

having particular instances of the class, for example:

[oid24, &, RuralProperty, Struct(01987345, “Elm Plantation”, “Bob Owner”,
Set(**waterhole,” “pasture”))],

[0id27, @, RuralProperty, Struct(01987355, @ , “Betty Owner”, Set(“forest,”
“lake™))],

[0id31, @, RuralProperty, Struct(01987390, “Hodge Mill Runoff Lagoon”,
“Hodge Mill”, Set(“waterhole™)}],

[0id32, @, RuralProperty, Struct(01987394, “Heart Lake”, “Blackham
County”, Set(*“lake™))].

[0id26, @, RuralProperty, Struct(01987358, @, “Brown County”,
Set(**pond™))].

Now let us assume that we are trying to sell fish fingerlings and want to retrieve the
names of all landowners that own land that contains ponds. Our query may look
something like this:

SELECT Owner
FROM RuralProperty
WHERE landClass = “pond”.

If our goal is selling fish for stocking small ponds, we may want our indiscernibility
relation to be defined with a very fine partitioning as discussed previously:

R' = {[creek, brook, stream],[branch], [river], [lake], [pond, waterhole], [slough]}.

Here “pond” and “waterhole” are considered indiscernible and the query will match
either as a certain result. Possible results will in addition contain those objects that have
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“pond” or ‘“waterhole” as one of the values in the set for landClass. (See [1,2] for
complete semantics of rough database operations.)

For the partitioning R' and the five sample objects above, our rough set result would
include the following:

RX = {Brown County, Hodge Mill}

R X = {Brown County, Hodge Mill, Bob Owner}

Here, 0id26 (Owner is “Brown County”) provides an exact match with “pond” so it is
included in the lower approximation region, which represents certain data. Because
“waterhole” is in the same equivalence class as “pond”, 0id31 (Owner is “Hodge Mill”} is
also included in the lower approximation region. The upper approximation region contains
those objects where at least one of the values in the set of values for that attribute match the
request. Hence, 0id21 (Owner is “Bob Owner”) is returned since “pond” and “waterhole”
both belong to the class {pond] and this value is included in the set of values {waterhole,
pasture}.

If we had decided that all standing water locations are likely candidates for fish stocking,
then we might have coarsened the partitioning, using the equivalence relation:

R? = {[creek, brook, river, stream, branch], [lake, pond, waterhole, slough]}.

In this case, 0id32 (Owner is Blackham County) also belongs to the lower
approximation region since “lake”, “pond”, “waterhole”, and “slough” are now
indiscernible. Likewise, 01d27 (Owner is Betty Owner) becomes part of the upper
approximation since “lake” is a subset of {lake, forest}. Now the rough set results are
given as:

RX = {Brown County, Hodge Mill, Blackham County}

RX= {Brown County, Hodge Mill, Blackham County, Bob Owner, Betty
Owner}.

The semantics of rough set operations discussed for relational databases in [1,2] apply
similarly for the object database paradigm. However, the implementation of these
operations is done via methods associated with the individual object classes.

S Conclusion and Related Work

In this paper we used rough set formalisms to define a model for object-oriented
databases. We showed that the rough set concepts of indiscernibility and approximation
regions can be integrated into a rough object-oriented framework, resulting in a model
that allows for the management of uncertainty. A geographic information system
example illustrated the usefulness of this rough object oriented database model.

We have further extended the rough object oriented database model to incorporate fuzzy
set uncertainty as well as rough set uncertainty [4]. In [6], the generalized object database
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model presented allowed the values of attributes to contain fuzzy sets. Our fuzzy rough
model allows for the incorporation of these fuzzy membership values, as done for the
fuzzy rough relational database in [1]. Having both rough and fuzzy set uncertainty
makes possible the management of uncertainty through the use of indiscernibility
relations and approximation regions, and also the ability to quantify the degree of
uncertainty through the use of fuzzy sets.
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Abstract
Spatial directional relations, like “north of,” play an important role in the modeling of the
environment by an autonomous robot. We propose an approach to represent spatial rela-
tions grounded in fuzzy set theory and fuzzy mathematical morphology. We show how
this approach can be applied to robot maps, and suggest that these relations can be used
for self-localization and for reasoning about the environment. We illustrate our approach
on real data collected by a mobile robot in an office environment.

Keywords: autonomous robots, occupancy grids, topological maps, fuzzy spatial rela-
tions, fuzzy mathematical morphology.

1 Introduction

Autonomous robots need the ability to perceive their environment, build a model of it,
and use this model to effectively navigate and operate in that environment. One important
aspect of these models is the ability to incorporate spatial directional relations, like “north
of.” These relations are inherently vague, since they depend on how much of an object is
in the specified direction with respect to the reference object.

Relative directional relations have not been extensively studied in the mobile robotics
literature. The field of image processing contains a comparatively larger body of work on
spatial relations, although directional positions have received much less attention in that
field than topological relations like set relationships, part-whole relationships, and adja-
cency. Most non-fuzzy approaches use a set of basic relations based on Allen’s interval
relations [1] (e.g., [22]) or on simplifications of objects (e.g. [10]). Some approaches
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use intervals to represent qualitative expressions about angular positions [15]. Stochastic
approaches have also been proposed for representing spatial uncertainty in robotics, ¢.g.,
[24]. Most of the above approaches, however, suffer from a somehow simplified treatment
of the uncertainty and vagueness which is intrinsic in spatial relations. Concepts related to
directional relative position are rather ambiguous, and defy precise definitions. However,
humans have a rather intuitive and common way of understanding and interpreting them.
From our everyday experience, it is clear that any “all-or-nothing” definition of these
concepts leads to unsatisfactory results in several situations of even moderate complexity.
Fuzzy set theory appears then as an appropriate tool for such modeling since it allows to
integrate both quantitative and qualitative knowledge, using semiquantitative interpreta-
tion of fuzzy sets. As noted by Freeman in [9], this allows us to provide a computational
representation and interpretation of imprecise spatial relations, expressed in a linguistic
way, possibly including quantitative knowledge.

In this paper, we show how fuzzy mathematical morphology can be used to compute
approximate spatial relations between objects in a robot map. The key step is to represent
the space in the robot’s environment by an occupancy grid [7, 20], and to treat this grid as
a grey-scale image. This allows us to apply techniques from the field of image processing
to extract spatial information from this grid. In particular, we are interested in the spatial
relations between rooms and corridors in the environment.

In the rest of this paper, we briefly introduce fuzzy mathematical morphology and we
show how it can be used to define fuzzy spatial relations. We then discuss the use of
this approach in the context of one particular type of robot maps, called topology-based
maps, which are built from occupancy grids [8]. We illustrate our approach on real data
collected by a mobile robot in an office environment. Finally, we discuss a few possible
applications of fuzzy spatial relations to robot navigation.

2 Fuzzy mathematical morphology

Mathematical morphology is originally based on set theory. Introduced in 1964 by Math-
eron [16] to study porous media, mathematical morphology has rapidly evolved into a
general theory of shape and its transformations, and it has found wide applications in
image processing and pattern recognition [21].

The four basic operations of mathematical morphology are dilation, erosion, opening
and closing. The dilation of a set X of an Euclidean space S (typically R” or Z™) by a
set B is defined by [21]:

Dp(X)={z€8|B,nX #0}, )

where B, denotes the translation of B at z. Similarly the erosion of X by B is defined
by:
Ep(X)={zeS|B, C X}. @

The set B, called structuring element, defines the neighborhood that is considered at each
point, It controls the spatial extension of the operations: the result at a point only depends
on the neighborhood of this point defined by B.

From these two operators, opening and closing are defined respectively by: O(X) =
Dg[Eg(X))], and C(X) = Ez[Dp(X)], where B denotes the symmetrical of B with
respect to the origin of the space.
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The above operators satisfy a number of algebraic properties [21]. Among the most
important ones are commutativity of dilation (respectively erosion) with union or sup
(respectively intersection or inf), increasingness! of all operators, iteration properties of
dilation and erosion, idempotency of opening and closing, extensivity? of dilation (if the
origin belongs to the structuring element) and of closing, anti-extensivity of erosion (if
the origin belongs to the structuring element) and of opening.

Mathematical morphology has been extended in many ways. In the following, we
make use of fuzzy morphology, where operations are defined on fuzzy sets (representing
spatial entities along with their imprecision) with respect to fuzzy structuring elements.
Several definitions of fuzzy mathematical morphology have been proposed (e.g. [3, 5,
23)). Here, we define dilation and erosion of a fuzzy set i by a structuring element v for
all z € S by, respectively:

Dy(p)(z) = sup {tv(y — =), p(¥)]},
Ey(p)(z) = infy{T[c(v(y — 2)), n(¥)]}

where y ranges over the Euclidean space S where the objects are defined, ¢ is a t-norm,
and T its associated t-conorm with respect to the complementation ¢ [27]. In these equa-
tions, fuzzy sets are assimilated to their membership functions. These definitions extend
classical morphology in a natural way, providing similar properties as in the crisp case
(3, 19].

Through the notion of structuring element, mathematical morphology can deal with
local or regional spatial context. It also has some features that allow us to include more
global information, which is particularly important when the spatial arrangement of ob-
jects in a scene has to be assessed. This fact is exploited in the following.

Il

3 Spatial relations from fuzzy mathematical morphology

Spatial relationships between the objects in the environment carry structural information
about the environment, and provide important information for object recognition and for
self localization [11]. Fuzzy mathematical morphology can be used here to represent and
compute in a uniform setting several types of relative position information, like distance,
adjacency and directional relative position. In this section, we explain how we can use it
to deal with directional relations.

A few works propose fuzzy approaches for assessing the directional relative position
between objects, which is an intrinsically vague relation [2, 12, 13, 17, 18]. The approach
used here and described in more details in [2] relies on a fuzzy dilation that provides a
map (or fuzzy landscape) where the membership value of each point represents the degree
of the satisfaction of the relation to the reference object. This approach has interesting
features: it works directly in the image space, without reducing the objects to points or
histograms, and it takes the object shape into account.

We consider a (possibly fuzzy) object R in the space S, and denote by pq(R) the
fuzzy subset of S such that points of areas which satisfy to a high degree the relation “to
be in the direction @, with respect to object R” have high membership values, where @4
is a vector making an angle o with respect to a reference axis.

! An operation ¢ is increasing it VX, Y X CY = ¢(X) C ¥(Y).
2 An operation ¢ is extensive if VX, X C #(X) and anti-extensive if VX, ¢(X) C X.
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The form of 11,(R) may depend on the application domain. Here, we use the defini-
tion proposed in [2], which considers those parts of the space that are visible from a refer-
ence object point in the direction @,. This can be expressed formally as the fuzzy dilation
of ug by v, where v is a fuzzy structuring element depending on & po(R) = D, (ur)
where p g is the membership function of the reference object R. This definition applies
both to crisp and fuzzy objects and behaves well even in case of objects with highly con-
cave shape [2]. In polar coordinates, v is defined by: v{p,8) = f(# —«) and v(0,8) =1,
where § — « is defined modulo 7 and f is a decreasing function. In the experiments
reported here, we have used f(z) = max[0,cosz]? for z € [0, 7] — see Figure 1. Tech-
niques for reducing the computation cost have been proposed in [2].

Figure 1: Structuring element v for & = 0 (high grey values correspond to high member-
ship values).

Once we have defined uq(R), we can use it to define the degree to which a given
object A is in direction @, with respect to R. Let us denote by p4 the membership
function of the object A. The evaluation of relative position of 4 with respect to R is
given by a function of us(R)(x) and pa(z) for all z in S. The histogram of uq(R)
conditionally to p4 is such a function. If A is a binary object, then the histogram of
Lo (R) in A is given by:

h(z) = Card ({z € A| pa(R)(2) = 2}),

where z € [0, 1]. This extends to the fuzzy case by:

M= Y pa).

z: pa(R)(z)=2

While this histogram gives the most complete information about the relative spatial
position of two objects, it is difficult to reason in an efficient way with it. A summary of
the contained information could be more useful in practice. An appropriate tool for defin-
ing this summary is the fuzzy pattern matching approach [6]. Following this approach, the
matching between two possibility distributions is summarized by two numbers, a neces-
sity degree N (a pessimistic evaluation) and a possibility degree II (an optimistic evalua-
tion), as often used in the fuzzy set community. In our application, they take the following
forms:

ni4) = sup tlua(R) (@), pa (@), 3
NE(A) = inf Tla(R)@),1 - pa(@)], @)

where t is a t-norm and T a t-conorm. The possibility corresponds to a degree of intersec-
tion between the fuzzy sets A and p, (R), while the necessity corresponds to a degree of
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Figure 2: The occupancy grid built by the robot from sensor data in a test environment.

inclusion of A in p,(R). These operations can also be interpreted in terms of fuzzy math-
ematical morphology, since ITZ( 4) is equal to the dilation of 4 by uq(R) at the origin
of S, while NE(A) is equal to the erosion at the origin [3]. The set-theoretic and the
morphological interpretations indicate how the shape of the objects is taken into account.

It should be emphasized that, since the aim of these definitions is not to find only the
dominant relationship, an object may satisfy several different relationships, for different
angles, with high degrees. Therefore, “to be to the right of R~ does not mean that the
object should be completely to the right of the reference object, but only that it is at least
to the right of some part of it.

The defined directional relations are symmetrical (only for II), invariant with respect
to translation, rotation and scaling, both for crisp and for fuzzy objects, and when the
distance between the objects increases, the shape of the objects plays a smaller and smaller
role in the assessment of their relative position [2].

4 Robot maps

We now study how fuzzy spatial relations can be used to enrich the spatial representa-
tions used by a mobile robot, or robot maps. A number of different representations of
space have been proposed in the literature on mobile robotics. Most of these fall into
two categories: metric maps, which represent the environment according to the absolute
geometric position of objects (or places); and topological maps, which represent the en-
vironment according to the relationships among objects (or places) without an absolute
reference system (e.g., [14, 25]).

In this work, we consider robot maps in the form of digital grids (S is therefore a
2D discrete space) on which certain objects, corresponding to the sub-spaces of interest
(rooms and corridors), have been isolated. The reason for this is that we can directly apply
the above methods to these representations.

More precisely, we consider the particular type of maps, called topology-based maps,
proposed by Fabrizi and Saffiotti [8]. These maps represent the environment as a graph
of rooms and corridors connected by doors and passages. The authors use image pro-
cessing techniques to automatically extract regions that correspond to large open spaces
(rooms and corridors) from a fuzzy occupancy grid that represents the free space in the
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Figure 3: (top) regions extracted from the above occupancy grid; (bottom) the correspond-
ing topology-based map.

environment. This grid is built by the robot itself using the technique described in [20].

Figure 2 shows a fuzzy occupancy grid built by a Nomad 200 robot in an office envi-
ronment of 21 X 14 meters using sonar sensors. The environment consists of six rooms
connected to a large corridor, which expands to a hall on the left hand side of the map.
The dark areas in the corridor correspond to pieces of furniture. Each cell in the grid rep-
resents a square of side 10cm, and its value, in the [0, 1] interval, represents the degree of
necessity of that space being empty. White cells have received sensor evidence of being
empty; darker cells have not—they are either occupied or unexplored. (A dual grid, not
used here, represents the occupied space.)

In order to extract the desired rooms and corridors, the authors in [8] regard this oc-
cupancy grid as a grey-scale image and process it using a technique based on fuzzy math-
ematical morphology. The open spaces can be extracted from the grid by performing a
morphological opening by a fuzzy structuring element of a conic shape that represents the
fuzzy concept of a large space. The result of the opening is then segmented by a watershed
algorithm [26] in order to separate these spaces. Figure 3 (top) shows the result obtained
by applying this procedure to our occupancy grid. The extracted regions correspond to
the open spaces in the environment. These regions, together with the adjacency relation,
constitute a topology-based map for our environment, summarized in graph form in Fig-
ure 3 (bottom). This graph provides an abstract representation that captures the structure
of the space with a reduced number of parameters.
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S5 Adding fuzzy spatial relations to a robot map

Once we have segmented the environment into regions (rooms and corridors) we can use
the technique described in the previous section to compute directional spatial relation-
ships between these regions. These relations provide important information for object
recognition and for self localization [11].

Figure 4: Fuzzy landscapes for being West, North, East and South of fuzzy region 4.

Figure 4 shows the fuzzy landscapes for the fuzzy notions of being, respectively, West,
North, East, and South of the fuzzy region number 4 in Figure 3. These landscapes
represent the o (R) fuzzy sets (see Section 3 above) with R being the fuzzy occupancy
grid restricted to region number 4, and « taking the values 0, %ﬂ', m and %77, respectively.

We can use these landscapes to compute the relative directional position of any other
region in our map with respect to region 4. For instance, Figure 5 shows the histograms of
these fuzzy landscapes computed conditionally to region 1. These histograms represent
the satisfaction of the relationships “‘region 1 is to the West (respectively, North) of region
4,

It should be noted that the direct computation of ;4 (R) can be very expensive. Inter-
estingly, the interpretation of that definition as a fuzzy dilation may suggest a few ways
to reduce the computation time by reducing the precision of 4 (R): e.g., we can perform
the dilation with a limited support for the structuring element, which corresponds to using
a rough quantification of angles.

The above histograms can give the robot important information about the environ-
ment. In practice, however, storing and manipulating the whole histograms for each pair
of regions may be prohibitive, and in real applications it is convenient to summarize the
information contained in the histograms by a few parameters. A common choice is to use
a pair of necessity and possibility degrees, computed according to equations (3) and (4)
above.

The following table shows, for each region in our example, the degrees of necessity
and possibility of being West, East, South and North of region 4. Degrees are written as a
[N, 10] interval.
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Figure 5: Histograms of the fuzzy landscapes of region 4 (west and north) conditionally
to region 1.

West East South North
[0.0, 1.0] [[0.00,0.99]| [0.0,1.0] | {0.0,0.11]
[0.99,1.0] | [0.0,0.0] | [0.0,0.36] | [0.0, 0.24]
[0.92,1.0] | {0.0,0.0] {[0.00, 0.85]] [0.0, 0.83]
[0.55,1.0] | [0.51, 1.0] | [0.50, 1.07 | [0.55, 1.0]
{0.0, 0.0] | [0.98, 1.0] |[0.02, 0.401{[0.00, 0.59]
{0.65, 0.87]| [0.0,0.0] {[0.30, 0.56]{ {0.0,0.0]
[0.17, 0.54]| [0.0,0.0] {[0.86,0.99]| [0.0,0.0]

~N N B W -

These results correspond well to intuition. For instance, regions 2 and 3 are found to
be fully West of region 4, and totally not East of it; while region 5 is fully East of it and
totally not West. Region 1 offers an interesting example. This region surrounds region 4
on the West and South side, and extends further East from it. Correspondingly, it has full
possibility of being considered West, South and East of region 4, although no one of these
relations is necessary. Its possibility of being considered North of region 4 is, however,
neglectable, which is consistent with intuition. This can also be seen in the histogram,
where no high degrees are obtained for the North direction, while many points satisfy the
West relation to a degree close to 1. Finally, regions 6 and 7 are, at different degrees, both
South and West of region 4, again conforming with intuition.
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6 Discussion and conclusions

The proposed approach to represent directional relations has several interesting features.
The interval representation allows us to capture the ambiguity of some relations, like in
the case of the relation between region 1 and region 4 in the above example. The for-
mal properties listed at the end of Section 3 are also of direct interest for applications in
autonomous robotics. For instance, the invariance with respect to geometrical transfor-
mations is needed to guarantee that localization and recognition are independent of the
frame of reference used to define directions. The fact that the shape of an object plays
a smaller and smaller role as the distance of that object increases is useful when consid-
ering relationships to the robot itself: far away objects are seen by the robot as points,
which is consistent with the idea that the spatial extent of these objects becomes irrele-
vant. The behavior of our definitions in case of concave objects agrees with intuition: an
object can satisfy several relations with respect to a concave one at a high degree. In the
above example, regions 2, 3, 4, 5 are all both East and North of region 1 to a high degree,
which expresses that they are in the upper-right concave area of region 1. This is a way to
express more complex relationships.

The computed fuzzy directional information can be used in several ways during au-
tonomous navigation. Perhaps the most direct application is to improve the self-localization
ability of the robot. The robot can perform coarse self-localization on the topological map
by estimating, at every moment, the node (room) in which it is. Markov techniques can be
used to update this estimate when the robot detects a transition from one node to the next:
directional information can then be used to produce an expectation about the next node,
by comparing the direction of travel with the distribution of possible directions associated
to the outgoing links from the current node.

The ability to produce a fuzzy landscape for a given direction with respect to a node
opens the possibility of additional applications. For instance, the robot can use linguistic
directional information to identify important areas in the environment. As an example, we
can tell the robot that the door to a given room is North with respect to the room where it
currently is: the corresponding fuzzy landscape limits the area where the door should be
looked for. Alternatively, we can tell the robot that the area North of a given corridor is
dangerous (e.g., there is a staircase) and it should be avoided. A similar use of fuzzy logic
to incorporate linguistic information in a robot map has been proposed in [11].

The proposed method to define directional information and fuzzy directional land-
scapes is not limited to a fixed set of directions (e.g., North, South, West, East), but can
be applied to any desired angle. Also, we can tune the f function used in the definition
of the structuring element » in order to define directions which are more or less vague,
depending on the application needs. The definition of fuzzy landscapes makes it easy
to define complex directional relations by combining elementary relations using fuzzy
operations. For instance, we can define a landscape for “North but not East” by fuzzy
intersection of the landscape for North and the complement of the one for East.

Finally, it should be noted that fuzzy mathematical morphology can be used to solve
several other problems in mobile robot navigation, including self-localization and spatial
object processing (see [4]).

While the initial results reported in this paper show the viability of our technique, more
experiments on real robotic applications are needed in order to establish the actual utility
of this technique, for instance for robot self-localization or for human-robot interaction



56

by linguistic expressions. These experiments are part of our current work.
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Abstract
Ordering-based modifiers have fruitful applications in fuzzy rule-based systems. In con-
tinuation of ongoing research work on this topic, this paper is concerned with the con-
struction of two binary ordering-based modifiers that model a concept of fuzzy ‘between’,
both in an inclusive and a non-inclusive setting.

Keywords: between operator, fuzzy ordering, fuzzy relation, interpretability, ordering-
based modifier.

1 Introduction

Fuzzy systems have always been regarded as appropriate methodologies for controlling
complex systems and for carrying out complicated decision processes [21]. The compact-
ness of rule bases, however, is still a crucial issue—the surveyability and interpretability
of a rule base decreases with its number of rules. In particular, if rule bases are repre-
sented as complete tables, the number of rules grows exponentially with the number of
variables. Therefore, techniques for reducing the number of rules in a rule base while
still maintaining the system’s behavior and improving surveyability and interpretability
should receive special interest. In this paper, we deal with operators which are supposed
to serve as a key to rule base reduction—ordering-based modifiers.

Almost all fuzzy systems involving numerical variables implicitly use orderings. It is
standard to decompose the universe of a linearly ordered system variable into a certain
number of fuzzy sets by means of the ordering of the universe—typically resulting in
labels like ‘small’, ‘medium’, or ‘large’.

Let us consider a simple example. Suppose that we have a system with two real-
valued input variables x;,x» and a real-valued output variable y, where all domains are
divided into five fuzzy sets with the linguistic labels ‘Z°, ‘S”, ‘M’, ‘L', and 'V’ (standing
for ‘approx. zero’, ‘small’, ‘medium’, ‘large’, and ‘very large’, respectively).
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It is easy to see that, in the above table, there are several adjacent rules having the same
consequent value. Assuming that we had a unique and unambiguous computational
methodology to compute ‘at least A°, ‘at most A’, or ‘between A and B’, it would be
possible to group and replace such neighboring rules. For instance, the three rules

IFx is 'S ANDx;is Z"THEN yis 'S

IFx;is ‘M AND x; is Z'THEN yis ‘S’

IFxis ‘L” ANDx;is Z’THEN yis §”

could be replaced by the following rule! (adopting an inclusive view on the adverb ‘be-
fween'):

IF x| is ‘between Sand L’ AND x5 is 'Z’ THEN yis ‘S’

Of course, there is actually no need to do so in such a simple case. Anyway, grouping
neighboring rules in such a way could help to reduce the size of larger high-dimensional
rule bases considerably.

It is considered as another opportunity for reducing the size of a rule base to store
only some representative rules and to “interpolate” between them [15], where, in this
context, we understand interpolation as a computational method that is able to obtain a
meaningful conclusion even if an observation does not match any antecedent in the rule
base [14]. In any case, it is indispensable to have criteria for determining between which
rules the interpolation should take place. Beside distance, orderings play a fundamental
role in this selection. As an alternative to distance-based methods [15], it is possible to
fill the gap between the antecedents of two rules using a non-inclusive concept of fuzzy
‘berween’.

In [1,4], a basic framework for defining the unary modifiers ATL and ATM (short for
‘at least ' and 'at most’, respectively) by means of image operators of fuzzy orderings has
been introduced. This general approach has the following advantages: it is applicable to
any kind of fuzzy set, it can be used for any kind of fuzzy ordering without any restriction
to linearly ordered or real-valued domains, and it even allows to take a domain-specific
context of indistinguishability into account.

This paper is concerned with an extension of this framework by two binary ordering-
based modifiers named BTW and SBT which both represent fuzzy ‘between’ operators,
where BTW stands for the inclusive and SBT (“strictly between”) stands for the non-
inclusive interpretation.

2 Preliminaries

Throughout the whole paper, we will not explicitly distinguish between fuzzy sets and
their corresponding membership functions. Consequently, uppercase letters will be used
for both synonymously. The set of all fuzzy sets on a domain X will be denoted with
F(X). As usual, we call a fuzzy set 4 normalized if there exists an x € X such that
A(x) =1 holds.

In general, sriangular norms [13], i.e. associative, commutative, and non-decreasing
binary operations on the unit interval (i.e. a [0,1}?> — [0, 1] mappings) which have 1 as

'It depends on the underlying inference scheme whether the result is actually the same; we leave this aspect
aside for the present paper, since this is not its major concern.
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neutral element, will be considered as our standard models of logical conjunction. In this
paper, assume that T denotes a left-continuous triangular norm, i.¢. a t-norm whose partial
mappings 7 (x,.) and 7'(.,x) are left-continuous.

Definition 1. Let 7 be a t-norm. The T-intersection of two fuzzy sets 4,8 € F(X) is
defined by means of the following membership function:

(4N7 B)(x) = T (4(x), B(x))

For T = min, we will simply use the notation 4 N B. Correspondingly, the max-union of
two fuzzy sets 4, B € F(X) is defined as

(AUB)(x) = max (A(x),B(x)).

So-called residual implications will be used as the concepts of logical implication
[7-9,13].

Definition 2. For any left-continuous t-norm 7, the corresponding residual implication
T is defined as

T{x,y)=sup{uec[0.1]]| T(u,x) <y}

The residual implication can be used to define a logical negation which logically fits
to the t-norm and its implication.

Definition 3. The negation corresponding to a left-continuous t-norm 7 is defined as
Nr(x) =T (x,0).

Lemma 4. Nr is a left-continuous non-increasing [0,1] — [0, 1] mapping. Moreover, the
so-called law of contraposition holds

T(x.y) < T(Nr(»),Nr(x))
which also implies x < Nr (Nr(x)).

Note that the reverse inequality does not hold in general (unlike the Boolean case,
where p => ¢ is equivalent to ~g = —p).

Definition 5. The T-complement of a fuzzy set 4 € F(X) is defined as
(Crd)(x) = Nr(4(x)).
Lemma 6. The following holds for all fuzzy sets A,.B € F(X):

1. AnyCra=0
2. ACCrCra
3. AC BimpliesCr4 2 CrB

Lemma 7. As long as only min-intersections and max-unions are considered, the so-
called De Morgan laws hold:
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As usual, we call a fuzzy set on a product space X x X binary fuzzy relation. The
following two kinds of binary fuzzy relations will be essential.

Definition 8. A binary fuzzy relation E on a domain X is called fuzzy equivalence relation
with respect to T, for brevity T-equivalence, if and only if the following three axioms are
fulfilled for all x,y,z € X:

Reflexivity: E(x,x) =1
Symmetry:  E(x,y) = E(y,x)
T-transitivity: T (E(x,y),E(y,2)) < E(x,z)
In contrast to previous definitions of fuzzy orderings [7,18,20], we consider a general

concept of fuzzy orderings taking a given context of indistinguishability into account
which is modeled by a fuzzy equivalence relation [2, 10].

Definition 9. Let L: X — [0,1] be a binary fuzzy relation. L is called fuzzy ordering
with respect to T and a T-equivalence E, for brevity T-E-ordering, if and only if it is
T-transitive and fulfills the following two axioms for all x,y € X:

E-reflexivity:  E(x,y) < L(x,y)
T-E-antisymmetry: T (L(x,y),L(y,x)) < E(x,y)

A subclass which will be of special importance in the following are so-called direct
fuzzifications.

