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Preface

The recent and novel research contributions collected in this book are extended and
reworked versions of a selection of the best papers that were originally presented in
French at the EGC’2014 and EGC’2015 conferences respectively held in Rennes
(France) in January 2014 and Luxembourg in January 2015. The papers have been
selected among the papers accepted in long format at the conferences. For the
conferences, the long papers are themselves the result of a double-blind peer-review
process among the 106 papers initially submitted to the conference in 2013 and 83
papers in 2015 (conference acceptance rate for long papers of 26 % in 2014 and
27 % for 2015). These conferences were the 14th and 15th edition of this event,
which takes place each year and which is now successful and well-known in the
French-speaking community. This community was structured in 2003 by the
Foundation of the International French-speaking EGC society (EGC in French
stands for “Extraction et Gestion des Connaissances” and means “Knowledge
Discovery and Management”, or KDM). This society organizes every year its main
conference (about 200 attendees) also workshops and other events with the aim of
promoting exchanges between researchers and companies concerned with KDM
and its applications in business, administration, industry or public organizations.
For more details about the EGC society, please consult http://www.egc.asso.fr.

Structure of the Book

This book is a collection of representative and novel works done in Data Mining,
Knowledge Discovery, Clustering and Classification. It is intended to be read by all
researchers interested in these fields, including Ph.D. or M.Sc. students, and
researchers from public or private laboratories. It concerns both theoretical and
practical aspects of KDM.

This book has been structured into three parts. The first four chapters are related
to optimization consideration while mining data. The second part presents four
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chapters dealing with specific quality measures, dissimilarities and ultrametrics. The
five remaining chapters focus on semantics, ontologies and social networks.

Mining Data with Optimization

Chapter 1, Online Learning of a Weighted Selective Naive Bayes Classifier with
Non-convex Optimization, is concerned with improving supervised classification for
data streams with a high number of input variables. It focuses on direct estimation
of weighted naïve Bayes classifiers using a sparse regularization of the model
log-likelihood which takes into account knowledge relative to each input variable.

Chapter 2, On Making Skyline Queries Resistant to Outliers, aims to reduce the
impact of exceptional points when computing skyline queries, so that outliers do
not “hide” more interesting answers. The approach relies on the notion of fuzzy
typicality and makes it possible to compute a graded skyline answers. A GPU-based
parallel implementation is also described.

Chapter 3, Adaptive Down-Sampling and Dimension Reduction in Time Elastic
Kernel Machines for Efficient Recognition of Isolated Gestures, addresses both the
dimensionality reduction of the feature vector describing multidimensional motion
time series and the dimensionality reduction along the time axis by the means of
adaptive down-sampling used in conjunction with time Elastic Kernel Machines.

Chapter 4, Exact and Approximate Minimal Pattern Mining, presents a generic
framework for exact and approximate minimal patterns mining by introducing the
concept of minimizable set system, and it also demonstrates that minimal patterns
mining is polynomial-delay and polynomial-space.

Quality Measures, Dissimilarities and Ultrametrics

Chapter 5, Comparison of Proximity Measures for a Topological Discrimination,
proposes a methodology to make a clustering of proximity measures in the context
of discrimination using a topological structure, and to choose the best discriminant
measure for considered data.

Chapter 6, Comparison of Linear Modularization Criteria Using the Relational
Formalism, an Approach to Easily Identify Resolution Limit, deals with the com-
parison of linear modularization criteria by using the Mathematical Relational
analysis (MRA). MRA allows to compare numerous criteria on the same type of
formal representation in order to facilitate their understanding and their usefulness
in practical contexts.

Chapter 7, A Novel Approach to Feature Selection Based on Quality Estimation
Metrics, proposes an adaptation of the Feature maximization (F-max) criterium in
order to perform more efficient feature selection and feature contrasting within the
framework of supervised classification. The comparison with other feature selection
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techniques shows a significant improvement of the performances, notably in the
case of unbalanced, highly multidimensional and noisy textual data.

Chapter 8, Ultrametricity of Dissimilarity Spaces and Its Significance for Data
Mining, evaluates the extent to which a dissimilarity is close to an ultrametric by
introducing the notion of ultrametricity of a dissimilarity, and examines their
influence on the accuracy of a classification or the quality of a clustering.

Semantics, Ontologies and Social Networks

Chapter 9, SMERA: Semantic Mixed Approach for Web Query Expansion and
Reformulation, uses implicite and explicite concepts to automatically improve web
queries. This approach handles several challenges related to query expansion, such
as selective choice of expansion terms, named entities treatment, and concept-based
query representation.

Chapter 10, Multi-layer Ontologies for Integrated 3D Shape Segmentation and
Annotation, introduces an original framework where annotation and segmentation
of 3D meshes are performed conjunctly. An expert’s knowledge of the context is
used while minimizing the use of geometric analysis, and a multi-layer ontology is
designed to conceptualize 3D object features from the point of view of their
geometry, topology, and possible attributes.

Chapter 11, Ontology Alignment Using Web Linked Ontologies as Background
Knowledge, proposes an ontology matching method for aligning a source ontology
with target ontologies already published and linked on the Linked Open Data
(LOD) cloud. The evaluation was achieved on two well-known ontologies in the
field of life sciences and environment: AgroVoc and Nalt.

Chapter 12, LIAISON: reconciLIAtion of Individuals Profiles Across SOcial
Networks, describes an algorithm that uses the social network topology and the
publicly available personal information to iteratively determine the profiles that
belong to the same individuals across several social networks.

Chapter 13, Clustering of Links and Clustering of Nodes: Fusion of Knowledge
in Social Networks, compares two network clustering approaches: the search for
communities and the extraction of frequent conceptual links, in order to understand
both the intersections that can exist between them and the knowledge that emerges
from their fusion.
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Online Learning of a Weighted Selective
Naive Bayes Classifier with Non-convex
Optimization

Carine Hue, Marc Boullé and Vincent Lemaire

Abstract We study supervised classification for data streams with a high number
of input variables. The basic naïve Bayes classifier is attractive for its simplicity and
performance when the strong assumption of conditional independence is valid. Vari-
able selection and model averaging are two common ways to improve this model.
This process leads to manipulate a weighted naïve Bayes classifier. We focus here on
direct estimation of weighted naïve Bayes classifiers. We propose a sparse regular-
ization of the model log-likelihood which takes into account knowledge relative to
each input variable. The sparse regularized likelihood being non convex, we propose
an online gradient algorithm using mini-batches and random perturbation according
to a metaheuristic to avoid local minima. In our experiments, we first study the opti-
mization quality, then the classifier performance under varying its parameterization.
The results confirm the effectiveness of our approach.

Keywords Supervised classification · Naïve Bayes classifier · Non-convex
optimization · Stochastic optimization · Variables selection · Sparse regularization

1 Introduction

Due to a continuous increase of storage capacities, data acquisition and processing
have deeply evolved during the last decades. Henceforth, it is common to process data
including a very large number of variables. Data amounts are somassive that it hardly
seems possible to fully load them: online processing is then applied and data are seen
only once. In this context, we consider the supervised classification problem where
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Y is a categorical target variable with J values C1, . . . , CJ and X = (X1, . . . , X K )

is the set of K explanatory variables, numerical or categorical.
Among the solutions to the problems of learning on data streams, the incremental

learning algorithms are one of the most used techniques. These algorithms are able
to update their model using just the new examples.

In this article we focus on one of the most used classifier in the literature i.e.
the naïve Bayes classifier. A naive Bayes classifier is a simple probabilistic classifier
based on applying Bayes’ theoremwith naive conditional independence assumption.
The explanatory variables (Xk)k=1,...,K are assumed to be independent given the
target variable Y . Despite this strong assumption this classifier has proved to be very
effective (Hand and Yu 2001) on many real applications and is often used on data
stream for supervised classification (Gama 2010).

This “naïve” assumption allows us to compute the model directly from the uni-
variate conditional estimates P(Xk |C). For an instance denoted n, the probability
of the target modality C conditionally to the value of the explanatory variables is
computed according to the formulae1:

Pw(Y = C |X = xn) = P(Y = C)
∏K

k=1 p(xn
k |C)

∑J
j=1 P(C j )

∏K
k=1 p(xn

k |C j )
(1)

The literature shows that variable selection (Koller and Sahami 1996; Langley
et al. 1992) or model averaging (Hoeting et al. 1999) can improve the classification
results for batch learning. These two processes can be mixed iteratively. Moreover
Boullé (2006) shows the close relation between weighting variables and averaging
naiveBayes classifiers in the sense that, in the end, the twoprocesses produce a similar
single model where a weight is given to each explanatory variable. Equation (1) is
just turned to the following equation:

Pw(Y = C |X = xn) = P(Y = C)
∏K

k=1 p(xn
k |C)wk

∑J
j=1 P(C j )

∏K
k=1 p(xn

k |C j )wk
(2)

In this paper, we particularly focus on weighing variables for data streams.We are
not interested by learning ensemble of models which are then combined by fusion or
selection (Kuncheva and Rodríguez 2007) or ensemble of models where individual
classifiers do not share the same subset of used variables (Godec et al. 2010). One of
the advantages of the classifier described by Eq. (2) in the context of data stream is its
low complexity for deployment, which only depends on the number of explanatory
variables: a weighted naïve Bayes classifier is completely described by its weight
vector w = (w1, w2, . . . , wK ). The interpretation of the results is also simpler that in
case of ensemble of models.

Within the’weighted naive Bayes classifier’ family, we can distinguish:

1We consider in this paper that estimates of prior probabilities P(Y = C j ) and of conditional
probabilities p(xk |C j ) are available. In our experiments, these probabilities are estimated using
univariate discretization or grouping according to the MODL method (see Boullé 2007b).
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– classifiers with weights equal to 1. It corresponds to the standard naïve Bayes
classifier that uses all the explanatory variables.

– classifiers with boolean weights. It corresponds to the selective naïve Bayes clas-
sifiers which selects a subset of explanatory variables. The selection is generally
done by optimizing a criteria over {0, 1}K . However, when the variables number is
high, such a browsing is infeasible and only a sub-optimal browsing of the space
{0, 1}K can be completed.

– classifiers with continuous weights in [0, 1]K . Such classifiers can be obtained
by averaging classifiers with boolean weights with a weighting proportional to
the posterior probability of the model (Hoeting et al. 1999) or proportionally to
their compression rate (Boullé 2007a). However, for datasets with a very high
number of variables, we observe that the models issued from averaging keep a lot
of variables, which make the obtained classifiers both costly to deploy and difficult
to interpret.

In the work presented in this paper, we are interested in direct estimation of
the weight vector by optimization of the regularized log-likelihood in [0, 1]K . Our
main expectation is to obtain parcimonious robust models with less variables and
equivalent performance. Preliminary works have shown the interest of such a direct
estimation of the weights (Guigourès and Boullé 2011).

Moreover, the purpose of this work has been also to focus on (i) a proposition of a
sparse regularization of the log-likelihood in Sect. 2 consistent with previous offline
approach (Boullé 2007a) (ii) the setupof anonline and anytime algorithmwith limited
budget dedicated to the optimization of the regularized criterion in Sect. 3 (iii) an
evaluation of the obtained models in terms of parcimony, predictive performance and
robustness. Experiments are presented in Sect. 4, before the conclusion and future
work statement.

2 Construction of a Regularized Criterion

Given a dataset DN = (xn, yn)
N
n=1, we are looking for the minimization of the nega-

tive log-likelihood, which is given by:

ll(w, DN ) = −
N∑

n=1

⎛

⎝log P(Y = yn) +
K∑

k=1

log p(xn
k |yn)wk − log

⎛

⎝
J∑

j=1

P(C j )

K∏

k=1

p(xn
k |C j )

wk

⎞

⎠

⎞

⎠

(3)

Considered as a classical optimization problem, the regularization of the log-
likelihood is performed by the addition of a regularization term, also called prior term,
which expresses constraints on the weight vector w. The regularized criterion is:
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C RDN (w) = −
N∑

n=1

ll(w, (xn, yn)) + λ f (w, X1, . . . , X K ) (4)

where ll refers to the log-likelihood, f is the regularization function, and λ the
regularization weight.

Several objectives have guided our choice of the regularization function:

1. Its sparsity, i.e. it favors theweight vectors composed of asmuch null components
as possible. The L p norm functions are usually employed with the addition of a
regularization term of the form

∑K
k=1 |wk |p. All these functions are increasing and

hence favor theweight vectors with low components. For p >= 1, the norm func-
tion L p is convex, which makes the optimization easier and renders this function
attractive. This explain the success of L2 regularization in many contexts. For ill-
posed linear problems, the ridge regression also called Tikhonov regularization
(Hoerl and Kennard 1970) uses the L2 norm. However, the minimization of the
regularization terms for p > 1 does not necessarily lead to variables elimination
whereas the choice p ≤ 1 favors sparse weight vectors. The Lasso method and
its variants (Trevor et al. 2015) exploit the advantages of the value p = 1, which
enables sparsity and convex optimization. For p < 1, the L p regularization more
exploits the sparsity effect of the norm but conducts to non convex optimization.

2. Its ability to take into account a Bk coefficient associated to each explanatory
variable so that, for equivalent likelihoods, the “simple” variables are preferred
to “complex” ones. By weighting the term with L p norm by such a coefficient,
we obtain a penalization term of the form:

∑K
k=1 Bk ∗ |wk |p. This coefficient is

supposed to be known before the optimization. If no knowledge is available, this
coefficient is fixed to 1. It can be used to include expert knowledge. In our case,
this coefficient translates the preparation cost of the variable, i.e. the discretization
cost for a numerical variable, resp. the grouping cost for a categorical variable
described in equations (2.4), resp. (2.7), of Boullé (2007b).

3. Its consistency with the regularized criterion of the MODL naïve Bayes classifier
with binary selection of variables (Boullé 2007a). In order that the two criteria
coincide for λ = 1 and wk with boolean values, we finally use the regularization
term:

f (w, X1, . . . , X K ) =
K∑

k=1

(log K − 1 + Bk) ∗ wp
k

3 Optimization Algorithm: Gradient Descent
with Mini-Batches and Variable Neighborhood Search

Let pn = P(Y = yn), p j = P(Y = C j ), ak,n = p(xn
k |yn), ak, j = p(xn

k |C j ) be all
constant quantities in this optimization problem.

The regularized criterion to minimize can be written:
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C RDN (w) = −
N∑

n=1

⎧
⎨

⎩
log pn +

K∑

k=1

(
wk ∗ log ak,n

) − log

⎛

⎝
J∑

j=1

p j

K∏

k=1

(ak, j )
wk

⎞

⎠

⎫
⎬

⎭

+ λ

K∑

k=1

(log K − 1 + Bk) ∗ wk
p (5)

Let us note that forw = {0}K , i.e.without using explanatory variables, the criterion
value is equal to

C RDN ({0}K ) = −
N∑

n=1

log pn = −N
J∑

j=1

p j log p j (6)

that is to say N times the Shannon entropy. For each n there is actually a jn such that
yn = C jn . If we denote by N j the number of instances among n such that yn = C j ,
then

−
N∑

n=1

log pn = −
J∑

j=1

N j log p j = −
J∑

j=1

N ∗ N j

N
log p j = −N

J∑

j=1

p j log p j (7)

We want to optimize the criterion CRDN (w) subject to the constraint that w takes
its values in [0, 1]K in order to obtain interpretable models. Our objective function
consists of two terms. The first term is a convex function of w. In order to see this,
let us represent its partial term LLn(w) in the following form :

L Ln(w) = αn+ < cn, w > + log

⎛

⎝
J∑

j=1

exp−<bn, j ,w>−β j

⎞

⎠ , (8)

whereαn = − log pn , c(k)
n = − log ak,n, k = 1, . . . , K , vectors bn, j ∈ RK have com-

ponents b(k)
n, j = − log an

k, j , k = 1, . . . , K , and β j = − log P(C j ). The first and sec-
ond term of L Ln are resp. constant and linear in w and then are both convex. The
third term is convex because of the log-convexity of exp(x) (see for instance (Lange
2004) for definition and property of log-convexity). The second term (regularization
term) is more complicated : it is not convex for p < 1 and its partial derivative are
unbounded at the points with zero components. This makes impossible to establish
theoretical guarantees even for convergence to a local solution. Efficient approaches
have recently been proposed, which exploit sparsity and stochastic algorithms (Bach
and Moulines 2013; Pilanci et al. 2015). However, these approaches rely on convex
optimization criteria. In our case of a non convex optimization problem, the main
available approach is the simplest gradient method (Nesterov 2004). This criterion
is not convex but differentiable at each weight vector with partial derivative:
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Algorithm 1: Projected gradient descent with mini-batches (PGDMB)
Inputs : D : data stream

N : historical depth to evaluate the criterion
L : batch size used for weights update with L << N
w0 : initial weight vector
η0 : initial step vector
Max : maximal number of iterations
Tol : tolerated number of successive degradations

Outputs: w∗ = argminC RD(w)

ttotal = performed iterations number
1 Initialization:
2 Iteration index : t = 0;
3 Number of successive criterion degradations : Ndeg = 0 ;
4 while (Criterion improvement or Ndeg < Tol) and t < Max do
5 Dt,L=t-th batch of size L
6 Dt,N=data historical of size N ending at the end of Dt,L

7 wt+1 = P[0,1]K

(
wt − ηt

1
L ∇C RDt,L (wt )

)

8 Compute ηt+1

9 Compute the criterion value on data historical of size N : C RDt,N (wt+1)

10 if C RDt,N (wt+1) < C RDt−1,N (wt ) (i.e. criterion improvement) then
11 Best value storage: w∗ = wt+1

12 else
13 Increment the counter of successive degradations : Ndeg = Ndeg + 1
14 t = t + 1;

∂C RDN (w)

∂wγ

= −
N∑

n=1

{

log aγ,n −
∑J

j=1 p j log aγ, j
∏K

k=1 (ak, j )
wk

∑J
j=1 p j

∏K
k=1 (ak, j )wk

}

+ λ(log K − 1 + Bk) ∗ p ∗ wγ
p−1

(9)

The gradient ∇C RDN (wt ) is the vector of partial derivatives for γ = 1, . . . , K .
To respect the constraint that w takes its values in [0, 1]K , we have been inter-

ested in projected gradient descent algorithm (Bertsekas 1976) i.e. a gradient descent
algorithm for which, at each iteration, the obtained w vector is projected on [0, 1]K .

Several objectives have guided our choice for the algorithmic structure:

1. online algorithm: the algorithm structure is adapted to data stream processing
and it does not need the processing of the entire dataset;

2. anytime algorithm: the algorithm is interruptible and is able to return the best
optimization given a budgeted computational time.

Within a classical batch gradient descent algorithm, the weight vector is updated
at each iteration t according to the gradient computed on all the instances. If the
weight vector obtained at iteration t is denoted by wt , the projected update at t + 1
iteration is performed according to the equation:

wt+1 = P[0,1]K [wt − ηt∇C RDN (wt )] (10)
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Algorithm 2: Projected gradient descent with variable neighbor search
(PGDMB-VNS)
Inputs : T : total maximal number of iterations

NeighSize: initial neighborhood size
Inputs : (PGDMB): D : data stream

N : historical depth to evaluate the criterion
L : batch size used for weights update
η0 : initial step vector
Max : maximal number of iterations for one PGDMB optimization
Tol: tolerated number of successive degradations

Outputs: w∗ = argminC RD(w)

1 Initialization :
2 Initial weight vector for the first projected gradient descent with mini-batches (PGDMB) :

w0
1 = {0.5}K ;

3 Initial optimal weight vector : w∗ = w0
1;

4 Initial iterations sum SumT = 0;
5 while SumT < T do
6 Compute (w∗

m , tm
total) = PG DM B(D, N , L , w0

m , η0,Max,Tol)
7 SumT = SumT + tm

total
8 if Improvement on w∗ then
9 Storage of w∗ = w∗

m
10 else
11 NeighSize = min(2 ∗ NeighSize, 1)
12 w0

m+1 = P[0,1]K (w∗
m + Random([−NeighSize,NeighSize]))

where the η stepmay, according to the variants, be a scalar constant or vary across the
iterations and/or vary according to the weight vector components. We have chosen to
computeη according to theRpropmethod detailed later in this section. The projection
P[0,1]K on [0, 1]K just consists in bounding obtained values in interval [0, 1]. This
batch approach assumes that the entire dataset is available to start the optimization.

In its stochastic version, the update is done using the gradient computed on one
single instance. The gradient descent may turn out to be chaotic if the variance of
the gradient from one instance to another one is high.

Aiming for an online approach, we have retained a variant mixing batch and sto-
chastic, namely mini-batch approach (Dekel et al. 2012) which consists in directing
the descent according to gradients computed on successive data batches of length L .
To be able to compare descent paths when the size of mini-batches varies, we used a
gradient standardized by the size of the mini-batches. The projected gradient descent
with mini-batches is summarized in Algorithm1.

The optimal value for step ηt has been the subject of several studies leading to
more or less costly algorithms. We turned to the Rprop method (Riedmiller and
Braun 1993): the step computation is specific for each vector component i.e. η is a
step vector of dimension K , and each vector component is multiplied by a factor
which is bigger, resp. smaller than 1, if the partial derivative sign change, resp. does
not change from one iteration to another.
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As far as the computational complexity is concerned, each iteration needs a cri-
terion evaluation on a sample of size N that is to say a O(K ∗ N ) complexity. The
classical batch algorithm is obtained for L = N and the stochastic one for L = 1.

As the criterion to be optimized is non convex, it often shows many local minima.
It is then common to start several gradient descents with distinct random initializa-
tions (multi-start approach) hoping that one of these descent paths converges to a
lower minimum. In order to make the optimization efficient and not to waste com-
putational time at the beginning of each descent, it is also possible to modify the
solution obtained after a given number of iterations in order to get out of a potential
local minimum. We propose to use a metaheuristic so that the current solution is
regularly randomized within a neighborhood of variable size. This randomization is
inspired from the Variable Neighborhood Search (Hansen and Mladenovic 2001).
Our approach denoted PGDMB-VNS is described in Algorithm 2. The projected gra-
dient descent with mini-batches is runned several times with different initialization
for the weight vector w. The initial weight vectors are generated in a neighborhood
of the current optimal weight vector. If the last projected gradient descent improves
the optimal weight vector, then the size of the neighborhood is reduced. Otherwise it
is increased. This neighborhood variation enables either to exploit promising areas
or to explore new areas of the weight vector space.

It can be noticed that, for a neighborhood that completely covers [0, 1]K , the
PGDMB-VNS algorithm is equivalent to a multi-start algorithm with random ini-
tializations. Besides, we stress that the random perturbations can lead to a non-null
component for a weight set to zero after a precedent run. One variable can re-appear
during the data stream reading.

The PGDMB-VNS algorithm is anytime in the sense that an estimation of the
criterion argmin is available at the end of the first gradient descent and that it is
improved afterwards according to the available budget and interruptible at any time.
Its entire complexity is O(T ∗ K ∗ N ) where T is the total number of budgeted
iterations.

4 Experiments

The purpose of the first experiments is to evaluate the optimization quality obtained
with PGDMB-VNS according to the size L of the mini-batches and to the total
number of iterations T . To study the intrinsic quality regardless of the associated
classifier predictive performance, we have set the λ weight value to 0, which means
thatwe directly optimize the non regularized likelihood. The second part of the exper-
iments deals with predictive performance of the classifier obtained by optimization
of regularized criterion (λ �= 0).

For the whole experiments, the parameters for PGDMB algorithm are set to the
following values:
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• w0 = {0.5}K

• η0 = {10−2}K with a multiplication by 0.5, resp. 1.2, in case of sign change, resp.
no sign change, between two successive gradients

• Max = 100 the iterationmaximal number (i.e. the number of treatedmini-batches).
We have checked that this threshold had never been reached for the 36 tested
datasets.

• Tol = 5 the number of authorized successive degradations

Improvement of the criterion is considered for a decreasing of at least ε = 10−4 with
regard to the precedent criterion value. The weights smaller than 10−3 are set to 0.

When a VNSmetaheuristic is applied, the initial neighborhood size is set to 1/16.
The whole experiments have been done in 10-fold-cross-validation on the 36 UCI

datasets described in Table1. According to the values of L and N , it can be necessary
to use the instances in several mini-batches. In this case, the datasets are randomly
shuffled between two mini-batches.

In the results, ‘SNB’ stands for the performance of a selective naïve Bayes clas-
sifier with model averaging (Boullé 2007a).

4.1 Experiments on Optimization Quality

First of all, we have studied the PGDMB algorithm performance, that is to say, the
performance of the projected gradient descent algorithm according to the mini-batch
size denoted L , without using MS or VNS metaheuristic. We have chosen the com-
pression rate as optimization quality indicator. It measures the complement to 1 of
the negative logarithm of the model likelihood normalized by the Shannon entropy.
As noticed in Sect. 3, for the “random” classifier with only null weights, the negative
logarithm of the likelihood is equal to the Shannon entropy, which leads to a com-
pression rate equal to 0. The closer the rate is to 1, the higher is the model likelihood.
For model less competitive than the randommodel, compression rate is negative. The
value of the compression rate on train data is then a good indicator of the optimization
quality as the non regularized criterion is reduced to the negative log-likelihood.

Figure1 presents the train and test compression rate averaged on 36 UCI datasets
for various mini-batches sizes L = 100, 1000, N . In the last case, the choice L = N
corresponds to a batch algorithm. The train and test compression rates obtained with
SNB classifier (Boullé 2007a) serve as a baseline. The obtained results indicate that,
the larger the mini-batches size is, the better is the optimization quality. Moreover,
the results obtained for L = 1000 and L = N are very similar. The train compression
rate is significantly better for batch mode than for L = 1000 for 8 of the 16 datasets
with N > 1000.

Figure2 presents as an example the serie of the criterion values obtained during
optimization according to the mini-batches size L = 100, 1000, N for the Phoneme
dataset. For all the 36 datasets,when themini-batches size decreases, the convergence
is faster but more chaotic.
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Table 1 Description of the 36UCI datasets:Ni= instances number,Nv= initial number of variables,
Nc=class number

Dataset Ni Nv Nc Dataset Ni Nv Nc

Abalone 4177 8 28 Mushroom 8416 22 2

Adult 48842 15 2 PenDigits 10992 16 10

Australian 690 14 2 Phoneme 2254 256 5

Breast 699 10 2 Pima 768 8 2

Bupa 345 6 2 Satimage 768 8 6

Crx 690 15 2 Segmentation 2310 19 7

Flag 194 29 8 Shuttle 58000 9 7

German 1000 24 2 SickEuthyroid 3163 25 2

Glass 214 10 6 Sonar 208 60 2

Heart 270 13 2 Soybean 376 35 19

Hepatitis 155 19 2 Spam 4307 57 2

Horsecolic 368 27 2 Thyroid 7200 21 3

Hypothyroid 3163 25 2 Tictactoe 958 9 2

Ionospehre 351 34 2 Vehicle 846 18 4

Iris 150 4 3 Waveform 5000 21 3

LED 1000 7 10 WaveformNoise 5000 40 3

LED17 10000 24 10 Wine 178 13 3

Letter 20000 16 26 Yeast 1484 9 10

Fig. 1 Train and test mean
compression rate for 36 UCI
datasets
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We have compared the optimization quality for the PGDMB algorithm without
and with metaheuristic. Two metaheuristics have been tested: multi-start (PGDMB-
MS) and variable neighborhood search (PGDMB-VNS).
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Fig. 2 Criterion
convergence paths according
to the mini-batches size
(PGDMB) for the Phoneme
dataset
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To get computational complexity equivalent to that of the univariate MODL pre-
treatment, that is to say O(K ∗ N ∗ log (K ∗ N )), we have fixed the total number of
authorized iterations T proportional to log (K ∗ N ). More precisely, we have chosen
T = log (K ∗ N ) ∗ 2OptiLevel where OptiLevel is an integer which enables us to tune
the desired optimization level.

For each of the two metaheuristics, we have studied the influence of the optimiza-
tion level OptiLevel = 3, 4, 5. Since the obtained algorithm stores the best solution
each time it is encountered, the metaheuristic can only improve the train compres-
sion rate. We have measured in a first step if the improvement was significant or
not. For a MS metaheuristic, the train compression rate is significantly improved for
resp. 7, 16, 18 of the 36 datasets with an optimization level equal resp. to 3, 4, 5. For
a VNS metaheuristic, the train compression rate is significantly improved for resp.
18, 19, 23 of the 36 datasetswith an optimization level equal resp. to 3, 4, 5. TheVNS
metaheuristic seems then better than the MS metaheuristic: the guided exploration
within a variable sized neighborhood from the best minimum encountered enables a
more fruitful exploration than a purely random exploration.

Figure3 illustrates this iterations “waste” phenomenon with multi-start at the
beginning of each start.

Experiments presented in this section have illustrated the effect of themini-batches
size on the optimization quality. They have also illustrated that the higher the size, the
better the optimization quality, and that the VNS metaheuristic works better than the
MS metaheuristic. For the rest of the experiments, we then retain a PGDMB-VNS
algorithm with mini-batches size fixed to L = 1000 and an optimization level set to
OptiLevel = 5.
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Fig. 3 Criterion
convergence paths according
to the metaheuristic used for
the Phoneme dataset and an
optimization level equal to 5
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4.2 Regularized Classifier Performance

We present the classifier performance according to the setting of the regularization
weight λ and to the p exponent of the regularization function |wk |p. Three values
have been tested for λ, 0.01, 0.1, 0.5 and three values for p, 0.5, 1, 2. The AUC per-
formance for the nine regularized classifiers are presented in Fig. 4. The performance
of the non-regularized classifier obtained with λ = 0 and of the SNB classifier have
been added as a baseline.

For the highest regularization weight, λ = 0.5 (in purple in the Figure), the AUC
performance are deteriorated with regards to the performance obtained without regu-
larization (red circles in the Figure) whatever the p value. For the other weight values

Fig. 4 Train and test AUC
averaged for 36 UCI datasets
according to the weight and
the type of regularization ●
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λ = 0.01 andλ = 0.1, the performance are similar for all p values and slightly greater
or equal on average to those of the non-regularized classifier. These two regulariza-
tion weights lead to statistical performance equivalent to those of non regularized
classifier.

Figure5 presents a study on the sparsity of the obtained classifiers. In this Figure,
the number of kept variables and their weights sum are presented according to the
weight and type of regularization. First, it shows that the smaller p, the smaller the
non-null weights number. The quadratic regularization (p = 2) leads to non sparse
classifiers. Among the regularization with absolute value (p = 1) and the squared

Fig. 5 Kept variable number
and weight sum averaged for
36 UCI datasets according to
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root one (p = 0.5), the second one enables the most important reduction of the
number of kept variables.

As far as the weights sum is concerned, all the p regularization exponents enable
to reduce the weights sum on average. Moreover, given a λ weight, the quadratic
regularization has a less important impact on the weights sum reduction than the two
other regularizations whose performance are very close for this indicator.

Considering both aspects of statistical performance and classifier sparsity, the
compromise p = 1 and λ = 0.1 seems the most favorable. Without deteriorating the
performance of the non regularized classifier, it enables a significant reduction of the
number of selected variables. This reduction makes the classifier more interpretable
and less complex to deploy.

5 Conclusion

We have proposed a sparse regularization of the log-likelihood for a weighted naïve
Bayes classifier.We described and experimented a gradient descent algorithm, which
treats onlinemini-batches data and optimizes the weights classifier through amore or
less extensive exploration according to the iterations budget. The experiments have
shown the interest of usingmini-batches and ametaheuristic for deeper optimization.
Moreover, a parameterization study of the regularization points out that the optimal
choicewas a regularization termwith the L1 norm and aweightλ = 0.1. Experiments
on substantially larger datasets are necessary to evaluate the performance of our
approach on real data streams and will be the subject of future work. Furthermore,
we will also consider the possibility of solving our optimization problem in two
steps : a first convex optimization step using convex approximation of the complete
criterion and a second non convex optimization step that could be solved by the
method of Composite Minimization (Nesterov 2013).
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On Making Skyline Queries Resistant
to Outliers

Hélène Jaudoin, Pierre Nerzic, Olivier Pivert and Daniel Rocacher

Abstract This paper deals with the issue of retrieving the most preferred objects
(in the sense of Skyline queries, i.e., of Pareto ordering) from a collection involving
outliers. Indeed, many real-world datasets, for instance from ad sales websites, con-
tain odd data and it is important to limit the impact of such odd data (outliers) on the
result of skyline queries, and prevent them from hiding more interesting points. The
approach we propose relies on the notion of fuzzy typicality and makes it possible
to compute a graded skyline where each answer is associated with both a degree of
membership to the skyline and a typicality degree. A GPU-based parallel implemen-
tation of the algorithm is described and experimental results are presented, which
show the scalability of the approach.

1 Introduction

In this paper, a qualitative view of preference queries is considered, namely the Sky-
line approach introduced in Börzsönyi et al. (2001). Given a set of points in a space,
a skyline query retrieves those points that are not dominated by any other in the sense
of Pareto order. When the number of dimensions on which preferences are expressed
gets high,many tuplesmay become incomparable. Several approaches have been pro-
posed to define an order for two incomparable tuples, based on the number of other
tuples that each of the two tuples dominates (notion of k-representative dominance
proposed inLin et al. (2007)), onapreferenceorder over the attributes (see for instance
the notions of k-dominance and k-frequency introduced in Chan et al. (2006a, b)),
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or on a notion of representativity ((Tao et al. 2009) redefines the approach pro-
posed by Lin et al. (2007) and proposes to return only the most representative points
of the skyline, i.e., a point among those present in each cluster of the skyline points).
Other approaches fuzzify the concept of skyline in different ways, see e.g. Goncalves
and Tineo (2007) and Hadjali et al. (2011). See also Rojas et al. (2014) where the
authors define soft skylines by relaxing the dominance relation. Here, we are con-
cerned with a different problem, namely that of the possible presence of exceptional
points, also known as outliers, in the dataset over which the skyline is computed.
Such exceptions may correspond to noise or to the presence of nontypical points in
the collection considered. The impact of such points on the skyline may obviously
be important if they dominate some other, more representative ones.

At least two strategies can be considered to handle outliers. The former consists
in removing anomalies by adopting cleaning procedures. However, the task of auto-
matically distinguishing between odd points and simply exceptional points is not
always easy. Another solution is to define an approach that is tolerant to outliers,
that highlights representative points of the database and that points out the possible
outliers. Literature about outlier detection is very abundant as shown by recent sur-
veys (Hodge and Austin 2004; Niu et al. 2011; Zimek et al. 2012; Zhang 2013) and
recent publications in the data mining area (Gupta et al. 2013; Gabel et al. 2013;
Zimek et al. 2013; Ji et al. 2013). The approaches may be categorized into three
classes: (i) those that aim to isolate data distant from another normal data, (ii) those
that aim to detect if a new observation is normal or abnormal, (iii) those that exclu-
sively focus on modelling normality and assess if a new observation is likely to be
normal.

The estimation of the best approach for detecting outliers is out of the scope of
this paper. In the tolerant skyline approach we propose, we use a simple detection
technique based on the notions of frequency and distance. More precisely we adopt
the fuzzy notion of typicality (Zadeh 1984) in order to identify non-typical, thus
exceptional points. We revisit the definition of a skyline and show that it (i) makes it
possible to retrieve the dominant points without discarding other potentially interest-
ing ones, and (ii) constitutes a flexible tool for distinguishing between the answers.

The remainder of the paper is structured as follows. Section2 provides a refresher
about skyline queries and motivates the approach. Section3 presents the princi-
ple of exception-tolerant skyline queries, based on the fuzzy concept of typicality.
Section4 deals with implementation aspects whereas Sect. 5 presents experimental
results obtained on a real-world dataset. Finally, Sect. 6 recalls themain contributions
and outlines perspectives for future work.
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2 Refresher About Skyline Queries and Motivations

2.1 Skyline Queries

Let D = {D1, . . . , Dd} be a set of d dimensions. Let us denote by dom(Di ) the
domain associated with dimension Di . Let S be a subset of dom(D1) × . . . ×
dom(Dd), p and q two points of S , and �i a preference relation on Di . One says
that p dominates q on D (p is better than q according to Pareto order), denoted by
p �D q, iff

∀i ∈ [1, d] : pi �i qi and ∃ j ∈ [1, d] : p j � j q j

A skyline query on D applied to a set of points S , whose result is denoted by
SkyD(S ), according to preference relations �i , produces the set of points that are
not dominated by any other point of S :

SkyD(S ) = {p ∈ S | �q ∈ S : q �D p}

Depending on the context, one may try, for instance, to maximize or minimize the
values of dom(Di ), assuming that dom(Di ) is a numerical domain.

In order to illustrate the principle of the approach we propose, let us consider the
dataset Iris (Fisher 1936), graphically represented in Fig. 1.

The vertical axis corresponds to the attribute sepal width whereas the horizontal
axis is associated with sepal length. The skyline query:

select * from iris
skyline of sepallength max, sepalwidth max

looks for those points that maximize the dimensions length and width of the sepals
(the circled points in Fig. 1).

Fig. 1 The dataset Iris
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In this dataset, the points form two groups that respectively correspond to the
intervals [4, 5.5] and [5.5, 7] on attribute length. By definition, the skyline points
are on the border of the region that includes the points of the dataset. However,
these points are very distant from the areas corresponding to the two groups and
are thus not very representative of the dataset. It could then be interesting for a user
to be able to visualize the points that are “almost dominant”, closer to the clusters,
then more representative of the dataset. A way to make such points visible without
discarding extrema, while allowing to discriminate them, is to use a gradual view
of representativity. The notion of typicality discussed in the next section makes it
possible to reach that goal.

2.2 Computing a Fuzzy Set of Typical Values

The concept of typicality has been studied by numerous authors, both in cognitive
psychology (Rosch and Mervis 1975; Hampton 1988; Osherson and Smith 1997)
and in fuzzy logic, see e.g. Zadeh (1982), Friedman et al. (1995) and Yager (1997).
In the following, we consider Zadeh’s interpretation (Zadeh 1987), but any other
interpretation of typicality could be used without drastically altering the general
principle of the approach. In Zadeh (1987), x is defined as a typical element of a
fuzzy set A iff (i) x has a high degree ofmembership to A and (ii)most of the elements
of A are similar to x . In the case where A is a classical set, this definition becomes:
x belongs to A and most of the elements of A are similar to x . In the same spirit, in
Dubois and Prade (1984), the authors define a typicality indice based on similarity
and frequency. We adapt their definition as follows. Let us consider a set E of points.
We say that a point is all the more typical as it is close to many other points. The
proximity relation considered is based on Euclidean distance. We consider that two
points p1 and p2 are close to each other if d(p1, p2) ≤ τ where τ is a predefined
threshold. In the experiment performed on the dataset Iris, we used τ = 0.5. The
frequency of a point is defined as:

F(p) = |{q ∈ E , d(p, q) ≤ τ }|
|E | (1)

This degree is then normalized into a typicality degree in [0, 1]:

t yp(p) = F(p)

maxq∈E {F(q)} (2)

We will also use the following notations:

Typ(E ) = {t yp(p)/p | p ∈ E }

Typγ (E ) = {p | p ∈ E and t yp(p) ≥ γ }.
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Typ(E ) represents the fuzzy set of points that are somewhat typical of the set E
while Typγ (E ) gathers the points of E whose typicality is over the threshold γ .

Example 1 Let us consider the following multiset (of cardinality n = 30):

E = 〈1/0, 1/3, 1/4, 4/5, 7/6, 5/7, 3/8, 5/9, 2/12, 1/23〉

where k/e means that element e has k copies in E . Using Formulas (1) and (2) with
τ = 2, we get:

Typ(E ) = {0.04/0, 0.25/3, 0.54/4, 0.75/5, 0.83/6,

1/7, 0.83/8, 0.54/9, 0.08/12, 0.04/23}

and
Typ0.5(E ) = {4, 5, 6, 7, 8, 9}.�

An excerpt of the typicality degrees computed over the Iris dataset is presented
in Table1.

Remark 1 This typicality-based interpretation of outliers is close to the approach
used in DBSCAN (Ester et al. 1996). Typical points (relative to thresholds τ and γ )
correspond to core points in DBSCAN. However, as we will see, the fuzzy sky-
line definition introduced in Sect. 3.2 relies on a gradual view of outliers where no
threshold γ is applied.

Table 1 Excerpt of the Iris
dataset with associated
typicality degrees

Length Width Frequency Typicality

7.4 2.8 0.0600 0.187

7.9 3.8 0.0133 0.0417

6.4 2.8 0.253 0.792

6.3 2.8 0.287 0.896

6.1 2.6 0.253 0.792

7.7 3.0 0.0467 0.146

6.3 3.4 0.153 0.479

6.4 3.1 0.293 0.917

6.0 3.0 0.320 1.000
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3 Principle of the Exception-Tolerant Skyline

As explained in the introduction, our goal is to revisit the definition of the skyline so
as to take into account the typicality of the points in the database, in order to control
the impact of exceptions or anomalies. Thus, three variants of the classical skyline
are defined hereafter:

• Sky1
D that returns all sufficiently typical points of S that are not dominated by

sufficiently typical points,
• Sky2

D that returns all points of S that are not dominated by sufficiently typical
points, and

• Sky3
D that returns a fuzzy set of S , where each point is associated with a mem-

bership degree which is a function of the typicality of the points that dominate it.

3.1 Boolean View

The first idea is to restrict the computation of the skyline to a subset of E that
corresponds to sufficiently typical points. The corresponding definition is:

Sky1
D(S ) = {p ∈ Typγ (S ) | �q ∈ Typγ (S ) such that q �D p} (3)

Such an approach obviously reduces the cost of the processing since only the points
that are typical at least to the degree γ are considered in the calculus. However, this
definition does not make it possible to discriminate the points of the result since
the skyline obtained is a crisp set. Figure2 illustrates this behavior and shows the
maxima (circled points) obtained when considering the points that are typical to a
degree ≥0.7 (represented by crosses).

Another drawback of this definition is to exclude the nontypical points altogether,
even though some of them could be interesting answers. A more cautious definition
consists in keeping the nontypical points while computing the skyline and transform
Eq. (3) into:

Sky2
D(S ) = {p ∈ S | �q ∈ Typγ (S ) such that q �D p} (4)

Figure3 illustrates this alternative solution. It represents (circled points) the objects
from the Iris dataset that are not dominated by any item typical to the degree γ = 0.7
at least (represented by crosses).

With Eq. (3), the nontypical points are discarded, whereas with Eq. (4), the skyline
is larger and includes nontypical extrema. This approaches relaxes skyline queries in
such a way that the result obtained is not a polyline anymore but a stripe composed
of the regular skyline elements completed with possible “substitutes”. However,
the main drawbacks of this definition are: (i) the potentially large number of points
returned, (ii) the impossibility to distinguish, among the skyline points, those that are
not at all dominated from those that are dominated (by more or less typical points).
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Fig. 2 Skyline of the Iris points whose typicality degree is ≥0.7
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Fig. 3 Points that are not dominated by any other whose typicality degree is ≥0.7
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3.2 Gradual View

A third versionmakes it possible to compute a graded skyline, seen as a fuzzy set, that
preserves the gradual nature of the concept of typicality. By doing so, no threshold
γ is applied to typicality degrees anymore. This variant considers that a point totally
belongs to the skyline (membership degree equal to 1) if it is dominated by no other
point. A point does not belong at all to the skyline (membership degree equal to 0) if
it is dominated by at least one totally typical point. In the case where p is dominated
by somewhat (but not totally) typical points, its degree of membership to the skyline
is strictly positive and depends on the typicality of these points. The corresponding
formula is:

Sky3
D(S ) = {μ/p | p ∈ S } (5)

with μ defined as:

μ =
{
1 if p ∈ SkyD(S )

1 − t otherwise, where t = maxq∈S | q�D p t yp(q)
(6)

This latter definition is a fuzzy interpretation of the statement

p is in the skyline ⇔ ∀q, if q is typical, then q does not dominate p.

Indeed, using Kleene-Dienes implication (x →K D y = max(1 − x, y)) and trans-
lating ∀ by the triangular norm minimum (which is the usual interpretation of the
conjunction in fuzzy logic), we obtain the formula above.

With the Iris dataset, one gets the result presented in Fig. 4, where the degree of
membership to the skyline corresponds to the z axis.

This approach appears interesting in terms of visualization. Indeed, the score
associated with each point of the result makes it possible to focus on different α-cuts
of the skyline. In Fig. 4, one may notice a slope from the optimal points towards the

 0

 0.2

 0.4

 0.6

 0.8

 1

 4
 5

 6
 7

 8

 2
 2.5

 3
 3.5

 4
 4.5

 0
 0.2
 0.4
 0.6
 0.8

 1

LengthWidth

G
ra

du
al

 s
ky

lin
e

Fig. 4 Graded skyline obtained with the Iris dataset
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less typical or completely dominated ones. The user may select points that are not
necessarily optimal but that represent good alternatives to the regular skyline answers
(in the case, for instance, where the latter look “too good to be true”). Finally, an
element of the graded skyline is associated with two scores: a degree of membership
to the skyline, and a typicality degree (that expresses the extent to which it is not
exceptional). One may imagine different ways of navigating inside areas in order
to explore the set of answers: a simple scan for displaying the characteristics of
the points, the use of different filters aimed, for instance, at optimizing diversity on
certain attributes, etc.

Remark 2 In Eq. (6), t denotes the typicality of the most typical point that dominates
p. A possible refinement would be to take into account, not only the typicality of the
most typical point that dominates p, but also the number of such points. Indeed, let
p and p′ be two points which have the same typicality r . Assume that p is dominated
by a large number N of points, all of which have typicality r ′. Assume further that p′
is dominated by only one point, whose typicality is also r ′. The approach described
above cannot discriminate p and p′. A way to overcome this limitation would be to
associate two values with each point p of the fuzzy skyline: a membership degree
μ(p) as defined in Eqs. (5) and (6), and a number n(p) defined as

n(p) = |{q ∈ S | q �D p and t yp(q) = max
u∈S | u�D p

t yp(u)}| (7)

Finally, each element p of the result would be associated with three degrees: t yp(p),
μ(p) and n(p) and the selection of the most interesting points of this fuzzy skyline
could be performed by means of a second (classical) skyline query aimed at max-
imizing both t yp(p) and μ(p), and involving a nested condition (cascade clause)
minimizing n(p) in order to break ties if any. The detailed study and implementation
of such an extension is left for future work.

4 Implementation Aspects

Two steps are necessary for obtaining the graded result: (i) computation of the typi-
cality degrees, and (ii) computation of the graded skyline. The typicality degrees are
used to compute the degree of membership of all tuples to the skyline.

Let us first investigate the methods to process Boolean skylines. Lee et al. (2007)
highlights two key points: (i) dominance tests are expensive, (ii) the organization of
skyline candidates and their examination strategies are critical for the efficiency of
the dominance test. This second point relates specifically to Boolean skyline queries.
With regards to these points, three categories of algorithms have been proposed in the
literature. The first category is based on Divide and Conquer (Börzsönyi et al. 2001).
Processing is done separately on subsets of data, then the results are merged. The
second category relies on exploiting indices such as B-trees or R-trees to organize
the data in order to avoid many dominance tests in Papadias et al. (2005), or like
bitmap indices in Tan et al. (2001). The third category gathers various methods based
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on sorting: Block-Nested-Loops (BNL) (Börzsönyi et al. 2001) and its improvement
named Sort-Filter-Skyline (Chomicki et al. 2003, 2005), and a strategy proposed in
Bartolini et al. (2008) that relies on a preordering of the tuples aimed to limit the
number of elements to be accessed and compared.

We propose to implement the computation of both the typicality degrees and the
skyline by parallelizing most of the calculations, so that they can be run on a CUDA
processor. CUDA (Compute Unified Device Architecture) is a parallel application
programming model defined by nVidia for their graphic cards. CUDA allows for
developing programs that contain some functions to be executed on theGPU (Graphic
Processing Unit) by taking advantage of the large number of computing cores. These
functions, called kernels, are run simultaneously on different data. The number of
parallel executions depends on the number of physical cores available on the GPU.

We can expect amajor gain in computation speedwith a large amount of cores, but
only if the algorithm can be parallelized in the manner that CUDA expects. Indeed,
CUDA has some drawbacks which can slow down the whole process, if they are
not addressed properly. Generally, CUDA threads are designed to process an array
in parallel, with one thread per cell. There are some recommandations for a thread
to avoid random accesses to another cell, due to the very high latency delays of the
global memory.

Only few research works deal with parallel implementation of skyline queries.
Choi et al. (2012) proposes an adaptation of the Block-Nested-Loops algorithm to the
CUDAarchitecture, taking the number of really parallel threads into consideration, in
order to balance the workload. Park et al. (2009) compares two different approaches.
The first approach parallelizes the BBS Branch-and-Bound algorithm proposed by
Papadias et al. (2005). The second approach called pskyline for parallel skyline, aims
at being much simpler, and is based on a map-reduce paradigm that we will describe
later. Both approaches are implemented on OpenMP, and appear to have similar
performances. However, in the second approach, the computation of the skyline
itself is not fully parallelized. It uses a sequential function which computes a partial
skyline by iterations on a subset of the tuples. Moreover, this function makes use of
the memory in a way that could slow down CUDA a lot.

Bøgh et al. (2013) proposes a fast implementation of skyline queries on CUDA,
taking finely into account all the particularities of the architecture. The first step is
to sort the tuples according to the Manhattan distance, as the tuples at the top of
the list may more likely belong to the skyline. This sorting also guarantees that a
data point cannot be dominated by a successor. Then, the algorithm processes the
tuples by subsets of fixed size at each major iteration. The authors have also carefully
designed the computations to avoid branches in the CUDAkernels andminimize data
transfers between GPU and CPU.

Unfortunately, in our problem, there is no motivation in efficiently selecting can-
didate tuples, by presorting the set and removing dominated tuples from the candi-
dates. Indeed all tuples may belong to the graded skyline, but with different degrees,
from 0+ (very lowmembership to the skyline) to 1 (total membership to the skyline).
We have to compare each tuple with every other tuples to determine its degree. So the
main issue remains the efficient computation of typicality degrees and domination,
as stated by Eqs. (2) and (5).
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This leads to Algorithm3, composed of two loops over the datasetS . The outer
loop computes the membership degree of all the tuples p. The inner loop compares
p with all the other tuples and those who dominate p are used to get the highest
dominant typicality.

Algorithm 3: Sequential Algorithm for computing the graded skyline
Require: dataset S , typicality degree T yp(p) available for all tuple p in S
Ensure: graded skyline: ∀ p ∈ S , Skygrad (p)

for all p ∈ S do
best ← 0
for all q ∈ S do
if q �D p and best < T yp(q) then
best ← T yp(q)

end if
end for
Skygrad (p) ← 1 − best

end for

Typicality degrees T yp(p) are computed by Algorithm4. Note that this second
algorithm could be improved to avoid the loop that computes the maximum value of
the frequency F , but this would hinder the parallelization.

Algorithm 4: Sequential Algorithm for computing the typicality degrees
Require: dataset S of cardinality n
Ensure: typicality degrees: ∀ p ∈ S , T yp(p)

// compute the frequency
for all p ∈ S do
neighbors ← 0
for all q ∈ S do
if d(p, q) ≤ τ then
neighbors ← neighbors + 1
end if
end for
F(p) ← neighbors/n

end for
// compute the maximum frequency
max F ← 0
for all p ∈ S do
if F(p) > max F then
max F ← F(p)

end if
end for
// compute the typicality degrees
for all p ∈ S do
T yp(p) ← F(p)/max F
end for
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The algorithm proposed in Tan et al. (2001) is well-suited to the calculation of the
graded skyline, because it generates for each tuple p a Boolean vector D of the size
of the database, and indicating for each cell D[q] whether the tuple q dominates p.
Then, one has just to replace each value equal to true in D by the typicality of the
related tuple in order to find the most typical tuple which dominates p. However,
the entire algorithm is not directly parallelizable on CUDA, both because of the data
structure necessary (big bitmap index), and calculations such as Boolean operations
on these bitmaps.

Therefore, we propose parallel algorithms based on general parallelization prin-
ciples, that can be implemented efficiently with CUDA to evaluate Formulas (2) and
(5) keeping the spirit of the approach of Tan and getting some inspiration from Bøgh
et al. (2013) and Park et al. (2009).

4.1 Parallel Algorithm Principles

We presented the sequential version of the graded skyline computation in
Algorithms3 and 4. They contains several for loops that can easily be parallelized
because they are kinds of map and reduce operations. In Skeletal Parallel Program-
ming (Cole 1991), map( f, C) is an operation that applies in parallel the same
function f to every element of the collection C , and returns the resulting col-
lection. If C = {c1, c2, . . . , cn}, map( f, C) returns { f (c1), f (c2), . . . , f (cn)}.
The other operation, reduce( f, C) returns the aggregation of an associative binary
operator f . reduce( f, C) returns the value c1 f c2 f . . . f cn . For instance,
reduce(λx, y : x + y, map(λx : x2, {2, −3, 4})) = 29. Note that the lambda
notation is necessary when functions have no name. The parameters come from
the collection to process. The free variables, if any, come from the context.

Both operations, map(f, C) and reduce(f, C) are parallelizable with high perfor-
mances in CUDA. Function f must be written as a CUDA kernel—this is a function
which will run on the GPU. The dataset C shall be put into an array in the memory
of the graphic card, called device global memory. Another array of appropriate size
must be allocated to receive the results. Then, for map, the kernel is launched with as
many instances as there are data to process. So, in theory, map( f, C) has the same
order of complexity than function f (multiplied by the collection size, divided by
the number of parallel threads). For reduce, the kernel is launched hierarchically fol-
lowing a binary tree scheme. If f has a time complexity of θ(1), then reduce( f, C)

has a complexity of θ(log2 n) where n is the cardinality of C .
Using these principles, we propose Algorithm5 that computes the degree of mem-

bership to the skyline of every tuple in the dataset. We use a convention in C/C++
about Booleans: true is equivalent to the integer value 1, and false to 0. This allows to
replace a condition by a multiplication in the kernel. We can combine the typicality
degree with the Boolean test q � p, and then get the degree by reducing with the
maximum function.
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Algorithm 5: Parallel algorithm for computing the graded skyline
Require: dataset S , typicality degree T yp(p) available for every tuple p in S
Ensure: graded skyline: ∀ p ∈ S , Skygrad (p)

for all p ∈ S do
best ← reduce(max, map(λq : (q �D p) ∗ T yp(q), S ))

Skygrad (p) ← 1 − best
end for

The computation of the test q �D p is performed by Algorithm6. It consists of
a loop over the attributes of both tuples p and q. We use the technique proposed
by Bøgh et al. (2013) to avoid then-else branches. Here, we handle two Boolean
variables p_does_not_dominate_q and q_does_not_dominate_p.

p_does_not_dominate_q is changed to true when q is better than p on at least one
attribute. Reciprocally, q_does_not_dominate_p is changed to true when p is better
than q. At the end of the loop, q dominates p (q �D p) iff p_does_not_dominate_q
is true and q_does_not_dominate_p is false. The loop on the attributes in Algorithm6
has not been parallelized but has been unrolled, following CUDA guidelines (Harris
2007).

Algorithm 6: Determination of the domination q �D p (Bøgh et al. 2013)
Require: tuples p andq, each one is a sub-array of attributesattributes[1..number of attributes]
Ensure: q �D p

p_does_not_dominate_q ← 0
q_does_not_dominate_p ← 0
for all i ∈ 1..number of attributes do
attribute_p ← p.attributes[i]
attribute_q ← q.attributes[i]
p_does_not_dominate_q ← p_does_not_dominate_q or (attribute_q � attribute_p)

q_does_not_dominate_p ← q_does_not_dominate_p or (attribute_p � attribute_q)

end for
return (p_does_not_dominate_q > q_does_not_dominate_p)

Algorithm7 computes the typicality degree of every tuple with the same kind
of operations. We also use the Boolean d(p, q) ≤ τ as a number 0 or 1 that we
accumulate along the tuples. Contrary to Algorithm4, we compute the numbers of
neighbors, instead of the frequencies, because F(p)

max F = nb_neighbors(p)

max_nb_neighbors .
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Algorithm 7: Parallel algorithm for computing the typicality
Require: dataset S of cardinality n
Ensure: typicality degrees: ∀ p ∈ S , T yp(p)

// Compute the number of neighbors of all tuples
for all p ∈ S do
nb_neighbors(p) ← reduce(sum, map(λq : d(p, q) ≤ τ, S ))

end for
// Compute the highest number of neighbors
max_nb_neighbors ← reduce(max, nb_neighbors)
// Compute the typicality of every tuple
T yp ← map(λp : nb_neighbors(p)/max_nb_neighbors, S )

4.2 Implementation in CUDA

These algorithms are easy to code in CUDA, using the Thrust library.1 Thrust is a
CUDA Toolkit resembling the C++ Standard Template Library (STL). For instance,
Thrust makes it simple to allocate an array on the GPU, to exchange data with the
CPU and to launch map and reduce operations on predefined or custom kernels.

All the algorithms can be implemented this way. However, to obtain maximum
speed, some computations have to be implemented more efficiently. With Thrust,
each reduce operation brings back the result into the CPU memory. In some cases,
it would be better to keep it in the GPU memory. For instance, in Algorithm7, the
instruction F(p) ← reduce(sum, ...) causes many data transfers between CPU
and GPU memories. For instance, the instruction F(p) ← reduce(sum, map(...))

in Algorithm5 is not fast enough with Thrust because of the data transfers between
the GPU and the CPU when implemented with Thrust. Such memory transfers are
very slow. It is necessary to rewrite some parts of the program without Thrust.

Firstly, it appears very important to organize data in the globalmemory of theGPU
in a way that memory accesses are coalesced between threads. In CUDA, threads
are grouped by warps of 32, to work together. It is recommended that a thread
number i shall access a memory cell i when the thread i + 1 accesses the cell i + 1.
In other cases, memory accesses cannot be grouped and cause high latencies. The
memory is accessed in two places: when computing the distance between two tuples
d(p, q) ≤ τ andwhen computing the domination between two tuples inAlgorithm4.
Consecutive threads will deal with consecutive tuples, written as q in the algorithm,
and each thread will try to compare the first attribute of p and q, then the second,
and so on. So it is necessary to put all the values for the first attribute of all tuples in
sequence, then all the values of the second attribute etc., instead of putting the first
tuple, then the second tuple and so on.

Other optimizations can be thought of Harris (2007) shows how to efficiently
design reduce functions on CUDA. It is better to group map and reduce operations
when the latter is applied on the former. Themap step shall be done inside the first step

1http://docs.nvidia.com/cuda/thrust/.

http://docs.nvidia.com/cuda/thrust/
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of reduce. To avoid waiting cycles in alternatives, it is worth to replace all branches
by simple computations, when possible.

5 Experimental Results

Wehave experimented our implementation on both synthetic and real-world datasets.
The first subsection shows the results obtained with data coming from an ad sales
web site. The second subsection is devoted to the performances of the CUDA imple-
mentation of the graded skyline.

5.1 Application to a Real-World Dataset

The approach has been tested using a subset of the database of 845,810 ads about
second hand cars from the website Le bon coin2 from 2012. The skyline query
used hereafter as an example aims at minimizing both the price and the mileage.
In the query considered, we focus on small urban cars with a regular (non-diesel)
engine, which corresponds to 441 ads. Figure5 shows the result obtained. In dark
grey are the points that belong the most to the skyline (membership degree between
0.8 and 1). These points are detailed in Table2. According to the definition used,
points dominated by others that are not totally typical belong to the result. It is the
case for instance of ad number 916264 that is dominated by ads number 1054357
and 1229833. The identifiers in bold correspond to the points that belong to the
regular skyline. One may observe that the points from Table2 (area [0.8, 1]) are
not very (or even not at all) typical. Moreover, certain features may not satisfy
the user (the mileage can be very high, the price can be very low) and may look
suspicious. On the other hand, Table3, which shows an excerpt of the 0.6-cut of the
graded skyline, contains more typical—thus more credible—points whose overall
satisfaction remains high.

Let us mention that from such a result, we can devise different kinds of querying
services such as sorting the answers by descending skyline degrees and then by
descending typicality degrees or gathering answers byα-cuts over the skyline degree.
As mentioned in Remark2, it is also possible to obtain the most interesting points of
the fuzzy skyline bymeans of a second (classical) skyline query aimed atmaximizing
both the membership degree and the typicality degree.

2www.leboncoin.fr.

www.leboncoin.fr
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Fig. 5 3D representation of the graded skyline

Table 2 Excerpt of the database and associated degrees (skyline and typicality)

Id Price km Skyline Typicality

1211574 7000 500 1 0.352

1156771 6000 700 1 0.247

1229833 5990 10000 1 0.126

1596085 5800 162643 1 0.005

1054357 1800 118000 1 0

1333992 500 220000 1 0

1380340 800 190000 1 0

891125 1000 170000 1 0

1276388 1300 135000 1 0

916264 5990 2514000 0.874 0

1674045 6000 3500 0.753 0.315

Table 3 Excerpt of the area [0.6, 0.8]

Id Price km Skyline Typicality

1208620 6500 3300 0.716 0.363

870279 6900 1000 0.716 0.358

1334605 10500 500 0.647 0.642

1635437 9900 590 0.647 0.621

1529678 7980 650 0.647 0.458

1166077 7750 2214 0.642 0.532

1685854 7890 1000 0.642 0.458

1366336 7490 4250 0.637 0.516

981939 6500 4000 0.637 0.363

1022586 6500 7200 0.637 0.258

1267726 6500 100000 0.637 0
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5.2 Application to Synthetic Data

Two kinds of measurements have been performed. We first compare the CUDA
implementation to a sequential version on datasets of various cardinalities but a
constant number of attributes. Then, we assess the efficiency of the CUDA version
with a constant number of tuples, and an increasing number of attributes.

Our CUDA engine has four Tesla M2090, with 6GB of memory on each. The
data is very far from exhausting the memory. For instance, 1,000,000 tuples with 16
attributes represented as float numbers will occupy 64Mbytes. To improve speed, we
add padding bytes to align data, but the total size is many orders below the available
memory.

Figure6 shows a comparison between both programs, with an increasing number
of tuples, from 1,000 to 1,000,000 and a constant number of 4 attributes, on log-
arithmic scales both in tuple number and in computation time, to show that time
is a power of the number of tuples. The time is expressed in seconds. Broadly, we
can say that the CUDA version is 40 times faster than the sequential version. The
computation of the typicalities takes a bit less time, but has the same complexity.

We then studied the impact of the number of attributes with the same number of
tuples: 100, 200 and 500k. The result is shown in Fig. 7. The slope of the line is θ(n2)

where n is the number of tuples. These experimental results together confirm that
the global computation time is θ(n2 ∗ a) where a the number of attributes for each
tuple. Some long duration results are somewhat imprecise, due to other processes in
the system.
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These results show that it is possible to calculate a graded Skyline within a rea-
sonable time, even on a large number of tuples with many attributes.

