

Introduction to
Computing Applications
in Forestry and Natural
Resource Management

http://taylorandfrancis.com

Introduction to
Computing Applications
in Forestry and Natural
Resource Management

Jingxin Wang

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-62630-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this
publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged, please write and let us know so we
may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known
or hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Wang, Jingxin, 1963-
Title: Introduction to computing applications in forestry and natural
resource management / Jingxin Wang.
Description: Boca Raton : CRC Press, 2017. | Includes bibliographical
references.
Identifiers: LCCN 2017011246 | ISBN 9781138626300 (hardback : alk. paper)
Subjects: LCSH: Forest management--Data processing. | Forest
management--Computer programs | Forest management--Problems, exercises,
etc. | Natural resources--Management--Data processing. | Natural
resources--Management--Problems, exercises, etc.
Classification: LCC SD381.5 .W36 2017 | DDC 634.9/20285--dc23
LC record available at https://lccn.loc.gov/2017011246

Visit the Taylor & Francis Website at
http://www.taylorandfrancis.com

and the CRC Press Website at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
https://lccn.loc.gov
http://www.crcpress.com
http://www.crcpress.com

To my dear wife, Xiaoming Liang, and our dear son, Jerry Wang.

http://taylorandfrancis.com

vii

Contents

Preface... xvii
Author...xix

Section I  Foundations

	 1.	 Fundamental Computing Concepts...3
1.1	 Computer Operating Systems..3
1.2	 Brief History of Operating Systems...4
1.3	 Types of Operating Systems...5
1.4	 Major Operating System Responsibilities..6

1.4.1	 User Interface..7
1.4.2	 Device Management...7
1.4.3	 Time Management..7
1.4.4	 Memory Management..7
1.4.5	 File Management...8

1.5	 Computer Resources and File Systems...8
1.5.1	 Computer Resources..8
1.5.2	 File Systems...8

1.5.2.1	 File Attributes or Properties.....................................9
1.5.2.2	 File Operations...9
1.5.2.3	 File Types and Naming...10
1.5.2.4	 Directory Structure..10

Class Exercises... 11
References.. 11

	 2.	 Programming Languages and Software Engineering.............................13
2.1	 Programming Languages..13
2.2	 Object-Oriented Programming..15

2.2.1	 C and C++..16
2.2.2	 Visual Basic .NET..16

2.3	 Software Engineering..17
2.4	 Example of Forest Harvesting Simulator Design............................20

2.4.1	 System Design...20
2.4.2	 Functional Requirements...21

2.4.2.1	 Specification Document..22
Class Exercises...23
References..23

viii Contents

Section II  Data Manipulation and Analysis

	 3.	 Elementary Data Manipulation Using Excel..27
3.1	 Excel Formulas...27

3.1.1	 Operators in Formulas...28
3.1.2	 Entering Formulas..28
3.1.3	 Referencing Cells Outside the Worksheet...........................29
3.1.4	 Relative versus Absolute References....................................29

3.1.4.1	 Relative Reference...30
3.1.4.2	 Absolute Reference...31

3.2	 Excel Functions...32
3.2.1	 Function Arguments...33
3.2.2	 Entering Functions..33

3.3	 Major Excel Functions...34
3.3.1	 Mathematical and Trigonometric Functions.......................35

3.3.1.1	 INT...35
3.3.1.2	 RAND...35
3.3.1.3	 ROUND..36
3.3.1.4	 SIN or COS...36
3.3.1.5	 SQRT...36
3.3.1.6	 SUM...37
3.3.1.7	 SUMIF...37

3.3.2	 Statistical Functions..37
3.3.2.1	 AVERAGE, MEDIAN, and MODE.......................37
3.3.2.2	 COUNT...38
3.3.2.3	 COUNTIF...38
3.3.2.4	 MAX and MIN...38
3.3.2.5	 STDEV...38

3.3.3	 Text Functions..39
3.3.3.1	 LEFT and RIGHT...39
3.3.3.2	 LEN...39
3.3.3.3	 MID...39
3.3.3.4	 REPLACE and SUBSTITUTE.................................39
3.3.3.5	 UPPER, LOWER, and PROPER............................40
3.3.3.6	 FIND..40

3.3.4	 Logical Functions..40
3.3.4.1	 IF..40

3.4	 Build Your Own Functions...41
3.5	 Charts...42

3.5.1	 Excel Chart Example..42
3.5.2	 Combination Chart...45
3.5.3	 Gantt Chart..46

Class Exercises...49
References..52

ixContents

	 4.	 Statistical Analysis and Mathematical Programming Using Excel......53
4.1	 Data Analysis with Analysis ToolPak...53

4.1.1	 Correlation...53
4.1.2	 Regression..54
4.1.3	 t-Test..58

4.2	 Mathematical Programming in Forest Management......................62
4.2.1	 Linear Programming..62
4.2.2	 Network Analysis...63
4.2.3	 Multi-Objective Programming..64
4.2.4	 Integer Programming...64
4.2.5	 Dynamic Programming...65

4.3	 Linear Programming Formulation..68
4.4	 Solve Mathematical Models in Forest Management Using

Excel Solver...69
4.4.1	 Example of Optimization Problem.......................................69
4.4.2	 Activate Excel Solver..73
4.4.3	 Use Excel Solver..73

Class Exercises...76
References..81

	 5.	 Visual Basic for Applications in Microsoft Excel....................................83
5.1	 Introduction to VBA...83

5.1.1	 Visual Basic Editor in Excel...83
5.1.2	 Writing Code in VB Editor...84
5.1.3	 Running Events within Excel..85

5.2	 VBA Fundamentals..87
5.2.1	 Variables and Data Types...87
5.2.2	 Modules..87
5.2.3	 Variable Scope...88

5.3	 Harvesting Machine Rate Spreadsheet Program.............................88
5.3.1	 Machine Rate...88
5.3.2	 Example of Machine Rate Program with VBA...................89

5.3.2.1	 Design Interface...90
5.3.2.2	 Write Code..91

5.4	 VBA User Forms and Controls...93
Class Exercises...96
References..96

Section III  Database Management

	 6.	 Database Concepts and the Entity-Relationship Model........................99
6.1	 Fundamental Database Concepts..99

6.1.1	 Database Management System...99
6.1.2	 Database...99

x Contents

6.1.3	 Table, Record, and Field...100
6.1.4	 MS Access Database...100

6.2	 Relational Databases and the Entity-Relationship Model...........101
6.2.1	 Entity...102
6.2.2	 Keys...102
6.2.3	 Relationships...102
6.2.4	 Types of Relationships...103

6.3	 ER Model Examples in Forest Operations......................................105
6.3.1	 ER Model Notations...105
6.3.2	 ER Model for Timber Cruising..105
6.3.3	 ER Model for Time Study of Timber Harvesting.............106

Class Exercises...108
References..108

	 7.	 Introduction to MS Access...109
7.1	 MS Access Usability and Functionality..109

7.1.1	 MS Access Usability..109
7.1.2	 Major MS Access Functionality... 110
7.1.3	 Why Use More than One Table?... 110

7.2	 Access Tables and Queries.. 111
7.2.1	 Access Tables... 111
7.2.2	 Relationships between Tables... 112
7.2.3	 Access Queries... 113

7.3	 Access Forms and Reports.. 116
7.3.1	 Access Forms... 116
7.3.2	 Access Reports... 117

Class Exercises...120
References..123

	 8.	 Structured Query Language and Access Query Examples..................125
8.1	 Structured Query Language...125

8.1.1	 SQL Statements and Clauses...125
8.1.2	 SQL Syntax...125

8.2	 Basic SQL Examples...127
8.2.1	 Statements and Clauses...127
8.2.2	 SQL Functions...130

8.3	 MS Access Queries...132
Class Exercises...136
References..137

Section IV  Handheld Devices

	 9.	 Handheld Computers and Windows Mobile...141
9.1	 Handheld Terms and Features...141
9.2	 Handheld PCs and Windows Mobile...143

xiContents

9.2.1	 Hewlett-Packard Jornada Series...143
9.2.2	 Zebra Workabout Handheld Field PC...............................143
9.2.3	 Allegro Field PC..145
9.2.4	 Archer Field PC...146
9.2.5	 NAUTIZ X7 Field PC..146
9.2.6	 Trimble GeoExplorer 3000 Series Handhelds...................148

9.3	 Mobile Operating Systems and Data Communications...............149
9.3.1	 Mobile Operating Systems..149
9.3.2	 Data Communications between HPCs and PCs...............150

9.4	 Data Storage and Program Execution...150
9.4.1	 Random Access Memory...151
9.4.2	 External PC, CF, and SD Cards...151
9.4.3	 Program Execution...151

Class Exercises...152
References..152

	10.	 Handheld PC Applications: An Integrated Computer-Based
Cruising System...153
10.1	 Introduction..153
10.2	 System Structure..155
10.3	 System Implementation..157

10.3.1	 Handheld System..157
10.3.2	 Data Transfer...159
10.3.3	 Data Analysis...159

Class Exercises...161
References..162

	11.	 Introduction to Geospatial Technology Applications in Forest
Management...165
11.1	 GPS Applications...165

11.1.1	 What Is GPS?...165
11.1.2	 GPS in Forestry and Natural Resource Management......166

11.1.2.1	 Data Collection..166
11.1.2.2	 Data Transfer..167

11.2	 GIS Applications..168
11.2.1	 What Is GIS?..168
11.2.2	 GIS in Forestry and Natural Resource Management.......170
11.2.3	 GIS Software and Data...175

11.3	 Remote Sensing Applications...177
11.3.1	 What Is Remote Sensing?...177
11.3.2	 RS in Forestry and Natural Resource Management........177

11.4	 GIS Mapping and Analysis Examples..178
11.4.1	 Identifying and Mapping Vegetation Phenology.............178

11.4.1.1	 Data Preparation...179

xii Contents

11.4.1.2	 Identifying Phenology..179
11.4.1.3	 Mapping the Phenology Using ArcGIS..............182

11.4.2	 Mapping and Analyzing Winter CO2 Efflux
in a Conifer Forest Area of North America.......................182
11.4.2.1	 Data Preparation...182
11.4.2.2	 Data Analysis...183
11.4.2.3	 Mapping CO2 Efflux Using ArcGIS....................184

Class Exercises...185
References..188

Section V  Visual Basic .NET Programming

	12.	 Introduction to Visual Basic .NET Programming..................................193
12.1	 What Is Visual Basic?...193

12.1.1	 Visual Basic and VB.NET Concepts...................................194
12.1.1.1	 Windows, Events, and Messages........................194
12.1.1.2	 Procedural Programming.....................................194
12.1.1.3	 Event-Driven Programming................................194
12.1.1.4	 Object-Oriented Programming............................195

12.1.2	 VB Integrated Development Environment.......................195
12.2	 VB.NET Programming Examples..195

12.2.1	 First Application...195
12.2.2	 Example for Calculating Basal Area of Trees....................196

12.2.2.1	 Creating the Interface and Setting Properties...... 197
12.2.2.2	 Writing Code..198
12.2.2.3	 Running the Application......................................198

12.2.3	 Database Connection and Data Display Application......199
12.2.3.1	 Creating the Interface...199
12.2.3.2	 Setting Properties..200
12.2.3.3	 Writing Code..200
12.2.3.4	 Running the Application......................................203

Class Exercises...203
References..203

	13.	 VB.NET Controls, Project, and Menu Design..205
13.1	 Types of Controls...205
13.2	 Using Timer, Option Button, Groupbox, and Checkbox

Controls...205
13.2.1	 Creating the Interface and Setting Properties...................207
13.2.2	 Writing Code...208
13.2.3	 Running the Application...210

13.3	 Using Drive, Dir, File, Combo, List, Frame Controls.................... 211

xiiiContents

13.3.1	 Creating the Interface and Setting Properties................... 211
13.3.2	 Writing Code...213
13.3.3	 Running the Application...214

13.4	 Working with a Project..215
13.4.1	 Form Class...216
13.4.2	 User-Defined Class...216
13.4.3	 Standard Modules...216
13.4.4	 Standard Controls...216

13.5	 Menu Design of VB Project...216
Class Exercises...223
Reference..223

	14.	 VB.NET Programming Fundamentals...225
14.1	 Variables and Constants..225

14.1.1	 Declaring Variables...225
14.1.2	 Scope of Variables...225
14.1.3	 Private versus Public..225
14.1.4	 Static versus Dim..226
14.1.5	 Constants..226

14.2	 Data Types...226
14.3	 Arrays..228

14.3.1	 Declaring Arrays...228
14.3.2	 Multidimensional Arrays...228

14.4	 Classes and Procedures...228
14.4.1	 Class..228
14.4.2	 Sub Procedures..231

14.4.2.1	 Event Procedures...231
14.4.2.2	 General Procedures...232

14.4.3	 Function Procedures...232
14.4.4	 Sample Exercise...232

14.4.4.1	 Passing by Value versus Passing by Reference..... 234
14.5	 Control Structures..234

14.5.1	 Decision Structures...235
14.5.2	 Loop Structures...235

14.6	 Input and Output Files..236
14.6.1	 Direct File Access..236
14.6.2	 File Access Types...237
14.6.3	 Opening Files for Sequential Access..................................237

14.7	 Example...238
14.8	 Data Access...242
14.9	 Data Manipulation...248

14.9.1	 Example..249
Class Exercises...253
References..254

xiv Contents

	15.	 Programming Application Examples in Forest Resource
Management...255
15.1	 Forest Harvesting Simulator..255

15.1.1	 Forest Stand Generation...256
15.1.1.1	 Random Pattern...256
15.1.1.2	 Uniform Pattern...256
15.1.1.3	 Clustered Pattern...256

15.1.2	 Felling Operations..257
15.1.2.1	 Chainsaw Felling...257
15.1.2.2	 Feller-Buncher Felling...257
15.1.2.3	 Harvester Felling...257

15.1.3	 Extraction Simulation...258
15.1.3.1	 Extraction Patterns..258
15.1.3.2	 Traffic Intensity..259

15.1.4	 Simulation Example...261
15.2	 Timber Cruising and Inventory...263

15.2.1	 Manipulate Field Cruising Data...263
15.2.2	 Import Data..264
15.2.3	 Load Data...264
15.2.4	 Cruise Design..265
15.2.5	 Report...267
15.2.6	 Programming...268

15.3	 VBA for Harvesting System Production and Cost Analysis........272
15.3.1	 Excel and VBA...273
15.3.2	 System Design and Implementation..................................273
15.3.3	 Application Example..276

15.4	 3D Log Bucking Optimization...278
15.4.1	 System Design...278

15.4.1.1	 System Structure..278
15.4.1.2	 Data Manipulation and Storage..........................278
15.4.1.3	 3D Stem Modeling...278
15.4.1.4	 Optimal Bucking Algorithm................................280

15.4.2	 Bucking System Implementation..281
15.5	 3D Lumber Edging and Trimming System....................................283

15.5.1	 Data Manipulation and Storage..284
15.5.2	 3D Lumber Modeling...284
15.5.3	 Lumber Grading...285
15.5.4	 Optimal Edging and Trimming Algorithm.......................285
15.5.5	 Optimal Edging and Trimming System

Implementation...286
15.6	 3D Log Processing Optimization System.......................................289

15.6.1	 System Components and Data Management...................289
15.6.1.1	 System Components...289
15.6.1.2	 System Data Management...................................291

15.6.2	 System Modeling and Algorithms.....................................291

xvContents

15.6.2.1	 3D Log and Internal Defect Modeling...............291
15.6.2.2	 Determining Opening Face..................................292

15.6.3	 Primary Log Sawing Simulation..292
15.6.3.1	 Heuristic Algorithm..292
15.6.3.2	 Dynamic Programming Algorithm....................293
15.6.3.3	 Example..295

15.7	 Forest and Biomass Harvest Scheduling and Optimization........295
15.7.1	 Forest Inventory Data...295
15.7.2	 Forest Stand Growth Simulation..295
15.7.3	 Harvest Scheduling Model Development.........................296
15.7.4	 Case Study...298

Class Exercises...303
References..303

	16.	 Programming for Mobile Devices and Applications in Time
Study of Timber Harvesting Machines...307
16.1	 Programming for Mobile Devices...307

16.1.1	 iPhone/iPad App Programming..307
16.1.1.1	 Programming Languages.....................................307
16.1.1.2	 iPhone Development Frameworks.....................308

16.1.2	 Android Programming..308
16.1.2.1	 Android Application Development Framework....309

16.1.3	 Windows Mobile...309
16.1.3.1	 .NET Compact Framework..................................309

16.2	 Visual Basic .NET for Windows Mobile..310
16.2.1	 Windows Mobile SDK..310
16.2.2	 New Project Types..310
16.2.3	 Features in VB.NET for Windows Mobile......................... 311
16.2.4	 Programming Examples of VB.NET for Windows

Mobile..311
16.3	 VB.NET for Mobile Device Application in Time Study

of Timber Harvesting...319
16.3.1	 System Structure...319
16.3.2	 System Implementation...322

16.3.2.1	 Design Module..322
16.3.2.2	 Collect Module..322

16.3.3	 Transfer Data...324
Class Exercises...325
References..325

Section VI  Web-Based Applications

	17.	 Introduction to HTML..329
17.1	 Terms and HTML Files..329
17.2	 HTML Structure...330

xvi Contents

17.3	 Applications of HTML Tags...332
17.3.1	 HTML...333
17.3.2	 Head..333
17.3.3	 Title..333
17.3.4	 Body..333
17.3.5	 Headings..333
17.3.6	 Paragraphs...334
17.3.7	 Lists...336
17.3.8	 Forced Line Breaks..337
17.3.9	 Tables and Images...338
17.3.10	Forms..341

Class Exercises...347
Reference..347

	18.	 Introduction to ASP.NET..349
18.1	 ASP.NET Programming..349
18.2	 Basic ASP.NET Techniques...353

18.2.1	 Request and Response..353
18.2.2	 QueryString...356

Class Exercises...358
References..358

	19.	 ASP/ASP.NET Applications...359
19.1	 Web-Based Data Entry and Retrieval System for Forest

Health Protection...359
19.2	 Online Timber Cruising System...360

19.2.1	 Main Menu...363
19.2.2	 Add/Edit Data..363
19.2.3	 Reports..365

19.3	 Web-Based DSS for Analyzing Biomass and Timber
Harvesting Costs and Productivity...365
19.3.1	 System Design...367
19.3.2	 Main Page..367

19.3.2.1	 General Information...367
19.3.2.2	 Machines...368
19.3.2.3	 Machine Productivity...368
19.3.2.4	 Machine Cost...368
19.3.2.5	 System...369

19.3.3	 Machine Rate Program Page and Summary Page...........369
19.3.3.1	 Implementation...370
19.3.3.2	 Applications...372

Class Exercises...372
References..372

Index..373

xvii

Preface

Due to the complexity of operational forestry problems, computing applica-
tions are becoming pervasive in all aspects of forest and natural resource
management. We therefore wanted to provide a comprehensive introduction
to computing and applications in forest and natural resource management
that would be designed for both undergraduate and graduate students of
these topics. This book introduces state-of-the-art applications for several
of the most important computing technologies in terms of data acquisition,
data manipulations, basic programming techniques, and other related com-
puter and Internet concepts and applications.

We organized the information contained in this book in six parts. Section I
introduces basic computing concepts and software engineering design.
Section II addresses data manipulation, basic statistical analysis, and math-
ematical programming. Section III deals with database management such as
entity relationships and structural query language. Section IV focuses on spa-
tial technology, handheld programming, and applications in natural resources.
Section V introduces object-oriented programming using Visual Basic .NET,
while Section VI addresses web-based programming and applications.

Specifically, this text covers

•	 Computer operating systems and resources
•	 Elementary data manipulations, statistical computing, and math-

ematical programming using MS Excel
•	 Basic database management with MS Access
•	 Relational database management
•	 Data acquisition using handheld computers and their applications

in natural resources
•	 GPS and GIS applications in forest resource management
•	 Object-oriented programming with Visual Basic .NET
•	 HTML and web-based programming
•	 Application examples in forest resource management

We discuss in detail several major computing application examples in the
lessons of this book, which are the products of our previous research projects;
and they address

•	 Databases—databases built for optimal bucking, forest cruising, and
inventory

xviii Preface

•	 VB.NET applications—forest harvesting simulation and log
inventory

•	 VB.NET for mobile devices—time study of timber harvesting opera-
tions and log inventory

•	 VBA—forest and biomass harvesting productivity and cost analysis
•	 ASP.NET and HTML—logging safety initiatives and online forest

health management systems
•	 Optimization and spatial analysis applications—3D log bucking and

sawing, identifying and mapping forest vegetation phenology, and
biomass harvesting and scheduling

Since 2002, the materials covered in this book have been used in required
courses for both undergraduate and graduate students in the Division
of Forestry and Natural Resources at West Virginia University: FOR
240—Introduction to Computing in Natural Resources, and WDSC 555—
Computer Applications in Forest Resource Management. For these courses,
we designed class exercises that are also provided in this text for classroom
use. We also included a comprehensive project in which students develop an
application for natural resources in three distinct modules that each focus on
a specific application topic:

Module 1: Data Storage—Design and build a simple database to store
field data using MS Access.

Module 2: Data Acquisition—Collect field data using a handheld PC.
Module 3: Data Manipulation—Design an interface and implement

business functions to transfer field data from a handheld to a desk-
top PC and manipulate/analyze the data to generate desired reports.

These modules are cumulative; each module or component must be inte-
grated to accomplish a subsequent module. The project should be pro-
grammed based on the principles of software engineering.

I thank many individuals who inspired me to accomplish this book.
I am grateful to Drs. Bojan Cukic, John Atkins, James Mooney, and Camille
Hayhurst for their lectures and notes while I took their classes as an MS stu-
dent in computer science at West Virginia University. I also thank Drs. Amy
Falcon, Damon Hartley, Wenshu Lin, Weiguo Liu, Benktesh Sharma, Jinzhuo
Wu, and Zhen Yu, Yuxi Wang, Changle Jiang, and John Vance for their con-
tributions to the book while they assisted me in teaching. Special thanks go
to Sarah Owen for her great and professional efforts to review and improve
the book.

Jingxin Wang
Morgantown, West Virginia

xix

Author

Dr. Jingxin Wang is professor and associate
director of research and the director of the
Renewable Materials and Bioenergy Research
Center in the Division of Forestry and Natural
Resources at West Virginia University,
Morgantown, West Virginia. He received his
BS in forest/mechanical engineering from Jilin
Forestry College, China, MS and PhD in for-
est/mechanical engineering from Northeast
Forestry University, China. He received an
MS in computer science from West Virginia

University and a PhD in forest resource management from the University of
Georgia, USA. He has taught undergraduate and graduate students for more
than 20 years. His research interests include biomass energy and bioprod-
ucts, forest carbon sequestration and optimization, computer simulation and
system modeling, and forest ecosystem management and climate change.
Dr. Wang has authored or coauthored 150 refereed papers and 12 books
or book chapters. He has served as an editorial board member and associ-
ate editor for four international journals and as adjunct professor for four
Chinese universities/institutions. He is an active member of six international
professional societies.

http://taylorandfrancis.com

Foundations

Section I

http://taylorandfrancis.com

3

Fundamental Computing Concepts

1.1 � Computer Operating Systems

An operating system (OS) is a software program that acts as an interme-
diary between the user of a computer system and the computer hardware
(Silberschatz et al. 2002, 2013). “The purpose of an operating system is to
provide an environment in which a user can execute programs in a conve-
nient and efficient manner” as Silberschatz et al. (2013) indicated. The OS
makes the computer more convenient to use, allows users to execute appli-
cation programs in an environment without the necessity of communicat-
ing directly with hardware devices, and helps to ensure the efficient use of
computer resources. An OS is the first program loaded into memory when
a computer system is booted. It is a program that manages the computer
hardware and controls interactions between application programs and the
hardware.

A computer system can be divided roughly into four components
(Silberschatz et al. 2002, 2013):

	 1.	Computer hardware provides the basic computing resources including
a processor or central processing unit (CPU), computer memory, and
input/output (I/O) devices such as monitors, printers, disk drives,
USB storage devices, and others.

	 2.	Operating systems control and coordinate the use of the hardware
among application programs for users.

	 3.	System and application programs include system or custom-written
software products (like compilers, database management systems,
and Office programs) for solving computing problems.

	 4.	Users include operators, machines, and other computers that interact
with a computer system to accomplish some specific tasks.

1

4 Computing Applications in Forestry and Natural Resource Management

1.2 � Brief History of Operating Systems

Computer OSs are complicated programs that have evolved with the devel-
opment of hardware and the increased demand of computing services. The
long history of computer OSs can be roughly categorized into the following
five phases (Hayhurst 2002, Silberschatz et al. 2002, 2013):

	 1.	1940s–1950s: First Generation, early computers—In the early days
of computing, there were no OSs. Early computers were large and
expensive. Typically one user ran one program at a time. One of the
major deficiencies of early computers was their inefficient use of
CPU time, which was also the primary driver for the change to OSs.

	 2.	1950s–1960s: Second Generation, beginning of batch OSs—Due to
the high cost and inefficiency of computers, programmers began
“batching” or running the programs with similar resources through
the computer together as a group to improve a computer’s perfor-
mance. The solution was generally adopted and became known as the
batch system (Tanenbaum 2001). During this time period, significant
changes also occurred in computing (Hayhurst 2002): (a) advances
were made in hardware, including magnetic tape, line printers, and
magnetic disks; (b) assemblers were first created to allow programs
to be written in something other than machine language; (c) device
drivers became available to communicate directly with specific
I/O devices; and (d) compilers for higher-level languages such as
FORTRAN and others were developed.

	 3.	1970s–1980s: Third Generation, interactive multitasking systems—
Multitasking allows users to share the computer and run multiple
tasks (processes) at the same time. The processor executes multiple
tasks by switching among them, but the switches occur so frequently
that the users can interact with each program while it is running
(Silberschatz et al. 2002). In multitasking systems, as Hayhurst (2002)
and Silberschatz et al. (2002) stated, “Several jobs must be kept in
memory at the same time; this requires memory management and
protection.”

	 4.	1980s–Present: Fourth Generation, personal computers—IBM started
to design personal computers (PCs) in the 1970s and early 1980s with
the introduction of a new OS. The Disk Operating System (DOS) was
first launched by Seattle Computer Products. A revised system was
renamed Microsoft Disk Operating System (MS-DOS) and quickly
came to dominate the IBM PC market (Tanenbaum 2001). MS-DOS
was later widely used on the 80386 and 80486. Although the ini-
tial version of MS-DOS was fairly primitive, subsequent versions
included more advanced features, including many taken from Unix.

5Fundamental Computing Concepts

In the 1960s, Doug Engelbart at Stanford Research Institute had
invented the graphical user interface (GUI) with windows, icons,
menus, and a mouse. These ideas were adopted by researchers at
Xerox PARC and incorporated into machines they built. In the early
1980s, Steve Jobs started building Apple Macintosh with a GUI.
Microsoft then produced a GUI-based system called Windows,
which originally ran on top of MS-DOS. The Windows OS has con-
tinued to evolve into the current version.

	 5.	1990s–Present: Fifth Generation, handheld and tablet computers—
The early version of the handheld PC (HPC) was designed by Hewlett
Packard around 1990. Since then, many products have become avail-
able from different companies. Most of these HPCs were run under
the Microsoft Windows CE OS. Some models of HPCs were discon-
tinued in the early 2010s as the market shifted to tablet computers
and smartphones. However, HPCs are still available as data loggers
for field data collection using the most current mobile OSs such as
Microsoft Windows Mobile or Windows 10 or a later version.

Tablet computers were introduced in 2010 and have only grown
in popularity since then. Many tablet products are available such as
iPad, Surface, and Android tablets. The OSs they use include iOS,
Android, and MS Windows 10 (or later versions).

1.3 � Types of Operating Systems

In today’s market, there are several types of OSs available, such as
Windows, MacOS, Linux, and Unix, and each of these has evolved through
various versions. MS Windows, for example, has gone through Windows
3.x, Windows 95, 98, Windows ME, Windows NT, Windows 2000, Windows
XP, Vista, 7, 8, 10, and so on. One way of categorizing OSs depends on
the computers they control and the applications they support (Silberschatz
et al. 2002, 2013):

	 1.	Desktop/laptop systems: Desktop/laptop systems are the most
commonly used OS on PCs. Microsoft Windows, MacOS, and Linux
are three well-known examples of this type of OS. In the 1970s, dur-
ing the first decade of PCs, PCs lacked the features needed to protect
an OS from user programs (Silberschatz et al. 2002); therefore, they
were neither multiuser nor multitasking. Modern desktop/laptop
systems are both multitasking and multithreading. Multithreading
is an extension of multitasking, where a single application or task
can be divided into threads and each of the threads can be executed
in parallel.

6 Computing Applications in Forestry and Natural Resource Management

	 2.	Multiprocessor systems: A multiprocessing OS (also called a paral-
lel system) uses two or more processors or CPUs on one computer,
sharing main memory and peripherals. Multiprocessor systems
have three main advantages: increased throughput, economy of
scale, and increased reliability (Silberschatz et al. 2002). Examples
of these systems include Linux, Unix, and Windows. There are two
types of relationships among these processors: symmetric multi-
processing, in which all processors are peers, and asymmetric mul-
tiprocessing, where one processor controls the others (Silberschatz
et al. 2013).

	 3.	Distributed systems: A distributed OS considers the users like an
ordinary centralized OS but runs on multiple, independent, and net-
worked CPUs (Tanenbaum 1993). Distributed systems depend on
networking for their functionality (Silberschatz et al. 2002). “With
the introduction of the Web in the mid-1990s, network connectivity
became an essential component of a computer system” (Silberschatz
et al. 2002).

Typical examples of distributed systems include Unix and Mac OS.
Distributed systems provide these advantages: sharing of computer
resources, reliability, and computing efficiency.

	 4.	Real-time systems: Real-time OSs are used to control machinery, sci-
entific instruments, and industrial systems. In general, the user does
not have much control over the functions performed by this type of
OS. Real-time OSs must guarantee a response within a specified time
and data flow.

	 5.	Handheld systems: Handheld systems, also known as mobile OSs,
are designed to run on mobile devices such as personal digital assis-
tants, smartphones, tablet computers, and other handheld devices.
Handheld devices typically have a limited amount of memory, slower
processors, and smaller display screens. Commonly used systems
include Android, iOS, and Windows Mobile such as Windows 10 or
a later version.

1.4 � Major Operating System Responsibilities

Operating systems tackle many responsibilities in order to run computers
conveniently, efficiently, and safely. These responsibilities range from simple
tasks such as I/O device management to complicated tasks such as memory
and process management. Here are a few major responsibilities of most OSs
(Lane and Mooney 2001).

7Fundamental Computing Concepts

1.4.1 � User Interface

An OS is responsible for the interaction between users and their computer
programs and hardware. This interaction is usually carried out through
input commands such as typing lines of text, selecting menu items or graphic
icons, or speaking phrases. Input commands should be consistent and user
friendly.

The user interacts with the computer system through an interface mech-
anism that is called the application programming interface (API). In
Microsoft’s version, called a dynamic link library (DLL), APIs are centralized
in a binary file that has a specialized executable format that Windows can
read (Bock 2000). The Windows API is a core set of application programming
interfaces in the Windows OSs, including kernel32.dll, user.dll, and gdi32.dll.

1.4.2 � Device Management

Computers can connect to a variety of input, output, and storage devices that
must be controlled by the OS, including monitors, printers, hard drives, USB
drives, and other devices (Lane and Mooney 2001). Device management
encompasses all aspects of controlling these devices: starting operation,
requesting and waiting for data transfers, tracking these devices, and
responding to errors that may occur all by use of device drivers (Lane and
Mooney 2001). A device driver is a program that is written to communicate
with a specific type of I/O device.

1.4.3 � Time Management

Time management controls the time and sequence of computing events.
A special category of I/O device is the timer, whose role is to measure time
and cause events to occur at specific times.

1.4.4 � Memory Management

Memory management is the process of controlling and coordinating the
use of computer memory. It refers to the management of computer main
memory, a critical resource in any computer system. Early forms of mem-
ory management were concerned primarily with allocating portions of main
memory to each process as it began, while newer strategies allow additional
areas of memory to be allocated and deallocated as desired using swap-
ping (Lane and Mooney 2001). Swapping is a mechanism by which a pro-
cess can be moved temporarily out of main memory to secondary storage,
making that memory available to other processes. This strategy makes the
memory space available for more immediate needs. An evolved form of the
swapping technique, virtual memory systems have now become common

8 Computing Applications in Forestry and Natural Resource Management

(Lane and Mooney 2001). Virtual memory can extend the use of physical
memory and provide memory protection.

1.4.5 � File Management

Data stored on computers are always organized into files. File management
is a process of naming, storing, and handling files. The OS controls file opera-
tions such as writing, reading, and security protection.

1.5 � Computer Resources and File Systems

1.5.1 � Computer Resources

The resources provided by a computing system may be grouped into two
major categories (Lane and Mooney 2001): (1) Physical resources (also
called hardware resources) and (2) Logical resources (also known as soft-
ware resources). As the name implies, physical resources are the permanent
physical components of a computer system. Logical resources are collections
of information, such as data or programs. Logical resources must be stored
within physical resources (e.g., within main or secondary memory). The two
principal objectives of an OS’s resource management are convenient use and
controlled sharing of these physical and logical computer resources (Lane
and Mooney 2001). The resources that must be managed by a typical com-
puter OS are summarized in Table 1.1.

1.5.2 � File Systems

A collection of information maintained for a set of users in long-term stor-
age is called a file system. “The file system consists of two distinct parts: a

TABLE 1.1

Computer Resources Managed by an OS

Physical Resources Logical Resources

Processor (a critical resource) Applications and sessions
Main memory (a critical resource) Processes and tasks
I/O devices and controllers Files
Secondary storage (disks and memory cards) Shared programs and data
Timers and clocks Procedures that perform useful services

Source:	 Modified based on Lane, M. and Mooney, J., A Practical Approach to Operating
Systems (Lecture Notes), Lane Department of Computer Science and Electrical
Engineering, West Virginia University, Morgantown, WV, 2001.

9Fundamental Computing Concepts

collection of files, each storing related data, and a directory structure,
which organizes and provides information about all the files in the system”
(Silberschatz et al. 2002, 2013).

A file is a named collection of related information that is recorded on second-
ary storage (Silberschatz et al. 2002). As Silberschatz et al. (2013) described,
“From a user’s perspective, a file is the smallest allotment of logical second-
ary storage.” The information in a file is defined by its creator. Many different
types of information may be stored in a file, such as source programs, object
programs, executable programs, numerical data, text, graphic images, and
audio/video recordings (Table 1.2).

1.5.2.1 � File Attributes or Properties

A file has certain properties, which vary from one OS to another (Silberschatz
et al. 2013). Typical properties of a file include name, type of file, location,
size, protection, and dates of creation and modification. File size is typically
measured in bytes. A byte is equal to 8 bits, and a bit is the basic computer
storage unit. A kilobyte is 1024 bytes, a megabyte is 10242 bytes, a gigabyte is
10243 bytes, and a terabyte is 10244 bytes.

1.5.2.2 � File Operations

The computer OS is responsible for managing the file system that provides
users and programs with a suitable set of operations to manage files. Some of

TABLE 1.2

Common File Types

File Type Extension Function

Executable exe, com Machine-language program
Source code c, cpp, java, vb Source code in various languages

such as C, C++, Java, and Visual
Basic

Text txt, doc, docx ASCII text data, documents
Presentation,
spreadsheet

ppt, pptx, xls, xlsx,
xlsm

PowerPoint or Excel file formats

Library lib, dll Libraries of routines for programmers
Archive zip, tar Compressed files for archiving

storage
Multimedia jpg, jpeg, mpg, avi, wmv Binary file containing image, audio/

video
Web pages html, htm, php, asp Web-based source code

Sources:	 Modified based on Silberschatz, A. et al., Operating System Concepts, 6th edn., John
Wiley & Sons, Inc., New York, 2002; Silberschatz, A. et al., Operating System Concepts,
9th edn., John Wiley & Sons, Inc., New York, 2013.

10 Computing Applications in Forestry and Natural Resource Management

the typical operations could be related to creating files, reading files, modify-
ing files, or deleting files (Silberschatz et al. 2013).

1.5.2.3 � File Types and Naming

A common way to implement a file type is to include the type as part of the
file name (Silberschatz et al. 2013). A file name is usually a string of charac-
ters, such as “FOR240.doc” or “FOR240.vb.” In some systems, a file name
is case sensitive. “The name is typically split into two parts: a name and an
extension, usually separated by a period” (Silberschatz et al. 2013). Typical
file types in MS-DOS, Windows, or UNIX are summarized in Table 1.2.
Application programs either automatically put file types as extensions or
allow users to select specific file types as they save the files.

For efficient and convenient file management, we should always use
meaningful file names and structure. What follows are some examples of
complete, structured file names:

 A:\BOOK\CHAPTERS\FILEMGT.TXT (MS-DOS)
 C:\Book\Chapters\File Management\FileMgt.txt (Windows)
 /usr/jwang/book/chapters/filemgt.txt (Unix)

In the above examples, the main file name is the same: FileMgt. In a
Windows system, we can easily perform the above operations on a directory.
However, in MS-DOS, the related commands need to be used to perform the
file operations.

cd—change directory
dir—list files in a directory
del—delete a file
rename—rename the file
copy—copy files
format—format the disks

1.5.2.4 � Directory Structure

A directory contains files and subdirectories. A typical directory structure is
the tree-structured directory, which allows users to create their own subdi-
rectories and organize their files accordingly. The MS-DOS/Windows sys-
tem, for example, is structured as a tree. In fact, a tree is the most common
directory structure. The tree has a root directory. Every file in the system has
a unique path name. A path name of a file is the path from the root, through
all the subdirectories, to that specified file.

11Fundamental Computing Concepts

Class Exercises

	 1.	Operating systems:
	 a.	 What is an operating system?
	 b.	 What are the major responsibilities of an operating system?
	 c.	 List the types of operating systems.
	 d.	 Compare and contrast multiprogramming vs. multitasking.
	 e.	 What are the basic components of a computer system?
	 2.	Computer resources and file systems:
	 a.	 Compare and contrast physical and logical resources.
	 b.	 Define file, file attributes, and file systems.
	 c.	 Compare and contrast directory and tree-structured directory.

References

Bock, J. 2000. Visual Basic 6 Win32 API Tutorial. Wrox Press, Birmingham, U.K., 368pp.
Hayhurst, C. 2002. Semantics of Programming Language (Lecture Notes). Lane

Department of Computer Science and Electrical Engineering, West Virginia
University, Morgantown, WV.

Lane, M. and J. Mooney. 2001. A Practical Approach to Operating Systems (Lecture
Notes). Lane Department of Computer Science and Electrical Engineering, West
Virginia University, Morgantown, WV.

Silberschatz, A., P.B. Galvin, and G. Gagne. 2002. Operating System Concepts
(6th Edition). John Wiley & Sons, Inc., New York.

Silberschatz, A., P.B. Galvin, and G. Gagne. 2013. Operating System Concepts
(9th Edition). John Wiley & Sons, Inc., New York.

Tanenbaum, A. 1993. Distributed operating systems anno 1992. What have we learned
so far? Distributed Systems Engineering 1(1): 3–10.

Tanenbaum, A. 2001. Modern Operating Systems (2nd Edition). Prentice Hall, Upper
Saddle River, NJ.

http://taylorandfrancis.com

13

Programming Languages
and Software Engineering

2.1 � Programming Languages

Programming languages were invented to make the computer easier to use
and are designed to be both higher level and general purpose (Sethi 1996).
A higher-level language such as C++, VC, VB, or Java is independent of the
underlying machine, while a general-purpose language can be used in a
wide range of applications. Existing programming languages can be classi-
fied into the following four families based on their models of computation
(Sethi 1996, Hayhurst 2002):

	 1.	Imperative programming

	 a.	 Includes action-oriented languages such as Pascal, C, and
FORTRAN

	 b.	 Focuses on how the computer should perform its task
	 c.	 Views computation as a sequence of actions
	 d.	 Views instructions as performing actions on data stored in

memory
	 e.	 Approaches a program as a series of steps, each of which per-

forms a calculation, retrieves input, or produces output
	 f.	 Uses languages that encapsulate procedural abstraction, assign-

ments, loops, sequences, and conditional statements
	 2.	Functional programming

	 a.	 Employs a computational model based on the recursive defini-
tion of functions (originated with Lisp)

	 b.	 Considered a program as a function from inputs to outputs,
defined in terms of simpler functions through a process of
refinement

2

14 Computing Applications in Forestry and Natural Resource Management

	 c.	 Views a program as a collection of mathematical functions each
with an input (domain) and a result (range)

	 d.	 Employs functions that interact and combine with each other
using functional composition, conditionals, and recursion: Lisp,
Scheme

	 3.	Logic programming

	 a.	 Takes inspiration from prepositional logic
	 b.	 Performs computation as an attempt to find values that sat-

isfy certain specified relationships using a goal-directed search
through a list of logical rules

	 c.	 Attempts to use logical reasoning to answer queries
	 d.	 Views a program as a collection of logical declarations about

what outcome a function should accomplish rather than how
that outcome should be accomplished

	 e.	 Executes a program by applying these declarations to achieve a
series of possible solutions to a problem, such as Prolog

	 4.	Object-oriented programming

	 a.	 Is relatively recent and closely related to imperative language
	 b.	 Has much more structure and a distributed model of both mem-

ory and computation
	 c.	 Implements computation as interactions among semi-indepen-

dent objects, each of which has both its own internal state and
executable functions to manage that state

	 d.	 Views a program as a collection of objects that interact with one
another by passing messages that transform an object’s state

	 e.	 Uses object modeling, classification, inheritance, and informa-
tion hiding as fundamental building blocks for object-oriented
programming (OOP) languages, such as C++, Java, and VB.NET

There are two basic approaches to implementing a program in a higher-level
language: compilation and interpretation.

•	 In compilation, the language is brought down or converted to the
level of the machine using a translator called a compiler. In the
compilation process, a source program in a high-level language
such as C++ is first compiled to an executable/target program.
We can then call/execute the target program with input to gener-
ate output (Figure 2.1a). Compilation is usually more efficient than
interpretation.

•	 In interpretation, the machine is brought up to the level of the lan-
guage, building a higher-level machine (called virtual machine) that

15Programming Languages and Software Engineering

can run the language directly. For the interpretation process, we first
develop a source program in a higher-level language such as VB or
Python (Figure 2.1b). The program is then executed or interpreted
together with input under the language environment, and there is no
compilation phase involved. Interpretation can provide more func-
tionality, such as debugging during execution.

2.2 � Object-Oriented Programming

An object-oriented approach produces a modular solution of programming
that is a collection of objects that interact with each other, and are not sim-
ply a sequence of actions. The fundamental idea behind object-oriented lan-
guages is to integrate or combine both data and functions (or methods) into
a single unit that is called an object. Objects are members of a class that is a
grouping of similar objects. Object-oriented programming embodies three
fundamental principles (Lafore 1998):

	 1.	Encapsulation: Objects combine data and operations. An alarm clock
object, for example, contains both time and operations such as “set
the time.” A tree object in forest simulation could contain data on

High-level language
source program

High-level language
source program

Compiler

Interpreter

Target program

Output

Output

Input

(a)

(b)

Input

FIGURE 2.1
Program implementation—compilation (a) and interpretation (b).

16 Computing Applications in Forestry and Natural Resource Management

tree parameters such as diameter and height, and functions on tree
growing and related silvicultural activities.

	 2.	 Inheritance: The idea of classes leads to the idea of inheritance. We
understand the biological classes of animals and trees. Similarly, an
OOP class can be divided into subclasses. Classes can inherit proper-
ties from other classes.

	 3.	Polymorphism: Using operators or functions in different ways
depending on what they are operating on is called polymorphism.
Polymorphism means “many forms.” Objects can determine the
appropriate operations at execution time. For example, “+” (which
is an operator in C++ and VB) when with numeric values, addition
occurs; when with string variables, concatenation will occur. This
means the compiler determines the correct meaning of “+” at execu-
tion time, and we say “+” is overloaded.

Simula was the first OOP language. Java, Python, C++, and Visual Basic .NET
are the most popular OOP languages today.

2.2.1 � C and C++

C was created in 1972 by Dennis Ritchie as an implementation language for
software associated with a Unix operating system at AT&T Bell Lab. C++
is derived from the C language. It was first introduced in the early 1990s.
The most important elements added to C to create C++ were concerned with
classes, objects, and OOP (Lafore 1998). However, C++ has many other fea-
tures such as improved input/output.

2.2.2 � Visual Basic .NET

Before Visual Basic (VB) 1.0/Windows 3.X was introduced to the world in
1991, developers had to be well versed in C++ programming as well as the
rudimentary building blocks (Windows API) of the Windows system itself.
VB changed the face of Windows programming by removing the complex
burden of writing code for the user interface.

When Microsoft introduced VB 3.0 in 1993, the programming world was
changed again. VB 3.0 did include user-friendly interfaces, but also intro-
duced database applications with data access objects (DAOs). VB 3.0 included
version 1.1 of the Microsoft Jet Database Engine.

VB 4.0 and 5.0 were released in 1995 and 1997 specifically for Windows 95.
In addition to DAOs, VB 4.0 and 5.0 introduced a new data object, remote
data object (RDO), for client/server applications. The program could be used
for both 16-bit and 32-bit versions of Windows.

VB 6.0 was released in 1998 for Windows 1995 and 2000. It contained
DAOs, RDOs, and ActiveX Data Objects (ADOs) for database applications.

17Programming Languages and Software Engineering

It first introduced web-based applications. VB 6.0 has been considered the
most successful VB programming packet.

VB.NET is the successor to VB 6.0 and is part of the Microsoft .NET plat-
form for Windows XP, 2000, 7, 8, 10, or later versions. Since 2003, several ver-
sions of VB.NET have been released together with Microsoft Visual Studio.
VB.NET enhanced the programming with ADO.NET and more functions on
web-based applications. In the past, VB has been criticized as a “toy” lan-
guage, compared to C++/Java. However, VB.NET has become a great choice
for programmers of all levels using OOP techniques.

2.3 � Software Engineering

Computer software has become a driving force. It is the engine that drives
business decision-making and serves as the basis for modern scientific inves-
tigation and engineering problem-solving (Pressman 2001). Computer soft-
ware is the product that software engineers design and build. It includes
programs that execute, within a computer of any size and architecture, docu-
ments that encompass hard copy and virtual forms, and data that combine
numbers and text (Pressman 2001).

Software engineering (SE) is the establishment and use of sound engi-
neering principles in order to obtain economical software that is reliable and
works efficiently on real machines (Pressman 2001). It is a branch of computer
science that provides techniques to facilitate the development of computer
programming. SE originated in the 1960s due to the software crisis and is not
synonymous with programming. SE encompasses all of the stages involved
in the development of a large software product. Its goal is to produce or
provide “high quality, well-designed, and well-engineered” software. The
software products developed using SE principles usually have the following
characteristics (Kochut 1996):

•	 Perform precisely under all circumstances
•	 Reliable (bug free)
•	 Maintainable (easy to modify)
•	 Use appropriate user-friendly interfaces
•	 Highly efficient and cost effective

When we start to develop a software product, we always ask ourselves if
we need to use SE for the process. The answer could be “We should always
use SE.” However, in some cases, it also depends on the size and budget of
the software program. For example, while writing 100 lines of a program
in either C++ or VB may not be a tough task, writing a program of several

18 Computing Applications in Forestry and Natural Resource Management

hundred thousand lines of code will take dramatically longer to accomplish.
An exponential growth relationship exists between software size and its devel-
opment time and cost. Well-designed software would enable programmers to
efficiently use their time to develop and test the product. Therefore, using SE
to design a software product will help reduce its development time and cost.

To solve actual problems, a software engineer or a team of engineers must
incorporate a development strategy that encompasses the process, methods,
tool layers, and generic phases (Pressman 2001). This strategy is often referred to
as a process model or a software engineering paradigm. There are several soft-
ware process models, such as the waterfall model, incremental model, V-model,
and iterative model. Each model follows a particular life cycle of software in
order to ensure its success in the process of software development. A common
process model is established by defining a small number of framework activi-
ties that are applicable to all software projects, regardless of their size or com-
plexity (as illustrated in the example of a waterfall model) (Figure 2.2).

The software life cycle is a process that ensures a robust software product
is developed using the SE principles. A software life cycle can be depicted
as phases or segments of the software life on a wheel (Carrano 1995). Each
phase produces deliverables required by the next phase. We typically start
by specifying the requirements of the software, then move sequentially to
the phases of design, verification, etc. However, these phases are interrelated.
For example, testing a program can suggest changes to either the program
specification or solution design (Carrano 1995).

In a typical SE process, there are eight phases surrounding the documenta-
tion core. Documentation is not a separate phase, as you might expect. It is
integrated into all eight phases of the software life cycle (Carrano 1995):

	 1.	Phase 1—Specification: In this phase, we need to identify the initial
statements of the software’s purpose and also specify clearly all

Requirements
and analysis

System design

Implementation
and testing

Deployment and
maintenance

FIGURE 2.2
Waterfall model of software development process.

19Programming Languages and Software Engineering

aspects of the program requirements and potential problems. Some
issues that we must address as we write the specifications for the
software include (1) data input and validity, (2) potential software
users and types of user interfaces, (3) error detection and handling,
(4) special cases that need to be considered, (5) output, (6) neces-
sary documentation, and (7) future enhancements of the software
product.

	 2.	Phase 2—Design: Once we have completed specification, we need
to design solutions to the problems associated with the software
program. The best way to simplify the problem-solving process is
to divide a large problem into small, manageable parts (Carrano
1995). The resulting program will contain modules, which are
self-contained units of code. A module could be a single function
or several functions and other blocks of code. System design helps
in specifying hardware and system requirements and also helps in
defining overall system architecture.

	 3.	Phase 3—Verification: In this phase, we need to use available methods
to prove that the algorithms implemented in the program are correct.
This process could be time-consuming.

	 4.	Phase 4—Implementing/Coding: In this phase, we divide the program
into components and modules, then start coding. This could be
the longest phase of a software life cycle. There are two main ways
to implement coding: bottom-up implementation and top-down
implementation.

	 5.	Phase 5—Testing: After coding is complete, we perform tests to ensure
the software addresses the required needs, and to remove any errors
we may encounter. There are a few ways to test software, includ-
ing unit testing, integration testing, system testing, and acceptance
testing.

	 6.	Phase 6—Refining: In previous phases, we make some simplifying
assumptions. We should always leave room to improve and refine
solutions to the problems of the software product. For example,
input or output formats might need to be refined.

	 7.	Phase 7—Production or Deployment: After successful testing and
refinements, the software is deployed to its intended users, installed
on their computers, and used.

	 8.	Phase 8—Maintenance: Real-world users of the software always seem
to discover some unexpected problems that will need to be fixed.
Developers may also need to add new features to enhance the soft-
ware product after its release.

Time and cost necessary for each phase in the life cycle of a software product
vary from system to system. For example, more than 40% of time or cost may

20 Computing Applications in Forestry and Natural Resource Management

be needed for the design phase in scientific and business types of systems.
However, there may be more than 50% of time or cost needed for the testing
phase of an operating system.

2.4 � Example of Forest Harvesting Simulator Design

The Forest Harvesting Simulator is a more convenient and cost-effective way
to perform simulations of forest operations (Wang and Greene 1999). This
interactive simulator allows you to make applications that make full use of
the graphical user interface (GUI). Here are the few major phases in develop-
ing this forest harvesting simulator.

2.4.1 � System Design

Object-oriented modeling techniques (OMTs) were employed in the sys-
tem design. A hierarchical structure among different modules is very useful
while modifying the program with OMT (Rumbaugh et al. 1991). A sche-
matic hierarchy of the forest harvesting simulation system was demon-
strated with the following major layers/components (Wang and LeDoux
2003, Figure 2.3):

•	 GUI application layer: This layer is composed of multiple subappli-
cation type modules that deal with GUI support of different func-
tions like browsing files, performing operations, analyzing, viewing,
and reproducing outputs. This layer talks to the underlying class
layer following the system hierarchy.

•	 Module layer: This is the major part of the system. Objects, controls,
and object-oriented data models are implemented here. The mod-
ules contain form, class, and standard modules.

•	 Data store layer: The module layer talks to this layer to obtain the
persistent data support.

Interactive simulation is a major part of this harvesting simulator, which was
described and published in detail in a previous paper (Wang and Greene
1999). The modularity or the internal organization of this simulation pro-
gram serves primarily as the functional tool for project management. Usually,
an event is executed by clicking a corresponding command button or item.
The main event procedures in the Multiple Document Interface form of
this harvesting simulator are FILE, EDIT, RUN, ANALYSIS, VIEW, OUTPUT,
and HELP (Figure 2.4). Other forms and procedures under this form can be
invoked at this point.

21Programming Languages and Software Engineering

Communication among different modules in the system uses Dynamic
Data Exchange, Dynamic-link Libraries, and Windows API. The front end
of the harvesting simulation system could be Windows platform, while the
relational database is used in the back end.

The whole system is event-driven. Event-driven applications execute
codes in response to an event. Each object (such as a form or a control) in
the system has a predefined set of events. If one of these events occurs, the
system invokes the codes in the associated event procedure. Objects in the
system using VB automatically recognize a predefined set of events if you
invoke an event.

2.4.2 � Functional Requirements

Through GUI, the user can browse or search the files under a specified direc-
tory and drive. This allows the user to find files created while performing
simulations. Stand generation, felling, and skidding or forwarding simula-
tions are performed under the specific event procedures incorporated with
other objects. The simulation can be analyzed statistically and economi-
cally. The simulation results can be retrieved and viewed again. The outputs
can also be reproduced. The event procedures or functional commands are

Request operations
Display operations
Display results
Display error messages

Application

Interface

Apply operations
Store data
Check data
Retrieve data

Return error messages
Return data

Storage

User

Select operation

Display screen

Stand generator

Auxiliary windows
Prompt user for information

Main simulation window

Performing fell
Performing skid

...

Return verification

Request verification

FIGURE 2.3
Event flow diagram of the system.

22 Computing Applications in Forestry and Natural Resource Management

organized in a hierarchical manner. The following is a list of the major func-
tions or event procedures in the system:

•	 File()—to browse or find files, close, and exit the application
•	 Edit()—to edit a new map or an existing stand map
•	 Run()—to perform stand generation simulations, interactive simu-

lations, and numerical felling and extraction simulations
•	 Analysis()—to analyze the simulation results
•	 View()—to retrieve and view the simulation performed earlier
•	 Output()—to reproduce the simulation results on paper
•	 Help()—to present the online help about the simulator

2.4.2.1 � Specification Document

The specifications are a blueprint for the application in the sense that a data-
base developer and a programmer should be able to build the application

User

Main_Form Storage

Database/file

Interface
File

Surf()
Exit()

Natural_stand()
Plantation()
Fell_simu()
Skid_simu()
Numerical skid()
Analysis
Stands()
Felling()
Skidding()
Travel_intensity()

Stand_map()

Output

Help

Stand_map0()
Machines()

Contents()
VB_help()
About()
Exit()

Fell_simu()
Skid_forwd_simu()
Skid_forwd_trl()

View

Run

retrieve()
save()

through

access

input
verify

Form

Name: String Name: String

Name: String

Name: String

Class Standard
module has

contains
contains

Controls

Attribute

Attribute value

Name: String
Type: String

FIGURE 2.4
Architecture of the system.

23Programming Languages and Software Engineering

directly from the specifications. At minimum, the specifications should con-
tain the following sections:

•	 An introduction that contains a description of the problem space, a
brief history of the problem, and benefits that will accrue from the
application being developed.

•	 A description of all the tables, including all structural, performance,
and behavioral characteristics. This includes the table names, attri-
bute names, attribute data types, referential and semantic integrity,
high-level language interfaces, and additional tools required.

•	 Graphical and written descriptions of the forms/interfaces and rela-
tionships between the forms including any behavioral characteris-
tics that are relative to the forms/interfaces.

•	 A list of the reports that will be generated via the forms/interfaces.
•	 The menus that will constitute the interface to the application.
•	 Any security considerations if this is a multiuser application.

Class Exercises

	 1.	 Describe the programming language families and their typical
languages.

	 2.	 What is object-oriented programming?
	 3.	 What are the three fundamental principles of object-oriented

programming?
	 4.	 What is software engineering?
	 5.	 What are the key phases in the software life cycle?

References

Carrano, F.M. 1995. Data Abstraction and Problem Solving with C++: Walls and Mirrors.
Addison-Wesley Publishing Company, Menlo Park, CA.

Hayhurst, C. 2002. Semantics of Programming Language (Lecture Notes). Lane
Department of Computer Science and Electrical Engineering, West Virginia
University, Morgantown, WV.

Kochut, K. 1996. Software Engineering (Lecture Notes). The University of Georgia,
Athens, GA.

Lafore, R. 1998. Object-Oriented Programming in C++ (3rd Edition). SAMS, Indianapolis,
IN, 925pp.

24 Computing Applications in Forestry and Natural Resource Management

Pressman, R.S. 2001. Software Engineering: A Practitioner’s Approach. McGraw Hill,
New York.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. 1991. Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, 500pp.

Sethi, R. 1996. Programming Languages: Concepts & Constructions (2nd Edition).
Addison-Wesley, Reading, MA, 640pp.

Wang, J. and W. Greene. 1999. An interactive simulation system for modeling stands,
harvests, and machines. Journal of Forest Engineering 10(1): 81–99.

Wang, J. and C. LeDoux. 2003. Estimating and validating ground-based timber har-
vesting production through computer simulation. Forest Science 49(1): 64–76.

Data Manipulation
and Analysis

Section II

http://taylorandfrancis.com

27

Elementary Data Manipulation Using Excel

3.1 � Excel Formulas

MS Excel is a spreadsheet program that includes features of data manipula-
tion, graphing, data analysis, and Visual Basic for Applications (VBA). Since it
was first introduced in 1987, Excel has evolved through more than 10 versions.
Depending on the version, an Excel worksheet can consist of 1,048,576 rows
and 16,384 columns, and the number of sheets in a workbook is also limited by
the available memory of the computer (with a default of one sheet).

Excel’s formulas are what make its spreadsheets more useful. Without for-
mulas, a spreadsheet would be little more than a word document file with
some table features. To add a formula to a worksheet, you enter it into a cell.
You can delete, move, and copy formulas just like any other items of data.
Formulas use arithmetic operators to work with values, text, worksheet func-
tions, and other formulas to calculate a value for the cell (Walkenbach 1999).
A formula entered into a cell can consist of any of the following elements:

•	 Operators such as + (for addition) and * (for multiplication)
•	 Cell references (including named cells and ranges)
•	 Values or text
•	 Excel functions (such as SUM, COUNT, or AVERAGE)

Here are a few examples of formulas:

=125^(1/3) Returns the cube root of 125.
=100*.06 Multiplies 100 by 0.06.
=B2+B4 Adds the values in cells B2 and B4.
=B2&B4 Concatenates the contents of cells B2 and B4.
=Revenue − Costs Subtracts the cell named “Costs” from the cell named “Revenue.”
=SUM(A1:A10) Adds the values in the range A1:A10.
=B1=C14 Compares cell B1 with cell C14. If they are identical, the formula

returns “TRUE”; otherwise, it returns “FALSE.”
=B1>=C14 Returns “TRUE” if the value in cell B1 is greater than or equal to

the value in cell C14; otherwise, it returns “FALSE.”

3

28 Computing Applications in Forestry and Natural Resource Management

3.1.1 � Operators in Formulas

We can use a variety of operators in Excel formulas (Table 3.1). Excel also has
many built-in functions such as SUM, SIN, COS that enable us to perform
more operations in formulas. Table 3.1 lists Excel’s commonly used operators
and their precedence. As stated by Walkenbach (1999), “Exponentiation has
the highest precedence (that is, it’s performed first), and logical comparisons
have the lowest precedence.” We can use parentheses to override Excel’s built-
in order of precedence. We can also nest parentheses in formulas, which means
putting parentheses inside of parentheses. If you do so, Excel evaluates the
most deeply nested expressions first and works its way out (Walkenbach 1999).

3.1.2 � Entering Formulas

A formula must begin with an equal sign to inform Excel that the cell con-
tains a formula rather than text. There are two ways that we enter a formula
into a cell: enter it manually or enter it by pointing to cell references.

If entering a formula manually, you simply type an equal sign (=), followed
by the formula. As you type, the characters appear in the cell and in the for-
mula bar. You can edit the formula as needed.

If entering a formula by pointing to cell references, you will still need to do
some manual typing. For example, to enter the formula =B2+B3 into cell B4,
you can simply follow these steps:

	 a.	Move the cell pointer to cell B4 and then left click the mouse.
	 b.	Type an equal sign “=” to begin the formula.
	 c.	Use the mouse to point to cell B2 and then left click the mouse, and

the cell B2 reference appears in cell B4 and in the formula bar.
	 d.	Type a plus sign “+.”
	 e.	Repeat step (c) for cell B3.
	 f.	Press “Enter” to finish the formula.

TABLE 3.1

Operators and Their Precedence in Excel Formulas

Arithmetic Name Logical Comparison Name

^ Exponentiation = Equal to
* Multiplication <> Inequality
/ Division < Less than
+ Addition > Greater than
- Subtraction <= Less than or equal to
& Concatenation >= Greater than or equal to

Source:	 Based on Walkenbach, J., Microsoft Excel 2000 Bible, IDG Books Worldwide,
Inc., Foster City, CA, 1999.

29Elementary Data Manipulation Using Excel

3.1.3 � Referencing Cells Outside the Worksheet

Most of the time, we work on one spreadsheet within a workbook. However,
formulas can refer to cells in other worksheets in the same workbook or to
worksheets in different workbooks. Excel uses a special type of notation to
handle these types of references. To reference a cell in another worksheet in
the same workbook, we use the following format:

 =SheetName!CellAddress

In this format, we need to put the worksheet name and the cell address, sepa-
rated by an exclamation point. Here is an example of a formula that uses a
cell on the Sheet2 worksheet or a worksheet named “Forest Sale”:

 =A1*Sheet2!A1 or =A1*’Forest Sale’!A1

This formula multiplies the value in cell A1 on the current worksheet by the
value in cell A1 on Sheet2 or the Forest Sale sheet.

Here is the format to reference a cell in a different workbook:

 =[WorkbookName]SheetName!CellAddress

In this case, the workbook name (in square brackets), the worksheet name,
and an exclamation point precede the cell address (Walkenbach 1999). The
following is an example of a formula that uses a cell reference in the Sheet1
worksheet in a workbook named “Stumpage”:

 =[Stumpage.xlsx]Sheet1!A1

If the workbook name or the Excel file in the reference includes multiple
words with white spaces, we have to enclose it (and the sheet name) in single
quotation marks. For example, if we want to multiply the cell A1 of the cur-
rent sheet by the value of cell A1 on Sheet1 in a workbook named Stumpage
in 2014:

 =A1*’[Stumpage in 2014]Sheet1’!A1

When a formula refers to cells in a different workbook, the other workbook
does not need to be opened. If the workbook is not opened, you must add the
complete path to the reference. Here’s an example:

 =A1*’C:\YourAppFolder\[Stumpage in 2014]Sheet1’!A1

3.1.4 � Relative versus Absolute References

There are two types of cell references: relative and absolute. By default, all
Excel cell references are relative references in formulas except when the

30 Computing Applications in Forestry and Natural Resource Management

formula includes cells in different worksheets or workbooks (Walkenbach
1999). The difference between these two types of references can be easily
understood while we work and copy a formula from one cell to another.

3.1.4.1 � Relative Reference

For example, we would like to create a simple formula to calculate the total
sale values of Christmas trees by species at a fixed rate of sales tax. This
could be formulated as SaleValueSpeciesi = (# of trees sold for species i)*(unit
price of species i)*(1+sales tax rate). Figure 3.1 shows a worksheet with this
formula in cell D3. The formula, which uses the default relative references,
is as follows:

 =B3*C3*(1+B7)

You should notice that we only use the B7 cell to hold the sales tax rate.
When you copy this formula to the two cells below it (cells D4 and D5),

FIGURE 3.1
Copying Excel formula using relative references. (Based on Walkenbach, J., Microsoft Excel 2000
Bible, IDG Books Worldwide, Inc., Foster City, CA, 1999.)

31Elementary Data Manipulation Using Excel

Excel will not produce an exact copy of the formula. However, it will create
these formulas:

•	 Cell D4:  =B4*C4*(1+B8)

•	 Cell D5:  =B5*C5*(1+B9)

In that case, Excel adjusts the cell references to refer to the cells that are rela-
tive to the new formula. It simply means that a formula that contains a rela-
tive cell reference changes as you copy it from one cell to another. As you can
imagine, these two copied formulas will not work for us since the B8 and
B9 cells do not reference the sales tax rate. To solve this problem, we need to
use an absolute reference.

3.1.4.2 � Absolute Reference

Sometimes we want to maintain the original cell reference when we copy a for-
mula. In the above example, we need to use the same sales tax rate for each of the
three species. We therefore need an absolute reference in the formula (Figure 3.2).

FIGURE 3.2
Formula using absolute cell reference.

32 Computing Applications in Forestry and Natural Resource Management

In this example, cell B7 contains the sales tax rate. We need to make references to
this cell absolute by preceding the column (B) and row (7) with a dollar sign ($).
The new formula in cell D3 is as follows:

 = (B3*C3)*(1+B7)

These dollar signs indicate to Excel that we want to use an absolute cell ref-
erence. Then, when we copy the formula from D3 to D4 and D5, the for-
mula will adjust to the new rows, but the sales tax reference (B7) will remain
the same:

•	 Cell D4:  =(B4*C4)*(1+B7)

•	 Cell D5:  =(B5*C5)*(1+B7)

So in this example, the relative cell references changed, but the reference to
cell B7 did not because it is an absolute reference.

3.2 � Excel Functions

Like in other programs, Excel has built-in functions that we can use in for-
mulas. The built-in functions can make formulas more powerful and useful.
Specifically, Excel functions can help us simplify formulas, allow formulas to
perform calculations that are otherwise impossible, and perform conditional
execution of formulas (Walkenbach 1999).

Excel built-in functions can simplify a formula significantly. For example,
if we calculate the total or sum of the number of Christmas trees sold in
20 different days or the values in 20 cells (A1:A20) without using a function,
we need to create a formula:

 =A1+A2+A3+A4+A5+A6 … +A20

This would be tedious or even impossible if we had more days of sales
included in the formula. However, if we use an Excel function, this task is
simplified:

 =SUM(A1:A20)

If we need to determine the highest sale for 100 days, a formula cannot work;
a function needs to be used. Here’s a simple function that returns the highest
sale or the highest value in the range A1:A100:

 =MAX(A1:A100)

33Elementary Data Manipulation Using Excel

Suppose that we have a worksheet that calculates sales commissions of
Christmas trees. If someone sold more than $500, the commission rate would
be 10%; otherwise, the commission rate would be 5%. Without using a func-
tion, we would have to create two different formulas and make sure that we
use the correct formula for each sale amount. Instead we can use the IF func-
tion to ensure the correct commission:

 =IF(A1>=500, A1*10%, A1*5%)

3.2.1 � Function Arguments

The parameters used in the parentheses of a function are called arguments.
A function may use no arguments, one argument, a fixed number of argu-
ments, an indeterminate number of arguments, or optional arguments.

For example, the RAND function, which returns a random number between
0 and 1, does not use an argument. Even so, whether or not a function uses an
argument, we still need to provide a set of empty parentheses: =RAND().

A function argument can be a cell reference, a literal text string, or an
expression. If a function uses more than one argument, you must separate
each argument with a comma. Here are a few examples of functions and their
types of arguments:

=SUM(A1:A20) Cell references
=SUM(TreeSales) Range name
=SUM(B:B) Column B
=SUM(6:6) Row 6
=SQRT(100) Literal value

A literal argument is a numeric value or a text string that you enter into
a function. For example, the SQRT function takes one literal argument.
Expressions can be used as an argument in an Excel formula. Excel evaluates
the expression first and then uses the result as the argument. For example, an
expression of the Pythagorean theorem can be an argument:

 =SQRT((A1^2)+(A2^2))		 Expression

3.2.2 � Entering Functions

Similar to entering a formula, there are two ways to enter a function into a
cell: manually or by inserting it from the Insert Function box.

If you know what functions you need to use, entering a function manually
may be an efficient way. You simply type the function into a cell. However, if
you cannot remember the function name or its format, you can enter it and
its arguments using the Insert Function dialog box. From the Excel menu,

34 Computing Applications in Forestry and Natural Resource Management

click Formulas → Insert Function, then an Insert Function dialog box will be
displayed (Figure 3.3).

A drop-down Or select a category list allows you choose types of functions
to search among. When you select a category, the Select a function name list
box displays the functions in the selected category. The Most Recently Used
category lists the functions that you have used most recently.