Definition 10. A T-E-ordering L is called a direct fuzzification of a crisp ordering < if
and only if it admits the following resolution:

|1 ifx<y
Lixy) = { E(x,y) otherwise

It is worth to mention that there is a one-to-one correspondence between direct fuzzi-
fications of crisp linear orderings and so-called fuzzy weak orderings, i.e. reflexive and
T-transitive binary fuzzy relations which fulfill strong completeness (i.e., for all x,y € X,
max(L(x,y),L(y,x)) = 1) [1,2].

3 Unary Ordering-Based Modifiers

Throughout the remaining paper, assume that we are given a T-E-ordering L (for some
left-continuous t-norm T and a given T -equivalence E). Then the unary ordering-based
modifiers ATL and ATM are defined as follows [1,4]:

ATL(A)(x) = sup{T (A(),L(»»x)) | ¥y € X}
ATM(A)(x) = sup{T (A(y),L(x,y)) | y € X}

In the case that L coincides with a crisp ordering <, we will explicitly indicate that by us-
ing the notations LTR and RTL (short for “left-to-right” and “right-to-left continuations”)
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instead of ATL and ATM, respectively. It is easy to verify that the following simplified
representation holds in such a case:

LTR(4)(x) = sup{4(y) |» = x}
RTL(4)(x) = sup{4(») | ¥ = x}

Moreover, for a given fuzzy set 4, LTR is the smallest superset of 4 with a non-decreasing
membership function and RTL is the smallest superset of 4 with a non-increasing mem-
bership function. For convenience, let us use the notation EXT for the so-called exten-
sional hull operator of the T-equivalence E:

EXT(4)(x) = sup{T(4(»),E(»x)) | y € X}

Note that, for an arbitrary fuzzy set 4, EXT(4) is the smallest superset fulfilling the
property
T(A(x),E(x,y)) < A4()

for all x,y € X. This property is usually called extensionality [6,5,11,12,16].

Lemma 11. [4,11,16] Let E be a T-equivalence and let A,B € F (X) be two extensional
fuzzy sets. Then ANB, AUB, and CrA are also extensional. Moreover, EXT(AUB) =
EXT(4) UEXT(B) holds.

Lemma 12. [1,4] The operators ATL and ATM are non-decreasing with respect to the
inclusion of fuzzy sets and the following holds for all fuzzy sets A,B € F(X):

ATL(4UB) = ATL(4) UATL(B)
ATM(4UB) = ATM(4) U ATM(B)
ATL(ANB) C ATL(4)NATL(B)
ATM(4NB) C ATM(4) N ATM(B)
ATL(ATL(A)) = ATL(4)
ATM(ATM(4)) = ATM(4)

S R

Theorem 13. [1,4] If L is a direct fuzzification of some crisp ordering =, the following
equalities hold:

ATL(4) = EXT(LTR(4)) = LTR(EXT(4)) = EXT(4) ULTR(4)

ATM(4) = EXT(RTL(4)) = RTL(EXT(4)) = EXT(4) URTL(4)
Moreover, ATL(A) is the smallest fuzzy superset of A which is extensional and has a non-

decreasing membership function. Analogously, ATM(A) is the smallest fuzzy superset of
A which is extensional and has a non-increasing membership function.

The notion of convexity and convex hulls will also be essential in the following.

Definition 14. Provided that the domain X is equipped with some crisp ordering < (not
necessarily linear), a fuzzy set 4 € F (X) is called convex (compare with [17,19]) if and
only if, forall x,y,z € X,

x <y =z implies 4(y) > min (A4(x),A(z)).
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Lemma 15. Fuzzy sets with non-increasing/non-decreasing membership function are
convex. For any two convex fuzzy sets A,B € F(X), ANB is convex.

Lemma 16. Assume that < is an arbitrary, not necessarily linear ordering on a domain
X. Then the fuzzy set
CVX(4) =LTR(4)NRTL(4)

is the smallest convex fuzzy superset of A.

Theorem 17. [1.4] With the assumptions of Theorem 13 and the definition
ECX(4) = ATL(4)NATM(4).
the following representation holds:
ECX(4) = EXT(CVX(4)) = CVX(EXT(4)) = EXT(4) UCVX(4)

Furthermore, ECX(A) is the smallest fizzy superset of A which is extensional and convex.

4 The Inclusive Operator

Finally, we can now define an operator representing an inclusive version of ‘between’
with respect to a fuzzy ordering.

Definition 18. Given two fuzzy sets 4,8 € F (X), the binary operator BTW is defined as
BTW(4,B) = ECX(4UB).

Note that it can easily be inferred from basic properties of ATL and ATM (cf. Lemma 12)
that the following alternative representation holds:

BTW(4.B) = (ATL(4) UATL(B)) N (ATM(4) U ATM(B)) (1)

This representation is particularly helpful to prove the following basic properties of the
BTW operator.

Theorem 19. The following holds for all fuzzy sets A,B € F(X):

. BTW(4.B) = BTW(B.4)

2. A CBTW(4.B)

3. BTW(4.0) =BTW(4.4) = ECX(4)
4. BTW(A4.B) is extensional

If L is a divect fuzzification of a crisp ordering <, then BTW(4,B) is convex as well and
BTW (4, B) is the smallest convex and extensional fuzzy set containing both A and B.

Proof. Trivial by elementary properties of maximum union and the operator ECX (cf.
Theorem 1 7). O

It is, therefore, justified (in particular due to Point 2. above) to speak of an inclusive
interpretation. Moreover, it is even possible to show that BTW is an associative operation;
hence (7 (X).BTW) is a commutative semigroup.
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5 The Non-Inclusive Operator

Now let us study how a ‘strictly between’ operator can be defined. It seems intuitively
clear that ‘strictly between A and B’ should be a subset of BTW(A4, B) which should not
include any relevant parts of 4 and B.

Definition 20. The ‘strictly between’ operator is a binary connective on F (X)) which is
defined as

SBT(4,B) = BTW(4,B)NCr((ATL(4) N ATL(B)) U (ATM(4) N ATM(B))).
Note that Lemma 7 yields the following alternative representation:
SBT(4,B) = BTW(4,B)NCr((ATL(4)NATL(B)) NCr (ATM(4) NATM(B)))  (2)
Theorem 21. The following holds for all fuzzy sets A, B € F(X):

1. SBT(4,B) = SBT(B,4)

2. SBT(4,B) CBTW(4,B)

3. SBT(4,0) = ECX(4)

4. SBT(A,B) is extensional

If L is a direct fuzzification of a crisp ordering <, SBT(A4,B) is convex as well. If we
assume that L is a direct fuzzification of a crisp linear ordering < and that A and B are

normalized, the following holds:
5. ECX(4)NrSBT(4.B) =0

Proof. The first two assertions follow trivially from the definition of SBT and elementary
properties. For proving the third assertion, consider the following:

SBT(4,0) = BTW(4,0)NCr((ATL(4) NATL(0)) U (ATM(4) NATM(0)))
=ECX(4)NC7(0) = ECX(4)

The extensionality of SBT(4,B) follows from Lemma 11 and the fact that BTW(4, B),
ATL(4), ATL(B), ATM(4), and ATM(B) are all extensional.

Assume that L is a direct fuzzification. As ATL(4) and ATL(B) have non-decreasing
membership functions, also ATL(4) N ATL(B) has a non-decreasing membership func-
tion. Consequently, 07 (ATL(4) N ATL(B)) has a non-increasing membership function
and, by Lemma 15, this fuzzy set is convex. Following analogous arguments, it can be
proved that 07 (ATM(4) N ATM(B)) is convex. Then we see from the alternative repre-
sentation (2) that SBT(A, B) is an intersection of convex fuzzy sets. Therefore, by Lemma
15, SBT(4,B) is convex.

The following follows easily from the distributivity of minimum and maximum:

(ATL(A)NATL(B)) U (ATM(4) NATM(B))
= (ATL(4) UATM(4)) N (ATL(4) UATM(B))
N (ATL(B) UATM(4)) N (ATL(B) UATM(B)) = (%)



66

L.et A and B now be normalized and let L be a direct fuzzification of a crisp linear ordering
=. Itis easy to see that, in such a setting, ATL(4) UATM(4) = X holds. Therefore,

(%) = (ATL(4) UATM(B)) N (ATL(B) UATM(4)).

As the fuzzy sets {ATL(4) UATM(B)) and (ATL(B)UATM(4)) are both supersets of
ECX(A4), we obtain that (ATL(4) N ATL(B)) U (ATL(4) N ATM(B)) is a superset of
ECX(A). Then we can infer the following:

ECX(4) N7 SBT(4.B)
= ECX(4) Ny (BTW(4,B)NCr((ATL(4) NATL(B)) U (ATM(4) NATM(B))))
= (ECX(4)Nr BTW(4,B))

N (ECX(4) N7 Cr((ATL(4) NATL(B)) U(ATM(4) NATM(B))))
C (ECX(A)NTBTW(4.B )m(ECXA N7 Cr(ECX(4)))
= (ECX(A)NrBTW(4.B)) N0 =

Note that the last equality particularly implies
ANy SBT(4.B) =0

which justifies to speak of an non-inclusive concept.

6 Ordering Properties

Despite basic properties that have already been presented in the previous two sections,
it remains to be clarified whether the results BTW(4,B) and SBT(A4,B) obtained by the
two operators are really lying between A and B. We will approach this question from an
ordinal perspective. It is straightforward to define the following binary relation on # (X):

A =y B ifand only if ATL(4) D ATL(B) and ATM(4) C ATM(B)

This relation is reflexive, transitive, and antisymmetric up to the following equivalence
relation:
A~ B ifand only if ECX(4) = ECX(B)

Moreover, if we restrict ourselves to fuzzy numbers and to the natural ordering of real
numbers, it is relatively easy to see that <; coincides with the interval ordering of fuzzy
numbers induced by the extension principle. It is, therefore, justified to consider =,
as a meaningful general concept of ordering of fuzzy sets with respect to a given fuzzy
ordering L [1,3].

The following theorem gives a clear justification that we may consider the definitions
of the operators BTW and SBT as appropriate.

Theorem 22. Suppose that we are given two normalized fuzzy sets A,B € F (X) such that
A =1 B holds. Then the following inequality holds:

A=, BTW(4,B) =L B
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Now let us assume that L is strongly complete (therefore, a direct fuzzification of a crisp
linear ordering <) and that there exists a value x € X which separates A and B in the
way that (for all y,z € X) A(y) > 0 implies y < x and B(z) > 0 implies x < z. Then the
Jollowing inequality holds too:

A=< SBT(4.B) <. B

Proof. Assume that 4 <; B holds, i.e. ATL(4) 2 ATL(B) and ATM(4) € ATM(B). Then
we obtain using the alternative representation (1) and Lemma 12:
ATL(BTW(4,B)) = ATL((ATL(4) UATL(B)) N (ATM(4) UATM(B)))
= ATL(ATL(4)NATM(B)) C ATL(ATL(4)) = ATL(4)

Moreover, ATM(4) C ATM(BTW(A4,B)) must hold, since 4 is a subset of BTW(4.,B)
{(non-decreasingness of ATM with respect to inclusion; cf. Lemma 12), and we have
proved that 4 <; BTW(4, B) holds. The inequality BTW(4, B) =<, B can be proved anal-
ogously.

We have proved above that ATL(BTW(4,B)) C ATL(4). As, trivially, SBT(4,B) C
BTW(4.B) holds, we obtain ATL(SBT(4,B)) C ATL(4). Now fix the value x € X as
described above. All values y with A(y) > 0 are below x, i.e. y <x, and all values z
with B(z) > 0 are above x, i.e. x < z. That entails the four equalities ATL(4)(x) = 1,
ATM(A4)(x) =0, ATL(B)(x) = 0, and ATM(B)(x) = 1, and we obtain the following:

BTW(4,B)(x) = (ATL(4) UATL(B)) N (ATM(4) UATM(B)) (x)
= min ( max(ATL(4)(x),ATL(B)(x)), max(ATM(4) (x), ATM(B)(x)))

= min (max(1,0),max(0,1)) = 1
Moreover,
(ATL(4)NATL(B)) U (ATM(4) N ATM(B)) (x) = max (min(1,0),min(1,0)) = 0.

Therefore, SBT(4.B)(x) = 1. As all values of 4 having non-zero membership degrees
are below x, it follows that

ATM(4) C ATM(SBT(4.B)).

Hence, 4 =; SBT(4.B) holds. The second inequality SBT(4,B) =<, B can again be
proved analogously. O

7 Examples

In order to underline these rather abstract results with an example, let us consider two
fuzzy subsets of the real numbers:

A(x) =max(l -3-|1-x,07-2-]1.5-x,0)
B(x) = max(l - |4 ~x/,0)

It is easy to see that both fuzzy sets are normalized; B is convex, while 4 is not convex.
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The natural ordering of real numbers < is a fuzzy ordering with respect to any t-
norm and the crisp equality. No matter which t-norm we choose, we obtain the fuzzy sets
BTW(A, B) and SBT(A, B) as shown in Figure 1.

Now let us consider the following two fuzzy relations:

E(x,y) = max(l —|x—y[,0)

1 ifx<y
Lixy) = { E(x,y)  otherwise

One easily verifies that E is indeed a Ty -equivalence on the real numbers and that L is a
TL-E-ordering which directly fuzzifies the linear ordering of real numbers [1,2]. Figure
2 shows the results of computing BTW(A, B) and SBT(4, B) for A and B from above. It
is a routine matter to show that B is extensional and that A is not extensional. This means
that A contains parts that are defined in an unnaturally precise way . Since the operators
BTW and SBT have been designed to take the given context of indistinguishability into
account, they try to remove all uncertainties arising from the non-extensionality of A. This
is reflected in the fact that BTW(4, B) also contains some parts to the left of A that are
potentially indistinguishable from A. In the same way, SBT(A, B) does not include those
parts to the right of A that are potentially indistinguishable from elements in A.

8 Conclusion

This paper has been concerned with the definition of two binary ordering-based modifiers
BTW and SBT. The operator BTW has been designed for computing the fuzzy set of all
objects lying between two fuzzy sets including both boundaries. The purpose of SBT is
to extract those objects which are lying strictly between two fuzzy sets—not including the
two boundaries. We have shown several basic properties of the two operators and, from
the viewpoint of orderings of fuzzy sets, that the two operators indeed yield meaningful
results. Therefore, we conclude that the two operators are appropriate as modifiers for
fuzzy systems applications and rule interpolation.
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Figure 1: Two fuzzy sets 4, B (top) and the results of BTW(4, B) (middle) and SBT(4, B)
(bottom), using the crisp ordering of real numbers
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Figure 2: Two fuzzy sets 4, B (top) and the results of BTW(4, B) (middle) and SBT(4, B)
(bottom) with respect to a fuzzy ordering on R
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Abstract
This paper tries to explore some lines to improve Takagi-Sugeno’s Approximation from
a point of view, joining both the logical rationale of Fuzzy Control as Intelligent Control
and the numerical results’ accuracy.

Keywords: Fuzzy Control, Takagi-Sugeno, Condictional Functions, Convolution.

1 Introduction

In the last years we have seen increasing interest in fuzzy systems research and appli-
cations. This is mainly due to the success of fuzzy technologies in many fields of en-
gineering including consumer products, transportation, manufacturing, medical, control
and signal processing systems.

Classical models try to avoid vague, imprecise or uncertain information because it is
considered as having a negative influence in the corresponding technique. However, fuzzy
systems take advantage of this kind of information because it leads to simpler and more
suitable models, which are both easier to handle and more familiar to human thinking.
During decades Fuzzy Control using Takagi-Sugeno’ Approximation has been success-
fully applied to a wide range of control problems and have demonstrated significant ad-
vances in non-linear control.

A zero-order Takagi-Sugeno (T-S) model [4], specifies a fuzzy system by a set of rules of
the form:

“Ifryis Pland .- and x, is P then y is q1”

“Ifxyis Pland -+ and x, is P theny is ¢;”

* This paper is partially supported by CICYT (Spain) under project TIC2000-1420
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where z; are input variables, P[* are linguistic labels on X represented by a fuzzy set
(pp, y is the output variable and g; are constant values.

The global output of a T-S model, given an input vector of values [z1, ..., Z] is:

> (wi - gi)

y=
2 (wi)
where w; = T'(up;i (1), ppy(22), -+ . pp; (zn)) is the matching degree between the in-
puts and the antecedent of the rule, usually T = Prod.
The other model widely used is Mamdani-Larsen (M-L) model [6], composed by a set of
rules of the form:

“Ifzyis Pland - and x, is Pl then y is Q1"

“Ifzyis Pland - - and x, is P then y is Q;”

where x; are input variables, P* are linguistic labels on X represented by a fuzzy set u PP
Q; are linguistic labels on Y represented by a fuzzy set p¢,. And each rule is represented
using a conditional function J : [0,1] x [0,1] — [0, 1].
The fuzzy output of each single rule, given an input vector of values [z1, ..., Z5] follows
from Zadeh’s Compositional Rule of Inference, and is:

po: (y) = J(T(upr(z1), -+ wpr (T0), 1. ()))-

To obtain a numerical output it is needed to defuzzify this fuzzy output using either centre
of gravity, or centre of area, or left or right most value, ef cetera.
Numerical functions J : {0,1] x [0,1] — [0, 1] such that for some continuous t-norm T
verify the Modus Ponens inequality T'(a, J(a,b)) < b, for all a,b in [0, 1], are called T-
Conditional Functions. They are used in Fuzzy Logic to represent conditional statements
orrules “If x is P, then y is Q" as J(up(x), po(y)), provided x varies in a referential X,
y in a referential Y, and P, Q are linguistic labels on X and Y, respectively.
Fuzzy control begins with the linguistic rules describing the expert’s knowledge of the
system’s behaviour, and in that kind of control it is usual to explicitly or implicitly rep-
resent the rules by means of either the Min-Conditional function J(a,b) = Min{a,b) -
Mamdani -, or Prod-Conditional function J(a,b) = Prod(a, b) - Larsen -. Both functions
are particular cases of the general expression J(a, b) = T'(¢(a), ¥(b)) [11[2], where T is
a continuous t-norm, ¢ : [0, 1] — [0, 1] any continuous function verifying ¢(0) = 0 and
¢(1) =1land ¥ : [0,1] — [0, 1] a contractive function, that is, such that 1/(b) < b for all
bin [0,1].
From:

T(a,T(¢(a), ¥ (b)) < Min(a, Min(¢(a), ¢(b)))
= Min((Min(a, p(a)), (b)) < ¥(b) < b

because of T < Min, it follows that J(a, b) = T (p(a), (b)) is always a T-Conditional
Function.

It should be pointed out that given a rule “If up(x), then ug(y)”, to pass from the rep-
resentation as J(up(z), po () = T(up(z), uo(y)) - with, for example, T = Min or
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T = Prod - to a more general one J(up(z), no(y)) = T{e(pp(x)), v(uo))). &
equivalent to change the given rule to the new one “If p(up(z)), then ¥(ug(y))” and
to maintain for this rule the old representation by means of J(¢(up(z)), ¥(ug(y))) =
T(p(up(x)), ¥(ug(y))).

A simple and useful type of this functions are obtained by taking ¢(a) = o” withr € R
and ¢ = id: J(a,b) = T(a",b). With r = 1 itis J(a,b) = T'(a,b).

It should be also noticed that given a system of several rules it can happen that each
one of them can be more adequately represented by a different T-Conditional Function
T(p(a),¥(b)). For example, given two rules “If x is Py, then y is Q1" and “If x is P,
theny is Q7 ”, some respective representation T3 (up, ()™, no, ) and To(pp, ()72, 4Q, ).
with 77 # Tb and r1 # 79, can fit better their respective meanings or semantics in a
concrete problem than the single representation obtained with 77 = T and r1 = 7.

2 Improving T-S model in two directions

This paper takes the position of considering that if we can get a better representation of
the rules and a better control surface then we can get get a better T-S model and therefore
a better approximation.

2.1 By using a better representation of the rules

By using the new representation of the rules means of operators J(a,b) = T'(a”, ) then
we can try to adjust each representation properly to obtain a better representation of the
given rule. Taking into account that we can modify each exponent independently, in what
follows we were modifying one exponent until the output was not closer to the expected
output, and then did the same with the next one.

2.2 Looking for a better behaviour for control

As T-S model is applied to control machines it is desirable for the correct work of a ma-
chine that the changes in the output be smooth enough. Following this idea the convolu-
tion technique transforms the input labels from triangular functions to smoother functions,
without sudden changes. And thanks to that, the output of the T-S model is also smoother.
The transform F, was defined in [3], consists on the convolution of a function ¢ with a
fuzzy set 4, which yields a new fuzzy set p*:

u*(o) = (@ w)la) = [ ) ou - z)du

U
Some important properties of this transform are (see [3]):
o The transform of a partition of the unity is another partition of the unity.
o The transform preserves the area if ¢ has unity area.

o The transform is a smoothing one: if 4 and ¢ have smoothness of order m and n
respectively (1 € C™~2 and ¢ € C™~2), then u* = p* ¢ has smoothness of order
m + n. Smoothness of order k means that the derivative of order k of the function
becomes impulsive, and the differentiability class C' is the space of functions that
are [ times continuously differentiable.
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e The transforms change a convex fuzzy set in another convex fuzzy set, but non in a
necessarily normal one.

The function ¢ must be chosen for each case taking into account the smoothness wished
for the surface output.

3 Case Examples

To illustrate how this changes in the representation of the rules and in the representation
of the input labels can improve the result of T-S model in two ways, first, reducing the
mean square error (MSE) between the known function and the approximating function,
and second, obtaining a smoother function, we present the following two examples.

3.1 A simple example

We chose a non symmetrical function to show how we can reduce the MSE of the approx-
imation and how we can increase the smoothness of the approximating function:

sin(z)

y:
T

Result of y=sin{x)/x.

-0.5
[¢]

Figure 1: Simple example

The T-S model composed by the following seven rules can approximate well enough the
function:

“IfrisCtoOtheny=1"

“Ifz is Cto 4/3 then y = 3sin(4/3)”
“Ifzis Cto 8/3 theny = 5sin(8/3)”
“Ifz is Cto 4 then y = +sin(4)”

“Ifz is Cto 16/3 then y = =sin(16/3)”
“Ifxis Cto 20/3 then y = 555in(20/3)”
“Ifz is Cto 8 then y = §sin(8)”

ok

Suppose that predicate Close-to (Cto) is represented by the fuzzy sets in the figure 2.
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Input Labels

Figure 2: Input Labels

This model allows us to obtain the next approximating function (see left side of figure 3)
with mean square error M SE = 0.00070459.

Result of Takagi-Sugeno and Error Result of Takagi-Sugeno with exponents
— T
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] 1 2 3 4 5 8 7 8 0 1 2 3 4 5 [ 7 8
MSE= 0.00070459 MSE=0.00014208

Result of T-S without Exponents Result of T-S with Exponents

Figure 3: Result of Takagi-Sugeno

If we use exponents:

“Ifx is (Cto 0)%9) theny = 1”

“If zis (Cto 4/3)(°915) then y = 3sin(4/3)”
“Ifz is (Cto 8/3)°915) then y = Zsin(8/3)”
“Ifzis (Cro 4)°5 then y = %sm(él) 7

“Ifzis (Cto 16/3)°®) then y = 2 5in(16/3)”
“Ifz is (Cto 20/3)°4%) then y = 2 sin(20/3)”
“Ifzis (Cto 8)°%) then y = Lsin(8)”

we obtain the next approximating function (see right side of figure 3) with a considerable
reduction of the error M SE = 0.00014209.
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Taking ¢ as a triangular function defined by:

-

We use this function to transform, applying convolution, the input labels to obtain the new
fuzzy sets (see figure 4), which are smother

-5<x <0
0<x <5

—= s

or —

Input Labels after Convolution

Figure 4: Input labels after convolution

and the following approximating function (see figure 5) with a slight increase of the error
MSE = 0.00075886, but it is much smoother function.

Result of Takagi-Sugeno with Convolution Resuit of Takagi-Sugenc with Convolution and Exponents

0.5 i i - . - . 0.5
[ 0

MSE= 0.00075886 MSE= 0.00008817
Without Exponents With Exponents

Figure 5: Result of T-S with convolution

If we apply convolution plus exponents they work better together than separate as it can
be seen in figure 5 M SE = 0.00008817.
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3.2 A complex example

Let’s consider a more complex problem, that is, an approximation of the surface:
_ sin(z?)e™® + sin(y?)e¥ + 0.2338
B 0.8567

, forz €]0,3]and y € [0, 3].

Result of z=(sin(x E)a‘ *) 4 sin(yz)ﬁt ¥4 0.2338) / 0.8567

Figure 6: Complex example

ZzZy sets:

Input Labels X and Y Input Labals after Convolution

15 2

Before Convolution After Convolution

Figure 7: Input labels

Using a T-S model (see [5]) composed by 49 rules, because seven input labels for each
variable are used, we can model the above target function.

“Ifzis Ctoxy andy is Ctoyy then z = q1”

“Ifx is Cto x7 and y is Cto y7 then z = qq9”



78

In the approximation obtained using Takagi-Sugeno M SE = 0.20451039 (see figure 8).

Result of T-S approximation

Figure &: Result of Takagi-Sugeno

In the approximation obtained using Takagi-Sugeno with exponents, in this case we use
the same exponent for all rules, and the error is reduced up to a 10% until MSE =
0.18357553 (see figure 9).

Result of T-S with Exponents

0.8
8 |
5 0.6 S
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08 Ny o R
17N ‘%

Figure 9: Result of Takagi-Sugeno with Exponents

Input labels after convolution, applying same ¢ from previous example, can been see in
figure 7.

In the approximation obtained using Takagi-Sugeno with convolution, the error is slight
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increased up to a 5% until M SE = 0.21149813, but the smoothness is clearly improved,
as can seen in figure 10.

Result of T-S approximation with Gonvalution
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Figure 10: Result of Takagi-Sugeno after convolution

In the approximation using Takagi-Sugeno with convolution plus exponents, the error is

reduced up to a 25% MSE = 0.15090679. And also smoothness is clearly improved
(see figure 11).

Result of T-S with Convolution and Exponents

0.15535983
o o o
P o o

MSE=
(=]
%)

Figure 11: Result of T-S with convolution and exponents
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4 Conclusion

It has been shown that the benefits of the improvement in the representation of the rules
and the improvement in the smoothness of the inputs can contribute to obtain a better
approximation of a given function.

These ideas need to be deeply explored to get a better understanding of the way they help
to the T-S model to give a better approximation and the theoretical explanation of this
improvement.
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Abstract

Decision processes for solving group decision making problems are composed of two
phases: (i) aggregation and, (ii) exploitation. When experts that participate in the group
decision making process are not able to express their opinions using a same expression
domain, then the use of information assessed in different domains, i.e., heterogeneous
information, is necessary. In these cases, the information can be assessed in domains with
different nature as linguistic, numerical and interval-valued. The aim of this contribution
is to present an aggregation process to manage heterogeneous information contexts in
the case of linguistic, numerical and interval-valued information. To do this, we take as
representation base the 2-tuple fuzzy linguistic representation model [5].

Keywords: decision making, aggregation, linguistic 2-tuples, heterogeneous information.

1 Introduction

Group Decision Making (GDM) problems have a finite set of alternatives X = {z1, ..., Zn }
n > 2, as well as a finite set of experts £ = {e1,...,em} m > 2. Usually, each ex-
pert ey, provides his/her preferences on X by means of a preference relation P, , being
P (zi,25) = pfj the degree of preference of alternative x; over ;.

It seems difficult that the nature of the preference values, pfj, provided by the experts
be the same. Because it depends on the knowledge of them over the alternatives (usually
it is not precise). Therefore, the preference values have been expressed in different do-
mains. Early in DM problems, the uncertainty were expressed in the preference values by
means of real values assessed in a predefined range [11, 16], soon other approaches based
on interval valued [12, 15] and linguistic one [4, 17] were proposed. The most of the pro-
posals for solving GDM problems are focused on cases where all the experts provide their
preferences in a unique domain, however, the experts could work in different knowledge
fields and could express their preferences with different types of information depending
on their knowledge. We shall call this type of information as Heterogeneous Information.
Hence, the GDM problem is defined in a heterogeneous information context.

A solution for a GDM problem is derived either from the individual preference re-
lations, without constructing a social preference relation, or by computing first a social
fuzzy preference relation and then using it to find a solution [10]. In any of the above

*This work is supported by Research Project TIC2002-03348 and FEDER fonds
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approaches called direct and indirect approaches respectively the process for reaching a
solution of the GDM problems is composed by two steps [14]:

e Aggregation phase: that combines the expert preferences, and

o Exploitation one: that obtains a solution set of alternatives from a preference rela-
tion.

The main difficulty for managing GDM problems defined in heterogeneous informa-
tion contexts is the aggregation phase, i.e., how to aggregate this type of information?.
Because of, there not exist standard operators or processes for combining this type of
information.

The 2-tuple fuzzy linguistic representation model presented in [S] has shown itself as a
good choice to manage non-homogeneous information in aggregation processes [6, 8, 9].
In this paper, we propose an aggregation process based on the 2-tuple model that is able
to deal with heterogeneous information contexts.