6 Conclusion

In this paper, we have proposed a graded version of skyline queries aimed at control-
ling the impact of exceptions on the result (so as to prevent interesting points to be
hidden because they are dominated by exceptional ones). We have also proposed a
parallel implementation of the computation of the graded skyline. An improvement
of our approach could consist in using more sophisticated techniques for character-
izing the points, for instance, a typicality-based clustering approach (Lesot 2006) or
statistical methods for detecting outliers (Hodge and Austin 2004). As a short-term
perspective, we intend to devise a technique for efficiently computing the α-cut of
a graded skyline, in the spirit of the derivation method described in Pivert and Bosc
(2012) for fuzzy queries.
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Adaptive Down-Sampling and Dimension
Reduction in Time Elastic Kernel Machines
for Efficient Recognition of Isolated Gestures

Pierre-Francois Marteau, Sylvie Gibet and Clément Reverdy

Abstract In the scope of gestural action recognition, the size of the feature vector
representing movements is in general quite large especially when full body move-
ments are considered. Furthermore, this feature vector evolves during the movement
performance so that a complete movement is fully represented by a matrix M of size
DxT, whose element Mi, j represents the value of feature i at timestamps j . Many
studies have addressed dimensionality reduction considering only the size of the fea-
ture vector lying inRD to reduce both the variability of gestural sequences expressed
in the reduced space, and the computational complexity of their processing. In return,
very few of these methods have explicitly addressed the dimensionality reduction
along the time axis. Yet this is a major issue when considering the use of elastic
distances which are characterized by a quadratic complexity along the time axis. We
present in this paper an evaluation of straightforward approaches aiming at reducing
the dimensionality of the matrix M for each movement, leading to consider both
the dimensionality reduction of the feature vector as well as its reduction along the
time axis. The dimensionality reduction of the feature vector is achieved by selecting
remarkable joints in the skeleton performing the movement, basically the extremi-
ties of the articulatory chains composing the skeleton. The temporal dimensionality
reduction is achieved using either a regular or adaptive down-sampling that seeks to
minimize the reconstruction error of the movements. Elastic and Euclidean kernels
are then compared through support vector machine learning. Two data sets that are
widely referenced in the domain of human gesture recognition, and quite distinctive
in terms of quality of motion capture, are used for the experimental assessment of the
proposed approaches. On these data sets we experimentally show that it is feasible,
and possibly desirable, to significantly reduce simultaneously the size of the fea-
ture vector and the number of skeleton frames to represent body movements while
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maintaining a very good recognition rate. The method proves to give satisfactory
results at a level currently reached by state-of-the-art methods on these data sets. We
experimentally show that the computational complexity reduction that is obtained
makes this approach eligible for real-time applications.

1 Introduction

Gesture recognition is a challenging task in the computer vision community with
numerous applications using motion data such as interactive entertainment, human-
machine interaction, automotive, or digital home. Recently, there is an increasing
availability of large and heterogeneous motion captured data characterized by a var-
ious range of qualities, depending on the type and quality of the motion sensors. We
thus separate (i) databases of high resolution and quality built from expensive cap-
turing devices and requiring a particular expertise, (ii) and low resolution and noisier
databases produced with cheap sensors that do not require any specific expertise.
Such databases open new challenges for assessing the robustness and generalization
capabilities of gesture recognition algorithms on diversifiedmotion data sets. Besides
the quality of recognition, the complexity of the algorithms and their computational
cost is indeed a major issue, especially in the context of real-time interaction.

We address in this paper the recognition of isolated gestures frommotion captured
data.Asmotion data are generally represented by high-dimensional time series,many
approaches have been developed to reduce their dimension, so that the recognition
process is more efficient while being still accurate. Among them, low-dimensional
embeddings of motion data have been proposed that enable to characterize and para-
meterize action sequences. Some of them are based on statistical descriptors (Hussein
et al. 2013), rely on relevant meaningful trajectories (Ofli et al. 2013), or characterize
the style (Hussein et al. 2013). In this paper we focus on dimensionality reduction
along two complementary axes: the spatial axis representing the configuration of the
skeleton at each frame, and the temporal axis representing the evolution over time
of the skeletal joints trajectories. With such an approach, two main challenges are
combined simultaneously:

• We use relevant trajectories (end-extremities) whose content may characterize
complex actions;

• Considering that the temporal variability is of primary importance when recogniz-
ing skilled actions and expressive motion, we apply an adaptive temporal down-
sampling to reduce the complexity of elastic matching.

These low-dimensional dual-based representations will be coupled with appropriate
recognition algorithms that we expect to be more tractable and efficient.

Our recognition principle is based on a recent method that improves the per-
formance of classical support vector machines when used with regularized elastic
kernels dedicated to time series matching. Our objective is to show how the spa-
tial and temporal dimensionality reductions, associated with such regularized elastic
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kernels significantly improve the efficiency, in terms of response time, of the algo-
rithm while preserving the recognition rates.

The second section briefly presents the related works and state-of-the-art for iso-
lated gesture recognition. In the third section we describe the nature of the motion
data as well as themain pre-processing of the data. The fourth section gives themajor
keypoints of the method, positioning it in the context of multivariate sequential data
classification. We present in the fifth part the evaluation of our algorithm carried out
on two data sets with very distinct qualities and compare its performance with those
obtained by some of the state-of-the-art methods. A final discussion is provided as
well as some perspectives.

2 Related Work

In human gesture recognition, there are two main challenges to be addressed:
dimension reduction closely linked to feature descriptors, and recognition models
which cover different aspects of dynamic modeling, statistical and machine learn-
ing approaches. In this section, we give a brief and non-exhaustive overview of the
literature associated with each challenge.

Dimension Reduction
The problem of dimensionality reduction (also called manifold learning) can be
addressed with the objective to find a low-dimensional space that best represents the
variance of the data without loosing too much information. Action descriptors have
thus been defined for characterizing whole motion sequences, or punctual frames
that need additional step of temporal modeling to achieve the recognition goal.

Numerous method are available to carry out such dimensionality reduction, the
most popular being linear approaches such as Principal Component Analysis (PCA,
Jolliffe 1986; Masoud and Papanikolopoulos 2003), Linear Discriminant Analy-
sis (LDA, McLachlan 2004), or linear projections preserving locally neighbor-
hoods (Locality Preserving Projection) (He and Niyogi 2003). Among non-linear
approaches, Locally Linear Embeddings (LLE, Roweis and Saul 2000), Metric Mul-
tidimensional Scaling (MDS, Kruskal and Wish 1978) and variants like Laplacian
Eigenmap (Belkin and Niyogi 2002), Isomap (Tenenbaum et al. 2000) have been
implemented to embed postures in low dimensional spaces in which a more efficient
time warp (DTW, see Sect. 5) algorithm can be used to classify movements (Black-
burn and Ribeiro 2007). An extension of this method, called ST-Isomap, considers
temporal relationships in local neighborhoods that can be propagated globally via
a shortest-path mechanism (Jenkins and Matarić 2004). Models based on Gaussian
processes with latent variables are also largely used, for instance a hierarchical ver-
sion has been recently exploited for gesture recognition (Han et al. 2010).

Other methods define discriminative features that best classify motion classes.
This is the case in the work of Yu and Aggarwal (2009) that reduces the motion data
to only five end-extremities of the skeleton (two feet, two hands and the head), thus
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giving some meaningful insight of the motion related to the action task. Fothergill
et al. (2012) and Zhao et al. (2012) have in particular applied random forests to
recognize actions, using a Kinect sensor, while Ofli et al. (2013) recently proposed
to automatically select the most informative skeletal joints to explain the current
action. In the same line, Hussein et al. (2013) use the covariance matrix for skeleton
joint locations over time as a discriminative descriptor to characterize a movement
sequence. Multiple covariance matrices are deployed over sub-sequences in a hier-
archical fashion in order to encode the relationship between joint movement and
time. In Li et al. (2010) a simple bag of 3D points is used to represent and recognize
gestural action. Similarly, in Wang et al. (2012), actionlets are defined from Fourier
coefficients to characterize the most discriminative joints. Finally, it can be men-
tioned, among many existing applications that address the use of elastic distances
into a recognition process, the recent work described in Sempena et al. (2011), as
well as the hardware acceleration proposed in Hussain and Rashid (2012). However,
to our knowledge, no work exploiting this type of distance has directly studied the
question of data reduction along the time axis.

Gesture Recognition
Recognition methods essentially aim at modeling the dynamics of gestures. Some
approaches Veeraraghavan et al. (2004), based on linear dynamic models, have used
autoregressive (AR) and autoregressive moving-average (ARMA) models to char-
acterize the kinematics of movements, while other approaches, based on nonlinear
dynamic models (Bissacco et al. 2007), have developed movement analysis and
recognition scheme based on dynamical models controlled by Gaussian processes.
Mitra and Acharya (2007) propose a synthesis of the major gesture recognition
approaches relying on Hidden Markov Models (HMM). Histograms of oriented 4D
normals have also been proposed in Oreifej and Liu (2013) for the recognition of
gestural actions from sequences of depth images. Wang et al. (2006) have exploited
conditional random fields to model joint dependencies and thus increase the dis-
crimination of HMM-like models. Recurrent neural network models have also been
used (Martens and Sutskever 2011); among them, conditional restricted Boltzmann’s
machines (Larochelle et al. 2012) have been studied recently in the context of motion
captured data modeling and classification.

In this paper, we propose a new representation of human actions that results from
a dual-based reduction method that occurs both spatially and temporally. We couple
this representation to a SVMclassificationmethod associatedwith regularized elastic
kernels.

3 Motion Representation

We are working on isolated human motions acquired through motion captured data-
bases. In recent years, there is an increasing availability of these databases, some of
them being captured by high resolution devices (infrared marker-tracking system),
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such as those provided by CMU (2003), HDM05 (Müller et al. 2007), and other ones
captured by low-cost devices, such as MSRAction3D captured with the Microsoft
Kinect system. With the first type of sensors, the acquisition process is expensive,
as it necessitates for capturing skilled motion with a good accuracy several cameras
withmanymarkers located on an actor, and a post-processing pipelinewhich is costly
in time and expertise. Instead, with the second type of sensors, the data acquisition is
affordable and necessitates less time and expertise, but with a loss of accuracy which
remains acceptable for some tasks.

After the recording, the captured data is filtered and reconstructed so that to
eliminatemost of the noise, data loss and labelling errors (markers inversion), and the
output of this acquisition pipeline is generally a set of 3D-trajectories of the skeleton
joints determined from the positions of markers. This kind of data is inherently
noisy, mainly due to the quality of the sensors and the acquisition process, but also
to approximations made during the reconstruction process. The modeling of the
skeleton is indeed subject to some variation for different reasons: in particular the
markers being positioned on cloths or on the skin of the actor’s body, they can move
during the capturing process, also the determination of the segment lengths, of the
joints’ centers and their associated rotation axis are not trivial and lead to modeling
errors. To overcome these difficulties, the skeleton model is obtained through an
optimization process such as the ones described in de Aguiar et al. (2006), O’Brien
et al. (2000), or Shotton et al. (2011). The techniques based on a skeleton model

Fig. 1 Examples of skeletons reconstructed from motion data captured from the Kinect (left) and
from the Vicon-MX device used by the Max Planck Institute (right)
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hence convert 3D sensor data into Cartesian or angular coordinates that define the
state of the joints over time with various accuracies.

Figure1 presents two skeletons reconstructed from two very distinct capture sys-
tems. On the right, the skeleton is reconstructed from data acquired via theMicrosoft
Kinect, on the left from the Vicon-MX device used by the Max Planck Institute to
produce the HDM05 datasets.

Thus, any skeletal-based model can be represented by a hierarchical tree-like
structure composed of rigid segments (bones) connected by joints. A motion can be
defined by a sequence of postures over time, formalized as a multivariate state vector
describing a trajectory over time, i.e. a time series: {Yt ∈ Rk}T1 = [Y1, . . . ,YT ], where
the k spatial dimension (k = 3 · N , with N the number of joints) typically varies
between 20 and 100 according to the capture devices and the considered task. As this
state vector is obviously not composed of independent scalar dimensions, the spatio-
temporal encoded redundancies open solutions for dimension reduction as well as
noise reduction approaches. This is particularly relevant for motion recognition, as
the objective is to aim at improving computation time and error rate.

4 Dimension Reduction of Motion Capture Data

Using elastic distances or kernels for recognition problems has proved to be very
accurate and efficient. However, one of the main difficulty of such methods with
time series data is to deal with their computational cost, in general quadratic with the
length of the time series and linear with the spatial dimension characterized by the
number of degrees-of-freedom. This high computational complexity is potentially
limiting their use, especially when large amounts of data have to be processed, or
when real-time constraint is required. We therefore expect that a dual dimensionality
reduction, both on the time and spatial axis is particularly relevant, especially when
associated to these techniques. Hence, for motion recognition using elastic distances,
we propose to show that there exists a spatio-temporal redundancy in motion data
that can be exploited.

Considering the quite rich literature on motion recognition, it appears that while
some studies have shown success with dimensionality reduction on the spatial axis,
very few have directly addressed a dimensionality reduction along the time axis, and
much less work by combining the two approaches. Keogh and Pazzani (2000) has
however proposed a temporal sub-sampling associated with dynamic time warping
in the context of time series mining, followed later by Marteau (2009). We address
herein after these two lines of research.
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4.1 Dimension Reduction Along the Spatial Axis

Dimension reduction (or manifold learning), is the process consisting of mapping
high dimensional data to representations lying in a lower-dimensional manifold.
This can be interpreted as mapping the data into a space characterized by a smaller
dimension, from which most of the variability of the data can be reproduced.

We consider in this paper a more direct approach based on the knowledge of the
mechanism underlying the production of motion data and the way human beings
perceive and discriminate body movements. We make the assumption that the per-
ception of human motion is better achieved in the so-called task-space represented
by a selection of significant 3D joint trajectories. This hypothesis is supported by
Giese et al. (2008) who show that visual perception of body motion closely reflects
physical similarities between joint trajectories. This is also consistent with the motor
theory ofmotion perception presented inGibet et al. (2011). Besides, wemay reason-
ably accept that these joint trajectories embed sufficient discriminative information
as inverse kinematics (widely used in computer animation and robotics) has shown
to be very efficient and robust to reconstruct the whole skeleton movement from the
knowledge of the end effector trajectories (hands, feet, head), possibly with the addi-
tional knowledge of mid-articulated joints trajectories (such as elbows and knees)
and constraints. Hence a straightforward approach consists in constructing a motion
descriptor that discards all joints information but the 3D positions of the mid and
end effectors extremities. We thus select the 3D positions for the two wrists, the two
ankles (the fingers and toes markers are less reliable in general), the two elbows,
the two knees and the head. This leads to a time-varying descriptor lying in a 18D
space, while a full body descriptor is embedded in a 60D, space for the Kinect sensor,
significantly more for vicon settings in general.

4.2 Dimension Reduction Along the Time Axis

The straightforward approach we are developing to explicitly reduce dimensionality
along the time axis consists in sub-sampling themovement data such that eachmotion
trajectories takes the form of a fixed-size sequence of L skeletal postures. Then it
becomes easy to perform a classification or recognition task by using elastic kernel
machines on such fixed-size sequences. With such an approach, performance rates
depend on the chosen degree of sub-sampling. This approach seems coarse since
long sequences are characterized with the same number of skeletal poses than short
sequences. For very short sequences, whose lengths are shorter than L , if any, we
over-sample the sequence to meet the fixed-size requirement. But we consider this
case as very marginal since we seek a sub-sampling rate much lower than the average
sequence of movement length. In the following, we will experiment and compare
uniform and adaptive down-sampling.
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4.2.1 Uniform Down-Sampling

In order to explicitly reduce dimensionality along the time axis, our first straight-
forward approach here consists in down-sampling the motion data so that each
motion trajectory takes the form of a fixed-size sequence of L skeletal postures,
evenly distributed along the time axis. We refer to this approach as uniform down-
sampling (UDS).

4.2.2 Adaptive Down-Sampling

The second approach is the so-called adaptive down-sampling (ADS) approach.
Similarly to UDS, each motion trajectory takes the form of a fixed-size sequence of
L skeletal postures, but these postures are not evenly distributed anymore along the
time axis. They are selected such as to minimize a trajectory reconstruction criteria.
Basicallywe follow the previouswork byMarteau andGibet (2006). A datamodeling
approach is used to handle the adaptive sampling of the {Yt } multidimensional and
discrete time series. More precisely, we are seeking an approximation Yθ∗ of Y
such as:

θ∗ = ArgMin
θ

(E({Yt }, {Yθ , t})) (1)

Fig. 2 Trajectory of the human wrist in the 3D Cartesian space adaptively down-sampled with the
localization of the 25 selected samples (red circles): motion capture data (blue) and reconstructed
data by linear interpolation (red)
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where E is the RMS error between Y and Yθ selected among the set of piecewise
linear approximations defined from Y . Since the optimal solution of the optimization
problem defined by Eq.1 is O(L .n2), where n is the length of the input time series,
we adopt a near to optimal solution as developed in Marteau and Ménier (2009)
whose complexity is O(n). As an example, in Fig. 2 the human wrist 3D trajectory is
down-sampled using 25 samples positioned along the trajectory by minimizing the
piecewise linear approximation.

5 Elastic Kernels and Their Regularization

Dynamic TimeWarping (DTW) (Velichko and Zagoruyko 1970; Sakoe and Chiba
1971), by far the most used elastic measure, is defined as

ddtw(X p,Yq) = d2
E (x(p), y(q)) (2)

+ Min

⎧
⎨

⎩

ddtw(X p−1,Yq) sup
ddtw(X p−1,Yq−1) sub
ddtw(X p,Yq−1) ins

where dE (x(p), y(q) is the Euclidean distance (possibly the square of the Euclidean
distance) defined on R

k between the two postures in sequences X and Y taken at
times p and q respectively.

When performed by a support vector machine (SVM) model, the optimization
problem inherent to this type of learning algorithm is no longer quadratic. Moreover,
the convergence towards the optimum is no longer guaranteed, which, depending on
the complexity of the task may be considered as detrimental.

Besides the fact that the DTWmeasure does not respect the triangle inequality, it
is furthermore not possible to directly define a positive definite kernel from it. Hence,
the optimization problem, inherent to the learning of a kernel machine, is no longer
quadratic which could, at least on some tasks, be a source of limitation.

Regularized DTW: recent works (Cuturi et al. 2007; Marteau and Gibet 2014)
allowed to propose new guidelines to regularize kernels constructed from elastic
measures such as DTW. A simple instance of such regularized kernel, derived from
Marteau and Gibet (2014) for time series of equal length, takes the following form,
which relies on two recursive terms:
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Krdtw(X p,Yq) = K xy
rdtw(X p,Yq) + K xx

rdtw(X p,Yq)

K xy
dtw(X p,Yq) = 1

3e
−νd2

E (x(p),y(q))

∑

⎧
⎨

⎩

h(p − 1, q)K xy
rdtw(X p−1,Yq)

h(p − 1, q − 1)K xy
rdtw(X p−1,Yq−1)

h(p, q − 1)K xy
rdtw(X p,Yq−1)

K xx
rdtw(X p,Yq) = 1

3

∑

⎧
⎨

⎩

h(p − 1, q)K xx
rdtw(X p−1,Yq)e−νd2

E (x(p),y(p))

Δp,qh(p, q)K xx
rdtw(X p−1,Yq−1)e−νd2

E (x(p),y(q))

h(p, q − 1)K xx
rdtw(X p,Yq−1)e−νd2

E (x(q),y(q))

(3)

whereΔp,q is theKronecker’s symbol, ν ∈ R
+ is a stiffness parameter whichweights

the local contributions, i.e. the distances between locally aligned positions, and
dE (., .) is a distance defined on Rk .

The initialization is simply K xy
rdtw(X0,Y0) = K xx

rdtw(X0,Y0) = 1.
The main idea behind this line of regularization is to replace the operators min

and max (which prevent the symmetrization of the kernel) by a summation operator
(
∑

). This leads to consider, not only the best possible alignment, but also all the
best (or nearly the best) paths by summing up their overall cost. The parameter ν is
used to control what we call nearly-the-best alignment, thus penalizing more or less
alignments too far from the optimal ones. This parameter can be easily optimized
through a cross-validation.

5.1 Normalization

As Krdtw evaluates the sum on all possible alignment paths of the products of local
alignment costs e−d2

E (x(p),y(p))/(2.σ 2) ≤ 1, its values can be very small depending on
the size of the time series and the selected value for σ . Hence, KDTW values tend to
0 when σ tends towards 0, except when the two compared time series are identical
(the corresponding Gram matrix suffers from a diagonal dominance problem). As
proposed inMarteau andGibet (2014), a manner to avoid numerical troubles consists
in using the following normalized kernel:

K̃rdtw(., .) = exp

(

α
log(Krdtw(., .)) − log(min(Krdtw))

log(max(Krdtw)) − min(Krdtw))

)

where max(Krdtw) and min(Krdtw) respectively are the max and min values taken
by the kernel on the learning data set and α > 0 a positive constant (α = 1 by
default). If we forget the proportionality constant, this leads to take the kernel Krdtw

at a power τ = α/(log(max(Krdtw)) − log(min(Krdtw))), which shows that the
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normalized kernel K̃rdtw ∝ K τ
rdtw is still positive definite (Berg et al. 1984, Proposi-

tion 2.7).
We consider in this paper the non definite exponential kernel (Gaussian or Radial

Basis Function (RBF) types) Kdtw = e−ddtw(.,.)/(2.σ 2) constructed directly from the
elastic measures ddtw, the normalized regularized elastic kernel K τ

rdtw, and the non-
elastic kernel obtained from the Euclidean distance,1 i.e., KE (., .) = e−d2

E (.,.)/σ .

6 Experimentation

To estimate the robustness of the proposed approaches, we evaluate them on two
motion capture databases of opposite quality, the first one, called HDM05, devel-
oped at the Max Planck Institute, the other one, calledMSR-Action3D, at Microsoft
research laboratories.

HDM05 Data Set (Müller et al. 2007) consists of data captured at 120Hz by
a Vicon MX system composed of a set of reflective optical markers followed by
six high-definition cameras and configured to record data at 120Hz. The movement
sequences are segmented and transformed into sequences of skeletal poses consisting
of N = 31 joints, each associated to a 3D position (x, y, z). In practice the position
of the root of the skeleton (located near its center of mass) and its orientation serving
as referential coordinates, only the relative positions of the remaining 30 joints are
used, which leads to represent each position by a vector YT ∈ R

k , with k = 90.
We consider two recognition/classification tasks: HDM05-1 and HDM05-2 that are
respectively those proposed inOfli et al. (2012) (also exploited in thework ofHussein
et al. (2013)) and Ofli et al. (2013). For both tasks, three subjects are involved during
learning and two separate subjects are involved during testing. For taskHDM05-1, 11
gestural actions are processed: {deposit floor, elbow to knee, grab high, hop both legs,
jog, kick forward, lie down floor, rotate both arms backward, sneak, squat, and throw
basketball}. This constitutes 249 motion sequences. For task HDM05-2, the subjects
are the same, but five additional gestural actions are considered in addition to the
previous 11: {jump, jumping jacks, throw, sit down, and stand up}. For this task, the
data set includes 393 movement sequences in total. For both tests, the lengths of the
gestural sequences are between 56 and 901 postures (corresponding to a movement
duration between 0.5 and 7.5 s).

MSR-Action3D data set: This database (Li et al. 2010) has recently been devel-
oped to provide a Kinect data benchmark. It consists of 3D depth image sequences
(depthmap) capturedby theMicrosoftKinect sensor. It contains 20 typical interaction
gestures with a game console that are labeled as follows high arm wave, horizontal
arm wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw
circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jogging,
tennis swing, tennis serve, golf swing, pickup and throw. Each action was carried out

1The Euclidean distance is usable only because a fixed number of skeletal positions is considered
to characterize each movement, and this, irrespectively of their initial length.
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by 10 subjects facing the camera, 2 or 3 times. This data set includes 567 motion
sequences whose lengths vary from 14 to 76 skeletal poses. The 3D images of size
640 × 480 were captured at a frequency of 15Hz. From each 3D image a skeletal
posture has been extracted with N = 20 joints, each one being characterized by three
coordinates. As for the previous data set, we characterize postures relatively to the
referential coordinates located at the root of the skeleton, which leads to represent
each posture by a vector Yt ∈ R

k , with k = 3 × 19 = 57. The task is to provide a
cross-validation on the subjects, i.e. 5 subjects participating in learning and 5 subjects
participating in testing, considering all possible configurations which represent 252
learning/testing pairs in total.

Hence, we perform three classification tasks: HDM05-1, HDM05-2 and MSR
Action3D, with or without a spatial dimensionality reduction while simultaneously
considering a down-sampling on the time axis:

• The spatial dimensionality reduction is obtained by constructing a frame (skeletal
pose) descriptor composed only with the end-effector trajectories in 3D (EED)
comparatively to a full-body descriptor (FBD) that integrates all the joints trajec-
tories that compose the skeleton. The FBD rests in a 90D space for HDM05 and
in a 60D space for MSRAction3D. The EED rests in a 24D space (3D positions
for 2 elbows, 2 hands, two knees and two feet) for the three tasks, leading to a data
compression of 73% for HDM05 and 55% for MSRAction3D.

• The dimensionality reduction on the time axis is obtained through either a uniform
down-sampling (UDS) or an adaptive down-sampling (ADS) based on a piecewise
approximation of the FBDor EED trajectories. The number of skeletal poses varies
from 5 to 30 for each trajectories, leading to an average data compression of 97%
for HDM05 and 74% for MSRAction3D.

6.1 Results and Analysis

For the three considered tasks, we present the results obtained using a SVM classi-
fier built from the LIBSVM library (Chang and Lin 2011), the elastic non definite
kernel Kdtw = e−ddtw(.,.)/(2.σ 2), the elastic definite kernel K τ

rdtw, and as a baseline, the
Euclidean RBF kernel, KE = e−d2

E (.,.)/(2.σ 2).
Figures3, 4 and 5 present the classification accuracies for respectively the

HDM05-1, HDM05-2 and MSRAction3D tasks for the test data when the num-
ber of skeletal postures selected after down-sampling varies between 5 and 30. For
these three figures, the top sub-figure presents classification accuracies when the
FBD (Full Body) descriptor associated to a uniform down sampling (UDS) are used,
the middle sub-figure classification accuracies when the FBD (Full Body) descriptor
associated to an adaptive down sampling (ADS) are used, and the bottom sub-figure
gives classification accuracies when the EED (EndExtremities) descriptor associated
to an adaptive down sampling (ADS) is used.
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Fig. 3 Classification
accuracies for HDM05-1
task as defined in Ofli et al.
(2012) uniform
down-sampling, full body
(top), adaptive
down-sampling, full body
(middle), adaptive
down-sampling, end effector
extremities (bottom), when
the number of skeletal poses
varies: KE (red, circle,
dash), Kdtw (black, square,
plain), K τ
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Fig. 4 Classification
accuracies for HDM05-2
task as defined in Ofli et al.
(2013) uniform
down-sampling, full body
(top), adaptive
down-sampling, full body
(middle), adaptive
down-sampling, end effector
extremities (bottom), when
the number of skeletal poses
varies: KE (red, circle,
dash), Kdtw (black, square,
plain), K τ

rdtw (blue, star,
dotted) 5 10 15 20 25 30
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Fig. 5 Classification
accuracies for the
MSRAction3D data set,
uniform down-sampling, full
body (top), adaptive
down-sampling, full body
(middle), adaptive
down-sampling, end effector
extremities (bottom), when
the number of skeletal poses
varies: KE (red, circle,
dash), Kdtw (black, square,
plain), K τ

rdtw (blue, star,
dotted). Additionally, the
cross validation on subjects
(252 tests) allows to show
the variance of the results
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On all three figures, we observe that the down-sampling does not degrade the clas-
sification accuracies when the number of poses is over 10, and for some tasks it may
even significantly improves the accuracy. This is likely due to the noise filtering effect
of the down-sampling. High levels of down-sampling (e.g. when 10–15 postures are
retained to describe movements, which represents an average compression ratio of
97% for HDM05 and 70% on MSRAction3D) lead to very satisfactory results (90–
98% for the two HDM05 tasks: Figs. 3 and 4, and 82–86% for the MSRAction3D
task: Fig. 5). Best results are obtained for a number of skeletal poses between 15
and 20, when the EED descriptor is used in conjunction with an adaptive down sam-
pling. The SVM classifier constructed on the basis of the regularized kernel K τ

rdtw
produces the best recognition rates (>=96% for the two HDM05 tasks). We note that
the MSRAction3D task is much more difficult since it consists in a cross validation
based on the performing subjects.Much lower performance are obtained for the SVM
built on the basis of the Euclidean distance; in addition, if very good classification
rate (96%) is obtained on the training data, due to the noisy nature of Kinect data
and the inter subject variability, the recognition rate on the test data falls down from
82 to 86%.

Table1 gives for the MSRAction3D data set and for the SVM based on KE , Kdtw

and K τ
rdtw kernels, means and standard deviations, obtained on the training data (L)

and testing data (T), of recognition rates (classification accuracies) when performing
the cross-validation over the 10 subjects (5 train—5 test splits leading to 252 tests), for
the full body descriptor (FBD) and the end extremities descriptor (EED) associated
either to a uniform down-sampling (UDS) or an adaptive Down Sampling (ADS).
For this test, movements are represented as sequences of 15 skeletal postures. The
drop of accuracies between learning and testing phases is due, on this dataset, to
the large inter subjects variability of movement performances. Nevertheless, our
experiment shows that the best average classification accuracies (obtained in general
with minimal variance) are obtained for the most compact movement representation,

Table 1 Means and standard deviations of classification accuracies on the MSRAction3D data set
obtained according to a cross-validation on the subjects (5-5 splits, 252 tests) (L): on the training
data, (T): on test data for a number of skeletal postures equal to 15

FBD-UDS KE (L) KE (T) Kdtw (L) Kdtw (T) K τ
rdtw (L) K τ

rdtw (T)

Mean 87,71 69,73 96,04 81,41 96,65 82,50

Stand. dev. 2,34 5,73 1,36 5,04 1,13 3,22

FBD-ADS KE (L) KE (T) Kdtw (L) Kdtw (T) K τ
rdtw (L) K τ

rdtw (T)

Mean 85,06 76,48 92,13 84,72 91,89 85,09

Stand. dev. 3,01 3,18 2,74 3,31 2,66 3,58

EED-ADS KE (L) KE (T) Kdtw (L) Kdtw (T) K τ
rdtw (L) K τ

rdtw (T)

Mean 92.46 76.27 97.14 85.16 97.19 85.72

Stand. dev. 3.45 0.96 3.57 5,04 0.93 3.07
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Table 2 Comparative study on the MSRAction3D dataset, according to a cross-validation on the
subjects (5-5 splits, 252 tests)

HDM05-1 Accuracy (%)

SMIJ (Ofli et al. 2012) 84.40

Cov3DJ, L = 3 (Hussein et al. 2013) 95.41

SVM K τ
rdtw, EED, ADS with 15 poses 96.33

HDM05-2 Accuracy (%)

SMIJ (Ofli et al. 2013), 1-NN 91.53

SMIJ (Ofli et al. 2013), SVM 89.27

SVM K τ
rdtw, EED, ADS with 15 poses 97.74

MSR-Action3D Accuracy (%)

Cov3DJ, L = 3 (Hussein et al. 2013) 72.33 ± 3.69a

HON4D, (Oreifej and Liu 2013), 82.15 ± 4.18

SVM K τ
rdtw 15 poses, 85.72 ± 3.07

aAccording to our own implementation of Cov3DJ

i.e. when the EED descriptor is used associated to an adaptive down-sampling. This
is true both for the training and testing datasets.

For comparison, Table2 gives results obtained by different methods of the state-
of-the-art and compare them with the performance of an SVM that exploits the reg-
ularized DTW kernel (K τ

rdtw) associated to the end extremity descriptor (EED) and
an adaptive down-sampling (ADS) of 15 skeletal poses. To that end, we have reim-
plemented the Cov3DJ approach (Hussein et al. 2013) to get, for the MSR Action3D
data set, the average result given by a 5-5 cross-validation on the subjects (252 tests).
This comparative analysis shows that the SVM constructed from regularized DTW
kernel provides results slightly above the current state-of-the-art for the considered
data sets and tasks.

Fig. 6 Elapsed time as a
function of the number of
skeletal poses (10–30 poses):
(i) RBF Euclidean Kernel,
Red/round/dashed line,
(ii) RBF DTW kernel,
Black/square/plain line,
(iii) normalized regularized
DTW kernel(K τ

rdtw),
blue/star/dotted line
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Finally, in Fig. 6, we give the average CPU elapsed time for the processing of a
single gestural MSRAction3D action when varying the number of retained skeletal
poses. The test has been performed on an Intel Core i7-4800MQ CPU, 2.70GHz.
Although the computational cost for the elastic kernel is quadratic, the latency for the
classification of a single gestural action using a SVM K τ

rdtw is less than 25ms when
15 poses are considered, which effectively meets easily real-time requirements. The
speed-up is, as expected, quadratic with the reduction of the number of skeletal poses
since the elapsed time is roughly 100ms when 30 poses are considered.

7 Conclusion and Perspectives

In the context of isolated action recognition, where few studies explicitly consider
dimension reduction along both the spatial and time axes simultaneously, we have
presented a recognition model based on the dimensionality reduction of the skeletal
pose descriptor and the down-sampling ofmotion sequences coupled to elastic kernel
machines. Two ways of down-sampling have been considered: a uniform down-
sampling that evenly selects samples along the time axis and an adaptive down-
sampling based on a piecewise linear approximation model. The dimensionality
reduction of the skeletal pose descriptor is straightforwardly obtained by considering
only end effector trajectories, which is consistent with some sensorimotor perceptual
evidence about the way human beings perceive and interpret motion. On the data sets
and tasks that we have addressed, we have shown that, even when quite important
down-sampling is considered, the recognition accuracy only slightly degrades. In any
case, best accuracies are obtainedwhen an adaptive down-sampling is used on the end
effector 3D trajectories. The temporal redundancy is therefore high and apparently
not critical for the discrimination of the selected movements and tasks. In return, the
down-sampling benefits in terms of computational complexity is quadratic with the
reduction of the number of skeletal postures kept along the time axis.

Furthermore, the elasticity of the kernel provides a significant performance gain
(comparatively to kernel based on the Euclidean distance) which is very important
when the data are characterized by high variability. Our results show that a SVM
based on a regularized DTW kernel is very competitive comparatively to the state-
of-the-art methods applied on the two tested data sets, even when the dimension
reduction on the time axis is important. The down-sampling and dimensionality
reduction of the descriptor ensures that this approach meets the real-time constraint
of gesture recognition. Adjusting dynamically the sampling rate to the current signal
bandwidth is thus, in the scope of motion recognition in data stream, quite a feasible
and important issue when time elastic distances or kernels are involved as proposed
in Dupont and Marteau (2015).

This study opens perspectives to the use of elastic kernels constructed from
more sophisticated time elastic distances (Marteau 2009) that cope explicitly with
time stamped data, associated to on-line adaptive sampling techniques such the one
developed in this paper or more sophisticated ones capable of extracting the most
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significant and discriminant skeletal poses in movement sequences, based on seman-
tic segmentation. We also aim at testing these powerful tools to more complex tasks,
where skilled gestures are studied, or/and expressive variations are considered.
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Exact and Approximate Minimal
Pattern Mining

Arnaud Soulet and François Rioult

Abstract Condensed representations have been studied extensively for 15years.
In particular, the maximal patterns of the equivalence classes have received much
attention with very general proposals. In contrast, the minimal patterns remained in
the shadows in particular because they are too numerous and they are difficult to
extract. In this paper, we present a generic framework for exact and approximate
minimal patterns mining by introducing the concept of minimizable set system.
This framework based on set systems addresses various languages such as itemsets
or strings, and at the same time, different metrics such as frequency. For instance,
the free, δ-free and the essential patterns are naturally handled by our approach,
just as the minimal strings. Then, for any minimizable set system, we introduce a
fast minimality checking method that is easy to incorporate in a depth-first search
algorithm for mining the δ-minimal patterns. We demonstrate that it is polynomial-
delay and polynomial-space. Experiments on traditional benchmarks complete our
study by showing that our approach is competitive with the best proposals.

1 Introduction

Minimality is an essential concept of pattern mining. Given a function f and a lan-
guage L , a minimal pattern X is one of the smallest pattern with respect to the set
inclusion in L satisfying the property f (X). Interestingly, the whole set of mini-
mal patterns forms a condensed representation ofL adequate to f : it is possible to
retrieve f (Y ) for any pattern of Y inL . Typically, the set of free itemsets (Boulicaut
et al. 2000) (also called generators or key itemsets (Pasquier et al. 1999)) is a con-
densed representation of all itemsets (here, f and L are respectively the frequency
and the itemset languages). Of course, it is often more efficient to extract minimal
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patterns rather than all patterns because they are less numerous. In addition, minimal
patterns have a lot of useful applications including higher KDD tasks: producing the
most relevant association rules (Zaki 2000; Crémilleux andBoulicaut 2003), building
classifiers (Liu et al. 1998) or generatingminimal traversals (Eiter andGottlob 2002).
Minimality has been studied in the case of different functions (like frequency (Calders
et al. 2004) and condensable functions (Soulet and Crémilleux 2008)) and different
languages (e.g., itemsets (Boulicaut et al. 2000) and sequences (Lo et al. 2008)).
Although the minimality has obvious advantages (Li et al. 2006), very few studies
are related to the minimality while maximality (i.e., closed patterns) has been widely
studied. Indeed, 59% of publications about condensed representations benefit from
closed patterns and only 13% rely on free patterns (Giacometti et al. 2013). In partic-
ular, to the best of our knowledge, there is no framework as general as those proposed
for maximality (Arimura and Uno 2009).

1.1 Depth-First Search Mining

We think that a current major drawback of minimal patterns lies in their ineffi-
cient extraction. This low efficiency comes mainly from the fact that most existing
algorithms use a levelwise approach (Boulicaut et al. 2000; Soulet and Crémilleux
2008; Calders and Goethals 2005; Hébert and Crémilleux 2005) (i.e., breadth-first
search/generate and test method). As they store all candidates in memory during the
generation phase, the extraction may fail due to memory lack. To tackle this memory
pitfall, it seems preferable to adopt a depth-first traversal which often consumes less
memory and is still very fast. However, check whether the minimality is satisfied or
not is very difficult in a depth-first traversal. In the case of frequency with itemsets,
the best way for evaluating the minimality for a pattern (saying abc) is to compare
its frequency with that of all its direct subsets (here, ab, ac and bc). But, when the
pattern abc is achieved by a depth-first traversal, only frequencies of a and ab have
previously been calculated. As the frequency of ac and bc are unknown, it is impos-
sible to check whether the frequency of abc is strictly less than that of ac and bc.
To cope with this problem, (Calders and Goethals 2005; Liu et al. 2008; Szathmary
et al. 2009) have adopted a different traversal with reordered items. For instance,
when the itemset abc is reached by this new traversal, c, b, bc, a, ac and bc were
previously scanned and their frequency are known for checking whether abc is mini-
mal. Unfortunately, such a method requires to store all the patterns in memory (here,
c, b, bc and so on) using a trie (Calders and Goethals 2005) or an hash table (Liu
et al. 2008; Szathmary et al. 2009). For this reason, existing DFS proposals (Calders
and Goethals 2005; Liu et al. 2008; Szathmary et al. 2009) do not solve the memory
consumption issue as expected.
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1.2 Approximate Minimality

The large size of condensed representations based on minimal patterns is often men-
tioned as a major drawback of the minimality. For instance, the free patterns are
always more numerous than closed patterns by definition (Calders et al. 2004). Using
an approximate minimality is a way to reduce the cardinality of representations.With
such representations, it is not possible to exactly regenerate the information about
all the patterns. Now we can only get bounds on it. In other words, the whole set of
approximate minimal patterns forms a condensed representation of L adequate to
f : it is possible to retrieve f̃ (Y ) for any pattern of Y in L with a bounded error:
ε( f̃ (Y ), f (Y )) ≤ δ. Nevertheless, in many situations, these bounds are sufficient to
approximate queries (Boulicaut et al. 2003). More evidences of the practical interest
of such representations have been discussed in (Mannila and Toivonen 1996). To
the best of our knowledge, this paper is the first work to generalize the notion of
approximate representation of minimal patterns to measure other than frequency.

1.3 Contributions

The main goal of this paper is to present a generic and efficient framework for exact
and approximate minimal patternmining by providing a depth-first search algorithm.
We introduce the notion of ε-minimizable set system which is at the core of the
definition of this framework. This latter covers a broad spectrum of minimal patterns
including all the languages and measures investigated in (Soulet and Crémilleux
2008; Arimura and Uno 2009). Fast minimality checking in a depth-first traversal is
achieved thanks to the notion of critical objectswhich depends on the ε-minimizable
set system. Based on this new technique, we propose theDeFMe algorithm. It mines
the δ-minimal patterns for any minimizable set system using a depth-first search
algorithm. To the best of our knowledge, this is the first algorithm that enumerates
exact and approximate minimal patterns in polynomial delay and in linear space
with respect to the dataset. This paper extends our previous work (Soulet and Rioult
2014) by adding the ability to extract approximate patterns. Furthermore, this paper
presents the demonstrations of all our theoretical results and it is also enriched with
an extensive study concerning free itemset mining.

The outline of this paper is as follows. In Sect. 2, we discuss some related work
about minimality in the landscape of condensed representations. In Sect. 3, we pro-
pose our generic framework for minimal pattern mining based on set systems. We
introduce our fast minimality checking method in Sect. 4 and we indicate how to use
it by sketching theDeFMe algorithm. Section5 shows that ε-MSS framework enable
us to deal with various pattern mining problem related with minimality. Section6
provides experimental results.
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2 Related Work

As discussed in the introduction, we propose the first algorithm for minimal pattern
mining with moderate memory usage. Beyond algorithmic aspects, we think that
that our framework also has the advantage of extending the notion of minimality in
three orthogonal aspects: flexible function, flexible language and exact/approximated
(see Sect. 2.1). The expected benefits of this generalization are important because
minimality is a central task of Knowledge Discovery in Databases (see Sect. 2.2).

2.1 Minimality for Exact and Approximate Condensed
Representations

The collection of minimal patterns is a kind of condensed representations. Let us
recall that a condensed representation of the frequent patterns is a set of patterns
that can regenerate all the patterns that are frequent with their frequency. The suc-
cess of the condensed representations stems from their undeniable benefit to reduce
the number of mined patterns by eliminating redundancies. A large number of con-
densed representations have been proposed in literature (Calders et al. 2004; Ham-
rouni 2012): closed itemsets (Pasquier et al. 1999), free itemsets (Boulicaut et al.
2000), essential itemsets (Casali et al. 2005), Non-Derivable Itemsets (Calders and
Goethals 2005), k-free itemsets (Calders and Goethals 2003), itemsets with nega-
tion (Kryszkiewicz 2005) and so on. Besides, approximate condensed representa-
tions have also been proposed to approximate the frequency of itemsets as it is the
case with δ-free itemsets (Boulicaut et al. 2003). Two ideas are at the core of the
condensed representations: the closure operator (Hamrouni 2012) that builds equiv-
alence classes and the principle of inclusion-exclusion. As the inclusion-exclusion
principle only works for the frequency, this paper exclusively focuses on minimal
patterns considering equivalence classes.

The exact condensed representations of minimal patterns are not limited to fre-
quency or itemsets. First, there are a few extensions of condensed representations
to measure other than frequency. In Soulet et al. (2004), it is shown that the for-
mer condensed representations are adequate to any frequency-based measure (e.g.,
lift, growth rate). Soulet and Crémilleux (2008) addresses all the condensable mea-
sures dealing with aggregate measures, bond and so on. As the notion of closure
operator is at the core of these approaches, it is also possible to mine the minimal
patterns adequate to classical aggregate functions such as min, max or sum (Soulet
and Crémilleux 2008). In the rest of this paper, we show that our unifying framework
deals with free (Boulicaut et al. 2000), δ-free (Boulicaut et al. 2003), essential (Casali
et al. 2005) and adequate free (Soulet and Crémilleux 2008) itemsets. More interest-
ingly, many other forms of minimal patterns never discussed in the literature fit into
this framework. In particular, we generalize the concept of approximate condensed
representation to a wide range of measures.
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In parallel, several studies have extended the notion of generators to address
other languages such as sequences (Lo et al. 2008; Gao et al. 2008), negative item-
sets (Gasmi et al. 2007), graphs (Zeng et al. 2009). Unfortunately nowork proposed a
generic framework extending the condensed representations based on minimality to
a broad spectrum of languages, as it was done with the closed patterns (Arimura and
Uno 2009). For instance, Boulicaut et al. (2000), Pasquier et al. (1999), Calders and
Goethals (2005), Liu et al. (2008) only address itemsets or Lo et al. (2008), Gao et al.
2008 focus exclusively on sequences. In this paper, we make the connection between
the set systems and only two languages: itemsets and strings due to space limitation.
Numerous other languages can be represented using this set system framework. In
particular, all the languages depicted by Arimura and Uno (2009) are suitable.

2.2 Interest of Minimality

Minimal pattern mining has a lot of applications and their use is not limited to obtain
frequent patterns more efficiently. Their properties are useful for higher KDD tasks.
For instance, minimal patterns are used in conjunction of closed patterns to pro-
duce non-redundant (Zaki 2000), informative rules (Pasquier et al. 1999) or simplest
rules (Crémilleux and Boulicaut 2003). The sequential rules also benefit from mini-
mality (Lo et al. 2009). It is also possible to exploit the minimal patterns for mining
the classification rules that are the key elements of associative classifiers (Liu et al.
1998; Rioult et al. 2010).

In addition, the essential patterns are useful for deriving minimal traversals that
exactly corresponds to the largest essential patterns with respect to the inclusion. Let
us recall that the minimal transversal generation is a very important problem which
has many applications in Logic (e.g., satisfiability checking), Artificial Intelligence
(e.g., model-based diagnosis) and Machine Learning (e.g., exact learning) (Eiter and
Gottlob 2002; Murakami and Uno 2013). For instance, minimal traversal are useful
for the discovery of key actors in social networks that belong to several communi-
ties (Jelassi et al. 2014). Thus, the efficient extraction ofminimal patterns as proposed
in this paper is a very crucial stage at the core of many tasks.

3 ε-Minimizable Set System Framework

3.1 Basic Definitions

A set system (F , E) is a collection F of subsets of a ground set E (i.e. F is a
subset of the power set of E). A member of F is called a feasible set. A strongly
accessible set system (F , E) is a set system where for every feasible sets X , Y
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satisfying X ⊂ Y , there is an element e ∈ Y \ X such that Xe ∈ F .1 Obviously,
itemset language fits this framework with the set system (2I ,I )whereI is the set
of items. (2I ,I ) is even strongly accessible. But the notion of set system allows
considering more sophisticated languages. For instance, it is easy to build a family
setFS denoting the collection of substrings of S = abracadabra by encoding each
substring sk+1sk+2 . . . sk+n by a set {(sk+1, 1), (sk+2, 2), . . . , (sk+n, n)}. The set sytem
(FS, ES = ⋃

FS) is also strongly accessible. The set system formalism has already
been used to describe pattern mining problems (see for instance Arimura and Uno
2009).

Intuitively, a pattern always describes a set of objects. This set of objects is
obtained from the pattern by means of a cover operator formalized as follows:

Definition 1 (Cover operator) Given a set of objects O , a cover operator cov : 2E
→ 2O is a function satisfying cov(X ∪ Y ) = cov(X) ∩ cov(Y ) for every X ∈ 2E

and Y ∈ 2E .

This definition indicates that the coverage of the union of two patterns is exactly
the intersection of their two covers. For itemsets, a natural cover operator is the exten-
sive function of an itemset X that returns the set of tuple identifiers supported by
X : covI (X) = {o ∈ O | X ⊆ o}. But, in general, the cover is not the final aim: the
cardinality of covI (X) corresponds to the frequency of X . In the context of strings,
the index list of a string X also defines a cover operator: covS(X) = {i | ∀(s j , j) ∈
X, (s j , j + i) ∈ S}. Continuing our example with the string S = abracadabra,
it is not difficult to compute the index lists covS({(a, 1)}) = {0, 3, 5, 7, 10} and
covS({(b, 2)}) = {0, 7} and then, to verify covS({(a, 1), (b, 2)}) = covS({(a, 1)}) ∩
covS({(b, 2)}) = {0, 7}.

For some languages, the same pattern is described by several distinct sets
and then it is necessary to have a canonical form. For example, consider the
set {(a, 1), (b, 2), (r, 3)} corresponding to the string abr . Its suffix {(b, 2), (r, 3)}
encodes the same string br as {(b, 1), (r, 2)}. The latter is the canonical form of the
string br . To retrieve the canonical form of a pattern, we introduce the notion of
canonical operator:

Definition 2 (Canonical operator) Given two set systems (F , E) and (G , E), a
canonical operator φ : F ∪ G → F is a function satisfying (i) X ⊂ Y ⇒ φ(X) ⊂
φ(Y ) and (ii) X ∈ F ⇒ φ(X) = X for all sets X,Y ∈ G .

In this definition, the property (i) ensures us that the canonical forms of two
comparable sets with respect to the inclusion remain comparable. The property
(ii) means that the set system (F , E) includes all canonical forms. Continuing
our example about strings, it is not difficult to see that φS : {(sk, k), (sk+1, k +
1), . . . , (sk+n, n)} �→ {(sk, 1), (sk+1, 2), . . . , (sk+n, n − k + 1)} satisfies the two
desired properties (i) and (ii). For instance, φS({(b, 2), (r, 3)}) returns the canon-
ical form of the string {(b, 2), (r, 3)} which is {(b, 1), (r, 2)}.

1We use the notation Xe instead of X ∪ {e}.
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3.2 ε-Minimizable Set System

Rather than considering an entire set system, it is wise to select a smaller part that
provides the same information (w.r.t. a cover operator). For this, it is necessary that
this set system plus the cover operator form a minimizable set system:

Definition 3 (ε-Minimizable set system) A ε-minimizable set system is a tuple
〈(F , E),G , cov, φ, ε〉 where:
• (F , E) is a finite, strongly accessible set system. A feasible set in F is called a
pattern.

• (G , E) is a finite, strongly accessible set system satisfying for every feasible set
X,Y ∈ F such that X ⊆ Y and element e ∈ E , X \ {e} ∈ G ⇒ Y \ {e} ∈ G . A
feasible set in G is called a generalization.

• cov : 2E → 2O is a cover operator.
• φ : F ∪ G → F is a canonical operator such that for every feasible set X ∈ G ,
it implies cov(φ(X)) = cov(X).

• ε : O → �+ is an error function.

Let us now illustrate the role of G compared to F in the case of strings. In fact,
GS gathers all the suffixes of any pattern of FS . Typically, {(b, 2), (r, 3)} ∈ GS is
a generalization of {(a, 1), (b, 2), (r, 3)} ∈ FS . As said above, {(b, 2), (r, 3)} has
an equivalent form in FS: φS({(b, 2), (r, 3)}) = {(b, 1), (r, 2)}. By convention, we
extend the definition of covS to GS by considering that covS(φS(X)) = covS(X). In
addition, it is not difficult to see that GS satisfies the desired property with respect to
FS: for every feasible set X,Y ∈ FS such that X ⊆ Y and element e ∈ ES , X \ {e} ∈
GS ⇒ Y \ {e} ∈ GS . Indeed, if X \ {e} is a suffix of X , it means that e is the first letter.
Ifwe consider a specialization of X andwe again remove the first letter,we also obtain
a suffix belonging to GS . Therefore, 〈(FS, ES),GS, covS, φS, εS〉 is a minimizable
set system (where εS returns 1 for any object as done for δ-free (Boulicaut et al.
2000)). Note that Sect. 5 provides other examples of minimizable set systems.

In comparison with Soulet and Rioult (2014), Definition 3 introduces a new para-
meter ε to be able to extract minimal approximate patterns. This error function ε

gives the weight of each object. Indeed, suppose that we have two feasible sets
X ⊆ Y whose covers are respectively OX and OY . To determine whether X is suf-
ficient to approximate Y , we propose to see if the objects OX \ OY are important.
More precisely, the cover difference OX \ OY is measured by

∑
o∈OX\OY

ε(o). In the
case of strings, εS returns 1 for any object saying that all the objects have the same
importance.

To simplify notations, we extends ε to any subsets of O as follows: ε : O �→∑
o∈O ε(o). Then, ε(OX \ OY ) equals to

∑
o∈OX\OY

ε(o).
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3.3 δ-Minimal Patterns

Obviously, aminimizable set system can be reduced to a systemof smaller cardinality
of which the patterns are called the δ-minimal patterns:

Definition 4 (δ-Minimal pattern)A pattern X is δ-minimal for 〈(F , E),G , cov, φ, ε〉
iff X ∈ F and for every generalization Y ∈ G such that Y ⊂ X , ε(cov(Y ) \
cov(X)) > δ. Mδ(S ) denotes the set of all δ-minimal patterns.

Definition4 means that a pattern is δ-minimal whenever its cover differs from that
of any generalization with an error ε greater than δ. The higher the threshold δ is,
the higher the approximation error of non-minimal patterns by δ-minimal patterns
will be. If the threshold δ is set to 0, the extracted patterns are said to be exact and
instead of writing 0-minimal patterns, we write minimal pattern. For example, for
the cover operator covS with δ = 0, the minimal patterns have a strictly smaller cover
than their generalizations. The string ab is not minimal due to its suffix b because
covS({(b, 2)}) = covS({(a, 1), (b, 2)}) = {0, 7}. For our running example, thewhole
collection of 0-minimal strings is M0(SS) = {a, b, r, c, d, ca, ra, da}.

Given a minimizable set system S = 〈(F , E),G , cov, φ, ε〉, the δ-minimal
pattern mining problem consists in enumerating all the δ-minimal patterns
for S .

4 Enumerating the δ-Minimal Patterns

This section aims at effectively mining all the minimal patterns in a depth-first search
manner (Sect. 4.3). To do this, we rely on two key ideas: the pruning of the search
space (Sect. 4.1) and the fast minimality checking (Sect. 4.2).

Before, 0-minimal patterns are sufficient to induce the cover of any pattern
(including non-minimal ones). From now, we consider a ε-minimizable set system
S = 〈(F , E),G , cov, φ, ε〉. The 0-minimal patterns M0(S ) is a lossless repre-
sentation of all patterns of F in the sense we can find the cover of any pattern.
More importantly, we can even bound the approximation error of an approximate
condensed representation stemming from the δ-minimal patterns Mδ(S ):

Theorem 1 (Exact and approximate condensed representation)The set of δ-minimal
patterns is a concise representation of F adequate to cov: for any pattern X ∈ F ,
there exists Y ⊆ X such that φ(Y ) ∈ Mδ(S ) and ε(cov(φ(Y )) \ cov(X)) ≤ δ.

Proof Let X be a pattern. There are two cases:

• X is δ-minimal. By Definition 4, X belongs to Mδ(S ) ⊆ F . In such case, as
φ(X) = X , Thereom 1 is correct by considering Y = X .

• X is not δ-minimal. There exists Y ∈ G such that Y ⊂ X with ε(cov(Y ) \
cov(X)) ≤ δ (see Definition 4). Definition 2 gives that φ(Y ) ⊂ φ(X) and even,
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φ(Y ) ⊂ X (because X ∈ F implies that φ(X) = X ). Note that the cardinality of
φ(Y ) is strictly smaller than that of X .

By induction, it is sure that there exists Y such that φ(Y ) is a smaller feasible set
than X verifying φ(Y ) ∈ Mδ(S ) and ε(cov(φ(Y )) \ cov(X)) ≤ δ (since the most
general feasible sets of F are δ-minimal by definition). �

Theorem 1means thatMδ(S ) is really a condensed representation ofS because
the δ-minimal pattern mining enables us to approximate the cover of any pattern
in S with δ as upper bound. For instance, the cover of the non-0-minimal pat-
tern {(a, 1), (b, 2)} equals to that of the 0-minimal pattern φ({(b, 2)}) = {(b, 1)}:
covS({(a, 1), (b, 2)}) = covS({(b, 1)}) = {0, 7}.

It is preferable to extract M0(S ) instead of S because its size is lower (and, in
general, much lower) than the total number of patterns. As indicated in introduction,
the number of 0-minimal patterns may remain too important and it is often inter-
esting to replace the exact regeneration by an approximate one. Indeed, the size of
the approximate condensed representation decreases with δ: Mδ1(S ) ⊆ Mδ2(S )

whenever δ1 ≥ δ2.

4.1 Search Space Pruning

The first problem we face is fairly classical. Given a ε-minimizable set systemS =
〈(F , E),G , cov, φ〉, the number of patterns |F | is huge in general (in the worst
case, it reaches 2|E | patterns). So, it is absolutely necessary not to completely scan
the search space for focusing on the minimal patterns. Effective techniques can be
used to prune the search space due to the downward closure of Mδ(S ):

Theorem 2 (Independence system) If a pattern X is δ-minimal for S , then any
pattern Y ∈ F satisfying Y ⊆ X is also δ-minimal forS .

The proof of this theorem strongly relies on a key lemma saying that a non-
minimal pattern (whatever δ) has a direct generalization having approximately the
same cover with respect to ε:

Lemma 1 If X is not δ-mininal, there exists e ∈ X such that X \ {e} ∈ G and
ε(cov(X \ {e}) \ cov(X)) ≤ δ.

Proof Let X be a non-minimal pattern of F , there exists Y ∈ G such that Y ⊂
X and ε(cov(Y ) \ cov(X)) ≤ δ by Definition 4. As G is strongly accessible, there
exists a chain of generalizations Y0 ⊂ Y1 ⊂ · · · ⊂ Yn such that Y0 = Y , Yn = X and
|Yi | = |Yi−1| + 1 for any i ∈ {1, . . . , n − 1}. Thereby, Yn−1 is a generalization in
G and the isotony of cov gives that cov(Y ) ⊇ cov(Yn−1). So, cov(Yn−1) \ cov(X) ⊆
cov(Y ) \ cov(X). As ε(O) increases with O , it means that ε(cov(Yn−1) \ cov(X)) ≤
ε(cov(Y ) \ cov(X)) ≤ δ. Considering e = X \ Yn−1, it means that X \ {e} ∈ G and
ε(cov(X \ {e}) \ cov(X)) ≤ δ. �
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Now we prove Theorem 2:

Proof Let X be a pattern such that X ∈ F \ Mδ(S ), there exists e′ ∈ E such
that ε(cov(X \ e′) \ cov(X)) ≤ δ (Lemma 1). Now let us consider e ∈ E such that
Xe ∈ F .

• ε(cov(Xe \ e′) \ cov(Xe)) equals to ε((cov(X \ e′) ∩ cov(e)) \ (cov(X) ∩
cov(e))) due to the definition of cov. As set intersection is distributive over set
difference, ε(cov(Xe \ e′) \ cov(Xe)) can be rewritten as follows: ε((cov(X \
e′) \ cov(X)) ∩ cov(e)). As ε(O) increases with O and (cov(X \ e′) \ cov(X)) ∩
cov(e) ⊆ (cov(X \ e′) \ cov(X)), we obtain that ε((cov(X \ e′) \ cov(X)) ∩
cov(e)) ≤ ε(cov(X \ e′) \ cov(X)) ≤ δ.

• As X ∈ F and X \ e′ ∈ G , it gives (Xe) \ e′ ∈ G due to the property of G with
respect toF (see Definition 3) considering that Xe is a superset of X .

As the set (Xe) \ {e′} is a generalization of Xe where ε(cov((Xe) \ {e′}) \
cov(Xe)) ≤ δ, the pattern Xe is not δ-minimal. In other words, a specialization of a
non-δ-minimal pattern is also non-δ-minimal. The contrapositive of this implication
proves that Theorem 2 is right. �

For instance, as the string da is 0-minimal, the substrings d and a are also 0-
minimal. More interestingly, as ab is not 0-minimal, the string abr is not 0-minimal.
It means that the string ab is a cut-off point in the search space. In practice, anti-
monotone pruning is recognized as a very powerful tool whatever the traversal of the
search space (level by level or in depth).

4.2 Fast δ-Minimality Checking

The main difficulty in extracting the δ-minimal patterns is to test whether a pat-
tern is δ-minimal or not. As we mentioned earlier, this is particularly difficult in
a depth-first traversal because all subsets have not yet been enumerated. Indeed,
depth-first approaches only have access to the first parent branch contrary to level-
wise approaches. To overcome this difficulty, we introduce the concept of critical
objects inspired from critical edges in case of minimal traversals (Murakami and
Uno 2013). Intuitively, the critical objects of an element e for a pattern X are objects
that are not covered by X due to the element e. We now give a formal definition of
the critical objects derived from any cover operator:

Definition 5 (Critical objects) For a pattern X , the critical objects of an element
e ∈ X , denoted by ĉov(X, e) is the set of objects that belong to the cover of X
without e and not to the cover of e: ĉov(X, e) = cov(X \ e) \ cov(e).

Let us illustrate the critical objects with our running example. For {(a, 1), (b, 2)},
the critical objects ĉov(ab, a) of the element (a, 1) correspond to ∅ (= {0, 7} \
{0, 3, 5, 7, 10}). It means that the addition of a to b has no impact on the cover of
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ab. At the opposite, for the same pattern, the critical objects of (b, 2) are {3, 5, 10}
(= {0, 3, 5, 7, 10} \ {0, 7}). It is due to the element b that ab does not cover the
objects {3, 5, 10}.

The critical objects are central in our proposition for the following reasons: (1) the
critical objects easily characterize the minimal patterns; and (2) the critical objects
can efficiently be computed in a depth-first search algorithm.

4.2.1 Minimal Pattern Characterization

The converse of Lemma 1 says that a pattern is δ-minimal if its cover differs from that
of its generalization with an error ε exceeding δ. We can reformulate this definition
thanks to the notion of critical objects as follows:

Property 1 (δ-Minimality) X ∈ F is δ-minimal iff ∀e ∈ X such that X \ e ∈ G ,
ε(ĉov(X, e)) > δ.

Proof Let X be a δ-minimal and e be an element in X such that X \ e ∈ G . The
following equality is satisfied:

cov(X \ e) \ cov(X) = cov(X \ e) \ cov((X \ e) ∪ e)

= cov(X \ e) \ (cov(X \ e) ∩ cov(e))

= (cov(X \ e) \ cov(X \ e)) ∪ (cov(X \ e) \ cov(e))
= ∅ ∪ ĉov(X, e)

First, as X \ e is a generalization, Definition 4 implies that ε(cov(X \ e) \ cov(X)) >

δ and then, ε(ĉov(X, e)) > δ due to the above equality.
Now, assume that ε(ĉov(X, e)) > δ is satisfied by any element e ∈ X . Let us con-

sider Y a generalization of X with Y ⊂ X . Due to strong accessibility, it is sure that
there exists at least e′ such that Y ⊆ X \ e′ ⊂ X . We have that ε(ĉov(X, e′)) > δ

and even, ε(cov(X \ e′) \ cov(X)) > δ (see the above equality). As cov(X \ e′) ⊆
cov(Y ), we conclude that ε(cov(Y ) \ cov(X)) > δ and then, X is δ-minimal accord-
ing to Definition 4. �

Typically, as b is a generalization of the string ab and at the same time, ĉov(ab, a)

is empty, ab is not 0-minimal. Property 1 means that checking whether a candidate
X is δ-minimal only requires to know the critical objects of all the elements in X .
Unlike the usual definition, no information is required on the subsets. Therefore, the
critical objects allow us to design a depth-first algorithm if (and only if) computing
the critical objects does not also require information on the subsets.
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4.2.2 Efficiently Critical Object Computation

In a depth-first traversal, we want to update the critical objects of an element e for the
pattern X when a new element e′ is added to X . In such case, we now show that the
critical objects can efficiently be computed by intersecting the old set of the critical
objects ĉov(X, e) with the cover of the new element e′:

Property 2 The following equality holds for any pattern X ∈ F and any two ele-
ments e, e′ ∈ E: ĉov(Xe′, e) = ĉov(X, e) ∩ cov(e′).

Proof Given a feasible set X ∈ F and two elements e, e′ ∈ E :

ĉov(Xe′, e) = cov(Xe′ \ e) \ cov(e)
= (cov(X \ e) ∩ cov(e′)) \ cov(e)
= (cov(X \ e) \ cov(e)) ∩ cov(e′)
= ĉov(X, e) ∩ cov(e′) �

For instance, Definition 5 gives ĉovS(a, a) = {1, 2, 4, 6, 8, 9}. As covS(b) =
{0, 7}, we obtain that ĉovS(ab, a) = ĉovS(a, a) ∩ covS(b) = {1, 2, 4, 6, 8, 9} ∩
{0, 7} = ∅. Interestingly, Property 2 allows us to compute the critical objects of
any element included in a pattern X having information on a single branch. This is
the ideal situation for a depth-first search algorithm.