Once you select a function that you want to use from the list, click OK,
then a dialog box of Excel Function Arguments will appear (Figure 3.4). You
can specify the function arguments in that box, or you can easily select a
range argument for your spreadsheet by clicking the Collapse Dialog button

, then highlighting the range of cells on your sheet, clicking the Expand
Dialog button , and then clicking OK.

3.3 � Major Excel Functions

Excel functions are prewritten formulas. Excel has 11 categories of 328 built-
in functions, including database, date and time, engineering, financial, infor-
mation, logical, lookup and reference, math and trigonometry, statistical,

FIGURE 3.3
Insert function dialog box.

35Elementary Data Manipulation Using Excel

and text functions (Microsoft 2013). The following are some commonly used
functions from a few of the major function categories.

3.3.1 � Mathematical and Trigonometric Functions

Excel provides 59 functions in this category. The category includes common
functions, such as SUM, SQRT, SIN, COS, and INT.

3.3.1.1 � INT

The INT function takes one argument and returns the integer (nondecimal)
portion of a number by truncating all digits after the decimal point. For
example,

 =INT(122.88)  (returns 122).

3.3.1.2 � RAND

This function takes no arguments and returns a uniform random number
that is greater than or equal to 0 and less than 1. Being “uniform” means that
all numbers have an equal chance of being generated. In the example that
follows, the formula returns a random number greater than or equal to 0 and
less than 10:

 =RAND()*10

FIGURE 3.4
Function arguments.

36 Computing Applications in Forestry and Natural Resource Management

The following formula generates a random integer between two values. The
cell named ‘Lower’ contains the lower bound, and the cell named ‘Upper’
contains the upper bound:

 =INT((Upper-Lower+1)*RAND()+Lower)

For example, in a forest tree growth simulation project, assuming we want
to generate trees with a diameter at breast height (DBH) between 15.24 and
30.48 cm (6 and 12 in.), we can use this formula:

 =INT(7*RAND()+6)

3.3.1.3 � ROUND

This function rounds a value to a specified digit to the left or right of the
decimal point. It takes two arguments: the first is the value to be rounded
while the second is the digit for the number of decimal places. For example,

 =ROUND(123.456, 0)    (returns 123)
 =ROUND(123.456, 1)    (returns 123.5)
 =ROUND(123.456, 2)    (returns 123.46)

If the second argument is negative, the rounding occurs to the left of the
decimal point. For example,

 =ROUND(123.456, -1)    (returns 120)
 =ROUND(123.456, -2)    (returns 100)
 =ROUND(123.456, -3)    (returns 0)

3.3.1.4 � SIN or COS

These Excel functions perform the common trigonometric functions of Sine
and Cosine. The SIN function, for example, returns the sine of an angle. SIN
takes one argument and the angle expressed in radians. We use the RADIANS
function to convert degrees to radians, and we use the DEGREES function to
convert radians to degrees. If cell A2 contains an angle in degrees, the for-
mula that follows returns the Sine of that angle:

 =SIN(RADIANS(A2))

3.3.1.5 � SQRT

This function returns the square root of its argument. If the argument is nega-
tive, this function returns an error.

 =SQRT(625)    (returns 25)

37Elementary Data Manipulation Using Excel

We can use the exponential mark ^ to compute a cube root or raise a value to
a certain power. For example,

 =3^5 (returns 243)

3.3.1.6 � SUM

This might be the most commonly used Excel function. It takes from 1 to
30 arguments.

 =SUM(A1:A10, B1:B4, 20, 50)
 =SUM(A1, A2, A3)
 =SUM(1, 2, 3)

3.3.1.7 � SUMIF

This function is for calculating conditional sums. SUMIF takes three argu-
ments. The first argument is the range that you are using in the selection
criteria. The second argument is the selection criteria. The third argument
is the range of values to sum if the criteria are met. For example, an Excel
worksheet contains weekly timber production data by a logger from 1995 to
2010 with a data range from Row 3 to Row 136, while Column C contains the
end date of the week and Column L is the weekly production. If we would
like to sum this logger’s timber production only in 1999, the following func-
tion can be used:

 =SUMIF(C3:C136, "<31-dec-99",L3:L136) –
 SUMIF(C3:C136, "<31-dec-98",L3:L136)

3.3.2 � Statistical Functions

This category contains 80 functions that perform various statistical calcula-
tions. The functions in this category could be very useful for professionals in
the fields of forestry and natural resources. From our field data, we always
want to calculate the basic statistics of certain variables.

3.3.2.1 � AVERAGE, MEDIAN, and MODE

These similar statistical operations have appropriately similar Excel func-
tions. The AVERAGE function returns the average (arithmetic mean) of a
range of values. Excel also provides the MEDIAN function (which returns the
middle-most value in a range) and the MODE function (which returns
the value that appears most frequently in a range):

 =AVERAGE(A1:A100)
 =MEDIAN(A1:A100)
 =MODE(A1:A100)

38 Computing Applications in Forestry and Natural Resource Management

If the range argument contains blanks or text, Excel will not include these
cells in the calculation. As with the SUM formula, you can supply 1 to
30 arguments in these functions.

3.3.2.2 � COUNT

This function counts how many numbers are in a range of values. For exam-
ple, if all cells of A1:A10 hold numeric values, then

 =COUNT(A1:A10)   (returns 10)

3.3.2.3 � COUNTIF

The COUNTIF function counts the number of cells in a range that meet the
criteria you specify. This function takes two arguments: the range that con-
tains the values to count and a criterion used to determine what to count. For
example, the formula below can count the number of students with grade
“A” in column B:

 =COUNTIF(B:B, “A”)

Notice that the first argument (B:B) consists of a range reference for the entire
Column B instead of a range for certain cells within the column. This enables
you to insert new values into cells in Column B without having to change
the formula.

3.3.2.4 � MAX and MIN

The MAX and MIN functions return the largest value and the smallest value
in a range, including numbers, text, and logical values. For example, to find
a maximum or minimum value in a range of A1 to A100:

 =MAX(A1:A100)
 =MIN(A1:A100)

3.3.2.5 � STDEV

This function estimates standard deviation based on a sample (a range of
data). It is a measure of how widely values are dispersed from the mean or
how spread out values are. STDEV is the square root of the variance. For
example, to estimate the standard deviation of a sample of data in the range
of A1–A100:

 =STDEV(A1:A100)

39Elementary Data Manipulation Using Excel

3.3.3 � Text Functions

For editing values and text on a worksheet, Excel provides 26 built-in text
functions that can be used specifically to manipulate text.

3.3.3.1 � LEFT and RIGHT

The LEFT or RIGHT function returns the first character or a string of charac-
ters of a specified length, beginning at the leftmost or the rightmost position.
These functions take one or two arguments. If using two arguments, the first
argument is the string of characters and the second argument (optional) is
the number of characters (including white spaces) to return. If the second
argument is omitted and only one argument is used, the function returns the
leftmost or the rightmost character. For example,

 =LEFT(“FOR 240 Intro to Computing”, 7)  (returns FOR 240)
 =RIGHT(“FOR 240 Intro to Computing”, 9) (returns Computing)
 =LEFT(“FOR 240 Intro to Computing”)   (returns F)
 =RIGHT(“FOR 240 Intro to Computing”)   (returns g)

3.3.3.2 � LEN

The LEN function returns the number of characters in a string of text includ-
ing white spaces as follows:

 =LEN(“FOR 240 Intro to Computing”) (returns 26)

3.3.3.3 � MID

The MID function extracts characters from inside a text string. It takes three
arguments. The first argument is the text string from which you want to
extract the specified number of characters. The second argument is the posi-
tion at which you want to begin extracting. The third argument is the num-
ber of characters that you want to extract. For example,

 =MID(“FOR 240 Intro to Computing”, 9, 5) (returns Intro)

3.3.3.4 � REPLACE and SUBSTITUTE

The REPLACE function replaces part of a text string with other characters.
It takes four arguments. The first argument is the text that contains the char-
acters you want to replace. The second argument is the character position at
which you want to start replacing. The third argument is the number of char-
acters to replace. The fourth argument is the new text that will replace the

40 Computing Applications in Forestry and Natural Resource Management

existing text. For example, if we want to replace “Intro” with “Introduction”
in “FOR 240 Intro to Computing,” we would type:

 =REPLACE("FOR 240 Intro to Computing", 9, 5, "Introduction")

The SUBSTITUTE function is also used to replace part of a text string with
other characters. The difference is that SUBSTITUTE replaces specific text
with new text while REPLACE replaces any text based on its position and
length within a text string. For example, the function below simply replaces
“Intro” with “Introduction”:

 =S�UBSTITUTE("FOR 240 Intro to Computing", “Intro”,
"Introduction")

3.3.3.5 � UPPER, LOWER, and PROPER

These functions convert text to upper, lower, or proper case, respectively:

 =UPPER(A1)

3.3.3.6 � FIND

This function returns the starting position of a text string from within another
text string as follows:

 =FIND("Intro", "FOR 240 Intro to Computing") (returns 9)

We can nest functions and allow them to work together. This example nests
FIND within REPLACE so that “Intro” is found and then replaced with
“Introduction”:

 =R�EPLACE("FOR 240 Intro to Computing", FIND("Intro", "FOR
240 Intro to Computing"), 5, "Introduction")

3.3.4 � Logical Functions

This category contains six functions, including AND, FALSE, IF, NOT, OR,
and TRUE.

3.3.4.1 � IF

This function is one of the most important functions. It can provide us con-
ditional computing with decision-making capability. The IF function takes
three arguments. The first argument is a logical test that must return either
TRUE or FALSE. The second argument is the result that you want the func-
tion to return if the first argument is true. The third argument is the result that

41Elementary Data Manipulation Using Excel

you want the function to return if the first argument is false. In our Christmas
tree sale example (Figure 3.2), if we let cell B6 hold the total sale amount, and
the seller’s goal is $200, the commission rate would be 10% for persons reach-
ing the goal; otherwise, the commission would be 5%:

 =IF(B6>=200, B6*0.10, B6*0.05)

3.4 � Build Your Own Functions

Although Excel provides several hundred built-in functions in 11 different
categories, we may still need to build our own functions for specific appli-
cations. For example, we want to calculate the basal area (BA in ft2, 1 ft2 =
0.0929 m2) of a tree based on its DBH (in inches, 1 in. = 2.54 cm). Here is the
formula we can use:

 BA = 0.005454154*DBH2

This calculation is one we would reuse often, so for efficiency we could build
a new BA function on our Excel sheet. We create custom functions using the
VBA programming language. To do so, we use Excel’s Developer tab, which is
not present on the menu ribbon by default. To add it, from the Excel menu we
click File → Options → Customize Ribbon. Then we check the box for Developer
under Main Tabs and click OK.

Using the basal area calculation as an example, here are the steps to create
our own function in an Excel Workbook using Developer:

	 1.	From Excel menu ribbon, click Developer → Visual Basic. A VBA Editor
window will open.

	 2.	From the VBA Editor menu, choose Insert → Module and a VBA Code
Editor window will appear.

	 3.	Type the following code in the VBA Code window:

 Function BA(d As Single) As Single
 BA = 0.005454154 * d * d
 End Function

	 4.	Close the VBA Editor and go back to your Excel workbook and cur-
rent worksheet. Now you can use this function as you would for any
other Excel built-in functions:

 =BA(12)    (returns 0.785398)

42 Computing Applications in Forestry and Natural Resource Management

3.5 � Charts

Charts have been an integral part of spreadsheets since the early days of
Lotus 1-2-3 (Walkenbach 1999). In natural resources, we always expect to
present our field data in a graphical format. MS Excel provides us the tools
to create a variety of useful charts. Charts are used to display a series of
numeric data so that the data and relationships among data sets are easier to
understand. Excel enables us to create all the basic chart types: column, line,
pie, bar, area, scatter, stock, surface, radar, and combo.

While we typically use the data in a single worksheet for a chart, one
chart may contain data from several worksheets within one workbook or
even from worksheets in different workbooks. A chart is essentially an object
that Excel creates. This object consists of one or more data series, displayed
graphically. The appearance of the data series depends on the selected chart
type (Walkenbach 1999). You can include a maximum of 255 data series in a
chart. The latest version of Excel has no limit on the number of categories (or
data points) in a data series for either 2D or 3D charts; only your computer’s
available memory can limit your chart’s categories.

3.5.1 � Excel Chart Example

When you create a chart in Excel, you have two options for where to place
the chart: (1) Insert the chart directly into a worksheet as an object and
(2) create the chart as a new chart sheet in your workbook (right click on
the chart → select Move Chart → select New Sheet in the dialog box that
appears).

In the following example, we create a chart that displays the trend of the
average harvested tract size by year in West Virginia (Figure 3.5). These
data consist of two series: the average tract size harvested annually (1 acre =
0.4 ha) and the year.

	Step 1:	 To create this chart, first select (highlight) the entire range on this
worksheet (Figure 3.5). Next click Insert on the Excel toolbar, then
in the Charts section, choose a chart type you want to use. In our
case, either a column or line chart should present the data and
trend well. Let’s click the arrow beside the Insert Column or Bar
Chart icon, then under 2D Column select the Clustered Column.

	Step 2:	 Now we need to verify the data ranges and specify the orientation
of the data (whether it is arranged in rows or columns). The ori-
entation of the data has a drastic effect on the look of your chart.
Right click the chart and choose Select Data from the drop-down
menu. The Select Data Source dialog box will pop up (Figure 3.6).

In our example, we need to remove Series1 data from the Legend
Entries (Series) box and use it as the Horizontal (Category) Axis.

43Elementary Data Manipulation Using Excel

Select Series1 on the left, then click the Remove button. Click the
Edit button in the right list box, then an Axis Labels pop-up dia-
log box will appear. Select your data series in Column B on your
worksheet, and the range will appear in the Axis Label Range as
shown in Figure 3.7a. Click OK. Now the horizontal or category
axis labels are set up correctly (Figure 3.7b), so click OK.

Step 3:	 The chart is not yet complete. We need to add a chart title, axes titles,
label data, etc. Select the chart, then on the menu click the Design
tab, then Add Chart Element. You will see the choices for labels and
axes, including chart title, axis titles, gridlines, legend, data labels,
and data table. Keep in mind that you can see these Chart Tools only
if you select the chart. When you make your choices, click on each
element (e.g., x-axis) within the chart to edit the text (Figure 3.8).

FIGURE 3.5
Data for a chart.

44 Computing Applications in Forestry and Natural Resource Management

(a)

(b)

FIGURE 3.7
Adjustment of data series. (a) Select data range and (b) editing data series and axis labels.

FIGURE 3.6
Verify data series.

45Elementary Data Manipulation Using Excel

	Step 4:	 After we create a chart, we save it and can modify it at any time.
Common chart modifications include changing the chart type
and chart elements. What we may want to do now is to copy the
chart and paste it in either a MS Word file or a PowerPoint slide
for a report or presentation.

3.5.2 � Combination Chart

A combination chart is a chart that combines two or more chart types. For
example, you may have a chart that shows both columns and lines. A com-
bination chart also can use a single chart type (e.g., all columns) but include
a second value axis.

Creating a combination chart simply involves changing one or more of the
data series to a different chart type. Figure 3.9 shows example data for a com-
bination chart for Bell feller-buncher production data—the felling time per tree
in minutes vs. tree size (DBH) in inches (1 in. = 2.54 cm). There are two data
series: observed time per tree and predicted time per tree based on the model
(Time per tree = 0.4051 + 0.01023 * DBH). Suppose we would like to use a
Scatter (X–Y) Chart for observed data combined with a Line Chart to represent
the prediction of its production by tree size. First, we create the chart as we did
in the previous example (by selecting the entire data set on the spreadsheet)
(Figure 3.9), clicking Insert, then choosing a chart type (in this example Scatter).
Then within the created chart, click on the data series to which we wish to
apply a different chart type (the Predicted series). This series should become
highlighted. Right click, then select Change Series Chart Type, and a new dialog

1992
0

20

40

60

80

100

120

140

1993

A
ve

ra
ge

 h
ar

ve
st

ed
 ar

ea
 (a

cr
es

)

1994 1995 1996 1997
Year

1998 1999 2000 2001

FIGURE 3.8
A chart of average harvested area by year.

46 Computing Applications in Forestry and Natural Resource Management

box will open. In the drop-down lists, select the new Chart Type for the series
you wish to change (in this case, we select Line) and then click OK (Figure 3.10).

3.5.3 � Gantt Chart

Gantt charts display data in a way that is very useful in situations such
as developing project timelines. Here they are used to represent the time
required to perform each task in a project. As an example, we can use the
timeline data for a logger survey project (Figure 3.11) to create a Gantt chart
for managing this project (Figure 3.12).

FIGURE 3.9
Data for a combined chart of a feller-buncher felling vs. tree DBH.

47Elementary Data Manipulation Using Excel

4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0 5 10 15 20

5

Ti
m

e p
er

 tr
ee

 (m
in

)

6 7 8 9 10 11 12
DBH (in.)

13 14 15 16 17 18 19

Predicted

Observed

FIGURE 3.10
A combined chart with scattered dots and a line.

FIGURE 3.11
Data for a Gantt chart.

48 Computing Applications in Forestry and Natural Resource Management

To create this Gantt chart, follow these steps:

	 1.	Enter the data as shown in Figure 3.11. The formula in cell D3, which
was copied to the rows below it, is =B3+C3-1.

	 2.	Select the data range A3:C10, then click the Insert tab on the menu
ribbon. In the Chart group, choose the Bar Chart option and then the
2D Stacked Bar option. Notice that you will get a chart with incorrect
category axis labels.

	 3.	To further modify this chart, right click within the chart area and
choose Select Data… from the drop-down menu. The window Select
Data Source will pop up. We change the category axis label by click-
ing the Edit button in the right frame box. In the input box, change
the axis label range to A3:A10, and click OK.

	 4.	Continue step (3). To edit the data source of start date and duration,
click series 1 in the left frame box and click Edit. You can define the
series name as Start Date and series value as B3:B10. Now, add a new
data series as Duration with series value C3:C10, and then click OK.

	 5.	Adjust the height of the chart so that all the axis labels are visible.
You can also accomplish this by using a smaller font size.

	 6.	Right click the horizontal axis to access the Format Axis dialog box.
Adjust the horizontal axis minimum and maximum scale values to
correspond to the earliest and latest dates in the data (note that you can
enter a date into the minimum and maximum edit box). For example,
enter 1/15/2003 in the minimum edit box and 6/8/2003 in the maxi-
mum edit box. You can also change the date space shown in the chart
by changing the major unit from the default value to 20 or other values
you want. You may also want to change the date format for the axis
labels from mm/dd/yyyy to mm/dd under the Number section.

Planning meeting

1/15/2003 2/4/2003 2/24/2003 3/16/2003 4/5/2003 4/25/2003 5/15/2003 6/4/2003

Develop survey form

Print and mail forms

Receive responses

Data entry

Data analysis

Write report

Finalize report

FIGURE 3.12
A timeline chart for a logger’s survey project.

49Elementary Data Manipulation Using Excel

	 7.	Access the Format Axis dialog box for the vertical axis. In the Axis Options
tab, check the categories in reverse order and set the option for Horizontal
axis crosses to At category number: 1 or use the automatic option.

	 8.	The last thing to do is to make the first data series invisible. In the
embedded chart, right click the bar corresponding to the first data
series, and choose Format data series from the drop-down menu. In
the Fill and Border color options under Fill tab, set No fill and No line.

	 9.	Apply other formatting, as desired.

Class Exercises

	 1.	 Using the data shown in Figure 3.11, create a simple Gantt chart
(Figure 3.12).

	 2.	 Using Excel formulas and functions, create a Timber Sale Report that
includes:

	 A.	 Data Analysis in Excel: You are given forest inventory and analysis data
from three harvest tracts (Tables 3.2 through 3.4). These data have
been encoded into an Excel workbook in three different worksheets
(1 ft3 = 0.0283 m3, 1 acre = 0.40 ha, 1 ft2 = 0.0929 m2). Add one more
worksheet and name it Summary to summarize these tracts for cubic
foot volume (CFV), trees per acre (TPA), and basal area per acre
(BA/A) with the following statistical measures using built-in func-
tions available in Excel. These functions should be written in the sum-
mary sheet and linked to the individual worksheets as appropriate.

	 1.	 Number of plots
	 2.	 Mean
	 3.	 Median
	 4.	 Standard deviation
	 5.	 Coefficient of variation
	 B.	 Statistical Interpretation

Based on the analyzed data, answer the following questions:
	 1.	 Which tract has the highest variability in TPA (1 acre = 0.4 ha)?
	 2.	 Which tract has the highest mean cubic foot (1 ft3 = 0.0283 m3)

volume?
	 3.	 Delete Plot #3 from Tract 1 and report the mean CFV of Tract 1

in the summary sheet.
	 4.	 Insert Plot 7 in Tract 3 and add CFV = 4500, TPA = 50, and BA/A =

100, then report the mean TPA for this tract.

50 Computing Applications in Forestry and Natural Resource Management

	 C.	 Definitions
Define the following terms:

	 1.	 Mean
	 2.	 Median
	 3.	 Standard deviation
	 4.	 Coefficient of variation

You should submit your Excel workbook that must include individual work-
sheets for three tracts and the summary information for Parts A, B, and C.
The answers to Parts B and C can be included in the same Excel worksheet.

TABLE 3.2

Tract 1 Inventory Data

Plot Volume (ft3) Trees/Acre Basal Area (ft2/Acre)

1 4848.93 213.94 180.00
2 3879.63 249.54 140.00
3 3373.45 255.15 140.00
7 4706.58 435.91 220.00
8 4678.38 350.19 180.00
9 3883.12 204.73 140.00

11 1562.73 102.04 100.00
12 6392.76 368.34 260.00
13 2997.35 151.55 120.00
18 3352.95 189.83 120.00
19 4359.39 148.74 140.00
20 2566.89 242.23 100.00
21 1413.80 118.49 60.00
22 1734.92 99.89 80.00
23 2174.70 47.70 100.00
24 3676.66 159.71 160.00
25 3896.78 203.63 200.00
26 3228.78 84.77 160.00
27 4491.33 110.61 180.00
28 6197.89 388.34 200.00
29 4242.36 160.42 180.00
30 2998.94 71.51 140.00
31 2194.12 32.91 60.00
32 2768.79 42.50 100.00
33 2298.72 45.13 80.00
34 3799.73 131.68 180.00
35 3107.67 104.56 140.00
36 3291.45 148.68 120.00

51Elementary Data Manipulation Using Excel

TABLE 3.3

Tract 2 Inventory Data

Plot Volume (ft3) Trees/Acre Basal Area (ft2/Acre)

1 2158.65 201.03 120.00
2 3478.97 287.03 180.00
3 2511.89 170.63 100.00
4 4578.97 231.54 180.00
5 5237.88 372.67 180.00
6 2273.95 123.13 140.00
7 5326.74 406.87 220.00
8 2804.46 163.15 120.00

10 2729.30 161.56 120.00
11 1605.78 90.22 80.00
12 3087.08 71.53 140.00
13 2227.67 175.59 120.00
14 2286.81 89.55 140.00
15 1062.33 33.61 80.00
19 2065.94 89.34 120.00
20 4613.28 163.35 180.00
21 4061.26 329.91 180.00
22 4848.93 213.94 180.00
23 3879.63 249.54 140.00
24 3373.45 255.15 140.00
25 4706.58 435.91 220.00
26 4678.38 350.19 180.00
27 3883.12 204.73 140.00
28 1562.73 102.04 100.00
29 6392.76 368.34 260.00

52 Computing Applications in Forestry and Natural Resource Management

References

Microsoft. 2013. Training courses for Excel 2013. Available online at http://office.micro-
soft.com/en-us/excel-help/training-courses-for-excel-2013-HA104032083.
aspx. Accessed on January 16, 2013.

Walkenbach, J. 1999. Microsoft Excel 2000 Bible. IDG Books Worldwide, Inc., Foster
City, CA.

TABLE 3.4

Tract 3 Inventory Data

Plot Volume (ft3) Trees/Acre Basal Area (ft2/Acre)

1 4491.33 110.61 180.00
2 6197.89 388.34 200.00
3 4242.36 160.42 180.00
5 2998.94 71.51 140.00
6 2194.12 32.91 60.00
8 2768.79 42.50 100.00
9 2298.72 45.13 80.00

10 3799.73 131.68 180.00
11 3107.67 104.56 140.00
12 3291.45 148.68 120.00
13 5658.78 191.12 220.00
14 3862.88 103.50 160.00
15 4255.19 69.49 160.00
16 3534.86 47.94 140.00
17 3096.07 105.64 120.00
21 4449.36 121.01 180.00
22 3568.32 176.56 160.00
23 2158.65 201.03 120.00
24 3478.97 287.03 180.00

http://office.microsoft.com
http://office.microsoft.com
http://office.microsoft.com

53

Statistical Analysis and Mathematical
Programming Using Excel

4.1 � Data Analysis with Analysis ToolPak

The Analysis ToolPak is an add-in program that provides analytical capabili-
ties or tools for statistical and engineering analyses. Basic tools include cor-
relation, analysis of variance, t-test, regression, and others (Table 4.1).

If the Data Analysis command is not an option under the Data tab on the
Excel menu ribbon, we need to install the Analysis ToolPak first in Microsoft
Excel. To install it, click the File tab, and then click Options. An Excel Options
box will open. In the left-hand box, click Add-Ins, and then at the bottom of
the box, in the drop-down list beside Manage, select Excel Add-ins and click
Go. An Add-Ins box will pop up where you can select Analysis ToolPak, and
then click OK.

After you load the Analysis ToolPak, the Data Analysis command is avail-
able in the Analysis group under the Data tab on the Excel menu ribbon.
You can repeat the above procedures and uncheck the Analysis ToolPak to
remove it.

To use the Data Analysis feature, you must arrange the data you want to
analyze in columns or rows on your worksheet. Then click the Data tab on
the Excel menu and click Data Analysis. In the Data Analysis pop-up box,
click the tool you want to use, enter the input range and the output range,
and then select the options you want. Let’s use examples to illustrate three
analysis tools using Excel ToolPak.

4.1.1 � Correlation

Correlation is a widely used statistic that measures the degree to which two
sets of data vary together or are similar. We use the correlation coefficient to
measure the extent to which two measurement variables vary together. That
coefficient ranges from −1.0 (a perfect negative correlation) to +1.0 (a per-
fect positive correlation) while a correlation coefficient of 0 indicates that the

4

54 Computing Applications in Forestry and Natural Resource Management

two variables are not correlated. For example, we would like to examine the
correlation between tree diameter at breast height (DBH) (in inches, 1 in. =
2.54 cm) and felling time in minutes for a feller-buncher in forest operations
(Figure 4.1).

From the Excel menu, click Data → Data Analysis, and select Correlation.
In the Correlation dialog box (Figure 4.2), specify the input range A1:B17,
check Labels in First Row, and for Output options select New Worksheet Ply,
then click OK.

Figure 4.3 shows the results of a correlation analysis for the two variables
DBH and Time Per Tree. The output consists of a correlation matrix that shows
the correlation coefficient for each variable paired with every other variable.
The correlation coefficient between DBH and Time Per Tree is 0.697467 in this
example, a positive correlation because it is greater than 0. The correlation
between these two variables seems good considering field data quality in
forest operations.

4.1.2 � Regression

The Regression tool performs linear regression analysis by using the “least
squares” method from worksheet data. We can use regression to analyze
trends, forecast the future, and build predictive models.

Regression analysis is a typical statistical process for estimating the rela-
tionship among variables. It enables us to determine the extent to which one
range of data (the dependent variable) varies as a function of the values of one
or more other ranges of data (the independent variables). The way to express
the relationship among these variables mathematically is called regression.

The Regression tool in Excel can perform simple (one independent vari-
able) and multiple (more independent variables) linear regressions and calcu-
late and standardize residuals automatically. In a simple linear regression for
modeling n data points, there is one independent variable x. Mathematically,
the relationship between dependent variable y and x can be expressed as:

	 y x= + +a a e0 1

TABLE 4.1

Major Analysis Tools in Excel ToolPak

Analysis of variance Moving average
Correlation Random number generation
Covariance Rank and percentile
Descriptive statistics Regression
Exponential smoothing Sampling
F-Test t-Test (three types)
Fourier analysis z-Test
Histogram

55Statistical Analysis and Mathematical Programming Using Excel

Similarly, in a multiple linear regression with more independent variables x1,
x2, …, their generic relationship with dependent variable y is expressed as:

	 y x x i ni i= + + + + + = ¼a a a e0 1 1 1 2� � , , ,

where
α0 is called intercept
αi is slope
ε is an error component

As an example, let’s use the same feller-buncher data set (Figure 4.1).
Since DBH and Time Per Tree are correlated well with a correlation coef-
ficient of 0.697467, we might be able to generate a useful regression model
between these two variables. In the Excel menu ribbon, click Data → Data

FIGURE 4.1
Data used for the correlation tool.

56 Computing Applications in Forestry and Natural Resource Management

Analysis, select Regression in the Data Analysis dialog box, click OK, then
enter the dependent variable Y range B1:B17 and independent variable
X range A1:A17, check the Labels and Confidence Level boxes, and select
the Output Option New Worksheet Ply. Additionally, we can specify a
few other options. Constant is Zero means that the regression line passes

FIGURE 4.2
The correlation dialog box.

FIGURE 4.3
Results of the correlation analysis.

57Statistical Analysis and Mathematical Programming Using Excel

through the origin. Clicking Residuals will include residuals (the differ-
ences between observed and predicted values in which uniform distribu-
tion of a band means desirable) in the output. Selecting Normal Probability
Plots generates a normal probability plot, which is a graphical technique
for assessing whether or not a data set is approximately normally distrib-
uted (Chambers et al. 1983). A linear pattern of the normal probability
plot indicates that the normal distribution is a good model for the data
set. Once we select OK, we will have a regression summary sheet for this
model (Figure 4.4).

Based on the coefficients column in Figure 4.4, we can get the model:

 Time Per Tree = 0.406 + 0.013*DBH

To evaluate whether or not this model is significant or usable, we usually
use one or more of the following statistics: R-square, MS (mean squared
error) or root MS, F-value, and p-value. In this example, both intercept
and DBH are significant at α = 0.05 level since their p-values are less than
0.05. While our R2 of 0.486 seems somewhat low, it should be acceptable for

FIGURE 4.4
Sample output from the regression tool.

58 Computing Applications in Forestry and Natural Resource Management

forestry applications. Checking our residual plot and normal probability plot
(Figure 4.5a and b), this model is acceptable and could be used in applica-
tions. It could be improved by including more data and a few more param-
eters in the model through necessary variable transformations.

4.1.3 � t-Test

A t-test is a statistical hypothesis test in which the test statistic has a Student’s
t-distribution if the null hypothesis is true. It is applied when the population
is assumed to be normally distributed but the sample size is small enough
that the statistic on which inference is based is not normally distributed. The
t-test is a statistics test generally used to test whether means of populations
are significantly different.

There are three t-test statistical functions that you can perform with the
Data Analysis option in Excel (Microsoft Office Online 2016):

•	 Paired Two-Sample for Means
•	 Two-Sample Assuming Equal Variances
•	 Two-Sample Assuming Unequal Variances

Two-sample t-tests for a difference in means can be either unpaired or
paired. So at first, we need to determine if the data are paired or unpaired.
For example, suppose we are evaluating the effect of a forest treatment for
a tree growth project. We identify 100 trees in the study and then random-
ize 50 trees to the treatment group and 50 trees to the control group. In this
case, we have two independent samples and would use the unpaired form

Sample percentile

Ti
m

e p
er

 tr
ee

DBH

Re
sid

ua
ls

–0.1

0.1

0.2

0

0
0

0.5

1

20 40 60 80 100 120

5 10 15 20

(a)

(b)

0

FIGURE 4.5
Plots of (a) DBH residual and (b) normal probability.

59Statistical Analysis and Mathematical Programming Using Excel

of the t-test. If the t-test is unpaired, we need to determine whether its vari-
ance is equal or unequal by using the statistical function F-Test Two-Sample
for Variance. This function can be found by clicking Data → Data Analysis →
F-Test Two-Sample for Variance.

A paired two-sample test is typically applied when there is a natural pair-
ing of observations in the samples, such as when a sample group is tested
twice—before and after an experiment. Let’s use an example to illustrate
this test.

In forest operations, we are concerned with the soil compaction on skid
trails after harvesting. So before and after harvest, we collect four soil sam-
ples at each of the five measurement points along a skid trail (Figure 4.6).

FIGURE 4.6
Soil dry bulk densities on a skid trail.

60 Computing Applications in Forestry and Natural Resource Management

We want to test if the harvest operations cause a significant compaction.
(1 lb = 0.4536 kg, 1 ft3 = 0.0283 m3)

Based on the paired t-test definition, we know the paired two-sample t-test
works better for this case. In our example, we specifically determine whether
soil dry bulk density has increased after harvest compared to soil dry bulk
density before harvest. In this case, the sample size equals 20. For this type of
t-test, the degrees of freedom is n − 1 = 19.

After we enter the data of Figure 4.6, we accessed the t-test in Excel as fol-
lows: Data → Data Analysis, select t-Test: Paired Two-Sample for Means and click
OK. The t-Test dialog box will open (Figure 4.7).

The following options need to be specified in the t-Test dialog box:

•	 Variable 1 Range: Select everything that is located in the third column,
including the label After harvest. We want to determine if the soil
bulk density after harvest has increased.

•	 Variable 2 Range: Select everything that is located in the second col-
umn, including the label Before harvest.

•	 Hypothesized Mean Difference: enter 0
•	 Labels: Check the box because we included the column labels for

Variables 1 and 2.
•	 Alpha: This depends on your desired degree of certainty or confi-

dence level: 0.05 is a typical choice if you desire 95% certainty
(default); 0.10 if you desire 90% certainty.

FIGURE 4.7
A t-test example of forest soil compaction in Excel.

61Statistical Analysis and Mathematical Programming Using Excel

•	 Output Range: Select the cell in this worksheet where you want the
upper left corner of the output to appear.

•	 New Worksheet Ply : Select this to generate the output on a new
worksheet.

Click OK to run the analysis, then the following Excel output appears
(Table 4.2).

We need to interpret the output table, specifically, to see if soil bulk density
before harvest is significantly different from soil bulk density after harvest:

	 a.	The t-value for our example is 3.866971239.
	 b.	One-tailed test: Our t-value (3.866971239) is greater than the criti-

cal t-value for a one-tailed test (1.729132812). We can therefore state
with 95% certainty that the mean soil dry bulk density increased as
a result of the mechanized harvesting. Alternatively, the conclusion
could be drawn that the p-value for the one-tailed test is 0.000519123,
which is less than alpha (0.05) and is therefore significant.

	 c.	Two-tailed test: The two-tailed test is more stringent because the alpha
region of uncertainty is now divided between both outer tails. For the
two-tailed test, the t-value needs to be larger (2.093024054) to wind
up in the outer 2.5% of either tail and therefore be significant. In this
case, our t-value was greater than 2.093024054, therefore large enough
to be positioned in the outer 2.5% of either outer tail. This indicates
that we may state with 95% certainty that there has been a significant
change in the mean soil dry bulk density from before to after harvest.
The p-value calculated for the two-tailed test (0.001038245) is also less
than alpha (0.05) and is significant. These results support those of our
one-tailed t-test, reinforcing our finding of significance.

TABLE 4.2

Statistics of a Paired Two-Sample t-Test for Forest Soil Compaction

After Harvest Before Harvest

Mean 56.188 53.73
Variance 47.79509053 43.41063158
Observations 20 20
Pearson Correlation 0.912455727
Hypothesized Mean Difference 0
df 19
t Stat 3.866971239
P(T <= t) one-tail 0.000519123
t Critical one-tail 1.729132812
P(T <= t) two-tail 0.001038245
t Critical two-tail 2.093024054

62 Computing Applications in Forestry and Natural Resource Management

4.2 � Mathematical Programming in Forest Management

Mathematical programming involves the use of mathematical models to
solve certain types of management science problems. Typical problems may
vary from a microanalysis (such as the determination of the best way to
cut a tree into logs) to a macro-analysis (such as the evaluation of alter-
native strategies for managing a forest) (Dykstra 1984). Mathematical pro-
gramming is an appropriate tool to support optimal decision-making in a
multiple-constraint environment and in project management. Mathematical
programming is a widely used tool in forest and natural resource manage-
ment planning. The essence of such programming is to optimize the objec-
tive of management by satisfying all the constraining situations. These
constraints could arise from factors such as the environment, economics,
labor, land use, and policy.

Mathematical programming methods include but are not limited to linear
programming (LP), network analysis, multiobjective programming, integer
programming, and dynamic programming.

4.2.1 � Linear Programming

Linear programming is the most widely used mathematical programming
method. It has been broadly applied in natural resource management and
related disciplines. Some of the various applications of LP include timber
harvest scheduling, biomass harvest and logistics, mill production planning,
wildlife management, land use planning, soil loss prevention, and water
conservation.

The use of LP requires building a linear model that includes decision vari-
ables, objective functions, and constraints. Decision variables are the vari-
ables whose values can be controlled and affect the model’s performance. The
values of the decision variables are not known when you begin a problem.
The variables usually represent things that can be adjusted or controlled, for
example, the timber or biomass production in a harvest scheduling project.
An objective function is a mathematical expression that combines the deci-
sion variables to express the goal of your optimization model. The goal could
be profit, cost, or revenue. For example, in a forest/biomass harvest sched-
uling project, your goal could be either to maximize the profits of timber
or biomass production or minimize the production cost. The constraints are
mathematical expressions that combine the variables to express the resource
allocation limits on the possible solutions. For example, the total work-
ing hours should be less than the total available hours a harvest crew has,
and the various land uses should not exceed the total available land area.
Additionally, objective function and variables should be consistent, quantita-
tive, and linear.

63Statistical Analysis and Mathematical Programming Using Excel

Once an LP model is developed, you need to find a way to solve it. The
Simplex Algorithm, developed in 1947 by George Dantzig (Winston 2004),
has been the most commonly used method to solve this type of optimization
problem.

Examples of LP objectives in forest and natural resource management
include the following:

•	 Maximize the net present value of a forest by managing the forest in
such a way that it satisfies all the criteria specified in the forest best
management practice guidelines.

•	 Minimize a biorefinery’s delivered cost of forest biomass harvesting
and processing.

•	 Minimize the cost of transporting wood products from saw mills to
market distribution centers.

The linear relationship in LP implies the following:

	 1.	Proportionality: Decision variables in constraints and objective func-
tions are directly proportional.

	 2.	Additivity: Total contribution of all the variables in the objective
function and in the constraints should be the direct sum of the indi-
vidual contribution of each variable.

	 3.	Certainty: Coefficients in the objectives are deterministic (known for
certain).

4.2.2 � Network Analysis

Networks arise in numerous settings and in a variety of applications such as
in forest product transportation and in piping of oil and shale gas. Network
representations are widely used for problems in such diverse areas as pro-
duction, distribution, planning, facilities’ location, and resource manage-
ment. Tree-stem bucking is a good example of a network model because it
presents complex problems. The decision of where to cut depends on various
factors, including tree species, size of the tree stem, grades of logs within the
stem length, market value for end products, and the number, location, and
severity of defects (Bobrowski 1994). These common bucking problems have
been solved by employing mathematical programming techniques, includ-
ing LP, dynamic programming (DP), and, most efficiently, network analy-
sis (Smith and Harrell 1961, Pnevmaticos and Mann 1972, Lawrence 1986,
Sessions et al. 1989, Wang et al. 2004). Wang et al. (2009) developed an opti-
mal tree-stem bucking system for Central Appalachian hardwood species
using three-dimensional modeling techniques. ActiveX Data Objects were
implemented via MS Visual C++/OpenGL to manipulate tree data that were

64 Computing Applications in Forestry and Natural Resource Management

supported by a back end relational data model with five data entity types
for tree stems, grades and prices, logs, defects, and stem shapes. A network
analysis algorithm was employed to achieve the optimal bucking solution
with four alternative stage intervals in the optimization process.

4.2.3 � Multi-Objective Programming

Forest and natural resource management problems, especially timber har-
vest planning, biomass harvest, and logistics modeling, are usually charac-
terized by the need to consider multiple incommensurable objectives over a
long time period (Gong 1992). Forests can be managed for multiple uses such
as timber, wildlife and habitat, biomass, recreation, and scenic value. Some of
these uses might be in conflict, and there is no common measure that can be
used to satisfactorily evaluate all of them. A multi-objective or multi-criteria
optimization model can be constructed to solve the multiple-use problem.
Many multi-objective optimization techniques have been introduced and
applied in forest resource management (Dykstra 1984).

Goal programming is the most widely used technique for general multi-
objective programming and has been most extensively applied to natural
resource management problems (Charnes and Cooper 1961). Goal program-
ming minimizes deviations from multiple goals, or objectives, subject to
goal constraints and other physical constraints (Dykstra 1984). In contrast
to physical constraints, the goal constraints are satisfied as closely as pos-
sible but need not all be met completely. Typical applications of goal pro-
gramming in natural resource management include timber production, the
management of small woodlands, land use planning, and the evaluation of
trade-offs between timber management, outdoor recreation, grazing, and
production of game animals for hunting (Field 1973, Bell 1976, Rustagi 1976,
Schuler et al. 1977).

4.2.4 � Integer Programming

An integer programming model is the same as an LP model except that some
or all of the variables take on integer values (Winston 2004). For example,
in a biomass harvest and logistics scheduling project, we use integers for
the number of biomass supply locations and the number of biomass refin-
ery facilities. If only some of the variables are constrained to take on inte-
ger values, then the model is called mixed integer LP. Integer programming
problems are significantly more difficult computationally than the equiva-
lent LP problems. A few studies that have utilized integer programming
in natural resource management include timber harvest scheduling, forest
road engineering, design of forest cutting units, and locations of forest prod-
ucts’ manufacturing plants (Bare and Norman 1969, Kirby 1973, Bonita 1977,
Dykstra and Riggs 1977). Wu et al. (2011) developed a mixed integer pro-
gramming model to estimate the delivery cost of woody biomass. The model

65Statistical Analysis and Mathematical Programming Using Excel

was designed to optimize a woody biomass-based biofuel facility’s location
with the objective of minimizing the total annual delivery cost of woody bio-
mass under resource and operational constraints.

4.2.5 � Dynamic Programming

As you can imagine, quite a few decision problems in forest and natural
resource management involve making a sequence of interrelated decisions
in such a way that overall effectiveness is maximized (Dykstra 1984). DP is
a technique for solving such problems and achieving solutions by working
backward from the end of a problem to the beginning, thus breaking up a
large problem into a series of smaller problems (Winston 2004). It provides a
systematic procedure for determining the optimal combination of decisions.
A dynamic problem can be divided into stages with a decision required at
each stage (Figure 4.8). Associated with each stage is a number of states. The
effect of the decision at each stage is to transform the state at that stage into a
state associated with the subsequent stage.

For example, in Figure 4.8, there are four stages (numbered across the
x-axis), state nodes are numbered within the blue squares, and alternative
states are denoted by arcs (arrows) and include numeric weights. Therefore,
at stage 0, we have state node 0 and three possible states (arcs) for piping
alternatives: from node 0 to either node 1, node 2, or node 3 depending on
the weight of each arc. The weight of an arc (in this case, from nodes 0 to 1
the weight would be 4) could represent the length of pipe between these two
nodes. The states and weights of these arcs are deterministic, and this DP is
called deterministic DP. If the states and weights of arcs are random in the DP

Stage 0 1

1

4

0
3

6 14

3 5
4

6

5 5 7

7

3

4

6
12

8 8

2

45

2 3

FIGURE 4.8
A graphical illustration of DP: a piping problem’s stages, state nodes (blue squares), and weights
of arcs (arrows).

66 Computing Applications in Forestry and Natural Resource Management

process, it is called probabilistic dynamic programming (Winston 2004). In
this section, we will primarily focus on deterministic dynamic programming.

Many forest and natural resource management problems are time-oriented,
such as forest stand growth and dynamics, water quantity and quality,
insect or wildlife populations, and temporal scheduling of forest and bio-
mass harvest. Decisions, therefore, must be implemented sequentially over
time (Dykstra 1984). DP has been applied in natural resource management
and related fields, including timber management, tree-stem bucking, log
or lumber sawing optimization, pest management, biomass transportation
scheduling, shale gas pipe route layout, and forest fire detection. DP is one
of the most widely used stand-level optimization techniques. From the 1970s
through the 1990s, significant advances occurred in the application of DP in
forest and natural resource management.

The basis of DP is a divide-and-conquer process (Figure 4.9). It is an exhaus-
tive search method, including three basic steps: (1) partition the problem into
smaller (independent) subproblems, (2) solve the subproblems recursively
(repeats Step 1), and (3) combine the subproblems’ solutions to solve the
original problem. We use DP when the subproblems are not unique (sub-
problems share subproblems), if we use the straight divide-and-conquer
approach, you would repeatedly solve the same problems. Through using
recursive functions, you solve a subproblem once and store the solution in a
table (data structure) to reference when needed.

Here is an example of DP formulation. Suppose the potential cutting
points along a tree stem from butt to top are denoted by Xi (i = 1, 2, …, n),
the interval (or stage interval) between two potential cutting points is iden-
tified as Yk (k = 1, 2, …, K), and the weight on the arc (Wij) is denoted by
the value of log, then the directed graph (S) for tree-stem bucking can be

Problem—original problem

Subproblems—level 1

Subproblems—level . . .

Subproblems—level 2

FIGURE 4.9
Recursive tree and bottom-up solution.

67Statistical Analysis and Mathematical Programming Using Excel

expressed by the point set (X1, X2, …, Xn) ∈ X, the arc set (Y1, Y2, …, YK) ∈ Y,
and the weight set Wij ∈ W, i.e. S = {X, Y, W} (Figure 4.10). Here, n refers to
the maximum number of potential cutting points, and K to the total number
of potential arcs.

Paths from X1 to Xn depended on the interval between two cutting points
and log length. The interval between the two closest potential cutting
points is called “stage interval.” The stage interval is a very important factor
in the model. If the stage interval is longer, the solution time will be less and
it may not meet the requirements of accuracy, and vice versa. If the incre-
ments for scaling length are 0.2, 0.5, and 1.0 m in the log product standard,
the stage interval is determined based on these values.

The Dijkstra algorithm, known as the labeling algorithm, has been shown
to be among the fastest algorithms available for solving minimum path prob-
lems and is particularly well suited to being programmed on a computer
(Dykstra 1984). The principle of the Dijkstra algorithm for the shortest path
problem was adopted to find the longest path in the directed graph of tree-
stem bucking. The objective of this model is to find the longest path from butt
to top of the tree.

In the node set X of S = {X, Y, W}, suppose Z is a subset of X, and Z0, Z1, Zu,
Zv ∈ Z. If {Z0, Zv} is in the longest path of Z0–Zv, then {Z0, Zu} is also the longest
path of Z0–Zu. Since all the arcs in the directed graph of tree-stem bucking
(S = {X, Y, W}) are forward and Wij ≥ 0, the values on the arcs from butt (X1)
to top (Xn) can be expressed as follows:

	

L X X L X X W n n

L X X L X X

n n

n n

1 1 1

1 1 1 2

1, , ,

, ,

() = () + -()éë ùû

() = (
-

- -

max

max)) + - -()éë ùû
¼

() = () + ()éë ùû

W n n

L X X L X X W

1 2

1 21 2 1 1

,

, , ,max

Based on the above principle, in order to search for the longest path from the
origin X1 to the destination Xn, the farthest point around the X1 should be
found first. Then the searching radius around X1 is increased gradually until
the longest path from X1 to Xn is found.

X1 X2 X3

W(i,j)

. . . Xn–1
Yk XnY1

Y2

FIGURE 4.10
Directed graph of tree-stem bucking model.

68 Computing Applications in Forestry and Natural Resource Management

4.3 � Linear Programming Formulation

It is important to define a real problem in detail before formulating the linear
model. First, observe the situation carefully and pinpoint the optimization
problem that you need to solve. Remember to try to find the most important
parts of the problem, remain open-minded about the problem, and be spe-
cific when thinking about the problem (Dykstra 1984). Once you understand
the whole problem and what you are trying to solve, you may follow the
steps below to formulate your model (Dykstra 1984):

	 1.	 Identify the activity set and define a set of decision variables
	 2.	Define the objective function using the decision variables
	 3.	Allocate the resources that will be needed in conducting the activity

and the restrictions associated with any potential solutions

After you’ve followed the procedures of LP formulation, you may begin
LP. Let’s start with a simple example. A forest landowner owns 36.42 ha
(90 acres) of lands: 16.19 ha (40 acres) of red pine and 20.23 ha (50 acres)
of northern hardwoods. The estimates of the yearly revenues generated
by each type of forest are $200/ha/year ($80/acre/year) for red pine and
$275/ha/year ($110/acre/year) for northern hardwoods. The landowner
doesn’t want to spend more than 180 days per year managing the forest-
lands. Red pine takes 5 days/ha/year (2 days/acre/year) of labor, while
northern hardwoods require 7.5 days/ha/year (3 days/acre/year). Provide
the landowner an optimal plan of how many acres (1 acre = 0.4 ha) of each
type of forest should be managed per year in order to maximize the total
revenues.

To solve this problem, you have to define decision variables, find your
objective, and construct model constraints. First, let X1 be the number of acres
(1 acre = 0.4 ha) of red pine to manage, X2 be the number of acres (1 acre =
0.4 ha) of northern hardwoods to manage, and Z be the total revenue.

The objective function expresses the relationship between Z (the total rev-
enue) and the decision variables X1 and X2. To formulate the objective func-
tion, you need the revenue information for each type of forest: $200/ha/year
($80/acre/year) for red pine and $275/ha/year ($110/acre/year) for north-
ern hardwoods. Also, you may note that this is a maximization problem.
Now, we can construct the objective function as:

 Max Z = 80 X1 + 110 X2

To achieve the solution, we also need to determine what constraints limit
the decisions. In this example, we have three types of constraints: land con-
straints, working hours or time constraints, and nonnegative constraints.

69Statistical Analysis and Mathematical Programming Using Excel

	 1.	Land constraints: The area managed in each type of forest cannot
exceed the area available. Therefore

 X1 ≤ 40 acres (1 acre = 0.4 ha) of red pine
 X2 ≤ 50 acres (1 acre = 0.4 ha) of northern hardwoods

	 2.	Working hour constraints: The landowner only has 180 days available
to land management. The forests require 5 days/ha/year (2 days/
acre/year) of labor (red pine) and 7.5 days/ha/year (3 days/acre/
year) (northern hardwoods), respectively. So, the time constraints
can be expressed as:

 2 X1 + 3 X2 ≤ 180

	 3.	Nonnegative constraints: The last constraints that need to be consid-
ered are nonnegative constraints. Since the decision variables X1 and
X2 refer to areas, none of them may be negative. Therefore

 X1 ≥ 0
 X2 ≥ 0

In summary, we can formulate this forest management problem as the fol-
lowing LP model:

 Max Z = 80 X1 + 110 X2

Subject to:

 X1 ≤ 40
 X2 ≤ 50
 2 X1 + 3 X2 ≤ 180
 X1 ≥ 0
 X2 ≥ 0

4.4 � Solve Mathematical Models in Forest
Management Using Excel Solver

4.4.1 � Example of Optimization Problem

In the previous section, we learned how to formulate a linear model. In this
section, we will use Microsoft Excel to solve LP problems. Let’s try another
example. WVUTIMBER produces both sawlogs and pulpwood from its for-
est. It takes 242.81 ha (600 acres) of forest to produce 100 truckloads of sawlogs

70 Computing Applications in Forestry and Natural Resource Management

and 161.87 ha (400 acres) to produce 100 trucks of pulpwood. Let’s assume 100
truckloads is one standard delivery. The company has 971.25 ha (2400 acres)
of forest lands. Also, harvesting the products for sawlogs takes 100 labor
hours, while harvesting for pulpwood requires 200 labor hours per standard
delivery. The total amount of labor hours with the company is 600 for a given
harvesting season. Assume that the demand for pulpwood at the processing
plant is not 100 truckloads more than that of sawlogs. Also, the maximum
demand for pulpwood is 200 truckloads per season. Let’s say that profit from
one standard delivery (100 truckloads) of sawlogs is $50,000 and that from the
same of pulpwood is $40,000. WVUTIMBER wants to determine the highest
profit combination of sawlogs and pulpwood to harvest from its forest. This
problem can be formulated as LP. Let’s define the decision variables first.

 X1 = # of 100 Truckloads of sawlogs per season
 X2 = # of 100 Truckloads of pulpwood per season

The objective is to maximize the profit (Z) of this timber sale including pulp-
wood and sawlogs.

 Maximize Z = 50,000X1 + 40,000X2

Next, we need to define our constraints.

Acres:
Total available acres (1 acre = 0.4 ha) = 2400
100 truckloads of sawlogs require 242.81 ha (600 acres).
100 truckloads of pulpwood require 161.87 ha (400 acres).

Hence, 600X1 + 400X2 ≤ 2400 (we can cut all the forest lands or leave
portions uncut if harvesting is not profitable at the present time). We cannot,
however, cut more than what we have.

Labor hours:
Total available labor hours: 600
Labor requirement per 100 sawlog truckloads = 100
Labor requirement per 100 pulpwood truckloads = 200
Therefore

 100X1 + 200X2 ≤ 600

Market restriction:
Truckloads of pulpwood shouldn’t exceed truckloads of sawlogs by

more than 1 standard delivery (100 truckloads). Therefore

 X2 − X1 ≤ 1

71Statistical Analysis and Mathematical Programming Using Excel

Demand restriction:
Maximum demand for pulpwood is 200 truckloads (2 standard

deliveries).

 X2 ≤ 2

As in any LP, the variables in this example cannot be negative, so X1, X2 ≥ 0.
This problem can be written in the following format:

 Ma�x: Z = 50000X1 + 40000X2 …………………�(OBJECTIVE FUNCTION)
 600X1 + 400X2 ≤ 2400……………………………………………………�(CONSTRAINT 1)
 100X1 + 200X2 ≤ 600………………………………………………………�(CONSTRAINT 2)
 X2-X1 ≤ 1…………………………………………………………………………………�(CONSTRAINT 3)
 X2 ≤ 2 …………………………………………………………………………………………�(CONSTRAINT 4)
 X1 ≥ 0……………………………………………………………�(NONNEGATIVE CONSTRAINT)
 X2 ≥ 0 …………………………………………………………� (NONNEGATIVE CONSTRAINT)

This model can be solved in Excel using Solver. The layout and data input of
the model are detailed in Figure 4.11.

In MS Excel, nonnegative constraints may be specified either in the for-
mat of other constraints in Figure 4.11 or by using the Solver’s nonnegative
option. Note that we entered numbers or values for our problem in the cells

FIGURE 4.11
Input of timber harvesting LP optimization model in MS Excel.

72 Computing Applications in Forestry and Natural Resource Management

surrounded by solid line boxes. Cells that are not bordered contain formu-
las. The logical comparison signs (<=) in column F are included only to
improve the figure’s readability. Often, objective functions can be denoted
by the symbol “Z.” Once the problem is solved, the cells will be popu-
lated with values by Solver. The Excel formulas for Column E are listed in
Table 4.3.

In Excel, the SUMPRODUCT function multiplies components in the given
arrays and returns the sum of these products. Its syntax is:

 =SUMPRODUCT(array1, array2, array3, …)

Array1, array2, array3, … are 2–255 arrays whose components you want
to multiply and then add. The array arguments must have the same dimen-
sions. If they do not, SUMPRODUCT returns the #VALUE! error. The
SUMPRODUCT function treats array entries that are not numeric as if they
were zeros. For example,

Array1 Array2

Row A B Row D E
2 2 5 2 3 8
3 3 6 3 5 9
4 4 7 4 7 10

the function

 =SUMPRODUCT(A2:B4, D2:E4)

will return the products of 2 * 3 + 5 * 8 + 3 * 5 + 6 * 9 + 4 * 7 + 7 * 10 = 213.
In our example, =SUMPRODUCT(C9:D9,C2:D2) (from the Objective

Function row in Table 4.3) returns the products of 50000*X1+40000*X2,
which is the objective function of our optimization problem.

TABLE 4.3

Formulas for Cells for Problem Shown in Figure 4.11

Description CELL Name FORUMLA

Objective function E2 =SUMPRODUCT(C9:D9,C2:D2)

Constraint 1 E4 =SUMPRODUCT(C9:D9,C4:D4)

Constraint 2 E5 =SUMPRODUCT(C9:D9,C5:D5)

Constraint 3 E6 =SUMPRODUCT(C9:D9,C6:D6)

Constraint 4 E7 =SUMPRODUCT(C9:D9,C7:D7)

Solution E9 =E2

73Statistical Analysis and Mathematical Programming Using Excel

4.4.2 � Activate Excel Solver

To use Excel Solver, we first need to activate it. Here are the procedures:

•	 Click File on the Excel menu and then click Options.
•	 In the Excel Options dialogue box that opens, click the Add-Ins cat-

egory on the left.
•	 Select Excel Add-ins in the Manage dropdown box at the bottom, then

click Go.
•	 A new Add-Ins window will open at this time. Check Solver Add-in

and click OK.

Now, Solver is ready to use in Excel. To view this add-in, click the Data
tab on Excel’s menu ribbon. The Solver add-in should be at the right of the
tool bar.

4.4.3 � Use Excel Solver

Once the data are entered into an Excel worksheet (as in Figure 4.11)
with the formulas described in Table 4.3 also included, we can click
Solver on the Data tab in the Excel main menu ribbon. This will open a
Solver Parameters window where we will need to specify the parameters
(Figure 4.12).

First we Set Objective in the cell where the objective function resides. We
specify that as cell E2. Notice that we use the absolute reference of cell E2
with dollar signs preceding both column E and row 2. Our objective function
is to maximize the profit, thus we will click the Max radio button.

The problem should be solved by changing the values of X1 and X2 in four
of our constraints. Therefore, we specify C9:D9 as the coefficients of con-
straints in By Changing Variable Cells. Next we need to specify our constraints.
These constraints can be added by clicking the Add button. You can also edit
your existing constraints by clicking Change or Delete.

Cell references are the cells where we used our formula for each of the
constraints, and the default equality is <= which can be changed. Constraint
cells are the right-hand side values in constraint equations (Figure 4.13). In
this figure, we added four constraints all together in one statement. You may
add them one by one.

While the Solver is typically for linear models, it can also handle non-
linear models. Regarding a model’s linearity and non-negativity, we check
Make Unconstrained Variables Non-Negative to force the solver to imple-
ment non-negativity constraints (Figure 4.12). If a model is nonlinear, this
should be specified by clicking the Options button in the Solver window.
We will not further discuss nonlinear optimization since no examples were
formulated.

74 Computing Applications in Forestry and Natural Resource Management

To run the Solver, click the Solve button. If the Solver finds a solution, a Solver
Results window with the appropriate message for results will appear (Figure 4.14).

We can select Answer, Sensitivity, and/or Limits to further analyze the prob-
lem. A simple solution can be viewed by checking Keep Solver Solution and
clicking OK. Values of X1 and X2 will populate cells C9 and D9 of the prob-
lem’s spreadsheet as shown in Figure 4.15.

FIGURE 4.13
Adding constraints in Solver.

FIGURE 4.12
Solver Parameter specification window.

75Statistical Analysis and Mathematical Programming Using Excel

FIGURE 4.14
Solver Results window.

FIGURE 4.15
Solver solution of the timber harvesting optimization problem.

76 Computing Applications in Forestry and Natural Resource Management

The Solver provides the solution in Solution (row 9) on the Excel worksheet
(Figure 4.14) and it assigned X1 as 3.00, X2 as 1.50, and Z value as 210,000.
This means that under the given constraints, if we make 3 standard deliver-
ies (300 truckloads) of sawlogs and 1.5 standard deliveries (150 truckloads)
of pulpwood, we are able to make $210,000 in profit, which is the maximum
that can be achieved. If you desire, you can perform sensitivity analysis for
further insights into the problem.

Class Exercises

	 1.	 Analysis of DBH and Merchantable Height of Trees with Excel
Regression and Chart Tools: Table 4.4 is a small portion of a typical
forest cruising data set and presents the relationship between DBH in
inches (1 in. = 2.54 cm) and merchantable height (MHT) (in the number
of 4.88 m (16 ft) logs) for 31 trees.

Create an Excel workbook (save it as DBH_MHT.xls) that includes a
worksheet that contains the data in Table 4.4.

Once you have created this workbook, you need to accomplish the
following things:

	 a.	 Draw an X–Y Scatter Chart to check the relationship between these
two variables visually.

	 b.	 Use the Correlation Analysis tool to verify if your visual assess-
ment of the relationship between the DBH and the MHT is
correct.

	 c.	 Use the Regression Tool to obtain a mathematical model of MHT =
a + b * DBH. List the parameters in the model. Evaluate the fitness
of the model based on: R-square, MS or root MSE, F-value, and
p-value, and explain how well the model fits.

	 d.	 Create a Line Chart of the predicted MHT vs. DBH.
	 2.	 Forest Harvest and Management Planning Optimization: Consider the

forest in Figure 4.16. Individual stands are identified (1–8) in the circles,
and the area (in acres, 1 acre = 0.4 ha) of each stand is also indicated. For
example, 33.26 ha (82.18 acres) is the size of stand number 1. Our objec-
tive is to harvest the maximum possible area without cutting adjoin-
ing stands. This is called a common adjacency constraint and is often
required to reduce a harvest’s impact on soil, water, and forest aesthet-
ics. Formulate a linear program for this problem and solve it using the
Excel Solver. Use the approach we followed in our earlier example that
had 3 stands instead of 8.

77Statistical Analysis and Mathematical Programming Using Excel

Hint: If I only had Stands 1, 2, and 3 instead of 8 stands, my objective
function would be:

 Max Z = 82.18X1 + 81.75X2 + 58.80X3

This is an integer programming problem. The decision variables
(X1, X2, and X3) are binary variables (with values of 0 or 1). Therefore,
X1 takes a value of 1 if Stand 1 is harvested and 0 otherwise. There are
several ways we can formulate constraints to solve this 3-stand problem.

TABLE 4.4

MHT vs. DBH

DBH (in.) Observed MHT (16 ft Logs)

7 0
8 0

10 0.5
11 0.5
12 0.5
12 1
12 1.5
12 1
12 1.5
13 2
14 1.5
14 2
15 2
15 1
16 1.5
17 2
17 2
18 1.5
18 2
19 2
19 2.5
22 2.5
22 2.5
22 2.5
23 2.5
23 2
23 2
26 3
27 3
28 3.5
30 4

78 Computing Applications in Forestry and Natural Resource Management

One simple way to formulate these spatial or adjacency constraints is
with the following approach:
Harvest stand 1 if stand 2 is not harvested and vice versa.
Harvest stand 2 if stand 3 is not harvested and vice versa.

Subject to:

 X1 + X2 <= 1;
 X2 + X3 <= 1,

where X1 and X2 are binary variables (they can take a value of 0 or 1).
These binary variables can be specified by bounding the values

within 0 and 1 and specifying the variable as integer type or simply by
specifying binary type while assigning constraints.

82.182 1

81.75

83.34

2

6

61.517

3
58.803

68.685

83.403

61.622

7

8

4

5

FIGURE 4.16
Forest stand with area in acres.

79Statistical Analysis and Mathematical Programming Using Excel

This problem can be specified in Excel with constraints as shown in
Figure 4.17. The same figure shows that the model, once solved, will
tell us that harvesting stands 1 and 3 (depicted by the value 1 for X1
and X3, and 0 for X2) will yield approximately 56.66 ha (140 acres) of
harvested stands.

	 3.	 Using Excel Solver to Solve a Linear Model of Forest Management
The XYZ Sawmill Company’s CEO asks to see next month’s log-haul-
ing schedule for his four sawmills. He wants to make sure he keeps a
steady, adequate flow of logs to his sawmills to capitalize on the good
lumber market. Minimizing the cost of transportation is something that
is also important to him.

FIGURE 4.17
Problem, formula, and solution for harvesting 3 stands (a problem related to this exercise).

80 Computing Applications in Forestry and Natural Resource Management

The harvesting group plans to haul from three logging sites. The
average haul cost is $2 per mile (1 mile = 1.61 km) for both loaded and
empty trucks. The logging supervisor estimated the maximum num-
ber of truckloads of logs coming off each harvest site daily (max. truck
loads/day). The number of truckloads varies because terrain and cut-
ting patterns are unique for each site. Finally, the sawmill managers
have estimated the truckloads of logs their mills need each day (mill
demand). All these estimates are listed in Table 4.5. Define an LP model
and solve it using the Excel Solver.

Hint: Decision variables: Let Xij be the haul cost from logging
site i to mill j, where Logging Site i = 1, 2, 3 and Mill j = Mill A,
Mill B, Mill C, Mill D. Therefore, you need to define 3 × 4 decision
variables.

Objective: Minimize the haul costs from each site to each mill.
Constraints:

	 1.	 Loads to each mill (4 constraints)
	 2.	 Total truckloads from each logging site (3 constraints)
	 3.	 Nonnegative constraints for all the 3 * 4 variables

Additional data manipulations:
	 1.	 Suppose Logging Site 3 hired an extra driver and is now able to

produce a maximum of 27 truckloads per day. How would the
optimal hauling cost change? How would the logging sched-
ule change? (Except for the change in maximum truckloads,
assume all other factors remain the same.)

	 2.	 Suppose a bridge closed between Logging Site 2 and Mill A, so
the truck has to take a detour. The overall cost of hauling from
Logging Site 2 to Mill A therefore increased from $15 to $20.
How would the optimal hauling cost change? How would the
logging schedule change?

TABLE 4.5

Round Trip Cost of Hauling One Truck Loada

Logging Site

Round Trip Cost (in $)
Max. Truck
Loads/DayMill A Mill B Mill C Mill D

1 19 7 3 21 10
2 15 21 18 6 30
3 11 14 15 22 20
Mill demand 15 10 20 15

a	 Includes the number of trucks each mill demands per day as well
as the maximum number of truck loads available from each site
per day.

81Statistical Analysis and Mathematical Programming Using Excel

References

Bare, B.B. and E.L. Norman. 1969. An evaluation of integer programming in forest
production scheduling problems. Agricultural Experiment Station, Purdue
University, Lafayette, IN. Research Bulletin No. 847.

Bell, E.F. 1976. Goal programming for land use planning. Pacific Northwest Forest
and Range Experiment Station, USDA Forest Service, Portland, OR. General
Technical Report PNW-53.

Bobrowski, P.M. 1994. The effects of modeling on log bucking solution techniques.
Journal of the Operational Research Society 45(6): 624–634.

Bonita, M.L. 1977. Location of forest industries in the Philippines. In FAO/Norway
Seminar on Storage, Transport and Shipping of Wood. Food and Agriculture
Organization of the United Nations, Rome, Italy. Publication No. FOI:TF-
RAS38(NOR), pp. 45–61.

Chambers, J., W. Cleveland, B. Kleiner, and P. Tukey. 1983. Graphical Methods for Data
Analysis. Wadsworth, Boston, MA.

Charnes, A. and W. Cooper. 1961. A Survey of Goal Programming. Wiley, New York.
Dykstra, D.P. 1984. Mathematical Programming for Natural Resource Management.

McGraw-Hill, New York, 318pp.
Dykstra, D.P. and J.L. Riggs. 1977. An application of facilities location theory to the

design of forest harvesting areas. AIIE Transactions 9: 271–277.
Field, D.B. 1973. Goal programming for forest management. Forest Science 19: 125–135.
Gong, P. 1992. Multiobjective dynamic programming for forest resource manage-

ment. Forest Ecology and Management 48: 43–54.
Kirby, M. 1973. An example of optimal planning for forest roads and projects.

In Planning and Decision-Making as Applied to Forest Harvesting. J.E. O’Leary
(ed.). Forest Research Laboratory, Oregon State University, Corvallis, OR,
pp. 75–83.

Lawrence, M. 1986. Optimal bucking: A review of the literature. Forest Research
Institute, Rotoura, New Zealand. IEA/Bioenergy Project CPC-9, Report No. 1.

Microsoft Office Online. 2016. Use the Analysis ToolPak to perform complete data
analysis. http://office.microsoft.com/en-us/excel-help/use-the-analysis-tool-
pak-to-perform-complex-data-analysis-HA102748996.aspx#_Toc340479281.
Accessed on January 25, 2016.

Pnevmaticos, S.M. and S.H. Mann. 1972. Dynamic programming in tree bucking.
Forest Products Journal 22(2): 26–30.

Rustagi, K.P. 1976. Forest management planning for timber production: A goal pro-
gramming approach. School of Forestry and Environmental Studies, Yale
University, New Haven, CT. Bulletin 89.

Schuler, A.T., H.H. Webster, and J.C. Meadows. 1977. Goal programming in forest
management. Journal of Forestry 75: 320–324.

Sessions, J., J. Garland, and E. Olsen. 1989. Testing computer-aided bucking at the
stump. Journal of Forestry, 87(4): 43–45.

Smith, G.W. and G. Harrell. 1961. Linear programming in log production. Forest
Products Journal 11(1): 8–11.