Our proposal for aggregating heterogeneous information follows a scheme comprised
of three phases:

1. Unification: The heterogeneous information is unified in an unique expression
domain by means of fuzzy sets. Different transformation functions will be defined
to transform the input information into fuzzy sets.

2. Aggregation: The fuzzy sets will be aggregated by means of an aggregation oper-
ator to obtain collective preference values expressed by fuzzy sets.

3. Transformation: The collective preference values expressed by means of fuzzy
sets will be transformed into linguistic 2-tuples.

The exploitation phase of the decision process is carried out over the collective lin-
guistic 2-tuples, to obtain the solution for the GDM problem.

In order to do so, this paper is structured as follows: in Section 2 we shall review dif-
ferent basic concepts; in Section 3 we shall propose the aggregation process for combining
heterogeneous information; in Section 4 we shall solve an example of a GDM problem
defined in a heterogeneous information context and finally, some concluding remarks are
pointed out.

2 Preliminaries

We have just seen that in GDM problems the experts express their preferences depending
on their knowledge over the alternatives by means of preference relations. Here, we
review different approaches to express those preferences. And afterwards, we shall review
the 2-tuple fuzzy linguistic representation model.

2.1 Approaches for Modelling Preferences
2.1.1 Fuzzy Binary Relations

A valued (fuzzy) binary relation R on X is defined as a fuzzy subset of the direct product
X x X with values in [0,1], i.e, R : X x X — [0,1]. The value, R(z;, ;) = pij,
of a valued relation R denotes the degree to which ;. In preference analysis, p;;
denotes the degree to which an alternative x; is preferred to z;. These were the first type
of relations used in decision making [10, 11].
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2.1.2 Interval-valued Relations

About the fuzzy binary approach has been argued that the most experts are unable to make
a fair estimation of the inaccuracy of their judgements, making far larger estimation errors
that the boundaries accepted by them as feasible [2].

A first approach to overcome this problem is to add some flexibility to the uncertainty
representation problem by means of interval-valued relations:

R:X x X — p([0,1]).

Where R(x;,z;) = p;; denotes the interval-valued preference degree of the alterna-
tive x; over x; . In these approaches [12, 15], the preferences provided by the ex-
perts consist of interval values assessed in ([0, 1]), where the preference is expressed
as [a,a;;, witha < @.

2.1.3 Linguistic Approach

Usually, we work in a quantitative setting, where the information is expressed by means of
numerical values., However, many aspects of different activities in the real world cannot
be assessed in a quantitative form, but rather in a qualitative one, i.e., with vague or
imprecise knowledge. In that case, a better approach may be to use linguistic assessments
instead of numerical values. The fuzzy linguistic approach represents qualitative aspects
as linguistic values by means of linguistic variables [18].

To use the linguistic approach we have to choose the appropriate linguistic descriptors
for the term set and their semantics. In the literature, several possibilities can be found
(see [7] for a wide description). An important aspect to analyze is the “granularity of
uncertainty”, i.e., the level of discrimination among different counts of uncertainty. The
"granularity of uncertainty” for the linguistic term set S = {so, ..., 8¢} is g + 1, while its
“interval of granularity” is [0, g].

One possibility of generating the linguistic term set consists of directly supplying the
term set by considering all terms distributed on a scale on which a total order is defined
[17]. For example, a set of seven terms S, could be given as follows:

S={so:N,s1:VL,sa:L,s3: M,sy:H, s5:VH, sg: P}

Usually, in these cases, it is required that in the linguistic term set satisfy the following
additional characteristics:

1. There is a negation operator: Neg(s;) = s;, with, j = g —i (g+1 is the cardinality).
2. s; < 85 <=1 < j. Therefore, there exists a min and a max operator.

The semantics of the linguistic terms are given by fuzzy numbers defined in the [0,1]
interval. A way to characterize a fuzzy number is to use a representation based on parame-
ters of its membership function [1]. The linguistic assessments given by the users are just
approximate ones, some authors consider that linear trapezoidal membership functions
are good enough to capture the vagueness of those linguistic assessments. The parametric
representation is achieved by the 4-tuple (a, b, d, ¢), where b and d indicate the interval
in which the membership value is 1, with a and ¢ indicating the left and right limits of
the definition domain of the trapezoidal membership function [1]. A particular case of
this type of representation are the linguistic assessments whose membership functions are
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triangular, i.e., b = d, then we represent this type of membership functions by a 3-tuple
(a, b, ¢). A possible semantics for the above term set, S, may be the following (Figure 1):

P=(8,1,1) VH=(67,.83,1) H=/(5,67,83) M=/(33.5,.67)
L=(17,.33,.5) VL=1(0,.17,.33) N =(0,0,.17)

| w | A \/
ANVAN
VARV

Figure 1: A set of seven linguistic terms with its semantics

Nal

2.2 The 2-Tuple Fuzzy Linguistic Representation Model

This model was presented in [5], for overcoming the drawback of the loss of information
presented by the classical linguistic computational models [7]: (i) The model based on the
Extension Principle [1], (ii) and the symbolic one [3]. The 2-tuple fuzzy linguistic repre-
sentation model is based on symbolic methods and takes as the base of its representation
the concept of Symbolic Translation.

Definition 1. The Symbolic Translation of a linguistic term s; € S = {so, ..., 84} is a nu-
merical value assessed in [—.5,.5) that support the "difference of information” between
a counting of information 3 € (0, g] and the closest value in {0, ..., g} that indicates the
index of the closest linguistic term in S(s;), being [0,g] the interval of granularity of S.

(From this concept a new linguistic representation model is developed, which repre-
sents the linguistic information by means of 2-tuples (r;, a;), r; € S and o; € [—.5,.5).
r; represents the linguistic label center of the information and «; is the Symbolic Trans-
lation.

This model defines a set of functions between linguistic 2-tuples and numerical values.

Definition 2. Ler S = {so, ..., sq} be a linguistic term set and 3 € [0, g] a value sup-
porting the result of a symbolic aggregation operation, then the 2-tuple that expresses the
equivalent information to (3 is obtained with the following function:

A:[0,9] — S x [-0.5,0.5)

e . s i = round(0)
A(B) = (si, a), with { a=0-i a€l-.5.5)
where round(-) is the usual round operation, s; has the closest index label to ”(3” and
"a” is the value of the symbolic translation.

Proposition 1.Let S = {sq,...,s4} be a linguistic term set and (s;, ) be a linguistic
2-tuple. There is always a A™! function, such that, from a 2-tuple it returns its equivalent
numerical value 3 € (0, g] in the interval of granularity of S.

Proof, It is trivial, we consider the following function:
A7l 8 x[-5,5) — [0,9]
A7(s50)=i+a=0

Remark 1. From Definitions 1 and 2 and Proposition 1, it is obvious that the conver-
sion of a linguistic term into a linguistic 2-tuple consist of adding a value 0 as symbolic
translation: s; € § == (s;,0)
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3 Aggregation Process for Heterogeneous Information in a GDM Problem

In this section we propose a method to carry out the aggregation step of a GDM process
defined in a heterogeneous information context. We focus on GDM problems in which
the preference relations provided, can be:

e Fuzzy preference relations [11].
¢ Interval-valued preference relation [15].

¢ Linguistic preference relation assessed in a pre-established label set [4].

Our proposal for combining the heterogeneous information is composed of the fol-
lowing phases:

1. Making the information uniform. The heterogeneous information will be unified
into a specific linguistic domain, called Basic Linguistic Term Set (BLTS) and sym-
bolized as St. Each numerical, interval-valued and linguistic performance value
is transformed into a fuzzy set in Sz, F(St). The process is carried out in the
following order:

(a) Transforming numerical values in [0, 1] into F(St).
(b) Transforming linguistic terms into F'(ST).
(c) Transforming interval-valued into F'(St).

2. Aggregating individual performance values. For each alternative, a collective per-

formance value is obtained by means of the aggregation of the above fuzzy sets on

the BLTS that represents the individual performance values assigned by the experts
according to his/her preference.

3. Transforming into 2-tuple. The collective performance values (fuzzy sets) are trans-
formed into linguistic 2-tuples in the BLTS and obtained a collective 2-tuple lin-
guistic preference relation.

Following, we shall show in depth each phase of the aggregation process.

3.1 Making the Information Uniform

In this phase, we have to choose the domain, Sz, to unify the heterogeneous information
and afterwards, the input information will be transformed into fuzzy sets in St.

3.1.1 Choosing the Basic Linguistic Term Set

The heterogeneous information is unified in a unique expression domain. In this case, we
shall use fuzzy sets over a BLTS, denoted as F(St). We study the linguistic term set S
used in the GDM problem. If:

1. Sis a fuzzy partition,

2. and the membership functions of its terms are triangular, i.e., s; = (a;, bi, ;)
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Then, we select S as BLTS due to the fact that, these conditions are necessary and suffi-
cient for the transformation between values in [0, 1] and 2-tuples, being them carried out
without loss of information [6].

If the linguistic term set S, used in the definition context of the problem, does not
satisfy the above conditions then we shall choose as BLTS a term set with a larger number
of terms than the number of terms that a person is able to discriminate (normally 11
or 13, see [1]) and satisfies the above conditions. We choose the BLTS with 15 terms
symmetrically distributed, with the following semantics (graphically, Figure 2).

so  (0,0,0.07) s1 (0,0.07,0.14) sz (0.07,0.14,0.21)
sz (0.14,0.21,028) sy (0.21,0.28,0.35) s5 (0.28,0.35,0.42)
se  (0.35,0.42,0.5) s7  (0.42,0.5,0.58) sg  (0.5,0.58,0.65)
sg  (0.58,0.65,0.72) s10 (0.65,0.72,0.79) s11  (0.72,0.79,0.86)
s12 (0.79,0.86,0.93) s13  (0.86,0.93,1) s (0.93,1,1)

Figure 2: A BLTS with 15 terms symmetrically distributed
3.1.2 Transforming the Input Information Into F(S7)

Once chosen the BLTS, we shall define the transformation functions that will be neces-
sary to unify the heterogeneous information. The process of unifying the heterogeneous
information involves in any occasions the comparison between fuzzy sets. These compar-
isons are usually carried out by means of a measure of comparison. We focus on measures
of comparison which evaluate the resemblance or likeness of two objects (fuzzy sets in
our case). These type of measures are called measures of similitude [13]. For simplic-
ity, in this paper we shall choose a measure of similitude based on a possibility function
S(A, B) = max, min(p,(z), up(z)), where 14 and g are the membership function of
the fuzzy sets A and B respectively.

3.1.2.1. Transforming numerical values in [0, 1] into F'(St).
Let F(St) be the set of fuzzy sets in St = {sg,...,S,}, we shall transform a nu-

merical value ¢ € [0, 1] into a fuzzy set in F(Sr) computing the membership value of ¥
in the membership functions associated with the linguistic terms of St.

Definition 3. [6] The function T transforms a numerical value into a fuzzy set in St:
7:[0,1] — F(St)
T(’l?) = {(503’70)5 erey (ngp)/g)}s §; € ST and%’ € [07 1]

0, if 9 ¢ Support(us,(z))
S-ai  jfg, <YL
¥i = ps, (¥) = fj“ ﬁdgﬁgm

ezl ifd, <9<

ci—dy’
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Remark 2. We consider membership functions, ps, (), for linguistic labels, s; € S,
that achieved by a parametric function (a;, b;, d;, ¢;). A particular case are the linguistic
assessments whose membership functions a triangular, i.e., b; = d;.

Example 1.
Let 9 = 0.78 be a numerical value to be transformed into a fuzzy set in § =
{s0, ..., 84}. The semantics of this term set is:

s0 =(0,0,0.25) s; = (0,,0.25,0.5) sz = (0.25,0.5,0.75) s3 = (0.5,0.75,1) s4 = (0.75,1,1)

o.78

Figure 3: Transforming a numerical value into a fuzzy set in S
Then, the fuzzy set obtained is (See Fig. 3):

7(0.78) = {(s0,0), (s1,0), (s2,0), (s3,0.88), (84,0.12) }.

3.1.2.2. Transforming Linguistic Terms in S into F'(St).

Definition 4.[9] Let S = {lo,...,l,} and St = {so,..., 84} be two linguistic term
sets, such that, g > p. Then, a multi-granularity transformation function, Tgs,., is defined
as:

Tssy : A— F(St)
Tssp(li) = {(ck,7}) / k€ {0,...,g}}, VI, € S

7i, = max, min{u, (), e, ()}

where F'(S) is the set of fuzzy sets defined in St, and py, () and i, () are the member-
ship functions of the fuzzy sets associated with the terms l; and cy, respectively.

Therefore, the result of 7gg,. for any linguistic value of S is a fuzzy set defined in the
BLTS, St.

Example 2.
Let S = {lo,l1,...,14} and ST = {s0, 81,..., 86} be two term sets, with 5 and 7
labels, respectively, and with the following semantics associated:

lo = (0,0,0.25) I, = (0,,0.25,0.5) so = (0,0,0.16) s1 = (0,0.16, 0.34)

l; = (0.25,0.5,0.75) I3 = (0.5,0.75,1) sy = (0.16,0.34,0.5) s3 = (0.34,0.5,0.66)

Iy =(0.75,1,1) ss = (0.5,0.66,0.84) s5 = (0.66,0.84,1)
s6 = (0.84,1,1)

The fuzzy set obtained after applying 7sg, for l; is (see Fig. 4):

Te5,(11) = {(50,0.39), (51, 0.85), (s2,0.85), (s3,0.39), (s1,0), (s5,0), (6,0)}.
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Figure 4: Transforming /; € S into a fuzzy set in St

3.1.2.3 Transforming Interval-Valued into F'(S7).

Let I = [i,4] be an interval-valued in [0, 1], to carry out this transformation we as-
sume that the interval-valued has a representation, inspired in the membership function of
a fuzzy set [12] as follows:

0, ifd<i
ur@) =4 1, ifi<9<i
0, ifi<?

where 9 is a value in [0, 1]. In Figure 5 can be observed the graphical representation of an
interval.

:
o N - 1

Figure 5: Membership function of I = [, 4]

Definition 5. Let ST = {so,...,s4} be a BLTS. Then, the function Trs transforms a
interval-valued I in [0, 1] into a fuzzy set in St as follows
TISp * I — F(ST)
Tise(I) = {(ck, ) / k € {0,...,9}}
i = maxy min{ur(y), e, (v)}
where F(ST) is the set of fuzzy sets defined in St, and p1(-) and u., (-) are the member-
ship functions associated with the interval-valued I and terms cy, respectively.

Example 3.

Let I = [0.6,0.78] be an interval-valued to be transformed into F'(St). The semantic
of this term set is the same of Example 1. The fuzzy set obtained applying 715, is (see
Fig. 6):

7157 = {(50,0), (51,0),(82,0.8), (83,1), (34,0.2)}
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Figure 6: Transforming [0.6,0.78] into a fuzzy set in St

3.2 Aggregating Individual Performance Values

Using the above transformation functions we express the input information by means
of fuzzy sets on the BLTS, Sy = {so,...,s,}. Now we use an aggregation function
for combining the fuzzy sets on the BLTS to obtain a collective performance for each
alternative that will be a fuzzy set on the BLTS.

For the heterogeneous GDM the preference relations are expressed by means of fuzzy
sets on the BLTS, as in the Table 1. Where pfj is the preference degree of the alternative
x; over x; provides by the expert eg.

Table 1: The preference relation

plfl ={(30771%(1;)’---1(39571i;)} pllcn:{(305’7%;1)7"-7(395711;)}
Pek = :
pﬁl :{(505’7/?01)»---,(597’7]?91)} me={(307’Y;?:)a---7(59771?:)}
We shall represent each fuzzy set, pfj, as rfj = (’y,’fo e ,'y,g ) being the values of

rfj their respective membership degrees. Then, the collective performance value of the

preference relation according to all preference relations provided by experts { rfj ,Vey}is
obtained aggregating these fuzzy sets. These collective performance values are denoted
as r;;, form a new preference relation of fuzzy sets defined in S, i.e.,

rig = (0 1Y)
characterized by the following membership function:
W= O )
where f is an “aggregation operator” and k is the number of experts.

3.3 Transforming into Linguistic 2-Tuples

In this phase we transform the fuzzy sets on the BLTS into linguistic 2-tuples over the
BLTS. In [9] was presented a function x that transforms a fuzzy set in a linguistic term
set into a numerical value in the interval of granularity of St, [0, g]:

x: F(Sr) —[0,9]
X)) = x({(s5:%), 5 =0,....9}) = zf— = 6.

Therefore, applying the A function to 8 we shall obtain a collective preference relation
whose values are linguistic 2-tuples.
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4 A GDM Problem Defined in a Heterogeneous Information Context

Let’s suppose that a company want to renew its computers. There exist four models of
computers available, {HP, IBM, COMPAQ and DELL} and three experts provide his/her
preference relations over the four cars. The first expert expresses his/her preference re-
lation using numerical values in [0, 1], P{*. The second one expresses the preferences by
means of linguistic values in a linguistic term set S (see Figure 1), Py. And the third
expert can express them using interval-valued in [0, 1], Pj. The three experts attempt to
reach a collective decision.

Tabllg:SZ: Preference relations

Py Pl

3
- 58 4 - H Y M - (7.8 657 [8.9]
5 ~ 9 5 H - H VH (7,8 - (6,7 [.8,.85]
8 9 — 4 VH H - VH (8.9 [6,.7] . [7,.9]
4 5 4 - M VH VH - (8,9 [8,.85 [7,.9) -

4.1 Decision Process
We shall use the following decision process to solve this problem:
A) Aggregation Phase

We use the aggregation process presented in Section 3.

1. Making the information uniform
(a) Choose the BLTS. It will be S, due to the fact, it satisfies the conditions
showed in Section 3.1.1.

(b) Transforming the input information into F(St). (e.g., see Table 3).

Table 3: Fuzzy sets in a BLTS

(0,0,0,1,0,0,0) (0,0,0,0,.19,.81,0) (0,0,.59,.41,0,0,0)

pno— (0,0,0,1,0,0,0) (0,0,0,0,0,.59,.41)  (0,0,0,1,0,0,0)
1 =1 (0,0,0,0,.19,.81,0) {0,0,0,0,0,.59,.41) - (0,0,.59,.41,0,0,0)
(0,0,.59,.41,0,0,0) (0,0,0,1,0,0,0)  (0,0,.59,.41,0,0,0) -

(c) Aggregating individual performance values. In this example we use as ag-
gregation operator, f, the arithmetic mean obtaining the collective preference
relation:

Table 4: The collective Preference relation.

- (0,0,0,0,.6,.27,0)  (0,0,0,.04, 4,.67,0) (0,0,.2,.47,.27,.33,.14
(0,0,0,0,.6,.27,0) - (0,0,0,.14, .67,.26,.14) (0,0,0,.33,.06,.67,.04)
(0,0,0,.04, .4, .67,0) (0,0,0,.14,.67,.26,.14) - (0,0,.2,.14, .27, .67, .14)
0,0, .2, .47,.27,.33,.14) (0, 0,0, .33, .06, .67, .04) (0,0, .2, .14, .27, .67, .14) ~
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2. Transforming into linguistic 2-tuples. The result of this transformation is the

following:
— (H,.31) (VH,—43) (H,-.18)
(H,.31) — (H,.33) (H,.38)
(VH,—-.43) (H,.33) — (H,.29)
(H,-.18) (H,.38) (H,.29) -
B) Exploitation Phase

To solve the GDM problem, finally we calculate the dominance degree for the alter-
native z; over the rest of alternatives. To do so, we shall use the following function:

1 n

where n is the number of alternatives and 3;; = A~1(p;;) being p;; a linguistic 2-tuple.
In this phase we shall calculate the dominance degree for this preference relation:

Table 5: Dominance degree of the alternatives

[ HP | IBM | COMPAQ | DELL |
((H2)[(H, 3] W49 |[(H.16)]

Then, dominance degrees rank the alternatives and we choose the best alternative(s)
as solution set of the GDM problem, in this example the solution set is { COMPAQ}.

5 Concluding Remarks

We have presented an aggregation process for aggregating heterogeneous information in
the case of numerical, interval-valued and linguistic values. This aggregation process is
based on the transformation of the heterogeneous information into fuzzy sets assessed in
a unique basic linguistic term set. And afterwards, these fuzzy sets are converted into
linguistic 2-tuples. The aggregation process has been applied to a GDM problem defined
in a heterogeneous information context.

In the future, we shall apply this aggregation process to other types of information
used in the literature to express preference values as Interval-Valued Fuzzy Sets and Intu-
itionistic Fuzzy Sets.
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Abstract

In this paper, we show a possible application of fuzzy rough sets to function approxi-
mation based on decision tables. Through this study, we demonstrate that continuous
attribute values can be treated by fuzzy rough sets. A general approach for reasoning of
decision attribute values from condition attribute values based on a given decision table is
presented. A specific method in one dimensional case is discussed and some properties of
the method are shown. Some modifications are applied for getting a better approximation
and a smaller body of rules.

Keywords: Fuzzy rough sets, approximation, continuous attribute, inference

1 Introduction

Rough sets [1] have been well applied to analyze information tables. By the method-
ologies based on rough sets, we can find the reduced information tables without losing
the accuracy of the object classification, and the minimum descriptive decision rules [2].
These methodologies are effective mainly when attribute values are discrete. To treat con-
tinuous attribute values, some discretization is necessary. Thus these methodologies are
not good at extraction of continuous functions implicit in given information tables.

Recently rough sets are generalized in various ways. Yao and Lin [3] has shown
the correspondence between rough sets and Kripke model of modal logic, and general-
ized rough sets by extending equivalence relations to various relations from viewpoint of
the correspondence. Stowinski and Vanderpooten [4] have discussed rough sets under a
similarity relation which satisfies the reflexivity only. Greco et al. [5][6] have proposed
rough sets under a dominance relation. Yao [7][8] and Inuiguchi and Tanino [9] have also
investigated the extensions of rough sets.

On the other hand, rough sets under fuzzy relations were discussed from relatively
long ago [10][11]. However fuzzy rough sets have never been applied to analysis of
information tables so far. Recently a new type of fuzzy rough sets has been proposed
by Inuiguchi and Tanino [12]. It is shown that this new fuzzy rough sets give better
approximations than the previous fuzzy rough sets [12].

Those generalizations reveal that several interpretations can be applied to rough sets.
At the current, two interpretations are proposed, i.e., rough sets as classification among
positive, negative and boundary elements, and rough sets as approximations of a set by
means of elementary sets derived from a given relation [12]. The purpose of the applica-
tion can be distinct depending on the interpretation of rough sets. Since the definition of
rough sets is different by the interpretation, the application methods can also be different.
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For the treatment of continuous attribute values, fuzzy rough sets would be useful
since it might produce fuzzy if-then rules from the given information table and fuzzy if-
then rules might be capable of interpolative reasoning. In order to produce fuzzy if-then
rules for interpolative reasoning, we should apply the second interpretation of rough sets,
i.e., rough sets as approximations of a set by means of elementary sets since by the first
interpretation we will not obtain rules for all elements but only for positive and negative
elements. While the traditional fuzzy rough sets are based on the first interpretation, the
new fuzzy rough sets proposed by Inuiguchi and Tanino [12] are based on the second
interpretation.

In this paper, we discuss the treatment of continuous attribute values by fuzzy rough
sets proposed by Inuiguchi and Tanino [12]. For the first step of the research, we discuss
the approximation of a continuous function by means of fuzzy rough sets when some data
about the function is given. In the next section, we describe fuzzy rough sets briefly. Then
we propose an interpolative reasoning method derived from fuzzy rough sets in Section 3.
We will show the correspondence between fuzzy rough sets and fuzzy if-then rules. A
specific construction of fuzzy rules from a given information table (data) is discussed
in Section 4. Some properties of the specific method are shown. A simple example
of approximation of a function by means of fuzzy rough sets is given. In Section 5,
modifications are proposed for getting a better approximation and for minimizing the
number of rules. Concluding remarks are described in Section 6.

2 Fuzzy Rough Sets

Fuzzy rough sets are originally defined by Dubois and Prade [10] (independently, Naka-
mura [13] also defined fuzzy rough sets in a different way). In this definition, the lower
and upper approximations are defined by necessity and possibility measures. The fuzzy
rough sets are defined by pairs of lower and upper approximations. This definition is valid
only when a fuzzy similarity relation is given. Recently, Inuiguchi and Tanino [12] de-
fined a new type of fuzzy rough sets based on certainty qualifications. This type of fuzzy
rough sets can be defined even if a family of normal fuzzy sets is given. Moreover the
new fuzzy rough sets provide better lower and upper approximations.

In the original fuzzy rough sets, membership function values of lower and upper ap-
proximations show the degrees to what extent elements are included in positive and pos-
sible regions of the given set, respectively. On the other hand, in the new fuzzy rough
sets, lower and upper approximations are best approximations, i.e., largest and smallest
fuzzy sets which take the same necessity degrees as a given fuzzy set takes. Thus the new
fuzzy rough sets will be useful for approximate reasoning such as interpolative reason-
ing while the original fuzzy sets will be useful for robust reasoning or for reasoning all
possible conclusions. For the approximation of a continuous function implicit in a given
information table, interpolation is necessary. We use the new fuzzy rough sets introduced
below.

Let F = {F1, F,,... , F,} be a family of fuzzy sets F; such that there exists w €
satisfying pp, (w) = 1, where pu, is a membership function of F; and Q is a universal
set. Then, given a fuzzy set A C 2, lower and upper approximations of A are defined as
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Table 1: Properties of Fo(A) and F°(A)

() Fao(4) € X C Fi(4)
() Fa(@) =0, F°(Q) =0
(ili) Fo(ANB)C Fa(A)NFa(B), FO(AUB) D F°(A)UF°(B)
(ivy A C Bimplies Fo(A) C Fa(B), A C Bimplies F°(A) C F°(B)
V) fD(AuB)Df-D( YUFa(B), F°(ANB) C F°(A)NF°(B)
i) Fa(-X)=Q-F%4), F°(Q-X)=Q-Fa(4)
(vi)  FolF ( )) = Fo(4), Fo(A) C FO(Fa(4)) C F°(4),

FOFO(A) = FO(A), FO(A) 2 Fa(F°(4)) 2 Fa(4)

follows (see Inuiguchi and Tanino [12]):

pra(a)(@) = _max E[I](ur(2), Nr(4)), ¢
Hroay @) = _min  n(ll(ur (), Nr.(2 - A)), ©)

where I : [0,1] x [0, 1] — [0, 1] is an implication function satisfying

(I1) I(1,0) =0and I(0,0) = I(0,1) = I(1,1) = 1,
(12)I(cb)<I(ad)1f0<a<c<1and0§b d<,
(I3) 1 is upper semi-continuous.

n: [0,1] — [0, 1] is a strong negation, i.e., a strictly decreasing function such that n(0) =
1and n(n(a)) = a. £[I], N, and Q — A are defined by

€la,b) = int (k| I(ah) 2 B} ®
Nr(4) = inf T(ur, (), ma(), @
br-4(0) = ). )

A fuzzy rough set is defined by a pair of the lower and upper approximations.
The lower approximation Fz(A) and the upper approximation F© ( A) have properties
listed in Table 1.

3 Inference on Function Value from Information Table

We assume an information table is given. Let X = {z1,z2,... ,Zm,y} be a set of at-
tributes. We divide the attributes into two groups: an attribute y composes a group and
the remaining attributes compose the other group. Thus the information table is regarded
as a decision table with criteria z1, za, ... , z,, and a decision attribute y. Moreover we
assume that attribute values of z;, 7 = 1,2,...,m and y are continuous, i.e., real num-
bers. The structure of the decision table is shown in Table 2. For the sake of simplicity,
x;(w) and y(w) denote the z;- and y-values of an object w.

Let V,, and V,, be sets of possible attribute values of x; and y, respectively. Let
z(w) = (z1(w),22(w), - ,zm W) T and & = (22,%},...,%0,)T. To apply fuzzy
rough sets described in the previous section, we should define a family of fuzzy sets
F={F,F,,...,E}onV,, xV,, x---xV, andfuzzysetsY;onV,,i=1,2,... ,¢q
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Table 2: The structure of the decision table

object } 1 x3 -+ Ty | Y
T =1 T 1

Wi (El CL‘2 Im y2
=2 =2 =2 | =

wo z¢ 75 zo, | @
W, Xt ozy o x| g

The interpolative reasoning from Table 2 will be based on the following rules:

if (w) is near @ then y(w) is near y?, j = 1,2,... ,n. 6)
We appropriately define a fuzzy set F} so as to represent ‘near &7’ j =12...,n Sim-
ilarly, we appropriately define a fuzzy set Y} so as to represent ‘near y?’, j = 1,2,... ,n.