4.3 Algorithm DEFME

The algorithm DeFMe takes as inputs the current pattern, the current tail (the list
of the remaining items to be checked) and a maximal error threshold. It returns all
the δ-minimal patterns containing X (based on tail). More precisely, Line 1 checks
whether X is δ-minimal or not. If X is δ-minimal, it is output (Line 2). Lines 3–14
explores the subtree containing X based on the tail. For each element e where Xe
is a pattern of F (Line 4) (Property 1), the branch is built with all the necessary
information. Line 7 updates the cover and Lines 8–11 updates the critical objects
using Property 2. Finally, the function DeFMe is recursively called at Line 12 with
the updated tail (Line 5) (Algorithm1).

Theorems 3 and 4 demonstrate that the algorithmDeFMe has an efficient behavior
both in space and time. This efficiency mainly stems from the inexpensive handling
of covers/critical objects as explained by the following property:
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Algorithm 1: DeFMe(X, tail, δ)
Input: X is a pattern, tail is the set of the remaining items to be used in order to generate the
candidates. δ is the maximal error threshold. Initial values: X = ∅, tail = E .

Output: polynomially incrementally outputs the minimal patterns.
if ∀e ∈ X, ε(ĉov(X, e)) > δ then

print X
for all e ∈ tail do

if Xe ∈ F then
tail := tail \ {e}
Y := Xe
cov(Y ) := cov(X) ∩ cov(e)
ĉov(Y, e) := cov(X) \ cov(e)
for all e′ ∈ X do
ĉov(Y, e′) := ĉov(X, e′) ∩ cov(e)

end for
DeFMe(Y, tail, δ)

end if
end for

end if

Property 3 The following inequality holds for any pattern X ∈ F :

|cov(X)| +
∑

e∈X
|ĉov(X, e)| ≤ |cov(∅)|

Proof Let X be a feasible set in F and e be an element in X . Assume that o ∈
ĉov(X, e) = cov(X \ e) \ cov(e). It means that o ∈ cov(X \ e) and o /∈ cov(e).

• We note that cov(X) = cov(X \ e ∪ e) = cov(X \ e) ∩ cov(e). As o /∈ cov(e), o
does not belong to cov(X). In other words, there is no intersection between cov(X)

and any critical set ĉov(X, e).
• Suppose now that there is also e′ �= e such that o belongs to ĉov(X, e′) i.e.,
o ∈ cov(X \ e′) and o /∈ cov(e′). Then, o ∈ cov(X \ e) ∩ cov(X \ e′). As cov(X \
e) ∩ cov(X \ e′) = cov(X \ e ∪ X \ e′) and e �= e′, we obtain that cov(X \ e ∪
X \ e′) = cov(X). As seen above, o cannot belong to cov(X). We conclude that
there is no intersection between ĉov(X, e) and ĉov(X, e′).

Thus, an object cannot be at the same time in two sets among cov(X), cov(X \ e1),
…, cov(X \ en). We proved that Property 3 is correct. �

Property 3 means that for a pattern, the storage of its cover plus that of all the
critical objects is upper bounded by the number of objects (i.e., |cov(∅)|). Thus, it is
straightforward to deduce the memory space required by the algorithm:

Theorem 3 (Polynomial-space complexity) Given a minimal set sytem S =
〈(F , E),G , cov, φ〉 and δ ≥ 0, Mδ(S ) is enumerable in O(|cov(∅)| × m) space
where m is the maximal size of a feasible set inF .
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Proof It has been shown in Property 3 that the storage of the cover of a feasible set
X plus that of all its critical objects is upper bounded by the number of objects (i.e.,
|cov(∅)|). Besides, the number of consecutive recursive calls is at mostm + 1 where
m is the maximal size of a feasible set inF . We conclude thatMδ(S ) is enumerable
in O(|cov(∅)| × m) space. �

In practice, the usedmemory space is very limited becausem is small. In addition,
the amount of time between each output pattern is polynomial:

Theorem 4 (Polynomial-delay complexity) Given a minimal set sytem
S = 〈(F , E),G , cov, φ〉 and δ ≥ 0,Mδ(S ) is enumerable in O(|E |2 × |cov(∅)|)
time per minimal pattern.

Proof It is not difficult to see that between two output patterns, DeFMe requires a
polynomial number of operations assuming that themembership oracle is computable
in polytime (Line 4). Indeed, the computation of the cover and that of the critical
objects (Lines 7–11) is linear with the number of objects due to Property 3; the
loop in Line 3 does not exceed |E | iterations and finally, the number of consecutive
backtracks is at most |E |. �

5 Scope of ε-MSS Framework

We now illustrate the flexibility of ε-MSS framework to model well-known tasks
about itemset mining. Of course, the three mining problems below can be solved
using DeFMe.

Free, δ-free and essential patterns: As indicated above the system SI =
〈(2I ,I ), 2I , covI , I d, εI 〉 is minimizable andMδ(SI ) corresponds exactly to
the δ-free itemsets (or generators). The frequency of each itemset is computed using
the cardinality of the cover. Replace the cover operator covI by covI : X �→ {o ∈
O | X ∩ o = ∅} leads to a new minimizable set system 〈(2I ,I ), 2I , covI , I d〉 of
which minimal patterns are essential itemsets (Casali et al. 2005). The disjunctive
frequency of an itemset X is |O| − |covI (X)|.
Classification rules: Our framework is well-adapted for mining all minimal classifi-
cation rules that satisfy interestingness criteria involving frequencies as in
(Crémilleux and Boulicaut 2003). Assuming that the set of objects O is divided
into two disjoint classesO = O1 ∪ O2, the confidence of the classification rule X →
class1 is |O1 ∩ covI (X)|/|covI (X)|. More generally, it is easy to show that any
frequency-based measure (e.g., lift, bond) can be derived from the positive and nega-
tivecovers. Inaddition, theessential patterns areuseful forderivingminimal traversals
thatexactlycorresponds to themaximalpatternsofMδ(〈(2I ,I ), 2I , covI , I d, εI 〉).
Condensed representations for aggregate functions: Minizable set systems are
also well-adapted for aggregate functions such as min, max and sum
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(Soulet and Crémilleux 2008). For instance, let us consider the function covmin(X) =
{val(i)|∃i ∈ I , val(i) ≤ min(X.val)} that returns all the possible values of val less
thanmin(X.val). This function is a cover operator and 〈(2I ,I ), 2I , covmin, I d, εI 〉
is even a minimizable set system. The minimal patterns adequate to min correspond
to theminimal patterns of the previous set system. Furthermore, the valuemin(X.val)
could be obtained as follows max(covmin(X)). A similar approach enables us to deal
with max and sum.

ε-MSS framework not only unifies a lot of previous works about minimal pattern
mining, but it also opens the way for more sophisticated condensed representations.
Typically, it is possible to combine original cover operators (e.g., negative cover
covI or function covmin) with advanced languages such as graphs and pictures using
set systems proposed by Arimura and Uno (2009).

6 Experimental Study

The aim of our experiments is to quantify the benefit brought by DeFMe both on
effectiveness and conciseness. We show its effectiveness with the problem of free
itemset mining for which several prototypes already exist in the literature. Then we
instantiate DeFMe to extract the collection of minimal strings and compare its size
with that of closed strings. All tests were performed on a 2.2GHz Opteron processor
with Linux operating system and 200GB of RAM memory.

6.1 Free Itemset Mining

We designed a prototype of DeFMe for itemset mining as a proof of concept and we
compared it with four other prototypes:

• two of them are based on a traditional levelwise traversal: ACminer (Boulicaut
et al. 2000),which explores the itemset space andFTminer (Hébert andCrémilleux
2005), exploring the transaction space;

• the two others use a depth-first traversal with reordered items: GrGrowth (Liu
et al. 2008),NDI2 (Calders and Goethals 2005) and the Talkyg2 algorithm of the
Coron platform.

For this purpose, we conducted experiments on benchmarks coming from the
FIMI repository and the 2004 PKDD Discovery Challenge.3 The first three columns
of Table1 give the characteristics of these datasets. The fourth column gives the used

2As this prototype mines non-derivable itemsets, it enable us to compute free patterns when the
depth parameter is set to 1.
3http://fimi.ua.ac.be/data/ and http://lisp.vse.cz/challenge/ecmlpkdd2004/.

http://fimi.ua.ac.be/data/
http://lisp.vse.cz/challenge/ecmlpkdd2004/
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Table 1 Characteristics of benchmarks, minimum support and time of free itemset mining, in
seconds

Mining time (s)

Dataset Objects Items Minsup (%) ACminer FTminer GrGrowth NDI Talkyg2 DeFMe

74 × 822 74 822 88 fail 158 122 fail 5,920 45

90 × 27679 90 27,679 91 fail 270 206 fail fail 79

chess 3,196 75 22 6,623 345 56 187 1,291 192

connect 67,557 129 7 34,943 fail 37 115 1,104 4,873

pumsb 49,046 2,113 51 70,014 fail 64 212 6,897 548

pumsb* 49,046 2,088 5 21,267 2971 89 202 fail 4,600

Table 2 Memory usage, in MBytes

Memory (MB)

Dataset Minsup (%) ACminer FTminer GrGrowth NDI Talkyg2 DeFMe

74 × 822 88 fail 12,467 1,990 fail 20,096 3

90 × 27679 91 fail 6,763 2,929 fail fail 13

chess 22 3,914 7,990 914 1,684 12,243 8

connect 7 2,087 fail 684 1,181 12,305 174

pumsb 51 7,236 fail 916 1,818 30,941 118

pumsb* 5 5,175 51,702 1,330 2,523 fail 170

minimal support threshold. The next five columns report the running times. Table2
indicates the memory consumption.

The best time performances are highlighted in bold in Table1. Depth first
approaches of GrGrowth, NDI and DeFMe clearly state their domination over
the levelwise approach of ACminer and FTminer: level-wisely mining is both time
and memory consuming. GrGrowth is by far the fastest prototype, except on the
genomic datasets 74 × 822 and 90 × 27679, where it is outperformed by ofDeFMe.

The right part of Fig. 1 details, for variousminsup thresholds, the speed ofDeFMe.
It plots the number of minimal patterns it extracted for each second of computing
time.

Concerning memory consumption in Table2, DeFMe is (as expected) the most
efficient algorithm. For the other prototypes, even increasing the storage memory
would not be sufficient to treat the most difficult datasets. Here, GrGrowth and
NDI are not suitable to process genomic datasets even with 200GB of RAMmemory
and relatively high thresholds. More precisely, the left part of Fig. 1 plots the ratio
between GrGrowth’s and DeFMe’s memory use for various minsup thresholds. It
is easy to notice that this ratio could quickly lead GrGrowth to go out of memory.
DeFMe works with bounded memory and then is not minsup limited.
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Fig. 1 Comparing NDI and DeFMe: ratio of memory use (left) and mining speed (right)

6.2 Minimal String Mining

In this section, we adopt the formalism of strings stemming from our running exam-
ple. We compared our algorithm for minimal string mining with the maxMotif
prototype provided by Takeaki Uno that mines closed strings (Arimura and Uno
2009). Our goal is to compare the size of condensed representations based on mini-
mal strings with those based on all strings and all closed strings. We do not report the
execution times because maxMotif developed in Java is much slower than DeFMe
(developed in C++). Experiments are conducted on two datasets: chromosom4 and
msnbc coming from the UCI ML repository (http://www.ics.uci.edu/mlearn).

Figures2 and 3 report the number of strings/minimal strings/closed strings mined
in chromosom and msnbc. Of course, whatever the collection of patterns, the
number of patterns increases with the decrease of the minimal frequency threshold.
Interestingly, the two condensed representations become particularly useful when the
frequency threshold is very small. Clearly the number of minimal strings is greater
than the number of closed strings, but the gap is not as important as it is the case
with free and closed itemsets.

4This dataset is provided with maxMotif: http://research.nii.ac.jp/~uno/codes.htm.

http://www.ics.uci.edu/mlearn
http://research.nii.ac.jp/~uno/codes.htm
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Fig. 2 Number of patterns
in chromosom
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7 Conclusion

Byproposing thenewnotionof ε-minimizable set system, this paper not only extended
the paradigm ofminimal patterns to a broad spectrum of functions and languages, but
also introduced the ability of approximate condensed representation. This feature is
important for mining smaller condensed representations. This framework unifies the
currentmethods since the existing condensed representations (e.g., δ-free or essential
itemsets) fit to specific cases of our framework. More importantly, new types of
minimal patterns based on more sophisticated languages are also offered. Besides,
DeFMe efficiently mines such minimal patterns even in difficult datasets, which
are intractable by state-of-the-art algorithms due to its low memory consumption.
Experiments also showed on strings that the sizes of the minimal patterns are smaller
than the total number of patterns.

Of course, we think that there is still room to improve our implementation
even if it is difficult to find a compromise between generic method and speed. We
especially want to test the ability of theminimal patterns for generatingminimal clas-
sification rules with new types of data. For instance, the simplest rules (Crémilleux
and Boulicaut 2003) which benefit from approximate free itemsets, can be naturally
extended to strings. Similarly, it would be interesting to build associative classifiers
from minimal patterns.

Acknowledgments This article has been partially funded by the Hybride project (ANR-11-BS02-
0002).
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Comparison of Proximity Measures
for a Topological Discrimination

Rafik Abdesselam and Fatima-Zahra Aazi

Abstract The results of any operation of clustering or classification of objects
strongly depend on the proximitymeasure chosen. The user has to select onemeasure
among many existing ones. Yet, according to the notion of topological equivalence
chosen, some measures are more or less equivalent. In this paper, we propose a
new approach to compare and classify proximity measures in a topological structure
and in a context of discrimination. The concept of topological equivalence uses the
basic notion of local neighborhood. We define the topological equivalence between
two proximity measures, in the context of discrimination, through the topological
structure induced by each measure. We propose a criterion for choosing the “best”
measure, adapted to the data considered, among some of the most used proximity
measures for quantitative or qualitative data. The principle of the proposed approach
is illustrated using two real datasets with conventional proximity measures of liter-
ature for quantitative and qualitative variables. Afterward, we conduct experiments
to evaluate the performance of this discriminant topological approach and to test if
the proximity measure selected as the “best” discriminant changes in terms of the
size or the dimensions of the used data. The “best” discriminating proximity mea-
sure will be verified a posteriori using a supervised learning method of type Support
VectorMachine, discriminant analysis or Logistic regression applied in a topological
context.
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1 Introduction

The comparison of objects, situations or ideas are essential tasks to assess a situation,
to rank preferences or to structure a set of tangible or abstract elements, etc. In a
word, to understand and act, we have to compare. These comparisons that the brain
naturally performs, however, must be clarified if we want them to be done by a
machine. For this purpose, we use proximity measures. A proximity measure is a
function which measures the similarity or dissimilarity between two objects of a set.
These proximity measures have mathematical properties and specific axioms. But
are suchmeasures equivalent? Can they be used in practice in a undifferentiatedway?
Do they produce the same learning database that will serve as input to the estimation
of the membership class of a new object? If we know that the answer is negative,
then, how to decide which one to use? Of course, the context of the study and the
type of the data considered can help to select few proximity measures but which one
to choose from this selection?

We find this problematic in the context of a supervised classification or a discrim-
ination. The assignment or the classification of an anonymous object to a class partly
depends on the used learning database. According to the selected proximity mea-
sure, this database changes and therefore the result of the classification changes too.
We are interested here in the degree of topological equivalence of these proximity
measures in discrimination. Several studies on topological equivalence of proximity
measures have been proposed (Richter 1992; Batagelj and Bren 1992; Rifqi et al.
2003; Batagelj and Bren 1995; Lesot et al. 2009; Zighed et al. 2012) but neither of
these propositions has an objective of discrimination.

Table 1 Some proximity measures for continuous data
Measure Distance—dissimilarity

Euclidean uE (x, y) =
√∑p

j=1(x j − y j )2

Mahalanobis uMah(x, y) =
√

(x − y)t
∑−1(x − y)

Manhattan uMan(x, y) = ∑p
j=1 |x j − y j |

Tchebychev uT ch (x, y) = max1≤ j≤p |x j − y j |

Cosine dissimilarity uCos(x, y) = 1 −
∑p

j=1 x j y j
√

∑p
j=1 x2j

√
∑p

j=1 y2j

= 1 − <x,y>
‖x‖‖y‖

Normalized Euclidean uNE(x, y) =
√

∑p
j=1(

x j−y j
σ j

)2

Minkowski uMinγ (x, y) = (
∑p

j=1 |x j − y j |γ )
1
γ

Pearson correlation uCor(x, y) =
∑p

j=1(x j−x)(y j−y)
√

∑p
j=1(x j−x)2

√
∑p

j=1(y j−y)2
= <x−x,y−y>

‖x−x‖‖y−y‖

Where, p is the dimension of space, x = (x j ) j=1,...,p and y = (y j ) j=1,...,p two points in Rp ,
(α j ) j=1,...,p ≥ 0,

∑−1 the inverse of the variance and covariance matrix, σ 2
j the variance, γ > 0
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Therefore, this article focuses on how to construct the adjacency matrix induced
by a proximitymeasure, taking into account themembership classes of the objects, by
juxtaposing theWithin-groups andBetween-groups adjacencymatrices (Abdesselam
2014).

A criterion for selecting the “best” proximity measure is proposed. We check a
posteriori whether the chosen measure is a good discriminant one using the Multi-
class SVM method (MSVM).

This article is organized as follows. In Sect. 2, after recalling the basic notions
of structure, graph and topological equivalence, we present how to build the adja-
cency matrix for discrimination, the choice of a measure of the degree of topologi-
cal equivalence between two proximity measures and the selection criterion of the
“best” discriminant measure. Two illustrative examples, one with continuous data
and the other with binary data are discussed in Sect. 3 as well as other experiments to

Table 2 Some proximity measures for binary data

Measure Similarity Dissimilarity

Jaccard sJac = a
a+b+c u Jac = 1 − sJac

Dice sDic = 2a
2a+b+c uDic = 1 − sDic

Kulczynski sKul = 1
2 ( a

a+b + a
a+c ) uKul = 1 − sKul

Ochiai sOch = a√
(a+b)(a+c)

uOch = 1 − sOch

Sokal and Sneath 1 sSS1 = 2(a+d)
2(a+d)+b+c uSS1 = 1 − sSS1

Sokal and Sneath 2 sSS2 = a
a+2(b+c) uSS2 = 1 − sSS2

Sokal and Sneath 4 sSS4 = 1
4 ( a

a+b + a
a+c + d

d+b + d
d+c ) uSS4 = 1 − sSS4

Sokal and Sneath 5 sSS5 = ad√
(a+b)(a+c)(d+b)(d+c)

uSS5 = 1 − sSS5

Russel and Rao sRR = a
a+b+c+d uRR = 1 − sRR

Rogers and Tanimoto sRT = a+d
a+2(b+c)+d uRT = 1 − sRT

Hamann sHama = a+d−b−c
a+b+c+d uHama = 1−sHama

2

Y-Yule sYY =
√
ad−√

bc√
ad+√

bc
uYY = 1−sYY

2

Q-Yule sQY = ad−bc
ad+bc uQY = 1−sQY

2

Hamming distance uHamm = ∑p
j=1(x j − y j )

2

Let x = (xi )i=1,...,p and y = (yi )i=1,...,p be two points in {0, 1}p representing respectively the
attributes of two any objects x and y. Where, a = |X ∩ Y | = ∑p

i=1 xi yi is the number of attributes
common to both points x and y, b = |X − Y | = ∑p

i=1 xi (1 − yi ) is the number of attributes present
in x but not in y, c = |Y − X | = ∑p

i=1(1 − xi )yi is the number of attributes present in y but not
in x and d = |X ∩ Y | = ∑p

i=1(1 − xi )(1 − yi ) is the number of attributes in neither x or y
X = { j/x j = 1} and Y = { j/y j = 1} are the sets of attributes present in data point x and y
respectively, and |.| the cardinality of a set. The cardinals a, b, c and d are linked by the rela-
tion a + b + c + d = p
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evaluate the effects of the dimensions and the size of data on the choice of the “best”
discriminant proximity measure. A general conclusion and some perspectives of this
work are given in Sect. 4.

Table1 shows some classic proximity measures used for continuous data, defined
on Rp. For binary data, we give in Table2 the definition of 14 proximity measures
defined on {0, 1}p. All the datasets used are from the UCI Machine Learning Repos-
itory (UCI 2013).

2 Topological Equivalence

The topological equivalence is based on the concept of topological graph also referred
to as neighborhood graph. The basic idea is actually quite simple: two proximity
measures are equivalent if the corresponding topological graphs induced on the set
of objects remain identical. Measuring the similarity between proximity measures
consists in comparing the neighborhood graphs and measure their similarity. We will
first define more precisely what a topological graph is and how to build it. Then, we
propose a measure of proximity between topological graphs that will subsequently
be used to compare the proximity measures.

2.1 Topological Graph

Consider a set E = {x, y, z, . . .} of n = |E | objects in Rp. We can, by means of a
proximity measure u, define a neighborhood relationship Vu to be a binary relation-
ship on E × E . There are many possibilities for building this neighborhood binary
relationship.

Thus, for a given proximity measure u, we can build a neighborhood graph on a
set of individuals-objects, where the vertices are the individuals and the edges are
defined by a property of neighborhood relationship.

Many definitions are possible to build this Binary neighborhood relationship. One
can choose, the Minimal Spanning Tree (MST) (Kim and Lee 2003), the Gabriel
Graph (GG) (Park et al. 2006) or, which is the case here, the Relative Neighborhood
Graph (RNG) (Toussaint 1980; Jaromczyk and Toussaint 1992), where, all pairs of
neighbour points (x, y) satisfy the following property:

{
Vu(x, y) = 1 if u(x, y) ≤ max(u(x, z), u(y, z)) ; ∀x ∈ E ; ∀y ∈ E ; ∀z ∈ E − {x, y}
Vu(x, y) = 0 otherwise

(1)

That is, if the pairs of points verify or not the ultra-triangular inequality (1), ultra-
metric condition. Which means geometrically that the hyper-lunula (the intersection
of the two hyperspheres centered on two points) is empty.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vu . . . x y z t u . . .
... . . .

...
...
...
...
... . . .

x . . . 1 1 0 0 0 . . .
y . . . 1 1 1 1 0 . . .
z . . . 0 1 1 0 1 . . .
t . . . 0 1 0 1 0 . . .
u . . . 0 0 1 0 1 . . .
... . . .

...
...
...
...
... . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1 Topological graph RNG

Figure1 shows, an example of a topological graph RNG perfectly defined in R2

by the associated adjacency matrix Vu , containing 0s and 1.

In this case, u(x, y) = uE (x, y) =
√

(
∑p

i=1(xi − yi )2) is the Euclidean distance.
For a given neighborhood property (MST, GG or RNG), eachmeasure u generates

a topological structure on the objects in E which are totally describedby the adjacency
matrix Vu .

2.2 Comparison of Proximity Measures

Let p be the number of explanatory variables (predictors) {x j ; j = 1, .., p} and y a
target qualitative variable to explain, partition of n = ∑q

k=1 nk individuals-objects
into q modalities-subgroups {Gk; k = 1, .., q}.

For any given proximity measure ui , we construct, according to Property (1),
the overall binary adjacency matrix Vui stands as a juxtaposition of q symmetrical
Within-groups adjacency matrices {V k

ui ; k = 1, .., q} and q(q − 1) Between-groups
adjacency matrices {V kl

ui ; k 	= l; k, l = 1, .., q}:
{
V k
ui (x, y) = 1 i f ui (x, y) ≤ max(ui (x, z), ui (y, z)) ; ∀x, y, z ∈ Gk , z 	= x and z 	= y

V k
ui (x, y) = 0 otherwise

{
V kl
ui (x, y) = 1 i f ui (x, y) ≤ max(ui (x, z), ui (y, z)) ; ∀x ∈ Gk ,∀y ∈ Gl , ∀z ∈ Gl , z 	= y

V kl
ui (x, y) = 0 otherwise

Vui =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

V 1
ui · · · V lk

ui · · · V 1q
ui

· · ·
V k1
ui · · · V k

ui · · · V kq
ui

· · ·
Vq1
ui · · · V qk

ui · · · Vq
ui

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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Note that the partitioned adjacencymatrixVui thus constructed, is not symmetrical.
Indeed, for two objects x ∈ Gk and y ∈ Gl , the adjacency binary values V kl

ui (x, y)
and V lk

ui (y, x) can be different.

• The first objective is to regroup the different proximity measures considered,
according to their topological similarity in order to visualize better their resem-
blance in a context of discrimination.
To measure the topological equivalence in discrimination between two proximity
measures ui and u j , we propose to test if the associated adjacency matrices Vui
and Vu j are different or not. The degree of topological equivalence between two
proximity measures is measured by the quantity:

S(Vui , Vu j ) =
∑n

k=1

∑n
l=1 δkl

n2
with δkl =

{
1 if Vui (k, l) = Vu j (k, l)
0 otherwise.

• The second objective is to define a criterion to assist in the selection of the “best”
proximity measure, among the considered ones, that discriminates at the best the
q groups.
We note, Vu∗ = diag(�G1 , . . . , �Gk , . . . , �Gq ) the adjacency block diagonal ref-
erence matrix, “perfect discrimination of the q groups” according to an unknown
proximity measure denoted u∗. Where 1nk is the vector of order nk whose all
components are equal to 1 and �Gk= 1nk

t1nk , is the symmetric matrix of order
nk whose elements are all equal to 1.

Vu∗ =

⎛

⎜
⎜
⎜
⎜
⎝

�G1

0 · · ·
0 0 �Gk

0 0 0 · · ·
0 0 0 0 �Gq

⎞

⎟
⎟
⎟
⎟
⎠

Thus, we can establish the degree of topological equivalence of discrimination
S(Vui , Vu∗) between each considered proximity measures ui and the reference
measure u∗.

Finally, in order to evaluate otherwise the choice of the “best” discriminant prox-
imity measure proposed by this approach, we a posteriori applied a Multiclass SVM
method (MSVM) on the adjacency matrix associated to each considered proximity
measure including the reference one u∗.

3 Illustration Examples

To illustrate our approach, we consider here two sets of well-known and relatively
simple data, the Iris (Fisher 1936; Anderson 1935) and Animals Zoo, presented in
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Table 3 Data sets

Number Name Explanatory variables
type & X(n×p)

Variable to explain
Y(q)

1 Iris Continuous 150 × 4 3

2 Zoo Binary 74 × 15 3

Table 3. These two sets of respectively continuous and binary explanatory variables
are references for discriminant analysis and clustering. The complete data and the
dictionary of variables are especially in the UCI Machine Learning Repository (UCI
2013).

Let X(n,p) be a set of data with n objects and p explanatory variables, and Y(q) be
a qualitative variable to be explained with q modalities-classes.

3.1 Comparison and Classification of Proximity Measures

The main results of the proposed approach in the case of continuous and binary
data, are presented in the following tables and graphs. They allow to visualize the
measures that are close to each other in a context of discrimination.

For the continuous data set, Table4 summarizes the similarities in pairs between
the eight proximitymeasures and shows that, independently of the othermeasures, the
two by two similarity value between the reference measure and each of the proximity
measures is most important, S(VuTch , Vu∗) = 68.10%, with the Tchebychev measure
uTch.

A Principal Component Analysis (PCA) followed by Ascendant Hierarchical
Classification (AHC) were performed from the similarity matrix between the eight
proximity measures considered, to partition them into homogeneous groups and to
view their similarities.

Table 4 Continuous data—similarities S(Vui , Vu j ) and S(Vu j , Vu∗ )

S uE uMah uMan uTch uCos uNE uMinγ=5 uCor

uE 1

uMah 0.953 1

uMan 0.977 0.947 1

uTch 0.968 0.934 0.949 1

uCos 0.955 0.946 0.949 0.939 1

uNE 0.968 0.956 0.969 0.945 0.950 1

uMinγ=5 0.992 0.951 0.971 0.975 0.953 0.965 1

uCor 0.949 0.943 0.944 0.930 0.966 0.946 0.948 1

u∗ 0.675 0.673 0.678 0.681 0.675 0.674 0.675 0.673



92 R. Abdesselam and F.-Z. Aazi

Fig. 2 Hierarchical tree of the continuous proximity measures

Table 5 Continuous measures—assignment of the reference measure

Number Class 1 Class 2 Class 3 Class 4 Class 5

Frequency 3 1 1 1 2

Active measures uE , uMin, uMan uNE uTch uMah uCos, uCor

Supplementary
measure

u∗

The AHC algorithm according to theWard criterion, (Ward Jr 1963), provides the
dendrogram of Fig. 2.

The similarity vector S(Vui , Vu∗) of the reference measure with the considered
proximity measures is positioned as illustrative element in the analysis.

In view of the results presented in Table5, for the selected partition into 5 classes
of proximity measures, the reference measure u∗, projected as additional element,
would be closer to the measures of the third class, i.e., the Tchebychev proximity
measure uTch which would be, for these data, the “best” proximity measure among
the eight measures considered.

For binary data, the results of pairwise comparisons presented in Table6, are
somewhat different, some are closer than others. We note that pairs of proxim-
ity measures of these sub-sets: (uJac, uDic, uKul , uOch, uSS2), (uSS1, uRT , uHama),
(uRT , uHama, uHamm) and (uQY , uYY , uHamm) are in perfect topological equivalence
of discrimination S(Vui , Vu j ) = 1. The measures uQY and uYY of Yule, indepen-
dently of the other measures, are those which have a greatest similarity with the
reference measure S(VuQY , Vu∗) = S(VuYY , Vu∗) = 75.40%, followed by the mea-
sure uRR of Russel & Rao S(VuRR , Vu∗) = 71.60%.

The AHC algorithm according to the Ward criterion, provides the dendrogram
of Fig. 3. In view of the results presented in Table7, for the selected partition into
4 classes of proximity measures, the reference measure u∗, projected as additional
element, would be closer to the measures of the fourth class, i.e., the Russel & Rao
proximitymeasure uRR would be, for these data, the “best” proximitymeasure among
the 14 considered.
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Table 6 Binary data—similarities S(Vui , Vu j ) and S(Vu j , Vu∗ )
S uJac uDic uKul uOch uSS1 uSS2 uSS4 uSS5 uRR uRT uHama uYY uQY uHamm

uJac 1

uDic 1 1

uKul 1 1 1

uOch 1 1 1 1

uSS1 0.987 0.987 .987 0.987 1

uSS2 1 1 1 1 0.987 1

uSS4 0.997 0.997 0.997 0.997 0.986 0.997 1

uSS5 0.997 0.997 0.997 0.997 0.986 0.997 1 1

uRR 0.826 0.826 0.826 0.826 0.814 0.826 0.824 0.824 1

uRT 0.987 0.987 0.987 0.987 1 0.987 0.986 0.986 0.814 1

uHama 0.987 0.987 0.987 0.987 1 0.987 0.986 0.986 0.814 1 1

uYY 0.938 0.938 0.938 0.938 0.926 0.938 0.940 0.940 0.884 0.926 0.926 1

uQY 0.938 0.938 0.938 0.938 0.926 0.938 0.940 0.940 0.884 0.926 0.926 1 1

uHamm 0.987 0.987 0.987 0.987 1 0.987 0.986 0.986 0.814 1 1 0.926 0.926 1

u∗ 0.695 0.695 0.695 0.695 0.683 0.695 0.694 0.694 0.716 0.683 0.683 0.754 0.754 0.683

Fig. 3 Hierarchical tree of the binary proximity measures

Table 7 Binary measures—assignment of the reference measure

Number Class 1 Class 2 Class 3 Class 4

Frequency 7 4 2 1

Active
measures

uJac, uDC, uKul,
uDKOuSS2, uSS4, uSS5

uSS1, uRT , uHama ,

uHamm

uYY , uQY uRR

Supplementary
measure

u∗
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3.2 Discriminant Measures According to the MSVM Method

This part consists in validating a posteriori the results of choosing the best measure
in view of the reference matrix using MSVM. We use the MSVMLLW model (Lee
et al. 2004), considered as the most theoretically based of MSVMmodels as it is the
only one that implements asymptotically the Bayes decision rule.

Working with the MSVMLLW model involves the choice of optimal values of its
parameters, namely, C , representing the weight of learning errors, and the parame-
ter(s) of the kernel function if we decide to change the data space.

For our two datasets, we choose to work in the original data space and therefore
to use a linear kernel. The only parameter to be optimized is C . To do this, we will
test several values and choose the one that minimizes the testing error calculated by
cross-validation. For both examples, we test 10 values of the parameter C for all
databases. After simulations, the chosen value is C = 1.

Themain results of theMSVMLLWmodel, applied to each of the adjacencymatrices
induced by proximity measures are presented in Tables8 and 9.

For continuous data, Table8 shows that the best training error rate is that given
by Tchebychev uTch and Euclidean uE measures which is also equal to that given
by the reference adjacency matrix Vu∗ . For binary data, Table9, the training error
doesn’t allow to choose one of the measures as it gives to same value for all datasets,
so, we move to calculate the testing error by cross validation which indicates that
the Russel & Rao proximity measure uRR is the “best” one and the closest to the
reference measure u∗.

Thus, the application of theMSVMmodel reveals that Tchebychev and Euclidean
proximitymeasures are themost appropriate to differentiate the three species (Setosa,
Virginica and Versicolor) of iris flowers, and that Russel & Rao proximity measure
is the one to choose to better separate the three species of animals. Those results
confirm the ones obtained previously, namely the choice of Tchebychev measure
uTch among the eight continuous measures considered and Russel & Rao uRR among
the fourteen binary measures considered as the nearest ones to the reference measure
u∗ and therefore the most discriminant.

3.3 Experimentations

We conduct experiments on more datasets to evaluate the effect of the data, their size
and/or their dimensions on the results of the classification of proximity measures
for the purpose of discrimination. For instance, are the proximity measures grouped
differently depending on the dataset used? Depending on the sample size and/or the
number of explanatory variables considered in the same set of data?

To answer these questions, we have therefore applied the proposed approach on
the different datasets presented in Table10, all from the repository (UCI 2013). The
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Table 8 Results of the MSVM model—continuous iris data

Name Measure Training error (%) Confusion matrix Rank

Euclidean uE 0

⎛

⎜
⎝

50 0 0

0 50 0

0 0 50

⎞

⎟
⎠ 1

Mahalanobis uMah 0.66

⎛

⎜
⎝

50 0 0

0 49 1

0 0 50

⎞

⎟
⎠ 3

Manhattan uMan 0.66

⎛

⎜
⎝

50 0 0

0 49 1

0 0 50

⎞

⎟
⎠ 3

Tchebychev uTch 0

⎛

⎜
⎝

50 0 0

0 50 0

0 0 50

⎞

⎟
⎠ 1

Cosine
dissimilarity

uCos 0.66

⎛

⎜
⎝

50 0 0

0 49 1

0 0 50

⎞

⎟
⎠ 3

Normalized
Euclidean

uNE 1.33

⎛

⎜
⎝

50 0 0

0 50 0

0 2 48

⎞

⎟
⎠ 6

Minkowski uMinγ =5 1.33

⎛

⎜
⎝

50 0 0

0 49 1

0 1 49

⎞

⎟
⎠ 6

Pearson
correlation

uCor 1.33

⎛

⎜
⎝

50 0 0

0 49 1

0 1 49

⎞

⎟
⎠ 6

Reference
measure

u∗ 0

⎛

⎜
⎝

50 0 0

0 50 0

0 0 50

⎞

⎟
⎠

objective is to compare the results of the classification of proximity measures and
the choice of the “best” discriminant measure proposed for each of these datasets.

To analyze the effect of the change of dimensions, we consider the continuous
data set “Waveform Database Generator” to generate 3 samples (number 4) of size
n = 2000 objects and p dimension respectively equal to 40, 20 and 10 explanatory
variables. Similarly, to evaluate the impact of the change in sample size, we also
generated 3 other samples (number 5) of size n, respectively, equal to 3000, 1500
and 500 objects with the same dimension p equal to 30 explanatory variables.
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Table 9 Results of the MSVM model—binary zoo data
Name Measure Training error (%) Test error (%) Confusion matrix Rank

Jaccard uJac 0 4.05

⎛

⎜
⎜
⎝

39 2 0

0 20 0

1 0 12

⎞

⎟
⎟
⎠ 4

Dice uDic 0 4.05

⎛

⎜
⎜
⎝

39 2 0

0 20 0

1 0 12

⎞

⎟
⎟
⎠ 4

Kulczynski uKul 0 4.05

⎛

⎜
⎜
⎝

39 2 0

0 20 0

1 0 12

⎞

⎟
⎟
⎠ 4

Ochiai uOch 0 4.05

⎛

⎜
⎜
⎝

39 2 0

0 20 0

1 0 12

⎞

⎟
⎟
⎠ 4

Sokal and Sneath 1 uSS1 0 5.41

⎛

⎜
⎜
⎝

40 1 0

2 18 0

1 0 12

⎞

⎟
⎟
⎠ 9

Sokal and Sneath 2 uSS2 0 4.05

⎛

⎜
⎜
⎝

39 2 0

0 20 0

1 0 12

⎞

⎟
⎟
⎠ 4

Sokal and Sneath 4 uSS4 0 6.76

⎛

⎜
⎜
⎝

38 3 0

1 19 0

1 0 12

⎞

⎟
⎟
⎠ 13

Sokal and Sneath 5 uSS5 0 6.76

⎛

⎜
⎜
⎝

38 3 0

1 19 0

1 0 12

⎞

⎟
⎟
⎠ 1

Russel and Rao uRR 0 1.35

⎛

⎜
⎜
⎝

41 0 0

0 20 0

0 0 13

⎞

⎟
⎟
⎠ 1

Rogers and Tanimoto uRT 0 5.41

⎛

⎜
⎜
⎝

40 1 0

2 18 0

1 0 12

⎞

⎟
⎟
⎠ 9

Hamann uHama 0 5.41

⎛

⎜
⎜
⎝

40 1 0

2 18 0

1 0 12

⎞

⎟
⎟
⎠ 9

Y-Yule uYY 0 2.70

⎛

⎜
⎜
⎝

39 2 0

0 20 0

0 0 13

⎞

⎟
⎟
⎠ 2

Q-Yule uQY 0 2.70

⎛

⎜
⎜
⎝

39 2 0

0 20 0

0 0 13

⎞

⎟
⎟
⎠ 2

Hamming distance uHamm 0 5.41

⎛

⎜
⎜
⎝

40 1 0

2 18 0

1 0 12

⎞

⎟
⎟
⎠ 9

Reference measure u∗ 0 0

⎛

⎜
⎜
⎝

41 0 0

0 20 0

0 0 13

⎞

⎟
⎟
⎠
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Table 10 Continuous data sets

Number Name Explanatory
variables X(n×p)

Variable to explain Y(q)

1 Iris 150 × 4 3

2 Wine 178 × 13 3

3 Wine quality 3000 × 11 2

41 Waveform database generator 2000 × 40 3

42 Waveform database generator 2000 × 20 3

43 Waveform database generator 2000 × 10 3

51 Waveform database generator 3000 × 30 3

52 Waveform database generator 1500 × 30 3

53 Waveform database generator 500 × 30 3

The main results of these experiments, namely the topological equivalence of
proximity measures and the assignment of the reference measure u∗ to the nearest
class are presented in Table11.

For each of these experiments, we selected a partition into five classes of proximity
measures to compare and well distinguish the measures of the membership class of
the reference measure, that is to say the most discriminating ones.

Clusters of proximity measures obtained for the three data sets number 4 are
virtually identical, so there’s not really dimension effect.

As to clusters of proximity measures of the three data sets number 5, they are
almost identical, so there is no sample size effect.

Note that all the samples number 4 and 5, are generated from the same data set
“Waveform Generator Database”, the ideal reference measure u∗ for discrimination
is close to the same proximity measure, i.e. here, the Tchebychev measure uTch. This
result shows that there is no size or dimensionality effect on the result of choosing
the “best” discriminant measure.

Table 11 Clusters and assignment of the reference measure u∗

Number Class 1 Class 2 Class 3 Class 4 Class 5

1 uCos, uCor uE , uMin, uMan uMah uNE uTch, u∗

2 uCos, uCor uE , uMin, uTch uMah, u∗ uNE uMan

3 uCos, uCor uE , uMin, uMan uMah uNE, u∗ uTch
41 uCos, uCor, uE uMan, uNE uMah uMin uTch, u∗

42 uCos, uCor, uE , uNE uMan uMah uMin uTch, u∗

43 uCos, uCor uE , uMan, uNE uMah uMin uTch, u∗

51 uCos, uCor, uE uMan, uNE uMah uMin uTch, u∗

52 uCos, uCor, uE uMan, uNE uMah uMin uTch, u∗

53 uCos, uCor, uE uMan, uNE uMah uMin uTch, u∗
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With regard to all experiments, we can see a slight change in the clusters of
the proximity measures. However, we can also note equivalences between certain
measures such as uCos, uCor, uE and uNE, uMan. Others are isolated such as uTch, uMah

and uMin.

4 Conclusion and Perspectives

The choice of a proximity measure is very subjective, it is often based on habits
or on criteria such as the interpretation of the a posteriori results. This work pro-
poses a new approach for equivalence between proximity measures in the context of
discrimination.

This topological approach is based on the concept of neighborhood graph induced
by the proximity measure. From a practical point of view, in this paper, we compared
several measures built either on continuous or binary data. But this work may well be
extended tomixeddata (quantitative andqualitative) by choosing the right topological
structure and the adapted adjacency matrix.

We plan to extend this work to other topological structures and to use a compar-
ison criteria (Demsar 2006; Schneider and Borlund 2007), other than classification
techniques, in order to validate the degree of equivalence between twoproximitymea-
sures. For example, evaluate the degree of topological equivalence in discrimination
between two proximity measures using the non-parametric Test Kappa coefficient
of concordance, calculated from the associated adjacency matrices (Abdesselam
and Zighed 2011). This will allow to give a statistical significance of the degree
of agreement between two similarity matrices and to validate or not the topological
equivalence in discrimination, i.e., whether or not they induce the same neighborhood
structure on the groups of objects to be separated.

The experiments conducted on different data sets have shown that there is no
effect of samples size and no real effect of dimension on both clusters of proximity
measures and the result of the choice of the best discriminant measure.
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Comparison of Linear Modularization
Criteria Using the Relational Formalism,
an Approach to Easily Identify
Resolution Limit

Patricia Conde-Céspedes, Jean-François Marcotorchino
and Emmanuel Viennet

Abstract The modularization of large graphs or community detection in networks
is usually approached as an optimization problem of a quality function or criterion,
for instance, the modularity of Newman-Girvan. There exist other clustering criteria,
with their own properties leading to different solutions. In this paper we present six
linearmodularization criteria in relational notation such as theNewman-Girvanmod-
ularity, Zahn-Condorcet, Owsiński-Zadrożny, the Deviation to Uniformity index, the
Deviation to Indetermination index and the Balanced-Modularity. We use a generic
version of Louvain algorithm to approach the optimal partition of the criteria with
real networks of different sizes. We have found that those partitions present impor-
tant differences concerning the number of clusters. The relational formalism allows
us to justify these differences from a theoretical point of view. Moreover, this nota-
tion enables to easily identify the criteria having a resolution limit (a phenomenon
which causes the criterion to fail to identify modules smaller than a given scale).
This finding is confirmed in artificial benchmark LFR graphs.

1 Introduction

Networks are studied in numerous contexts such as biology, sociology, online social
networks, marketing, etc. Graphs are mathematical representations of networks,
where the entities are called nodes and the connections are called edges. Very large
graphs are difficult to analyse and it is often profitable to divide them in smaller
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homogeneous components easier to handle. The process of decomposing a network
has received different names: graph clustering (in data analysis), modularization,
community structure identification. The clusters can be called communities or mod-
ules; in this paper we use those words as synonyms.

Assessing the quality of a graph partition requires a modularization criterion. This
function will be optimized to find the best partition. Various modularization criteria
were formulated in the past to address different practical applications. Those criteria
differ in the definition given to the notion of community or cluster.

To understand the differences between the optimal partitions obtained by each
criterion we show how to represent them using the same basic formalism. In this
paper we use the Mathematical Relational Analysis (MRA) to express six linear
modularization criteria. Linear criteria are easy to handle, for instance, the Louvain
method can be adapted to linear quality functions (see Campigotto et al. (2014)). The
six criteria studied are: the Newman-Girvan modularity, the Zahn-Condorcet crite-
rion, the Owsiński-Zadrozny criterion, the Deviation to Uniformity, the Deviation
to Indetermination index and the Balanced Modularity (details in Sect. 3). The rela-
tional representation makes clear the properties of those modularization criteria. It
allows to easily identify the criteria suffering from a resolution limit, first discussed
by Fortunato and Barthelemy (2006). We will complete this theoretical study by
some experiments on real and synthetic networks, demonstrating the effectiveness
of our classification.

In this paper, we deal onlywith linear criteria. Nevertheless, it is important tomen-
tion that thanks to the formalism of the MRA it is also possible to express non-linear
criteria in relational notations. For instance, we can mention some very well-known
criteria such as the Mancoridis-Gansner criterion (see Mancoridis et al. (1998)) in
cluster-programming, the Ratio-Cuts by Wei and Cheng (1989), the Michalski crite-
rion (seeMichalski and Stepp (1983) and its relational notation given inDecaestecker
(1992)), etc. The interested reader can see Conde-Céspedes and Marcotorchino
(2012) and Conde-Céspedes (2013).

This paper is organized as follows: Sect. 2 presents the Mathematical Relational
Analysis approach and introduces the property of balance for linear criteria and its
relation to the property of resolution limit. In Sect. 3, six linearmodularization criteria
in the relational formalism are formulated. Next, Sect. 4 discusses some experiments
on real and artificial graphs to confirm the theoretical properties found previously.

2 Relational Analysis Approach

There is a strong link between the Mathematical Relational Analysis1 and graph
theory: a graph is a mathematical structure that represents binary relations between
objects belonging to the same set. Therefore, a non-oriented and non-weighted graph
G = (V, E), with N = |V | nodes and M = |E | edges, is a binary symmetric relation
on its set of nodes V represented by its adjacency matrix A as follows:

1For more details about Relational Analysis theory see Marcotorchino and Michaud (1979) and
Marcotorchino (1984).
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aii ′ =
{
1 if there exists an edge between i and i ′ ∀(i, i ′) ∈ V × V

0 otherwise
(1)

We denote the degree di of node i the number of edges incident to i . It can be
calculated by summing up the terms of the row (or column) i of the adjacencymatrix:
di = ∑

i ′ aii ′ = ∑
i ′ ai ′i = ai. = a.i . We denote δ = 2M

N 2 the density of edges of the
whole graph.

Partitioning a graph implies defining an equivalence relation on the set of nodes
V , that means a symmetric, reflexive and transitive relation. Mathematically, an
equivalence relation is represented by a square matrix X of order N = |V |, whose
entries are defined as follows:

xii ′ =
{
1 if i and i ′ are in the same cluster ∀(i, i ′) ∈ V × V

0 otherwise
(2)

Modularizing a graph implies to findX as close as possible toA. Amodularization
criterion F(X) is a function which measures either a similarity or a distance between
A and X. Therefore, the problem of modularization can be written as a function to
optimize F(X) where the unknown X is subject to the constraints of an equivalence
relation. In fact, the problem of modularization can be written in the general form:

Max
X

(F(X)) (3)

subject to the constraints of an equivalence relation:

xii ′ ∈ {0, 1} Binary
xii = 1 ∀i Reflexivity

xii ′ − xi ′i = 0 ∀(i, i ′) Symmetry
xii ′ + xi ′i ′′ − xii ′′ ≤ 1 ∀(i, i ′, i ′′) Transitivity

The exact solving of this 0 − 1 linear program due to the size of the constraints is
impractical for big networks. So, heuristic approaches are the only reasonable way
to proceed.

We define as well X̄ and Ā as the inverse relation of X and A respectively. Their
entries are defined as x̄i i ′ = 1 − xii ′ and āi i ′ = 1 − aii ′ respectively. In the following
we denote κ the optimal number of clusters, that means the number of clusters of the
partition X which maximizes the criterion F(X).

2.1 Linear Balanced Criteria

Every linear criterion is an affine function of X, therefore in relational notation it can
be written as:
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F(X) =
N∑

i=1

N∑

i ′=1

Φ(aii ′)xii ′ + K , (4)

whereΦ(aii ′) denotes any function depending only on the original data (for instance
the adjacency matrix) and K denotes any constant depending only on the original
data. Therefore, K does not intervene in the optimization problem.

Definition 1 (Property of linear balance). A linear criterion is balanced if it
can be written in the following general form:

F(X) =
N∑

i=1

N∑

i ′=1

φ(aii ′)xii ′ +
N∑

i=1

N∑

i ′=1

φ̄(aii ′)x̄i i ′ + K . (5)

where φ(.) and φ̄(.) are non negative functions depending only on the original
data and verifying

∑N
i=1

∑N
i ′=1 φi i ′ > 0 and

∑N
i=1

∑N
i ′=1 φ̄i i ′ > 0.

So, they can not be all null simultaneously.

By replacing x̄ by its definition 1 − xii ′ , Eq. (5) can be rewritten as follows:

F(X) =
N∑

i=1

N∑

i ′=1

(φi i ′ − φ̄i i ′)xii ′ + K . (6)

2.1.1 Interpretation of Functions φ(.) and φ̄(.)

At this point, we can give the intuition behind functions φ(.) and φ̄(.). From expres-
sion (6) we deduce the importance of the property of balance for linear criteria. If
the criterion is a function to maximize, the presence and/or absence of the terms φi i ′

and φ̄i i ′ has the following impact on the optimal solution:

• If φ̄i i ′ = 0 ∀i, i ′ the solution that maximizes F(X) is the partition where all nodes
are clustered together in a single cluster, so κ = 1 and xii ′ = 1 ∀(i, i ′) and
F(X) = ∑N

i=1

∑N
i ′=1 φi i ′ .

• If φi i ′ = 0 ∀i, i ′ then the optimal solution that maximizes F(X) is the partition
where all nodes are separated, so κ = N and xii ′ = 0 ∀ i �= i ′ and xii = 1∀i there-
fore F(X) = ∑N

i=1

∑N
i ′=1 φ̄i i .

In other words, the optimization of a linear criterion who does not verify the
property of balance will either cluster all the nodes in a single cluster or isolate
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each node in its own cluster, therefore forcing the user to fix the number of clusters
in advance.

We can deduce from the previous paragraphs that the values taken by the functions
φ and φ̄ create a sort of balance between the fact of generating as many clusters as
possible, κ = N , and the fact generating only one cluster, κ = 1.

In the following we will call the quantity
∑N

i=1

∑N
i ′=1 φ(aii ′)xii ′ the term of pos-

itive agreements and the quantity
∑N

i=1

∑N
i ′=1 φ̄(aii ′)x̄i i ′ the term of negative agree-

ments.

2.2 Different Levels of Balance

We define two levels of balance for all linear balanced criterion:

Definition 2 (Property of local balance). A balanced linear criterion whose
functions φi i ′ and φ̄i i ′ depend only upon the pair (i, i ′) (therefore not depending
on global properties of the graph) has the property of local balance.

Some remarks about Definition 2:

• When we talk about global properties we refer to the total number of nodes, the
total number of edges or other properties describing the global structure of the
graph.

• For the particular case of local balance where φi i ′ + φ̄i i ′ = K (that is φi i ′ and φ̄i i ′

sum up to a constant), we can conclude that whereas φi i ′ increases φ̄i i ′ decreases
and vice versa.

Let us consider the special case where φ(aii ′) = aii ′ , the general term of the
adjacency matrix. A null model is a graph with the same total number of edges and
nodes and where the edges are randomly distributed. Let us denote the general term
of the adjacency matrix of this random graph φ̄(aii ′). A criterion based on a null
model considers that a random graph does not have community structure. The goal
of such a criterion is to maximize the deviation between the real graph, represented
by φ(aii ′) and the null model version of this graph, represented by φ̄(aii ′) as shown
in Eq. (6). Since the original graph and the null model have the same number of edges
M , we have

∑N
i=1

∑N
i ′=1 φi i ′ = ∑N

i=1

∑N
i ′=1 φ̄i i ′ = 2M . If this constraint causes φ̄i i ′

to depend upon the total number of edges M , then a criterion based on a null model
does not verify the property of local balance. Consequently, it is not scale invariant
because it depends on a global characteristic of the graph.

The definition of null model for linear criteria can be generalized as follows:
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Definition 3 (Criterion based on a null model). A balanced linear criterion
that seeks tomaximize the deviation between the real graph and a nullmodel is a
criterion based on a null model. In its formulation, the real graph is represented
by φ(aii ′) whereas the null model is represented by φ̄(aii ′). The functions φi i ′

and φ̄i i ′ satisfy the following condition:

N∑

i=1

N∑

i ′=1

φi i ′ =
N∑

i=1

N∑

i ′=1

φ̄i i ′

such that the functions φi i ′ and φ̄i i ′ depend on global properties of the graph.

The global properties of the graph can be, for example, the total number of edges
or the total number of nodes.

We can deduce from Definitions2 and 3 that a linear criterion cannot be locally
balanced and based on a null model at the same time.

In the particular case where φ̄ decreases with the size of the network, it becomes
negligible for large graphs. As explained previously, if this term tends towards zero,
the optimization of the criterionwill tend to group the nodesmore easily. For instance,
a single edge between two sub-graphs would be interpreted by the criterion as a sign
of a strong correlation between the two clusters, and optimizing the criterion would
lead to the merge of the two clusters. Such a criterion is said to have a resolution
limit.

The resolution limit was introduced by Fortunato and Barthelemy (2006), where
the authors studied the resolution limit of the modularity of Newman-Girvan. They
demonstrated that modularity optimization may fail to identify modules smaller than
a given size which depends on global characteristics of the graph. Even weakly
interconnected complete sub-graphs—the best identifiable communities—would be
merged by this kind of optimization criteria if the network is sufficiently large.
According to Kumpula et al. (2007) the resolution limit is present in any modu-
larization criterion based on global optimization of intra-cluster edges and extra-
community links and on a comparison to any null model.

In Sect. 4, we will show how criteria having a resolution limit fail to detect certain
groups of densely connected nodes.

3 Modularization Criteria in Relational Notation

Graph clustering criteria depend strongly on the meaning given to the notion of
community. In this section, we describe six linear modularization criteria and their
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relational coding in Table1. We assume that the graphs we want to modularize are
scale-free, that means that their degree distribution follows a power law.

1. The Zahn-Condorcet criterion (1785, 1964): C.T. Zahn was the first who stud-
ied the problem of finding an equivalence relation X, which best approximates a
given symmetric relation A in the sense of minimizing the distance of the sym-
metric difference (Zahn 1964). The criterion defined by Zahn corresponds to the
dual Condorcet’s criterion (Condorcet 1785) introduced in Relational Consensus
whose relational coding was given by Marcotorchino and Michaud (1979). This
criterion requires that every node in each cluster be connected with at least as half
as the total nodes inside the cluster. Consequently, for each cluster the fraction of
within cluster edges is at least 50% (see Conde-Céspedes (2013)) and Appendix
for proof).

2. The Owsiński-Zadrożny criterion (1986) (see Owsiński and Zadrożny (1986))
it is a generalization of Condorcet’s function. It has a parameter α, which allows,
according to the context, to define the minimal percentage of required within-
cluster edges: α. For α = 0.5 this criterion is equivalent to Condorcet’s criterion.
The parameter α defines the balance between the positive agreements term and
the negative agreements term. For each cluster the density of edges is at least α%
(see Conde-Céspedes(2013)).

3. The Newman-Girvan criterion (2004) (see Newman and Girvan (2004)): It is
the best known modularization criterion, called sometimes simply modularity. It
relies upon a null model. Its definition involves a comparison of the number of
within-cluster edges in the real network and the expectednumber of such edges in a

Table 1 Relational notation of linear modularity functions

Criterion Relational notation

Zahn-Condorcet (1785, 1964) FZC (X) =
N∑

i=1

N∑

i ′=1

(aii ′ xii ′ + āi i ′ x̄i i ′ )

Owsiński-Zadrożny (1986) FZ O Z (X) =
N∑

i=1

N∑

i ′=1

((1 − α)aii ′ xii ′ + αāi i ′ x̄i i ′ )

with 0 < α < 1

Newman-Girvan (2004) FN G(X) = 1

2M

N∑

i=1

N∑

i ′=1

(
aii ′ − ai.a.i ′

2M

)
xii ′

Deviation to Uniformity (2013) FUNIF(X) = 1

2M

N∑

i=1

N∑

i ′=1

(

aii ′ − 2M

N 2

)

xii ′

Deviation to Indetermination (2013) FDI (X) = 1

2M

N∑

i=1

N∑

i ′=1

(

aii ′ − ai.

N
− a.i ′

N
+ 2M

N 2

)

xii ′

The Balanced Modularity (2013) FB M (X) =
N∑

i=1

N∑

i ′=1

(
(aii ′ − Pii ′ ) xii ′ + (āi i ′ − P̄ii ′ )x̄i i ′

)

where Pii ′ = ai.a.i ′
2M and P̄ii ′ =

(
āi i ′ − (N−ai.)(N−a.i ′ )

N2−2M

)
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randomgraphwhere edges are distributed following the independence structure (a
network without regard to community structure). In fact, themodularity measures
the deviation to independence.
As mention in the previous section, this criterion, based on a null model and it has
a resolution limit (see Fortunato and Barthelemy (2006)). In fact, as the network

becomes larger M −→ ∞, the term φ̄i i ′ = ai.a.i ′

2M
tends to zero since the degree

distribution follows a power law.
4. The Deviation to Uniformity (2013) This criterion maximizes the deviation to

the uniformity structure, it was proposed in Conde-Céspedes (2013). It compares
the number of within-cluster edges in the real graph and the expected number
of such edges in a random graph (the null model) where edges are uniformly
distributed, thus all the nodes have the same degree equal to the average degree
of the graph. This criterion is based on a null model and it has a resolution limit.
indeed δ −→ 0 as N −→ ∞.

5. The Deviation to Indetermination (2013) Analogously to Newman-Girvan
function, this criterion compares the number of within-cluster edges in the real
network and the expected number of such edges in a random graph where edges
are distributed following the indetermination structure2 (a graphwithout regard to
community structure) (Marcotorchino andConde-Céspedes 2013;Marcotorchino
2013). The Deviation to Indetermination is based on a null model, therefore it has
a resolution limit.

6. The Balanced modularity3 (2013)This criterion, introduced inConde-Céspedes
and Marcotorchino (2013), was constructed by adding to the Newman-Girvan
modularity a term taking into account the absence of edges Ā. Whereas Newman-
Girvan modularity compares the actual value of aii ′ to its equivalent in the case

of a random graph
ai.a.i ′

2M
, the new term compares the value of āi i ′ to its version

in case of a random graph
(N − ai.)(N − a.i ′)

N 2 − 2M
. It is based on a null model and it

has a resolution limit.

The six linear criteria of Table1 verify the property of balance, so it is not nec-
essary to set in advance the number of clusters. Table2 specifically focuses on the
fonctions φi i ′ and φ̄i i ′ for each criterion.

From Tables1 and 2 one can easily deduce that two criteria: Zahn-Condorcet
and Owsiński-Zadrożny verify the property of local balance. Furthermore, Table2
clearly shows that the functions φi i ′ and φ̄i i ′ add up to a constant Kii ′ for these two
criteria. The quantity φ̄i i ′ decreases with the size of the graph for all criteria that have
a resolution limit.

2There exists a duality between the independence structure and the indetermination structure
(Marcotorchino 1984, 1985; Ah-Pine and Marcotorchino 2007).
3Although the name of this criterion contains the word balanced, its definition is not related to the
property of balance given in Definition1.
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Table 2 Balance property for linear criteria

Criterion General balance

Local
balance

Null model Comment

Zahn-Condorcet X φi i ′ + φ̄i i ′ = aii ′ + āi i ′ = 1.

Owsiński-Zadrożny X φi i ′ + φ̄i i ′ = (1 − α)aii ′ + αāi i ′ .

Newman-Girvan X
N∑

i=1

N∑

i ′=1

φ̄i i ′ =
N∑

i=1

N∑

i ′=1

ai.a.i ′

2M
= 2M .

Deviation to uniformity X
N∑

i=1

N∑

i ′=1

φ̄i i ′ =
N∑

i=1

N∑

i ′=1

2M

N 2 = 2M

Deviation to
indetermination

X
N∑

i=1

N∑

i ′=1

(
ai.

N
+ a.i ′

N
− 2M

N 2

)

= 2M

Balanced modularity X
N∑

i,i ′=1

N∑

i ′=1

p̄i i ′ =
N∑

i=1

N∑

i ′=1

āi i ′ = N 2 − 2M

4 The Impact of Merging Two Clusters

Wemodularized five real networks of different sizes: Jazz (Gleiser and Danon 2003),
Internet (Hoerdt and Magoni 2003), Web nd.edu (Albert et al. 1999), Amazon (Yang
and Leskovec 2012)4 and Youtube (Mislove et al. 2007). We ran a generic version
of Louvain Algorithm (see Campigotto et al. (2014) and Blondel et al. (2008)) until
achievement of a stable value of each criterion. The number of clusters obtained for
each network is shown in Table3.

Table3 shows that the Zahn-Condorcet and Owsiński-Zadrożny criteria generate
many more clusters than the other criteria having a resolution limit, for which the
number of clusters is rather comparable. Moreover, this difference increases with the
network size. Notice that the number of clusters for the Owsiński-Zadrożny criterion
decreases with α, that is the minimal required fraction of within-cluster edges, so the
criterion becomes more flexible.

In order to explain these differences we measure the impact of merging two
clusters on the value of each criterion. Let us suppose we want to merge two clusters
C1 and C2 in the network of sizes n1 and n2 respectively. Let us suppose as well they
are connected by l edges as shown in Fig. 1.

Let us denote CF the contribution of merging two clusters to the value of a
criterion F . The contribution CF can be easily calculated from (6) (for the proof see
Conde-Céspedes (2013)):

CF =
n1∑

i∈C1

n2∑

i ′∈C2

(φi i ′ − φ̄i i ′) (7)

4The data was taken from http://snap.stanford.edu/data/com-Amazon.html.

http://snap.stanford.edu/data/com-Amazon.html
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Table 3 Ref: Zahn-Condorcet (ZC), Owsiński-Zadrożny (OZ), Deviation to Uniformity (UNIF),
Newman-Girvan (NG), Deviation to Indetermination (DI) and Balanced Modularity (BM)

Network Jazz Internet Web nd.edu Amazon Youtube

N ∼ 198 70k 325k 334k 1M

M ∼ 3k 351k 1M 925k 3M

δ 0,14 1.44 × 10−04 2.77 × 10−05 1.65 × 10−05 4.64 × 10−06

Criterion κ κ κ κ κ

ZC 38 40,123 201,647 161,439 878,849

OZ α = 0.4 34 30,897 220,967 121,370 744,680

OZ α = 0.2 23 24,470 184,087 77,700 601,800

UNIF 20 173 711 265 51,584

NG 4 46 511 250 5,567

DI 6 39 324 246 13,985

BM 5 41 333 230 6,410

Fig. 1 Two sub graphs of the entire network we want to merge

• If C > 0 the merger of the two clusters increases the value of the criterion.
• If C < 0 the merger of the two clusters decreases the value of the criterion.

Equation (7) shows that the decision of merging or not the two clusters depends

on a comparison between the quantity
n1∑

i∈C1

n2∑

i ′∈C2

φi i ′ and the quantity
n1∑

i∈C1

n2∑

i ′∈C2

φ̄i i ′ .