Wang, J., C. LeDoux, and J. McNeel. 2004. Optimal tree-stem bucking of northeastern
species of China. Forest Products Journal 54(2): 45–52.

http://office.microsoft.com
http://office.microsoft.com

82 Computing Applications in Forestry and Natural Resource Management

Wang, J., J. Liu, and C. LeDoux. 2009. A 3D bucking system for optimal bucking of
central Appalachian Hardwoods. International Journal of Forest Engineering 20(2):
26–35.

Winston, W.L. 2004. Operations Research—Applications and Algorithm (4th Edition).
Brooks/Cole Cengage Learning, Belmont, CA, 1418pp.

Wu, J., J. Wang, and J. McNeel. 2011. Economic modeling of woody biomass utili-
zation for bioenergy and its application in central Appalachia, USA. Canadian
Journal of Forest Research 41: 1–15.

83

Visual Basic for Applications
in Microsoft Excel

5.1 � Introduction to VBA

Visual Basic for Applications (VBA) is the programming language for
Microsoft Office and its associated applications, such as Excel, Word, and
Access (Microsoft 2016). There are many advantages to using VBA, includ-
ing building user-defined functions and automating repetitive processes.
VBA uses the Visual Basic Runtime Library, but it normally runs code
within a host application such as Excel rather than as a stand-alone program
(Microsoft 2016). To implement functions beyond a regular Excel spread-
sheet, a Visual Basic programming environment is installed with Microsoft
Excel. In this chapter, we will learn how to use Visual Basic Programming in
Microsoft Excel.

5.1.1 � Visual Basic Editor in Excel

For the latest version of Excel, we open an Excel workbook and then click
Developer on the main menu ribbon. If the Developer tab is not visible on the
ribbon, you can add it through the following steps: click the File menu, choose
Option, and then in the Excel Options dialog box, choose the Customize Ribbon
button. Under the main tabs list, check Developer. This should place the tab
onto your Excel main menu ribbon. Click Developer, then click on the Macro
Security button, and check the second-level Disable all Macros with Notification
and click OK. Now from the main menu, click Developer → Visual Basic and a
Visual Basic Editor (VBE) will appear (Figure 5.1).

Within the VBE, there is a Project Explorer window and a Properties win-
dow (Figure 5.1). The Project window shows all the workbooks that are
open (Book1) and their objects (Sheet1, … , and ThisWorkbook) (Figure 5.1).
The Properties window shows the properties of the selected object in the
Project window. For example, Figure 5.1 shows the properties of Sheet1 in
the Properties window.

5

84 Computing Applications in Forestry and Natural Resource Management

You can go to the VBE menu bar and click View and then Project Explorer
or Properties window to show or hide these two windows. To show the code
window, you just have to double-click on the name of an Excel object in the
Project window (Sheet1 or ThisWorkbook in this case) and its code window will
appear.

5.1.2 � Writing Code in VB Editor

Let’s use a simple example to illustrate coding with VBA. Suppose that we
want to get the sum of timber sales automatically. Instead of just using the
SUM function we learned in Excel, we can automate this calculation or an
even more complex computing problem by using VBA functions or proce-
dures. We can begin with a blank Excel spreadsheet.

	 a.	From the Excel menu, click Developer → Visual Basic, and a VBE will
open.

	 b.	 In the VBE, double-click on Sheet1 in the Project window. A code win-
dow of Sheet1 appears.

	 c.	Type the following code in the code window:

 Sub TimberSaleSum()
 Range("C3").Value = 5000

FIGURE 5.1
Visual Basic Editor in Excel.

85Visual Basic for Applications in Microsoft Excel

 Range("C4").Value = 12000
 Range(“C5”).Value = 7500
 Range("C8").Formula = "=C3+C4+C5"
 Range("A1").Select
 End Sub

	 d.	Go to the menu bar at the top of the VBE, click the Run tab, and then
select RunSub/UserForm. A Macros window will open, in which you
should select Sheet1.TimberSaleSum, and then click Run to run the
program. Now, go back to your Excel worksheet to view the results
(Figure 5.2).

	 e.	Values have been filled into cells C3, C4, C5, and C8. Now Sheet1 is
a worksheet with automating functionality. You can change the val-
ues in cells C3, C4, and C5, and the sum of them will be computed
automatically.

5.1.3 � Running Events within Excel

There are several ways to run events within Excel, including using
menu, keyboard, and command buttons/text boxes (Excel Macros &
Programming 2010). Approximately 90% of macros are run by clicking
on a button. The button can be on the worksheet or on a user form that
is developed. Events can also be opening a workbook, selecting a sheet,
changing the value of a cell, etc. To create a button using a text box as an

FIGURE 5.2
Running results of the VBA example.

86 Computing Applications in Forestry and Natural Resource Management

event trigger for our example (Figures 5.1 and 5.2), we return to Sheet1
and then follow the steps below:

	 a.	From the Excel menu, click Insert, and then in the Text section click
Text Box.

	 b.	Move the cursor to a desired cell location on Sheet1, then left click
and hold to drag the cursor, and stretch the text box to the desired
size. Type “Refresh” into the text box to name the button and fill in a
color of your preference (Figure 5.3).

	 c.	Right click the text box, select Assign Macro from the drop-down
menu, then select the macro Sheet1.TimberSaleSum from the Assign
Macro list box, and click OK.

	 d.	Now, you can click this Refresh button (text box) to reset the cell val-
ues to default.

FIGURE 5.3
Create a Refresh button using a text box to trigger a VBA event.

87Visual Basic for Applications in Microsoft Excel

5.2 � VBA Fundamentals

5.2.1 � Variables and Data Types

Like Visual Basic or any other programming language, VBA uses variables
to store temporary information that is used for execution within a proce-
dure, module, or workbook. We typically follow the general conventions
to name variables, such as start with a letter, don’t use Excel keywords,
and stay below 250 characters. When you declare a variable, you tell the
computer to reserve space in memory for later use. As we will explain in
Section 14.2, a declared variable can be any one of the following major data
types (Table 14.2):

•	 Boolean: A data type with only two possible values, True or False.
•	 Integer: A data type holding integer values stored as 4-byte whole

numbers.
•	 Single: A data type storing single-precision floating-point variables

as 4-byte floating-point numbers.
•	 Double: A data type that stores double-precision floating-point vari-

ables as 8-byte floating-point numbers.
•	 String: A data type consisting of a sequence of contiguous characters

that represent the characters themselves rather than their numeric
values. A string can be any combination of letters, numbers, spaces,
punctuation, or other symbols/characters.

•	 Object: A universal data type that holds addresses that refer to any
object. Object variables are stored as 4-byte.

To declare a variable, use a Dim (Dimension) statement followed by the vari-
able name and then “As” followed by the variable type. For example, here is
a declaration for a string variable:

 Dim strSpecies As String

5.2.2 � Modules

Modules refer to a related set or block of declarations and procedures.
A module is a separate object in VBA associated with a workbook. A standard
module can be added to a project via the Insert menu of the VBE. Standard
modules are contained within a separate folder in the Project Explorer and
contain variable declarations and procedures or functions. For more details,
please refer to Section 14.4.

88 Computing Applications in Forestry and Natural Resource Management

5.2.3 � Variable Scope

The variable scope is the life span when a variable is available to a pro-
gram. When a variable is in its scope, it can be accessed and/or manipu-
lated. Like in VB.NET, variables in VBA can also be declared at either the
procedural level, the module level, or the class level. As will be addressed
in Section 14.1, private and public keywords can be used to declare vari-
ables or procedures for their scopes (Table 14.1). Public can be used to
make module- or class-level variables available outside of the module and
class.

•	 Procedural-level variables are only private to procedures in which
they were declared.

•	 Module-level variables are private to the modules in which they
appear.

•	 Class-level variables are private to the class in which they appear.

5.3 � Harvesting Machine Rate Spreadsheet Program

5.3.1 � Machine Rate

A machine rate is a calculated hourly charge for owning and operating a
piece of capital equipment (USDA Forest Service 2006). The machine rate
method is commonly used in calculating hourly costs of machines in con-
struction, agriculture, and forestry. This classical approach in forestry was
first defined by Matthews (1942) and was then revised by Miyata (1980).
Costs are averaged over the ownership life of the asset to estimate a con-
stant hourly charge. The machine rate calculations are simple, easy to
understand, do not require detailed cost history, and are constant over the
life of the machine. They are particularly useful for generic comparisons
of equipment and operations. The major components of machine costs
are (a) ownership cost (fixed), (b) operating cost (variable), and (c) labor
cost.

	 a.	Ownership Cost = D + IIT
	 i.	 Depreciation (D)

Depreciation (D) is defined as a “decline in value of a
machine due to wear, obsolescence, and weathering” (Warren
1977) or “loss in value associated with the production of a
unit of output” (Stuart 1977). Three methods used to com-
pute depreciation are (1) straight line, (2) declining balance,
and (3) sum of year’s digits. We’ll use the straight line method

89Visual Basic for Applications in Microsoft Excel

(i.e., value of equipment depreciates at a constant rate) to cal-
culate depreciation using the formula:

	
D SMH

P S
N SMH

$/() = -
´

where
D—Depreciation
P—Initial investment cost of equipment
S—Salvage value (amount equipment can be sold for at dis-

posal time)
N—Economic life in years
SMH—Scheduled machine hours per year

	 ii.	 Interest, Insurance, and Taxes (IIT)

	
IIT SMH

P S N
N

S IIT

SMH
$/() =

-()´ +()
+

é

ë
ê

ù

û
ú´

1
2

%

	 b.	Variable cost ($/PMH) = M&R + F&L

	 i.	 Maintenance and Repair (M&R)

	
M R PMH

M R D
UT

&
% &

$/() ()´

where
PMH—Productive Machine Hours
%M & R—maintenance and repair, assumed value or from

records

UT—utilization rate, UT
PMH
SMH

= ´100%

	 ii.	 Fuel and Lubricant (F&L)

	 F L PMH& $/ Consumption rate price() = ´

	 c.	Labor cost ($/SMH) = Wage × (1.0 + fringe benefit rate)
	 d.	Total hourly cost ($/PMH) = Fixed cost + variable cost + labor cost

5.3.2 � Example of Machine Rate Program with VBA

Let’s develop an Excel spreadsheet program to automate hourly cost cal-
culations of harvesting machines using the machine rate method and VBA
(Figure 5.4). There are a few major steps we need to follow.

90 Computing Applications in Forestry and Natural Resource Management

5.3.2.1 � Design Interface

Open a new Excel workbook and a worksheet (e.g., Sheet1) where we’ll
create an interface as in Figure 5.4. To add the two command buttons (OK
and Reset), you need to click Developer in the Excel menu ribbon, then in the
Controls group click Insert, and from ActiveX Controls click the command but-
ton icon. Move the cursor to a desired cell location on Sheet1, then click and
hold the left button of the mouse, and stretch the command button to the
desired size.

Right click the command button, and select Properties from the drop-down
menu. You can change the name of the button to “cmdok” and the caption to
“OK.” Similarly, you can create another command button and then rename it
“cmdReset” and caption it “Reset.”

FIGURE 5.4
A spreadsheet program for harvesting cost calculation.

91Visual Basic for Applications in Microsoft Excel

5.3.2.2 � Write Code

Once you’ve finished the interface design, you can add code behind the com-
mand buttons. Right click the OK command button and select View Code
from the drop-down menu, or just double-click the button. The code window
appears with the following empty procedure:

 Private Sub cmdok_Click()
 	 ……

 End Sub

Similarly, when coding the Reset button, you will find this empty procedure:

 Private Sub cmdReset_Click()
 	 ……

 End Sub

Now we can use the calculation procedures for the machine rate discussed in
the previous section to complete the coding for these two procedures:

Private Sub cmdok_Click()
 Ra�nge("E11").Value = (Range("B3").Value - Range("B3").

Value * Range("B4").Value) / (Range("B5").Value *
Range("B9").Value * Range("F9").Value)

 Ra�nge("E12").Value = (((Range("B3").Value - Range("B3").
Value * Range("B4").Value) * (Range("B5").Value + 1) /
(2 * Range("B5").Value) + Range("B3").Value *
Range("B4").Value) * (Range("B6").Value + Range("B7").
Value + Range("B8").Value) / (Range("B9").Value *
Range("F9").Value))

 Ra�nge("E13").Value = Range("E11").Value + Range("E12").
Value

 Ra�nge("F11").Value = Range("E11").Value / Range("F8").
Value

 Ra�nge("F12").Value = Range("E12").Value / Range("F8").
Value

 Ra�nge("F13").Value = Range("F11").Value + Range("F12").
Value

 Ra�nge("F15").Value = Range("E11").Value * Range("F5").
Value / Range("F8").Value

 Ra�nge("F16").Value = Range("D3").Value * Range("F3").
Value + Range("D4").Value * Range("F4").Value

 Ra�nge("F17").Value = Range("F15").Value + Range("F16").
Value

92 Computing Applications in Forestry and Natural Resource Management

 Ra�nge("E15").Value = Range("F15").Value * Range("F8").
Value

 Ra�nge("E16").Value = Range("F16").Value * Range("F8").
Value

 Ra�nge("E17").Value = Range("E15").Value + Range("E16").
Value

 Range("E19").Value = Range("F6").Value
 Ra�nge("E20").Value = Range("F6").Value * Range("F7").

Value
 Ra�nge("E21").Value = Range("E19").Value + Range("E20").

Value
 Ra�nge("E22").Value = Range("E13").Value + Range("E17").

Value + Range("E21").Value

 Ra�nge("F19").Value = Range("E19").Value / Range("F8").

Value
 Ra�nge("F20").Value = Range("E20").Value / Range("F8").

Value
 Ra�nge("F21").Value = Range("F19").Value + Range("F20").

Value
 Ra�nge("F22").Value = Range("F13").Value + Range("F17").

Value + Range("F21").Value

End Sub

Private Sub cmdReset_Click()
 Range("B3").Value = 90000
 Range("B4").Value = 0.25
 Range("B5").Value = 4
 Range("B6").Value = 0.12
 Range("B7").Value = 0.05
 Range("B8").Value = 0.03
 Range("B9").Value = 50

 Range("D3").Value = 6.5
 Range("D4").Value = 4
 Range("F3").Value = 0.75
 Range("F4").Value = 1.16
 Range("F5").Value = 1
 Range("F6").Value = 6.5
 Range("F7").Value = 0.4
 Range("F8").Value = 0.65
 Range("F9").Value = 40

 Range("E11", "F13").Value = 0
 Range("E15", "F17").Value = 0
 Range("E19", "F22").Value = 0
End Sub

93Visual Basic for Applications in Microsoft Excel

After coding for the two buttons, we turn off the Design Mode under Developer
and save the program. Then we go back to the Excel worksheet, input or change
any parameters, and then click OK or Reset to run the program.

5.4 � VBA User Forms and Controls

Like forms in VB.NET, Excel UserForm is a programmable container for
ActiveX controls. It enables us to build customized windows to serve as
a user interface in any VBA applications (Birnbaum and Vine 2007). The
ActiveX controls on the form have properties, methods, and events to con-
trol the appearance and behavior of the interface window. In this section, we
will use another example to learn how to design a UserForm using ActiveX
controls in VBA to calculate timber sale statistics.

In this example, we start with VBE, then click Insert → UserForm. On this
form, we use controls from the VBE ToolBox, including RefEdit, List Box,
Label, and Text Box (Figure 5.5). When we run it (by clicking the Calculate

FIGURE 5.5
Design interface in VBA for timber sale summary.

94 Computing Applications in Forestry and Natural Resource Management

button), the program will compute and display the basic statistics of timber
sales described in Figure 5.3, including the number, total, maximum, mini-
mum, average, and standard deviation of these timber sales.

Table 5.1 summarizes the properties of the ActiveX controls used in this
VBA project. You should be able to set up different fonts, colors, and borders
to suit your personal preference.

The code for this project is contained entirely within its form module. All
program code is entered into several event procedures of the ActiveX con-
trols on the form. These procedures are as follows:

 Private Sub cmdCalSaleStats_Click()

 Const NUMFORMAT = "#.00"

 On Error GoTo ErrorHandler
 txtNumSale.Text = Application.WorksheetFunction.Count _
 (Range(refStats.Text))
 txtTotSale.Text = Application.WorksheetFunction.Sum _
 (Range(refStats.Text))
 txtMaxSale.Text = Application.WorksheetFunction.Max _
 (Range(refStats.Text))
 txtMinSale.Text = Application.WorksheetFunction.Min _
 (Range(refStats.Text))
 tx�tAvgSale.Text = F�ormat(Application.

WorksheetFunction.Average _
 (Range(refStats.Text)), NUMFORMAT)
 tx�tStdSale.Text = F�ormat(Application.

WorksheetFunction.StDevP _
 (Range(refStats.Text)), NUMFORMAT)

 Exit Sub

 ErrorHandler:
 Ms�gBox "An error was encountered while

calculating the statistics. " _

TABLE 5.1

Property Settings of VBA Controls

Control Property Setting

TextBox Name txtNumSale, txtTotSale, txtMaxSale,
txtMinSale, txtAvgSale, txtStdSale

Label BorderStyle fmBorderStyleSingle

Command Button Name cmdCalSaleStats, cmdClose
Command Button Caption "Calculate", "Close"
Command Button Enabled True for all the Command Buttons
RefEdit Name refStats

95Visual Basic for Applications in Microsoft Excel

 & vbCrLf & Err.Description & vbCrLf & _
 "C�heck for a valid range selection and

try again." & vbCrLf, _
 vbCritical, "Error " & Err.Number

 End Sub

 Private Sub cmdClose_Click()

 Unload UserForm_TSale
 End

 End Sub

Several event procedures are associated with any VBA controls. For exam-
ple, “Click()” is used for the command button cmdCalSaleStats, and the
command button cmdClose in this example. Some other event procedures
that could be used for UserForm, RefEdit, and ComboBox worksheets include
the “Initialize()” event for the UserForm object, the “Change()” event of the
ComboBox control and the List Box control, and the “DropButtonClick()”
and “Enter()” event procedures in this program to clear text from the
RefEdit control.

To run the project from the VBE menu, select the data range of timber sales
from Excel Sheet1 and then click the Calculate button. The program in running
mode will look like Figure 5.6. Click the Close button to end the program.

FIGURE 5.6
Interface at running mode of the VBA project for timber sale.

96 Computing Applications in Forestry and Natural Resource Management

Class Exercises

	 1.	 What is VBA? Why is it useful for field data manipulations in forest and
natural resource management?

	 2.	 Expand the timber sales in Figure 5.3 from 3 to 30, and implement a
VBA project for these sales following the procedures and forms used in
Section 5.4.

References

Birnbaum, D. and M. Vine. 2007. Microsoft VBA Programming (3rd Edition). Thomson
Course Technology, Boston, MA, 214pp.

Excel Macros & Programming. 2010. Excel Macros (VBA). http://www.excel-vba.
com/. Accessed on April 4, 2010.

Matthews, D.M. 1942. Cost Control in the Logging Industry. McGraw-Hill, New York,
374pp.

Microsoft. 2016. Introducing Visual Basic for applications. http://msdn.microsoft.
com/en-us/library/office/aa188202(v=office.10).aspx. Accessed on August 29,
2016.

Miyata, S. 1980. Determining fixed and operating costs of logging equipment. USDA
Forest Service General Technical Report NC-55, St. Paul, MN.

Stuart, B. 1977. An unpublished paper presented at the Virginia Polytechnical Institute’s
Cost Analysis and Evaluation Seminar, November 15–17, Blacksburg, VA, 1977.

USDA Forest Service. 2006. Machine costs—The cost of forest operations. http://
www.srs.fs.usda.gov/forestops/mach_costs.htm. Accessed on August 29, 2016.

Warren, J. 1977. Analyzing logging equipment costs, in logging cost and production
analysis. Timber Harvesting Report No. 4. Compiled by LSU/MSU Logging
and Forestry Operations Center, Bay St. Louis, MI, 108pp.

http://www.excel-vba.com
http://www.excel-vba.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://www.srs.fs.usda.gov
http://www.srs.fs.usda.gov

Section III

Database Management

http://taylorandfrancis.com

99

Database Concepts and the
Entity-Relationship Model

6.1 � Fundamental Database Concepts

6.1.1 � Database Management System

A Database Management System (DBMS) is a software program that pro-
vides efficient access to persistent data for concurrent uses, such as MS Access,
Oracle, Sybase, DB2, and others (Atkins 2001). The first DBMS appeared in
the late 1960s having evolved from file systems (Ullman and Widow 1997).
Basic functions of a modern DBMS typically include the following: create
and remove a database (DB), create and remove tables, populate tables in a
DB, modify and delete data in a DB, and query a DB.

Additional functions of a commercial DBMS could include the implemen-
tation of referential integrity constraints, semantic integrity constraints, busi-
ness rules, and indexing. Like MS Excel, a DBMS typically provides several
categories of built-in functions, such as statistical, mathematical, and finan-
cial functions.

The most commonly used DB model for DBMS is the relational model
(O’Neil and O’Neil 2001). A DBMS that utilizes the relational model is called
a relational database management system (RDBMS). A RDBMS contains not
only data, but also metadata, which is information about the structure of the
data (Ullman and Widow 1997). It also maintains indexes for the data, which
are the data structures that enhance quick and efficient searching.

6.1.2 � Database

A database is a collection of related data concerning a certain topic or busi-
ness application. For example, if we develop a DB containing timber cruising
data for a forest product company, two of the tables in the DB might have the
following schemes:

 Plot(PlotNo, PlotType, Crew, Date, Forest)
 Tree(TreeNo, PlotNo, Species, DBH, Height, Product)

6

100 Computing Applications in Forestry and Natural Resource Management

Here, Plot and Tree are the table names. PlotNo, PlotType, Crew, Date, and
Forest are called attributes of table Plot. PlotNo is the primary key in Plot table
while it is a foreign key in Tree table (primary and foreign keys are defined in
Section 6.2.2). Typical records in the above tables might be:

 Plot(1, DBH and Height, 1, 01/20/14, Univ Forest)
 Tree(1, 1, Yellow poplar, 12, 40, Sawlog)

We must note that there is a relationship between these two tables, which is
implemented by using PlotNo in the Tree table. Therefore, the PlotNo value in
Tree table must match the PlotNo value in Plot table or be NULL.

Typical queries or questions that we could ask in these tables include the
following: (1) list trees that are red oak, (2) list trees with diameter at breast
height (DBH) greater than or equal to 20.32 cm (8 in.), and (3) summarize the
volume of trees by Species or PlotNo.

6.1.3 � Table, Record, and Field

A table stores raw data in logical groupings (the Students table, e.g., contains
data about students) and organizes the data into rows and columns.

The table or datasheet is divided into rows called records and columns
called fields. For example, in the Students DB, the data shown in the stu-
dent table has columns of similar information, such as StudentID, SName,
and GPA; these columns of data items are fields. Each field has a name and
is identified as a certain type of data (text or number) and has a specified
length. The rows of data within a table are its records. Each row of data is
considered a separate entity that can be accessed (in our case, an individual
student). All the fields of information concerning a certain student are con-
tained within a specific record for a specific student entity.

At the intersection of a row (record) and a column (field) is a value, the
actual data element. For example, Smith, the Student Name of a record is a
data value.

6.1.4 � MS Access Database

Microsoft Access follows traditional DB terminology. The terms database,
table, record, field, and value indicate a hierarchy from largest to smallest
(Prague et al. 1999). An Access DB includes these objects or components: tables,
queries, forms, reports, macros, modules, and Visual Basic for Applications.

MS Access can work with only one DB at a time. Within a single Access DB,
however, you can have hundreds of tables, forms, queries, reports, macros,
and modules. They all are stored in a single file with the file extension .MDB
(multiple database) for Access 2003 or earlier, .accdb for Access 2007 or later
version, or .ADP if you are using SQL Server.

101Database Concepts and the Entity-Relationship Model

6.2 � Relational Databases and the Entity-Relationship Model

The early DBMS used several data models for describing the structure of the
information in a DB, such as the hierarchical or tree-based model and the
graph-based network model (Ullman and Widow 1997). The relational DB
model was introduced by E.F. Codd with IBM in the early 1970s. The rela-
tional DB model is predefined as the mathematical notion of a relation. The
fundamental object in the relation model is the table or relation.

The following example demonstrates the simplicity of the relational model,
and the subsequent Structured Query Language (SQL) sample suggests how
the relational model promotes queries written at a very high level. (We will
discuss SQL in Chapter 8.) The table or relation (called Tree) records Species,
DBH, Height, and Product type (Table 6.1).

If we would like to know the potential DBH and product types of
cruised trees of Red oak, we could perform a query using SQL in a DBMS
as follows:

 Select DBH, Product
 From Tree
 Where Species =’Red oak’;

Basically, the above query performed three actions. It (1) examined all the
records of the table Tree mentioned in the From clause, (2) filtered out those
records by some criteria indicated in the Where clause, and (3) presented
an answer to certain attributes of those records, as indicated in the Select
clause.

As a programmer or DB administrator, we always use a tool to design a
DB. The entity-relationship (ER) model is one such tool that has been popu-
larly used for DB design. The ER model, one of the schematic data models,
was proposed by P. P. Chen in the mid-1970s (Chen 1976). A few major com-
ponents in the ER model are discussed in the following sections.

TABLE 6.1

A Relational Table of Trees

TreeNo PlotNo Species DBH Height Product

1 1 Red oak 12 30 Pulp
2 1 Yellow poplar 26 45 Sawlog
… … …
1 2 Sugar maple 16 34 Sawlog
2 2 Red oak 18 38 Veneer
… … …

102 Computing Applications in Forestry and Natural Resource Management

6.2.1 � Entity

An entity is an object and has properties (or attributes) that are descriptive of
the entity. For example, a student entity has StudentID, name, major, address,
GPA, etc. A collection of entities, all of which share the same set of attributes,
is called an entity type. For example, a student table in a university DB is an
entity type.

An attribute of an entity is a descriptive property of the entity. Each attri-
bute has a value (or null) that should come from some domain. An attribute
is composite if it can be decomposed into two or more components; other-
wise, it is simple. For example, address for student entity may be composite
with components of street, city, state, and zip (Atkins 2001). An attribute is
derivable if its value can be computed from other attributes. For example,
age may be a derived attribute if there is another attribute called birthdate
for a student.

6.2.2 � Keys

A key for an entity type consists of one or more attributes that can distin-
guish the entities. There are two types of keys: primary and foreign keys.
A primary key of a relational table uniquely identifies each record in the
table, and it may consist of one or more fields or attributes. A foreign key is
a field in a relational table that matches the primary key column of another
table. The foreign key can be used to cross-reference tables.

For example, considering the following two entity types:

 Trees(TreeNo, PlotNo, DBH, Height, Species)
 Plot(PlotNo, PlotType, Crew, Date)

PlotNo is a primary key in the Plot table. One primary key in the Trees table is
TreeNo and the other could be TreeNo and PlotNo together. PlotNo in the Trees
table is a foreign key that is used to cross-reference between table Plot and
table Trees for relationships.

6.2.3 � Relationships

A relationship is an association between two entity types or tables. For
example, let’s still use the above two entity types of Plot and Trees:

 Plot(PlotNo, PlotType, Crew, Date)
 Trees(TreeNo, PlotNo, Species, DBH, Height)

The underlined PlotNo and TreeNo refer to the primary key in each table. We
can define a relationship, Contains, between Plot and Trees. It simply means
entity type Plot contains entity type Trees. Like in the real world, a field plot
typically contains several trees.

103Database Concepts and the Entity-Relationship Model

6.2.4 � Types of Relationships

There are three major types of relationships between tables: one-to-one, one-
to-many, and many-to-many. Let E{e1, e2, …, en} and F{f1, f2, …, fn} represent
entity types, and R be the relationship between them (Atkins 2001). Graphical
representations of these two entities can be illustrated as follows:

One-to-One (1–1): A relationship (R) is one-to-one (1–1) if whenever the
pair (e, f) is in R, then neither e nor f participates in any other pair
(Figure 6.1).

For a real-world example, let’s consider two entity types:
Managers and Sawmills for the forest products industry in a state.
We want to associate a mill manager with the sawmill she or he man-
ages. We know that a manager only manages one mill, and a single
mill is only being managed by one manager. In this case, the relation-
ship between entity types of Managers and Sawmills is 1–1.

One-to-Many (Many-to-One) (n–1): A relationship (R) is many-to-one
(n–1) (or one-to-many) from E to F, if whenever the pair (e, f) appears
in R, then e may not participate in any other pairs of f, but f may par-
ticipate in other pairs of e (Figure 6.2).

RE
e2e1

e3

e4 en

f1
F

f2

f3

f4 fn

FIGURE 6.1
One-to-one relationship between entity types E and F.

R
E

e2e1

e3

e4 en

f1
F

f2

f3

f4 fn

FIGURE 6.2
Many-to-one relationship.

104 Computing Applications in Forestry and Natural Resource Management

For example, consider the Plot and Trees tables. Trees to Plot is n – 1
since several trees can be in one particular plot but a particular tree
can be located in only one plot.

Many-to-Many (n–n): A relationship (R) is many-to-many if whenever
(e, f) appears in R, then e may participate in other pairs of f and vice
versa (Figure 6.3).

A many-to-many relationship refers to a relationship between
tables in a DB when a parent row in one table contains several
child rows in the second table, and vice versa. For example, in a
student DB, a Student table to Course table is n–n, since one stu-
dent can take many courses and one course can be taken by many
students.

Relationship implementations: Once we understand the relationships
between tables, we always ask ourselves how we can implement
these three major relationships of tables in a DBMS. Some proce-
dures we typically follow are: (1) a nonweak entity type with single
value and simple attributes (such as student, tree, or plot) is simply
translated into a table; (2) a weak entity type with incomplete attri-
butes is typically translated into a table with the borrowed key plus
partial key; (3) a one-to-one relationship is translated by making the
foreign key unique; (4) a one-to-many relationship from E to F is
represented with a foreign key (representing E) in the table F; and (5)
a many-to-many relationship is represented by a table whose key is
the set of key attributes from participating tables, plus any attributes
associated with the relationship.

Here is an example of the implementation of a one-to-many relationship
between Plot and Trees. Key PlotNo in Trees table is the borrowed key to
implement this 1–n relationship between Plot and Trees.

 Plot(PlotNo, PlotType, Crew, Date)
 Trees(TreeNo, PlotNo, DBH, Height, Species)

RE
e2e1

e3

e4 en
. . .

. . .

f1
F

f2

f3

f4 fn

FIGURE 6.3
Many-to-many relationship.

105Database Concepts and the Entity-Relationship Model

To show an example of a many-to-many implementation, a student DB con-
tains a table for students (tblStudent) and a table for courses (tblCourses).
There is a many-to-many relationship between these two tables. To build this
many-to-many relationship, we need to create a third table (tblStudentCourse)
to represent it.

 tblStudent(StudentID, Sname, GPA)
 tblCourse(CourseID, CourseTitle, CreditHour, Description)
 tblStudentCourse(StudentID, CourseID, DateTaken, Status)

6.3 � ER Model Examples in Forest Operations

6.3.1 � ER Model Notations

The ER model diagram is a visual representation of data or entity types that
describes how these data or entity types are related to each other. There are
a few ways to represent the ER model, including Chen’s model, Crow’s Foot
notation, IDEF1X, and others. The notations used in this chapter are based
on P. Chen’s model (Chen 1976). Entity, attribute, and relationship are repre-
sented by specific notations (Figure 6.4).

6.3.2 � ER Model for Timber Cruising

The ER model for timber cruising developed by Wang et al. (2004) has four
data entity types—Plot, Tree, Transect, and Species in the model (Figure 6.5).
Each entity type has its own attributes. For example, the Plot entity type has

Entity type

E
1 1

1 n

nn

E

E R

R

R F

Composite
attribute

One-to-one
relationship
between E to F

One-to-many
relationship
from E to F

Many-to-many
relationship
between E to F

F

F

Weak entity type

Relationship

Attribute

Key attribute

Derived attribute

FIGURE 6.4
Some notations for an ER model diagram.

106 Computing Applications in Forestry and Natural Resource Management

forest, crew, plotNo, plotTy, and other attributes. Entities are related to each
other using relationships such as contains and associates in the model. The rela-
tionship between Plot and Tree or Transect is one-to-many and simply means
that the plot contains many trees or transects. The many-to-one relationship
is applied between Tree and Species entity types, which implies each species
associates with many trees in the Tree table. Attributes belonging to a key are
underlined for an entity type. For example, forest, crew, and plotNo together is a
primary key of entity type Plot, while forest, crew, plotNo, and treeNo combined
is a primary key of entity type Tree. The foreign key of forest, crew, and plotNo
for entity Tree and Transect represents the one-to-many relationships of Plot to
Tree and Plot to Transect, respectively. The foreign key of SppID for entity type
Tree represents many-to-one relationship between Tree and Species.

6.3.3 � ER Model for Time Study of Timber Harvesting

In forest operations, time and motion studies of harvesting machines are
typical field practices. A computer-based time study system was devel-
oped for timber harvesting operations (Wang et al. 2003). For field data
collection and data storage, a relational DB model was developed and
used for holding harvesting functions, variables, and time study data in
the handheld system (Wang et al. 2003), which was implemented based on

Forest

Crew

PlotTy

PlotNo

PlotNo

Transect

contains

contains

Forest Crew

PlotNo

TreeNo

Species

Product

DBH

THT

MHT

SppID

SppNa

Cuupct

Tree

associates

Species

Plot

Compart Time

IPTime

DPTime

HPTime

OSClass

HTClass

Forest

Crew

n

n

1

n

1

1

TransN

Sample

USClas

Date

FIGURE 6.5
ER model of an integrated timber cruising system.

107Database Concepts and the Entity-Relationship Model

the ER model (Figure 6.6). Basically, there are six data entity types in the
model: Variables, Site, Species, Time Track, Felling/Skidding/Forwarding/Yarding,
and Harvesting Functions. Each entity type has its own attributes. For exam-
ple, the Harvesting Functions entity type has function_ID, function_name, and
machine_type attributes. Entities are related using relationships such as has,
contains, and associates in the model. Elapsed_time, an attribute derived from
start_time and end_time, was used in the Time Track entity. Similarly, attributes
belonging to a key are underlined for an entity type. Cycle number, machine
type, function start time, end time, elapsed time, and associated harvesting vari-
ables are automatically recorded.

Harvesting functions, variable data, and species are stored in separate data
tables in the design module, which are identified by their primary keys and
harvesting machine types. In the Collect module, harvesting functions and
variables can be queried and retrieved for a specific machine type on which
another data table is created for storing functions, variables, and elemen-
tal times. Species information is also retrieved for each data entry. The site
data table contains general information such as site number, name, location,
slope, and weather conditions about the logging site. Site number is used as
a foreign key to associate site information with other data tables created in
the collect module.

The Time Track entity type is used to track the start and end times of
each element in a work cycle. It can also be used as a backup data table for

Function_name Machine_type Variable_name Machine_type

Harvesting
functions

Harvesting
variables

Site

Site_na

Cycle_no

Element

Functions... Variables...

contains

Felling, skidding,
forwarding,

or yarding entities

contains

has has

Machine_type

Cycle_no

Site_no

Site_no Species

associate

Time track

Function_ID

Species_no
Species_
name

Machine_type

Start_time

End_time

Elapsed_time

Species

Variable_ID

FIGURE 6.6
ER model of a time study system for timber harvesting operations.

108 Computing Applications in Forestry and Natural Resource Management

felling, skidding/forwarding, or yarding data entities. The Felling/Skidding/
Forwarding/Yarding entity type is designed to store time study data of felling,
skidding, forwarding, or yarding depending on the type of logging opera-
tions being studied. Data schemas of the main data storage on the desktop
PC are the same as those used in the handheld system in order to facilitate
the data transfer.

Class Exercises

Upon completion of this chapter, you need to understand the following key
concepts:

	 1.	What are DBMSs, databases, tables, and queries?
	 2.	What are the primary and foreign keys?
	 3.	What is an entity-relationship?
	 4.	How many types of relationships between tables are there? How can

you implement them in a forest and natural resource management
project?

References

Atkins, J. 2001. Database Management (Lecture Notes). Department of Computer
Science, West Virginia University, Morgantown, WV.

Chen, P.P. March 1976. The entity-relationship model: Toward to a unified view of
data. ACM Transactions on Database Systems 1(1): 9–36.

O’Neil, P. and E. O’Neil. 2001. Database Principles and Programming Performance.
Morgan Kaufmann Publishers, New York, 870pp.

Prague, C., D. Roche, and M. Irwin. 1999. Microsoft Access 2000 Bible. John Wiley &
Sons, Incorporated, 1272pp.

Ullman, J. and J. Widow. 1997. A First Course in Database Systems. Prentice Hall, Upper
Saddle River, NJ, 470pp.

Wang, J., S. Grushecky, and J. Brooks. 2004. An integrated computer-based cruis-
ing system for central Appalachian hardwoods. Computers and Electronics in
Agriculture 45(2004): 133–138.

Wang, J., J. McNeel, and J. Baumgras. 2003. A computer-based time study system for
timber harvesting operations. Forest Products Journal 53(3): 47–53.

109

Introduction to MS Access

MS Access is a relational database management system (RDBMS). Like other
DBMSs, Access can store and retrieve data, present information, and auto-
mate repetitive tasks. Additionally, we can use Access to create user-friendly
Windows forms and generate powerful reports for potential customers.
MS Access can work seamlessly with other Microsoft products such as MS
Office (Word, Excel, PowerPoint) and MS Visual Studio (Visual Basic and
Visual C++, and .NET) by using ActiveX (formerly called Object Linking and
Embedding) objects.

MS Access has evolved over the years from earlier versions (Access 2,
Access 95, Access 97, Access 2000, Access 2003, and Access 2007) to Access
2010, Access 2013, Access 2016, and later versions. Earlier versions of Access
databases must be converted to the format of later versions before they are
usable.

7.1 � MS Access Usability and Functionality

7.1.1 � MS Access Usability

A triangular hierarchy indicates MS Access’s usability from the bottom of
basic tables and queries applications to functions and expressions, to mac-
ros, to Visual Basic for Applications (VBA), and to the top of Windows
Application Programming Interface (API) (Prague et al. 1999). There are
five major components or usability levels in MS Access:

	 1.	Objects: They include tables, queries, forms, and reports. We can cre-
ate, modify, and delete these objects.

	 2.	Functions/Expressions: We can use functions/expressions to simplify
data processing and manipulations, such as data validation and
implementations of business rules.

	 3.	Macros: A macro is a stored series of commands that can be used to
automate repetitive work without programming.

	 4.	VBA: VBA allows us to program complex processes.

7

110 Computing Applications in Forestry and Natural Resource Management

	 5.	Windows API: Through Windows API, we can call functions, proce-
dures, and Dynamic Link Libraries written in other languages such
as C, Java, or Visual Basic. Similarly, we can write the interfaces from
other applications to connect to the Access database. In fact, many of
the tools in Access (such as Wizards and built-in functions) are writ-
ten in VBA.

7.1.2 � Major MS Access Functionality

Relational database management: Access is a RDBMS. It can create tables,
define keys, create queries, and generate reports. Access has full ref-
erential integrity at the database engine level, which can be defined
to prevent inconsistent data updates or deletions.

Wizards: Access features quite a few Wizards to design tables, queries,
forms, and reports. The Wizards can walk us step-by-step through
the process of database object design.

Importing and exporting data: Access allows us to import from or export
to many common formats of data, including dBase, Excel, SQL
Server, Oracle, ASCII text, and HTML. Importing typically creates
an Access table while exporting an Access table creates a file in the
format of the destination program.

Multiple-table queries and relationships: Tables are typically related in
Access. Therefore, we can define table relationships and use multiple
tables to create queries, forms, and reports.

Dynamic data exchange: By using the Dynamic Data Exchange, new
objects can be added to Access forms and reports, such as images,
text, or documents.

Built-in functions: Like MS Excel, MS Access also provides more than
200 built-in functions in 17 categories, such as mathematical, statisti-
cal, financial, and database management.

7.1.3 � Why Use More than One Table?

As we have learned, a relational database typically utilizes several related
tables to present the information efficiently. Three main advantages to an
application using multiple tables are that it can (a) manipulate data more
efficiently, (b) reduce data redundancy, and (c) simplify data entries.

For example, if we develop a student database containing student and
course data, it is better to have two related tables, student and course, so
that we would not need to store course information in the student table.
Then if a college professor tries to retrieve some specified student records
with the name, course, and date (since 9/1/2001) when the course was
taken, she/he would need to use a query because she/he cannot obtain
all the information she/he needs from one table. Instead of asking the

111Introduction to MS Access

question in actual English, she/he would use a method known as Query
by Example (QBE) in MS Access.

When you enter instructions into the QBE window, the query translates
the instructions and retrieves the desired data. In this example, the query
first combines data from the Student, the Course, and the StudentCourse tables.
Then it retrieves the required fields. Access then filters the records, selecting
only those in which the value of DateTaken is later than 9/1/2001. It sorts the
resulting records first by student ID and then by student name within the stu-
dent IDs that are alike. Finally, the records appear on-screen in a datasheet.

The selected records from these three tables form a new data set and are
called a dynaset—a dynamic set of data that can be changed according to the
raw data in the original tables. After you run a query, the resulting data set
can be used in a form that can be displayed on-screen in a specified format,
or printed in a report.

7.2 � Access Tables and Queries

7.2.1 � Access Tables

In this section, we will provide instructions for performing several tasks in
MS Access. Please note that for these instructions we have used the 2013 or
2016 version of MS Access, and that the steps may vary slightly if you are
using a different Access version.

Open MS Access and then click Blank desktop database. This will open a dialog
box where you can enter a database name (let’s use “dbStudent”) and select
a folder to store it, then click Create. An MS Access window will be displayed
(Figure 7.1). Click the Save icon at the top of the menu bar.

In Access, we can create a table, create a query, design a form, and write a
report. Suppose we would like to create a database (dbStudent) of students
and the courses they complete. Student and Course would be the two entity
types (or two tables), and the relationship between them would be many-to-
many. In the ER Model section, we mentioned that a new, third table needs to
be created to represent this many-to-many relationship, and this table’s pri-
mary key should be the keys from both tables. Therefore, we need to create
the third table called tblStudentCourse for the relationship. The three tables in
dbStudent will then be:

 tblStudent(StudentID, Sname, GPA)
 tblCourse(CourseID, CourseTitle, CreditHour, Description)
 tblStudentCourse(StudentID, CourseID, DateTaken, Status)

Figure 7.1 shows the design windows for these three tables. To create one of
these tables (e.g., tblStudent) in the dbStudent database, click the Create tab, and

112 Computing Applications in Forestry and Natural Resource Management

then in the Tables group, click Table Design. A new table is inserted in the data-
base, and the table opens in the Design View so that you may proceed easily to
adding fields and setting design keys, etc. Type in the Field Names as shown
in Figure 7.2 for the respective tables, and set the Data Types from the drop-
down options. To set the primary key(s), highlight the row(s) of the intended
primary key(s) and then click the Primary Key button (it is under the Design
tab in the Tools section). One of the several ways to save your new tables is to
simply right click on the new table’s tab, then click Save. A Save As window
will open where you can type in a name for your table, then click OK. Repeat
this process to create the remaining tables (tblCourse and tblStudentCourse).

When you have created the three tables, enter the data shown in Figure 7.3.
To enter data, click on the tab for a particular table (or double-click the table
name in the list of tables in the left-hand box), then click the Home tab on the
main menu, and in the View section, select Datasheet View from the drop-down
options. You can then enter data into the appropriate cells of the datasheet. Be
sure to click Save after completing the data entry for each datasheet.

7.2.2 � Relationships between Tables

Recall that there are three types of relationships between tables: one-to-one,
one-to-many, and many-to-many. To demonstrate how relationships are built
in Access, we can use the tables we just created in the dbStudent database.
Click the Database Tools menu tab and then click Relationships. A Show Table
dialog box (Figure 7.4) will appear in which you can add tables, queries, or
both, and then build the relationships for them.

FIGURE 7.1
MS Access table design view.

113Introduction to MS Access

Add these three tables consecutively by selecting a table and then clicking
Add. Close the dialog box, then use the mouse to point to StudentID in tblStu-
dent and simply drag it to the tblStudentCourse table. An Edit Relationships box
will open with Student ID in both columns. When you click Create, the box
will close and a line will appear between StudentID in the two tables. Repeat
this process, dragging CourseID from tblCourse to tblStudentCourse, to com-
plete building the many-to-many relationship (Figure 7.5). Depending on the
order in which you selected the tables, your Relationship boxes may appear in
a different order. Note that for a connection or relationship to be established,
the field names (StudentID, CourseID, etc.) do not have to match, but they must
contain the same data type (number, short text, date/time, etc.). Once relation-
ships are built, you can edit or delete them via the Edit Relationships button.

7.2.3 � Access Queries

A query is used to extract information from tables, queries, or both in a data-
base. It can select and define a group of records that fulfill a certain condition.
Using an Access query, we can answer a specific question to perform data
manipulation, to combine data from different tables, or even to modify data
in different tables or queries. The assembled data can then be used for a form
or a report.

FIGURE 7.2
Design windows of tables: tblStudent, tblCourse, and tblStudentCourse in dbStudent
database.

114 Computing Applications in Forestry and Natural Resource Management

FIGURE 7.4
A Show Table dialog box for building a relationship.

FIGURE 7.3
Data entries for the three tables in dbStudent database.

115Introduction to MS Access

To perform a query, click Create from the Access menu ribbon. In the Queries
section, you will see options to create a query either using the Query Wizard
or using Query Design. For a typical query, we just select Query Design, then
when the Show Table box pops up (Figure 7.4), we can add the tables (or que-
ries or both) on which we will build a query.

After adding our three dbStudent database tables consecutively (by select-
ing a table and then clicking Add), we close the Show Table box and the added
tables will display in a QBE window (Figure 7.6).

FIGURE 7.5
Relationships being built for tables in dbStudent database.

FIGURE 7.6
QBE window for designing a query.

116 Computing Applications in Forestry and Natural Resource Management

Suppose we would like to list the following information for a specific stu-
dent: Student ID, Name, GPA, Course ID, Course Title, and Date Taken. We
cannot gather all this information from a single table; we need to create a
query and join three tables together to display the required information.
There are two ways to create a query:

	 1.	Query manually—Drag the data fields you need (StudentID, SName,
and GPA from tblStudent; CourseID and CourseTitle from tblCourse;
DateTaken from tblStudentCourse) to the display area in the QBE win-
dow. Then click the View menu under the Design tab, and you will
have a datasheet of this query.

	 2.	Query using SQL—From the Home tab on the menu bar, Click
View → SQL View, then type the following SQL commands:

 SE�LECT tblStudent.StudentID, tblStudent.SName,
tblStudent.GPA, tblCourse.CourseID, tblCourse.
CourseTitle, tblStudentCourse.DateTaken

 FR�OM tblStudent INNER JOIN (tblCourse INNER JOIN
tblStudentCourse ON tblCourse.CourseID =
tblStudentCourse.CourseID) ON tblStudent.StudentID =
tblStudentCourse.StudentID;

Save this query and name it “qryStudentCourse” in the database.

7.3 � Access Forms and Reports

7.3.1 � Access Forms

A form is one of the basic objects in Access. It can serve as an interface to help
users add, edit, or display data from a database in a quick, easy, and accurate
manner. Access forms provide a more structured view of the data than does
a datasheet such as an Excel worksheet (Prague et al. 1999). From this struc-
tured view, database records can be viewed, added, modified, or deleted.
Entering data through forms might be the most efficient way to enter data
into database tables, especially if the database has multiple users. Well-
designed Access forms are essential for efficiency and accuracy (Microsoft
Corporation 2016). They can also be implemented with business rules to
restrict access to certain fields within the table and check the validity of data
before they are accepted into the database table.

To create an Access form, click the Create tab on the menu ribbon, then
select Form Wizard, which will display a Form Wizard dialog box (Figure 7.7).

Select the query we just created (qryStudentCourse) and then select data
fields from the list box of Available Fields and add them to the list box of

117Introduction to MS Access

Selected Fields by clicking the arrow (or add them all by clicking the double
arrow) and then click Next (Figure 7.7). From there, the Wizard will walk
you through a set of questions that will help you determine the design of
your form. For our purposes, when asked “How do you want to view your
data?” click by tblStudent and select Form with subform(s), then Next in the first
pop-up box. In the next pop-up Wizard window, select Datasheet as the layout
you would like for your subform, then click Next. In the final Wizard win-
dow, name your form and subform tblStudent and tblStudentCourse Subform,
respectively, and select Open the form to view or enter information, then click
Finish. You will get the following form, which will allow you to edit, add, and
delete the data in the tables (Figure 7.8).

7.3.2 � Access Reports

Access reports format and present data from a database in a printed format.
There are several ways to generate a report in Access. For example, a report
can list all the records in a given table, such as a student table. We can also
create a report that summarizes only the students who meet a given criterion,
such as all of those who have a GPA of 3.5 and above. We do this by incorpo-
rating a query into our report design. A report can combine multiple tables
to present complex relationships among different sets of data. For example,

FIGURE 7.7
Dialog box for designing a form.

118 Computing Applications in Forestry and Natural Resource Management

a report can be generated based on the query we just created for three tables
in the dbStudent database.

To generate an Access report, click Create on the menu ribbon, and then
click Report Wizard in the Reports group. A new Report Wizard dialog box will
pop up (Figure 7.9).

Select the query we just created (qryStudentCourse) and add the desired
data fields by selecting them and clicking the arrows. For our example, we
selected all the fields by clicking the double arrow button, then clicked Next.

As with forms, the Wizard will pose a set of questions that will help you
determine the design of your report. For our purposes, when asked “How
do you want to view your data?” select by tblStudent and then click Next. In
the next pop-up Report Wizard window, select StudentID as the grouping
level, then click Next. In the next Report Wizard for sorting order, you may
simply click Next. You may then choose among options of how to format
the report and then click Next. In the final Wizard window, name your
report “Student” and “Course Report,” select Preview the report, and then
click Finish. You will get the following report, which will allow you to edit,
modify, and delete data fields on the report (Figure 7.10).

FIGURE 7.8
An Access data entry form.

119Introduction to MS Access

FIGURE 7.9
A dialog box for report.

FIGURE 7.10
A sample Access report on student and course data.

120 Computing Applications in Forestry and Natural Resource Management

Class Exercises

Timber Cruising Database Applications
In this lab exercise, you are required to use Microsoft Access and the data-

base design knowledge you have learned to design a database for timber
cruising. You will need to create a database, name it TimberCruising.accdb,
and then create the following database objects:

	 A.	Tables—Build the following tables (data for these tables can be found
in Tables 7.1 through 7.3):

	 1.	 Table Plot (tblPlot) and its fields

PlotID Number → Integer, primary key
PlotType Text
Forest Text
Crew Text
Date Date/Time

	 2.	 Table Trees (tblTrees) and its fields

TreeID Number → Integer
PlotID Number → Integer, Required: YES (refers to

PlotID in tblPlot)
SpeciesID Number → Integer
DBH Number → Single
MHT Number → Single
THT Number → Single

	 3.	 Table Species (tblSpecies) and its fields

SpeciesID Number → Integer, primary key
Species Text

	 B.	 Queries—Design the following queries for generating reports:
	 1.	 Basal Area and Volume summary by Plot ID
	 2.	 Basal Area and Volume summary by Species ID

121Introduction to MS Access

You can use the following equations to compute the basal area and
volume for each individual tree:

 BA = SUM(0.005454154*DBH2)
 VOL = SUM((0.04 - 0.02* (MHT)2 + 0.59 * (MHT)) * DBH)

where:
BA = basal area, ft2 (1 ft2 = 0.0929 m2)
VOL = volume, ft3 (1 ft3 = 0.0283 m3)
DBH = diameter at breast height, inches (1 in. = 2.54 cm)
MHT = merchantable height, the number of 4.88 m (16 ft) logs

	 C.	 Forms—Forms are used as the interfaces, while reports are the final
output results for the database applications.

	 1.	 Design forms to manipulate the data in the above three tables,
including edit, add, and delete.

	 2.	 Enter the data of Tables 7.1 through 7.3 forms.

TABLE 7.1

Data for Plot Table

PlotID PlotType Forest Crew Date

1 VRP Univ.For 1 10/5/2001
2 VRP Univ.For 1 10/5/2001
3 VRP Univ.For 1 10/5/2001
4 VRP Univ.For 1 11/10/2001
5 VRP Univ.For 1 11/10/2001

TABLE 7.2

Data for Species Table

SpeciesID Species

1 Birch, yellow
2 Cherry, black
3 Maple, red
4 Maple, sugar
5 Oak, chestnut
6 Oak, northern red
7 Yellow poplar
8 Other hardwood

122 Computing Applications in Forestry and Natural Resource Management

TABLE 7.3

Data for Tree Table

TreeID PlotID SppID DBH MHT THT

1 1 3 34 1.5 117
2 1 1 21 0 0
3 1 1 13 0 0
4 1 1 18 1.5 97
5 1 4 12 0.5 83
6 1 8 2 0 0
7 1 4 19 3 102
8 1 1 18 0 0
9 2 3 14 1.5 0

10 2 6 23 2.5 0
11 2 6 15 2.5 0
12 2 3 8 0 0
13 2 5 14 2 0
14 2 6 19 2.5 0
15 3 5 13 2 75
16 3 6 10 0 70
17 3 6 10 0 68
18 3 5 6 0 0
19 3 6 9 0 58
20 3 5 8 0 64
21 3 6 8 0 65
22 3 3 3 0 0
23 3 6 15 1 77
24 3 6 10 0 70
25 3 3 9 0 37
26 4 3 8 0 0
27 4 2 17 2 0
28 4 2 22 2.5 0
29 4 6 12 1 0
30 4 6 12 1.5 0
31 4 2 23 2 0
32 5 7 16 0 0
33 5 7 16 2 93
34 5 7 18 3 95
35 5 4 27 1.5 100
36 5 7 20 0 0
37 5 7 18 4 106

123Introduction to MS Access

	 D.	 Reports—Generate the following reports:
	 1.	 Basal Area and Volume summary by Plot ID
	 2.	 Basal Area and Volume summary by Species
	 E.	 Questions—Please provide answers to the following questions:
	 1.	 What is a database management system (DBMS)?
	 2.	 Explain what basic features and functions a DBMS can provide.
	 3.	 Give an example of a DBMS.

	 4.	 Why would we want to use MS Access?

References

Microsoft Corporation. 2016. Create a form in Access. https://support.office.
com/en-us/article/Create-a-form-in-Access-5d550a3d-92e1-4f38-9772-
7e7e21e80c6b. Accessed on September 4, 2016.

Prague, C., D. Roche, and M. Irwin. 1999. Microsoft Access 2000 Bible. John Wiley &
Sons, Incorporated, 1272pp.

https://support.office.com
https://support.office.com
https://support.office.com

http://taylorandfrancis.com

125

Structured Query Language
and Access Query Examples

8.1 � Structured Query Language

Structured Query Language (SQL) allows us to access and execute queries on
a database, including table creation or deletion, and data retrieval, addition,
update, or deletion. SQL is an American National Standards Institute stan-
dard for accessing database systems (SQLCourse.com 2017). It works with
any Database Management System (DBMS) such as MS Access, DB2, MS SQL
Server, Oracle, and Sybase, although it varies slightly from system to system.

8.1.1 � SQL Statements and Clauses

SQL provides many statements in the following categories: Data Definition
Language (DDL), Data Manipulation Language (DML), Transaction Control,
Session Control, System Control, and Embedded SQL. In this chapter, we
only focus on SQL related to DML and DDL (Table 8.1).

There are many SQL clauses that can be used together with SQL state-
ments. Here are some commonly used SQL clauses (Table 8.2).

8.1.2 � SQL Syntax

The basic syntax of the SQL commands is:

   SELECT attributes [[AS] alias], …
   FROM table(s)
 [WHERE Boolean conditions]
 [GROUP BY attributes]
 [HAVING …]
 [ORDER BY …];

The above syntax consists of a SELECT statement, a FROM clause, and a WHERE
clause for conditional selection. A query typically ends with a semicolon.

8

126 Computing Applications in Forestry and Natural Resource Management

The result from a SQL query is stored in a result set. Most DBMSs allow
navigation of the result set with database functions, such as MoveFirst,
MoveNext, MoveLast, and others. We will discuss these functions in the
Visual Basic .NET programming chapter (Chapter 14).

While a semicolon is the standard way to end a query or separate each SQL
statement in DBMSs, it is optional in MS Access and SQL Server. We do not
have to use a semicolon after each SQL statement in MS Access.

To conditionally select data from a table, a WHERE clause can be used or
included in the SELECT statement. The following operators can be used in
the WHERE clause for logical comparisons (Table 8.3).

SQL also allows us to use subqueries or nested queries. A SQL query
returns a set of records; thus, we should be able to apply a set of operations
to test, for example, if a membership is in a record set (Atkins 2001). The test
should determine if an attribute value is related to a set of values. The syntax
for a query with a subquery is:

 SELECT *
 FROM table(s)
 WH�ERE	 {attribute values} =, <>, >,< {any or all (set

of values from a subquery)};

TABLE 8.1

SQL Statements in DML and DDL Categories

DML DDL

Statement Description Statement Description

SELECT Extracts data from a
database table

CREATE Creates a new database
table or index

UPDATE Updates data in a
database table

DROP Drops a table or index

DELETE Deletes data from a
database table

ALTER Alters table’s design

INSERT Inserts new data into a
database table

TABLE 8.2

Commonly Used SQL Clauses

Clause Description

FROM Specify the tables on which the query performs
WHERE Specify the selection condition(s)
GROUP BY Group a result into subsets
HAVING Provides Boolean condition for GROUP BY clause
ORDER BY Specify the order in which results display

127Structured Query Language and Access Query Examples

8.2 � Basic SQL Examples

Let’s use an example of a table called Trees (Table 8.4) to illustrate how to use
SQL. This table has three records (one for each tree) and four fields (TreeID,
Species, DBH, and TotalHeight).

8.2.1 � Statements and Clauses

We use SELECT to select columns of data. For example, we can use this SQL
command to select TreeID and Species in Table 8.4:

 SELECT TreeID, Species FROM Trees;

which will give us this result set:

TreeID Species

1 Oak

2 Poplar

3 Maple

TABLE 8.3

Operators Used in the WHERE Clause

Operator Description

= Equal
<> Not equal
>, < Greater or less than
>=, <= Greater than or equal; less than or equal
LIKE Search for a pattern
AND, OR Join two or more conditions
BETWEEN … AND Select a range of data between two values
NOT Select data outside a defined data range

TABLE 8.4

A Database Table of Trees

TreeID Species DBH TotalHeight

1 Oak 10 25

2 Poplar 23 50

3 Maple 20 40

128 Computing Applications in Forestry and Natural Resource Management

To select all columns from the Trees table, we list all the fields and separate
them using a comma, or use a * symbol instead of column names. The result
set will be the same as Table 8.4.

 SELECT * FROM Trees;

To select only the trees with a species name Oak, we add a WHERE clause to
the SELECT statement:

 SELECT * FROM Trees WHERE Species='Oak';

The result set is:

TreeID Species DBH TotalHeight

1 Oak 10 25

We used single quotes around the conditional values in this example for
‘Oak.’ Typically, SQL uses single quotes around text values. Some DBMS
such as MS Access also accept double quotes.

We can use this SQL command to select trees with a diameter at breast
height (DBH) of greater than 25.4 cm (10 in.):

 SELECT * FROM Trees WHERE DBH>10;

We can have multiple conditions in the WHERE clause using AND. For exam-
ple, we can use AND to display trees with species of Oak, and a DBH of 20. We
will generate an empty result set.

 SELECT * FROM Trees
 WHERE Species='Oak' AND DBH=20;

Sometimes we would like to select our result in a range of data between
two values that could be numeric, text, or date values. In that case, we can
use either the BETWEEN … AND operator or other logical comparison opera-
tors. For example, in order to display trees with the total height between 25
and 35, we use the following SQL:

 SELECT * FROM Trees
 WHERE TotalHeight BETWEEN 25 AND 35;

Or we use:

 SELECT * FROM Trees
 WHERE TotalHeight >= 25 AND TotalHeight <= 35;

129Structured Query Language and Access Query Examples

Both of these SQL commands would generate the same result set:

TreeID Species DBH TotalHeight

1 Oak 10 25

4 Oak 15 30

5 Maple 15 32

In Access, the BETWEEN … AND operator selects fields that are between and
including the test values. Therefore, trees with a total height of 7.62 or 10.67 m
(25 or 35 ft) will be listed. In some other DBMSs, the BETWEEN … AND operator
may only select fields that are between the test values, excluding trees with
a total height of 25 or 35.

To list the trees outside the range used in the above example, we can use
the NOT operator.

 SELECT * FROM Trees
 WHERE TotalHeight NOT BETWEEN 25 AND 35;

GROUP BY and ORDER BY are two other clauses commonly used together
with the SELECT statement. GROUP BY categorizes the result into groups while
ORDER BY is used to sort and order the results.

The DISTINCT keyword can be used in the SELECT statement to select
only distinct (different) values for a selected field(s) or attribute(s). For exam-
ple, suppose we added a few more trees to Table 8.4 and have a new tree list
(Table 8.5).

If we select species from Table 8.5, this SQL statement may be used:

 SELECT Species FROM Trees;

TABLE 8.5

A New Database Table of Trees

TreeID Species DBH TotalHeight

1 Oak 10 25

2 Poplar 23 50

3 Maple 20 40

4 Oak 15 30

5 Maple 15 32

130 Computing Applications in Forestry and Natural Resource Management

It will return this result set:

Species

Oak

Poplar

Maple

Oak

Maple

Notice that the species Oak and Maple are each listed twice in the result set.
If instead we want to have a list of unique species, we can use a SQL state-
ment that will list only three unique species:

 SELECT DISTINCT Species FROM Trees;

8.2.2 � SQL Functions

SQL can use many built-in functions provided by a DBMS for data manipu-
lation. Some functions in the Aggregate category include Sum, Count, Max,
Min, Avg, and StDev. Mathematical (SIN, COS, LOG, and others), Logical
(IIF, Choose), and String (Char, Varchar) functions are included in the
Scalar category.

The AVG function calculates the average of a field or the average of com-
bined fields with the GROUP BY clause. For example, if we want to calculate
the average DBH of trees in Table 8.5 by species, we use this SQL command:

 SELECT Species, avg(DBH) as Average_DBH FROM Trees
 GROUP BY Species
 OODER BY Species;

And get the result:

Species Average _ DBH

Maple 17.5

Oak 12.5

Poplar 23

Similarly, the SUM function will total the values in a field or a group of fields.
For example, we calculate the basal area (BA) of each tree using this expres-
sion BA = 0.005454154*DBH*DBH (DBH in inches, 1 in. = 2.54 cm) and
summarize the BA by species. Here is the query:

    SELECT Species, sum(0.005454154*DBH*DBH) as BA FROM Trees
 GROUP BY Species
 OODER BY Species;

131Structured Query Language and Access Query Examples

We will get this result set:

Species BA

Maple 3.4088

Oak 1.7726

Poplar 2.8852

We can sort and order the results by more than one field and need to separate
these groupings using commas. The sorting and ordering are in ascending
(ASC) by default. If we would like to list the result in a descending order by a
field, we use the DESC keyword right after this field in the ORDER BY clause.
Here are two examples of how to use the ORDER BY clause:

 SELECT Species, DBH FROM Trees
 ORDER BY Species, DBH;

 SELECT Species, DBH FROM Trees
 ORDER BY Species DESC;

Like in MS Excel, we can also use the COUNT function to calculate the num-
ber of records. We use either the COUNT(*) function for a whole table or
COUNT(field) for a specific field. The COUNT function does not count
records that have null fields unless the argument in the COUNT function is
the asterisk (*). Let’s use Table 8.5 as an example.

 SELECT COUNT(*) FROM Trees;    (returns 5)

The example below returns the number of trees with a DBH larger than 20:

 SELECT COUNT(*) FROM Trees WHERE DBH>20;   (returns 1)

The COUNT(field) function returns the number of rows without a null
value in the specified column. If Table 8.5 were modified to include a few
null values (Table 8.6), the following query would return a “3”:

 SELECT COUNT(DBH) FROM Trees;    (returns 3)

TABLE 8.6

Modified Database Table of Trees

TreeID Species DBH TotalHeight

1 Oak 10 25

2 Poplar 50

3 Maple

4 Oak 15 30

5 Maple 15 32

132 Computing Applications in Forestry and Natural Resource Management

8.3 � MS Access Queries

Let’s consider other examples of MS Access queries. First we build a data-
base and name it “dbForProdSale”. It will hold the data in two tables for
forest products and forest products companies that supply these products.
The schemas for these two entity types are as follows:

	 a.	tblFPCompany(FPC_ID, FPCName, Status, City)
	 b.	tblFProduct(FP_ID, FPName, FPUse, Quantity, UnitPrice)

In the tblFPCompany table, FPC_ID represents the forest prod-
ucts company’s ID, FPCName is the company’s name, Status indi-
cates the status of its production, and City is the company’s location.
Similarly, for tblFProduct table, we use five fields or attributes to
represent the ID, name, use, quantity, and unit price of a forest prod-
uct. Since the relationship between Company and Product is many-
to-many, we need to create another table to represent this relationship.

	 c.	tblFPComProd(FPC_ID, FP_ID, Quantity)
Figure 8.1 shows a design view of these tables, while Figure 8.2

shows how relationship tools may be used to designate relationships
among them.

Once this many-to-many relationship is built, enter some data
into the tables as shown in Figure 8.3.

The following queries can be performed using the tables we just created for
forest products sales (they were modified based on some query examples by
Dr. J. Atkins (2001)). Again, we can use either QBE or SQL with MS Access.
But be aware that sometimes it is difficult or impossible to create a complex
query using QBE.

	 1.	List the forest products company ID, products ID, quantity, and
quantity supplied if increased by 20%.

SELECT FPC_ID, FP_ID, Quantity, Quantity*1.2 AS NewQuantity
FROM tblFPComProd;

	 2.	List all the records in the Forest Products table.

Select * from tblFProduct;

	 3.	List the IDs of the forest products companies that can supply at least
one forest product in a quantity between 20 and 50.

SELECT FPC_ID, Quantity
FROM tblFPComProd
WHERE Quantity between 20 and 50;

133Structured Query Language and Access Query Examples

FIGURE 8.2
Building a many-to-many relationship between tblFPCompany and tblFProduct.

FIGURE 8.1
Schemas of three tables in dbForProdSale database.

134 Computing Applications in Forestry and Natural Resource Management

	 4.	List the forest products company name, product ID, and supplied
quantity; sort the result in ascending order of company name and
descending order of quantity.

SELECT tblFPCompany.FPCName, tblFPComProd.FP_ID, Quantity
FROM tblFPCompany, tblFPComProd
WHERE tblFPCompany.FPC_ID = tblFPComProd.FPC_ID
ORDER BY tblFPCompany.FPCName, Quantity DESC;

	 5.	List the name of the forest products companies that supply forest
product #3 (lumber).

SELECT FPCName
FROM tblFPCompany

FIGURE 8.3
Data entries for three tables in the dbForProdSale database.

135Structured Query Language and Access Query Examples

WH�ERE FPC_ID = any (SELECT FPC_ID FROM tblFPComProd WHERE
FP_ID = 3);

Here, we use a nested query. The nested SELECT must be enclosed
in parentheses () and the comparison “= any” may be replaced
by “in.”

	 6.	List the IDs of forest companies that supply at least one type of forest
products #2, #3, or #4.

SELECT FPC_ID
FROM tblFPComProd
WHERE FP_ID In (2,3,4);

	 7.	List the names of forest products companies that currently supply no
forest products.

SELECT FPCName
FROM tblFPCompany
WHERE not exists
(SELECT * FROM tblFPComProd WHERE FPC_ID = tblFPCompany.FPC_ID);

	 8.	Find the ID of the company that supplies the maximum quantity of
forest products.

SELECT FPC_ID
FROM tblFPComProd
WHERE Quantity >= all (SELECT Quantity FROM tblFPComProd);

We can use the MS Access built-in function, MAX, to do the same
thing in this example. This query can be rewritten as:

SELECT FPC_ID
FROM tblFPComProd
WHERE Quantity >= (SELECT MAX(Quantity) FROM tblFPComProd);

	 9.	Find the total number of forest products companies.

SELECT Count(*) AS No_Of_Companies
FROM tblFPCompany;

	 10.	List the IDs of the forest products companies that supply at least one
type of forest product.

SELECT DISTINCT FPC_ID
FROM tblFPComProd;

136 Computing Applications in Forestry and Natural Resource Management

	 11.	Find the total quantity of forest product #2 that is supplied.

SELECT SUM(Quantity) As TotalProducts
FROM tblFPComProd
WHERE FP_ID = 2;

	 12.	List the names of forest companies that supply at least two different
forest products.

SELECT FPCName
FROM tblFPCompany
WH�ERE 2<= (SELECT COUNT(FPC_ID) FROM tblFPComProd WHERE
FPC_ID = tblFPCompany.FPC_ID);

	 13.	List each forest products company ID with the average quantity it
supplies.

SELECT FPC_ID, AVG(Quantity)
FROM tblFPComProd
GROUP BY FPC_ID
ORDER BY FPC_ID;

We logically group quantity together using an aggregate statisti-
cal function AVG.