Let F’j and YJ be fuzzy sets of objects on Q = {w1,ws, ... ,wn} defined by

/.Lp((..d) = KF; (:c(w)), (N

J

py, (W) = py, (y(w)). @®)

Then we obtain a lower approximation Fn (f@) for each Y] as
iy (@) = _max €l1] (g, (@), Ni (%) - ©

However to obtain F(Y;) we should calculate Nﬁi(f’j), i =1,2,...,n. This will be

computationally expensive and we expect Ny (Y;) = 0 for ¢ # j in many cases. From
this point of view, we use the following simple lower approximation F (Yj):

by (@) = €] (g, (), Vg, (7)) (10)
Obviously, we obtain
E) € Fol¥y) C ¥ an

-

Note that each F(Y}) corresponds to a rule in (6).
Using the lower approximation F (}A’j), for any z(w) = x*, we know that y(w) has
the membership degree to Y; more than u Y, y(w). Namely, we have

y(w) € [}/j]uz(yj)(w)a j= L,2,...,n, (12)

where [Y]],, is an h-level set, i.e.,

Yiln ={y € R | py;(y) 2 h}. (13)
By (12), we may estimate y(w) as
) €Y@ = ) Wl (14)

j=12,..,n
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In the way described above, we can infer the range of y(w) as Y (w) defined in (14).
However, there is no guarantee that Y'(w) # 0. It is said that rules (6) are consistent at
z(w) if and only if Y (w) # 0. Moreover, it is said that rules (6) are globally consistent if
and only if rules (6) are consistent at any w € §2. Note that even if rules (6) are globally
consistent, the estimation of y(w) based on rules (6) is not always precise, nor exact,
Namely we may have |Y (w)| > 1 and y(w) ¢ Y(w).

4 A Specific Method
In the previous section, we described an inference mechanism based on fuzzy rough sets.
To actualize this inference, we should determine I, F; and Y;, i = 1,2,... ,n, concretely.
This section is devoted to this topic.

First of all, we use an arbitrary implication function I satisfying

(14) there exists i € (0, 1] such that I(a, b) > h if and only if a < b.

Then we have
£[1(a,h) = a. (15)

Gaodel, Lukasiewicz, Goguyen implications and more generally, R-implication functions
[14] defined by t-norms satisfy (I4) with h = 1. Moreover, implication functions proposed
by Inuiguchi and Tanino [14] satisfy (I4) with h =0.5.

We define F; by

pr (@) = ni((x*)), * € Vo, X Vo X - x Vg, (16)

where 7; : [0,400) — [0, 1] is a quasi-concave function such that n(¢/(Z%)) = 1 and
Iy qoo mi(r) = limy—_comi(r) = 0. ¥ : R™ — R is a continuous scalarizing
function such that ¢(0) = 0 and ¢(ry) > 1(rs) if 71 > ry. For example, we may define
7i(r) = max(1 — |r|/d,0) and (x) = Y ., z;, where d is a positive number showing
the degree of tolerance.

Consider points (v, p),i=1,2,...,n,j = 1,2,... ,n defined by

vi=v,  pl =g (@), hY), an

where i’ € (0,1] is a predetermined value. By definition, y} = 1 and pl < 1,7 #1i We
define v},i=1,2,...,n,7=1,2,... ,nby

| 0, ifj=i,
vl = _1-—_/;5, otherwise. (18)
v -y}
Foreachi € {1,2,... ,n}, we define
Jo={ie{1,2,...,n} |4 >0and Fk; vF <] andyf <yl}, (19)

Jr={je{l,2,...,n}| 1 >0and Zk; vF <} and yf >/} (20)
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We also define . and uj’ by

[ min{g |je I}, ifJ7#0,
P = { 1, if J7 =0, @b
+_ [ min{g |je JF}, ifJF #0, 0y
H; ‘_ { 1, if J1+ — 0, ( )

Renumber elements of a set {y/ | j € J;” U J;"} so that we have yi"'(l) < yf"m <
e < yfi(s"). We may have {j;(k) | k =1,2,...,s;} C J7 UJ; because we may have
yfl = yfz for k; # ky and ky, ko € J U JiF. We have pfl = ufz if yfl = yfz. Then
we define Y; by the following piecewise linear membership function:

p — €, if y* < yiv"(l),

(v =l + @l -yl

o 3(1) * 7(2)
FIONEIE ify; " <y <y,
; )

Y;
wnly’) = j(si—1)y, 3(s:) (s4) j(s:—1)
* §i— 85 83 * i
(v* — vy} )] N (7 =y )i
(s j(si— (84 j(si—1 ’
ylo0) — gt y (3 i ),( ) o
. i * 84
iyl <yt <yl
+ _ f * ji(si)
p =€, ify* >y,

(23)

where € > 0 is theoretically an infinitesimal nonstandard number, i.e., a number greater
than zero yet smaller than any positive real number. However, in practice, we set € as a
very small positive real number. X

Under the setting above, we have N £, (Y;) = A%, i = 1,2,...,n. Under certain
conditions, we guarantee the global consistency as shown in the following theorem.
Theorem 1. If ] satisfies (14), F; is defined by (16) with a convex function 7; and Y is
defined by (23) with h* = h,i =1,2,... ,n, then rules (6) are globally consistent.

The next theorems will be used for getting a minimal number of rules which are exact
atany z(w;),1=1,2,...,n.
Theorem 2. If there exist 4, j € {1,2,...,n} such thatk € J N J, then Y (wi) =
{v*}.
Theorem 3. If |J;"| > 1and |[J7| > 1fori, j € {1,2,...,n}, then Y(w) is bounded
for any object w such that pp, (z(w)) > p; and pp, (@(w)) > p7 .
Example 1. Let us apply the proposed method to a decision table given in Table 3 with
two attributes z (criterion) and y (decision). We use x instead of z; since we have m =1
in this example. Actually those data are obtained by a function y = z3 —9z with randomly

generated z in the range [—7, 7]. Thus we try to approximate a function y = z* — 9z using
fuzzy rough sets based on Table 3.



Table 3: A Simple Decision Table

object x y
wy 5.850633977 | 147.6110151
wo 4.5555777 53.54301755
w3 4.036283714 | 29.43091069
wy 2937410143 | -1.09160521
ws 0.821639766 | -6.840075536
we | -0.694559623 | 5.915971966
wr | -2.956441836 | 0.767053774
wg -4.575922623 | -54.63225069
wy -5.08668439 | -85.83453386
wio | -6.711483266 | -241.908754
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We define ;(r) = max(1 — |r|/5,0) and ¥(z) = z. Thus we obtain triangular fuzzy
numbers F;, ¢ = 1,2,...,10. By (23), we can calculate each Y; with a piecewise linear
membership function.

For the obtained rules, J;~ and J;" are as follows: J = {1,2,3,4}, Ji = {1}, J; =
{2,3,4,5}, Jf = {1,2}, Jy = {3,4,5}, Ji = {1,3}, J; = {4,5}, JS = {L.4},
Jy = {5}, J& = {2,5}, Jg = {6,8}), J& = {3,6}, J; = {7,10}, J& = {6,7},
Jg = {8,10}, J& = {6,7,8}, Jgy = {9,10}, J& = {6,7,8,9}, J;; = {10} and
Ji = {7,8,9,10}.

For w € [-6.5,5.5], we estimate y(w) by (14). The upper and lower bounds of
Y (w) are depicted as ‘estimatd upper curve’ and ‘estimated lower curve’ in Figure 1. In
Figure 1, the curve y = 23 — 92 is also depicted. We can see that the obtained rules are
globally consistent.

5 Modifications

5.1. Improving the approximation

Even when the assumptions of Theorem 1 is satisfied, the approximation is not very good

as shown in Figure 1. From Theorems 2 and 3, we expect that the approximation will be

improved by increasing |.J;"| and |J}F| fori = 1,2,...,n. To increase |J; | and |J;|,

we may update 7; so as to satisfy 7;(¥)(27)) = py, (%), for all j such that pg, (Z7) > 0.

Because F; means ‘near Z*’, 7; should satisfy 7;(¢(Z7)) < n:(¢(2*)) for j and k such

that Y(27) < P(a*) < P(&) or Y(&) > ¢(z*) > (&*). Taking into account this

requirement, 7; can be updated by the following procedure.

(@ Let 7 : {1,2,...,n} — {1,2,...,n} be a permutation such that »(z"(1)) <
P(@"?) < - < (&™), Let i* be an index such that 7(5*) = i.

(b) Setk=1and vy = 1.

(©) If n;((z™+5))) < 0 then go to ().

@) v, = min(vg-1, py; (7).

(e) Update k£ = £ + 1. Return to (c).

) Setk = —1.

(@ If n;(x(27 +5))) < 0 then go to (f).

(h) v = min(vgs1, py, (76 +9)).
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Figure 1: Y(w) forw € [~6.5, 5.5]

(i) Update k = k — 1. Return to (g).
(3) ms 1s updated by (24).

(v = vk ) (@™ — 1)
w(i:rr(i"—f-k ) w(m‘lr i* +k+1))
ni(r) = if 3k;r € ((&7C D), (@7 D)), 24
vk, if ke = P@ETEER),
n:(r), otherwise.

Vg —

When assumptions of Theorem 1 are satisfied, we have the following theorem.

Theorem 4. If assumptions of Theorem 1 are satisfied then rules (6) are globally consis-
tent with the updated n;,7 = 1,2,... ,n

For rules (6) with modified n;’s, we have the following theorem.

Theorem 5. lLet m = 1. Assume that :v{ j = 1,2,...,n are all different one
another, that each 7; is linear in the range (0, 1) and that assumptions of Theorem 1
are satisfied. Then, for rules (6) with updated 7;’s, the following assertion is valid: if
the function implicitly in decision table is monotonously increasing or decreasing, then
for w with 2 (w) € [ming=12,. %, maxi=12,. »2) Y(w) = {y“(z1(w))}, where
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Figure 2: Y (w) from the modified rules

y¥ : [mini—12. . 2%, maxi—1 2 i) — R is a piecewise linear function defined by
(xi(2) . T)yi(l)(,,. _ xi(l))yz‘@) 1 (2
L : 1 ifxz()<r§wl()
i(2) i(1) ’ 1= 1o
T T
yL(r) R (25)
(2™ = )y =D — Dy in)
iy _i(n=1) , ifay srszp,
Ty ' T
where {z] | j = 1,2,...,n} are renumbered so that we have mi(l) < a:i(z) < <
i(n)
zy .

Example 2. Let us apply the modification to the rules obtained in Example 1. The results
are depicted in Figure 2. J; and J;© are obtained as follows: J; = {1,2,3,4}, J; =
{1}, Jy =1{2,3,4,5}, J7 = {1,2}, J; = {3,4,5}, J5” = {1,2,3}, J; = {4,5},
Ji ={1,2,3,4}, J5 = {5}, J& ={2,3,4,5,6}, J; = {5,6,7,8,9}, J& = {3,6},
Jr = {7,8,9,10}, J7 = {6,7}, J; = {8,9,10}, J& = {6,7,8}, J; = {9,10},
Ji = 1{6,7,8,9}, J;; = {10} and J;§ = {7,8,9,10}. |J; | and |J;"| are increased.
As is shown in Figure 2, the approximation is improved. Moreover, we can see that the
monotonous parts of the function is approximated by linear interpolation.

5.2. Minimizing the number of rules

There is no guarantee that all of the obtained rules are indispensable. The obtained rules
may include some superfluous rules. In this subsection, we select indispensable rules from
the obtained ones under the restrictions that we can reproduce the given data precisely
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and we obtain a bounded Y (w) for any z(w) such that ¢(z(w)) € [min=1,... » ¥(Z°),
max;=1,... n Y(&%)].

To do this, Theorems 2 and 3 should be applied. We define the following two kinds of
index sets:

Plky={i|keJ}, Mk)={ilkeJ }. (26)

From Theorem 2, if |P(k)| = 1 (resp. |M (k)| = 1), we cannot reproduce the k-th
data unless we select the only element in P(k) (resp. M (k)). On the other hand, from
Theorem 3, we can observe that even if there exists ¢, j such that k € P(i) and j € N(j)
for any k € {1,2,...,n}, we may have unbounded Y (w) for some x(w) such that
PY(x(w)) € [mini=1,.. » (&), maxi=1, . »¥(2")] if there is no J; (resp. J;7) such
that k € J;F (resp. k € J7)and |J;7| > 1 (resp. |J; | > 1) forsome k € {1,... ,n}.
Considering those facts, we can select the rules by the following procedure, where we
suppose that the obtained n rules can reproduce the given data precisely and produce a
bounded Y (w) for any &(w) such that ¥(z(w)) € [min=1,... » ¥(&*), max;=1,... n ¥(Z%)].

(@) Let N = {1,2,...,n}. Calculate P(k) and M(k), k € N. For k € N, calculate
{7(k) = min (2 D a (k) = max y(z"),

tedy 1€Jy,
I*(k) = min ("), ¢* (k) = max ¢(2").
ieJ ieJy

Let KP=KN = Nand RP = RN = [minj=1,2,.. » 7 (i), maxi=1,2,.. n g (?)].
(b) Let R = {k | P(k) = {k} or M (k) = {k}}. Update N by N = N\R.
(¢) Update KP, KN, RP and RN by
KP=KP\R, RP = RP\ | J{I*(k),q" (k)],
kER
KN =KN\R, RN = RN\ U (1= (k),q~ (k)]
kER
(d) If KP= KN = 0 and RP = RN = 0 then terminate the algorithm. The members
of R are indices of selected rules. Let [RP = {i | (&) € cl(RP)} and IRN =
{i | (&) € l(RN)}.
(e) Foreach k € N, calculate
Q(k) ={i] %ﬁ(i (RPN [I*(k),q" (k)])},
= {i| (&) € A(RN N [I7(k),q" (K)])}.
(f) For each k € IRP calculate PP( ) = {j | k € Q(j)}. Foreach k € IRN,
calculate MM (k) = {j | k € L(j)}

(g) Select a set Z with minimum cardinality from {P(k) | k € KP} U {M(k) | k €
KP}yU{PP(k) | k € IRP}U{MM(k) | k € IRN}. Select k € Z lexico-
graphically maximizes (|KPNJF |+ |[KNNJ; |+ |Q( )+ |L(k)|, min(|[KP N
TEL KN 0 T LIQWL LK), 1|+ U7 min(lJE ], 5 1), ). Update R,
RP and RN by

R=RU{k}, RP = RP\[I*(k),q" (k)] and RN = RN\[I"(k), ¢~ (k)].

Retumn to (d).



103

100 |- estimated

upper

n
S
T

estimated
lower -100[

-150

=200 -

-250 -

Figure 3: Y (w) from the modified rules

Example 3. Applying the algorithm above to the rules obtained in Example 2, rules 1,
3,5, 6, 8 and 10 are selected. The results of approximation is depicted in Figure 3.

6 Concluding Remarks

In this paper, we showed that we can approximate a continuous function implicit in
a given decision table by fuzzy rough sets. This fact shows a possibility of treatment of
continuous attributes in decision tables by means of fuzzy rough sets. Moreover, as the
first attempt, we proposed a specific method to obtain globally consistent rules. Some
properties of the method are examined. Based on the properties, we may design an al-
gorithm to obtain globally consistent rules which estimate values correctly for given data
with a minimum number of rules.

The application of fuzzy rough sets to approximation of a continuous function implicit
in decision table has just proposed and it is still at a very beginning stage. There are a
lot of open problems we should tackle. For example, in the proposed specific method,
we implicitly assume that multiple attributes x1, xa, ..., T, can be aggregated to one
value by a function ¢. This assumption is very strong. We should consider other specific
methods introducing a distance function or a similarity measure. Moreover, to obtain
a better approximation, we may introduce the change rates of decision attribute values
which can be calculated from a given decision table as a decision attribute.
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Abstract.

This paper discusses the problem of applying knowledge to guide the evaluation of
queries. The objective is to apply common or domain-specific knowledge covering the
content of an information base in connection with the evaluation of queries to the base.
Two main issues are considered; the derivation of measures of similarity for properties
from an ontology in the knowledge base and further the initiation of object similarity
partly based on property similarity and partly on knowledge from the complementary
knowledge base.

Keywords: Fuzzy Aggregation, Knowledge-based Query-evaluation, Ontology

1 Introduction

The principle of knowledge-guided query evaluation described in this paper is
considered in the context of an approach to ontology-based querying, where the
employed knowledge base contains domain-specific knowledge comprising a dictionary
and an ontology for a given domain.

The general idea with this line of evaluation is to assimilate applicable knowledge
during the evaluation to guide and improve this process. We consider two directions for
application of knowledge — query transformation and similarity-based relaxation.

A query, which is initially assumed to be posed as a list of words, either unstructured or
forming natural language expressions, is transformed into a structured expression based
on linguistic knowledge and knowledge about words and concepts of the domain.
During the evaluation of the query, measures of similarity for words and concepts are
applied to obtain answers that include not only what is strictly reflected by the query,
but also what can be considered similar to this.

The approach applies so-called descriptions derived for database objects as well as for
queries. A description is an intermediate representation of the “content” derived as
described above. In principle querying is performed by transforming into descriptions
and evaluating through comparison at the level of these descriptions.

The approach described in this paper is developed as part of the OntoQuery project [4,5]
funded by the Danish Research Agency under the Information Technology Program.

2 Descriptions, the knowledge base and queries

This paper is related to the project OntoQuery [4,5] where the issue is querying to an
information base that contains unstructured text documents, thus we are concerned with
an information retrieval approach. A central aspect of the approach is that descriptions
are created as intermediate representations of “content”. A description is a set of
descriptors describing a text fragment. For a text fragment, e.g. a sentence, a simple
form description expresses the content by means of a set of words from the sentence.
The approach is however concept rather than word based and the set of words is only a
special case.
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Descriptions have the general form:

D={Dy, ..., Dy}
where each descriptor D; is a set of concepts. A concept is an expression in the OntoLog
language [10], where words and concepts can be combined into new concepts by means
of semantic relations.
To generate descriptions, text fragments are prepared by a parser that employs the
knowledge base. The parser can in principle scale from a simple word recognizer to a
complex natural language parser that maps the full meaning content of the sentence into
an internal representation. Since the issue here is IR the idea is of course to grab
fragments of content rather than representing full meaning and the building stones are
concepts. The structure of descriptions should be understood considering this aim.
The approach to description generation in the OntoQuery project is a subject to ongoing
development. In the present state descriptions are generated as follows.
A tagger identifies heuristically categories for words. Based on tags and a simple
grammar, a parser divides the sentence by framing identified noun phrases (NPs) in the
sentence (producing a markup in the sentence identifying beginnings and endings of
NP-fragments of the sentence). For each part of the sentence, corresponding to an NP, a
descriptor is produced as a set of concepts, that is, a set of expressions in the applied
concepts language (OntoLog). A concept produced in this second parse of the sentence
have the form of a lemma (a word mapped into lemma form) or a combination of
lemmas by semantic relations of the language (such as WRT ~— with respect to, CBY —
caused by, CHR - characterized by, ...). Words and concepts that pass through to the
description are only those that can be recognized in the knowledge base. Apart from a
dictionary of words and morphological forms, the knowledge base includes an ontology
relating words and concepts by a number of different relations. Semantic relations
combine, as mentioned, words and concepts. The most central relation is concept
inclusion (ISA) by which a central lattice of concepts is formed. Further relations as
partonomy and association can also be introduced in the ontology.

Take as an example the sentence:
“Hasty postmen sometimes get serious injures from dog bites”

A description in a simple form without taking into account the framing of NP’s in the
sentence could be:
(hasty), (postman), (serious), (injure) , (dog), (bite)

With the framing of NP’s the descriptors can be gathered giving the description:
(hasty, postman), (serious, injure) , (dog bite)

When also employing the semantic relations the descriptions can be enriched into for
instance the following:
(postman CHR hasty), (injure CHR serious CBY dog bite)

Descriptions are obviously not unique. The resulting description from parsing a
sentence depends on a number of different circumstances. Most important are the actual
framing into noun phrases, the point of detail that the second-level (semantic) parser
gather concepts and the domain-specific part of the knowledge base (that direct
descriptions towards more domain-specific concepts).
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This line of description generation is an important aspect of the OntoQuery project as
explained in [4, 5, 9, 10].

Queries and objects in the database are preprocessed in a similar manner leading to
descriptions, thus querying becomes a matter of comparing descriptions. This approach
does not eliminate the possibility to pose queries in the typical (and more convenient)
fragment style rather than in a full form natural language style. The fragmentation in the
generation of descriptions may well lead to the same description regardless of whether a
full form query like:

“Is it so that hasty dogs sometimes get injures from heavy traffic?”
or a fragment-style query like:

“hasty dogs, injures from heavy traffic?”
is posed. One possible resulting description could be:

(dog CHR hasty), (injure CBY traffic CHR heavy)

3 Querying as similarity evaluation

Querying in general is driven by query evaluation, where an answer is produced through
comparing the query with objects from the information base. The answer can be
considered to be a collection of the objects from the information base that are the most
similar to the query according to the means of similarity exploited by the evaluation.
The query can be considered to be an indication of the “ideal object”. The comparison
measures, in principle for each object of the information base, the degree to which it is
similar to the “ideal object” indicated by the query.

The issue of query evaluation may thus be seen as a matter of exploiting measures of
similarity between information base objects — in a uniform manner information base
objects and the query are mapped into object descriptions and the answer is produced
through measuring similarity between these object descriptions.

The similarity evaluation view on the query processing applies regardless whether the
information base is a conventional database, a base of documents of an information
retrieval system or a collection of pages on the web.,

While object similarity measures in rare cases may be available directly as independent
measures, it is more common to obtain these as derived from property similarity
measures. A typical query states compound constraints in the properties of objects. A
relational database query combines properties of set membership and attribute values
such as ‘part where weight=17’, where objects that have the property of being member
of the relation part and the property of having the value 17 for the attribute weight are
queried. A simple information retrieval query lists a number of words as being
conjunctive properties of the ideal object. Similar objects to the query ‘hairy dogs’ are
objects that includes both words. Natural language information retrieval can be regarded
as retrieval where not only words but also concepts are properties, thus an object
embedding the phrase ‘the hairy owner of the red dog’ is not necessarily among the
most similar to the query ‘hairy dogs’, because the latter is considered to indicate the
concept of dogs that are hairy.

In most cases there is an intrinsic derivation of object similarity from property similarity
~ similar objects are objects with similar properties. A query embedding a number of
property constraints describes an ideal object that fulfills these constraints. The answer
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to the query is the information base objects that have the properties described in the
query.

Measuring similarity for crisp querying is in most cases a very simple matter. Similar
objects are objects that strictly resemble the properties of the query. If property
similarity is expressed as a truth value then the object similarity is derived from
aggregating the property similarity values according to the logical connectors
combining the properties in the query'.

The softening of the query process goes in two directions. The property similarity may
be relaxed. For instance, when distance measures can be defined on the property
domains, the crisp similarity can be generalized to relate as similar values also values
that are close according to the defined distance.

The object similarity may be relaxed — that is, the aggregation of the query properties
may be softened. As a simple example, in a conjunctive list-of-properties query this
could correspond to a preference of most of the properties rather than an insistence on
all. However when property similarity is relaxed far more advanced object similarity
relaxation possibilities appears.

4 Property similarity

As indicated above the ontology in the knowledge base is assumed to explicate various
relations between concepts. We consider below how such relations may contribute to
similarity. Apart from hyponymy (concept inclusion) we briefly discuss the relations
synonymy, partonomy and association. All of these contribute directly to similarity
between concepts. Moreover we consider the semantic relations, used in forming
concepts in the ontology. These indirectly contribute to similarity through subsumption.

Hyponymy

Until now the main concern in the OntoQuery project has been the hyponymy or
concept inclusion relation. For this relation we should intuitively have strong similarity
in the opposite direction of the inclusion (specialization), but also the direction of the
inclusion (generalization) must contribute with some degree of similarity.

Take as an example the small fraction of an ontology in figure 1.

G (>

Figure 1: Inclusion relation (ISA) with upwards reading, e.g. dog ISA animal

' Queries as lists of properties with no explicit logical combination of properties
typically indicate the conjunction of the properties listed in the query.
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Based on this the term dog could be expanded to for instance the set:
dog+ = 1/dog + 0.9/poodle + 0.9/alsatian + 0.3/animal
reflecting that more general terms are less similar.

While the hyponymy relation obviously is transitive (e.g. poodle ISA animal), a
similarity measure based on this should reflect ‘distance’ in the relation, where greater
distance — longer path in the relation graph — corresponds to smaller similarity. For
instance an expansion of the terms animal and poodle into sets of similar values could
be:

poodle + =1/ poodle + 0.3/ dog + 0.27/alsatian +0.09/animal+ 0.081/cat

animal+ = 1/animal + 0.9/cat + 0.9/dog + 0.81/poodle + 0.81/alsatian

If we in the knowledge base can distinguish explicitly stated, original references from
derived, then we can define a (non-transitive) relation ISA~ as consisting of these (such
that ISA becomes the transitive closure of ISA~) and measure similarity from distance
(minimal path-length) in the ISA~ graph.
A similarity function simygs based on distance in ISA~ dist(X,Y) should have the
properties:

sim: UxU — [0,1], where U is the universe of terms

sim (X,Y)=1 only if X=Y

sim(X,Y) < sim(X,Z) if dist(X,Y) < and dist(X,Z)
Based further on two factors o and y expressing costs of specialization and
generalization respectively, we can define a simple similarity function as follows.
If there is a path from nodes (terms) X and Y in the hyponymy relation then it has the
form

P=(R,,F) with X= P, and Y= P, and either
P, ISA~ Py, or P, ISA~ P, for each 1

Given a path P =(B, --,P,) set s(P) and g(P) to the numbers of specializations and
generalizations respectively along the path P thus:

s(P)=|{p 1S4~ P.,| and «(P)=|{{P., IS4~ B)

1

If P',..., P™ are all paths connecting X and Y then the degree to which Y is similar to
X can be defined as

sim(X,Y)=min,_ _, {a“”” 1P }

.....

Notice that the examples given above on expanding to sets of similar values can
If there is no means to determine explicitly stated references in the knowledge base then
ISA~ can be derived as the transitive reduction of ISA.

Synonymy

Synonymy obviously implies strong similarity. A synonymy relation is rarely transitive
and typically not reflexive. If the knowledge base includes a non-transitive, non-
reflexive synonymy relation similarity based on this can be defined using a constant
factor:
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sim(X,Y)=¢ if Y is a synonym for X

Partonomy

Partonomy, as exemplified in figure 2, is in general difficult to measure in terms of
degrees of similarity. Related terms are often not very similar and the most obvious
alternatives are either to drop the relation as basis for a similarity measure or to let it

contribute to an association relation.
(o) Cor

Figure 2: Partonomy relation (Part-of)

Association

Various sources can be used to set up an association relation. Probably among the most
reliable and useful as domain-specific association relations, applied in connection with
querying, are those variants that are statistically based on a corpus (see for instance [2]).
Such a relation has an inherent grading from the statistics and is thus very accurately
reflected in graded similarity. If associating statistically by:

P e R
, HQXH ”Q ¥ ” >0

where Q is the number of documents where term X appears, then a similarity
measure following this association principle could simply be

sim(X,Y) = assoc(X,Y)
thus directly using the association grades as similarities.

Semantic relations
The semantic relations, used in forming concepts in the ontology, indirectly contribute
to similarity through subsumption. For instance:

‘disease CBY lack WRT vitamin’
is subsumed by — and thus included in — the more general concepts ‘disease CBY lack’
and ‘disease’. Thus while semantic relations does not directly contribute to similarity,
they do add to the extension of concept inclusion and thus to similarities based on
hyponymy.

Using property similarity
The purpose of similarity measures in connection with querying is of course to look for
similar rather than for exactly matching values, that is, to introduce soft rather than crisp
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evaluation. As indicated through examples above one approach to introduce similar
values is to expand crisp values into fuzzy sets including also similar values.

Expansion of this kind, applying similarity based on knowledge in the knowledge base,
is a simplification replacing direct reasoning over the knowledge base during query
evaluation. The graded similarity is the obvious means to make expansion a useful — by
using simple threshold values for similarity the size of the answer can be fully
controlled.

5 Object similarity

Given a set of objects in the information base and an object in focus — the query (or the
“ideal object” as indicated by the query) — the main exercise is to find those objects in
the information base that or most similar to the query object. Object similarity may in
rare cases be directly available as for instance from a relevance feedback procedure in
Information Retrieval Systems or from other kinds of use, interest or purchase statistics
on information base objects. However, more often it is needed to establish object
similarity as derived from property similarity. In this case the problem is to choose an
aggregation.

In this direction of appropriate object similarity aggregations the class of order weighted
averaging (OWA) operators [13] has been shown to be very useful [2, 8). These
operators are especially suitable for aggregating a set of unstructured properties as a list-
of words query to an Information Retrieval system. However when structure is
introduced to the query expression the OWA principle becomes insufficient. This is the
case when queries are mapped into descriptions as explained above where the need for
nested aggregation arises.

We describe briefly below OWA and an extension to nested aggregation based on
OWA. While the general idea with the line of querying discussed in this paper is to
provide an intuitive platform for posing queries we introduce, with the nested
aggregation, a very complex specification of parameters for queries. The solution to this
problem is to perform a knowledge based modification of query parameters as touched
upon in the second subsection below.