Giving the fact that both are positive, it is the one with the highest value that decides
to merge or not to merge. Thus, whereas the first one is for fusion the second one is
against the fusion.

Table4 shows the explicit expression of the contribution for the linear criteria
described below.5

5The contribution for the Balanced Modularity will be given later.
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Table 4 Contribution of merging two clusters for linear criteria

Criterion: F CF =
n1∑

i∈C1

n2∑

i ′∈C2

(φi i ′ − φ̄i i ′ )

Zahn-Condorcet CZC =
(

l − n1n2

2

)

Owsiński-Zadrożny CO Z = (l − n1n2α) 0 < α < 1

Deviation to uniformity CUNIF = (l − n1n2δ)

Newman-Girvan CN G =
(

l − n1n2
d1

avd2
av

2M

)

Deviation to indetermination CDI =
(

l − n1n2

(
d1

av

N
+ d2

av

N
− 2M

N 2

))

where dav =
∑N

i∈V ai.

N
is the average degree of the whole graph, d1

av =
∑n1

i∈C1
ai.

n1

and d2
av =

∑n2
i ′∈C2

a.i ′

n2
are the average degrees of C1 and C2 respectively.

We can remark from Table4 that for the five criteria the contribution compares
“the number of edges between C1 and C2: l” to the quantity in bold. We can see
as well that the contribution for locally balanced criteria depends only upon local
properties: l, l̄, n1, n2. In fact, locally balanced criteria are scale invariant. In con-
trast, for the other criteria having a resolution limit the contribution depends and
is decreasing on the global size of the network. We remark as well that for three
criteria: Newman-Girvan, Deviation to Indetermination and Balanced Modularity
the contribution depends on the degree distribution of the two clusters. According
to Barabasi and Albert (1999) many real networks fall into the class of scale-free
networks, meaning that their degree distribution follows a power-law. In a scale-free
network a few nodes called hubs have many connexions whereas most nodes have
few connexions.

4.1 Impact on the Optimal Number of Clusters

From the previous results we can deduce the main characteristics of the optimal
partition found by the optimization of each criterion (see Table5). In addition, we
remark the following facts:

• The Zahn-Condorcet criterion:According toTable4 formerging the two clusters
C1 and C2, these ones must be connected by at least as many edges as the half of

the maximum possible number of edges,6 that is l >
n1n2

2
.

6This result is a consequence of the rule this criterion relies on: “The rule of absolute majority of
Condorcet” in voting theory.
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Table 5 Summary by criterion

Criterion Characteristics of the optimal partition

Zahn-Condorcet • The density of edges of each cluster is at least equal to 50%

• No resolution limit

• For real networks the optimal partition contains many small
clusters or single nodes

Owsiński-Zadrożny • It gives the choice to define the minimum required
within-cluster density, α

• For α = 0.5 the Owsiński-Zadrożny criterion ≡ the
Zahn-Condorcet criterion

• No resolution limit

• The optimal partition depends on the parameter α

Deviation to uniformity • A particular case of Owsiński-Zadrożny criterion with α = δ

• The density of within cluster edges of each cluster is at least
the global density δ

• It has a resolution limit

Newman-Girvan • It depends on the degree distribution

• It has a resolution limit

• The optimal partition has no single nodes

Deviation to indetermination • It depends on the degree distribution

• It has a resolution limit

Balanced modularity • It depends on the degree distribution

• It has a resolution limit

• The Owsiński-Zadrożny criterion: Formerging the two clustersC1 andC2, these
ones must be connected by at least as α% as the maximum possible number of
edges.

• The Deviation to Uniformity: According to Table4 for the merge to take place
the fraction of edges betweenC1 andC2 must be at least equal to the global density
of the whole graph.

• Newman-Girvan criterion: FromTable4we can deduce that the optimal partition
does not have clusters with a single node (this result was already demonstrated in
Brandes et al. (2008)). In fact, if C1 has only one node with only one connection
to C2, thus n1 = 1, d1

av = 1, l = 1 and consequently the contribution is always

positive: CN G =
(

1 −
∑n2

i=1 ai.

2M

)

> 0.

• Balanced Modularity: It is easy to understand the behavour of the contribution
of Balanced Modularity when we compare it to those of Newman-Girvan and
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Deviation to Indetermination (see Conde-Céspedes (2013) for proof).7 Indeed, we
demostrated in Conde-Céspedes (2013) that:

CB M = 2CN G + n1n2
(d1

av − dav)(d2
av − dav)

2M(1 − δ)
(8)

and

CB M = 2CDI + n1n2

(

2 − 1

δ

)
(d1

av − dav)(d2
av − dav)

N 2(1 − δ)
. (9)

Although the contribution for the Balanced Modularity is increasing in both the
contribution of Newman Girvan CN G and in the contribution of Deviation to Inde-
terminationCDI , in both casesCB M has an additional term that we can treat as reg-

ulator:
(

n1n2
(d1

av−dav)(d2
av−dav)

2M(1−δ)

)
and

(
n1n2

(
2 − 1

δ

) (d1
av−dav)(d2

av−dav)

N 2(1−δ)

)
respectively.

These two regulators have opposite sign for real networks. In fact, the coefficient(
2 − 1

δ

)
of the second regulator is almost surely negative for real graphs because

the density δ << 0.5 for scale-free networks. That is why the Balanced Modular-
ity behaves as a regulator between both criteria: Newman-Girvan and Balanced
Modularity. However, when the network size increases N −→ ∞ and M −→ ∞
the regulator terms tend to zero.

Only ground-truth overlapping communities are defined on real networks in
Table3. This fact makes difficult to judge the quality of the obtained partitions
because we can not directly compare a partition to overlapping communities. That
is why in the next section we will consider artificial networks with a predefined
community structure.

7These expressions are deduced from the two following expressions of Balanced Modularity in
terms of Newman-Girvan and Deviation to Indetermination criteria:

FB M = 2FN G +
N∑

i=1

N∑

i ′=1

(
(ai. − dav)(a.i ′ − dav)

2M(1 − δ)

)

xii ′

and

FB M = 2FDI +
(

2 − 1

δ

) N∑

i=1

N∑

i ′=1

(
(ai. − dav)(a.i ′ − dav)

N 2(1 − δ)

)

xii ′ .
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5 Experiments with Artificial Networks

In order to judge the quality of the partitions obtained by each criterion we generated
benchmark LFR graphs8 (see Lancichinetti et al. (2008)) of different sizes 1000,
5000, 10000, 50000, 100000 and 500000. The input parameters are the same as
those considered in Lancichinetti and Fortunato (2009). The average degree is 20,
the maximum degree 50, the exponent of the degree distribution is –2 and that of the
community size distribution is –1. In order to test the existence of resolution limit
we chose small communities sizes, ranging from 10 to 50 nodes, and low values of
mixing parameter, 0.10, 0.20 et 0.30. Figure2 shows the average number of clusters
for 100 runs of the generic Louvain algorithm.

In Fig. 2 it is hard to see the curve of the real number of clusters (in black) beacuse
it is almost overlapped with those of OZ1 and OZ2.

Figure2 shows clearly the difference between the behavior of those criteria having
a resolution limit (NG, DU, DI and BM) and the behavior of criteria locally defined
(ZC and OZ). As the size of the network increases the four criteria suffering from
resolution-limit detect fewer clusters than those predefined. The number of clusters
is rather comparable for these four functions, one reason can be the fact that the term
of negative agreements tends to zero when the network gets bigger. Conversely, the

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

20
00

00
50

00
00

10

100

1000

10000

100000

Mixing parameter 0.1

Network size: N

N
um

be
r 

of
 c

lu
st

er
s

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

20
00

00
50

00
00

10

100

1000

10000

100000

Mixing parameter 0.2

Network size: N

N
um

be
r 

of
 c

lu
st

er
s

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

20
00

00
50

00
00

10

100

1000

10000

100000

Mixing parameter 0.3

Network size: N

N
um

be
r 

of
 c

lu
st

er
s

Average number of clusters for LFR graphs

Real

ZC
OZ1

NG
OZ2

DU
OZ4

DI
OZ6

BM
OZ8

Fig. 2 Average number of cluster for artificial LFR graphs (logarithmic scale). The curve of the
real number of clusters (in black) it is almost overlapped with that of OZ1 and OZ2

8LFR graphs are benchmark graphs introduced in Lancichinetti et al. (2008) that aim to reproduce
as much as possible the structure that reflects the real properties of nodes and communities found
in real networks. These artificial graphs have predefined community structure based on the mixing
parameter of each node. As stated in Lancichinetti et al. (2008), for each node the mixing parameter
is the fraction of its links it shares with the nodes of the network outside its community.
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Fig. 3 The average Normalized Mutual Information (NMI) on the graphs in Fig. 2 (logarithmic
scale)

number of clusters of criteria locally defined increases nearly at the same rate as the
real number of clusters. Whereas OZ with high α identifies more clusters than those
predefined, the criterion which best approaches the real number of clusters is OZ
with low values of α = 0.2 and α = 0.1.

Figure3 shows the Normalized Mutual Information9 (NMI) for the partitions in
Fig. 2.

9The normalized mutual information (NMI) is a measure of similarity of two partitions. It was
originated in information theory to measure the departure from independence between two random
variables. Given a set of objects V and two partitions P1 and P2 defined on V , intuitively, the mutual
information measures the information that P1 and P2 share. It is normalized between 0 and 1. It is
worth 0 if the two partitions are independent and 1 if they are identical. Let p and q be the total
number of clusters of partitions P1 and P2 respectively. The NMI is calculated as follows:

N M I (P1, P2) = 2I (P1, P2)

H(P1) + H(P2)

where:

• I (P1, P2) = ∑p
u=1

∑q
v=1 puv ln

(
puv

pu. p.v

)
is the mutual information of partitions P1 and P2. I

tells how much we learn about P1 if we know P2 and vice versa. The quantity puv = nuv

N is the
fraction of objects who belong simultaneously to cluster u of partition P1 and to cluster v of
partition P2. Analogously puv = nu.

N is the fraction of objects who belong to cluster u of partition
P1 and puv = n.v

N is the fraction of objects who belong to cluster v of partition P2 and |V | = N .

In the case nuv = 0 we assume ln
(

puv

pu. p.v

)
= 0.

• H(P1) = − ∑p
u=1 pu. ln pu. represents the Shanon entropy of P1 and H(P2) =

− ∑q
v=1 p.v ln p.v represents the Shanon entropy of P2 (see Shannon (1948)).
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Figure3 shows that the average NMI decreases with the network size for criteria
having a resolution limit. Moreover, they almost overlap. Conversely, the NMI of the
criteria locally defined seem to increase with the network size. The criterion with the
highest NMI is OZ with low values of α, 0.1 and 0.2.

Figure4 shows the average Normalized Mutual Information for the mixing para-
meter ranging from 0.1 to 0.8 for different network sizes.

Figure4 shows that for all the criteria previously presented the NMI decreases
as the mixing parameter increases. This figure demonstrates once more the differ-
ences between the behavior of criteria with resolution limit and that of the criteria
locally defined. For the first ones the quality decreases abruptly beyond mixing para-
meter equal to 0.6. For the second ones, the quality seems to decrease at a lower
rate. However, it is important to remark that the quality of criteria with a resolution
limit decreases not only with the mixing parameter but also with the network size.
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Converserly, the behavior of the NMI of locally defined criteria seem to have the
same behavour independtly of the size of the whole network.

Another point to remark is that even when the mixing parameter is high all the
criteria find a community structure. In fact, the pre-defined communities in the LFR
graphs are based on mixing parameter, whereas all the criteria analysed in this article
have their own definition of graph with no community structure which is not based
on the mixing parameter.

Table5 presents a summary of the results found by the previous analysis.

6 Conclusions

We have presented six linear modularization criteria in relational notation, Zahn-
Condorcet, Owsiński-Zadrożny, the Newman-Girvan modularity, the Deviation to
Uniformity index, the Deviation to Indetermination index and the Balanced-
Modularity. This notation allowed us to easily identify the criteria suffering from
a resolution limit. We found that the first two criteria had a local definition, whereas
the others, based on a null model, had a resolution limit. These findings were con-
firmed by modularizing real and artificial graphs using a generic version of the
Louvain algorithm. We compared the number of clusters found by the six criteria
and the NormalizedMutual information for artificial graphs. The results showed that
criteria based on a local definition had a better performance than those based on a
null model when the size of the graph increases, experimentally the crition having the
best behavior was Owsiński-Zadrożny with low values of parameter α. However, it is
important to remark that these results are based on a particular kind of graphs, more
precisely, graphs with a low mixing parameter, small communities,10 node degrees
and community sizes distributed according to a power law.

Acknowledgments This work is supported by REQUEST and Open Food System projects.

Appendix

Theorem 1 (The density of clusters obtained by maximization of Zahn-Condorcet
criterion is least 50%). Given a connected, non-oriented and unweighted graph G =
(V, E), the optimal partition obtained by optimizing the Zahn-Condorcet criterion
has the following property: the number of within-cluster edges of each cluster is at
least as half as the possible maximum existing within-cluster edges, that is to say the
number of existing edges in the case the cluster is a clique. Furthermore, every node
in each cluster is connected with at least as half as the total nodes inside the cluster.

10What we call small are communities ranging from 10 to 50 nodes, that is the same sizes considered
by the authors of LFR graphs (see Lancichinetti and Fortunato (2009)).
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Proof. Considering the constraints of reflexivity and symmetry of the relational vari-
able xii ′ (i.e. xii = 1∀i and xii ′ = xi ′i ), the expression of Zahn-Condorcet criterion
in Table2 can be written as follows:

FZC(X) = ∑
i>i ′(aii ′ − āi i ′)xii ′ + N 2 − 2M − N .

where:

• ∑
i>i ′ aii ′ xii ′ is the number of within-cluster edges for all clusters.

• ∑
i>i ′ āi i ′ xii ′ is the number of missing within-cluster edges for all clusters.

If we denote E j the number of within edges of cluster j , the total number of

missing edges for the cluster j will be
(

n j (n j −1)
2 − E j

)
. So, the criterion Zahn-

Condorcet will become:

FZC(C ) = ∑κ
j=1

(
E j −

(
n j (n j −1)

2 − E j
))

+ N 2 − 2M − N ,
or
FZC(C ) = ∑κ

j=1(2E j − n j (n j −1)
2 ) + N 2 − 2M − N .

the term (2E j − n j (n j −1)
2 ) represents the contribution of cluster j to the value of the

criterion. For each cluster of the optimal partition this term must be positive or null.
Otherwise it would be possible to obtain a better partition by isolating each node in
cluster j (the contribution to the value of the criterion by a cluster of an isolated node
is null). This implies:

(2E j − n j (n j −1)
2 ) ≥ 0, or E j ≥ n j (n j −1)

4 .

So, each cluster j has a density of at least 50%.
This result can be extended to every node of each cluster of the optimal partition.

In fact, let us suppose that there is a cluster j containing a node n0 which is connected
with less than half of the total nodes in the cluster. Let us denote E j0 the connexions

of n0 to nodes in C j . So, E j0 <= (n j −1)
2 .

It is always possible to obtain a better partition by isolating n0. In fact, the con-
tribution of the two resulting clusters after isolation of node n0 is:

2(E j − E j0) − (n j −1)(n j −2)
2

this last expression is greater than the contribution of cluster j , given by (2E j −
n j (n j −1)

2 ), if n0 is connected with less than half of nodes in C j .
This also proves why the partitions obtaining by optimizing Zahn-Condorcet

criterion contain sometimes clusters of isolates nodes. �
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A Novel Approach to Feature Selection Based
on Quality Estimation Metrics

Jean-Charles Lamirel, Pascal Cuxac and Kafil Hajlaoui

Abstract Feature maximization (F-max) is an unbiased quality estimationmetric of
unsupervised classification (clustering) that favours clusters with a maximal feature
F-measure value. In this article we show that an adaptation of this metric within the
framework of supervised classification allows efficient feature selection and feature
contrasting to be performed. We experiment the method on different types of textual
data. In this context, we demonstrate that this technique significantly improves the
performance of classification methods as compared with the use of state-of-the art
feature selection techniques, notably in the case of the classification of unbalanced,
highly multidimensional and noisy textual data gathered in similar classes.

1 Introduction

Since the 1990s, progress in computing and storage capacities has allowed the han-
dling of extremely large volumes of data: it is not rare to deal with space for the
description of several thousand, or even tens of thousands, of features. It could be
thought that the classification algorithms aremore effectivewith amyriad of features,
but the situation is not so simple. The first problem is the increase in the calculation
time. Additionally, the fact that many features are redundant for the classification
task, or irrelevant, considerably disrupts the functioning of the classifiers. Further-
more, most training algorithms use probabilities whose distribution may be difficult
to estimate in the presence of a large number of features. The integration of a process
of feature selection into the frame of large dimension data classification has thus
become a central issue. In the literature, essentially three types of approach are pro-
posed for feature selection: approaches directly incorporated into the classification
methods, known as “embedded”, approaches based on techniques of optimisation,
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or “wrappers”, and approaches based on statistical tests, also named filter-based
approaches. Thorough states-of-the-art have been described by many authors, such
as Ladha and Deepa (2011), Bolón-Canedo et al. (2012), Guyon and Elisseeff (2003)
or Daviet (2009). Therefore, below we will simply give a brief overview of the exist-
ing approaches.

“Embedded” approaches integrate feature selection into the learning process
(Breiman et al. 1984). The most popular methods in this category are those based
on SVM (Support Vector Machines) and those founded on neural networks. For
example, RFE-SVM (Recursive Feature Elimination for Support Vector Machines)
(Guyon et al. 2002) is an integrated process, where feature selection is carried out in
an iterative manner using an SVM classifier, and suppressed features are those that
are the most distant from the decision boundary.

For their part, “wrapper” methods use a performance criterion to seek out a per-
tinent sub-group of predictors (Kohavi and John 1997). Most often the performance
criterion used is the error rate (but it can be a prediction cost, or the area under the
ROC curve). As an example, the WrapperSubsetEval method begins with an empty
feature set and continues until the addition of new features no longer improves per-
formance. It uses cross-validation to estimate learning for a given group of features
(Witten and Frank 2005). Comparisons between methods, such as that described
above with that of Forman (Forman 2003), clearly demonstrate that without taking
their effectiveness into account, one of the principal drawbacks of these two classes
of methods is that they require long calculation times. This prohibits their use in
the case of highly multidimensional data. In this context, a possible alternative is to
exploit filter-based methods.

Filter-based approaches are selection methods that are used upstream and inde-
pendently of the learning algorithm. Based on statistical tests, they require less
calculation time than do other approaches. The most classical examples of filter-
based methods are the chi-squared method (Ladha and Deepa 2011), mutual
information-based methods, like MIFS (Mutual Information Feature Selection)
(Hall and Smith 1999), information gain-based methods, like CBF (Consistency-
based Filter) (Dash and Liu 2003), correlation-based methods, like MODTREE
(Lallich and Rakotomalala 2000), or, nearest-neighbour-based methods, like Relief
(Kira and Rendell 1995) or RLF (ReliefF) (Konokenko 1994).

The chi-squared method uses a common statistical test, which measures the dif-
ference from an expected distribution, presuming that the features are independent
of class labels (Ladha and Deepa 2011). Equally, information gain is one of the most
frequent methods of feature selection. This univariate filter supplies an organized
classification of all variables. In this approach, the variables retained are those that
obtain a positive value of information gain (Hall and Smith 1999).

In the MIFS method, a feature is added to a sub-group of features that have
already been selected, provided that its link to the target class surpasses the average
connection to predictors that have already been selected. The method takes into
account both relevance and redundancy (Hall and Smith 1999).



A Novel Approach to Feature Selection Based on Quality Estimation Metrics 123

The CBF method (Consistency-based Filter) evaluates the relevance of a sub-
group of features, by estimating the coherence level of classes that results when
training samples are projected onto this sub-group (Dash and Liu 2003).

The MODTREE method uses a filtering procedure that relies on the principle
of calculation of pairwise correlations. It works in the space of pairs of individuals
described by indicators of co-labelling attached to each original feature. To that end,
a correlation coefficient for each pair of features is used, which represents the linear
correlation between the two elements of a pair. The calculation of partial correlation
coefficients thus allows the step-wise selection of features (Lallich and Rakotomalala
2000).

The fundamental hypothesis of the Relief method (Kira and Rendell 1995) is
inspired by the nearest neighbour principle. Thismethod considers a variable relevant
if it discriminates correctly data in the positive class compared to its nearest neighbour
in the negative class. The feature score is cumulative and is calculated using a random
draw of data samples. RLF is an extension of Relief, where the ability to solve multi-
class problems has been added. In addition, this variant is more robust and can treat
incomplete and noisy data (Konokenko 1994). RLF is considered to be one of the
most efficient feature selection methods.

As for all statistical tests, filter-based approaches behave erratically in the case
of very low frequency features, which are common in text classification (Ladha
and Deepa 2011). In this article we show that, despite their diversity, all existing
approaches are inoperative, or even detrimental, in the case of extremely imbal-
anced, highly multidimensional and noisy data, that has a high degree of similitude
between classes. As an alternative, we propose a new method of feature selection
and contrast, based on the recently developed maximization metric feature. Further-
more, we compare the performance of this method to that of classical techniques in
the context of help with patent validation. Then we extend the range of our study to
habitually used textual reference data. The rest of this manuscript is structured as fol-
lows: Sect. 2 presents our new approach for feature selection; Sect. 3 details the data
used; Sect. 4 compares the results of the different data corpora of the classification,
with and without the use of the proposed approach; Sect. 5 presents our conclusions
and further research directions.

2 Labelling Maximization for the Features Selection

Feature maximization (F-max) is an unbiased metric with which to estimate the
quality of an unsupervised classification. It uses the properties (i.e. the features) of
data associated with each cluster, without prior examination of the cluster profiles
(Lamirel et al. 2004). Its principal advantage is that it is totally independent of the
classification method and of its operating mode. When used after learning, it can be
exploited to establish global indices of clustering quality (Lamirel et al. 2010), or
for cluster labelling (Lamirel and Ta 2008).
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Consider a partition C which results from a clustering method applied to a dataset
D represented by a group of features F . The feature maximization measure favours
clusters with a maximal feature F-measure. The feature F-measure F Fc( f ) of a fea-
ture f associated with a cluster c is defined as the harmonic mean of the feature recall
F Rc( f ) and of the feature predominance F Pc( f ), which are themselves defined as
follows:

F Rc( f ) = Σd∈cW f
d

Σc∈CΣd∈cW f
d

F Pc( f ) = Σd∈cW f
d

Σ f ′∈Fc,d∈cW f ′
d

(1)

with

F Fc( f ) = 2

(
F Rc( f ) × F Pc( f )

F Rc( f ) + F Pc( f )

)

(2)

where W f
d represents the weight of the feature f for the data d and Fc represents all

the features present in the dataset associated with the cluster c.
Former experiments in cluster labelling clearly highlighted that the feature max-

imization metric has similar discrimination capabilities to the Chi-square metric,
whilst having much better generalization capabilities (Lamirel and Ta 2008). Taking
into account the basic definition of the labelling maximization metric, its use for the
task of variable selection in the context of supervised learning becomes a simple
process. Therefore, this generic metric can be applied to data associated with a class,
as well as those associated with a cluster. The selection process can thus be defined
as parameter-free, based on classes in which a class variable is characterised using
both its capacity to discriminate between classes (F Pc( f ) index) and its ability to
faithfully represent the class data (F Rc( f ) index). The set Sc of features that are
characteristic of a given class c belonging to a class set C is translated by:

Sc = {
f ∈ Fc | F Fc( f ) > F F( f ) and F Fc( f ) > F F D

}
where (3)

F F( f ) = Σc′∈C
F F ′

c( f )

|C/ f | and F F D = Σ f ∈F
F F( f )

|F | (4)

where C/ f represents the subset of C in which the feature f occurs.
Finally, the set of all selected features SC is the subset of F defined by:

SC = ∪c∈C Sc. (5)

In other words, the features that are judged relevant for a given class are those
whose representations are better than average in this class and better than the average
representation of all features in terms of the feature F-measure.

In the specific context of the feature maximization process, a step of improvement
by contrast can be exploited as a complement to the first selection step. The role of
this is to adapt the description of each piece of data to the specific characteristics
of its associated class. This consists of modifying the data weighting schema in a
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distinct way for each class, taking into account the information gain supplied by the
feature F-measure of the local features in this class.

The information gain is proportional to the relation between the F-measure value
of a variable in the F Fc( f ) class and the average F-measure value of this variable
for the whole partition. This concerns only a single piece of data and one feature
describing it. Thus, the resulting gain acts as a contrast factor. This factor adjusts
the weight of the feature in the data profile, optionally taking into account its prior
establishment. For a feature f belonging to the group of selected features Sc from a
class c, the gain Gc( f ) is expressed as:

Gc( f ) = (F Fc( f )/F F( f ))k (6)

where k is an amplification factor that can be optimised according to the precision
obtained.

The active features of a class are those for which the information gain is greater
than 1. Given that the proposed method is one of selection and of contrast based on
the classes, the average number of active features per class is comparable to the total
number of features singled out in the case of habitual selection methods.

Below we give an example of the operating mode of the method, on the basis
of a toy-dataset encompassing two classes (Men (M), Women (F)) described with 3
features: Nose_Size Hair_Length, Shoes_Size. Figure1 shows the source data and
how the F-measure calculation of the Shoes_Size feature operates in the Men class.

As shown in Fig. 2, the second step in the process is to calculate the marginal
average F-measure for each feature and the overall average F-measure for the com-
bination of all features and all classes. In this figure, notation F(., .) stands here for
overall average F F D presented in (Eq.3) and notation F(x, .) stands for marginal
average of class x , which is itself computed as:

F(x, .) = Σ f ∈Sx

F Fx( f )

|Sx | (7)

Shoes_ 
Size 

Hair_ 
Length

Nose_ 
Size Class 

9 5 5 M 

9 10 5 M 

9 20 6 M 

5 15 5 W 

6 25 6 W 

5 25 5 W 

FR(S,M) = 27/43 = 0.62

27/78

= 0.48

= 0.35FP(S,M) = 

FF(S,M) = 
(FR(S,M ) FP(S,M ))
FR(S,M )+ FP(S,M )

Fig. 1 Principle of feature F-measure computation for sample data
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F(x,M) F(x,F) 

Hair_ 
Length 0.39 0.66 0.53 

Shoes_ 
Size 0.48 0.22 0.35 

Nose_ 
Size 0,3 0,24 0,27 

0.38 

F(. , .)

F(x,.)

Fig. 2 Principle of computation of overall feature F-measure average and elimination of irrelevant
features

Features with F-measures that are systematically lower than the overall average are
eliminated. The Nose_Size feature is thus removed. Remaining features (i.e. selected
features) are considered active in the classes in which their F-measure is above the
marginal average:

1. Shoes_Size is active in the Men’s class,
2. Hair_Length is active in the Women’s class.

Contrast ratio highlights the degree of activity and passivity of selected features as
regards their F-measuremarginal average in different classes. Figure3 illustrates how
the contrast is calculated for the example presented. In the context of this example,
the contrast may be considered as a function that will virtually have the following
effects:

F(x,M) F(x,F) 

Hair_ 
Length 0.39 0.66 0.53 

Shoes_ 
Size 0.48 0.22 0.35 

C(x,M) C(x,F) 

Hair_ 
Length 0.39/0.53 0.66/0.53 

Shoes_ 
Size 0.48/0.35 0.22/0.35 

C(x,M) C(x,F) 

Hair_ 
Length 0.74 1.25 

Shoes_ 
Size 1.37 0.63 

F(x,.)

Fig. 3 Principle of computation of contrast for selected features
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1. Increase the length of women’s hair,
2. Increase the size of the men’s shoes,
3. Decrease the length of the men’s hair,
4. Reduce the size of women’s shoes.

3 Experimental Data

One of the goals of the QUAERO project is to use bibliographic information to help
experts to judge patent precedence. Thus, initially it was necessary to prove that it
is possible to associate such bibliographic information with the patent classes in a
pertinent manner; or in other words, to classify it correctly within such classes. The
main experimental data source comprised 6,387 patents from the pharmacological
domain (A61K class; medical preparation) in an XML format, grouped into 15 sub-
classes. The bibliographic references in the patents were extracted from the Medline
database.1 25,887 citations were extracted in total. Interrogation of the Medline
database with the extracted citations allowed bibliographic notices to be recovered
for 7,501 references. Each notice was then labelled with the first classification code
of the citing patent (Hajlaoui et al. 2012). Each notice’s abstract was treated and
transformed into a “bag of words” (Salton 1971) using the TreeTagger tool (Schmid
1994). To reduce the noise generated by this tool, a frequency threshold of 45 (i.e. an
average threshold of 3 per class) was applied to the extracted descriptors. The result
was a description space limited to the 1,804 dimension. A last TF-IDF weighting
step was applied (Salton 1971). The series of labelled notices, which were thus pre-
treated, represented the final corpus on which training was carried out. This last
corpus was highly unbalanced. The smallest class (A61K41) contained 22 articles,
whereas the largest contained 2,500 (A61K31 class). The inter-class similarity was
calculated using a cosine correlation. This indicated that more than 70% of pairs of
classes had a similarity of between 0.5 and 0.9. Thus, the ability of a classification
model to precisely detect the correct class is strongly reduced. A solution commonly
used to contend with an imbalance in classes’ data is sub-sampling of the larger
classes (Good 2006) and/or over-sampling of the smaller ones (Chawla et al. 2002).
However, re-sampling, which introduces redundancy into the data, does not improve
the performance of this dataset, as was shown by Hajlaoui et al. (2012). Additionally,
these authors showed that exploiting different documentary weighting schemes has
little influence on performance. Therefore, we have proposed an alternative solution
detailed below, namely to edit out the features that are judged irrelevant and to
contrast those considered reliable (Lamirel et al. 2014).

As a complement, 5 other well-known reference text datasets have been exploited
for validation of the method:

1http://www.ncbi.nlm.nih.gov/pubmed/.

http://www.ncbi.nlm.nih.gov/pubmed/
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• The R8 and R52 corpora were obtained by Cardoso Cachopo2 from the R10 and
R90 datasets, which are derived from the Reuters 21,578 collection3. The aim
of these adjustments was to retain only data that had a single label. We merely
consideredmonothematic documents and classes that still had at least one example
of training and one example of test conditions. R8 is a reduction of the R10 corpus
(the 10most frequent classes to 8 classes) and R52 is a reduction of the R90 corpus
(90 classes to 52 classes).

• The Amazontm corpus (AMZ) is a UCI dataset (Bache and Lichman 2013) derived
from the recommendations of clients of the Amazon web site that are usable for
author identification. To evaluate the robustness of the classification algorithms
with respect to a large number of target classes, 50 of themost active userswhohave
frequently posted comments in these newsgroups were identified. Thirty messages
were collected for each user. Each message included the author’s linguistic style,
such as the use of figures, punctuation, frequent words and sentences.

• The 20 Newsgroups dataset (Lang 1995) is a collection of approximately 20,000
documents almost uniformly distributed among 20 different discussion groups.
We consider two “bag of words” versions of this dataset in our experiments. In
the (20N-AT) version, all words are preserved and non-alphabetic characters are
converted into spaces. This resulted in an 11,153 word description space. The
(20N-ST) version is obtained after a additional stemming step. Words of less than
2 characters, as well as stopwords (S24 SMART list (Salton 1971)), are eliminated.
Stemming was performed using Porter’s algorithm (Porter 1980). The description
space was thus reduced to 5,473 words (Porter 1980). The description space is
thus reduced to 5,473 words.

• The WebKB dataset (WKB) contains 8,282 pages collected from the departments
of computer science of various universities in January 1997 by the World Wide-
Knowledge Base, a project of the CMU text learning group4 (Carnegie Mellon
University, Pittsburgh). The pages were manually divided into 7 classes: student,
faculty, departmental, course, personal, project, other. We operate on the Cardoso
Cachopo’s reduced version, in which the “departmental” and “staff” classes were
rejected due to their low number of pages, and the class “other” had been deleted.
Cleaning and stemming methods used for the 20 Newsgroups dataset were then
applied to the reduced dataset. This resulted in a 4,158 item dataset with a 1,805
word description space.

• The Chirac-Mitterrand dataset (CHM) is a well-known corpus of talks by presi-
dents Chirac and Mitterrand that issued from the DEFT’05 challenge. The corpus
was constituted by (Alphonse et al. 2005) and includes 73,255 of J. Chirac’s sen-
tences and 12,320 of F. Mitterrand’s. It is thus rather ill-balanced. We focused on
themost difficult task of the challenge, which consisted of identifyingMitterrand’s
sentences in bodies having neither years nor names of people. We used a simple
“bag of words”model in which all single words and punctuation signs are retained.

2http://web.ist.utl.pt/~acardoso/datasets/.
3http://www.research.att.com/~lewis/reuters21578.html.
4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.

http://web.ist.utl.pt/~acardoso/datasets/
http://www.research.att.com/~lewis/reuters21578.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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This resulted in a 55,355 word description space. In the specific context of this
dataset, we additionally compared our classification results to the best reported
results of the DEFT’05 challenge.

4 Experiments and Results

4.1 Experiments

To carry out our experiments, we first took into consideration different classifica-
tion algorithms that are implemented in the Weka tool box5: decision trees (J48)
(Quinlan 1993), random forests (RF) (Breiman 2001), KNN (Aha et al. 1991), habit-
ual Bayesian algorithms, i.e. the Multinomial Naïve Bayes (MNB) and Bayesian
Network (NE), and finally, the SMO-SVM algorithm (SMO) (Platt 1999). Default
parameters were used during the implementation of these algorithms, apart from
KNN, for which the number of neighbours was optimized based on the resulting
precision. Secondly, we emphasized particularly tests of the efficacy of feature selec-
tion approaches, including our proposed feature maximization contrasting method
(FMC). In our test, we included a panel of filter-based approaches applicable to large
dimension data, using once again the Weka platform. The methods tested include:
chi-squared (Ladha and Deepa 2011), information gain (Hall and Smith 1999), CBF
(Dash and Liu 2003), symmetric incertitude (Yu and Liu 2003), RLF (Konokenko
1994), PCA (Principal Component Analysis) (Pearson 1901). Default parameters
were used for most of these methods, except for PCA where the explained variance
percentage is tuned with respect to the resulting accuracy. Initially, we tested the
methods separately. In a second phase, we combined the feature selection supplied
by the different methods with the FMC method that we have proposed (Eqs. 3–6).
We used a 10-fold cross-validation in all our experiments.

4.2 Results

The different results are presented in Tables1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.
They are based onmeasurements of standard performance (level of true positives [TP]
or recall [R], level of false positives [FP], precision [P], F-measure [F] and ROC)
weighted by class size, then averaged for all the classes. For each table and each
combination of selection and classification methods, an indicator of performance
gain or loss (TP Incr) is calculated using the TP of SMO level on the original data as
a reference. Finally, as the results of chi-squared, information gain and symmetric

5http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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Table 1 Classification results on initial data

TP(R) FP P F ROC TP Incr

J48 0.42 0.16 0.40 0.40 0.63 −23%

RandomForest 0.45 0.23 0.46 0.38 0.72 −17%

SMO 0.54 0.14 0.53 0.52 0.80 0% (Ref)

BN 0.48 0.14 0.47 0.47 0.78 −10%

MNB 0.53 0.18 0.54 0.47 0.85 −2%

KNN (k=3) 0.53 0.16 0.53 0.51 0.77 −2%

Table 2 Results of classification after feature selection (BN classifier)

TP(R) FP P F ROC Nbr. var. TP Incr

CHI+ 0.52 0.17 0.51 0.47 0.80 282 −4%

CBF 0.47 0.21 0.44 0.41 0.75 37 −13%

PCA
(50% vr.)

0.47 0.18 0.47 0.44 0.77 483 −13%

RLF 0.52 0.16 0.53 0.48 0.81 937 −4%

FMC 0.99 0.003 0.99 0.99 1 262/cl +90%

incertitude were identical, they only figure once in the tables, as results of the chi-
squared type (and are noted CHI+).

For our main patent collection, Table1 shows that the performances of all classi-
fication methods are weak for the dataset considered, if no feature selection process
is carried out. In this context, this table confirms the superiority of SMO, KNN and
BN, compared to the other two methods, based on decision trees. Additionally, SMO
gave the best global performance in terms of discrimination, as demonstrated by the
highest ROC value. However, this method is clearly not usable in an operational con-
text of patent evaluation such as QUAERO, because of the major confusion between
classes. This shows its intrinsic in-ability to cope with the attraction effect of the
largest classes. Every time that a standard feature selection method is applied in our
context, in association with the best classification methods, the quality of the results
is slightly altered, as indicated in Table2. Table2 also underlines the fact that the
reduction in the number of features assessed by the FMCmethod is similar to that of
CHI+ (in terms of active features; see Sect. 2 for more details). However, its use stim-
ulates the performance of classification methods, particularly BN (Table3), leading
to impressive classification results in the context of highly complex classification:
0.987 accuracy i.e. only 94 misclassed data with the BNmethod, for a total of 7,252.

The results presented in Table4 illustrate more precisely the efficiency of our
feature contrasting method that acts on data description (Eq.6). In experiments relat-
ing to this table, the contrast is applied individually to the features extracted by
each selection method. Then in a second step, a BN classifier is applied to the con-
trasted data. The results show that, irrespective of the type of method used for feature
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Table 3 Results of classification after FMC selection

TP(R) FP P F ROC TP Incr

J48 0.80 0.05 0.79 0.79 0.92 +48%

RandomForest 0.76 0.09 0.79 0.73 0.96 +40%

SMO 0.92 0.03 0.92 0.91 0.98 +70%

BN 0.99 0.003 0.99 0.99 1 +90%

MNB 0.92 0.03 0.92 0.92 0.99 +71%

KNN (k=3) 0.66 0.14 0.71 0.63 0.85 +22%

Table 4 Results of classification with different feature selection methods coupled with our addi-
tional feature contrasting method (BN classifier)

TP(R) FP P F ROC Nbr. var. TP Incr

CHI+ 0.79 0.08 0.82 0.78 0.98 282 +46%

CBF 0.63 0.15 0.69 0.59 0.90 37 +16%

PCA
(50% vr.)

0.71 0.11 0.73 0.67 0.53 483 +31%

RLF 0.79 0.08 0.81 0.78 0.98 937 +46%

FMC 0.99 0.003 0.99 0.99 1 262/cl +90%

selection, the performances of the resulting classification are re-enforced each time
that our feature contrasting is applied downstream of the selection. The average per-
formance increase is 44%. Finally, Table5 illustrates the ability of the FMCapproach
to confront efficiently the problems of imbalance and class similitude. The examina-
tion of TP level variations (especially in the small classes) seen in this table shows
that the attraction effect of data from the largest classes, produced at a high level in the
case of the use of original data, is practically systematically overcome each time the
FMC approach is exploited. The ability of this approach to correct class imbalance
is equally clearly demonstrated by the homogeneous distribution of active features
in the different classes, despite the extremely heterogeneous class size (Fig. 4).

The summary of the results of the 5 complementary datasets is presented in
Tables6, 7, 8, 9, 10 and 11. These tables highlight the fact that the FMC method
can significantly improve the performance of the classifiers in different types of
cases. As in the context of our previous experience (patents), the best performances
were obtained with the use of the FMC method in combination with the MNB and
BN Bayesian classifiers. Table7 presents the comparative results of such a combi-
nation. It demonstrates that the FMC method is particularly effective in increasing
the performance of the classifiers when the complexity of the classification task
rises because of an increasing number of classes (AMZ corpus). Tables8 and 9 sup-
plies general information about the data and behaviour upon use of the FMC selection
method. These parameters illustrate a significant reduction in classification complex-
ity obtained with FMC, because of the drop in the number of features to manage, as
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Fig. 4 Confusion matrix of the optimal results before and after feature selection on the PAT-
QUAERO dataset (SMO classification)

well as a concomitant decrease in badly classed data. Table9 also stresses the cal-
culation time, which is highly curbed for this method (the calculation is carried out
on Linux using a laptop computer equipped with an Intel® Pentium® B970 2.3Ghz
processor and 8GB of memory).

For these datasets, similar remarks to those mentioned for the patent dataset can
be made on the subject of low efficiency of common feature selection methods
and re-sampling methods. Tables8 and 9 also show that the value of the contrast
magnification factor (Eq.6) used to obtain the best performances can vary throughout
the experiments (from 1 to 4 in this last context). However, it can be seen that if a
fixed value is taken for this factor, for example the highest (here 4), the results are not
down-graded. This choice thus represents a good alternative to confront the problem
of configuration.

The 5 most contrasted features (lemmes) of the 8 classes issued from the R8
corpus are shown in Table6. The main lines of the themes covered by the classes
can be clearly demonstrated in this way. This illustrates the extraction capacities of
subjects by the FMC method. Finally, the acquisition of very good performances by
combining the FMC selection approach with a classification method such as MNB
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Table 5 Characteristics of classes before and after FMC selection (BN classifier)

Class label Size Feat. Select. % TP FMC % TP before

a61k31 2, 533 223 1 0.79

a61k33 60 276 0.95 0.02

a61k35 459 262 0.99 0.31

a61k36 212 278 0.95 0.23

a61k38 1, 110 237 1 0.44

a61k39 1, 141 240 0.99 0.65

a61k41 22 225 0.24 0

a61k45 304 275 0.98 0.09

a61k47 304 278 0.99 0.21

a61k48 140 265 0.98 0.12

a61k49 90 302 0.93 0.26

a61k51 78 251 0.98 0.26

a61k6 47 270 0.82 0.04

a61k8 87 292 0.98 0.02

a61k9 759 250 1 0.45

Table 6 List of high contrast features (lemmes) for the 8 classes of the R8 corpus

Trade Grain Ship Acq

6.35 tariff 5.60 agricultur 6.59 ship 5.11 common

5.49 trade 5.44 farmer 6.51 strike 4.97 complet

5.04 practic 5.33 winter 6.41 worker 4.83 file

4.86 impos 5.15 certif 5.79 handl 4.65 subject

4.78 sanction 4.99 land 5.16 flag 4.61 tender

Learn Money-fx Interest Crude

7.57 net 6.13 currenc 5.95 rate 6.99 oil

7.24 loss 5.55 dollar 5.85 prime 5.20 ceil

6.78 profit 5.52 germani 5.12 point 4.94 post

6.19 prior 5.49 shortag 5.10 percentag 4.86 quota

5.97 split 5.16 stabil 4.95 surpris 4.83 crude

is a real advantage for large-scale use, given that the MNB method has incremental
abilities and that the two methods have low calculation times.

Concerning the specific case of the CHM corpus, the best results were obtained
by the combination of our FMC method with a BN classifier. This approach led
to an accuracy value of 99.999%. As shown in the confusion matrix presented in
Table10, we only observed 12 errors, as compared to approx. 16,850 for the best
antecedent approach (El-Bèze et al. 2005), which additionally exploits a complex
linguistic model. Furthermore, unlike previous approaches, errors are not bilateral:
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Table 7 Results of classification after FMC selection (MNB or BN classifiers)

TP(R) FP P F ROC TP Incr.

R8 - 0.937 0.02 0.942 0.938 0.984

FMC 0.998 0.001 0.998 0.998 1 +6%

R52 - 0.91 0.01 0.909 0.903 0.985

FMC 0.99 0.001 0.99 0.99 0.999 +10%

AMZ - 0.748 0.05 0.782 0.748 0.981

FMC 0.998 0.001 0.998 0.998 1 +33%

20N-AT - 0.882 0.006 0.884 0.881 0.988

FMC 0.992 0 0.992 0.1 1 +13%

20N-ST - 0.865 0.007 0.866 0.864 0.987

FMC 0.991 0.001 0.991 1 1 +15%

WKB - 0.842 0.068 0.841 0.841 0.946

FMC 0.996 0.002 0.996 0.996 0.996 +18%

Table 8 Dataset information and complementary results after FMC selection (5 reference datasets
and MNB or BN classifiers)

R8 R52 AMZ 20N-AT 20N-ST WKB

Nb. class 8 52 50 20 20 4

Nb. data 7,674 9,100 1,500 18,820 18,820 4,158

Nb. feat. 3,497 7,369 10,000 11,153 5,473 1,805

Nb. sel. feat. 1,186 2,617 3,318 3,768 4,372 725

Act. feat./class (av.) 268.5 156.05 761.32 616.15 525.95 261

Magnification factor 4 2 1 4 4 4

Misclassed (Std) 373 816 378 2,230 2,544 660

Misclassed (FMC) 19 91 3 157 184 17

Comp. time (s) 1 3 1.6 10.2 4.6 0.8

Mitterrand was confused 12 times with Chirac, but Chirac was never confused with
Mitterrand. To achieve these results we did not apply any linguistic processing: there
was not even any stemming operation and “empty words” were preserved and proved
useful for analysis. Table11 highlights words with the strongest contrast in the talks
of each protagonist and in such a way shows that our approach can be additionally
exploited to accurately characterize speakers’ profiles. In the case of Mitterrand,
many types of linguistic features already highlighted by Habert et al. (2000) obtain
high FMC values, but the dominant features panel is much more comprehensive
with our approach. Mitterrand talks seem marked by humanistic connotations, as
illustrated by the high contrast sequence “gens, assez, capables, penser (people,
enough, capable, thinking)” and contain a lot of empty words in relation with the
interrogative mode and philosophical discourse. The contrast of dominant features
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Table 9 Dataset information
an complementary results
after FMC selection
(Chirac-Mitterrand (CHM)
dataset and BN classifier)

CHM

Nb. class 2

Nb. data 84, 575

Nb. feat. 55, 355

Nb. sel. feat. 5, 321

Act. feat./class (av.) 2, 900

Magnification factor 4

Misclassed (Reference: (El-Bèze et al. 2005)) 16, 650

Misclassed (FMC) 12

Comp. time (s) 10

Table 10 Confusion matrix
for the Chirac-Mitterrand
(CHM) dataset (BN classifier)

a b

73,255 0 a = Chirac

12 11,308 b = Mitterrand

Table 11 10 most contrasted
features in the talks of
Mitterrand and Chirac

Mitterrand Chirac

Contrast Feature Contrast Feature

1.88 douze 1.93 Partenariat

1.85 est-ce 1.86 Dynamisme

1.80 eh 1.81 Exigence

1.79 quoi 1.78 Compatriotes

1.78 - 1.77 Vision

1.76 gens 1.77 Honneur

1.75 assez 1.76 Asie

1.74 capables 1.76 Efficacité

1.72 penser 1.75 Saluer

1.70 bref 1.74 Soutien

is much more pronounced in the case of Chirac and these features represent mostly
nouns, demonstrating a more clearly established language, based on stable values.

Interestingly, complementary results obtained with the numerical UCI Wine
dataset show that, with the help of FMC, NB and BN methods can only exploit
two features (among 13) for classification as a decision tree classifier like J48 (i.e.
C4.5 (Quinlan 1993)) would do on standard data. The difference is that a perfect
result is obtained with NB or BN and FMC, whereas this is not the case with J48
(Table12). Some explanations are provided by looking at the distribution of the class
samples on the alternative decision plans of the two methods. In the “Proline-Colour
Intensity” decision plan exploited by J48, the different classes cannot clearly be
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Fig. 5 WINE dataset: “Proline-Color intensity” decision plan generated by J48—Proline is on Y
axis on this and next figures

Fig. 6 WINE dataset: “Proline-Magnesium” decision plan generated by FMC (before data con-
trasting)
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Fig. 7 WINE dataset: “Proline-Magnesium” decision plan generated by FMC (after data contrast-
ing with a magnification factor k = 1)

Fig. 8 WINE dataset: “Proline-Magnesium” decision plan generated by FMC (after data contrast-
ing with a magnification factor k = 4)
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Table 12 Classification results on UCI Wine dataset

TP R FP P F ROC TP Incr

J48 0.94 0.04 0.94 0.94 0.95 0% (Ref)

FMC + BN 1 0 1 1 1 +6%

discriminated (Fig. 5). The FMC method “apparently” generates an even more com-
plex “Proline-Magnesium” decision plan if contrast is not considered (Fig. 6). How-
ever, as shown in Figs. 7 and 8, with the combined effect of contrast and highmagnifi-
cation factor (k = 4) on data features, the different classes can easily be discriminated
on that decision plan (Fig. 8).

5 Conclusion

Our main aim was to develop an efficient method of feature selection and con-
trast, which would allow routine problems linked to the supervised classification of
large volumes of textual data to be overcome. These problems are linked to class
imbalance, with a high degree of similarity between them, as they house highly mul-
tidimensional and noisy data. To achieve our aim, we adapted a recently developed
metric in the unsupervised framework to the context of supervised classification. By
different experiments on large textual datasets, we illustrated numerous advantages
of our approach, including its effectiveness to improve the performance of classi-
fiers. Notably, this approach places the accent on the most flexible classifiers and
the least demanding in terms of calculation times, such as the Bayesian classifiers.
Another advantage of this method is that it concerns an approach without parameters
that depend on a simple variable extraction schema. The method can thus be used
in numerous contexts, such as those of incremental or semi-supervised learning, or
even digital learning in general. Further work would be to adapt this technique to the
domain of text examination, to enrich ontologies and glossaries by the large-scale
exploitation of existing corpora.

Acknowledgments This work was carried out in the context of the QUAERO program (http://
www.quaero.org) supported by OSEO (http://www.oseo.fr/), Agence française de développement
de la recherche.

References

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning,
6, 37–66.

Alphonse, E. E., et al. (2005). Préparation des donnés et analyse des résultats de DEFT’05. In TALN
2005 - Atelier DEFT 2005 (pp. 99–111).

http://www.quaero.org
http://www.quaero.org
http://www.oseo.fr/


A Novel Approach to Feature Selection Based on Quality Estimation Metrics 139

Bache, K.,&Lichman,M. (2013). Ucimachine learning repository. University of California, School
of Information and Computer Science, Irvine, CA, USA. http://archive.ics.uci.edu/ml.

Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2012). A review of feature selec-
tion methods on synthetic data. Knowledge and Information Systems, 1–37.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees.
Technical report. Wadsworth International Group, Belmont, CA, USA.

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). Synthetic minority oversampling
technique. Journal of Artificial Intelligence Research, 16, 321–357.

Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence,
151(1), 155–176.

Daviet, H. (2009). Class-Add, une procédure de sélection de variables basée sur une troncature
k-additive de l’information mutuelle et sur une classification ascendante hiérarchique en pré-
traitement. Thèse de doctorat, Université de Nantes.

El-Bèze, M., Torres-Moreno, J.-M., & Béchet, F. (2005). Peut-on rendre automatiquement à César
ce qui lui appartient. Application au jeu du Chirand-Mitterrac. In TALN 2005 - Atelier DEFT
2005 (pp. 125–134).

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification.
Journal of Machine Learning Research, 3, 1289–1305.

Good, P. (2006). Resampling methods. Ed. Birkhauser.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of

Machine Learning Research, 3, 1157–1182.
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification
using support vector machines. Machine Learning, 46(1), 389–422.

Habert, B., et al. (2000). Profilage de textes: cadre de travail et expérience. In Proceedings of
JADT’2000 (5ièmes journées internationales d’Analyse Statistique des Données Textuelles).

Hajlaoui, K., Cuxac, P., Lamirel, J.-C., & Francois, C. (2012). Enhancing patent expertise through
automatic matching with scientific papers. In J.-G. Ganascia, P. Lenca & J.-M. Petit (Eds.), Dis-
covery science. (Vol. 7569, pp. 299–312), Lecture notes in computer science. Berlin Heidelberg:
Springer.

Hall, M., & Smith, L. (1999). Feature selection for machine learning: Comparing a correlation-
based filter approach to the wrapper. InProceedings of the Twelfth International Florida Artificial
Intelligence Research Society Conference (pp. 235–239).

Kira, K., & Rendell, L. (1995). The feature selection problem: Traditional methods and a
new algorithm. In Proceedings of the Tenth National Conference on Artificial Intelligence
(pp. 129–134).

Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence,
97(1–2), 273–324.

Konokenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In Proceedings of
European Conference on Machine Learning (pp. 171–182).

Ladha, L., & Deepa, T. (2011). Feature selection methods and algorithms. International Journal on
Computer Science and Engineering, 3(5), 1787–1797.

Lallich, S., & Rakotomalala, R. (2000). Fast feature selection using partial correlation for multi-
valued attributes. In D. A. Zighed, J. Komorowski & J. Żytkow (Eds.), Principles of data mining
and knowledge discovery (Vol. 1910, pp. 221–231), Lecture notes in computer science. Berlin
Heidelberg: Springer.

Lamirel, J., Al Shehabi, S., François, C., &Hoffmann,M. (2004). New classification quality estima-
tors for analysis of documentary information: Application to patent analysis and web mapping.
Scientometrics, 60(3), 445–562.

Lamirel, J., Ghribi, M., & Cuxac, P. (2010). Unsupervised recall and precision measures: a step
towards new efficient clustering quality indexes. In Proceedings of the 19th International Con-
ference on Computational Statistics (COMPSTAT’2010, Paris, France).

http://archive.ics.uci.edu/ml


140 J.-C. Lamirel et al.

Lamirel, J., Cuxac, P., Chivukula,A.S.,&Hajlaoui,K. (2014).Optimizing text classification through
efficient feature selection based on quality metric. Journal of Intelligent Information Systems,
Special issue on PAKDD-QIMIE 2013 (pp. 1–18).

Lamirel, J., & Ta, A. (2008). Combination of hyperbolic visualization and graph-based approach
for organizing data analysis results: An application to social network analysis. In Proceedings
of the 4th International Conference on Webometrics, Informetrics and Scientometrics and 9th
COLLNET Meetings, Berlin, Germany.

Lang, K. (1995). Learning to filter netnews. In Proceedings of the Twelfth International Conference
on Machine Learning (pp. 331–339).

Pearson, K. (1901). On lines an planes of closetst fit to systems of points in space. Philosophical
Magazine, 2(11), 559–572.

Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In:
Advances in kernel methods (pp. 185–208). Cambridge, MA, USA: MIT Press.

Porter, M. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.
Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Salton, G. (1971). Automatic processing of foreign language documents. Englewood Clifs, NJ,
USA: Prentice-Hill.

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of
International Conference on New Methods in Language Processing.

Witten, I., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. San
Francisco: Morgan Kaufmann.

Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter
solution. In Proceedings of ICML 03, Washington DC, USA (pp. 856–863).



Ultrametricity of Dissimilarity Spaces
and Its Significance for Data Mining

Dan A. Simovici, Rosanne Vetro and Kaixun Hua

Abstract We introduce a measure of ultrametricity for dissimilarity spaces and
examine transformations of dissimilarities that impact this measure. Then, we study
the influence of ultrametricity on the behavior of two classes of data mining algo-
rithms (kNN classification and PAM clustering) applied on dissimilarity spaces. We
show that there is an inverse variation between ultrametricity and performance of
classifiers. For clustering, increased ultrametricity generate clusterings with better
separation. Lowering ultrametricity produces more compact clusters.

1 Introduction

Ultrametrics are dissimilarities that satisfy a stronger version of the tria-
ngular inequality (usually associated with metrics) and they occur in many data min-
ing applications such as agglomerative hierarchical clustering algorithms (Leclerc
1985; Gordon 1981, 1987; Contreras and Murtagh 2012; Jardine and Sibson 1971;
Diatta and Fichet 1998; Bertrand and Janowitz 2002; Barthélemy and Brucker 2008;
Brucker 2006; Barthélemy et al. 2004), and have applications in the study of phylo-
genetic trees in biology (Ninio 1983; Kimura 1983; Di Summa et al. 2015), p-adic
numbers in mathematics (Schikhof 1984; Amice 1975), and certain physical sys-
tems (Rammal et al. 1986), etc. Our goal is to evaluate the degree of ultrametricity
of dissimilarity spaces and to study the impact of the degree of ultrametricity on
performance of classification and clustering algorithms.

Measuringultrametricity ofmetric spaces has preoccupied anumber of researchers
(for example, in Rammal et al. (1985)); however, the proposed measures are usable
for the special case of metrics and are linked to the subdominant ultrametric attached
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to a metric which requires computing a single-link clustering or a minimal spanning
tree. We propose an alternative measure referred to as the weak ultrametricity that
can be applied to the more general case of dissimilarity spaces.

The set of reals is denoted by R; the set of non-negative reals is denoted by R�0.
A dissimilarity space is a pair (S, d), where S is a set and d : S × S −→ R is a

function such that d(x, y) � 0, d(x, x) = 0, and d(x, y) = d(y, x) for x, y ∈ S. We
assume that all dissimilarity spaces considered are finite. The set of dissimilarities
defined on a set S is denoted by DISS(S).

A triangle in (S, d) is a triple (x, y, z) ∈ S3. To simplify the notation, we denote
t = (x, y, z) by xyz.

Themapping d is a quasi-metric if it is a dissimilarity and it satisfies the triangular
inequality d(x, y) � d(x, z) + d(z, y) for x, y, z ∈ S. In addition, if d(x, y) = 0
implies x = y, then d is a metric.

An quasi-ultrametric is a dissimilarity d : S × S −→ R�0 that satisfies the
inequality d(x, y) � max{d(x, z), d(z, y)} for x, y, z ∈ S. If, in addition, d(x, y) =
0 implies x = y, then d is an ultrametric.

In Sect. 2 we introduce a measure of ultrametricity for dissimilarity spaces. A
weaker variant of this measure that is less influenced by outliers and therefore is
better from a computational point of view is discussed in Sect. 3. Then, we examine
transformations of dissimilarities that affect ultrametricity. The influence of ultra-
metricity of dissimilarities on the performance of classifiers is examined in Sect. 2
using the k-nearest neighbors classifiers. Section5 is dedicated to the study of the
influence of ultrametricity on cluster compactness and separation.

2 Ultrametricity of Dissimilarities

Let r be a non-negative number and letDr (S) be the set of dissimilarities defined on
a set S that satisfy the inequality d(x, y)r � d(x, z)r + d(z, y)r for x, y, z ∈ S. Note
that every dissimilarity belongs to the setD0; a dissimilarity inD1 is a quasi-metric.

Theorem 2.1 Let (S, d) be a dissimilarity space and let D∞(S) = ⋂
r�0 Dr (S). If

d ∈ D∞(S), then d is an ultrametric on S.

Proof Let d ∈ D∞ and let t = xyz be a triangle in the dissimilarity space (S, d).
Assume that d(x, y) � d(x, z) � d(z, y).

Suppose intially that d(x, z) = d(y, z). Then, d ∈ Dr (S) implies that d(x, y)r �
2d(x, z)r , so (

d(x, y)

d(x, z)

)r

� 2

for every r � 0. By taking r → ∞ it is clear that this is possible only if d(x, y) �
d(x, z), which implies d(x, y) = d(x, z) = d(y, z); in otherwords, t is an equilateral
triangle.
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The alternative supposition is that d(x, z) > d(y, z). Again, since d ∈ Dr (S), it
follows that

d(x, y) �
(
d(x, z)r + d(z, y)r

) 1
r

= d(x, z)

(

1 +
(
d(z, y)

d(x, z)

)r) 1
r

for every r > 0. Since limr→∞ d(x, z)
(
1 +

(
d(y,z)
d(x,z)

)r) 1
r = d(x, z), it follows that

d(x, y) � d(x, z) for x, y, z ∈ S. This inequality implies d(x, y) = d(x, z), so the
largest two sides of the triangle xyz are equal. This allows us to conclude that d is
an ultrametric. �

It is easy to verify that if r and s are positive numbers, then r � s implies
(d(x, z)r + d(z, y)r )

1
r � (d(x, z)s + d(z, y)s)

1
s (see Simovici and Djeraba (2014),

Lemma6.15). Thus, if r � s we have the inclusion Ds ⊆ Dr .
Let d and d ′ be two dissimilarities defined on a set S. We say that d ′ dominates

d if d(x, y) � d ′(x, y) for every x, y ∈ S. The pair (DISS(S),�) is a partially
ordered set.

Let r, s be two positive numbers such that r < s, and let d ∈ Dr (S). The family
Ds,d(S) of s-dissimilarities on S that are dominated by d has a largest element.

Indeed, since every element of Ds,d(S) is dominated by d, we can define the
mapping ẽ : S × S −→ R�0 as ẽ(x, y) = sup{e(x, y) | e ∈ Ds,d(S)}. It is imme-
diate that e is a dissimilarity on S and that ẽ � d. Moreover, we have e(x, y)s �
e(x, z)s + e(z, y)s � ẽ(x, z)s + ẽ(z, y)s for every x, y, z ∈ S, which implies

ẽ(x, y)s � ẽ(x, z)s+ < ẽ(z, y)s .

Thus, ẽ ∈ Ds,d(S), which justified our claim.
For r > 0 define the function Fr : R2

geqs0 −→ R�0 as Fr (a, b) = (ar + br )
1
r . It

is straighforward to see that p � q implies Fp(a, b) � Fq(a, b) for a, b ∈ R�0. Fur-
thermore for r > 0 we have d ∈ Dr (S) if and only if d(x, y) � Fr (d(x, z), d(z, y)).

Definition 2.2 Let r, s be two positive numbers. An (r, s)-transformation is a func-
tion g : R�0 −→ R�0 such that

(i) g(x) = 0 if and only if x = 0;
(ii) g is continuous and strictly monotonic on R�0;
(iii) g(Fr (a, b)) � Fs(g(a), g(b)) for a, b ∈ R�0. �

Note that if d ∈ Dr (S) and g is an (r, s)-transformation, then gd ∈ Ds(S).
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3 A Weaker Dissimilarity Measure

The notion of weak ultrametricity that we are about to introduce has some computa-
tional advantages over the notion of ultrametricity, especially from the point of view
of handling transformations of metrics.

Let (S, d) be a dissimilarity space and let t = xyz be a triangle. Following Ler-
man’s notation (Lerman 1981), we write Sd(t) = d(x, y),Md(t) = d(x, z), and
Ld(t) = d(y, z), if d(x, y) � d(x, z) � d(y, z).

Definition 3.1 Let (S, d) be a dissimilarity space and let t = xyz ∈ S3 be a triangle.
The ultrametricity of t is the number ud(t) defined by

ud(t) = max{r > 0 | Sd(t)
r � Md(t)

r + Ld(t)
r },

which is the ultrametricity of the subspace ({x, y, z}, d) of (S, d). If d ∈ Dp, we
have p � ud(t) for every t ∈ S3.

The weak ultrametricity of the triangle t , wd(t), is given by

wd(t) =
⎧
⎨

⎩

1
log2

Sd (t)
Md (t)

if Sd(t) > Md(t)

∞ if Sd(t) = Md(t).

If wd(t) = ∞, then t is an ultrametric triple.
The weak ultrametricity of the dissimilarity space (S, d) is the number w(S, d)

defined by
w(S, d) = median{wd(t) | t ∈ S3}. �

The definition of w(S, d) eliminates the influence of triangles whose ultrametricity
is an outlier, and gives a better picture of the global ultrametric property of (S, d).

For a triangle t we have

0 � Sd(t) − Md(t) =
(
2

1
wd (t) − 1

)
Md(t) �

(
2

1
w(S,d) − 1

)
Md(t)

Thus, if wd(t) is sufficiently large, the triangle t is almost isosceles. For example, if
wd(t) = 5, the difference between the length of longest side Sd(t) and the median
side Md(t) is less than 15%.

For every triangle t ∈ S3 in a dissimilarity space we have ud(t) � wd(t). Indeed,
since Sd(t)ud (t) � Md(t)ud (t) + Ld(t)ud (t) we have Sd(t)ud (t) � 2Md(t)ud (t), which is
equivalent to ud(t) � wd(t).

Next we discuss dissimilarity transformations that impact the ultrametricity of
dissimilarities.