	 14.	List the names of the forest companies that supply exactly two differ-
ent types of forest products.

SELECT FPCName
FROM tblFPCompany
WH�ERE FPC_ID IN (SELECT FPC_ID FROM tblFPComProd GROUP BY
FPC_ID HAVING COUNT(*) = 2);

The HAVING clause complements the GROUP BY by providing
a Boolean condition to decide if a group should or should not be
displayed.

Class Exercises

	 1.	 What is SQL?
	 2.	 What is the basic structure of SQL?
	 3.	 How would we create simple queries with SQL and apply them in

Natural Resource Management using ArcMap or other programming
languages?

137Structured Query Language and Access Query Examples

References

Atkins, J. 2001. Database Management (Lecture Notes). Department of Computer
Science, West Virginia University, Morgantown, WV.

Microsoft Corporation. 2013. Introduction to Queries. http://office.microsoft.com/
en-us/access-help/introduction-to-queries-HA102749599.aspx. Accessed on
January 30, 2014.

SQLCourse.com. 2017. SQL Courses. http://www.sqlcourse.com/index.html.
Accessed on February 3, 2017.

http://office.microsoft.com
http://office.microsoft.com
http://www.sqlcourse.com

http://taylorandfrancis.com

Section IV

Handheld Devices

http://taylorandfrancis.com

141

Handheld Computers and Windows Mobile

To date, there are many types of handheld computers (HPCs) and versions of
Windows Mobile operating systems (OSs) available. In this chapter, we will
discuss some of the useful features of handheld PC and their OSs.

9.1 � Handheld Terms and Features

Handheld PC—A portable computer, with a display and a built-in key-
board, that is small enough to be held in one hand (such as Windows
Mobile personal digital assistant [PDA]).

Pocket PC—A computer that fits in the palm of your hand, runs the
latest Windows Mobile OS, and is typically smaller than an HPC.
It includes Pocket Word, Pocket Excel, Calendar, Contacts, and Tasks
as well as other applications.

Personal Digital Assistant—A handheld or mobile device with per-
sonal information manager and basic computing functions such as
web browsing, office applications, and data manipulations. It could
be an HPC or a pocket PC (PPC).

Windows Mobile Device Center—Offers device management and data
synchronization between a Windows Mobile-based device (HPC,
PPC, or other PDAs) and a computer. It replaced MS ActiveSync.

CompactFlash card—A nonvolatile secondary storage card that is com-
patible with mobile devices. CompactFlash (CF) uses flash memory,
so it does not require too much power to work, and no power is
needed to maintain the information stored in the chip. With an
adapter, it is compatible with a PC card slot.

Secure Digital card—Also a nonvolatile secondary storage card by
SanDisk, the Secure Digital (SD) card can be used in just about every
type of mobile device (digital cameras, video cameras, tablets, and
smartphones).

Dynamic Host Configuration Protocol—Dynamic Host Configuration
Protocol (DHCP) automatically configures the PC Companion with

9

142 Computing Applications in Forestry and Natural Resource Management

an Internet Protocol (IP) address, subnet, and gateway. DHCP is sup-
ported with Ethernet and wireless local area networks (WLANs).

File Transfer Protocol—A standard IP for transmitting files between
computers on the Internet.

Transport Communications Protocol/Internet Protocol—The commu-
nications protocol that Windows Mobile uses to communicate with
the Internet and for synchronization.

Universal Serial Bus—A connection standard used by computers and
mobile devices. These are the types of cables and connectors used in
a computer bus.

When selecting a handheld or PDA for applications in forest and natural
resource management, a user must weigh the importance of size, perfor-
mance, features, weight, and cost (Cnet.com 2014). Consider the following
characteristics and uses before purchasing:

	 1.	Size and Weight—Most current models of PDAs or HPCs are between
7.62 and 15.24 cm (3 and 6 in.) long, about 7.62 cm (3 in.) wide, and
weigh between 113.40 and 198.45 g (4 and 7 ounces) (Cnet.com 2014).
Ask yourself if a model is portable and light enough for you to carry
it with you when you need it in the field.

	 2.	Data Input—Data entry is essential to HPCs in field applications.
Check the type of HPC keyboards your applications require.
In addition to touch screen, do you need a touchpad for mouse
functions?

	 3.	Memory—PDAs typically have their OS stored in read-only memory
(ROM) and use built-in random access memory (RAM) for proces-
sor memory and as file storage space. Thus, more attention needs to
be paid to how much RAM is installed in the device. For example,
NAUTIZ X7 and Juniper Archer have a RAM memory of 128 MB.

	 4.	Secondary Storage—Do you need a CF, PC card, or SD slot? Do you
have enough RAM for running programs and storage? A memory
card is a good way to store more application data and is used as a
backup of RAM data.

	 5.	Processors—A fast processor is always preferred for an HPC, espe-
cially if it is used for playing music, video games, and some complex
computing. For example, NAUTIZ X7 uses a Marvell 806 MHz pro-
cessor, while Juniper Archer uses a PXA 270 processor.

	 6.	 Internet Connectivity—We can use Ethernet or wireless to connect
HPCs to the Internet.

	 7.	Battery—Battery life is critical for HPCs and PDAs. We would
require a battery life longer than 8 hours under field conditions for
natural resource applications.

143Handheld Computers and Windows Mobile

	 8.	GPS Capability—Oftentimes, your HPCs may be used to collect spa-
tial data in natural resource applications. You need to ensure that your
device has the hardware installed or the capability to support GPS.

	 9.	Applications—Do you need MS Office Mobile including Excel
Mobile, PowerPoint Mobile, and OneNote Mobile? We typically use
HPCs for specially designed application programs in forestry and
natural resources, such as timber cruising, field survey, and mapping
programs. For these applications, we also need SQL Server CE for
Windows Mobile Devices.

9.2 � Handheld PCs and Windows Mobile

Several varieties of HPCs are available from a few major manufacturers
(Table 9.1). These devices have similarities and differences that must be
weighed when considering which device suits your forestry needs.

9.2.1 � Hewlett-Packard Jornada Series

Although the HP Jornada 720 made its debut in the fall of 1999, the final pro-
duction of the devices went to the end in 2001 (Fitch 2006). The HP Jornada
720 essentially marked the end of Hewlett-Packard’s work in the HPC market.

Hewlett-Packard Jornada 720 Series HPC is a mobile device powered by
Microsoft Windows for HPC 2000 (a version of Windows CE) OS (Hewlett-
Packard Co. 2000). It uses the Intel SA-111-206 MHz processor with a memory
of 32 MB. If you are familiar with Microsoft Windows products and notebook
PCs, you will notice that your HP Jornada has many of the same character-
istics, making it easy for you to quickly become proficient and productive.
It has many useful features such as Pocket Office that includes Pocket Access.

9.2.2 � Zebra Workabout Handheld Field PC

The Zebra Workabout Pro is designed for applications across a range of
industries, including mobile field services, logistics, warehousing, transpor-
tation, and manufacturing. It used to be Psion Teklogix, and it is now owned
by Zebra Technologies (https://www.zebra.com/us/en/products/mobile-
computers/handheld.html). Its impressive flexibility enables us to apply it
in forestry and natural resource management. There are a number of add-
ins and software applications you can attach to the device, including a GPS
module used to track and trace locations of trees or forest roads and land-
ings. The device also provides a variety of features and benefits including
mobility and rugged reliability. A few models of Workabout are available,
including the Workabout Pro 3 or 4 (Figure 9.1).

https://www.zebra.com
https://www.zebra.com

144 Computing Applications in Forestry and Natural Resource Management

TA
B

LE
 9

.1

C
om

pa
ri

so
n

s
of

 F
ea

tu
re

s
an

d
 F

u
nc

ti
on

s
of

 F
ew

 H
PC

s

D
ev

ic
e

H
P

 J
or

n
ad

a
72

0
Z

eb
ra

 W
or

k
ab

ou
t

P
ro

3
A

ll
eg

ro
 M

X
Ju

n
ip

er
 A

rc
h

er
N

A
U

T
IZ

 X
7

T
ri

m
b

le
 G

eo
 X

T

O
pe

ra
ti

ng
 s

ys
te

m
W

in
d

ow
s

C
E

W
in

d
ow

s
M

ob
ile

 6
W

in
d

ow
s

M
ob

ile
 6

W
in

d
ow

s
M

ob
ile

 6
W

in
d

ow
s

M
ob

ile
 6

W
in

d
ow

s
M

ob
ile

 6
Pr

oc
es

so
r

In
te

l S
A

-1
11

-
20

6
M

H
z

PX
A

27
0

62
4

M
H

z
In

te
l A

rm
-X

Sc
al

e
PX

A
27

0
52

0
M

H
z

X
Sc

al
e

80
6

M
H

z
A

R
M

92
0T

 P
X

A
27

x
52

0
M

H
z

R
A

M
 (M

B
)

32
25

6
12

8
12

8
12

8
12

8
R

ug
ge

d
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
G

PS
N

o
N

o
N

o
Ye

s
Ye

s
Ye

s
B

lu
et

oo
th

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

W
ir

el
es

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

145Handheld Computers and Windows Mobile

Workabout runs on the Windows Mobile 6.1 OS and uses PXA270 624 MHz.
It has 256 MB of RAM and one GB of flash memory storage. The USDA Forest
Service plans to use it to run the Forest Service’s FSCruiser and FSVeg inven-
tory software, as well as other products, such as Fountains Forestry’s Pocket
Dog data collection and processing software (www.fountainsamerica.com/
twodog/). The device comes with basic software, including Microsoft Office
Mobile (Excel, PowerPoint, and Word), Internet Explorer, and calendar and
contacts applications.

9.2.3 � Allegro Field PC

The Allegro series Field PCs include Allegro CE, CX, MX, and Allegro 2 by
the Juniper Systems. The ultra-rugged Allegro MX Field PC (Figure 9.2) is
built to perform in the most demanding outdoor or industrial environments
(www.junipersys.com). This device uses an Intel Arm-XScale processor with
a RAM of 108 MB. It runs on the Windows Mobile 6.1. Other features include
(a) integrated Bluetooth wireless technology and Wi-Fi 802.11b/g, (b) IP67
rating for rugged applications, (c) robust full alphanumeric keyboard with
62 large keys that are color-coordinated by function, 12 function keys that
can be used as hot keys in application programs, and five Windows keys

FIGURE 9.1
Zebra Workabout Pro 3. (From Zebra Technologies Corporation, Lincolnshire, IL, www.zebra.
com/us/en.html, accessed March 15, 2017.)

http://www.fountainsamerica.com
http://www.fountainsamerica.com
http://www.junipersys.com
http://www.zebra.com
http://www.zebra.com

146 Computing Applications in Forestry and Natural Resource Management

that provide enhanced use with Windows Mobile, (d) highly outdoor-visible
display in color or monochrome, and (e) rechargeable battery that operates
for more than 12 hours on one charge.

9.2.4 � Archer Field PC

The Archer by Juniper Systems (Figure 9.3) is designed for the most demand-
ing field applications (www.junipersys.com/Juniper-Systems-Rugged-
Handheld-Computers/products/Archer-Field-PC). This rugged handheld
PC can survive 1.52 m (5 ft) drops onto concrete, full immersion in water,
and temperatures up to 60°C (140°F). The Archer is fully waterproof and
dustproof, earning it an IP67 rating. It is also tested to MIL-STD-810F for
water, humidity, sand and dust, vibration, altitude, shock, and temperature.
It uses Windows Mobile 6.1 OS with a 520 MHz PXA270 processor and has a
RAM of 128 MB. Its battery life can be up to 20 hours. A GPS module can be
attached to the device. It comes with Microsoft Office Mobile.

9.2.5 � NAUTIZ X7 Field PC

NAUTIZ X7 by the Handheld Group AB (Figure 9.4) exemplifies the evo-
lution of handheld PC (https://www.handheldgroup.com/). NAUTIZ X7

FIGURE 9.2
Allegro MX Rugged Handheld. (From Juniper Systems, Logan, UT, www.junipersys.com,
accessed March 8, 2017.)

http://www.junipersys.com
http://www.junipersys.com
https://www.handheldgroup.com
http://www.junipersys.com

147Handheld Computers and Windows Mobile

FIGURE 9.3
Juniper Archer Field PC. (From Juniper Systems, Logan, UT, www.junipersys.com, accessed
March 8, 2017.)

FIGURE 9.4
NAUTIZ X7 Field PC. (From HHCS Handheld USA, Inc. Lidköping, Sweden, https://www.
handheldgroup.com/, accessed March 9, 2017.)

http://www.junipersys.com
https://www.handheldgroup.com
https://www.handheldgroup.com

148 Computing Applications in Forestry and Natural Resource Management

offers a lively 806 MHz XScale processor with 128 MB of onboard RAM and
a generous 4 GB of flash storage. This field-ready device has a 5600 mAh
Li-ion battery that will operate up to 12 hours on a single charge.

NAUTIZ X7 also delivers an unprecedented package of capability. It starts
with integrated SiRF Star III GPS, Bluetooth 2.0, and 802.11b/g WLAN func-
tionality, plus a built-in 3-megapixel camera with autofocus and an LED
flash. NAUTIZ X7’s innovations include 3G capability for GSM/UMTS
phone and data transmission, an integrated compass and altimeter, and even
a g-sensor/accelerometer that can measure speed, vibration, and rotation,
opening the door to countless application possibilities. The Windows Mobile
6.1 OS, 8.89 cm (3.5 in.) VGA touch screen display, and numeric keypad make
this handheld easy to operate in the field applications of forestry and natural
resources.

9.2.6 � Trimble GeoExplorer 3000 Series Handhelds

The GeoExplorer 3000 series (Figure 9.5) includes the GeoXH, GeoXM, and
GeoXT handhelds (Trimble 2012). These handhelds combine a Trimble GPS

FIGURE 9.5
Trimble Geo XT. (From Trimble, GeoExplorer 3000 Series User Guide, Trimble Navigation Limited,
Westminster, CO, 2012.)

149Handheld Computers and Windows Mobile

receiver with a field computer powered by the Microsoft Windows Mobile
6 OS. The GeoXT handheld provides submeter accuracy. It uses an ARM920T
PXA27x processor with a RAM of 104 MB and an expansion SD slot of up to
1 GB. It has built-in Bluetooth and WLAN connectivity options. This hand-
held device is rugged and resistant to heavy wind-driven rain and comes
with an all-day battery.

9.3 � Mobile Operating Systems and Data Communications

9.3.1 � Mobile Operating Systems

There are four major mobile OSs for HPCs and smartphones: iOS,
Android, Windows Mobile, and BlackBerry. All four of these OS plat-
forms have their strengths and weaknesses, depending on what you are
already using and what you want to get out of your computing experi-
ence (Colbert 2013). Android, iOS, and BlackBerry are specifically used
for smartphones. For handheld field PCs, Windows Mobile is the most
commonly used OS.

Windows Mobile is a mobile OS developed by Microsoft for smartphones,
PPCs, and HPCs. It is supplied with a suite of basic applications developed
with the Microsoft Windows API and is designed to have features and an
appearance somewhat similar to desktop versions of Windows. Windows
Mobile is composed of a variety of components, each providing specific func-
tionalities and capabilities.

Windows Mobile 6, for example, was released on February 12, 2007. It is
powered by Windows CE 5.0 (version 5.2) and comes in three different ver-
sions: Windows Mobile 6 Standard, Windows Mobile 6 Professional, and
Windows Mobile Classic. Devices without an integrated phone are called
Windows Mobile Classic devices instead of PPCs. Devices with an integrated
phone and a touch screen are called Windows Mobile Professional devices,
and devices without a touch screen are called Windows Mobile Standard
devices (Hall 2007).

Table 9.2 compares four mobile OSs and lists the potential applications
for Blackberry, iOS, Android, and Windows Mobile. Some of the differ-
ences among these OSs might be easily recognized, yet greater details of
these OSs should be explored if we intend to use them for field comput-
ing and mapping applications. Their strengths and weakness should be
compared in areas such as e-mail, GPS, multimedia, Microsoft Office com-
patibility, Internet connectivity, ease of use, and the quality of third-party
applications.

150 Computing Applications in Forestry and Natural Resource Management

9.3.2 � Data Communications between HPCs and PCs

We can connect a handheld device to a desktop PC using a serial connec-
tion, USB connection, infrared port, and wireless or network connection.
However, a program called Windows Mobile Device Center (formerly
called Microsoft ActiveSync) needs to be installed on the desktop PC. The
Windows Mobile Device Center offers device management and data syn-
chronization between a Windows Mobile–based device and a desktop PC.
It provides a great synchronization experience with Windows-powered PCs
and HPCs. The synchronization process offers advanced capabilities like
autodetection of the serial port on which your PC companion is installed.
You can configure the MS Windows Mobile Device Center including sync
settings and rules.

One of the most convenient features of MS Windows for HPCs is the
so-called “instant on.” With instant on, there is no waiting for HPCs to
start up or shut down; you can start working immediately by pressing
the Power key. When you are finished, turn off your HPC by pressing the
Power key.

9.4 � Data Storage and Program Execution

One of the first things new mobile device users notice is that they can store
information on their device right away. This information is stored in internal
RAM. We can add a CF card, PC card, or SD card to store data and pro-
grams as well. The CF, PC, and SD cards are used as secondary storage in the
device. Some of the HPC models might also allow for internal storage to the
extra flash ROM.

TABLE 9.2

Mobile Operating Systems and Application Programs

Service Android OS Apple iOS
Blackberry

OS
Windows

Mobile OS

Web browser Android (WebKit) Safari Blackberry Internet Explorer
Flash playback Yes No No No
Outlook web access
(web interface)

Yes Yes No Yes

Adobe Acrobat Yes Yes Yes Yes
Excel Yes Yes Yes Yes
PowerPoint Yes Yes Yes Yes
Word Yes Yes Yes Yes

151Handheld Computers and Windows Mobile

9.4.1 � Random Access Memory

For HPCs, RAM is used differently than on a desktop PC. The RAM on a
mobile device is usually battery backed up. In a mobile device, the internal
RAM is used to store both programs and data. RAM is typically divided into
two parts: one for data storage and the other for program execution. It is
compressed real time using two different methods to maximize the amount
of information you can store. One method is to compress the whole file as it
is received. This is good for programs and for data that are in ASCII format.
The other method of compression is to split every other byte of data into two
separate streams. Then the resulting streams of data are compressed.

9.4.2 � External PC, CF, and SD Cards

PC, CF, and SD cards are separate external areas to store both programs and
data. We can store much larger files on external storage than on internal
RAM. There are two types of storage available: flash and hard disk. Reading
and writing to flash storage is fairly fast and requires much lower power
than reading and writing to hard disks. We can use external storage to install
application programs.

The PC card, introduced in 1990, is a credit-card-sized memory or I/O
device that fits into a personal computer (usually a notebook or laptop com-
puter). Probably, the most common use of a PC card is the telecommunica-
tions modem for notebook computers.

There are two major differences between CF and SD memory cards. SD
cards are significantly smaller than CF cards and are equipped with a nine-
pin interface, as compared to the 50-pin interface of the CF. Another major
difference between these two types of memory cards is the absence of a
microcontroller in SD cards.

9.4.3 � Program Execution

A portion of both the internal RAM and the external storage card is used
to store programs only. When you choose to run a program stored in either
place, the program is copied into RAM (the execution space) to execute
(Hewlett-Packard Co. 2000). This means that there are two copies of a pro-
gram if it is being executed.

In the Windows Mobile OS, virtual memory is used, meaning that memory
is allocated on a page-by-page (usually 4k in size) basis for programs that
are running. The system reclaims pages that are no longer being used so that
they can be used by other programs. When data have been written to a page,
that page does not get reclaimed since there is no swap file to write the data
temporarily (Hewlett-Packard Co. 2000). This concept of virtual memory
is radically different from the desktop. The Windows Mobile OS can also
switch background applications to suspended mode to free up RAM.

152 Computing Applications in Forestry and Natural Resource Management

Class Exercises

	 1.	 Compare/contrast synchronization vs. file copying.
	 2.	 Define HPC and PPC.
	 3.	 Where can we store data and programs on HPCs?
	 4.	 How can we execute a program on HPCs?
	 5.	 What is RAM and how is RAM used on an HPC?
	 6.	 What are the major OSs for HPCs and smartphones?

References

Cnet.com. 2014. Handhelds Buying Guide. http://reviews.cnet.com/4520-9580_7-
5139854-1.htmltag=more. Accessed on February 3, 2014.

Colbert, D. 2013. Which is the superior mobile OS: iOS, Android, or Windows 8?
http://www.techrepublic.com/blog/tablets-in-the-enterprise/which-is-the-
superior-mobile-os-ios-android-or-windows-8/. Accessed on February 7, 2014.

Fitch, C. 2006. Flashback: Hewlett-Packard Jornada 720. http://www.hpcfactor.com/
reviews/hardware/hp/jornada720/. Accessed on February 5, 2014.

Hall, R. 2007. New Windows Mobile 6 devices. Smartphone & Pocket PC Magazine
http://mobile.smartphonemag.com/cms/_archives/Jun07/wmsix.aspx.
Accessed on February 5, 2014.

Hewlett-Packard Co. 2000. HP Jornada 720 Series Handheld PC—User’s Guide. Asia
Pacific Personal Computer Division, Singapore.

Trimble. 2012. GeoExplorer 3000 Series User Guide. Trimble Navigation Limited,
Westminster, CO.

http://reviews.cnet.com
http://reviews.cnet.com
http://www.techrepublic.com
http://www.techrepublic.com
http://www.hpcfactor.com
http://www.hpcfactor.com
http://mobile.smartphonemag.com

153

Handheld PC Applications: An Integrated
Computer-Based Cruising System

10.1 � Introduction

Computer programs have been developed for many applications in for-
estry, from the development of species-specific optimal thinning schedules
to stand generation and harvesting simulations (Farrar 1981, Brooks and
Vodak 1986, Reisinger et al. 1988, Rose and Chen 1995). Computer simula-
tion has proven to be sufficiently comprehensive to handle the various types
of problems envisioned in forest operations and has been used for linking
the variable components into production and cost analysis (Goulet et al.
1979, Stuart 1981). Simulation also provides an accepted method of evalu-
ating a wide range of system configurations, operating environments, and
forest utilizations. The use of computer programs in the forest industry can
reduce costs, save time, and aid extensively in the practice of processing for-
est inventory data (Rennie 1991). Timber cruising and forest inventory are
two important aspects of forest practices, and using a computer program
to determine timber cruise and forest inventory design and plot layout can
minimize time in the field and result in considerable savings in time and
money (Wiant and Gambill 1985). A computer-based timber cruising and
forest inventory system could help landowners and resource managers pro-
tect forest resources and assist in the management of timberlands (Blinn and
Vandenberg-Daves 1993).

Several timber cruising programs have been developed, from simple
calculator-assisted procedures for marking stands and rapid sawtimber/
pulpwood estimates to relatively complicated handheld- or PC-based pro-
grams for yield curve design and cruising data collection and analysis (Moser
and Raney 1990, Wiant 1990, MacLean et al. 1998). Wiant and Gambill (1985)
developed a program to minimize timber cruise field time by determining
the optimal basal area factor or plot size. This package was written with
BASIC and run under a DOS environment.

Rennie (1991) showed new uses of Statistical Analysis System (SAS) for
processing timber inventory data. The SAS routines would allow the forester

10

154 Computing Applications in Forestry and Natural Resource Management

to write a program that would enable the efficient design of a forest inven-
tory to meet specified objectives.

The Private Lands Information System (PLIS) was developed to provide
field foresters access to a map-based inventory of nonindustrial private
timber lands in Minnesota (Blinn and Vandenberg-Daves 1993). The PLIS
included three basic components: hardware, software, and a database. The
database held not only data for individual timber stands but also spatial
data for stand or property boundaries. A timber cruise and forest inven-
tory program named CRUISE was developed by Dr. Harry Wiant to pro-
cess cruise data into meaningful cruise statistics in the field (Wiant 1990).
CRUISE was programmed with HotPaw™ Basic and is used on the Palm
OS handheld. The CRUISE99 program was accordingly developed for the
PC environment.

Reports need to be generated once cruising/inventory data are processed.
Using a relational database management system such as MS Access, Oracle,
or dBASE could fulfill the need of generating forest inventory reports (Belli
et al. 1987, Wang et al. 2004). Belli et al. (1987) stored tabular data such as site
descriptions, plot-level data, and tree-level data in a database. Reports gener-
ated by the database management system included stand/stock tables, land
use summaries, and recalculation of individual tree volume estimates from
specified input files (Belli et al. 1987).

Information on timber cruising programs is also available on the Internet.
The USDA Forest Service provides four Windows-based generic pro-
grams—Check Cruise, Cruise Design, Timber Theft/Local Volume Table,
and Traverse (http://www.fs.fed.us/fmsc/measure/cruising/). The Check
Cruise program is used to compare measurements and volumes between
an original cruise and a check cruise while the Cruise Design program was
developed to help cruisers design timber cruises and meet predetermined
sampling errors. The Timber Theft/Local Volume program is used not only
to determine the volume of a tree but also to estimate the removed volume
in a theft case. The Traverse program uses distances and compass bearings
to construct maps and determine the acreage within the traversed area.
Canal Forest Resources developed an advanced timberland inventory and
investment management system. It offered silvicultural land management
and investment information to timberland investors through secure, web-
based technology. A forest inventory software program named TwoDog
was initially developed and provided by Foresters Incorporated and is
now operated and supported by Fountains America Inc. (http://www.
fountainsamerica.com/twodog/). It is a comprehensive forest inventory
application for field and desktop computers. Sampling options are also pro-
vided in the package.

In this chapter, we will discuss an integrated timber cruising system spe-
cifically for Appalachian hardwood forests (Wang et al. 2004), including
object-oriented system design and entity-relationship (ER) data modeling
techniques for handheld PC (HPCs).

http://www.fs.fed.us
http://www.fountainsamerica.com
http://www.fountainsamerica.com

155Handheld PC Applications

10.2 � System Structure

This integrated timber cruising system consists of three major components:
a handheld data collection system, data transfer, and data analysis compo-
nents (Figure 10.1). The handheld system is used to collect cruising data,
including forest, plot, and tree measurements. Understory vegetation and
wildlife data collection (referred to as transect data) are also implemented
with the handheld system. Data transfer is an interface for communicating
between the HPC and desktop PC and is used to synchronize data on the
desktop PC. Data analysis is a component that is used to analyze and sum-
marize the cruise data and generate desired reports. These components can
be run as an integrated system, or on a stand-alone basis.

The handheld system was written with Microsoft VB CE, which is run
under Microsoft Windows CE or Mobile environment. It contains two main
modules: collect and edit (Figure 10.2). The collect module is designed to
allow a user to collect plot, tree, and transect data associated with each cruise
point, while the edit module is designed to permit field editing of tree data.
Retrieval and storage of cruising data is accomplished with an MS Access
database.

Both the data transfer and data analysis components were programmed
with MS VB V6.0, which resides on the desktop PC under the MS Windows
environment (Figure 10.2). The data transfer provides two major functional-
ities: it allows for the transfer of cruising data from HPC to desktop PC and
accommodates updates of data tables on the desktop PC as well as readying
the database for the next cruise transfer. The addition of species, cruise data

Forest

Handheld system

Database

Data transfer

Database

Data analysis

FIGURE 10.1
Structure of the integrated timber cruising system.

156 Computing Applications in Forestry and Natural Resource Management

backups, and exportation of data (into ASCII text and MS Excel) are also
provided in the data transfer component. ADO CE application programming
interface was employed to conduct data transfer via a dynamic link library
(DLL)—adofiltr.dll (Roof 1998). The adofiltr.dll, an MS Pocket Access file con-
verter and synchronizer, is a part of the ADO 2.0 Solution Development Kit
for Windows CE. It allows programmatic transfer of database tables between
the host desktop computer and the mobile device. This DLL contains two
functions, DesktopToDevice() and DeviceToDesktop(), which are
used to transfer data or copy tables. It runs on the desktop PC, not the hand-
held. The desktop initiates and controls the transfer process. The key require-
ment for this transfer process is the presence of the same table schemas on
both desktop and handheld. The ADO CE data transfer feature has a solid
set of tools for transferring data. This feature allows the transfer of complete
tables between devices rather than the synchronization of individual records.

The data analysis was organized in a modular way, in which modules
were designed as independently as possible (Figure 10.2). A module, or self-
contained unit of code, could be a single function or act as several functions.
A data access object was used to load the cruising data from the database

Handheld system Data transfer

Data transfer from HPC
to desktop PC Edit species

Edit cruising data

Backup

Export

Load cruising data

Cruising design

Cruising summary

Report

Next cruise?
N Y

Cruise infoForm class
Plot configurations

(fixed, VRP, 100% tally)

Database
on desktop PC

Update and empty HPC
data

Data analysis

Start

Collect

Forest, crew, and plot

Trees

Save data

Next plot?

Y

N

End

Database
on handheld

Transects
Trees

Retrieve tree data

Edit

FIGURE 10.2
Flowchart of the integrated timber cruising system.

157Handheld PC Applications

into this component. This allows tree-form class and cruise information to
be edited for analysis summaries and reports. In the cruise summary mod-
ule of this component, stand/stock table, point/plot, and cruising statistics
are provided by business functions built into the component. All end-user
reports were developed using an ActiveX component of an MS Access object,
which is a reusable piece of programming code and data. It allows the user
to call MS Access reports directly from a VB application without the use of
complicated coding.

A relational database model was used for holding cruising data on both the
handheld system and the data transfer component, which was implemented
based on the ER model (Figure 6.5). The relational database model presents
the data as a collection of tables. Instead of modeling the relationships in the
data according to the way that they are physically stored, the structure of an
ER model is defined by establishing relationships between data entity types.
As described in Chapter 6, an entity type represents a data table in the ER
model and has attributes (fields) that are the descriptive properties of the
entity type. Primary key refers to one or more fields that make a record unique
in a data table. The field (or fields) used to link to a primary key in another
data table is known as a foreign key, and a foreign key is any field(s) used in
a relationship.

There are four data entity types (Plot, Tree, Transect, and Species) in the
model. Each entity type has its own attributes. For example, the Plot entity
type has forest, crew, plotNo, plotType, and other attributes. Entity types are
related using relationships such as contains and associates in the model. For a
detailed description of this integrated timber cruising ER model, please refer
to Section 6.3 (Figure 6.5).

10.3 � System Implementation

10.3.1 � Handheld System

The main method of user interface with the handheld system is accomplished
through the touch screen using a stylus or fingertip. The touch screen is used
in much the same way the user would use a mouse to navigate and select
objects on a desktop computer screen. The user can also use a fingertip to tap
the touch screen, but the stylus provides the greatest accuracy.

Two modules were implemented in the handheld system to collect cruising
data (Figure 10.3). Forest and plot information are entered first, and the user
then selects the Add Plot button. The tree data frame is then enabled accord-
ingly (Figure 10.3a). There were three types of plots: intensive, DBH only, and
DBH and merchantable height. Text boxes on the tree data frame are enabled or
disabled depending on the type of plot being selected. A function was also

158 Computing Applications in Forestry and Natural Resource Management

implemented to calculate the cull percent of a tree. Once trees are entered, a
list box is used to display the tree attributes found on a plot. Three elemental
times can be collected at each plot: IP_Time, DP_Time, and HP_Time. IP_Time
is the time interval from when the Add Plot button is pressed to when the
Start Transect (understory vegetation data collection) button is pressed. DP_
Time is the time interval between when the Add Plot button is pressed and the
In-Trees box is checked, and HP_Time is the time between when the Add Plot

(a)

(b)

(c)

FIGURE 10.3
Main forms of data collection in the handheld system. (a) Data entry for forest plot and tree,
(b) transect data entry, and (c) editing tree data.

159Handheld PC Applications

button is pressed and the In-Logs box is checked. These time values can be
used to examine the cruising efficiency of the field users. A list of convenient
list boxes were implemented for adding or removing single or multiple items
for transect data collection (Figure 10.3b).

Field transcription mistakes are common; therefore, the handheld system
provides functionality that allows the user to edit tree data in the field (Figure
10.3c). Trees sampled on a plot can be retrieved based on forest, crew number,
and/or plot number. Once trees are retrieved for a plot, the user can navigate
the selected record set and modify the data for that tree and move to the next
tree or to another plot.

10.3.2 � Data Transfer

The data transfer component was implemented on the desktop PC and pro-
vides two basic functions: transferring cruise data from the HPC to the PC
and updating and clearing data tables on the HPC (Figure 10.4a). For the
sake of data security, this component was designed to run these events sep-
arately. The system is designed to first update the species table, and then
empty temporary tables on the HPC before the cruise data can be entered
in the field. Once users collect the cruising data, the data tables on HPCs are
copied and synchronized to a temporary database on the PC. The tables in
the temporary database are then appended to the related tables in the main
database. Finally, the system again needs to empty the data tables on hand-
helds in preparation for the next timber cruise.

Another major function of the data transfer component is editing cruise
data (Figure 10.4b). A VB tab strip control was used to implement three tabs:
Plot, Tree, and Transect. A VB DB gird on each tab is associated with a record
set defined in the database. The Plot tab is the first displayed. Structured
Query Language was used for retrieving trees and transects associated with
the plot the user selects. Once the user selects a record from the plot tab, they
can select either the Tree tab or the Transect tab to continue the editing process.

10.3.3 � Data Analysis

The data access object was implemented to connect the database, and a VB
flex grid control was used to display the data. Once the cruising data are
loaded into computer memory, a Cruise Design window pops up (Figure 10.5).
The user can browse the data loaded and invoke another dialog box to view
species and grade codes used in the system. In this Cruise Design window,
the user can design and save cruising information for a report header. The
user simply enters data into the required text boxes and then selects the Save
Cruise Info button. To modify the form class for a specific species, the user
simply clicks the Girard Form Class button. A form is displayed using a DB
grid control associated with a form class table in the database. This allows
the user to modify the form class data.

160 Computing Applications in Forestry and Natural Resource Management

Cruise type selections can also be made during the cruise design process.
The user can choose Fixed Area, Variable Radius Plot (VRP), or 100% Tally by
checking VB radio buttons. If a plot type of Fixed Area is chosen, Plot Size
must be entered. Basal Area Factor should be given if VRP is checked. Four
types of summaries are provided depending on the user’s requirements.
Volume summaries can be done on both per acre and per tract basis. Stand/
Stock Tables are further summarized by DBH Class, Species & DBH, or by

(a)

(b)

FIGURE 10.4
Major functions of data transfer component. (a) Transfer of cruise data and (b) editing of cruise
data.

161Handheld PC Applications

Grade, Species, DBH. Cruise statistics are provided for volume per acre in
cubic feet, International board feet (1/4) (IBFV), Doyle (DBFV), trees per
acre, and basal area per acre. Statistics include the mean, standard devia-
tion, standard error, variance, coefficient of variance, confidence interval at
95% level, percent of error, and sample size.

Once the cruising data are summarized, the results are stored in the data-
base for report generation. A total of seven reports can be generated in the
data analysis component of this system.

Class Exercises

Using a Handheld PC to Collect Timber Cruising Data
In this lab, we are going to use a Windows Mobile handheld computer to

collect timber cruising data. You may not be required to conduct a real timber
cruise in this lab, depending on your class instruction. Simulated cruise data
will be provided for entry into handheld computers.

	 1.	Using the 240TimbInv or a similar program on a handheld computer
(such as Nautiz X7), enter plot and tree data.

FIGURE 10.5
A major form in the data analysis component.

162 Computing Applications in Forestry and Natural Resource Management

	 2.	 Import raw data from the handheld to the desktop computer using the
Windows Mobile Device Center.

	 3.	 Download and Save the Microsoft Access database file Handheld.accdb.
This file has the tables set up for the importation of the raw data.

	 4.	 Import raw data into Microsoft Access.
	 5.	 Create queries to summarize:
	 i.	 Basal area and volume by plot AND by diameter class (DBH).
	 ii.	 Basal area and volume by species AND by diameter class (DBH).
	 6.	 Create reports based on the two queries created. Sort reports by plot or

species and by DBH.

References

Belli, K.L., A.R. Ek, M.H. Hansen, and J.T. Hahn. 1987. Statewide forestry databases
for microcomputers. Northern Journal of Applied Forestry 4: 117–118, 165.

Blinn, C.R. and J. Vandenberg-Daves. 1993. Evaluation of a computerized timber
inventory system for nonindustrial private landowners. Northern Journal of
Applied Forestry 10(3): 123–127.

Brooks, D.G. and M.C. Vodak. 1986. YPOP: A microcomputer program for evaluat-
ing thinning alternatives in natural stands of yellow-poplar. Northern Journal of
Applied Forestry 3: 3–5.

Farrar, K.D. 1981. In situ stand generator for use in harvesting machine simulations.
MSc thesis, Virginia Polytechnic and State University, Blacksburg, VA, 211pp.

Goulet, D.V., R.H. Iff, and D.L. Sirois. 1979. Tree-to-mill forest harvesting simulation
models: Where are we? Forest Products Journal 29(10): 50–55.

MacLean, D.A., K.B. Porter, and J. Kerr. 1998. Forester’s yield curve designer soft-
ware. Northern Journal of Applied Forestry 15(1): 23–27.

Moser, J.W. and J.D. Raney. 1990. A programmable calculator-assisted proce-
dure for marking unevenaged stands. Northern Journal of Applied Forestry 7:
140–142.

Reisinger, T., W.D. Greene, and J.F. McNeel. 1988. Microcomputer-based software for
analyzing harvesting systems. Southern Journal of Applied Forestry 12: 37–41.

Rennie, J.C. 1991. Forest inventory processing with statistical software. Northern
Journal of Applied Forestry 8: 41–44.

Roof, L. 1998. Professional Visual Basic Windows CE Programming. Wrox Press Ltd.,
Birmingham, U.K., 447pp.

Rose, D.W. and C.M. Chen. 1995. An interactive thinning simulation for red pine
stands. Northern Journal of Applied Forestry 12(1): 43–48.

Stuart, W.B. 1981. Harvesting analysis technique: A computer simulation system for
timber harvesting. Forest Products Journal 31(11): 45–53.

163Handheld PC Applications

Wang, J., S. Grushecky, and J. Brooks. 2004. An integrated computer-based cruis-
ing system for central Appalachian hardwoods. Computers and Electronics in
Agriculture 45(2004): 133–138.

Wiant, H.V. 1990. An inexpensive computer system for rapid sawtimber estimates.
Northern Journal of Applied Forestry 7: 142–145.

Wiant, H.V., Jr. and C.W. Gambill. 1985. Minimize field time when cruising
Appalachian hardwoods. Northern Journal of Applied Forestry 2: 70.

http://taylorandfrancis.com

165

Introduction to Geospatial Technology
Applications in Forest Management

Geospatial technology refers to technology used for visualization, measure-
ment, and analysis of features or phenomena that occur on earth. Geospatial
technology includes three different technologies: global positioning systems
(GPS), geographical information systems (GIS), and remote sensing (RS). In
this chapter, we will introduce some basic applications of GPS, GIS, and RS
in forest resource management.

11.1 � GPS Applications

11.1.1 � What Is GPS?

GPS is a location system based on a constellation of about 24 satellites orbiting
the earth at altitudes of approximately 17,702.78 km (11,000 miles) (Corvallis
Microtechnology Inc. 1996). Each of these satellites makes two circuits around
the earth every 24 h. GPS was conceived in 1960 and developed in the 1970s
by the U.S. Department of Defense for its tremendous application as a mili-
tary locating utility. The first satellites were launched into space in 1978. The
system was declared fully operational in April 1995. Over the past several
years, GPS has proven to be a useful tool in nonmilitary mapping applica-
tions such as in forest and natural resource management. Uncorrected posi-
tions determined from GPS satellite signals produce accuracies in the range
of 50–100 m. When using a technique called differential correction, users can
get positions accurate to within 5 m (Corvallis Microtechnology Inc. 1996).
GPS needs four satellites to provide a three-dimensional (3D) position.

As GPS devices are becoming smaller and less expensive, there are an
expanding number of applications for GPS, such as GPS-based piloting,
driving navigations, precision agriculture and forestry, and navigation tools
for foresters, hikers, and hunters. There are three classes of GPS receivers:

	 1.	Geodetic
	 a.	 Capable of subcentimeter accuracy
	 b.	 Bulky, expensive

11

166 Computing Applications in Forestry and Natural Resource Management

	 c.	 High-precision mapping applications such as surveying,
geodetics

	 2.	Mapping
	 a.	 Capable of less than 3 m accuracy
	 b.	 Portable, less expensive
	 c.	 Accurate mapping for integration with GIS
	 3.	Navigation
	 a.	 Capable of less than 3 m accuracy
	 b.	 Light-weight, cheap
	 c.	 Basic navigation, limited data storage

Global navigation satellite system (GNSS) is a satellite system that is used
to pinpoint the geographic location of a user’s receiver anywhere in the
world. There are four GNSSs that are currently in either full or partial opera-
tion: the U.S. GPS, the Russian Federation's global orbiting navigation satel-
lite system, the European Union's Galileo, and China’s Beidou. Each of the
GNSSs employs a constellation of orbiting satellites working in conjunction
with a network of ground stations in many applications.

11.1.2 � GPS in Forestry and Natural Resource Management

GPS can be used to gather spatial data in forestry and natural resources.
This data is collected in the form of features (points, lines, or polygons).
When using GPS, it is best to know what types of features you would like
to collect. Point features can be used to obtain spatial locations of trees or
water bars in forest operations. Line features can be used to determine forest
road layout or to collect stream data for best management practices (BMPs).
A polygon can be used to determine a landing site or a tract boundary.
To increase accuracy, it is best to collect as many points for a feature as pos-
sible. A minimum of 10 points is recommended for accurate positions of
spatial features. You can set the GPS unit to collect points at different inter-
vals such as 1, 5, or 10 seconds. Furthermore, in order to improve accuracy,
you will need to be using a minimum of 4 satellites. An increased number
of satellites will speed up the collection process and make your features
more accurate.

11.1.2.1 � Data Collection

Depending on the handheld GPS device you are using, you may begin collect-
ing data just by powering on the GPS field software installed on the device.
The GPS field software product could be Trimble TerraSync, ESRI ArcPad, or
another third-party product. You will need to select the type of information
you want to collect, which can simply be General. Using this application, you

167Introduction to Geospatial Technology Applications in Forest Management

can collect and name features. You will want to create a new file and give it a
proper name (such as the tract or lab you are working with).

Now you are ready to collect new features. Select the type of feature you
want to collect and name the individual feature. While naming the feature
you will already be collecting data. After collecting your desired number of
points, store the feature. To collect a new feature, simply select Collect Data
and begin with a new feature.

11.1.2.2 � Data Transfer

If using a Tremble GeoXT you will need to transfer your data from the device
to a computer using the GPS Pathfinder Office. Other types of GPS units may
not require this step due to different software.

To begin transferring data using the GPS Pathfinder Office, connect the
device to your computer via a cable or using a wireless connection. Find
the toolbar on the far left of the computer’s screen, where you will see
three tools that you will use to transfer, collect, and export data. You will
first need to transfer the data from the GPS device to the computer. Click
the transfer button and select your file in order to transfer it to a premade
folder on the desktop. Select the data file you wish to transfer and proceed
to transfer the data.

Real-time differential correction for GPS (real-time DGPS) has had a very
positive effect on navigation and the verification of spatial data (Trimble
Navigation Limited 2004). The US-based Wide Area Augmentation System
(WAAS) is one example of real-time DGPS. It is also called satellite-based
augmentation system (SBAS). To receive WAAS corrections, a GPS receiver
needs to be SBAS-capable. However, in some places, there are no DGPS ser-
vices, and some applications need more accurate data than from DGPS. GPS
data are typically corrected after transferring to achieve better accuracy. This
process is called postprocessing. To postprocess data, you select a base sta-
tion or tower near you and download the necessary files to correct your data.
You will then need to correct these data and save them in the same folder as
a corrected file. Finally, you will need to export the data into the folder and
save it as a shapefile. After this step, you are ready to import your shapefiles
into ArcMap.

If you use a Garmin Etrex Legend GPS unit, you need to follow the steps
below to transfer your data from a GPS unit to a computer:

	 a.	Connect the GPS data transfer cable to a serial port of the personal
computer (PC). Connect the other end to the data connector on the
back of the GPS unit.

	 b.	Open ArcGIS on your desktop and turn on your GPS unit. Go to the
menu and click Tools → Extensions, check MxGPS 9x in the pop-up
dialog. Click View → Toolbars, check MxGPS 9x. Now the tool is ready
to use in ArcMap.

168 Computing Applications in Forestry and Natural Resource Management

	 c.	Click GPS Unit (Figure 11.1) → Download. Select Get Waypoints from
GPS. Click OK.

	 d.	To get all the points from the GPS unit, click the top-left button
(Figure 11.2a). Select all the points and then click Save (Figure 11.2b).
You can select to save them in a designated directory. The file will
also be added into ArcMap automatically.

	 e.	To download tracks from a GPS unit, follow steps (c) and (d).

11.2 � GIS Applications

11.2.1 � What Is GIS?

Geographic information system (GIS) is a powerful tool for spatial data
analysis. Although many different definitions of GIS exist (Clarke 2001), the
common concept is that GIS is a computer system that includes software
and hardware designed to provide users with the capability to visualize and
analyze spatial information.

GIS has emerged as an essential tool for urban and natural resource plan-
ning and management. The capacity to store, retrieve, analyze, model, and
map large areas with huge volumes of spatial data has led to an extraordi-
nary proliferation of applications. Geographic information systems are now
used for land use planning, utilities management, ecosystems modeling,
landscape assessment and planning, transportation and infrastructure plan-
ning, market analysis, visual impact analysis, facilities management, and real
estate analysis, as well as many other applications in forestry and natural
resources.

FIGURE 11.1
MxGPS9x in ArcMap.

169Introduction to Geospatial Technology Applications in Forest Management

A GIS map is made up of layers (Figure 11.3), or collections of geographic
objects that are alike (ESRI 2001). To make a map, you can add as many
layers as you want. Layers may contain features or surfaces. Geographic
objects (features) have a variety of shapes. All of them can be represented
as one of three geometric forms: point, line, or polygon. Polygons usu-
ally represent large objects, such as a harvested forest site, a tract of forest,
tracts of other lands, and countries. Lines represent things too narrow to be
polygons, such as forest roads, pipelines of natural gas, or recreation trails.
Points are used to represent locations, such as trees, landings, sawmills, cit-
ies, schools, or other plant locations. Polygons, lines, and points collectively
are called vector data.

(a)

(b)

FIGURE 11.2
Get points from a GPS unit. (a) Download GPS data and (b) save GPS data to computer.

170 Computing Applications in Forestry and Natural Resource Management

Surfaces have numeric values rather than shapes. For example, we can
measure values for elevation, slope, rainfall, temperature, and wind speed
for any particular location on the earth’s surface and generate a raster surface
using these values. A raster is a matrix of identically sized square cells. For
example, a 30 m elevation map for the state of West Virginia is made up of
30×30 m2 cells.

11.2.2 � GIS in Forestry and Natural Resource Management

The management of forests and natural resources has become progressively
more complex since there are multiple objectives to achieve, as well as multiple
criteria and constraints to consider. This makes GIS an important tool in deci-
sion-making during planning, policy-making, and management (Upadhyay
2009). GIS can be established to provide crucial information about resources
and can simplify planning and management of resources (e.g., recording and
updating resource inventories, harvest estimation, scheduling and planning,
ecosystem management, and landscape and habitat planning [ESRI 2003]).

Customers
V
e
c
t
o
r

R
a
s
t
e
r

Streets

Parcels

Elevation

Land usage

Real world

FIGURE 11.3
The concept of GIS map layers. (From ESRI, Getting to Know ArcGIS Desktop, ESRI Press,
Redlands, CA, 2001.)

171Introduction to Geospatial Technology Applications in Forest Management

As technology has advanced, GIS has become increasingly popular in natu-
ral resource management. GIS applications can be grouped into the follow-
ing four broad functional categories (with examples and descriptions related
to forestry and natural resources):

•	 Location—Locate forest resources, including the property location,
name, boundary, and other geographic references (Figure 11.4).

•	 Analysis—For example, what has changed in the forest (landscape,
land use, or vegetation) in the last 20 years? Overlaying several map
layers of spatial data is one common technique used in GIS. These
layers can be used to analyze different spatial features available
in GIS.

•	 Modeling and simulation—GIS is very powerful in spatial modeling
due primarily to its ability to deal with large quantities of spatial
data efficiently and effectively. Examples include impacts of forest
BMPs on harvested sites and phenology and vegetation changes due
to climate change.

•	 Visualization—Visualization is one powerful framework in GIS that
allows the user to see spatial data in the format of a simple map or
of a map with complex multidimensions. These simulations coupled
with animation techniques can be used to present spatio-temporal
data effectively. GIS can be used to generate 3D visual models of

Legend
Forest roads
Roadside buffer
Streams
Streamside buffer (SMZ)

Compartments
WVU research forest

Highway

0

68

17

14

13
12

11

9

8 7

6

10

5

4 3

2

1

15

19
16

21

20

22

23

18

0.4 0.8 1.6 miles

FIGURE 11.4
Overlaying compartments and other spatial attributes for West Virginia University (WVU)
Research Forest. Map was prepared by Dr. Benktesh Sharma using several data sources avail-
able from the WVU Division of Forestry and Natural Resources’ archive.

172 Computing Applications in Forestry and Natural Resource Management

forests and different forest management activities. For example, the
effect of different cutting patterns can be visually assessed in three
dimensions. Similarly, 3D visual models can be used to study spatial
patterns of trees in a forest (Wang et al. 2009b) (Figure 11.5). In gen-
eral, ArcScene in Esri’s ArcGIS can be used for making a 3D visual-
ization using digital elevation models (Figure 11.6).

GIS applications in forest and natural resource management can range
from simple analysis (such as overlaying different layers, measurement of
area and volume of forest resources, zonation and calculations of statistics)
to complex modeling and simulation. Overlaying different spatial attributes
such as roads, streams, and forest boundaries is one common task imple-
mented in GIS. Examples of modeling and simulation-related functions can
include spatial patterns of trees or landscapes (Wang et al. 2009b), spatial
regression analyses of forest resources (Overmars et al. 2003), geo-statistical
approaches to predictions (Grushecky and Fajvan 1999), and simulations of
resources over different spatial and temporal horizons.

GIS has been widely applied in the major areas of forest and natural
resource management. Some examples include:

Forest resource assessment and monitoring: Assessing deforestation, deg-
radation, and land use/cover change; examining forest types, age
classes, and succession stages; evaluating forest resources at various
spatial scales.

(a) (b)

Generated Measured

FIGURE 11.5
Spatial pattern of generated and measured stands. (a) Generated and measured stand with ran-
dom spatial pattern for a plot with 400 trees per ha; (b) Generated and measured stand with
clustered spatial pattern for a plot with 330 trees per ha.

173Introduction to Geospatial Technology Applications in Forest Management

Forest protection: Forest protection, whether against pests, fire, dis-
ease, or human actions, needs spatial data to improve the process
of forest planning and implementation (VDF 2008). For example,
with fire-related information gathered (such as location, direction,
rate of spread and intensity of forest fire, vegetation types, topog-
raphy, and historical records), fire occurrence can be predicted
using GIS.

Forest and biomass harvest planning and scheduling: Spatial forest model-
ing via GIS can substantially enhance the planning of forests and
biomass harvesting strategies. Spatial modeling could help forest
managers and landowners understand the economic, environmen-
tal, and social impacts of the proposed harvest. Sharma (2010) devel-
oped a computer-based forest planning/scheduling system to study
forest harvest strategies. The system could generate and visualize
a spatio-temporal forest plan for different management objectives.
The system was used to optimize different harvest schedules with
different objectives ranging from maximization of timber produc-
tion, to maximization of timber production and stand carbon stock,

FIGURE 11.6
A forested landscape simulation model using digital elevation models to generate terrain and
trees of central Appalachian hardwood forest.

174 Computing Applications in Forestry and Natural Resource Management

to maximization of carbon stock only under clear-cut and selection-
cut methods applicable for both long and short rotations.

Forest best management practices: Forest BMPs are guidelines for control-
ling sediment and protecting water quality during forest operations.
Spatial data such as soil, stream type, and population density are
collected for the sites to identify how these spatial attributes affect
BMP application, effectiveness, and compliance. Using spatial analy-
sis, Wang et al. (2009a) reported that higher levels of application,
effectiveness, and compliance were found on sites with either inter-
mittent or ephemeral streams, wider streamside management zones
(SMZs), or low soil moisture index, and no significant differences
were presented in BMP application, effectiveness, and compliance
among stream type, SMZ width, soil series, moisture index, and
population category. Road and landing layouts located outside of
high water cumulative flow areas also contributed to higher rates
of BMP application, effectiveness, and compliance, which substanti-
ated the importance of preharvest planning.

Forest conservation and biodiversity: GIS can help in the preparation of
conservation policies and plans, particularly in support of legisla-
tion via the functions of identification, selection, design, and man-
agement of protected areas and nature reserves (SIC 2009).

Climate change: Application of GIS in climate change is still in its early
stages. However, the strength of GIS in spatial and modeling analysis
and in organizing digital spatial data sets of different themes indi-
cates that it will play a big role in future studies, especially in phe-
nology, CO2 flux, and carbon- and water-cycling-related research.

Wildlife habitat conservation and planning: GIS is often used in habitat
and vegetation mapping, monitoring, assessment, and analysis of
the progression of conservation activities, ecological patterns, and
encroachment upon protected wildlife conservation areas by com-
paring images from different time periods.

Recreation and park management: GIS allows us to map recreation trails
and assess the flow of visitors to a park. With GPS data, we can accu-
rately map and analyze locations, times, and returns of visitors to
some specific spots in a park.

Soil and watersheds: Watershed spatial databases from local to national
scales are being maintained in many countries to serve the interests
of multiple stakeholders in watershed management (Musinguzi et al.
2008). Hamons (2007) investigated the amount of sediment deliv-
ered to stream channels and the determination of the topographical
attributes responsible for the origination and transfer of sediment
using a spatial analysis method. The sample data were collected in a
central Appalachian mixed hardwood forest from 2002 through 2005

175Introduction to Geospatial Technology Applications in Forest Management

and were analyzed spatially and statistically to determine the mag-
nitude of effect topographical attributes, road construction, and har-
vesting operations had on sediment delivery to the stream channel.

11.2.3 � GIS Software and Data

The many GIS packages currently on the market range from free software
products to expensive commercial software. ArcGIS, Smallworld, Manifold
System, Mapinfo, Autodesk, ILWIS, Erdas Imagine, GRASS, and MapServer
are some common software products that dominate the GIS system market.

GIS relies on spatial data for its application. In several ways, GIS provides
the basic functionality of a spatial data management system in which queries
can be made using structured query language. Therefore, an added advan-
tage of GIS is spatial information management.

Spatial data have some reference to geographic locations. Trees, for exam-
ple, are linked to a geographic domain (a forest in a county, a path in some
forest, etc.) yet several nonspatial analyses can be made on trees (such as tree
diameter and height). If the question we are considering does not require the
analysis of spatial attributes of our data, then GIS is not necessary. Spatial
information can be in the format of coordinates in latitude and longitude
or Universal Transverse Mercator coordinates. These coordinates are linked
with the spatial attributes. For example, if we prepare a map of counties in
a state, we usually have location information of these counties in terms of
X and Y coordinates in GIS. If we want to store elevation, then a third coor-
dinate “Z” is used.

GIS can be grouped into vector or raster categories based on the data type
and software used to represent spatial features. In vector GIS, spatial features
are represented by points (for point-based features such as locations of trees),
lines (for linear features such as rivers and forest roads), and polygons (for
area-based features such as forest stands, buffer zones, and forest tracts). In
raster GIS, spatial features are represented as pixels (the smallest picture ele-
ments). In most systems, both data types are available and they are intercon-
vertible. Suitability of one type over another really depends on the analysis
in question and on the scale of use (Figure 11.7).

Forest resource inventory and analysis was one of the earliest uses of GIS.
GIS is used to inventory forest types at the landscape level, delineate different
land covers, and delineate different management zones in a forest manage-
ment plan. GIS can also be used to plan for several harvest-related activities.
For example, it can be used to estimate the cost and plan the location and
design of forest access roads, skid trails, landing locations, SMZs, and stream
crossings. In such applications, it is customary to use the following analyses:

•	 Terrain and slope stability analyses
•	 Cut and fill estimates

176 Computing Applications in Forestry and Natural Resource Management

•	 Site suitability analyses
•	 Alignment and grade calculations
•	 Rights-of-way corridor studies
•	 Environmental impact assessments
•	 Integration of survey data
•	 Cost and material flow analyses

Zoning and buffering can be used in forest type classification (vegetation
stratification, slope/elevation zoning, growth zoning), SMZs, road and trail
buffers, recreational areas, protected forests, historical sites/area designa-
tion, water conservation areas, wetland areas, and wildlife habitat.

Mobile GIS is one of the recent field technologies that has been used in for-
est inventory and design. This technology allows mapping and real-time GPS
tracking to be integrated when conducting forest inventory. Using mobile
GIS techniques, tree locations and their attributes can be stored in a database.
This technique essentially requires a portable computer such as a handheld
PC, smart phone, or tablet PC loaded with GIS software (i.e., ArcPad, ArcGIS
for Windows Mobile and Tablet).

1

2

6

4

5

6

1

2

3

0 0.25 0.5 1 miles

7

8 5 8

4

7

N3

FIGURE 11.7
Vector representation of forest stand (as polygon) on left and raster representation of the same
stand on right. This map shows how stand boundary can be delineated. These stands can also be
displayed with attributes such as growing stocks, density, or other related forest stand proper-
ties. (Maps courtesy of Dr. Benktesh Sharma.)

177Introduction to Geospatial Technology Applications in Forest Management

While GIS has great utility in forest and natural resource management
planning, it also presents some challenges. GIS technology changes rapidly,
and its costs can be significant. There are also several functional limitations
of GIS such as how to show temporal constraints in a spatial representa-
tion, which is an important topic for forest and natural resource management
planning. Furthermore, while general-purpose GIS software is very efficient
in 2D spatial problems, multidimensional problems such as 3D modeling
with terrain features (which are important in ecological studies) have limita-
tions in terms of GIS applications.

11.3 � Remote Sensing Applications

11.3.1 � What Is Remote Sensing?

Remote sensing is the technique for obtaining information about an object or
phenomenon without making physical contact with the object. RS generally
refers to the use of aerial sensor technologies to detect and classify objects on
earth by means of propagated signals (Schowengerdt 2007).

Based on the source of the signal obtained, RS may be categorized as either
passive or active. Passive RS occurs when information emitted passively, like
sunlight, is merely recorded. Active RS occurs when a signal is first actively
emitted from its source, such as an aircraft or satellite, and then recorded.
(Schott 2007, Schowengerdt 2007, Liu and Mason 2009).

In active RS, the device emits energy in order to scan objects and areas, and
then its sensor detects and measures the radiation that is reflected or backscat-
tered from the target (Natural Resources Canada 2016). RADAR and LiDAR
use active RS. A simple example of active versus passive RS is taking a picture
using a camera with and without a flash (Natural Resources Canada 2016). As
described, “when we use a camera with a flash to take a picture, the camera sends
light to the target and the light reflects off the target back to the camera lens. The
reflected light will then be measured by the camera. If the flash is not used, then
the camera is a passive sensor as the light measured is from a source other than
the camera (sensor)” (Natural Resources Canada 2016).

11.3.2 � RS in Forestry and Natural Resource Management

RS has been extensively applied in agriculture, forestry, and natural resources.
Some examples include how RS is used in forestry and natural resources
management:

•	 Forest land use and land cover changes, for example, deforestation
and fire impacts

•	 Forest inventory and vegetation growth and yield

178 Computing Applications in Forestry and Natural Resource Management

•	 Greenhouse gas emission of biomass utilization monitoring
•	 Watershed protection, for example, changes of watershed due to for-

est operations
•	 Forest health and sustainable management, for example, pest infes-

tation and management

11.4 � GIS Mapping and Analysis Examples

11.4.1 � Identifying and Mapping Vegetation Phenology

Phenological records are a useful model in the study of climate change,
because the seasonal pattern of vegetation is sensitive to small variations in
climate (Tan et al. 2011). Vegetation phenologies derived from remote-sensing
methods are unequal to phenology records of species levels from a ground-
measured approach. The onset of growing seasons at a species level can
hardly be detected by sensors on a landscape scale. However, the large-scale
land-surface phenology, which refers to aggregated information from the
spatial resolution of satellite sensors, can be observed from remote-sensing
platforms (Tan et al. 2011). Rather than attempting to identify a vegetation-
specific developmental stage, the growing season derived from RS refers to
the stage of great intensity in large-scale plant activities (Yu et al. 2013a).

The normalized difference vegetation index (NDVI) time-series data set is
widely used because it has an advantage in presenting vegetation informa-
tion in broad spatial coverage, especially in quantifying vegetation variations
at regional, continental, and global scales (Reed et al. 1994, Tucker et al. 2001).
Biweekly NDVI data can be obtained from the Global Inventory Modeling
and Mapping System at NASA’s Goddard Space Flight Center (Figure
11.8). The NDVI data were derived from the advanced very-high-resolution
radiometer (AVHRR) sensor aboard National Oceanic and Atmospheric
Administration (NOAA) polar orbiting satellites and were calculated from
AVHRR bands as:

	
NDVI

R R
R R
nir r

nir r
=

-
+

where
Rr is the spectral reflectance in visible bands (550–700 nm)
Rnir is the spectral reflectance in near-infrared bands (730–1000 nm) (Sun

et al. 2012)

A generalized NDVI temporal profile is continuous and smooth because veg-
etation canopy changes are small with respect to time (Ma and Veroustraete
2006). However, there are frequent fluctuations because of data transmission

179Introduction to Geospatial Technology Applications in Forest Management

errors, incomplete or inconsistent atmospheric corrections, variations
in cloudiness, and bidirectional effects in the NDVI data sets (Ma and
Veroustraete 2006). The smoothing spline and double logistic algorithms are
two of the most commonly used methods to identify the phenology.

11.4.1.1 � Data Preparation

The downloaded biweekly NDVI data are organized in images (2D spatial
arrays shown in Figure 11.8). The images can be read by different software,
such as ArcGIS, Erdas, ENVI, R, and Matlab. To extract the time-series NDVI
data for a specific location, the images should be read and stored as a matrix
in the computer memory by the software. Then the user can save the NDVI
time-series data based on the row and column of the location in the matrix.
As an example, Figure 11.9 shows the biweekly NDVI time series of a loca-
tion (black “x”) and the way to smooth the wave (red dots).

11.4.1.2 � Identifying Phenology

Spline-fitting analysis can be used to build the relationship between the
biweekly NDVI and the corresponding days of the year (DOY), and to repre-
sent the daily changes in NDVI as a function of DOY (Figure 11.10).

This can be accomplished in Matlab. Import NDVI time-series data
and use the spline function to fit the NDVI data into smooth time-series
data (Figure 11.10). The smoothing spline is constructed for the specified

Dec/2006

May/1982
Apr/1982

Mar/1982
Feb/1982

Jan/1982

8 km

FIGURE 11.8
NDVI time-series data retrieved from the RS technique. (Courtesy of Dr. Zhen Yu.)

180 Computing Applications in Forestry and Natural Resource Management

smoothing parameter t (Yu et al. 2010) and minimizes the following two
terms for the solution:

	
t y s x t

d s
dx

dx
i

i iå ò- ()() + -() æ

è
ç

ö

ø
÷

2 2

2

2

1

where t is defined between 0 and 1. The first term is the sum of the squares of
all the entries, which represents the deviation from input data points. The sec-
ond term denotes the second derivative of the function, which represents
the quantification of roughness of the fitted curve. As t moves from 0 to 1,

0 100 200 300
Day

0.2

0.3

0.4

0.5

Ra
w

 N
D

VI
 d

at
a

0.6

0.7

0.8

400 500 600 700
0.2

0.3

0.4

0.5

D
en

oi
se

d
N

D
VI

 d
at

a

0.6

0.7

0.8

FIGURE 11.9
Model fitting of smoothing spline of the NDVI time series.

0.015

0.010

0.005

C
ur

ve
 sl

op
e

–0.005

0.000
100 200

Onset date of dormancy

Onset date of green-up

300 400
Date

–0.010

0

FIGURE 11.10
Identify the phenology using slope of smoothed NDVI curve.

181Introduction to Geospatial Technology Applications in Forest Management

the smoothing spline changes from a least-square straight-line fit to a cubic
spline interpolant (Mathworks 2012).

After the smooth NDVI data have been created, the phenology can be iden-
tified by the slope of the smoothed NDVI time series for each year individu-
ally (Figure 11.10).

Timesat software (v3.1) can be applied to smooth and extract the phenol-
ogy information from NDVI time-series images (2D spatial arrays). Here is
the basic function of the double logistic algorithm used in Timesat:

	

g t x x
x t
x

x t
x

; , ,
exp exp

1 4
1

2

3

4

1

1

1

1
¼() =

+ -æ

è
ç

ö

ø
÷

-
+ -æ

è
ç

ö

ø
÷

where x1 determines the position of the left inflection point while x2 gives
the rate of change. Similarly, x3 determines the position of the right inflection
point while x4 gives the rate of change at this point (Eklundh and Jönsson
2010). Figure 11.11 shows the spatial distribution of the start of the grow-
ing season in temperate China using the double logistic approach of Timesat
software (Yu et al. 2013b).

Low: 90
High: 180

Phenology (starting days)

FIGURE 11.11
Spatial distribution of start of growing season in temperate China using double logistic
approach. (From Yu, Z. et al., Global Change Biol., 19, 2182, 2013b.)

182 Computing Applications in Forestry and Natural Resource Management

11.4.1.3 � Mapping the Phenology Using ArcGIS

For this mapping example, we need the phenology image file and the coun-
try boundary of China file. Here are the mapping procedures:

	 a.	Launch ArcMap. From the Windows taskbar, click Start → All
Programs → ArcGIS → ArcMap.

	 b.	Add data. Click the Add Data button, browse to and click the phenol-
ogy and boundary data, and click OK.

	 c.	Right click the data layer, and click Properties. Click the Symbology
tab. In the Show box, click Stretched. Choose a color type from the
Color Ramp. Set Stretched Type as Minimum-Maximum. Check the
checkbox of Display Background Value and click OK.

	 d.	Click the Layout view. Click Insert-Legend to add a legend for the map
(Figure 11.11).

	 e.	Export the map from the File-Export map menu, and Save As an
image file.

11.4.2 � Mapping and Analyzing Winter CO2 Efflux
in a Conifer Forest Area of North America

In this example, we use flux data from twelve flux stations to calculate and
map the winter CO2 flux in a conifer forest area of North America. For forest
ecosystems, the winter net ecosystem exchange (NEE = CO2 flux between
ecosystem and atmosphere) can be expressed as:

	 NEE RE GPP= -

where
RE is the ecosystem respiration
GPP is the gross primary productivity

During winter, RE and GPP mainly come from soil respiration and photosyn-
thesis, respectively. Negative NEE indicates uptake of CO2 by the ecosystem,
and positive RE indicates loss of CO2 from the ecosystem. Winter soil respira-
tion is mainly controlled by soil temperature, which in turn, is affected by the
snow depth. We can build the relationship between winter snow depth and
CO2 flux. Then, the regression equation can be applied to the entire study
area to retrieve the spatial distribution of carbon efflux.

11.4.2.1 � Data Preparation

The Canadian Meteorological Centre daily snow depth analysis data from
August 1998 to December 2012 are used to explore the relationship with

183Introduction to Geospatial Technology Applications in Forest Management

carbon flux at the site level (http://nsidc.org/data/docs). The flux data of
twelve tower sites can be downloaded from FLUXNET websites (http://
fluxnet.ornl.gov/). The downloaded level 3 flux data used in this example
has been standardized and gap-filled for the user. The forest map used in this
example is the 2005 North American Land Cover that can be downloaded
from the Commission for Environmental Cooperation of the U.S. Geological
Survey (http://landcover.usgs.gov/nalcms.php).

11.4.2.2 � Data Analysis

The downloaded flux data are in “.csv” format. Open the data using MS
Excel and summarize the winter CO2 flux and snow depth data for each sta-
tion by year. Save the results as an Excel file for further use.

Then use MS Excel to find and fit the relationships between snow depth
and CO2 flux. First, draw an x–y scattered chart to check the relationship
between these two variables visually (x is snow depth and y is the CO2 flux
from RE and NEE).

Right click the scatter points and click Add Trend Line. Choose Polynomial
in the Trendline Options box. Check Display Equation on Chart and Display
R-squared Value on Chart at the bottom, then click Close. The results are shown
in Figure 11.12.