Aggregation of property similarities
OWA (Order Weighted Averaging) utilizes an ordering vector W = [wl,---,wn]. The
aggregation of values ay, ...,a, is

Fy(ay,a,)=3"_wb; where 2haw; =1, w; e[o.1] and

b; is the j’th largest a;,+-+,a,
Thus with b,, ...,b, is the (descending) ordering of the values a, ...,a,. By modifying W
we obtain different aggregations, for instance F 5.y is max F(ip,im,.) is average and
F,,..1y is min. Querying based on this may proceed from a query on attributes 4,,...,4,
such that the value A,d)e/0,1] is the degree to which the document d satisfies the
property A; The overall valuation of document d is

Val(d) = Fw(Ai(d), ...,Ax(d)).
The OWA aggregation principle is very flexible and may further include importance
weighting in the form of an n-vector M=<my,...,m,>, m;e[0,1]  giving attribute
importances to 4, ..., 4, such that for instance M=<1,0.8,0.8,...> gives more importance
to 4,, while importances are not discriminated with M=<1,1,...>. Attribute importance
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may be included as a modification that leads to a new set of order-weights individually
for each document d see [14] for details. In addition, the aggregation may be modified
by a ‘linguistic quantifier’, which basically is an increasing function Q:/0,1]->[0,1]
with O(0)=0 and Q¢1)=1, such that the order weights are prescribed as:

w; =oh-0d =

Linguistic quantifiers lead to values of W and we can model for instance a quantifier
EXISTS by Qx)=1 for x>0, FOR-ALL by Q(x)=0 for x<I, and SOME by O(x)=x,
while one (of many) possibility to introduce MOST is by a power of SOME, e.g.
Ok)=x".
Thus we have a general query expression:
<Ay, ...,ApM:Q>
where Ay,...,A, are the query attributes, M specifies attribute importance weighting and
Q specifies a linguistic quantifier and thereby indicates an order weighting.
In [14], Yager introduces a hierarchical approach to aggregation as a language intended
for document retrieval based on order weighted averaging (OWA). The intention is to
enable users to better represent their requirements using the language. Basically this is
an extension to nested query specification.
Query attributes may be grouped for individual aggregation and the language is
orthogonal in the sense that aggregated values may appear as arguments to
aggregations. Thus, queries may be viewed as hierarchies.
As an example we could pose a nested query expression:
<Al(d),
< A2(d), A3(d),
< A4(d), A5(d), A6(d):M3:Q3>
:M2:Q2>,
M1:Q1>

where Ai(d) € [0,1] measures the degree to which attribute A; conforms to document d,
while M; and Q; are the importance and quantifier applied in the j’th aggregate.

Rather than requiring the user to specify query at this level of detail the general idea is
to perform a knowledge-based transformation of the query, heuristically deducing both
nestings of the query attributes and aggregate operators, and inferring what parts of the
query are more important as briefly discussed below.

Knowledge-based modification of aggregation
In the OntoQuery project an initial matching principle, which may be considered as
based on two-level hierarchies, has been chosen for the first prototype.
As mentioned in section 2 an NLP parsing is performed that heuristically identifies
noun phrases (NPs) preparing for descriptions with nestings corresponding to the NPs.
For instance the sentence “Is it so that hasty dogs sometimes get injures from heavy
traffic?”” may lead to the description:

(hasty, dog), (injure) , (heavy, traffic)
A nested aggregation can then be applied over the groups in the description, where each
group is aggregated with individual importance weighting, and quantification. The
aggregation parameters are to be derived during the query evaluation process. A simple
general principle is that aggregation is restrictive for individual groups and relaxed for
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the overall query aggregate, corresponding to linguistic quantifiers like ‘most’ for
individual groups and ‘some’ for the query. This can then be further modified through
importance weighting based on domain knowledge, primarily from giving more
importance to nouns in general and domain-specific concepts from the ontology in
particular.
The manipulation of the example sentence above may in this way result in the nested
aggregation expression:
<< hasty, dog : MOST : (}4,1)>,
< injure >,
< heavy, traffic : MOST : (1,1)>,
:SOME : (1,1,1)>

Here, importance weighting is only exploited at the level of individual groups, where
nouns are given more importance. The restrictive quantification for groups is by MOST
and the relaxed quantification for the overall query is by SOME.
The approach to querying is then to derive a knowledge-based nested aggregation
expression for the initially posed query and then to evaluate this against the text objects
in the information base, calculating degrees of conformity to each sentence description
in the base. Based on this, the answer may be given as the most similar objects.
The ontology in the knowledge base comes into play from applying property similarity.
The query expression above can be expanded to cover also similar values for argument
properties, as for instance from replacing the subexpression

<< hasty, dog : MOST : (}4,1)>,
with

< hasty, <dog, animal : EXISTS : (1, .3)> : MOST : (*4,1)>,

The ontology is, as mentioned, also intended to be applied in a conceptual formation
leading to concepts rather than words as the smallest units in descriptions. This will lead
to modifications that can be introduced in a similar way as expansions to the query.

6 Concluding remarks

We have discussed similarity as derived from property relations in a knowledge base
and further introduced an approach to query evaluation, where simple word lists or
queries are posed in natural language are transformed into hierarchical expressions over
quantified, importance-weighted groups of attributes for order-weighted evaluation.
This transformation is also guided by the knowledge base.

Basically, the query evaluation requires only sufficient knowledge to perform a
grouping of properties. Improvements to the evaluation may be gained from knowledge
about more important properties and from relations that allow deduction of degrees of
conformity.
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Abstract
A constraint-based generalized object-oriented database model is adapted to manage spa-
tio-temporal information. The presented adaptation is based on the definition of a new
data type, which is suited to handle both temporal and spatial information. General-
ized constraints are used to describe spatio-temporal data, to enforce integrity rules on
databases, to specify the semantics of a database scheme and to impose selection criteria
in flexible database querying.

Keywords: Spatio-temporal information modelling, object-oriented database model, (gen-
eralized) constraints.

1 Introduction

A constraint can formally be seen as a relationship, which has to be satisfied. With respect
to database systems, constraints are considered to be an important and adequate means to
define the semantics and the integrity of the data [1, 2, 3, 4, 5]. This is especially true for
spatial data and for temporal data. A (spatio-temporal) database instance then belongs to
the database in as far as it satisfies all of its defining constraints.

In practice, spatial data usually consist of line segments, and therefore linear arith-
metic constraints are particularly appropriate for representing such data [5]. For example,
if spatial geographical information is handled, constraints can be used to define the bor-
ders of a country, a city, a region, to define a river, a highway, etc. This is illustrated in
Figure 1 and in Table 1, which respectively represent a map of France (a real map will be
defined by many more constraints, but the basic ideas are the same) and some geometrical
descriptions.

Constraints can also be used to impose selection criteria for information retrieval. In
this case, each constraint defines an extra condition for the database instances to belong to
the result of the retrieval [6, 7]. Every instance belongs to the result in as far as it satisfies
all the imposed criteria. For example, if someone wants to retrieve all the young persons
who live in Annecy, two constraints can be imposed: one that selects all the young persons
and another that selects all persons living in Annecy.

Spatio-temporal information can be fuzzy and/or uncertain [8, 9]. There has been a
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Figure 1: Spatial information: map of France.

Table 1: Geometrical descriptions.

Annecy:

(>109) A (z<1L1)A(y>6)A(y <6.2)

Seine:

(y < 1) A(y+0.7z = 15.2) A(y 2 9.6))

V(¥ S9.7) Ay —0.20 = 8) A (y > 9.6))
V((y<8A(y+1.2c=-20)A(y>97)
Haute-Savoie:

(y—-01lz <8 A(y+ 72 <89.6)A(y— 0.4z < 1.5)
A(y+02z >82)A(y—4z > 36.7)

considerable amount of research regarding fuzziness in spatio-temporal databases [8, 10,
11, 12]. In this paper an extension of a constraint-based fuzzy object-oriented database
model [3] is presented. This extension is based on the introduction of a new data type and
on the generalization of linear arithmetic constraints.

In the following section, the main concepts of the fuzzy object-oriented database
model are introduced. The modelling of fuzzy spatio-temporal information, by means of
generalized linear arithmetic constraints, is discussed in Section 3. Finally, the achieved
results and future developments are summarized in the concluding section.

2 Generalized object-oriented database model

The employed fuzzy object-oriented database model [3] has been obtained as a general-
ization of a crisp object-oriented database model that is consistent with the ODMG de
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facto standard [13]. The model is build upon a generalized algebraic type system and a
generalized constraint system, which are both used for the definition of so-called gener-
alized object schemes and generalized database schemes.

2.1 Type system

To support the definition of types, a (generalized) type system GT'S has been built [3]. In
order to be consistent with the ODMG data model, the type system supports the general-
ized definitions of literal types, object types and reference types (which enable to refer to
the instances of object types and are used to formalize the binary relationships between
the object types in a database scheme).

The semantic definition of a (generalized) type f is based on domains and operators
(cf. [14]) and is fully determined by:

o aset of domains D;

e adesignated domain dom; € D;
e aset of operators Oy and

e aset of axioms A;

The designated domain dom; is called the domain of the type ¢ and consists of the set
of all the possible values for . Every domain value is represented by a fuzzy set, which
is defined over the domain of the corresponding ordinary type ¢. In order to deal with
“undefined” values and inapplicability of domain values, a type specific bottom value
L, has been added to the domain of every ordinary type ¢ [15]. The set of operators
Oy contains all the operators that are defined on the domain dom;. The set of domains
Dj consists of all the domains that are involved in the definition of the operators of Oj,
whereas the set of axioms A; contains all the axioms that are involved in the definition of
the semantics of Oy.

The instances of a literal type, an object type and a reference type are respectively
called literals, objects and reference instances. Every instance is characterized by its type
and a domain value of this type (also called the state of the instance). In accordance with
the ODMG de facto standard [13], only objects can have a persistent lifetime. Persistent
objects are additionally characterized by a unique object identifier and an optional set of
unique object names.

2.2 Constraint system

Constraints are used to enforce integrity rules on databases (e.g. domain rules, referential
integrity rules, etc.) and to specify the formal semantics of the database scheme (e.g.
the applicability of null values, the definition of keys, etc.). To support the definition of
constraints, a (generalized) constraint system GC'S has been built. The set of generalized
constraint definitions supported by the constraint system can be partitioned into a subset
of constraints which can be applied to objects independent of any existing database (e.g.
domain constraints) and a subset of “database” constraints which are defined for database
objects (e.g. referential integrity constraints) [3, 4].
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The semantics of a constraint ¢ are defined by means of a function pz, which associates
with every object 6 a fuzzy set

{(True, ,U/True)v (F(ZZSE, ,UfFalse) ) (—LBooleana K1 Booiean )}
which represents the extended possibilistic truth value [16] of the proposition
“object 6 satisfies constraint ¢’

The membership grades pirrye and pipqse indicate to which degree this proposition is
respectively true and false. The membership grade i1 ,_,,... denotes to which degree the
proposition is not applicable, and is used to model those cases where the constraint ¢ is
(partially) not applicable to 6.

2.3 Object schemes

The full semantics of an object are described by an object scheme 0s. This scheme “in
fine” completely defines the object, now including the definitions of the constraints that
apply to it. Each object scheme is defined by an identifier id, an object type t, a “meaning”
M and a conjunctive fuzzy set of constraints C‘t-, which all have to be applied onto the
objects of type ¢ independently of any existing database

s = [id,t, M, C3]

The “meaning” M is provided to add comments and is usually described in a natural
language. The membership grade of a constraint ¢ of C”t- indicates to which degree ¢
applies to the object type f and represents the relative importance of & within the definition
of ds. A membership grade “c",-(é) = 0 denotes ‘not important at all’, whereas “C'z(é) =
1 denotes ‘fully important’. In order to have an appropriate scaling it is assumed that
maXg ,uét_(é) =1.

An instance 6 of the object type £ is defined to be an instance of the object scheme s,
if it satisfies (with a truth value which differs from {(False, 1)}) all the constraints of C;
and all the constraints of the sets é; of the object schemes, which have been defined for

the supertypes ofi.

2.4 Database schemes

A database scheme ds describes the full semantics of the objects which are stored in a
generalized database and is defined by the quadruple

ds = [id, D, ¥, G
in which id is the identifier of the database scheme,
D = {6s;)1 <i<mn,ineNy}

is a finite set of object schemes, Mis provided to add comments, and C pisa conjunctive
fuzzy set of “database” constraints, which imposes extra conditions on the instances of
the object schemes of D (e.g. referential constraints between two object schemes). Again,
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the membership grades denote the relevance of the constraints. Every generalized object
scheme in D has a different object type. If an object scheme ds € D is defined for an
object type  and ' is a supertype of £, or ' is an object type for which a binary relationship
with £ is defined, then an object scheme s’ € D has to be defined for £'. }
Every persistent instance & of an object scheme 6s € D of a database scheme ds has
to satisfy all the constraints of C' 5, with a truth value which differs from {(False, 1)}.

2.5 Database Model

The generalized database model is finally obtained by extending the formalism with data
definition (DDL) and data manipulation operators (DML) [3] (see Figure 2).

} type system | |£onstraint system}

—_object scheme [—

|
| database scheme o——

J, + DDL and DML
| database model |

Figure 2: Generalized object-oriented database model: an overview.

3 Modelling of spatio-temporal information

The generalized object-oriented database model presented in the previous section is ex-
tended in order to support the modelling of both temporal and spatial information. This
is done by adding a new generic literal type SpaceTime to the type system. The domain
of this new type consists of all the fuzzy sets which are defined over the points of a given
geometrical space, which on its turn is defined by a finite number of axes, which all have
only one point in common. Each axis either represents a time dimension or a spatial di-
mension. Generalized linear arithmetic constraints are defined and are used to describe
the domain values of the SpaceTime type.

In the next subsection the focus is on the modelling of one-dimensional temporal in-
formation. In this special case, the literal type SpaceTime has to describe a temporal space,
which is defined by one time axis. The modelling of spatial information is discussed
in Subsection 3.2. The cases of one-dimensional, two-dimensional and n-dimensional
spaces are handled. The formal definition of the SpaceTime type is given in Subsec-
tion 3.3,

3.1 Modelling of temporal information

In order to model temporal information, a new data type TimeDim is defined. This data
type will not be included directly in the database model, but is necessary for the definition
of the type SpaceTime.

The domain of TimeDim is defined by

domTimeDim =RU {—J—TimeDim}
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where R denotes the set of real numbers and | 7;,¢ pim represents an “undefined” domain
value.

The considered operators are the binary operators =, #, <, >, <, >, +, —, * and /
and a null-ary operator L, which always results in an “undefined” domain value. When
restricted to the set domrimepim \ {LTimeDim}, all binary operators have the same
semantics as their counterparts within R2. For the bottom value L7imepim, the semantics
are:

Vze domimeDim op (l‘, LTimeDim) = op (—]-TimeDimy 37) = L imeDim

where “op” is a variable copula whose successive values are respectively the symbols =,
#,<,>, <, 2, +, —, xand /.

The type TimeDim can be employed to model time, hereby using the set R of real
numbers as a representation of the continuum of physical time points [8]. However, in
prospect of the generalization discussed in Subsections 3.2 and 3.3, the type SpaceTime
is introduced.

The type SpaceTime is structured and consists of a finite number of components. Each
component either represents a temporal dimension or a spatial dimension. In this subsec-
tion only one (temporal) component is considered, so that the specification of SpaceTime
is defined as:

SpaceTime id(id; : TimeDim)

where id is the identifier of the type and id; is the identifier of the component with asso-
ciated type TimeDim.
The domain of type
SpaceTime id(idy : TimeDim)

(shortly written as dom4) is defined by

domid = @({((L‘)‘IL‘ € domTimeDim}) U {J-SpaceTime}

where $(U') denotes the set of all fuzzy sets, which can be defined over the universe U
and L gpaceTime represents an “undefined” domain value.

With the previous definition, every “regular” value of dom;q is a fuzzy set, which
is defined over the continuum of physical time points. In order to describe the values
of domq, linear arithmetic constraints are generalized. This is done by generalizing the
comparison operators =, < and >.

Traditionally, these operators allow to describe crisp subsets of the continuum of phys-
ical time points, e.g. V t € dom,g, T = t describes the fuzzy set {(¢, 1)} which represents
the single time point ¢, z < ¢ describes the fuzzy set {(z, 1)}z < t} which represents the
time interval | — 00, t] and z > ¢ describes the fuzzy set {(z, 1)|x > ¢} which represents
the time interval [t, +-00].

For the generalization, a normalized fuzzy set V has been associated with each oper-
ator. This fuzzy set is defined over the universe of valid distances —the set R* of positive
real numbers— and the boundary condition i (0) = 1 must hold for it.

If d(x, ') denotes the Euclidean distance between the defined elements « and z’ of
domTimepim, 1.€. d(z,2’) = |z — 2’|, then the membership functions of the fuzzy sets
described by the generalized operators =, <;; and >, are defined as follows:

YV z,t € domTimepim \ {LTimeDim} :
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. uac:‘./t((a:)) = pp(d), with ' = min{d(z, 2") |2’ € dompimepim N &' =t}
o tr<,t((2)) = py(d), with d’ = min{d(z, )|z’ € domrimepim A " <t}
o tz> . i((x)) = pir(d), with &’ = min{d(z, z’)|z’ € domrimeDim A @' > t}

Figure 3 illustrates the membership functions that result from the application of the
generalized comparison operators <,, > and =y, to a given fuzzy set V.

Figure 3: Application of the generalized comparison operators.

Linear arithmetic constraints have been generalized by replacing all regular compari-
son operators by (adequate) generalized comparison operators and by replacing the regu-
lar logical operators A, \VV and — by their fuzzy counterparts A, V and =, which semantics
have been defined as follows:

o the impact of the A operator is reflected by applying Zadeh’s (standard) intersection
operator [17] onto the fuzzy sets described by the arguments of the operator, i.e.
with arguments U and V, the membership degree of (z), © € domrimepim in the
resulting fuzzy set equals

min(ug (2), by (2))

e the impact of the V operator is reflected by applying Zadeh’s (standard) union
operator [17], i.e. with arguments U and V/, the membership degree of (z), z €
domrime Dim in the resulting fuzzy set equals

max(ug (), ki (2))

e the impact of the = operator is reflected by applying Zadeh’s (standard) comple-
ment operator [17], i.e. with argument U, the membership degree of (x), z €
domrimeDim in the resulting fuzzy set equals

1 - pg(z)
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For example, with appropriate fuzzy sets U,V and W, the fuzzy temporal information
“around time point 60 or from time point about 100 until time point about 120” can be
described as:

(z =7 60) V ((z 2 100) A (z <y 120))

3.2 Modelling of spatial information

The data type SpaceTime can be adapted to model spatial information. A distinction is
made between one-dimensional, two-dimensional and n-dimensional data.

In order to model spatial information a new data type SpaceDim is defined. The
definition of this type is similar to the definition of the type TimeDim, introduced in the
previous section: the domain of SpaceDim is defined by

domSpaceDim =RU {J-SpaceDim}

where L spacenim represents an “undefined” domain value; furthermore, the same oper-
ators =, #, <, >, <, >, +, —, *, / and L have been defined. Hereby, the set R of real
numbers is used as a representation of a dimension in a spatial space.

3.2.1 One-dimensional spatial data

The type SpaceTime is also suited for the modelling of spatial data. One-dimensional
spatial data can be handled by considering one (spatial) component. The specification of
SpaceTime then becomes:

SpaceTime id(id, : SpaceDim)

where id remains the identifier of the type and id; is the identifier of the component
with associated type SpaceDim. In the one-dimensional case, the modelling of spatial
information is then completely analogous to the temporal case discussed in the previous
subsection.

3.2.2 Two-dimensional spatial data

Two-dimensional spatial data can be modelled by considering two (spatial) components
for the type SpaceTime, i.e. by considering the specification:

SpaceTime id(id; : SpaceDim, idy : SpaceDim)
In this case, the domain dom;q is defined by

domid = @({("Ev y)lx, (S domSpaceDim}) U {J-Spac&Time}

With this definition, each “regular” value of domq is a fuzzy set, which is defined
over the continuum of points in the plane defined by the two spatial axes with identifiers
idy and ids.

The generalization of the comparison operators =, < and > is obtained analogously
as in the one-dimensional case. A normalized fuzzy set V., which is defined over the
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universe of valid distances and for which the boundary condition x¢(0) = 1 holds, is
associated with each operator.
If d((z,y),(z',y’)) denotes the Euclidean distance between the defined elements

f .
(CC, y) and (CL‘ ’y') of dOmS’paceDim X domSpaceDim, e

d(z.y), (@' ¥)) = V(e ~2)2 + (y ~ ¥)?

then the membership functions of the fuzzy sets described by the generalized operators
=i, <y and >, are defined as follows:

v (l‘, y) € (domSPaCEDim \\ {—LSpaceDim})z,v m,l €ER:
® Uatmy=1((2,9)) = py(d'), with

d" = min{d((z,y), (z',¥"))|(z',y) € (domspacenim)* A &’ +my =1}

o Hoemyzoi((2.9)) = (), with

d = min{d((z,y), (ac',y’))|(:13/,y') € (domSPaceDim)2 Az’ +my <1}

® potmy2o1((2,9) = py(d'), with

d' =min{d((z,y), (", ¥)|(z',v) € (domspacepim)? A €' +my’ > 1}

For example, with the fuzzy set V of Figure 3 and the fuzzy set W = {(0, 1)},
“the environment of Annecy” can be modelled by (z =g 11) V (y =y 6.1) and
“the neighborhood of the Lake of Geneva in Haute-Savoie” can be modelled by (y >0
6BNVA(Y =225 =3T)A(y<yp 6.7 A (y—z >3 —3.7) A (z <y 11.9) A
(z 2y 11). Both examples are illustrated in Figure 4 (drawn to scale).

Lake of Cjcnc\‘u‘“‘j

Dept. Haute-Savoie

Annecy

Figure 4: Tllustration of the modelling of two-dimensional spatial data.



126

3.2.3 n-dimensional spatial data

In order to model n-dimensional spatial data, the type SpaceTime can be constructed with
n spatial components. In this case, the domain dom, is defined by

domid = @({(31,332, ey l‘n)’l‘1,l‘2, sy Ty € domSpaceDim}) U {—I—SpaceTime}

The comparison operators =, < and > can be generalized straightforwardly and analo-
gously to previous cases by considering the Euclidean distance

d((@1, @2, ..., Tn), (21,25, ..., 20)) = \/(xl —z) 2+ (zg —25)2 4+ 4+ (Tn —2},)?

and an associated, normalized fuzzy set f/, which is defined over the universe of valid
distances and for which the boundary condition ., (0) = 1 holds.

3.3 Literal type SpaceTime

In general the literal type SpaceTime can have both spatial and temporal components.
This allows to model spatio-temporal information in its most general form. The type
specification then becomes:

SpaceTime id(id; : t1,idy : ta,...,id, 1 tn)

where id remains the identifier of the type. Each component id; : ¢, 1 = 1,2,...,n
represents an axis, that is identified by the identifier ¢d; and whose nature is denoted by
the associated type ¢; € {TimeDim, SpaceDim}.

The domain of the type SpaceTime is defined by

domig = 6({(z1,%2, ..., 2,)|zs € domy,, i =1,2,...,n}) U{LspaceTime }

where L gpaceTime represents an “undefined” domain value.

Because by definition all the elements of the domain are fuzzy sets, operators have
been provided for the handling of fuzzy sets. Among the considered operators are: U, M,
co, normalise, support, core, o — cut and & — cut. Each operator preserves its usual
semantics. Additionally, a null-ary operator L, which always results in an “undefined”
domain value, is added.

4 Conclusion

A new approach for the handling of spatio-temporal information is presented. The ratio-
nale behind this approach is the assumption that linear arithmetic constraints are particu-
larly appropriate for representing such kind of information.

The approach is presented as an extension of a constraint-based fuzzy object-oriented
database model, but its application is definitely not restricted to database models. Cen-
tral to the approach is the introduction of a new generic type SpaceTime, which is suited
to handle fuzzy multi-dimensional temporal and/or spatial information. The description
of domain values of SpaceTime by means of so-called generalized linear arithmetic con-
straints, which have been obtained by generalizing the definition of the comparison op-
erators =, < and >, is typical. Future work includes the definition of appropriate data
definition and data manipulation operators and the study of appropriate flexible querying
techniques.
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Abstract

Meta-search engines arise to increase the coverage of single search-engines. Meta-search
engines offer a unified way to access multiple search engines, avoiding the user to interact
with all the underlying engines; but usually they do not merge results from different
sources, neither they calculate a unique ranking for each item retrieved. We present a
framework to develop meta-search engines allowing to rank documents retrieved from
search-engines that originally do not give any rank; and a way to combine and integrate the
results from different engines into a unique collection of documents ranked according to
some relevance or utility criteria. Our approach is based on exploiting the filtering
capabilities of search-engines and the generalized use of weights and aggregation operators
to rank documents.

Keywords: meta-search, query processing, aggregation operators, information integration.

1 Introduction

The vast amount of information available in the Web causes some serious problems to the
users when looking for information: it is difficult to find all the relevant information; in
addition, the information retrieved is rarely ranked or classified according to the user’s
utility criteria. Meta-search is one of the most promising approaches to solve the first
problem. If the single search-engines store only a portion of all the existing information
about some particular domain, various searchers should be queried to increase the search
coverage. But in practice, meta-search is under-exploited; existing meta-search engines do
not combine results from the different single engines, neither they rank the information
retrieved, or the ranking mechanisms are quite poor.

Our approach overcomes these two limitations. We propose a framework to develop meta-
search engines that can rank documents retrieved from engines that originally do not
perform rankings; and a procedure to combine documents retrieved from different search
engines. The originality of our vision is that we exploit the filtering capabilities of the
search-engines, thus ranking is achieved with a little computation and storage requirements.
We argue that our approach is so flexible that it can be applied in a wide range of search
domains, including semi-structured and structured data. We will demonstrate the feasibility
and utility of our ideas by showing some experimental results of an application to search
bibliographic references in medicine. The case study uses knowledge about Evidence-
Based Medicine (EBM) as the utility criteria to rank the bibliographic references.
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2 Meta-search architecture

2.1 Overview of the model
We oriented this work towards a particular kind of meta-search where the queries are
described as vectors of elements. The meta-search process is modelled as involving two
main processes or phases: expansion and aggregation. Expansion means that a query is
transformed into a collection of new queries by applying some transformation to the
original query. Expansion is used to enrich or refine queries with different purposes and
different meanings. We have considered different kinds of query expansion:
a) At the domain level: using a thesaurus to elaborate semantically equivalent queries,
generalise or specialise a query, or enrich a query with specific utility criteria.
b) At the source level: customise a query for multiple search engines, using with different
search-modes and filters to get more rich information.
The outcome of query expansion is a new set of queries weighted according to some
criteria, like specificity of the search modes in b) or strength of the semantic relationship in
a). Queries generated during the expansion phase allow scoring documents although a
search engine does not give any ranking by itself, Ranking can be done because the queries
are weighted, thus their answers can be considered as inheriting the weight of the query as
an assessment of relevance or utility. The answers to all the queries and search engines are
combined to obtain a unique set of retrieved items, where repeated items are eliminated,
keeping only one instance of each item, with a unique, overall ranking. Ranking synthesis
is achieved by applying some aggregation operator, as explained in section 4. Expansion
can occur at different levels; therefore aggregation can also be applied at different levels.
We will show the weighted query expansion and aggregation procedures including some
examples from MELISA [1], a medical literature search agent.

2.2 Assigning weights during query expansion

Query expansion refers to the process of transforming a query in a collection of new
queries. The new queries enrich or transform the original query with additional domain
information, including semantic and syntactic information. We can also distinguish
between domain-based elaboration and source-based elaboration, that is to say, elaboration
of queries using domain knowledge and elaboration based on particular characteristics of
the information sources.

The key idea is that if queries are weighted, then we can aggregate the results from these
queries to obtain a unique ranking just using the weights of the queries as the values to be
aggregated. The idea is simple but powerful. Suppose we have a collection of queries with
different weights expressing the relative importance of each query with respect to the
original query. Then, retrieved —non ranked- items can be assigned a rank equal to the
weight of the query they are an answer for. For items already scored by the queried search-
engines, a new rank can be calculated by aggregating the given score and the weight of the
query. With semantic expansion we can generate queries where some keywords are
replaced by synonyms, hyponyms' and hyperonyms. This kind of expansion is very useful
to increase or decrease the coverage of search; synonyms and hyponyms will increase the
recall, while hyperonyms are useful to restrict the search. Resulting queries are weighted
according to the strength of the association —correlation- between words. Correlation
between words can be obtained by statistical calculations, such as latent semantics analysis
[21], or given by an expert.