Theorem 3.2 Let (S, d) be a dissimilarity space and let f : R�0 −→ R�0 be a
function that satisfies the following conditions:
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(i) f (0) = 0;
(ii) f is increasing;
(iii) the function g : R�0 −→ R�0 given by

g(a) =
{

f (a)
a if a > 0,

0 if a = 0

is decreasing.

Then the function e : S × S −→ R�0 defined by e(x, y) = f (d(x, y)) for x, y ∈ S
is a dissimilarity and wd(t) � we(t) for every triangle t ∈ S3.

Proof Let t = xyz ∈ S3 be a triangle. It is immediate that e(x, y) = e(y, x) and
e(x, x) = 0.

Since f is an increasing function we have f (Sd(t)) � f (Md(t)) � f (Ld(t)), so
the ordering of the sides of the tranformed triangle is preserved.

Since g is a decreasing function, we have g(Sd(t)) � g(Md(t)), that is,
f (Sd (t))
Sd (t)

�
f (Md (t))
Md (t)

, or
Sd(t)

Md(t)
� f (Sd(t))

f (Md(t))
.

Therefore,

wd(t) = 1

log2
Sd (t)
Md (t)

� 1

log2
Se(t)
Me(t)

= we(t).

Example 3.3 Let (S, d) be a dissimilarity space and let e be the dissimilarity defined
by e(x, y) = d(x, y)r , where 0 < r < 1. If f (a) = ar , then f is increasing and
f (0) = 0. Furthermore the function g : R�0 −→ R�0 given by

g(a) =
{

f (a)
a if a > 0,

0 if a = 0
=

{
ar−1 if a > 0,

0 if a = 0

is decreasing. Therefore, we have we(t) � wd(t). �

Example 3.4 Let f : R�0 −→ R�0 be defined by f (a) = a
a+1 . It is easy to see

that f is increasing on R�0, f (0) = 0, and

g(a) =
{

1
1+a if a > 0,

0 if a = 0

is decreasing on the same set. Therefore, the weak ultrametricity of a triangle
increases when d is replaced by e given by
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e(x, y) = d(x, y)

1 + d(x, y)

for x, y ∈ S. �

Example 3.5 For a dissimilarity space (S, d), the Schoenberg transform of d
described in Deza and Laurent (1997) is the dissimilarity e : S2 −→ R�0 defined by

e(x, y) = 1 − e−kd(x,y)

for x, y ∈ S. Let f : R�0 −→ R� be the function f (a) = 1 − e−ka that is used in
this transformation. It is immediate that f is a increasing function and f (0) = 0. For
a > 0 we have g(a) = 1−e−ka

a , which allows us to write

g′(a) = e−ka(ka + 1) − 1

a2

for a > 0. Taking into account the obvious inequality ka + 1 < eka for k > 0, it
follows that the function g is decreasing. Thus, the weak ultrametricity of a triangle
relative to the Schoenberg transform is greater than the weak ultrametricity under
the original dissimilarity. �

4 Classification and Ultrametricity

The k-nearest neighbors algorithm (kNN) is a classification method that is memory-
based and does not require a model to fit. The classification is decided according to
a simple majority decision among the most similar training set samples.

We show that the performance of kNN applied to a dissimilarity space (S, d)
degrades with the increase of the ultrametricity of d. This happens because the
increase of ultrametricity among the elements of S promotes the equalization of
distances.

We begin with a dissimilarity space (S, d) and we obtain a new dissimilarity
d ′ = f (d), where f is one of the transformations examined in Sect. 2. Algorithm9
encapsulates the above process. It runs kNN with t-fold cross-validation and com-
putes the confusion matrix generated for each fold as well as the cumulative classi-
fication error of the transformed space.

We limit the precision of the transformed dissimilarity d ′ taking into account, as
observed inMurtagh et al. (2008) that ultrametricity can decrease with the increase in
precision. Limiting the precision of d ′ to a few decimal digits promotes the equaliza-
tion of those distances. We used in our experiments the data sets Iris and ionosphere
available from https://archive.ics.uci.edu/ml/datasets/ and data set ovarian cancer
obtained from the FDA-NCI Clinical Proteomics Program Databank (https://home.
ccr.cancer.gov/ncifdaproteomics).

https://archive.ics.uci.edu/ml/datasets/
https://home.ccr.cancer.gov/ncifdaproteomics
https://home.ccr.cancer.gov/ncifdaproteomics
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Algorithm 9: Runs kNN with transformed distance function
Input: A metric or dissimilarity space S = (M, d), the number of nearest neighbors k, the

number of folds t and a function f , such that f (d) = d ′ and u <= u′ where u and u′
are the ultrametricities of S and S′ = (M, d ′), respectively.

Output: The cumulative classification error of the transformed space S′
1 d

′ ← f (d), limited to some decimal precision
2 parti tion M in t subsamples
3 for i=1 to t do
4 training = parti tion(i).training
5 test = parti tion(i).test
6 test Si ze(i) = si ze(test)
7 kNN(training, test, k, d ′)
8 err(i) = # misclassi f ied objects
9 return cerr = sum(err)/sum(testsSi ze)

Table 1 Average of 10 computations of the classification error produced by kNN using stratified
t-fold cross-validation, for different values of k and t = 10

Diss. Iris Ionosphere Ovarian cancer

k = 3 k = 5 k = 7 k = 3 k = 5 k = 7 k = 3 k = 5 k = 7

d 0.1033 0.0467 0.0427 0.3860 0.3701 0.3852 0.1403 0.1394 0.1431

d0.1 0.1187 0.0753 0.0567 0.3875 0.4097 0.3897 0.1454 0.1431 0.1477

d0.01 0.2700 0.2900 0.3000 0.5211 0.5239 0.5365 0.3574 0.3181 0.3000

Our experiments considered a initial Euclidean space (S, d)where S corresponds
to one of the data sets described above and d to the Euclidean distance.We first tested
our method on the original space and compared the results to the results generated
by the increase of ultrametricity of dissimilarity d ′ = f (d), where f (a) = ar for
a � 0. We used kNN with both t-fold cross-validation and with stratified t-fold
cross-validation (where each fold has roughly equal size and roughly the same class
proportions as in the entire data set). The transformed distances were limited to 2
decimal digit precision.

The classification error obtained is consistently higher for the case of the trans-
formed space (S, d ′), in both validation scenarios. In Table1 we show the results for
three values of k (the number of neighbors) in stratified 10-fold validation. Similar
results are obtained for 5 folds in both validation scenarios.

5 The Impact of Ultrametricity on Cluster Compactness
and Separation

Clustering validation evaluates the goodness of the results of a clustering algo-
rithm (Maulik and Bandyopadhyay 2002). We used internal validation measures
that rely on information in the data (Tang et al. 2005), namely and compactness and
separation (Tang et al. 2005; Zhao and Karypis 2002).
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Separation is a measure of distinctiveness between a cluster and the rest of the
world. The pairwise distances between cluster centers or the pairwise minimum dis-
tances between objects in different clusters are often used as measures of separation.

The compactness of each cluster was evaluated using the average dissimilarity
between the observations in the cluster and the medoid of the cluster. Separation was
computed using the minimal dissimilarity between an observation of the cluster and
an observation of another cluster.

We investigated the impact of ultrametricity on compactness and separation of
clusters by using the Partition Around Medoids (PAM) algorithm (Kaufman and
Rousseeuw 1990) to cluster objects originally in the Euclidean Space and later in a
transformed dissimilarity space with lower or higher ultrametricity.

Experiments show that a transformation on the distance matrix that decreases the
ultrametricity of the original Euclidean space can actually improve compactness but
also decrease separation of the clusters generated byPAM.However, the compactness
improves at a faster ratio than the decrease in separation. We also observed that the
increase of ultrametricity produces the reverse effect, degrading compactness and
increasing separation, at different ratios. In this case, compactness decreases in a
faster ratio than the increase in separation.

Let (S, d) be a dissimilarity space, (S, d ′) be the transformed dissimilarity space,
where d ′ = f (d) is obtained by applying one of the transformations described in
Sect. 2.

The increase of ultrametricity from (S, d) to (S, d ′) promotes the equalization
of dissimilarity values. In the extreme case, we have an ultrametric space where the
pairwise distances involved in all triplets of points form an equilateral or isosceles tri-
angle. To explore how the equalization (or the reverse process) may affect clustering
quality, a better study of the effects of increased (or decreased) ultrametricity on the
results generated by a widely known and robust clustering algorithm was performed.

In order to study the impact of ultrametricity on cluster compactness and sepa-
ration, we have implemented an algorithm that runs PAM on the original and trans-
formed spaces, and computes those measure for each cluster from S and S′.

Our experiments considered a initial Euclidean space (S, d)where S corresponds
to a set of objects. To obtain a valid comparison of compactness and separation, the
clusters obtained from a specific data set S must contain the same elements in the
original and transformed spaces.

Dissimilarities dx where x > 1 tend to decrease the ultrametricity of the original
space, whereas dissimilarities where 0 < x < 1 tend to increase ultrametricity.

Current existing clustering validation measures and criteria can be affected by
various data characteristics (Liu et al. 2010). For instance, data with variable density
is challenging for several clustering algorithms. It is known that k-means suffers from
an uniformizing effect which tends to divide objects into clusters with relatively
equal sizes (Xiong et al. 2009). Likewise, k-means and PAM do not have a good
performance when dealing with skewed distribution data sets where clusters have
unequal sizes. To determine the impact of ultrametricity in the presence of any of
those characteristics, experiments were carried considering 3 different data aspects:
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Fig. 1 Synthetic data illustrating 3 different data aspects: a good separation, b different density
and c skewed distributions

good separation, density, and skewed distributions in three synthetic data sets named
WellSeparated, DifferentDensity and SkewDistribution, respectively.

Figure1 shows the synthetic data that was generated for each aspect. Each data
set contains 300 objects.

Table2 show the results for data sets WellSeparated, DifferentDensity and
SkewDistribution, respectively. Table3 show results for the data set Iris. The mea-
sure (compactness or separation) ratio is computed dividing the transformed space
measure by the original space measure. The average measure ratio computed for the
3 clusters is presented in each table.

Note that the average measure ratio is less than one for spaces with lower ultra-
metricity (obtainedwith dissimilarities d5 and d10). In this case, the average compact-
ness ratio is also lower than the average separation ratio, showing that the transfor-
mations generated intra-cluster dissimilarities that shrunk more than the inter-cluster
ones, relatively to the original dissimilarities. In spaces with higher ultrametricity
(obtained with dissimilarities d0.1 and d0.01), the average measure ratio is higher than
one. The average compactness ratio is also higher than the average separation ratio,
showing that the transformations generated intra-cluster dissimilarities that expanded
more than the inter-cluster ones. This explains the equalization effect obtained with
the increase in ultrametricity.

In Fig. 2, we show the relationship between compactness and separation ratio for
the three synthetic data sets and for the Iris data set which exhibit similar variation
patterns.

As previously mentioned, data with characteristics such as different density and
different cluster sizes might impose a challenge for several clustering algorithms.

We show a scenario where PAM, when applied to the original Euclidean space,
does not perform well. Nevertheless, we are able to improve the PAM’s results by
applying a transformation that decreases the ultrametricity of the original space and
running PAM on the transformed space.

Consider the data set presented in Fig. 3a which was synthetically generated in an
Euclidean Space with pairwise metric d by three normal distributions with similar
standard deviation but different densities. It has 300 points in total, with the densest
group including 200 points and the other two containing 75 and 25 points.

Note that the somewhat sparse groups are also located very close to each other.Dif-
ferent symbols (+,�, ◦) are used to identify the three distinct distributions. PAM’s
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Table 2 Cluster compactness and separation using PAM on three synthetic data sets. Both ratio
averages are computed relative to the data set cluster compactness and separation values given by
the original dissimilarity d
(a) Compactness for a data set with well-separated clusters

Diss. Compactness avg. Compactness std. Compactness ratio avg.

d 0.1298267265 0.0364421138 1

d10 7.4595950908E-009 9.0835007432E-009 5.7458085055E-008

d5 0.000048905 4.3815641482E-005 0.0003766941

d0.1 0.8231766265 0.0254415565 6.3405790859

d0.01 0.9722292326 0.0030358862 7.4886678515

(b) Separation for a data set with well-separated clusters

Diss. Separation avg. Separation std. Separation ratio avg.

d 0.5904521462 0.339733487 1

d10 0.0020607914 0.0035682378 0.0034901921

d5 0.0473640032 0.0795298042 0.0802164976

d0.1 0.9752251248 0.0521762794 1.6516581929

d0.01 0.9979573861 0.0052696787 1.6901579451

(c) Compactness for a data set with well-separated clusters

Diss. Compactness avg. Compactness std. Compactness ratio avg.

d 0.2599331876 0.0225831458 1

d10 1.7193980983E-009 8.1299728150E-010 6.6147694106E-009

d5 4.4663622551E-005 7.7685178838E-006 0.0001718273

d0.1 0.8942911252 0.0073467836 3.4404653496

d0.01 0.9729198463 0.0174965529 3.7429612403

(d) Separation for a data set with well-separated clusters

Diss. Separation avg. Separation std. Separation ratio avg.

d 0.8716430647 1.4832867815 1

d10 0.0244453421 0.0423405745 0.0280451288

d5 0.2484825264 0.4303843596 0.2850737147

d0.1 0.8400992968 0.2757718021 0.9638111411

d0.01 0.9777162094 0.0325513479 1.1216933272

(e) Compactness for a data set with clusters with varied densities

Diss. Compactness avg. Compactness std. Compactness ratio avg.

d 0.1072664803 0.098564337 1

d10 0.000000449 7.7773337902E-007 4.1860674698E-006

d5 0.0002096486 0.0003626508 0.0019544651

d0.1 0.7880494471 0.0792970382 7.3466514879

d0.01 0.9633479044 0.0171811278 8.9808848178

(f) Separation for a data set with clusters with varied densities

Diss. Separation avg. Separation std. Separation ratio avg.

d 0.971795701 0.0185685451 1

d10 0.0029611253 0.0005897832 0.0030470656

d5 0.0932204575 0.0090867253 0.0959259826

d0.1 1.0416448857 0.001980664 1.0718764083

d0.01 1.0047158048 0.0001909503 1.0338755396
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Table 3 Cluster compactness and separation using PAM on the data set Iris. Both ratio averages
are computed relative to the data set cluster compactness and separation values given by the original
dissimilarity d

(a) Compactness results for the Iris data set

Diss. Compactness avg. Compactness std. Compactness ratio
avg.

d 0.2564313287 0.0572997859 1

d10 4.495583902E-007 3.0731794825E-007 1.7531336456E-006

d5 0.0007628527 0.0004963497 0.0029748809

d0.1 0.8664974196 0.0223773478 3.379062238

d0.01 0.9630194558 0.0029079036 3.7554672456

(b) Separation results for the Iris data set

Diss. Separation avg. Separation std. Separation ratio avg.

d 0.2841621289 0.3120959612 1

d10 1.1716078298E-005 2.0292841461E-005 4.1230259434E-005

d5 0.0045832156 0.0079357613 0.0161288754

d0.1 0.8715968561 0.0944160231 3.0672519923

d0.01 0.9858840558 0.0108572902 3.4694421086

objective function tries to minimize the sum of the dissimilarities of all objects to
their nearest medoid. However, it may fail to partition the data according to the
original distributions when dealing with cluster with different densities. In this case,
the split of the densest cluster may occur. In our example, PAM not only divides the
heaviest cluster, but also combines the two sparse clusters that are not well separated.
Note that unlike k-means (which also does not perform well in these scenarios but
eventually can find the right partition due to the randomness on the selection of the
centroids), PAMwill most likely fail due to the determinism of its BUILD and SWAP
steps combined and the choice of the objective function.

In order to explore the positive effect of increased intra-cluster compactness
produced by lower degrees of ultrametricity, we applied the same transformations
f (d) = dr with positive integer exponents (r > 1), to the original Euclidean distance
matrix obtained from d. Results show significant improvement of the clustering.

Figure3b shows the result of applying PAM to cluster the synthetic data with
dissimilarity d. Note that the clustering result does not correspond to a partition
resembling the distributions that were used to generate the data. Figure3d, c show
that PAM also fails to provide a good partition with dissimilarities d 0.1 and d 0.01

since the increase in ultrametricity promotes equalization of dissimilarities which
may degrade even more the results. Note however that the partitions obtained by
PAM using the dissimilarities d5 and d10 form similar clusters to the ones generated
by the original distributions. Indeed, the increase in compactness helps PAM to create
boundaries that are compliant with the original normal distributions.
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Fig. 2 Relation between Compactness and Separation Ratio for three synthetic data set and for the
Iris data set

Fig. 3 a The synthetic data generated from distributions with different densities. b–f The results
of PAM using Euclidean distance d and other dissimilarities obtained by transformations on d



Ultrametricity of Dissimilarity Spaces and Its Significance for Data Mining 153

Table 4 Cluster compactness and separation using PAM on a synthetic data set comprising clusters
with different density

(a) Compactness and clustering quality results for synthetic data set

Diss. Compactness avg. Compactness std. Compactness ratio
avg.

Normalized
mutual info.

d 0.1386920089 0.0558906421 1 0.6690207374

d10 1.2953679952E-009 6.3343701540E-010 9.3398891934E-009 0.9365672372

d5 2.8689799313E-005 1.0529323158E-005 0.0002068598 0.9365672372

d0.1 0.8428018314 0.0308261682 6.0767872501 0.6702445506

d0.01 0.9745718848 0.0037669287 7.026878423 0.6702445506

(b) Separation results for synthetic data set

Diss. Separation avg. Separation std. Separation ratio avg.

d 0.4604866874 0.7771228672 1

d10 0.0114269071 0.0197919837 0.0248148479

d5 0.104837087 0.1815831588 0.2276658368

d0.1 0.8160827216 0.2379010818 1.7722178381

d0.01 0.978284428 0.0270049282 2.1244575681

Fig. 4 Relation between
compactness and separation
ratio for the test data set

Cluster quality evaluated using the normalizedmutual information (Manning et al.
2008) for yet another synthetic data set with diverse densities of clusters is shown
in Table4 together with the compactness and separation ratios. The relationship
between compactness and separation ratio for this data set is presented in Fig. 4.
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6 Conclusions and Further Work

We examined the influence of ultrametricity of dissimilarity spaces in classification
and clustering.

We have shown that there is an inverse variation between ultrametricity and the
performanceof classifiers. The increase of ultrametricity promotes the equalization of
distances between objects. This equalization raises the level of uncertainty during the
classification process and degrades the quality of the results generated by classifiers.

For clustering, increased ultrametricity generates clusterings with better separa-
tion. However, it also decreases compactness faster than the increase in separation.
Lowering ultrametricity produces clusters that are more compact but not as well
separated as in the original space. In this case, compactness grows at a faster ratio
than the decrease in separation. Finally, we present an example where we are able to
improve PAM’s results by applying a transformation on the dissimilarity space that
reduces its ultrametricity.

There are numerous applications that can benefit from this study. For example,
changing the ultrametricity of the original space may help finding patterns in data
that do not conform to the expected behavior, in a classical example of anomaly
detection. The impact of ultrametricity on various hierarchical clustering algorithms
also seems a promising subject of investigation.
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SMERA: Semantic Mixed Approach for Web
Query Expansion and Reformulation

Bissan Audeh, Philippe Beaune and Michel Beigbeder

Abstract Matching users’ information needs and relevant documents is the basic
goal of information retrieval systems. However, relevant documents do not neces-
sarily contain the same terms as the ones in users’ queries. In this paper, we use
semantics to better express users’ queries. Furthermore, we distinguish between two
types of concepts: those extracted from a set of pseudo relevance documents, and
those extracted from a semantic resource such as an ontology. With this distinc-
tion in mind we propose a Semantic Mixed query Expansion and Reformulation
Approach (SMERA) that uses these two types of concepts to improve web queries.
This approach considers several challenges such as the selective choice of expansion
terms, the treatment of named entities, and the reformulation of the query in a user-
friendly way. We evaluate SMERA on four standard web collections from INEX
and TREC evaluation campaigns. Our experiments show that SMERA improves the
performance of an information retrieval system compared to non-modified original
queries. In addition, our approach provides a statistically significant improvement
in precision over a competitive query expansion method while generating concept-
based queries that are more comprehensive and easy to interpret.

1 Introduction

Once the domain of librarians and specialists, today the practice of searching for
information is open to users from different profiles and backgrounds, all of whom
use queries composed of keywords to look for information on the web. The chal-
lenge of this online search for content is that retrieval systems need to provide rel-
evant documents for all the users who express the need for a particular piece of
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information using many different queries. In addition, the length of web queries is a
major challenge for most query modification approaches.

The issue we are tackling is how to improve the precision of short ambiguous
web queries. To achieve this goal, our paper explores semantic related techniques
for automatic query reformulation.

Since most web users employ two to three terms in a query to express their
information needs (Jansen et al. 2000), it is not easy for a system to retrieve relevant
documents at early ranks in the result list. To address this challenge, a number of
approaches propose to consider the semantics during the indexing step. In this case,
concepts, instead of terms (or stems), are used to index documents and queries.
The relevance between a document and a query is then evaluated on the basis of
this conceptual indexation. Another option is to keep a keyword-based index and
to use semantic approaches to expand and reformulate users’ queries. While both
of these solutions have been explored in the literature of information retrieval, in
general, it is not possible to confirm the advantage of one option over the other
one. Many elements could affect the choice of how to use the semantics within
an information retrieval system, such as the nature of the document collection (web,
closed collection), the context of use (professional, general), the motivation (creating
a new retrieval system or improving an existing one), and the cost. In this paper, we
are interested in the case where documents and queries are indexed using classical
term-based techniques. Thus, we focus on semantically modifying users’ queries
while preserving the keyword-based retrieval mechanism.

Techniques that automatically modify users’ queries have existed since the early
years of information retrieval. As a result, the literature is wealthy of terms like
“query expansion”, “query refinement”, “query reformulation”, “query enrichment”,
“local and global analysis” and “relevance feedback”. All these techniques intend to
improve keyword-based queries even though the number of terms used to describe
how this is achieved is confusing. For our work, we employ two commonly used
terms: query expansion and query reformulation. We define query expansion as
assigning new terms to users’ queries, whereas we consider query reformulation
as the way in which these new terms are integrated within the original query. The
literature does not always make a difference between query expansion and query
reformulation, this is because inmost cases the query is considered as a bag of words.
In general, approaches try to addnew termswith eventually optimizedweights; hence,
reformulating the query is not considered as a separate process.

In this paper, we study the effect of different semantic aspects to automatically
improve web queries. To do this, we associate query terms with implicit concepts
that we obtain with a pseudo relevance feedback approach, and explicit concepts that
we extract from an ontology. Once detected, explicit and implicit concepts are used
to obtain sets of expansion terms (Sect. 3.1) and to construct a new query (Sect. 3.2).
The new query is still composed of keywords, but it is structured so as to represent the
concepts. This allows a straightforward understanding of the relationships between
the original user keywords and the detected concepts. In Sect. 4 we compare our
proposition versus no query expansion as well as versus a state-of-the-art expansion
approach. We begin our paper with a brief state of the art of existing query expansion
and query reformulation approaches.
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2 Query Expansion and Reformulation in Information
Retrieval

Associating new terms to a query requires the use of a data source other than the
query itself. This resource can be a collection of documents (Qiu and Frei 1993),
a subset of the collection via a relevance or pseudo relevance feedback process
(Rocchio and Salton 1965), a completely independent resource that is also a collec-
tion of documents (Deveaud et al. 2013), or a semantic resource (Voorhees 1994).
All of these approaches have been the subject of many comparisons and surveys that
as a whole reveal three common points: an expanded query is often not structured,
named entities are processed in the same way as common terms, and no specific con-
sideration is taken regarding the advantage (or disadvantage) of adding a candidate
term to the query. In the following subsections, we will focus on query expansion or
reformulation approaches that consider these three aspects in the state of the art.

2.1 Concept-Based Query Reformulation

Representing a query completely depends on the query language that the retrieval
system can interpret. A bag-of-words representation is the most common way to
reformulate an expanded query. With this representation, the query is composed of
weighted terms with no explicit operators.

In the literature, several approaches explored the advantages of structured queries,
whether by using only original query terms (the case of studies on long queries)
(Metzler and Croft 2005; Bendersky and Croft 2008; Maxwell and Croft 2013),
or by integrating new terms from different resources with the original query terms
(Bendersky et al. 2011, 2012; Deveaud et al. 2013). Query expansion approaches,
in the latter case, propose to introduce the notion of concepts into the expanded
query, which we call “concept based query representation”. For (Bendersky et al.
2011), a concept is one or more terms that must belong to one of the following types:
an original query term, a composition of multiple original terms, or term obtained
from the pseudo relevance feedback of the original query on different expansion
collections. The obtained concepts are then combined to construct a new query
using Eq.1:

Score(Q, D) =
∑

T∈τ

∑

κ∈T
λκ f (κ, D) (1)

where τ is the set of concept types, f (κ, D) is the query likelihood retrieval function
that matches the concept κ in the document D, and λκ is the weight of the con-
cept κ . The weight in this equation takes a set of features into account, especially
the frequency of the concept in the expansion collections. Similarly, (Deveaud et al.
2013) work on detecting query concepts but without considering possible associ-
ations among original terms. So, a concept in this case is either an original query
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term or a set of terms from pseudo relevance feedback documents. (Deveaud et al.
2013) use Latent Dirichlet Allocation (LDA) (Blei et al. 2003) on the document
sets obtained by pseudo relevance feedback on different collections. The score of a
document is computed as shown by Eq.2:

Score(Q, D) = λ · P(Q|D) + (1 − λ) ·
∏

k∈TK̂
δ̂k

∏

w∈Wk

φ̂k,w · P(w|D) (2)

where Wk is the set of terms of the concept k, φ̂k,w is the weight of the term w in the
concept k, δ̂k is the normalized weight of the concept k, and TK̂ is the set of concepts
assigned to the query. The authors show that combining four different collections for
concept extraction is more effective in precision than the use of any single resource.

All of these approaches did generate structured queries based on the notion of
concepts, but they didn’t explore the advantage of using formal semantic relationships
from a structured resource like an ontology. They also did not consider the specificity
of named entities.

2.2 Query Expansion and Named Entities

The approaches in the previous subsection focused on pseudo relevance feedback
techniques, where named entities are not considered as special terms. For this reason,
it is possible that the expanded query doesn’t contain any reference to these important
objects. Other approaches focus on the importance of named entities in a query; for
example, studies on long queries consider a sub-query containing a named entity as
a valuable reformulation candidate (Huston and Croft 2010; Kumaran and Carvalho
2009). Bendersky and Croft (2008) classify noun phrases (eventually named entities)
in order to use them in the reformulated query. Recent approaches are becoming
increasingly interested in Wikipedia, which is a rich resource of named entities. Xu
et al. (2008) extracted terms from Wikipedia, that are semantically close to named
entities in the query, while Brandao et al. (2011) proposed an approach based on the
infoboxes of Wikipedia to expand named entities.

These approaches explicitly handle named entities differently from other terms.
Nevertheless, they rely on a bag-of-words representation for the modified query
instead of concept-based representation. In addition, no specific treatment is done to
control the quality of expansion terms.

2.3 Quality of Expansion Terms

For most query expansion approaches, new terms are systematically added to all
queries, even if in some instances, better results can be obtained without expansion.
These approaches do not consider the advantage of adding (or not adding) each term
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to the query. Though, several methods exist to measure the quality of a query or
query terms that could be used in query expansion, (Cronen-Townsend et al. 2002)
proposed the clarity measure, which is based on computing the entropy between the
query model and the document model. They confirmed the relationship between this
measure and query ambiguity. Nevertheless, the effectiveness of using this measure
to choose new terms for query expansion was not confirmed (Zobel 2004; Shah and
Croft 2004). Other studies focused on measuring the importance of the query terms.
(Zhao and Callan 2010) used a technique based on pseudo relevance feedback and
latent semantic analysis (Deerwester et al. 1990) to classify terms according to their
importance within the query. This approach was only used to evaluate original query
terms, not to choose new terms for query expansion purpose.

From this brief presentation of query modification approaches, it can be seen that
structured queries, named entities and terms quality aspects are the subject of several
studies in the dedicated literature. We consider that an approach that gathers all of
these aspects could be effective to improve web queries. For this reason, we propose
the semanticmixed expansion and reformulation approach thatwe thoroughly discuss
in the following section.

3 Semantic Mixed Expansion and Reformulation Approach
(SMERA)

As discussed in Sect. 2, query expansion and reformulation approaches are not new
to information retrieval. In light of the weaknesses revealed by these approaches, we
propose SMERA that uses semantics to improve web queries. Our approach utilizes
both, but well distinguished, query expansion and query reformulation techniques
(Fig. 1). The consideration of concept-based query representation, named entities
and the quality of expansion terms allows our approach to generate queries that are
comprehensible and easy to interpret.Webelieve that generatinguser-friendlyqueries
is important to understand and analyze the relationships between a well-expressed
query (from a human point of view) and an effective query1.

As Fig. 1 shows, our approach is composed of two steps. The first step (expansion)
includes detecting query concepts, and choosing the most appropriate and represen-
tative terms of these concepts. The second step (reformulation) will use the concepts
detected during the first step to reformulate the expanded query in a concept-based
representation.

1In this paperwe define an effective query is the one that obtains good resultswith standardmeasures
used in evaluation campaigns, in particular, precision measures for the case of web queries.
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Fig. 1 The main steps of
SMERA

3.1 Expansion

Defining query expansion as a separate step that assigns new terms to the query allows
it to be independent from the matching function of the retrieval model. Our approach
depends on the assumption that each original query term (except stop words) belongs
to a concept (in its abstract meaning). This strong assumption is justified by the fact
that a user doesn’t use one term to express two different concepts; on the contrary,
he may use multiple terms to express one concept. Thus, we consider that a query
of k terms corresponds to at most k concepts. This allows us to initialize the number
of concepts and to keep a clear relationship between original terms and represented
concepts in the reformulated query. For each query term, we define an expansion set
that contains semantically similar terms. The nature of web queries (short, ambigu-
ous, and rich with named entities) and the literature of query expansion, oriented
our approach towards mixing two types of expansion resources: the collection of
documents through pseudo relevance feedback and an ontology. We use pseudo rel-
evance feedback documents to detect what we call “implicit concepts”, while we
consider named entities in the query as the “explicit concepts” that we identify using
an ontology. In both cases, a concept in our approach is a set of semantically similar
terms.

Figure2 shows themain steps of our expansion approaches for both named entities
and other terms. If we consider the example in Table1, SMERA will first detect the
named entity “Jack Robinson”. This named entity will be disambiguated and linked
to an explicit concept which is then expanded with the ontology-based approach (cf.
Sect. 3.1.1). The other terms of the query, except stop words, will be expanded based
on implicit concepts extracted by an LSI-based2 method (cf. Sect. 3.1.2).

2LSI: Latent Semantic Indexing (Deerwester et al. 1990).
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Fig. 2 Generating expansion sets in SMERA from explicit and implicit concepts

Table 1 Term categories and SMERA actions demonstrated on one TREC query (#455)

Original query: When did Jack Robinson appear at his first game?

Category Values SMERA action

Named entities “Jack Robinson” Expand using explicit concept
approach

Non named entity term Appear, first, game Expand using implicit concept
approach

Stop words When, did, at, his Do not expand

Expansion sets do not necessarily have the same size. This is because the number
of available terms in the corresponding concepts is not necessarily the same. In
addition, we use quality filters that measure the utility of adding a term to the query
and eliminate less useful terms. As a result, our approach does not always expand all
queries with the same number of expansion terms. A detailed explanation of these
steps is in the following subsections.
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3.1.1 Ontology-Based Approach

The role of an ontology in our expansion approach is first to provide a semantic
resource in which named entities can be identified as concepts. Once identified in the
ontology, semantic relationships could be of use to reach the appropriate expansion
terms. In a web context, a single domain ontology can not be used for all queries.
The generic semantic resourcemost commonly used in information retrieval isWord-
Net (Miller et al. 1990). However, this resource’s main problem, in our case, is its
lack of named entities. To overcome this issue, we sought yet another alternative:
the ontology YAGO (Suchanek et al. 2007). The advantage of this ontology is that it
gathers WordNet and Wikipedia, inheriting the formally organized structure of the
former and the supply of named entities of the latter, which makes it suitable for our
named entity expansion.

To find its expansion set, a named entity has to be identified in YAGO. For this
purpose, we use the disambiguation approach of Aida (Hoffart et al. 2011). This
approach selects all possibly corresponding concepts in YAGO for each named entity
in a query and calculates disambiguation scores for these candidate concepts. The
concept that obtains the highest score is considered to be the one corresponding to
the named entity in the query. Concepts obtained using this approach are considered
by SMERA as explicit concepts.

A wealthy number of semantic relationships exist in YAGO. For example, in the
case of concepts corresponding to a named entity, we can find relationships like “lives
in” for person entities, or “has the surface” if the named entity is a city. On the other
hand, all named entity concepts in YAGO have the semantic relationship “rdf:label”.
This relationship corresponds to the “redirect” link in Wikipedia, it links the named
entity to all its possible appellations. These appellations can be simply orthographic
alternative names (e.g., Baltimore-Baltamore), syntactically different names (e.g.,
Baltimore-Mobtown), or even nominal phrases (e.g., “Aleck Bell”-“The father of the
deaf”). In this work, we choose the relationship (rdf:label) to expand named entities.
This choice assumes that using alternative appellations to expand named entities
leads to less query drift risk than using other semantic relationships in YAGO. In our
previous example of Table1, after disambiguation, the named entity “JackRobinson”
obtains two expansion terms: “Jackie Robinson” and “Jack Roosevelt Robinson”.

3.1.2 Pseudo Feedback Approach

The idea of this approach is to detect implicit concepts from a set of pseudo feedback
documents related to users’ initial query. Several methods exist to extract concepts
from a set of documents, such as LDA (Blei et al. 2003), ESA (Gabrilovich and
Markovitch 2007) or LSI (Deerwester et al. 1990). We chose to use LSI because of
its ability to detect high-level co-occurrence relationships between terms. In other
words, two terms that do not occur together in a studied set of documents, but
do frequently co-occur with a third term, are considered by LSI as semantically
related. To achieve this, LSI (Deerwester et al. 1990) starts by applying singular
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value decomposition on a matrix A of m lines (m terms) and n columns (n feedback
documents), which contains frequencies tf of the terms in document collection (in
our case, pseudo feedback documents). The results of this step are the three matrices
presented in Eq.3,

A{m,n} = U{m,m}S{m,n}V T
{n,n} (3)

where S is the diagonal matrix that contains singular values of A. The theory of LSI
is that reducing the dimension of the three resulting matrices gives an approximation
of the original matrix A and reduces the noise (Eq.4).

A′
{m,n} = U{m,k}S{k,k}V T

{k,n} (4)

In our pseudo feedback expansion approach, we are interested in the matrix U{m,k}.
This matrix contains the m vectors of terms appearing in pseudo relevance feedback
documents. These vectors belong to the semantic space of k dimensions created by
LSI (Fig. 3).

To find the expansion set of a query term q, we measure its similarity with a
term that appears in the feedback documents by calculating its distance with this
term3. We then suppose that the terms that are the most similar to q belong to the
same implicit concept, as presented in Fig. 3. In some cases, an expansion term q ′
of a term q is also a query term; in this case, we consider that both terms q and q ′
belong to the same implicit concept (c2 in Fig. 4) and they will both correspond to
one expansion set in the reformulated query.

In our example of Table1, two expansion sets were found for three non-named
entity terms: {appear}, {first, play, team, season, game, ball}. From these two sets,
we can see that the implicit concepts related to the query terms “first” and “game”
were merged resulting in one expansion set for both of these terms.

Fig. 3 Terms of feedback
documents in the semantic
space of LSI (example for
the case of 2 dimensions k1
et k2)

3Our experiments showed no significant difference between using euclidian and cosine distances,
in this paper we used euclidian distance because it is more clear for our graphical demonstration in
Figs. 3 and 4.
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Fig. 4 The fusion of
expansion sets in the case of
query terms that are
semantically close in LSI
semantic space

3.1.3 Quality of Expansion Terms

Our ontology-based and feedback-based approaches presented in Sects. 3.1.1 and
3.1.2 respectively generate expansion sets for, at most, each original query term.
In this work, we consider the quality of terms, which means their usefulness in
obtaining relevant documents to the user’s information need. From this point of view,
we consider original query terms as the most valuable terms in the query because
they were chosen by the user to express his own information need. An expansion
term, on the other hand, is considered to be useful if it is not too generic, and as far
as we are sure it belongs to a valid query concept. To express these two subjective
conditions, we define specificity and certitude qualities. Specificity is a boolean value.
Certitude is measurewith values between 0 and 1. Expansion terms that do not satisfy
a minimum threshold for this measure are rejected from their expansion sets and will
not appear in the reformulated query.

Concerning the specificity, we consider named entities as specific terms. For non
named entity terms, since the use of verbs and adverbs in web queries is not frequent
(Barr et al. 2008), we only compute specificity for nouns. For this purpose, we use the
taxonomy of WordNet, whereby generic terms are placed in the top of the hierarchy
while specific terms can be found in deeper levels. Thus a noun is added to an
expansion set if its depth is greater than a threshold.

The certitude is directly related to the process that links a query term to its cor-
responding implicit or explicit concept. For the feedback approach, the choice of an
expansion term depends of its semantic similarity, in the LSI space, with the original
query term. Hence, a term that is semantically closer to the original term is likely
a more suitable expansion term. In this case, we define the certitude score between
a term t and a query term q as the euclidean distance between their corresponding
vectors (−→t , −→q ) in the LSI space as defined in Eq.5.

Cert(t, q) = Disteuclide(
−→
t ,

−→q ) (5)
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Asmentioned in Sect. 3.1.1, an explicit concept is chosen inYAGO for a named entity
in the query if it obtains themaximumdisambiguation score. For each expansion term
that we obtain by the relation “rdf:label”, the certitude value is the disambiguation
score Sdis of the concept to which the query term belongs (Eq.6)

Cert(t, q) = Sdis(q, c) (6)

where q is a query term, c is the disambiguated YAGO concept associated to q,
t is a possible expansion term associated to the concept c, and Sdis(q, c) is the
disambiguation score, obtained by Aida (Hoffart et al. 2011), for the query term q
and the concept c.

3.2 Concept-Based Query Reformulation

Up to this point, the expansion approaches we proposed are independent of the
retrieval model. However, reformulating a query depends on the retrieval model
and its query language. To achieve a concept-based query representation, we need
a structured query language that supports three main elements: proximity between
terms, synonymy and term weighting. The model proposed by (Metzler and Croft
2004) is a good environment to apply our idea of semantic reformulation. In the next
subsections, we present an overview of this model and how we use it query language
to reformulate users’ query.

3.2.1 The Retrieval Model of Metzler and Croft (2004)

This information retrieval model is a combination of inference networks and query
likelihood models. Like in inference network models, it is possible to handle struc-
tured queries, but estimating the probabilities is achieved using a query likelihood
language model. The model is implemented within the framework Indri (Strohman
et al. 2004), which is part of the Lemur4 project. Indri proposes a query language
model that allows expressing the different functionality of the retrievalmodel. Table2
represents some demonstrative examples cited in the Lemur wikipage5 and shows
how the implementation of (Metzler and Croft 2004) in Indri handles the different
query language operators.

4http://sourceforge.net/p/lemur/wiki/The%20Indri%20Query%20Language.
5http://sourceforge.net/p/lemur/wiki/Belief%20Operations/.

http://sourceforge.net/p/lemur/wiki/The%20Indri%20Query%20Language
http://sourceforge.net/p/lemur/wiki/Belief%20Operations/
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Table 2 Demonstrative examples of the functionality of Indris operators

Syntax Interpretation

#combine(dog train) 0.5log(b(dog)) + 0.5log(b(train))

#weight(1.0 dog 0.5 train) 0.67log(b(dog)) + 0.33log(b(train))

#wsum(1.0 dog 0.5 dog) log(0.67b(dog) + 0.33b(dog))

#syn(car automobile) one occurrence of “car” or “automobile”

#wsyn(1.0 car 0.5 automobile) like #syn, but the occurrence of “car” counts as
twice the occurrence of “blue”

#n(blue car) “blue” appears before “car” in a window of
maximum n words

#uwn(blue car) “blue” appears before or after “car” in a
window of maximum n words

3.2.2 Representing Concepts in Keyword Query

Our reformulation approach considers the final query to be a linear combination of the
user’s original query and the combination of the different expansion sets according
to three aspects: proximity, synonymy and weighting. The score of this reformulated
query is calculated with Eq.7

p(Q|d) = λ
∏

q

p(q|d) + (1 − λ)

k∏

i=1

b(ri )
wi (7)

where p(q|d) is the query likelihood probability for the original query term q and a
document d, ri is the combination of terms of an expansion set with an Indri operator
(#combine, #weight or #syn), and b(ri ) is the belief calculated according to (Metzler
and Croft 2004) as illustrated in Table2. Finally wi is the weight of the estimated
belief of the representation ri . In this current study, expansion sets are considered to
be equally important to the query (wi = 1, for all i).

For example, the reformulation of the query presented previously in Table1 is
demonstrated in Fig. 5. This figure shows how we combine expansion sets using

Fig. 5 Example of query reformulation using SMERA
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Eq.7 and the corresponding operators in Indri model (cf. Table2). The following
subsections explain why and how each operator is used to reformulate a query in our
approach.

Proximity

Expansion terms that come from the ontology YAGO can be expressions or names
composed of one ormultiple terms, aswehave seen inSect. 3.1.1.When an element of
a named entity expansion set is composed of multiple terms, the proximity between
these terms should be highly respected while representing this entity in a query.
Expressing the proximity between terms in the query implies defining the maximum
distance within which these terms could be considered as related to the entity. In
addition, we have to precise if the order in which these terms appear in a text is
important. In our work, we suppose that the coverage of semantic alternatives of
named entities is the responsibility of the resource, which in our case is the YAGO
ontology. For this reason,we consider expansion elements obtained from the semantic
resource as blocks that should appear verbatim in a relevant document. Thus, our
approach requires that terms that belong to the same expression should be within
a window of width 1 and appear in the exact order as in the semantic resource.
To represent these types of expansion terms we use the operator #1 (cf. Table2
and Fig. 5).

Synonymy

Our expansion approaches extract terms that are semantically related to query terms.
This semantic similarity is not the direct synonymy in the case of our feedback ap-
proach, and we do not use this functionality for feedback expansion sets. In the case
of named entities expansion, the semantic similarity is defined by the explicit relation
“rdf:label”, which will give possible, semantically equal, alternatives of the named
entity. When evaluating a document that contains one of these alternatives, we want
the matching function of the retrieval model to consider it as any of its other alterna-
tives. For this reason, expansion sets that are obtained from an explicit concept are
represented by the operator #syn in the Indri’s query language. It should be noted that
expansion terms of a named entity are not weighted in our current approach, we con-
sider them as equally important synonyms, though exploring weighting possibility
based on popularity or corpus statistics is an interesting area for future work.

Weighting

In our reformulation approach, weighting a term means defining its importance in its
expansion set. We consider original query terms as important (weight = 1). The more
an expansion term is close to an original query term, the more its weight is close
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to 1. As we mentioned in the synonymy section, this notion is not defined when the
expansion set is obtained from YAGO because we consider all its terms as equal. On
the other hand, expansion terms obtained by the feedback approach are terms that are
statistically close to the original term in the LSI space, but they cannot be considered
as synonyms. In this paper we explore the effect of using the similarity distance
from the query term as a weight in the reformulated query. Expansion terms that are
obtained from the feedback approach are combined with the operator #weight in the
Indri’s query language. The euclidean distance between an expansion term and its
original term (cf. Eq. 5) is considered as its weight in the #weight expression. In the
example of Fig. 5, the original query term “first” has the weight 1, while expansion
terms have decreasing weights according to their semantic similarity with this term.

4 Experiments and Evaluation

4.1 Framework

Toevaluate our semanticmixed expansion and reformulation approach (SMERA),we
used four web collections from TREC and INEX evaluation campaigns, as displayed
in Table3. All of these collections were indexed with the same parameters using
Indri: standard stop words were removed and a Krovetz Stemmer was used.

As abaseline,weused the query likelihood languagemodel (Ponte andCroft 1998)
to run the users’ querieswithout expansion;we called this theQLmodel.We also used
the relevancemodel approach (RM3) (Lavrenko andCroft 2001) as a referencemodel
for query expansion. Both QL and RM3 are implemented in the Indri’s framework.
In addition to these reference approaches, we compared SMERA to the use of only
one method for query expansion: the use of LSI via pseudo relevance feedback to
expand query terms (both common terms and named entities), we called this the
LSI approach, and the use of YAGO to disambiguate and expand named entities
(the YAGO approach). The evaluation measures that we used in this experience are
precision measures (MRR, P@10 and MAP), which are the most important in our

Table 3 Information about the queries used in our experiments

# documents queries year (track) nb. judged
queries

nb. named
entities

Inex 2006 659, 388 544–677 2008 (ad hoc) 70 23

Inex 2009 2, 666, 190 1–115 2009 (ad hoc) 68 21

WT10g 1, 692, 096 451–550 2000–2001
(Web ad hoc)

98 25

Gov2 25, 205, 179 701–850 2004–2006
(Terrabyte)

148 47
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Table 4 Free parameters for all the approaches of our experiments

Parameter Description Approach

μ Dirichlet smoothing QL, SMERA, RM3

nSmera , nRm3 Number of feedback
documents

SMERA, RM3

t Number of expansion terms RM3

m Number of expansion terms
per concept

SMERA

k Number of LSI dimensions SMERA

α1 The threshold of the certitude
filter

SMERA

α2 The depth threshold of the
specificity filter

SMERA

λSmera , λRm3 The weight of the original part
against the expanded part of
the reformulated query (Eq.7)

SMERA, RM3

web context, in addition to ROM (Audeh et al 2013), which is a Recall Oriented
Measure that also takes precision into account.

An interesting aspect of our approach is the scalability. In fact, SMERA applies
LSI to a small number of documents retrieved by the initial query. The complexity of
LSI is thus independent from the size of the document collection. The approach, on
the other hand, uses only the query and the ontology to expand named entities. As a
result, the complexity of our approach does not dependon to the number of documents
in the collection, except for retrieving feedback documents (which depends on the
retrieval model).

Comparing all of the approaches (QL, RM3 and SMERA) in our study depended
on many parameters (cf. Table4). The values of these parameters were chosen by
optimizing the average performance of the measure MAP for each collection. These
values were obtained after a tuning step. The experience presented in this paper
corresponds to the values presented for each collection in Table5.

4.2 Results

Table6 presents the values obtained for the evaluation measures on the four col-
lections and for the compared approaches. Statistically significant improvements or
degradations for each couple of approaches are presented in Table7.

In Table7 we see that SMERA achieves statistically significant improvement
in MAP compared to the use of non-expanded queries for INEX 2006, WT10g
and Gov2 collections. Analyzing the test case INEX 2009 showed that 57% of
INEX 2009 queries contained at least four useful terms, larger than the average
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Table 5 Selected values of the free parameters for our four test cases

Inex 2006 Inex 2009 WT10g Gov2

μ 2500 2500 2500 2500

nSmera 20 10 30 10

nRm3 10 10 10 10

m 5 7 3 7

t 20 20 20 20

λSmera 0.8 0.8 0.5 0.8

λRm3 0.5 0.8 0.8 0.8

k 10 5 10 5

α1 0.4 0.4 0.4 0.4

α2 7 7 7 7

Table 6 Evaluation results in MAP, P@10, MRR and ROM on the four test collections

MAP P@10 MRR ROM

Inex2006 QL 33.00 53.00 81.97 83.19

RM3 35.96 55.00 80.37 84.61
SMERA 34.78 53.71 84.81 83.71

Inex2009 QL 34.17 97.50 97.79 45.89

RM3 34.06 96.76 97.43 45.87

SMERA 34.41 97.21 98.53 46.18

WT10g QL 20.16 29.18 58.54 70.74

RM3 20.49 29.08 56.10 71.06

SMERA 21.69 29.80 59.42 71.40

Gov2 QL 29.41 53.51 72.36 70.57

RM3 29.97 52.97 68.86 71.15

SMERA 30.82 56.22 75.84 71.70

Bold values are the highest in their column

length of web queries. The MAP of the baseline (QL) obtained in this test case was
the highest compared to the one obtained for INEX 2006, WT10g and GOV2. In
fact, our approach is designed to improve the precision of short ambiguous queries.
Expanding long queries that already have good precision has less chance to improve
the performance, as it could change the order of relevant documents already retrieved
by the original query. Nevertheless, SMERA obtained statistically better MAP than
RM3 on this collection. This can be explained by the use of the quality filters defined
in Sect. 3.1.3. Because of these filters, SMERA does not systematically expand all
queries with the same number of terms; unlike RM3, which systematically adds
20 expansion terms. Most queries of the other three test cases contain from two to
three useful terms (which corresponds to the general case of web queries). For these
collections, SMERA had between 4.79 and 7.59% better MAP than QL. The only
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Table 7 Improvement or degradation percentage in MAP, P@10, MRR et ROM for each couple
of approaches on the four test collections

MAP P@10 MRR ROM

Inex2006 RM3/QL +8.97* +3.77* −1.95 +1.71

SMERA/QL +5.39* +1.40 +3.46 +0.63*

SMERA/RM3 −3.28 −2.35 +5.52* −1.06

Inex2009 RM3/QL −0.32 −0.76 −0.37 +0.04

SMERA/QL +0.70 −0.30 +0.76 +0.63

SMERA/RM3 +1.03 +0.47 +1.13 +0.68

WT10g RM3/QL +1.64 +0.34 −4.16 +0.45

SMERA/QL +7.59* +2.12 +1.50 +0.93

SMERA/RM3 +5.86* +2.48 +5.92 +0.48

Gov2 RM3/QL +1.90* −1.00 −4.84 +0.82*

SMERA/QL +4.79* +5.06* +4.91* +1.60*

SMERA/RM3 +2.84* +6.13* +10.14* +0.77

* indicates statistical significance (p < 0, 05) for both t-test and randomization test

case in which RM3 obtained better MAP than SMERAwas on INEX 2006 test case,
which had the particularity of having the smallest document collection. On the other
hand, this better performance in MAP of RM3 over SMERA for the case of INEX
2006 was not statistically significant.

The behavior of RM3 and SMERA in P@10 and MRR was similar to their be-
havior in MAP on the four test cases. Again, the expansion approaches could not
obtain significant improvement in P@10 and MRR on the collection INEX 2009.
But SMERA achieved significant improvement over RM3 in MRR on the collection
INEX 2006, even though RM3 is better (without statistical significance) on the other
measures for this collection. The positive results of SMERA on MRR for the four
test cases means that it was able to find the first relevant documents in higher ranks
than RM3, which is a very appreciable behavior in a web context.

Another interesting observation is the good performance of SMERAon the largest
test case, Gov2. It significantly outperformed QL and RM3 in all precision measures.
To better understand this observation, we explored the effect of the collection size on
the behavior of RM3 and SMERA. In Fig. 6 we plotted the improvements obtained
by RM3 and SMERA in P@10 over the use of non-expanded queries on the four
collections.

From this figure we note the decreasing relation between the precision at rank
10 of RM3 and the collection size: the larger the collection of documents is, the
less improvement RM3 achieves in P@10. Conversely, SMERA reports better im-
provement in precision at rank 10 with larger collections, which is also a beneficial
behavior in the case of the web. The only exception for SMERA is the case of INEX
2009 because of its long queries, which is not the common case of web queries.

Even though in a web context the recall is not a priority, we think that the study of
an approach’s behavior from different perspectives to helps better use it in the aimed
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Fig. 6 Percentage of
improvement in P@10 for
RM3 and SMERA on the
four test collections in
ascending order according to
their size (in number of
documents)

context. The ROM measure shows that both expansion approaches (SMERA and
RM3) did not have large neither significant improvements over the baseline. This
means that these approaches were not able to find more relevant documents than an
approach that uses the basic non-expanded queries. This behavior is due to two main
reasons: the first reason is the already high recall of the baseline on all our test cases,
as can be seen in Table8.

The second reason could be the high percentage of non judged documents among
the sets of retrieved documents in our test cases (Fig. 7), which is a common but
important problem with evaluation campaigns.

This means that even if expansion approaches find new relevant documents, there
is a high probability that the documents found were not judged (positively or not) by
an assessor.

Finally, we present the advantage of mixing two different approaches of query
expansion over the use of each approach separately. While comparing SMERA to
the feedback approach, we also analyzed the effect of the number of feedback doc-
uments and the number of LSI dimensions, two main parameters that are usually
fixed experimentally in similar approaches. In Fig. 8, we fixed the number of feed-
back documents to 100 and varied the number of dimensions for the collections
WT10g and INEX 2006. This performance is compared to SMERA and RM3 with
the configurations mentioned in Table5.

Table 8 The recall at 1000 for the model QL on our four test cases

Inex2006 Inex2009 WT10g Gov2

Recall@1000 of QL 83.85 45.95 72.03 71.05
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Fig. 7 The average
percentage of non judged
document per query for our
test collections

Fig. 8 Mean average
precision sensibility to the
number of LSI dimensions
(k) for 100 feedback
documents

In Fig. 8 we see that using 100 feedback documents with the feedback approach
alone could enhance the recall and the precision with 30 and 20 dimensions for the
WT10g and INEX 2006 collections respectively, but it was not as good as using
the mixed approach of SMERA with 20 to 30 feedback documents for these two
collections.

In addition to comparing SMERA to the feedback approach alone, we compared it
to the use of theYAGOapproach alone. For the later approach, we also considered the
effect of disambiguation against the use of the most common concept corresponding
to a term in the query. Fig. 9 shows that the effect of using the disambiguation or
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Fig. 9 Mean average precision of SMERA compared to QL, the ontology approach with disam-
biguation (YAGO+Dis), and the ontology approach with using the most common sense to associate
concepts to query terms (YagoNoDis)

not is not stable over the collections–but it is clear that mixing the YAGO approach
with LSI through SMERA has better performance in MAP than the use of the YAGO
approach alone or using original queries without expansion.

5 Conclusion

In this paper we presented SMERA, a mixed approach to semantically expand and
reformulate web queries. The motivation of this proposal was the lack of approaches
that take into account the characteristics of web queries. More specifically, our study
revealed the need of an expansion approach that considers the importance of named
entities and allows an efficient, yet comprehensive, semantic representation of ex-
panded queries. Representing concepts in a keyword query revealed the need to
carefully handle the selection of expansion sets and the importance of the way in
which these sets should be represented in the final query.

Evaluating our approach on four standard test collections showed the advantage
of using SMERA over the use of non-expanded queries and the use of a state-of-the-
art expansion method (RM3). Although not very powerful in improving the recall,
our approach showed scalability and statistically significant improvements in several
precision measures. The analysis of these results, and the comparison to the use of
one of the proposed expansion methods in our expansion approach, suggests that
SMERA is a well adapted approach for web queries’ reformulation.
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As a next step, we plan to investigate semantic relationships other than “rdf:label”
in YAGO. The idea is to see if a sophisticated choice of the semantic relationship ac-
cording to the entity type could be of interest. On the other hand, in thisworkwe relied
on the assumption that all query concepts (that we discover through our expansion
approaches) have the same importance to the query. As we have seen, the approach
achieved good performance even with the above assumption. We would like to ex-
plore possible solutions to weight concepts’ representation, which we would obtain
from resources of a different nature: a set of documents (via LSI) and an ontology
(via YAGO). Finally, we are convinced of the importance of selective query expan-
sion, which means considering the quality of added terms and not systematically
expanding all query terms in the same manner. We saw this aspect investigated in
information retrieval, but not explored much by query expansion approaches. Thus,
testing existing quality prediction approaches and comparing them to our proposed
specificity and certitude filter is an important future step to our work.
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Multi-layer Ontologies for Integrated
3D Shape Segmentation and Annotation

Thomas Dietenbeck, Fakhri Torkhani, Ahlem Othmani, Marco Attene
and Jean-Marie Favreau

Abstract Mesh segmentation and semantic annotation are used as preprocessing
steps formany applications, including shape retrieval, mesh abstraction, and adaptive
simplification. In current practice, these two steps are done sequentially: a purely
geometrical analysis is employed to extract the relevant parts, and then these parts are
annotated. We introduce an original framework where annotation and segmentation
are performed simultaneously, so that each of the two steps can take advantage of the
other. Inspired by existing methods used in image processing, we employ an expert’s
knowledge of the context to drive the process while minimizing the use of geometric
analysis. For each specific context a multi-layer ontology can be designed on top of
a basic knowledge layer which conceptualizes 3D object features from the point of
view of their geometry, topology, and possible attributes. Each feature is associated
with an elementary algorithm for its detection. An expert can define the upper layers
of the ontology to conceptualize a specific domain without the need to reconsider the
elementary algorithms. This approach has a twofold advantage: on one hand it allows
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to leverage domain knowledge from experts even if they have limited or no skills in
geometry processing and computer programming; on the other hand, it provides a
solid ground to be easily extended in different contexts with a limited effort.

1 Introduction

During the last two decades, adding a semantic description to a scene has been an
emerging problematic in the data mining and mesh processing communities. One of
the main goals is to be able to extract an abstract description of the manipulated data,
using some semantic descriptors. Bridging the gap between raw data and semantic
concepts is a very complicated task which usually requires a good knowledge of the
specific applicative domain the systems are working on. This link between the expert
knowledge and the raw data can be achieved either by using learning techniques or
by designing a deterministic system which expresses the knowledge of the expert in
a language of computer science.

By assuming that an object belongs to a specific semantic class, advanced mesh
segmentation techniques can tag both the whole object and its subparts with semantic
terms that describe the shape, the structure and sometimes even the functionality of
the object (Laga et al. 2013). When the overall context in known, the identification of
an object from its shape may rely on a two-step approach: the object’s relevant parts
are first recognized through shape segmentation and then labelled using the concepts
available in a specific formalization of the context (e.g. an ontology). Some of these
approaches (Hudelot et al. 2008; Hassan et al. 2010; Fouquier et al. 2012) are able to
exploit the partial semantic description of the scene and to adjust their behaviour to
the context. Unfortunately, the algorithms and procedures used in the aforementioned
approaches are very specific to their applicative domain and are hardcoded within
their implementation.

In this article, we describe an original framework for mesh segmentation that
pushes up the semantic approach, thus creating a bridge between an expert knowledge
description and the segmentation algorithms. This framework allows an expert in a
specific area to formally describe his own ontology, without the need to have any
particular skill in geometry processing or shape analysis. The formalized domain
description is then used by the system to automatically recognize objects and their
features within that domain.

The genericity of our approach is enabled by a multi-layer ontology which for-
mally describes the expert knowledge. The first layer corresponds to the basic proper-
ties of any object, such as shapes and structures. The upper layers are specific to each
application domain, and describe the functionalities and possible configurations of
the objects in this domain. The segmentation and the annotation mechanism is hid-
den behind the concepts of the first layer, which are associated to specific geometric
algorithms.

In Sect. 2 an overview of the existing methods for part-based annotation of
3D shapes is presented. Section3 introduces our framework for semantics-driven
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mesh segmentation and annotation; here we describe how to model the expert’s
knowledge, how our synthetic catalog of segmentation algorithms is composed, and
how our expert system works. The elementary algorithms that compute the basic
shape features are described in Sect. 4. Section5 presents some experimental results
to illustrate the relevance and feasibility of our approach. Section6 is reserved for the
discussion of possible extensions of this work and future improvements to overcome
its current limitations.

2 Related Work

The design of enhanced vision systems can take a significant advantage from seman-
tic formalizations such as ontologies. The ontology paradigm in information science
represents one of the most diffused tools to make people from various backgrounds
work together (Seifert et al. 2011). Ontology-based interfaces are a key component
of ergonomic adaptive computer systems (Maillot and Thonnat 2008), especially in
biological/clinical fields for which concepts and standards are constantly shifting
(Hassan et al. 2010; Fouquier et al. 2012; Othmani et al. 2010). Furthermore, reason-
ing capabilities embedded in the logical framework on which ontology softwares are
built up can be exploited to improve the performances of existing computer vision
systems. Even though still brittle and limited, reasoning inferences out of visual data
may enhance the vision system experience (Othmani et al. 2010) as well. In the
Computer Graphics community the use of semantics has been a key for significant
achievements in applications such as anatomy (Hassan et al. 2010), product design
in e-manufacturing (Attene et al. 2009) and robotics (Albrecht et al. 2011; Gurau
and Nüchter 2013).

In Camossi et al. (2007), a system to assist a user in the retrieval and the seman-
tic annotation of 3D models of objects in different applications is presented. The
ontology provides a representation of the knowledge needed to encode an object’s
shape, its functionality and its behavior. Then, the annotation and the retrieval are
performed based on the functional and the behavior characteristics of the 3D model.

In Attene et al. (2009), the ontology is used to characterize and to annotate the
segmented parts of a mesh using a system called “ShapeAnnotator”. To this aim, the
ontology is loaded according to the input mesh type and the user can link segments to
relevant concepts expressed by the ontology. While the annotation of the mesh parts
is done by a simple link within the “ShapeAnnotator”, Gurau and Nüchter (2013)
and Shi et al. (2012) proposed to feed an ontology with a set of user-defined rules
(e.g. geometric properties of objects, spatial relationships) and the final annotation
is created according to them.

In Hassan et al. (2010), an ontology including an approximation of the geo-
metric shape of some anatomical organs is used to guide the mesh segmentation.
The parameters needed to segment the input mesh are provided by the ontology.
For the case of semantic classification, an ontology is also used in Albrecht et al.
(2011) to “idealize” SLAM-generated 3D point cloud maps. The ontology is used to
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generate hypotheses of possible object locations and initial poses estimation, and the
final result is a hybrid semantic map where all the identified objects are replaced by
their corresponding CADmodels. Recently, Feng and Pan (2013) proposed a unified
framework which bridges semantics and mesh processing. The mesh is divided into
a fixed number of parts corresponding to the number of concepts in the ontology. The
parts are then annotated based on some rules defined in the ontology and specific to
the context (e.g. in a human body the head and a limb are very dissimilar).

In Symonova et al. (2006), the authors focus their work on mesh annotation using
an already segmented object. The regions to annotate are defined by connected com-
ponents in the shape, and the low level labelling is done by using the distribution of
local geometric features. The high level annotation is then produced by using con-
nectivity rules and geometrical primitive constraints. Our present work can be seen
as a generalization of this original work for the annotation part, while we introduce
specific and robust algorithms for the low level labelling, and a complete framework
that extends the possibilities introduced by Symonova et al. In our proposal, each
new relation or low level label with the corresponding elementary algorithm will be
handled automatically by our expert system.

3 Proposed Method

Segmenting an object based on its geometry and associating semantic concepts to
each part are non trivial problems, both requiring a very specific processing. Previous
works (Hudelot et al. 2008; Attene et al. 2009; Hassan et al. 2010; Fouquier et al.
2012) on this topic are more and more going in the direction of mixing the two
problems, in order to help the segmentation using the already extracted semantics,
and by extracting the semantics from the partial segmentations.

The framework we present in this section addresses the same goal by focusing
on the separation between the segmentation algorithms and semantic reasoning.
Thanks to such a separation, addressing a new applicative domain will only require
the user to design the corresponding ontology, without code modification. All the
necessary geometric machinery and the low-level semantic rules, indeed, are already
encoded in the original core of the framework. In the next section, we propose
complementary benefits of this approach, and we discuss in the last section several
possible extensions.