The quadratic equation is:

	 y a bx cx= + + 2

where x is the snow depth, and y is the CO2 flux (RE or NEE).

R2 = 0.43, P< 0.0001

0
–0.5

0.0

0.5

Re
sp

ira
tio

n

1.0

–0.5

0.0

0.5

1.0

1.51.5

(a)
20 40 60 0 20 40

(b) Snow depth (cm)
60

N
et

 e
co

sy
st

em
 e

xc
ha

ng
e

y= 0.0008x2 – 0.0512x+ 1.0514

R2 = 0.35, P< 0.0001
y= 0.0007x2 – 0.0494x+ 1.0519

FIGURE 11.12
Correlation between snow depth, respiration, and net ecosystem exchange: (a) snow depth and
respiration; (b) snow depth and NEE.

http://nsidc.org
http://fluxnet.ornl.gov
http://fluxnet.ornl.gov
http://landcover.usgs.gov

184 Computing Applications in Forestry and Natural Resource Management

Apply the equation to the entire study area. Calculate NEE based on the
winter snow depth and the equation from the scatter plot.

To extract the NEE of the conifer forest area, we need to create a conifer for-
est map first. Launch ArcMap. Click the Arctoolbox window. Browse to and
double-click equal to under Logical of Math Toolbox. For the Input raster or con-
stant value box, choose the downloaded forest map and input value 4, respec-
tively (as the conifer forest value is 4 in the map). Choose the output path
and click OK to create the conifer forest map. Then open the Times tool under
Math toolbox and input the NEE data and the conifer forest map. Choose the
output path and click OK to create the NEE map of the conifer forest area.

11.4.2.3 � Mapping CO2 Efflux Using ArcGIS

For this mapping example, we need the conifer forest NEE image file and
the country boundary of the U.S. file. The mapping steps are similar to the
previous example:

	 a.	Launch ArcMap. From the Windows taskbar, click Start → All
Programs → ArcGIS → ArcMap.

Carbon efflux
(µmol m–2 s–1)

<0.01

>0.05

0.01–0.02
0.02–0.03
0.03–0.04

FIGURE 11.13
Spatial distribution of NEE in conifer forest of North America. (From Yu, Z. et al., Global Ecol.
Biogeogr., 25(5), 586, 2016.)

185Introduction to Geospatial Technology Applications in Forest Management

	 b.	Add data. Click the Add Data button, browse to and click the conifer
forest NEE data and boundary data, and click OK.

	 c.	Right click the data layer and click Properties. Click the Symbology tab.
In the Show box, click Stretched. Choose a color type from the Color
Ramp. Set Stretched Type as Minimum-Maximum. Check the checkbox
of Display Background Value and click OK.

	 d.	Click the Layout view. Click Insert-Legend to add a legend for the map
(Figure 11.13).

	 e.	Export the map from the File-Export map menu, and Save As an
image file.

Class Exercises

	 1.	 Use GPS to Collect Spatial Data of Forest Management
In this lab, we are going to use GPS to collect timber cruising data. You
are not required to conduct a real timber cruising. However, you do
need to select one plot on or close to campus and each plot should con-
tain at least three trees. We need to use a Nautiz X7 handheld unit and
ArcMap software to complete the following:

	 a.	 Identify a plot with three or more trees.
	 b.	 Mark the boundary of a plot using a GPS unit.
	 i.	 In START menu, choose POCKET NAVIGATOR

	 ii.	 MENU → OVERLAY → DELETE → DELETE ALL

	 iii.	 MENU → OVERLAY → CREATE → ROUTE → walk along the
perimeter of the plot until you return to the starting point →
MENU → OVERLAY → SAVE AS → name as “boundary,” and
hit SAVE

	 c.	 Create a centerline of a skidding trail (route) by connecting a point
outside the plot and a point within the plot.

	 i.	 MENU → OVERLAY → DELETE → DELETE ALL

	 ii.	 MENU → OVERLAY → CREATE → ROUTE → start to walk
along the skidding trail you set. The starting point is some-
where outside the plot boundary, and the ending point is some-
where inside the plot → MENU → OVERLAY → SAVE AS →
name as “SkiddingTrail/Route,” and hit SAVE

	 d.	 Mark locations of trees.
	 i.	 MENU → OVERLAY → DELETE → DELETE ALL

	 ii.	 MENU → OVERLAY → CREATE → MARK → walk to where the
tree is and hit the point where you are, a flag will show on the

186 Computing Applications in Forestry and Natural Resource Management

map; repeat this set of steps for two or more trees → MENU →
OVERLAY → SAVE AS → name as “Trees,” and hit SAVE

	 e.	 Move GPS data to your computer and convert to GPX files.
	 i.	 Go to Convert Link: http://www.gpsvisualizer.com/ → choose

the original file from handheld system (mmo files) → choose
output format as Google Earth → hit MAP IT → Download and
rename kmz files to your new folder

	 f.	 Generate a map with tree locations, a skidding trail, and a plot
boundary. This map should be completed individually.

	 ii.	 In Arctool box → Coversion tool → From KML: KML to layer
	 g.	 Generate a map. Open ArcMap and click Add button (which looks

like a plus sign on the top menu). Navigate to the folder where you
saved your file and add all the data into ArcMap.

	 i.	 Click View on the top menu and then Layout View

	 ii.	 Click Insert on the top menu and add all the necessary elements
of a map such as Title, Legend, North Arrow, and Scale Bar. Position
the elements attractively. Figure 14.9 is an example of a map.

	 iii.	 When you finish your map, click File → Export Map. Export map
as a PDF file for report.

	 2.	 Use GIS to Analyze Spatial Data
We will use ArcGIS to manipulate spatial data. This lab consists of two
parts. In Part I, you need to manipulate spatial data in ArcMap (similar
to what you collected in Exercise 1), perform data analysis, and create
a map. In Part II, you are required to perform similar data manipula-
tion and create a map based on different spatial data. Please follow the
instructions below to finish this lab.

Part 1

	 1.	Create a folder on your desktop, download the related shape files from
Exercise 1.

	 2.	Add the data to a new ArcMap document.
	 3.	Based on the sample data, what is the total area of the polygon? What is

the total distance of the road? How many points are within your poly-
gon? How many points are within 7.62 m (25 ft) of your trail? (1 acre =
0.4 ha) To get the answers, complete the following steps:

Calculate polygon area and road length:

	 a.	 Right click the Boundary_poly data layer, select Open Attribute
Table.

	 b.	 Click Table Options

http://www.gpsvisualizer.com

187Introduction to Geospatial Technology Applications in Forest Management

	 c.	 Add a field to the Attribute Table
	 d.	 Enter Acres in the Name field, change type to Float, and then

click OK.
	 e.	 A new field named Area has been added in the data table.
	 f.	 Now go back to the attribute table, right click the field Acres and

select Calculate Geometry. When you see a pop-up message, hit Yes.
In the Calculate Geometry window, change the Property to Area and
Units to Acres. Click OK. Now, your area has been computed.

	 g.	 Similarly, to get the total road distance, right click the Road_line
layer, add a new field Length, and calculate the length of the road in
feet (1 ft = 0.305 m).

	 h.	 To get the total points within a polygon, select Selection on the top
menu bar and then select Select by Location. In the pop-up window,
select the tree_points layer, change the source layer to the Boundary_
poly layer, and change the Spatial Selection method to target layer
features that are within the source layer feature.

	 i.	 Similarly, to get the points within 7.62 m (25 ft.) of the road, select
Selection on the top menu bar and then select Select by Location. In
the pop-up window, select the tree_points layer, change the Source
layer to the Road_line layer, and change the Spatial Selection method
to target layer features that are within a distance of the source layer
feature. Change the distance in the box to 25.0 and units to feet (1 ft =
0.305 m).

	 4.	Create a map that includes a Title, Legend, North Arrow, and Scale Bar.
In addition to those elements, insert a textbox that contains the answers
to the following questions:

	 a.	 How many acres (1 acre = 0.4 ha) are enclosed by the boundary
polygon?

	 b.	 What is the total length of the road?
	 c.	 How many trees are inside the boundary?
	 d.	 How many trees are within 7.62 m (25 ft) of the road?
	 5.	Export the map to a PDF.

Part 2
In this part, you will use real spatial data to create a map.

	 1.	Download and extract the zipped file of spatial data from eCampus that
is in the Lab_9_p2 folder. In the downloaded folder, you will see:

	 a.	 Landing.shp—Existing landing area; Haul_road.shp—Existing haul
road;

	 b.	 Preston_Roads.shp—County road;

188 Computing Applications in Forestry and Natural Resource Management

	 c.	 wvu_for_topo.jp2—Topographic map
	 d.	 Press the Add Data button in ArcMap to import all the spatial data.
	 2.	Right click on the haul_road shapefile → zoom to layer.

	 3.	Calculate the length of the haul road and the landing area based on the
instructions in Part 1.

	 4.	Create a map to clearly display the Preston County road, haul road,
and landing, with the topographic map as the base map. In addition,
the map should have a North Arrow, Scale Bar, Legend, Title, and
a Textbox containing the results of your analysis (length of the haul
road in feet (1 ft = 0.305 m) and area of the landing in acres).

Two maps are required for this lab, one for Part 1 and one for Part 2. Each
map should include all the attributes listed previously.

References

Clarke, K.C. 2001. Getting Started with Geographic Information Systems (3rd Edition).
Prentice Hall, Upper Saddle River, NJ.

Corvallis Microtechnology, Inc. 1996. Introduction to the global positioning system
for GIS and TRAVERSE. Available online at http://www.cmtinc.com/gps-
book/index.htm. Accessed on February 10, 2014.

Eklundh, L. and P. Jönsson. 2010. TIMESAT 3.0: Software Manual. Lund University,
Sweden, p. 74.

ESRI. 2001. Getting to Know ArcGIS Desktop. ESRI Press, Redlands, CA.
ESRI. 2003. Geography Matter to Forestry. Environment System Research Institute,

Redlands, CA. Available online at http://www.esri.com/industries/forestry/.
Accessed on October 4, 2016.

Grushecky, S.T. and M.A. Fajvan. 1999. A geostatistical comparison of forest spatial
structure immediately following shelterwood and diameter-limit harvesting in
West Virginia. Forest Ecology and Management 114(1999): 421–432.

Hamons, G. 2007. Modeling sediment movement in forested watersheds using hill-
slope attributes. Master thesis, West Virginia University, Morgantown, WV.

Liu, J.G. and P.J. Mason. 2009. Essential Image Processing for GIS and Remote Sensing.
Wiley-Blackwell, Chichester, U.K., p. 4.

Ma, M.G. and F. Veroustraete. 2006. Reconstructing pathfinder AVHRR land NDVI
time-series data for the Northwest of China. Advances in Space Research 37:
835–840.

Mathworks. 2012. Curve Fitting Toolbox: Smoothing splines. Mathworks, Natick,
MA. Available online at http://www.mathworks.com/help/curvefit/
smoothing-splines.html. Accessed on December 21, 2012.

Musinguzi, M., G. Bax, and S.T. Togboa. 2008. A methodology for coding wet-
lands for identification in a GIS based wetlands database. Available online at
GISdevelopment.net, from http://www.gisdevelopment.net/application/
environment/wetland/maf06_20abs.htm. Accessed on October 4, 2016.

http://www.cmtinc.com
http://www.cmtinc.com
http://www.esri.com
http://www.mathworks.com
http://www.mathworks.com
http://GISdevelopment.net
http://www.gisdevelopment.net
http://www.gisdevelopment.net

189Introduction to Geospatial Technology Applications in Forest Management

Natural Resources Canada. 2016. Tutorial: Fundamentals of remote sensing. Available
online at http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-
air-photos/satellite-imagery-products/educational-resources/14639. Accessed
on October 14, 2016.

Overmars, K.P., G.H.J. Koning de, and A. Veldkamp. 2003. Spatial autocorrelation in
multi-scale land use models. Ecological Modeling 164(2–3): 227–270.

Reed, B.C., J.F. Brown, D. Vanderzee, T.R. Loveland, J.W. Merchant, and D.O. Ohlen.
1994. Measuring phenological variability from satellite imagery. Journal of
Vegetation Science 5: 703–714.

Schott, J.R. 2007. Remote Sensing: The Image Chain Approach (2nd Edition). Oxford
University Press, New York, p. 1.

Schowengerdt, R.A. 2007. Remote Sensing: Models and Methods for Image Processing (3rd
Edition). Academic Press, London, U.K., p. 2.

Sharma, B. 2010. Modeling of forest harvest scheduling and terrestrial carbon seques-
tration. PhD Dissertation, West Virginia University, Morgantown, WV.

SIC. 2009. Wildlife and marine conservation. Satellite Imaging Service, Satellite Imaging
Corporation, Houston, TX. Available online at http://www.satimagingcorp.com/
svc/wildlife_and_marine_conservation.html. Accessed on October 4, 2016.

Sun, P.S., Z. Yu, S.R. Liu, X.H. Wei, J.X. Wang, and N. Zegre. 2012. Climate change,
growing season water deficit and vegetation activity along the north-south
transect of eastern China from 1982 through 2006. Hydrology and Earth System
Sciences Discussions 9: 6649–6688.

Tan, B., J.T. Morisette, R.E. Wolfe, F. Gao, G.A. Ederer, J. Nightingale, and J.A. Pedelty.
2011. An enhanced TIMESAT algorithm for estimating vegetation phenol-
ogy metrics from MODIS data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 4: 361–371.

Trimble Navigation Limited. 2004. Why post process GPS data? Westminster, CO.
Available online at www.trimble.com. Accessed on October 14, 2016.

Tucker, C.J., D.A. Slayback, J.E. Pinzon, S.O. Los, R.B. Myneni, and M.G. Taylor. 2001.
Higher northern latitude normalized difference vegetation index and growing
season trends from 1982 to 1999. International Journal of Biometeorology 45: 184–190.

Upadhyay, M. 2009. Making GIS work in forest management. Available online at http://
www.forestrynepal.org/images/GIS%20and%20Forest%20Management_0.pdf.
Accessed on October 14, 2016.

VDF. 2008. Forest protection and fire prevention. Virginia Department of Forestry,
Charlottesville, VA. Available online at http://www.dof.virginia.gov/index.
shtml. Accessed on October 10, 2016.

Wang, J., T. Goff, and M. Strager. 2009a. Using spatial features to review application,
effectiveness, and compliance of forestry best management practices in West
Virginia. International Journal of Forest Engineering 20(2): 36–46.

Wang, J., B.D. Sharma, Y. Li, and G. Miller. 2009b. Modeling and validating spatial
patterns of a 3D stand generator for central Appalachian hardwood forests.
Computers and Electronics in Agriculture 68(2009): 141–149.

Yu, Z., S.R. Liu, J.X. Wang, P.S. Sun, W.G. Liu, and D.S. Hartley. 2013b. Effects of
seasonal snow on the growing season of temperate vegetation in China. Global
Change Biology 19: 2182–2195.

Yu, Z., P.S. Sun, and S.R. Liu. 2010. Phenological change of main vegetation types
along a North-South Transect of Eastern China. Chinese Journal of Plant Ecology
34: 316–329.

http://www.nrcan.gc.ca
http://www.nrcan.gc.ca
http://www.satimagingcorp.com
http://www.satimagingcorp.com
http://www.trimble.com
http://www.forestrynepal.org
http://www.forestrynepal.org
http://www.dof.virginia.gov
http://www.dof.virginia.gov

190 Computing Applications in Forestry and Natural Resource Management

Yu, Z., P.S. Sun, S.R. Liu, J.X. Wang, and A. Everman. 2013a. Sensitivity of large-scale
vegetation greenup and dormancy dates to climate change in the north–south
transect of eastern China. International Journal of Remote Sensing 34: 7312–7328.

Yu, Z., J. Wang, S. Liu, S. Piao, P. Ciais, S.W. Running, B. Poulter, J.S. Rentch, and
P. Sun. 2016. Decrease in winter respiration explains 25% of the annual north-
ern forest carbon sink enhancement over the last 30 years. Global Ecology and
Biogeography 25(5): 586–595.

Section V

Visual Basic .NET
Programming

http://taylorandfrancis.com

193

Introduction to Visual Basic
.NET Programming

Visual Basic (VB) is a third-generation event-driven programming language
that was first released in 1991 for Microsoft (Microsoft Corporation 1998). It
is possibly the fastest and easiest way to create applications for MS Windows.
Designed to be both easy for beginners to learn and powerful for experts, VB
uses an English-like syntax that promotes clarity and readability in combina-
tion with an extensive set of advanced features and a philosophy that empha-
sizes flexibility, productivity, and great tooling (Microsoft Corporation 2014).
VB 6.0 was released in 1998 and was a popular programming language with
many new features including web-based applications.

Succeeding VB 6.0, the first version of VB.NET was released in 2002. By
2016, eight versions of VB.NET had been released as components of Microsoft
Visual Studio. VB.NET introduced many exciting new features to VB devel-
opers, though these enhancements have caused some minor compatibility
issues with legacy code (Wakefield et al. 2001, McKeown 2010). The inte-
grated development environment (IDE) (including code editing, debugging,
and execution) incorporates some of the best ideas of VB 6.0 and InterDev
(a user-friendly program development software) to make it easier and more
intuitive to quickly create applications using a wider variety of development
resources.

Possibly the most valuable addition to VB.NET is object-oriented pro-
gramming (OOP). Although approximations of object orientation have been
available in earlier versions of VB, only in VB.NET do developers gain the
advantages of true object inheritance, which allows business logic to be
more easily and reliably programmed through an object or a block of code
(Wakefield et al. 2001).

12.1 � What Is Visual Basic?

According to Microsoft’s definition (Microsoft Corporation 1998), VB con-
sists of two parts:

	 1.	The “Visual” part refers to the method used to create the graphical
user interface (GUI). Rather than writing numerous lines of code to

12

194 Computing Applications in Forestry and Natural Resource Management

describe the appearance and location of interface elements, you sim-
ply put prebuilt objects into place on screen.

	 2.	The “Basic” part refers to the Beginners All-Purpose Symbolic
Instruction Code (BASIC) language. Notice that VB has evolved
from its original BASIC language and now contains several hundred
statements, functions, and key words, many of which relate directly
to the Windows GUI.

There are programming languages derived from VB. Visual Basic for
Applications (VBA) in MS Word, Excel, and Access, and VB Script for web-
based programming are applications or programming languages that use VB.

12.1.1 � Visual Basic and VB.NET Concepts

12.1.1.1 � Windows, Events, and Messages

It is necessary for us to have a better understanding of some of the key con-
cepts VB has built. For any Windows application programs, VB employs
three key concepts: windows, events, and messages (Microsoft Corporation
1998).

A window is a rectangular object with its own boundaries. There are many
types of windows in MS Windows applications, such as file explorer win-
dows, document windows, or dialog boxes. Other windows include com-
mand buttons, text boxes, option buttons, and menu bars. The MS Windows
operating system manages these windows by assigning each one a unique
identification number (window handle) (Microsoft Corporation 1998).

An event is a significant occurrence in a program. Events are typically
invoked by users’ actions (such as a mouse click or a key press) through pro-
grammatic control, or even as a result of another event.

Each time an event occurs, it causes a message to be sent to the Windows
operating system. The system processes the message and delivers it to the
other related windows.

12.1.1.2 � Procedural Programming

In traditional or procedural programming, the code is organized into small
“procedures” that use and change the data. Program execution starts with
the first line of code and follows a predefined path through the application,
calling defined procedures as needed (Microsoft Corporation 1998).

12.1.1.3 � Event-Driven Programming

In event-driven programming, the flow of the program does not follow a pre-
determined path and is determined by events such as user actions, messages
from other programs, or events from the same program.

195Introduction to Visual Basic .NET Programming

12.1.1.4 � Object-Oriented Programming

In OOP, the data and related functions are bundled together into an object. An
object is a code-based abstraction of a real-world entity or relationship (Sheldon
et al. 2010). For example, a tree object can represent a real-world tree in a for-
est growth and yield application. As we learned in Section 2.2, OOP supports
three foundational concepts of encapsulation, inheritance, and polymorphism.

12.1.2 � VB Integrated Development Environment

VB IDE integrates many different functions (such as design, editing, com-
piling, and debugging) within a common environment, while each of these
tools would operate as a separate program in a traditional development
environment (Microsoft Corporation 1998).

To demonstrate the steps to start a VB IDE, we’ll use the following example
of an IDE of VB.NET in Visual Studio 2013 (or a later version):

	 a.	Click Start and choose All Programs → Visual Studio 2013 → Visual
Studio 2013.

	 b.	Select Visual Basic Development Settings as your default environ-
ment settings when you first use the Visual Studio. You can always
change it to other programming languages, such as Visual C++ or
Visual C#.

	 c.	 In the New Project dialog box, select Windows Forms Application and
click OK.

	 d.	The VB.NET IDE is displayed (Figure 12.1).

The VB.NET IDE consists of these key elements: menu bar, toolbars, tool box,
solution explorer window, properties window, form designer, code editor
window, object browser, error list, and other windows. By clicking the View
tab on the menu bar, you may view them.

12.2 � VB.NET Programming Examples

12.2.1 � First Application

There are three main steps to creating an application in VB (Microsoft
Corporation 1998): (1) Creating the interface, (2) Setting properties, and
(3) Writing code. For this application, we will use the classic programming
example “Hello World!” found in many programming textbooks. In this
exercise, we want to create an application that will display “Hello World!” in
a text box once the user clicks a command button.

196 Computing Applications in Forestry and Natural Resource Management

Creating the interface: Using the default Form1, click text box and button con-
trols in the toolbox and then add them consecutively to Form1.

Setting properties: Select Form1 or other objects on it, and then in the proper-
ties windows, you can set the properties of the selected object. For example,
change the TEXT property of Button1 to “Hello World.”

Writing code: Double click the command button, then the Code Editor win-
dow will be displayed. Type TextBox1.Text = “Hello World!”

Running the application: From the menu bar, click the Start Debugging but-
ton, then run the program. To end the program, you need to click the Stop
Debugging button on the menu bar.

12.2.2 � Example for Calculating Basal Area of Trees

In this example, we would like to calculate the basal area (BA) of a tree
based on its diameter at breast height (DBH). Once a user enters the DBH
for a tree, the BA for that tree should be calculated and displayed in a text
box by clicking a Calculate button. The cumulative results of several trees
also should be listed in a list box. The BA is calculated by using the follow-
ing equation:

	 BA DBH= *0 005454154 2. 	

FIGURE 12.1
Visual Basic .NET IDE.

197Introduction to Visual Basic .NET Programming

where
BA is basal area in ft2 (1 ft2 = 0.0929 m2)
DBH is the tree’s diameter at breast height in inches (1 in. = 2.54 cm)

The cumulative results displayed in a list box could be used for comparison
among trees. Here are the controls or objects we need to create the interface
for this project: a text box, a list box, two buttons, and three labels.

12.2.2.1 � Creating the Interface and Setting Properties

To start this project, from the Start menu, click All Programs → Visual Studio
2013|Visual Studio 2013. Start a new project by choosing New Project from the
File menu and then selecting Windows Forms Application in the New Project
dialog box (when you first start VB, the New Project dialog box is presented).
VB creates a new project and displays a new form for you. To design the
interface:

•	 Create a directory like C:\For240\VBApps\CalBA\
•	 Start VB.NET
•	 Put the required VB.NET controls on the form (Figure 12.2)
•	 Name the controls (Table 12.1)
•	 Clear the default text in the boxes
•	 Change the form text to “Calculate BA”
•	 Save the project as “prjCalBA”

FIGURE 12.2
Interface for calculating BA of trees.

198 Computing Applications in Forestry and Natural Resource Management

12.2.2.2 � Writing Code

Double-click the command button and a code-editing box will pop up. Type the
following lines under the Button 1 (cmdCalBA):

 Pr�ivate Sub cmdCalBA_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
cmdCalBA.Click

 Dim DBH, BA
 DBH = txtDBH.Text
 BA = 0.005454154 * DBH * DBH
 txtBA.Text = BA
 lstResult.Items.Add(DBH & "," & BA)
 End Sub

Similarly, double-click the Button 2 (cmdClose) and type:

 Pr�ivate Sub cmdClose_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
cmdClose.Click

 End
 End Sub

Remember to save the project again by clicking the Save button on the
menu bar.

12.2.2.3 � Running the Application

Click the Start Debugging button on the menu bar to run the project. Enter
“12” in the DBH box, then click Calculate, and you will add the first result to

TABLE 12.1

Property Settings of the Objects

Object Property Setting

Form1 Name frmCalBA
Text Calculate BA

TextBox1 Name txtDBH
Text

TextBox2 Name txtBA
Text

ListBox1 Name LstResult
Button1 Name cmdCalBA

Text Calculate
Button2 Name cmdClose

Text Close

199Introduction to Visual Basic .NET Programming

the list box. If you change the DBH from 12 to 14, then click Calculate, you
will add the second result to the list box (Figure 12.3). You can repeat the
above procedures to calculate the BA for any other trees you wish.

12.2.3 � Database Connection and Data Display Application

This application demonstrates how a DataGridView control can be used to
display a table of information from a database. VB makes it easy to access
database information from within your application. The data control pro-
vides the ability to navigate through the database record set, synchroniz-
ing the display of records in the grid control with the position in the record
set. This application needs two controls: a DataGridView control and a com-
mand button.

The database we are going to use is TimberCruising.accdb created in the
database application section (Chapter 7 “Class Exercise”). The record set is
the table tblTrees in the database.

12.2.3.1 � Creating the Interface

You begin creating the application by choosing New Project from the File
menu, then selecting Windows Forms Application in the New Project dialog box
(when you first start VB, the New Project dialog box is presented). VB creates

FIGURE 12.3
Output of BA calculations.

200 Computing Applications in Forestry and Natural Resource Management

a new project and displays a new form. Now, we need to design the interface.
Follow the steps below to add DataGridView and data source:

	 a.	Select DataGridView under the group Data in the Toolbox, and
drag it to the form interface. By default, the control will be named
“DataGridView1.”

	 b.	Highlight DataGridView1 and click the right arrow on top of the con-
trol to add the data source to it.

	 c.	 In the pop-up dialog, expand the Choose Data Source options and
click Add Project Data Source.

	 d.	Select Database and click the Next button.
	 e.	Choose a database model, select data set, and then click Next.
	 f.	Click New Connection…, select Microsoft Access Data File, click the

Continue button, and browse the folders to locate the database
that you will use in the project (Figure 12.4a). In this case, select
Timbercruising.accdb, which is saved in the same folder as the project.
Click OK. Go ahead and save the connection (Figure 12.4b).

	 g.	As in Figure 12.5, select the table that you want to display using
DataGridView. In this case, choose tblTrees and then click the Finish
button.

Once everything is set up, your design interface should be completed.
You also need to add a command button to the form (as demonstrated in
the two previous VB.NET examples). Now save your project with the name
“prjDBCDApp.”

12.2.3.2 � Setting Properties

In the Properties window, set properties for the objects according to Table 12.2.
Use the default settings for all other properties.

12.2.3.3 � Writing Code

Double-click the form or control to display the Code window and then type
the following code for each event procedure. Add the code to the cmdClose_
Click event procedure to end the application when you click the Close button.

 Pr�ivate Sub cmdClose_Click(sender As System.Object,
e As System.EventArgs) Handles cmdClose.Click

 Me�.TblTreesTableAdapter.Update(Me.
TimberCrusisingDataSet.tblTree)

 End

 End Sub

201Introduction to Visual Basic .NET Programming

(b)

(a)

FIGURE 12.4
(a) Select data source and (b) define data connection.

202 Computing Applications in Forestry and Natural Resource Management

Since we have defined the data source as DataGridView1, Visual Studio 2013
automatically generates code for the form load event.

 Pr�ivate Sub frmDBCDApp_Load(sender As System.Object,
e As System.EventArgs) Handles MyBase.Load

 'T�ODO: This line of code loads data into the
'TimberCrusisingDataSet.tblTrees' table.
You can move, or remove 'it, as needed.
Me.TblTreesTableAdapter.Fill(Me.
TimberCrusisingDataSet.tblTrees)

 End Sub

Again, save your project at this point.

FIGURE 12.5
Choose data source table.

TABLE 12.2

Property Settings of the Objects

Object Property Setting

Form Name frmDBCDApp
Text Database Connection and Data Display

Button1 Name cmdClose
Text Close

203Introduction to Visual Basic .NET Programming

12.2.3.4 � Running the Application

There are two ways that you can run the application: from the menu bar or
toolbar. Click the Start Debugging button, and your application will enter the
running mode (Figure 12.6).

You may need to test your program. You can add data for new trees, edit
existing trees, delete trees, or close your application.

Class Exercises

	 1.	 What is Visual Basic?
	 2.	 Compare and contrast VB and VBA.
	 3.	 Compare and contrast event-driven programming, object-oriented pro-

gramming, and procedural programming.
	 4.	 What is VB.NET IDE?
	 5.	 What are the three main steps to create a VB.NET application?

References

McKeown, J. 2010. Programming in Visual Basic 2010—The Very Beginner’s Guide.
Cambridge University Press, Cambridge, U.K., p. 693.

Microsoft Corporation. 1998. Visual Basic 6.0—Programmer’s Guide. Microsoft Press,
Redmond, WA, p. 959.

FIGURE 12.6
Running the application.

204 Computing Applications in Forestry and Natural Resource Management

Microsoft Corporation. 2014. Visual Basic resources. Available online at http://msdn.
microsoft.com/en-us/vstudio/hh388573.aspx. Accessed on February 14, 2014.

Sheldon, B., B. Hollis, K. Sharkey, J. Marbutt, R. Windsor, and G. Hillar. 2010. Professional
Visual Basic 2010 and .NET 4. Wiley Publishing, Inc., Indianapolis, IN, p. 1276.

Wakefield, C., H.E. Sonder, and W.M. Lee. 2001. VB.NET Developer’s Guide. Syngress
Publishing, Inc., Rockland, MA, p. 785.

http://msdn.microsoft.com
http://msdn.microsoft.com

205

VB.NET Controls, Project, and Menu Design

13.1 � Types of Controls

Visual Basic .NET (VB.NET) controls make programming easier and faster.
There are properties and events associated with each control we add/use.
VB.NET has several categories of controls including:

	 1.	Common controls, such as the command button and textbox controls
	 2.	Containers, such as GroupBox and TabControl
	 3.	Menus and toolbars, including MenuStrip and ToolStrip
	 4.	Data, such as Chart, DataSet, and DataGridView
	 5.	Components, including .COM objects, which exist as separate

objects/files

In the previous chapter, we used DataGridView, textbox, and command
button controls. There are many other built-in VB.NET controls. When you
begin a VB.NET project, the toolbox shows different categories of all the con-
trols (Figure 13.1). However, other controls can be added into the toolbox by
right clicking All Windows Forms in the toolbox and choosing Choose Items.

VB.NET forms and controls are objects that expose their own properties,
methods, and events. Properties can be thought of as an object’s attributes,
methods as its actions, and events as its responses. The following exercises
demonstrate how to use VB.NET controls.

13.2 � Using Timer, Option Button, Groupbox,
and Checkbox Controls

In this example, you will use several VB.NET controls to build an interface and
application to allow a user to form a timber harvesting system by selecting one
felling machine and one skidding machine using radio buttons. The selected

13

206 Computing Applications in Forestry and Natural Resource Management

Command button

ComboBox

DataGridView

Label

ListBox

FIGURE 13.1
Default toolbox of VB.NET.

FIGURE 13.2
Interface of control test.

207VB.NET Controls, Project, and Menu Design

harvesting system is displayed in a textbox. Meanwhile, the font of the text in
this textbox can be changed to italic, bold, or both. A label control is used to dis-
play time while a command button control is employed to end the application.

13.2.1 � Creating the Interface and Setting Properties

Put the following controls on the form:

•	 A textbox to display the harvesting system
•	 A label to show the clock
•	 Three groupboxes to hold radio buttons and checkboxes
•	 A command button to end the application

The interface of your application will look like what is displayed in
Figure 13.2. Table 13.1 lists the property settings of these controls.

TABLE 13.1

Property Setting of Controls

Control Property Setting

Form1 Name frmVBControl
Text VB control test

Text1 Name txtDisplay
Label1 Name lblTime
GroupBox1 Text Felling machine
GroupBox2 Text Skidding machine
GroupBox3 Text Display
Radio Button1 Name optCS

Text Chainsaw
Radio Button2 Name optFB

Text Feller-buncher
Radio Button3 Name optHV

Text Harvester
Radio Button4 Name optCD

Text Cable skidder
Radio Button5 Name optGD

Text Grapple skidder
Radio Button6 Name optFD

Text Forwarder
Checkbox1 Name chkBold

Text Bold
Checkbox2 Name chkItalic

Text Italic
Button1 Name cmdClose

Text Close

208 Computing Applications in Forestry and Natural Resource Management

13.2.2 � Writing Code

Double-click the related controls and type the event codes there.

Public Class frmVBControl
 Dim strfeller As String
 Dim strskidder As String

 Private Sub DisplayCaption()
 'c�oncatenate the caption with the two string

variables
 tx�tDisplay.Text = "You selected a " & strfeller &

" and " & strskidder & " harvesting system."
 End Sub

 'Add the code under command button -cmdClose:
 Pr�ivate Sub cmdClose_Click(ByVal sender As System.

Object, ByVal e As System.EventArgs) Handles
cmdClose.Click

 End
 End Sub

 'Double-click frmVBControl and add the code:
 Pr�ivate Sub frmVBControl_Load(ByVal sender As System.

Object, ByVal e As System.EventArgs) Handles MyBase.
Load

 'Load system time
 lblTime.Text = Format(Now, "short time")
 End Sub

 'D�ouble-click each radio button and add the following
codes there:

 Pr�ivate Sub optcs_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
optcs.CheckedChanged

 'a�ssign a value to the first string variable
- strfeller

 strfeller = "Chainsaw"
 'call the subroutine DisplayCaption
 Call DisplayCaption()
 End Sub

 Pr�ivate Sub optfb_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
optfb.CheckedChanged

 strfeller = "Feller-buncher"
 Call DisplayCaption()
 End Sub

209VB.NET Controls, Project, and Menu Design

 Pr�ivate Sub opthv_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
opthv.CheckedChanged

 strfeller = "Harvester"
 Call DisplayCaption()
 End Sub

 Pr�ivate Sub optcd_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
optcd.CheckedChanged

 'a�ssign a value to the second string variable
- strskidder

 strskidder = "Cable Skidder"
 'call the subroutine DisplayCaption
 Call DisplayCaption()
 End Sub

 Pr�ivate Sub optgd_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
optgd.CheckedChanged

 strskidder = "Grapple Skidder"
 Call DisplayCaption()
 End Sub

 Pr�ivate Sub optfd_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
optfd.CheckedChanged

 strskidder = "Forwarder"
 Call DisplayCaption()
 End Sub

 Pr�ivate Sub chkbold_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
chkbold.CheckedChanged

 If chkbold.Checked = True Then
 tx�tDisplay.Font = New Font(txtDisplay.

Font, FontStyle.Bold)
 Else
 tx�tDisplay.Font = New Font(txtDisplay.

Font, Not FontStyle.Bold)
 End If

 End Sub

210 Computing Applications in Forestry and Natural Resource Management

 Pr�ivate Sub chkitalic_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
chkitalic.CheckedChanged

 If chkitalic.Checked = True Then
 tx�tDisplay.Font = New Font(txtDisplay.

Font, FontStyle.Italic)
 Else
 tx�tDisplay.Font = New Font(txtDisplay.

Font, Not FontStyle.Italic)
 End If

 End Sub

End Class

13.2.3 � Running the Application

Start the program; click your preferred radio buttons and checkboxes. The
running application should look like Figure 13.3.

FIGURE 13.3
Running the application.

211VB.NET Controls, Project, and Menu Design

13.3 � Using Drive, Dir, File, Combo, List, Frame Controls

In this exercise, you will use the Drive, Directory, and File controls to read
a table in a database from the secondary storage. Then, you will click a but-
ton to populate the data from this table into a Combo Box. Finally, you will
add the selected item in the Combo Box to a ListBox by clicking another
button.

13.3.1 � Creating the Interface and Setting Properties

We need to add the following controls to the form:

•	 GroupBox1 control
•	 DriveListBox1 control
•	 DirListBox1 control
•	 FileListBox1 control
•	 Label1
•	 Label2
•	 Command button—cmdClose
•	 Command button—cmdGetFile

If Drive, Dir, and File controls are not listed in the toolbox, we need to add
them, so we can use them. To add them, we need to use Microsoft.VisualBasic.
Compatibility. To reference Microsoft.VisualBasic.Compatibility:

	 a.	Select Add Reference… from the Project menu, then the Reference
Manager dialog box will be displayed.

	 b.	Find and check/select Microsoft.VisualBasic.Compatibility in the list-
box under Assemblies/Framework (Figure 13.4).

	 c.	Click OK.
	 d.	Click the ToolBox tab, then right click All Windows Forms and select

Choose Items… under the .NET Framework Components tab.
	 e.	 In the Choose Toolbox Items dialog box, check DriveListBox, DirListBox,

and FileListBox controls (Figure 13.5).

To save time, we will use the default settings for most of the controls. The
properties of controls that need to be reset are listed in Table 13.2. The inter-
face should look like Figure 13.6.

212 Computing Applications in Forestry and Natural Resource Management

FIGURE 13.4
Add reference.

FIGURE 13.5
Select toolbox items.

213VB.NET Controls, Project, and Menu Design

13.3.2 � Writing Code

Double-click DriveListBox1, DirListBox1, FileListBox1, and the two command
buttons, respectively, to type the code for the following five procedures:

Public Class frmDrive
 Dim filename As String

TABLE 13.2

Property Settings

Control Property Setting

Form1 Name frmDrive
Text VB controls

GroupBox1 Text GroupBox1
Button1 Name cmdClose

Text Close
Button2 Name cmdGetFile

Text Get file
Label 1 Text File name
Label 2 Text Label2

FIGURE 13.6
Interface.

214 Computing Applications in Forestry and Natural Resource Management

 Pr�ivate Sub DriveListBox1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.
EventArgs) Handles DriveListBox1.
SelectedIndexChanged

 Di�rListBox1.Path = Mid(DriveListBox1.Drive,

1, 1) & ":\"
 End Sub

 Pr�ivate Sub DirListBox1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.
EventArgs) Handles DirListBox1.SelectedIndexChanged

 FileListBox1.Path = DirListBox1.Path
 End Sub

 Pr�ivate Sub FileListBox1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.
EventArgs) Handles FileListBox1.SelectedIndexChanged

 filename = FileListBox1.Path
 If� Microsoft.VisualBasic.Right(filename, 1) <> "\"

Then
 fi�lename = filename & "\" & FileListBox1.

FileName
 Else
 filename = filename & FileListBox1.FileName
 End If
 End Sub

 Pr�ivate Sub cmdClose_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
cmdClose.Click

 End
 End Sub

 Pr�ivate Sub cmdGetFile_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
cmdGetFile.Click

 Label2.Text = filename
 End Sub

End Class

13.3.3 � Running the Application

	 1.	Start the program.
	 2.	Find an MS Access database file.
	 3.	Click the Get File button.

215VB.NET Controls, Project, and Menu Design

	 4.	The path and name of the selected file are displayed.
	 5.	Click the Close button to end this program.

The interface of your running application will look like Figure 13.7.

13.4 � Working with a Project

As you develop a VB.NET application, you will work with a project to man-
age all the different files that make up the application (Microsoft Corporation
2015). Visual Studio creates many files and several folders when you write a
program. It is best to leave the files and folders where they are. If you move
them, save them in another location, delete them, or rename them, your proj-
ect may not work. You should continue to work with the same folder for the
solution when moving or making a backup of a project. Visual Studio expects
the files to be in a specific location, and any changes could destroy a proj-
ect. Although you can save your projects anywhere, you need to remember
where you saved them. Open the Solution folder for your project and double-
click on the file that ends with “.sln”. That is the Solution file and it will open
your project in Visual Studio. A VB.NET project typically consists of:

•	 One project file that keeps track of all the components (.sln)
•	 One folder that contains all the other files and folders for the project

FIGURE 13.7
Running the application.

216 Computing Applications in Forestry and Natural Resource Management

•	 One file for each form (.vb)
•	 One resource file for each form (.resx) containing data properties of

controls on the form, such as Picture or Icon
•	 Some files (.xsc, xsd, xss) if your project is connected to a database
•	 Some optional files such as standard module, class module, and data

objects

A typical VB.NET project should consist of some or all of the following
objects, including class, module, and control.

13.4.1 � Form Class

Form classes (.vb file name extension) can contain textual descriptions of the
form and its controls, including their property settings. They can also con-
tain form-level declarations of constants, variables, and external procedures,
event procedures, and general procedures.

13.4.2 � User-Defined Class

Class modules (.vb file name extension) are similar to form modules, except
that they have no visible interface. You can use class modules to create your
own objects, including both properties and methods of the objects.

13.4.3 � Standard Modules

Standard modules (.vb file name extension) can contain public or module-
level declarations of constraints, variables, and procedures.

13.4.4 � Standard Controls

Standard controls are supplied by VBNET. Standard controls, such as the
command button or frame control, are always included in the toolbox.

13.5 � Menu Design of VB Project

So far, you might notice that all the applications in this book consist of
only one form and a few controls. However, for a larger VB.NET project,
you should always use Menu Editor to create new menus and menu bars.
From there, you can invoke other forms and procedures included in the
project.

217VB.NET Controls, Project, and Menu Design

What follows is a simple exercise to show you how to create menus.
Suppose we need to create the following menus of three levels:

•	 File
•	 Close
•	 Exit

•	 Edit
•	 Species
•	 Stand

–	 Natural
–	 Planted

•	 Help
•	 About
•	 Content

In this exercise, we are required to create an application that will do the
following things: (1) allow the user to close all window items in the mul-
tiple document interface (MDI) form if she/he clicks the Close menu, (2) exit
the program if the user clicks the Exit menu, (3) invoke the Species form if the
user clicks the Species menu, and (4) invoke the About form if the user clicks
the About menu.

To complete this exercise:

	 1.	Start a new VB.NET project by clicking Microsoft Visual Studio.

	 2.	Click New Project…
	 3.	Select Add Windows Form under Project menu, choose MDI Parent

Form, and then click the Add button (Figure 13.8).
	 4.	Create menus.

By default, Microsoft Visual Studio (2013 or later version) has pro-
vided several built-in menus, including File, Edit, View, Tools, and
others. However, you can edit these menus manually to fit your own
needs. There are two ways that you can create menus for a VB.NET
project. You can right click any existing menu, then simply add,
change, or delete it. Alternatively, you can right click the Edit menu
and select Edit DropDownItems… to display the menu item editor
(Figure 13.9). From there, you can perform the following menu edit-
ing actions:

	 a.	 Add submenu—Click the Add button and change the text to
“Species” (Figure 13.10).

218 Computing Applications in Forestry and Natural Resource Management

FIGURE 13.8
Addition of a MDI parent form to a VB.NET project.

FIGURE 13.9
Menu editor.

219VB.NET Controls, Project, and Menu Design

	 b.	 Add collection items—As is visible in the listbox on the right side
of Figure 13.10. You can continue to add collection items for a
submenu by clicking DropDownItems (Figure 13.11).

	 c.	 Delete submenu—Use the up and down arrow to select any
existing menu and then hit the Delete button to delete it.

	 d.	 Edit submenu—Select any existing submenu and then go to the
right-hand listbox to edit its properties (such as name, text, font
color, etc.)

	 e.	 Click the OK button to finish editing. Remember, the edit process
can be accomplished for each menu individually.

Follow the menu requirements to complete the menu editing
(Figure 13.12).

	 5.	Now you need to add a Windows Form and an About box. From the
Project menu, select Add Windows Form, then repeat the procedure to
add a second form. The two forms will be added and used to edit
Species and display About information.

	 6.	Double-click the menu items and add related code accordingly.

Imports System.Windows.Forms

Public Class MDIParent1

 ‘Add the codes for the menu Exit.
 Pr�ivate Sub ExitToolsStripMenuItem_Click(ByVal sender

As Object,

FIGURE 13.10
Edit submenu.

220 Computing Applications in Forestry and Natural Resource Management

 By�Val e As EventArgs) Handles ExitToolStripMenuItem.
Click

 End
 End Sub

 ‘Add the codes for the menu Species.
 Pr�ivate Sub SpeciesToolStripMenuItem_Click(ByVal

sender As
 System.Object, ByVal e As System.EventArgs) Handles
 SpeciesToolStripMenuItem.Click
 Form1.Show()
 Form1.Text = "Edit Species"

 End Sub

 ‘Add the codes for the menu About.
 Private Sub AboutToolStripMenuItem_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 AboutToolStripMenuItem.Click
 AboutBox1.Show()
 AboutBox1.Text = "About My Program"

 End Sub

 ‘Add the codes for the menu Close.
 Private Sub CloseToolStripMenuItem_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 CloseToolStripMenuItem.Click

 For Each ChildForm As Form In Me.MdiChildren
 ChildForm.Close()
 Next

 End Sub

 ‘Add the codes for the load event of the MDIParent1.
 Pr�ivate Sub MDIParent1_Load(ByVal sender As System.

Object, ByVal
 e As System.EventArgs) Handles MyBase.Load

 Form1.MdiParent = Me
 AboutBox1.MdiParent = Me

 End Sub

End Class

221VB.NET Controls, Project, and Menu Design

FIGURE 13.12
Menu design of a VB.NET project.

FIGURE 13.11
Add collections for submenu.

222 Computing Applications in Forestry and Natural Resource Management

	 7.	 In the Solution Explorer Window, right click your project name and
choose Property and then change the start-up form of your applica-
tion to MDIParent1 (Figure 13.13).

	 8.	Before you start to run the project, you need to set the form proper-
ties as listed in Table 13.3.

	 9.	Run the project (Figure 13.14).
	 a.	 Click Edit|Species

	 b.	 Click Help|About

	 c.	 Click Close

	 d.	 Click Exit

	 10.	Save your project.

FIGURE 13.13
Project properties’ dialog box.

TABLE 13.3

Property Settings of Forms

Form Property Setting

MDIParent1 WindowState Maximized
IsMdiContainer True

Form1 IsMdiContainer False
About Box1 Name AboutBox1

223VB.NET Controls, Project, and Menu Design

Class Exercises

	 1.	 What does a VB.NET project usually consist of?
	 2.	 Compare and contrast form class, user-defined class, and standard

module.
	 3.	 What are the types of VB.NET controls?

Reference

Microsoft Corporation. 2015. Managing Application Resources (.NET). Available
online at https://msdn.microsoft.com/en-us/library/9za7fxc7.aspx.
Accessed on February 14, 2017.

FIGURE 13.14
Running mode of a VB.NET MDI project.

https://msdn.microsoft.com

http://taylorandfrancis.com

225

VB.NET Programming Fundamentals

14.1 � Variables and Constants

Visual Basic .NET (VB.NET), like other programming languages, uses vari-
ables for storing values. Each variable has a name and a data type.

14.1.1 � Declaring Variables

Users have to be more specific with data types while programming in
VB.NET. Variables are declared with the Dim statement, supplying a name
for the variable:

 Dim variablename [as data type]

A variable name:

•	 Must begin with a letter.
•	 Can’t contain an embedded period or embedded type-declaration

character.
•	 Must not exceed 255 characters.
•	 Must be unique within the same scope, which is the range from

which the variable can be referenced.

14.1.2 � Scope of Variables

The scope is the lifetime of a variable. Depending on how it is declared, a
variable is scoped as either a procedure-level (local), class-level, or module-
level variable (Table 14.1).

14.1.3 � Private versus Public

Private variables (or procedures) are local for a procedure or a module or a
class. Public variables (or procedures) are available to all modules or classes
in a project and are considered global.

14

226 Computing Applications in Forestry and Natural Resource Management

14.1.4 � Static versus Dim

Values in local variables declared with Static exist the entire time your appli-
cation/project is running, while variables declared with Dim exist only as
long as the procedure is executing.

14.1.5 � Constants

Constants also store values, but as the name implies, those values remain con-
stant through the execution of an application. Using constants can make your
code more readable by providing meaningful names instead of numbers.

 [Public|Private] Const constantname[As Type] = expression

 Public Const conBACal As Single = 0.005454154

14.2 � Data Types

Data types control the internal storage of data in VB.NET. The data type
determines how much memory is allocated to store the data (Table 14.2).
While you should always specify the data type for a variable, if you don’t, it
defaults to an object data type. VB.NET has a number of built-in data types,
with the most commonly used being:

	 1.	Numeric data types

•	 Integer

	 Dim NoTrees as Integer (Stores a value of integer)

•	 Single

	 Di�m DBH as Single (S�tores a value with single
precision floating point)

TABLE 14.1

Scope of Variables

Scope Private Public

Procedure-level Variables are private to the procedure in
which they are declared and appear.

Not applicable. You cannot
declare public variables within
a procedure.

Class-level Variables are private to the class in
which they are declared and appear.

Variables are available outside
the class.

Module-level Variables are private to the module in
which they are declared and appear.

Variables are available to all
modules.

227VB.NET Programming Fundamentals

•	 Double

	 Di�m DBH as Double    (S�tores a value with double
precision floating point)

	 2.	String data type

	 Private S As String    (Variable-length string)
	 Private S As String * 10    (Fixed-length string)

If you assign a string of fewer than 10 characters to the above-
defined fixed-length variable S, S is padded with enough trail-
ing spaces to total 10 characters. If you assign a string that is too
long for the fixed-length string, VB.NET simply truncates the
characters.

	 3.	Boolean data type

	 Di�m blFlag As Boolean   (S�tores a value indicating
True or False)

	 4.	Object data type

	 Dim objDB As Object    (Stores any type of data)

TABLE 14.2

Major Data Types in VB.NET

Data Type Size in Bytes Range

Boolean 4 True or false
Date 8 1/1/1 to 12/31/9999
Double 8 −1.79769313486231E308 to −4.94065645841247E-324

for negative values;
4.94065645841247E-324 to 1.79769313486232E308
for positive values

Integer 4 −2,147,483,648–2,147,483,647
Object 4 (32-bit) or

8 bytes (64-bit)
Any object type

Single 4 −3.402823E-38 to −1.401298E-45 for negative
values;

1.401298E-45 to 3.402823E38 for positive values
String 10 0 to approximately 2 billion Unicode characters

Sources:	 Barwell, F. et al., Professional VB.NET, 2nd edn., Wiley Publishing, Inc.,
Indianapolis, IN, 2003, 985pp; Microsoft Corporation, Data type summary
(Visual Basic), 2017, Available online at https://msdn.microsoft.com/en-us/
library/47zceaw7.aspx, Accessed on February 9, 2017.

https://msdn.microsoft.com
https://msdn.microsoft.com

228 Computing Applications in Forestry and Natural Resource Management

14.3 � Arrays

Arrays can be used to store indexed collections of related variables. If you
have experience in programming with other languages (such as C/C++ or
Java), you will be familiar with the concept of arrays. Arrays allow you to
use a series of variables of the same name, with different numbers (indices)
to distinguish them. This helps create smaller and simpler code in many situ-
ations, because by using the index number the programmer can set up loops
that deal efficiently with any number of cases. Always try to avoid declaring
a larger array than necessary.

In VB.NET, there are two types of arrays: (1) a fixed-size array that always
remains the same size and (2) a dynamic array whose size can change at
run-time.

14.3.1 � Declaring Arrays

 Di�m arrayValue(20) as Single ( f�or fixed size array of
21 elements)

 Dim arrayValue() as Single ( for dynamic array)
 …
 Re�dim arrayValue(ComputedSize) ( f�or assigning dynamic

array size)

14.3.2 � Multidimensional Arrays

With VB.NET, you can declare arrays of multiple dimensions. For example,
the following statement declares a two-dimensional 10-by-10 array within a
procedure:

 Dim StandStock(9, 9) as Single

 Dim StandStock(1 to 10, 1 to 10) as Single

14.4 � Classes and Procedures

14.4.1 � Class

A class is a template to specify the properties and methods of an object.
Class is a data structure that can contain data members such as constants,

229VB.NET Programming Fundamentals

variables, and events and function members such as methods and properties.
Let’s start by looking at the basic syntax for declaring a class:

 Class name

 [statements]

 End Class

The Class keyword starts the class definition. The name is the name to be
used to create instances of this class. The statements primarily comprise two
parts: data and functions including the methods, properties, variables, and
events of the class. Within a class, access to each member can be speci-
fied. A member declared as Private is available only from within the class.
A member declared as Public is available inside the class as well as outside
the class. Public is the default declaration if not specified. In object-oriented
programming, a program is made up of various objects that interact with
each other. Objects of the same type belong to the same class. An object is
an instance of a class and its state is created by the values assigned to its
instance variable.

Let’s create a user-defined tree class to illustrate the application of a class
or an object in VB.NET. As we know, a tree typically has attributes/data of
height, species, and diameter at breast height (DBH). Depending on specific
applications, its function could include calculation of the basal area (BA) and
volume. Here is the code listing for a tree class:

Public Class Tree
 'data
 Private dbh As Single 'inch
 Private height As Single '# of 16 ft logs
 Private spp As String

 'methods
 'get tree data
 Public Sub TreeData()
 dbh = 12.2
 height = 2.5
 spp = "oak"
 End Sub

 'calculating basal area
 Public Function CalBA() As Single
 CalBA = 0.005454154 * dbh * dbh
 End Function

 'calculating volume
 Public Function CalVol() As Single

230 Computing Applications in Forestry and Natural Resource Management

 Ca�lVol = Math.Round(((0.55743 * height ^ 2 + 41.51275
* height - 29.37337) + (2.78043 - 0.04516 * height ^
2 - 8.77272 * height) * dbh + (0.04177 - 0.01578 *
height ^ 2 + 0.59042 * height) * dbh ^ 2), 2)

 End Function

 'method to display tree data
 Public Sub DisplayTree()
 Console.WriteLine("This tree is: {0}", spp)
 Console.WriteLine("Tree DBH in inches: {0}", dbh)
 Co�nsole.WriteLine("Tree Height in # of 16-ft Logs: {0}

", height)
 Co�nsole.WriteLine("Basal Area in square feet: {0} ",

CalBA())
 Co�nsole.WriteLine("Volume in Doyle Board Feet: {0}",

CalVol())
 End Sub

 Shared Sub main()
 Di�m t As New Tree()'an instance of Tree class or

object
 t.TreeData()
 t.DisplayTree()
 Console.ReadLine()
 End Sub
End Class

You can group programming tasks by breaking programs into smaller
logical components. These components, called procedures, can then
become building blocks that let you enhance and extend VB. Procedures
are useful for condensing repeated or shared tasks, such as frequently used
calculations, text and control manipulations, and database operations. For
example, the procedure “DisplayCaption()” in Section 13.2 has been used
8 times.

There are two major benefits of programming with procedures:

	 1.	Debug more easily
	 2.	Reuse the procedures for other programs with little or no modification

There are three basic types of procedures used in VB.NET:

	 1.	Sub procedures that do not return a value.
	 2.	Function procedures that return a value.
	 3.	Property procedures that can return and assign values and set refer-

ences to objects.

231VB.NET Programming Fundamentals

14.4.2 � Sub Procedures

A Sub procedure is a block of code that is extended in response to an event.
There are two types of Sub procedures: general and event procedures. The
syntax for a Sub procedure is:

 [P�rivate][Public][Static] Sub procedurename (arguments)
handles event name

 statements

 End Sub

14.4.2.1 � Event Procedures

When an object in VB recognizes that an event has occurred, it automatically
invokes the event procedure using the name corresponding to the event.
Because the name establishes an association between the object and the code,
event procedures are said to be attached to forms and controls.

An event procedure for a control combines the control’s name, underscore
“_”, and the event name. For example, if you are using a command button to
invoke actions by clicking the button, this event procedure will be:

 Pr�ivate Sub Button1_Click(ByVal sender As System.
Object, ByVal e

 As System.EventArgs) Handles Button1.Click

 statements

 End Sub

An event procedure for a form combines form name, underscore, and
event. For example, if you are using Form1, you can have the following event
procedures for this form:

 Pr�ivate Sub Form1_Click(ByVal sender As Object, ByVal
e As

 System.EventArgs) Handles Me.Click

 statements

 End Sub

 Pr�ivate Sub Form1_Load(ByVal sender As System.Object,
ByVal e As

 System.EventArgs) Handles MyBase.Load

 statements

 End Sub

232 Computing Applications in Forestry and Natural Resource Management

14.4.2.2 � General Procedures

A general procedure tells the application how to perform a specific task.
Once a general procedure is defined, it must be specifically invoked by the
application. By contrast, an event procedure remains idle until called upon to
respond to events caused by the user or triggered by the system.

Why use general procedures?

•	 Several different event procedures might need the same actions
performed.

•	 General procedures eliminate the need to duplicate the code.
•	 General procedures can enhance modular programming of your

applications.

14.4.3 � Function Procedures

Like MS Excel and Access, VB.NET includes built-in functions, like Sqr, Cos,
or Sin. In addition, we can build our own functions. The syntax for a function
procedure is:

 [P�rivate][Public][Static] Function functionname (args)
[As type]

 statements

 End Function

Like a Sub procedure, a function is a separate procedure and can perform a
series of statements. However, there are two basic differences between a Sub
procedure and a function:

•	 A function can return a value. While calling a function, we need to
use an expression such as return_value = functionname(arguments).

•	 A function has a data type.

14.4.4 � Sample Exercise

Here is an example to show you how to use procedures. Suppose we would
like to calculate the BA of a tree and display it in a list box.

	 a.	Start a new VB project.
	 b.	Create the interface.

We need to add the following controls on Form2 (Figure 14.1):
•	 Two labels
•	 A text box

233VB.NET Programming Fundamentals

•	 A list box
•	 Two command buttons

	 c.	Code the procedures.
Using a function to calculate the BA and a Sub procedure to dis-

play the BA in the list box might be an efficient way to program this
exercise.

Public Class Form2
 'In General Declaration
 Dim DBH As Single
 Dim BA As Single

 'A Procedure for displaying basal area
 Private Sub DisplayBA(ByVal basal_area As String)
 ListBox1.Items.Add(basal_area)
 End Sub

 'A Function for calculating basal area
 Private Function CalBA(ByVal d As Single) As Single
 CalBA = 0.005454154 * d * d
 End Function

 'Event procedure of clicking command1
 Pr�ivate Sub Button1_Click(ByVal sender As System.Object,

ByVal e As
 System.EventArgs) Handles Button1.Click

FIGURE 14.1
Interface of your application.

234 Computing Applications in Forestry and Natural Resource Management

 DBH = CSng(TextBox1.Text)
 BA = CalBA(DBH)
 Call DisplayBA(CStr(BA))
 End Sub

 'Event procedure of clicking command2
 Pr�ivate Sub Button2_Click(ByVal sender As System.Object,

ByVal e As
 System.EventArgs) Handles Button2.Click

 End

 End Sub
End Class

You should notice that two VB.NET built-in functions were used
in the program:
•	 CSng (Convert to single)
•	 CStr (Convert to string)

	 d.	Run the project.
•	 Enter a DBH in the text box.
•	 Click the Cal BA button.
•	 Repeat the above procedures.

14.4.4.1 � Passing by Value versus Passing by Reference

Only a copy of a variable is passed when an argument is passed by value.
If the procedure changes the value, the change affects only the copy but not
the variable itself. Using the ByVal key word indicates an argument passed
by value.

Passing arguments by reference gives the procedure access to the actual
variable content in its memory address location. As a result, the variable’s
value can be changed permanently. Passing by reference is the default in
VB.NET.

14.5 � Control Structures

Control structures allow you to control the flow of your program’s
execution. In this section, we will discuss decision structures and loop
structures.

235VB.NET Programming Fundamentals

14.5.1 � Decision Structures

VB.NET procedures can test conditions and then, depending on the results
of the test, perform different operations. The decision structures that VB.NET
supports include:

	 1.	 If … Then

 If condition Then statement

 If condition Then

 Statements
 End If

	 2.	 If … Then … Else

 If condition1 Then
 Statement block 1
 ElseIf condition2 Then
 Statement block 2
 …
 Else
 Statement block n
 End If

	 3.	Select Case

 Select Case testexpression
 Case expressionlist1
 Statementblock1
 Case expressionlist2
 Statementblock2
 …

 Case Else
 Statementblockn
 End Select

14.5.2 � Loop Structures

Loop structures allow you to execute one or more lines of code repetitively.
The loop structures that VB supports include:

	 1.	While … End While

236 Computing Applications in Forestry and Natural Resource Management

 While conditions

 Statements

 End While

	 2.	Do While … Loop

 Do While condition
 Statements
 Loop

	 3.	For … Next

 For counter = start To end [Step increment]

 Statements

 Next counter

	 4.	For Each … Next

 For Each element In group

 Statements

 Next element

14.6 � Input and Output Files

We already learned how to input data from, and output results to, a VB.NET
form. In this section, we will demonstrate how to read the data from a text
file and write your data to a file. The ability to open up a text file and read its
contents can be very useful in your programming life.

14.6.1 � Direct File Access

Ever since the first version of VB, files have been processed using Open state-
ments and other related functions. These mechanisms are fully supported
in VB 6.0. VB.NET supports a new object called System.IO for the direct file
functions. Direct file access is convenient and easy to use.

To open up a text file in VB.NET, you need to create an object called
“StreamReader.” This, as its name suggests, reads streams of text. The
StreamReader is an object available to System.IO.

237VB.NET Programming Fundamentals

14.6.2 � File Access Types

A file consists of nothing more than a series of related bytes located on a disk.
When your application accesses a file, it must assume what the bytes are sup-
posed to represent (characters, integers, strings, and so on). Depending on
what kind of data the file contains, you use the appropriate file access type.
There are three types of file access types in VB:

•	 Sequential—For reading and writing text files in continuous blocks.
•	 Random—For reading and writing text or binary files structured as

fixed-length records.
•	 Binary—For reading and writing arbitrarily structured files.

We’ll focus on how to use sequential access in this discussion. Sequential
access is designed for use with plain text files and works best for the files that
only consist of texts, such as the files created with a typical text editor. Each
character in the file is assumed to represent either a text character or a text
formatting sequence.

14.6.3 � Opening Files for Sequential Access

When you open a file for sequential access, you open it to perform one of the
following operations:

•	 ReadLine()—Input characters from a file
•	 WriteLine()—Output characters to a file

For example, you can access a file using the following syntax:

 Di�m FILE_NAME As String = "C:\Users\Owner\Documents\test.
txt"

 Dim objReader As New System.IO.StreamReader(FILE_NAME)

The first line just sets up a string variable called FILE_NAME. We store the
path and the name of our text file inside the string variable:

 = "C:\Users\Owner\Documents\test.txt"

You set up the StreamReader to be a variable, just like a string or integer
variable. But we're setting up this variable differently:

 Dim objReader As New System.IO.StreamReader(FILE_NAME)

We’ve called the variable objReader. Then, after the As comes New.

238 Computing Applications in Forestry and Natural Resource Management

This means “Create a New Object.” The type of object we want to create is
a StreamReader object: System.IO.StreamReader.

System is the main object. IO is an object within System and StreamReader is
an object within IO. StreamReader needs the name of a file to read. This goes
between a pair of round brackets: System.IO.StreamReader(FILE_NAME).

VB.NET will then assign all of this to the variable called objReader. So
instead of assigning an integer variable, you are assigning a StreamReader
to an object type variable. Now that objReader is an object variable, it has
its own properties and methods available for use (in the same way that
the textbox has a text property). One of the methods available to our new
StreamReader variable is the ReadToEnd method. This will read the whole of
your text. You can, though, test to see if the file exists. If it does, you can open
it; if not, you can display an error message.

 Di�m FILE_NAME As String = "C:\Users\Owner\Documents\test.
txt"

 If System.IO.File.Exists(FILE_NAME) = True Then
     Di�m objReader As New System.IO.StreamReader(FILE_NAME)
 TextBox1.Text = objReader.ReadToEnd
 objReader.Close()
 Else
 MsgBox("File Does Not Exist")
 End If

14.7 � Example

Let’s use the tree data from our previous course project. First create a text file
for input and write your results to another text file.

	 1.	Use notepad to create a file named TreeData.txt and save it in the
directory of your VB.NET project. The data must be delimited by
commas.

 1,27,1
 2,13,2
 3,12,1
 4,15,2.5
 5,17,2
 6,25,2
 7,28,0.5
 8,10,1
 9,29,2.5
 10,13,0.5

239VB.NET Programming Fundamentals

	 2.	Start a new VB.NET project and put the following controls on form1
(Figure 14.2):

	 a.	 Five labels
	 b.	 Three text boxes
	 c.	 A list box
	 d.	 Six command buttons
	 3.	Table 14.3 shows the property setting of the form and other controls.

FIGURE 14.2
Interface for calculating BA and volume of trees.

TABLE 14.3

Property Settings

Control Property Setting

Form Text Input and output file
Form Name Form_input_output
Command1 Text Retrieve tree data
Command2 Text Cal BA and volume
Command3 Text Save result data
Command4 Text Close

240 Computing Applications in Forestry and Natural Resource Management

	 4.	Add the following code to the project:

Public Class Form_Input_Output

 'In General Declaration
 Dim aryTreeNo() As Integer
 Dim aryDBH(), aryNLogs(), aryBA(), aryVol() As Single
 Dim NofTrees As Integer
 Dim totBA, totVOL As Single

 'Function for calculating BA
 Private Function CalBA(ByVal d As Single) As Single
 CalBA = 0.005454154 * d * d
 End Function

 'Function for calculating volume of a tree
 Pr�ivate Function CalVol(ByVal d As Single, ByVal l As

Single) As Single
 Ca�lVol = Math.Round(((0.55743 * l^2 + 41.51275*l -

29.37337) + (2.78043 - 0.04516*l^2 - 8.77272 * l)*d +
(0.4177 - 0.01578*l^2 + 0.59042*l)*d^2), 2)

 End Function

 'Procedure for summarizing total basal area and volume
 Private Sub SumBAVol()
 totBA = 0
 totVOL = 0
 Dim i As Integer
 For i = 1 To NofTrees
 totBA = totBA + aryBA(i)
 totVOL = totVOL + aryVol(i)
 Next
 End Sub

 Pr�ivate Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

 Dim oRead As System.IO.StreamReader
 'oRead = IO.File.OpenText(TextBox1.Text)
 Dim n As Integer
 Dim str As String
 If System.IO.File.Exists(TextBox1.Text) Then
 oRead = IO.File.OpenText(TextBox1.Text)
 str = oRead.ReadLine()
 While Not str Is Nothing
 ListBox1.Items.Add(str)
 n = n + 1
 Re�Dim Preserve aryTreeNo(n), aryDBH(n),

aryNLogs(n), aryBA(n), aryVol(n)

241VB.NET Programming Fundamentals

 Dim start1, start2 As Integer
 st�art1 = Microsoft.VisualBasic.InStr(1, str,

",", CompareMethod.Text)
 st�art2 = Microsoft.VisualBasic.InStr(start1 +

1, str, ",", CompareMethod.Text)
 ar�yTreeNo(n) = Convert.ToSingle(Microsoft.

VisualBasic.Left(str, start1 - 1))
 ar�yNLogs(n) = Convert.ToSingle(Microsoft.

VisualBasic.Right(str, Microsoft.
VisualBasic.Len(str) - start2))

 ar�yDBH(n) = Convert.ToSingle(Microsoft.
VisualBasic.Mid(str, start1 + 1, start2
- start1 - 1))

 str = oRead.ReadLine()
 End While

 NofTrees = n
 oRead.Close()
 Else
 Ms�gBox("You either entered a wrong file name or the file
 does not exist!")
 End If

 End Sub

 Pr�ivate Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 Dim n As Integer
 For n = 1 To NofTrees
 aryBA(n) = CalBA(aryDBH(n))
 aryVol(n) = CalVol(aryDBH(n), aryNLogs(n))
 Next
 MsgBox("BA and Volumn were computed!")
 End Sub

 Pr�ivate Sub Button4_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button4.Click

 End
 End Sub

 Pr�ivate Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

 'Create a text file
 Dim oWrite As System.IO.StreamWriter
 oW�rite = IO.File.CreateText(My.Application.Info.

DirectoryPath & "\Results.txt")

 'Write to the text file
 Dim i As Integer
 Dim str As String = Nothing

242 Computing Applications in Forestry and Natural Resource Management

 For i = 1 To NofTrees
 st�r = aryTreeNo(i).ToString + "," + aryDBH(i).

ToString + "," + aryNLogs(i).ToString + "," +
CalBA(aryDBH(i)).ToString + "," +
CalVol(aryDBH(i), aryNLogs(i)).ToString

 oWrite.WriteLine(str)
 oW�rite.WriteLine() 'W�rite a blank line to

the file
 Next

 'Close the text file
 oWrite.Close()

 MsgBox("Results were saved!")
 End Sub

 Pr�ivate Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

 'Displaying current working directory
 TextBox2.Text = Environment.CurrentDirectory()

 End Sub

 Pr�ivate Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

 'Displaying total BA and Vol
 Call SumBAVol()
 TextBox3.Text = totBA
 TextBox4.Text = totVOL
 End Sub

End Class

	 5.	Run your application (Figure 14.3).

Your output file is TreeData.rlt and is located in the working directory. It
should look like Figure 14.4.