' A term o is an hyponym of the term B if the meaning of o subsumes the meaning of B. Then B is an
hyperonyms of o.
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Example 1: Some possible term-correlations for the term “Guidelines” in the medical
domain® are given below.
Practice-guidelines, correlation = 0,8
Guideline-Adherence, correlation = 0,6
Clinical-Protocols, correlation = 0,4
Given the query {Levofloxacin, Pneumonia, Guidelines}?; three new queries are generated
by replacing the term Guidelines by each of their correlated terms, assigning the query with
a weight equals to the correlation coefficient. The original query is also included in the
result of the expansion and is assigned with a unitary weight.
Q1 = {levofloxacin, pneumonia, guidelines}; weight=1
Q2 = {levofloxacin, pneumonia, practice-guidelines}; w=0,8
Q3 = {levofloxacin, pneumonia, guideline-adherence}; w=0,6
Q4 = { levofloxacin, pneumonia, clinical-protocols}; w=0,6
The previous examples of query expansion belong to the class of domain-based expansion.
In the other side, source-based expansion of queries allows to solve two problems: ranking
items according to the strength of the matching, and adapting a query for different,
heterogeneous search-engines. We consider a particular class of information, the filters and
the search modifiers allowed by the search-engines. We call this procedure query
customisation, as the queries are customised for each particular search-engine. If the
generated queries are weighted taking into account the search modifiers applied by the
expansion algorithm, then it is possible to rank items according to the search mode or the
type of filter applied, it is not the same to search a keyword by title than by subject or
abstract.
Source expansion is very useful to perform more accurate rankings over the retrieved
documents, but also generalisation or specialisation can be achieved by using different
search modifiers. In addition, weights can depend on the particular search engines, thus
allowing to have into account preferences about particular search engines.
Example 2: To better understand the concept of search-modes, let us explain in detail the
search modes allowed by the PubMed search-engine:
1. MAIJR: search for keywords appearing as major topics (the most important terms
describing the subject of a document, belonging to the MeSH thesaurus)
2. MHNOEXP: search terms appearing as MeSH terms (includes major topics) without
term explosion*
3. MH: search terms appearing as a MeSH term, with term explosion. This mode includes
(subsumes) the two previous search modes.
4. TI: search terms appearing in the title
5. TW: search terms appearing in the abstract
6. ALL: include all the former search modes, so it is the less restrictive search mode; in
fact, this is the default search mode.
We assign weights to the different search modifiers according to their specificity or relative
importance.

% Vocabulary from the Medical Subject Heading (MeSH), a medical thesaurus from the National Library of
Medicine.

* We are considering conjunctive keyword-based queries. The meaning of this query is “to find references
about guidelines on the use of Levofloxacin in the treatment of pneumonia.”

* Term explosion refers to the fact that when looking for one MeSH term, it also will retrieve documents
matching with hyponyms of that term.
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<MAIJR, 1>; <MHNOEXP, 0.8>; <MH, 0.6>; <TI, 0.5>; <TW, 0.4>; <ALL, 0.2>
Given a query, we can elaborate new queries using the different search modifiers. If a query
has more than one keyword, then different combinations of search-modifiers for the
different keywords can be used. For example, we can generate new queries modifying only
one keyword per query.
More than one transformation can be applied to the same query, therefore it is necessary to
combine the different weights to obtain a unique weight. This is similar to the necessity of a
mechanism to propagate weights, that is to say, to obtain a new weight for a query that is
already weighted. The way to propagate and combine weights is addressed in sections 2.3
and 3.
Given the query {AIDS, Diagnosis}, a possible expansion algorithm can generate these
queries:

Q1 ={AIDS [ALL], Diagnosis}; weight = 0,2

Q2= {AIDS [TW], Diagnosis}; w = 0.4

Q3= {AIDS [TI], Diagnosis}; w = 0.5

Q2= {AIDS [MH], Diagnosis}; w = 0.6

Q2= {AIDS [MHNOEXP], Diagnosis}; w = 0.8

Q6 = {AIDS [MAJR], Diagnosis}; w = 1
Therefore, when aggregation is carried on, the items retrieved for all this queries are
combined and the different weights are aggregated to obtain the overall score for each item.

2.3 Propagating and combining weights

We have not discussed yet how to assign weights when two or more transformations are
applied to the same query. A similar problem arises when applying a new transformation to
a previously elaborated —and weighted- query. Both problems are in fact the same, how to
combine or synthesise weights.

Different functions can be used to combine weights. We can consider weights as
membership values of queries with respect to the user request, or logical values expressing
relevance or utility. Thus, weights can be combined by using numerical aggregation
operators or multivalued logical operators.

We will propose a very general rule that will facilitate the specification of the properties
these functions must fulfil. This simple rule is that the weight of one query cannot be
increased after applying a transformation; the meaning is that query transformations move
queries further away from the user request. In other words, if we transform a query g with a
weight w into a new query g’ with a weight w’, w’ cannot be greater than w. Such class of
operators includes —but is not reduced to- the family of t-norm operators. Next follows a
formal description of our proposal to weight queries during query expansion.

3 Formal description of query-weighting

Definition 1: A query Q is a vector of non-repeated query-elements that can be either
keywords or other elements (i.e. search filters).

Q=(k.k,) Vi,j:1SijSmk #k,

Definition 2: A weighted-query is a pair with a query and a weight in the interval [0, 1]
Wo=(Qw) we (o]

Definition 3: A query-transformation 7 is a relation between two queries and a weight, It is
defined as follows:

7(Q.0w) & Ak |ke Qake Q) Ak |K'e Q,Ak'e Q) ro(kk',w)
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Where k and &k~ are query elements, and o is a relation between two elements and a weight
in the interval [0,1].

Definition 4: A chain of query-transformations T is a relation between two queries and a
weight defined recursively as a sequence of multiple query-transformations.

QO W)
T(Q, 0 w) 1307|702, w) AT(Q, Q' w")
AW =0W,w'")
Where O is a t-norm operator.

Definition 5: A guery-weighting function T is a function to obtain a weight according to
the chain of query-transformations between two queries

_w i T(Q,Qw)
r (Qsz)-{ 0 otherwise

Where Q,, Q,, are queries and T is a chain of query-transformations.

Definition 6: A weighted-query-weighting function Q is a function to calculate a weight
according to the chain of query-transformations between a weighted query and a non-
weighted query.

Q(Ql’Qz’W)={®(W’W‘) i TG )

0 otherwise

Where Q,, Q,, are queries, w is the weight assigned to one of the queries, T is a chain of
query-transformations and © is a t-norm operator.

The query-weighting and weighted-query-weighting functions are used to obtain the weight
for the query resulting of applying one or more query-transformations. The former is used
when the original query is not weighted, and the last when the original query is already
weighted. In fact, both functions can be reduced to a unique function if we consider the
non-weighted queries as having a weight equal to 1.

4 Aggregation and fusion

When we assign a weight to a query after applying a transformation, we are expressing the
relative importance or representativity of that query with respect to the original one. The
meaning of a weight assigned to a query is logically inherited by the documents or items
retrieved for that query, thus we can say that the weights associated to the items retrieved
represent the membership of those elements to the topic requested by the user. Aggregation
operators for numeric values can be used here. See [34] for a review of such operators.

The most widely used operators are the arithmetic mean and the weighted mean, but there
is a big family of aggregation operators, including fuzzy measures.

Example 3: Suppose we have queried PubMed with the four queries on the example 1.
Suppose there is a reference that appears in queries 1 and 2, but not in 3 and 4. As PubMed
do not rank documents, we assign by default a maximum score of one to both apparitions of
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the same reference. When doing the aggregation, absences of items are also taken into
account; they are scored with zero points, the minimum.

Table 1: Example of aggregation

Item Weight Norm-w Score To aggregate these items we can apply for instance a
. 1,0 0,36 1 weighted-mean operator:
a, 08 029 1 WM(a,,..a,)= 2, w.a,

as 0,6 0,21 0 -
€ [0,1], E =1
a, 0,4 0,14 0 wie 101 2w,

Normalizing the weights to fulfil the formal requisites of the weighted-mean operator we
obtain the aggregated ranking for that item: WM(a,,...,a,) = (Z w;score) = 0.65

Fusion refers to the aggregation of items retrieved from different information sources. In
our framework, the same procedure used to aggregate items retrieved from a unique search-
engine can be used in fusion. In this case, each source can be assigned with a weight
expressing the reliability of that source or other kind of “goodness”. A query customized
for multiple search-engines should take a weight that is a combination of the different
weights applied during the different steps of query expansion, including also the goodness
of the source.

S Applications

We have developed two applications where this framework has been evaluated: MELISA
and WIM?®,

MELISA[1] is a system to look for medical literature based on the use of ontologies to
separate the domain knowledge from the source descriptions.. The notions of query
weighting and exploiting the filtering capabilities of search-engines are already used here,
but only one search-engine is included. The system demonstrated that the
weighting/aggregating framework is an accurate approach to rank documents.’. In MELISA
the query elaboration applies two kinds of query expansion, one at the domain level and the
other at the source level. Query expansion at the domain level is carried over using
knowledge categories; each category is a medical topic described as a collection of
weighted elements. The elements used to describe medical categories are medical terms,
used as keywords, and other search attributes used to look for bibliographic references.’
Query expansion at the source level is achieved by using the search modes explained in
example 2 (section 2.2).

After testing this framework in MELISA, we have modelled the query expansion and
aggregation procedures as a library of reusable knowledge components. We have adopted
UPML][13] as the modelling language. This approach aims to develop reusable libraries of
problem-solving methods [27] based on a clear separation of tasks, problem-solving
methods and domain models, plus the use of shared ontologies to facilitate reuse [17]. Such
a library of knowledge components for information search has been used to build WIM, a
“spin-off” application developed in the IBROW project [5].

WIM is a configurable multi agent system to look for medical literature on Internet. The
system is configured at two layers. First a broker agent finds a configuration of agent

3 WIM stands for the Web Information Mediator
¢ From the point of view of the Evidence-Based Medicine.
" Publication type is a good example of such an attribute.
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capabilities fulfilling the requirements of a problem to be solved (some kind of a search
task). Second, a team manager negotiates with available problem solving agents to form a
team of agents that will solve the problem using the selected capabilities and knowledge,
according to the configuration obtained by the capability broker.

6 Experimental results

We have compared the results of MELISA (using PubMed as the search engine) against
those obtained with the PubMed when performing a single query. An expert has proposed
us 5 cases to look for medical references based on his everyday work. Every case has
translated into a query suitable for both PubMed and MELISA. The results have been
scored by two different evaluators, instructing them to score the references according to
their degree of relevance for the corresponding query. The experts have evaluated the first
40 references retrieved for each query. An ordinal scale with three levels has been used to
score references: 2 for references that satisfy the user’s need, 1 if the reference is simply
elated, 0 if it is not relevant, and “?” if there is not enough information,

Table 2 Assesment of relevance

Relevance PubMed Melisa The utility of the proposed framework
S = to develop and use new ranking

2 38% 48% criteria has also been tested. Some of
1 16% 17% the implemented medical categories
0 3% 9% are specifically designed to represent
notions about evidence quality in

? 34% 27% medical references [1]. Using these

categories to enrich queries during the

query expansion has demonstrated that the resulting references are well ranked according to
the quality of the evidence. The evaluators have been instructed to classify references in
three groups: good, medium and poor evidence, plus a group for those references without
information about the evidence.

Table 3 Assessment of evidence quality

Evidence PubMed Melisa The conclusion of the experimental

Good results are that MELISA has proven
7% 20% their utility of our framework to rank

Medium 294 39, documents according to utility criteria

Poor —like evidence quality, as MELISA
2% 9% finds more “good” references than

? 56% 69% PubMed alone.

In progress 33% 0%

7 Related work

A brief review of related areas of research is presented, following with a summary of the
main contributions of our work in section 8.

Information retrieval: deals with the problem of retrieving textual documents, where both
the query and the documents have a word vector representation [31]. IR is based on
matching documents and queries through the use of text analysis and statistical methods
Some of the IR techniques could be used in Meta-search to score documents once they are
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retrieved, but they are in fact two different approaches; while IR is well suited to work with
local databases of large textual documents, it requires a lot of computation and space. In the
other side, meta-search aims to take benefit of the existing search-engines, avoiding hard
computation and space requirements, but rather limited by the speed of the network and the
availability of existing search engines.

Search engines: Search engines store large collections of documents indexed by keywords
and classified into directories. Search engines are power and very quick tools to find
information, but they cannot afford the vast amount of evolving information in Internet.
The main research on search-engines is focused on the indexing and retrieval techniques,
plus research on information gathering and crawling; hence it is quite different of our
approach.

Multiple databases: The term meta-search is mainly used to refer to those search engines
that delegate the search task to other search-engines. But some people of the database
community are also using this term to describe the activity of accessing and integrating
information from multiple databases. Notions such as mediation, information integration
and fusion are shared by both the meta-search and the database communities. Nowadays, it
is very difficult to distinguish between classical databases and search engines, because
databases can be accessed through web-based search engines® and vice-versa, search-
engines are usually built as an interface to access a database. We think that the main
distinction between both approaches is the kind of queries they handle. While our approach
works with queries basically consisting of keywords, the database approach deals with
more complex query languages, including rule-based languages {32], F-Logic [26],
annotated logics [11] and object oriented languages [7] [15], hence the query processing
techniques are quite different, see for example [10][20][4). Mediators are responsible of
offering a unified way to access heterogeneous information sources, while wrappers are
responsible of translating queries and results between the mediator representation schema
and the particular source schemas [16). Other examples of ideas inspiring our work are the
notions of source descriptions [23], query planning [3] and information fusion. A good
example of the cross-fertilisation between heterogeneous databases and web meta-search is
found in WebSrcMed [33].

Meta-search engines: There are a moderate number of implemented meta-search engines of
general purpose, showing notable differences. From a list of 13 of such meta-search
engines {25], we only found complete integration and ranking capabilities in two of them:
Debriefing’ and Metacrawler'®. Other engines allow to perform fusion, but not ranking, or
the ranking is limited to some ordering functions. Some engines allow to refine queries by
using logical operators. Other features are the selection of the search-engines to be used for
a particular search and other kind of user preferences. Often, the time response is slow and
only a subset of the results are really retrieved. See [25] for a review of some meta-search
engines.

Information Agents: Information agents is a new field that is becoming more and more
interested in web-based services, including all the topics about information search and
integration. Some examples of information agents and collaborative information agents can
be found in [14][22][24][28][29]. We claim that our framework can be used inside

¥ PubMed is a good example, a web-based search-engine (http://www ncbi.nlm.nih.gov/PubMed/) for the
Medline database.
? hitp://www . debri .com

10 http/fwww.metacrawler.com
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information agents, or distributed among a multi agent system, like we have done in the
WIM application.

Ontologies: ontologies are shared vocabularies to describe particular worlds or domains,
thus it should be very useful when interoperability among heterogeneous components is
needed. You can see an overview of the field in [18), some applications in [9] [12] [19]. We
are using ontologies extensively, to model the knowledge used during the query expansion,
and also to describe our library of components for meta-search that is being used in the
WIM application.

8 Conclusions and future work

We claim our framework is able to rank items retrieved from search-engines that originally
do not do that. This is not new; the novelty of our approach is that ranking can be achieved
with a little computation effort. Our framework is well suited to exploit the search-engines
filtering capabilities, while other approaches operates by retrieving all the information
about target items, and then applying text analysis techniques similar to those used in IR to
rank documents [30]. The advantages of our approach are the following:

- It avoids hard computation requirements. The main computation effort is due to the
aggregation and sorting algorithms. The overall time cost of the procedure could be high,
because the expansion procedures can generate a lot of queries, thus system performance is
very dependent of the network condition. But this is a problem of the particular expansion
and querying algorithm, not a limitation of the very general framework we propose here.
Massive parallelisation of query execution, query planning and propose & revise
reformulation are some solutions that can improve the efficiency of such a kind of meta-
search engines. Recently we have included a propose, critique and modify method in our
library of methods for information search and aggregation:.

- It reduces the amount of information retrieved that is needed to calculate rankings; for
instance, MELISA only retrieves the Identifier of the documents during the retrieval phase,
the rest of the data is retrieved only when needed, that is to say, when that information is of
interest for the user. This feature is very useful when the information is retrieved from a
slow and unreliable environment like the Internet.

- Several weighting and aggregation functions are allowed, including multivalued and fuzzy
logics. Different combinations of such functions can be used together in the same system.
We claim that our approach is so flexible that it can be considered as a general framework
to develop meta-search engines. Furthermore, we argue that the query-
weighting/aggregation framework is a simple but powerful approach to rank documents,
which is suitable to be used for other purposes not addressed here. Some possible
applications of this approach include the following:

- Score items according to the credibility or reliability of the sources from which they are
retrieved.

- Rank documents according to the user’s own utility criteria.

- Combine different criteria and ranking scales to obtain an overall ranking.

Other fruitful ideas to implement meta-search engines have been tested during the
application of this framework, mainly the use of ontologies and a clear separation between
the domain and the source levels. Having separate models for domain knowledge and
information sources is useful to develop scalable systems. The key idea is that we only need
a domain model to put queries, plus a collection of source models and mapping schemes
between the domain and the source models. Ontologies are a promising approach to
separate vocabularies and define mapping schemes between different vocabularies.
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The project has evolved towards the development of a problem-solving library where this
framework is being tested. Such a library is already implemented using the product t-norm
to combine weights and the average, weighted-mean, OWA and WOWA as the aggregation
operators. We expect to further parameterise such a library to test and compare different
weighting and aggregation functions, but the main goal now is to demonstrate how such a
library can be configured to build new applications in new domains, and how to integrate
this work in a framework to develop configurable and reusable societies of information
agents.
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Abstract

This paper deals with flexible queries addressed to regular relational databases where
conditions are defined by fuzzy sets. A particular type of fuzzy conditions is investigated,
namely where two aggregates applying to fuzzy sets are compared. An example of such a
condition is "the maximum salary of young employees is lower than the minimum salary
of old employees". The contribution of the paper is to propose a sound interpretation for
such statements in the context of flexible querying, i.e., such that a degree of satisfaction
is obtained.

Keywords: Relational databases, Flexible querying, Fuzzy sets, Aggregates.
1 Introduction

This paper considers flexible querying of relational databases where atomic conditions
define preferences instead of strict requirements. As a consequence, the set of answers
returned to the user is discriminated from the best answers to less satisfactory ones.
Many approaches to define flexible querying have been proposed in the last decades and
it has been shown that fuzzy set theory provides a unifying framework to define flexible
queries [1]. Atomic conditions are defined by fuzzy sets and are called vague or fuzzy
conditions (or predicates). An example of a flexible query is: "retrieve young and well-
paid employees working in a high-budget department” where young, well-paid and high-
budget are vague predicates. The answer is a fuzzy set of employees and the higher the
degree of membership of an employee, the more satisfactory he/she is.

Vague conditions can be combined using various operators (generalized conjunctions
and disjunctions, linguistic quantifiers [2, 10] for example) and, on this basis, an
extension of the SQL language (called SQL{) has been proposed [3]. In SQLf, as well as
in SQL, it is possible to consider aggregates which are functions applying to a set of
items (such as cardinality, sum, maximum or average). Aggregates can be integrated into
SQLS queries as in the following example calling on the aggregate maximum (denoted
by max):

select #firm from emp group by #firm having max(salary) = 'high'.

Here, relation emp whose schema is EMP(#emp, #firm, salary, age, job, education) is
assumed to describe employees and this query retrieves firms where the maximum salary
is high (more precisely, a firm is all the more preferred as it satisfies the fuzzy condition:
"the maximum salary of its employees is high").
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This query does not raise particular difficulties since the aggregate applies to a crisp set
(of salaries) and, for each firm, the average salary of its employees is computed and
matched against the fuzzy condition "high". However, when the items to aggregate are
issued from a fuzzy condition, the interpretation is no longer trivial since the referential
to which the aggregate applies, becomes fuzzy. It is the case of the query aiming at the
retrieval of firms where "the maximum salary of young employees is high" which could
be expressed in SQL{ as:

select #firm from emp where age = 'young'
group by #firm having max(salary) = 'high'.

In this case, the aggregate "max" applies to a fuzzy set made of salaries related to young
employees. In general, such a condition is expressed:

agg(A)is C

where agg is an aggregate (maximum in the preceding example), 4 is the set onto which
agg applies (fuzzy set of salaries related to young employees) and C is a fuzzy condition
(high).

Another example of a condition where aggregates are involved, is given by the query:
"retrieve the firms where the maximum salary of young employees is lower than the
minimum salary of o/d employees":

select #firm from emp E1
where age = 'young' group by #firm
having max(salary) < (select min(salary) from emp E2
where age = 'old' and E1.#firm = E2.#firm).

This query involves the condition "max(4) < min(B)" where 4 denotes the fuzzy set of
salaries of young employees of a given firm while B represents the fuzzy set of salaries of
its old employees. The degree associated with each firm in the result, depends on the
satisfaction of this condition. This second type of condition where two aggregates are
compared is modeled in the general case by:

"agg;(4) 0 aggx(B)"
where the sets 4 and B may be fuzzy and 0 is a fuzzy or crisp comparison operator.

The previous approach to interpret statements of type "agg(4) is C" is based on a fuzzy
pattern matching process [8, 9]. As a consequence, this interpretation gives two indices,
namely a possibility and a necessity degree. Since a unique degree of satisfaction is
expected in our approach of flexible querying (SQLf), fuzzy pattern matching cannot be
retained. Consequently, we make a new proposal to interpret flexible conditions
involving aggregates.

An approach to deal with conditions of type "agg(4) is C" in flexible querying has been
suggested recently in [5, 6]. The present paper focuses on conditions of type "agg;(4)
0 agg,(B)" where the sets 4 and B are fuzzy. We limit ourselves to the case where 0 is a
regular (nonfuzzy) comparison operator and the aggregates are monotonic. The
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contribution of this work is to propose an interpretation for that kind of statements which
is sound and coherent with SQLf, i.e., which returns a grade of satisfaction. The
remainder of the paper is structured as follows. In section 2, the context of the paper is
detailed and a previous work related to the interpretation of statements of type "agg(A4) is
C" statements is recalled. It offers a basis for an original approach to the interpretation of
conditions of type "agg(4) 6 agg,(B)" which is introduced in section 3. Finally, a
conclusion summarizes the contribution of the paper and suggests some lines for future
research.

2 Context of the work and reminders
2.1 Statement of interest

The present paper is devoted to the interpretation of conditions of the form:

aggi(4) 8 aggy(B)

where 0 belongs to {<, <, 2, >, =, #}.

In the remainder of this paper, we limit ourselves to the study of these conditions where
0 is "<" since it can be easily shown that the other formulations can be derived from that
case. For instance, "agg;(4) < agg,(B)" can be expressed as a conjunction :

"aggi(4) < aggy(B)" and "agg(A) # aggx(B)"

which, in turn, can be rewritten:

"aggi(A4) < aggx(B)" and not ("agg,(4) < aggy(B)" and "aggy(B) < aggi(4)")

which can be simplified, and finally, we have:

"agg)(4) < agg,(B)" and not "agga(B) < agg;(4)"
where only statements of the considered type appear.
2.2 About the interpretation of statements of the form "agg(A4) is C"

As we will see later, the interpretation of statements of type "agg;(4) 6 agg,(8)" calls on
that of simpler ones of the form "agg(4) is C". It is the reason why we first recall the
principle retained for interpreting such statements when A4 is a fuzzy set and C is a fuzzy
condition,

The proposed approach [3, 6] to evaluate "agg(4) is C" is restricted to monotonic fuzzy
predicates C on the one hand and monotonic aggregates on the other hand. It covers the
aggregates max, min and count, but also sum if the sign of all the values to be added is
either positive or negative; of course, the average, the median and the standard deviation
do not comply with this requirement and thus are excluded. The limitation to monotonic
fuzzy predicates is not a severe limitation in practice since many non monotonic
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predicates can be decomposed into monotonic predicates ("around 3" is the conjunction
"at least 3" and "at most 3").

First, we consider the case where both the aggregate and the predicate are increasing.
More precisely, the idea is to start from the following interpretation of the statement
"agg(4) is C" when 4 is a regular set, agg is an increasing aggregate function and C is an
increasing Boolean condition:

"agg(A4) is C" is true & 3 n such that C(n) and agg(4) = n.

Since C is crisp and increasing, it is certain that "agg(4) is C" is true as soon as agg(4) is
larger than (or equal to) a value which satisfies C.

When 4 becomes a fuzzy set and C is a fuzzy condition, the idea is to extend the
previous formula, and then, to look for a value n which maximizes (generalization of the
existential quantifier) the conjunction of the following two fuzzy conditions: C(n) and
agg(4) = n. Clearly, the hard point is the handling of the second component because the
aggregate refers to a fuzzy set. The idea is to consider the a-cuts of the fuzzy set 4
denoted by A,. Since the aggregate is increasing, if agg(A,) = n it is sure that agg(A;) =
n holds for any level A in (0, a]. It is possible to show that the truth vaiue of the
statement "agg(4) is C" is given by (see [5, 6] for more details):

t(agg(4) is C) = maxge (o, min(Q., pe(agg(Aq))) (D).

In this last expression, o takes all values between [0,1] and it implies that the aggregate
is defined for each a-level cut. As a consequence, expression (1) cannot be used in case
of an aggregate not defined for the empty set (such as maximum or sum) applying to a
not normalized fuzzy set 4 (since a not normalized fuzzy has empty a-cuts and vice-
versa due to the inclusion of a-cuts). Thus when A is not normalized, only aggregates
which are defined for the empty set (such as the cardinality) are supported by definition
(1). In the following, we assume that either A is normalized or that the aggregate is
defined for the empty set.

Then, from a computational point of view, expression (1) can be rewritten in a more
convenient manner:

t(agg(4) is C) = max; min(c;, Pc(agg(Aq))) @)

where the effective o-level cuts (i.e., the different membership degrees present in A4) are
increasingly rank-ordered: o, < ¢, < ... < 0. One may remark that when the aggregate
computed on the support of A completely satisfies C (i.e., uc(agg(Aal)) = 1) expression

(2) is nothing but a Sugeno fuzzy integral.

Example 1. Let us consider the following fuzzy set of salaries 4 = {1/800 + 0.7/12000 +
0.7/10500 + 0.5/15000 + 0.2/10000 + 0.1/11000} and the statement "max(4) is high".
We get:

t(max(4) is Aigh) = max; min(qy, p,high(max(Aai)),
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where o, = 0.1, 0, = 0.2, 03, = 0.5, 0y = 0.7 and o5 = 1. Thus t(max(4) is high) is:

max(min(0.1, tuigh(15000)), min(0.2, pyign(15000)),
mln(OS, uhigh(ISOOO)), m1n(07, ].Lhigh(12000)),
min(1, Unign(800))).

If “high(soo) =0.2, thgh(IZOOO) =(0.8 and thgh(ISOOO) =1, we get:

t(max(4) is high) = max(min(0.1, 1), min(0.2, 1), min(0.5, 1),
min(0.7, 0.8), min(1, 0.2)))
=0.7.¢

Throughout the paper, the aggregate and the condition are assumed to be increasing, but
the solution provided for that case can be straightforwardly adapted when at least one of
them is decreasing. More precisely (see [5, 6]), expression (1) or (2) can be used when C
and the aggregate are monotonic in the same way (both increasing or both decreasing).
When the aggregate is increasing (resp. decreasing) while C is decreasing (resp.
increasing), the condition "agg(4) is C" can be defined as the negation of the statement
"agg(4) is not C". In this statement, both the aggregate and not C are either both
increasing or both decreasing and the evaluation can be performed using expression (1)
or (2).

3 Principle of the evaluation of conditions involving two aggregates

Section 3.1 is devoted to the approach proposed in this paper to evaluate a condition of
the form "agg)(4) < aggx(B)". Section 3.2 establishes a proof of the given result while
section 3.3 provides a final example.

3.1 The approach

Here again, the idea is to start with a definition valid for crisp sets, then to extend it to
fuzzy sets. In the case where 4 and B are crisp, it is possible to express the meaning of
the statement "agg;(4) < agg,(B)" using an implication according to the formula:

VX, [aggi(4) 2 x] = [aggx(B) = ] 3)
where x is used to scan the definition domain of agg, and agg,.

When A4 and B are two fuzzy sets, the expression "agg;(4) = x" (resp. "agg,(8) = x") is
more or less satisfied. Its degree of truth t(agg,(4) = x) (resp. t(agg,(B) 2 x)) can be
obtained by the approach proposed in section 2 (see 2.2). It is important to recall that
only monotonic aggregates can be dealt with. For the sake of simplicity, increasing
aggregates are considered and the statement "agg(4) > x" is then evaluated by:

t(agg(4) 2 X) = max ge(o,1 MIin(QL, Usx(agg(Aq)))

which stems from the general case (see formula (1) in section 2). Since “2 x” is a
Boolean predicate, its value of truth is either 1 or 0 and we get:
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t(agg(4) 2 X) = MaX oe0,1] such that age(A ) 2 x O (4).

If the universal quantifier in (3) is interpreted as a generalized conjunction, the degree of
satisfaction of "agg,(4) < agg,(B)" is given by:

Min e p t(agg;(4) 2 X) = (aggx(B) 2 x) )

where — stands for a fuzzy implication and D is the definition domain of agg, and agg,.
Many implications are available [7] (for instance Go6del, Goguen and Kleene-Dienes)
and we suggest to choose among R-implications which can be easily interpreted by users
in terms of thresholds and penalties [4]. In particular, Lukasiewicz implication (a —1, b
=1lifa<band 1 -a+ b otherwise) takes into account the difference (intuitively
interpretable as a distance) between the antecedent and the conclusion.