In a first part, we describe our multi-layer ontology paradigm and how the expert
knowledge on a specific domain is implemented on top of elementary concepts.
Then we introduce our framework to tackle the problem of semantics-driven mesh
segmentation using the defined ontology paradigm. Finally,we give the specifications
of the elementary algorithms involved in the segmentation process.
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3.1 Terminology

Ourwork focuses onmesh processing, with the aim to achieve both segmentation and
semantic labelling. In the remainder, we call object a 3D shape defined by a triangular
mesh. A region of the mesh is a connected subset of its triangles. A segmentation is a
subdivision of the mesh into a collection of regions called segments. A region is not
necessarily a segment. Finally, we use the term concept in the usual way to describe
an abstract semantic class.

3.2 Expert Knowledge Description

The idea behind our expert knowledge system is to mimic our visual mechanism
of object recognition. Indeed the expert knowledge description follows a “whole-to-
part” analysis, where the object of interest is modelled in the top layer of our ontology
and is first decomposed into regions according to a criterion (shape, texture, …).
A region can potentially be further divided until elementary subparts are obtained
corresponding to the intermediate layers of our ontology. Features of these parts as
well as relations between them are described using semantic concepts gathered in
the last layer of the ontology. Putting these informations together along with user-
defined rules allow us to label each part ultimately leading to the recognition of the
object.

A segmentation and semantic labelling process implies that the algorithmic part
is able to identify and label regions with specific properties, such as geometrical
properties (e.g. sphere, cube, vertical region), color or texture properties (e.g. color
uniformity, reflectance, texture patterns), but also properties linked to the relative
position and configuration of subparts (e.g. parallel regions, A is up wrt B, A is
between B and C ). We note however that all these properties cannot be formalized
in the same way. Indeed, some of them extend the knowledge on a given part of the
mesh by detailing its features (e.g. geometry, color, orientation), while other link
several regions together (e.g. through topology, distance) thus describing the overall
structure of the object.

3.2.1 Features and Unary Properties

A first group of properties characterizing an object are based on the aspect of its
parts (e.g. geometry, color, etc.). These properties extend the knowledge on a given
part and thus link it to a feature concept (e.g. A is a cube, is red, etc.). Since each
property only involve one part of an object, we will refer them as unary property.

More specifically, in the ontology, each unary property corresponds to an object
property where the domain is the object parts. The range concept corresponds to
the features of interest (e.g. shape, orientation, color) which are further specialized
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(a) (b)

Fig. 1 Examples of unary and n-ary property. A and B correspond to regions of the object

Fig. 2 A subpart of the elementary semantic concepts of the core ontology. The number beside
some concepts indicate that they link several regions together (e.g. UpFrom relates 2 regions A
and B)

into elementary semantic concepts corresponding to the possible value of the object
property. An example of unary property is given in Fig. 1a and range concepts and
their associated elementary semantic concepts are illustrated in Fig. 2 (green ellipses).

3.2.2 Topology and N-Ary Properties

The second group of properties allows to link object’s parts together thus giving the
overall structure of the object. This kind of properties combines 2 or more parts along
with a topological concept (e.g. A and B are close, B is above A , etc.) and will
thus be referred to as n-ary property.

However, ontologies cannot directly model n-ary properties and we thus model
them following the “N-ary Relation” pattern described in Dodds and Davis (2012).1

More specifically, a concept (e.g. position, distance) is created for the relation and
is also specialized into elementary semantic concepts (e.g. position→UpFrom,
Between, etc.). Each object part corresponds to a ressource of the relation and is
related to it through two distinct object properties. The first one “isTargetRegion”
allows to define the region we wish to position in space, while the other “isRefer-
enceRegion” states the fixed region used to orientate the space (i.e. to define the
semantic).

Considering the example given in Fig. 1b, the n-ary property can be read as B
(the target) is aboveA (the reference). The violet ellipse in Fig. 2 illustrates a range
of two n-ary relations where the number on the right of each elementary semantic
concepts indicates the number of object parts related through this concepts (e.g. 2
parts for UpFrom).

1See also http://patterns.dataincubator.org/book/nary-relation.html for notations.

http://patterns.dataincubator.org/book/nary-relation.html
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(a)
(b)

Fig. 3 Example ofmulti-layer ontologies for furnitures.Note howamore detailed expert knowledge
description of the same domain can be achieved by simply adding a layer, e.g. for the concepts of
back or support in the case of furnitures

(a)
(b)

Fig. 4 Example of multi-layer ontologies for streets

3.2.3 Multi-layer Ontology

In order to model our “whole-to-part” recognition mechanism, we structured our
ontology in layers. The first layer (called S0, blue blocks in Figs. 3 and 4) is part
of the core of our framework. It contains the feature and topological concepts and
associated unary and n-ary concepts described in the previous sections.

The S0 layer is enriched for each applicative context with specific semantic con-
cepts which are grouped into two (or more) layers: one layer called S1 (yellow blocks
in Figs. 3 and 4), using only references to concepts from the S0 layer, describes all
the object configurations that can be combinatorially built, i.e the result of a cartesian
product between elementary semantic concepts. Figure5 illustrates an example of
such a cartesian product for 2 unary properties (Shape and Orientation).

The supplementary layers (S2,…,Sn , green, red and purple blocks in Figs. 3 and 4)
describe the combination rules to populate a complete scene. The top layer of the
ontology corresponds to the list of objects one wish to label. The advantage of this
representation is that it is very easy tofit the level of details in the descriptionof objects
required by the application. Indeed if supplementary informations are required for
an object part, it only requires to add a layer in the ontology. Similarly if only a rough
description of the part is sufficient, one may remove the unnecessary layer.

To illustrate this motivation, consider the example given in Fig. 3. In Fig. 3a, a
furniture is obtained by combining a seat, a back and a support, all of which being
described using S0 concepts. For instance, the back of a furniture is modelled in a
rough manner as being a vertical board possibly linked to vertical sticks (e.g. for a
chair) and above the seat. However this may not be sufficient to distinguish between
all the furnitures: namely a difference between a chair and an armchair resides in
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Shape
Board
Cube
Stick
×

Orientation
Horizontal
Vertical

=

Shape × Orientation Eq. Concept
Board Horizontal Seat
Board Vertical Foot
Cube Horizontal Seat
Cube Vertical Impossible
Stick Horizontal Impossible
Stick Vertical Foot

Fig. 5 Cartesian product between two range of elementary semantic concepts, and the correspond-
ing equivalent concepts

the fact that armchair may have a headrest. To add this supplementary knowledge, a
supplementary layer is introduced (see Fig. 3b) describing the back of a furniture as
a backrest and a possible headrest above it.

3.2.4 Linking Two Layers: Equivalent Concepts

In addition to the semantic concepts of the application domain, another important
expert knowledge consists in how the concepts are linked with each other. This can
be expressed as a set of equivalent concepts of the Sn layer describing possible or
impossible combinations of concepts of the Sn−1 layer. The work of the expert is thus
strongly simplified since he can describe not only positive rules (i.e. valid/plausible
configurations), but also negative rules (i.e. impossible/incompatible combinations).
For example, in the furniture ontology a chair leg can be described as a stick shape
with a vertical orientation; on the other hand, the combination of a headrest without
backrest is an incompatible configuration.

In practice, incompatible configurations are specialized in specific concepts, one
for each incompatibility type. This specialization allows to perform some reasoning
and classification on partially annotated individuals.

Once these equivalent concepts are given by the expert, they are used in twoways:
either to build a decision tree (which will be detailled in Sect. 3.3) or to suggest a
correction of the segmentation. Indeed, during the segmentation/annotation process,
incompatible configurations might appear due to either a segmentation error or a
missing equivalent concept. In this case, the reasoner can be asked for the cause
of the inconsistency which is then presented to the user for correction. The main
advantages of this approach is that it allows us to ask the user to correct errors only
in the regions that caused an incompatibility instead of having to explore the whole
mesh/labelling.
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Fig. 6 Overview of the proposed method applied on the furniture domain

3.3 Expert System

In this section, we describe how the expert knowledge is used in our framework
to efficiently segment and annotate an object. Figure6 gives an overview on this
framework.

3.3.1 Generation of a Decision Tree

One of the advantages of our approach is that it gives the possibility to easily compute
a tree containing the order of the questions to ask to reach the solution in the most
efficient way. To build this decision tree, we first use the equivalent concepts of
each layer to build the set of possible configurations. For each layer and starting
at the first layer S0, the Cartesian product between all the properties of the layer is
performed (Fig. 5, Shape×Orientation column). The reasoner is then used to classify
the instances in equivalent concepts and incompatible candidates are removed (Fig. 5,
Eq.Concept column). The remaining ones are then used in the above layer as semantic
concepts in the Cartesian product to compute the new list of possible configurations.

Once the set of all possible configurations Ω is created, the idea is to split it
according to the concept maximizing a criterion C . The choice of this concept gives
us the question to ask and thus a node of the tree. For each possible answer, we
then get the corresponding subset and look for the next concept maximizing C . This
operation is iterated until only one possibility is left in each subset. In the resulting
tree, the root thus corresponds to Ω and stores the first question to ask, each leaf is
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Fig. 7 Offline decision-tree generation from the ontology of the application domain

a possible configuration and intermediary nodes are subsets of Ω storing the next
question to ask. Note that this step can be performed only once and offline in order
to speed up the process. This procedure is illustrated in Fig. 7 and an example of
complete decision tree is given in Fig. 8 where the criterion used to split Ω is the
dichotomy. The reader will also find an illustration on the applicative context of
furnitures in Sect. 5.1.1.

3.3.2 Optimized Segmentation Using the Decision Tree

The first inline step of our expert system is to browse the decision tree: starting
from the root, the system gets the question to ask and runs the associated elementary
algorithm on the input object (see Sect. 3.4 for the formulation and classification
of these algorithms). The system then selects the child node corresponding to the
algorithm’s result and the process iterates until a leaf of the tree is reached, meaning
that the semantics associated to the object is known as only one possible configuration
remains. A complete run of the inline process is given in Sect. 5.1.2 on the applicative
context of furnitures.

In some cases, the expert system might reach a leaf before every part of the
mesh is segmented or annotated (because some concepts might be inferred from the
presence/absence of others). Some supplementary algorithms can then be run on
the mesh to confirm the global semantics and annotate the missing parts. This can
again be done very efficiently by questioning the reasoner, which will give the expert
system the missing concepts and thus the elementary algorithm to run.
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Total 5
Board Backrest 4
Stick Back 1
Board Horizontal Foot 1
Board Vertical Foot 1
Stick Foot 3
Board One Seat 2
Board Several Seats 2
Cube Several Seats 1

Total 3

Board Backrest 2
Stick Back 1

Stick Foot 3

Board One Seat 2
Board Several Seats 1
Cube Several Seats 0

Total 1

Stick Back 1
Stick Foot 1

Board One Seat 1
Board Several Seats 0
Cube Several Seats 0

Total 2

Board Backrest 2
Stick Foot 2

Board One Seat 1
Board Several Seats 1
Cube Several Seats 0

Total 1

Board Backrest 1
Stick Foot 1

Board One Seat 1

Total 1

Board Backrest 1
Stick Foot 1

Board Several Seats 1
Cube Several Seats 0

Total 2
Board Backrest 2
Stick Back 0
Board Horizontal Foot 1
Board Vertical Foot 1
Board One Seat 0
Board Several Seats 1
Cube Several Seats 1

Total 1
Board Backrest 1
Stick Back 0
Board Horizontal Foot 1
Board One Seat 0
Board Several Seats 0
Cube Several Seats 1

Total 1
Board Backrest 1
Stick Back 0
Board Vertical Foot 1
Board One Seat 0
Board Several Seats 1
Cube Several Seats 0

Fig. 8 Illustration of the generation of the decision tree. The dashed lines group the elementary
semantic concepts into a common property. Yellow best question at a given node of the tree;Orange
asserted concepts through previous question; Blue inferred concepts (because only one possibility
left in the property)

3.4 Mesh Processing Formalisation

In this work, the core idea about the mesh processing part is to split the processing
into elementary algorithms, each dedicated to the evaluation of one of the elementary
semantic concepts. To produce a synthetic catalog of the algorithms, however, the
signature of each algorithm must be defined both by the concept it handles and by
the desired specific task.

3.4.1 Semantic Type Signatures of Algorithms

Each elementary algorithm is involved in the segmentation and labelling process and
can realize the following tasks:

• looking for a given concept and segmenting the mesh in corresponding subparts,
• checking if an existing region satisfies or not a given concept,
• focusing on relative positions or links of several regions.
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Since a region can be described by more than one concept (for example, a part can
be both a “stick” and “vertical”), and since our goal is to have as many elementary
algorithms as possible, we deduce that there also exist algorithms that do not split the
given region, but only increase the knowledge on this region. Finally, and because
we want to deal with concepts that are not necessarily involving a single region, we
need to distinguish functions associated to unary properties, and functions associated
to n-ary properties.

The following synthetic catalog is a proposal to identify each segmentation algo-
rithm in the context of semantic labelling:

• semantical questions starting with find all (SF), with unary concepts (e.g. find all
rectangles in region A ),

• semantical questions starting with is it a (SI), with unary concepts (e.g. is B a
flat region),

• topological questions (T), identifying n-ary relations between regions (e.g. areB
and C connected),

• topological questions starting with find all (TF), using an n-ary relation and 1 to
n − 1 regions, to find regions satisfying the relation wrt the input regions (e.g.
find all regions connected to the regionB; find all regions between the regionsB
and C ).

Each algorithm takes as input one or more regions of the original object and
returns a set of regions, each enriched by a semantic description generated by the
function, plus a score in [0; 1] to illustrate the matching between this region and the
associated concept. This first synthetic catalog of possible semantic type signatures
covers all the useful algorithms for mesh segmentation using semantic description,
as illustrated in Sect. 3.3 and thereafter.

3.4.2 Minimal Set of Algorithms

Designing one algorithm of each type for each property can be very complex, in
particular for concepts that are not very precisely defined. In particular, if a SI
algorithm can be designed for each property, the SF algorithms are taking on them
the complicated task of segmentation. Depending of the accuracy of the concept, it
can be very complicated to design a corresponding SF algorithm.

Fortunately, the expert system described in the next paragraph is able to deal with
a minimal set of algorithms that does not contain all the SF algorithms. Whenever a
new find all algorithm is required, the system restricts itself to the existing ones. The
only mandatory constraint is that all the regions of the objects must be segmentable.
We describe in Sect. 4 an example of such a minimal set.

For n-ary properties we can proceed in a similar manner. T algorithms must be
implemented for each n-ary properties. On the other hand, TF algorithms can be
implemented, or only deduced using a combination of T and SF algorithms.
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3.4.3 Region Description

The algorithms of our framework use regions ofmeshes as input, and can also produce
regions in case of “find all” algorithm. A classical way to describe regions consists
on using existing vertices, edges and triangles without refining the data structure.
Moreover, a segmentation process consists in splitting a given object into subregions.
Using triangles as elementary parts of a surfacemesh is then a straightforward choice.

However, we know that the result of a segmentation step is sometimes uncertain,
in particular on the segment borders. To handle this uncertainty, we choose to use in
this work fuzzy maps to describe regions. A fuzzy map is defined as a function that
associates to each triangle of themesh amembership value in [0; 1]. This formulation
gives a way to deal with contradictory segmentations such as partially overlapping
regions.

4 Details of the Elementary Algorithms

We defined a minimal set of algorithms corresponding to the S0 concepts described
in Fig. 12 left.

4.1 Fuzzy Membership

Each of the defined algorithms is able to express its result using a score value in [0; 1]
to illustrate the matching between the manipulated region and the corresponding
concept. In this work, we choose to use trapezoidal membership functions (Klir and
Yuan 1995) to compute this score. A trapezoidal membership function is defined by
4 real parameters a1 ≤ a2 ≤ a3 ≤ a4 as described in Fig. 9.

The defined algorithms are described in the next section, with a common use of
the trapezoidal membership functions as fuzzy rules: we first measure a geometric
property on the manipulated region (such as an angle with the vertical axis, or a ratio
between scales), then we use a specific fuzzy rule to obtain the final score.

Aa1,a2,a3,a4 (x) =

⎧⎪⎪⎨
⎪⎪⎩

x−a1
a2−a1

if x ∈ [a1;a2 [
1 if x ∈ [a2;a3 [
x−a4
a3−a4

if x ∈ [a3;a4 [
0 otherwise.

Fig. 9 Trapezoidal membership function Aa1,a2,a3,a4
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We can notice here that more complex membership functions can be used for this
description, but trapezoidal functions has been identified as rich enough to drive our
algorithms in the applicative context described in Sect. 5.

4.2 Elementary Algorithms

For each of these concepts we designed an “is-a” algorithm. “Find-all” algorithms
havebeendefinedonly for the shapeproperties, since this property domain is handling
all the possible regions we want to address. This partial implementation of the “find-
all” algorithms is motivated in Sect. 3.4.2, and we focus our work on the shape
properties due to their efficiency to define strict boundaries.

4.2.1 “Is a” Algorithms

Each of the elementary properties has been translated into an “is a” algorithm. As
described in Sect. 3.4, the input of these algorithms is defined by a fuzzy region F
on a meshM .

Using elementary geometric algorithms, we designed “is a” algorithms to identify
shape properties (cube, stick, board), vertical and horizontal orientations, compact-
ness of a shape, and position properties wrt the vertical axis. The details of these
algorithms presented in Sect. 6.2 are related with the extraction of an oriented bound-
ing box, and some fuzzy rules to quantify the examined properties.

4.2.2 “Find all” Algorithms

The quality of the final segmentation and annotation ismainly related to the quality of
the “find all” algorithms: in our framework, the location of the region and the accuracy
of their boundaries depend only on these algorithms. We focus our implementation
work on the algorithm able to detect boards, i.e. able to detect regions made up of
two parallel planar regions and possibly lateral surfaces. Figure10 give an example
of board that illustrate possible specific configurations: the lateral surfaces may not
be perfectly orthogonal to the planes, and the shape may contain holes both in the
planes and the lateral surfaces, due to the junction with other regions.

Mesh segmentation based on primitives is a classical problem with many existing
approaches. These methods are usually focusing on a few number of primitives, such
as spheres, planes and cylinders. These techniques are able to segment each of the
faces of a board, and possibly the lateral surfaces if the shape is not too complicated.
Hierarchical techniques (Attene et al. 2006) are able to handle more complex shapes
by providing a multi-level segmentation. Figure11a illustrates the inability of these
approaches to handle board shapes: a lateral surface of the seat has been selected as
a part of the back rest.
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Fig. 10 A board is composed of two parallel planar regions (pink) with lateral surfaces (blue),
possibly with holes due to connections with other regions (leg, back)

Fig. 11 a Hierarchical primitive fitting (Attene et al. 2006) on a bench. bWhat we expected

Alternative approaches are using first a primitive fitting procedure, then combine
the detected primitives to generate thin-plates (Geng et al. 2010).

We have designed an alternative approach that performs the fitting of two parallel
primitives at the same time, then defines the shape by adding the lateral surfaces.
This approach avoid the over segmentation of planar regions without opposite parts,
and could possibly be extended to non straight boards, by introducing a parametric
model for parallel bended surfaces.

Section“Find all” Algorithms gives the details of our approach, which uses first
an estimation of the local thickness of the object, then uses a growing process from
the thin points to find the two sides of each region. Finally, a last step is applied to
localize the side triangles.
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5 Experiments on Furnitures Segmentation and Annotation

The experiments have been done on furniture segmentation and annotation, using
basic shapes relevant to this domain (see Fig. 12 right). We implemented the expert
system detailed in Sect. 3.3 using Java and the OWL API, and designed our pro-
totype such that the purely mesh manipulations are written in C++, using CGAL
(see Sect. 4). The connection between these two parts is done using a client/server
paradigm via sockets. The complete software has been released as an Open-Source
software under GPL.2

5.1 Applicative Context and Results of the Annotation

The specific context of furnitures is addressed by designing a dedicated ontology
(seeFig. 12 left) usingProtégé3 and the reasonerHermiTon topof a simplifiedversion
of the elementary concepts introduced in Sects. 3.2.1 and 3.2.2. These ontologies has
been released with our source code under GPL.4

5.1.1 Decision Tree Generation

The decision tree associated to this ontology is generated as described in Sect. 3.3
where the criterion C was chosen to be the dichotomy, i.e. we look for concepts
allowing to split the set into two subset of same size.

5.1.2 Expert Segmentation Processing

Once the decision tree is generated, we can run our expert segmentation system on
meshes. Fig. 13 gives the list of questions that are computed in order to segment
and recognize the first bench in Fig. 12. The other images in Fig. 12 illustrate the
segmentation and annotation process using the same expert ontology with various
meshes.

Figure14 illustrates the consequence of a rule (Sect. 3.2.4) that detects a con-
figuration that is not part of the possible furnitures described in the expert system:
a board is identified in the foot part, and the object is classified as incompatible
(concept FootIncompatibleFurnitures).

2Software and ontologies of our work are available online: http://odds.jmfavreau.info/.
3Protégé, an ontology editor: http://protege.stanford.edu/.
4See Footnote 2.

http://odds.jmfavreau.info/
http://protege.stanford.edu/
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Fig. 12 Ontology and meshes used for our experiments on furniture segmentation and annotation.
Right result of the segmentation and annotation on 5 objects from the furniture domain. Result of
the annotation: orange⇒backrest, blue⇒ seat, other colors⇒ feet

Fig. 13 List of the elementary algorithms and corresponding answers generated by our expert
system to segment and annotate a bench mesh. SF: semantic find all, SI: semantic is it a

5.2 Evaluation of the Approach

In this section, we first give time information on the experiments we performed,
providing computation times for each of the main stages of our pipeline. In the next
section, we present some comparison facts with existing work. Finally, we present
some high level complexity elements considering the usage of the ontology.
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Fig. 14 Example of a mesh which is not valid wrt the expert knowledge, the corresponding list
of elementary algorithms and answers produced by our expert system, and the final diagnosis:
ChairFurniture, FootIncompatibleFurnitures

5.2.1 Computation Time

The presented computations has been done on an Intel i-7 2.00GHz with 8 Go of
RAM, using the software prototype presented below. The decision tree generation
for the furnitures context illustrated in Fig. 8 takes 11.45 s from the loading of the
ontology to the saving of the results.

Once this offline process is done, each mesh can be processed as illustrated in
Fig. 13 using our software prototype. Table1 gives some computation times of the
key steps for several furniture meshes.

The computation time of the “find all” steps is obviously strongly related to the
number of triangles of the mesh, due to the computation technics introduced in
Sect. 4.2.2. This fact can be seen in Table1.

The planarity of the shapes is also a criterion that modifies the computation time.
To illustrate this fact, we applied a multiscale random noise on an complex original
shape (Fig. 16) composed of 75 520 triangles gathered in 4 board-like regions. We
used a rootmean square deviation of 0.5% (respectively 1%) of the object’s bounding
box diagonal length. Table2 illustrate this property.

Table 1 Computation time of the expert system for segmentation and annotation of several meshes

Mesh #subparts #triangles Find all (s) Is a (ms) Total (s)

bench 4 36 0.188 0.259 2.270

bench2 6 52 0.216 0.319 2.712

chair 6 52 0.231 0.326 3.096

chair2 8 82 0.276 0.509 2.376

couch 6 52 0.291 0.264 2.295

curved-bench 29 2542 1.038 6.167 6.743

strange-object2 9 100 0.337 0.695 2.502
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Table 2 Computation time of the segmentation process on a 75,520 triangles mesh with different
levels of noise, with our method and with (Attene et al. 2006)

Noise 0% 0.5% 1%

Our method 3.40 s 5.25 s 7.01 s

Fitting primitives 24s 6 s 6 s

It gives the computation time of the “find all” segmentation process that segments
the shape into two board regions, one stick region and one cube region.

We used the same computer to run the implementation of Attene et al. (2006)
provided by the author. This existing work is not exactly analogous, since it provides
a complete hierarchical representation of fitted primitives, and do not gives a way
to obtain a solution to the board finding problem. However, it gives a good intuition
about the state of the art in primitive detection.

The computation times given in Table2 are illustrating the fact that the two meth-
ods share the same order of magnitude.

5.2.2 Comparison with Existing Work

Comparing our current work with existing methods can be separated into two sides:
segmentation and annotation.

In our current implementation, the segmentation part is mainly driven by the “find
all” board described in the previous section. As we underline at the beginning of this
section, the closest approach is the thin-plates mesh model splitting approach (Geng
et al. 2010). This reference work does not contain any complexity or computation
time evaluation, but the fact that we fit simultaneously the two planes of our boards
necessarily reduces the complexity of our approach, since our model avoids the
segmentation of single planes that are not accompanied by another parallel surface.
For example, a thin board with a profile composed of n segments will be composed
of n + 2 planes. A classical approach will detect n + 2 planes, while the proposed
methodwill detect only a pair of planes. The n other planeswill be part of the detected
border, without subdivision. Moreover, our method is able to handle thin-plates with
complex boundary shapes (as illustrated in Fig. 16), that are not handled by classical
fitting primitive approaches.

The other “is a” algorithms are not strongly novel. The novelty consists here on
the categorisation and review described in section“Is a” Algorithms: to the best of
our knowledge, no other work provides such a comprehensive analysis.

The annotation part of our framework consists both of the “is a” algorithms that we
mentioned above and the expert system described in section“Find all” Algorithms.
This work can be compared with existing works such as Feng and Pan (2013) and
Attene et al. (2009), but in these two approaches the complexity of the annotation
is handled by either the user or context-specific algorithms. As a result, we are not
aware of any other significant existing work which we could compare to.
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Table 3 Number of segmentation steps for a complete annotation and segmentation

Object #subparts S. then I. Naive S&I Our method

Preprocessing - -

# SF # SI # SF # SI # SF # SI

Bench 1 4 0 28 3 20 2 15

Bench 2 6 0 42 3 30 3 14

Couch 6 0 42 3 30 2 13

Chair 1 6 0 42 3 30 2 14

Chair 2 8 0 56 3 40 2 22

5.2.3 On the Usage of the Ontology

In this section, we present a short comparison of our framework with two alter-
native approaches, in case the ontology is not exploited to drive the expert system.
Experimental results of this comparison are summarized in Table3. The first column,
which is entitled S. then I. corresponds to an approach where a first segmentation
preprocessing is done to split regions, then each region is labeled using the semantic
concepts. The second columnwhich is entitledNaive S&I corresponds to an approach
where the initial split is produced using segmentation algorithms dedicated to shape
detection, then by using the complementary algorithms to fully identify the regions.
The last column corresponds to our approach. For each method, we detailed the
number of semantic “find all” (SF) and semantic “is it a” (SI) algorithms required
to segment and annotate the 5 objects shown in Fig. 12 right.

We choose to distinguish the 2 kinds of algorithms, because the complexity of
each algorithm family is significantly different: a SF algorithmwill require to browse
all the given regions (possibly the whole mesh), and will have to extract the subparts
from it. In comparison, a SI algorithm will only have to validate or not a feature
on a given region. Minimizing the number of SF runs is thus the main goal of a
segmentation and annotation process.

For each region of an object, the expert of the ontology uses 5 range concepts
(shape, position, orientation, modulor, compactness) that implies 12 elementary
semantic concepts. The number of SI algorithms in the S. then I. has been esti-
mated counting for each subregion of the mesh one SI per elementary semantic
concept (minus 1 per range concept that can be deduced). The Naive S&I consist in
running the SF algorithms dedicated to shapes, then run all the other SI algorithms
on each of the segmented regions (all minus one per concept range). The number
of SF and SI of our method comes from the trace of the experimental runs (see an
example in Fig. 13).

We first compare our work to a S. then I. approach, where a segmentation pre-
processing is applied before the annotation. We cannot quantitatively compare this
approach with ours, but since we use the expert knowledge to reduce the number of
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SF algorithms in our approach, we can deduce that our SF computations are almost
equivalently expensive as the preprocessing stage of the S. then I. approach.5 The
number of SI algorithms is also strongly reduced with our approach.

The second approach considered for comparison is a Naive S&I approach, where
all the SF algorithms of the shape range are run, then all the complementary SI
algorithms are run. The number of SF algorithms is at least preserved by our approach
and sometimes reduced, and many SI runs are saved thanks to our framework.

These first results motivate the relevance of our method with respect to the exist-
ing approaches: mixing segmentation and annotation steps is a good approach to
reduce the theoretical complexity of the global algorithm, by reducing the number
of segmentation and identification algorithms to run. Moreover, it gives a global
framework to extend the existing approaches to more complex contexts.

6 Conclusion and Future Work

In this paper, we presented a new framework for efficient segmentation and anno-
tation of meshes. It is composed of two blocks: a multi-layer ontology gathering
the semantics and a segmentation part allowing to detect elementary geometrical,
chromatical and topological concepts. The main advantage of our method is that it
separates the domain knowledge with the processing allowing an expert to segment
and annotate an object without knowledge in image or mesh processing. Another
advantage is that using the expert knowledge, we are able to build a decision tree to
perform an efficient search amongst the set of possible objects while being able to
suggest segmentation and annotation corrections to the user if an impossible config-
uration is reached.

6.1 Limitations

We can identify two kind of limitations in this work. First, the elementary concepts
and the associated algorithms which we designed are mainly focused on manufac-
tured shapes. In other words, the first layer of our ontology does not effectively
conceptualize other objects such as organic shapes. Furthermore, we assume that the
input geometry is clean enough: as it is, our current implementation is not appropriate
to treat digitalized meshes which may include a significant amount of noise.

Moreover, wewould like to underline here that the original goal of this project was
to design a framework able to handle shapes in a well defined domain. In particular,
our pipeline will consider any unexpected configuration of the shape as a default,
and will highlight it as an incompatible configuration. This behavior is motivated by

5The best strategy for a preprocessing can be to choose the smallest range concept, then run for
each elementary concept a SF algorithm.
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closed world contexts, such as industrial inspection for example, where the context
is fully controlled, but can be a limitation for applications in an less constrained
context.

6.2 Future Work

The ontology designed for this experiment is very basic, and we forsee significant
extensions in our future work. In particular, the n-ary properties will be integrated
in order to express more realistic constraints between subparts of the objects.

The results which we presented in Sect. 5 are using basic elementary algorithms
only. In a near future, we plan to introduce more flexible and robust approaches to
detect features as described in Mortara et al. (2004) and Laga et al. (2013). The next
algorithms which we plan to introduce will be methods to handle curved shapes and
relative positions of the objects.

Besides the algorithmic aspects, the approachwhichwe presented here gives some
interesting tracks on the semantic side. One of the challenges will be to replace the
current dichotomical algorithm selection with a more elaborated strategy that better
adapts to the situation at hand.Afirst criterion to consider could be aweighting system
that favours algorithms with a small computational time, or to include the accuracy
of the algorithms. These weights will be introduced in the decision tree computation
in order to design an expert system that handles the question of efficiency.

In addition, applying our approach on meshes acquired from low resolution
devices will complicate the job of the segmentation algorithms. It will probably
generate incoherent subregions, with overlappings or unlabelled parts. In fact the
use of fuzzy maps solves a part of the problem, but we still have an open question:
how to adjust an existing partial segmentation? Our framework is a good candidate
to provide a specific answer to this problem, since the expert knowledge contains
information about the expected configurations. One possible extension of this work
could be to introduce adjustment algorithms for each elementary concept, that will
be able to refine a first segmentation using the global knowledge of a specific domain.

Finally, a long term extension of this work will be to introduce it into a machine
learning system, where an existing training set of shapes will be used to either deduce
an ontology from scratch or find a suitable extended ontology based on a fundamental
one. This extended framework will be a possible challenge of the 3D Shape Retrieval
Contest (SHREC) organized each year in the mesh segmentation community.
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Appendix: Details of the Segmentation Algorithms

In Sect. 4 we introduced a series of elementary algorithms to segment and identify
regions of a requested object. We already introduced in Sect. 3.4.1 the two families
of algorithms: “Is a” algorithm to label an already segmented region, and “Find all”
algorithms to extract regions corresponding to a specific property. In this section, we
present the implementation details of the core algorithms we’ve introduced to handle
the experiments on Furnitures (see Sect. 5).

“Is a” Algorithms

Shape properties are associated with dedicated “is a” algorithms that follow a com-
mon pipeline. First we compute an approximation of the minimal volume oriented
bounding box using ApproxMVBB,6 a C++ extension of the work of (Barequet and
Har-Peled 2001) with many efficient preprocessing steps.

Using the three lengths l0 ≥ l1 ≥ l2 of this bounding box, we wrote fuzzy rules
to express the following descriptions:

• in a cube, l1 is almost equivalent to l0 and l2,
• in a board, l0 and l1 are obviously longer than l2,
• in a stick, l0 is obviously longer than l2, and l1 is almost equivalent to l2.

Vertical and horizontal orientations are well defined for sticks and boards,
using the main directions of the minimal volume oriented bounding box. Let v0 be
the axis associated to the largest side of the box (w.r.t. its area), and let v1 be the axis
associated to the smallest side of the box.

Wewrote fuzzy rules to express the following descriptions if the region is a board:

• if v0 is almost parallel to the up-down axis, the region is horizontal,
• if v0 is almost orthogonal to the up-down axis, the region is vertical.

If the region as been identified as a stick, we introduce the following descriptions:

• if v1 is almost parallel to the up-down axis, the stick is vertical,
• if v1 is almost orthogonal to the up-down axis, the stick is horizontal.

The compactness of a shape is defined by comparing the two first lengths l0 and
l1 of the bounding box. If l0 is sufficiently longer than l1 the shape is elongated. If
these two lengths are almost equivalent, the region has a compact shape.

In this work, we assume that the input mesh has as correct scale (in our case, 1 unit
corresponding to 1 meter) and is correctly oriented. Existing methods such as (Fu
et al. 2008) are available to automatically estimate the orientation of a manufactured
object.

6https://github.com/gabyx/ApproxMVBB.

https://github.com/gabyx/ApproxMVBB
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This property has been used to define two kinds of properties relative to the height
of the regions. First we used the relative vertical positions comparing the highest,
the central and the lowest points of the region with respect to the equivalent points
of the object, to define algorithms able to identify position properties: up position,
down position and central position.

Todefine the global positionof a region,we compared the lowest point of the object
with the highest point of the region. In his work Le Corbusier defined standard sizes
for furnitures and buildings, based on the golden ratio (Corbusier 2000). In this work,
we defined twoModulor properties: M27 and M43, corresponding respectively to
bench and chair classical height.

“Find all” Algorithms

We introduced in Sect. 4.2.2 the motivations to design a board segmentation algo-
rithm. To achieve this goal, we designed an original approach that performs the fitting
of two parallel primitives at the same time, then it defines the shape by adding the
lateral surfaces.

Figure15 illustrates our board segmentation algorithm, defined as follows:

• let t be a triangle of a board (Fig. 15a), and −→n its outward normal,
• find the opposite triangle t ′ using a ray in the opposite direction of −→n (Fig. 15b),
• fit two parallel planes to these triangles (Fig. 15c),
• starting from t and t ′, grow iteratively the two regions by selecting only triangles
if they fit with one of the two planes (Fig. 15d), and readjust the model at each
step,

• when the growing process is finished, we stop the process if the two sides are not
similar enough (areas significantly different, or too small overlapping),

• otherwise, we consider the adjacent triangles as initial triangles of the lateral
surface growing process (Fig. 15e),

• for each new triangle, find the closest edge e in the boundary of the parallel surfaces
(Fig. 15f),

• consider the virtual facet orthogonal to the planes starting from e, and compare
it with the new candidate, using the distance between barycenters and the angle
between normals.

The initial triangles are selected by first computing a simplified version of the Shape
Diameter Function (SDF) (Shapira et al. 2008) where only one ray is used, since
we are manipulating CAD models and meshes that represent manufactured objects.
Then we sort triangles by ascending SDF value. For each non-visited triangle, we
run our board segmentation algorithm. Finally, we run the “is a” algorithms to decide
if it is as board shape, a stick shape or a cube shape.

Figure16 left illustrates the detection of board, stick and cube in a basic shape
composed of 75 520 triangles,with a computation time of 3.4 s on a Intel i-7 2.00GHz.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 15 Details of the “find all” board algorithm, starting from a single triangle (a), growing a
region by fitting two parallel planes (a–d), then adding the lateral surface (f–g)

Fig. 16 Result of the segmentation: boards in blue and green, stick in pink, cube in yellow. Light
regions corresponds to bad fitting scores. Left original shape. Middle and right two different level
of noise

Table 4 Result of the segmentation: semantic labelling and score

Region Label Score
(original)

Score (noise
0.5%)

Score (noise
1%)

#triangles

Cube Cube 0.999966 0.983023 0.939295 45,568

Vertical board Board 0.99997 0.944411 0.86583 14,592

Stick Stick 0.999915 0.974192 0.926152 6,656

Horizontal
board

Board 0.99996 0.95555 0.876332 8,704

We applied a multiscale random noise on the original shape with a root mean square
deviation of 0.5% (respectivly 1%) of the object’s bounding box diagonal length.

During the fitting process, a fitting score is computed for each triangle. The final
score of the region (Table4) is estimated using the mean of these scores, multiplied
by the fuzzy result of the corresponding “is a” algorithm.
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ontology with target ontologies already published and linked on the Linked Open
Data (LOD) cloud. This method relies on the refinement of a set of input alignments
generated by existing ontologymatching methods. Since the ontologies to be aligned
can be expressed in several representation languages with different levels of expres-
siveness and the existing ontology matching methods can only be applied to some
representation languages, the first step of our method consists in applying existing
matching methods to as many ontology variants as possible. We then propose to
apply two main strategies to refine the initial alignment set: the removal of different
kinds of ambiguities between correspondences and the use of the links published on
the LOD. We illustrate our proposal in the field of life sciences and environment.
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1 Introduction

Ontologies are nowadays used as a common and standardized vocabulary for rep-
resenting concepts and relations from a particular domain (e.g. life-science, geog-
raphy). The Linked Open Data (LOD) cloud1 contains more and more data sources
published and linked together on the Web. Publishing and linking scientific data on
the Web using ontologies for describing them should facilitate scientific data shar-
ing, such as giving access to data from specific disciplines or data produced within
specific geographic regions (Bizer 2013).

When a new ontology, the source ontology, is published on the LOD, first, the
‘target’ ontologies, i.e. ontologies from similar domains with similar concepts, has
to be identified among the already published ontologies in order to access new enti-
ties (concepts, properties or instances) and data sources. The source ontology can
then be linked with each target ontology by finding an alignment (i.e. a set of cor-
respondences) between entities. Different approaches have been proposed for the
Ontology Matching task (Shvaiko and Euzenat 2013; Bernstein et al. 2011; Rahm
2011; Euzenat and Shvaiko 2007) and a systematic evaluation on data sets from dif-
ferent domains has been carried out over the last ten years by theOntologyAlignment
Evaluation Initiative (OAEI).2

In this paper, we propose an ontology matching method for aligning a source
ontology with different target ontologies already linked and published on the LOD.
An ontology can be either a thesaurus, an ontology or an ontological and terminolog-
ical resource, expressed in different representation languages. Our method is based
on the principle of alignment refinement: starting from a set of input alignments gen-
erated by several existing ontology matching methods, we propose to apply different
strategies in order to refine this initial alignment set. One of our strategies is to exploit
the links between the target ontologies, already published on the LOD.

We illustrate our method in the field of life sciences and environment. In this
field, several thesauri have been created and published on the LOD. The two largest
ones are Agrovoc3 and Nalt.4 Agrovoc was created in the 1980s by FAO (Food
and Agriculture Organization of the United Nations) as a structured multilingual
thesaurus for agriculture, forestry, fishery, food and related fields (such as envi-
ronment). It is available in 19 languages, with about 40,000 terms in each language
(Caracciolo et al. 2012).Nalt is a bilingual thesaurus comparable withAgrovoc in
terms of covered domain and maintained by USDA (United States Department of
Agriculture). It is currently composed of approximately 91,000 terms in English
and Spanish. For instance, the vocabulary of Agrovoc is currently linked to 15

1http://linkeddata.org.
2http://oaei.ontologymatching.org.
3http://aims.fao.org/standards/agrovoc/about.
4http://agclass.nal.usda.gov/agt.shtml.

http://linkeddata.org
http://oaei.ontologymatching.org
http://aims.fao.org/standards/agrovoc/about
http://agclass.nal.usda.gov/agt.shtml
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international resources likeGeoNames,5 DBpedia6 andGEMET.7 In addition, 13,390
terms of Agrovoc are currently aligned with Nalt (Caracciolo et al. 2012). In
this paper, we focus on the alignment of an ontological and terminological resource
naRyQ (n-aryRelations betweenQuantitative experimental data) (Buche et al. 2013)
with Agrovoc and Nalt, in order to publish it on the LOD. naRyQ contains about
1,100 concepts structured into several sub-domains, such as food products, microor-
ganisms and packaging.

This paper is organised as follows. Section2 describes our method for aligning an
ontology with linked ontologies on the LOD. Section3 discusses the results of our
experiments in the field of life sciences and environment. Section4 presents related
work and, finally, Sect. 5 concludes the paper and presents our perspectives.

2 Ontology Matching Method with Linked Ontologies

In this section, we present our matching method for aligning a source ontology with
two target and linked ontologies. Ourmethod is designed to align ontologies, thesauri
or ontological and terminological resources, possibly described in different represen-
tation languages with different levels of expressiveness (e.g. OWLDL,8 SKOS9). An
Ontological and Terminological Resource (OTR) (Reymonet et al. 2007; Roche et al.
2009; McCrae et al. 2011) is a hybrid model that combines a conceptual component
and a terminological component: a concept is associated with a set of terms, each
term denoting the concept with different lexical functions (e.g. synonyms, abbrevi-
ations, etc.). In the following, for the sake of simplicity and the paper’s readability,
we abusively use ontology for either ontology, thesaurus or OTR.

The proposed method relies on the refinement of a set of input alignments gener-
ated by existing ontology matching methods. Our aim is therefore to be able to apply
as much existing matching methods as possible in order to generate as much candi-
date correspondences as possible. Since the existing ontology matching methods can
only be applied to some particular representation languages and the ontologies to be
aligned can be expressed in several representation languages with different levels of
expressiveness, we propose to apply matching methods on different variants of the
ontologies to be aligned. A variant of an ontology corresponds to its expression in
a given representation language. The first step of our matching method consists in
aligning variants of the source ontology Os with variants of the two target ontolo-
gies O1

t and O2
t using existing ontology matching methods. It allows the production

of an initial set of alignments. In the second step, different refinement strategies
are applied to this initial set of alignments, including the exploitation of the links

5http://www.geonames.org.
6http://dbpedia.org.
7http://www.eionet.europa.eu/gemet.
8http://www.w3.org/TR/owl-guide.
9http://www.w3.org/TR/2009/REC-skos-reference-20090818.

http://www.geonames.org
http://dbpedia.org
http://www.eionet.europa.eu/gemet
http://www.w3.org/TR/owl-guide
http://www.w3.org/TR/2009/REC-skos-reference-20090818
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Fig. 1 Overview of our matching method

defined on the LOD between the target ontologies. Figure1 gives the overview of
our matching method, which is detailed in the next two subsections.

2.1 First Step: Ontology Matching

The first step of our method consists in aligning the source ontology Os with each
one of the two target ontologies O1

t and O2
t .

2.1.1 Ontology Variants

The source and target ontologies to be aligned can be thesauri, ontologies or OTR and
may be expressed in different representation languages. Since the existing matching
methods are usually designed for one particular representation language, we propose
to associate to each ontology a set of variants, defined in the following:

Definition 1 (Set of variants of an ontology) The set VO of variants of an ontology O
is composed of its transformations in different representation languages L1, L2, . . ..
It contains the original version Oorig of the ontology.

VO = {Oorig, OL1 , OL2
1 , OL2

2 , . . .}, where OLi
j is the j th transformation of the

ontology O using the representation language Li .
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The aim of using variants is twofold. First, matching tools are designed to deal
with specific input models (OWL ontologies in most cases). Diversifying the kinds
of input, we are able to produce more candidate correspondences by using more
tools. Second, representing resources using different constructors (OWL and SKOS)
allows the encoded knowledge to be exploited in different ways. On the one hand,
tools can take advantage of OWL models for better exploiting automated reasoning.
On the other hand, the lexicalisation of concepts is better expressed in SKOSmodels
than in OWLmodels. For instance, in classical SKOS to OWL transformations, both
skos:prefLabel and skos:altLabel are mapped to rdfs:label, where skos:altLabel are
often used to represent synonyms, but also to refer to related terms.As a consequence,
without introducing variants to catch this semantic richness, we could lose this infor-
mation, which can instead be useful for tools able to deal with the specificities of
SKOS.

2.1.2 Matching the Ontology Variants

The ontology matching process takes as input two ontologies and produces as output
a set of correspondences between the entities of these two ontologies. According to
Euzenat and Shvaiko (2007), this process can be defined as follows:

Definition 2 (Matching process (Euzenat and Shvaiko 2007)) Thematching process
is a function f that, applied to two ontologies Os and Ot and an (optional) initial
alignment Aorig , produces a directed alignment A f

Os ,Ot
between the two ontologies

(Os → Ot ). This process can use matching parameters p (e.g. weights, thresholds)
and external resources r (e.g. common knowledge and domain specific thesauri):

A f
Os ,Ot

= f (Os, Ot , A
orig, p, r)

Definition 3 (Correspondence (Euzenat and Shvaiko 2007)) Let us consider two
ontologies Os and Ot , a correspondence c f resulting from a matching process f is
a relation r between the two entities es and et , denoted c f = 〈id, es, et , r, n〉, such
that: c f ∈ A f

Os ,Ot
; es ∈ Os and et ∈ Ot ; r ∈ {≡,�,�}; n is the confidence level

(in general, n ∈ [0, 1]) indicating the degree of confidence that the relation r holds
between es and et .

Since the structural and the lexical information of the ontologies are exploited in
different ways by the matching processes, the use of the most expressive variant of
an ontology does not guarantee the best results. Therefore, the first step of our match-
ing method consists in launching several matching processes on several variants of
the ontologies to be aligned. Let us consider the source ontology Os , one of the
target ontologies Ot and the set of matching processes F = { f1, f2, . . .}, which are
launched to align the ontologies Os and Ot , each matching process fi is launched
on a pair of variants (O j

s , Ok
t ) where O j

s ∈ VOs and Ok
t ∈ VOt and generates the

following alignment (i.e. set of correspondences):
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A fi
O j

s ,Ok
t

= fi (O
j
s , O

k
t ,∅, p, r) (1)

The result of our matching method between the source ontology Os and one of

the two target ontologies is a set of sets of correspondences, denoted
agr
C Os→Ot for

aggregated set, generated by each matching process of F on each pair of ontol-
ogy variants. This set, which comes from the concatenation of results from several
matching processes on several ontology variants, is denoted:

agr
C Os→Ot =

⊕

i, j,k

A fi
O j

s ,Ok
t

(2)

The total number of matching processes launched in order to obtain an alignment
between the source ontology Os and each one of the two target ontologies O1

t and
O2

t is:
|VOs | × |VO1

t
| × |F | + |VOs | × |VO2

t
| × |F | (3)

2.2 Second Step: Refining the Alignments

The second step of our matching method consists in refining the sets of sets of

correspondences
agr
C Os→O1

t
and

agr
C Os→O2

t
. These two sets of sets contain many cor-

respondences (suggesting a good coverage) but also a lot of noise (i.e. incorrect
correspondences) that has to be reduced.

In order to improve the quality of the correspondences found in the first step,
we propose two refinement methods: the first one allows the identification of the
potentially correct correspondences (see Sect. 2.2.1), the second refinement method
allows the deletion of the correspondences considered as ambiguous and therefore
potentially incorrect (see Sect. 2.2.2). Finally, we present in Sect. 2.2.3 our refinement
process.

2.2.1 Identification of Potentially Correct Correspondences

We distinguish two ways to identify potentially correct correspondences. When
redundancies occur between correspondences that have been generated from at least
two distinct matching methods, we assume that these correspondences can be con-
sidered as having more chances to be correct. We will retain them in a separate set,

denoted
recT
C Os→Ot for recovering set. These correspondences will be presented to

the user as potentially correct correspondences.
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Definition 4 (Recovering set) Let us consider two matching processes f1 and f2
applying two distinct matching methods for aligning two ontologies Os and Ot , the

recovering set
recT
C Os→Ot is defined as follows:

If c f1 = 〈id1, e1s , e1t , r1, n1〉 ∧ c f2 = 〈id2, e2s , e2t , r2, n2〉 ∧ e1s = e2s ∧ e1t = e2t ∧
r1 = r2

then c fk ∈ recT
C Os→Ot ,where c

fk =
{
c f1 if n1 ≥ n2
c f2 otherwise

Example 1 Let us also consider the correspondence c1 generated by a matching
process f1 on the variants naRyQOWL−SK OS of the source ontology naRyQ, and
the variantAgrovocSK OS of the target ontologyAgrovoc (seeSect. 3.1). Let us also
consider the correspondence c2 generated by a matching process f2 which applies
another matching method as the one used in the matching process f1 on the variants
naRyQOWL−SK OS and AgrovocOWL

2 . We have:

c1 = 〈id1, sheep, c_8854,≡, 0.95〉, c1 ∈ A f1
naRyQOWL−SK OS ,AgrovocSK OS

c2 = 〈id2, sheep, c_8854,≡, 0.75〉, c2 ∈ A f2
naRyQOWL−SK OS ,AgrovocOWL

2

The correspondences c1 and c2 generated by two distinct matching methods can

be considered as redundant. The recovering set
recT
C naRyQ→Agrovoc contains the cor-

respondence c1 with the highest confidence level.

The second way of identifying potentially correct correspondences relies on the
same assumption as above, i.e. ‘comparable’ correspondences can be considered as
having more chances to be correct. Let us consider that there exists an alignment
ALOD
O1

t →O2
t
defined on the LOD between the target ontologies O1

t and O2
t , correspon-

dences are said ‘comparable’ if an entity of the source ontology Os is aligned, by
an equivalence relation, with two distinct but linked on the LOD entities of the
target ontologies O1

t and O2
t . These correspondences will be kept in two separate

sets, denoted
LOD
C Os→O1

t
and

LOD
C Os→O2

t
as LOD recovering sets. These sets will be

presented to the user as sets of potentially correct correspondences.

Definition 5 (LOD recovering set) Let us consider ALOD
O1

t →O2
t
the result of a match-

ing process between two ontologies O1
t and O2

t from the LOD, a set of matching
processes F1 = { f 11 , f 12 , . . .} applied to two ontologies Os and O1

t , and a set of
matching processes F2 = { f 21 , f 22 , . . .} applied to Os and O2

t , the LOD recovering

sets
LOD
C Os→Oi

t
, i ∈ [1, 2], are defined as follows:

If ∃c ∈ ALOD
O1

t →O2
t
∧ c = 〈id, e1t , e

2
t ,≡, n〉 ∧ c f 1i ∈ A

f 1i
Os ,O1

t
∧ c f 2j ∈ A

f 2j
Os ,O2

t
∧

c f 1i = 〈id1, e1s , e1t ,≡, n1〉 ∧ c f 2j = 〈id2, e2s , e2t ,≡, n2〉 ∧ e1s = e2s ∧ e1t = e2t ,

then c f 1i ∈ LOD
C Os→O1

t
and c f 2j ∈ LOD

C Os→O2
t
.
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Hence, a correspondence c f 1i belongs to the LOD recovering set
LOD
C Os→O1

t
, if (i)

the entity source es (es = e1s = e2s ) is aligned with an entity target e
1
t , (ii) there exists

a correspondence c f 2i such that the entity source es is aligned with an entity target
e2t , (iii) there exists on the LOD a correspondence c linking e1t and e2t .

Example 2 Let us consider the correspondence c3 generated by thematching process
f1 of Example 1 and the correspondence c4 generated by the matching process f3
on the variants naRyQOWL−SK OS and NaltOWL . We have:
c3 = 〈id3, surimi, c_33271,≡, 0.87〉, c3 ∈ A f1

naRyQOWL−SK OS ,AgrovocSK OS

where c_33271 is a concept of Agrovoc;
c4 = 〈id4, surimi, c_40365,≡, 0.92〉, c4 ∈ A f3

naRyQOWL−SK OS ,NaltOWL

where c_40365 is a concept of Nalt.
Let us also consider that:∃c ∈ A f

Agrovoc,Nalt, c = 〈idc, c_33271, c_40365,≡, 0.96〉.
Then, we have: c3 ∈ LOD

C naRyQ→Agrovoc and c4 ∈ LOD
C naRyQ→Nalt.

2.2.2 Deletion of Ambiguous Correspondences

We distinguish three types of ambiguity between correspondences. The first type
covers the correspondences obtained from the same matching method launched on
different variants of the source and target ontologies. The correspondences of this
type have the same source entity, the same target entity and the same relation. We
propose to remove ambiguities of type 1 by keeping the correspondence with the
highest confidence level.

Definition 6 (Ambiguous correspondences of type 1) Let us consider two matching
processes f1 and f2 applying the same matching method to align two ontologies Os

and Ot (with O j
s and Ok

t its respective variants), two correspondences c f1 and c f2 ,
from the sets A f1

O
j1
s ,O

k1
t

and A f2
O

j2
s ,O

k2
t

, are ambiguous according to type 1 if:

c f1 = 〈id1, e1s , e1t , r1, n1〉 ∧ c f2 = 〈id2, e2s , e2t , r2, n2〉 ∧ e1s = e2s ∧ e1t = e2t ∧ r1 = r2.

The set of sets of non ambiguous correspondences according to type 1 is:

agr∗
C Os→Ot =

⊕

i, j,k

(A fi
O j

s ,Ok
t
\{c fk }) where c fk =

{
c f1 if n1 ≥ n2
c f2 otherwise

Remark 1 Let us remember that when redundancies occur between correspondences
generated by two distinct matching methods, these correspondences are considered
as potentially correct (see Definition 4).
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Example 3 Let us consider the correspondence c1 generated by thematching process
f1 of Example 1. Let us also consider the correspondence c5 generated by amatching
process f4 using the same matching method as the one used in the matching process
f1 but on the variant naRyQSK OS and the variant AgrovocSK OS . We have:
c1 = 〈id1, sheep, c_8854,≡, 0.95〉, c1 ∈ A f1

naRyQOWL−SK OS ,AgrovocSK OS

where c_8854 corresponds to the concept ‘caprins’ in Agrovoc.
c5 = 〈id5, sheep, c_8854,≡, 0.88〉, c5 ∈ A f4

naRyQSK OS ,AgrovocSK OS

The set of sets
agr∗
C naRyQ→Agrovoc of non ambiguous correspondences according to

type 1 only contains the correspondence c1 with the highest confidence level.

The second type of ambiguity covers the correspondences in which an entity
of the source ontology Os is aligned, by an equivalence relation, with two distinct
entities of the target ontology Ot . We propose, in this case, to keep only the most
relevant correspondence, i.e. the one that has a priori the highest confidence level.
However, considering the fact that these correspondences were not generated by
the same matching method, their confidence degrees are not comparable. There-
fore, we propose to compute a similarity measure sim on the two correspondences
to be compared, which is independent on the matching methods used to generate
them. This similarity measure can rely, for instance, on syntactic similarity measures
implemented in the Alignment API (David et al. 2011). Here, we use the following
syntactic measures: Hamming distance, Levenshstein distance, n-grams and Jaro and
Jaro-Winkler to compute the similarity between all the labels, in a given language,
of the two entities. The sim measure is the average of the computed similarities.

Definition 7 (Ambiguous correspondences of type 2) Let us consider a set of match-
ing processes F = { f1, f2, . . .} applied to two ontologies Os and Ot , two correspon-
dences c fi and c f j are ambiguous according to the type 2 if:

c fi = 〈id1, e1s , e1t ,≡, n1〉 ∧ c f j = 〈id2, e2s , e2t ,≡, n2〉 ∧ e1s = e2s ∧ e1t = e2t .

The set of sets of non ambiguous correspondences of type 2 is:

agr2∗
C Os→Ot =

⊕

i, j,k

(A fi
O j

s ,Ok
t
\{c fk }) where c fk =

{
c fi if sim(e1s , e

1
t ) ≤ sim(e2s , e

2
t )

c f j otherwise

Remark 2 We only consider the equivalence relation here, because with other rela-
tions, the correspondences are not necessarily ambiguous, i.e. both of the correspon-
dences can, in some cases, be considered as correct.

Example 4 Let us consider the correspondence c1 generated by thematching process
f1 of Example 1 and the correspondence c6 generated by the matching process f2 of
Example 1. We have:
c1 = 〈id1, sheep, c_8854,≡, 0.95〉, c1 ∈ A f1

naRyQOWL−SK OS ,AgrovocSK OS

sim(sheep, c_8854) = 0.815, where c_8854 corresponds to the concept ‘caprins’ in
Agrovoc;
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c6 = 〈id6, sheep, c_9214,≡, 0.65〉, c6 ∈ A f2
naRyQOWL−SK OS ,AgrovocOWL

2

sim(sheep, c_9214) = 0.621, where c_9214 corresponds to the concept ‘goat’ in
Agrovoc.

The set of sets
agr2∗
C naRyQ→Agrovoc of non ambiguous correspondences according to

type 2 only contains the correspondence c1 with the highest similarity measure.

Finally, the third type of ambiguity covers the correspondences where two distinct
entities from the source ontology Os are aligned, by an equivalence relation, with
the same entity of the target ontology Ot . We propose, in this case, to keep the most
relevant correspondence, i.e. the one with the highest similarity measure sim.

Definition 8 (Ambiguous correspondences of type 3) Let us consider a set of match-
ing processes F = { f1, f2, . . .} applied to two ontologies Os and Ot , two correspon-
dences c fi and c f j are ambiguous according to type 3 if:

c fi = 〈id1, e1s , e1t , r1, n1〉 ∧ c f j = 〈id2, e2s , e2t , r2, n2〉 ∧ e1s = e2s ∧ e1t = e2t ∧ r1 = r2.

The set of sets of non ambiguous correspondences of type 3 is defined as:

agr3∗
C Os→Ot =

⊕

i, j,k

(A fi
O j

s ,Ok
t
\{c fk }) where c fk =

{
c fi if sim(e1s , e

1
t ) ≤ sim(e2s , e

2
t )

c f j otherwise

Example 5 Let us consider the correspondence c1 generated by thematching process
f1 of Example 1 and the correspondence c6 generated by the matching process f1.
We have:
c1 = 〈id1, sheep, c_8854,≡, 0.95〉, c1 ∈ A f1

naRyQOWL−SK OS ,AgrovocSK OS

sim(sheep, c_8854) = 0.815, where c_8854 corresponds to the concept ‘caprins’ in
Agrovoc;
c7 = 〈id7, ewe, c_8854,≡, 0.55〉, c7 ∈ A f1

naRyQOWL−SK OS ,AgrovocSK OS

sim(ewe, c_8854) = 0.722.

The set of sets
agr3∗
C naRyQ→Agrovoc of non ambiguous correspondences according to

type 3 only contains the correspondence c1 with the highest similarity measure.

2.2.3 The Refinement Process

Figure2 gives the overview of our refinement process, detailed in Sects. 2.2.1 and
2.2.2.

The set obtained by the union of the two recovering sets defined in Sect. 2.2.1 is
denoted by:

UOs→Ot = recT
C Os→Ot ∪ LOD

C Os→Ot (4)
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Fig. 2 Overview of our refinement process

We define the set of potentially correct and non ambiguous correspondences
between a source ontology Os and a target ontology Ot as follows.

Definition 9 The set of potentially correct and non ambiguous correspondences

between a source ontology Os and a target ontology Ot , denoted
agr∗,2∗,3∗
UOs→Ot , is the

set obtained after the removing of ambiguities of types 1, 2 and 3 as defined in
Definitions 6, 7 and 8 from the set UOs→Ot given in Eq.4.

3 Experiments

We illustrate in this section our matching method described above for aligning
a source ontology naRyQ (presented in Sect. 3.1) with each of the two target
ontologies Agrovoc and Nalt. In the following, the alignment of naRyQ with
Agrovoc will be denoted naRyQ → Agrovoc and the alignment of naRyQ with
Nalt: naRyQ → Nalt.

3.1 The Source Ontology NARYQ

The ontology naRyQ (n-ary Relations between Quantitative experimental data)
has been created for representing n-ary relations between quantitative experimental
data (see Buche et al. (2013)). The characteristics of this ontology are the follow-
ing: (i) it is an OTR; (ii) the labels are available in French and in English; (iii) it
is represented in OWL DL and SKOS; and (iv) the conceptual component contains
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about 1,100 concepts structured into several sub-domains, the most important one
in number being food products (≈460 concepts), microorganisms (≈180 concepts)
and packaging (≈150 concepts).

3.2 Reference Alignments

In order to evaluate the quality of the generated alignments and to compare the
results of the matching processes, we consider the measures of precision and recall
adapted to the ontology matching task (Euzenat and Shvaiko 2007). These measures
are based on a comparison between an automatically generated alignment A and a
reference alignment R. The automatically generated alignment A is in this paper
either the individual alignments provided by the matching tools or the alignment
resulting from our approach. The construction of a complete reference alignment R
was not possible because it is a time-consuming task and it is difficult to find and to
involve experts from the domain. Hence, we have built two partial manually validated
reference alignments, denoted R

+
Agrovoc for the alignment naRyQ→Agrovoc, and

R
+
Nalt for the alignment naRyQ → Nalt.
For each ontology and for every concept, we extracted their annotations (e.g.

skos:prefLabel, skos:altLabel, rdfs:label, rdfs:comment) in English and in French as
well as their structural elements (e.g. skos:broader, rdfs:subClassOf). A first align-
ment was created using SMOA (Stoilos et al. 2005) (String Metric for Ontology
Alignment), a syntactic similarity metric for ontology matching. Using this metric
and the equivalence relation ≡, an alignment with 1,453 correspondences was gen-
erated, which was then manually validated by two experts in a double-blind process,
and finally re-conciliated, i.e. the experts reached an a posteriori consensus. This first
expert validation was performed in four hours using a visualisation tool developed
for this specific task. It produced 318 validated correspondences in RAgrovoc and 394
validated correspondences in RNalt, among which 233 concepts from naRyQ were
aligned with both concepts from Agrovoc and concepts from Nalt. In order to
enrich these first generated reference alignments, an additional set of potentially cor-
rect correspondences was generated using our matching method and was validated
by two experts. We therefore obtained two new and enriched reference alignments,
denoted R

+
Agrovoc and R

+
Nalt.

• R
+
Agrovoc has 368 validated correspondences,with 361 concepts of naRyQ aligned

with concepts of Agrovoc.
• R

+
Nalt has 428 validated correspondences, with 424 concepts of naRyQ aligned

with concepts of Nalt.
• 303 concepts of naRyQ are alignedwith both concepts of Agrovoc and concepts
of Nalt.

The alignments R
+
Agrovoc and R

+
Nalt, though partial, are used in the following as

reference alignments.
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3.3 Experimental Protocol

Several matching processes were launched on several variants of the ontologies to
be aligned in order to generate as much candidate correspondences as possible. We
first present the ontology variants and then the selected matching processes.

3.3.1 The Ontology Variants

The variants of naRyQ are:

VnaRyQ = {naRyQOWL−SK OS,naRyQOWL ,naRyQSK OS}

where the original version of naRyQ, denoted naRyQOWL−SK OS , is defined using
OWL2 DL and SKOS.We also use two variants of naRyQ. The variant naRyQOWL

was generated from its conceptual component by transforming both skos:prefLabel
and skos:altLabel into rdfs:label, while the variant naRyQSK OS was generated using
the labels of its terminological component and transforming the conceptual hierarchy
into a SKOS hierarchy. The variants of Agrovoc are:

VAgrovoc = {AgrovocSK OS,AgrovocSK OS
1 ,AgrovocOWL

2 ,AgrovocOWL
3 }

AgrovocSK OS includes Agrovoc in all languages and we used its version down-
loaded in April 2013 from the official Web site.10 AgrovocSK OS

1 is a much smaller
version, in English Only, available on the sameWeb site. The variantAgrovocOWL

2
was used into the 2007 OAEI campaign. The variant AgrovocOWL

3 was generated
from AgrovocSK OS using a SKOSParser.11 The variants of Nalt are:

VNalt = {NaltSK OS
,NaltOWL}

where the original versionNaltSK OS was downloaded inApril 2013 from the official
Web site12 and the variant NaltOWL was generated from NaltSK OS using the same
SKOSParser.