14.8 � Data Access

In this section, you will learn how to use a DataGridView control to retrieve
an existing data table in an MS Access database and add new records to the
table. You are also allowed to access the report in the MS Access database.
Here is an example to demonstrate the whole process.

243VB.NET Programming Fundamentals

FIGURE 14.4
File output of tree data.

FIGURE 14.3
Display tree data and save results.

244 Computing Applications in Forestry and Natural Resource Management

	 1.	Create a Visual Studio project and name it “VSDataAccess.” The inter-
face of Form1 should look like Figure 14.5. Table 14.4 shows all the
controls on the form. Another form “frmReport” also needs to be
created.

	 2.	Set data source of DataGridView1.
You can follow the instructions described earlier in this chapter to

set the data source of DataGridView1. In this example, you need to
select the table tblPlot as the source table.

FIGURE 14.5
Interface for retrieving and adding data to database tables.

TABLE 14.4

Data Controls on Form1

Control Property Setting

Label1 Text Plot no.
Label2 Text Plot type
Label3 Text Forest
Label4 Text Crew
Label5 Text Date (mm/dd/yy)
Datetimepicker1
DataGridView1
Button1 Text Add plot
Button2 Text Report
Button3 Text Close

245VB.NET Programming Fundamentals

	 3.	Code in Form1.
Double click the related controls and add the following code to

the corresponding procedures.

Public Class Form1

 Pr�ivate Sub Button3_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
Button3.Click

 'close the current form
 Me.Close()
 End Sub

 Pr�ivate Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

 'T�his code is automatically generated after you set
up data connection for the control DataGridView1.
Your dataset may be different from the code below.
Make sure that the table "tblplot" is selected to
fill the datagridview control.

 Me�.TblPlotTableAdapter3.Fill(Me._2007DatabaseDataSet.
tblPlot)

 End Sub

 Pr�ivate Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 frmreport.Show()

 End Sub

 Pr�ivate Sub Button1_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles Button1.
Click

 Dim str1, str2, str3, str4, str5 As String
 str1 = TextBox1.Text
 str2 = TextBox2.Text
 str3 = TextBox3.Text
 str4 = TextBox4.Text
 str5 = TextBox5.Text

 Dim newrow As DataRow =
 _2007DatabaseDataSet.Tables("tblplot").NewRow()
 newrow("plotid") = str1
 newrow("plottype") = str2
 newrow("forest") = str3
 newrow("crew") = str4
 newrow("date") = str5

246 Computing Applications in Forestry and Natural Resource Management

 _2�007DatabaseDataSet.Tables("tblplot").Rows.
Add(newrow)

 Da�taGridView1.DataSource = Me._2007DatabaseDataSet.
tblPlot

 Me�.TblPlotTableAdapter3.
Update(Me._2007DatabaseDataSet.tblPlot)

 MsgBox("Plot table was successfully updated.")
 End Sub

 Pr�ivate Sub DateTimePicker1_ValueChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
DateTimePicker1.ValueChanged

 'F�ormat the date output and give this value to
the textbox5.

 TextBox5.Text = Format(DateTimePicker1.Value, "d")
 End Sub
End Class

	 4.	Run the application—Form1.
Click the start button to run this application. You can type new

plot data in the four text boxes and choose a date from the date-
timepicker control. The running mode is illustrated in Figure 14.6.

	 5.	Report.

FIGURE 14.6
Running mode of the application for retrieving and adding database data.

247VB.NET Programming Fundamentals

Click the Report button, another form with three buttons will pop
up for reporting (Figure 14.7).

	 6.	Code in report form.

Public Class frmreport

 Pr�ivate Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

 Me.Close()

 End Sub

 Pr�ivate Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

 Call LoadAccessRpt("rptPlot")

 End Sub

 Pr�ivate Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 Call LoadAccessRpt("rptSpp")

 End Sub

End Class

FIGURE 14.7
Design interface of report form.

248 Computing Applications in Forestry and Natural Resource Management

	 7.	Report procedure in standard module.

Public Sub LoadAccessRpt(ByVal rptName As String)
 Dim objAccess As Object

 ob�jAccess = GetObject(My.Application.Info.DirectoryPath &

"\2007Database.accdb")

 'Open the report in print preview
 objAccess.docmd.openreport(rptName, 2)

 'Make Access visible
 objAccess.Visible = True

 'Maximize the report window
 objAccess.docmd.maximize()

 'End the OLE Automation session
 objAccess = Nothing

End Sub

	 8.	Run your application—frmreport (Figure 14.7).

14.9 � Data Manipulation

ADO.NET is the new database technology of the .NET platform, and it
builds on Microsoft ActiveX’s Data Objects (ADO). ADO.NET is a language-
neutral object model that is the keystone of Microsoft's Universal Data Access
strategy.

ADO.NET is an integral part of the .NET Compact Framework, providing
access to relational data, XML documents, and application data. ADO.NET
supports a variety of development needs. With it you can create database-
client applications and middle-tier business objects used by applications,
tools, languages, or Internet browsers.

ADO.NET defines DataSet and DataTable objects that are optimized for
moving disconnected sets of data across intranets and Internets, including
through firewalls. It also includes the traditional Connection and Command
objects, as well as an object called a DataReader that resembles a forward-
only, read-only ADO record set. If you create a new application, your appli-
cation requires some form of data access.

249VB.NET Programming Fundamentals

ADO.NET provides data access services in the Microsoft .NET platform.
You can use ADO.NET to access data by using the new .NET Framework
data providers, which are:

•	 Data provider for Structured Query Language (SQL) server (System.
Data.SqlClient).

•	 Data provider for Object Linking and Embedding Database (OLEDB)
(System.Data.OleDb).

•	 Data provider for Open Database Connectivity (ODBC) (System.
Data.Odbc).

•	 Data provider for Oracle (System.Data.OracleClient).

14.9.1 � Example

Let’s consider an example that uses a data provider for OLEDB. Suppose we
continue to work on our previous project of calculating BA and volume of
trees. In the example, instead of using direct file access, we are going to cre-
ate an Access database to hold the tree data and results, then use OLEDB to
access the database and manipulate the data in it.

	 1.	Create a database: create a database containing the following two
tables:

	 a.	 tblTreeData
	 i.	 TreeNo, integer, primary key
	 ii.	 DBH, single
	 iii.	 NofLogs, single
	 b.	 tblResult
	 i.	 TreeNo, integer, primary key
	 ii.	 DBH, single
	 iii.	 NofLogs, single
	 iv.	 BA, single
	 v.	 Vol, single

Remember to input the data of 10 trees in table tblTreeData.
	 2.	Start a new Visual Studio project: add two DataGridView controls,

two labels, and three command buttons on form1 (Figure 14.8). The
first data grid control is used to display the raw data, including
TreeNo, DBH, and NofLogs. The second data grid control is used to
display the tblResult table, which contains five fields: TreeNo, DBH,
and NofLogs, BA, and Vol.

250 Computing Applications in Forestry and Natural Resource Management

	 3.	Write code:

Imports System.Data.OleDb

Public Class Form1
 'Declare five arrays and one variable at form class level
 Dim aryTreeNo(), aryDBH(), aryNLogs(), aryBA(), aryVol()
 Dim NofTrees As Integer

 'Form loading event procedure
 Pr�ivate Sub Form1_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load
 'T�ODO: This line of code loads data into the

'_2007DatabaseDataSet2.tblResult' table. You can move,
or remove it, as needed.

 Me�.TblResultTableAdapter.
Fill(Me._2007DatabaseDataSet2.tblResult)

 'T�ODO: This line of code loads data into the
'_2007DatabaseDataSet1.tblTreeData' table. You
can move, or remove it, as needed.

 Me�.TblTreeDataTableAdapter2.
Fill(Me._2007DatabaseDataSet1.tblTreeData)

 Me._2007DatabaseDataSet2.tblResult.Rows.Clear()

 End Sub

FIGURE 14.8
Design interface of database application.

251VB.NET Programming Fundamentals

 'Function to calculate BA
 Private Function CalBA(ByVal dbh As Single) As Single

 CalBA = Math.Round(0.005454154 * dbh * dbh, 2)

 End Function

 'Function to calculate the volume
 Pr�ivate Function CalVol(ByVal d As Single, ByVal L As

Single) As Single

 Ca�lVol = Math.Round(((0.55743 * L ^ 2 + 41.51275

* L - 29.37337) + (2.78043 - 0.04516 * L ^ 2
- 8.77272 * L) * d + (0.04177 - 0.01578 * L ^ 2
+ 0.59042 * L) * d ^ 2), 2)

 End Function

 'Reteieving tree data and assigning them to to arrays
 Pr�ivate Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click
 Dim query As String = "select * from tblTreeData"
 Di�m connstr As String = "Provider=Microsoft.ACE.

OLEDB.12.0; Data Source=2007Database.accdb"
 Di�m conn As OleDbConnection = New

OleDbConnection(connstr)
 Di�m command As OleDbCommand = New

OleDbCommand(query, conn)
 Dim reader As OleDbDataReader

 conn.Open()
 reader = command.ExecuteReader()

   Dim queryRlt As String = "Delete from tblResult"
 Di�m connstrRlt As String = "Provider=Microsoft.

ACE.OLEDB.12.0; Data Source=2007Database.
accdb"

 Di�m connRlt As OleDbConnection = New
OleDbConnection(connstrRlt)

 Di�m commandRlt As OleDbCommand = New
OleDbCommand(queryRlt, connRlt)

 Dim readerRlt As OleDbDataReader
 connRlt.Open()
 readerRlt = commandRlt.ExecuteReader()
 readerRlt.Close()
 connRlt.Close()

 Dim n As Integer
 While reader.Read()
 n = n + 1

252 Computing Applications in Forestry and Natural Resource Management

 Re�Dim Preserve aryTreeNo(n), aryDBH(n),
aryNLogs(n), aryBA(n), aryVol(n)

 aryTreeNo(n) = reader("TreeNo")
 aryDBH(n) = reader("DBH")
 aryNLogs(n) = reader("NofLogs")
 End While
 NofTrees = n

 reader.Close()
 conn.Close()
 MsgBox("Calculation was done!")
 Button1.Enabled = False
 End Sub

 Pr�ivate Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

 Me.Close()

 End Sub

 'Computing and saving results
 Pr�ivate Sub Button2_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button2.Click

 Dim i As Integer
 For i = 1 To NofTrees
 'B�efore using the tablerow, you have to

create a dataset which contains the
datatable (tblResult).

 Di�m newrow As _2007DatabaseDataSet2.
tblResultRow

 ne�wrow = Me._2007DatabaseDataSet2.tblResult.
NewtblResultRow()

 newrow.TreeNo = aryTreeNo(i)
 newrow.DBH = aryDBH(i)
 newrow.NofLogs = aryNLogs(i)
 newrow.BA = CalBA(aryDBH(i))
 newrow.Vol = CalVol(aryDBH(i), aryNLogs(i))
 Me�._2007DatabaseDataSet2.tblResult.Rows.

Add(newrow)
 Next
 Me�.TblResultTableAdaptor.

Update(Me._2007DatabaseDataSet2.tblResult)
 Button2.Enabled = False
 End Sub

End Class

253VB.NET Programming Fundamentals

	 4.	Run your application (Figure 14.9).
	 a.	 Click the Compute button.
	 b.	 Click the Results and Save button.

Class Exercises

	 1.	 We have data for 10 trees in Table 14.5. Create a simple VB.NET project
to calculate the total BA and volume of these 10 trees. You should imple-
ment the procedures to calculate and sum BA and volume, respectively.
Declare three arrays to hold tree data and initialize them in the General
Declaration of your project. You are also required to use one command
button to invoke calculations of either BA or volume.

Basal area in ft2 (1 ft2 = 0.0929 m2):

	 BA DBH= * ()0 005454154 2.

FIGURE 14.9
Running the application of database.

254 Computing Applications in Forestry and Natural Resource Management

Volume (V) in Doyle board foot (1 Doyle board foot = 2.36 L):

	

V L L

L

= * + * -() +(
- * -

0 55743 2 41 51275 29 37337

2 78043 0 04516 2 8

. ^ . .

. . ^ ..

. . ^ . ^

77272

0 04177 0 01578 2 0 59042 2

() +

- * + *()*)

L d

L L d

where
L = Number of logs
d = DBH in inches (1 in. = 2.54 cm)

References

Barwell, F., R. Blair, R. Case, J. Crossland, and B. Forgey. 2003. Professional VB.NET
(2nd Edition). Wiley Publishing, Inc., Indianapolis, IN, 985pp.

Microsoft Corporation. 2017. Data type summary (Visual Basic). Available online
at https://msdn.microsoft.com/en-us/library/47zceaw7.aspx. Accessed on
February 9, 2017.

TABLE 14.5

Tree Data

Tree DBH (in.) Merchantable Height (Logs)

1 27 1
2 13 2
3 12 1
4 15 2.5
5 17 2
6 25 2
7 28 0.5
8 10 1
9 29 2.5

10 13 0.5

https://msdn.microsoft.com

255

Programming Application Examples
in Forest Resource Management

In this chapter, we are going to demonstrate a few forest resource manage-
ment programming applications and related programming techniques.
The application examples, programmed using Visual Basic (VB), VC++, or
Java, are:

	 1.	Forest harvesting simulator
	 2.	Timber cruising and inventory
	 3.	Visual Basic for Applications (VBA) for harvesting system produc-

tion and cost analysis
	 4.	Three-dimensional (3D) log bucking optimization
	 5.	3D lumber edging and trimming optimization system
	 6.	3D log sawing optimization system
	 7.	Forest and biomass harvest scheduling and optimization

15.1 � Forest Harvesting Simulator

A forest harvesting simulator can help enhance the efficiency and profit-
ability of forest operations by simulating repetitive and complex opera-
tional problems under certain working conditions (Wang and LeDoux
2003). Our earliest version of this simulator only modeled one machine
type—drive-to-tree feller-buncher under Disk Operating System oper-
ating environment. Simulation was conducted by moving a physical
machine model in a stand map on a digitizing pad. Since the first version,
we have continued to improve the simulator to make it comprehensive,
flexible, and easier to use. As new technologies have been introduced into
computer platforms and programming tools, we have incorporated these
advancements into this simulator.

The current version of the simulator was written with MS VB Version 6.0
for 2D simulations (Wang and Greene 1999) and Visual C++ for 3D operations

15

256 Computing Applications in Forestry and Natural Resource Management

(Li 2005) under the Windows environment. Using the newest version of the
forest harvesting simulator, you can:

•	 Edit mapped stands
•	 Generate stands
•	 Simulate felling
•	 Simulate skidding or forwarding
•	 Monitor the traffic levels of extraction machines
•	 Analyze simulations
•	 Retrieve, view, and produce output of simulations

15.1.1 � Forest Stand Generation

15.1.1.1 � Random Pattern

If a random spatial pattern is requested, a ratio of the stand density to the
total number of possible tree locations based on minimum X and Y spacing is
first calculated. Then a random number with a uniform distribution between
0.0 and 1.0 is generated for each possible tree location. If this number is less
than or equal to the ratio described, the coordinate location is assigned a
tree. If the random number is greater than the ratio, the coordinate location
is considered to be unoccupied (Farrar 1981). The minimum spacing of X
and Y is considered in this procedure when we model natural stands. At each
location, tree diameter at breast height (DBH) is assigned randomly. The total
height and volume of that tree are then calculated based on the assigned
DBH (Borders et al. 1990).

15.1.1.2 � Uniform Pattern

All possible grids for tree locations are identified based on stand density and
X and Y spacing. If X and Y both meet the minimum spacing requirements,
a tree location is assigned in the center of this X by Y rectangle. A random
variation of a half Xmin or Ymin is allowed in modeling both the X and Y coor-
dinates for each tree’s location.

15.1.1.3 � Clustered Pattern

When the clustered pattern is used, the number of cluster centers specified
by the user is located randomly within a plot. By generating the X and Y
coordinates randomly, using a pair of random numbers, each tree is given
an initial location. The distances from that tree location to each of the cluster
centers are determined, and the nearest center is selected. The distance from
this center to the tree is then multiplied by a random number between 0.0 and
1.0 to give that tree a new location relative to the cluster center (Farrar 1981).

257Programming Application Examples in Forest Resource Management

New coordinates are then calculated for the tree, and the distances between
that location and the neighboring trees are checked to assure that the min-
imum nearest distances are maintained. If a tree location has violated the
distance parameter, the procedure is repeated; otherwise, the location is
assigned as a tree location.

15.1.2 � Felling Operations

The numerical simulation model for chain saw, feller-buncher, and harvester
consists of two parts: (1) movement of the logger with a chainsaw from tree
to tree or machine movement from tree to tree and (2) tree felling or process-
ing (Figure 15.1).

15.1.2.1 � Chainsaw Felling

Walk to tree, acquiring, felling, limbing, and topping are modeled for the
chainsaw. The felling direction is first defined within a random variation
range and the sawyer is located at one end of a plot. Usually, the logger
will move to the nearest tree to be cut and fell the selected trees in a narrow
swath. When the logger reaches the far end of the plot, he/she will return
felling trees in the next nearest swath.

15.1.2.2 � Feller-Buncher Felling

Four functions are modeled for the drive-to-tree feller-buncher: move to a
tree, cut the tree, move to dump, and dump. The feller-buncher is first located
at one end of the plot and then moves parallel to the rows of trees; the rows are
4.5–6 m wide. Marked trees on either side of the machine are removed. When
the machine reaches the end of the row, it turns around and cuts another tree
in the nearest swath, continuing until the plot is finished. The system searches
for the “cut” tree and adds the tree to the felling head. A solid black circle
is drawn at the location of a cut tree to signify the stump. This procedure is
repeated until the head is full. The system then moves the machine image to
the location of the bunch or pile to be built and drops the trees.

15.1.2.3 � Harvester Felling

Six functions were modeled for the cut-to-length harvester: move, boom
extend/retreat, cut, swing boom, processing, and dumping. Unlike the feller-
buncher, a harvester with a boom can reach several trees at a stop. Trees can
be felled and processed with the same harvester. A circle around the har-
vester is drawn to indicate the reach of the boom. This circle is moved as the
harvester moves. The harvester usually runs in a straight trail and works in a
12–15 m wide strip depending on the boom reach. Trees on the trail must be
removed for machine travel. Trees on either side of the machine within the

258 Computing Applications in Forestry and Natural Resource Management

boom reach can be removed based on the user’s choice of harvest method.
The processed trees are then dropped on either side of the harvester trail for
later forwarding.

15.1.3 � Extraction Simulation

15.1.3.1 � Extraction Patterns

In an interactive skidding simulation, a landing must first be placed in the
logging area that was created by felling a plot a fixed number of times. Tree or

Start

Chain saw felling
inputs

Feller-buncher felling
inputs

Harvester felling
inputs

Calculate tree
location

Move to first stop
of harvester

Are there any
selected trees

to be cut within
reach of

the boom?

Are there any
trees in front of

machine
within reach of

the boom?

Search, is the
nearest

tree to be cut
in a swath?

Felling

Dump tree bunch

Save felling operation
data

End

Next tree?

Is the rated
capacity
reached?

No

Yes

Felling

Next tree?

No

Yes

Yes

Yes

Yes

No No

No

No

Felling

Boom, processing,
and dumping

Move to next
stop?

Yes

Yes
No

No

Search, is the
nearest

tree to be cut
in a swath?

FIGURE 15.1
Flowchart of numerical felling operations.

259Programming Application Examples in Forest Resource Management

log pile data are provided by the felling simulation. The skidder machine
will begin at the landing, load the nearest tree pile, and then move to the next
closest pile until it is fully loaded. Then the loaded machine will travel back
to the landing. While the forwarder is simulated in a similar manner, it fol-
lows the harvester’s trail and loads logs with a self-mounted boom.

Although interactive simulation allows constant and direct human input
to the simulation, it is time-consuming and often repetitive, especially with
respect to uniform skidding or forwarding patterns. As a result, a numerical
skidding or forwarding simulation was modeled in the system (Figure 15.2).
To date, four skidding or forwarding patterns (SP1, SP2, SP3, and FP1) have
been modeled (Figure 15.3):

SP1: Freestyle skidding (no designated skid trail)
SP2: Skid trail runs through the center of plot (one trail)
SP3: Skid trails traveling from the landing to the corners of plot (two

trails)
FP1: Forwarding along the trails of the harvester (forwarding direct to

road)

The program also allows the user to choose the landing location and the
machine payload. The landing must be located before performing a simula-
tion. The machine will begin at the landing and move to the nearest tree
bunch or log pile, and then move to the next nearest bunch or pile until it
is fully loaded. The machine then follows the specified extraction pattern
throughout the entire simulation process.

15.1.3.2 � Traffic Intensity

The traffic intensity within each smaller grid (e.g., 5 by 5 m) is recorded into
a file while the numerical extraction simulation is being performed. Four
travel intensity categories for a skidder or forwarder are defined in the sys-
tem (Carruth and Brown 1996):

TI1: Trees on the plot have been felled.
TI2: Trees that stood on the plot have been removed and no other traffic

has passed through the plot.
TI3: Trees that stood on the plot have been removed and trees outside

the plot have been skidded through the plot. There have been 3–10
passes with a loaded machine.

TI4: There have been more than 10 passes with a loaded machine
through the plot.

After the machine is fully loaded, it will return to the landing by the short-
est and easiest route depending on the extraction pattern. The skidding area

260 Computing Applications in Forestry and Natural Resource Management

Start

Grapple skidder
Input and locate landing

Forwarder
Input and locate landing

Generate extraction data based on
felling operations: bunch size and

location

Select extraction patterns

Search next tree bunch to be
extracted?

Grappling or loading

Is rated capacity of machine
reached?

Return to landing

Unloading

Next turn?

Save extraction operation data

End

Yes

Yes

Yes

No

No

No

FIGURE 15.2
Flowchart of numerical extraction simulation.

261Programming Application Examples in Forest Resource Management

is divided into cells (5 by 5 m) for accurate recording of travel intensity. This
grid width allows two machines to pass each other on a trail. There are eight
possible direction options for a machine to move from its current position to
the next position.

This procedure is repeated until the end point (Xi, Yi) is reached. The num-
ber of passes is recorded and accumulated for each grid that the loaded
machine passes through as it is traced from the start point to end point. The
travel intensity category in each grid is displayed in four colors depending on
the intensity level. After the tracking is completed along the entire line seg-
ment, the number of passes for the loaded machine in each grid is stored in
computer memory, and then saved to a file after the simulation is completed.

15.1.4 � Simulation Example

A natural hardwood stand in central Appalachia was generated to illustrate the
performance of the stand generation and harvesting simulation. Assume the
species composition is yellow poplar 40%, black cherry 18%, red maple 16%,
red oak 15%, and other hardwoods 11%. The stand density is 485 trees per hect-
are with a DBH range from 5 to 110 cm and a plot size of 0.16 ha. Also assume
that the stand is about 75 years old and trees are randomly distributed.

Once the above information is entered, a 2D stand map is generated and
displayed (Figure 15.4a). Three smaller windows are used to display the stand

Machine paths

Landing

Landing

Tree or log bunches

Skid trail

Skid trails

Machine paths

Machine paths

Machine paths

Skidding pattern 2 (SP2)Skidding pattern 1 (SP1)

Skidding pattern 3 (SP3) Forwarding pattern 1 (FP1)

Tree or log bunches

Tree or log bunches

Landing

Landing

Tree or log bunches

FIGURE 15.3
Diagram of extraction patterns.

262 Computing Applications in Forestry and Natural Resource Management

(a)

(c)

(e) (f)

(g) (h)

(d)

(b)

FIGURE 15.4
Stand generation and harvesting simulation. (a) 2-Dimenisonal stand map, (b) perspective pro-
jection and projective view, (c) overhead view, (d) profile view, (e) 3D component to mark trees
for harvest, (f) felling of marked trees, (g) felling of marked trees, and (h) extraction of felled
trees from plot.

263Programming Application Examples in Forest Resource Management

information, color legends for species, and the DBH distribution by species
or overall. Meanwhile a stand map data file is created and saved in the sys-
tem. The 3D stand map can be displayed by changing the display mode.
Some functionality can be performed on the 3D stand map. For example, the
image can be rotated from left or right continuously to allow for examination
of the stand structure from different perspectives. The user can also change
the crown height and diameter by using the “tree design” module. In order
to differentiate species on the map, a unique color is randomly generated and
assigned to each species. Additionally, the tree height and DBH are drawn to
scale for better visualization.

Two projection modes (perspective projection and parallel projection)
and three view modes (projective view, profile view, and overhead view)
can be produced by the system. Perspective projection and projective view
are the default projection mode and view mode, respectively (Figure 15.4b).
Overhead view and profile view can be enabled by changing the view mode
(Figure 15.4c and d). The 3D component can also allow the user to mark trees
to be harvested (Figure 15.4e). Trees can be marked by species, DBH, or both,
or by the user’s specified requirements such as marking diseased or poorly
formed trees. The marked trees can then be felled (Figure 15.4f and g) and
extracted from the plot (Figure 15.4h).

The system saves the operation data into the database for later analyses
once a simulation run is complete. The analysis module of the harvesting
simulator can analyze the generated stand and compare it with a thinned
or partially cut stand. This module provides (1) elemental time summary,
(2) machine summary by cycle, (3) summary of harvested stand and extracted
site, and (4) production analysis as well as traffic intensity of extraction
machines across the site.

15.2 � Timber Cruising and Inventory

West Virginia University (WVU) Cruise is especially designed to analyze the
field cruising data and provide the results in the format of an MS Access
report (Wang 2004a).

15.2.1 � Manipulate Field Cruising Data

The field cruising data should be in MS Excel format. In order to import the
Excel data to WVU Cruise, you need to do the following things:

	 1.	Open the Excel file that contains the cruising data. The data must
contain the following fields in order: Plot#, Species, DBH, merchant-
able height in the number of logs of a tree, Pulp, Grade, and total

264 Computing Applications in Forestry and Natural Resource Management

height in feet (1 ft = 0.305 m). If you have no data for one or more
fields, put 0s in the cells (Figure 15.5).

	 2.	Create a Named Range, DataRange, in your Excel spreadsheet
	 a.	 Highlight the row(s) and column(s) where your data reside.
	 b.	 On the Insert menu, point to Name and click Define.
	 c.	 Enter the name DataRange for the Named Range name.
	 d.	 Click OK.
	 3.	Start the WVU Cruise program. The main MDI form is displayed

first (Figure 15.6). On the menu bar, there are File, Report, Tools, and
Help menus.

15.2.2 � Import Data

	 1.	 In the Tools menu, click Import. A dialog window pops up for import-
ing Excel data into the cruising program (Figure 15.7). Once the file
is selected, click OK.

15.2.3 � Load Data

	 1.	Now you can load the cruising data in the program. In the File menu,
click Open. The cruising data will be loaded for analysis (Figure 15.8).

	 2.	You can browse the loaded data. Notice that there are View Species
and Grade and Cruise Design buttons on the form.

FIGURE 15.5
Format of cruise data.

265Programming Application Examples in Forest Resource Management

15.2.4 � Cruise Design

If the user clicks the Cruise Design button, a design form will pop up
(Figure 15.9).

In this design window, you can:

	 1.	Design and save cruising information for the report header. Simply
enter the required text boxes and then click Save Cruise Info.

FIGURE 15.6
Menu and toolbars of WVU Cruise.

FIGURE 15.7
Import Excel data into WVU Cruise.

266 Computing Applications in Forestry and Natural Resource Management

FIGURE 15.8
Load cruise data for analysis.

FIGURE 15.9
Cruise design window.

267Programming Application Examples in Forest Resource Management

	 2.	Select form class for a specific species. Click Girard Form Class, and a
form is displayed (Figure 15.10).

	 3.	Configure plot. You can use fixed area, variable radius plot, or 100%
tally.

	 4.	Summarize cruising data by:
	 a.	 Volume
	 b.	 Plot
	 c.	 Cruise statistics
	 d.	 Stand/stock table by DBH class, Species and DBH, or Grade,

Species, and DBH.

15.2.5 � Report

You can output the summarized cruising data in the Access format:

	 1.	By volume: Two parts of the volume summary are provided: mer-
chantable volume tract summary and merchantable volume per acre
(1 acre = 0.4 ha) summary, which are saved in the database and then
reported.

	 2.	The plot-level result is also provided. Once the data are saved, a
report by plot will be generated.

FIGURE 15.10
Edit Girard form class by species.

268 Computing Applications in Forestry and Natural Resource Management

	 3.	The cruising statistics are also provided for volume per acre in cubic
foot (1 acre = 0.4 ha, 1 ft3 = 0.0283 m3), in international board foot
(1/4), in Doyle board foot volume, trees per acre (1 acre = 0.4 ha),
and basal area per acre. Statistics include mean, standard deviation,
standard error, variance, coefficient of variance, confidence interval
at 95% level, percent of error, and sample size. The sample size will
be especially useful for later cruising design.

	 4.	The stand/stock table report can be reported in three levels by DBH
class, Species and DBH, and Grade, Species, and DBH.

15.2.6 � Programming

	 1.	 Input data: Convert MS Excel data into Access format and then load
them into the memory.

 Dim xlBook As Excel.Workbook
 Dim rgSpp As Range

 Private Sub Command1_Click()

 On Error GoTo err_Handler

 Dim filePath As String
 Dim i, j, nExcelData As Integer
 Dim DataConn As ADODB.Connection
 Dim rdExcelData As ADODB.Recordset

 If Right(File1.Path, 1) <> "\" Then
 filePath = File1.Path & "\" & File1.fileName
 Else
 filePath = File1.Path & File1.fileName
 End If

 Set DataConn = New ADODB.Connection

 Path = filePath
 DRIVER = "{Microsoft Excel Driver (*.xls)}"
 Db = "DBQ=" & Path & ";"
 Db = Db & "DefaultDir=" & Path & ";"
 Db = Db & "Driver=" & DRIVER & ";"
 DataConn.Open Db
 ChDir App.Path
 Se�t rdExcelData = DataConn.Execute("SELECT * FROM

DataRange")

  Set dbCruzData = OpenDatabase("dbCruzData.mdb")

269Programming Application Examples in Forest Resource Management

 Se�t rdCruzData = dbCruzData.
OpenRecordset("tblAllTree1")

 Call ClearTreeTable(rdCruzData)

 If rdExcelData.EOF Then
 Ms�gBox "No data can be loaded from this empty

file!" & Chr(13) & filePath, vbOKCancel +
vbInformation, "Excel Conversion"

 Exit Sub
 Else
 j = 0
 nExcelData = 0
 Do While Not rdExcelData.EOF
 nExcelData = nExcelData + 1
 rdExcelData.MoveNext
 Loop
 frmCruzProg.Show
 fr�mCruzProg.Caption = "Importing cruising

data ... "
 frmCruzProg.CruzProgBar.Max = nExcelData
 Screen.MousePointer = vbHourglass
 rdExcelData.MoveFirst
 Do While Not rdExcelData.EOF
 i = 0
 j = j + 1
 frmCruzProg.CruzProgBar.Value = j
 rdCruzData.AddNew
 For Each Field In rdExcelData.Fields
 rdCruzData.Fields(i) = Field.Value
 i = i + 1
 Next
 rdCruzData.Update
 rdExcelData.MoveNext
 Loop
 End If
 Set rdExcelData = Nothing
 Unload frmCruzProg
 Screen.MousePointer = vbDefault

 Exit Sub

 err_Handler:
 Call Error_Handler

 End Sub

	 2.	Process data: Use arrays to hold the data and then compute trees per acre
(1 acre = 0.4 ha), basal area, and volume by species, DBH, and others.

270 Computing Applications in Forestry and Natural Resource Management

Assign cruising data to arrays for processing.

 Public Sub AssignCruiseData()

 On Error GoTo err_Handler

 Dim i As Integer
 i = 1

 frmCruzProg.CruzProgBar.Max = nRecord
 Screen.MousePointer = vbHourglass
 'nRecord = rdCruiseData.RecordCount
 Re�Dim Preserve PointNo(nRecord), Species(nRecord),

DBH1(nRecord), Height(nRecord), PulpW(nRecord),
Grade(nRecord), THeight(nRecord)

 Re�Dim SPPCruised(NofSpecies), PointCR(NofPoint),
DClassCR(NofDClass), GradeCR(NofGrade)

 rdCruzData.MoveFirst
 While Not rdCruzData.EOF
 frmCruzProg.CruzProgBar.Value = i
 PointNo(i) = rdCruzData("PointID")
 If IsNull(rdCruzData("Species")) Then
 Species(i) = "None"
 Else
 Species(i) = rdCruzData("Species")
 End If
 'Species(i) = CSpecies(Species(i))
 If IsNull(rdCruzData("DBH")) Then
 DBH1(i) = 0
 Else
 DBH1(i) = rdCruzData("DBH")
 End If
 If IsNull(rdCruzData("MHT")) Then
 Height(i) = 0
 Else
 Height(i) = rdCruzData("MHT")
 End If
 If IsNull(rdCruzData("Pulp")) Then
 PulpW(i) = 0
 Else
 PulpW(i) = rdCruzData("Pulp")
 End If
 If IsNull(rdCruzData("Grade")) Then
 Grade(i) = "None"
 Else
 Grade(i) = rdCruzData("Grade")
 End If
 If IsNull(rdCruzData("THT")) Then
 THeight(i) = 0

271Programming Application Examples in Forest Resource Management

 Else
 THeight(i) = rdCruzData("THT")
 End If
 'Debug.Print Point(i), Species(i)
 i = i + 1
 rdCruzData.MoveNext
 Wend

 'Assign species
 i = 1
 rdSpecies.MoveFirst
 While Not rdSpecies.EOF
 If IsNull(rdSpecies("Species")) Then
 SPPCruised(i) = "None"
 Else
 SPPCruised(i) = rdSpecies("Species")
 End If
 'Debug.Print SPPCruised(i)
 i = i + 1
 rdSpecies.MoveNext
 Wend
 'Assign plot
 i = 1
 rdNofPlot.MoveFirst
 While Not rdNofPlot.EOF
 If IsNull(rdNofPlot("PointID")) Then
 PointCR(i) = 0
 Else
 PointCR(i) = rdNofPlot("PointID")
 End If
 'Debug.Print PointCR(i)
 i = i + 1
 rdNofPlot.MoveNext
 Wend
 'Assign DBH class
 i = 1
 rdDBHClass.MoveFirst
 While Not rdDBHClass.EOF
 If IsNull(rdDBHClass("NofDClass")) Then
 DClassCR(i) = 0
 Else
 DClassCR(i) = rdDBHClass("NofDClass")
 End If
 i = i + 1
 rdDBHClass.MoveNext
 Wend
 'Assign grade
 i = 1
 rdNofGrade.MoveFirst

272 Computing Applications in Forestry and Natural Resource Management

 While Not rdNofGrade.EOF
 If IsNull(rdNofGrade("Grade")) Then
 GradeCR(i) = "None"
 Else
 GradeCR(i) = rdNofGrade("Grade")
 End If
 i = i + 1
 rdNofGrade.MoveNext
 Wend

 blCallAssignCruz = True

 Unload frmCruzProg
 Screen.MousePointer = vbDefault

 Exit Sub

 err_Handler:
 Call Error_Handler

 End Sub

15.3 � VBA for Harvesting System
Production and Cost Analysis

Traditionally, the logging system analysis was programmed with either a
simple spreadsheet without detailed business functions or with a program-
ming language that was too complicated for many loggers to understand and
apply to their operations. The spreadsheet approach often eliminated the
detailed business functions, but the calculations could be followed through
the worksheets for easy understanding of the process. Approaches using
programming language interfaces are usually able to incorporate advanced
features and functions; however, many of the calculations are performed
outside of the view of the operator, making it difficult for users to follow
and understand the entire process. In this section, we introduce a spread-
sheet program, the Central Appalachian Harvesting Analyzer (CAHA), that
is simple and easy-to-use with more flexible functions for harvesting system
production and cost analysis. Specifically, we will discuss (a) development
of an integrated MS Excel-based spreadsheet harvesting analysis program
with VBA to enhance the logging business management for loggers in cen-
tral Appalachia and (b) applications of the program to examine the harvest-
ing system configurations and interactions under varied harvest and stand
scenarios.

273Programming Application Examples in Forest Resource Management

15.3.1 � Excel and VBA

VBA follows the syntax of VB and has its own integrated development
environment (IDE) running within the process space of a host application,
such as Excel. VBA can be used to access and change properties of the object
model, handle events intrigued by objects, and call the methods of the objects
(Lomax 1998). Both VBA and the stand-alone version of VB use the same
language engine, editor, and most supporting tools (Jacobson 1999). A VBA
application is always interpreted and cannot run independently of its host
application, Excel in our case, whereas VB programs can be compiled into
executables and run in their own process space, or compiled into ActiveX
components and executed within other applications.

15.3.2 � System Design and Implementation

The CAHA was implemented by combining excellence in spreadsheet mod-
eling with VBA. The well-designed worksheet format used in the Auburn
Harvesting Analyzer (Tufts et al. 1985, Greene and Lanford 1992) and cost
estimates of the harvesting machines based on the machine rate method
(Miyata 1980) were used as a foundation for the CAHA. Previously pub-
lished production/cost equations and stand data from the region were
included as built-in functions in the spreadsheet (Rennie 1996, Wang et al.
2002a) (Table 15.1). Other hardwood-specific harvesting productivity/cost
data could be used as references, such as information from Huyler and
LeDoux (1999), LeDoux and Huyler (2001), LeDoux (1985) for harvester and

TABLE 15.1

Cycle Time Models for Harvesting Machinesa

Machine Model (min) Source

Felling machines
Chain Saw −2.4295 + 0.4222∗DBH + 0.002∗ DistT2 Wang et al. (2004b)
Feller-buncher 0.367 + 0.0008∗DBH2 + 0.00026∗MHT2 +

0.02246∗DistT + 0.00679∗DistD
Wang et al. (2004c)

Harvester 0.4032 + 0.0022∗DBH∗2.54∗ exp(4.85 − 7.82/
DBH)∗0.3048

Wang et al. (2005a)

Extraction machines
Cable skidder 9.918 + 0.0049∗Dist − 0.0000006∗Dist2 + 0.0338∗TotVol Wang et al. (2004b)
Grapple skidder 0.844 + 0.00272∗Dist + 0.0000007 Dist2 + 0.022 TotVol Wang et al. (2004c)
Forwarder 27.5079 + 0.03784∗(Dist∗0.3048) − 0.00006572∗(Dist∗

0.3048)∗(TotVol/35.3145)
Wang et al. (2005a)

Helicopterb 1.2648 + 0.01441∗TotVol Wang et al. (2005b)

a	 DBH in inches; DistT—average distance between harvested trees, ft; DistD—distance to
dump, ft; Dist—average extraction distance, ft; TotVol—volume per turn, ft3.

b	 Volume per turn is in MBF.

274 Computing Applications in Forestry and Natural Resource Management

loader and truck, information from Reisinger and Gallagher (2001) for cable
skidder and grapple skidder, information from Thompson et al. (1995) for
cable skidder and forwarder, Grushecky et al. (2007) for trucking, and infor-
mation from Sturos et al. (1996) for cable yarding.

The CAHA consists of four Excel worksheets (Figure 15.11). The first two,
titled System_MBF and System_CUFT, contain the main part of the harvest-
ing system analyzer for use with either thousand board feet (MBF) (1 MBF =
2359.73 L) or cubic feet (CUFT) (1 ft3 = 0.0283 m3) measurement systems,
respectively. The next worksheet is titled MachineRate and is used to calculate
the machine rate for individual machines. The last sheet is a summary sheet
that summarizes the entire harvesting operation. Behind the worksheets are
five VBA modules for system configuration: machine rate calculation, sys-
tem balancing, data reset, and data storage, all of which are implemented
through the Excel spreadsheet interface. Inputs to CAHA include stand data,
tract size and road condition, logging crew information, harvesting equip-
ment, and cost factors. Outputs are machine hourly production and unit cost,
system rate, weekly production, onboard cost, and time required for harvest-
ing a certain tract.

The System_MBF sheet is the default sheet of the CAHA, which is orga-
nized into three sections similar to Auburn Harvesting Analyzer (Tufts et al.
1985, Greene and Lanford 1992): General Information, Machine, and System
(Figure 15.11). The System_CUFT sheet uses the same format as the System_
MBF sheet except for the cubic foot (1ft3 = 0.0283 m3) volume unit.

MS Excel spreadsheet modeling

Harvesting system sheet System configuration
module

Felling

Machine rate
calculation module

Data reset
module

System balancing
module

Data saving module

Extraction Hauling Loading
System configuration

and other inputs

Machine rate
sheet

Operation analysis

Output

Save data?
Yes

No

Summary
sheet

Default
cost data?

No

Yes

VBA implementation

FIGURE 15.11
Flowchart of the Central Appalachian Harvesting Analyzer.

275Programming Application Examples in Forest Resource Management

General information: Stand conditions, working crews and schedule, tract
size, and other supporting information (equipment moving distance and cost,
roads to be built) are included in this section. Stand conditions include DBH
classes, merchantable height (number of 4.88 m logs (16 ft logs)), trees per
acre (1 acre = 0.4 ha), and volume per tree for each DBH class. Merchantable
height and tree volume were calculated using the models developed by
Wang et al. (2002b) and Rennie (1996). All other information is directly input
by the user.

Machines: Machine productivity and hourly costs can be estimated in this
section. Site conditions including average distance between harvested trees
and average extraction distance are also specified in this section. Machinery
is classified into four categories: felling, extraction, loading, and hauling.
Drop-down boxes hold the available machines for each category so that the
user may configure a desired system (Table 15.2). Implementation of this har-
vesting system equipment selection feature is handled by the system config-
uration module (Figure 15.11). A set of typical data was provided as default
values for each machine type used in the region. Once the machine type is
selected, it is combined with the other supporting data to automatically cal-
culate and report the productivity based on the built-in functions. The fixed,
operating, and labor costs are calculated on an hourly basis for the user to
accept as the default cost data before the harvesting operation can then be
analyzed. Otherwise, the machine rate sheet will be activated, in which the
user is able to calculate the fixed, operating, and labor costs for each individ-
ual machine. The machine rate sheet was programmed based on the machine
rate method (Miyata 1980). Finally, a data reset module is included to reset
the inputs to default values and restart the harvesting system configuration
(Figure 15.11).

System: Harvesting systems can be balanced (a) manually by directly input-
ting the number of machines employed in each function or (b) automatically
through the system balancing module (Figure 15.11). This section displays
the summarized utilization rate, production, and costs for each harvesting
function as well as weekly production and onboard cost for the balanced

TABLE 15.2

Harvesting System Configurationsa

System

Harvesting Functions

Felling Extraction Loading Hauling

1 Chain saw (2) Cable skidder (1) Larger loader (1) Long-log truck (3)
2 Feller-buncher (1) Grapple skidder (2) Larger loader (1) Long-log truck (3)
3 Harvester (1) Forwarder (1) Larger loader (1) Long-log truck (3)
4 Chain saw (2) Helicopter (1) Larger loader (1) Long-log truck (3)

a	 Value in parenthesis indicates the number of machines used for that function of the balanced
harvesting system.

276 Computing Applications in Forestry and Natural Resource Management

harvesting system. The weekly production rate is provided both in ft3 per
productive machine hour (PMH) (or MBF/PMH for the MBF version) and in
the number of truckloads. Additionally, total time required for harvesting the
given tract is estimated and reported based on the tract size and system rate.

A hidden summary sheet, which saves the results from scenario runs to
make analysis and comparison easier, can be invoked via the data storage
module when clicking the Save Sheet command button. Stand conditions,
machine rate/costs, and system rate/costs are saved on this summary sheet.
Three bar charts for hourly felling production and unit cost, hourly extrac-
tion production and unit cost, and weekly system production and onboard
cost are automatically generated and displayed in the summary sheet. The
user can graphically compare harvesting systems under different stand and
harvest conditions.

15.3.3 � Application Example

To demonstrate the application of the CAHA, four harvesting systems were
examined for the harvesting operations on a 20 ha (50 acre) tract by using the
Excel spreadsheet program. A knuckleboom loader was used for loading and
a long log truck with a loading capacity of 26 tons (1148 ft3) per truck was
assumed for hauling operation. The same stand conditions of a second-growth
hardwood forest about 75 years old were examined for all four harvesting sys-
tems. The stand density was 390 trees/ha (156 trees/acre) with the average
DBH of 32.84 cm (12.93 in.) and volume per ha 222.5 m3 (3155 ft3/acre).

A typical diameter-limit cut of removing trees greater than 30.48 cm (12 in.)
of DBH was applied, in which we assumed that average distance between har-
vested trees was 9.88 m (32.44 ft) for chainsaw and feller-buncher felling, and
6.96 m (22.86 ft) for harvester. Turn payload was assumed at 2.95, 2.41, and
11.58 m3 (104, 85, and 409 ft3) for cable skidder, grapple skidder, and forwarder,
respectively, with an average extraction distance of 304.8, 304.8, and 457.2 m
(1000, 1000, and 1500 ft). It was assumed that turn payload of the helicopter
was 2,993.71 kg (1186.2 m3) (6,600 lb (41,892 ft3)). One harvesting scenario
could be examined with one program run, with the results saved to the sum-
mary sheet after each run of the program. Automatic harvesting system bal-
ancing was specified by invoking the system balancing module. System rate,
weekly production, and onboard cost together with the days required to cut
that tract were calculated for the balanced system. The production/cost infor-
mation for the felling and extraction machines as well as for the balanced har-
vesting systems was summarized on the summary sheet. Additionally, three
bar chart figures related to felling productivity and cost, extraction productiv-
ity and cost, and harvesting system weekly production and onboard cost for
each harvesting scenario were automatically generated on the summary sheet
through implementation of the data storage module (Table 15.3).

Harvesting systems were balanced for Systems 1–3 based on the machine
productivity and utilization rate. Two chainsaws and one cable skidder, one

277Programming Application Examples in Forest Resource Management

feller-buncher and two grapple skidders, and one harvester and one for-
warder were utilized for harvesting Systems 1, 2, and 3, respectively. For har-
vesting System 4, it was assumed that two chainsaws and one helicopter were
used and that the helicopter started the extraction after felling was complete.
One loader and three trucks were assumed for all four harvesting systems.
Miscellaneous costs including equipment relocation, harvesting operations
support, and road building were calculated as $25.21, $14.38, $18.01, and
$18.88 per cunit for Systems 1–4, respectively. System onboard cost was the
sum of felling, extraction, loading, and miscellaneous costs. System rate was
estimated at 6.48, 18.75, 11.30, and 13.73 m3 (229, 662, 399, and 485 ft3) per
SMH with an onboard cost of $68, $42, $61, and $213 per cunit for harvesting
Systems 1–4, respectively. System 2 was the most productive combination in
the region with a weekly production of 750.08 m3 (26,489 ft3) or 23 truckloads
(Table 15.4). It only took 21 business days to cut the tract using Harvesting
System 2, while the cutting time would be nearly tripled if System 1 were
chosen. It took 6 more business days to cut the tract using System 3 than
using System 4 (Table 15.3).

TABLE 15.3

Harvesting Operation Summaries by Harvesting System

System
System Rate

(ft3/SMH)

Weekly Production
Onboard

Cost ($/cunit)
Days Required

to Cut Tractft3 Truck Loads

1 229.08 9,163 8 67.6 61
2 662.22 26,489 23 42.0 21
3 398.94 15,958 14 60.8 35
4 484.53 19,381 17 213.3 29

TABLE 15.4

Descriptive Statistics of the Inventoried Stands Used in the Case Study

N Mean StdDev Maximum Minimum Median

Tree height (m) 14,008 18 11 42 2 22
DBH (cm) 14,008 36 15 132 3 36
Quadratic mean
diameter (cm)

14,008 28 3 36 21 28

Trees per ha 92 497 210 1505 232 439
Basal area (m2/ha) 92 30 11 72 11 28
Merchantable volume
(m3/ha)

92 1784 625 4802 557 1668

Forest carbon stock
(Mg/ha)

92 147 49 363 74 136

Merchantable carbon
stock (Mg/ha)

92 69 24 170 21 64

278 Computing Applications in Forestry and Natural Resource Management

15.4 � 3D Log Bucking Optimization

15.4.1 � System Design

15.4.1.1 � System Structure

The optimal bucking system consists of three major components: (1) data
manipulation/storage, (2) 3D modeling, and (3) bucking optimization,
including the following functional requirements: data acquisition, data stan-
dardization, value calculation, bucking optimization, 3D environmental
normalization, 3D image display, 3D image manipulation, and data storage
and analysis (Wang et al. 2009). Component object model was employed to
integrate the system that was designed using the principle of object-oriented
programming. The system was programmed with Microsoft Foundation
Class (MFC) and Open Graphics Library (OpenGL). Users can easily build
a Windows-compatible graphical user interface and link the system to data
objects through MFC and ActiveX controls. The 3D objects created can be
rotated, scaled, and translated by performing OpenGL transformation.
MFC’s IDE facilitates the management of the bucking system during the
development process.

15.4.1.2 � Data Manipulation and Storage

ActiveX Data Object (ADO) was employed to retrieve data from and save the
bucking results to an Access database. ADO consists of seven basic objects:
Connection, Recordset, Command, Error, Field, Property, and Parameter,
and they are related interactively.

The entity–relationship (ER) model for the optimal bucking system was
implemented via Microsoft Access, including five entity types: Stems for
storing stem number, and basic stem information; Shapes for storing stem
sweeps and diameters’ data at each 1.22 m (4 ft) intersection; Grades and
Prices for storing grading rules and price matrix; Defects for storing defects
data associated with each stem; and Logs for bucking results (Figure 15.12).
Five relationships among these entity types were defined, which reflect the
interrelationships among these entities.

15.4.1.3 � 3D Stem Modeling

In order to provide the user with a realistic tree-stem, 3D modeling techniques
were used together with OpenGL primitive drawing functions to generate a
3D tree-stem visualization, which is composed of simple triangle strips filled
with stem images, such as bark or the butt-end image (Figure 15.13). The user
can perform rotate, translate, and scale functions to get a better understand-
ing of the stem’s superficial characteristics.

279Programming Application Examples in Forest Resource Management

St
em

ID

ID

D
ia

m
et

er

St
em

ID

M
H

T

Sp
ec

ie
s

H
as

St
em

s

H
as

Sh
ap

es

D
ist

an
ce

ID
D

ed
uc

tio
n

D
ia

m
et

er

C
le

ar
fa

ce
s

Le
ng

th

D
ia

m
et

er

Vo
lu

m
e

Va
lu

e

Sw
ee

p1
Sp

ec
ie

s

Le
ng

th

St
em

ID

Sw
ee

p2

T
H

T

H
as

D
BH

St
em

ID

Le
ng

th
W

id
th

D
is

ta
nc

e

A
ng

le

Ty
pe

H
as

ID

Lo
gs

 st
em

s

A
ss

oc
ia

te
s

G
ra

de
s a

nd
 p

ric
es

D
ef

ec
ts

ID

FI
G

U
R

E
15

.1
2

D
ia

gr
am

 o
f t

he
 e

nt
it

y–
re

la
ti

on
sh

ip
 m

od
el

 fo
r

th
e

3D
 o

pt
im

al
 b

uc
ki

ng
 s

ys
te

m
.

280 Computing Applications in Forestry and Natural Resource Management

15.4.1.4 � Optimal Bucking Algorithm

A network analysis technique was implemented to generate the optimal
bucking patterns. The principle of Dijkstra’s algorithm for the single-source
shortest path problem was adopted. It was used to find the longest path in
the weighted, directed graph of tree-stem bucking, which maintains a set
of Y cutting points or nodes whose final longest-path weights from the ori-
gin X1 already have been determined. The algorithm repeatedly selects the
potential cutting point Xi ∈ X–Y with the maximum longest path estimate,
adds Xi to Y, and relaxes all edges or arcs leaving Xi.

The efficiency or running time of Dijkstra’s algorithm depends on how
the maximum-priority queue of potential cutting points or nodes is imple-
mented. If we maintain the maximum-priority queue by taking advantage of
the cutting points or nodes being numbered 1 to n, we can simply store these
nodes associated with weights into a 1D array with n elements. The running
time of this algorithm consists of three parts: (1) searching the cutting point
with maximum weight, (2) adding this point or node to the point set Y, and
(3) removing this node from the set X–Y. Since adding or removing a node
from a point set takes constant time, O(1), and searching a point takes O(n),
the efficiency or running time of the algorithm for n potential cutting points
along a tree-stem can be expressed as:

	

T n O O n n

O n

() = () + ()éë ùû´

= ()
2 1

2

where
O(n2) represents the asymptotic upper bound of n2

O(1) is the constant time

Scale

(0,0,0)

Z

Y
(X΄,Y΄,Z΄)

Y΄

Z΄ X΄

X

Translate

Z-rotate

FIGURE 15.13
Diagram of the modeling transformation for a 3D tree-stem.

281Programming Application Examples in Forest Resource Management

15.4.2 � Bucking System Implementation

Once a tree-stem is selected, a 3D image can be generated (Figure 15.14). The
3D display dialog consists of three major sections: display area, information
area, and command area. Display area is for displaying a 3D stem image and
viewing the bucking results of a selected stem. Text in the upper left corner
of the display area is used to update inside bark diameter and length from

(a)

(b)

FIGURE 15.14
(a) 3D bucking system for a tree-stem with (b) manual bucking solution and (c) optimal solution.
� (Continued)

282 Computing Applications in Forestry and Natural Resource Management

a previous cut to the current cut position. In the currently displayed image
case, the saw is at the butt-end of the stem and the associated inside bark
diameter of this stem is 50.8 cm (20 in.). Six command buttons in the display
area (Left move, Right move, Zoom in, Zoom out, Rotate along x-axis, and Rotate
along z-axis) are used for implementing zoom, projection, and perspective
view functions. Defects are represented as red rectangles with their actual
sizes and locations on the stem, which can be either measured in the field or
entered by the user.

Information area shows the basic information for a selected stem and the
detailed bucking results. Options are provided to users for log rules and
bucking methods in the command area. When the user selects optimal buck-
ing, a stage interval should be chosen from the drop-down list. If manual
bucking is selected, the drop-down list for stage interval selection is disabled.
All the log volume is calculated based on the selected log rule: Doyle or inter-
national 1/4 in. (1 in. = 2.54 cm). At the bottom left of the command area,
there are two checkboxes for displaying or hiding coordinates and defect
data. Three command buttons, Buck, Save, and Cancel, are used respectively
for bucking, saving bucking results, and closing the display dialog.

In Figure 15.14b, stem 1 was recorded as red oak in the field and was man-
ually bucked into 4 logs (one 4.88 m (16 ft), and three 3.05 m (10 ft) in length).
The total log value for stem 1 is $71 and the total volume of logs bucked from
stem 1 is 187 bf. The log length for the fourth log in the log list is 0 instead
because this log is not a grade log. Accordingly, stem 1 was optimally bucked

(c)

FIGURE 15.14 (Continued)
(a) 3D bucking system for a tree-stem with (b) manual bucking solution and (c) optimal solution.

283Programming Application Examples in Forest Resource Management

using a stage interval of 1 ft (1 ft = 0.305 m). The optimal bucking yielded a
total log value of $105 and a total log volume of 222 bf for this stem, which
included four logs with lengths of 3.66 m (12 ft), 3.05 m (10 ft), 2.44 m (8 ft),
and 3.05 m (10 ft). The user has the option to save or perform alternative
bucking processes using different methods or stage intervals.

15.5 � 3D Lumber Edging and Trimming System

The optimal lumber edging and trimming system consists of four major
components: (1) data manipulation/storage, (2) 3D modeling, (3) lumber
grading, and (4) edging and trimming optimization (Figure 15.15) (Lin et al.
2011a). A component object model using the principles of object-oriented pro-
gramming was used to integrate the system. The system was programmed
with MFCs and OpenGL. MFC provides a user-friendly interface and can
be easily connected to the database and transplanted to any other Microsoft
Windows application, whereas OpenGL provides color images of 3D objects
and offers the 3D virtual simulation environment (Wang et al. 2009). The
software system can be implemented either on a desktop or a laptop and run
on a Windows platform.

Start

Input
Data

manipulation/
storage

3D modeling

Edging and
trimming

optimization

Lumber grading

Exhaustive search

3D modeling

Database

Board Shape Defect

User selection

Translate

Rotate 3D board

Optimal
edging/trimming

Manual
edging/trimming

Lumber grade

Save?
Y

N

Scale

Board data

Grades and prices

Dynamic programming

End

FIGURE 15.15
Architecture of the optimal lumber edging and trimming system.

284 Computing Applications in Forestry and Natural Resource Management

15.5.1 � Data Manipulation and Storage

Microsoft ADOs enable client applications to access and manipulate data
from a variety of sources through an Object Linking and Embedding
Database provider (Microsoft Developer Network Platforms 2010). The pri-
mary benefits of ADO are ease of use, high speed, low memory overhead,
and a small disk footprint. In this study, ADO was applied to retrieve data
from, and to save edging and trimming results to, a Microsoft Access data-
base. The simple way to incorporate ADO into programming is through the
use of ActiveX controls, and it is very convenient to link the system database
with MFC and ActiveX controls. The ER model for the optimal edging and
trimming system was implemented via Microsoft Access and included four
entity types: (1) board, (2) shape, (3) defect, and (4) defect type. Once a board
has been edged and trimmed, the results, including surface measure (SM),
lumber grade, and lumber value, can be stored in a summary table within
the database.

15.5.2 � 3D Lumber Modeling

Three-dimensional modeling techniques together with OpenGL primitive
drawing functions were used to generate 3D lumber visualizations. OpenGL
is a powerful yet flexible and standard tool to create high-quality, multidi-
mensional graphics (Woo et al. 1999). Two OpenGL libraries, OpenGL Utility
Library and OpenGL Utility Toolkit, were used to make a visual representa-
tion of lumber and of the edging and trimming process. A board is visual-
ized using simple triangular strips filled with a digital image of an actual
board. The user can rotate, zoom in/out, and/or move the board around to
facilitate visualization of the board and to better understand the superficial
characteristics at different scales. Three basic transformations, rotate, scale,
and translate, were modeled by using the functions glRotatef(), glScalef(),
and glTranslatef(), respectively. For example, rotation is performed by call-
ing glRotatef(a, x, y, z), which generates the rotation matrix by defining
the degrees to be rotated (a) and the axis to be rotated about (x-axis, y-axis,
or z-axis). The generic matrix of rotation of an angle around x-axis can be
derived and expressed as (Woo et al., 1999:

	

Rx a
a a
a a

() =
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 0
0 0
0 0
0 0 0 1

cos sin
sin cos

Let the coordinates of a board originally drawn on screen be (x1, y1, z1),
(x2, y2, z2), …, (xn, yn, zn), respectively. If that piece of lumber is rotated by α
around the x-axis and coordinates are transformed to x y z1 1 1

¢ ¢ ¢(), , , x y z2 2 2
¢ ¢ ¢(), , , …,

285Programming Application Examples in Forest Resource Management

x y zn n n
¢ ¢ ¢(), , , then the coordinate matrix after rotating by α degrees around the

x-axis can be expressed as (Wang et al. 2009):

	

x x x x

y y y y

z z z z

n n

n n

n n

1 2 1

1 2 1

1 2 1

1 1 1 1

¢ ¢
-

¢ ¢

¢ ¢
-

¢ ¢

¢ ¢
-

¢ ¢

¼
¼
¼
¼

é

ë

ê
ê
ê
ê
ê

ù

ûû

ú
ú
ú
ú
ú

= ()´

¼
¼
¼
¼

é

ë

ê
ê
ê
ê

-

-

-
R

x x x x

y y y y

z z z zx

n n

n n

n n
a

1 2 1

1 2 1

1 2 1

1 1 1 1

ùù

û

ú
ú
ú
ú

= ()´¢TS R TSx a

where TS is the matrix containing locations of different coordinates for shape,
defects, and other visual controls before transformation and TS′ is the matrix
of coordinates after transformation. Similarly, the coordinate matrices for the
triangle strip can be rotated around the y- and x-axes.

The scale and translation are performed by calling glScalef (Sx, Sy, Sz)
and glTranslatef (dx, dy, dz) functions that generate the scale and translation
matrices. Sx, Sy, and Sz are the scales to the x, y, and z coordinates of each
point of measurement for a board while dx, dy, and dz are the values needed
to be translated along the x-axis, y-axis, and z-axis, respectively.

15.5.3 � Lumber Grading

The lumber grading component is based on Klinkhachorn’s hardwood lum-
ber grading routine (Klinkhachorn et al. 1988) and the National Hardwood
Lumber Association (NHLA) lumber grading rules. To determine a possible
grade for a lumber, the width, length, and SM of the lumber are computed.
A potential grade from the highest to the lowest is assigned to the poor face,
then the potential number of clear cuttings and cutting units (CUs) can be
calculated (Lin et al. 2011a). By comparing the number of cuttings and CUs
obtained from a piece of lumber, a final grade can be determined based on
the requirements of the NHLA grading rules (NHLA 2008). Potential grades
used in the current version include First and Seconds, SELECT, 1Common
(1COM), 2Common (2COM), and 3Common (3COM). After a board is edged
and trimmed, the processed board data including dimension, shape, and
defect are recalled by the lumber grading routine, and a lumber grade is
assigned to this board. Using stored lumber price data by grade and species,
the lumber value can be determined.

15.5.4 � Optimal Edging and Trimming Algorithm

A cutting pattern that yields the maximum value is the optimum edging and
trimming solution. The exhaustive searching process to find this pattern can be
very time-consuming. Since there are numerous ways of edging and trimming
a flitch, an optimal computer procedure was developed to aid in this searching

286 Computing Applications in Forestry and Natural Resource Management

process including exhaustive search and dynamic programming (DP). The
exhaustive search algorithm explores all possible combinations of edging and
trimming lines within the original size of the board and is guaranteed to find
the optimal solution. The shape of the board is determined by different com-
binations of edging and trimming lines. Information regarding board length,
width, SM, and defects is then recalled by the lumber grading component,
and a lumber grade for that board can be assigned. The board’s value is deter-
mined based on the grade, SM, species, and the lumber price.

DP is a more efficient search procedure that can be used to achieve the
optimum edging and trimming solution. All potential edging and trimming
line positions are predefined by dividing a board into equidistant levels in
both horizontal and vertical directions. This allows the lumber edging and
trimming problem to be formulated as a set packing problem with the objec-
tive being to maximize the total lumber value. The key to solving the edg-
ing and trimming problem by DP is to recognize the recursive relationship
(Bhandarkar et al. 2008). An original board can be divided into Ne = ER/c1
horizontal edging lines and Nt = TR/c2 vertical trimming lines, where ER and
TR are edging range and trimming range, respectively, and c1 and c2 are the
edging and trimming intervals, respectively. Let s∗(i, j) be the optimal edging
and trimming patterns for the horizontal edging lines from 1 to i and vertical
trimming lines from 1 to j, and v∗(i, j) be the corresponding lumber value. If
v∗(k, l) and s∗(k, l) for all k ≤ i are known, then the combined edging and trim-
ming flitch problem can be formulated as a recursive function:

	

v i j v i
W
c

K
ck m l n

k*

Î[] Î[]
*+ +() = + - - é

êê
ù
ú

é
êê

ù
úú

1 1 1
1 1 1 1

,
, ,

max max úú + - é
êê

ù
úú
- é
êê

ù
úú

æ

è
ç

ö

ø
÷

æ

è
çç

+ + - é
ê

æ

è
çç

æ

è
ç
ç

, j
L
c

K
c

g i
W
c

l

k

1

1

2 2

1
êê

ù
úú

+ + - +
æ

è
ç

ö

ø
÷
ö

ø
÷÷
ö

ø
÷÷

ö

ø
÷
÷

, , ,i j
L
c

jl1 1 1
2

where
Wk = {W1, W2,  … , Wm} is the allowed set of lumber width
Ll = {L1, L2,  … , Ln} is the allowed set of lumber length
K is the saw kerf
g(i, j, k, l) is the lumber value between edging lines i and j, and trimming

lines k and l

The requirements for the lumber are that its width be ≥7.6 cm (3 in.) and its
length be ≥1.22 m (4 ft).

15.5.5 � Optimal Edging and Trimming System Implementation

All the computer simulations were performed on a regular desktop PC
equipped with a 3.16 GHz CPU, 3.25 GB of RAM, and a 300 GB hard drive

287Programming Application Examples in Forest Resource Management

under the Microsoft Windows platform. The edging and trimming process
was implemented by a 3D-based Windows dialog box with four tab con-
trols labeled Board, Shape, Defect, and Defect Type. The Board tab is used to
display all the board data saved in the database. To view the shapes and
defects information associated with a selected board, the user can click the
corresponding tab controls. A defect on a board is measured by two lengths
(left and right) and two widths (low and up). Each board can be divided into
nine possible sections named from 1 to 9 from the top left corner all the way
through the bottom right corner. The section determination for each cutting
board is illustrated in Figure 15.16 and the measurements of shape and defect
information are illustrated in Figure 15.17.

Once a board is selected, its 3D image can then be generated (Figure 15.18).
The interface consists of three major sections: (1) display area (right top area),
(2) results area (right bottom area), and (3) control and command area (left
area). The display area displays the 3D board image and the edging and trim-
ming results of a selected board. Information provided by an NHLA grader
is displayed in the upper portion of the display area and includes lumber
length, width, thickness, grade, SM, and value. This information is used
to compare the edging and trimming results produced by the optimal sys-
tem. On top of the control and command area are two control checkboxes

Section 1

Section 7 Section 8

Section 2 Section 3

Section 9

Section 6Section 5Section 4

FIGURE 15.16
Section determination for a cutting board.

Waneend

Boardend

Waneedge

Distance
Distance

Width 2
Width 1

Length 1 Length 2
Wane

FIGURE 15.17
Illustration of measuring shape and defect information.

288 Computing Applications in Forestry and Natural Resource Management

(View Grid and View Defect). By default, both checkboxes appear unchecked.
The first is used to display the grid along x, y, and z axes to show the length,
width, and thickness, respectively, of the lumber in inches (1 in. = 2.54 cm),
and the second is used to display the defect with legend in different colors.
Two control combo boxes are used to change the intervals for edging lines
and trimming lines. By default, the interval is 1.27 cm (0.5″) for edging lines
and 15.24 cm (6″) for trimming lines. The user can also manually change the
interval values. For the edging line interval, 0.63, 1.27, and 2.54 cm (0.25, 0.5,
and 1 in.) are available for use, whereas 5.08, 15.54, and 30.48 cm (2, 6, and
12 in.) are available for trimming intervals.

FIGURE 15.18
Lumber edging and trimming system with options of exhaustive search algorithm solution,
DP algorithm solution, and manual solution.

289Programming Application Examples in Forest Resource Management

Edging and trimming simulations can be performed by two approaches:
(1) optimal cutting and (2) manual cutting. For optimal cutting, an exhaus-
tive search or DP algorithm is available to optimize the edging and trimming
process for the selected board. During the optimal simulation, the program
shows the searching progress and, finally, the total running time. For exam-
ple, for Board 1 (red oak [Quercus rubra] lumber), the lumber grade, SM, and
total lumber value were 2COM, 5, and US$2.15, respectively, when using
exhaustive search; but the grade, SM, and lumber value were 1COM, 4, and
US$2.12, respectively, using the DP algorithm.

The controls and commands in the manual cutting group can be used to
train edger and trimmer operators. When the user clicks the View Cut Frame
checkbox, the edging and trimming function will be activated and the CUT
button enabled. At this stage, the board is bounded by four red frames, the
edging and trimming lines, with the horizontal lines representing the edging
lines and the vertical lines representing the trimming lines. These frames can
be moved by clicking the up- and down-arrow buttons. The two left buttons
can be used to move the left trimming lines, and the two right buttons can be
used to move the right trimming lines. Similarly, the upper and lower but-
tons can be used to control the moving directions of the edging lines. Every
time a frame is moved, the board is regenerated, and the updated lumber
length, width, and SM are displayed. Once the frames are set up for desired
sections, users can press the CUT button to cut the board. If unsatisfied with
the current operation, the user can delete the generated lumber and process
the board again.

15.6 � 3D Log Processing Optimization System

This example is to show you the development of a computer-aided edging
and trimming, sawing, and grading system. Our goal was to develop a cost-
effective computer-aided log processing simulation system for lumber man-
ufacturing optimization to maximize lumber value recovery based on log
defect, dimension, and other superficial characteristics (Lin et al. 2011b, Lin
and Wang 2012). This system can simultaneously optimize the primary and
secondary processing to achieve a global optimal solution. In addition, the
system can be used as a decision-making system for lumber production and
a training tool for novice sawyers.