In principle, the computation of expression (5) needs to consider an infinity of x values.

However, it is possible to restrict the computation to a finite set of x values, i.e., those
which are aggregate values for a-cuts, which leads to:

minye av [t(aggi(4) 2 x) — t(agga(B) 2 X)) (6)
with AV = {agg,(A,) with a in (0,1]} w {agg,(Bg) with B in (0,1]}.
3.2 A proof of the validity of the simplified calculus

We demonstrate that x values that do not belong to AV are not useful in the computation
of expression (5). Let us recall that a fuzzy implication satisfies the following properties:

a) it is decreasing with respect to the first argument, i.e.,
V(X y,2) € [0,11%x{0,1]x[0,1]suchthatx <y : (x = z) 2 (y - 2),

b) it is increasing with respect to the second argument, i.e.,
V(x,¥ 2z)€ [0,1]x[0,1]x[0,1] suchthaty<z:(x =2 y) < (x — 2).

In this proof, the n effective a-levels of fuzzy set 4 (i.e. membership degrees in A) are
ranked decreasingly:

oy >... >,

and due to the montonicity of agg;, we obviously get:
aggi(Aq) < ... Sagg(Aa ) Saggi(Aq) < ... <aggi(Aq)-

The value for t(agg;(4) = x) depends on the position of x with respect to the aggregate
values computed over da-cuts of A. Three cases must be considered, i) when x is smaller
then or equal to the smallest aggregate value (x < aggl(Aal)), i) when x is between two

aggregate values (aggl(Aai_l) <x< aggl(Aai)), iii) when x is larger then (or equal to) the
largest aggregate value (aggl(Aan) <x).
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Table 1. Values for t(agg(4) = x).

x<aggi(Aq) | aggi(Ag ) Sx<agg(Ag) |aggi(Aq)<x
t(aggi(4) 2 x) oy o 0

Table 2. Values for t(agg,(B) = x).

x<agg)(Bp ) | aggxBp ) Sx<aggy(Ap) |aggAAp )<x
t(aggx(B) 2 x) B, Bi 0

Case 1:x < aggl(Aal). In this case, we get:

ol oy O Qi Oli+ 1 O
Usi(aggi (Ao | 1 1 1 1 1 1 1

which gives (using expression (4)):
t(aggi(4) 2 X) = MaxX qe(0,1] such that agg(Ay) > x & = O -

Case 2: aggl(A&H) <x< agg,(Aai). In this case, we get:

oy o Ol O Qi Oy
Hax(aggi(Ag) |0 0 0 1 1 1 1

which gives (using expression (4)):
t(aggl(A) 2 X) = Max e [0,1] such that aggl(Aa)Z x O =0Q;.

Case 3: aggl(Aan) < x. In this case, we get:

o)l oy Oy & Oliv
Msx(aggi(Ay) | O 0 0 0 0 0

o|R

which gives (using expression (4)):
t(aggl(A) 2 X) = MAX ¢ such that agg (A 2 x o =0.
These results are summarized in Table 1.

Similar cases appear when considering the m effective a-levels of fuzzy set B: B, > ... >
B and their results are given in Table 2.

When considering a value x out of AV = {agg,(A,) with o in (0,1]} U {agg,(Bg) with
in (0,13}, 9 cases must be investigated (to situate x values with respect to agg,(A,) and
agg,(Bg)). For each of these cases, we demonstrate that x does not play any role in the
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computation of the final result by showing that one of the two following conditions
holds:

a) an element y in AV is such that
t(aggi(4) 2 y) — t(aggx(B) 2 y) < t(aggi(4) 2 x) — t(aggx(B) 2 x),

b) t(agg(4) = x) - t(aggx(B) 2 x) = 1.

As the minimum of implication values is delivered by expression (5), value x can be
omitted by the computation process.

Case 1: x <agg|(Aq)) and x < aggx(Bg ). In that case, from Tables 1 and 2, we get:
t(aggi(4) 2 x) = oy and  t(aggxB)2x) =Py
The contribution of x to the final result is oy — B;. Value y from AV defined by
min(aggl(Aal), aggz(BBl)) is such that y < aggl(Aal) and y < agg,(Bg,). From Tables 1
and 2 we get
t(aggi(4) 2 y) = ay and  t(agga(B)2y)= B
As a consequence we obtain:
t(agei(4) 2 y) — t(agex(B) 2 y) = t(agg:(4) 2 x) — t(aggx(B) 2 x).
Case 2: x <agg|(A,)) and aggz(BBH) <x< aggz(Bﬁj). In that case (see Tables 1 and 2):
t(aggi(4) 2 x) = a and  t(aggx(B)2x)=B;

The contribution of x to the final result is oy — Bj. Value y from AV defined by
aggI(Aal) is such that (see Table 1):

taggi(4) 2y) =ay.
Since x < aggl(Aal) =y and aggz(Bﬁj_!) <x< aggz(BBj), we get

t(agga(B) 2 y) € {B, Bjs1, ... B} and thus t(agg(B) 2 y) < B;.

Since an implication is increasing with respect to the second argument, we get :
(t(aggi(4) 2 y) — t(agga(B) 2 y)) < (t(aggi(4) 2 x) — t(aggx(B) 2 x)).

Case 3: x < agg|(Ay)) and agg,(Bp ) <x. In that case, from Tables 1 and 2:

tlagg(4) = x) = o and t(aggy(B) 2 x) = 0.
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The value y = aggx(Aal) from AV is such that (see Table 1):

t(aggi(4) 2y) = ay.

Since x < aggi(Aq ) =y and aggy(Bp_) <x, we get agg)(Bg ) <y and then (see Table 2):
t(agga(B) 2 y) =0.

Thus, value y gives the same implication value as x.

Case 4: aggl(AaH) <x < aggl(Aai) and x < aggz(Bﬁl). In this case, we have (see Tables 1
and 2):

t(aggi(4) 2 x) = 0 and  t(aggx(B) 2x) =P
Consequently, the contribution of value x in the final result is:
o — Py
Value y = aggl(Aai) is such that (see Table 1):
taggi(4)2y) =0,
Since B, is the maximum B-level and since t(agg;(4) = y) is one of them, we immediatly

have t(aggi(4) = y) < B;. Since an implication is increasing with respect to the second
argument we get:

(t(aggi(4) 2 y) — t(agga(B) 2 y)) < (t(aggi(4) 2 X) — t(aggx(B) 2 x)).

Case 5: aggi(Aq, ) < x <aggi(Aq) and aggz(Bﬁj_l) <x< aggz(BBj). From Tables 1 and 2,
we get the following result :

t(aggi(4) 2 x) = 0 and  t(aggx(B) 2 %) = B;
Consequently, the contribution of value x to the final result is :
o — B
The value y = aggi(Aq) from AV is such that (see Table 1) :
t(aggi(4) 2 y) = o

Since x < aggi(Aq) = y and aggx(By, ) <x < aggx(Bp), we get :

t(agga(B) 2 y) € {B, By1, -, B} and thus t(aggx(B) 2 y) < B;.
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Since an implication is increasing with respect to the second argument we get:
(t(aggi(4) 2 y) — t(aggx(B) 2 y)) < (t(aggi(4) 2 x) — t(aggx(B) 2 x)).

Case 6: aggI(Aai_l) <x < aggI(Aai) and aggx(Bg ) <x. From Tables 1 and 2 we get:
t(aggi(4) 2 x) = q; and tagg(B)2x)=0.

If we consider the value y = aggi(Aq) from AV, we have (see Table 1):
t(aggi(4) 2 y) = .

Since agg>(Bp ) <x and x < aggi(Aq) =y, we get agga(Bg ) <y and then (see Table 2):
t(aggx(B) 2y) = 0.

Thus, value y gives the same implication value.

Case 7: aggi(Aq ) <x andx < aggx(Bg ). From Tables 1 and 2 we get:
t(agg(4)2x)=0 and t(aggx(B) 2 x) = B.

The value y from AV is aggz(BBl). Since aggI(Aan) <xand x < agg,(Bg,) =y we get
aggi(Aq ) <y. From Table 1

t(aggi(4) 2y) =0.

Since y = agga(Ag,), we have from Table 2:
t(agga(B) 2 y) = 1.

Thus, value y gives the same implication value as x.

Case 8: aggi(Aq ) < x and aggz(BBj_l) <x < aggz(BBj). Such a value x can be discarded

because y = aggz(Aﬁj) from AV has the same implication value (that case is similar to
case 7).

Case 9: aggl(Aan) <x and agg:(Bg ) <x. From Table 1 and 2, we obtain that t(agg,(4) 2

x) = 0 and t(aggy(B) = x) = 0. The contribution of element x is 0 — 0 = 1. As the
minimum of the implication values is retained, this contribution can be discarded.

3.3 A final example

Let us consider a condition of the form "max(4) £ max(B)" with:
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A= {1/500 + 1/600 + 0.8/400 + 0.8/550 + 0.6/650 + 0.3/400},

B ={1/100 +0.9/550 + 0.8/800 + 0.1/100}.
We have:

max(A;) = 600, max(Ayg) =600, max(Ag¢) =650and max(Ay3) =650,
and:

max(B;) =100, max(Bgs) =550, max(Bys) =800 and max(Bg )= 800.
The set AV of values to be considered in expression (6) is:

AV = {100, 550, 600, 650, 800}.

Using Lukasiewicz implication, we get the implication values given by Tables 3 and 4.

Table 3: Aggregate truth values

X t(max(4) 2x) (1) | t(max(B) 2x) (2)
100 1 1
550 1 0.9
600 1 0.8
650 0.6 0.8
800 0 0.8

Table 4: Implication values

X 1 -2
100 1
550 0.9
600 0.8
650 1
800 1

Finally, the minimal value of the implication results is taken, which yields 0.8.

4  Conclusion

In this paper, the issue of flexible querying of databases is considered. In such a
framework, we advocate the use of fuzzy sets and a given condition leads to a degree of
satisfaction. So far, conditions calling on aggregate functions (count, sum, max, min, avg,
...) were restricted to regular sets and this paper tackles the situation where aggregates
may apply to fuzzy sets. In order to be coherent with the considered context (i.e, that of a
flexible query language such as SQLf), the interpretation of such a condition must be a
unique degree of fulfillment.
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We have focused on conditions of type "agg,(4) 6 agg,(B)" where 4 and B may be fuzzy,
0 is a regular (nonfuzzy) operator belonging to {<, >, 2, <, =, #} and agg,, agg, are
monotonic aggregates. Such complex conditions are illustrated by the statement
"max(salary of young employees) < min (salary of old employees)". An overall degree of
satisfaction is defined as the minimum of implication values issued from simpler
conditions, namely conditions of type "agg(4) is C" where the aggregate applies to a
fuzzy set 4 and is matched against a crisp predicate C. These simpler conditions are
interpreted by a unique degree (as suggested in [5, 6]) and this interpretation for "agg(A4)
is C" differs from that based on a fuzzy pattern process where two indices are computed.

In the near future, the next step will be the study of fuzzy comparison operators 8 (such
as much larger than) in expressions of type "agg,(4) 6 agg(B)". It seems that expression
(3) used here cannot be the basis for the interpretation of such statements and a new
approach must be suggested. Another matter of future research is the design and
implementation of algorithms aiming at evaluating conditions involving aggregates
computed on fuzzy sets. Experimental measures should be performed in order to assess
the extra cost induced by the fuzzy nature of the condition.
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Abstract

We propose the <concept and implementation of a software system,
TCAT (Text CATegorization) system, for an automatic recognition of a topic of an
Internet document. In the training mode the user provides the system with a list of topics
and sets of documents representing each topic (supervised learning). In the recognition
mode the system automatically classifies previously unseen document to a topic
category. A simple learning algorithm is devised and implemented. The results of the
classification are presented to the user in the form of a set of linguistic terms. Some new
measures of correctness of the classification are proposed. The implemented system
processes documents in several popular Internet-related formats.

Keywords: automatic classification of documents, Internet, linguistic terms

1 Introduction

The maintenance and processing (notably retrieving) of textual information by means of
computerized systems was among the first applications of the computers. The need for
such systems has grown essentially along with the popularity of the electronic form of
documents implied by the recent widespread and easy access to the Internet. The Internet
provides an excellent testbed for methods developed within information retrieval (IR).
This encompasses various tasks addressed by IR such as fast textual documents retrieval
or automatic text categorization. The latter may be understood in several ways. In order
to make clearer the task addressed in this paper let us consider the scenarios in which our
system may be applicable. The first one is that of a Web Spider: an agent software
“traversing” the Web and automatically classifying documents found with the aim of
providing us only with the documents of interest for us (i.e., belonging to a prespecified
category/categories). The second scenario is that of a “translation agency”. In this case,
the aim of the system is to automatically assign to interpreters documents sent by
customers. The interpreters prefer certain categories of documents and the aim is to
match their preferences so as to secure a high efficiency of the whole translation process.
In both cases the classification may be done manually. However, it may be not such a
good solution as it may seem. Firstly, in particular in the first case, it is unreasonable to
expect that all documents are classified by their authors or some other bodies (see, €.g.,
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Yahoo). Secondly, the classification provided by the author may be useless for, or
inconsistent with the purposes of the document “consumer”. Both scenarios require a set
of prespecified categories of documents and a training set of documents properly
classified along this categories. Thus, we aim at the solution for filtering rather than
clustering the documents. In other words, the targeted user is one with a fairly fixed set
of categories of interest, who looks to assign new documents to this categories. This may
be contrasted with the requirements of a general information retrieval system where a
grouping of somehow similar documents is sought in order to make the retrieval more
efficient.

The problem concerned in our paper is usually addressed with the help of methods
elaborated within the domains of information retrieval and pattern recognition (more
specifically, classifier construction). Characteristic features of our approach described in
this paper are the assumption of a high dimensional document representation space and
the use of fuzzy logic elements both for the classification purposes as well as for the
presentation of results obtained to the user. The starting point are our previous
experiences with the fuzzy querying of databases [6] as well as the recent advances in
the application of soft computing for information retrieval purposes [3].

In Section 2 we briefly review the literature relevant for the text categorization task.
Sections 3 and 4 present the general concept of the TCAT system and employed
algorithms.

2 Text Categorization Task

Text categorization as discussed here is a typical example of the classification task. More
precisely, the process consists of two phases:

o the learning of classification rules (building a classifier) from examples of
documents with known class assignment (supervised learning),
e the classification of documents unseen earlier using rules derived in Phase I

A human being classifying a document may take into account its usually rich syntactic
and semantic structure. In case of an automatic, computerized approach some
simplifications as to the representation of the documents are usually done, i.e., only
some fearures of the documents are taken into account. The most popular approach
consists in treating a document as a sequence of words (a bag of words). Many
variations are possible as to which words are taken into account — from exactly all words
present in the whole collection of documents under consideration up to a limited
controlled vocabulary (keywords). Typically, a document is preprocessed to remove so
called stopwords, extract some basic form of words (stemming) etc. Then, each
document is represented as a vector. Each component of this vector corresponds to a,
possibly normalized, frequency of appearance of a word (keyword) in that document.
Sometimes binary vectors are used to represent documents, where 1 and 0 mean that a
keyword occurs (no matter how often) or does not occur in the document, respectively.

Having such a numerical representation of the documents one can apply one of
numerous classifier construction algorithms including rule-based systems, decision trees,
artificial neural networks, etc. (see, e.g., [7]). One of classical algorithms developed in
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the area of information retrieval is that of Rocchio [12, 5]. The learning phase consists in
computing a centroid vector for each category of documents. Then, in the classification
phase, a document is classified to a category whose centroid is most similar to this
document. The similarity may be meant in several ways — in the original Rocchio’s
approach it corresponds to the Euclidan distance.

The text categorization task exhibits some imprecision. Even a human may be unsure as
to a clear cut classification of a document to just one category. Moreover, it is quite
natural to consider a degree of belongingness to a category. This becomes even more
apparent in case of an automatic classification procedure. We may easily expect that the
results of classification may be ambiguous. The fuzzy logic approach has proved to be
useful in such a context.

The quality of given text categorization system is assessed based on the error rate. The
meaning and usefulness of this approach in the crisp case is quite obvious. However,
when we assume a fuzzy response from a categorization system some special
considerations are needed.

In the next section we discuss in more detail how the above mentioned elements of a text
categorization system have been adopted and implemented within our TCAT system.

3 The Concept of the TCAT System

Our assumptions for the construction of the TCAT (Text CATegorization) system were
as follows:

a universal, language independent, representation of the documents
a simple classifier learning algorithm

a provision for the handling of ambiguous classification results

an implementation as an Internet (WWW) based service.

el

The first has been attained by the representation of document as a sequence of 5 or 10 (a
parameter of the system) character long strings (tokens or n-gram). This gives rise to a
very high dimensional representation space and requires a full fledged database
management system to be a part of the text categorization system (in our case it is
MySQL).

The classifier employed by the TCAT system is of Rocchio type. A simple formula is
used to calculate for each token how representative it is for particular categories of
documents. Effectively, it yields a kind of a centroid for each category of documents. In
the classification phase the document to be classified is divided into tokens (only tokens
extracted from training documents are taken into account). Then, the binary vector
representing the document is compared with the categories’ centroids yielding the degree
to which the document belongs to a given category.

Due to a possible ambiguity of classification, its results are presented in the form of a
linguistic expression. The degree to which a document belongs to a category is treated as
the realization of a linguistic variable. As a result the user obtains a linguistic description
of the membership degree of the document to the particular categories.

The TCAT system processes documents in formats typical for the Internet (WWW). The
current version of the system is able to classify documents available locally on the user’s
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computer or somewhere in the Internet, as indicated by their URL (Uriform Resource
Locator).

4 Representation of Documents and a Classification Algorithm

Let D={d;};c;1.m be a set of training documents and T={#};c;1n) be a set of all tokens
occurring in them. A document is represented as the vector d=(dj,....dwy), where d;;
denotes the number of occurrences of token ¢; in document 4.

In the learning phase the TCAT system computes for each token its membership degree
to particular categories. This degree indicates how characteristic a token is for given
category. The following properties are assumed for this indicator:

1) is proportional to the number of occurrences of the token in the documents of a
given category,

2) is counter-proportional to the number of occurences of the token in documents of
other categories,

3) is biased towards the proportion 1).

We will use the following notation:

SP{ - membership degree of token 7 to category k,

K — the set of all categories considered,

n', nj, - number of occurrences of token ¢ in all training documents and in the training
documents of category k, respectively,

1 1 . . . .
A, =— and A" =— - some auxiliary coefficients; r is a parameter, in the
n m

computational experiments assumed equal 4.
Let w; denote an indicator "favouring" token ¢ proportionally to the number of its

occurences in the documents belonging to the category & and "punishing” token z
proportionally to the number of its occurrences in documents belonging to other
categories:

wy = v+(n1’( -A’+)— Zgn,’n »At_) )
me K\{k}

where v is an initial value of the indicator w}, (it is a parameter of the method; by default

v=0.1).

It is obvious that the indicator wfc meets conditions 1) — 3). Formula (1) may be

expressed also as:
1 n;
wip =v+= (r+1)—% -1 )
r nt
what shows its relation to ¢f*idf weighting scheme. It provides also clear interpretation
for the parameter r: a term that appears roughly more than r times in the documents
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belonging to other than k categories gets negative membership degree to the category k.
In order to to normalize the value of wj we employ the following transformation

yielding the formula for the indicator SPkt sought:

0 for w, <0
3 2
SP{ =<—w, +w, +w, forO<w; <=1 3)
1 for wi >1

Thus, both formulas (1) and (2) and (3) taken together provide for the weighting of terms
for particular categories as well as excercise a threshold rejecting terms being not-
specific for a given category. Obviously, transformations other than (3) may be
applicable to this aim and we treat it as a parameter of the method.

Effectively, while computing the SPkt indicators for all tokens we obtain a kind of a

centroid, C;, for each category of documents:
Ce=(SP},...,SPV)

In our approach the centroids are computed directly during the analysis of the training
documents. Usually, in the literature it is assumed that first the representation of
particular documents is obtained. This representation may use various weights for the
tokens, e.g., tf¥idf [14,1].Then, the centroids are calculated using, e.g., averaging.

In the classification phase the system computes for a document d its degree of
membership to each of the categories k, sp,‘f . In this phase the document is represented

as a set of tokens —i.e., the Boolean (binary) representation is assumed - occuring in it:
d={#}, ; € T (i.e., all tokens found in document d, but not present in the training

documents, are ignored). The indicator sp,‘f is given by the formula:

PIN 4
Sp]((i _ fed 4)
ng

where 1, and SP{ denote the number of tokens representing document  and the degree

of membership of token ¢ to the category k (calculated in the learning phase according to
(3)), respectively. Effectively, the formula (4) is a counterpart of the similarity measure
between document d and the centroid of category k.

Having calculated for a document d values sp,f for each category k, it is natural to

classify document d as belonging to that category for which the value of this indicator
attains a maximal value. In case the values of this indicator for a few different categories
are close, the system is not in a position to propose clear-cut classification. In such a case
it seems better to inform the user about all categories to which the document possibly
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belongs. To this aim system TCAT provides the user with information about the values
of indicator spf for all categories. However, the system does not present to the user raw

numerical values of the indicator. Instead, a more human consistent form is employed
referring to the concept of a linguistic variable.

A linguistic variable is a variable taking on the values that are not numerical but are
linguistic terms. Usually, semantics for this linguistic terms is provided by fuzzy sets
defined over the universe under consideration. The linguistic variable is a tuple (H, T(H),
U, G, M), where H is a name of the variable, T(H) is a set of its values (linguistic terms);
U = {u} denotes the universe under consideration [fuzzy sets defined over U provide the
interpretation for particular terms beonging to T(H)], G is a rule generating values for the
linguistic variable [if T(H) is finite then G may be just simple enumeration of the
linguistic terms]; M is a semantic rule providing for each value /e T(H) its meaning M(I)

S U. For example, treating age as a linguistic variable one may assume:
T("age")={"very young", "young", "middle aged", "old", "very old"}, U=[1,100], M
associates with particular values of T{("age") fuzzy numbers defined over the interval
[0,100] and intuitively corresponding to individual descriptions of the age. For example,
with the term "young" a trapezoidal fuzzy number (0;0;25;35) may be associated.

Treating the membership of a document to a category as a linguistic variable we may
adopt the following interpretation for the components of the definition of the linguistic
variable: the name is “connected with the category k" (H); the universe of discourse is U

= [0,1] (i.e., the range of the indicator sp,‘f ); as the set of linguistic terms we may
assume:

"o

T(H) = {"not", "slightly”", "medium", "strongly", "very strongly”}. (5)

The semantic rule M associates with particular linguistic terms fuzzy numbers defined
over the interval [0,1]. For example, the term "very strongly” may be represented by the
trapezoidal fuzzy number (0.85,0.95,1.0,1.0).

Thus, we treat the degrees of membership of a given document to particular categories as
realizations of a linguistic variable. We adopt a simple scheme of the choice of a

linguistic term to represent the computed value of indicator sp,‘f . Namely, we choose a
term such that the computed value of the indicator belongs to it to a maximal degree:

SPl=u > I= argmax iy () (1) ©
I}

i.e., we represent the value u of indicator sp,‘f with a linguistic term [, such that u
belongs to a maximal degree to the fuzzy set M(/) being a semantic interpretation of the
term /.

Thanks to the definition of indicator SP{ a token often occuring in documents of

different categories obtains a low value of membership to all categories. Thus, it has
virtually no influence on the results of the classification phase.. In turn, a token occuring
only in documents of one category obtains a high degree of membership to this category.
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Intuitively, an occurence of such a token in a document strongly indicates its connection
with a given category. This intuition is formalized by formula (4).

. 7 WWW page
; | request
| APACHE ||
: H—
| | HTML code
| A AL
query (SQL) WWW browser
MySOL [
| start of PHP
data flow

Figure 1: The structure of the TCAT system.

5 Implementation

The TCAT system is a sensu stricte Internet based system. It processes primarily
documents available in the net. The system itself is implemented as a WWW based
application. The system may be perceived in a broader sense as a set of collaborating
modules written in PHP, WWW server (Apache) supported by the PHP interpreter,
database management system MySQL and a WWW browser. In a narrower sense the
TCAT system should be identified with the first of above mentioned components, i.e., a
set of PHP modules accomplishing basic functions of the system. In what follows we do
not make an explicit distinction as the context usually clearly indicates what meaning of
the TCAT system is assumed.

A basic architecture of the TCAT system is shown in Fig. 1. The system operates as
follows. First, a user sends a request for the services of the system via a WWW browser.
Then, the WWW server (Apache) starts the PHP interpreter. A PHP module — a
component of the TCAT system — fetches necessary data from the database and the
Internet and generates a HITML code enriched with JavaScript functions.
Communication with the MySQL database is carried out using a standard PHP module
exposing an interface for accessing this database. The HTML code is interpreted by the
browser and the results are displayed as screens forming a user interface of the TCAT
system.
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The way of the interaction with the system in both phases is simple. The user interface
consists of a logically connected set of WWW pages Interfejs containing regular forms.
Processing of the documents goes in a few steps. First, the content of a document is read
from either a local disk or directly from the Internet and stored in a buffer. Then, the text
read in previous step is preprocessed. All elements of the HTML, DHTML, XHTML,
XML, PHP and ASP code are removed. This is accomplished through a simple lexical
scanner reading subsequent characters of the string, analyzing them and removing
fragments semantically not important. This step is more sophisticated than a mere
removal of the whole HTML tags or scriptlets. Their content is also analyzed and the
substrings that are possibly important for text categorization are preserved. During the
lexical analysis the addresses of the linked documents are extracted. Then, also these
documents are processed. A further lexical processing includes the removal of all not
alphanumerical characters, and the change of uppercase letters to lowercase. The text of
a document preprocessed in such a way is then forwarded to the next stages of the
analysis.

The database of the TCAT system is used mainly to store the characteristics of all tokens
extracted from the training documents. The most important element of such a
characteristic is the degree of membership of the token to particular categories.

6 An Example

The TCAT system has been tested on the set of text documents representing 6 thematic
categories. The choice of the testing material was motivated by the popularity of these
categories in the resources of the leading Polish Internet portals. The selected categories
are:

e nature and ecology,

e economy,

® movies,

¢ computers and the Internet,
e cars,

[ ]

politics, society and law

In the learning phase 20 documents per category have been used. The results of this
phase are illustrated in Fig. 2. This figure shows the degrees of membership of selected
tokens to the category "politics, society and law".

The testing documents, 10 per category, have been selected from the site of a Polish
Internet multimedia encyclopedia (http://wiem.onet.pl/wiem). Each test documents is a
description of a certain, relevant for a given category, keyword from the encyclopedia.
While evaluating results of the categorization done by the TCAT system we have to take
into account the fuzziness of response of the system. As it is described earlier, the
system in the classification phase yields degrees of membership of the document to all
(in this case 6) categories. On the other hand, the information about the actual category
of test documents is crisp and indicating exactly one category. In order to assess the
correctness of fuzzy classification response of the system we have adopted two
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approaches. In the first approach we accept a fuzzy response as correct if the actual
category of the test document belongs to the set of categories for which the system
produced the highest membership degree. The second approach poses a stronger
requirement: we require that the actual category of the document is pointed out by the
system unambigously. Formally it may be denoted as follows:

Approach I (“simple correctness™)

M

>9d;)

Pl=100* =L
MT

where MT is the cardinality of set DT={d;} of test documents and

d; d; .
1 gdy SP' 28P "' Vj
o(d;) = S
0 wpp

and k- is the actual category of document d;.

Tabela 1: Accuracy of the classification.

P1: simple P2: strong

correctness correctness
Category 1 (nature and ecology) 90 % 79.5 %
Category 2 (economy) 90 % 69.75 %
Category 3 (movies) 80 % 79.00 %
Category 4 (computers and Internet) 90 % 75.50 %
Category 5 (cars) 100 % 66.80 %
Category 6 (politics, society and law) 70 % 57.50 %
Total 87 % 71 %

Thus, P1 corresponds to the percentage of the documents correctly classified in the sense
of the first approach.

Approach II (“strong correctness’)

MT

sz(di)

P2=100%i=1 . _
MT
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p(d k)
X
J

p2(d) =100 %

where p(d, k;) assumes an integer value depending on what linguistic term [see (5)] the
system has used to describe the membership degree of document d to category k;. For the
terms "not", "slightly”, "medium", "strongly" and "very strongly” the numbers 0, 25, 50,
75 and 100 are used, respectively. As previously, k.« denotes the actual category of
document 4, and MT - the cardinality of the set of test documents DT={d;}. Thus, P2
corresponds to the percentage of the documents correctly classified in the sense of the

second approach.

Category: politics, society and law

i

+
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Figure 2: Degrees of membership of some tokens to the selected category

The results of the classification done by the TCAT system as assessed using both
approaches are illustrated in Table 1. In most cases the system pointed out the strongest
membership of a document to the actual category of the document.