10http://aims.fao.org/access-agrovoc.
11http://oaei.ontologymatching.org/2007/SKOSParser.pdf.
12http://agclass.nal.usda.gov.

http://aims.fao.org/access-agrovoc
http://oaei.ontologymatching.org/2007/SKOSParser.pdf
http://agclass.nal.usda.gov
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3.3.2 The Matching Processes

Two available ontologymatching tools, implementing differentmatching approaches
with good results in the 2011 and 2012 OAEI campaigns (Aguirre et al. 2012), were
selected: LogMap13 (Jiménez-Ruiz and Grau 2011) and Aroma14 (David 2007).

Aromamakes use of the association rule paradigmand a statisticalmeasure assess-
ing the implication intensity of the rules. Thematching approach is divided into three
steps: (1) pre-processing: each ontology entity, i.e. classes and properties, is repre-
sented by a set of terms—bag of words; (2) discovery of association rules between
entities, and (3) post-processing: cleaning and enhancing the resulting alignment (i.e.
deduction of equivalence relations, suppression of cycles in the alignment graph, sup-
pression of redundant correspondences, and enhancement of the alignment by using
equality and string similarity-based methods). Aroma is able to deal with both SKOS
and OWL variants. This is not the case for LogMap, which encounters problems to
parse SKOS variants.

LogMap adopts an approach based on logical reasoning and inconsistency repair
techniques. The matching method follows five main steps: (1) lexical indexation of
labels of entities and their lexical variations; (2) structural indexation based on inter-
val labeling schema for representing extended class hierarchies; (3) computation of
initial anchor correspondences by intersecting the lexical indexes of entities; (4) iter-
ative mapping repair and discovery, by filtering out logical inconsistencies in the
mappings computed so far and by computing new mappings using string-based sim-
ilarity method; and (5) ontology overlapping estimation, where ontology fragments
overlap in both input ontologies.

Among 24 matching processes launched for aligning naRyQ and Agrovoc (see
Eq.3), only 9 produced non-empty alignments. From over 12 matching processes
launched for aligning naRyQ and Nalt, only 4 produced non-empty alignments. In
the following, we assume that a correspondence is ‘acceptable’ if it has a confidence
level greater than or equal to 0.5, a threshold empirically defined. The initial sets of

alignments generated using the twomatching tools (see Eq.2) are:
agr
C naRyQ→Agrovoc,

denoted
agr
C Agrovoc, with 3,196 correspondences, and

agr
C naRyQ→Nalt, denoted

agr
C Nalt,

with 1,676 correspondences.

3.4 Experimental Results

3.4.1 Individual Results

Table1 presents the results obtained from each matching tool, with respect to our
two partial reference alignments R

+
Agrovoc and R

+
Nalt (see Sect. 3.2). We can observe

13http://www.cs.ox.ac.uk/isg/projects/LogMap/.
14http://aroma.gforge.inria.fr/.

http://www.cs.ox.ac.uk/isg/projects/LogMap/
http://aroma.gforge.inria.fr/
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that thanks to variants we are able to overcome the limitations of tools in deadling
with specific input models and hence we are able to produce more candidate corre-
spondences.While LogMap is not able to generate alignments for the pairs involving
SKOS variants (e.g. naRyQSK OS ,AgrovocSK OS andNaltSK OS), Aroma produces
a set of correspondences with intermediary scores.

Table2 presents the best scores obtained by the two matching tools and extracted
from Table1. These results are, in fact, an approximation, as they were computed
using the partial reference alignments, which may affect the accuracy of the results.
The values of each line of Table2 represent the best score obtained for each indicator
(number of correct correspondences, precision, recall or F-measure) by the matching
tools. #∗ corresponds to thehighest numberof good correspondences; P∗ corresponds
to the best precision; R∗ corresponds to the best recall; and F-m∗ corresponds to the
best F-measure.

Table 1 Individual results for the matching tools
Alignment Matching tools

LogMap Aroma

# tot # P R F-m # tot # P R F-m

naRyQOWL−SK OS AgrovocSK OS – – – – – 459 288 0.627 0.783 0.696

AgrovocSK OS
1 – – – – – 386 288 0.746 0.783 0.764

AgrovocOWL
2 203 180 0.887 0.489 0.630 – – – – –

AgrovocOWL
3 185 167 0.903 0.454 0.604 – – – – –

NaltSK OS – – – – – 476 359 0.754 0.839 0.794

NaltOWL 417 334 0.801 0.780 0.791 – – – – –

naRyQOWL AgrovocSK OS – – – – – – – – – –

AgrovocSK OS
1 – – – – – – – – – –

AgrovocOWL
2 312 269 0.862 0.731 0.791 1311 228 0.174 0.620 0.272

AgrovocOWL
3 341 300 0.880 0.815 0.846 + + + + +

NaltSK OS – – – – – – – – – –

NaltOWL 456 356 0.781 0.832 0.805 – – – – –

naRyQSK OS AgrovocSK OS – – – – – 915 268 0.293 0.728 0.418

AgrovocSK OS
1 – – – – – 1131 212 0.187 0.576 0.283

AgrovocOWL
2 – – – – – – – – – –

AgrovocOWL
3 – – – – – – – – – –

NaltSK OS – – – – – 1011 327 0.323 0.764 0.454

NaltOWL – – – – – – – – – –

# tot indicates the total number of correspondences
# indicates the number of correct correspondences
+ indicates that the tool generated empty alignments
− indicates that the tool was not able to deal with the input

Table 2 Best scores of
alignments obtained by the
two matching tools

Alignment #∗ P∗ R∗ F-m∗

naRyQ → Agrovoc 300 0.90 0.82 0.85

naRyQ → Nalt 359 0.80 0.83 0.81
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Table 3 Evaluation of
naRyQ→Agrovoc with
respect to R

+
Agrovoc

Set # total # good P R F-m
agr∗
C Agrovoc 1583 366 0.23 0.99 0.37

recT
C Agrovoc 582 354 0.61 0.96 0.74

LOD
C Agrovoc 336 254 0.76 0.69 0.72

UAgrovoc 620 363 0.58 0.99 0.73
agr∗,2∗,3∗
UAgrovoc 447 344� 0.77 0.93� 0.84

Table 4 Evaluation of
naRyQ→Nalt with respect
to R

+
Nalt

Set # total # good P R F-m
agr∗
C Nalt 850 415 0.49 0.97 0.65

recT
C Nalt 480 368 0.77 0.86 0.81

LOD
C Nalt 337 255 0.76 0.59 0.67

UNalt 551 404 0.73 0.94 0.82
agr∗,2∗,3∗
UNalt 400 348 0.87� 0.81 0.84�

3.4.2 Results of Our Approach

Table3 presents the evaluation of naRyQ→Agrovoc generated by different refine-
ment methods, with respect to the partial reference alignment R

+
Agrovoc. On the last

row of Table3, the symbol � indicates, for the indicator of the column, a better result
than the best result of the matching tools for the same indicator presented in Table2.

Table4 presents the evaluation of naRyQ→Nalt generated by different refine-
ment methods, with respect to the partial reference alignment R

+
Nalt. On the last row

of Table4, the symbol � indicates, for the indicator of the column, a better result than
the best result of the matching tools for the same indicator presented in Table2.

3.4.3 Discussion

As we can notice in Tables3 and 4 and as we might expect, (1) increasing the set
of alignments allows the recall to be improved for most of the produced alignment
sets,15 and (2) combining the different methods of refinement gives the best results

in terms of precision (set
agr∗,2∗,3∗

U ). Comparing these results with the best scores
obtained by the two matching tools (Table2), we obtained very promising results.
Our approach obtains similar results in terms of F-measure for naRyQ→Agrovoc,

15Since ambiguous correspondences according to type 1 produce only noises, the evaluation of the

best recall is done considering
agr∗
C and not

agr
C .
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while it increases F-measure for naRyQ → Nalt. Our approach outperforms the
best result in terms of recall for naRyQ → Agrovoc and in terms of precision for
naRyQ → Nalt. This performance produces very encouraging results.

Most matching tools apply strategies for combining different basic methods (i.e.
lexical, structural, etc.) within a matching process and for filtering their results
(threshold, weighted aggregation, etc.) (see Euzenat and Shvaiko (2007)). Our
encouraging results can be explained by the fact that we propose in this paper to
refine the sets of alignments produced by different matching methods in two differ-
ent ways. First, we have identified three types of ambiguity to be resolved in order
to refine the set of correspondences by deleting some of them. Second, we propose
two new methods for discriminating and improving the sets of correspondences. In
the first method, the redundant correspondences generated by at least two matching
processes applying distinct matching methods are considered as potentially correct.
The second method exploits the alignments defined on the LOD in order to reinforce
the validity of some correspondences (i.e. correspondences allowing a same entity
to be aligned with two distinct but linked entities on the LOD are considered as
potentially correct). Another original aspect of our approach consists in exploiting
ontology variants, taking advantage of the characteristics of the ontologies, which
can be ontologies, thesauri, OTR and can be expressed in different representation
languages with different levels of expressiveness. This gives us the ability to cover a
wide and diverse range of resources.

4 Related Work

A key aspect of our proposal is the use of published links on the LOD as background
knowledge for refining the results of a matching process. Similar works in this direc-
tion have been proposed in recent years in the literature, encouraged by the increasing
number of available data sets on the LOD cloud. In Nikolov et al. (2009), a schema
matching approach which uses existing instance-level coreference links, defined in
third-party repositories, as background knowledge is proposed. It aims at generating
schema-level correspondences to assist the instance coreference resolution process.
Rather than producing strict equivalence or subsumption relations, the algorithm
produces fuzzy correspondences representing degrees of overlap between different
ontologies. In Pernelle and Sais (2011), an approach that addresses both link discov-
ery and ontology alignment is proposed, where the results of the link discovery step
are exploited to improve the results of the ontology alignment step and vice versa.
In Parundekar et al. (2012), the proposal consists of (a) generating more expressive
concepts from those already present in the ontologies (i.e. exploiting the space of
concepts defined by value restrictions), and (b) aligning these extended concepts by
exploiting the links between instances on the LOD. Contrary to our approach, these
proposals consider a single representation of ontologies (i.e. OWL) and focus on
links between instances.
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For dealing with the specificity of community-created LOD data sets, a system for
finding schema-level links is proposed in Jain et al. (2010). It computes alignments
(not limited to equivalence relations) with the help of noisy community-generated
data available on the Web, i.e. Wikipedia and Wikipedia category hierarchy. The
idea of using Wikipedia category hierarchy, together with a rule-based verification
approach, has also been exploited in Grütze et al. (2012), where a holistic matching
approach aims at aligning simultaneously multiple schemes on the LOD. In Cruz
et al. (2011), an extended version of the AgreementMaker system is proposed, aim-
ing at handling subsumption relations and improving its performance when dealing
with LOD ontologies. For each source and target concepts, the algorithm searches
across several LOD ontologies for all concepts that are defined as subclasses, before
applying matching strategies. Contrary to our approach, these works exploit other
relations than equivalence and focus on the schema-level of LOD ontologies instead
of exploiting the links between them.Contrary to the proposals described above, these
latter works do not exploit the instance level within the schema-matching process.

Mochol and Jentzsch (2008) and Steyskal and Polleres (2013) propose, like us, to
reuse existing tools and to combine their results to align two ontologies. In Mochol
and Jentzsch (2008) a set of rules to select appropriate methods for a given pair of
ontologies to be aligned is proposed. This selecting process is based on the back-
ground information describing the available approaches and the input properties of
the ontologies. In Steyskal and Polleres (2013), an iterative method based on voting
is proposed, where at every round, the correspondences accepted by the majority of
tools are considered as valid. However, these works do not exploit the alignments on
the LOD.

With regards to combining multiple alignments, different approaches have been
proposed. In Ghoula et al. (2014), an approach for normalising, combining and
integrating alignments from multiple sources is proposed, where a correspondence
can be associated to a set of relations and confidence levels. The algebra defined in
Euzenat (2008) was applied in order to implement operators like union, composition
and intersection. The approach can be applied regardless of the formalism used to
represent the ontologies to be aligned. As we do, the normalisation step allows the
removing of ‘concurrent’ (i.e. ambiguous) correspondences. However, we do not
apply any combining operator, while they do not exploit LOD alignments. In Lee
et al. (2007), a library of matching components is made available and the user can
select which components are to be used within a matching process, how they have to
be combined together (average, minimum, maximum, weighed sum, decision trees,
etc.), and how the correspondences are finally extracted (from a selection based on
thresholding to formulate the selection as an optimisation problem over a weighted
bipartite graph). The approach involves well automatic tuning of matching systems
in order to find a tuning that optimises the performance of them. Here, we propose a
different way for combining multiple alignments. In Eckert et al. (2009), alignments
generated from different matching systems are used as training data for a classifier
that learns which combination of results provides the best indication of a correct
correspondence. The multiple matchers are treated as a black-box. The assumption
on which the approach relies is similar to ours: by using multiple matchers one can
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benefit from the high degree of precision of some matchers and at the same time the
broader coverage of other matchers. In Spiliopoulos and Vouros (2012), combining
multiple matchers is seen as a problem of maximising the social welfare within a
group of interacting agents. Different agents computing alignments using specific
methods and considering a specific kind of ontology entity, interact with each other
and share constraints on the validity of the correspondences in order to reach an
agreement. Although we do not aim at reaching a consensus between matchers, a
correspondence ismore likely to be correct if it is accepted bymore than onematcher,
which are not dedicated to find correspondences between specific ontology entities.

Finally, with respect to matching of terminologies in several languages, Mougin
andGrabar (2013) adopts a notion of refining that is close to ours. The authors present
a cross-language approach for matching two biomedical terminologies (MedDRA
and SNMI). From a set of correspondences computed using lexical methods, the
incorrect correspondences are filtered out using the notion of semantic groups, which
correspond to the partition ofUMLSconcepts. If the semantic groupswhich belong to
UMLSconcepts ofMedDRAandSNMI terms are not the same, the correspondence is
considered as incorrect. Then, they compute the number of correspondences which
are common to different languages (correspondences which are more likely to be
correct) and suppress the ambiguities by eliminating correspondences found in only
one language.

5 Conclusion and Perspectives

In this paper, we have proposed a new ontology matching method which can raise
one of the challenges of ontology matching stated in Shvaiko and Euzenat (2013):
matching with background knowledge. In a first step, our matching method allows to
generate many correspondences using and combining existing methods for aligning
ontologies, thesauri and OTR expressed in different representation languages. Then,
it allows a discrimination of the correspondences by removing some ambiguities
and by exploiting the redundancy and existing alignments on the LOD, in order to
identify a subset of potentially correct correspondences which will be submitted to
the user for validation.

This proposal is a preliminary work for publishing ontologies on the LOD. Ontol-
ogy matching allows a source ontology not only to be enriched with new concepts
and/or terms, but also to be linked with existing and in use ontologies on the LOD
in order to contribute to the data sharing in the target domain.

In order to improve our process of refinement, we plan in the short term, (i) to
evaluate our approach using another data set, such as the OAEI Library task, which
offers variants of their thesauri and for which we can find LOD alignments between
them, (ii) to take into account the expressiveness of ontology variants to suppress
the ambiguities of type 1; (iii) to exploit other relations than the equivalence in the
treatment of ambiguities of type 2—instead of removing ambiguous correspondence
of type 2, we plan to propose a methodology based on reasoning for choosing the
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best correspondence between the ambiguous ones: by removing, for instance, corre-
spondences which introduce a logical inconsistency; (iv) to remove the ambiguities
between correspondences by defining new relations—we can, for instance, use an
algebra to define a new correspondence with a new relation which combines the
relations involved in the ambiguous correspondences; (v) to study how to use the
subsumption relation in order to facilitate the identification of potentially correct
correspondences; (vi) to study how to use relations between concepts (e.g. their
domains and ranges) and their matching results in order to suppress the ambiguities
and/or to identify the potentially correct correspondences. In the long term, we plan
to exploit indirect alignments between different sources on the LOD to improve the
discrimination on the set of correspondences. We also plan to extend our approach
to take into account more complex entities such as units of measurement and n-ary
relations.

References

Aguirre, J., et al. (2012).Results of the ontology alignment evaluation initiative 2012. InProceedings
of 7th ISWC Workshop on Ontology Matching (OM) (p. 73115).

Bernstein, P. A., Madhavan, J., & Rahm, E. (2011). Generic schema matching, ten years later.
PVLDB, 4(11), 695–701.

Bizer, C. (2013). Interlinking scientific data on a global scale. Data Science Journal, 12, GRDI6–
GRDI12.

Buche, P., et al. (2013). Intégration de données hétérogènes et imprecise guide par une resource
termino-ontologique. application au domaine des sciences du vivant. RSTI série Revue dIntelli-
gence Artificielle, 27(4–5), 539–568.

Caracciolo, C., Stellato, A., Rajbhandari, S., Morshed, A., Johannsen, G., Keizer, J., et al. (2012).
Thesaurus maintenance, alignment and publication as linked data: The AGROVOC use case.
IJMSO, 7(1), 65–75.

Cruz, I. F., Palmonari, M., Caimi, F., & Stroe, C. (2011). Towards “on the go” matching of linked
open data ontologies. InWorkshop on Discovering Meaning On the Go in Large Heterogeneous
Data 2011 (LHD-11), Barcelona, Spain, July 16, 2011.

David, J. (2007). AROMA: une méthode pour la découverte d’alignements orientés entre ontologies
partir de règles d’association. Ph.D. thesis, Université de Nantes.

David, J., Euzenat, J., Scharffe, F., &Trojahn dos Santos, C. (2011). The alignment api 4.0. Semantic
Web, 2(1):310.

Eckert, K., Meilicke, C., & Stuckenschmidt, H. (2009). Improving ontology matching using meta-
level learning. In The semantic web: research and applications (Vol. 5554, pp. 158–172). Lecture
notes in computer science. Berlin, Heidelberg: Springer.

Euzenat, J. (2008). Algebras of ontology alignment relations. In International Semantic Web Con-
ference (Vol. 5318). Lecture notes in computer science. Heidelberg: Springer.

Euzenat, J., & Shvaiko, P. (2007). Ontology matching (Vol. 18). Heidelberg: Springer.
Ghoula,N.,Nindanga,H.,&Falquet,G. (2014).Opérateurs de gestiondes alignements de ressources
de connaissances hétérogènes (to be completed).

Grütze, T., Böhm, C., & Naumann, F. (2012). Holistic and scalable ontology alignment for linked
opendata. InC.Bizer, T.Heath, T.Berners-Lee,&M.Hausenblas (Eds.),WWW2012Workshopon
Linked Data on the Web, Lyon, France, 16 April, 2012 (Vol. 937). CEUR workshop proceedings.
CEUR-WS.org.



Ontology Alignment Using Web Linked Ontologies … 227

Jain, P., Hitzler, P., Sheth, A. P., Verma, K., & Yeh, P. Z. (2010). Ontology alignment for linked
open data. In Proceedings of the 9th International Semantic Web Conference on The Semantic
Web - Volume Part I (pp. 402–417). Berlin, Heidelberg: Springer.

Jiménez-Ruiz, E., & Grau, B. C. (2011). LogMap: Logic-based and scalable ontology matching. In
The Semantic WebISWC 2011 (pp. 273–288). Springer.

Lee, Y., Sayyadian, M., Doan, A., & Rosenthal, A. S. (2007). eTuner: Tuning schema matching
software using synthetic scenarios. The VLDB Journal, 16(1), 97–122.

McCrae, J., Spohr, D., & Cimiano, P. (2011). Linking Lexical resources and ontologies on the
semantic web with lemon. In G. Antoniou, M. Grobelnik, E. P. B. Simperl, B. Parsia, D. Plex-
ousakis, P. D. Leenheer, & J. Z. Pan (Eds.), ESWC (1) (Vol. 6643, pp. 245–259). Lecture notes
in computer science. Springer.

Mochol, M., & Jentzsch, A. (2008). Towards a rule-based matcher selection. In A. Gangemi & J.
Euzenat (Eds.),Knowledge engineering: Practice and patterns (Vol. 5268, pp. 109–119). Lecture
notes in computer science. Berlin, Heidelberg: Springer.

Mougin, F.,&Grabar,N. (2013).Using a cross-language approach to acquire newmappings between
two biomedical terminologies. In Artificial intelligence in medicine (Vol. 7885, pp. 221–226).
Lecture notes in computer science. Berlin, Heidelberg: Springer.

Nikolov, A., Uren, V., Motta, E., & Roeck, A. (2009). Overcoming schema heterogeneity between
linked semantic repositories to improve coreference resolution. In Proceedings of the 4th Asian
Conference on The Semantic Web, ASWC 2009 (pp. 332–346). Berlin, Heidelberg: Springer.

Parundekar, R., Knoblock, C. A., & Ambite, J. L. (2012). Discovering concept coverings in ontolo-
gies of linked data sources. In P. Cudré-Mauroux, et al. (Eds.), International Semantic Web
Conference (1) (Vol. 7649, pp. 427–443). Lecture notes in computer science. Springer.

Pernelle, N. & Sais, F. (2011). LDM: Link discovery method for new resource integration. In
M.-E. V. Zoé Lacroix & Edna Ruckhaus (Eds.), Fourth International Workshop on Resource
Discovery, Heraklion, Grèce (Vol. 737, pp. 94–108).

Rahm, E. (2011). Towards large-scale schema and ontology matching. In Z. Bellahsene, A. Bonifati
& E. Rahm (Eds.), Schema Matching and Mapping (pp. 3–27). Springer.

Reymonet, A., Thomas, J., &Aussenac-Gilles, N. (2007).Modelling ontological and terminological
resources in OWL DL. In OntoLex 2007—Workshop at ISWC07, Busan, South-Korea

Roche, C., Calberg-Challot, M., Damas, L., & Rouard, P. (2009). Ontoterminology—a new para-
digm for terminology. In J. L. G. Dietz (Ed.), KEOD (pp. 321–326). INSTICC Press.

Shvaiko, P., & Euzenat, J. (2013). Ontology matching: state of the art and future challenges. IEEE
Transactions on Knowledge and Data Engineering, 25(1), 158–176.

Spiliopoulos,V.,&Vouros,G. (2012). Synthesizing ontology alignmentmethods using themax-sum
algorithm. IEEE Transactions on Knowledge and Data Engineering, 24(5), 940–951.

Steyskal, S., & Polleres, A. (2013). Mix ‘n’ match: An alternative approach for combining ontology
matchers. In R Meersman, H. Panetto, T. S. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. D.
Leenheer &D. Dou (Eds.),On theMove toMeaningful Internet Systems: OTM 2013 Conferences
- Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013,
Graz, Austria, September 9–13, 2013. Proceedings (Vol. 8185, pp. 555–563). Lecture notes in
computer science. Springer.

Stoilos, G., Stamou, G., & Kollias, S. (2005). A string metric for ontology alignment. In The
Semantic Web—ISWC 2005 (pp. 624–637). Springer.



LIAISON: reconciLIAtion of Individuals
Profiles Across SOcial Networks

Gianluca Quercini, Nacéra Bennacer, Mohammad Ghufran
and Coriane Nana Jipmo

Abstract Social Networking Sites, such as Twitter and LinkedIn, are clear examples
of the impact that the Web 2.0 has on people around the world, because they target
an aspect of life that is extremely important to anyone: social relationships. The key
to building a social network is the ability of finding people that we know in real life,
which, in turn, requires those people to make publicly available some personal infor-
mation, such as their names, family names, locations and birth dates, just to name a
few. However, it is not uncommon that individuals create multiple profiles in several
social networks, each containing partially overlapping sets of personal information.
As a result, the search for an individual might require numerous queries to match the
information that is spread across many profiles, unless an efficient way is provided to
automatically integrate those profiles to have an holistic view of the information on
the individual. This calls for efficient algorithms for the determination (or reconcil-
iation) of the profiles created by an individual across social networks. In this paper,
we build on a previous research of ours and we describe LIAISON (reconciLIAtion
of Individuals profiles across SOcial Networks), an algorithm that uses the network
topology and the publicly available personal information to iteratively reconcile pro-
files across n social networks, based on the existence of individuals who disclose
the links to their multiple profiles. We evaluate LIAISON on real large datasets and
we compare it against existing approaches; the results of the evaluation show that
LIAISON achieves a high accuracy.
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1 Introduction

A social network is a set of individuals and their relationships. In a broader sense,
the term social network also refers to a website, such as Twitter and LinkedIn, which
enables individuals to create a personal page, or profile, and establish links to the
profiles of their acquaintances and friends. The key to building a social network is
the ability of finding people that we know in real life, which in turn requires those
people to make publicly available on their profiles some personal information, such
as their names, family names, locations and birth dates, just to name a few. Several
surveys showed that Social Networking Services (SNSs) users tend to share many
of their personal data, including sensitive information, such as home addresses and
phone numbers (Gross and Acquisti 2005; Little et al. 2011; Stutzman 2006).

However, it is not uncommon that an individual creates multiple profiles in differ-
ent SNSs, each disclosing sets of personal information that are unlikely to be iden-
tical, though they might overlap. Indeed, profile information might not be updated
regularly and is not necessarily created at the same time. Moreover, the differences
between two profiles of an individual might reflect the fact that they are created in
SNSs that target different aspects of her life. For instance, information on her career
ismore likely to be found on her LinkedIn profile than her Twitter profile, as LinkedIn
is mainly used for professional networking. As a result, finding a person based on a
limited knowledge of her personal informationmight require severalmanual searches
across social networks, which is obviously annoying and time-consuming. It would
be useful to create a global profile that provides a holistic view of the personal infor-
mation of an individual by automatically integrating all her profiles. This calls for
efficient methods for automatically determining (or reconciling) the profiles that are
created by an individual across different SNSs, which is the focus of our paper.

Building on our previous research (Bennacer et al. 2014a, b), in this paper we
describe LIAISON (reconciLIAtion of Individuals profiles across SOcial Networks),
an algorithm for the reconciliation of profiles across n distinct social networks, based
on the personal information that is publicly available in the profiles and their links to
other profiles. Basically, LIAISON determines whether two profiles refer to the same
individual, and creates a special link between the two that we term a cross-link, by
using a set of rules that compare the values of their attributes (e.g., names, nicknames,
locations). Instead of applying the rules to all profile pairs, whichwould be unfeasible
for large networks, LIAISON obtains a subset of candidates from all pairs of profiles
that are already connected by a cross-link. More specifically, given two profiles v
and w connected by a cross-link, candidates are selected from the set of the profile
pairs (a, b) such that a is linked to v and b is linked to w. Next, LIAISON applies
the rules to all candidate pairs and determines the ones that are to be connected by a
cross-link because they refer to the same individual. The discovered cross-links are
used to obtain new candidates and iterate the algorithm until no more candidates are
found.
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Compared to the previous version of our algorithm, LIAISON:

• Defines a rule to compare the values of the attribute Locations, which provides
an important clue as to whether two profiles refer to the same individual.

• Reconciles the profiles in n networks without the need of comparing social net-
works pairwise. This results in a more efficient reconciliation through transitive
closure on the discovered cross-links.

• Uses a better strategy for the selection of candidates, which results in a consid-
erable reduction of the number of candidates and a dramatic improvement of the
performances.

• Relaxes the constraint that two profiles a and b must belong to different social
networks to be considered as candidates. As a result, LIAISON can identify indi-
viduals that have multiple profiles within the same social network.

In summary, the following are key contributions of our paper:

• We define rules that compare the values of a set of attributes to determine whether
two profiles refer to the same individual. Unlike the existing rule-based approaches
(i) we consider that all attributes are equally important, which relieves us from
assigning each attribute an empirical and, inevitably, arbitraryweight, (ii) we study
the combined contributionof the different attributes,whenused in the same rule and
(iii) each rule is assigned a confidence which represents the number of attributes
whose values are considered to be equal or similar by the rule; the higher this num-
ber is, the higher the confidence is that the two profiles refer to the same individual.

• LIAISON reconciles new profiles in an iterative way, and more profiles are propa-
gated by transitive closure across all social networks. To the best of our knowledge,
no existing method is iterative in this sense.

• We evaluate LIAISON on two real datasets. The first consists of four social net-
works (Flickr, LiveJournal, Twitter and YouTube) and includes around 2 million
profiles and 21 million links. The second consists of around 60,000 profiles and
29,000 links obtained from LinkedIn and Twitter. The evaluation and the compari-
son against two existing approaches show that LIAISON achieves a high precision
with good performances.

The remainder of the paper is organized as follows. We survey the research work
that is related to ours in Sect. 2 and we introduce basic concepts and notation in
Sect. 3. In Sect. 4 we describe the attributes and the similarity measures used to
compare their values and we detail the algorithm in Sect. 5. The evaluation results
are then presented in Sect. 6, followed by concluding remarks in Sect. 7.

2 Related Work

Numerous solutions have been proposed to the problem that we study in this paper.
Interestingly, two of them focus only on the nickname of an individual as a way
to reconcile different profiles, based on the observation that individuals tend to use
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the same or a similar nickname across distinct social networks (Perito et al. 2011;
Zafarani and Liu 2009). Although in our evaluation we confirm this observation, we
also consider other attributes, in order to reconcile profiles of individuals who choose
to use unrelated nicknames.

The use of the attributes to reconcile profiles across distinct social networks has
been largely investigated (Raad et al. 2010; Rowe 2009; Cortis et al. 2012; Malhotra
et al. 2012; Carmagnola and Cena 2009; Goga et al. 2013; Golbeck and Rothstein
2008; Motoyama and Varghese 2009). Two approaches describe each pair of pro-
files as a vector of scores, which represent the similarity between the values of the
attributes, and use machine learning techniques to determine whether they can be
reconciled (Malhotra et al. 2012; Motoyama and Varghese 2009). While the results
are promising, both approaches need a training set, which is not easy to determine.
In fact, a careful analysis of the available data is necessary to create a training set
that is representative of all possible situations where profile pairs can be reconciled
or not. Moreover, a model trained on a given pair of social networks might not be
generalizable to other networks, which implies that a training set should be created
for each network pair.

Some social networks allow the exportation of profiles that are described with the
Friend of a Friend ontology (FOAF); the advantage is that standard Semantic Web
techniques, such as OWL reasoning, can be used to reconcile profiles (Golbeck and
Rothstein 2008; Rowe 2009). However, these techniques are applied to a limited set
of attributes, and in particular to those, such as the email, that are likely to identify
an individual uniquely.

Similarly to us, Carmagnola et al. determine the profile attributes that are more
likely to identify an individual uniquely, by assigning theman importance factor (Car-
magnola and Cena 2009). The importance factor is used to weigh the similarity score
that is computed between two profiles that have similar attributes. Our approach goes
a step further and uses the pairs of profiles that are reconciled to iteratively reconcile
new profiles. Moreover, our evaluation is based on a real large social internetwork,
while theirs uses different closed user-adaptive systems. The key difference is that in
Web social networks often individuals are reluctant to disclose their real identities,
while in closed user-adaptive systems they feel that their privacy is less threatened;
as a result, data in social networks are likely to be erroneous and messy, which con-
stitutes a real challenge. Some researchers also propose the computation of semantic
similarity between profile attributes (Cortis et al. 2012; Raad et al. 2010). Although
these approaches are original, they provide little (50 user profiles (Raad et al. 2010))
or no evaluation.

Some authors proposed to go beyond the profile attributes and investigated the
possibility of using the network properties (Bartunov et al. 2012; Buccafurri et al.
2012; Jain et al. 2013; Narayanan and Shmatikov 2009). The approach proposed by
Buccafurri et al. considers that two profiles are similar, and therefore likely to refer to
the same individual, if they have similar nicknames and the profiles to which they are
linked are recursively similar (Buccafurri et al. 2012). This approach presents two
major drawbacks. First, profiles associated with dissimilar nicknames are ignored
and discarded with no further analysis, although they might very well refer to the
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same person; second, the discovered associations between profiles are not used to
re-iterate the algorithm and discover new associations. Our approach overcomes
these two limitations. Besides considering the network structure, Jain et al. also
propose to use the content that an individual publishes in the form of short texts (Jain
et al. 2013). This approach has the merit of exploring the use of the content and the
shared connections to reconcile profiles. However, the experiments reveal that this
information is not very effective alone, as only 4 out of 543 profiles are reconciled
correctly. An elegant approach that combines profile attributes and network by using
conditional random fields is proposed in (Bartunov et al. 2012). The key advantage
is that it is robust to the absence of profile and/or network information and therefore
can also be applied to cases where no profile information is available except the
network, although with a significant drop in recall. The disadvantage is that the
proposed model needs training data, which, as recalled before, might not be easy
to find. Finally, Narayanan et al. consider the case of anonymized networks where
little or no profile attributes are available and only the network structure can be
exploited (Narayanan and Shmatikov 2009). They propose a method that first selects
a small set of seed profiles in both networks that are highly likely to belong to the
same individual. Then, new reconciled profiles are propagated iteratively by using
the seed. This is similar in spirit to our approach. However, since they only use the
network structure the accuracy of their approach is quite low compared to ours.

Finally, social network aggregation systems, such as FriendFeed (2007) or
Plaxo (2002), provide a platform for people to manage their own profiles but they
make no attempt at automatically discovering profiles linked to an individual across
social networks. Spokeo (2006) seems to be quite accurate in finding personal infor-
mation from different sources (not necessarily social networks), but it shows its limits
when it comes to aggregating them. To the best of our knowledge, there is no existing
tool that is able to automatically reconcile profiles across social networks.

3 Background

We define a social internetwork as a collection of n distinct social networks and we
model it as a directed graph. Its nodes correspond to the profiles of the individuals or,
with an abuse of language, to the individuals themselves. A profile consists of a set
of attributes (e.g., nickname, name, email address…), which are usually described
in a Web page created by an individual, and a uri , identifying that page on the Web.
A link in a social internetwork connects either two nodes referring to two distinct
individuals, in which case we call it a friendship link, or two nodes that refer to the
same individual, and we call it a cross-link.

Formally, a social internetwork with n social networks is a directed labelled graph
defined as follows:

G = 〈
n⋃

i=1

Vi ,

n⋃

i=1

Ei ,

n⋃

i, j=1

Ei, j 〉
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where:

• Vi is the node set of the social network i . Since the social networks are distinct,
Vi ∩ Vj = ∅,∀i �= j . Each node vi ∈ Vi is the profile of an individual in the social
network i . A is the set of the attributes disclosed in a profile, with the exception
of Realname, all attributes could be multivalued, and each attribute a ∈ A in the
profile vi could have no or many value(s) in Pa(vi ).

• Ei is the set of friendship links, which are identified by the label f r iend. Each
link (vi , f r iend, ui ) ∈ Ei represents a friendship link from the individual vi
to the individual ui within the social network i . We denote by f r iends(vi ) =
{ui |(vi , f r iend, ui ) ∈ Ei ∨ (ui , f r iend, vi ) ∈ Ei } the set of all friend’s profiles
of vi in the social network i .

• Ei, j is the set of cross-links, which are identified by the label me. A cross-link
(vi ,me, v j ) joins two nodes vi and v j that refer to the same individual, either in the
same network (intra-network cross-link) or across two different networks (inter-
network cross-link). By definition, this type of link is symmetrical and transitive.
For instance, Bobmight indicate in his Flickr ( f k) profile, represented by the node
v f k , the uri of his LiveJournal (l j) profile, represented by the node vl j , and in this
page he declares the uri of his Twitter (tw) profile, represented by the node vtw.
In this case,

– E f k,l j = {(v f k,me, vl j ), (vl j ,me, v f k)},
– Etw,l j = {(vtw,me, vl j ), (vl j ,me, vtw)} and
– Etw, f k = {(vtw,me, v f k), (v f k,me, vtw)}.
The problem of reconciling the profiles referring to the same individual across

social networks is the problem of discovering the missing cross-links in a social
internetwork and is formalized as follows:

Input: G = 〈
n⋃

i=1
Vi ,

n⋃

i=1
Ei ,

n⋃

i, j=1
Ei, j 〉

Output: G = 〈
n⋃

i=1
Vi ,

n⋃

i=1
Ei ,

n⋃

i, j=1
Ei, j

n⋃

i, j=1
Di, j 〉 where

Di, j = {(vi ,me, v j )|vi ∈ Vi , v j ∈ Vj ∧ (vi ,me, v j ) /∈ Ei, j } is the set of the dis-
covered cross-links.

For the sake of simplicity, in the remainder of the paper we will denote
n⋃

i, j=1
Ei, j

as Eme and
n⋃

i, j=1
Di, j as Dme.

In order to determine whether a cross-link exists between two nodes vi and v j ,
LIAISON compares the values of their attributes, based on the observation that if vi
and v j refer to the same person, the values of their attributes are likely to be equal
or similar. A major challenge here is the choice of the pairs of nodes to compare.
Evidently, a comparison between all possible pairs is both computationally unfeasible
and unnecessary. It is unfeasible because real social networks normally consist of
millions of nodes. For example, the sample of four social networks on which we
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evaluate LIAISON contains around 2 million nodes, that is around 4 × 1012 pairs;
if we assume that the comparison of each pair takes 0.1ms, LIAISON would take
12years to complete! It is unnecessary because a previous research pointed out that
the individuals that have multiple profiles tend to be connected with friends who also
have multiple profiles; moreover, when two friends both have multiple profiles, they
are frequently friends in multiple networks (Golbeck and Rothstein 2008).

Based on this observation, LIAISON obtains a subset of node pairs to compare,
which we term the candidate set, from the set f r iends(vi ) × f r iends(v j ) for each
(vi , v j ) such that a cross-link between vi and v j already exists in Eme. Next, LIAI-
SON uses a set of rules to compare the attribute values of each candidate pair and
discover new cross-links which are added to the set Dme. Finally, LIAISON iterates
the candidate selection for each me pair in Dme to discover further cross-links until
no more candidates can be determined.

In the next sections we describe in greater details the attributes that LIAISON
considers to compare two nodes, the similarity measures used to compare the values
of each attribute as well as the candidate selection strategy, which differs from the
one adopted in the previous version of LIAISON (Bennacer et al. 2014a).

4 Attribute Comparison

In all major social networks the values of some attributes are publicly accessible as
per default privacy policy and/or left accessible by the individuals. It is therefore
natural to analyze these data to establish new cross-links.

Building on a previous research, which identified the attributes that are gener-
ally publicly available in 12 of the most important social networks (Krishnamurthy
and Wills 2009), we focus our attention on the following set A of attributes: Nick-
names,Realname (which includes first name and last name), Locations, Emails,
Profiles (links to social network profile pages) and Websites (links to other web
pages). Any two values pa(vi ) ∈ Pa(vi ) and pa(v j ) ∈ Pa(v j ) of an attribute a ∈ A
are compared with a similarity measure, which assigns a score between 0, when the
values are dissimilar, and 1, when the values are identical. Two attribute valuesmatch
if their score is greater than θa , where θa is a threshold value. We now describe each
attribute in more detail.

4.1 NICKNAMES

Denoted as u, the nickname (or username) is always publicly accessible, as it is the
only way to uniquely identify an individual within a social network, and is generally
a part of the URI of the web page that hosts the profile. Studies have shown that
individuals tend to use the same nickname, or a similar one,when registering different
profiles (Perito et al. 2011; Zafarani and Liu 2009); as a result, the similarity of two
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nicknames is best represented by their Levenshtein distance, which for two strings
is defined as the minimum number of single character edits (insertion, deletion and
substitution) needed to change one word into the other (Buccafurri et al. 2012; Perito
et al. 2011; Zafarani and Liu 2009). Therefore, the similarity of two nickname values
pu(vi ) and pu(v j ) is computed as:

1 − LevenshteinDistance(pu(vi ), pu(v j ))

lengthmax(pu(vi ), pu(v j ))

where lengthmax is the number of characters of the longest string. As an example,
the Levenshtein distance between the nickname cospics of the Flickr profile at www.
flickr.com/photos/cospics and the nickname cos of the LiveJournal profile at www.
livejournal.com/users/cos/profile is 4, becausewe need to suppress the phrase “pics”,
composed of four characters, to obtain the second nickname from the first. As a result,
their similarity score is 0.43.

4.2 REALNAME

Denoted as n, the first and family names are also present in most of the networks we
came across, but their values cannot be trusted as much as the nicknames. Indeed, in
some social networks, such as LiveJournal, the profile of a person is almost entirely
public and consequently individuals do not feel confident in revealing their real
names. Moreover, names are often ambiguous, and do not generally identify an indi-
vidual uniquely. As a result, we do not expect the name of an individual to reveal
many cross-links, unless it is in combination with other attributes. The similarity of
two names pn(vi ) and pn(v j ) is computed with the Jaccard similarity measure as
|Ni∩N j |
|Ni∪N j | , where Ni and N j are the sets of the words that compose pn(vi ) and pn(v j )
respectively. For example, if pn(vi ) is “Barack Obama” and pn(v j ) is “Barack Hus-
sein Obama”, then Ni = {Barack, Obama}, N j = {Barack, Hussein, Obama}
and their similarity is 2

3 . The reason why we select the Jaccard measure instead of
the Levenshtein distance is that generally social networks do not force their users to
specify their first names before the last names. Moreover, some individuals might
specify their middle names in a profile, while omitting them in another. Therefore,
a comparison between “Barack Obama” and “Obama Barack” would give a Leven-
shtein distance of 10, although the two strings are equivalent, while Jaccard gives a
score of 1.

4.3 LOCATIONS

Denoted as l, the information about the current location and/or birthplace of an indi-
vidual can often be found in social network profiles. While the location poses more

www.flickr.com/photos/cospics
www.flickr.com/photos/cospics
www.livejournal.com/users/cos/profile
www.livejournal.com/users/cos/profile
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challenges compared to other attributes, it provides a useful indicator to strengthen or
discard the hypothesis that two profiles refer to the same individual. The main prob-
lem is that in a profile the location is specified with a toponym (e.g., “Paris”) which
is often ambiguous, as there are multiple locations, or interpretations, for a given
toponym (e.g., “Paris, France”, “Paris, Texas, USA”, “Paris, Ontario, Canada”).

Intuitively, two toponyms have a strong similarity if they have a high degree of
overlap within a low number of interpretations. For example, the overlap between the
interpretations of the pair of toponyms (“Paris”, “Paris, France”) is the same as the
overlap of the pair of toponyms (“Paris, Ile-de-France”, “Paris, France”),1 the overlap
containing the interpretation corresponding to the capital of France. However, in the
first case the toponym “Paris” contains many possible interpretations (corresponding
to all locations named “Paris” around the world), while in the second case the two
toponyms have only one possible interpretation; as a result, the similarity score of
the second pair of toponyms should be higher than the similarity score of the first
pair. Hence, two toponyms which represent accurate geographical locations and
have a strong overlap within their administrative tiers like country, state, and city
are deemed highly similar. On the contrary, two locations which have a diverse set
of interpretations and/or have a small degree of match within the administrative
divisions are deemed weakly similar. The challenge is to be able to measure the
similarity of two toponyms by taking into account the overlap of their interpretations
and their ambiguity.

OpenStreetMap2 service (OSM) exposes aweb-service to query for toponyms. For
a given query, the service returns themost relevant possibilities and also a hierarchical
break down of the administrative divisions (like country, state, city, post code etc.).
Furthermore, the results are ordered by importance, a numerical value ranking the
pertinence of the results with respect to the search query. We utilize this service
to collect information about possible interpretations for the toponyms to quantify
similarity between them.

4.3.1 Representation of OSM Query Answers

The query’s results set Rl obtained for a toponym l from OSM is represented as a
weighted-tree, which we term the interpretation tree, with a maximum depth of 3
(countr y, state and ci ty). Since the OSM service has a finer-grained division of
toponyms, some of them aremerged together (e.g., ci ty and town are both considered
under the category ci ty). Each branch represents a unique geographic location and
has an importance associated with it (shown in brackets). Each administrative level
is assigned an empirical weight w, to reflect its strength in determining whether two
profiles refer to the same individual. In other words, the fact that the location attribute
of two profiles mention the same country does not provide as strong an evidence as

1Ile-de-France denotes the region of Paris.
2http://www.openstreetmap.org/.

http://www.openstreetmap.org/
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USA

Washington
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Paris,USA
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Paris(0.52)

Arkansas

Paris(0.68)

Paris,Ontario

Canada

Ontario

Paris(0.58)

(a) (b)

(e)(d)(c)

Fig. 1 Representation of results examples for toponyms: a “Paris”; b “Paris, Canada”; c “Califor-
nia”; d “Paris, USA”; and, e “Paris, Ontario”

to whether they refer to the same individual as the fact that they mention the same
city. As a result, the country is given a lower score than the city.

This tree is used to compute the dis-ambiguity score combining the importance
(ir ) and the granularity (wr ) of a result r ∈ Rl . Formally, the dis-ambiguity score
of r can be expressed by wr × ir . In Fig. 1a, the interpretation “Paris, France” of
the toponym “Paris” gets a higher dis-ambiguity score than “Paris, Canada”, as the
importance given by OSM to “Paris, France” is higher. The first answer of the query
“California” will get a lower dis-ambiguity score (0.57) than the second answer (0.6)
as the granularity of “California” in Washington is more precise. In this case the
granularity influences the score more.

4.3.2 Location Similarity Measures

In order to compare two toponyms l1 and l2, their interpretation trees obtained from
Rl1 and Rl2 are constructed and compared using their overlapping R∩

l1,l2
. We denote as

nl1 , nl2 , nl1,l2 and n the dis-ambiguity score of Rl1 , Rl2 , R
∩
l1,l2

and R∪
l1,l2

, respectively;
they are defined as follows:
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Table 1 Similarity measures applied to OSM query answers for toponym pairs

Location 1 Location 2 W.Support Ochiai

1. San Diego, USA San Diego 0.4 0.87

2. Houston, Texas, USA Houston 0.56 0.77

3. Canada Toronto, Canada 0.11 0.28

4. Orlando, Florida, USA Florida 0.23 0.63

5. Wausau, Wisconsin, USA Wausau, WI 1 1

6. Los Angeles, USA Los Angeles 0.4 0.85

7. Argentina Argentina, Buenos Aires, Junn 0.08 0.19

8. Montreal, Canada Montreal, Quebec 0.76 0.69

9. United States, USA Puerto Rico 0.13 0.3

10. Apeldoorn, Netherlands Deventer 0.13 0.3

11. Bengaluru, India Bangalore, India 1 1

12. Utrecht, Netherlands Amersfoort, The Netherlands 0.26 0.6

13. New York City, USA Brooklyn, NY, USA 1 1

nl1 =
∑

r∈Rl1

wr × ir
I

nl2 =
∑

r∈Rl2

wr × ir
I

nl1,l2 =
∑

r∈R∩
l1 ,l2

wr × ir
I

n =
∑

r∈R∪
l1 ,l2

wr × ir
I

I = ∑
r∈R∪

l1 ,l2
ir is the normalization coefficient computed by considering the union

of Rl1 and Rl2 . For example, the overlap between the trees of the locations “Paris”
and “Paris, USA” in Fig. 1a, d is represented by the red dotted line. The dis-ambiguity
score value of R∩

“Paris−Paris,USA” and R∩
“Paris−Paris,Canada” are 0.39 and 0.18, respec-

tively. Measuring the similarity between two toponyms l1 and l2 depends on the
dis-ambiguity score of their overlap. To this extent, we investigated two similarity
measures, namely the weighted Support measure and the Ochiai measure (Ochiai
1957), a variation of the cosine similarity.

SW−Support = 1√
n

× nl1,l2
n

SOchiai = nl1,l2√
nl1 × nl2

The value of these similarity measures are between 0, if the overlapping between
Rl1 and Rl2 is empty, and 1, if Rl1 = Rl2 for Ochiai, whereas weighted Support is
more strict as the necesary condition for this measure to yield 1 is that both the inputs
have exacly one interpretation that match exactly. In fact, this measure penalizes the
similarity if the toponyms are ambiguous.
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Table1 shows the similarity measures applied to OSM query answers for some
examples of toponym pairs collected from a real dataset (Malhotra et al. 2012). Sev-
eral observations can be made from the examples shown in this table. Firstly, the
proposed method is able to handle orthographic differences in inputs and predicts
an exact match when the inputs are orthographically different but are in-fact non-
ambiguous and refer to the same geographic location (examples 5, 11, 13). Secondly,
it is able to assign low similarity in cases when the granularity of the two inputs is
different (and thus ambiguous) as can be observed in examples 3, 7 and 9. It is also
able to assign a low similarity score when the granularity is the same but the geo-
graphic locations are different as in examples 10 and 12. Lastly, the weighted support
measure gives a lower similarity value when the inputs have many interpretations.
This can be attributed to the term (1/

√
n) which penalizes the score as the number

of interpretations increases.

4.4 EMAILS

Denoted as e, Emails is a multi-valued attribute whose values correspond to the
different email addresses disclosed by an individual. The email address is a very
sensitive attribute, because it could identify a person uniquely. If two profiles are
associated with the same email address, there are high chances that the two profiles
refer to the same individual. It is certainly possible that two individuals share the same
email address, as in the case of people that work within the same organization. But
these are particular cases, and in general email addresses can be trusted to uniquely
identify a person. The only problem is that only a small percentage of people grant
public access to their email addresses. In order to compare the values of the attribute
e of two profiles, we need to determine whether one of the email addresses of a
profile is identical to one of the email address of the other profile. In other words,
two email addresses match if they are identical.

4.5 WEBSITES and PROFILES

Websites (w) and Profiles (p) are two multi-valued attributes whose values are
URLs to respectively general web pages and profile pages in social network sites.We
aim at investigating the contribution of the two attributes separately, because profile
pages are usually more “personal” than links to generic web pages; as a result, the
fact that two profiles share the same link(s) to profile pages is likely to be a stronger
evidence as to whether they refer to the same individual than the fact that they share
the same links to generic web pages.We say that two values of the attributeWebsites
or Profiles match if they are identical.
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5 LIAISON

LIAISON consists of two steps, the candidate selection and the cross-link determina-
tion; the first obtains a subset of profile pairs to compare, the second determines the
pairs that have to be connected through a new cross-link. The two steps are iterated
until no more candidates are found. In the remainder of the section, we describe the
two steps in more detail and we comment on the pseudocode of the algorithm.

5.1 Candidate Selection

The previous version of LIAISON (Bennacer et al. 2014a, b) selects a subset of
node pairs to compare, which we term the candidate set, by considering all pairs in
f r iends(v) × f r iends(w) for each (v,w) such that (v,me,w) ∈ Eme (the cross-
link between v and w exists) or (v,me,w) ∈ Dme (the cross-link between v and w is
discovered by LIAISON). Although this procedure considerably reduces the number
of candidate pairs, compared to considering all possible pairs, it still selects around
1 billion candidates in one of the datasets that we use in our evaluation, which yields
to more than 27h of computation.

For this reason, in the current version of LIAISON we opt for a more efficient
solution. We observe that in the vast majority of the cases, most of the pairs in
f r iends(v) × f r iends(w) have dissimilar attribute values and no cross-link will
ever be established by LIAISON between them. Therefore these pairs are not good
candidates and should not be selected as such; in other words, only the pairs whose
attribute values are identical or similar should be selected as candidates. But how
do we determine these pairs without comparing all possible pairs in f r iends(v) ×
f r iends(w)? We do so by selecting appropriate data structures as we explain later
in Sect. 5.3.

5.2 Cross-Links Determination

In order to determine whether two profiles v and w refer to the same individual, we
defined a set of rules based on the attributes introduced in Sect. 4. Each rule considers
the contribution of one or several attributes. We assume that the higher the number
of attributes that match, based on the defined similarity measures, the higher the
probability for two profiles to refer to the same individual. We therefore define the
order k of a rule as the number of attributes that the rule uses. The rule with the
highest confidence is the one that uses all the attributes (k = |A|). The rules with the
lowest confidence are those that use just one attribute (k = 1).

Let match(Pa(v), Pa(w)) be the predicate which is true when two values pa(v)
and pa(w) match, based on the similarity measure defined for the attribute a. A rule
with the order k, or k−rule, Rk is defined as follows:
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Rk(v,w) =
⎧
⎨

⎩

∧

a∈A
match(Pa(v), Pa(w)) if k = |A|

∨

B∈[A]k
∧

a∈B
match(Pa(v), Pa(w)) if 1 ≤ k < |A|

where [A]k is the set of all subsets of A with k elements.
Two profiles v and w are considered to refer to the same individual if and only if∨
1≤k≤|A| Rk(v,w) is true; in this case, the link (v,w) is added to the set of discovered

cross-links Dme. Note that the rules are applied by decreasing values of k, therefore
if RK (v,w) is true, for some value K , no rule with order lower than K is applied.
Each discovered cross-link (v,w) is assigned a confidence score con fv,w that is equal
to the order of the first rule that is found to be true. More formally:

con fv,w = max
k

{Rk(v,w) = true}

Beside applying the rules, LIAISON computes the transitive closure of the links
in Eme ∪ Dme to discovermore cross-links; the idea is that a cross-link (v,w) is added
to Dme by transitivity if there is at least one path of cross-links (or cl-path) between
node v and node w. The challenge here is the determination of the confidence score
of a cross-link (v,w) discovered by transitive closure, because the cross-links of one
particular cl-path do not necessarily have the same confidence score and there might
be more than one cl-path between v and w. Intuitively, for a given cl-path from v to
w, the confidence score of the cross-link (v,w) cannot be higher than the minimum
of the confidence scores of the cross-links that are part of p; in fact, this would be
tantamount to stating that (v,w) has a confidence score higher than the confidence
score of one of the cross-links that contributed to its discovery. Formally, we define
the confidence score con fv→w of a cl-path from v to w as:

con fv→w(v1 = v → v2 → ... → vn = w) = min
i=1,..,n−1

con fvi ,vi+1

If there is more than one cl-path linking v to w, LIAISON sets the confidence score
of the cross-link (v,w) as the maximum of the confidence scores of all such paths. In
fact, the existence of more than one cl-path between v and w gives more credit to the
existence of the cross-link (v,w) and therefore the confidence score of (v,w) should
be the highest possible. The same reasoning is applied when a cross-link (v,w) is
discovered both by a rule and by transitivity.

5.3 The Algorithm

In order to better explain how LIAISONworks, we use as a running example a small
social internetwork G consisting of four social networks, namely Twitter, Flickr,
LiveJournal, and YouTube, as shown in Fig. 2. Each social network includes a set
of profiles identified by names and connected by friendship links that are depicted
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as solid arrows. In order to detect cross-links in G , LIAISON assumes that some
cross-links, connecting profiles that refer to the same individual, already exist; in the
figure, these cross-links are represented as dashed lines, while the dotted and dash-
dotted lines refer to cross-links that are missing and are discovered by LIAISON, by
using the rules and the transitive closure respectively. For the purpose of the example,
we assume that two profiles that are identified by the same name refer to the same
individual.

As a first step, LIAISON computes the transitive closure of the existing cross-
links, which leads to the discovery of the cross-link number 1 between the profiles of
Alice in LiveJournal andYouTube. The existing cross-links and the newly discovered
one are added to a queue Q. LIAISON repeats the following procedure until Q is
empty: it removes the first cross-link e = (v,w) inQ, it uses e to create a candidate
set Ce, consisting of the cartesian product of the sets f r iends(v) and f r iends(w),
and applies the rules to determine the pairs of nodes in Ce to be connected by a new
cross-link; the newly discovered cross-links are added to the queue Q.

In our example, LIAISON considers the cross-link between the profiles of Lisa
in Flickr and LiveJournal and creates the candidate set {(Bob, Alice), (Bob, Ben),
(Mark, Alice), (Mark, Ben), (Alice, Alice), (Alice, Ben)}; after applying the rules
to each pair in the candidate set, LIAISON unveils, and adds to Q, the cross-link
number 2 between the profiles of Alice in Flickr and LiveJournal. Once the queueQ
is empty, meaning that there are no more cross-links to obtain further candidates, the
transitive closure of the cross-links is computed again, which results in the discovery
of the two cross-links 3 and 4. These two cross-links are added to Q and a new

Fig. 2 Description of the algorithm on a small social internetwork
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Algorithm 1: LIAISON algorithm
Data: G =< ∪i Vi ,∪i Ei , Eme >

Result: G ′ =< ∪i Vi ,∪i Ei , Eme ∪ Dme >

1 Dme ← transi tiveClosure(Eme); i t ← 1; Dit ← ∅; enqueue(Eme ∪ Dme,Q);
2 while Q is not empty do
3 do
4 e ← dequeue(Q);
5 Ce ← candidateSelection(e);
6 foreach ce ∈ Ce do
7 if ce /∈ Eme ∪ Dme ∪ Dit then
8 k ← applyRules(ce);
9 if k ≥ 1 then

10 Dit ← Dit ∪ {ce};
11 enqueue({ce},Q);
12 while Q is not empty;
13 Dc ← ∅;
14 foreach k ∈ [|A|, 1] do
15 Dc ← transi tiveClosurek(Eme ∪ Dme ∪ Dit );
16 Dit ← Dit ∪ Dc;
17 enqueue(Dc,Q);
18 Dme ← Dme ∪ Dit ; i t ← i t + 1; Dit ← ∅

iteration is started over. LIAISON stops when the transitive closure at end of a given
iteration does not discover any other cross-link.

We now describe the algorithm in greater detail (cf. Algorithm 1). Given a social
internetwork G , consisting of n social networks, the goal of the algorithm is to create
the set Dme of all discovered cross-links.

In order to determine the candidate pairs, LIAISONmaintains a queueQ of cross-
links, as explained above, and saves the cross-links discovered at the iteration i t in
a set Dit . Initially the transitive closure of the cross-links in Eme is computed, and
the discovered cross-links are added to Dme; all the cross-links in Eme and Dme are
added to the queue Q (Line 1). While Q is not empty, LIAISON goes through two
main steps; it first applies the rules (Line 3 to 12) and then the transitive closure
(Line 14 to 17). The first cross-link e in Q is removed from the queue (Line 4) and
is used to obtain a candidate set Ce, consisting of pairs of nodes (Line 5). The rules
are applied to each candidate ce ∈ Ce for which a cross-link does not exist (Line 6
to 8); here the function applyRules returns the order k > 0 of the rule that is true, if
any, 0 otherwise. The candidates for which at least one rule is true are added to the
set Dit and to the queue Q (Line 9 to 11), meaning that new cross-links are found.
Lines 3 to 12 are repeated until Q is empty. At this point, the transitive closure of
the cross-links discovered at the current iteration i t is computed (Lines 14 to 17)
and any new cross-link discovered is added to Dit and the queue Q. At the end of
the iteration, all links in Dit are added to Dme and if some cross-links have been
discovered by transitivity (and therefore Q is not empty), a new iteration is started
over (Line 18).
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We note that the function transi tiveClosurek at Line 15 computes the transitive
closure of the cross-links that have confidence score at least k; this function is invoked
by decreasing values of k so that the confidence value of any discovered cross-link
is computed as described in Sect. 5.2.

In this algorithm the selection of the candidates is a sensitive point, as the num-
ber of candidates obtained from a given cross-link (v,me,w) can be very large
(O(| f r iends(v)| × | f r iends(w)|)). In order to reduce the number of candidates,
the idea is to store the values of each attribute a of all nodes x ∈ f r iends(v) in a
data structure Ia that allows for fast retrieval and obtain the nodes y ∈ f r iends(w)

that have identical or similar attribute values as the ones stored in Ia . Ia can be either a
hash table, in case the values of the attribute a are compared through exact matching
(e.g., the attributeWebsites), or a BK-Tree (Burkhard and Keller 1973), in case the
values of a are compared through approximate matching (e.g., the attribute Nick-
names). Both data structures are known to have good performances when adding
new values and retrieving existing ones. As a result, this procedure is much more
efficient than considering all possible pairs in f r iends(v) × f r iends(w). Indeed,
as our experiments reveal, we reduce the number of candidates from 1 billion to 76
million, without missing any cross-link.

The transitive closure cost is O(|A| × |⋃i Vi | × |⋃i Ei
⋃

Dme
⋃

Eme|),
knowing that |⋃i Ei

⋃
Dme

⋃
Eme| << | ⋃i Vi |.

6 Evaluation Results

In order to evaluate our approach, we considered the dataset used by Buccafurri
et al. in their experiments (Buccafurri et al. 2012). The original dataset includes a
social internetwork with four social networks, namely LiveJournal, Flickr, Twitter
and YouTube.3 The graph is composed of 93,169 nodes, 145,580 friendship links
and 503 cross-links, of which 474 inter-network and 29 intra-network. We note that
the number of cross-links declared by Buccafurri et al. (2012) is 745, but this also
includes duplicate links, which we removed.

After a careful analysis of the data, we found thatmany f r iend linksweremissing
between a large number of nodes, probably because they were added after the inter-
network was crawled. Moreover, the only available profile attribute is the nickname.
For this reason, we updated the internetwork by obtaining the missing information
using the API of the four SNSs under evaluation. While we were at that, we also
enriched the graphs by adding new nodes that are linked via a f r iend link to the
existing nodes. As a result, we obtained a much larger internetwork, whose proper-
ties are shown in Table2. In total, we have more than 2 million nodes, more than
21 million links and 29 intra-network cross-links. In addition to that, we have 474
inter-network cross-links, whose distribution across the social networks is shown in
Table3.

3http://www.ursino.unirc.it/pkdd-12.html.

http://www.ursino.unirc.it/pkdd-12.html
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Table 2 Statistics on the social internetwork used in our evaluation

Network Nodes Links

f r iend intra − me Total

Flickr 1,814,405 15,415,083 0 15,415,083

LiveJournal 211,044 5,628,509 1 5,628,510

Twitter 8,842 19,008 13 19,021

YouTube 1,210 1,367 15 1,382

Total 2,035,501 21,063,967 29 21,063,996

Table 3 Cross-links between all pairs of social networks

Network Flickr LiveJournal Twitter YouTube

Flickr 0 148 29 12

LiveJournal 148 1 11 2

Twitter 29 11 13 272

YouTube 12 2 272 15

In the implementation of our approach, the social internetwork is stored in aNeo4j
database,4 which is particularly indicated to handle large graphs.

6.1 Evaluation of LIAISON

In our previous work, we described a preliminary evaluation aimed at identifying the
attributes that are most useful to reconcile profiles, as well as tuning the thresholds
θu and θn of the similarity measures used to compare respectively two nicknames
and two names. That evaluation showed that:

• Any k-rule, with k ≥ 2, discovers cross-links with high precision. In other words,
if two profiles have at least two attributes with matching values, they are extremely
likely to refer to the same person.

• The 1-rule using the attribute nicknames discovers cross-links with high precision
if the threshold θu is set to 0.9

• The 1-rule using the attribute names leads to a high error rate, no matter how the
threshold θu is set. Therefore, two profiles where the names match should not be
considered as referring to the same person, unless other attribute values match.

We repeat a similar evaluation on a sample of our dataset to tune the threshold
θl of the similarity measure used to compare two values of the attribute locations.
Like the attribute names, the mere fact that two profiles disclose the same or similar

4www.neo4j.org/.

www.neo4j.org/
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Table 4 Cross-links discovered by LIAISON by iteration and k. The total number of discovered
cross-links (6,572) does not include the 6 links discovered by transitive closure from the existing
links

Iteration Method k=1 k=2 k=3 k=4 k=5 Total Grand
total

1 R 3,792 853 84 4 0 4,733 4,907
Tc 161 13 0 0 0 174

2 R 1,104 69 47 20 4 1,244 1,620
Tc 373 2 1 0 0 376

3 R 19 0 1 0 0 20 45
Tc 25 0 0 0 0 25

Total 5,474 937 133 24 4 6,572 6,572

locations is not conclusive as to whether they refer to the same person. Therefore, the
attribute locations need to be used in combination with other attributes; moreover,
we observed that good results are obtained by setting θl at 0.7.