15.6.1 � System Components and Data Management

15.6.1.1 � System Components

The system consists of six major components: 3D log generation, opening
face determination, headrig log sawing, flitch edging and trimming, cant

290 Computing Applications in Forestry and Natural Resource Management

resawing, and lumber grading (Figure 15.19). Each component accom-
plishes its own task and is linked to related components by transferring
arguments and/or global variables, which will make modifications and
maintenance easier. The 3D log generation component generates a real
3D-shaped log that can be rotated, scaled, and translated based on log data
and performance requirements. The opening face component simulates
the log position, opening face position, and opening face size. The head-
rig optimization component simulates sawing the log into slabs, flitches,
and/or cants and simulates the optimal sawing patterns with maximum
log value by applying either heuristic or DP algorithms. The optimum
value of each flitch or cant cut from the log can be determined as well. If
cant resawing is simulated, the boards generated from the cant also need
to be edged and/or trimmed. The edging and/or trimming optimization
component calls the headrig optimization or cant resaw component for
flitch/board information and defect profiles exposed on the board faces.
The optimal edging and/or trimming patterns are then simulated by either
an exhaustive search or the DP algorithm. All the generated lumber will
be simulated and processed by the lumber grading component. Based on
lumber dimensions, defects, lumber price, and species, the optimum lum-
ber value is obtained. Finally, the total lumber value along with the corre-
sponding optimum simulated sawing and edging and/or trimming pattern
is recorded in the system.

3D log generation

Opening face determination

Headrig optimization

Edging and trimming optimization

Grade optimization

Flitch profile and defect

Lumber dimension and
defects

Lumber value

Lumber value

Lumber value

Lumber value

Board profile and defects

Cant resawing
Cant profile

Log external defects

Log external defects

Log profile

Log profile

FIGURE 15.19
Components’ log processing optimization system.

291Programming Application Examples in Forest Resource Management

15.6.1.2 � System Data Management

Microsoft ADOs are used to retrieve data from and save simulated sawing
results to an MS Access database. ADO enables client applications to access
and manipulate data from a variety of sources through an Object Linking and
Embedding Database provider (MSDN 2010). The simple way to incorporate
ADO into programming is through the use of ActiveX controls, so the user
can link the system database conveniently by MFC and ActiveX controls. An
MS Access database (which includes four entity types: logs, shapes, defects,
and grades) is created to hold the log and lumber information in the system.
The log entity type stores log number and basic log information, such as spe-
cies, log position, log length, small-end and large-end diameters. The shapes
entity type stores log sweep and diameter data at one-foot (1 ft = 0.305 m)
intervals. The defects entity type contains defects data associated with each
log. The grades entity type stores lumber grading rules and lumber price. An
ER model is implemented via the MS database.

15.6.2 � System Modeling and Algorithms

15.6.2.1 � 3D Log and Internal Defect Modeling

Log shape modeling is very important in determining the optimum log break-
down. A circular cross section model is adopted to represent a log, which
uses a series of cross sections at designated intervals along the log length
(Figure 15.20a). This model is much closer to real log shape because the data at
each cross section are collected as well as log sweep and log crook. 3D model-
ing techniques together with OpenGL primitive drawing functions are used
to generate 3D log visualizations. The OpenGL functions such as translation,
rotation, and scaling are used to facilitate log visualization, and the related
mathematical modeling was described by Woo et al. (1999). Studies have

(a)

Z
X Z

O

(0, 0, X0)

Y

X

α

Y

(b)

FIGURE 15.20
3D log and defect model. (a) A 3D log and knots, (b) Knot represented as a cone arbitrarily posi-
tioned in the XYZ space.

292 Computing Applications in Forestry and Natural Resource Management

shown that strong correlations exist among surface defect indicators such as
overgrown knots, overgrown knot clusters, sound knots, unsound knots, and
internal knot defects (Thomas 2008). We only consider knots as internal log
defects in this model, because they are the most commonly found on board
surfaces and can have significant impacts on log quality and lumber value.
A cone model is used to represent an internal log knot with apex assumed
at the central axis of the log (Thomas 2008) (Figure 15.20b). The vertex of the
cone lies on the x-axis at a distance X0 from the origin of the coordinates, and
α is the knot angle between the z-axis and the projection of the knot axis on
the y–z plane.

15.6.2.2 � Determining Opening Face

During lumber production, the first cut determines the remaining cuts that
must be either parallel or perpendicular to the first cut. Therefore, the ini-
tial saw cut has direct impact on the lumber grade and volume yield (Denig
1993). In this model, the opening face is simulated with consideration of
log surface defects and log profile. Since no logs are absolutely straight, log
sweep is considered to describe the curvature of a log. If a log’s sweep is less
than 76 mm, the log is treated as if it had no sweep; otherwise, it is deemed a
“sweepy” log and sweep is considered in the modeling process.

15.6.3 � Primary Log Sawing Simulation

The integrated primary and secondary log breakdown optimization is solved
by linking two recursive relationships. The primary log breakdown simu-
lates producing a flitch that is sent to the secondary breakdown to determine
the value. An optimal edging and/or trimming simulation solution is then
generated for the produced flitch. Specifically, once the log opening face is
determined, the system uses either a heuristic or DP algorithm to achieve the
optimum simulated sawing pattern at the headrig. The generated flitches are
then edged and trimmed using the optimal edging and trimming algorithms.
The optimum value of a flitch is then returned to the headrig log-sawing
simulation, and the log simulated sawing pattern is finalized.

15.6.3.1 � Heuristic Algorithm

Heuristic refers to experience-based techniques for problem solving. It
is more easily adaptable to a complex restriction problem, such as a log
grade sawing process. In this study, the heuristic algorithm for log-sawing
simulation is developed based on a modified Malcolm’s (1965) simplified
procedure for developing grade lumber from hardwood logs. The basic
principle is that the log is not rotated unless another log face can yield a
higher grade of lumber than the current face or the current face reaches the
central cant. Then the log is rotated to the next face with potential for the

293Programming Application Examples in Forest Resource Management

highest lumber grade. This simulated sawing process is repeated until a
specified size cant is produced (Lin 2011).

 Algorithm to determine log grade sawing pattern:
 begin
 cutting from the opening face
 repeat
 if� (the lumber grade from current face < the

remaining face(s))
 le�t the log rotate to the face that

generates the highest lumber grade
 el�se if (the current face reaches the central

cant)
 as�sign a flag to current face to prohibit

cutting current face and rotate the log
to the face that generates the highest
lumber grade

 until- all faces are cut and a central cant left
 end

15.6.3.2 � Dynamic Programming Algorithm

The primary log breakdown problem can be easily solved using DP, which
separates a large problem into a series of tractable smaller problems. The
key to DP is to find the recursive relationship. In a log grade sawing simu-
lation, a log is divided into four log sawing faces. Then an optimal simu-
lated sawing pattern can be found for each face by solving the recursive
function:

	 f i f j vn n ij() = () +{ }+max 1

where n is the current stage, n =1, 2, 3. Each stage is corresponding to one log
sawing face, i is the current state at stage n, j is the state at stage n + 1, vij is the
lumber value contributed to the objective function, fn + 1(j) is the contribution
value at stages n + 1 ,  …  , 4 to the objective function if log sawing simulation
is in state j at stage n + 1.

For each stage in the above equation, the optimal lumber value from each
sawing face can be obtained using this equation:

	 v n v m g m n() = () + (){ }max ,

where m and n are possible sawing line positions at current sawing face
(1 ≤ m ≤ n ≤ N, m and n are discrete values), N is the total potential sawing line
positions between the opening face and central cant. The term g(m, n) is the
lumber value generated between sawing lines m and n, which is determined

294 Computing Applications in Forestry and Natural Resource Management

through the edging and/or trimming optimization. v(m), v(n) are portions of
the optimal lumber value at the current face from the opening face to sawing
line m and n, respectively.

If lumber thicknesses, sawing kerf width, and simulated sawing resolution
are known, v(n) can also be expressed as follows (a modified recursive func-
tion based on Bhandarkar et al. (2008)):

	
v i v i

T
c

K
c

g i
T
c
i

i m

j j*

Î[]
*+() = + - -æ
è
ç

ö
ø
÷ + + - +æ

è
ç

ö
ø
÷

æ

è
ç1 1 1 1

1
max

,
,

öö

ø
÷

where
Tj = (T1, T2,  … , Tm) is a set of lumber thicknesses
m is the total number of lumber thickness
c is the sawing plane resolution (mm)
K is the kerf thickness (mm)
v∗(i) represents the optimal lumber value between cutting planes 1 and i
g(i, j) is the lumber value from the sawing line i through j, depending on

flitch edging and trimming optimization

FIGURE 15.21
Prototype of the 3D optimal log sawing system.

295Programming Application Examples in Forest Resource Management

15.6.3.3 � Example

The system was implemented using MS Visual C++. It can be used to per-
form 3D log generation, opening face determination, headrig log sawing
simulation, flitch edging and trimming simulation, and lumber grading (Lin
et al. 2011a,b, Lin and Wang 2012) (Figure 15.21).

15.7 � Forest and Biomass Harvest Scheduling and Optimization

Forest harvest scheduling has been extensively studied worldwide.
Traditionally, it was applied to optimize timber production from the forest
considering some potential operational factors. Recent scheduling examples
typically consider the multiple objectives of forest management. The follow-
ing example used the mixed linear programming approach to model forest
harvest scheduling and carbon sequestration in terms of maximizing the total
revenue of forests from timber, biomass, and carbon (Liu 2015). This model
was also applied to a mixed hardwood forest in the central Appalachian
region to analyze the effects of carbon-to-timber price ratio, biomass-to-
timber price ratio, and harvest area on carbon sequestration.

15.7.1 � Forest Inventory Data

Data for a case study of the model application were collected from WVU Research
Forest, a mixed hardwood forest of 3042 ha, located approximately at 39.66°N,
79.78° near Morgantown, West Virginia, USA. The forest has 92 cutting units
(i.e., equivalent to stands) with area varying from 7 to 41 ha. Recent forest inven-
tory data were acquired from WVU Division of Forestry and Natural Resources.
Each stand had at least 5 cruise points and all together 14,008 tree records were
available. A description of these stand parameters is given in Table 15.4.

15.7.2 � Forest Stand Growth Simulation

Forest Vegetation Simulator (FVS) Northeast Variant (NE) with Fire and
Fuels Extension (FFE) program was used to generate the inventoried stand
data to simulate the growth of each stand (USDA 2015). The FVS is a whole-
stand growth and yield model that was developed by USDA Forest Service.
The original prognosis model introduced by Stage (1973) was developed for
northern Idaho and western Montana. The software system is available at
http://www.fs.fed.us/fmsc/fvs/software/complete.php. Once the soft-
ware is downloaded and installed on a computer, we can open it and import
inventory data using the Select Stands button. Then we set time-scale, man-
agement, and post processors. After we select the output, we can press Run
Simulation to obtain the final report (Figure 15.22). The growth of every stand

http://www.fs.fed.us

296 Computing Applications in Forestry and Natural Resource Management

can be viewed graphically by clicking Generate Graphs and then Pick Variable
(Figure 15.23). Further detailed guides for FVS are available at http://www.
fs.fed.us/fmsc/fvs/documents/index.shtml.

Outputs from the simulations are tree records, basal area, volume, and
carbon (C) in different forest components. A planning horizon of 50 years
for clear-cutting treatment was examined for harvest simulations to simulate
short-term management length. Harvest simulation was conducted for each
of 92 stands for the planning period beginning in 2014 on a 5-year interval.
Clear-cutting simulation included the removal of all the trees from the stand.
Volumes were estimated using the National Cruise System available in FVS-
NE-FFE. Natural regeneration was assumed to take place beginning in the
same planning period after harvest.

15.7.3 � Harvest Scheduling Model Development

Forest harvesting typically causes some inherent risks of land erosion and
disruption of wildlife habitats (Barahona et al. 1992). However, these risks

FIGURE 15.22
Interface of the Forest Vegetation Simulator.

http://www.fs.fed.us
http://www.fs.fed.us

297Programming Application Examples in Forest Resource Management

can be effectively mitigated through better scheduling, planning, and imple-
mentation of forests’ best management practices, such as harvest area limits
and buffer sizes of streamside management zones. To achieve this, an opti-
mization model was developed to maximize the total revenue of forests in
terms of carbon, timber, and biomass values (Liu 2015). The objective func-
tion of the model is formulated as:

	 max Z C W B= + +

where C is the monetary value of carbon sequestered and is calculated by the
following equation:

	
C r p f a r x G f aCO

CO

i

S

t

T

ci it dry it i t bi i t= () - + ()éë ù
= =

- -åå2
2

1 1

1 1d , , ûû{ }

FIGURE 15.23
Increment of stand basal area.

298 Computing Applications in Forestry and Natural Resource Management

Similarly, W is the value of timber and B is the value of biomass. The val-
ues for timber and biomass are calculated by the following two equations,
respectively.

	
W p x G f aW

i

S

t

T

T it i t bi i t= + ()éë ùû
= =

- -åå
1 1

1 1h , , .

	
B p x G f aB

i

S

t

T

B it i t bi i t= × + ()éë ùû
= =

- -åår h
1 1

1 1, ,

where
ƒbi(ait) is the growth function of the aboveground dry biomass of stand i at

period t
ƒci(ait) is the stand carbon storage function of stand i at period t
pB is the present price of biomass ($/tonne)
pCO2 is the present carbon price in terms of carbon dioxide ($·CO2/tonne)
рW is the average present price of wood product ($·dry/tonne)
rCO2 is the coefficient used to convert carbon into CO2 equivalent
rdry is the coefficient used to convert dry biomass into carbon
δ is the percentage of wood products other than long-lived wood products
ηB is the percentage of woody residue in total aboveground biomass
ηT is the percentage of raw timber in total aboveground biomass
ρ is the percentage of biomass that is economically available

A harvest decision for a stand at a given time is denoted by a binary variable:

	
x

i t
it =

ì
í
î

1
0
, ;
, .
if stand is harvested at period
otherwise

where t = 1 … T and i = 1 … S. T is the total management periods. S is the total
number of stands. An integer variable ait represents the stand age of stand i
at time period t. A continuous variable Git is the aboveground dry biomass
in metric tons (Mg) of stand i at period t. The constraints include maximum
permissible continuous harvest area, even flow of timber supply, and aver-
age stand age requirement.

15.7.4 � Case Study

The base case scenario of this model assumed the timber product price at $200/
dry Mg according to timber market report (Appalachian Hardwood Center
2014), carbon price at $10/Mg CO2 eq according to historical data of Chicago
Climate Exchange (2011), and average woody residue price at $1/dry Mg
(Wu et al. 2011a,b). A clear-cutting with an area limit of 40 ha was used in the base
case management scenario. The configuration of all the other parameters was
listed in Table 15.5. The model in the case study was solved using ILOG CPLEX

299Programming Application Examples in Forest Resource Management

12.5 on a computer with 8 GB of memory and a 2.93 GHz CPU. Necessary pro-
grams were written in JAVA to implement the model (Figures 15.24 and 15.25),
and 5000 s were set as the time limit to obtain a gap less than 1%.

The optimized carbon sequestration rate of the base case scenario over the
planning horizon of 50 years was 0.408 Mg/ha/year. Among different car-
bon components of the forest, aboveground living stands were the major con-
tributor (59.6%) to the total carbon storage, followed by belowground living

TABLE 15.5

Parameter Configuration for the Case Study

Name Value Reference

Gio Inventory
rCO2 3.667

rdry 0.5 Wit et al. (2006)
ρ 0.65 Wu et al. (2010c)
δ 82% US DOE (2007)
ηB 60% US DOE (2007)
ηT 60% US DOE (2007)

Input

Inventory
dataset

FVS
simulation

Merchantable
timber

Available
biomass

Above- and
under-ground

carbon

Stand area

Adjacency

Stand age

Permissible continuous
harvest area

Planning horizon

Planning periods

Deviation in even flow
constraint

Permissible final average age

Model

Objective
function

Harvest
scheduleHarvest area

limitation

Even flow

End age
limitation

Stand growth

Optimal
revenue

Final stand
age

Amount of
carbon,

biomass, and
timber

Output

Other
parameters

FIGURE 15.24
Flowchart of the model implementation.

300 Computing Applications in Forestry and Natural Resource Management

M
od

el
 fo

rm
ul

at
io

n
Pa

ra
m

et
er

s c
on

fig
ur

at
io

n
H

ar
ve

st
 a

re
a

lim
ita

tio
n

Ev
en

ow

En
d

ag
e

lim
ita

tio
n

St
an

d
gr

ow
th

D
at

as
et

s i
np

ut

O
bj

ec
tiv

e
fu

nc
tio

n
fo

rm
at

io
n

C
on

st
ra

in
s f

or
m

ul
at

io
n

Se
t u

pp
er

 a
nd

 lo
w

er
 b

ou
nd

Is
 so

lu
tio

n
lo

w
er

th
an

 u
pp

er
 b

ou
nd

?
U

pd
at

e
up

pe
r b

ou
nd

Fi
nd

 a
 b

ra
nc

h

N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

Fi
nd

 a
 c

ut
tin

g
pl

an
e?

Re
la

xa
tio

n

A
dd

 c
ut

tin
g

pl
an

es

Fa
th

om
in

g
an

d
pr

un
in

g

Fi
na

l s
ol

ut
io

n

Is
 a

 b
ra

nd
fo

un
d?

Br
an

ch
 a

nd
 c

ut
 a

lg
or

ith
m

FI
G

U
R

E
15

.2
5

B
ra

nc
h

an
d

 c
ut

 a
lg

or
it

hm
 to

 s
ol

ve
 th

e
m

od
el

.

301Programming Application Examples in Forest Resource Management

component (15.6%). The forest carbon sequestration rate decreased right after
each harvest. However, it would return to the previous rate after sufficient
time of growth. The revenue was $42.4 ha/year where carbon sequestration
accounted for 40%, and timber and biomass for 59% and 1%, respectively.

The increment of carbon sequestration rate (marginal rate) generally
increased until the carbon-to-timber price ratio rose to 0.45, and decreased
from 0.322 to 0.0 Mg/ha/year if the ratio was greater than 0.45 (Figure 15.26a).

0

0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

0.2
(b)

(a)

0.4 0.6
Carbon-to-timber price ratio

Carbon-to-timber price ratio

To
ra

l r
ev

en
ue

 in
cr

em
en

t (
S/

ha
/y

ea
r)

C
ar

bo
n

se
qu

es
tr

at
io

n
in

cr
em

en
t (

M
g/

ha
/y

ea
r)

0.8 1 1.2

FIGURE 15.26
Variations of (a) carbon sequestration rate and (b) total forest revenue by carbon-to-timber price
ratio (Δ = 0.05).

302 Computing Applications in Forestry and Natural Resource Management

The rate increment reached 0 when the carbon-to-timber price ratio was
greater than 0.8. Accordingly, the revenue steadily increased from $1.6 to
$7.1 ha/year as the carbon-to-timber price ratio increased from 0.0 to 1.0
(Figure 15.26b). When the price ratio was greater than 0.8, the increment of
forest revenue attained a flat plateau.

The carbon sequestration rate slightly varied from 0.325 to 0.323 Mg/ha/
year when the biomass-to-timber price ratio increased from 0.0 to 0.7 with
a carbon-to-timber price ratio of 0.0 (Figure 15.27a). As woody biomass

0
0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3
Biomass-to-timber price ratio(a)

(b) Open area limitation (ha)

C
ar

bo
n

se
qu

es
tr

at
io

n
ra

te
 (M

g/
ha

/y
ea

r)
C

ar
bo

n
se

qu
es

tr
at

io
n

ra
te

 (M
g/

ha
/y

ea
r)

0.4 0.5 0.6 0.7

1008060

PCO2/PT = 0

PCO2/PT = 0.25

PCO2/PT = 0.5

PCO2/PT = 0.75

PCO2/PT = 1

40200
0

0.2

0.4

0.6

0.8

1.2

1

PCO2/PT = 0

PCO2/PT = 0.25

PCO2/PT = 0.5

PCO2/PT = 0.75

PCO2/PT = 1

FIGURE 15.27
Carbon sequestration rate (Mg/ha/year) by (a) biomass-to-timber price ratio; (b) harvest area
size (ha).

303Programming Application Examples in Forest Resource Management

price increased, the carbon sequestration rate declined. When the carbon-to-
timber price ratio was 0.0 or 1.0, the carbon sequestration rate would decline
approximately 2% considering the biomass-to-timber price ratio changed
from 0.0 to 0.7. However, an obvious change of the carbon sequestration rate
was noticed when the carbon-to-timber price ratio was 0.5.

Harvest area limitation is important to preserve wildlife habitat in the for-
est and prevent soil erosion. For a given carbon-to-timber price ratio, the size
restriction of continuous harvest areas becomes a primary factor affecting
the amount of carbon sequestrated in a forest stand. The maximum poten-
tial carbon sequestration rate of 1.253 Mg/ha/year was achieved when the
harvest area limit was less than 20 ha for lower carbon-to-timber price ratio
(Figure 15.27). Assuming the carbon-to-timber price ratio was 0.0, the carbon
sequestration rate steadily declined from 1.25 to 0.03 when the harvest area had
changed from 0 to 100 ha. When the carbon-to-timber price ratio was higher,
the carbon sequestration rate became stable though the harvest area varied.

Class Exercises

	 1.	 Describe the structure of a VB project in forest and natural resource
applications.

	 2.	 Explain sequential file access and give three operations of its Open
statement.

	 3.	 How do you implement a VB function or general procedure?
	 4.	 Compare and contrast data control vs. data access object.

References

Appalachian Hardwood Center. 2014. WV timber market report. Available online at
http://ahc.caf.wvu.edu/ahc-resources-mainmenu-45/timber-market-report-
mainmenu-62. Accessed on October 7, 2014.

Barahona, F., A. Weintraub, and R. Epstein. 1992. Habitat dispersion in forest plan-
ning and stable set problem. Operations Research 40(1): 14–21.

Bhandarkar, S.M., X. Luo, R. Daniels, and E.W. Tollner. 2008. Automated planning and
optimization of lumber production using machine vision and computer tomog-
raphy. IEEE Transactions on Automation Science and Engineering 5(4): 677–695.

Borders, B.E., W.M. Harrison, D.E. Adams, R.L. Bailey, and L.V. Pienaar. 1990. Yield
prediction and growth projection for site-prepared loblolly pine plantations
in the Carolinas, Georgia, Florida, and Alabama. School of Forest Resources,
University of Georgia, Athens, GA. PMRC Technical Report 1990-2.

http://ahc.caf.wvu.edu
http://ahc.caf.wvu.edu

304 Computing Applications in Forestry and Natural Resource Management

Carruth, J.S. and J.C. Brown. 1996. Predicting the operability of South Carolina coastal
plain soils for alternative harvesting systems. USDA Forest Service, St. Paul,
MN. General Technical Report NC-186, pp. 47–53.

Chicago Climate Exchange. 2011. CCX historical price and volume [online]. Available
from: https://www.theice.com/ccx.jhtml. Accessed on September 2, 2013.

Denig, J. 1993. Small Sawmill Handbook. Miller Freeman, San Francisco, CA.
Farrar, K.D. 1981. In situ stand generator for use in harvesting machine simulations.

MS Thesis, Virginia Tech, Blacksburg, VA, 211pp.
Greene, W.D. and B. Lanford. 1992. Logging cost analysis. Center for Continuing

Education and Warnell School of Forest Resources, The University of Georgia,
Athens, GA.

Grushecky, S.T., J. Wang, and D.W. McGill. 2007. Influence of site characteristics and
costs of trucking and extraction on logging residue accumulations in southern
West Virginia. Forest Products Journal 57(7/8): 63–67.

Huyler, N.K. and C.B. LeDoux. 1999. Performance of a cut-to-length harvester in a
single-tree and group-selection cut. USDA Forest Service, Radnor, PA. Research
Paper NE-711.

Jacobson, R. 1999. Microsoft Excel 2000 Visual Basic for Applications: Fundamentals.
Microsoft Press, Redmond, WA.

Klinkhachorn, P., J.P. Franklin, C.W. McMillin, R.W. Conners, and H.A. Huber. 1988.
Automated computer grading of hardwood lumber. Forest Products Journal
38(3): 67–69.

LeDoux, C.B. 1985. Stump-to-mill timber production cost equations for cable logging
eastern hardwoods. USDA Forest Service, Northeastern Station, Morgantown,
WV. Research Paper NE-566.

LeDoux, C.B. and N.K. Huyler. 2001. Comparison of two cut-to-length harvesting
systems operating in eastern hardwoods. Journal of Forest Engineering 12(1):
53–59.

Li, Y. 2005. Modeling operational forestry problems in central Appalachian hard-
wood forests. PhD Dissertation, Division of Forestry, West Virginia University,
Morgantown, WV.

Lin, W. 2011. Development of a 3D log processing optimization system for small-scale
sawmills to maximize profits and yields from central Appalachian hardwoods.
PhD Dissertation. West Virginia University, Morgantown, WV.

Lin, W. and J. Wang. 2012. An integrated 3D log processing optimization system for
hardwood sawmills in central Appalachia, USA. Computers and Electronics in
Agriculture 82(2012): 61–74.

Lin, W., J. Wang, and B. Sharma. 2011a. Development of an optimal three-dimensional
visualization system for rough lumber edging and trimming in central
Appalachia. Forest Products Journal 61(5): 401–410.

Lin, W., J. Wang, and E. Thomas. 2011b. Development of a 3D log sawing optimi-
zation system for small sawmills in central Appalachian, US. Wood and Fiber
Science 43(4): 379–393.

Liu, W. 2015. Economic and environmental analyses of biomass utilization for bio-
energy products in the Northeastern United States. Dissertation, West Virginia
University, Morgantown, WV.

Lomax, P. 1998. VB & VBA in a Nutshell: The Language (1st Edition). O’Reilly &
Associates, Inc., Sebastopol, CA.

https://www.theice.com

305Programming Application Examples in Forest Resource Management

Miyata, E.S. 1980. Determining fixed and operating costs of logging equipment.
USDA Forest Service, St. Paul, MN. General Technical Report NC-55.

MSDN. 2010. Microsoft ActiveX Data Objects (ADO). Available from: http://msdn.
microsoft.com/en-us/library/ms675532(v=vs.85).aspx. Accessed on August 16,
2010.

National Hardwood Lumber Association (NHLA). 2008. Rules for the Measurement
and Inspection of Hardwood and Cypress. NHLA, Memphis, TN. Available from:
http://www.nhla.com/pdf/2008_Rules_all.pdf. Accessed on April 8, 2011.

Reisinger, T.W. and T.V. Gallagher. 2001. Evaluation and comparison of two tree-length
harvesting systems operating on steep slopes in West Virginia. In Proceedings of
the 24th Annual COFE Meeting, July 15–19, 2001, Snowshoe, WV, pp. 56–64.

Rennie, J.C. 1996. Formulas for Mesavage’s cubic-foot volume table. NJAF
13(3): 147.

Stage, A.R. 1973. Prognosis model for stand development. U.S. Dept. of Agriculture,
Forest Service, Intermountain Forest and Range Experiment Station, Ogden,
UT. Research Paper INT-137, 32pp.

Sturos, J.A., M.A. Thompson, C.R. Blinn, and R.A. Dahlman. 1996. Cable yarding
as a low-impact alternative on sensitive sites in the lake states. In Proceedings
of Papers Presented at the Joint Meeting of the Council on Forest Engineering and
International Union of Forest Research Organizations, July 29–August 1, 1996,
Marquette, MI, pp. 109–116.

Thomas, E. 2008. Predicting internal Yellow-Poplar log defect features using surface
indicators. Wood and Fiber Science 40(1): 14–22.

Thompson, M.A., J.A. Sturos, N.S. Christopherson, and J.B. Sturos. 1995. Performance
and impacts of ground skidding and forwarding from designated trails in an
all-age northern hardwood stand. In Proceedings of the 18th Annual Meeting of the
Council on Forest Engineering: Sustainability, Forest Health & Meeting the Nation’s
Needs for Wood Products, June 5–8, 1995, Cashiers, NC.

Tufts, R.A., B.L. Lanford, W.D. Greene, and J.O. Burrows. 1985. Auburn harvesting
analyzer. Compiler 3(2): 14–15.

U.S. DOE. 2007. Technical guidelines voluntary reporting of greenhouse gases
(1605(b)) program. United States Department of Energy, Washington, DC.

USDA FS. 2015. Forest Vegetation Simulator (FVS). Available online at http://www.
fs.fed.us/fmsc/fvs/. Accessed on November 10, 2015.

Wang, J. and W.D. Greene. 1999. An interactive simulation system for modeling
stands, harvests, and machines. Journal of Forest Engineering 10(1): 81–99.

Wang, J., S. Grushecky, and J. Brooks. 2004a. An integrated computer-based cruis-
ing system for central Appalachian hardwoods. Computers and Electronics in
Agriculture 45(2004): 133–138.

Wang, J., S.T. Grushecky, and J. McNeel. 2005a. Production analysis of helicopter log-
ging in West Virginia: A preliminary case study. Forest Products Journal 55(12):
71–76.

Wang, J. and C. LeDoux. 2003. Estimating and validating ground-based timber
harvesting production through computer simulation. Forest Science 49(1):
64–76.

Wang, J., C.B. LeDoux, and Y. Li. 2005b. Simulating cut-to-length harvesting opera-
tion in Appalachian hardwoods. International Journal of Forest Engineering 16(2):
11–27.

http://msdn.microsoft.com
http://msdn.microsoft.com
http://www.nhla.com
http://www.fs.fed.us
http://www.fs.fed.us

306 Computing Applications in Forestry and Natural Resource Management

Wang, J., Y. Li, and G. Miller. 2002a. A 3D stand generator for Appalachian hardwood
forests. In IUFRO S 4.11 Symposium on Statistics and Information Technology in
Forestry, September 8–12, 2002, Virginia Tech, Blacksburg, VA.

Wang, J., Y. Li, and G. Miller. 2002b. Development of a 3D stand generator for cen-
tral Appalachian hardwood forest. In Proceedings of the IUFRO S4.11 Symposium
on Statistics and Information Technology in Forestry, IUFRO Secretariat, Vienna,
Austria, 10pp.

Wang, J., J. Liu, and C.B. LeDoux. 2009. A 3D bucking system for optimal bucking of
central Appalachian hardwoods. International Journal of Forest Engineering. 20(2):
26–35.

Wang, J., C. Long, and J. McNeel. 2004c. Production and cost analysis of a feller-
buncher and grapple skidder in central Appalachian hardwood forests. Forest
Products Journal 54(12): 159–167.

Wang, J., C. Long, J. McNeel, and J. Baumgras. 2004b. Productivity and cost of man-
ual felling and cable skidding in central Appalachian hardwood forests. Forest
Products Journal 54(12): 45–51.

Wit, H.A., T. Palosuo, G. Hylen, and J. Liski. 2006. A carbon budget of forest biomass
and soils in southeast Norway calculated using a widely applicable method.
Forest Ecology and Management 225: 15–26.

Woo, M., J. Neider, T. Davis, and D. Shreiner. 1999. OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA.

Wu, J., M. Sperow, and J. Wang. 2010c. Economic feasibility of a woody biomass-based
ethanol plant in central Appalachia, USA. Journal of Agricultural and Resource
Economics 35(3): 522–544.

Wu, J., J. Wang, Q. Cheng, and D. DeVallance. 2011a. Assessment of coal and bio-
mass to liquid fuels in central Appalachia, USA. International Journal of Energy
Research 36(7): 856–870. DOI:10.1002/er.1838.

Wu, J., J. Wang, and J. McNeel. 2011b. Economic modeling of woody biomass utiliza-
tion for bioenergy and its application in central Appalachia. Canadian Journal of
Forest Research 41(2011): 165–179.

307

Programming for Mobile Devices
and Applications in Time Study of
Timber Harvesting Machines

16.1 � Programming for Mobile Devices

As discussed in Chapter 9, mobile devices can be smartphones or any other
PDAs or handheld PCs, which run under iOS, Windows Mobile, or Android
operating systems.

16.1.1 � iPhone/iPad App Programming

For iPhone/iPad programming, you will need a newer Mac computer with
the latest version of OSX (the operating system for Mac computers). Once you
have your Mac in place you may sign up for the Apple Developer Program
at http://developer.apple.com. From there, you may download the related
tools for programming. The primary tools that you should download include
XCode and Interface Builder. XCode is the integrated development environ-
ment (IDE) for iPhone/iPad development and is where you will edit your
iPhone/iPad code and keep your app software projects organized. Interface
Builder is a program that you can use to build a graphical user interface
(GUI) for your iPhone/iPad without using code at all.

16.1.1.1 � Programming Languages

iPhone/iPad programming requires you use one or more of the following
programming languages: C, C++, Objective-C, or Swift. C is the basic pro-
gramming language used in many software systems and is primarily used
to work with the low-level operating system functions in iPhone OS (iOS).
C++ is used in games and to leverage code from other platforms in iOS.
Objective-C is the object-oriented programming language used to work with
the majority of iPhone components. Swift is a new language Apple created
to develop apps for iPhone/iPad, which is the result of the latest research

16

http://developer.apple.com

308 Computing Applications in Forestry and Natural Resource Management

on programming languages, combined with decades of experience building
Apple platforms (https://developer.apple.com/swift/).

16.1.1.2 � iPhone Development Frameworks

The primary framework that you will use with iPhone programming is the
Cocoa-Touch framework (http://developer.apple.com). This is used to create
the buttons, labels, and text boxes that appear on the iPhone. Programmers
will generally refer to other foundational frameworks such as NSFoundation
as part of Cocoa-Touch.

iOS (formerly iPhone OS) is a mobile operating system developed and dis-
tributed by Apple Inc. It was originally released in 2007 for the iPhone and
iPod Touch and has since been extended to support other Apple devices such
as the iPad and Apple TV (www.apple.com/ios). Unlike Windows Mobile
and Android, Apple does not license iOS for installation on non-Apple hard-
ware. There are four increasingly complex abstraction layers in iOS: the fun-
damental lower-level Core OS layer, the Core Services layer, the Media layer,
and the higher-level Cocoa-Touch layer (Figure 16.1a). The latest version of
the operating system is iOS 10.x.

16.1.2 � Android Programming

Android is a Linux-based operating system for mobile devices such as smart-
phones and tablet computers that was developed by Google (http://developer.
android.com/guide/basics/what-is-android.html). It allows developers to
write code on Java-based language that utilizes Java libraries. Android has a
large community of developers writing applications (“apps”) that extend the

iOS

iOS apps Android apps

Framework and class
libraries

Applications

Common language runtime

Windows mobile OS

Application framework

Libraries and android
runtime

Linux kernel

(a) (b) (c)

Framework and iOS layers

System libraries

iOS

Android Windows Mobile

FIGURE 16.1
Development framework of (a) iOS, (b) Android, and (c) Windows Mobile .NET Compact.

https://developer.apple.com
http://developer.apple.com
http://www.apple.com
http://developer.android.com
http://developer.android.com

309Programming for Mobile Devices and Applications

functionality of the devices. Apps can be downloaded from third-party sites or
through online stores such as Google Play.

16.1.2.1 � Android Application Development Framework

Android was created on top of the open-source Linux 2.6 kernel (Felker
and Dobbs 2011) and provides immense flexibility and the opportunity to
develop diverse smart mobile applications. Developers have full access to
the same framework application programming interfaces (APIs) used for the
core applications. The application architecture is designed to simplify the
reuse of components. The Android framework has been developed with
many different features consisting of four major components: Linux kernel
at the very bottom, Libraries and Android Runtime, Application framework,
and Applications (Figure 16.1b). The Application component sits at the very
top of the Android development framework. We can develop apps here
using interactive tools with other components.

16.1.3 � Windows Mobile

Windows Mobile is a mobile operating system developed by Microsoft for
smartphones, pocket, tablet, and handheld PCs (Evers 2005). It is based on
the Windows CE kernel and first appeared as the Pocket PC 2000 operat-
ing system (Boling 2003). Most versions of Windows Mobile have a set of
standard features such as multitasking and the ability to navigate a file
system with support for many of the same file types. Windows Mobile
can perform basic tasks, including Internet Explorer, MS Mobile Office,
and others.

16.1.3.1 � .NET Compact Framework

The Microsoft .NET Compact Framework is a hardware-independent envi-
ronment that supports building and running managed applications on
resource-constrained computing devices (Wigley and Sutton 2003). The .NET
Compact Framework inherits the full .NET Framework architecture of the
common language runtime for running managed code. It provides interop-
erability with the Windows CE or Mobile operating system of a device. The
.NET Compact Framework is a subset of the .NET Framework and also con-
tains features exclusively designed for the .NET Compact Framework. It
provides the features and ease of use that facilitate bringing native device
application developers to the .NET Framework and bringing desktop appli-
cation developers to devices.

If you have experience with Microsoft Visual Studio like VB.NET for desk-
top applications, it should be easier for you to adapt to the Windows Mobile
applications. Handheld device development in Visual Studio includes a
set of project types and emulators that target development for Pocket PC,

310 Computing Applications in Forestry and Natural Resource Management

Smartphone, and handheld PCs based on the .NET Compact Framework
platform architecture (Figure 16.1c) (http://msdn.microsoft.com/en-us/
netframework/aa497273.aspx).

16.2 � Visual Basic .NET for Windows Mobile

The VB.NET for Windows Mobile is Microsoft’s answer to simplifying the
process of creating applications for handheld computers. By augment-
ing their popular VB.NET product with the Windows Mobile Software
Development Kits (SDKs), Microsoft has provided a tool that enables anyone
experienced with VB.NET to immediately begin to develop Windows Mobile
applications.

At present, to program Windows Mobile applications, we need to install
Microsoft Visual Studio first (a later version preferred), then install Windows
Mobile SDK 8, 10, or a later version. The Windows Mobile SDKs add doc-
umentation, sample code, header and library files, emulator images, and
tools to Visual Studio that let you build applications for Windows Mobile
(Microsoft Corporation 2012, 2016). The SDKs will allow you to build
Universal Windows apps for tablet, phone, PC, or Xbox on the Universal
Windows Platform or on Classic Windows applications.

16.2.1 � Windows Mobile SDK

Windows Mobile SDK is an add-in for the VB.NET design and development
environment. Once the Windows Mobile SDK is installed on your computer, the
VB.NET integrated development environment, or IDE, is modified to provide
a set of tools for creating Windows Mobile applications. Windows Mobile SDK
only adds functionality to the VB.NET IDE and does not remove any existing
functionality that is not applicable for use when creating Mobile applications.

16.2.2 � New Project Types

When you first start VB.NET in the Windows Mobile SDK, you will notice a
few new project types. Depending on the version of Visual Studio and SDK,
the new project types could include Windows Phone App, Windows Phone
Databound App, Windows Phone Class Library, and a few others.

Of all of the modifications that the Windows Mobile SDK makes to the
VB.NET IDE, the most notable are those that are made to the menu structure.
Several of the menus (the File, Project, Debug, Run, and Tools menus) contain
new items. The modified menu structure only appears when you are work-
ing with a Windows Mobile project.

http://msdn.microsoft.com
http://msdn.microsoft.com

311Programming for Mobile Devices and Applications

16.2.3 � Features in VB.NET for Windows Mobile

It is best to know some of the different features that VB.NET and Windows
Mobile SDK can provide, especially their potential impacts on how we create
Windows Mobile applications. Here are some of them (Roof 1998, https://msdn.
microsoft.com/en-us/library/bb847935.aspx, Microsoft Corporation 2016):

	 1.	VB.NET for mobile devices uses different ActiveX controls. There are
a number of controls included in VB.NET that might not be appli-
cable for Windows Mobile applications. The controls themselves
are physically different, and in many cases have different proper-
ties, methods, and events. The point is not to assume that the con-
trol for mobile devices will work just like the equivalent VB.NET
control does.

	 2.	You will use a different method to exit your application—both End
and Close() in VB.NET for Windows Mobile.

	 3.	There is no multiple document interface form in VB.NET for
Windows Mobile.

16.2.4 � Programming Examples of VB.NET for Windows Mobile

Let’s consider a simple example that demonstrates how to program a
Windows Mobile App for the basal area calculation of a tree in forest man-
agement. We start a VB.NET project and select Windows Phone App project
type. A Windows phone interface will be displayed together with the Project
and Properties windows as with a regular VB.NET project (Figure 16.2). In
this project, we enter a diameter at breast height (DBH) value in a textbox
and then click the Calculate button. The basal area of that tree will be calcu-
lated and displayed in another textbox. The code listing is as follows:

Imports System
Imports System.Threading
Imports System.Windows.Controls
Imports Microsoft.Phone.Controls
Imports Microsoft.Phone.Shell

Partial Public Class MainPage
 Inherits PhoneApplicationPage

 ' Constructor
 Public Sub New()
 InitializeComponent()

 Su�pportedOrientations = SupportedPageOrientation.
Portrait Or SupportedPageOrientation.Landscape

https://msdn.microsoft.com
https://msdn.microsoft.com

312 Computing Applications in Forestry and Natural Resource Management

 ' Sample code to localize the ApplicationBar
 'BuildLocalizedApplicationBar()

 End Sub

 Pr�ivate Sub Button_Click(sender As Object, e As
RoutedEventArgs)

 Dim dbh, ba As Single
 dbh = txtBoxDBH.Text
 ba = 0.005454154 * dbh * dbh
 txtBoxBA.Text = ba
 End Sub

End Class

Let’s try another example to develop a timber cruising program for Windows
Mobile devices. The program interface should consist of three tabs: (1) cruise
setup and plot information, (2) tree data collection, and (3) about the pro-
gram (Figure 16.3).

The program can be executed through an emulator (Figure 16.4) or on a
Windows Mobile device.

FIGURE 16.2
Windows Phone App for tree basal area calculation.

313Programming for Mobile Devices and Applications

FIGURE 16.3
Interface design of a Windows Mobile application.

FIGURE 16.4
Emulators for Windows Mobile applications.

314 Computing Applications in Forestry and Natural Resource Management

The code listing is as follows:

Public Class Form1
 Shared Trees As New List(Of String)()
 Shared Plots As New List(Of String)()
 Shared pupdate As Integer
 Shared finish As Integer = 0

 Pr�ivate Sub cboMHT_SelectedIndexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cboMHT.SelectedIndexChanged

 If� cboSpecies.Text = "" AndAlso cboDBH.Text = "" AndAlso
cboMHT.Text = "" AndAlso txtTHT.Text = "" Then

 btnNextPlot.Enabled = True
 btnEnd.Enabled = True
 ElseIf cboSpecies.Text = "" OrElse cboDBH.Text = "" Then
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 ElseIf cboMHT.Text = "" AndAlso txtTHT.Text = "" Then
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 Else
 btnNextTree.Enabled = True
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 End If
 End Sub

 Pr�ivate Sub btnReset_Click_1(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles btnReset.
Click

 txtCrew.Text = ""
 txtForest.Text = ""
 dtDate.Value = Date.Now
 txtBAF.Text = "20"
 txtFRP.Text = "0.10"
 rdoVRP.Checked = True
 End Sub

 Pr�ivate Sub btnNextTree_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
btnNextTree.Click

 Dim plot As String = txtPlot.Text
 Dim tree As String = txtTree.Text
 Dim species As String = cboSpecies.Text
 Dim DBH As String = cboDBH.Text
 Dim MHT As String = cboMHT.Text

315Programming for Mobile Devices and Applications

 Dim THT As String = txtTHT.Text
 Di�m obs As String() = {plot, tree, species, DBH,

MHT, THT}
 Dim record As String = String.Join(",", obs)
 Trees.Add(record)
 Dim tid As Int16 = Convert.ToInt16(tree)
 tid += 1
 txtTree.Text = Convert.ToString(tid)
 cboSpecies.Text = ""
 cboDBH.Text = ""
 cboMHT.Text = ""
 txtTHT.Text = ""
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = True
 pupdate = 1
 finish = 1
 End Sub

 Pr�ivate Sub btnEnd_Click_1(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnEnd.Click

 Dim type As String = Nothing
 Dim plot As String = txtPlot.Text
 Dim crew As String = txtCrew.Text
 Dim forest As String = txtForest.Text
 Di�m [date] As String = Convert.ToString(dtDate.Value.

[Date])

 If pupdate = 1 Then

 If rdoVRP.Checked = True Then
 type = "VRP"
 Dim factor As String = txtBAF.Text
 End If
 If rdoFRP.Checked = True Then
 type = "FRP"
 Dim factor As String = txtFRP.Text
 End If
 Di�m info As String() = {plot, type, forest, crew,

[date]}
 Dim record As String = String.Join(",", info)
 Plots.Add(record)
 End If
 If finish = 1 Then
 Di�m folder As String = Environment.

GetFolderPath(Environment.SpecialFolder.Personal)
 Di�m plot_path As String = "\Plot_" & forest & "_"

& Convert.ToString(dtDate.Value.Month) &
Convert.ToString(dtDate.Value.Day) & Convert.
ToString(dtDate.Value.Year) & ".txt"

316 Computing Applications in Forestry and Natural Resource Management

 Di�m tree_path As String = "\Trees_" & forest & "_"
& Convert.ToString(dtDate.Value.Month) &
Convert.ToString(dtDate.Value.Day) & Convert.
ToString(dtDate.Value.Year) & ".txt"

 Dim plot_save As String = folder & plot_path
 Dim tree_save As String = folder & tree_path
 If Not System.IO.File.Exists(plot_save) Then
 Us�ing plotstream As System.IO.StreamWriter =

System.IO.File.CreateText(plot_save)
 For Each value As String In Plots
 plotstream.WriteLine(value)
 Next
 End Using
 Else
 System.IO.File.Delete(plot_save)
 Us�ing plotstream As System.IO.StreamWriter =

System.IO.File.CreateText(plot_save)
 For Each value As String In Plots
 plotstream.WriteLine(value)
 Next
 End Using
 End If
 If Not System.IO.File.Exists(tree_save) Then
 Us�ing treestream As System.IO.StreamWriter =

System.IO.File.CreateText(tree_save)
 For Each value2 As String In Trees
 treestream.WriteLine(value2)
 Next
 End Using
 Else
 Us�ing treestream As System.IO.StreamWriter =

System.IO.File.CreateText(tree_save)
 For Each value2 As String In Trees
 treestream.WriteLine(value2)
 Next
 End Using
 End If
 End If
 Close()
 End Sub

 Pr�ivate Sub btnNextPlot_Click(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles
btnNextPlot.Click

 Dim type As String = Nothing
 Dim plot As String = txtPlot.Text
 Dim crew As String = txtCrew.Text
 Dim forest As String = txtForest.Text
 Di�m [date] As String = Convert.ToString(dtDate.Value.

[Date])

317Programming for Mobile Devices and Applications

 If rdoVRP.Checked = True Then
 type = "VRP"
 Dim factor As String = txtBAF.Text
 End If
 If rdoFRP.Checked = True Then
 type = "FRP"
 Dim factor As String = txtFRP.Text
 End If
   Dim info As String() = {plot, type, forest, crew, [date]}
 Dim record As String = String.Join(",", info)
 Plots.Add(record)
 Dim pid As Int16 = Convert.ToInt16(plot)
 pid += 1
 txtPlot.Text = Convert.ToString(pid)
 txtTree.Text = "1"
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 pupdate = 0
 End Sub

 Pr�ivate Sub txtTHT_TextChanged(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles txtTHT.
TextChanged

 If� cboSpecies.Text = "" AndAlso cboDBH.Text = ""
AndAlso cboMHT.Text = "" AndAlso txtTHT.Text = ""
Then

 btnNextPlot.Enabled = True
 btnEnd.Enabled = True
 El�seIf cboSpecies.Text = "" OrElse cboDBH.Text = ""

Then
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 ElseIf cboMHT.Text = "" AndAlso txtTHT.Text = "" Then
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 Else
 btnNextTree.Enabled = True
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 End If
 End Sub

 Pr�ivate Sub cboDBH_SelectedIndexChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cboDBH.SelectedIndexChanged

 If� cboSpecies.Text = "" AndAlso cboDBH.Text = ""
AndAlso cboMHT.Text = "" AndAlso txtTHT.Text = ""

318 Computing Applications in Forestry and Natural Resource Management

Then
 btnNextPlot.Enabled = True
 btnEnd.Enabled = True
 ElseIf cboSpecies.Text = "" OrElse cboDBH.Text = "" Then
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 ElseIf cboMHT.Text = "" AndAlso txtTHT.Text = "" Then
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 Else
 btnNextTree.Enabled = True
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 End If
 End Sub

 Pr�ivate Sub cboSpecies_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
cboSpecies.SelectedIndexChanged

 If� cboSpecies.Text = "" AndAlso cboDBH.Text = ""
AndAlso cboMHT.Text = "" AndAlso txtTHT.Text = ""
Then

 btnNextPlot.Enabled = True
 btnEnd.Enabled = True
 El�seIf cboSpecies.Text = "" OrElse cboDBH.Text = ""

Then
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 ElseIf cboMHT.Text = "" AndAlso txtTHT.Text = "" Then
 btnNextTree.Enabled = False
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 Else
 btnNextTree.Enabled = True
 btnNextPlot.Enabled = False
 btnEnd.Enabled = False
 End If
 End Sub

 Pr�ivate Sub rdoFRP_CheckedChanged(ByVal sender As System.
Object, ByVal e As System.EventArgs) Handles rdoFRP.
CheckedChanged

 If rdoFRP.Checked = True Then
 txtFRP.Enabled = True
 txtBAF.Enabled = False
 End If
 End Sub

319Programming for Mobile Devices and Applications

 Pr�ivate Sub rdoVRP_CheckedChanged_1(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
rdoVRP.CheckedChanged

 If rdoVRP.Checked = True Then
 txtFRP.Enabled = False
 txtBAF.Enabled = True
 End If
 End Sub
End Class

16.3 � VB.NET for Mobile Device Application
in Time Study of Timber Harvesting

Time study is “a set of procedures for determining the amount of time
required, under certain standard conditions of measurement, for tasks involv-
ing some human, machine, or combined activity” (Mundel and Danner 1994).
Through the years, time studies have been conducted in different ways:
(1) stopwatches and paper, (2) video cameras, (3) disk operating system–
based handheld devices, and (4) global positioning systems.

This example is to demonstrate how to (1) develop a handheld time study
system with an MS Windows-based GUI for timber harvesting operations,
(2) adapt a relational database as the back end for time and factor data stor-
age in the system, and (3) build an interface module for time and factor data
communication between the desktop PC and the handheld PC using ActiveX
Data Object (ADO) (Wang et al. 2003).

16.3.1 � System Structure

This time study system consists of two major components: the handheld sys-
tem, and a GUI and data storage component on the desktop PC (Figure 16.5).
The handheld system is used to edit species, design harvesting functions
and variables, and collect site, elemental time, and variable data. The GUI
component on the desktop provides the interfaces and functions needed to
transfer data between the handheld and the desktop PC and to manipulate
and export the data for later analyses. The data storage component is a typi-
cal relational database containing tables of the time study data.

The handheld system was written with Microsoft VB CE, which runs under
the Microsoft Windows CE environment. It contains two modules—design
and collect (Figure 16.6). The design module in this system includes func-
tions that allow the design work to be done on either the PC or the handheld.
It provides the user with the option to enter or edit tree species to be used in
the study site.

320 Computing Applications in Forestry and Natural Resource Management

Start

Design Collect

Harvesting Harvesting

Add, edit,
delete

Add, edit,
deleteSelect

machine

Select
machine

Build data

Retrieve

functions and

Record
and

Next cycleNext
Y Y

N N

End

Database Edit cycle

Functions
and

Add, edit

Next species? Next
Y Y

N N

Species Site

FIGURE 16.6
Flowchart of the handheld-based time study system.

Timber harvesting

Handheld: data entry GUI: ADO and functions

Data communication

Data analysis

Data storageDatabase

FIGURE 16.5
Architecture of the time study system.

321Programming for Mobile Devices and Applications

Harvesting functions refer to the procedures or steps involved in the
work cycle of a harvesting machine. For example, chainsaw felling may
require four steps: walk to tree, acquire, fell, and delimb/top. The system
allows the users to define functions for a specific machine. Harvesting vari-
ables are the factors that affect harvesting operations and elemental times.
For example, DBH, height of the tree, and distance between harvested trees
are the variables for chainsaw felling (in addition to site effects). Once the
time study design is completed, the collect module can be invoked and will
retrieve the information entered in the design module. Supporting help
files using html-based architecture are also provided for this handheld time
study system.

The data transfer interface module was written with MS VB V6.0 under
the MS Windows 2000, XP, or Windows 7 environment. ADO CE API was
employed to conduct data transfer via a dynamic link library (DLL)—
adofiltr.dll. This DLL contains two functions, DesktopToDevice() and
DeviceToDesktop(), which are used to transfer data or copy tables.
It runs on the desktop PC, not the handheld. The desktop initiates and con-
trols the transfer process. The key requirement for this transfer process is to
have the same table schemas on both desktop and handheld. The ADO CE
data transfer feature has a solid set of tools for transferring data. While the
manual method for copying tables does not offer the control needed by most
applications, the programmatic method does. This feature allows the transfer
of complete tables between devices rather than requiring the synchroniza-
tion of individual records.

A relational database model was used for holding harvesting functions,
variables, and time study data in the handheld system, which was imple-
mented based on the entity-relationship model. The relational database
model presents the data as a collection of tables. Instead of modeling the
relationships in the data according to the way that the data are physically
stored, the structure is defined by establishing relationships between data
entities. Basically, there are six data entity types in the model—harvesting
functions, variables, site, species, time track, and felling/skidding/forwarding/
yarding. Each entity type has its own attributes. For example, the harvesting
functions entity has function ID and name, and machine type attributes. Entity
types are related using relationships such as has, contains, and associates in the
model. A derived attribute Elapsed_time was used in time track entity, which
is derived from Start_time and End_time attributes. Attributes belonging to
a key are underlined for an entity set. Cycle number, machine type, function
start time, end time, elapsed time, and associated harvesting variables are auto-
matically recorded. Harvesting functions, variable data, and species are stored in
separate data tables in the design module and are identified by their primary
keys and harvesting machine types. In the collect module, harvesting func-
tions and variables can be queried and retrieved for a specific machine type
on which another data table is created for storing functions, variables, and
elemental times. Species information is also retrieved for data entry. The site

322 Computing Applications in Forestry and Natural Resource Management

data table contains general information such as site number, name, location,
slope, and weather conditions about the logging site. Site number is used as a
foreign key to associate site information with other data tables created in the
collect module.

The time track entity type is used to track the start and end times of each
element in a work cycle. It can also be used as a backup data table for felling,
skidding/forwarding, or yarding data entities. The felling/skidding/forward-
ing/yarding entity type is designed to store time study data of felling, skid-
ding, forwarding, or yarding depending on the type of logging operation
being studied. Data schemas of the main data storage on the desktop PC are
the same as those used in the handheld system in order to facilitate the data
transfer.

16.3.2 � System Implementation

16.3.2.1 � Design Module

Three functions were implemented in this module for designing and edit-
ing species, and harvesting functions and variables (Figure 16.7). Data were
edited and saved into the database in the design phase and can then be
retrieved for use in the data collection phase. The system also allows the user
to navigate the database for a species, function, and variable. While navi-
gating to a specific data record in the list, the user can edit or delete the
current record.

Harvesting functions and variables were implemented to allow the user
to design and edit their names and associate them with machine types. Data
fields, including function/variable ID, function/variable name, and harvest-
ing type, are used in such a data table.

16.3.2.2 � Collect Module

To collect data for a site, three fields are required: site name, site slope, and
study date (Figure 16.7). The site number will automatically be increased and
recorded when a new site is added. It will be retrieved later when the user
starts to collect time study data and will be saved together with these data as
a foreign key in the database.

Collecting elemental times and variable data is the ultimate objective of
time studies. When invoking the collect module to collect harvesting ele-
mental times and variable data, all the useful information entered under the
design module can be retrieved and employed (Figure 16.7).

Elemental times and variables are saved in a database table whose data
structure is created based on the parameters entered in the design module.
The handheld system can check the data table status to determine whether
the table was created or if the existing table’s data structure is consistent with

323Programming for Mobile Devices and Applications

the current data. If the table does not exist or its structure is not consistent, a
new table can be created.

In order to associate the site information with the time study data, a site
number in the Site No. combo box must be selected. To record elemental time
for a function, the user needs to select the function from the Function list box.
Click Start when this function begins and click Record Time once the func-
tion ends. Repeat the above procedures for any other functions in the list.
If the user is not sure what function the logger is going to perform next, the
program allows the user to click the Start button first, then select the correct
function when it is identified, and finally click Record Time when the function
is completed. The system also allows the user to record a function multiple
times in sequence, and the elapsed time for this function is then calculated
accordingly. To record a value for a variable, the user needs to select the vari-
able in the Variable list box using the same procedures outlined for selecting
a function. Then the user can simply type a value in the text box beside the

(a) (b)

(c) (d)

(e)

FIGURE 16.7
Main interface forms in the handheld-based time study system. (a) Design tree species, (b) design
harvesting functions for associated machines, (c) design harvesting variables for associated
machine, (d) design site related variables, and (e) interface for time study data collection.

324 Computing Applications in Forestry and Natural Resource Management

Record Value button and click this button. The value for the selected vari-
able is recorded. Repeat the procedures for other harvesting variables. A brief
comment can also be recorded in the system, which is especially useful when
a comment for a cycle (reason for delay, etc.) is warranted.

Another option is also provided for entering the variable’s value. If the
handheld does not have a keyboard or the user does not like to use the key-
board on the handheld, she/he can use the Species combo box to select a
species by clicking the species required if the variable is tree species. If the
variable is numeric, the user can click the Get Number button and a data input
form will be invoked. Then, the user simply clicks number buttons and the
Enter button to get the required number.

Once the recording is completed for the work cycle, the user can click the Next
Cycle button to save the current work cycle data to the database. Elemental time
is recorded in seconds and can be converted to minutes when the user exports
the data for analysis. Units for harvesting variables can be defined by the user.

An editing function for the data in a cycle is provided in the collect module.
The system is implemented to allow the user to go back to any previously
recorded work cycle and edit the elemental times and variables or fill out the
missed data in the cycle. Since it requires connecting to the same data object
from two different processes at the same time, the system was implemented
not to allow performing two or more data manipulation events concurrently,
but rather sequentially in order to avoid mutating table errors.

This functionality is especially useful for the time study of chainsaw felling.
For example, the sawyer may harvest one tree and complete all the functions
before walking to the next tree to be harvested. In some cases, however, the
sawyer might acquire and fell a tree, then walk to another tree and acquire
and fell it, and then go back to the first tree to delimb and top it. To edit the
cycle data, the user first needs to navigate to a cycle using the “<” or “>” but-
tons and then use the following procedures: (a) select the function or variable
from the list boxes, (b) modify the values in the Time and Value boxes, and
(c) click Edit to update the cycle data (Figure 16.7e). The user can also use the
Start and End buttons in the Edit Cycle frame box to record the elapsed time
for the selected function instead of entering a value in the Time box.

16.3.3 � Transfer Data

A data transfer module was implemented on the desktop PC, which provides
three basic functions: (a) transfer data from the HPC to the PC, (b) update
main data storage, and (c) empty data tables copied on the HPC. For the sake
of data security, this module was designed to run the above events sequen-
tially. First the data tables on the HPC are copied to a temporary database
on the PC. Then the tables in the temporary database are appended to the
related tables in the main database. Finally, the system empties the data
tables on the handheld in preparation for the next time study. Meanwhile,
the user can decide whether or not the event should be activated in each step.

325Programming for Mobile Devices and Applications

Class Exercises

	 1.	 List the ways of programming mobile devices.
	 2.	 What are the features of VB.NET for Windows Mobile devices that dif-

fer from regular VB.NET?

References

Boling, D. 2003. Programming Microsoft Windows CE .NET (3rd Edition). Microsoft
Press, Redmond, WA, 1224pp.

Evers, J. 2005. Microsoft to phase out Pocket PC, Smartphone brands. InfoWorld, IDG.
November 8, 2015. http://www.infoworld.com/article/2668041/computer-
hardware/microsoft-to-phase-out-pocket-pc--smartphone-brands.html

Felker, D. and J. Dobbs. 2011. Android Application Development for Dummies. Wiley
Publishing, Inc., Indianapolis, IN, 388pp.

Microsoft Corporation. 2012. Windows Mobile 6 Professional and Standard Software
Development Kits Refresh. http://www.microsoft.com/en-us/download/
details.aspx?id=6135. Accessed on April 26, 2012.

Microsoft Corporation. 2016. Downloads and tools for Windows 10. https://devel-
oper.microsoft.com/en-us/windows/downloads. Accessed on April 15, 2016.

Mundel, M. and D. Danner. 1994. Motion and Time Study—Improving Productivity.
Prentice Hall, Upper Saddle River, NJ, 770pp.

Roof, L. 1998. Professional Visual Basic Windows CE Programming. Wrox Press Ltd.,
Birmingham, U.K.

Wang, J., J. McNeel, and J. Baumgras. 2003. A computer-based time study system for
timber harvesting operations. Forest Products Journal 53(3): 47–53.

Wigley, A. and M. Sutton. 2003. Microsoft .NET Compact Framework. Microsoft Press,
Redmond, WA, 860pp.

http://www.infoworld.com
http://www.infoworld.com
http://www.microsoft.com
http://www.microsoft.com
https://developer.microsoft.com
https://developer.microsoft.com

http://taylorandfrancis.com

Section VI

Web-Based Applications

http://taylorandfrancis.com

329

Introduction to HTML

HTML stands for hypertext markup language. It was invented for formatting
online documents and to be used by web browsers to display documents.

HTML was invented by Tim Berners-Lee in the late of 1980s at the European
Laboratory for Particle Physics in Geneva, Switzerland. It has been in use by
the World Wide Web (WWW) global information initiative since 1990.

HTML is a very simple markup language used to create hypertext docu-
ments. You can simply use Notepad or a professional editor such as Microsoft
Visual InterDev or Expression Web to edit HTML files. While you can create
a web page on your own PC, if you would like to broadcast your pages to the
world, you have to save them on a server.

17.1 � Terms and HTML Files

To better understand how HTML is used to create web pages, we need to
know the following terms:

Hypertext—text stored in electronic form with cross-referenced links
between pages.

SGML—standard generalized markup language, a standard for describ-
ing markup languages.

Java—a programming language developed by MicroSun System.
VB—stands for Visual Basic developed by Microsoft.
VB.NET—stands for Visual Basic .NET, an object-oriented program-

ming language by Microsoft.
JavaScript—scripting language that is run on the client.
VBScript—a scripting language developed by Microsoft.
ASP—active server page, server-based Microsoft technology.
ASP.NET—active server page .NET, an open-source server-side web appli-

cation framework for development of dynamic web pages by Microsoft.
XML—extensible markup language, a meta-language like SGML but

without the complexity. It is a much easier way to describe online
information.

17

330 Computing Applications in Forestry and Natural Resource Management

Typically, web documents use a naming convention to identify the type
of file being used or transferred on the Internet. Usually, HTML files have a
name followed by the extension .html or .htm. Image files will have names
ending with extensions such as .gif, jpg, mpg, etc. It is recommended that
you follow these naming conventions in order to minimize confusion and
problems while creating your web documents. It is also recommended that
the actual file name be as descriptive of its contents as possible in order to
facilitate later work on these files. Examples of recommended names for html
documents include:

 ProjectModule1.html
 Presentation.htm
 FinalReport.html

Examples of less desirable names for html documents would be:

 a.html
 myFile.htm
 aProject.html

File location depends on the server systems. On Windows systems, all files
should be put under c:\inetpub\wwwroot\user_defined_directory.
Basically, the starting page can be anything. However, on most systems, it is
assumed that a file named index.html or index.htm or default.html
is the point of entry in a directory. That is, if only a directory name is pro-
vided by a person browsing the web, the web server will search for a file
called index.html or default.html and return that file to be displayed
if it exists. For example, the following two web links will direct to the same
starting page of WVU Wood Science and Technology:

http://www.wdsc.caf.wvu.edu/index.html or
http://www.wdsc.caf.wvu.edu

17.2 � HTML Structure

The following is the basic structure of HTML codes:

 <HTML>
 <HEAD>
 <TITLE>HTML example</TITLE>
 </HEAD>
 <BODY>
 <H1>HTML example</H1>

http://www.crcpress.com
http://www.crcpress.com

331Introduction to HTML

 <P>The following is an example of HTML markup code:</P>
 …
 </BODY>
 </HTML>

HTML codes usually come in pairs, enclosing the text which they format.
The entire file is bracketed by HTML tags. Within this there are two main
sections, the <TITLE> and <BODY> blocks. Paragraphs in the body text are
enclosed within <P> tags, and so on. Linear white space is ignored; any num-
ber of blank lines may be left between codes to make it easier to read the raw
HTML file. Links are easy to code, though they have been omitted from the
above example for simplicity.

Let’s create a simple web page that links to another page. You should name
the first page “index.html” and include in it the following code:

 <html>
 <title>First Web Page</title>
 <h1>Web Site for First Page</h1>
 We�lcome to my web site. Click here

 to access another page.
 </html>

Name the second file “jxPage2.html” and its code should read:

 <html>
 <title>Second Web Page</title>
 <h1>Another Page</h1>
 We�lcome to this page. From here, you can browse more pages.
 </html>

The above code, when viewed on a web browser, will generate an output as
shown in Figure 17.1.

HTML uses keywords to identify specific formatting and coding opera-
tions. For example, the keyword <html> signifies that the text that follows
is an html document. Note, however, there is a keyword </html> at the
end of the file. This indicates the end of the html document. So the <html>
keyword begins an html document, and the keyword </html> concludes it.

FIGURE 17.1
An output example.

332 Computing Applications in Forestry and Natural Resource Management

In general, in HTML language, keywords are paired in this fashion: one
begins a formatting action, the other terminates it. In the above example,
<title> precedes the title given to the page and </title> follows it.
Likewise, the keyword <h1> is used to begin a phrase to be displayed as a
header (size 1) and </h1> ends the phrase.

Keywords such as <html>, <title>, and <h1> only have formatting
implications, while some keywords such as bring about
actions. The <a> keyword is referred to as an anchor. It is used to iden-
tify active text, that is text which, when clicked, will make the browser
load a new page (i.e., the page identified by the hypertext reference, e.g.,
href="jingxinwang.html"). Here it is assumed that the file jingxin-
wang.html exists in the same directory as the index.html file. If so, it will
be shown on the user’s browser when the user clicks on the word “here”
imbedded between <a> and .

17.3 � Applications of HTML Tags

The example above introduced HTML keywords most frequently used.
Table 17.1 lists other common HTML keywords.

An HTML web page always starts with <HTML> and then follows with the
<Head> section and the <Body> section. The following can further help you
understand these tags.

TABLE 17.1

Commonly Used HTML Keywords or Tags

Tag Description

<html> </html> Begin, end of html document
<title></title> Document title
<body></body> Web page contents
<h1></h1> Header size 1
<h2></h2> Header size 2 (smaller than size 1)
<h3></h3> Header size 3 (smaller than size 2)
<p></p> Paragraph delimiter
 Link identifier
 Image identifier/loader
<table></table> Table formatting
<tr></tr> Table row
<td></td> Table column
<form></form> Interactive date entries or retrievals

333Introduction to HTML

17.3.1 � HTML

This tag tells your browser that the file contains HTML-coded information.
The file extension .html also indicates this is an html document.

17.3.2 � Head

The head element identifies the first part of your HTML-coded docu-
ment that contains the title. The title is shown as part of your browser’s
window.

17.3.3 � Title

The title tag contains your document title and identifies its content in a global
context. The title is typically displayed in the title bar at the top of the browser
window, but not inside the window itself. It is what the system will add to
your favorites when browsing a site.

17.3.4 � Body

The second and largest part of your html document is the body. It contains
the content of your document and is displayed within the text area of the
browser window.

These four tags can be seen at work in the following example:

 <html>
 <head>
 <title>My Web Page</title>
 </head>
 <body>
 This is the body of my web page.
 </body>
 </html>

If the above file is saved as “tagtest1.html” and you browse it, you will
have output like in Figure 17.2.

The following tags are used within the body of your html document.

17.3.5 � Headings

The syntax of the heading tag is:

 <hi> text string </hi>

where i is between 1 and 6 from largest to smallest. For example,

 <h2>a page title</h2>

334 Computing Applications in Forestry and Natural Resource Management

17.3.6 � Paragraphs

Web browsers ignore line breaks in documents. The text wraps through all
white spaces unless the <p></p> tag is used, in which a new paragraph is
formed.

For example, if you typed the following into the body of your html
document:

 This is
 a test
 of the
 p.

the output would look like this in a browser window:

 This is a test of the p.

However, if the above file was rewritten like this:

 <p>This is</p>
 a test
 of the
 p.

you would see:

 this is
 a test of the p.

FIGURE 17.2
Output of tagtest1.html.

335Introduction to HTML

you can also justify the text. For example, if you typed:

 <p align = center>
 This is a centered paragraph.
 </p>

you would see:

This is a centered paragraph.

Let’s try an exercise to show you how to use the heading and paragraph tags.
Open Notepad, type the following code, and save it as “HPTags.html.” The
browser window will look like Figure 17.3.