7 Concluding Remarks

We have presented a concept, architecture and implementation of the TCAT system
performing an automatic categorization of Internet documents. The results of
preliminary experiments with the system have been shown. The original features of our
approach include: a human consistent user interface, new measures of accuracy, and a
simple, parametrized classifier design.

The proposed approach requires a further research. First of all, the classifier itself has to
be thoroughly tested using standard sets of documents and widely adopted testing
techniques (e.g., cross-validation). An approach to tuning the systems parameters has to
be proposed. Possibly some changes to the very learning algorithm will be introduced.
We hope to be able to present more rigorous tests results (for, e.g., Reuters-22173
dataset) during the conference. We plan also to conduct some experiments on the
multilingual documents sets.
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A further study will also concentrate on the use of well knwn concepts developed within
the theory of fuzzy sets. For example, the measure of accuracy (approach II) may be
further studied employing the concept of a specificity measure of a fuzzy set proposed
by Yager (see [4]). Secondly, the concept of membership of a token to a category
directly leads to the interpretation of the category as a fuzzy set defined over the space of
tokens. Then, some well known approaches to the measuring of similarity of fuzzy sets
may be employed. Finally, the very task of categorization may be redefined taking into
account that a document usually belongs, to a varying degree, to different categories.
Thus, fuzzy approaches to so-called mulri-class or multi-label categorization problem
(see, e.g., [9]) are certainly worth a further study.
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Abstract

We introduce the methodology of prototype based reasoning and discuss its role as a
technology for supplying missing information about some object based on known
information about related objects. We show that nearest neighbor based systems and
fuzzy rule based models are examples of prototype based reasoning. This perspective
allows us to extend the capabilities of fuzzy modeling technology in a number of
directions. One such extension discussed here is to suggest a method for fusing multiple
fuzzy systems models.

Keywords: fuzzy modeling, fuzzy measures, nearest neighbor principle, information
fusion

1. Introduction

An important class of models are those in which we use known information about a
collection of objects to provide missing information about some other object of interest.
Much of modern information based technologies focus on this problem. Here we consider
one framework for modeling this type of inference called Prototype Based Reasoning
(PBR).

2. Prototype Based Reasoning Systems
A PBR system consists of a collection of entities called prototypes, A = {A], Aj,
..» Ap}. A common use of PBR is to determine, based on information about the

prototypes, the degree to which some non-prototype object has a particular feature. We
shall call the feature on which we are focusing the notable feature (NF). It is assumed
that for any prototype we know the degree, aj, to which it has this notable feature,

aj € [0, 1]. An important part of a PBR system is credibility measure . Formally

W 2A — [0, 1] where for any subset E ¢ A, W(E) is the degree of credibility associated
with any conclusion based upon using the subset E of prototypes. Some natural
properties of this credibility measure are: u(&) = 0 and if E € F then WE) < u(F), the
more prototypes used the more credible the conclusion. We shall assume W(A) = 1, any
conclusion based upon all the prototype is completely credible. This last condition may
not be necessary. We note that a set functions having these properties are called fuzzy
measures [1, 2]. In PBR we are interested in using the set of prototypes to determine the
validity of the notable feature for some target object. In order to accomplish this we must
assume the availability of some procedure to determine the similarity (relevance) of a
given prototype to the target object. As we would expect the more similar a prototype
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the more useful it is the determination of the information we are seeking. We shall
indicate the degree of relevance of prototype A; to the object of interest by n; € [0, 1].

A PBR reasoning system is a type of possibilistic inference engine. Under the
prototype based reasoning paradigm we say that the degree to which the target object has
the notable feature is equal to the degree to which we can find

a relevant credible subset of prototypes having this feature
That is if we find a relevant credibility set of prototypes that we assume the target has
this feature.

In order to formally express this imperative we shall introduce some fuzzy subsets

over the power set of A, 2A | First we note the u is a fuzzy subset of 2A, W(E)
indicating the degree of credibility of the subset E. We next introduce the fuzzy subset Q

of 2. We define it by Q(E) = Min [a;], it measures the degree to which all the
AjeE

elements in E have the feature of interest. Finally we introduce the fuzzy subset R over

2A in which R(E) indicates the relevancy of the subset E to the object of interest. We
shall initially leave the definition of R open but we note that it should depend upon the
similarity of the prototypes in E to object of interest: R(E) = f(1n1, ..., Np)

Using these fuzzy subsets we define the fuzzy set D = u m Q nR. D is the fuzzy
subset of subsets of prototypes that are credible, similar to the object of interest and
having elements that have the property of interest. Using this we calculate

a=Maxg A[D(E)] = Maxgc A [WE) A QE) AR(E)]
it is the degree to which our target object has the feature of interest.

By appropriate selection of | and R we can generate different manifestations of this
PBR paradigm. We shall look at the PBR systems resulting from some different
assumptions about the form of p and R. However before preceding we shall look at some
general formulation of these measures. First we shall look as the credibility measure L.

One important class of credibility measures are cardinality based credibility measures.
For these measures W(E) = W|E| the credibility of any subset E just depends upon the
number of elements in E. Here then we only require we have w; > w; j>iand wo=0
and wy, = 1. With cardinality based measures there is no distinction made between the
credibilities of the different prototypes, all are assumed to be the same, the credibility just
depends upon the number of prototypes considered. Three important special cases of
cardinality based credibility measures are worth pointing out. The first is one in which
w] = 1, here we deem any prototype to be completely credible. In this case a conclusion
based upon any number of prototypes is assumed completely credible. The second case is
the one in which wj = 0,forj=1ton-1and w, = 1. Here we any conclusion requires

consideration of all the prototypes. A third special case is the one in which subset
credibility is directly proportional to the number of prototypes in the subset, w; = ;il—, A
general class of cardinality based measures can be defined by using a function f: [0, 1] —
[0, 1], called a BUM function, having the properties: 1. f(0) = 0, 2. f(1) = 0 and 3. f(x)
2 f(y) if x > y. Using this BUM function we define w; = f(i/n).

Moving away from the cardinality based credibility measures, which make no
distinction between the credibility of individual prototypes, a basic type of credibility
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measure is one in which we associate with each A; a value o; € [0, 1] and then define

WE) = 1 2 0; A generalization of this is one in which we use a BUM function f as
ieE
defined above and define W(E) = f(L Y o).
ieEB

We now briefly comment on the relevancy function R. One primal example of
relevancy function is the one in which R(E) = 1 for all E. Essentially, in this case we are
not using any information about the similarity of the prototypes to the object of interest.
In this case a = MaxE;A[Q(E) A WE)]. This is the fuzzy integral [1, 3].

3. Nearest Neighbor Type PBR Systems

Here we begin to look at some special classes of prototype based reasoning systems.
The first class we shall consider are nearest neighbor based systems [4-6]. The
fundamental feature of these systems is captured by the following imperative
characterizing this approach.

Nearest Neighbor imperative:
Don't use any prototype object to determine the notable feature unless you also use all
the prototypes that are more similar (more relevant).

As we shall subsequently see, this imperative puts some very interesting restrictions
on the form of the relevancy function R. In order to most easily implement this
imperative we shall introduce some ideas developed in [7]. Let P be a partial ordering
over the set A. We shall let A; >p Aj indicate that A; is higher in the ordering than A;

and Aj =p A; indicate that they are tied in the ordering. We shall call a subset E of Aa
rooted sub-ordering with respect to P if for any Aj € E we also have all A >p Aj. Thus
E is a rooted sub-ordering if it contains all the elements ahead of its lowest element. It
should be emphasized that elements tied with the lowest element may or may not be in
the E. Using this definition we can now introduce the nearer neighbor imperative. Let P
be a partial ordering induced by the relevancy of the prototypes to the object of interest
thus if n;j is the relevancy of prototype Aj to the object of interest, then if nj >Nk we
have Aj >p Ay and if nj =Mk we have Aj =p Ay. The requirement of the nearer neighbor
principal can now be introduced by specifying that the relevancy function R be such that
R(E) = 1 if E is a rooted sub-ordering of P and R(E) = 0 otherwise. Thus in this case a=
Mingc RSp[u(E) A Q(E)] where RSp is the set of rooted sub-orderings of A with respect

to P.
In [7] Yager showed using the properties of W(E) and R(E) the following useful

result. Let P be a linear ordering generated from the partial ordering P such that elements
that are tied with respect their relevancy value are lexically adjudicated by their notable
feature value in descending order, thus if two prototypes are tied in P we place the one

with the larger 3 value higher in P. Let B-index(j) be the index of the prototype that ii in
the jth position in the ordering P. Yager showed (7] that as= Maxj=1 to n[u(Gj) A
Q(Gj)] where Gj = {Ag—indcx(k) | k=1toj}. We note that Gj consists of the j top
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elements in the ordering induced by the relevancy, the j nearest neighbors. We further
note that Q(Gj) =Ming _ | ¢ j[af)-index(k)]» it is the minimal satisfaction among the jth
most relevant items.

Special examples of nearest neighbor type prototype based reasoning can be exhibited
by different selections of yu. If we consider the case where all prototypes are considered

fully credible, W(E) = 1 for all E # &, then a= Maxj =1 to n[Q(Gj)]. Since Q(E) is a
decreasing function, Q(E) £ Q(F) if F ¢ E and since Gj C G;j if i > j then for this case of
credibility function a = QG = af)-index(l)- The valuation is the same as that of the
single nearest neighbor, this is the simple nearest neighbor rule.

More generally if W(E) is a cardinality-based credibility measure such that WE) =0
for [E| <K and W(E) = 1 for [E| 2 K we see that a = Minj_y K [P-index(i)]> the
minimal satisfaction by any of the K closest neighbors. This can be seen as a kind of

Kth nearest neighbor rule.
In the preceding we just used the ordering over the prototypes. We can consider a

modification of this to include the relevancy values in the actual calculation of a. Here
we let R(E) = R{(E) N Rp(E) where R enforces the nearest neighbor imperative, R{(E)
= 1ifE#Gjand R|(E) =0if E # G;. We use Ry to express information about the

actual relevancy values, Ry(E) = Min ['ﬂj]- Combining these we get R such that
jsLAjeE

R(G;) = Minj =1to i[nﬁ-index(j)] and R(E) = 0 for E # G;. Using this we have a=
Max;[I(G)) A R(G;) A Q(G;)] with Q(G;) = Miny_ (o i[aﬁ-index(k)]-

If we further assume W is such that all u({A;}) = 1 for all i, W(E) = 1 for all E # &,
thena = Np-index(1) A a5.index(1)- the score of the nearest neighbor "weighted” by its
degree of relevance. If we assume W(E) = 0 for |E| < K and WE) = 1 for [E| 2 K, then it
can be shown that a= Minj =1to K[(na-index(i) A aﬁ-index(j)]' One final case is where

u({Aih=0;and u(E)y= Max  [o;]. Here after some calculations we get
ist. Aje E

a=Maxi] 1o n[Maxj= | o i[05-index(j)} A Minj= 1 to il(Mp-index(j) A 2P-index(j)]]
4. Fuzzy Modeling as Prototype Based Reasoning

We now briefly review the fuzzy systems modeling approach as introduced by
Mamdani [8, 9] and Zadeh [10], a more comprehensive discussion can be found in [11,
12]. As we shall subsequently see this provides an example of prototype based reasoning.
Our viewing this technology as a case of PBR will enable us to expand its modeling
capabilities.

The basic fuzzy systems model consists of a collection of n rules of the form:

IfVyis Bjjand ....and Vjis Bjjand ... and Vp, is Byj then W is Dy

Here the V,; are variables taking their values in the spaces X; and W is a variable taking
its value in the space Y. The V; are called the antecedent (input) variables and W is called
the consequent (output) variable. The Bj; are fuzzy subsets of X; and Dj is a fuzzy subset

Y
of Y. At times it may be more convenient to write a rule as If V is Bj then W is Dj here
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V is a joint variable, V = (Vq, ..., V), taking its value in X = X1 X ... X X, and Bj is
a fuzzy of X with Bj=B1j><B2jX...Xij. o |

The typical application of fuzzy systems modeling consists of a situation in which
we have information about the antecedent variable, V; = xi*, i=1tom, and we are
interested in determining the value of W. We shall denote the fuzzy subset of Y
corresponding to this output as F. The procedure used to obtain F, called fuzzy
inferences, is as follows. First we determine the firing level or relevancy of each rule, as
nj=Mini= | ¢ m[Bij(xi*)], here Bij(xi*) indicates the membership grade of xi* in By;.
We then calculate the effective output of each rule Fj, a fuzzy subset of Y with
membership Fj(y) = Dj(y) St The next step is the aggregation of the individual rule
effective outputs to give us the overall output fuzzy set F, F(y) = Man[Fj(y)].

Often a step of defuzzification is applied to obtain a crisp output [13]. This step is
not of concern to us here.

What we shall show in the following is that this fuzzy modeling framework can be
viewed as a type of prototype based reasoning with respect to the determination of the
membership grades of F, the F(y).

In the PBR framework we shall consider each rule as a prototype. We shall denote

the jth rule as Aj, thus A = {A], .., Ay} is our collection of prototypes. In the

determination of the membership grade of the element y in the consequent, F(y), we shall
associate with each prototype an argument Dj(y), the degree to which the prototype

supports the element y. Given an input object, (x1%, ..., xyy*) the relevancy of the
prototype A: is n: = Min [Bi'(xi*)]~
] Ji=1tom Y
Using the PBR framework the desired output F(y) = Maxg - A[H(E) A QE) AR(BE)].

Here R is the relevancy of the subset E of rules, Q(E) is the degree to which all the rules
in E support the output value y and W(E) is the degree of credibility associated with using
the subset E of rules. For the basic fuzzy model we define the relevancy function R as

RE)= Min |[q j]' The relevancy of a subset of rules is the minimum relevancy of
js.t Aj €eE
any rule in the subset. Q is defined as Q(E) = Min [Dj(y)]. The support for y
jst.Aje E

associated with a subset of rules is the degree to which all the rules support y. Finally in
this basic model we assume that UW({A;}) =1 for all i, each rule has complete credibility.
This of course means that w(E) = 1 for all E # &. Since u(E) =1 for all E # & we get
F(y) = Maxgg[QE) A RE)]. Since QE) = s th/gpe 5 [Dj(y)] and R(E) =
Min  [n;] then for any subset E we have Q(E) A R(E) SJQ({A-}) AR({A:}) for A;
jstAjeE J ) )
€ E. TFrom this we get that F(y) = MaxJ- =1to n[nj A Dj(y)] which is the fuzzy
systems model.
Thus we see that with appropriate choice of relevancy (R), credibility (1) and support
(Q) functions the basic fuzzy systems modeling can be viewed as an example of prototype
based reasoning.
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5. Extending Fuzzy Systems Modeling with Weighted Rules
Viewing the fuzzy system model as a type of PBR allows us to extend capabilities of
fuzzy system modeling. As a first extension of the classic fuzzy model we shall look at
the situation in which we don't assume all of the individual rules are completely credible
we shall assume that u({A;}) = ; and w(E) depends on the prototypes in E.
Here we still have Q(E) = Min [D (y)] and R(E) = Min [nj]. In this
jst. Aje E jst Aje E
situation using the PBR model we have F(y) = MangA[u(E) A QE) A R(E)]. We
shall find it convenient to denote dj = Dj(y) and to denote fj = dj A M- We shall call fj

the effective value of prototype Aj. Also we shall denote QR = Q m R. We see that

from the current definitions of Q and R we have QR(E) = Q(E) AR(E}= Min (3]
jstAjeE

Using this notation we have F(y) = MaxECA[u(E) A QR(B)]

While we have assumed that the credibilities of the individual prototype rules are o
we have not indicated any other structure on the credibility measure p. By imposing
particular additional structure on W we can obtain useful formulations for the
determination of the overall consequent value.

As a first case we shall assume that the credibility measure has the properties of a

possibility measure [14], W(E) =  Max [ocj]. We can show under this assumption
js.t. AJ € E

about the form of the credibility function we obtain as our formulation for consequent
fuzzy set a weighted aggregation of effective values of each prototype
F(y) = Maxj=1 ton [OLJ A f:]]
More generally we can assume a t-conorm S instead of Max in defining p. In this
case F(y) = Max; = | ¢o n[ff—index(i) ASk=1to0 i[af_index(k)] In the case of the bounded
sum, S(a,b) =(a+ b) A 1, we get

E(y) = Max; - [ o nlff-index(i) ~ 2 Of-index(k)):

To help better understand the relationship of the PBR reasoning to fuzzy modeling
we introduce the idea of compounding of fuzzy rules. Let A} and Ay be two fuzzy rules-
Aq: If V) is By then W is Dy and Ap: If V5 is By the W is Dy, Here V| and V3
may be atomic or joint variables, which may or may not be the same. We define a new
rule called the compounding of A1 and A denoted Comp(A 1, Aj) as

If Vi is By and V5 is B, then W is Dy and Do
We see compounding Ay and A, defines a new rule that is a conjunction of the

antecedents and a conjunction of the consequents of each of the rules being compounded.
For a given input x* if the firing levels of A{ and Ay are 11 and N then the firing level

of the compound rule is M} A 119, the consequent membership grade is Dy(y) A Da(y) and
the efficient value is D(y) A D2(y) A n; A N9 The extension to the compounding of

any number of rules is straight forward.
Using the definitions of Q(E) and R(E) we can see a relationship between the process
of compounding and the PBR reasoning mechanism introduced. Let E be a subset of A
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then compounding the rules in E generates a rule, Comp(E), whose antecedent is the
conjunction of all the antecedents of the rules in E and whose consequent is the
conjunction of all the consequents of the rules in E. If for a given input x* the firing
level of the ith rule is m; then the firing level of the rule Comp(E) is Q(E), the
consequent of rule Comp(E) is Q(E) and the effective value of E, is Q(E) A R(E) =
QR(E). Thus we see that in the PBR model when using the form F(y) = Maxp - a [ME)

A Q(E) A R(E)] we are considering the compounding of the all rules with p(E)
representing the credibility of the rule Comp(E).

6. Partitioned Fuzzy Rule Sets
We consider another formulation for the credibility function.  Let
A = {Aj, ..., A} be our collection of fuzzy rules and assume we partition these into g

disjoint classes M, Uj M; = A and Mjn M= @. Using this we first define the degree

of inclusion of Mj in E, INC[Mj/E], as follows: INC[MJ-/E] =1ifEn Mj # (J and
INC[MjI/E] =0ifEn Mj = (J. Using this indicate the meta—cardinality of a subset E

q
with respect to the partition as M-C(E) = 2 INC[MJ-IE]. Using this we can define a
j=1
credibility function u on A: wE) = WM-C(E) where the wj are collection of weights
such that: wg =0, wq = 1 and w; 2 wj for i > j. Here we see that u(E) is related to how
many of the different classes of rules are contained in E.

We now shall use the formulation for PBR, F(y) = MangA[u(E) A Q(E) A R(E)]
where R(E) = Min[nje El, QE) = Min[dje E] and W(E) is as just defined. We note that if
E’ C E then Q(E") 2 Q(E) and R(E") = R(E). We also note that for this p if E contains
multiple elements from one class and, if G is a subset obtained from E by removing all
the elements of a class except for one, then W(E) = w(G). In this situation since G C E
then Q(G) = Q(E) and R(E) = R(E), this implies Q(G) A u(G) A R(G) 2 QE) A WE) A
R(E).

We shall let H denote the collection Minimal of subsets of A, a subset of A is
contained H if it contains at most one element from each class. Using this notation we
see that F(y) = Maxge H [W(G) A Q(G) A R(G)]. We shall further use the notation
fx = Nk A dy and recall Q(G) A R(G) = QR(G)= Min[fe G]. Using this F(y) =
Maxge H [WG) A QR(G)]. Let Arnj be the prototype in Mj having the largest value for

f. We call Amj M;j's most effective prototype. Let H ™ be the subspace of H
consisting of the collection of subsets of A where each subset in H* contains at most
one element from any Mj and that element is always the most effective prototype, Amj'
From the preceding we see that F(y) = Maxge H*[W(G) A QR(G)]. Since W(G) = wy if

M-C(G) = k then F(y) = Maxy_ | ¢o q[Wk A Mix [QR(G)]. Let fm-index(k) be
Ge H ,|G=k

the index of the class having the kth largest value for fmj' Using this notation we can
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show that F(y) = Maxy_1 (o 1[Wk A ck] where ¢ = fmfm-index(k)

The procedure just described for obtaining F(y) can be simply expressed. For each
prototype we obtain its firing level for the given input, n;, and we calculate f; = n; A

Dj(y). For each class M;, we determine the largest f; for any Aj € Mj;, we denote this
fmj' We then order these f;,. values such that cy is the kth largest of these and then we

calculate F(y) = Maxy | ¢o 1{Wk A ckl.

In the following we define a situation which illustrates the preceding structure.
Assume we have a model in which we have q antecedent variables, Vj, each with domain
Xj and let W be our consequent variable taking its value in Y. Assume we have a
collection prototype fuzzy rules of the form If Vj is Bij then W is Fij~ We shall denote

a rule of this type as A;:, the it rule involving the jth variable. Thus here each rule
pe as Ajj g the |

expresses information about the consequent just based on one variable. Consider now a
partitioning of these rules by the antecedent variable, for all i we have Aij € Mj. Here

then we see that wy will be the credibility associated with an inference using k different
variables.

We shall now consider an extension of the preceding. Here we still assume a
partitioning of the prototypes but allow for different credibility for each of the prototypes.
In the preceding illustration this may correspond to a situation in which we attribute more
credibility to some variables over different ranges. For example rules over a range of
values in which little experience may be stated with less credibility. With a partitioning
of the prototypes into q disjoint subsets, Mj, and with Aij being the ith rule in the jth
partition and we let aj; be the credibility of Ajj, W({Ajj}) = oj. We let Nj be the
number of rules in partition j. We shall also assume for each partition there exists at
least one element in each Mj with credibility equal one.

We generalize the idea INC(Mle) to DINC[MjIE], the degree that Mj is included in
E. We define this as DINC[MJ-IE] = MaxAike Mj[aik A E(A)], maximal credibility of

any rule in E. Now we now define w(E). In the early case we used W(E) = Wn.C(E)»
where M-C(E) was the number of different classes included in E. Here we must generalize
this idea. We shall suggest some ways to generalize this. One way to generalize this
just using ordinal operations is as follows. Let DC—index(i) be the index of the partition
with the ith largest value for DINC[M;[E] using this we define W(E) = Maxy - | (o
q[DINC(MDC-index(k)/E) A wi]. Here the wy are a set of weights as defined above.

]
integer portion ofISE and A = ISE - Int(I;é) then define
WE) = Win(DC) + AW nyDC)+ 1~ WInt(DCY
To help better understand the application of the PBR reasoning to fuzzy modeling we
introduce the idea of compounding of fuzzy rules. Let A and Ay be two fuzzy rules-
Aq: If V] is By then W is D) and Ay: If V5 is By the W is Dy, Here Vp and V)
may be atomic or joint variables, which may or may not be the same. We define a new

— ! —
Another approach is to calculate DC = DINC[MJ-IE] and then let Int(DC) be the
=1
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rule denoted Comp(A{, Aj) as
If Vyis By and V5 is By then W is Dy and Dy

We see compounding Ay and A, defines a new rule that is a conjunction of the
antecedents and a conjunction of the consequents of each of the rules being compounded.
For a given input x* if the firing levels of A] and Aj are N and 1y then the firing level
of the compound rule is M| A 1, the consequent membership grade is D{(y) A Dy(y) and
the efficient value is Dq(y) A Do(y) A N] A Ny The extension to the compounding of
any number of rules is straight forward.

Using the definitions of Q(E) and R(E) we can see a relationship between the process
of compounding and the PBR reasoning mechanism introduced. Let E be a subset of A
then compounding the rules in E generates a rule, Comp(E), whose antecedent is the
conjunction of all the antecedents of the rules in E and whose consequent is the
conjunction of all the consequents of the rules in E. If for a given input x* the firing
level of the ith rule is n; then the firing level of the rule Comp(E) is Q(E), the
consequent of rule Comp(E) is Q(E) and the effective value of E, is Q(E) A R(E) =
QR(E). Thus we see that in the PBR model when using the form F(y) = Maxg - a [I(E)
A Q(E) A R(E)] we are considering the compounding of the all rules with L(E)
representing the credibility of the rule Comp(E).

7. Fuzzy Systems Models Using a Nearest Neighbor Principle
Now we consider the application of a nearest neighbor principle to fuzzy systems
modeling. We assume a collection of fuzzy rules A = {Aq, ..., Ay} with consequent
variable W taking its value on the space Y. We let the fuzzy subset corresponding to the
output of this PBR system, F(y) = EMaxA [WE) AR(E) A Q(E)]. As in the preceding we
c

shall assume Q(E) = Min[dje El.

We let n; be the firing level of the jth rule and let n-index(i) be the index of the ith
strongest firing rule.. The nearest neighbor principle says if a > b don't use prototype
An-index(a) Without using prototype Ap_index(b)- Let Gj = {An-index(k)lk = 1 to i}, it
is the set of the i most relevant rules. Under the nearest neighbor principle, R(G;) = 1
and R(E) = O for E #G;. Using this principle we have

F(y) = Maxj-| o n[MGp A QG))]
F(y) = Maxj=1 1o n[W(Gj) A Ming=1 o i[dy-index(k)))]

Let us now focus on the function W, the credibility function. If W is, as it was in the
basic case, defined as W(E) = 1 for all E then

F(y) = Maxj=] { n[Q(G)] = dn-index(1) »
F(y) is the consequent value of the strongest fired rule, the rule whose antecedent is the
nearest neighbor of the input. We note this is different from the usual case of fuzzy
modeling in which F(y) = Max;[d; A ;] = Max;[fj].

If we change p such that w(E) = 0 if {E| < K and W(E) = 1 if [E[ = K then

F(y)= Min_ [dy_index(i)

i=1t0K
It is the minimal membership grade among the K rules that are nearest neighbors.
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8. Combining Multiple Fuzzy Rule Based Models

One issue of interest in the use of fuzzy systems modeling is the fusion of multiple
fuzzy systems models with the same consequent variable. The PBR approach provides a
framework for combining multiple fuzzy models. Assume we have a fuzzy systems
model consisting of ny rule of the form R;: If V is B; then W is D;, where i = 1 to nj.
Here the antecedent V| can be an atomic or a joint variable on X and the output W is a
variable taking its values in the space Y. Assume we have another fuzzy system model
consisting of ny rules of the form Ry: If Vo is B; if W is Dj here we leti=nj + 1 ton]
+ny. Here again V, can be an atomic variable or a joint variable which may or may not
be the same as V{. The consequent variable is the same

In combining these two fuzzy models we desire that output values supported by both
rules be stronger than those only supported by one rule. Here we shall let F indicate the
fuzzy subset resulting from the application of these two rules with input x*. We use the

notation n; = B;(x*), the firing level of ith rule, and let d; = Dj(y) the membership of y in
D;.
We let A = {Ry, ..., R“l’ R“1+1’ vy Rn1+n2}' We now apply PBR to determine

F(y). In particular F(y) = Maxgc A[Q(E) A R(E) A W(E)] where Q(E) = Min[nje E] and
R(E) = Min[dje E] We see that F(y) =MaxEc__jA[Min[ij E) A W(E)] where fJ = dj A nj]

We now consider the form of the credibility measure p which we define over the
space A. Here we want to give a degree of credibility of o] to those inferences just
based on the first fuzzy rule base, we give a degree of credibility of oy for any output just
based on the second fuzzy rule base and we give complete credibility of one to those based
on both models. In order to capture this we must appropriately define u. With E
denoting a subset of A , a collection of rules, we define W(E) as follows:

WE) =op ifall Rj € Eares.t.je [1,ng]

WE)=ayp ifallRje Eares.t j. € (nj+1, np, + np)

wW(E) =1 if there exists at least one Rj € Est.je [ 1,ny] and one Rj s.t.j€
[n{+1, ny+ny].

We note that if E| € E5 then Min[fje Eil 2 Min[fje E5). Using this we see that for

the assumed form of credibility function p we get

F(y) = (o Max f; Max f;
) ( lAj:ltonl[J])v(()Lz/\1'=r11+1ton1+r12[J])V

CMax [fla Max [}
j=1ton J=np+ltony+ny J

Let Fy and Fy denote the respective outputs of the individual models for the input
x*. Tt is easily seen that the membership grade of y in the output of the first model Fy(y)

= I\{IEIIX [fj], and that the membership grade of y in the output of the second Fy(y)
j=Tlton]

= Max [fj]. Using this we can express combined rule membership grade for y
]j= n1+1 to ni+ny

in a more enlightening form as
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E(y) = (ap AF1(y)) v (g AF(y)) v (F1(¥) A Fa(y))

Here we see F(y) is a weighted combination of the outputs from the individual fuzzy
models

What has effectively happened in the PBR approach is that we have created a
combined rule base. This rule base consists of the union of the rules making up the two
models plus an set additional set of rules each consisting of a compounding of two rules,
one from each of the models. Thus for each R; in the first rule base and each Rj in the
second rule base we get an additional rule

Comp(R;, Rj) =IfVyis Ajand Vo is Aj 