Based on these observations, we run LIAISON by setting θu = θn = 0.9 and
θl = 0.7 on the social internetwork described above and including all rules except
the 1-rule using the attribute name and the 1-rule using the attribute location. We
conducted all the experiments on a computer equipped with a 64 bit Intel Xeon
processor at 2.3GHz, 16GB RAM and running Debian Linux 6.0 (kernel version
2.6.32-5). The Java Heap size reserved for LIAISON is set to 9 GB. LIAISON
discovered 6,578 links in 2h, 11min and 58s after comparing 76,368,416 candidate
pairs through 4 iterations; the average time taken to retrieve a set of candidates given
a cross-link was 0.48 s, while only 0.5ms were necessary on average to compare
each pair of candidates. Considering that the candidate selection is repeated for
each cross-link and there are 7,081 cross-links after running LIAISON (503 already
existing plus the 6,578 discovered by LIAISON), LIAISON spent approximately 1
hour retrieving the candidates and 1h to compare them. In total, the transitive closure
needed only 2 s.

The number of cross-links discovered at each iteration is shown in Table4. More
precisely, the table shows the number of cross-links discovered by using the rules (R)
and the transitive closure (Tc) at each iteration for each value of k. As expected, the
number of discovered cross-links decreases while LIAISON progresses through the
iterations. At the iteration 3, LIAISON discovers 25 cross-links by transitive closure,
from which new candidates are found that are compared in the fourth iteration; since
none of these candidates are found to be profiles referring to the same individual,
LIAISON stops.

Most of the cross-links are discovered at the first iteration and by using the 1-rules,
which clearly indicates that two profiles created by the same individual usually have
little overlapping information.

Despite that, by using the value of just one attribute, LIAISON discovers 5,474
cross-links, most of which are correct, as discussed below. This result is particularly
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remarkable if we consider that LIAISON starts from a seed set of 503 cross-links,
of which only 239 connect two nodes that have friendship links to other nodes and
therefore can be used to obtain new candidates. We note also that the total number of
discovered cross-links shown in the table (6,572) does not include 6 cross-links that
are discovered by transitive closure from the existing links before the first iteration.

The cross-links discovered through transitive closure are considerably less than
those discovered through the rules. One possible explanation lies in the nature of
the internetwork itself, which, although large, is still a limited sample of 4 real
social networks that combined have more than 500 million profiles. As a result, our
internetwork might not contain all the profiles of an individual.

In order to evaluate the accuracy of the rules, we determined a ground truth
by tagging each cross-link (v,me,w) ∈ Dme as either correct, if v and w actually
refer to the same individual, or incorrect, if they do not, or undetermined, if no
decision can be taken. To this extent, we split Dme into four equal-size independent
subsets, one for each author of this paper, who had to assign the proper tag to each
cross-link, based on a visual inspection of the profile web pages of the individuals
concerned. The visual inspection consisted in looking at every possible aspect of the
profiles except the values of the attributes used by LIAISON, in particular: photos
(especially in Flickr), textual content (especially in LiveJournal), information onweb
pages linked by the profile and retrieved from other social networks. Most of the time
the information were enough to determine whether two profiles referred to the same
individual; however, in some cases the available information is so scarce that no
conclusive evidence as to whether the two profiles match can be found. In order
to avoid errors in the ground truth, which would inevitably invalidate the results of
our evaluation, we introduced the tag undetermined, which we assigned to all cross-
links that we could not determine with certainty as either correct or incorrect. As a
result, we determined three subsets of Dme: (i) C , the set of the cross-links tagged
as correct; (ii) W , the set of the cross-links tagged as incorrect and (iii) U , the set
of the cross-links tagged as undetermined. It took approximately 10days to tag all
cross-links in Dme. Based on this ground truth, we can compute the precision of
LIAISON as P = |C |

|C |+|W | . We note that to obtain the recall, that is the ratio between
the correct cross-links and the total number of profile pairs that actually refer to the
same individual, we would need to tag all possible profile pairs in our dataset, which
is clearly not feasible. In the next section, we will discuss the recall on another much
smaller dataset, where the ground truth for every pair of profiles is already known.

Precision of LIAISON. The overall precision of LIAISON on the dataset across all
iterations is 94%, which is a good result, considering that most of the cross-links,
either discovered through a rule or by tansitive closure, have confidence k = 1. The
graph in Fig. 3 shows the precision obtained by LIAISON with respect to the value
of the confidence k. As expected, the precision increases with the confidence and for
both the cross-links discovered through the rules and the transitive closure is 100%
for k ≥ 3. As for k = 1, the rules achieve a precision of 94%, while the transitive
closure is sensibly lower (73%); thisis due to the fact, as opposed to the cross-links
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Fig. 3 Precision with
respect to the values of k

with k ≥ 2, some cross-links with k = 1 are wrong (6% of them) and they are
propagated by the transitive closure.

6.2 Comparison with Existing Work

In this section we compare LIAISON against the approach proposed by Buccafurri
et al. (2012) (Bucc), as we built our dataset on top of theirs, and the one described by
Malhotra et al. (2012) (Mal), which is evaluated on a small dataset (60,000 nodes)
consisting of two social networks.

6.2.1 Comparison Against BUCC

Bucc is evaluated by its authors by randomly selecting 160 existing cross-links,
which are used to discover new cross-links. The final number of cross-links discov-
ered by the algorithm is 22, of which 16 are correct, 2 are wrong and 2 undeter-
mined (Buccafurri et al. 2012): the precision of their approach is therefore 80%. We
note that their algorithm also returns a set of 133 node pairs, which are classified as
profiles not referring to the same person (“non-me” links); as a result, they also have
the number of true and false negatives, which allows them to compute the overall
accuracy, which is 85%.
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Our approach discovers a much higher number of cross-links with a better pre-
cision, which depends on several factors. First of all, our dataset is an enriched
version of theirs, with more nodes and links. Secondly, LIAISON relies on a set of
rules which considers the combined contribution of different attributes, while Bucc
only exploits the nicknames and the network topology. Finally, LIAISON uses the
cross-links that it discovers to obtain new candidates and thus more cross-links in an
iterative way.

6.2.2 Comparison Against MAL

Mal uses machine learning techniques to compare the values of multiple attributes
of two profiles (Malhotra et al. 2012). For the comparison, we use exactly the same
dataset, which consists of a small sample of two popular social networks, Twitter
and LinkedIn. Each network has 29,129 nodes with values for several attributes,
no friendship links and 29,129 inter-network cross-links; we note that although the
friendship links are missing, each node has an attribute whose value is the number
of its connections, which is used by Mal.

Since no friendship links are provided, we cannot use the candidate selection
procedure of LIAISON; Instead, we considered as candidates all the pairs of nodes
(t, l), such that t belongs to Twitter and l belongs to LinkedIn and the values of at
least one attribute are similar or identical. To avoid a comparison between all the
possible pairs of profiles, we index the values of the attributes of the Twitter profiles
by using hash tables and BK-trees. The attributes used byMal are the nickname, the
realname, the short description (a.k.a. “about me”) which is often found on social
network profiles, the location, the profile image and the number of friends. The 29,219
cross-links are not fed to LIAISON and are considered as ground truth. Moreover,
since there are only two networks, we do not apply the transitive closure; we only
run one iteration of the algorithm. The values of θn , θu and θl are set as before.

LIAISON discovers 9,210 cross-links, of which 9,134 are correct, in 3min and
24s; the overall precision is 99% and the recall is 31%. The graph in Fig. 4 shows
the variation of the values of the precision with the values of k; consistently with the
observations above, the precision increases with the confidence.

The reported precision of Mal on the same dataset is 64% (Malhotra et al. 2012),
which is considerably less than the one that LIAISON achieves, while no recall is
given. As for the recall, we note that the low recall achieved by LIAISON is due to
the fact that we tuned our rules to ensure that the discovered cross-links are correct
with a very high precision, which is extremely important given that we propagate
the discovered cross-links to discover new cross-links. We observe that different
values of precision/recall can be obtained by tuning the thresholds for the attributes
nicknames, realnames and locations differently. As for the realnames and locations,
it is not clear how the values can be changed, because the values of both attributes are
usually ambiguous and therefore not suitable for the task of reconciling profiles. The
case for the nicknames is different, because the same individual tends to use similar
nicknames across different profiles. Therefore, we played only with the value of θu
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Fig. 4 Precision with
respect to the values of k

and we observed that the best value for it is 0.7, where the precision is 86%, recall
is 49% and the f-measure is 62%.

7 Concluding Remarks

In this paper,wepresented theLIAISONalgorithm, built onprevious researchof ours,
to match profiles of individuals across several social networks by using the network
topology and the personal information that are publicly available in the profiles. We
thoroughly evaluated the algorithm on a large dataset of four real social networks,
which constitutes a real challenge, because data are likely to be erroneous andmessy.
The evaluation and the comparison against two existing approaches showed the
robustness of our algorithm, as it achieves a high precision (94%), and proved its
effectiveness in discovering a lot of cross-links in a large social internetwork with a
highly satisfactory time performance.

We note that our algorithm relies on attributes whose values are publicly available
on the profiles of the individuals. Other available attributes like photos could be easily
taken into account without any changes of the algorithm.
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Some interesting research questions remain open.More specifically, our approach
does not address theproblemof false identities,where individuals disclose voluntarily
false information so as to better protect their private lives. Also, the location is another
attribute whose correctness should be checked before using it. In particular, the
disclosed toponyms are usually ambiguous and often do not reflect the real location
of the individuals. Our approach might benefit from techniques to disambiguate the
toponyms before comparing two locations; also, an analysis of the locations of an
individual’s friends might reveal more information as to the current location of an
individual (that might not be the one disclosed in the individual profile, especially in
cases where the individual travels a lot).

It would be interesting to further explore the use of the network topology to
generalize the algorithm to networks where the attribute values are anonymized.

References

Bartunov, S., Korshunov, A., Park, S., Ryu, W., & Lee, H. (2012). Joint link-attribute user identity
resolution in online social networks. In SNA-KDD Workshop.

Bennacer, N., Jipmo, C. N., Penta, A., & Quercini, G. (2014a). Matching user profiles across social
networks. InAdvanced Information SystemsEngineering—26th InternationalConference, CAiSE
2014, Thessaloniki, Greece, June 16-20, 2014. Proceedings (pp. 424–438).

Bennacer, N., Jipmo, C. N., Penta, A., & Quercini, G. (2014b). Réconciliation des profils dans les
réseaux sociaux. In 14èmes Journées Francophones Extraction et Gestion des Connaissances,
EGC 2014, Rennes, France, 28-32 Janvier, 2014 (pp. 65–76).

Buccafurri, F., Lax, G., Nocera, A., & Ursino, D. (2012). Discovering links among social networks.
In Machine learning and knowledge discovery in databases, vol. 7524 (pp. 467–482). Lecture
Notes in Computer Science. Berlin: Springer.

Burkhard, W. A., & Keller, R. M. (1973). Some approaches to best-match file searching. Commu-
nications of the ACM, 16(4), 230–236.

Carmagnola, F.,&Cena, F. (2009). User identification for cross-systempersonalisation. Information
Science, 179(1–2), 16–32.

Cortis, K., Scerri, S., Rivera, I., & Handschuh, S. (2012). Discovering semantic equivalence of
people behind online profiles. In Proceedings of the Resource Discovery (RED) Workshop, ser.
ESWC.

FriendFeed (2007). friendfeed.com.
Goga, O., Lei, H., Parthasarathi, S. H. K., Friedland, G., Sommer, R., & Teixeira, R. (2013). Exploit-
ing innocuous activity for correlating users across sites. In Proceedings of the 22nd International
Conference on World Wide Web (pp. 447–458). International World Wide Web Conferences
Steering Committee.

Golbeck, J., & Rothstein, M. (2008). Linking social networks on the web with FOAF: A semantic
web case study. In AAAI (Vol. 8, pp. 1138–1143).

Gross, R., & Acquisti, A. (2005). Information revelation and privacy in online social networks. In
Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, WPES 2005 (pp.
71–80). New York, NY, USA: ACM.

Jain, P., Kumaraguru, P., & Joshi, A. (2013). @i Seek ‘fb.me’: Identifying users across multiple
online social networks. In WWW (Companion Volume) (pp. 1259–1268).

Krishnamurthy, B., &Wills, C. E. (2009). On the leakage of personally identifiable information via
online social networks. In Proceedings of the 2nd ACM Workshop on Online Social Networks
(pp. 7–12). ACM.

http://friendfeed.com


LIAISON: reconciLIAtion of Individuals Profiles Across SOcial Networks 253

Little, L., Briggs, P., & Coventry, L. (2011). Who knows about me?: An analysis of age-related
disclosure preferences. In Proceedings of the 25th BCS Conference on Human-Computer Inter-
action, BCS-HCI 2011 (pp. 84–87). Swinton, UK: British Computer Society.

Malhotra, A., Totti, L., Meira, W., Kumaraguru, P., & Almeida, V. (2012). Studying user footprints
in different online social networks. In International Workshop on Cybersecurity of Online Social
Network (ACM ASONAM 2012).

Motoyama, M., & Varghese, G. (2009). I seek you: Searching and matching individuals in social
networks. In Proceedings of the Eleventh International Workshop on Web Information and Data
Management (pp. 67–75). ACM.

Narayanan, A., & Shmatikov, V. (2009). De-anonymizing social networks. In 30th IEEE Symposium
on Security and Privacy (pp. 173–187). IEEE.

Ochiai, A. (1957). Zoogeographic studies on the soleoid fishes found in japan and its neighbouring
regions. Bulletin of the Japanese Society of Scientific Fisheries, 22(9), 526–530.

Perito, D., Castelluccia, C., Kaafar, M. A., & Manils, P. (2011). How unique and traceable are
usernames? In Privacy Enhancing Technologies (pp. 1–17). Springer.

Plaxo (2002). plaxo.com.
Raad, E., Chbeir, R., & Dipanda, A. (2010). User profile matching in social networks. In 2010 13th
International Conference on Network-Based Information Systems (NBiS) (pp. 297–304). IEEE.

Rowe, M. (2009). Interlinking distributed social graphs. In Linked Data on the Web Workshop,
WWW2009.

Spokeo (2006). spokeo.com.
Stutzman, F. (2006). An evaluation of identity-sharing behavior in social network communities.
iDMAa Journal, 3(1).

Zafarani, R., & Liu, H. (2009). Connecting corresponding identities across communities. In Third
International AAAI Conference on Weblogs and Social Media.

http://plaxo.com
http://spokeo.com


Clustering of Links and Clustering of Nodes:
Fusion of Knowledge in Social Networks

Erick Stattner and Martine Collard

Abstract The extraction of knowledge from social networks is an area that has
experienced significant growth in recent years. Indeed, thanks to the improvement
of storage and calculation capacities, and the heterogeneity of data that can currently
be extracted, much effort has been made to go beyond traditional knowledge, by
proposing new kinds of patterns that take into account the context. However, while
many works were interested in designing new patterns of knowledge or in optimizing
existing approaches, few studies have been focused in merging patterns and on the
useful knowledge emerging from such fusions. In this work, we focus on two network
clustering approaches, able to extract two distinct kinds of patterns, and we seek to
understand both the intersections that can exist between them and the knowledge
that emerges from their fusion. The first is the classical nodes clustering approach
that consists in searching for communities into a network. The second is the search
for frequent conceptual links, a new link clustering approach that aims identifying
frequent links between groups of nodes sharing common attributes. We propose a set
of original measures that aim to evaluate the amount of shared information between
these patterns when they are extracted from a same network. These measures are
applied to three datasets and demonstrate the interest in simultaneously considering
several sources of knowledge.

1 Introduction

The domain of knowledge extraction from social networks, also called social network
mining (Getoor andDiehl 2005; Scott 2011), has experienced strong growth in recent
years. While pioneering works have proposed various methods to address classical
data mining tasks such as classification of nodes, prediction of links or clustering
of nodes, recent approaches have attempted to go beyond traditional knowledge
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patterns by defining new kinds of knowledge suitable to the context (Manyika et al.
2011). Indeed, thanks to the improvement of storage and computation capacities,
and the heterogeneity of data that can currently be extracted from online systems,
more and more works have focused on approaches combining several sources of
data, redefining traditional patterns of knowledge.

Clustering from social networks has been an active research area that has received
a lot of contributions. Indeed, in natural or social systems, entities often tend to orga-
nize themselves in groups (Croft et al. 2008). For example, we observe that sharing
common interests leads to the emergence of online communities through discus-
sion forums or the exchange of messages or files. The detection of such groups is a
good way to identify substructures that possibly have major roles in the targeted sys-
tems. Thus, the identification of these clusters and the comprehension ofmechanisms
underlying their formation are relevant challenges inmany disciplines for uncovering
relationships between the structure and the function into complex systems.

First clustering approaches exploited only the structure of the network in order
to identify some particular patterns called communities (Radicchi et al. 2004; For-
tunato 2009), namely groups of nodes densely connected. More recently, new
approaches have attempted to combine both the network structure and the properties
of nodes (Zhou et al. 2009; Stattner and Collard 2012b).

Nevertheless, the great majority of these works is conducted without taking into
account the complementarity of the knowledge that can be acquired. Indeed, while
many works were interested in designing new kinds of knowledge or in optimizing
existing approaches, few studies have been focused in the fusion of patterns and the
knowledge that could emerge from such fusions.

In this paper,we focus on twonetwork clustering approaches andwe seek to under-
stand both the intersections that can exist between them and the useful knowledge
emerging from their fusion. First, the classical node clustering approach that con-
sists in searching for communities into a network. Second, the search for frequent
conceptual links (FCL), a link clustering approach that exploits both the network
structure and the properties of nodes to identify frequent links between groups of
nodes sharing common attributes.

Our objective is to evaluate the potential relationships existing between FCL
and communities for understanding how the patterns obtained with both approaches
may overlap. For this purpose, we propose a set of original measures that aim to
evaluate the amount of shared information between these patterns when they are
extracted from the same network. These measures are then applied to three datasets
(a proximity-based network, a product co-purchasing network and a phone call net-
work) for demonstrating the interest to consider simultaneously several sources of
knowledge. For each network, we provide several examples of the knowledge result-
ing from the fusion.

The paper is organized as follows. Section2 presents the related works conducted
on the identification of clusters. Section3 describes the notions of communities and
frequent conceptual links and discusses the questions raisedwhen they are combined.
Section4 is devoted to the measures proposed to evaluate the quality of the fusion
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between communities and FCL. Section5 presents the experimental results we have
obtained by applying the measures to three datasets. Finally, Sect. 6 concludes and
presents future directions.

2 Related Works

Numerous methods for identifying clusters from networks can be found in the liter-
ature (Riadh et al. 2009; Steinhaeuser and Chawla 2010; Yang et al. 2013). While
these methods are all able to highlight groups from data arising from networks, we
observe that some factors such as the extracted knowledge or the data used vary from
one method to another. Several criteria can be used to classify these approaches. In
this section, we present the two clustering methods addressed in this paper: the iden-
tification of communities and the search for frequent conceptual links, according to
three main criteria.

(i) Extracted knowledge. The identification of communities and the search for
frequent conceptual links provide two distinct kinds of patterns. On the one hand, the
concept of community is currently the most common approach for clustering nodes
in networks. It provides an information on groups of nodesmost densely connected in
the network (Newman 2006). The associated algorithms aim to partition the network
in several connected components, called “communities”, so that the nodes in each
component have a high density of connection while nodes in different components
have a lower link density (Fortunato 2009).

On the other hand, frequent conceptual links provide an information on groups
of nodes most frequently connected in the network, in which each group is defined
as a set of nodes sharing common attributes. Here, “conceptual” means that such a
link is not a real social link, but represents a “meta-link” that is a set of social links
between two groups of nodes considered as a concept according to the formal concept
analysis area (Ganter et al. 2005). The set of frequent conceptual links extracted from
a network provides a “conceptual view”, namely a new network structure in which
a node represents a group of nodes sharing common attributes and a link represents
a frequent connection between two groups in the original network.

(ii) Clustering criterion. In the domain of group identification, the building of
clustersmay rely on various clustering criteria (Mangiameli et al. 1996; Lancichinetti
et al. 2008). In traditional network clustering, approaches attempt to identify a net-
work partition in which the number of inter-clusters links is maximized while the
number of intra-clusters links is minimized. For this purpose, they use the criterion
of modularity introduced by Newman (2006) to evaluate the quality of the partition.
The modularity measures the density of links into a group and is commonly used
as an optimisation function in some network clustering algorithms (Lehmann and
Hansen 2007; Blondel et al. 2008). Some approaches perform clustering on networks
by using different measures, such as those using Potts models (Kumpula et al. 2007).

The search for frequent conceptual links relies on the notion of support, well
known about frequent itemsets (Agrawal and Srikant 1994). It allows to evaluate the
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percentage of links in the network connecting a group of nodes satisfying a given
property A to another group of nodes satisfying a given property B. Thus, the higher
the value of support is, the higher the amount of links connecting nodes satisfying A
to nodes satisfying B is Stattner and Collard (2012b).

(iii) Source of data. In several applications, networks are modeled by links and
nodes may have various kinds of associated attributes. Such networks are called
“information networks” or “networks with content” (El Gamal and Kim 2011). For
instance, in a telecommunication network, consumers (nodes) may be identified by
attributes such as age, type of package, job status, etc. If the widemajority of network
clustering approaches does not take into account the attributes of nodes, some recent
works have proposed new definitions of community for including node properties in
the clustering task (Yoon et al. 2011). These approaches aim to provide a semantic
decomposition of the network by focusing on the “densely connected groups of nodes
with homogeneous attributes values” as explained in Zhou et al. (2009).

The search for frequent conceptual links exploits both network structure and node
attributes (Stattner andCollard 2012a). The extracting process involves twokey steps:
a clustering phase, that builds the concepts by grouping nodeswith common attributes
and an evaluation phase that exploits the network links to assess the frequency of
links between concepts.

3 Towards a Fusion of Knowledge

This section describes formally the concepts of communities and frequent conceptual
links. We first present each kind of pattern, then we discuss the useful knowledge
resulting from their fusion.

First of all, let G = (V, E) be a social network, where V is the set of nodes
(vertices) and E ⊆ V × V the set of social links (edges).

3.1 Communities in Social Networks

We define C as the set of communities extracted from the network G. We assume
that there are no overlapping communities, thus a node belongs to one and only one
community. We denote F : V → C , the function that returns, for a given node v, the
community to which it belongs.

The communities are extracted in order to maximize the modularity Q defined as
follows:

Q = 1

2|E |
∑

i j

[Wi j − kvi kv j
2|E | ] δ(F(vi ), F(v j ))
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whereWi j represents the weight of the edge between nodes vi and v j , kvi corresponds
to the degree of node vi and the δ-function is equal to 1 if F(vi ) = F(v j ) and 0
otherwise.

The method we use in our experiments is the algorithm proposed by Blondel et al.
(2008), based on modularity optimization.

3.2 Frequent Conceptual Links in Social Networks

V is defined as a relation R(A1, . . . , Ap) where each Ai is an attribute. Thus, each
vertex v ∈ V is defined by a tuple (a1, . . . , ap) where ∀q ∈ [1...p], v[Aq ] = aq , the
value of the attribute Aq in v and |R| = p.

An item is a logical expression A = x where A is an attribute and x a value. The
empty item is denoted ∅. An itemset is a conjunction of items for instance A1 = x
and A2 = y and A3 = z. An itemset which is a conjunction of k non empty items is
called a k-itemsets.

Let m and sm be two itemsets. If sm ⊆ m, we say that sm is a sub-itemset of m
and m is a super-itemset of sm. For instance sm = xy is a sub-itemset of m = xyz.

Any itemset is a sub-itemset of itself.
We denote IV the set of all itemsets built from V .

Let us consider G as a unipartite directed graph. Thus, for any itemset m in IV ,
we denote Vm the set of nodes in V that satisfy m and we define:

• them-left-hand linkset LEm as the set of links in E that start from nodes satisfying
m i.e.
LEm = {e ∈ E ; e = (a, b) a ∈ Vm}

• the m-right-hand linkset REm as the set of links in E that arrive to nodes in Vm i.e
REm = {e ∈ E ; e = (a, b) b ∈ Vm}

Definition 1 (Conceptual link) For any two elements m1 and m2 in IV , the con-
ceptual link (m1,m2) of G is the set of links connecting nodes in Vm1 to nodes in
Vm2 .

For instance, if m1 is the itemset cd and m2 is the itemset e f j , the conceptual
link (m1,m2) = (cd, e f j) includes all links in E between nodes in V that satisfy the
property cd with nodes in V that satisfy the property e f j .

Let LV be the set of conceptual links of G = (V, E) and (m1,m2) be any element
in LV .
(m1,m2) = LEm1 ∩ REm2

= {e ∈ E ; e = (a, b) a ∈ Vm1 and b ∈ Vm2}
Definition 2 (Support of conceptual link) We call support of any element l =
(m1,m2) in LV , the proportion of links in E that belong to l.
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supp(l) = |(m1,m2)|
|E |

For an itemsetm and a conceptual link l, if l = (∅,m)or l = (m,∅) then supp(l) = 0.

Definition 3 (Frequent Conceptual Link) Given a real number β ∈ [0 . . . 1], a con-
ceptual link l in LV is frequent if its support is greater than a minimum link support
threshold β,

supp(l) > β

Let FLV be the set of frequent conceptual links (FCL) in G = (V, E) according
to a given link support threshold β.

FLV =
⋃

m1∈IV ,m2∈IV
{(m1,m2) ∈ LV ; |(m1,m2)|

|E | > β}

Definition 4 (Conceptual sub-link) Let two any itemsets sm1 and sm2 be respec-
tively sub-itemsets of m1 and m2 in IV . The conceptual link (sm1, sm2) is called
conceptual sub-link of (m1,m2).

Similarly, (m1,m2) is called conceptual super-link of (sm1, sm2).
We write (sm1, sm2) ⊆ (m1,m2)

Definition 5 (Maximal frequent conceptual link) Let β be a given link support
threshold, we call maximal frequent conceptual link (MFCL), any frequent con-
ceptual link l such as, there exists no super-link l ′ of l that is also frequent.

More formally, �l ′ ∈ FLV such as l ⊂ l ′.
MFCLs provide a conceptual view of the social network about groups of nodes

that share common internal properties (or concepts according to the area of formal
concept analysis (Ganter et al. 2005)) and that are themost connected.More precisely,
the conceptual view is a graph structure in which each node is related to an itemset
(i.e. group of nodes that satisfy this itemset), and each link corresponds to a MFCL.
By this way, the conceptual view provides a semantic and reduced representation
of the initial network. More precisely, the set of the maximal frequent conceptual
links provides a conceptual and synthetic view of the social network in which only
relevant links between groups of nodes are represented.

Definition 6 (Conceptual view of the social network) Let G = (V, E) be a social
network and β the minimum support threshold. We define G∗

β , the graph (M, L), as
the conceptual view of the network G obtained with the link support threshold β.

• M is the set of itemsets, called “meta-nodes”
• L is the set of maximal frequent conceptual links.
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3.3 Merging Communities and Frequent Conceptual Links

Figure1 shows resulting patterns extracted by community extraction and search for
frequent conceptual links methods from a reference network. We can observe that
patterns extracted by both methods provide two very different kinds of knowledge.
The identification of communities extracts cluster of nodes based on the density of
internal links, while the search for frequent conceptual links extracts clusters of links
based on their frequency in the network. Obviously considering simultaneously these
two kinds of pattern can improve the knowledge of these structures. It also raises a
variety of interesting questions on the organisation of the involved structures such as:

1. Are communities composed by a single meta-node, i.e. a unique property?
2. Do the meta-nodes contain nodes that belong to a same community?
3. Do the frequent conceptual links connect nodes belonging to a same community,

or nodes belonging to different communities?

To answer these questions related to the fusion between both kinds of pattern, we
present in the next section a set of interestingness measures designed to evaluate the
quality of the merging. More precisely, the proposed measures evaluate the degree
of inclusion of communities in meta-nodes, and inversely, the degree of inclusion of
meta-nodes in communities.

Fig. 1 Communities and maximal frequent conceptual links extracted from a reference network
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4 Interestingness Measures

This section is devoted to the measures we propose for evaluating the intersections
of both patterns: communities and frequent conceptual links.

4.1 Preliminaries

We remind that G = (V, E) is a social network in which, V is the set of nodes and
E the set of links. Cardinality of the sets V and E , respectively denoted |V | and |E |
provides the number of nodes and the number of links.

C is the set of communities identified on the network by using a classical link-
based clustering techniques (Blondel et al. 2008). Cardinality |C | provides the total
number of communities identified on the network.

We note Vc the set of nodes in V that belong to the community c, i.e. Vc = {v ∈
V ; F(v) = c}.

Finally, let G∗
β = (M, L) be the conceptual view obtained by extracting maximal

frequent conceptual links from the network G. The set M is the set of meta-node
and L ⊆ M × M is the set of maximal frequent conceptual links. The extraction of
MFCL from G can be performed by algorithms proposed in (Stattner and Collard
2012b). Let us specify that the computation time related to the extraction of frequent
conceptual links exponentially increase with the number of links in the network.
However, some works have been carried out in order to reduce the computation time
by using some properties of node sets (Stattner and Collard 2013).

Letm ∈ M be a given itemset.We remind that Vm is the set of nodes inV satisfying
the property m.

In this paper, our objective is to understand the possible relationships between
the patterns extracted with methods focusing on both communities and conceptual
links. In a more semantic way, we investigate the relationships between densely
connected groups of nodes (i.e. communities or clusters) and groups of nodes sharing
common properties that are frequently connected in the whole network (i.e. frequent
conceptual links).

For this purpose, three objects have to be considered: (i) communities, that are
related to link-based clustering techniques and (ii) meta-nodes and (iii) frequent
conceptual links, that refer to the patterns extracted by the conceptual links extraction
techniques.

In this section, we present various measures, related to the homogeneity into each
kind of objects to understand how communities are included in conceptual links, and
inversely, how conceptual links are involved into communities.



Clustering of Links and Clustering of Nodes … 263

4.2 Homogeneity Rate into a Community

The homogeneity rate into a community, noted Hc, is a measure that indicates, for
a given community c ∈ C , its ability to aggregate nodes that belong to the same
meta-node, i.e. a set of nodes sharing common properties. This measure corresponds
to the fraction of meta-nodes that do not occur in the community c.

Hc = 1 − |{m ∈ M ; ∃v ∈ V with F(v) = c and v ∈ Vm}|
|M | (1)

If Hc = 0, all meta-nodes are present in community c. More semantically, nodes
in the community c satisfy all properties involved in conceptual links. Inversely, a
high Hc value indicates that nodes in community c only belong to a small fraction
of meta-nodes, i.e. nodes in community c tend to have similar properties.

For instance, the homogeneity rate in community r is Hr = 0.6, while the homo-
geneity rate in community b is Hb = 0.3 (see Fig. 2).

For considering weighting of a property into a community, we introduce Hc/m ,
the homogeneity rate of a given meta-node m into a community c. It corresponds to
the fraction of nodes satisfying property m in community c.

Hc/m = |{v ∈ V ; F(v) = c and v ∈ Vm}|
|{v ∈ V ; F(v) = c}| (2)

Thus if Hc/m = 0, nodes in meta-node m are not present in c. In a more semantic
view, the nodes satisfying propertym do not belong to community c. Inversely, when
Hc/m tends to 1, propertym is satisfied by a high percentage of nodes in community c.

For instance, the homogeneity rate of meta-node X in community r is Hr/X = 1
(see Fig. 2). In the same way, the homogeneity rate of meta-node Z in community b
is Hb/Z = 0.75.

As previously, the set of all Hc/m values obtained for each pair (c,m) provides a
|C | × |M | matrix.

Fig. 2 Meta-nodes (x , y and
z) included into communities
(r , g, o and b) from the
example of Fig. 1



264 E. Stattner and M. Collard

4.3 Homogeneity Rate into a Meta-node

The homogeneity rate into a meta-node, Hm , is a measure that indicates, for a given
meta-node m ∈ M , its ability to aggregate nodes of the same community. It corre-
sponds to the fraction of communities that do not occur in the meta-node m.

Hm = 1 − |{c ∈ C ; ∃v ∈ Vm with F(v) = c}|
|C | (3)

Thus, if Hm = 0, all communities are represented in themeta-nodem. In otherwords,
all communities contain nodes satisfying propertym. Inversely, when Hm tends to 1,
only a small percentage of communities is present in m, i.e. the meta-node contains
nodes of the same community.

For instance, regarding the example of Fig. 1 containing 4 communities, the homo-
geneity rate into meta-node X (see Fig. 3) is HX = 0.5, while homogeneity rate into
meta-node Z is HZ = 0.75.

To take into account the weighting, we introduce Hm/c, the homogeneity rate of a
given community c into a meta-node m. This measure indicates the fraction of nodes
of community c, in the meta-node m.

Hm/c = |{v ∈ Vm ; F(v) = c}|
|Vm | (4)

Thus, if Hm/c = 0, nodes of community c are not present in m. More semantically,
nodes in cluster c does not satisfy the property m. Inversely, when Hm/c tends to 1,
m is mostly represented in community c.

For example, starting from the example of Fig. 1, the homogeneity rate of com-
munity r in meta-node X is HX/r = 0.4 (see Fig. 3). Similarly, homogeneity rate of
community b in meta-node Z is HZ/b = 1.

Fig. 3 Communities (r , g, o and b) included into meta-nodes (x , y and z) from the example of
Fig. 1



Clustering of Links and Clustering of Nodes … 265

4.4 Homogeneity Rate into a Conceptual Link

The homogeneity rate Hl , into a conceptual link, measures for a given frequent
conceptual links l = (m1,m2), its ability to connect nodes belonging to the same
community. In other words, it indicates if nodes of the same community maintain
a frequent conceptual link. It corresponds to the fraction of similar communities
represented in both sides of the frequent conceptual links.
T1 = {c ∈ C ; ∃v ∈ V with F(v) = c and v ∈ Vm1}
T2 = {c ∈ C ; ∃v ∈ V with F(v) = c and v ∈ Vm2}

HLl = |(T1 ∩ T2)|
|(T1 ∪ T2)| (5)

Thus, for a given frequent conceptual link l = (m1,m2), a low HLl value indicates
that nodes involved in both sides of the frequent conceptual link belong to different
communities, while a high HL value indicates that a large amount of communities
represented in meta-node m1 are also represented in meta-node m2.

For example, the homogeneity rate into the conceptual link (Z ,Y ) is H(Z ,Y ) = 0.5
(see Fig. 4). In the same way, the homogeneity rate into the conceptual link (X,Y )

is H(X,Y ) = 0.
As previously, we introduce Hl/c, the homogeneity rate of a given community c

into the frequent conceptual link l = (m1,m2). More precisely, Hl/c measures the
difference in representation of a community c in meta-nodes m1 and m2.

Hl/c = 1 − |Hm1/c − Hm2/c|
max(Hm1/c, Hm2/c)

(6)

Thus, for a given frequent conceptual link l = (m1,m2), the homogeneity rate Hl/c =
1 indicates that the fraction of nodes of community c in meta-nodes m1 and m2 of l

Fig. 4 Communities (r , g, o
and b) included into frequent
conceptual links from the
example of Fig. 1
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is similar. Inversely, Hl/c = 0 indicates that at least one of the meta-nodes does not
contain nodes belonging to the community c.

For example, the homogeneity rate of community b into the frequent conceptual
link (Z ,Y ) is H(Z ,Y )/b = 1 − 0.7

1 = 0.3.

5 Experimental Results

We have conducted various set of experiments to evaluate the quality of the fusion.
The results obtained show that very homogeneous structures can be found, and
demonstrate the interest to consider simultaneously several sources of knowledge
and more particularly the communities and the frequent conceptual links.

Section5.1 describes the datasets used and their main characteristics regarding
the network structural properties, the communities and their size and the frequent
conceptual links and their properties. Section5.2 presents and discusses the results
we have obtained by applying the interestingness measures proposed on the three
datasets.

5.1 Testbed

Three datasets have been used in our experiments.

(i) The first (referred as EpiSims in the remaining of the paper) is a geographical
proximity-based social network obtained with EpiSims (Barrett et al. 2008), a
simulation tool that statistically reproduces the daily movements of individuals
in the city of Portland. In this network, two individuals are connected when they
were co-located in the same place during the simulation.

(ii) The second (referred as Amazon in the remaining of the paper) is a product co-
purchasing network (Leskovec et al. 2007), extracted from theAmazon database,
in which two products are connected when they were purchased together by a
same user.

(iii) The third (referred as Communications in the remaining of the paper) is a
connected subnetwork of a very large communication network provided by
a local mobile telephony operator (Stattner 2014) in French West Indies and
Guiana. In this network, two individuals are connected when a telephone call
was made between them.

The main characteristics of these datasets and the properties of the extracted
patterns (communities and frequent conceptual links) are described in Table1. The
identification of the communities has been performed with the Louvain Algorithm
proposed by Blondel et al. (2008), a nodes clustering method that relies only on
the structure on the network. As the Louvain Algorithm is non-deterministic we
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Table 1 Main properties of the dataset used
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focused on an extraction that represented a meaningful snapshot of communities.
The extraction of maximal frequent conceptual links has been performed with the
MFCL-Min Algorithm proposed in (Stattner and Collard 2012b). The minimum link
support threshold β was set at 0.1, namely we keep only groups that contain at least
10% of the network links.

(i) The EpiSims network is composed of 1043 nodes and 2382 links. Each node
is identified by 6 attributes: (1) age class, i.e.  age

10 � (2) gender (1-male, 2-female),
(3) worker (1-has a job, 2-has no job), (4) relationship to the head of household (1-
spouse, partner, or head of household, 2-child, 3-adult relative, 4-other), (5) contact
class (i.e.  degree

2 �) and (6) sociability (i.e. 1-coeff. clust.> 0.5, 2-else). The network
contains 29 communities, and 35Meta-nodes and 116 frequent conceptual links have
been identified.

Figure5 shows the knowledge extracted from the Episims network: (a) Communi-
ties and (b) Conceptual view by keeping only FCLwith β ≥ 0.2 for more readability.
In this figure, nodes that belong to a same community have an identical color. More-
over for simplicity, meta-nodes (properties) are denoted as follows:

(<att 1>,<att 2>, . . . , <att n>)

where <att i> corresponds to the value of the attribute i on the node. The character
‘∗’ means that the attribute may have any value.

For example, we can observe that the FCL ((∗; 2; 2; ∗; ∗; ∗), (∗; ∗; 2; ∗; ∗; ∗))

has been identified with a support equals to 0.2. It indicates that 20% of the links of
the network connect women who has no job to individuals who has no job.

(ii) TheAmazonnetwork is composed of 5001 nodes and 14981 links. Each node
is identified by 7 attributes: (1) product group (eg. Book, DVD, Video or Music),
(2) number of similar co-purchasedproducts (integer), (3) category (integer), (4)main
category (eg. Literature and Fiction, Arts and Photography, Sport, …), (5) sub cat-

(a) (b)

Fig. 5 Knolwedge from Episims network: a communities and b conceptual view with β ≥ 0.2
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(a) (b)

Fig. 6 Knolwedge from Amazon network: a communities and b conceptual view with β = 0.1

egory (like (5)), (6) number of reviews (integer) and (7) rating (integer between 1
and 5). The network contains 45 communities and 21 Meta-nodes, and 43 frequent
conceptual links have been identified.

Figure6 shows the knowledge extracted from the Amazon network: (a) Commu-
nities and (b) Conceptual view by keeping FCL links with β ≥ 0.2 for more readabil-
ity. We can observe that the FCL ((Book; ∗; ∗; ∗; ∗; 0; ∗), (Book; 5; ∗; ∗; ∗; ∗; ∗))

is identified with a support of 0.26. It indicates that 26% of the links of the Amazon
network connect books that have no-review to books that are co-purchased with five
similar products.

(iii) The Communication network is composed of 1705 nodes and 1807 links.
The data have been processed to keep only calls between users, namely removing
calls to voice mail, customer service, etc. Each node of this network is characterized
by 7 attributes.

1. localisation (“Martinique”, “Guadeloupe”, “Guyane” or “Other”),
2. class of received calls number, i.e.  #received calls

10 �,
3. class of received average calls duration, i.e.  rec. avg call duration

10 �,
4. class of outgoing calls number, i.e.  #outgoing calls

10 �,
5. class of outgoing calls average duration, i.e.  out. avg calls duration

10 �,
6. class of number of SMS sent, i.e.  #SMS sent

10 �
7. class of number of SMS received, i.e.  #SMS received

10 �.
The network contains 40 communities and 44 Meta-nodes, and 105 frequent con-
ceptual links have been identified.

Figure7 shows the knowledge extracted from the Communication network:
(a) Communities and (b) Conceptual view by keeping FCL links with β ≥ 0.2 for
more readability. We can observe that the FCL

(GU AD.; ∗; ∗; ∗; ∗; ∗; ∗), (GU AD.; ∗; 1; ∗; ∗; ∗; ∗)
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(a) (b)

Fig. 7 Knowledge from Communication network: a communities and b conceptual view with
β = 0.1

is identifiedwith a support equals to 0.23. It indicates that 23% of the links of the net-
work connect consumers located in Guadeloupe to consumers located in Guadeloupe
and having an average call duration comprised between 10 and 19min.

Note that the datasets used are relatively small because of the difficulty for extract-
ing FCL on large datasets. More particularly, in Stattner and Collard (2012b) it
has been shown that the computation time exponentially increases with the num-
ber of attributes. However, some recent works have focused on the optimisation
of the extraction process and have proposed various solutions to reduce the search
space (Stattner and Collard 2013).

5.2 Results

In our experiments,we apply the proposedmeasures to the three datasetswith the goal
to identify homogeneous structures regarding the fusion of communities and frequent
conceptual links. For this purpose we focus, for each measure, to the distribution of
the values in order to highlight the amount of situations in which the measures are
maximized.Moreover, for eachmeasurewegive some examples of interesting fusion.

5.2.1 Meta-Nodes Inside Communities

As a first step, Fig. 8 shows, for each dataset, the distribution of the homogeneity rate
Hc/m of a meta-node into a community. We remind that the homogeneity rate into a
community allows evaluating if a community consists only of nodes belonging to the
same meta-nodes, i.e. nodes satisfying common properties and involved in frequent
conceptual links as described previously in Fig. 2.
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Fig. 8 Distribution of homogeneity rate Hc/m of a meta-node into a community

We can observe that trends are very similar for the three networks. Indeed, for
each dataset the vast majority of the homogeneity rates is rather low. For instance
in the Episim network 91.13% of the Hc/m values are less than 0.5. In the Amazon
network 81.16% of the Hc/m values are less than 0.5 and in the Communications
network this proportion is 89.71%. This result suggests that a strong proportion of
communities are very heterogeneous in their structure, since they are not composed
of nodes that belong to a same meta-node. Consequently, several attributes can be
found in such communities.

However, our approach also allows highlighting that it exists a small percentage
of communities which have a high homogeneity rate. For instance, in the EpiSims
network 1.08%of the Hc/m values are higher than 0.75. These proportions are 7.93%
for the Amazon network and 4.09% for the Communications network. This result
indicates that it exists some communities very homogeneous since they are mainly
composed of nodes belonging to a same meta-node, i.e. a group of nodes that share
common attributes and that is involved in a frequent conceptual link.

Table2 shows some interesting patterns regarding the Hc/m measure. For example,
80% of the nodes in the community 24 of the EpiSims network (see line 1 Table2) is

Table 2 Examples of interesting patterns regarding Hc/m

Network Community Meta-Node Hc/m

EpiSims 24 (10 nodes) (*;*;2;*;3;*) 0.80

13 (19 nodes) (*;*;1;*;*;*) 0.73

4 (25 nodes) (*;1;*;*;*;*) 0.70

Amazon 39 (64 nodes) (*;*;*;*;*;0;*) 0.87

25 (50 nodes) (Book;*;*;*;*;*;*) 0.84

20 (46 nodes) (*;5;*;*;*;*;*) 0.72

Communication 6 (31 nodes) (GUADELOUPE;*;*;*;*;*;*) 1.00

36 (59 nodes) (GUYANE;*;*;*;*;*;*) 1.00

29 (24 nodes) (GUADELOUPE;*;*;*;*;0;*) 0.89
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composed of nodes that belong to the meta-node (∗; ∗; 2; ∗; 3; ∗), namely a group of
individuals who have no job and have between 5 and 6 connections. In the same way,
the community 29 of the Communication network is composed to 89%of individuals
located in the Guadeloupe island and sending between 0 and 9 SMS (see last line
Table2).

5.2.2 Communities Inside Meta-Nodes

In a second study, we have focused on the homogeneity rate Hm/c of a community
into a meta-node. As previously, we show on Fig. 9 the distribution of this measure
for each dataset. We remind that the homogeneity rate into a meta-node allows
evaluating if a meta-node (i.e. a group of nodes that share common properties and
that is involved in a frequent conceptual link) is solely composed of nodes that belong
to a same community. In other words, this measure assesses whether the nodes that
share common attributes are densely interconnected.

The values obtained here for the homogeneity rate Hm/c are very low whatever
is the dataset. For instance, for the EpiSims network max(Hm/c) is 0.11, while it is
0.08 for the Amazon network and 0.11 for the Communication network. This result
suggests that situations in which meta-nodes are fully homogeneous are very rare.
In other words, it seems to be unlikely that the nodes into a meta-node are densely
interconnected. Obviously, we can assume that these results vary according to the
nature of the network and the semantics of the links.

Table3 shows some examples of patterns regarding the Hm/c measure. For
instance, the first line of the table indicates that in EpiSims network 11% of nodes
satisfying property (1; 1; 2; 2; ∗; ∗) belong to community 20. In other words little
boys who are between 0 and 9 years old are involved in frequent conceptual links and
they are densely connected. In the same way, 11% of the set of subscribers located
in French Guiana whose received calls have a duration between 0 and 9min and
who have sent between 0 and 9 SMS (i.e. (GUY ANE; ∗; 0; ∗; ∗; 0; ∗)) belong to
community 28 (see line 7 Table3).

Fig. 9 Distribution of homogeneity rate Hm/c of a community into a meta-node
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Table 3 Examples of interesting patterns regarding Hm/c

Network Meta-node Community Hm/c

EpiSims (1;1;2;2;*;*) (119 nodes) 20 0.11

(1;*;2;2;*;*) (194 nodes) 19 0.10

(2;*;2;2;*;*) (196 nodes) 9 0.10

Amazon (Book;0;*;*;*;0;*) (996 nodes) 35 0.08

(*;*;*;*;General;*;*) (1071 nodes) 35 0.07

(Music;*;*;*;*;*;*) (997 nodes) 35 0.07

Communication (GUYANE;*;0;*;*;0;*) (212 nodes) 28 0.11

(GUYANE;*;*;*;1;*;*) (300 nodes) 33 0.10

(GUADELOUPE;*;1;*;1;*;*) (192 nodes) 10 0.09

5.2.3 Communities Inside Frequent Conceptual Links

In the last study, we have focused on the homogeneity rate Hl/c of a community
into a frequent conceptual link. Figure10 shows the distribution of this measure for
each dataset. We remind that the homogeneity rate into a frequent conceptual link
measures the ability for a FCL to connect nodes that belong to same communities. It
allows evaluating if a frequent conceptual link is composed, for right and left sides,
to nodes belonging to a same community as described in Fig. 4.

We can observe that the trends are very similar for the three networks. Indeed, for
each dataset the vast majority of the homogeneity rates obtained is rather high. For
instance, in the EpiSims network 87.97% of the Hl/c values are greater than 0.75.
In the Amazon and in the Communication networks, this proportion is respectively
76.24 and 71,5%. This result suggests that frequent conceptual links tend to be very
homogeneous, since equivalent percentages of nodes belonging to a same commu-
nity are found at the both sides of the pattern. In the EpiSims network, only 15.15%
of the values obtained are less than 0.5. In the Amazon and the Communication net-
works, this percentage is respectively 6,56 and 10,62%. This suggests that frequent

Fig. 10 Distribution of homogeneity rate Hl/c of a community into a frequent conceptual link
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Table 4 Examples of interesting patterns regarding Hl/c (remind support of FCL: β = 0.1)

Network Frequent conceptual link Community Hl/c

EpiSims ((*;1;*;*;*;*), (*;2;*;*;3;*)) 13 1.0000

((*;1;*;*;*;*), (*;2;1;*;*;*)) 23 0.9995

((*;2;2;2;*;*), (*;1;*;*;*;*)) 7 0.9962

Amazon ((*;*;*;*;General;*;*), (Book;*;*;*;*;0;*)) 22 0.9999

((Book;*;3;*;*;*;*), (*;*;*;*;*;0;*)) 27 0.9994

((Music;*;*;*;*;*;*), (Book;*;*;*;*;0;*)) 37 0.9989

Communication ((*;*;0;*;*;*;*), (*;*;1;*;*;0;*)) 26 0.9998

((Guadeloupe;*;0;*;1;*;*), (Guadeloupe;*;*;*;*;*;*)) 25 0.9984

((Guyane;*;*;*;*;*;*), (Guyane;*;1;*;*;*;*)) 32 0.9958

conceptual links tend to connect nodes that belong to same communities. Moreover,
this result demonstrates that a part of the intra-community links into a social network
may be involved in a frequent conceptual link.

For example, the first line of the Table4 provides relevant knowledge: First,
((∗; 1; ∗; ∗; ∗; ∗), (∗; 2; ∗; ∗; 3; ∗)) is a frequent conceptual link, i.e. at least 10% of
the links of the network connect men (∗; 1; ∗; ∗; ∗; ∗) to women who have between
4 and 5 contacts (∗; 2; ∗; ∗; 3; ∗) (we remind that the minimum link support thresh-
old was set at 0.1). Second, in each group, the percentage of nodes that belong to
community 13 is exactly the same.

6 Conclusion

In this paper, we have addressed the problem of clustering from social networks.
Unlike traditional approaches that focus separately on the design of new patterns of
knowledge suited to the context or the optimization of existing algorithms, we have
adopted in this work another point of view by focusing on the fusion of patterns and
the useful knowledge emerging from such fusions. For this purpose, we have focused
on two network clustering approaches extracting two kinds of knowledge: (i) the
clustering of nodes through the identification of communities and (ii) the clustering
of links through the search for frequent conceptual links. The main contributions of
the paper can be summarized as follows.

• We have formally described the concepts of communities and frequent conceptual
links and discussed both the problematic and the useful knowledge resulting from
their fusion.

• We have proposed a set of measures, based on the notion of homogeneity, that aim
to evaluate the amount of shared information between these patterns when they
are extracted from a same network.
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• Finally, we have applied these measures to three datasets: a proximity-based net-
work, a product co-purchasing network and a phone call network. The results
obtained have demonstrated the interest of the approach proposed since very inter-
esting merged knowledge have been identified on each network.

This work demonstrates the interest to consider simultaneously several sources of
knowledge. In future works we plan to extend the approach to other network mining
methods.

More generally, this work also raises a variety of questions in terms of visualiza-
tion, extraction algorithms and resulting meaning. For instance in our future works,
we plan to propose more complete representations of networks combining into sin-
gle visualizations several kinds of knowledge. Another interesting track should be
to propose optimized algorithms able to extract in one run several kinds knowledge.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large Data Bases (pp. 487–499).

Barrett, C. L., Bisset, K. R., Eubank, S. G., Feng, X., & Marathe, M. V. (2008). Episimdemics:
An efficient algorithm for simulating the spread of infectious disease over large realistic social
networks. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.

Blondel, V., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities
in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008.

Croft, D. P., James, R.,&Krause, J. (2008).Exploring animals social networks. Princeton: Princeton
University Press.

El Gamal, A. &Kim, Y.-H. (2011).Network information theory. Cambridge: Cambridge University
Press.

Fortunato, S. (2009). Community detection in graphs. Physics Reports, 486, 75–174.
Ganter, B., Stumme, G., &Wille, R. (2005). Formal concept analysis, foundations and applications.
Lecture Notes in computer science (Vol. 3626).

Getoor, L., & Diehl, C. P. (2005). Link mining: A survey. Physics Reports, 7, 3–12.
Kumpula, J. M., Saramäki, J., Kaski, K., & Kertész, J. (2007). Limited resolution in complex
network community detection with potts model approach. Physics Reports, 56(1), 41–45.

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community
detection algorithms. Physical Review E, 78, 046110.

Lehmann, S., & Hansen, L. K. (2007). Deterministic modularity optimization. Physical Review E,
60(1), 83–88.

Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing.
ACMTransactionsontheWeb, 1.

Mangiameli, P., Chen, S. K., & West, D. (1996). A comparison of som neural network and hierar-
chical clustering methods. European Journal of Operational Research, 93(2), 402–417.

Manyika, J., et al. (2011). Big data: The next frontier for innovation, competition, and productivity.
Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23), 8577–8582.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying
communities in networks. Proceedings of the National Academy of Sciences of the United States
of America, 101(9), 2658–2663.



276 E. Stattner and M. Collard

Riadh, T., Le Grand, B., Aufaure, M., & Soto, M. (2009). Conceptual and statistical footprints for
social networks’ characterization. In Proceedings of the 3rd Workshop on Social Network Mining
and Analysis (p. 8). ACM.

Scott, J. (2011). Social network analysis: Developments, advances, and prospects. Proceedings of
the National Academy of Sciences of the United States of America, 1(1), 21–26.

Stattner, E. (2014). Link formation in a telecommunication network. In 2014 IEEE Eighth Interna-
tional Conference on Research Challenges in Information Science (RCIS) (pp. 1–9). IEEE.

Stattner, E. & Collard, M. (2012a). Frequent links: An approach that combines attributes and
structure for extracting frequent patterns in social networks. In 16th East-European Conference
on Advances in Databases and Information Systems.

Stattner, E. and Collard, M. (2012b). Social-based conceptual links: Conceptual analysis applied
to social networks. In International Conference on Advances in Social Networks Analysis and
Mining.

Stattner, E. and Collard, M. (2013). Towards a hybrid algorithm for extracting maximal frequent
conceptual links in social networks. In IEEE International Conference on Research Challenges
in Information Science (pp. 1–8).

Steinhaeuser, K., & Chawla, N. V. (2010). Identifying and evaluating community structure in com-
plex networks. Pattern Recognition Letters, 31, 413–421.

Yang, J.,McAuley, J.,&Leskovec, J. (2013). Community detection in networkswith node attributes.
In 2013 IEEE 13th International Conference on Data Mining (ICDM) (pp. 1151–1156). IEEE.

Yoon, S.-H., Song, S.-S., and Kim, S.-W. (2011). Efficient link-based clustering in a large scaled
blog network. In Proceedings of the 5th International Conference on Ubiquitous Information
Management and Communication, ICUIMC 2011 (pp. 71:1–71:5). New York: ACM.

Zhou, Y., Cheng, H., & Yu, J. (2009). Graph clustering based on structural/attribute similarities.
Pattern Recognition Letters, 2(1), 718–729.



Author Index

A
Aazi, Fatima-Zahra, 85
Abdesselam, Rafik, 85
Attene, Marco, 181
Audeh, Bissan, 159

B
Beaune, Philippe, 159
Beigbeder, Michel, 159
Bennacer, Nacéra, 229
Boullé, Marc, 3
Buche, Patrice, 207

C
Collard, Martine, 255
Conde-Céspedes, Patricia, 101
Cuxa, Pascal, 121

D
Dibie, Juliette, 207
Dietenbeck, Thomas, 181

F
Favreau, Jean-Marie, 181

G
Ghufran, Mohammad, 229
Gibet, Sylvie, 39

H
Hajlaoui, Kafil, 121

Hecht, Thomas, 207
Hua, Kaixun, 141
Hue, Carine, 3

I
Ibanescu, Liliana, 207

J
Jaudoin, Hélène, 19

L
Lamirel, Jean-Charles, 121
Lemaire, Vincent, 3

M
Marcotorchino, Jean-François, 101
Marteau, Pierre-Francois, 39

N
Nana Jipmo, Coriane, 229
Nerzic, Pierre, 19

O
Othmani, Ahlem, 181

P
Pivert, Olivier, 19

Q
Quercini, Gianluca, 229

© Springer International Publishing Switzerland 2017
F. Guillet et al. (eds.), Advances in Knowledge Discovery and Management,
Studies in Computational Intelligence 665, DOI 10.1007/978-3-319-45763-5

277



278 Author Index

R
Reverdy, Clément, 39
Rioult, François, 61
Rocacher, Daniel, 19

S
Simovici, Dan A., 141
Soulet, Arnaud, 61
Stattner, Erick, 255

T
Torkhani, Fakhri, 181
Trojahn dos Santos, Cassia, 207

V
Vetro, Rosanne, 141
Viennet, Emmanuel, 101


	Preface
	Structure of the Book
	Mining Data with Optimization
	Quality Measures, Dissimilarities and Ultrametrics
	Semantics, Ontologies and Social Networks
	Acknowledgments

	Review Committee
	Associated Reviewers
	Contents
	Editors and Contributors
	Part I Mining Data with Optimization
	Online Learning of a Weighted Selective Naive Bayes Classifier with Non-convex Optimization
	1 Introduction
	2 Construction of a Regularized Criterion
	3 Optimization Algorithm: Gradient Descent  with Mini-Batches and Variable Neighborhood Search
	4 Experiments
	4.1 Experiments on Optimization Quality
	4.2 Regularized Classifier Performance

	5 Conclusion
	References

	On Making Skyline Queries Resistant  to Outliers
	1 Introduction
	2 Refresher About Skyline Queries and Motivations
	2.1 Skyline Queries
	2.2 Computing a Fuzzy Set of Typical Values

	3 Principle of the Exception-Tolerant Skyline
	3.1 Boolean View
	3.2 Gradual View

	4 Implementation Aspects
	4.1 Parallel Algorithm Principles
	4.2 Implementation in CUDA

	5 Experimental Results
	5.1 Application to a Real-World Dataset
	5.2 Application to Synthetic Data

	6 Conclusion
	References

	Adaptive Down-Sampling and Dimension Reduction in Time Elastic Kernel Machines for Efficient Recognition of Isolated Gestures
	1 Introduction
	2 Related Work
	3 Motion Representation
	4 Dimension Reduction of Motion Capture Data
	4.1 Dimension Reduction Along the Spatial Axis
	4.2 Dimension Reduction Along the Time Axis

	5 Elastic Kernels and Their Regularization
	5.1 Normalization

	6 Experimentation
	6.1 Results and Analysis

	7 Conclusion and Perspectives
	References

	Exact and Approximate Minimal  Pattern Mining
	1 Introduction
	1.1 Depth-First Search Mining
	1.2 Approximate Minimality
	1.3 Contributions

	2 Related Work
	2.1 Minimality for Exact and Approximate Condensed Representations
	2.2 Interest of Minimality

	3 ε-Minimizable Set System Framework
	3.1 Basic Definitions
	3.2 ε-Minimizable Set System
	3.3 δ-Minimal Patterns

	4 Enumerating the δ-Minimal Patterns
	4.1 Search Space Pruning
	4.2 Fast δ-Minimality Checking
	4.3 Algorithm DeFMe

	5 Scope of ε-MSS Framework
	6 Experimental Study
	6.1 Free Itemset Mining
	6.2 Minimal String Mining

	7 Conclusion
	References

	Part II Quality Measures, Dissimilarities and Ultrametrics
	Comparison of Proximity Measures  for a Topological Discrimination
	1 Introduction
	2 Topological Equivalence
	2.1 Topological Graph
	2.2 Comparison of Proximity Measures

	3 Illustration Examples
	3.1 Comparison and Classification of Proximity Measures
	3.2 Discriminant Measures According to the MSVM Method
	3.3 Experimentations

	4 Conclusion and Perspectives
	References

	Comparison of Linear Modularization Criteria Using the Relational Formalism,  an Approach to Easily Identify  Resolution Limit
	1 Introduction
	2 Relational Analysis Approach
	2.1 Linear Balanced Criteria
	2.2 Different Levels of Balance

	3 Modularization Criteria in Relational Notation
	4 The Impact of Merging Two Clusters
	4.1 Impact on the Optimal Number of Clusters

	5 Experiments with Artificial Networks
	6 Conclusions
	References

	A Novel Approach to Feature Selection Based on Quality Estimation Metrics
	1 Introduction
	2 Labelling Maximization for the Features Selection
	3 Experimental Data
	4 Experiments and Results
	4.1 Experiments
	4.2 Results

	5 Conclusion
	References

	Ultrametricity of Dissimilarity Spaces  and Its Significance for Data Mining
	1 Introduction
	2 Ultrametricity of Dissimilarities
	3 A Weaker Dissimilarity Measure
	4 Classification and Ultrametricity
	5 The Impact of Ultrametricity on Cluster Compactness and Separation
	6 Conclusions and Further Work
	References

	Part III Semantics, Ontologies, and Social Networks
	SMERA: Semantic Mixed Approach for Web Query Expansion and Reformulation
	1 Introduction
	2 Query Expansion and Reformulation in Information Retrieval
	2.1 Concept-Based Query Reformulation
	2.2 Query Expansion and Named Entities
	2.3 Quality of Expansion Terms

	3 Semantic Mixed Expansion and Reformulation Approach (SMERA)
	3.1 Expansion
	3.2 Concept-Based Query Reformulation

	4 Experiments and Evaluation
	4.1 Framework
	4.2 Results

	5 Conclusion
	References

	Multi-layer Ontologies for Integrated  3D Shape Segmentation and Annotation
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Terminology
	3.2 Expert Knowledge Description
	3.3 Expert System
	3.4 Mesh Processing Formalisation

	4 Details of the Elementary Algorithms
	4.1 Fuzzy Membership
	4.2 Elementary Algorithms

	5 Experiments on Furnitures Segmentation and Annotation
	5.1 Applicative Context and Results of the Annotation
	5.2 Evaluation of the Approach

	6 Conclusion and Future Work
	6.1 Limitations
	6.2 Future Work

	References

	Ontology Alignment Using Web Linked Ontologies as Background Knowledge
	1 Introduction
	2 Ontology Matching Method with Linked Ontologies
	2.1 First Step: Ontology Matching
	2.2 Second Step: Refining the Alignments

	3 Experiments
	3.1 The Source Ontology naRyQ
	3.2 Reference Alignments
	3.3 Experimental Protocol
	3.4 Experimental Results

	4 Related Work
	5 Conclusion and Perspectives
	References

	LIAISON: reconciLIAtion of Individuals Profiles Across SOcial Networks
	1 Introduction
	2 Related Work
	3 Background
	4 Attribute Comparison
	4.1 Nicknames
	4.2 Realname
	4.3 Locations
	4.4 Emails
	4.5 Websites and Profiles

	5 LIAISON
	5.1 Candidate Selection
	5.2 Cross-Links Determination
	5.3 The Algorithm

	6 Evaluation Results
	6.1 Evaluation of LIAISON
	6.2 Comparison with Existing Work

	7 Concluding Remarks
	References

	Clustering of Links and Clustering of Nodes: Fusion of Knowledge in Social Networks
	1 Introduction
	2 Related Works
	3 Towards a Fusion of Knowledge
	3.1 Communities in Social Networks
	3.2 Frequent Conceptual Links in Social Networks
	3.3 Merging Communities and Frequent Conceptual Links

	4 Interestingness Measures
	4.1 Preliminaries
	4.2 Homogeneity Rate into a Community
	4.3 Homogeneity Rate into a Meta-node
	4.4 Homogeneity Rate into a Conceptual Link

	5 Experimental Results
	5.1 Testbed
	5.2 Results

	6 Conclusion
	References

	Author Index