 <html>
 <title>Headings and Paragraphs</title>
 <h1>FOR 470V</h1>
 <h2>Introduction To Computing</h2>
 <h3>In Natural Resources</h3>
 <P>Welcome to this class</P>
 <P>Everyone will do an excellent job!</P>
 </html>

FIGURE 17.3
Headings and paragraphs.

336 Computing Applications in Forestry and Natural Resource Management

17.3.7 � Lists

HTML supports numbered and unnumbered lists. You can nest lists too, but
use this feature sparingly because too many nested items can cause confusion.

A numbered list (also called an ordered list) uses tag. The items are
tagged using the tag.

 red oak
 sugar maple
 yellow poplar

An unnumbered list uses to start the list, and its items are also tagged
with .

 red oak
 sugar maple
 yellow poplar

Both numbered and unnumbered lists can be configured as nested lists.

	
	 red oak
	 sugar maple
	 yellow poplar
	 pine
		
		 scotch pine
		 loblolly pine
		
	

Here is an example to demonstrate how lists can be used:

 <html>
 <head>
 <title>Using HTML lists<\title>
 </head>
 <body>
 <p>Unnumbered list:</p>
 	
 	 red oak
 	 pine
 		
 		 white pine
 slash pine
 		

337Introduction to HTML

 	 sugar maple
 	 yellow poplar
 	
 <p>Numbered list:</p>
 	
 	 red oak
 	 sugar maple
 	 yellow poplar
 	
 </body>
 </html>

The output is Figure 17.4.

17.3.8 � Forced Line Breaks

The
 tag forces a line break in text with no extra (white) spaces between
lines. Like <p> tag,
 can be used to form a paragraph. However, the

 tag can be efficient in text where the line breaks are significant.

 355 Oakland Dr.
 Morgantown, WV

FIGURE 17.4
Output of HTML lists.

338 Computing Applications in Forestry and Natural Resource Management

will look like:

 355 Oakland Dr.
 Morgantown, WV

17.3.9 � Tables and Images

HTML tables are useful to represent tabular data on a web page. The basic
syntax for a table is:

 <table>
 <tr><td>column code</td></tr>
 </table>

where
<table> defines the start of a table (you can align, color, and size here)
<tr> defines the table row (you can align, color, and size here)
<td> defines the table columns (you can align, color, size, and input data here)
<th> defines the table heading

For example, if we want to create a web page for our class and use a table to
list three hyperlinks for the syllabus, class notes, and project and
lab assignments, we’d use these codes:

 <html>
 <head>
 <title>FOR 240 - Introduction to Computing ...</title>
 </head>
 <body>
 <h2><center> FOR 240 </center>
 <center>Introduction to Computing in</center>
 <center>Natural Resources</center></h2>
 <table ALIGN="center" BORDER="3" >
 <tr>
 	 <th width="100">No.</th>
 	 <th width="300">Contents</th>
 </tr>
 <tr>
 	 <td>1</td>
 	 <t�d><p><h3><A href="../courses/IntroCompuSyl2017.

doc">Syllabus</h3>
 	 </td>
 </tr>
 <tr>
 	 <td>2</td>
 	 <t�d><p><h3><A href="../courses/notesFOR240.

html">Class Notes</h3>
 	 </td>

339Introduction to HTML

 </tr>
 <tr>
 	 <td>3</td>
 	 <t�d><p><h3><A href="../courses/projectFOR240.

html">Project and Lab
 Assignments</h3>
 	 </td>
 </tr>
 </table>

 <h�5 align="center">This page was last

modified on February 1, 2017.</h5>
 </body>
 </html>

The output page for this example is shown in Figure 17.5.
The tag defines an image on an HTML web page. This tag has two

required attributes: src and alt (W3Schools.com 2017). The src is to spec-
ify the source or URL of an image while the alt defines an alternate text of
the image.

Here is another example of how to use a table to display both an image and
texts. This is especially useful while designing a main web page.

FIGURE 17.5
Output of our table example.

340 Computing Applications in Forestry and Natural Resource Management

Open a Notepad, Expression Web, or other editor, type the following code,
and save the file as “image.html.”

 <html>

 <head>
 <title>Timber Harvester</title>
 </head/>

 <body>
 <table WIDTH="600">

 <tr>
 <t�d WIDTH="240" VALIGN="top" ALIGN="left"><img

src="harvester.jpg" alt="Timber Harvester" border="0"
height="154" width="164">

 </td>
 <td WIDTH="460" VALIGN="top" ALIGN="left" NOWRAP>

 <p><h1>Timber Harvester</h1></p>
 <p�><h2><i>Harvesting Demonstration in Terrain</i></

h2></p>
 <p�>Education: Ph.D. (The University of Georgia)

</p>
 <p�>Research Interest: Forest Resources Management

and Operations, Computer Simulations, System Modeling,
Biomass and Bioenergy</p>

 <p�>Email Address: <a href="mailto:jxwang@wvu.
edu">jxwang@wvu.edu</p>

 <p>Telephone: (304) 293 - 2941 </p>
 <p>Fax: (304) 293 - 2441 </p>
 <p>Office Room: Percival Hall 317E </p>
 <hr ALIGN="left" SIZE="20" WIDTH="95%" COLOR="#ff0000">
 <p�>This web page was last modified on

January 10, 2017.</p>
 </td>
 </tr>

 </table>
 </body>

 </html>

When you browse the file you just created, you will have a page like
Figure 17.6. Again, in this example, we assigned an image (harvester.
jpg) and an alternate (Timber Harvester) to the src and alt attributes,
respectively,

341Introduction to HTML

The alt attribute is used to display text in case someone visits your page
with a browser that can’t show images, or in case they have turned off image
loading so that pages will load more quickly.

The following example demonstrates how to enlarge a thumbnail-sized
image (Figure 17.7). This could be useful when creating pages with tabu-
lar data containing thumbnail-sized images of, for example, animal, tree, or
wood species and their explanations.

 <html>
 <title>Enlarge an Image</title>
 <body>
 <h3>Click the image to enlarge it!</h3>
 <a� href="image1.jpg" target="_top"><img src="image1.jpg"

width="100" height="100" border="0">
 </body>
 <html>

Once you click the image, it will be enlarged (Figure 17.8).

17.3.10 � Forms

An HTML form is part of a web page that includes areas where readers can
enter information to be sent back to the publisher of the web page. The fol-
lowing code details the basic form elements.

FIGURE 17.6
A page displaying image and texts in a tabular format.

342 Computing Applications in Forestry and Natural Resource Management

FIGURE 17.8
An enlarged image of helicopter logging.

FIGURE 17.7
A thumbnail-sized image of helicopter logging.

343Introduction to HTML

<f�orm action=“…”>  (declares the form and tells what you want to do on submit)
<i�nput type=“text” NAME=“subject”
VALUE=“title of form”>     (defines a form field)

<input type=“submit”>  (defines a submit button)
<input type=“reset”>     (defines a reset button)
</form>  ends the form.

There are numerous ways to receive input from readers of your web page.
The following code specifies input types.

17.3.10.1 � Types of Input

 <input type=“text”>  (text box)
 <input type=“radio”>  (radio button)
 <input type=“checkbox”>    (checkbox)
 <input type=“hidden”>  (hidden text box)
 <input type=“password”>   (password text box)
 <input type=“button”> (button)

Let’s use a simple example to demonstrate how each of the input types works
on a web page. Here is the code listing.

<html>
<head><title>Form Example 1</title></head>
<body>
<h�3>HTML Form Example 1 - Textbox, Checkbox, and Radio
Button:</h3>

<Table>
 <form method="post" action="formtest22.asp">
 <tr>
 <td>Enter tree species: </td>
 <t�d><input type="text" name="v1" size="25" ></

td></tr>
 <tr>
 <td>Select plot type: </td>
 <t�d><input type="radio" name="v2" value="DBH"

size="15" ><label>DBH</label></td>
 <t�d><input type="radio" name="v2" value="Height"

size="15"><label>Height</label></td>
 <tr>
 <td> Form harvesting system: </td>
 <t�d><input type="checkbox" name="v3" value="Feller-

buncher" size="15"><label>Feller-buncher</
label></td>

 <t�d><input type="checkbox" name="v3" value="Grapple
skidder" size="15"><label>Grapple skidder</
label></td>

 </tr>
 <tr>

344 Computing Applications in Forestry and Natural Resource Management

 <td></td>
 <t�d><input type="submit" value="Click here to

process the data" border="0" align="top" /></td>
 </form>
 </tr>
</table>
</body></html>

The page should look like Figure 17.9.
Further info can be obtained from the reader via a drop-down menu, list-

boxes, and text areas. Codes for these are in the following sections.

17.3.10.1.1 � Drop-Down Menu
 <select name=“…”>
 <option>one</option>
 <option>two</option>
 <option>three</option>
 </select>

17.3.10.1.2 � Listbox
 <select name=“…” size=2 multiple>
 <option>one</option>
 <option>two</option>
 <option>three</option>
 </select>

FIGURE 17.9
Form for data entries—example 1.

345Introduction to HTML

17.3.10.1.3 � Text Area

When you want to allow multiple lines of text in a single input item, use the
<textarea> and </textarea> tags. For example,

 <textarea id=“comments” rows=“4” cols=“20”>
 Please send more information.
 </textarea>

17.3.10.1.4 � Getting Data from Forms

Forms collect data, but they are not used to process data. To process form
data, you must include method and action in the <form> tag. Method can
be set to post or get. The HTML specifications technically define the differ-
ence between get and post so that the former means that form data is to be
encoded (by a browser) into a URL, while the latter means that the form data
is to appear within a message body. As a simplification, we might say that
get is basically for retrieving data, whereas post may involve anything, like
storing or updating data, ordering a product, or sending an e-mail.
Action points to the address of the application that will process the form

data. There are several ways to process the data collected by a form:

•	 E-mail the form data using “mailto.”
•	 Use a server-based application to process the data.
•	 Process the form data with the client-based script.
•	 Send the form to a database.

Here is an example of using a drop-down menu, listbox, and text area on
a web page to collect data. The code includes instructions for data to be
processed.

 <html><head><title>Form Example 2</title></head>
 <body>
 <h�4>HTML Form Example 2 - Dropdown menu, Listbox,

and Text Area:</h4>
 <Table>
 <form method="post" action="dropdownlistbox.html">
 <tr>
 <td>Select tree species: </td>
 <td>
 <select name="dd" >
 <option>Red Oak</option>
 <option>Sugar Maple</option>
 <option>Black Cherry</option>

346 Computing Applications in Forestry and Natural Resource Management

 </select>
 </td></tr>
 <tr>
 <td># of trees selected: </td>
 <td>
 <select name="lm" size=2 multiple>
 <option>One</option>
 <option>Two</option>
 <option>Three</option>
 </select>
 </td>
 <tr>
 <td>Field comments: </td>
 <td><textarea name="ta" rows="4" cols="20">
 Please enter more information here.
 </textarea>
 </td>
 </tr>
 <tr>
 <td></td>
 <t�d><input type="submit" value="Send data" border="0"

align="top" /></td>
 </form>
 </tr>
 </table>
 </body></html>

If browsing this page, it should look like Figure 17.10.

FIGURE 17.10
Form for data entries—example 2.

347Introduction to HTML

Class Exercises

	 1.	 Describe the structure of HTML code for a web page.
	 2.	 Why are tables and images so useful when developing web pages?
	 3.	 What are hypertext and hyper-references?
	 4.	 Create your own web pages.

In this exercise, you need to use the HTML to create your web pages.
While you are building the pages, the following items need to be
considered:
•	 A starting page (index.html) with your personal information
•	 A second page about your coursework
•	 A third page containing external links to other websites
•	 A fourth page containing photos/images
•	 At least one example of each of the following:

–	 A table
–	 A list
–	 A change in color (font or background is acceptable)
–	 A resizable picture/image

Reference

W3Schools.com. 2017. HTML tag. https://www.w3schools.com/tags/tag_
img.asp. Accessed on February 14, 2017.

https://www.w3schools.com
https://www.w3schools.com

http://taylorandfrancis.com

349

Introduction to ASP.NET

Active Server Pages (ASP) is a Microsoft technology that allows us to develop
hypertext markup language (HTML) pages using programming languages
just before they are delivered to the browser (Buser et al. 1999). It is a great
tool for creating dynamic web pages. ASP was introduced to the world by
Microsoft in 1996. “It gained much wider recognition when it was bundled
with version 3.0 of Microsoft’s Internet Information Server (IIS) web server
in 1997 and it has been gaining steadily in popularity since then” (Buser
et al. 1999).

When Microsoft released ASP.NET 1.0 in 2000, many considered it a revo-
lutionary leap forward in web application development. ASP.NET 4 contin-
ues to build on the foundation laid by the release of ASP.NET 1.0/2.0/3.5
(Evjen et al. 2010).

There are quite a few static web pages on the Internet. “A static page is a
web page whose content consists of some HTML that was typed directly into
a text editor such as Notepad and saved as an .htm or .html file” (Ullman
et al. 2001). The static page’s content is completely determined once it is
developed. Alternatively, ASP.NET pages replace the hard-coded HTML
code with a set of instructions that will be used to generate HTML for the
page at the time the user requests the page. In other words, the page is gener-
ated dynamically on request and is called a dynamic web page.

18.1 � ASP.NET Programming

When you develop an ASP.NET page, it is likely to be composed of a combi-
nation of three types of syntax, including some parts of ASP.NET, some parts
of HTML tags, and some parts of pure text (Microsoft Corporation 2017).
We save all these constituent parts of the ASP.NET page in a file with a .aspx
extension.

To write and run ASP.NET pages requires the following programs:

•	 To write ASP.NET pages, we need a text editor or other web develop-
ment tool. Notepad works fine for this purpose, but there are some
other editors available, such as MS Visual InterDev or Expression
Web or Visual Studio.

18

350 Computing Applications in Forestry and Natural Resource Management

•	 In order to publish the pages, we’ll need a web server that supports
ASP.NET, such as Internet Information Server 7.0 or a later version.
You can also run ASP.NET on a local machine with Personal Web
Server installed.

•	 In order to view and test the pages, we’ll need a web browser.

For example, if we use Microsoft Visual Studio to develop ASP.NET pages,
we use the same integrated development environment (IDE) as we do for the
VB.NET applications. To demonstrate the steps to start an IDE of ASP.NET,
we’ll use the following example in Visual Studio 2013 (or a later version):

	 a.	Click Start and choose All Programs → Visual Studio 2013 → Visual
Studio 2013.

	 b.	Select Visual Basic Development Settings as your default environment
settings when you first use the Visual Studio. You can always change
to other programming languages, such as Visual C++ or Visual C#.

	 c.	Select New Project…, in the New Project dialog box, select ASP.NET
Web Application.

	 d.	You may rename the project and select a folder for the project, and
click OK.

	 e.	 In the Select a Template dialog box, select Web Forms and click OK. You
may save the Visual Studio project with as many ASP.NET pages as
you want.

	 f.	The ASP.NET IDE is displayed (Figure 18.1).

Like VB.NET IDE, the ASP.NET IDE consists of menu bar, toolbars, toolbox,
search solution explorer window, properties window, windows for page
design and coding, output window for debugging, and others.

Let’s take a look at a simple ASP.NET page. Anything that falls between
the <% and %> markers is ASP.NET script and will be processed on the web
server by the ASP.NET script engine, after the ASP.NET page is requested
and just before it is delivered to the browser.

Here is a simple example using ASP.NET (Figure 18.2). This page is saved
as Default.aspx. The code listing is as follows:

<%�@ Page Title="Home Page" Language="vb" MasterPageFile="~/
Site.Master" AutoEventWireup="false"

 Co�deBehind="Default.aspx.vb" Inherits="ASPNETapp1._
Default" %>

<a�sp:Content ID="HeaderContent" runat="server" ContentPlaceHol
derID="HeadContent">

</asp:Content>
<a�sp:Content ID="BodyContent" runat="server" ContentPlaceHolde
rID="MainContent">

351Introduction to ASP.NET

FIGURE 18.1
IDE of ASP.NET.

FIGURE 18.2
An ASP.NET page.

352 Computing Applications in Forestry and Natural Resource Management

 <h2>
 Welcome to FOR 240!
 </h2>
 <p�>To learn more about FOR 240 please visit

<a href="http://www.wdscapps.caf.wvu.edu/jxwang/Courses/
For240.html" title="ASP.NET Website">FOR 240.

 </p>
 <p�>You can learn more <a href="http://go.microsoft.com/fwl

ink/?LinkID=152368&clcid=0x409"
 title="MSDN ASP.NET Docs">on ASP.NET at MSDN.
 </p>
</asp:Content>

The output is shown in Figure 18.2.
Another ASP.NET programming example is to use an array and a loop to

calculate the sum and the average of an array of integers (Figure 18.3). The
Response object is used here to send information directly to the client. The
code listing is:

<%�@ Page Language="vb" AutoEventWireup="false"
CodeBehind="CalAvg.aspx.vb" Inherits="ASPNETapp1.WebForm1" %>

<html>
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

FIGURE 18.3
ASP.NET page for calculating the sum and the average of an array.

http://www.wdscapps.caf.wvu.edu
http://www.wdscapps.caf.wvu.edu
http://go.microsoft.com
http://go.microsoft.com

353Introduction to ASP.NET

 <% Dim i As Integer
 Dim intNum(5), sum, avg As Single
 intNum(0) = 2
 intNum(1) = 5
 intNum(2) = 4
 intNum(3) = 6
 intNum(4) = 10
 sum = 0
 For i = 0 To 4
 sum = sum + intNum(i)
 Next
 Response.Write("The sum of 2,5,4,6,10 is " & sum)
 avg = sum / i
 Response.Write("
")
 Response.Write("The average of 2,5,4,6,10 is " & avg)
 %>
 </div>
 </form>
</body>
</html>

The output is shown in Figure 18.3.

18.2 � Basic ASP.NET Techniques

There are several intrinsic ASP.NET objects:

•	 Request
•	 Response
•	 Application
•	 Session
•	 Server

The following examples show you how to retrieve and process data.

18.2.1 � Request and Response

This example demonstrates how to collect three integers from a user and
then sum them and display the total on another page. The first file we need
to create is an HTML file named “WebForm1.aspx.”

<%�@ Page Language="vb" AutoEventWireup="false"
CodeBehind="WebForm1.aspx.vb" Inherits="ASPNETForm.
WebForm1" %>

354 Computing Applications in Forestry and Natural Resource Management

<html>
<head runat="server">
 <title></title>
 <style type="text/css">
 #form1
 {
 height: 20px;
 }
 </style>
</head>
<body>

 <div style="height: 36px">
 <h1>HTML Form Example - enter the data</h1>
 <Table>
 <form method="post" action="WebForm2.aspx">
 <tr>
 <td>Enter first integer here: </td>
 <td><input type="text" name="v1" size="25" /></td></tr>
 <tr>
 <td>Enter second integer value: </td>
 <td><input type="text" name="v2" size="25" /></td>
 <tr>
 <td>Enter third integer value: </td>
 <td><input type="text" name="v3" size="25" /></td>
 </tr>
 <p></p>
 <tr>
 <td></td>
 <t�d><input type="submit" value="Click here to process the

data" border="0" align="top" /></td>
 </form>
 </tr>
 </table>

 </div>

</body>
</html>

The output of this form looks like what is shown in Figure 18.4.
In the code listing of WebForm1.aspx, the line <form method="post"

action="WebForm2.aspx"> tells that the current form data will be
transferred to the address indicated by the ACTION item for processing,
WebForm2.aspx in this case, once you enter the data and click the Click here
to process data button. METHOD of data retrieval, post or get, is discussed in
Section 17.3. The code listing of WebForm2.aspx is as follows:

<%�@ Page Language="vb" AutoEventWireup="false"
CodeBehind="WebForm2.aspx.vb" Inherits="ASPNETForm.WebForm2" %>

355Introduction to ASP.NET

<html>
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>HTML Form Example 1 - process the data</h1>
 <%
 Dim v1, v2, v3, sum As Single
 v1 = Request.Form("v1")
 v2 = Request.Form("v2")
 v3 = Request.Form("v3")
 sum = CSng(v1) + CSng(v2) + CSng(v3)
 %>
<Table>
<tr>
<td>The Sum of Three Values Entered = : </td>
<td><% Response.Write(sum)%></td></tr>
</table>

 </div>
 </form>
</body>
</html>

Once the data processing is done, the result will be displayed on another
ASP.NET page (Figure 18.5).

FIGURE 18.4
Interface of a form.

356 Computing Applications in Forestry and Natural Resource Management

18.2.2 � QueryString

Another way to get the data from the user is by using the querystring.
After the URL on some web pages you may notice there are some
text strings. Here is an example: www.wdsc.caf.wvu.edu?user=​
wdsc&pword=wvu

From this URL, we get two text strings: wdsc retrieved for user name and
wvu transferred for password.

Here is a simple example of how to get information from the user using
querystring plus the input form. In this example, we simply want to send
the species name entered in a textbox on one ASP.NET page (WebForm1.
aspx) via querystring to another page (getInfo.aspx). The code listing of
WebForm1.aspx is as follows:

<%�@ Page Language="vb" AutoEventWireup="false"
CodeBehind="WebForm1.aspx.vb" Inherits="ASPNETQueryString.
WebForm1" %>

<html><head><title>Using Querystring</title></head>
<body>
<form name=gather method="get" action="getInfo.aspx">
<input name=Species>

<input type=submit value=Submit>
</form>
</body>
</html>

The input form of WebForm1.aspx should look like Figure 18.6.

FIGURE 18.5
Result of the data processing.

http://www. wdsc. caf. wvu. edu?user=wdsc&pword=wvu
http://www. wdsc. caf. wvu. edu?user=wdsc&pword=wvu

357Introduction to ASP.NET

The code for getInfo.aspx and the output of this querystring
(Figure 18.7) are:

<%�@ Page Language="vb" AutoEventWireup="false"
CodeBehind="getinfo.aspx.vb" Inherits="ASPNETQueryString.
WebForm2" %>

<html><head><title>Get Info Using Querystring</title></head>
<body>
<%
 Dim spp As String
 spp = Request.QueryString("Species")
 Response.Write("The species you entered is " & spp)
%>
</body>
</html>

FIGURE 18.6
Input form using querystring.

FIGURE 18.7
Output of using querystring.

358 Computing Applications in Forestry and Natural Resource Management

Class Exercises

	 1.	 What is ASP.NET and how is it different from other web-based pro-
gramming languages?

	 2.	 Are there any similarities between VB.NET and ASP.NET in terms of
programming fundamentals?

References

Buser, D., J. Kauffman, J. Llibre, B. Francis, D. Sussman, C. Ullman, and J. Duckett.
1999. Beginning Active Server Page 3.0. Wrox Press Ltd., Birmingham, U.K.,
1198pp.

Evjen, B., S. Hanselman, and D. Rader. 2010. Professional ASP.NET 4 in C# and VB.
Wiley Publishing, Inc., Indianapolis, IN, 1477pp.

Microsoft Corporation. 2017. ASP.NET Overview. https://msdn.microsoft.com.
Accessed on February 14, 2017.

Ullman, C., O. Cornes, J. Libre, and C. Goode. 2001. Beginning ASP.NET Using VB.NET.
Wrox Press Ltd., Birmingham, U.K., 800pp.

https://msdn.microsoft.com

359

ASP/ASP.NET Applications

We would like to conclude this textbook by offering a few examples of
how the computing concepts of web applications have been addressed and
applied in forest and natural resource management. We have developed sev-
eral Active Server Pages (ASP) or ASP.NET applications in forest and natural
resource management out of our previous research projects. Here are three
examples: (1) a web-based data entry and retrieval system for forest health
programs, (2) an online timber cruising program, and (3) a web-based deci-
sion support system (DSS) for timber harvesting cost analysis.

19.1 � Web-Based Data Entry and Retrieval
System for Forest Health Protection

The Forest Health Protection Program (FHP) is a granting mechanism by
the USDA Forest Service. The FHP typically involves a lot of paperwork or
proposal submission and project management. To simplify this process and
improve work efficiency, we developed a web-based system for data entry,
data review, and data reporting for the FHP (Grushecky et al. 2004). It was
developed using ASP technology running on a Windows Internet Information
Server. This system consists of a back end database (MS Access) that ware-
houses all new and old FHP proposal request data. The database resides on a
server that receives requests from system users. All requests are processed on
the server, which interacts with the database to deliver dynamic responses to
the user based on the request (Figure 19.1). We programmed this application
using a combination of ASP, Visual Basic Script, and Java Script and format-
ted it for Internet Explorer version 5 or a later version.

The major input/output forms of the application are shown in Figures 19.2
through 19.5. The first page is a login form that is specially programmed for
the system security with required user name and password (Figure 19.2).
It is a typical dynamic web page login form.

Figure 19.3 shows one of the data entry forms that allow users to enter or
edit related data fields. You click the Add Results button to add the results to
the related tables of the database. You can also go back to the main menu by
clicking Main Menu button on that page.

19

360 Computing Applications in Forestry and Natural Resource Management

ASP can also employ data editing sheets in an Excel format with multiple
data types and business functions (Figure 19.4). This design can especially
improve online data entry/editing efficiency.

Like MS Access, our system was also programmed to allow users to gener-
ate online reports depending on users’ choices (Figure 19.5).

19.2 � Online Timber Cruising System

In 2007, we began to develop an online cruising application using ASP—the
Appalachian Hardwood Center (AHC) Timber Cruising Application. As dis-
cussed in Chapters 9 and 15, timber cruising first involves field measurements

Internet

Request

Response

Server Database

FIGURE 19.1
Schematic diagram of a web-based data storage and retrieval application. (From Grushecky, S.
et al., Developing a web-based data entry and retrieval system for the forest health protection
program, Final report to the USDA Forest Service, Newtown Square, PA, 2004.)

FIGURE 19.2
Login form.

361ASP/ASP.NET Applications

and inventory data collection, and then follows with in-office data analysis
using specifically designed software programs. These programs can be some-
what complicated for landowners and foresters to use. For user convenience
and working effectiveness, we developed this online cruising program that
allows the user to:

•	 Add a new cruise
•	 Add custom species
•	 Edit species
•	 Add custom grades
•	 Edit grades
•	 Add custom pricing

FIGURE 19.3
Series of forms that allow regions to add or edit accomplishments.

362 Computing Applications in Forestry and Natural Resource Management

FI
G

U
R

E
19

.4
Fo

rm
 th

at
 a

llo
w

s
us

er
s

to
 a

d
d

 a
nd

 e
d

it
 th

e
fu

nd
in

g
re

qu
es

ts
.

363ASP/ASP.NET Applications

•	 Edit pricing
•	 Characterize stands
•	 Download data
•	 Report data

19.2.1 � Main Menu

When you log onto the AHC Timber Cruise Application, you will be directed
to the main menu (Figure 19.6). From this location, you can do the following:
(1) add or edit cruise information (the first step in the program), (2) charac-
terize previously entered plots into stands (you can base analyses on stand or
tract level), (3) add or edit tree species (you can customize your tree list), (4)
add or edit tree grades (you can have multiple grades for each tree species),
(5) update timber prices (you can add prices for each species/grade combi-
nation), (6) report cruise data, and (7) download cruise data (download your
data into MS Excel).

19.2.2 � Add/Edit Data

When you have selected an option on the Main Menu form, additional forms
with drop-down menus are generated to assist you in completing your

FIGURE 19.5
One of the online reports generated by the program.

364 Computing Applications in Forestry and Natural Resource Management

data entry. For example, after adding species and grades for each species, you
have the option to add current market prices for each species/grade combi-
nation. Simply select the species and grade from the drop-down menus (once
a species is selected, the grade drop-down menu is filled with the grades for
that species) and add the price in the text box. Click Add Price and the new
market data will be visible at the bottom of the screen (Figure 19.7).

FIGURE 19.6
Main form of online cruiser.

FIGURE 19.7
Add/edit price.

365ASP/ASP.NET Applications

19.2.3 � Reports

A total of 12 reports are currently available from the AHC Timber Cruising
Application (Figure 19.8). To run a report, select the cruise you want to ana-
lyze from the drop-down menu, select how you want your report organized
(by tract or by stand), note your allowable cruising error, and select a radio
button that corresponds to the report you wish to view. Select Stand and DBH
radio buttons and then click Report Cruise Data to run the report.

Figure 19.9 shows a sample report. This report was accessed by selecting
the Stand and DBH radio buttons (Figure 19.8). Cruise information is in the
upper left corner of the report. Tree information is found in the data grid.
If you wish to further modify the parameters of the report or use the same
format as MS Access, click Report Design.

19.3 � Web-Based DSS for Analyzing Biomass and
Timber Harvesting Costs and Productivity

An easy-to-use web-based DSS was developed to assist the analysis of
timber harvesting costs and productivity (Wu et al. 2012). The system was
designed using an ASP.NET platform via VB.NET language and an MS SQL
server database. It consists of three web pages, including a main page for
system configuration and simulation, a machine rate page for computing the

FIGURE 19.8
Menu for reports.

366 Computing Applications in Forestry and Natural Resource Management

handling machine costs requested by the main page, and a summary page
for displaying all results. Stands, machines, and complete harvesting sys-
tems were modeled using previously published time and motion studies.
A mathematical algorithm was designed to balance the harvesting system
based on the machine productivity and utilization rates. The system can be
used to analyze three harvesting systems used in the central Appalachian
region including a chainsaw/cable skidder, a feller-buncher/grapple skid-
der, and a harvester/forwarder system.

FIGURE 19.9
A timber cruise report by DBH class.

367ASP/ASP.NET Applications

19.3.1 � System Design

Power (2002) defined a web-based DSS as a computerized system that deliv-
ers decision support information or decision support tools to a manager or
business analyst using a “thin-client” web browser that is accessible through
the Internet. Web-based DSS can be communications-driven, data-driven,
document-driven, knowledge-driven, model-driven, or a hybrid of these
methods. There are plenty of benefits associated with a web-based DSS,
including a distributed infrastructure for information processing, timely
information delivery, a user-friendly interface, and no restriction on time or
geographic locations (Yao 2008).

Our web-based DSS consists of three major components: data inputs, data
analysis, and data output. The basic architecture and data flow of the system
is illustrated in Figure 15.11. The user interacts with the system through a
specially designed interface that was modeled after the Auburn Harvesting
Analyzer (Tufts et al. 1985, Greene and Lanford 1996) and the machine rate
method for the cost estimates of harvesting machines (Miyata 1980). The
graphical user interface (GUI) provides a user-friendly and comfortable
environment to access stored information and to present and process infor-
mation input by users.

The GUI includes three web pages: the Main Page for showing system
configuration and simulation, the Machine Rate Program page for comput-
ing the hourly costs of the handling machines requested by the main page,
and the Summary page (hidden by default) for showing the results from all
the saved scenarios. The Main Page is organized into five sections similar
to the Auburn Harvesting Analyzer (Tufts et al. 1985, Greene and Lanford
1996) with a number of additional functions. The Machine Rate Program page
allows the user to calculate hourly machine costs for individual machines,
which include general assumptions, fixed cost, variable cost, labor cost, and
total cost in terms of $/PMH and $/scheduled machine hour (SMH). The
Summary page provides a summary of the running results of each harvesting
operation alternative.

19.3.2 � Main Page

As discussed in Section 15.3 for Visual Basic for Applications with Excel work-
sheets, there are five sections in the main page of ASP.NET application: general
information, machine, machine productivity, machine cost, and system.

19.3.2.1 � General Information

The stand conditions are presented in a table and sourced from an MS SQL
server database. Users are allowed to apply specific data to the table by click-
ing the Edit column. Most other information is also updatable, except for
the automatically generated values shown in gray. If the user edits any of

368 Computing Applications in Forestry and Natural Resource Management

the information, the Update button on the top right corner should then be
checked to update the whole section.

19.3.2.2 � Machines

The felling operation could be accomplished by chainsaw, feller-buncher, or
harvester; the extraction machines include rubber-tired cable skidder, rub-
ber-tired grapple skidder, and forwarder; the knuckleboom loader is used in
all the systems; the hauling can be accomplished by either a long log truck or
a short log truck. This section provides the basis for the Machine Productivity
and Machine Cost sections and should be addressed prior to continuing on to
the other sections.

19.3.2.3 � Machine Productivity

Machine productivity in terms of MBF (thousand board feet, 1 MBF = 4.59 m3)
per PMH (productive machine hour) is based on the selected machines and
settings from this section. These settings include average distance between
harvested trees, average extraction distance, average turn volume, load size,
and others. Harvest time per tree (min/tree), harvest time per acre (hours/
acre) (1 acre = 0.4 ha), and extraction time per turn are calculated from regres-
sion equations based on the selected machines, stand, and site data. Loading
time and productivity are based on the selected product type (sawlogs, peeler
logs, or pulp logs). In order to load the default values and compute the time
and productivity for each type of equipment, users can click the Get Values
button near the top right corner of this section. While the default values are
provided by the system, users can adjust these values and recalculate the
productivities based on their specific conditions.

19.3.2.4 � Machine Cost

In this section, the machine hourly costs in each function are estimated and the
system is balanced using a designed mathematical algorithm. A set of default
Appalachian region costs is provided for the selected machines by the system.
Users can click the Default Costs button to get the fixed costs, operating costs,
and labor costs on an hourly basis. They can also opt to compute their own cus-
tomized function costs by clicking a Felling Cost, Extraction Cost, or Loading Cost
button. Since each individual machine in the system does not have the same
productivity rate, there is a need to balance the harvesting system to minimize
the cost per unit and maximize the system production rate (Wu et al. 2012).
The following algorithm was used to accomplish system balancing:

	
Number of machines in function

Max
i

P U
P U

i i

i i
=

´()
´

ê

ë
ê

ú

û
ú ,

	

369ASP/ASP.NET Applications

where i is the function or operation stage, i = (1, 2, 3), 1 = felling, 2 = extrac-
tion, 3 = loading. Pi is the single machine productivity in function i, Ui is
the mechanical availability of the machine in function i. ⌊ ⌋ is the integer
floor function, which will return the least integer greater than or equal to
Max(Pi × Ui)/Pi × Ui. By default, only one machine in each machine type is
provided. Users have to click the System Balance button to balance the system
in order to get the best system configuration. If loggers do not have the opti-
mal number of machines available, they can manually input the actual num-
ber of machines they will use. The number of hauling trucks can be obtained
by dividing the production rate of the balanced system (MBF/SMH) by the
hauling productivity (MBF/SMH).

19.3.2.5 � System

The machine productivity and unit cost for each harvesting function, sys-
tem production rate, weekly production, onboard cost, and time required
for harvesting a certain tract are reported in this section. The weekly pro-
duction rate is provided in both volume per PMH and the number of truck
loads. The total time required for harvesting the given tract is estimated
and reported based on the user-supplied tract data and calculated sys-
tem rate. When users click the System Results button, the results for the
complete harvesting system are populated. After reviewing these spe-
cific results, users can click the Save button to save the system production
rate/cost along with other summary information (stand conditions and
machine rate/cost) into the MS SQL server database. Multiple simulations
can be performed by changing parameters such as extraction distance,
working schedule, and machine selection in order to make analyses and
comparisons by system.

19.3.3 � Machine Rate Program Page and Summary Page

The Machine Rate Program page is loaded when users click one of the Felling
Cost, Extraction Cost, or Loading Cost buttons. This page is designed to pro-
vide an individual machine rate that includes fixed, operating, and labor
costs that can be calculated based on the machine rate method (Miyata 1980).
Default data from the Appalachian region are provided for purchase price,
economic life, interest, insurance and taxes, fuel and lube consumption rate
and prices, labor cost, and fringe benefits, as well as working schedule in
order to assist the cost estimation process. Each of these variables can be
adjusted to match the specific equipment and individual logger conditions.
The calculated costs will be passed to the main page once the button Return
to Main Page is triggered.

The Summary page displays the summary results from different running
scenarios. After running all scenarios, users can hit the Summary Report but-
ton at the bottom of the Main Page to load the Summary page. Two charts

370 Computing Applications in Forestry and Natural Resource Management

are automatically generated and displayed on top of the page depicting the
weekly system production and onboard cost. These graphs allow users to
visually compare harvesting systems under different stand and harvest con-
ditions. Three tables are pulled from the MS SQL server database and include
stand summary, machine summary, and system summary. These tables pro-
vide all of the data and results’ summaries of each system scenario. The data-
base is cleaned out once the Summary page is unloaded to ensure that every
user will only view his/her own analysis scenarios.

19.3.3.1 � Implementation

When a user starts the web-based system, the default general information
(such as site conditions and other support and road information) is loaded
and displayed (Figure 19.10). Users can opt to click Edit in front of the tree
table to update the tree information, and then click the Update button on the
top right corner to get the tree volume in the designated tract. Users should
also ensure the other default data are accurate for their scenario, or update
those variables before moving on to the next section. In the Machines section,
four drop-down boxes are used to select the machine type in each harvesting
function. By clicking the Get Values and Default Values buttons in the sections
of Machine Productivity and Machine Cost, the default productivities and costs

FIGURE 19.10
Partial view of the web-based DSS.

371ASP/ASP.NET Applications

are retrieved based on the selected machines and knowledge base. The num-
bers of machines in each function are displayed as well. Users can click the
button System Balance to get the optimal mix of machines in the harvesting
system, or they can manually input the number of machines.

The default machine costs can also be updated by clicking the buttons for
Felling, Extraction, or Loading. This action will lead users to the Machine Rate
Program page (Figure 19.11). On this page, they will need to input specific
information such as machine purchase price, economic life, interest, insurance
and taxes, fuel consumption, mechanical availability, labor cost, and working
schedule to get the machine cost and return to the main page. By clicking the
System Results button at the bottom of the page, the system-related results,
such as system rate, weekly production, onboard cost, and days required to
cut the tract, are calculated and displayed in the System section. These results
can be saved to the SQL database via the Save button. The whole process can
be repeated for different harvesting systems, and each result can be saved
to the same SQL database. To compare the different systems, users can click
the Summary Report button at the bottom of the Main Page. In the resulting
pop-up page, two charts related to harvesting system weekly production and
onboard cost for each harvesting scenario, and three summary tables will be
generated to provide detailed information for scenario comparisons.

FIGURE 19.11
Machine Rate Program page.

372 Computing Applications in Forestry and Natural Resource Management

19.3.3.2 � Applications

This online program can be used by researchers and practitioners to analyze
biomass or forest harvesting productivity and cost under a variety of site,
stand, machine, and other operational conditions.

Class Exercises

	 1.	 What is the basic structure of a web-based, interactive application in
forest and natural resource management?

	 2.	 Describe any other potential applications of web-based programming
in forest and natural resources.

References

Greene, W.D. and B.L. Lanford. 1996. Logging cost analysis. Short course manual.
Georgia Center for Continuing Education, Athens, GA, Vol. 78(119), p. 6.

Grushecky, S., J. Wang, and J. McNeel. 2004. Developing a web-based data entry and
retrieval system for the forest health protection program. Final report to the
USDA Forest Service, Newtown Square, PA.

Miyata, E.S. 1980. Determining fixed and operating costs of logging equipment.
USDA Forest Service General Technical Report NC-55, St. Paul, MN.

Power, D.J. 2002. Decision Support Systems: Concepts and Resources for Managers.
Greenwood Publishing Group, Westport, CT.

Tufts, R.A., B.L. Lanford, W.D. Greene, and J.O. Burrows. 1985. Auburn harvesting
analyzer. Compiler 3(2): 14–15.

Wu, J., J. Wang, Y. Li, and B. Spong. 2012. A web-based decision support system for
analyzing timber harvesting costs and productivity. Northern Journal of Applied
Forestry 29(3): 141–149.

Yao, J. 2008. Web information fusion: A review of the state of the art. Journal of
Intelligent Systems 17(1–3): 446.

373

Index

A

Access forms, 116–117
Access queries, 113–116, 132–136
Access reports, 117–119
Access tables, 111–113
Active Server Pages (ASP).NET

AHC timber cruising application
add/edit data, 363
main menu, 362–363
reports, 363–365

FHP, 359–360
program implementation,

349–353
querystring, 356–358
request and response, 353–356
web-based DSS

applications, 370–371
general information, 367
implementation, 369–370
machine cost, 368
machine productivity,

367–368
machine rate program page, 369
machines, 367
summary page, 369
system design, 366–367

Analysis ToolPak, see Data analysis

C

Central Appalachian Harvesting
Analyzer (CAHA)

application, 276–277
Excel and VBA, 273
system design and implementation,

273–276
cmdClose_Click event, 200
CompactFlash (CF), 141

D

Data access, 242–248
Data analysis

correlation, 53–54
regression, 54–58
t-Test, 58–61

Database concepts
DBMS, 99
definition, 99–100
entity, 100
field, 100
MS Access, 100–101
records, 100
table, 100

Data communication, 150
Data manipulation, 248–253
Data manipulation, Excel

build your own functions, 41
charts

combination, 45–46
creation, 42–45
Gantt, 46–47

formulas
absolute references, 31–32
enter formulas, 28
operators, 28
reference cells, 29
relative references, 30–31

functions
arguments, 33
enter functions, 33–34
logical, 40–41
mathematical and trigonometric,

35–37
statistical, 37–40

Dynamic Host Configuration Protocol
(DHCP), 141–142

Dynamic programming, 65–68

374 Index

E

Entity-relationship (ER) model
entity, 102
in forest operations

notations, 105
timber cruising, 105–106
timber harvesting operations,

106–108
time track entity type, 107–108

keys, 102
many-to-many relationship, 104
many-to-one relationship, 103–104
one-to-one relationship, 103
plots and trees, 102
relationship implementations, 104–105

Excel
build your own functions, 41
charts

combination, 45–46
creation, 42–45
Gantt, 46–47

formulas
absolute references, 31–32
enter formulas, 28
operators, 28
reference cells, 29
relative references, 30–31

functions
arguments, 33
enter functions, 33–34
logical, 40–41
mathematical and trigonometric,

35–37
statistical, 37–40

F

File systems
attributes/properties, 9
directory structure, 10
operations, 9
types and naming, 10

File transfer protocol, 142
Forest harvesting simulator

extraction simulation
extraction patterns, 258–259
simulation, 261–263
traffic intensity, 259–261

felling operations
chain saw felling, 257
feller-buncher felling, 257
harvester felling, 257–258

forest stand generation
clustered pattern, 256–257
random pattern, 256
uniform pattern, 256

functional requirements, 21–23
system design, 20–21

Forest harvest scheduling
case study, 298–301
inventory data, 295
model development, 296–298
stand growth simulation, 295–296

Forest Health Protection Program (FHP),
359–360

Forest management, see Geospatial
technology

mathematical models using Excel
solver

activate Excel solver, 73
optimization problem, 69–72
using Excel solver, 73–75

mathematical programming
dynamic programming, 65–68
integer programming model, 64–65
linear programming, 62–63
multi-objective optimization, 64
network analysis, 63–64

Forestry and natural resource
management

GIS
biomass harvest planning and

scheduling, 173–174
climate change, 174
forest BMPs, 174
forest protection, 173
functional categories, 171
map layers, 169–170
mapping and analysis, 178–185
overview, 168–170
recreation and park

management, 174
resource assessment and

monitoring, 172–173
software and data, 175–177
soil and watersheds, 174–175
wildlife conservation, 174

375Index

GPS
data collection, 166–167
data transfer, 167–168
definition, 165–166

G

Geographical information systems
(GIS)

biomass harvest planning and
scheduling, 173–174

climate change, 174
forest BMPs, 174
forest protection, 173
functional categories, 171
map layers, 169–170
mapping and analysis

vegetation phenology, 178–182
winter CO2 flux, 182–185

overview, 168–170
recreation and park management, 174
resource assessment and monitoring,

172–173
software and data, 175–177
soil and watersheds, 174–175
wildlife conservation, 174

Geospatial technology
GIS

biomass harvest planning and
scheduling, 173–174

climate change, 174
forest BMPs, 174
forest protection, 173
functional categories, 171
map layers, 169–170
mapping and analysis,

178–185
overview, 168–170
recreation and park

management, 174
resource assessment and

monitoring, 172–173
software and data, 175–177
soil and watersheds, 174–175
wildlife conservation, 174

GPS
data collection, 166–167
data transfer, 167–168
definition, 165–166

remote sensing
definition, 177
forestry and natural resources,

177–178
Global positioning systems (GPS)

data collection, 166–167
data transfer, 167–168
definition, 165–166

H

Handheld PCs (HPCs)
allegro field, 145–146
archer field, 146
data communication, 150
GeoExplorer 3000 series, 147–149
Hewlett-Packard Jornada Series, 143
NAUTIZ X7 Field, 146–147
terms and features, 141–143
Zebra Workabout Pro, 143–145

HTML
body tags, 333
file extension.html, 333
forced line breaks, 337–338
forms, 341–346
head element, 333
heading tag, 333–334
lists, 336–337
paragraphs, 334–335
structure, 330–332
tables and images, 338–341
terms, 329–330
title tag, 333

I

Integer programming model,
64–65

Integrated Development Environment
(IDE), 195

Integrated timber cruising system,
HPCs

collect cruising data, 157–158
data analysis, 159–161
data transfer, 159
handheld system, 157–159
PLIS, 154
SAS, 153–154
system structure, 155–157

376 Index

L

Linear programming formulation, 68–69

M

Mapping and analysis, GIS
vegetation phenology

data preparation, 179
identifying phenology, 179–182
NDVI data, 178–179
spline-fitting analysis, 179
using ArcGIS, 182

winter CO2 flux
data analysis, 183–184
data preparation, 182–183
using ArcGIS, 184–185

Mathematical and trigonometric
functions

INT, 35
RAND, 35–36
ROUND, 36
SIN/COS, 36
SQRT, 36–37
SUM, 37
SUMIF, 37

Mobile devices
Android programming, 308–309
iPhone/iPad programming

development framework, 308
programming languages, 307–308

Windows Mobile, 309–310
Mobile operating systems, 149–150
MS Access

data manipulation, 110
data redundancy, 111
forms, 116–117
functionality, 110
queries, 113–116, 132–136
reports, 117–119
simplify data entries, 111
tables, 111–113
usability, 109–110

O

Object-oriented programming
C and C++, 16
encapsulation, 15–16
inheritance, 16

polymorphism, 16
Visual Basic .NET, 16–17

Operating system (OS)
components, 3
computer resources, 8
desktop/laptop systems, 5
device management, 7
distributed systems, 6
file management, 7
file systems, 8–10
handheld systems, 6
history, 4–5
memory management, 7
multiprocessor systems, 6
real-time systems, 6
time management, 7
user interface, 7

Optimization problem, 69–72

P

PC, CF, and SD cards, 151
Personal digital assistant, 141
Pocket PC, 141
Private lands information

system (PLIS), 154
Program execution, 151
Programming languages

compilation, 14
functional programming, 13–14
imperative programming, 13
interpretation, 14–15
logic programming, 14
object-oriented programming, 14, 16–17

R

Random access memory (RAM), 151
Remote sensing

definition, 177
forestry and natural resources, 177–178

S

Secure Digital (SD) card, 141
Software engineering

characteristics, 17
life cycle, 18–20
process model, 18

377Index

Statistical Analysis System (SAS), 153–154
Statistical functions

AVERAGE, MEDIAN, and MODE,
37–38

built-in text, 39
COUNT, 38
COUNTIF, 38
FIND, 40
LEFT/RIGHT, 39
LEN, 39
MAX and MIN, 38
MID, 39
REPLACE and SUBSTITUTE, 39–40
STDEV, 38
UPPER, LOWER, and PROPER, 40

Structured Query Language (SQL), 101
functions, 130–131
statements and clauses, 125, 127–130
syntax, 125–127

Swapping, 7

T

3D log bucking optimization
bucking system implementation,

281–283
data manipulation and storage, 278
optimal bucking algorithm, 280
stem modeling, 278–280
system structure, 278

3D log processing optimization system
determining opening face, 292
dynamic programming algorithm,

293–294
Heuristic algorithm, 292–293
internal defect modeling, 291–292
system components, 289–290
system data management, 291

3D lumber edging and trimming system
data manipulation and storage, 284
lumber grading component, 285
lumber modeling, 284–285
optimal edging and trimming

algorithm, 285–286
optimal edging and trimming system

implementation, 286–289
Timber cruising and inventory

cruise design, 265–267
import data, 264

local data, 264–265
manipulate field, 263–264
program implementation,

268–272
report, 267–268

Time track entity type, 107–108
Transport communications protocol/

internet protocol, 142

U

Universal serial bus, 142

V

Visual Basic (VB), 193–194
Visual Basic for Applications (VBA)

fundamentals
modules, 87
variables and data types, 87
variable scope, 88

spreadsheet program, harvesting
machine

design interface, 90
machine rate, 88–89
writing codes, 91–93

user forms and controls, 93–95
using Excel

running events, 85–86
Visual basic editor, 83–84
writing code, 84–85

Visual Basic .NET (VB.NET)
arrays, 228
basal area calculation, 196–197
class, 228–230
code implementation, 196, 198
constants, 226
control structures

decision structures, 235
loop structures, 235–236

data access, 242–248
DataGridView control, 199–203
data manipulation, 248–253
data types, 226–227
debugging, 196, 198–199
drive, dir, file, combo, list, frame

controls
code implementation, 211–214
execution, 214–215

378 Index

interface creation, 211
properties setting, 211

event-driven programming, 194
event procedure, 231
events, 194
form class, 216
function procedure, 232
general procedure, 232
IDE, 195
input and output files

direct file access, 236
file access types, 237
sequential access, 237–238
TreeData.txt, 238–242

interface creation, 196–198
menu design, 216–223
messages, 194
mobile device application

collect module, 322–324
data transfer, 324
design module, 322
system structure, 319–322

Object-oriented programming, 195
pass by value vs pass by

reference, 234
procedural programming, 194

properties setting, 196–198
standard controls, 216
standard modules, 216
sub procedure, 231
timer, option button, groupbox, and

checkbox controls
code implementation, 207–210
execution, 210
interface creation, 206–207
properties setting, 206–207

user-defined class, 216
variables

private vs public, 225–226
scope of variables, 225
static vs dim, 226
variable declaration, 225

windows, 194
Windows Mobile

features, 311
program examples, 311–319
project types, 310
SDK, 310

W

Windows mobile device center, 141

	Cover
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Dedication�����������������
	Table of Contents������������������������
	Preface��������������
	Author�������������
	Section I: Foundations�����������������������������
	Chapter 1: Fundamental Computing Concepts��
	1.1 Computer Operating Systems�������������������������������������
	1.2 Brief History of Operating Systems���
	1.3 Types of Operating Systems�������������������������������������
	1.4 Major Operating System Responsibilities��
	1.4.1 User Interface���������������������������
	1.4.2 Device Management������������������������������
	1.4.3 Time Management����������������������������
	1.4.4 Memory Management������������������������������
	1.4.5 File Management����������������������������

	1.5 Computer Resources and File Systems��
	1.5.1 Computer Resources�������������������������������
	1.5.2 File Systems�������������������������
	1.5.2.1 File Attributes or Properties��
	1.5.2.2 File Operations������������������������������
	1.5.2.3 File Types and Naming������������������������������������
	1.5.2.4 Directory Structure����������������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 2: Programming Languages and Software Engineering��
	2.1 Programming Languages��������������������������������
	2.2 Object-Oriented Programming��������������������������������������
	2.2.1 C and C++����������������������
	2.2.2 Visual Basic .NET������������������������������

	2.3 Software Engineering�������������������������������
	2.4 Example of Forest Harvesting Simulator Design��
	2.4.1 System Design��������������������������
	2.4.2 Functional Requirements������������������������������������
	2.4.2.1 Specification Document�������������������������������������

	Class Exercises����������������������
	References�����������������

	Section II: Data Manipulation and Analysis��
	Chapter 3: Elementary Data Manipulation Using Excel��
	3.1 Excel Formulas�������������������������
	3.1.1 Operators in Formulas����������������������������������
	3.1.2 Entering Formulas������������������������������
	3.1.3 Referencing Cells Outside the Worksheet��
	3.1.4 Relative versus Absolute References��
	3.1.4.1 Relative Reference���������������������������������
	3.1.4.2 Absolute Reference���������������������������������

	3.2 Excel Functions��������������������������
	3.2.1 Function Arguments�������������������������������
	3.2.2 Entering Functions�������������������������������

	3.3 Major Excel Functions��������������������������������
	3.3.1 Mathematical and Trigonometric Functions���
	3.3.1.1 INT������������������
	3.3.1.2 RAND�������������������
	3.3.1.3 ROUND��������������������
	3.3.1.4 SIN or COS�������������������������
	3.3.1.5 SQRT�������������������
	3.3.1.6 SUM������������������
	3.3.1.7 SUMIF��������������������

	3.3.2 Statistical Functions����������������������������������
	3.3.2.1 AVERAGE, MEDIAN, and MODE��
	3.3.2.2 COUNT��������������������
	3.3.2.3 COUNTIF����������������������
	3.3.2.4 MAX and MIN��������������������������
	3.3.2.5 STDEV��������������������

	3.3.3 Text Functions���������������������������
	3.3.3.1 LEFT and RIGHT�����������������������������
	3.3.3.2 LEN������������������
	3.3.3.3 MID������������������
	3.3.3.4 REPLACE and SUBSTITUTE�������������������������������������
	3.3.3.5 UPPER, LOWER, and PROPER���������������������������������������
	3.3.3.6 FIND�������������������

	3.3.4 Logical Functions������������������������������
	3.3.4.1 IF�����������������

	3.4 Build Your Own Functions�����������������������������������
	3.5 Charts�����������������
	3.5.1 Excel Chart Example��������������������������������
	3.5.2 Combination Chart������������������������������
	3.5.3 Gantt Chart������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 4: Statistical Analysis and Mathematical Programming Using Excel���
	4.1 Data Analysis with Analysis ToolPak��
	4.1.1 Correlation������������������������
	4.1.2 Regression�����������������������
	4.1.3 t-Test�������������������

	4.2 Mathematical Programming in Forest Management��
	4.2.1 Linear Programming�������������������������������
	4.2.2 Network Analysis�����������������������������
	4.2.3 Multi-Objective Programming��
	4.2.4 Integer Programming��������������������������������
	4.2.5 Dynamic Programming��������������������������������

	4.3 Linear Programming Formulation���
	4.4 Solve Mathematical Models in Forest Management Using Excel Solver��
	4.4.1 Example of Optimization Problem��
	4.4.2 Activate Excel Solver����������������������������������
	4.4.3 Use Excel Solver�����������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 5: Visual Basic for Applications in Microsoft Excel��
	5.1 Introduction to VBA������������������������������
	5.1.1 Visual Basic Editor in Excel���
	5.1.2 Writing Code in VB Editor��������������������������������������
	5.1.3 Running Events within Excel��

	5.2 VBA Fundamentals���������������������������
	5.2.1 Variables and Data Types�������������������������������������
	5.2.2 Modules��������������������
	5.2.3 Variable Scope���������������������������

	5.3 Harvesting Machine Rate Spreadsheet Program��
	5.3.1 Machine Rate�������������������������
	5.3.2 Example of Machine Rate Program with VBA���
	5.3.2.1 Design Interface�������������������������������
	5.3.2.2 Write Code�������������������������

	5.4 VBA User Forms and Controls��������������������������������������
	Class Exercises����������������������
	References�����������������

	Section III: Database Management���������������������������������������
	Chapter 6: Database Concepts and the Entity-Relationship Model���
	6.1 Fundamental Database Concepts��
	6.1.1 Database Management System���������������������������������������
	6.1.2 Database���������������������
	6.1.3 Table, Record, and Field�������������������������������������
	6.1.4 MS Access Database�������������������������������

	6.2 Relational Databases and the Entity-Relationship Model���
	6.2.1 Entity�������������������
	6.2.2 Keys�����������������
	6.2.3 Relationships��������������������������
	6.2.4 Types of Relationships�����������������������������������

	6.3 ER Model Examples in Forest Operations���
	6.3.1 ER Model Notations�������������������������������
	6.3.2 ER Model for Timber Cruising���
	6.3.3 ER Model for Time Study of Timber Harvesting���

	Class Exercises����������������������
	References�����������������

	Chapter 7: Introduction to MS Access���
	7.1 MS Access Usability and Functionality��
	7.1.1 MS Access Usability��������������������������������
	7.1.2 Major MS Access Functionality��
	7.1.3 Why Use More than One Table?���

	7.2 Access Tables and Queries������������������������������������
	7.2.1 Access Tables��������������������������
	7.2.2 Relationships between Tables���
	7.2.3 Access Queries���������������������������

	7.3 Access Forms and Reports�����������������������������������
	7.3.1 Access Forms�������������������������
	7.3.2 Access Reports���������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 8: Structured Query Language and Access Query Examples���
	8.1 Structured Query Language������������������������������������
	8.1.1 SQL Statements and Clauses���������������������������������������
	8.1.2 SQL Syntax�����������������������

	8.2 Basic SQL Examples�����������������������������
	8.2.1 Statements and Clauses�����������������������������������
	8.2.2 SQL Functions��������������������������

	8.3 MS Access Queries����������������������������
	Class Exercises����������������������
	References�����������������

	Section IV: Handheld Devices�����������������������������������
	Chapter 9: Handheld Computers and Windows Mobile���
	9.1 Handheld Terms and Features��������������������������������������
	9.2 Handheld PCs and Windows Mobile��
	9.2.1 Hewlett-Packard Jornada Series���
	9.2.2 Zebra Workabout Handheld Field PC��
	9.2.3 Allegro Field PC�����������������������������
	9.2.4 Archer Field PC����������������������������
	9.2.5 NAUTIZ X7 Field PC�������������������������������
	9.2.6 Trimble GeoExplorer 3000 Series Handhelds��

	9.3 Mobile Operating Systems and Data Communications���
	9.3.1 Mobile Operating Systems�������������������������������������
	9.3.2 Data Communications between HPCs and PCs���

	9.4 Data Storage and Program Execution���
	9.4.1 Random Access Memory���������������������������������
	9.4.2 External PC, CF, and SD Cards��
	9.4.3 Program Execution������������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 10: Handheld PC Applications:: An Integrated Computer-Based Cruising System��
	10.1 Introduction������������������������
	10.2 System Structure����������������������������
	10.3 System Implementation���������������������������������
	10.3.1 Handheld System�����������������������������
	10.3.2 Data Transfer���������������������������
	10.3.3 Data Analysis���������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 11: Introduction to Geospatial Technology Applications in Forest Management��
	11.1 GPS Applications����������������������������
	11.1.1 What Is GPS?��������������������������
	11.1.2 GPS in Forestry and Natural Resource Management���
	11.1.2.1 Data Collection�������������������������������
	11.1.2.2 Data Transfer�����������������������������

	11.2 GIS Applications����������������������������
	11.2.1 What Is GIS?��������������������������
	11.2.2 GIS in Forestry and Natural Resource Management���
	11.2.3 GIS Software and Data�����������������������������������

	11.3 Remote Sensing Applications���������������������������������������
	11.3.1 What Is Remote Sensing?�������������������������������������
	11.3.2 RS in Forestry and Natural Resource Management��

	11.4 GIS Mapping and Analysis Examples���
	11.4.1 Identifying and Mapping Vegetation Phenology��
	11.4.1.1 Data Preparation��������������������������������
	11.4.1.2 Identifying Phenology�������������������������������������
	11.4.1.3 Mapping the Phenology Using ArcGIS��

	11.4.2 Mapping and Analyzing Winter CO 2 Efflux in a Conifer Forest Area of North America��
	11.4.2.1 Data Preparation��������������������������������
	11.4.2.2 Data Analysis�����������������������������
	11.4.2.3 Mapping CO2 Efflux Using ArcGIS���

	Class Exercises����������������������
	References�����������������

	Section V: Visual Basic .NET Programming��
	Chapter 12: Introduction to Visual Basic .NET Programming��
	12.1 What Is Visual Basic?���������������������������������
	12.1.1 Visual Basic and VB.NET Concepts��
	12.1.1.1 Windows, Events, and Messages���
	12.1.1.2 Procedural Programming��������������������������������������
	12.1.1.3 Event-Driven Programming��
	12.1.1.4 Object-Oriented Programming���

	12.1.2 VB Integrated Development Environment���

	12.2 VB.NET Programming Examples���������������������������������������
	12.2.1 First Application�������������������������������
	12.2.2 Example for Calculating Basal Area of Trees���
	12.2.2.1 Creating the Interface and Setting Properties���
	12.2.2.2 Writing Code����������������������������
	12.2.2.3 Running the Application���������������������������������������

	12.2.3 Database Connection and Data Display Application��
	12.2.3.1 Creating the Interface��������������������������������������
	12.2.3.2 Setting Properties����������������������������������
	12.2.3.3 Writing Code����������������������������
	12.2.3.4 Running the Application���������������������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 13: VB.NET Controls, Project, and Menu Design��
	13.1 Types of Controls�����������������������������
	13.2 Using Timer, Option Button, Groupbox, and Checkbox Controls���
	13.2.1 Creating the Interface and Setting Properties���
	13.2.2 Writing Code��������������������������
	13.2.3 Running the Application�������������������������������������

	13.3 Using Drive, Dir, File, Combo, List, Frame Controls���
	13.3.1 Creating the Interface and Setting Properties���
	13.3.2 Writing Code��������������������������
	13.3.3 Running the Application�������������������������������������

	13.4 Working with a Project����������������������������������
	13.4.1 Form Class������������������������
	13.4.2 User-Defined Class��������������������������������
	13.4.3 Standard Modules������������������������������
	13.4.4 Standard Controls�������������������������������

	13.5 Menu Design of VB Project�������������������������������������
	Class Exercises����������������������
	Reference����������������

	Chapter 14: VB.NET Programming Fundamentals��
	14.1 Variables and Constants�����������������������������������
	14.1.1 Declaring Variables���������������������������������
	14.1.2 Scope of Variables��������������������������������
	14.1.3 Private versus Public�����������������������������������
	14.1.4 Static versus Dim�������������������������������
	14.1.5 Constants�����������������������

	14.2 Data Types����������������������
	14.3 Arrays������������������
	14.3.1 Declaring Arrays������������������������������
	14.3.2 Multidimensional Arrays�������������������������������������

	14.4 Classes and Procedures����������������������������������
	14.4.1 Class�������������������
	14.4.2 Sub Procedures����������������������������
	14.4.2.1 Event Procedures��������������������������������
	14.4.2.2 General Procedures����������������������������������

	14.4.3 Function Procedures���������������������������������
	14.4.4 Sample Exercise�����������������������������
	14.4.4.1 Passing by Value versus Passing by Reference��

	14.5 Control Structures������������������������������
	14.5.1 Decision Structures���������������������������������
	14.5.2 Loop Structures�����������������������������

	14.6 Input and Output Files����������������������������������
	14.6.1 Direct File Access��������������������������������
	14.6.2 File Access Types�������������������������������
	14.6.3 Opening Files for Sequential Access���

	14.7 Example�������������������
	14.8 Data Access�����������������������
	14.9 Data Manipulation�����������������������������
	14.9.1 Example���������������������

	Class Exercises����������������������
	References�����������������

	Chapter 15: Programming Application Examples in Forest Resource Management���
	15.1 Forest Harvesting Simulator���������������������������������������
	15.1.1 Forest Stand Generation�������������������������������������
	15.1.1.1 Random Pattern������������������������������
	15.1.1.2 Uniform Pattern�������������������������������
	15.1.1.3 Clustered Pattern���������������������������������

	15.1.2 Felling Operations��������������������������������
	15.1.2.1 Chainsaw Felling��������������������������������
	15.1.2.2 Feller-Buncher Felling��������������������������������������
	15.1.2.3 Harvester Felling���������������������������������

	15.1.3 Extraction Simulation�����������������������������������
	15.1.3.1 Extraction Patterns�����������������������������������
	15.1.3.2 Traffic Intensity���������������������������������

	15.1.4 Simulation Example��������������������������������

	15.2 Timber Cruising and Inventory���
	15.2.1 Manipulate Field Cruising Data��
	15.2.2 Import Data�������������������������
	15.2.3 Load Data�����������������������
	15.2.4 Cruise Design���������������������������
	15.2.5 Report��������������������
	15.2.6 Programming�������������������������

	15.3 VBA for Harvesting System Production and Cost Analysis��
	15.3.1 Excel and VBA���������������������������
	15.3.2 System Design and Implementation��
	15.3.3 Application Example���������������������������������

	15.4 3D Log Bucking Optimization���������������������������������������
	15.4.1 System Design���������������������������
	15.4.1.1 System Structure��������������������������������
	15.4.1.2 Data Manipulation and Storage���
	15.4.1.3 3D Stem Modeling��������������������������������
	15.4.1.4 Optimal Bucking Algorithm���

	15.4.2 Bucking System Implementation���

	15.5 3D Lumber Edging and Trimming System��
	15.5.1 Data Manipulation and Storage���
	15.5.2 3D Lumber Modeling��������������������������������
	15.5.3 Lumber Grading����������������������������
	15.5.4 Optimal Edging and Trimming Algorithm���
	15.5.5 Optimal Edging and Trimming System Implementation���

	15.6 3D Log Processing Optimization System���
	15.6.1 System Components and Data Management���
	15.6.1.1 System Components���������������������������������
	15.6.1.2 System Data Management��������������������������������������

	15.6.2 System Modeling and Algorithms��
	15.6.2.1 3D Log and Internal Defect Modeling���
	15.6.2.2 Determining Opening Face��

	15.6.3 Primary Log Sawing Simulation���
	15.6.3.1 Heuristic Algorithm�����������������������������������
	15.6.3.2 Dynamic Programming Algorithm���
	15.6.3.3 Example�����������������������

	15.7 Forest and Biomass Harvest Scheduling and Optimization��
	15.7.1 Forest Inventory Data�����������������������������������
	15.7.2 Forest Stand Growth Simulation��
	15.7.3 Harvest Scheduling Model Development��
	15.7.4 Case Study������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 16: Programming for Mobile Devices and Applications in Time Study of Timber Harvesting Machines��
	16.1 Programming for Mobile Devices��
	16.1.1 iPhone/iPad App Programming���
	16.1.1.1 Programming Languages�������������������������������������
	16.1.1.2 iPhone Development Frameworks���

	16.1.2 Android Programming���������������������������������
	16.1.2.1 Android Application Development Framework���

	16.1.3 Windows Mobile����������������������������
	16.1.3.1 .NET Compact Framework��������������������������������������

	16.2 Visual Basic .NET for Windows Mobile��
	16.2.1 Windows Mobile SDK��������������������������������
	16.2.2 New Project Types�������������������������������
	16.2.3 Features in VB.NET for Windows Mobile���
	16.2.4 Programming Examples of VB.NET for Windows Mobile���

	16.3 VB.NET for Mobile Device Application in Time Study of Timber Harvesting���
	16.3.1 System Structure������������������������������
	16.3.2 System Implementation�����������������������������������
	16.3.2.1 Design Module�����������������������������
	16.3.2.2 Collect Module������������������������������

	16.3.3 Transfer Data���������������������������

	Class Exercises����������������������
	References�����������������

	Section VI: Web-Based Applications���
	Chapter 17: Introduction to HTML���������������������������������������
	17.1 Terms and HTML Files��������������������������������
	17.2 HTML Structure��������������������������
	17.3 Applications of HTML Tags�������������������������������������
	17.3.1 HTML������������������
	17.3.2 Head������������������
	17.3.3 Title�������������������
	17.3.4 Body������������������
	17.3.5 Headings����������������������
	17.3.6 Paragraphs������������������������
	17.3.7 Lists�������������������
	17.3.8 Forced Line Breaks��������������������������������
	17.3.9 Tables and Images�������������������������������
	17.3.10 Forms��������������������
	17.3.10.1 Types of Input�������������������������������
	17.3.10.1.1 Drop-Down Menu���������������������������������
	17.3.10.1.2 Listbox��������������������������
	17.3.10.1.3 Text Area����������������������������
	17.3.10.1.4 Getting Data from Forms��

	Class Exercises����������������������
	Reference����������������

	Chapter 18: Introduction to ASP.NET��
	18.1 ASP.NET Programming�������������������������������
	18.2 Basic ASP.NET Techniques������������������������������������
	18.2.1 Request and Response����������������������������������
	18.2.2 QueryString�������������������������

	Class Exercises����������������������
	References�����������������

	Chapter 19: ASP/ASP.NET Applications���
	19.1 Web-Based Data Entry and Retrieval System for Forest Health Protection��
	19.2 Online Timber Cruising System���
	19.2.1 Main Menu�����������������������
	19.2.2 Add/Edit Data���������������������������
	19.2.3 Reports���������������������

	19.3 Web-Based DSS for Analyzing Biomass and Timber Harvesting Costs and Productivity��
	19.3.1 System Design���������������������������
	19.3.2 Main Page�����������������������
	19.3.2.1 General Information�����������������������������������
	19.3.2.2 Machines������������������������
	19.3.2.3 Machine Productivity������������������������������������
	19.3.2.4 Machine Cost����������������������������
	19.3.2.5 System����������������������

	19.3.3 Machine Rate Program Page and Summary Page��
	19.3.3.1 Implementation������������������������������
	19.3.3.2 Applications����������������������������

	Class Exercises����������������������
	References�����������������

	Index������������

